Science.gov

Sample records for nuclear transformation products

  1. Nuclear transformation of Volvox carteri.

    PubMed Central

    Schiedlmeier, B; Schmitt, R; Müller, W; Kirk, M M; Gruber, H; Mages, W; Kirk, D L

    1994-01-01

    Stable nuclear transformation of Volvox carteri was achieved using the cloned V. carteri nitA+ gene (which encodes nitrate reductase) to complement a nitA- mutation. Following bombardment of mutant cells with plasmid-coated gold particles, putative transformants able to utilize nitrate as a nitrogen source were recovered with an efficiency of approximately 2.5 x 10(5). DNA analysis indicated that the plasmid integrated into the genome, often in multiple copies, at sites other than the nitA locus. Cotransformants were recovered with a frequency of 40-80% when cells were cobombarded with a selected and an unselected marker. Thus, V. carteri becomes one of the simplest multicellular organisms that is accessible to detailed molecular studies of genes regulating cellular differentiation and morphogenesis. Images PMID:8197189

  2. Nuclear Weapons Enterprise Transformation - A Sustainable Approach

    SciTech Connect

    O'Brien, K H

    2005-08-15

    Nuclear weapons play an essential role in United States (U.S.) National Security Policy and a succession of official reviews has concluded that nuclear weapons will continue to have a role for the foreseeable future. Under the evolving U.S. government policy, it is clear that role will be quite different from what it was during the Cold War. The nuclear-weapons stockpile as well as the nuclear-weapons enterprise needs to continue to change to reflect this evolving role. Stockpile reductions in the early 1990s and the Stockpile Stewardship Program (SSP), established after the cessation of nuclear testing in 1992, began this process of change. Further evolution is needed to address changing security environments, to enable further reductions in the number of stockpiled weapons, and to create a nuclear enterprise that is cost effective and sustainable for the long term. The SSP has successfully maintained the U.S. nuclear stockpile for more than a decade, since the end of nuclear testing. Current plans foresee maintaining warheads produced in the 1980s until about 2040. These warheads continue to age and they are expensive to refurbish. The current Life Extension Program plans for these legacy warheads are straining both the nuclear-weapons production and certification infrastructure making it difficult to respond rapidly to problems or changes in requirements. Furthermore, refurbishing and preserving Cold-War-era nuclear weapons requires refurbishing and preserving an infrastructure geared to support old technology. Stockpile Stewardship could continue this refurbishment approach, but an alternative approach could be considered that is more focused on sustainable technologies, and developing a more responsive nuclear weapons infrastructure. Guided by what we have learned from SSP during the last decade, the stewardship program can be evolved to address this increasing challenge using its computational and experimental tools and capabilities. This approach must start

  3. Transformer Industry Productivity Slows.

    ERIC Educational Resources Information Center

    Otto, Phyllis Flohr

    1981-01-01

    Annual productivity increases averaged 2.4 percent during 1963-79, slowing since 1972 to 1.5 percent; computer-assisted design and product standardization aided growth in output per employee-hour. (Author)

  4. Production of Viral mRNA in Adenovirus-Transformed Cells by the Post-Transcriptional Processing of Heterogeneous Nuclear RNA Containing Viral and Cell Sequences

    PubMed Central

    Wall, R.; Weber, J.; Gage, Z.; Darnell, J. E.

    1973-01-01

    Adenovirus 2-transformed cells contain virus-specific sequences which are covalently linked to cell-specific RNA sequences in heterogeneous nuclear RNA (HnRNA) molecules larger than 45S. Virus sequences are identified by hybridization to viral DNA, and the cell sequences are detected by hybridization to cellular DNA under conditions where hybridization only occurs to reiterated sites in cell DNA. Such large composite viral-cell HnRNA molecules presumably arise through the uninterrupted transcription of host sequences and integrated viral DNA. Adenovirus-specific polysomal RNA from these cells sediments as three discrete species at 16, 20, and 26S. These specific classes of viral mRNA do not contain rapidly hybridizing host-specific RNA sequences. Both virus-specific HnRNA and mRNA contain polyadenylic acid sequences since they bind to polyU columns at levels characteristics of other polyA-terminated HnRNA and mRNA. Thus, the discrete species of virus-specific mRNA in adenovirus 2 transformed cells appear to be derived from high-molecular-weight virus-specific HnRNA through a series of post-transcriptional modifications involving polyA addition. Subsequently the HnRNA is cleaved so that the cell-specific RNA sequences that originate from the reiterated sites in cell DNA do not accompany the adenovirus mRNA to the cytoplasm. These events for the adenovirus-specific mRNA appear, therefore, to be similar to the stages in the biogenesis of the majority of mRNA in eukaryotic cells. PMID:4736534

  5. Photocatalytic transformation of acesulfame: Transformation products identification and embryotoxicity study.

    PubMed

    Li, Adela Jing; Schmitz, Oliver J; Stephan, Susanne; Lenzen, Claudia; Yue, Patrick Ying-Kit; Li, Kaibin; Li, Huashou; Leung, Kelvin Sze-Yin

    2016-02-01

    Artificial sweeteners have been recognized as emerging contaminants due to their wide application, environmental persistence and ubiquitous occurrence. Among them, acesulfame has attracted much attention. After being discharged into the environment, acesulfame undergoes photolysis naturally. However, acesulfame photodegradation behavior and identity of its transformation products, critical to understanding acesulfame's environmental impact, have not been thoroughly investigated. The present study aimed to fill this knowledge gap by a laboratory simulation study in examining acesulfame transformation products and pathways under UV-C photolysis in the presence of TiO2. Photodegradation products of acesulfame were isolated and analyzed using the LC-IM-QTOF-MS coupled with LC Ion Trap MS in the MS(n) mode. Our results show six new transformation products that have not been previously identified. The molecular structures and transformation pathways were proposed. Further embryotoxicity tests showed that acesulfame transformation products at the low g L(-1) level produced significant adverse effects in tail detachment, heart rate, hatching rate and survival rate during fish embryo development. The identification of additional transformation products with proposed transformation pathways of acesulfame, the increased toxicity of acesulfame after photolysis, and the fact that the accumulation of acesulfame transformation products is increasingly likely make acesulfame contamination even more important. Water resource control agencies need to consider legislation regarding acesulfame and other artificial sweeteners, while further studies are carried out, in order to protect the safety of this most vital resource.

  6. MICROBIAL TRANSFORMATIONS OF RADIONUCLIDES RELEASED FROM NUCLEAR FUEL REPROCESSING PLANTS.

    SciTech Connect

    FRANCIS,A.J.

    2006-10-18

    Microorganisms can affect the stability and mobility of the actinides U, Pu, Cm, Am, Np, and the fission products Tc, I, Cs, Sr, released from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been investigated, we have only limited information on the effects of microbial processes. The mechanisms of microbial transformations of the major and minor actinides and the fission products under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  7. Occurrence of transformation products in the environment

    USGS Publications Warehouse

    Kolpin, D.W.; Battaglin, W.A.; Conn, K.E.; Furlong, E.T.; Glassmeyer, S.T.; Kalkhoff, S.J.; Meyer, M.T.; Schnoebelen, D.J.; ,

    2009-01-01

    Historically, most environmental occurrence research has focused on the parent compounds of organic contaminants. Research, however, has documented that the environmental transport of chemicals, such as pesticides and emerging contaminants, are substantially underestimated if transformation products are not considered. Although most examples described herein were drawn from research conducted by the U.S. Geological Survey, such results are generally reflective of those found in other parts of the world. Results from a study of 51 streams in the Midwestern United States found that transformation products were seven of the ten most frequently detected pesticide compounds in late spring runoff (after application of pre-emergent herbicides), and nine of the ten most frequently detected compounds in fall season runoff (during and after harvest). In fact, 70% of the total herbicide concentration in water from the Mississippi River Basin was from transformation products. Results from a study of 86 municipal wells in Iowa found the frequency of detection increased from 17%, when pesticide parent compounds were considered, to 53%, when both parents and transformation products were considered. Transformation products were 12 of the 15 most frequently detected compounds for this groundwater study. Although studies on transformation products of synthetic organic compounds other than pesticides are not as common, wastewater treatment plant discharges have repeatedly been shown to contribute such transformation products to streams. In addition, select detergent transformation products have been commonly found in solid waste in the 1000's mg/kg. These findings and many others document that transformation products must be considered to fully assess the potential environmental occurrence of chemical contaminants and their transport and fate in various compartments of the hydrologic system. ?? 2008 Springer-Verlag Berlin Heidelberg.

  8. Targeting nuclear receptors with marine natural products.

    PubMed

    Yang, Chunyan; Li, Qianrong; Li, Yong

    2014-01-27

    Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators.

  9. Nuclear transformation of Chlamydomonas reinhardtii with silicon carbide fibers

    SciTech Connect

    Dunahay, T.G. )

    1992-01-01

    Efficient nuclear transformation of cell wall-deficient strains of the green alga Chlamydomonas reinhardtii can be accomplished by vortexing the cells in the presence of glass beads and polyethylene glycol (Kindle 1990 PNAS 87:1228). Intact (walled) cells can also be transformed using this protocol, but at very low efficiencies. Two recent reports have described the use of silicon carbide fibers to mediate DNA entry into plant suspension cells (Kaeppler et al. 1990 Plant Cell Rep. 9:414; Asano et al. 1991 Plant Sci. 79:247). The author has found that nuclear transformation efficiencies of walled cells of C. reinhardtii can be increased 3 to 10 fold by vortexing the cells in the presence of silicon carbide fibers and PEG. Using a modification of the glass bead transformation procedure, the wild-type nitrate reductase structural gene was used to complement a NR-deficient mutant of C. reinhardtii, nit-1-305. The transformation efficiency increased with longer vortexing times, although the absolute number of transformants varied between experiments, ranging from 10 to 40 transformants per 10[sup 7] cells. In contrast to vortexing with glass beads, cell viability was very high, with greater than 80% cell survival even after vortexing for 10 minutes. Neither cell death nor transformation efficiency increased when cell wall-deficient mutants (cw15 nit-1-305) were used as compared to intact cells. Experiments are in progress to test the applicability of silicon carbide-mediated transformation to other algal strains for which cell wall mutants or protoplasting procedures are unavailabile.

  10. Initiating nuclear-chemical transformations in native systems: Phenomenology

    NASA Astrophysics Data System (ADS)

    Timashev, S. F.

    2016-10-01

    A possible mechanism of nuclear transformations in biological systems in vivo is proposed. Reasons why there is no ionizing radiation that could be detrimental to native systems during the corresponding nuclear reactions are given. It is established that the initial stage of these processes is associated with that of ATP hydrolysis, which initiates the action of the inner-shell electron of an atom participating in the reaction on its nucleus according to the mechanism of weak nuclear interaction. This results in the formation of a nucleus in a metastable state with a disturbed nucleon structure and a charge one unit lower than that of the initial nucleus. It is also assumed that the atom participating in the reaction is adsorbed near the mouth of one of the transport ATPases in the cell's cytoplasmic membrane, and the reason for the initiating impact the electron has on the nucleus is due to the emergence of a local electric field formed during ATP hydrolysis near the ion channel of a donor-acceptor pair of charges that is opposite to the direction of the average membrane field. It is concluded that as a result of the key role of weak nuclear interaction in these processes, the energy of nuclear transformations in biological systems in vivo is released through the emission of neutrino-antineutrino pairs that are harmless to living organisms.

  11. History of Nuclear Weapons Design and Production

    NASA Astrophysics Data System (ADS)

    Oelrich, Ivan

    2007-04-01

    The nuclear build-up of the United States and the Soviet Union during the Cold War is often portrayed as an arms race. Some part was indeed a bilateral competition, but much was the result of automatic application of technical advances as they became available, without careful consideration of strategic implications. Thus, the history of nuclear weapon design is partly designers responding to stated military needs and partly the world responding to constant innovations in nuclear capability. Today, plans for a new nuclear warhead are motivated primarily by the desire to maintain a nuclear design and production capability for the foreseeable future.

  12. Production of Synthetic Nuclear Melt Glass.

    PubMed

    Molgaard, Joshua J; Auxier, John D; Giminaro, Andrew V; Oldham, Colton J; Gill, Jonathan; Hall, Howard L

    2016-01-04

    Realistic surrogate nuclear debris is needed within the nuclear forensics community to test and validate post-detonation analysis techniques. Here we outline a novel process for producing bulk surface debris using a high temperature furnace. The material developed in this study is physically and chemically similar to trinitite (the melt glass produced by the first nuclear test). This synthetic nuclear melt glass is assumed to be similar to the vitrified material produced near the epicenter (ground zero) of any surface nuclear detonation in a desert environment. The process outlined here can be applied to produce other types of nuclear melt glass including that likely to be formed in an urban environment. This can be accomplished by simply modifying the precursor matrix to which this production process is applied. The melt glass produced in this study has been analyzed and compared to trinitite, revealing a comparable crystalline morphology, physical structure, void fraction, and chemical composition.

  13. Dedicated nuclear facilities for electrolytic hydrogen production

    NASA Technical Reports Server (NTRS)

    Foh, S. E.; Escher, W. J. D.; Donakowski, T. D.

    1979-01-01

    An advanced technology, fully dedicated nuclear-electrolytic hydrogen production facility is presented. This plant will produce hydrogen and oxygen only and no electrical power will be generated for off-plant use. The conceptual design was based on hydrogen production to fill a pipeline at 1000 psi and a 3000 MW nuclear base, and the base-line facility nuclear-to-shaftpower and shaftpower-to-electricity subsystems, the water treatment subsystem, electricity-to-hydrogen subsystem, hydrogen compression, efficiency, and hydrogen production cost are discussed. The final conceptual design integrates a 3000 MWth high-temperature gas-cooled reactor operating at 980 C helium reactor-out temperature, direct dc electricity generation via acyclic generators, and high-current density, high-pressure electrolyzers based on the solid polymer electrolyte approach. All subsystems are close-coupled and optimally interfaced and pipeline hydrogen is produced at 1000 psi. Hydrogen costs were about half of the conventional nuclear electrolysis process.

  14. Materials and Sensor R&D to Transform the Nuclear Stockpile: Livermore?s Transformational Materials Initiative

    SciTech Connect

    Maxwell, R; Fried, L; Campbell, G; Saab, A; Kotovsky, J; Carter, C; Chang, J

    2009-10-11

    As the nation's nuclear weapons age and the demands placed on them change, significant challenges face the nuclear stockpile. Risks include material supply issues, ever-increasing lifecycle costs, and loss of technical expertise across the weapons complex. For example, non-nuclear materials are becoming increasingly difficult to replace because manufacturing methods and formulations have evolved in such a way as to render formerly available materials unprofitable, unsafe, or otherwise obsolete. Subtle formulation changes in available materials that occur without the knowledge of the weapons community for proprietary reasons have frequently affected the long-term performance of materials in the nuclear weapon environment. Significant improvements in performance, lifetime, or production cost can be realized with modern synthesis, modeling, and manufacturing methods. For example, there are currently supply and aging issues associated with the insensitive high explosive formulations LX-17 and PBX 9502 that are based on triaminotrinitrobenzene (TATB) and Kel-F, neither of which are commercially available today. Assuring the reliability of the stockpile through surveillance and regularly scheduled Life Extension Programs is an increasingly expensive endeavor. Transforming our current stockpile surveillance--a system based on destructive testing of increasingly valuable assets--to a system based on embedded sensors has a number of potential advantages that include long-term cost savings, reduced risk associated with asset transportation, state-of-health assessments in the field, and active management of the stockpile.

  15. Nuclear Dependence of Charm Production

    SciTech Connect

    Blanco-Covarrubias, A.; Engelfried, J.; Akgun, U.; Alkhazov, G.; Amaro-Reyes, J.; Atamantchouk, A.G.; Ayan, A.S.; Balatz, M.Y.; Bondar, N.F.; Cooper, P.S.; Dauwe, Loretta J.; /Michigan U., Flint /Moscow, ITEP

    2009-02-01

    With data taken by SELEX, which accumulated data during the 1996-1997 fixed target run at Fermilab, we study the production of charmed hadrons on copper and carbon targets with {Sigma}{sup -}, p, {pi}{sup -}, and {pi}{sup +} beams. Parameterizing the production cross section {infinity} A{sup {alpha}}, A being the atomic number, we determine {alpha} for D{sup +}, D{sup 0}, D{sub s}{sup +}, D{sup +}(2010), {Lambda}{sub c}{sup +}, and their respective anti-particles, as a function of their transverse momentum p{sub t} and scaled longitudinal momentum x{sub F}. Within our statistics there is no dependence of {alpha} on x{sub F} for any charm species for the interval 0.1 < x{sub F} < 1.0. The average value of {alpha} for charm production by pion beams is {alpha}{sub meson} = 0.850 {+-} 0.028. This is somewhat larger than the corresponding average {alpha}{sub baryon} = 0.755 {+-} 0.016 for charm production by baryon beams ({Sigma}{sup -}, p).

  16. The Fourier Transform in Chemistry. Part 1. Nuclear Magnetic Resonance: Introduction.

    ERIC Educational Resources Information Center

    King, Roy W.; Williams, Kathryn R.

    1989-01-01

    Using fourier transformation methods in nuclear magnetic resonance has made possible increased sensitivity in chemical analysis. This article describes these methods as they relate to magnetization, the RF magnetic field, nuclear relaxation, the RF pulse, and free induction decay. (CW)

  17. Aging of safety class 1E transformers in safety systems of nuclear power plants

    SciTech Connect

    Roberts, E.W.; Edson, J.L.; Udy, A.C.

    1996-02-01

    This report discusses aging effects on safety-related power transformers in nuclear power plants. It also evaluates maintenance, testing, and monitoring practices with respect to their effectiveness in detecting and mitigating the effects of aging. The study follows the US Nuclear Regulatory Commission`s (NRC`s) Nuclear Plant-Aging Research approach. It investigates the materials used in transformer construction, identifies stressors and aging mechanisms, presents operating and testing experience with aging effects, analyzes transformer failure events reported in various databases, and evaluates maintenance practices. Databases maintained by the nuclear industry were analyzed to evaluate the effects of aging on the operation of nuclear power plants.

  18. Production of nuclear grade zirconium: A review

    NASA Astrophysics Data System (ADS)

    Xu, L.; Xiao, Y.; van Sandwijk, A.; Xu, Q.; Yang, Y.

    2015-11-01

    Zirconium is an ideal material for nuclear reactors due to its low absorption cross-section for thermal neutrons, whereas the typically contained hafnium with strong neutron-absorption is very harmful for zirconium as a fuel cladding material. This paper provides an overview of the processes for nuclear grade zirconium production with emphasis on the methods of Zr-Hf separation. The separation processes are roughly classified into hydro- and pyrometallurgical routes. The known pyrometallurgical Zr-Hf separation methods are discussed based on the following reaction features: redox characteristics, volatility, electrochemical properties and molten salt-metal equilibrium. In the present paper, the available Zr-Hf separation technologies are compared. The advantages and disadvantages as well as future directions of research and development for nuclear grade zirconium production are discussed.

  19. Acquired experience resulting from transforming a chemical installation into a nuclear one

    SciTech Connect

    Zamfirache, M.; Stefan, L.; Bornea, A.; Stefanescu, I.

    2015-03-15

    ICIT-Valcea has developed an experimental pilot-scale installation for tritium and deuterium separation. The main objective of this pilot was to demonstrate the water detritiation technology and to transfer this technology to the CANDU reactors of the Cernavoda nuclear power plant. The pilot-scale installation was initiated in 1992. The initial design and construction were performed similarly to chemical plants as the separation of isotopes was focused on only hydrogen and deuterium to assess feasibility. In a second phase we have begun to transform it into a nuclear facility with the aim of separating tritium. Moving to tritium separation has imposed a lot of changes. Changes consisted mainly of: -) re-design of the technological systems for nuclear material processing, applying specific codes and standards (ASME, Romanian nuclear specific pressure boundary prescriptions for code classification); -) design and implementation of new systems, classified as safety systems; -) re-design and implementation of command and control systems, complying with the requirements of reliability and maintenance required for the project promoted; -) revaluation of auxiliary systems (utilities, power supply); -) implementing radiation protection systems, including secondary barriers; -) implementing and maintaining environment operational program specific to the new nuclear plant; -) developing and conducting safety analyzes; and -) the production of specific documentation to obtain the necessary permits for construction, commissioning and operation of the plant.

  20. Nuclear effects in neutrino production of pions

    NASA Astrophysics Data System (ADS)

    Schmidt, Iván; Siddikov, M.

    2015-04-01

    In this paper we study nuclear effects in the neutrino production of pions. We found that in a Bjorken kinematics, for moderate xB accessible in ongoing and forthcoming neutrino experiments, the cross section is dominated by the incoherent contribution; the coherent contribution becomes visible only for small |t |≲1 /RA2, which requires xB≲0.1 . Our results could be relevant to the kinematics of the ongoing MINERvA experiment in the middle-energy regime. We provide a code which could be used for the evaluation of the neutrino induced deeply virtual meson production observables using different parametrizations of generalized parton distributions and different models of nuclear structure.

  1. Nuclear transformation and functional gene expression in the oleaginous microalga Monoraphidium neglectum.

    PubMed

    Jaeger, Daniel; Hübner, Wolfgang; Huser, Thomas; Mussgnug, Jan H; Kruse, Olaf

    2017-03-14

    Photosynthetic microalgae hold great promise as non-food feedstocks for the sustainable production of a range of bio-products and genetic engineering is an increasingly important strategy to improve the natural cellular features. For the vast majority of microalgal strains, however, genetic engineering is not yet possible and the establishment of efficient genetic tools for a broad range of microalgal species is an important task to reach biotechnological success. Stable DNA transformation is one of the crucial steps for most genetic engineering approaches. In this context, we report the first successful and stable nuclear genetic transformation of the biotechnologically promising oleaginous microalga M. neglectum. Transformation was achieved by electroporation and the efficiency could progressively be improved by implementation of an additional cell pretreatment step, aiming at weakening the rigid natural cell wall. Furthermore, a first reporter transgene was established for M. neglectum. As a result of this work, genetic engineering strategies now become accessible which are required to successfully establish M. neglectum as a novel host for biotechnological applications.

  2. Stable Nuclear Transformation System for the Coccolithophorid Alga Pleurochrysis carterae

    PubMed Central

    Endo, Hirotoshi; Yoshida, Megumi; Uji, Toshiki; Saga, Naotsune; Inoue, Koji; Nagasawa, Hiromichi

    2016-01-01

    Of the three dominant marine microalgal groups, dinoflagellates and diatoms can undergo genetic transformation; however, no transformation method has been established for haptophytes to date. Here, we report the first stable genetic transformation of a coccolithophore, Pleurochrysis carterae, by means of polyethylene glycol (PEG)-mediated transfer of a bacterial hygromycin B-resistance gene. Together with the novel transient green fluorescent protein (GFP) expression system, this approach should facilitate further molecular-based research in this phylum. PMID:26947136

  3. Direct Photon Production in a Nuclear Environment

    NASA Astrophysics Data System (ADS)

    Guo, Xiaofeng

    The photon is a very good probe of short distance physics in strong interactions. It can be produced directly at short-distance or through fragmentation processes. Through one-loop order in perturbation theory of quantum chromodynamics (QCD), this thesis provides complete analytic expressions for both the inclusive and the isolated prompt photon production cross sections in hadronic final states of e^+e ^- annihilations. It is the first time that the full angular dependence of the cross sections is derived. Extraction of photon fragmentation functions from e^+e ^- annihilations is addressed. Using e ^+e^--->gamma+X as an example, this work demonstrates for the first time that conventional perturbative QCD factorization breaks down for isolated photon production in e^+e ^- annihilations in a specific region of phase space. The impact of this breakdown for computations of prompt photon production in hadron-hadron reactions is also discussed. In hadron-nucleus collisions, high energy photons can be produced through a single hard scattering as well as through multiple scattering. The contribution from the multiple scattering can be presented in terms of multi-parton correlation functions. Using information on the multi-parton correlation functions extracted from photon-nucleus experiments, for the first time, the nuclear dependence of direct photon production in hadron-nucleus collisions was predicted without any free parameter, and was tested at Fermi Lab experiment E706.

  4. Ion transport of Fr nuclear reaction products

    SciTech Connect

    Behr, J.A.; Cahn, S.B.; Dutta, S.B.

    1993-04-01

    Experiments planned for fundamental studies of radioactive atoms in magneto-optic traps require efficient deceleration and transport of nuclear reaction products to energies and locations where they can be trapped. The authors have built a low-energy ion transport system for Francium and other alkalis. A thick Au target is held on a W rod at 45{degrees} to the accelerator beam direction. The heavy-ion fusion reaction 115 MeV {sup 18}O + {sup 197}Au produces {sup 211,210,209}Fr recoil products which are stopped in the target. The target is heated to close to the melting point of Au to allow the Fr to diffuse to the surface, where it is ionized due to Au`s high work function, and is directly extracted by an electrode at 90{degrees} to the accelerator beam direction. The Fr is transported by electrostatic optics {approximately}1 m to a catcher viewed by an {alpha} detector: {ge}15% of the Fr produced in the target reaches the catcher. 2{times}10{sup 5} Fr/sec have been produced at the catcher, yielding at equilibrium a sample of 3x10{sup 7}Fr nuclei. This scheme physically decouples the target diffusion from the surface neutralization process, which can occur at a lower temperature more compatible with the neutral-atom trap.

  5. Input dynamics of pesticide transformation products into surface water

    NASA Astrophysics Data System (ADS)

    Kern, Susanne; Singer, Heinz; Hollender, Juliane; Schwarzenbach, René P.; Fenner, Kathrin

    2010-05-01

    Some pesticide transformation products have been observed to occur in higher concentrations and more frequently than the parent active pesticide in surface water and groundwater. These products are often more mobile and sometimes more stable than the parent pesticide. If they also represent the major product into which the parent substance is transformed, these transformation products may dominate observed pesticide occurrences in surface water and groundwater. Their potential contribution to the overall risk to the aquatic environment caused by the use of the parent pesticide should therefore not be neglected in chemical risk and water quality assessments. The same is true for transformation products of other compound classes that might reach the soil environment, such as veterinary pharmaceuticals. However, the fate and input pathways of transformation products of soil-applied chemicals into surface water are not yet well understood, which largely prevents their appropriate inclusion into chemical risk and water quality assessments. Here, we studied whether prioritization methods based on available environmental fate data from pesticide registration dossiers in combination with basic fate models could help identify transformation products which can be found in relevant concentrations in surface and groundwater and which should therefore be included into monitoring programs. A three-box steady state model containing air, soil, and surface water compartments was used to predict relative inputs of pesticide transformation products into surface waters based on their physico-chemical and environmental fate properties. The model predictions were compared to monitoring data from a small Swiss river located in an intensely agricultural catchment (90 km2) which was flow-proportionally sampled from May to October 2008 and screened for 74 pesticides as well as 50 corresponding transformation products. Sampling mainly occurred during high discharge, but additional samples

  6. Vehicles and ways for efficient nuclear transformation in plants.

    PubMed

    Husaini, Amjad Masood; Abdin, Mallik Zainul; Parray, Ghulam Ahmad; Sanghera, Gulzar Singh; Murtaza, Imtiyaz; Alam, Tanweer; Srivastava, Dinesh Kumar; Farooqi, Humaira; Khan, Hamid Nawaz

    2010-01-01

    Transgenic science and technology are fundamental to the state-of-art plant molecular genetics and crop improvement. The new generation of technology endeavors to introduce genes 'stably' into 'site-specific' locations and in 'single copy' without the integration of extraneous vector 'backbone' sequences or 'selectable markers'. Numerous plant transformation technologies have developed with the aim of achieving these objectives. Here we discuss some of these technologies, which can push the development of 'better transgenic plants with desirable characters only'.

  7. Aerobic activated sludge transformation of methotrexate: identification of biotransformation products.

    PubMed

    Kosjek, Tina; Negreira, Noelia; de Alda, Miren López; Barceló, Damià

    2015-01-01

    This study describes the biotransformation of cytostatic and immunosuppressive pharmaceutical methotrexate. Its susceptibility to microbiological breakdown was studied in a batch biotransformation system, in presence or absence of carbon source and at two activated sludge concentrations. The primary focus of the present study are methotrexate biotransformation products, which were tentatively identified by the ultra-high performance liquid chromatography-quadrupole--Orbitrap-MS. Data-dependent experiments, combining full-scan MS data with product ion spectra were acquired, in order to identify the molecular ions of methotrexate transformation products, to propose the molecular formulae and to elucidate their chemical structures. Among the identified transformation products 2,4-diamino-N10-methyl-pteroic acid is most abundant and persistent. Other biotransformation reactions involve demethylation, oxidative cleavage of amine, cleavage of C-N bond, aldehyde to carboxylate transformation and hydroxylation. Finally, a breakdown pathway is proposed, which shows that most of methotrexate breakdown products retain the diaminopteridine structural segment. In total we propose nine transformation products, among them eight are described as methotrexate transformation products for the first time.

  8. Spontaneous transformation of an immortalized hepatocyte cell line: potential role of a nuclear protease.

    PubMed

    Drubin, David A; Clawson, Gary A

    2004-09-15

    In this study, we utilized an in vitro model of spontaneous transformation/progression, an SV40 large T antigen-immortalized rat hepatocyte cell line (designated CWSV14) that is very weakly tumorigenic at low-passage, but acquires a transformed phenotype upon extended passage in cell culture. Here we show that this mid-passage transformation is accompanied by development of aneuploidy and disorganization of the actin cytoskeleton, concomitant with a large increase in a chymotrypsin-like nuclear protease activity which we have previously implicated in chemical transformation of fibroblasts and ras-transformation of hepatocytes. Passage of the CWSV14 cells with AAPF(cmk), a relatively selective inhibitor of the nuclear protease activity, abrogates the acquisition of the transformed phenotype and prevents the changes in the actin cytoskeleton. We hypothesize that the nuclear protease may play a role in initiating development of genomic instability, paralleling the archetypical role of proteases in paradigms such as the SOS-type responses in bacteria and yeast.

  9. Product Distribution Theory and Semi-Coordinate Transformations

    NASA Technical Reports Server (NTRS)

    Airiau, Stephane; Wolpert, David H.

    2004-01-01

    Product Distribution (PD) theory is a new framework for doing distributed adaptive control of a multiagent system (MAS). We introduce the technique of "coordinate transformations" in PD theory gradient descent. These transformations selectively couple a few agents with each other into "meta-agents". Intuitively, this can be viewed as a generalization of forming binding contracts between those agents. Doing this sacrifices a bit of the distributed nature of the MAS, in that there must now be communication from multiple agents in determining what joint-move is finally implemented However, as we demonstrate in computer experiments, these transformations improve the performance of the MAS.

  10. Nuclear Hydrogen for Peak Electricity Production and Spinning Reserve

    SciTech Connect

    Forsberg, C.W.

    2005-01-20

    Nuclear energy can be used to produce hydrogen. The key strategic question is this: ''What are the early markets for nuclear hydrogen?'' The answer determines (1) whether there are incentives to implement nuclear hydrogen technology today or whether the development of such a technology could be delayed by decades until a hydrogen economy has evolved, (2) the industrial partners required to develop such a technology, and (3) the technological requirements for the hydrogen production system (rate of production, steady-state or variable production, hydrogen purity, etc.). Understanding ''early'' markets for any new product is difficult because the customer may not even recognize that the product could exist. This study is an initial examination of how nuclear hydrogen could be used in two interconnected early markets: the production of electricity for peak and intermediate electrical loads and spinning reserve for the electrical grid. The study is intended to provide an initial description that can then be used to consult with potential customers (utilities, the Electric Power Research Institute, etc.) to better determine the potential real-world viability of this early market for nuclear hydrogen and provide the starting point for a more definitive assessment of the concept. If this set of applications is economically viable, it offers several unique advantages: (1) the market is approximately equivalent in size to the existing nuclear electric enterprise in the United States, (2) the entire market is within the utility industry and does not require development of an external market for hydrogen or a significant hydrogen infrastructure beyond the utility site, (3) the technology and scale match those of nuclear hydrogen production, (4) the market exists today, and (5) the market is sufficient in size to justify development of nuclear hydrogen production techniques independent of the development of any other market for hydrogen. These characteristics make it an ideal

  11. A Simple and Non-Invasive Method for Nuclear Transformation of Intact-walled Chlamydomonas reinhardtii

    PubMed Central

    Kim, Sora; Lee, Young-Chul; Cho, Dae-Hyun; Lee, Hyun Uk; Huh, Yun Suk; Kim, Geun-Joong; Kim, Hee-Sik

    2014-01-01

    Genetic engineering in microalgae is gaining attraction but nuclear transformation methods available so far are either inefficient or require special equipment. In this study, we employ positively charged nanoparticles, 3-aminopropyl-functionalized magnesium phyllosilicate (aminoclay, approximate unit cell composition of [H2N(CH2)3]8Si8Mg6O12(OH)4), for nuclear transformation into eukaryotic microalgae. TEM and EDX analysis of the process of transformation reveals that aminoclay coats negatively-charged DNA biomolecules and forms a self-assembled hybrid nanostructure. Subsequently, when this nanostructure is mixed with microalgal cells and plated onto selective agar plates with high friction force, cell wall is disrupted facilitating delivery of plasmid DNA into the cell and ultimately to the nucleus. This method is not only simple, inexpensive, and non-toxic to cells but also provides efficient transformation (5.03×102 transformants/µg DNA), second only to electroporation which needs advanced instrumentation. We present optimized parameters for efficient transformation including pre-treatment, friction force, concentration of foreign DNA/aminoclay, and plasticity of agar plates. It is also confirmed the successful integration and stable expression of foreign gene in Chlamydomonas reinhardtii through molecular methods. PMID:24988123

  12. [Cytogenetic activity of the butylcaptax defoliant transformation product].

    PubMed

    Vesmanova, O Ia; Semykina, E E; Koblov, R K; Ergashev

    1989-01-01

    Cytogenetical activity of the product of metabolitic butylcaptax transformations in cells of cotton plants G. barbadense has been studied. It is shown that butylcaptax, with a significant mutagenicity, looses its mutagenic activity, metabolizing in low mutagenic 2-oxyamylthiobenzthiazole. Low water solubility prevents its concentration to exceed 0.005% in tissue liquids and to exert a mutagenic action on cotton plants.

  13. Automatic nuclear bud detection using ellipse fitting, moving sticks or top-hat transformation.

    PubMed

    Zhang, C; Sun, C; Vallotton, P; Fenech, M; Pham, T D

    2013-11-01

    Micronucleus assays are extensively used by biologists to assess genotoxicity and to monitor human exposure to genotoxic materials. As recent studies suggested that nuclear buds can be a new source of micronuclei formed in interphase, the quantification of nuclear buds, which are micronucleus like objects that are attached to the nuclei in interphase, in normal and control group is needed. Three automatic nuclear bud detection algorithms fit for different situations are proposed in this paper. One is based on ellipse fitting, one is based on a stick model and the other is based on the top-hat transform. Comparison of the three methods is also given in this paper. Experimental results showed that the proposed algorithms are all effective and efficient for nuclear bud detection.

  14. Converting Maturing Nuclear Sites to Integrated Power Production Islands

    DOE PAGES

    Solbrig, Charles W.

    2011-01-01

    Nuclear islands, which are integrated power production sites, could effectively sequester and safeguard the US stockpile of plutonium. A nuclear island, an evolution of the integral fast reactor, utilizes all the Transuranics (Pu plus minor actinides) produced in power production, and it eliminates all spent fuel shipments to and from the site. This latter attribute requires that fuel reprocessing occur on each site and that fast reactors be built on-site to utilize the TRU. All commercial spent fuel shipments could be eliminated by converting all LWR nuclear power sites to nuclear islands. Existing LWR sites have the added advantage ofmore » already possessing a license to produce nuclear power. Each could contribute to an increase in the nuclear power production by adding one or more fast reactors. Both the TRU and the depleted uranium obtained in reprocessing would be used on-site for fast fuel manufacture. Only fission products would be shipped to a repository for storage. The nuclear island concept could be used to alleviate the strain of LWR plant sites currently approaching or exceeding their spent fuel pool storage capacity. Fast reactor breeding ratio could be designed to convert existing sites to all fast reactors, or keep the majority thermal.« less

  15. Nuclear hydrogen : an assessment of product flexibility and market viability.

    SciTech Connect

    Botterud, A.; Yildiz, B.; Conzelmann, G.; Petri, M.; Massachusetts Inst. of Tech.

    2008-01-01

    Nuclear energy has the potential to play an important role in the future energy system as a large-scale source of hydrogen without greenhouse gas emissions. Thus far, economic studies of nuclear hydrogen tend to focus on the levelized cost of hydrogen without accounting for the risks and uncertainties that potential investors would face. We present a financial model based on real options theory to assess the profitability of different nuclear hydrogen production technologies in evolving electricity and hydrogen markets. The model uses Monte Carlo simulations to represent uncertainty in future hydrogen and electricity prices. It computes the expected value and the distribution of discounted profits from nuclear hydrogen production plants. Moreover, the model quantifies the value of the option to switch between hydrogen and electricity production, depending on what is more profitable to sell. We use the model to analyze the market viability of four potential nuclear hydrogen technologies and conclude that flexibility in output product is likely to add significant economic value for an investor in nuclear hydrogen. This should be taken into account in the development phase of nuclear hydrogen technologies.

  16. Transformation products of 2-benzoxazolinone (BOA) in soil.

    PubMed

    Gents, Mia B; Nielsen, Susan T; Mortensen, Anne G; Christophersen, Carsten; Fomsgaard, Inge S

    2005-09-01

    Three degradation experiments were performed to examine the formation of transformation products from 2-benzoxazolinone (BOA) in different soil types and concentrations. In two experiments using BOA in low concentration (400 microgkg(-1)) only one unidentified transformation product was found, whereas in the degradation experiment in high concentration (400 mgkg(-1)) several metabolites occurred. Two of these metabolites, 2-amino-(3H)-phenoxazin-3-one (APO); and 2-acetylamino-(3H)-phenoxazin-3-one (AAPO) were synthesized to prove their identity. This is the first time that the successive formation of these types of compounds from BOA is shown in soil. A number of other APO related transformation products were detected and provisionally characterized. The formation of APO, which is a much more biologically active compound than BOA, and the concurrent formation of a number of other APO-related metabolites in soil underline the importance of performing transformation studies as part of the evaluation of the effect of allelochemicals on weeds and soil-borne diseases.

  17. Hydrogen Production from Nuclear Energy via High Temperature Electrolysis

    SciTech Connect

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

    2006-04-01

    This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production.

  18. Nuclear transparencies from photoinduced pion production

    SciTech Connect

    W. Cosyn; M.C. Martinez; J. Ryckebusch; B. Van Overmeire

    2006-12-01

    We present a relativistic and cross-section factorized framework for computing nuclear transparencies extracted from A({gamma}, {pi} N) reactions at intermediate energies. The proposed quantum mechanical model adopts a relativistic extension to the multiple-scattering Glauber approximation to account for the final state interactions of the ejected nucleon and pion. The theoretical predictions are compared against the experimental {sup 4}He({gamma},p {pi}{sup -}) data from Jefferson Lab. For those data, our results show no conclusive evidence for the onset of mechanisms related to color transparency.

  19. Enviromental Development Plan: special nuclear materials production

    SciTech Connect

    Not Available

    1980-07-01

    This Environmental Development Plan includes the process steps and facilities necessary for the production of plutonium and tritium for Government needs and the production of some other radioactive materials that will be used for heat and radiation sources by domestic and international customers. The production reactors and the spent fuel processing plants and their effluents are discussed, but the defense wastes from them are treated in a separate EDP. The scope does not include transportation, decontamination and decommissioning, safeguards and security, or use of the SNM products.

  20. Chemical contamination and transformation of soils in hydrocarbon production regions

    NASA Astrophysics Data System (ADS)

    Zamotaev, I. V.; Ivanov, I. V.; Mikheev, P. V.; Nikonova, A. N.

    2015-12-01

    The current concepts of soil pollution and transformation in the regions of hydrocarbon production have been reviewed. The development of an oil field creates extreme conditions for pedogenesis. Tendencies in the radial migration, spatial distribution, metabolism, and accumulation of pollutants (oil, oil products, and attendant heavy metals) in soils of different bioclimatic zones have been analyzed. The radial and lateral mobility of pollution halos is a universal tendency in the technogenic transformation of soils and soil cover in the regions of hydrocarbon production. The biodegradation time of different hydrocarbon compounds strongly varies under different landscape conditions, from several months to several tens of years. The transformation of original (mineral and organic) soils to their technogenic modifications (mechanically disturbed, chemically contaminated, and chemo soils and chemozems) occurs in the impact zone of technogenic hydrocarbon fluxes under any physiographical conditions. The integrated use of the existing methods for the determination of the total content and qualitative composition of bituminous substances and polyaromatic hydrocarbons in combination with the chromatographic determination of normal alkanes and hydrocarbon gases, as well as innovative methods of studies, allows revealing new processes and genetic relationships in soils and studying the functioning of soils and soil cover. The study of the hydrocarbon contamination of soils is important for development of restoration measures and lays the groundwork for the ecological and hygienic regulation based on the zonation of soil and landscape resistance to different pollutants.

  1. Equipment for nuclear medical centers, production capabilities of Rosatom enterprises

    NASA Astrophysics Data System (ADS)

    Gavrish, Yu. N.; Koloskov, S. A.; Smirnov, V. P.; Strokach, A. P.

    2015-12-01

    Analysis of the capabilities of the State Corporation Rosatom enterprises on the development and production of diagnostic and therapeutic equipment for nuclear medicine centers is presented. Prospects of the development of accelerator equipment for the production of a wide range of radioisotope products are shown, and the trends of its development are determined. A comparative analysis of the technical parameters of domestic tomographs and devices for brachytherapy with foreign counterparts is given.

  2. Equipment for nuclear medical centers, production capabilities of Rosatom enterprises

    SciTech Connect

    Gavrish, Yu. N.; Koloskov, S. A.; Smirnov, V. P.; Strokach, A. P.

    2015-12-15

    Analysis of the capabilities of the State Corporation Rosatom enterprises on the development and production of diagnostic and therapeutic equipment for nuclear medicine centers is presented. Prospects of the development of accelerator equipment for the production of a wide range of radioisotope products are shown, and the trends of its development are determined. A comparative analysis of the technical parameters of domestic tomographs and devices for brachytherapy with foreign counterparts is given.

  3. Integrated approach to economical, reliable, safe nuclear power production

    SciTech Connect

    Not Available

    1982-06-01

    An Integrated Approach to Economical, Reliable, Safe Nuclear Power Production is the latest evolution of a concept which originated with the Defense-in-Depth philosophy of the nuclear industry. As Defense-in-Depth provided a framework for viewing physical barriers and equipment redundancy, the Integrated Approach gives a framework for viewing nuclear power production in terms of functions and institutions. In the Integrated Approach, four plant Goals are defined (Normal Operation, Core and Plant Protection, Containment Integrity and Emergency Preparedness) with the attendant Functional and Institutional Classifications that support them. The Integrated Approach provides a systematic perspective that combines the economic objective of reliable power production with the safety objective of consistent, controlled plant operation.

  4. SOURCE OF PRODUCTS OF NUCLEAR FISSION

    DOEpatents

    Harteck, P.; Dondes, S.

    1960-03-15

    A source of fission product recoil energy suitable for use in radiation chemistry is reported. The source consists of thermal neutron irradiated glass wool having a diameter of 1 to 5 microns and containing an isotope fissionable by thermal neutrons, such as U/sup 235/.

  5. Transformation products of clindamycin in moving bed biofilm reactor (MBBR).

    PubMed

    Ooi, Gordon T H; Escola Casas, Monica; Andersen, Henrik R; Bester, Kai

    2017-04-15

    Clindamycin is widely prescribed for its ability to treat a number of common bacterial infections. Thus, clindamycin enters wastewater via human excretion or disposal of unused medication and widespread detection of pharmaceuticals in rivers proves the insufficiency of conventional wastewater treatment plants in removing clindamycin. Recently, it has been discovered that attached biofilm reactors, e.g., moving bed biofilm reactors (MBBRs) obtain a higher removal of pharmaceuticals than conventional sludge wastewater treatment plants. Therefore, this study investigated the capability of MBBRs applied in the effluent of conventional wastewater treatment plants to remove clindamycin. First, a batch experiment was executed with a high initial concentration of clindamycin to identify the transformation products. It was shown that clindamycin can be removed from wastewater by MBBR and the treatment process converts clindamycin into the, possibly persistent, products clindamycin sulfoxide and N-desmethyl clindamycin as well as 3 other mono-oxygenated products. Subsequently, the removal kinetics of clindamycin and the formation of the two identified products were investigated in batch experiments using MBBR carriers from polishing and nitrifying reactors. Additionally, the presence of these two metabolites in biofilm-free wastewater effluent was studied. The nitrifying biofilm reactor had a higher biological activity with k-value of 0.1813 h(-1) than the reactor with polishing biofilm (k = 0.0161 h(-1)) which again has a much higher biological activity for removal of clindamycin than of the suspended bacteria (biofilm-free control). Clindamycin sulfoxide was the main transformation product which was found in concentrations exceeding 10% of the initial clindamycin concentration after 1 day of MBBR treatment. Thus, MBBRs should not necessarily be considered as reactors mineralizing clindamycin as they perform transformation reactions at least to some extent.

  6. Classification of explosives transformation products in plant tissue

    SciTech Connect

    Larson, S.L.; Jones, R.P. . Waterways Experiment Station); Escalon, L.; Parker, D. )

    1999-06-01

    Explosives contamination in surface or groundwater used for the irrigation of food crops and phytoremediation of explosives-contaminated soil or water using plant-assisted biodegradation have brought about concerns as to the fate of explosives in plants. Liquid scintillation counting, high-performance liquid chromatography, and gel permeation chromatography were utilized to characterize explosives (hexahydro-1,3,5-trinitro-1,3,5-triazine and trinitrotoluene) and their metabolites in plant tissues obtained from three separate studies. Analyzing tissues of yellow nutsedge (Cyperus esculentus), corn (Zea mays), lettuce (Lacuta sativa), tomato (Lyopersicum esculentum), radish (Raphanus sativus), and parrot feather (Myriophyllum aquaticum) from three studies where exposure to explosives at nontoxic levels occurred showed that extensive transformation of the explosive contaminant occurred, variations were noted in uptake and transformation between terrestrial and aquatic plants, the products had significantly higher polarity and water solubility than the parent compounds, and the molecular sizes of the transformation products were significantly greater than those of the parent compounds.

  7. Supplying the nuclear arsenal: American production reactors, 1942--1992

    SciTech Connect

    Carlisle, R.P.; Zenzen, J.M.

    1996-01-01

    Although the history of commercial-power nuclear reactors is well known, the story of the government reactors that produce weapons-grade plutonium and tritium has been shrouded in secrecy. In the first detailed look at the origin and development of these production reactors, the authors describe a fifty-year government effort no less complex, expensive, and technologically demanding than the Polaris or Apollo programs--yet one about which most Americans know virtually nothing. The book describes the evolution of the early reactors, the atomic weapons establishment that surrounded them, and the sometimes bitter struggles between business and political constituencies for their share of 'nuclear pork.' They show how, since the 1980s, aging production reactors have increased the risk of radioactive contamination of the atmosphere and water table. And they describe how the Department of Energy mounted a massive effort to find the right design for a new generation of reactors, only to abandon that effort with the end of the Cold War. Today, all American production reactors remain closed. Due to short half-life, the nation's supply of tritium, crucial to modern weapons, is rapidly dwindling. As countries like Iraq and North Korea threaten to join the nuclear club, the authors contend, the United States needs to revitalize tritium production capacity in order to maintain a viable nuclear deterrent. Meanwhile, as slowly decaying artifacts of the Cold War, the closed production reactors at Hanford, Washington, and Savannah River, South Carolina, loom ominously over the landscape.

  8. The transformation of the cytoplasmic oestradiol–receptor complex into the nuclear complex in a uterine cell-free system

    PubMed Central

    Gschwendt, Michael; Hamilton, Terrell H.

    1972-01-01

    Experiments performed with a cell-free system in tris–EDTA buffer, pH 7.4, indicate that the high-speed supernatant fraction of the rat uterus contains all the factors necessary to transform the 8S cytoplasmic oestradiol–receptor complex to the nuclear complex. The transformation is temperature-dependent. This nuclear complex was extracted in the form of a 5S particle with 0.4m-KCl from sediments of either uterine or heart nuclei that had been incubated together with the cytoplasmic soluble fraction of the uterus at 2°C for 30min. This complex can also be obtained similarly from the soluble fraction of the uterus, incubated in the absence of nuclei. Previous warming of the soluble fraction to 37°C for 7min was necessary for the successful extraction of the nuclear particle under these conditions of incubation. After an incubation of the transformed complex with the nuclear sediment at 37°C for 7min, the 5S complex was extractable from the uterine nuclear sediment but not from the heart nuclear sediment, which may indicate the tissue specificity of the nuclear acceptor sites for the transformed complex. The extracted uterine nuclear complex sediments in the 5S region, but whether it is the native complex or a subunit or other part of the native complex resulting from the extraction with salt is unknown. PMID:4634832

  9. Nuclear reactors for research and radioisotope production in Argentina

    SciTech Connect

    Duran, H.H.

    1981-01-01

    In Argentina, the construction, operation, and use of research and radioisotope production reactors is and has been an important method of personnel preparation for the nuclear power program. Moreover, it is a very suitable means for technology transfer to countries developing their own nuclear programs. At present, the following research reactors are in operation in Argentina: Argentine Reactor 0 (RA-0); Argentine Reactor 1 (RA-1); Argentine Reactor 2 (RA-2); Argentine Reactor 3 (RA-3); Argentine Reactor 4 (RA-4). The Argentine Reactor 6 (RA-6), under construction, should reach criticality in 1981.

  10. Chemistry of fission product iodine under nuclear reactor accident conditions

    SciTech Connect

    Malinauskas, A.P.; Bell, J.T.

    1986-01-01

    The radioisotopes of iodine are generally acknowledged to be the species whose release into the biosphere as a result of a nuclear reactor accident is of the greatest concern. In the course of its release, the fission product is subjected to differing chemical environments; these can alter the physicochemical form of the fission product and thus modify the manner and extent to which release occurs. Both the chemical environments which are characteristic of reactor accidents and their effect in determining physical and chemical form of fission product iodine have been studied extensively, and are reviewed in this report. 76 refs.

  11. Adenovirus type 2 nuclear RNA accumulating during productive infection.

    PubMed Central

    Bachenheimer, S L

    1977-01-01

    The viral-specific nuclear RNA which accumulates early and late during productive infection of HeLa cells by adenovirus-type 2 (Ad2) has been characterized with respect to its size and stability after denaturation by Me2SO. Early nuclear transcripts, under nondenaturing conditions, sediment in the range 28 to 45S, but treatment with Me2SO prior to sedimentation results in a shift to about 20S. Later nuclear RNA accumulates as a composite of two populations of molecules: one with a broad size distribution centering on 45S under nondenaturing conditions and less than 32S after denaturation and a second having a narrow size distribution around 35S which is quite stable to Me2SO. Analysis of late RNA by hybridization to Sma fragments of Ad2 DNA suggests that the 35S RNA species is derived from a limited portion of the left half of the viral genome. PMID:864839

  12. Hydrogen Production from the Next Generation Nuclear Plant

    SciTech Connect

    M. Patterson; C. Park

    2008-03-01

    The Next Generation Nuclear Plant (NGNP) is a high temperature gas-cooled reactor that will be capable of producing hydrogen, electricity and/or high temperature process heat for industrial use. The project has initiated the conceptual design phase and when completed will demonstrate the viability of hydrogen generation using nuclear produced process heat. This paper explains how industry and the U.S. Government are cooperating to advance nuclear hydrogen technology. It also describes the issues being explored and the results of recent R&D including materials development and testing, thermal-fluids research, and systems analysis. The paper also describes the hydrogen production technologies being considered (including various thermochemical processes and high-temperature electrolysis).

  13. Dynamic Simulation and Optimization of Nuclear Hydrogen Production Systems

    SciTech Connect

    Paul I. Barton; Mujid S. Kaximi; Georgios Bollas; Patricio Ramirez Munoz

    2009-07-31

    This project is part of a research effort to design a hydrogen plant and its interface with a nuclear reactor. This project developed a dynamic modeling, simulation and optimization environment for nuclear hydrogen production systems. A hybrid discrete/continuous model captures both the continuous dynamics of the nuclear plant, the hydrogen plant, and their interface, along with discrete events such as major upsets. This hybrid model makes us of accurate thermodynamic sub-models for the description of phase and reaction equilibria in the thermochemical reactor. Use of the detailed thermodynamic models will allow researchers to examine the process in detail and have confidence in the accurary of the property package they use.

  14. Sunlight photolysis of benzotriazoles - Identification of transformation products and pathways.

    PubMed

    Weidauer, Cindy; Davis, Caroline; Raeke, Julia; Seiwert, Bettina; Reemtsma, Thorsten

    2016-07-01

    Benzotriazoles (BTs) are widely used corrosion inhibitors, incompletely removed in municipal wastewater treatment. The photochemical fate of the three BTs 1H-benzotriazole (1H-BT), 4-methyl-1H-benzotriazole (4Me-BT) and 5-methyl-1H-benzotriazole (5Me-BT) and of three microbial metabolites, was studied under simulated sunlight (290-800 nm) at neutral pH in aqueous solution for 24 h. The half-life, the quantum yield and the reaction rate were determined and a total of 36 photolysis products were detected and identified using liquid chromatography-high resolution-mass spectrometry. The half-lives of all six BTs were in the range of 6-24 h under the experimental conditions. Though the quantum yields were comparatively low (0.0007-0.0021), the environmental half-lives ranged from 2.4 to 8 d, suggesting that sunlight photolysis is still a relevant degradation process of BTs in surface waters. The photolysis pathway of 1H-BT under simulated sunlight differed from that suggested for UV-radiation, in that aminophenol is formed directly rather than via aniline. Similar pathways were found for the other BTs, except for 4-hydroxy-1H-benzotriazole (4OH-BT). Most identified transformation products of the BTs showed a high reactivity and appear not to persist in the environment. Upon co-photolysis of BTs with dissolved organic matter (DOM), however, series of reaction products were determined by Fourier transform - ion cyclotron resonance - mass spectrometry (FTICR-MS) which are formed by reaction of photolysis intermediates of the BTs with DOM.

  15. Hydrogen Production from Nuclear Energy via High-Temperature Electrolysis

    SciTech Connect

    Herring, J.S.; O'Brien, J.E.; Stoots, C.M.; Lessing, P.A.

    2004-07-01

    High-temperature electrolytic water-splitting supported by nuclear process heat and electricity has the potential to produce H{sub 2} with an overall system efficiency near those of the hydrocarbon and thermochemical processes, but without the corrosive conditions of thermochemical processes and without the fossil fuel consumption and greenhouse gas emissions associated with hydrocarbon processes. Specifically, a high-temperature advanced nuclear reactor coupled with a high-efficiency high-temperature electrolyzer could achieve a competitive thermal-to-hydrogen conversion efficiency of 45 to 55%. A research program is under way at INEEL to develop a conceptual design for large-scale nuclear production of hydrogen via planar solid oxide electrolysis technology. The design effort is addressing solid oxide cell materials and configuration, performance, durability, operating conditions, economics, and safety. Single and multiple cell experimental studies are being conducted. Interim results indicate that this technology performs close to theoretical predictions and remains a viable means for hydrogen production using nuclear energy. (authors)

  16. Nuclear driven water decomposition plant for hydrogen production

    NASA Technical Reports Server (NTRS)

    Parker, G. H.; Brecher, L. E.; Farbman, G. H.

    1976-01-01

    The conceptual design of a hydrogen production plant using a very-high-temperature nuclear reactor (VHTR) to energize a hybrid electrolytic-thermochemical system for water decomposition has been prepared. A graphite-moderated helium-cooled VHTR is used to produce 1850 F gas for electric power generation and 1600 F process heat for the water-decomposition process which uses sulfur compounds and promises performance superior to normal water electrolysis or other published thermochemical processes. The combined cycle operates at an overall thermal efficiency in excess of 45%, and the overall economics of hydrogen production by this plant have been evaluated predicated on a consistent set of economic ground rules. The conceptual design and evaluation efforts have indicated that development of this type of nuclear-driven water-decomposition plant will permit large-scale economic generation of hydrogen in the 1990s.

  17. Nuclear effects on tetraquark production by double parton scattering

    NASA Astrophysics Data System (ADS)

    Carvalho, F.; Navarra, F. S.

    2017-03-01

    In this work we study the nuclear effects in exotic meson production. We estimate the total cross section as a function of the energy for pPb scattering using a version of the color evaporation model (CEM) adapted to Double Parton Scattering (DPS). We fond that the cross section grows significantly with the atomic number, indicating that the hypothesis of tetraquark states can be tested in pA collisions at LHC.

  18. Natural products in medicine: transformational outcome of synthetic chemistry.

    PubMed

    Szychowski, Janek; Truchon, Jean-François; Bennani, Youssef L

    2014-11-26

    This review brings to the forefront key synthetic modifications on natural products (NPs) that have yielded successful drugs. The emphasis is placed on the power of targeted chemical transformations in enhancing the therapeutic value of NPs through optimization of pharmacokinetics, stability, potency, and/or selectivity. Multiple classes of NPs such as macrolides, opioids, steroids, and β-lactams used to treat a variety of conditions such as cancers, infections, inflammation are exemplified. Molecular modeling or X-ray structures of NP/protein complexes supporting the observed boost in therapeutic value of the modified NPs are also discussed. Significant advancement in synthetic chemistry, in structure determination, and in the understanding of factors controlling pharmacokinetics can now better position drug discovery teams to undertake NPs as valuable leads. We hope that the beneficial NPs synthetic modifications outlined here will reignite medicinal chemists' interest in NPs and their derivatives.

  19. Nuclear effects in Drell-Yan production at the LHC

    NASA Astrophysics Data System (ADS)

    Krelina, M.; Basso, E.; Goncalves, V. P.; Nemchik, J.; Pasechnik, R.

    2016-07-01

    Using the color dipole formalism we study production of Drell-Yan (DY) pairs in proton-nucleus interactions in the kinematic region corresponding to LHC experiments. Lepton pairs produced in a hard scattering are not accompanied with any final state interactions leading to either energy loss or absorption. Consequently, dileptons may serve as more efficient and cleaner probes for the onset of nuclear effects than nclusive hadron production. We perform a systematic analysis of these effects in production of Drell-Yan pairs in pPb interaction at the LHC. We present predictions for the nuclear suppression as a function of the dilepton transverse momentum, rapidity and invariant mass which can be verified by the LHC measurements. We found that a strong nuclear suppression can be interpreted as an effective energy loss proportional to the initial energy universally induced by multiple initial state interactions. In addition, we study a contribution of coherent effects associated with the gluon shadowing affecting the observables predominantly at small and medium-high transverse momenta.

  20. Antileukemia effects of xanthohumol in Bcr/Abl-transformed cells involve nuclear factor-kappaB and p53 modulation.

    PubMed

    Monteghirfo, Stefano; Tosetti, Francesca; Ambrosini, Claudia; Stigliani, Sara; Pozzi, Sarah; Frassoni, Francesco; Fassina, Gianfranco; Soverini, Simona; Albini, Adriana; Ferrari, Nicoletta

    2008-09-01

    The oncogenic Bcr-Abl tyrosine kinase activates various signaling pathways including phosphoinositide 3-kinase/Akt and nuclear factor-kappaB that mediate proliferation, transformation, and apoptosis resistance in Bcr-Abl+ myeloid leukemia cells. The hop flavonoid xanthohumol inhibits tumor growth by targeting the nuclear factor-kappaB and Akt pathways and angiogenesis. Here, we show that xanthohumol has in vitro activity against Bcr-Abl+ cells and clinical samples and retained its cytotoxicity when imatinib mesylate-resistant K562 cells were examined. Xanthohumol inhibition of K562 cell viability was associated with induction of apoptosis, increased p21 and p53 expression, and decreased survivin levels. We show that xanthohumol strongly inhibited Bcr-Abl expression at both mRNA and protein levels and show that xanthohumol caused elevation of intracellular reactive oxygen species and that the antioxidant N-acetylcysteine blunted xanthohumol-induced events. Further, we observed that xanthohumol inhibits leukemia cell invasion, metalloprotease production, and adhesion to endothelial cells, potentially preventing in vivo life-threatening complications of leukostasis and tissue infiltration by leukemic cells. As structural mutations and/or gene amplification in Bcr-Abl can circumvent an otherwise potent anticancer drug such as imatinib, targeting Bcr-Abl expression as well as its kinase activity could be a novel additional therapeutic approach for the treatment of Bcr-Abl+ myeloid leukemia.

  1. Use of the Chemical Transformation Simulator as a Parameterization Tool for Modeling the Environmental Fate of Organic Chemicals and their Transformation Products

    EPA Science Inventory

    A Chemical Transformation Simulator is a web-based system for predicting transformation pathways and physicochemical properties of organic chemicals. Role in Environmental Modeling • Screening tool for identifying likely transformation products in the environment • Parameteri...

  2. Identification of transformation products arising from bacterial oxidation of codeine by Streptomyces griseus.

    PubMed Central

    Kunz, D A; Reddy, G S; Vatvars, A

    1985-01-01

    14-Hydroxycodeine and norcodeine were rigorously identified as products arising from codeine oxidation by Streptomyces griseus ATCC 10137. Both products were routinely detected in extracted culture filtrates after growth of cells in the presence of codeine for 1 week. Under these conditions, about 4 mol% of the codeine starting material was consumed, with norcodeine and 14-hydroxycodeine representing the only identifiable transformation products (molar ratio, 4:1, respectively). Extraction of a series of culture filtrates and purification of the pooled metabolites by thin-layer and high-pressure liquid chromatography led to the isolation of both biological products, the structures of which were verified by high-resolution mass spectrometry and proton nuclear magnetic resonance spectroscopy. The identities of both biological products were further confirmed by comparison of their spectral properties with those of authentic standards. This is the first report providing structural evidence for the biological formation of 14-hydroxycodeine from codeine and of codeine oxidation by S. griseus. PMID:3936418

  3. Aging Management Guideline for commercial nuclear power plants: Power and distribution transformers

    SciTech Connect

    Toman, G.; Gazdzinski, R.

    1994-05-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in power and distribution transformers important to license renewal in commercial nuclear power plants. The intent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  4. Digital implementation of filters for nuclear applications using the discrete wavelet transform

    NASA Astrophysics Data System (ADS)

    Garcia-Belmonte, G.; Perez, J. M.; Fernandez-Marron, J. L.; Bisquert, J.

    1996-10-01

    This paper presents a novel digital pulse processing technique based on fast implementations of a modern signal analysis method known as the wavelet transform (WT). From the point of view of standard nuclear filtering, the whole analysis may be understood as the action of a bank of gaussian shapers. The algorithm permits the evaluation of relevant parameters on each pulse and, making use of this information, a spectral improvement is achieved in the response of HgI 2 detectors constructed in our laboratories. As the performance of these detectors is mainly limited by the hole trapping phenomenon, the introduction of a charge loss correction making use of the WT has been considered. In this work, the pulse processing has been carried out by transferring the digital recorded pulses to a computer where a software version of the algorithm is performed.

  5. Focusing transformations -- the reliable way to search for safe locations for nuclear waste disposal

    SciTech Connect

    Pozdniakov, V.A.; Tcheverda, V.A.; Safonov, D.V.

    1997-10-01

    At present pre-stack migration is widely used in seismic data processing in order to get wave image of a medium under investigation. Of course it is rather time-consuming procedure but its application is justified by necessity to deal with complicated geological structures and to recover them as completely as possible. The paper is devoted to the approach to pre-stack migration of multicoverage seismic data by means of diffraction and focusing transformation in application to the problem of careful geological investigation of consolidated rocky blocks in order to choose as safety as possible location of nuclear waste deposit. Results of some real seismic data processing gathered at Nijnekanskaja area near Krasnoyarsk city, where a granite block is searching for as a suitable candidate for disposal of radioactive waste, are presented and discussed.

  6. Attainable entanglement of unitary transformed thermal states in liquid-state nuclear magnetic resonance with the chemical shift

    NASA Astrophysics Data System (ADS)

    Ota, Yukihiro; Mikami, Shuji; Yoshida, Motoyuki; Ohba, Ichiro

    2007-11-01

    Yu, Brown and Chuang investigated the entanglement attainable from unitary transformed thermal states in liquid-state nuclear magnetic resonance (NMR). Their research gave insight into the role of entanglement in a liquid-state NMR quantum computer. However, they assumed that the Zeeman energy of each nuclear spin which corresponds to a qubit takes a common value for all; there is no chemical shift. In this paper, we research a model with chemical shifts and analytically derive the physical parameter region where unitary transformed thermal states are entangled, by employing the positive partial transposition (PPT) criterion with respect to any bipartition. The analysis taking account of the chemical shift reveals how the difference between quantum gates reflects on the physical parameter region where unitary transformed thermal states are entangled. In addition, we examine the distillability of unitary transformed thermal states and the effect of the chemical shifts on the boundary between the separability and the nonseparability.

  7. SYSTEM ANALYSIS OF NUCLEAR-ASSISTED SYNGAS PRODUCTION FROM COAL

    SciTech Connect

    E. A. Harvego; M. G. McKellar; J. E. O'Brien

    2008-09-01

    A system analysis has been performed to assess the efficiency and carbon utilization of a nuclear-assisted coal gasification process. The nuclear reactor is a high-temperature helium-cooled reactor that is used primarily to provide power for hydrogen production via high-temperature electrolysis. The supplemental hydrogen is mixed with the outlet stream from an oxygen-blown coal gasifier to produce a hydrogen-rich gas mixture, allowing most of the carbon dioxide to be converted into carbon monoxide, with enough excess hydrogen to produce a syngas product stream with a hydrogen/carbon monoxide molar ratio of about 2:1. Oxygen for the gasifier is also provided by the high-temperature electrolysis process. Results of the analysis predict 90.5% carbon utilization with a syngas production efficiency (defined as the ratio of the heating value of the produced syngas to the sum of the heating value of the coal plus the high-temperature reactor heat input) of 66.1% at a gasifier temperature of 1866 K for the high-moisture-content lignite coal considered. Usage of lower moisture coals such as bituminous can yield carbon utilization approaching 100% and 70% syngas production efficiency.

  8. Transformation of correlation coefficients between normal and lognormal distribution and implications for nuclear applications

    NASA Astrophysics Data System (ADS)

    Žerovnik, Gašper; Trkov, Andrej; Smith, Donald L.; Capote, Roberto

    2013-11-01

    Inherently positive parameters with large relative uncertainties (typically ≳30%) are often considered to be governed by the lognormal distribution. This assumption has the practical benefit of avoiding the possibility of sampling negative values in stochastic applications. Furthermore, it is typically assumed that the correlation coefficients for comparable multivariate normal and lognormal distributions are equivalent. However, this ideal situation is approached only in the linear approximation which happens to be applicable just for small uncertainties. This paper derives and discusses the proper transformation of correlation coefficients between both distributions for the most general case which is applicable for arbitrary uncertainties. It is seen that for lognormal distributions with large relative uncertainties strong anti-correlations (negative correlations) are mathematically forbidden. This is due to the asymmetry that is an inherent feature of these distributions. Some implications of these results for practical nuclear applications are discussed and they are illustrated with examples in this paper. Finally, modifications to the ENDF-6 format used for representing uncertainties in evaluated nuclear data libraries are suggested, as needed to deal with this issue.

  9. Hydrogen production from coal using a nuclear heat source

    NASA Technical Reports Server (NTRS)

    Quade, R. N.

    1976-01-01

    A strong candidate for hydrogen production in the intermediate time frame of 1985 to 1995 is a coal-based process using a high-temperature gas-cooled reactor (HTGR) as a heat source. Expected process efficiencies in the range of 60 to 70% are considerably higher than all other hydrogen production processes except steam reforming of a natural gas. The process involves the preparation of a coal liquid, hydrogasification of that liquid, and steam reforming of the resulting gaseous or light liquid product. A study showing process efficiency and cost of hydrogen vs nuclear reactor core outlet temperature has been completed, and shows diminishing returns at process temperatures above about 1500 F. A possible scenario combining the relatively abundant and low-cost Western coal deposits with the Gulf Coast hydrogen users is presented which provides high-energy density transportation utilizing coal liquids and uranium.

  10. Properties of colloidal corrosion products and their effects on nuclear plants. Volume 1. Executive summary. Final report. [PWR; BWR

    SciTech Connect

    Matijevic, E.

    1982-10-01

    The properties of aqueous dispersions of finely divided oxides of iron, nickel, cobalt, chromium, and copper are described in overview fashion. More detailed aspects of this work will be found in a separate, larger report, NP-2606, Volume 2. The properties of these oxide corrosion products of importance to nuclear reactor water system technology are emphasized: adhesion, desorption, dissolution, transformation, and adsorption of dissolved species such as Co/sup 60/ ions. The work is fundamental to many LWR problems - radiation transport to piping surfaces, avoidance of crud buildup on nuclear fuel rods, decontamination and chemical cleaning of heat exchangers, and control of corrosion of piping.

  11. Fourier Transform Mass Spectrometry and Nuclear Magnetic Resonance Analysis for the Rapid and Accurate Characterization of Hexacosanoylceramide.

    PubMed

    Ross, Charles W; Simonsick, William J; Bogusky, Michael J; Celikay, Recep W; Guare, James P; Newton, Randall C

    2016-06-28

    Ceramides are a central unit of all sphingolipids which have been identified as sites of biological recognition on cellular membranes mediating cell growth and differentiation. Several glycosphingolipids have been isolated, displaying immunomodulatory and anti-tumor activities. These molecules have generated considerable interest as potential vaccine adjuvants in humans. Accurate analyses of these and related sphingosine analogues are important for the characterization of structure, biological function, and metabolism. We report the complementary use of direct laser desorption ionization (DLDI), sheath flow electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and high-field nuclear magnetic resonance (NMR) analysis for the rapid, accurate identification of hexacosanoylceramide and starting materials. DLDI does not require stringent sample preparation and yields representative ions. Sheath-flow ESI yields ions of the product and byproducts and was significantly better than monospray ESI due to improved compound solubility. Negative ion sheath flow ESI provided data of starting materials and products all in one acquisition as hexacosanoic acid does not ionize efficiently when ceramides are present. NMR provided characterization of these lipid molecules complementing the results obtained from MS analyses. NMR data was able to differentiate straight chain versus branched chain alkyl groups not easily obtained from mass spectrometry.

  12. Fourier Transform Mass Spectrometry and Nuclear Magnetic Resonance Analysis for the Rapid and Accurate Characterization of Hexacosanoylceramide

    PubMed Central

    Ross, Charles W.; Simonsick, William J.; Bogusky, Michael J.; Celikay, Recep W.; Guare, James P.; Newton, Randall C.

    2016-01-01

    Ceramides are a central unit of all sphingolipids which have been identified as sites of biological recognition on cellular membranes mediating cell growth and differentiation. Several glycosphingolipids have been isolated, displaying immunomodulatory and anti-tumor activities. These molecules have generated considerable interest as potential vaccine adjuvants in humans. Accurate analyses of these and related sphingosine analogues are important for the characterization of structure, biological function, and metabolism. We report the complementary use of direct laser desorption ionization (DLDI), sheath flow electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and high-field nuclear magnetic resonance (NMR) analysis for the rapid, accurate identification of hexacosanoylceramide and starting materials. DLDI does not require stringent sample preparation and yields representative ions. Sheath-flow ESI yields ions of the product and byproducts and was significantly better than monospray ESI due to improved compound solubility. Negative ion sheath flow ESI provided data of starting materials and products all in one acquisition as hexacosanoic acid does not ionize efficiently when ceramides are present. NMR provided characterization of these lipid molecules complementing the results obtained from MS analyses. NMR data was able to differentiate straight chain versus branched chain alkyl groups not easily obtained from mass spectrometry. PMID:27367671

  13. Aqueous chlorination of carbamazepine: kinetic study and transformation product identification.

    PubMed

    Soufan, M; Deborde, M; Delmont, A; Legube, B

    2013-09-15

    Carbamazepine reactivity and fate during chlorination was investigated in this study. From a kinetic standpoint, a third-order reaction (first-order relative to the CBZ concentration and second-order relative to the free chlorine concentration) was observed at neutral and slightly acidic pH, whereas a second-order reaction (first order relative to the CBZ concentration and first order relative to the free chlorine concentration) was noted under alkaline conditions. In order to gain insight into the observed pH-dependence of the reaction order, elementary reactions (i.e. reactions of Cl2, Cl2O, HOCl with CBZ and of ClO(-) with CBZ or of HOCl with the ionized form of CBZ) were highlighted and second order rate constants of each of them were calculated. Close correlations between the experimental and modeled values were obtained under these conditions. Cl2 and Cl2O were the main chlorination agents at neutral and acidic pH. These results indicate that, for a 1 mg/L free chlorine concentration and 1-10 mg/L chloride concentration at pH 7, halflives about 52-69 days can be expected. A low reactivity of chlorine with CBZ could thus occur under the chlorination steps used during water treatment. From a mechanistic viewpoint, several transformation products were observed during carbamazepine chlorination. As previously described for the chlorination of polynuclear aromatic or unsaturated compounds, we proposed monohydroxylated, epoxide, diols or chlorinated alcohol derivatives of CBZ for the chemical structures of these degradation products. Most of these compounds seem to accumulate in solution in the presence of excess chlorine.

  14. Identification of antimycotic drugs transformation products upon UV exposure.

    PubMed

    Casado, Jorge; Rodríguez, Isaac; Ramil, María; Cela, Rafael

    2015-05-30

    The reactivity of three imidazolic, environmental persistent antimycotic drugs (clotrimazole, CTZ; ketoconazole, KTZ; and miconazole, MCZ) upon exposure to ultraviolet (UV) radiation is discussed. First, precursor compounds were immobilized in a silicone support which was further exposed to UV light at two different wavelengths: 254 and 365 nm. After solvent desorption, degradation kinetics of the precursor pharmaceuticals, identification of the arising transformation products (TPs) and evaluation of their time-course were investigated by liquid chromatography (LC) with quadrupole time-of-flight (QTOF) mass spectrometry (MS) detection. The three antimycotics displayed similar stabilities when exposed to 254 nm light; however, CTZ was significantly more stable than MCZ and KTZ when irradiated with the 365 nm lamp. TPs identified in silicone supports resulted from de-chlorination, cleavage, intra-molecular cyclization and hydroxylation reactions. Many of these species were also detected when exposing other solid matrices, such as sand and agricultural soil, previously spiked with target compounds, to UV light. The 50% estimated lethal concentration, calculated using the 48-h Daphnia magna test, for the two main TPs of CTZ and MCZ, at both wavelengths, were lower than those corresponding to the precursor drugs.

  15. Investigation of Rare Particle Production in High Energy Nuclear Collisions

    SciTech Connect

    1999-09-02

    Our program is an investigation of the hadronization process through measurement of rare particle production in high energy nuclear interactions. Such collisions of heavy nuclei provide an environment similar in energy density to the conditions in the Big Bang. We are currently involved in two major experiments to study this environment, E896 at the AGS and STAR at RHIC. We have completed our physics running of E896, a search for the H dibaryon and measurement of hyperon production in AuAu collisions, and are in the process of analyzing the data. We have produced the electronics and software for the STAR trigger and will begin to use these tools to search for anti-nuclei and strange hadrons when RHIC turns on later this year.

  16. Nuclear waste glass Product Consistency Test (PCT), Version 3. 0

    SciTech Connect

    Jantzen, C.M.; Bibler, N.E.

    1990-11-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF), poured into stainless steel canisters, and eventually disposed of in a geologic repository. In order to comply with the Waste Acceptance Preliminary Specifications (WAPS), the durability of the glass needs to be measured during production to assure its long term stability and radionuclide release properties. A durability test, designated the Product Consistency Test (PCT), was developed for DWPF glass in order to meet the WAPS requirements. The response of the PCT procedure was based on extensive testing with glasses of widely different compositions. The PCT was determined to be very reproducible, to yield reliable results rapidly, and to be easily performed in shielded cell facilities with radioactive samples.

  17. Charged fusion product loss measurements using nuclear activation

    SciTech Connect

    Bonheure, G.; Hult, M.; Gonzalez de Orduna, R.; Wieslander, E.; Arnold, D.; Dombrowski, H.; Laubenstein, M.; Murari, A.; Collaboration: JET-EFDA Contributors

    2010-10-15

    In ITER, {alpha} particle loss measurements will be required in order to understand the alpha particle physics. Techniques capable of operating in a fusion reactor environment need further development. Recent experimental studies on JET demonstrated the potential of nuclear activation to measure the flux of escaping MeV ions. New results from MeV ion induced activation of metallic, ceramic, and crystal samples placed near the plasma edge are reported. Activation products were measured as function of orientation with respect to the magnetic field as well as function of the distance to the plasma. Sample activity was measured using ultralow-level gamma-ray spectrometry. Distribution of 14.68 MeV fusion proton induced activation products is strongly anisotropic in agreement with simulations and falls off sharply with increasing distance to the plasma. Prospects for using the technique in ITER are discussed.

  18. Biological removal of cationic fission products from nuclear wastewater.

    PubMed

    Ngwenya, N; Chirwa, E M N

    2011-01-01

    Nuclear energy is becoming a preferred energy source amidst rising concerns over the impacts of fossil fuel based energy on global warming and climate change. However, the radioactive waste generated during nuclear power generation contains harmful long-lived fission products such as strontium (Sr). In this study, cationic strontium uptake from solution by microbial cultures obtained from mine wastewater is evaluated. A high strontium removal capacity (q(max)) with maximum loading of 444 mg/g biomass was achieved by a mixed sulphate reducing bacteria (SRB) culture. Sr removal in SRB was facilitated by cell surface based electrostatic interactions with the formation of weak ionic bonds, as 68% of the adsorbed Sr(2+) was easily desorbed from the biomass in an ion exchange reaction with MgCl₂. To a lesser extent, precipitation reactions were also found to account for the removal of Sr from aqueous solution as about 3% of the sorbed Sr was precipitated due to the presence of chemical ligands while the remainder occurred as an immobile fraction. Further analysis of the Sr-loaded SRB biomass by scanning electron microscopy (SEM) coupled to energy dispersive X-ray (EDX) confirmed extracellular Sr(2+) precipitation as a result of chemical interaction. In summary, the obtained results demonstrate the prospects of using biological technologies for the remediation of industrial wastewaters contaminated by fission products.

  19. Enhanced hydrogen production of Enterobacter aerogenes mutated by nuclear irradiation.

    PubMed

    Cheng, Jun; Liu, Min; Song, Wenlu; Ding, Lingkan; Liu, Jianzhong; Zhang, Li; Cen, Kefa

    2017-03-01

    Nuclear irradiation was used for the first time to generate efficient mutants of hydrogen-producing bacteria Enterobacter aerogenes, which were screened with larger colour circles of more fermentative acid by-products. E. aerogenes cells were mutated by nuclear irradiation of (60)Co γ-rays. The screened E. aerogenes ZJU1 mutant with larger colour circles enhanced the hydrogenase activity from 89.8 of the wild strain to 157.4mLH2/(gDWh). The hereditary stability of the E. aerogenes ZJU1 mutant was certified after over ten generations of cultivation. The hydrogen yield of 301mLH2/gglucose with the mutant was higher by 81.8% than that of 166mL/gglucose with the wild strain. The peak hydrogen production rate of 27.2mL/(L·h) with the mutant was higher by 40.9% compared with that of 19.3mL/(L·h) with the wild strain. The mutant produced more acetate and butyrate but less ethanol compared with the wild strain during hydrogen fermentation.

  20. Cyclotron Production of Radionuclides for Nuclear Medicine at Academic Centers

    NASA Astrophysics Data System (ADS)

    Lapi, Suzanne

    2016-09-01

    The increase in use of radioisotopes for medical imaging has led to the development of new accelerator targetry and separation techniques for isotope production. For example, the development of longer-lived position emitting radionuclides has been explored to allow for nuclear imaging agents based on peptides, antibodies and nanoparticles. These isotopes (64Cu, 89Zr, 86Y) are typically produced via irradiation of solid targets on smaller cyclotrons (10-25 MeV) at academic or hospital based facilities. Recent research has further expanded the toolbox of PET tracers to include additional isotopes such as 52Mn, 55Co, 76Br and others. The smaller scale of these types of facilities can enable the straightforward involvement of students, thus adding to the next generation of nuclear science leaders. Research pertaining to development of robust and larger scale production technologies including solid target systems and remote systems for transport and purification of these isotopes has enabled both preclinical and clinical imaging research for many diseases. In particular, our group has focused on the use of radiolabeled antibodies for imaging of receptor expression in preclinical models and in a clinical trial of metastatic breast cancer patients.

  1. Chlorination of parabens: reaction kinetics and transformation product identification.

    PubMed

    Mao, Qianhui; Ji, Feng; Wang, Wei; Wang, Qiquan; Hu, Zhenhu; Yuan, Shoujun

    2016-11-01

    The reactivity and fate of parabens during chlorination were investigated in this work. Chlorination kinetics of methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP) were studied in the pH range of 4.0 to 11.0 at 25 ± 1 °C. Apparent rate constants (k app) of 9.65 × 10(-3) M(-0.614)·s(-1), 1.77 × 10(-2) M(-1.019)·s(-1), 2.98 × 10(-2) M(-0.851)·s(-1), and 1.76 × 10(-2) M(-0.860)·s(-1) for MeP, EtP, PrP, and BuP, respectively, were obtained at pH 7.0. The rate constants depended on the solution pH, temperature, and NH4(+) concentration. The maximum k app was obtained at pH 8.0, and the minimum value was obtained at pH 11.0. The reaction rate constants increased with increasing temperature. When NH4(+) was added to the solution, the reaction of parabens was inhibited due to the rapid formation of chloramines. Two main transformation products, 3-chloro-parabens and 3,5-dichloro-parabens, were identified by GC-MS and LCMS-IT-TOF, and a reaction pathway was proposed. Dichlorinated parabens accumulated in solution, which is a threat to human health and the aqueous environment.

  2. GIS Symbology for FRMAC/CMHT Radiological/Nuclear Products

    SciTech Connect

    Walker, H; Aluzzi, F; Foster, K; Pobanz, B; Sher, B

    2008-10-06

    and deposition patterns and related products correctly. This document is focusing on the products produced by the GIS Division of the Remove Sensing Laboratory (RSL) and by the National Atmospheric Release Advisory Center (NARAC), both separately and in combination. The expectation is that standard products produced by either group independently or in combination should use the same key attributes in displaying the same kinds of data so that products of a given type generally look similar in key aspects of the presentation, thereby minimizing any confusion of users when a variety of products from these groups may be needed. This document is dealing with the set of common standard products used in responding to radiological/nuclear releases. There are a number of less standard products that are used occasionally or in certain specific situations that are not addressed here. This includes special products that are occasionally produced by both NARAC and RSL in responses and major exercises to meet immediate and unanticipated requirements. At some future time, it may be appropriate to review the handling of such special products by both organizations to determine if there are any areas that would benefit from being integrated with the conventions described here. A particular area that should be addressed in the near-term is that of Derived Response Levels (DRLs) calculated by the Consequence Management Home Team (CMHT) or FRMAC Assessment Scientists. A new calculation is done for every event assigning contour levels, or break-points, based upon field measurements. These contour levels can be applied to deposition or dose rate NARAC calculations. Because these calculations are different every time, they can not be stored in a database.

  3. Influence of nonmartensitic transformation products on mechanical properties of tempered martensite

    NASA Technical Reports Server (NTRS)

    Hodge, J M; Lankford, W T

    1952-01-01

    The influence of nonmartensitic transformations products on the mechanical properties of tempered martensite is presented for samples of a SAE 4340 steel, partially isothermally transformed to specific high-temperature transformation products and quenched and tempered to hardness values of from 25 to 40 Rockwell c. The effects of upper bainite in amounts of 1,5, 10, 20 and 50 percent, of 5 percent ferrite, and of 5 percent pearlite on the tensile, impact, and fatigue properties are evaluated. (author)

  4. TRANSFORMATION

    SciTech Connect

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  5. Glyphosate, other herbicides, and transformation products in Midwestern streams, 2002

    USGS Publications Warehouse

    Battaglin, W.A.; Kolpin, D.W.; Scribner, E.A.; Kuivila, K.M.; Sandstrom, M.W.

    2005-01-01

    The use of glyphosate has increased rapidly, and there is limited understanding of its environmental fate. The objective of this study was to document the occurrence of glyphosate and the transformation product aminomethylphosphonic acid (AMPA) in Midwestern streams and to compare their occurrence with that of more commonly measured herbicides such as acetochlor, atrazine, and metolachlor. Water samples were collected at sites on 51 streams in nine Midwestern states in 2002 during three runoff events: after the application of pre-emergence herbicides, after the application of post-emergence herbicides, and during harvest season. All samples were analyzed for glyphosate and 20 other herbicides using gas chromatography/mass spectrometry or high performance liquid chromatography/mass spectrometry. The frequency of glyphosate and AMPA detection, range of concentrations in runoff samples, and ratios of AMPA to glyphosate concentrations did not vary throughout the growing season as substantially as for other herbicides like atrazine, probably because of different seasonal use patterns. Glyphosate was detected at or above 0.1 μg/1 in 35 percent of pre-emergence, 40 percent of post-emergence, and 31 percent of harvest season samples, with a maximum concentration of 8.7 μg/1. AMPA was detected at or above 0.1 μg/1 in 53 percent of pre-emergence, 83 percent of post-emergence, and 73 percent of harvest season samples, with a maximum concentration of 3.6 μg/1. Glyphosate was not detected at a concentration at or above the U.S. Environmental Protection Agency's maximum contamination level (MCL) of 700 μg/1 in any sample. Atrazine was detected at or above 0.1 μg/1 in 94 percent of pre-emergence, 96 percent of post-emergence, and 57 percent of harvest season samples, with a maximum concentration of 55 μg/1. Atrazine was detected at or above its MCL (3 μg/1) in 57 percent of pre-emergence and 33 percent of post-emergence samples

  6. Glyphasate, other herbicides, and transformation products in midwestern streams, 2002

    USGS Publications Warehouse

    Battaglin, William A.; Koplin, Dana W.; Scribner, Elizabeth A.; Kuivila, Kathryn; Sandstrom, Mark W.

    2005-01-01

    The use of glyphosate has increased rapidly, and there is limited understanding of its environmental fate. The objective of this study was to document the occurrence of glyphosate and the transformation product aminomethylphosphonic acid (AMPA) in Midwestern streams and to compare their occurrence with that of more commonly measured herbicides such as acetochlor, atrazine, and metolachlor. Water samples were collected at sites on 51 streams in nine Midwestern states in 2002 during three runoff events: after the application of pre-emergence herbicides, after the application of post-emergence herbicides, and during harvest season. All samples were analyzed for glyphosate and 20 other herbicides using gas chromatography/mass spectrometry or high performance liquid chromatography/mass spectrometry. The frequency of glyphosate and AMPA detection, range of concentrations in runoff samples, and ratios of AMPA to glyphosate concentrations did not vary throughout the growing season as substantially as for other herbicides like atrazine, probably because of different seasonal use patterns. Glyphosate was detected at or above 0.1 μg/1 in 35 percent of pre-emergence, 40 percent of post-emergence, and 31 percent of harvest season samples, with a maximum concentration of 8.7 μg/1. AMPA was detected at or above 0.1 μg/1 in 53 percent of pre-emergence, 83 percent of post-emergence, and 73 percent of harvest season samples, with a maximum concentration of 3.6 μg/1. Glyphosate was not detected at a concentration at or above the U.S. Environmental Protection Agency's maximum contamination level (MCL) of 700 μg/1 in any sample. Atrazine was detected at or above 0.1 μg/1 in 94 percent of pre-emergence, 96 percent of post-emergence, and 57 percent of harvest season samples, with a maximum concentration of 55 μg/1. Atrazine was detected at or above its MCL (3 μg/1) in 57 percent of pre-emergence and 33 percent of post-emergence samples.

  7. Nuclear waste glass product consistency test (PCT), Version 5. 0

    SciTech Connect

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Ramsey, W.G.; Waters, B.J.

    1992-06-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF), poured into stainless steel canisters, and eventually disposed of in a geologic repository. In order to comply with the Waste Acceptance Preliminary Specifications (WAPS), the durability of the glass needs to be measured during production to assure its long term stability and radionuclide release properties. A durability test, designated the Produce Consistency Test (PCT), was developed for DWPF glass in order to meet the WAPS requirements. The response of the PCT procedure was based on extensive testing with glasses of widely different compositions. The PCT was determined to be very reproducible, to yield reliable results rapidly, and to be easily performed in shielded cell facilities with radioactive samples. Version 5.0 of the PCT procedure is attached.

  8. TRANSFORMER

    DOEpatents

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  9. Production of Hydrogen Using Nuclear Energy and Inorganic Membranes

    SciTech Connect

    Bischoff, Brian L.; Trowbridge, Lee D.; Mansur, Louis K.; Forsberg, Charles W.

    2004-07-01

    The sulfur family of thermochemical processes are the leading candidates worldwide for production of hydrogen (H{sub 2}) using nuclear energy. These processes thermo-catalytically crack water yielding hydrogen and oxygen. The processes consist of a series of chemical reactions where all the chemicals are recycled in the process except for water. The processes are potentially efficient, scalable to large sizes, and use no expensive chemical reagents; however, these processes have one major disadvantage: high operating temperatures (800 to 900 deg. C). The high-temperature chemical reaction common to all of these cycles is the equilibrium thermal decomposition of sulfuric acid. There is a potential to lower the peak temperature by 200+ deg. C if the high-temperature decomposition products of sulfuric acid, O{sub 2}, H{sub 2}O, and SO{sub 2}, can be separated from SO{sub 3} using an inorganic membrane. The goal of this project is to conduct proof-of-principle experiments and associated analysis to demonstrate the potential for inorganic membranes to dramatically improve the sulfur family of thermochemical processes. We will present preliminary data of the separation efficiency of the product gases from SO{sub 3}. (authors)

  10. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants

    SciTech Connect

    Stephen Schey

    2009-07-01

    Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 – Produce Data and Analyses Task 2 – Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 – Commercial-Scale Hydrogen Production Task 4 – Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study

  11. Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779

    PubMed Central

    Tsai, Chia-Hong; Bullard, Blair; Cornish, Adam J.; Harvey, Christopher; Reca, Ida-Barbara; Thornburg, Chelsea; Achawanantakun, Rujira; Buehl, Christopher J.; Campbell, Michael S.; Cavalier, David; Childs, Kevin L.; Clark, Teresa J.; Deshpande, Rahul; Erickson, Erika; Armenia Ferguson, Ann; Handee, Witawas; Kong, Que; Li, Xiaobo; Liu, Bensheng; Lundback, Steven; Peng, Cheng; Roston, Rebecca L.; Sanjaya; Simpson, Jeffrey P.; TerBush, Allan; Warakanont, Jaruswan; Zäuner, Simone; Farre, Eva M.; Hegg, Eric L.; Jiang, Ning; Kuo, Min-Hao; Lu, Yan; Niyogi, Krishna K.; Ohlrogge, John; Osteryoung, Katherine W.; Shachar-Hill, Yair; Sears, Barbara B.; Sun, Yanni; Takahashi, Hideki; Yandell, Mark; Shiu, Shin-Han; Benning, Christoph

    2012-01-01

    Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogen-depleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica–specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis species by a growing

  12. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779.

    PubMed

    Vieler, Astrid; Wu, Guangxi; Tsai, Chia-Hong; Bullard, Blair; Cornish, Adam J; Harvey, Christopher; Reca, Ida-Barbara; Thornburg, Chelsea; Achawanantakun, Rujira; Buehl, Christopher J; Campbell, Michael S; Cavalier, David; Childs, Kevin L; Clark, Teresa J; Deshpande, Rahul; Erickson, Erika; Armenia Ferguson, Ann; Handee, Witawas; Kong, Que; Li, Xiaobo; Liu, Bensheng; Lundback, Steven; Peng, Cheng; Roston, Rebecca L; Sanjaya; Simpson, Jeffrey P; Terbush, Allan; Warakanont, Jaruswan; Zäuner, Simone; Farre, Eva M; Hegg, Eric L; Jiang, Ning; Kuo, Min-Hao; Lu, Yan; Niyogi, Krishna K; Ohlrogge, John; Osteryoung, Katherine W; Shachar-Hill, Yair; Sears, Barbara B; Sun, Yanni; Takahashi, Hideki; Yandell, Mark; Shiu, Shin-Han; Benning, Christoph

    2012-01-01

    Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogen-depleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica-specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis species by a growing

  13. Nuclear Safety Information Center, Its Products and Services

    ERIC Educational Resources Information Center

    Buchanan, J. R.

    1970-01-01

    The Nuclear Safety Information Center (NSIC) serves as a focal point for the collection, analysis and dissemination of information related to safety problems encountered in the design, analysis, and operation of nuclear facilities. (Author/AB)

  14. Production capabilities in US nuclear reactors for medical radioisotopes

    SciTech Connect

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. ); Schenter, R.E. )

    1992-11-01

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

  15. Multiparticle Production in Particle and Nuclear Collisions. I

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Kinoshita, K.; Sumiyoshi, H.; Takagi, F.

    The dominant phenomenon in high-energy particle and nuclear collisions is multiple production of hadrons. This had attracted may physicists in 1950's, the period of the first remarkable development of particle physics. Multiparticle production was already observed in cosmic-ray experiments and expected to be explained as a natural consequence of the strong Yukawa interaction. Statistical and hydrodynamical models were then proposed by Fermi, Landau and others. These theories are still surviving even today as a prototype of modern ``fire-ball'' models. After twenty years, a golden age came in this field of physics. It was closely related to the rapid development of accelerator facilities, especially, the invention of colliding-beam machines which yield high enough center-of-mass energies for studying reactions with high multiplicity. Abundant data on final states of multiparticle production have been accumulated mainly by measuring inclusive cross sections and multiplicity distributions. In super high-energy bar{p}p collisions at CERN S pmacr pS Collider, we confirmed the increasing total cross section and found violations of many scaling laws which seemed to be valid at lower energies. This suggests a fundamental complexity of the multiparticle phenomena and offers new materials for further development of theoretical investigations. In the same period, studies of constituent (quark-gluon) structure of hadrons had also been develped. Nowadays, pysicists believe that the quantum chromodynamics (QCD) is the fundamental law of the hadronic world. Multiparticle dynamics should also be described by QCD. We have known that the hard-jet phenomena are well explained by the perturbative QCD. On the other hand, the soft processes are considered to be non-perturbative phenomena which have not yet been solved, and related to the mechanism of the color confinement and formation of strings or color-flux tubes. Multiparticle production would offer useful information on this

  16. Multiparticle Production in Particle and Nuclear Collisions. II

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Kinoshita, K.; Sumiyoshi, H.; Takagi, F.

    The dominant phenomenon in high-energy particle and nuclear collisions is multiple production of hadrons. This had attracted may physicists in 1950's, the period of the first remarkable development of particle physics. Multiparticle production was already observed in cosmic-ray experiments and expected to be explained as a natural consequence of the strong Yukawa interaction. Statistical and hydrodynamical models were then proposed by Fermi, Landau and others. These theories are still surviving even today as a prototype of modern ``fire-ball'' models. After twenty years, a golden age came in this field of physics. It was closely related to the rapid development of accelerator facilities, especially, the invention of colliding-beam machines which yield high enough center-of-mass energies for studying reactions with high multiplicity. Abundant data on final states of multiparticle production have been accumulated mainly by measuring inclusive cross sections and multiplicity distributions. In super high-energy bar{p}p collisions at CERN S pmacr pS Collider, we confirmed the increasing total cross section and found violations of many scaling laws which seemed to be valid at lower energies. This suggests a fundamental complexity of the multiparticle phenomena and offers new materials for further development of theoretical investigations. In the same period, studies of constituent (quark-gluon) structure of hadrons had also been develped. Nowadays, pysicists believe that the quantum chromodynamics (QCD) is the fundamental law of the hadronic world. Multiparticle dynamics should also be described by QCD. We have known that the hard-jet phenomena are well explained by the perturbative QCD. On the other hand, the soft processes are considered to be non-perturbative phenomena which have not yet been solved, and related to the mechanism of the color confinement and formation of strings or color-flux tubes. Multiparticle production would offer useful information on this

  17. Identifying new persistent and bioaccumulative organics among chemicals in commerce. III: byproducts, impurities, and transformation products.

    PubMed

    Howard, Philip H; Muir, Derek C G

    2013-05-21

    The goal of this series of studies was to identify commercial chemicals that might be persistent and bioaccumulative (PB) and that were not being considered in current wastewater and aquatic environmental measurement programs. In this study, we focus on chemicals that are not on commercial chemical lists such as U.S. EPA's Inventory Update Rule but may be found as byproducts or impurities in commercial chemicals or are likely transformation products from commercial chemical use. We evaluated the 610 chemicals from our earlier publication as well as high production volume chemicals and identified 320 chemicals (39 byproducts and impurities, and 281 transformation products) that could be potential PB chemicals. Four examples are discussed in detail; these chemicals had a fair amount of information on the commercial synthesis and byproducts and impurities that might be found in the commercial product. Unfortunately for many of the 610 chemicals, as well as the transformation products, little or no information was available. Use of computer-aided software to predict the transformation pathways in combination with the biodegradation rules of thumb and some basic organic chemistry has allowed 281 potential PB transformation products to be suggested for some of the 610 commercial chemicals; more PB transformation products were not selected since microbial degradation often results in less persistent and less bioaccumulative metabolites.

  18. EVALUATED NUCLEAR STRUCTURE DATA FILE AND RELATED PRODUCTS.

    SciTech Connect

    TULI,J.K.

    2004-09-26

    The Evaluated Nuclear Structure Data File (ENSDF) is a leading resource for the experimental nuclear data. It is maintained and distributed by the National Nuclear Data Center, Brookhaven National Laboratory. The file is mainly contributed to by an international network of evaluators under the auspice of the International Atomic Energy Agency. The ENSDF is updated, generally by mass number, i.e., evaluating together all isobars for a given mass number. If, however, experimental activity in an isobaric chain is limited to a particular nuclide then only that nuclide is updated. The evaluations are published in the journal Nuclear Data Sheets, Academic Press, a division of Elsevier.

  19. Evaluated Nuclear Structure Data File and Related Products

    SciTech Connect

    Tuli, Jagdish K.

    2005-05-24

    The Evaluated Nuclear Structure Data File (ENSDF) is a leading resource for experimental nuclear data. It is maintained and distributed by the National Nuclear Data Center, Brookhaven National Laboratory. The file is mainly contributed to by an international network of evaluators under the auspice of the International Atomic Energy Agency. The ENSDF is updated, generally by mass number, i.e., evaluating together all isobars for a given mass number. If, however, experimental activity in an isobaric chain is limited to a particular nuclide, then only that nuclide is updated. The evaluations are published in the Journal of Nuclear Data Sheets, Academic Press, a division of Elsevier.

  20. Identification of Triclosan-O-Sulfate and other transformation products of Triclosan formed by activated sludge.

    PubMed

    Chen, Xijuan; Casas, Mònica Escolà; Nielsen, Jeppe Lund; Wimmer, Reinhard; Bester, Kai

    2015-02-01

    Aerobic degradation experiments of Triclosan were performed in activated sludge to identify possible transformation products for this compound. During 7 days, the formation of biotransformation products such as 2,4-Dichlorophenol, 4-Chlorocatechol, 5-Hydroxy-Triclosan and other Monohydroxy-Triclosan derivatives as well as Dihydroxy-Triclosan-derivatives were observed. The structure of 5-Hydroxy-Triclosan was elucidated by NMR data for the first time in sludge degradation experiments. Additionally the production of a hitherto unknown transformation product in sludge, i.e., Triclosan-O-Sulfate was detected. During the incubations, the concentrations of this transformation product changed from zero to 330 μg L(-1). Based on the analysis of the biodegradation products, three types of reactions were identified: 1) chemical scission of ether bond to form phenols and catechols, 2) addition of OH moieties to the aromatic ring, and 3) adding of methyl or sulfate groups to the original hydroxyl group.

  1. Method to transform algae, materials therefor, and products produced thereby

    DOEpatents

    Dunahay, Terri Goodman; Roessler, Paul G.; Jarvis, Eric E.

    1997-01-01

    Disclosed is a method to transform chlorophyll C-containing algae which includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae.

  2. Method to transform algae, materials therefor, and products produced thereby

    DOEpatents

    Dunahay, T.G.; Roessler, P.G.; Jarvis, E.E.

    1997-08-26

    Disclosed is a method to transform chlorophyll C-containing algae. The method includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further, specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae. 2 figs.

  3. Pesticide and transformation product detections and age-dating relations from till and sand deposits

    USGS Publications Warehouse

    Warner, K.L.; Morrow, W.S.

    2007-01-01

    Pesticide and transformation product concentrations and frequencies in ground water from areas of similar crop and pesticide applications may vary substantially with differing lithologies. Pesticide analysis data for atrazine, metolachlor, alachlor, acetochlor, and cyanazine and their pesticide transformation products were collected at 69 monitoring wells in Illinois and northern Indiana to document occurrence of pesticides and their transformation products in two agricultural areas of differing lithologies, till, and sand. The till is primarily tile drained and has preferential fractured flow, whereas the sand primarily has surface water drainage and primary porosity flow. Transformation products represent most of the agricultural pesticides in ground water regardless of aquifer material - till or sand. Transformation products were detected more frequently than parent pesticides in both the till and sand, with metolachlor ethane sulfonic acid being most frequently detected. Estimated ground-water recharge dates for the sand were based on chlorofluorocarbon analyses. These age-dating data indicate that ground water recharged prior to 1990 is more likely to have a detection of a pesticide or pesticide transformation product. Detections were twice as frequent in ground water recharged prior to 1990 (82%) than in ground water recharged on or after 1990 (33%). The highest concentrations of atrazine, alachlor, metolachlor, and their transformation products, also were detected in samples from ground water recharged prior to 1990. These age/pesticide detection relations are opposite of what would normally be expected, and may be the result of preferential flow and/or ground-water mixing between aquifers and aquitards as evident by the detection of acetochlor transformation products in samples with estimated ground-water ages predating initial pesticide application. ?? 2007 American Water Resources Association.

  4. Nuclear track membranes: Production in nuclear reactors and prospects of application

    SciTech Connect

    Fursov, B.I.; Kryuchkov, E.A.; Mironov, N.N.

    1993-12-31

    Nuclear track membranes are produced by a physico-chemical treatment of polymeric films exposed to fission fragments in nuclear reactors or to heavy ion beams. Heavy charged particles form in the solids along their trajectories regions of high ionization density where polymer destruction takes place. Selective dissolution of damaged material converts the initial film into a microfiltration membrane with cylindrical through pores. The main feature of nuclear membranes are a small thickness and uniformity of pore size. The qualities of the nuclear membranes promise good prospects for applications in many areas.

  5. Methane production from hydrothermal transformation of siderite to magnetite

    NASA Astrophysics Data System (ADS)

    Muratbayev, T.; Schroeder, C.; Kappler, A.; Haderlein, S.

    2012-12-01

    Mumma et al. (2009) observed a methane (CH4) plume above the Nili Fossae region on Mars, a region rich in carbonate minerals. Morris et al. (2010) suggest this to be (Mg,Fe)-carbonate. McCollom (2003) demonstrated that the hydrothermal transformation of siderite (FeCO3), to magnetite (Fe3O4) produces CH4. This reaction may thus contribute to the formation of methane on Mars, but is also relevant in the context of such diverse topics as diagenesis of Precambrian banded iron formations, sources of prebiotic organic compounds on early Earth, oil and gas accumulations in Earth's crust, or geological sequestration and storage of CO2. However, neither the thermodynamics of this reaction nor the conditions of maximum CH4 yield have been investigated to date. In order to estimate how pressure and temperature influence CH4 yield we derived a thermodynamic model with a numerical solution implemented in MATLAB. We used the equation 12FeCO3 + 2H2O → 4Fe3O4 + 11CO2 + CH4 (Frost et al. 2007) and thermodynamic calculations of the stability field of FeCO3 by Thoms-Keprta et al. (2009) as a template. At 1 bar pressure, the Gibbs energy turns negative (favorable reaction conditions) at a temperature of 200°C. Increasing pressure to 1000 bar changes that temperature to 250°C. An increase in temperature has a larger effect on shifting the Gibbs energy to more negative values. We therefore chose ambient pressure and temperatures of 300°C, 400°C, and 500°C as experimental conditions. We added 100 mg of either natural or synthetic FeCO3 and 25 μL of MilliQ water into long tip Pasteur pipettes inside an anoxic glove box to avoid contamination by free oxygen. The Pasteur pipettes were sealed with butyl stoppers and then melted shut outside of the glove box. The glass capsules were heated for 48 hours in a muffle furnace at 300°C, 400 0C or 5000C. The composition of the gas phase and the formation of methane in particular were analyzed using gas chromatography with a flame

  6. Enhanced Production of Itaconic Acid through Development of Transformed Fungal Strains of Aspergillus terreus.

    PubMed

    Shin, Woo-Shik; Park, Boonyoung; Lee, Dohoon; Oh, Min-Kyu; Chun, Gie-Taek; Kim, Sangyong

    2017-02-28

    Metabolic engineering with a high-yielding mutant, A. terreus AN37, was performed to enhance the production of itaconic acid (IA). Reportedly, the gene cluster for IA biosynthesis is composed of four genes: reg (regulator), mtt (mitochondrial transporter), cad (cis-aconitate decarboxylase), and mfs (membrane transporter). By overexpressing each gene of the IA gene cluster in A. terreus AN37 transformed by the restriction enzyme-mediated integration method, several transformants showing high productivity of IA were successfully obtained. One of the AN37/cad transformants could produce a very high amount of IA (75 g/l) in shake-flask cultivations, showing an average of 5% higher IA titer compared with the high-yielding control strain. Notably, in the case of the mfs transformants, a maximal increase of 18.3% in IA production was observed relative to the control strain under the identical fermentation conditions. Meanwhile, the overexpression of reg and mtt genes showed no significant improvements in IA production. In summary, the overexpressed cis-aconitate decarboxylase (CAD) and putative membrane transporter (MFS) appeared to have positive influences on the enhanced IA productivity of the respective transformant. The maximal increases of 13.6~18.3% in IA productivity of the transformed strains should be noted, since the parallel mother strain used in this study is indeed a very high-performance mutant that has been obtained through intensive rational screening programs in our laboratory.

  7. Localized Hartree product treatment of multiple protons in the nuclear-electronic orbital framework

    NASA Astrophysics Data System (ADS)

    Auer, Benjamin; Hammes-Schiffer, Sharon

    2010-02-01

    An approximation for treating multiple quantum nuclei within the nuclear-electronic orbital (NEO) framework for molecular systems is presented. In the approximation to NEO-Hartree-Fock, the nuclear wave function is represented by a Hartree product rather than a Slater determinant, corresponding to the neglect of the nuclear exchange interactions. In the approximation to NEO-density functional theory, the nuclear exchange-correlation functional is chosen to be the diagonal nuclear exchange interaction terms, thereby eliminating the nuclear self-interaction terms. To further enhance the simplicity and computational efficiency, the nuclear molecular orbitals or Kohn-Sham orbitals are expanded in terms of localized nuclear basis sets. These approximations are valid because of the inherent localization of the nuclear orbitals and the numerical insignificance of the nuclear exchange interactions in molecular systems. Moreover, these approximations lead to substantial computational savings due to the reduction in both the number of integrals that must be calculated and the size of the matrices that must be diagonalized. These nuclear Hartree product approximation (HPA) methods scale linearly with the number of quantum protons and are highly parallelizable. Applications to a water hexamer, glycine dimer, and 32-water cluster, where all hydrogen nuclei are treated quantum mechanically, illustrate the accuracy and computational efficiency of the nuclear HPA methods. These strategies will facilitate the implementation of explicitly correlated NEO methods for molecular systems with multiple quantum protons.

  8. Application of the Nonlinear Vector Product to Lorentz Transformations.

    ERIC Educational Resources Information Center

    Farach, Horacio A.; And Others

    1979-01-01

    Shows that the nonlinear vector product developed by the author in a previous paper to treat successive space rotations can be employed to treat the space time rotations of special relativity in which the angle of rotation is imaginary. (HM)

  9. Linking legacies: Connecting the Cold War nuclear weapons production processes to their environmental consequences

    SciTech Connect

    1997-01-01

    In the aftermath of the Cold War, the US has begun addressing the environmental consequences of five decades of nuclear weapons production. In support of this effort, the National Defense Authorization Act for Fiscal Year 1995 directed the Department of Energy (DOE) to describe the waste streams generated during each step in the production of nuclear weapons. Accordingly, this report responds to this mandate, and it is the Department`s first comprehensive analysis of the sources of waste and contamination generated by the production of nuclear weapons. The report also contains information on the missions and functions of nuclear weapons facilities, on the inventories of waste and materials remaining at these facilities, as well as on the extent and characteristics of contamination in and around these facilities. This analysis unites specific environmental impacts of nuclear weapons production with particular production processes. The Department used historical records to connect nuclear weapons production processes with emerging data on waste and contamination. In this way, two of the Department`s legacies--nuclear weapons manufacturing and environmental management--have become systematically linked. The goal of this report is to provide Congress, DOE program managers, non-governmental analysts, and the public with an explicit picture of the environmental results of each step in the nuclear weapons production and disposition cycle.

  10. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products.

    PubMed

    Mitrano, Denise M; Motellier, Sylvie; Clavaguera, Simon; Nowack, Bernd

    2015-04-01

    In the context of assessing potential risks of engineered nanoparticles (ENPs), life cycle thinking can represent a holistic view on the impacts of ENPs through the entire value chain of nano-enhanced products from production, through use, and finally to disposal. Exposure to ENPs in consumer or environmental settings may either be to the original, pristine ENPs, or more likely, to ENPs that have been incorporated into products, released, aged and transformed. Here, key product-use related aging and transformation processes affecting ENPs are reviewed. The focus is on processes resulting in ENP release and on the transformation(s) the released particles undergo in the use and disposal phases of its product life cycle for several nanomaterials (Ag, ZnO, TiO2, carbon nanotubes, CeO2, SiO2 etc.). These include photochemical transformations, oxidation and reduction, dissolution, precipitation, adsorption and desorption, combustion, abrasion and biotransformation, among other biogeochemical processes. To date, few studies have tried to establish what changes the ENPs undergo when they are incorporated into, and released from, products. As a result there is major uncertainty as to the state of many ENPs following their release because much of current testing on pristine ENPs may not be fully relevant for risk assessment purposes. The goal of this present review is therefore to use knowledge on the life cycle of nano-products to derive possible transformations common ENPs in nano-products may undergo based on how these products will be used by the consumer and eventually discarded. By determining specific gaps in knowledge of the ENP transformation process, this approach should prove useful in narrowing the number of physical experiments that need to be conducted and illuminate where more focused effort can be placed.

  11. Microbial production and chemical transformation of poly-γ-glutamate

    PubMed Central

    Ashiuchi, Makoto

    2013-01-01

    Poly-γ-glutamate (PGA), a novel polyamide material with industrial applications, possesses a nylon-like backbone, is structurally similar to polyacrylic acid, is biodegradable and is safe for human consumption. PGA is frequently found in the mucilage of natto, a Japanese traditional fermented food. To date, three different types of PGA, namely a homo polymer of d-glutamate (D-PGA), a homo polymer of l-glutamate (L-PGA), and a random copolymer consisting of d- and l-glutamate (DL-PGA), are known. This review will detail the occurrence and physiology of PGA. The proposed reaction mechanism of PGA synthesis including its localization and the structure of the involved enzyme, PGA synthetase, are described. The occurrence of multiple carboxyl residues in PGA likely plays a role in its relative unsuitability for the development of bio-nylon plastics and thus, establishment of an efficient PGA-reforming strategy is of great importance. Aside from the potential applications of PGA proposed to date, a new technique for chemical transformation of PGA is also discussed. Finally, some techniques for PGA and its derivatives in advanced material technology are presented. PMID:23855427

  12. Overview of beneficial uses of nuclear fission products

    SciTech Connect

    Sivinski, J.S.

    1980-01-01

    Recoverable or reprocessed nuclear wastes as conservable resources with significant potential benefits for use as heat sources, or as radiation sources for industrial, agricultural, and medical applications are reviewed. (LCL)

  13. Tracking of Nuclear Production using Indigenous Species: Final LDRD Report

    SciTech Connect

    Alam, Todd Michael; Alam, Mary Kathleen; McIntyre, Sarah K.; Volk, David; Neerathilingam, Muniasamy; Luxon, Bruce A.; Ansari, G. A. Shakeel

    2009-10-01

    Our LDRD research project sought to develop an analytical method for detection of chemicals used in nuclear materials processing. Our approach is distinctly different than current research involving hardware-based sensors. By utilizing the response of indigenous species of plants and/or animals surrounding (or within) a nuclear processing facility, we propose tracking 'suspicious molecules' relevant to nuclear materials processing. As proof of concept, we have examined TBP, tributylphosphate, used in uranium enrichment as well as plutonium extraction from spent nuclear fuels. We will compare TBP to the TPP (triphenylphosphate) analog to determine the uniqueness of the metabonomic response. We show that there is a unique metabonomic response within our animal model to TBP. The TBP signature can further be delineated from that of TPP. We have also developed unique methods of instrumental transfer for metabonomic data sets.

  14. Transformation of Saussurea medusa for hairy roots and jaceosidin production.

    PubMed

    Zhao, Dexiu; Fu, Chunxiang; Chen, Yaqiong; Ma, Fengshan

    2004-12-01

    Axenically grown Saussurea medusa plantlets were inoculated with four Agrobacterium rhizogenes strains, and hairy root lines were established with A. rhizogenes strain R1601 in N6 medium. PCR and Southern hybridization confirmed integration of the T-DNA fragment of the Ri plasmid from A. rhizogenes into the genome of S. medusa hairy roots. In N6 medium, maximum biomass of the hairy root cultures was achieved [8 g (dry weight) per liter; growth ratio 35-fold] after 21 days of culture. The amount of jaceosidin extracted from the hairy root cultures was 46 mg/l (production ratio of 37-fold) after 27 days of culture. The maximum jaceosidin content obtained using N6 medium was higher than that obtained with Modified White, MS or B5 medium. In N6 medium, the tip segments were more efficient for hairy root growth and jaceosidin production than the middle and basal regions of the root.

  15. Biodegradability of the anticancer drug etoposide and identification of the transformation products.

    PubMed

    Kosjek, Tina; Negreira, Noelia; Heath, Ester; de Alda, Miren López; Barceló, Damià

    2016-08-01

    Etoposide susceptibility to microbiological breakdown was studied in a batch biotransformation system, in the presence or absence of artificial wastewater containing nutrients, salts and activated sludge at two concentration levels. The primary focus of the present study was to study etoposide transformation products by ultra-high performance liquid chromatography coupled to high-resolution hybrid quadrupole-Orbitrap tandem mass spectrometry (MS/MS). Data-dependent experiments combining full-scan MS data with product ion spectra were acquired to identify the molecular ions of etoposide transformation products, to propose the molecular formulae and to elucidate their chemical structures. Due to the complexity of the matrix, visual inspection of the chromatograms showed no clear differences between the controls and the treated samples. Therefore, the software package MZmine was used to facilitate the identification of the transformation products and speed up the data analysis. In total, we propose five transformation products; among them, four are described as etoposide transformation products for the first time. Even though the chemical structures of these new compounds cannot be confirmed due to the lack of standards, their molecular formulae can be used to target them in monitoring studies.

  16. Mycalamide A Shows Cytotoxic Properties and Prevents EGF-Induced Neoplastic Transformation through Inhibition of Nuclear Factors

    PubMed Central

    Dyshlovoy, Sergey A.; Fedorov, Sergey N.; Kalinovsky, Anatoly I.; Shubina, Larisa K.; Bokemeyer, Carsten; Stonik, Valentin A.; Honecker, Friedemann

    2012-01-01

    Mycalamide A, a marine natural compound previously isolated from sponges, is known as a protein synthesis inhibitor with potent antitumor activity. However, the ability of this compound to prevent malignant transformation of cells has never been examined before. Here, for the first time, we report the isolation of mycalamide A from ascidian Polysincraton sp. as well as investigation of its cancer preventive properties. In murine JB6 Cl41 P+ cells, mycalamide A inhibited epidermal growth factor (EGF)-induced neoplastic transformation, and induced apoptosis at subnanomolar or nanomolar concentrations. The compound inhibited transcriptional activity of the oncogenic nuclear factors AP-1 and NF-κB, a potential mechanism of its cancer preventive properties. Induction of phosphorylation of the kinases MAPK p38, JNK, and ERK was also observed at high concentrations of mycalamide A. The drug shows promising potential for both cancer-prevention and cytotoxic therapy and should be further developed. PMID:22822368

  17. Post transcriptional regulation of chloroplast gene expression by nuclear encoded gene products

    SciTech Connect

    Kuchka, M.R.

    1992-01-01

    Many individual chloroplast genes require the products of a collection of nuclear genes for their successful expression. These nuclear gene products apparently work with great specificity, each committed to the expression of a single chloroplast gene. We have chosen as a model nuclear mutants of Chlamydomonas affected in different stages in the expression of the chloroplast encoded Photosystem II polypeptide, D2. We have made the progress in understanding how nuclear gene products affect the translation of the D2 encoding MRNA. Two nuclear genes are required for this process which have been mapped genetically. In contrast to other examples of nuclear control of translation in the chloroplast, these nuclear gene products appear to be required either for specific stages in translation elongation or for the post-translational stabilization of the nascent D2 protein. Pseudoreversion analysis has led us to a locus which may be directly involved in D2 expression. We have made considerable progress in pursuing the molecular basis of psbd MRNA stabilization. psbD 5' UTR specific transcripts have been synthesized in vitro and used in gel mobility shift assays. UV-crosslinking studies are underway to identify the transacting factors which bind to these sequences. The continued examination of these mutants will help us to understand how nuclear gene products work in this specific case of chloroplast gene expression, and will elucidate how two distinct genomes can interact generally.

  18. On the twisted convolution product and the Weyl transformation of tempered distributions

    NASA Astrophysics Data System (ADS)

    Maillard, J. M.

    It is well known that the Weyl transformation in a phase space R21, transforms the elements of L( R21) in trace class operators and the elements of L 2( R21) in the Hilbert-Schmidt operators of the Hilbert space L 2( R1); this fact leads to a general method of quantization suggested by E. Wigner and J.E. Moyal and developed by M. Flato, A. Lichnerowicz, C. Fronsdal, D. Sternheimer and F. Bayen for an arbitrary symplectic manifold, known under the name of star-product method. In this context, it is important to study the Weyl transforms of the tempered distributions on the phase space and that of the star-exponentials which gave the spectrum in this process of quantization. We analyze here the relations between the star-product, the twisted convolution product and the Weyl transformation of tempered distributions. We introduce symplectic differential operators which permit us to study the structure of the space O1λ λ ≠ 0, (similar to the space O1C) of the left (twisted) convolution operators of L( R21) which permit to define the twisted convolution product in the space L( R21), and the structures of the admissible symbols for the Weyl transformation (i.e. the domain of the Weyl transformation). We prove that the bounded operators of L 2( R1) are exactly the Weyl transforms of the bounded (twisted) convolution operators of L 2( R21). We give an expression of the integral formula of the star product in terms of twisted convolution products which is valid in the most general case. The unitary representations of the Heisenberg group play an important role here.

  19. Transformation products and human metabolites of triclocarban and tricllosan in sewage sludge across the United States

    USGS Publications Warehouse

    Pycke, Benny F.G.; Roll, Isaac B.; Brownawell, Bruce J.; Kinney, Chad A.; Furlong, Edward T.; Kolpin, Dana W.; Halden, Rolf U.

    2014-01-01

    Removal of triclocarban (TCC) and triclosan (TCS) from wastewater is a function of adsorption, abiotic degradation, and microbial mineralization or transformation, reactions that are not currently controlled or optimized in the pollution control infrastructure of standard wastewater treatment. Here, we report on the levels of eight transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in raw and treated sewage sludge. Two sample sets were studied: samples collected once from 14 wastewater treatment plants (WWTPs) representing nine states, and multiple samples collected from one WWTP monitored for 12 months. Time-course analysis of significant mass fluxes (α = 0.01) indicate that transformation of TCC (dechlorination) and TCS (methylation) occurred during sewage conveyance and treatment. Strong linear correlations were found between TCC and the human metabolite 2′-hydroxy-TCC (r = 0.84), and between the TCC-dechlorination products dichlorocarbanilide (DCC) and monochlorocarbanilide (r = 0.99). Mass ratios of DCC-to-TCC and of methyl-triclosan (MeTCS)-to-TCS, serving as indicators of transformation activity, revealed that transformation was widespread under different treatment regimes across the WWTPs sampled, though the degree of transformation varied significantly among study sites (α = 0.01). The analysis of sludge sampled before and after different unit operation steps (i.e., anaerobic digestion, sludge heat treatment, and sludge drying) yielded insights into the extent and location of TCC and TCS transformation. Results showed anaerobic digestion to be important for MeTCS transformation (37–74%), whereas its contribution to partial TCC dechlorination was limited (0.4–2.1%). This longitudinal and nationwide survey is the first to report the occurrence of transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in sewage sludge.

  20. Transformation products and human metabolites of triclocarban and triclosan in sewage sludge across the United States.

    PubMed

    Pycke, Benny F G; Roll, Isaac B; Brownawell, Bruce J; Kinney, Chad A; Furlong, Edward T; Kolpin, Dana W; Halden, Rolf U

    2014-07-15

    Removal of triclocarban (TCC) and triclosan (TCS) from wastewater is a function of adsorption, abiotic degradation, and microbial mineralization or transformation, reactions that are not currently controlled or optimized in the pollution control infrastructure of standard wastewater treatment. Here, we report on the levels of eight transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in raw and treated sewage sludge. Two sample sets were studied: samples collected once from 14 wastewater treatment plants (WWTPs) representing nine states, and multiple samples collected from one WWTP monitored for 12 months. Time-course analysis of significant mass fluxes (α=0.01) indicate that transformation of TCC (dechlorination) and TCS (methylation) occurred during sewage conveyance and treatment. Strong linear correlations were found between TCC and the human metabolite 2'-hydroxy-TCC (r=0.84), and between the TCC-dechlorination products dichlorocarbanilide (DCC) and monochlorocarbanilide (r=0.99). Mass ratios of DCC-to-TCC and of methyl-triclosan (MeTCS)-to-TCS, serving as indicators of transformation activity, revealed that transformation was widespread under different treatment regimes across the WWTPs sampled, though the degree of transformation varied significantly among study sites (α=0.01). The analysis of sludge sampled before and after different unit operation steps (i.e., anaerobic digestion, sludge heat treatment, and sludge drying) yielded insights into the extent and location of TCC and TCS transformation. Results showed anaerobic digestion to be important for MeTCS transformation (37-74%), whereas its contribution to partial TCC dechlorination was limited (0.4-2.1%). This longitudinal and nationwide survey is the first to report the occurrence of transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in sewage sludge.

  1. Transformation Products and Human Metabolites of Triclocarban and Triclosan in Sewage Sludge Across the United States

    PubMed Central

    2015-01-01

    Removal of triclocarban (TCC) and triclosan (TCS) from wastewater is a function of adsorption, abiotic degradation, and microbial mineralization or transformation, reactions that are not currently controlled or optimized in the pollution control infrastructure of standard wastewater treatment. Here, we report on the levels of eight transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in raw and treated sewage sludge. Two sample sets were studied: samples collected once from 14 wastewater treatment plants (WWTPs) representing nine states, and multiple samples collected from one WWTP monitored for 12 months. Time-course analysis of significant mass fluxes (α = 0.01) indicate that transformation of TCC (dechlorination) and TCS (methylation) occurred during sewage conveyance and treatment. Strong linear correlations were found between TCC and the human metabolite 2′-hydroxy-TCC (r = 0.84), and between the TCC-dechlorination products dichlorocarbanilide (DCC) and monochlorocarbanilide (r = 0.99). Mass ratios of DCC-to-TCC and of methyl-triclosan (MeTCS)-to-TCS, serving as indicators of transformation activity, revealed that transformation was widespread under different treatment regimes across the WWTPs sampled, though the degree of transformation varied significantly among study sites (α = 0.01). The analysis of sludge sampled before and after different unit operation steps (i.e., anaerobic digestion, sludge heat treatment, and sludge drying) yielded insights into the extent and location of TCC and TCS transformation. Results showed anaerobic digestion to be important for MeTCS transformation (37–74%), whereas its contribution to partial TCC dechlorination was limited (0.4–2.1%). This longitudinal and nationwide survey is the first to report the occurrence of transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in sewage sludge. PMID:24932693

  2. Science Transformed? Reflections on Professed Changes in Knowledge Production

    NASA Astrophysics Data System (ADS)

    Tuunainen, Juha

    2013-01-01

    Universities are central institutions in the current knowledge society. Their role is to provide new scientific and technological knowledge, to educate people to serve the society and to alleviate societal problems of various kinds. Because of their importance, universities have been streamlined to make them more efficient and capable of fulfilling their scientific, economic and social missions. Simultaneously, the separate institutional spheres of science, university, government, industry and the civil society have intermingled giving rise to many theoretical interpretations that underline the professed radical change of universities and sciences. Of these theories, the current article focuses on two, namely, the Mode-2 knowledge production and triple-helix of university-industry-government relations. The triple-helix model claims that the increasing interaction between university, industry and government has given rise to a new kind of research that not only seeks to advance knowledge but also tries to attain commercially viable products. The Mode-2 thesis, in turn, argues that science is being fused with other forms of social practice, such as industrial development and societal problem-solving. The present article summarizes the major viewpoints of these theories and reflects on the commentary given to them. To better understand their vices and virtues, the article also analyzes their distinct theoretical statuses and claims that Mode-2 represents a specific kind of sociological theory, the diagnosis of an era, while triple helix is more ambiguous combining three types of theory, namely, diagnoses of an era, general sociological theories and empirically-based research theories. The article is brought to an end by emphasizing the need for a more inductive analysis of the developments taking place in the current academia.

  3. Probing atomic scale transformation of fossil dental enamel using Fourier transform infrared and nuclear magnetic resonance spectroscopy: a case study from the Tugen Hills (Rift Gregory, Kenya).

    PubMed

    Yi, Haohao; Balan, Etienne; Gervais, Christel; Ségalen, Loïc; Roche, Damien; Person, Alain; Fayon, Franck; Morin, Guillaume; Babonneau, Florence

    2014-09-01

    A series of fossil tooth enamel samples was investigated by Fourier transform infrared (FTIR) spectroscopy, (13)C and (19)F magic-angle spinning nuclear magnetic resonance (MAS NMR) and scanning electron microscopy (SEM). Tooth remains were collected in Mio-Pliocene deposits of the Tugen Hills in Kenya. Significant transformations were observed in fossil enamel as a function of increasing fluorine content (up to 2.8wt.%). FTIR spectroscopy revealed a shift of the ν1 PO4 stretching band to higher frequency. The ν2 CO3 vibrational band showed a decrease in the intensity of the primary B-type carbonate signal, which was replaced by a specific band at 864cm(-1). This last band was ascribed to a specific carbonate environment in which the carbonate group is closely associated to a fluoride ion. The occurrence of this carbonate defect was consistently attested by the observation of two different fluoride signals in the (19)F NMR spectra. One main signal, at ∼-100ppm, is related to structural F ions in the apatite channel and the other, at -88ppm, corresponds to the composite defect. These spectroscopic observations can be understood as resulting from the mixture of two phases: biogenic hydroxylapatite (bioapatite) and secondary fluorapatite. SEM observations of the most altered sample confirmed the extensive replacement of the bioapatite by fluorapatite, resulting from the dissolution of the primary bioapatite followed by the precipitation of carbonate-fluorapatite. The ν2 CO3 IR bands can be efficiently used to monitor the extent of this type of bioapatite transformation during fossilization.

  4. Novel Nrf2 activators from microbial transformation products inhibit blood–retinal barrier permeability in rabbits

    PubMed Central

    Nakagami, Yasuhiro; Masuda, Kayoko; Hatano, Emiko; Inoue, Tatsuya; Matsuyama, Takuya; Iizuka, Mayumi; Ono, Yasunori; Ohnuki, Takashi; Murakami, Yoko; Iwasaki, Masaru; Yoshida, Kazuhiro; Kasuya, Yuji; Komoriya, Satoshi

    2015-01-01

    Background and Purpose Nuclear factor erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that binds to antioxidant response elements located in the promoter region of genes encoding many antioxidant enzymes and phase II detoxifying enzymes. Activation of the Nrf2 pathway seems protective for many organs, and although a well-known Nrf2 activator, bardoxolone methyl, was evaluated clinically for treating chronic kidney disease, it was found to induce adverse events. Many bardoxolone methyl derivatives, mostly derived by chemical modifications, have already been studied. However, we adopted a biotransformation technique to obtain a novel Nrf2 activator. Experimental Approach The potent novel Nrf2 activator, RS9, was obtained from microbial transformation products. Its Nrf2 activity was evaluated by determining NADPH:quinone oxidoreductase-1 induction activity in Hepa1c1c7 cells. We also investigated the effects of RS9 on oxygen-induced retinopathy in rats and glycated albumin-induced blood–retinal barrier permeability in rabbits because many ocular diseases are associated with oxidative stress and inflammation. Key Results Bardoxolone methyl doubled the specific activity of Nrf2 in Hepa1c1c7 cells at a much higher concentration than RS9. Moreover, the induction of Nrf2-targeted genes was observed at a one-tenth lower concentration of RS9. Interestingly, the cytotoxicity of RS9 was substantially reduced compared with bardoxolone methyl. Oral and intravitreal administration of RS9 ameliorated the pathological scores and leakage in the models of retinopathy in rats and ocular inflammation in rabbits respectively. Conclusion and Implications Nrf2 activators are applicable for treating ocular diseases and novel Nrf2 activators have potential as a unique method for prevention and treatment of retinovascular disease. PMID:25363737

  5. QUARKONIUM PRODUCTION IN RELATIVISTIC NUCLEAR COLLISIONS. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 12

    SciTech Connect

    KHARZEEV,D.

    1999-04-20

    The RIKEN-BNL Workshop on Quarkonium Production in Relativistic Nuclear Collisions was held September 28--October 2, 1998, at Brookhaven National Laboratory. The Workshop brought together about 50 invited participants from around the world and a number of Brookhaven physicists from both particle and nuclear physics communities.

  6. Experimental wrap-up: p (d) A - particle production and nuclear modification factors

    NASA Astrophysics Data System (ADS)

    Morsch, Andreas

    2014-12-01

    The 6th International Conference on Hard and Electromagnetic Probes in High-Energy Nuclear Collisions was held in November 2013 in Cape Town, South Africa. This contribution is a summary of the results presented on particle production and nuclear modification factors in p-A like collisions.

  7. Nuclear localization of the testis determining gene product SRY

    PubMed Central

    1995-01-01

    We have studied the expression of the human SRY protein (termed p27SRY) in two different cell lines by using specific antibodies. Confocal microscopy enabled us to localize p27SRY precisely in the nucleus in a discrete punctuate pattern. Furthermore, through microinjection experiments, we have demonstrated that the localization of the p27SRY protein into the nucleus was an event involving the NH2-terminal part of the high mobility group (HMG) domain. With the help of several synthetic peptides and various p27SRY mutants, we have characterized a bipartite basic motif in this part of the protein corresponding to a nuclear localization signal. This nuclear localization signal appears to be highly conserved in SRY box- and HMB box-containing proteins, suggesting common properties of nuclear targeting within the HMG box protein family. PMID:7876301

  8. Hydrothermal transformation and dissolution of hydroceramic waste forms for the INEEL calcined high-level nuclear waste

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Johnson

    2002-09-01

    The two main objectives of this research were dictated by the chemical composition of the Idaho National Engineering and Environmental Laboratory (INEEL) calcined high-level nuclear waste. The first objective is to develop waste forms specifically to address the immobilization of INEEL sodium-containing calcined waste in order to identify a source material that would be compatible with the established processing requirements for the waste form. These selection criteria include no excessive water demand, proper mineralogical composition of the waste form, low leachability, waste loadings greater than 20 wt% calcine and also readily available to the Idaho National Engineering and Environmental Laboratory (INEEL) in large quantities once the pozzolan(s) selection is made. The primary objective aims at studying hydrothermal transformation and kinetics of dissolution of the waste forms. The chemical durability (dissolution) of the waste forms was established by subjecting the samples to modified Product Consistency Test (PCT) for 24 hours at 90°C. The conductivity, pH and species concentrations of the PCT solutions plotted as a function of time decreased nonlinearly with increasing processing time. This trend was observed in all hydroceramic host samples processed from 75 to 200°C. The host mixed with waste samples heat-treated from 75 to 150°C showed decreasing conductivity and pH trend and before reaching a steady state. The increasing trend observed in the 175 and 200°C samples is due to reverse chemical reactions that occur in those samples. From the data collected, it is recommended that a processing regimen be developed that utilizes the addition of calcined Troy clay with a waste loading of 30 wt% and processed between 175 to 200°C for 8 to 10 hours and 100% relative humidity. Based on the analytical concentrations of species measured in the PCT test solutions, hydroceramic waste forms are recommended to be stored/buried in Teflon-lined stainless steel

  9. Nuclear technologies and agricultural production sphere (prospects of application, ecological aspects)

    SciTech Connect

    Alexakhin, R.M.

    1993-12-31

    Issues involved with the application of ionizing radiation to agricultural products are described in this paper. Many sides of agricultural application are alternative. However, nuclear technology is the most safe ecologically of the food preservation techniques.

  10. Influence of fungal elicitation on glycyrrhizin production in transformed cell cultures of Abrus precatorius Linn

    PubMed Central

    Karwasara, Vijai Singh; Tomar, Priti; Dixit, Vinod K.

    2011-01-01

    Background: Glycyrrhizin, obtained from Abrus precatorius (Indian liquorice), is a phytoconstituent of importance for pharmaceutical and food industries. Materials and Methods: High producing and fast growing cell lines of A. precatorius were developed by transformation with Agrobacterium tumefaciens for glycyrrhizin production. Its maximum transformation efficiency of 85% was obtained by infecting leaves with A. tumefaciens MTCC-431 supplemented with 50 μM acetosyringone. Thorough culture growth kinetics with sugar consumption profiles was established. Results: A twofold increase in glycyrrhizin productivity was obtained in transformed A. precatorius cell suspension cultures over the untransformed cultures. The fungal elicitors prepared from Aspergillus niger and Rhizopus stolonifer were tested at different concentrations to enhance glycyrrhizin production in transformed cell suspension cultures of A. precatorius. Maximum enhancement of 4.9- and 3.8-fold in glycyrrhizin contents, were obtained with A. niger (7.5% v/v) and R. stolonifer (5.0% v/v), respectively, on the 5th day after elicitor treatment. Conclusion: This study indicates the prospective of the amalgamation of elicitation methodology with transformed cell cultures for the large-scale production of glycyrrhizin. PMID:22262933

  11. Method for forming nuclear fuel containers of a composite construction and the product thereof

    DOEpatents

    Cheng, Bo-Ching; Rosenbaum, Herman S.; Armijo, Joseph S.

    1984-01-01

    An improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof.

  12. Regional Ocean Products Portal: Transforming Information to Knowledge

    NASA Astrophysics Data System (ADS)

    Howard, M. K.; Kobara, S.; Gayanilo, F. C.; Baum, S. K.; Simoniello, C.; Jochens, A. E.

    2010-12-01

    .S. Integrated Ocean Observing System (IOOS). With IOOS guidance, and cooperation of regional data providers, GCOOS-RA has established a regional interoperable system of systems which has the potential to deliver marine, and coastal marine oceanographic, atmospheric, biogeochemical, and ecosystem related data in an automated and largely unattended way from sensors to products. GCOOS-RA devotes 10% of it’s funding to Education and Outreach activities and we have a number of modeling partners producing terabytes of output. With the interoperable parts of the data delivery system complete, our current challenge has been producing automated workflows that generate useful interactive graphical representations over the web. We have used a variety of commercial and free software packages. Some are net-enabled and can acquire remote datasets. Several are designed for 3D including ITTVIS IDL, Unidata IDV, and IVS’s Fledermaus. This talk will present a survey of software packages we’ve used, our successes and remaining challenges.

  13. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  14. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOEpatents

    Bowman, C.D.

    1992-11-03

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  15. Ketoprofen removal by O₃ and O₃/UV processes: kinetics, transformation products and ecotoxicity.

    PubMed

    Illés, Erzsébet; Szabó, Emese; Takács, Erzsébet; Wojnárovits, László; Dombi, András; Gajda-Schrantz, Krisztina

    2014-02-15

    Ozonation (O3) and its combination with ultraviolet radiation (O3/UV) were used to decompose ketoprofen (KET). Depending on the initial KET concentration, fourteen to fifty time's faster KET degradation was achieved using combined O3/UV method compared to simple ozonation. Using both methods, formation of four major aromatic transformation products were observed: 3-(1-hydroxyethyl)benzophenone, 3-(1-hydroperoxyethyl) benzophenone, 1-(3-benzoylphenyl) ethanone and 3-ethylbenzophenone. In the combined treatment the degradation was mainly due to the direct effect of UV light, however, towards the end of the treatment, O3 highly contributed to the mineralization of small carboxylic acids. High (~90%) mineralization degree was achieved using the O3/UV method. Toxicity tests performed using representatives of three trophic levels of the aquatic ecosystems (producers, consumers and decomposers) Pseudokirchneriella subcapitata green algae, Daphnia magna zooplanktons and Vibrio fischeri bacteria showed that under the used experimental conditions the transformation products have significantly higher toxicity towards all the test organisms, than KET itself. The bacteria and the zooplanktons showed higher tolerance to the formed products than algae. The measured toxicity correlates well with the concentration of the aromatic transformation products, therefore longer treatments than needed for complete degradation of KET are strongly suggested, in order to avoid possible impact of aromatic transformation products on the aquatic ecosystem.

  16. Study on the kinetics and transformation products of salicylic acid in water via ozonation.

    PubMed

    Hu, Ruikang; Zhang, Lifeng; Hu, Jiangyong

    2016-06-01

    As salicylic acid is one of widely used pharmaceuticals, its residue has been found in various environmental water systems e.g. wastewater, surface water, treated water and drinking water. It has been reported that salicylic acid can be efficiently removed by advanced oxidation processes, but there are few studies on its transformation products and ozonation mechanisms during ozonation process. The objective of this study is to characterize the transformation products, investigate the degradation mechanisms at different pH, and propose the ozonation pathways of salicylic acid. The results showed that the rate of degradation was about 10 times higher at acidic condition than that at alkaline condition in the first 1 min when 1 mg L(-1) of ozone solution was added into 1 mg L(-1) of salicylic acid solution. It was proposed that ozone direct oxidation mechanism dominates at acidic condition, while indirect OH radical mechanism dominates at alkaline condition. A two stages pseudo-first order reaction was proposed at different pH conditions. Various hydroxylation products, carbonyl compounds and carboxylic acids, such as 2,5-dihydroxylbenzoic acid, 2,3-dihydroxylbenzoic acid, catechol, formaldehyde, glyoxal, acetaldehyde, maleic acid, acetic acid and oxalic acid etc. were identified as ozonation transformation products. In addition, acrylic acid was identified, for the first time, as ozonation transformation products through high resolution liquid chromatography-time of flight mass spectrometer. The information demonstrated in this study will help us to better understand the possible effects of ozonation products on the water quality. The degradation pathways of salicylic acid by ozonation in water sample were proposed. As both O3 and OH radical were important in the reactions, the degradation pathways of salicylic acid by ozonation in water sample were proposed at acidic and basic conditions. To our knowledge, there was no integrated study reported on the ozonation of

  17. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    SciTech Connect

    Djurcic, Zelimir; Detwiler, Jason A.; Piepke, Andreas; Foster Jr., Vince R.; Miller, Lester; Gratta, Giorgio

    2008-08-06

    Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in {bar {nu}}{sub e} detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties, and their relevance to reactor {bar {nu}}{sub e} experiments.

  18. Direct photon production in high-energy nuclear collisions

    SciTech Connect

    Peitzmann, T.

    2016-01-22

    Direct photons have always been considered a promising probe for the very early phases of high-energy nuclear collisions. Prompt photons reveal information about the initial state and its possible modifications in nuclei. In this context they should be one of the best probes for effects of gluon saturation. Thermal photons emitted from the produced matter in nuclear collisions carry information on the temperature of the very early phase. In particular a simultaneous measurement of yield and elliptic flow of thermal photons can put strong constraints on the early time dynamics of the system. I review the status of results on direct photon measurements at RHIC and LHC and their interpretation. Prompt photons at high p{sub T} are consistent with expectations from NLO pQCD in pp and show no strong nuclear modifications in A–A collisions. Recent analysis at RHIC has shown very intriguing results for lower p{sub T}, with high thermal photon yield and strong elliptic flow of direct photons, which are not fully understood theoretically. Also the ALICE experiment at the LHC has measured a high yield of thermal photons. Furthermore I discuss prospects for future measurements of forward direct photons at the LHC.

  19. Microbial toxicity and characterization of DNAN (bio)transformation product mixtures.

    PubMed

    Olivares, Christopher I; Sierra-Alvarez, Reyes; Alvarez-Nieto, Cristina; Abrell, Leif; Chorover, Jon; Field, Jim A

    2016-07-01

    2,4-Dinitroanisole (DNAN) is an emerging insensitive munitions compound. It undergoes rapid (bio)transformation in soils and anaerobic sludge. The primary transformation pathway catalyzed by a combination of biotic and abiotic factors is nitrogroup reduction followed by coupling of reactive intermediates to form azo-dimers. Additional pathways include N-acetylation and O-demethoxylation. Toxicity due to (bio)transformation products of DNAN has received little attention. In this study, the toxicity of DNAN (bio)transformation monomer products and azo-dimer and trimer surrogates to acetoclastic methanogens and the marine bioluminescent bacterium, Allivibrio fischeri, were evaluated. Methanogens were severely inhibited by 3-nitro-4-methoxyaniline (MENA), with a 50%-inhibiting concentration (IC50) of 25 μM, which is more toxic than DNAN with the same assay, but posed a lower toxicity to Allivibrio fischeri (IC50 = 219 μM). On the other hand, N-(5-amino-2-methoxyphenyl) acetamide (Ac-DAAN) was the least inhibitory test-compound for both microbial targets. Azo-dimer and trimer surrogates were very highly toxic to both microbial systems, with a toxicity similar or stronger than that of DNAN. A semi-quantitative LC-QTOF-MS method was employed to determine product mixture profiles at different stages of biotransformation, and compared with the microbial toxicity of the product-mixtures formed. Methanogenic toxicity increased due to putative reactive nitroso-intermediates as DNAN was reduced. However, the inhibition later attenuated as dimers became the predominant products in the mixtures. In contrast, A. fischeri tolerated the initial biotransformation products but were highly inhibited by the predominant azo-dimer products formed at longer incubation times, suggesting these ultimate products are more toxic than DNAN.

  20. Effects of Chlorophenoxy Herbicides and Their Main Transformation Products on DNA Damage and Acetylcholinesterase Activity

    PubMed Central

    Benfeito, Sofia; Silva, Tiago; Garrido, Jorge; Andrade, Paula B.; Sottomayor, M. J.; Borges, Fernanda; Garrido, E. Manuela

    2014-01-01

    Persistent pesticide transformation products (TPs) are increasingly being detected among different environmental compartments, including groundwater and surface water. However, there is no sufficient experimental data on their toxicological potential to assess the risk associated with TPs, even if their occurrence is known. In this study, the interaction of chlorophenoxy herbicides (MCPA, mecoprop, 2,4-D and dichlorprop) and their main transformation products with calf thymus DNA by UV-visible absorption spectroscopy has been assessed. Additionally, the toxicity of the chlorophenoxy herbicides and TPs was also assessed evaluating the inhibition of acetylcholinesterase activity. On the basis of the results found, it seems that AChE is not the main target of chlorophenoxy herbicides and their TPs. However, the results found showed that the transformation products displayed a higher inhibitory activity when compared with the parent herbicides. The results obtained in the DNA interaction studies showed, in general, a slight effect on the stability of the double helix. However, the data found for 4-chloro-2-methyl-6-nitrophenol suggest that this transformation product can interact with DNA through a noncovalent mode. PMID:24795892

  1. Octyl- and Nonylphenol Ethoxylates and Their Transformation Products in the Back River, Maryland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Back River is a sub-estuary of the Chesapeake Bay that receives effluent from a wastewater treatment plant (WWTP) and urban runoff from the metropolitan area of Baltimore, MD. In order to study the fate of the alkylphenol ethoxylates (APEOs) and their transformation products, including those th...

  2. Innovation for Transformation in Nigeria University Education: Implications for the Production of Critical and Creative Thinkers

    ERIC Educational Resources Information Center

    Onu, V. C.; Eskay, M. K.; Obiyo, N. O.; Igbo, J. N.; Ezeanwu, A. B.

    2012-01-01

    This descriptive survey research studied innovation for transformation in Nigeria university education: implications for the production of critical and creative thinkers. Thus, students' perception of knowledge generation and dissemination by university lecturers were elicited. From a population of registered students in a Nigerian university, 200…

  3. Aqueous chlorination of acebutolol: kinetics, transformation by-products, and mechanism.

    PubMed

    Khalit, Wan Nor Adira Wan; Tay, Kheng Soo

    2016-02-01

    This study investigated the reaction kinetics and the transformation by-products of acebutolol during aqueous chlorination. Acebutolol is one of the commonly used β-blockers for the treatment of cardiovascular diseases. It has been frequently detected in the aquatic environment. In the kinetics study, the second-order rate constant for the reaction between acebutolol and chlorine (k app) was determined at 25 ± 0.1 °C. The degradation of acebutolol by free available chlorine was highly pH dependence. When the pH increased from 6 to 8, it was found that the k app for the reaction between acebutolol and free available chlorine was increased from 1.68 to 11.2 M(-1) min(-1). By comparing with the reported k app values, the reactivity of acebutolol toward free available chlorine was found to be higher than atenolol and metoprolol but lower than nadolol and propranolol. Characterization of the transformation by-products formed during the chlorination of acebutolol was carried out using liquid chromatography-quadrupole time-of-flight high-resolution mass spectrometry. Seven major transformation by-products were identified. These transformation by-products were mainly formed through dealkylation, hydroxylation, chlorination, and oxidation reactions.

  4. Separation of the rare-earth fission product poisons from spent nuclear fuel

    SciTech Connect

    Christian, Jerry D.; Sterbentz, James W.

    2016-08-30

    A method for the separation of the rare-earth fission product poisons comprising providing a spent nuclear fuel. The spent nuclear fuel comprises UO.sub.2 and rare-earth oxides, preferably Sm, Gd, Nd, Eu oxides, with other elements depending on the fuel composition. Preferably, the provided nuclear fuel is a powder, preferably formed by crushing the nuclear fuel or using one or more oxidation-reduction cycles. A compound comprising Th or Zr, preferably metal, is provided. The provided nuclear fuel is mixed with the Th or Zr, thereby creating a mixture. The mixture is then heated to a temperature sufficient to reduce the UO.sub.2 in the nuclear fuel, preferably to at least to 850.degree. C. for Th and up to 600.degree. C. for Zr. Rare-earth metals are then extracted to form the heated mixture thereby producing a treated nuclear fuel. The treated nuclear fuel comprises the provided nuclear fuel having a significant reduction in rare-earths.

  5. Molecular Structure Laboratory. Fourier Transform Nuclear Magnetic Resonance (FTNMR) Spectrometer and Ancillary Instrumentation at SUNY Geneseo

    SciTech Connect

    Geiger, David K

    2015-12-31

    An Agilent 400-MR nuclear magnetic resonance (NMR) spectrometer and ancillary equipment were purchased, which are being used for molecular structure elucidation.  The instrumentation is housed in a pre-existing facility designed specifically for its use. This instrument package is being used to expand the research and educational efforts of the faculty and students at SUNY-Geneseo and is made available to neighboring educational institutions and business concerns.  Funds were also used for training of College personnel, maintenance of the instrumentation, and installation of the equipment.

  6. Universal strangeness production in hadronic and nuclear collisions

    NASA Astrophysics Data System (ADS)

    Castorina, P.; Plumari, S.; Satz, H.

    2016-07-01

    We show that strangeness suppression in hadronic and nuclear collisions is fully determined by the initial energy density of the collision. The suppression factor γs(s), with s denoting the collision energy, can be expressed as a universal function of the initial energy density ɛ0(s), and the resulting pattern is in excellent agreement with data from p-p, p-Pb, Cu-Cu, Au-Au and Pb-Pb data over a wide range of energies and for different centralities.

  7. Hepatocyte nuclear factor 4alpha orchestrates expression of cell adhesion proteins during the epithelial transformation of the developing liver.

    PubMed

    Battle, Michele A; Konopka, Genevieve; Parviz, Fereshteh; Gaggl, Alexandra Lerch; Yang, Chuhu; Sladek, Frances M; Duncan, Stephen A

    2006-05-30

    Epithelial formation is a central facet of organogenesis that relies on intercellular junction assembly to create functionally distinct apical and basal cell surfaces. How this process is regulated during embryonic development remains obscure. Previous studies using conditional knockout mice have shown that loss of hepatocyte nuclear factor 4alpha (HNF4alpha) blocks the epithelial transformation of the fetal liver, suggesting that HNF4alpha is a central regulator of epithelial morphogenesis. Although HNF4alpha-null hepatocytes do not express E-cadherin (also called CDH1), we show here that E-cadherin is dispensable for liver development, implying that HNF4alpha regulates additional aspects of epithelial formation. Microarray and molecular analyses reveal that HNF4alpha regulates the developmental expression of a myriad of proteins required for cell junction assembly and adhesion. Our findings define a fundamental mechanism through which generation of tissue epithelia during development is coordinated with the onset of organ function.

  8. High-content image informatics of the structural nuclear protein NuMA parses trajectories for stem/progenitor cell lineages and oncogenic transformation.

    PubMed

    Vega, Sebastián L; Liu, Er; Arvind, Varun; Bushman, Jared; Sung, Hak-Joon; Becker, Matthew L; Lelièvre, Sophie; Kohn, Joachim; Vidi, Pierre-Alexandre; Moghe, Prabhas V

    2017-02-01

    Stem and progenitor cells that exhibit significant regenerative potential and critical roles in cancer initiation and progression remain difficult to characterize. Cell fates are determined by reciprocal signaling between the cell microenvironment and the nucleus; hence parameters derived from nuclear remodeling are ideal candidates for stem/progenitor cell characterization. Here we applied high-content, single cell analysis of nuclear shape and organization to examine stem and progenitor cells destined to distinct differentiation endpoints, yet undistinguishable by conventional methods. Nuclear descriptors defined through image informatics classified mesenchymal stem cells poised to either adipogenic or osteogenic differentiation, and oligodendrocyte precursors isolated from different regions of the brain and destined to distinct astrocyte subtypes. Nuclear descriptors also revealed early changes in stem cells after chemical oncogenesis, allowing the identification of a class of cancer-mitigating biomaterials. To capture the metrology of nuclear changes, we developed a simple and quantitative "imaging-derived" parsing index, which reflects the dynamic evolution of the high-dimensional space of nuclear organizational features. A comparative analysis of parsing outcomes via either nuclear shape or textural metrics of the nuclear structural protein NuMA indicates the nuclear shape alone is a weak phenotypic predictor. In contrast, variations in the NuMA organization parsed emergent cell phenotypes and discerned emergent stages of stem cell transformation, supporting a prognosticating role for this protein in the outcomes of nuclear functions.

  9. Heavy flavours production in quark-gluon plasma formed in high energy nuclear reactions

    NASA Technical Reports Server (NTRS)

    Kloskinski, J.

    1985-01-01

    Results on compression and temperatures of nuclear fireballs and on relative yield of strange and charmed hadrons are given . The results show that temperatures above 300 MeV and large compressions are unlikely achieved in average heavy ion collision. In consequence, thermal production of charm is low. Strange particle production is, however, substantial and indicates clear temperature - threshold behavior.

  10. Orphan nuclear receptor small heterodimer partner inhibits transforming growth factor-beta signaling by repressing SMAD3 transactivation.

    PubMed

    Suh, Ji Ho; Huang, Jiansheng; Park, Yun-Yong; Seong, Hyun-A; Kim, Dongwook; Shong, Minho; Ha, Hyunjung; Lee, In-Kyu; Lee, Keesook; Wang, Li; Choi, Hueng-Sik

    2006-12-22

    Orphan nuclear receptor small heterodimer partner (SHP) is an atypical member of the nuclear receptor superfamily; SHP regulates the nuclear receptor-mediated transcription of target genes but lacks a conventional DNA binding domain. In this study, we demonstrate that SHP represses transforming growth factor-beta (TGF-beta)-induced gene expression through a direct interaction with Smad, a transducer of TGF-beta signaling. Transient transfection studies demonstrate that SHP represses Smad3-induced transcription. In vivo and in vitro protein interaction assays revealed that SHP directly interacts with Smad2 and Smad3 but not with Smad4. Mapping of domains mediating the interaction between SHP and Smad3 showed that the entire N-terminal domain (1-159 amino acids) of SHP and the linker domain of Smad3 are involved in this interaction. In vitro glutathione S-transferase pulldown competition experiments revealed the SHP-mediated repression of Smad3 transactivation through competition with its co-activator p300. SHP also inhibits the activation of endogenous TGF-beta-responsive gene promoters, the p21, Smad7, and plasminogen activator inhibitor-1 (PAI-1) promoters. Moreover, adenovirus-mediated overexpression of SHP decreases PAI-1 mRNA levels, and down-regulation of SHP by a small interfering RNA increases both the transactivation of Smad3 and the PAI-1 mRNA levels. Finally, the PAI-1 gene is expressed in SHP(-/-) mouse hepatocytes at a higher level than in normal hepatocytes. Taken together, these data indicate that SHP is a novel co-regulator of Smad3, and this study provides new insights into regulation of TGF-beta signaling.

  11. The Nuclear Alternative: Energy Production within Ulaanbaatar, Mongolia

    NASA Astrophysics Data System (ADS)

    Liodakis, Emmanouel Georgiou

    2011-06-01

    Over ninety percent of Mongolia's energy load is run through the Central Energy System. This primary grid provides Mongolia's capital, Ulaanbaatar, with the power it uses to function. In the first half of 2010 the Central Energy System managed 1739.45 million kWhs, a 4.6 percent increase from 2009. If this growth rate continues, by 2015 Ulaanbaatar's three power plants will be unable to generate enough heat and electricity to meet the city's needs. Currently, plans have been proposed to rehabilitate the aging coal power plants. However, rising maintenance costs and growing emission levels make the long-term sustainability of this solution uncertain. The following paper analyzes the capital, maintenance, and decommissioning costs associated with the current rehabilitation plans and compares them with a nuclear alternative.

  12. Lessons learned from the transformation of natural product discovery to a genome-driven endeavor.

    PubMed

    Deane, Caitlin D; Mitchell, Douglas A

    2014-02-01

    Natural product discovery is currently undergoing a transformation from a phenotype-driven field to a genotype-driven one. The increasing availability of genome sequences, coupled with improved techniques for identifying biosynthetic gene clusters, has revealed that secondary metabolomes are strikingly vaster than previously thought. New approaches to correlate biosynthetic gene clusters with the compounds they produce have facilitated the production and isolation of a rapidly growing collection of what we refer to as "reverse-discovered" natural products, in analogy to reverse genetics. In this review, we present an extensive list of reverse-discovered natural products and discuss seven important lessons for natural product discovery by genome-guided methods: structure prediction, accurate annotation, continued study of model organisms, avoiding genome-size bias, genetic manipulation, heterologous expression, and potential engineering of natural product analogs.

  13. Lessons learned from the transformation of natural product discovery to a genome-driven endeavor

    PubMed Central

    Deane, Caitlin D.; Mitchell, Douglas A.

    2013-01-01

    Natural product discovery is currently undergoing a transformation from a phenotype-driven field to a genotype-driven one. The increasing availability of genome sequences, coupled with improved techniques for identifying biosynthetic gene clusters, has revealed that secondary metabolomes are strikingly vaster than previously thought. New approaches to correlate biosynthetic gene clusters with the compounds they produce have facilitated the production and isolation of a rapidly growing collection of what we refer to as “reverse-discovered” natural products, in analogy to reverse genetics. In this review, we present an extensive list of reverse-discovered natural products and discuss seven important lessons for natural product discovery by genome-guided methods: structure prediction, accurate annotation, continued study of model organisms, avoiding genome size bias, genetic manipulation, heterologous expression, and potential engineering of natural product analogs. PMID:24142337

  14. Lactic acid production by Rhizopus oryzae transformants with modified lactate dehydrogenase activity.

    PubMed

    Skory, C D

    2004-04-01

    Rhizopus oryzae is capable of producing high levels of lactic acid by the fermentation of glucose. Yields typically vary over 60-80%, with the remaining glucose diverted primarily into ethanol fermentation. The goal of this work was to increase lactate dehydrogenase (LDH) activity, so lactic acid fermentation could more effectively compete for available pyruvate. Three different constructs, pLdhA71X, pLdhA48XI, and pLdhA89VII, containing various lengths of the ldhA gene fragment, were transformed into R. oryzae. This fungus rarely integrates DNA used for transformation, but instead relies on extra-chromosomal replication in a high-copy number. Plasmid pLdhA48XI was linearized prior to transformation in order to facilitate integration into the pyrG gene used for selection. Isolates transformed with ldhA containing plasmid were compared with both the wild-type parent strain and the auxotrophic recipient strain containing vector only. All isolates transformed with pLdhA71X or pLdhA48XI had multiple copies of the ldhA gene that resulted in ldhA transcript accumulation, LDH specific activity, and lactic acid production higher than the controls. Integration of plasmid pLdhA48XI increased the stability of the strain, but did not seem to offer any benefit for increasing lactic acid production. Since lactic acid fermentation competes with ethanol and fumaric acid production, it was not unexpected that increased lactic acid production was always concomitant with decreased ethanol and fumaric acid. Plasmid pLdhA71X, containing a large ldhA fragment (6.1 kb), routinely yielded higher levels of lactic acid than the smaller region (3.3 kb) used to construct plasmid pLdhA48XI. The greatest levels of ldhA transcript and enzyme production occurred with isolates transformed with plasmid pLdhA89VII. However, these transformants always produced less lactic acid and higher amounts of ethanol, fumaric, and glycerol compared with the control.

  15. Detecting special nuclear materials in containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B.; Prussin, Stanley G.

    2007-10-02

    A method and a system for detecting the presence of special nuclear materials in a container. The system and its method include irradiating the container with an energetic beam, so as to induce a fission in the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  16. Association between shortage of energy supply and nuclear gene mutations leading to carcinomatous transformation.

    PubMed

    DU, Jianping

    2016-01-01

    Anaerobic bacteria use glycolysis, an oxygen-independent metabolic pathway, whereas energy metabolism in the evolved eukaryotic cell is performed via oxidative phosphorylation, with all eukaryotic cell activities depending upon high energy consumption. However, in cancer cells evolving from eukaryotic cells, the energy metabolism switches from oxidative phosphorylation to glycolysis. The shortage of energy supply induces cancer cells to acquire specific characteristics. Base pair renewal is the most energy-consuming process in the cell, and shortage of energy supply may lead to errors in this process; the more prominent the shortage in energy supply, the more errors are likely to occur in base pair renewal, resulting in gene mutations and expression of cancer cell characteristics. Thus, shortage of energy supply is associated with carcinomatous transformation.

  17. Epigenetic silencing of a foreign gene in nuclear transformants of Chlamydomonas.

    PubMed Central

    Cerutti, H; Johnson, A M; Gillham, N W; Boynton, J E

    1997-01-01

    The unstable expression of introduced genes poses a serious problem for the application of transgenic technology in plants. In transformants of the unicellular green alga Chlamydomonas reinhardtii, expression of a eubacterial aadA gene, conferring spectinomycin resistance, is transcriptionally suppressed by a reversible epigenetic mechanism(s). Variations in the size and frequency of colonies surviving on different concentrations of spectinomycin as well as the levels of transcriptional activity of the introduced transgene(s) suggest the existence of intermediate expression states in genetically identical cells. Gene silencing does not correlate with methylation of the integrated DNA and does not involve large alterations in its chromatin structure, as revealed by digestion with restriction endonucleases and DNase I. Transgene repression is enhanced by lower temperatures, similar to position effect variegation in Drosophila. By analogy to epigenetic phenomena in several eukaryotes, our results suggest a possible role for (hetero)chromatic chromosomal domains in transcriptional inactivation. PMID:9212467

  18. Levofloxacin oxidation by ozone and hydroxyl radicals: kinetic study, transformation products and toxicity.

    PubMed

    Hamdi El Najjar, Nasma; Touffet, Arnaud; Deborde, Marie; Journel, Romain; Leitner, Nathalie Karpel Vel

    2013-10-01

    This work was carried out to investigate the fate of the antibiotic levofloxacin upon oxidation with ozone and hydroxyl radicals. A kinetic study was conducted at 20 °C for each oxidant. Ozonation experiments were performed using a competitive kinetic method with carbamazepin as competitor. Significant levofloxacin removal was observed during ozonation and a rate constant value of 6.0×10(4) M(-1) s(-1) was obtained at pH 7.2. An H2O2/UV system was used for the formation of hydroxyl radicals HO. The rate constant of HO was determined in the presence of a high H2O2 concentration. The kinetic expressions yielded a [Formula: see text] value of 4.5×10(9) M(-1) s(-1) at pH 6.0 and 5.2×10(9) M(-1) s(-1) at pH 7.2. These results were used to develop a model to predict the efficacy of the ozonation process and pharmaceutical removal was estimated under different ozonation conditions (i.e. oxidant concentrations and contact times). The results showed that levofloxacin was completely degraded by molecular ozone during ozonation of water and that hydroxyl radicals had no effect in real waters conditions. Moreover, LC/MS/MS and toxicity assays using Lumistox test were performed to identify ozonation transformation products. Under these conditions, four transformation products were observed and their chemical structures were proposed. The results showed an increase in toxicity during ozonation, even after degradation of all of the observed transformation products. The formation of other transformation products not identified under our experimental conditions could be responsible for the observed toxicity. These products might be ozone-resistant and more toxic to Vibrio fisheri than levofloxacin.

  19. Production of transgenic adult plants from clementine mandarin by enhancing cell competence for transformation and regeneration.

    PubMed

    Cervera, Magdalena; Navarro, Antonio; Navarro, Luis; Peña, Leandro

    2008-01-01

    Genetic transformation of mature trees is difficult because adult tissues are recalcitrant to Agrobacterium tumefaciens infection and transformation and because transgenic mature events are less competent for regeneration. We have shown that reinvigoration allows manipulation of the vegetative phase to increase the potential for transformation and regeneration without loss of competence for flowering and fruiting. To produce transgenic plants from clementine mandarin (Citrus clementina hort. ex Tanaka), we optimized the conditions of the source material both ex vitro and in vitro. Grafting of mature buds on juvenile rootstocks in the spring and preventing multiple bud sprouting by removing all but one bud permitted selection of vigorous first flushes for in vitro culture. Use of additional virulence genes from A. tumefaciens to increase transformation frequency and optimization of culture media and conditions to enhance explant cell competence for T-DNA integration and organogenesis resulted in efficient and reliable transgenic plant production. Transformed regenerants from explants, cultured in media without antibiotics, were identified by a screenable marker (either beta-glucuronidase or green fluorescent protein (GFP)), creating the possibility of generating transgenic clementine plants without antibiotic resistance marker genes. Stable integration of foreign genes was demonstrated by Southern blot analysis, and expression of these foreign genes was confirmed by detection of GFP fluorescence in leaves, floral organs and fruits of the transgenic plants.

  20. Cold Nuclear Matter Effects on J/psi Production: Intrinsic and Extrinsic Transverse Momentum Effects

    SciTech Connect

    Ferreiro, E.G.; Fleuret, F.; Lansberg, J.P.; Rakotozafindrabe, A.; /SPhN, DAPNIA, Saclay

    2010-08-26

    Cold nuclear matter effects on J/{psi} production in proton-nucleus and nucleus-nucleus collisions are evaluated taking into account the specific J/{psi}-production kinematics at the partonic level, the shadowing of the initial parton distributions and the absorption in the nuclear matter. We consider two different parton processes for the c{bar c}-pair production: one with collinear gluons and a recoiling gluon in the final state and the other with initial gluons carrying intrinsic transverse momentum. Our results are compared to RHIC observables. The smaller values of the nuclear modification factor R{sub AA} in the forward rapidity region (with respect to the mid rapidity region) are partially explained, therefore potentially reducing the need for recombination effects.

  1. The Production of Radionuclides for Radiotracers in Nuclear Medicine

    NASA Astrophysics Data System (ADS)

    Ruth, Thomas J.

    Medical applications represent the vast majority of the uses for radiotracers. This review addresses how accelerators are employed for the production of high purity radionuclides that are used in basic biomedical research, as well as for clinical medicine both for diagnosing disease and for treatment.

  2. Solvent degradation products in nuclear fuel processing solvents

    SciTech Connect

    Shook, H.E. Jr.

    1988-06-01

    The Savannah River Plant uses a modified Purex process to recover enriched uranium and separate fission products. This process uses 7.5% tri-n-butyl phosphate (TBP) dissolved in normal paraffin hydrocarbons for the solvent extraction of a nitric acid solution containing the materials to be separated. Periodic problems in product decontamination result from solvent degradation. A study to improve process efficiency has identified certain solvent degradation products and suggested mitigation measures. Undecanoic acid, lauric acid, and tridecanoic acid were tentatively identified as diluent degradation products in recycle solvent. These long-chain organic acids affect phase separation and lead to low decontamination factors. Solid phase extraction (SPE) was used to concentrate the organic acids in solvent prior to analysis by high performance liquid chromatography (HPLC). SPE and HPLC methods were optimized in this work for analysis of decanoic acid, undecanoic acid, and lauric acid in solvent. Accelerated solvent degradation studies with 7.5% TBP in normal paraffin hydrocarbons showed that long-chain organic acids and long-chain alkyl butyl phosphoric acids are formed by reactions with nitric acid. Degradation of both tributyl phosphate and hydrocarbon can be minimized with purified normal paraffin replacing the standard grade presently used. 12 refs., 1 fig., 3 tabs.

  3. Eta Meson Production in Proton-Proton and Nuclear Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Dick, Frank

    2008-01-01

    Total cross sections for eta meson production in proton - proton collisions are calculated. The eta meson is mainly produced via decay of the excited nucleon resonance at 1535 MeV. A scalar quantum field theory is used to calculate cross sections, which also include resonance decay. Comparison between theory and experiment is problematic near threshold when resonance decay is not included. When the decay is included, the comparison between theory and experiment is much better.

  4. Genotoxic and carcinogenic products arising from reductive transformations of the azo dye, Disperse Yellow 7.

    PubMed

    Balakrishnan, Vimal K; Shirin, Salma; Aman, Ahmed M; de Solla, Shane R; Mathieu-Denoncourt, Justine; Langlois, Valerie S

    2016-03-01

    Selected aromatic azo and benzidine based dyes are priority compounds under the Government of Canada's Chemical Management Plan (CMP) for environmental risk assessments. Organic compounds undergo chemical and biological transformations when they interact with environmental matrices and biotic species; identifying the transformation products is thus a critical component of the risk assessment process. Here, we used zero valent iron (ZVI) to initiate the reduction of the diazo compound dye Disperse Yellow 7 (DY 7). Using state-of-the-art accurate mass Liquid Chromatography-Quadrupole Time of Flight-Mass Spectroscopy (LC-QToF-MS), four transformation products were conclusively identified, while a fifth product was tentatively ascertained. The conclusively established transformation products included p-phenylenediamine (p-PDA, a known genotoxin), 4-aminoazobenzene (4-AAB, a category 2 carcinogen) and 4-aminobiphenyl (4-ABP, a category 1 human carcinogen). 4-ABP is thought to form via a benzidine rearrangement; this is the first report of DY 7 undergoing a benzidine rearrangement. Given the importance of reduction processes in the metabolism of organic contaminants by aquatic species, we used LC-MS/MS to analyze sediment samples that had been generated previously upon exposure of Western clawed frogs (Silurana tropicalis) to DY 7 (at exposure levels where cellular stress was observed in S. tropicalis). We found p-PDA, 4-AAB, and 4-ABP were present in all exposures, but not in any of the sediment controls, demonstrating that upon release of DY 7 to the aquatic environment, sediment dwelling organisms will metabolize DY 7 to generate known (and suspected) human carcinogens, including through a previously unreported in vivo benzidine rearrangement to produce 4-ABP.

  5. Products of multiple Fourier series with application to the multiblade transformation

    NASA Technical Reports Server (NTRS)

    Kunz, D. L.

    1981-01-01

    A relatively simple and systematic method for forming the products of multiple Fourier series using tensor like operations is demonstrated. This symbolic multiplication can be performed for any arbitrary number of series, and the coefficients of a set of linear differential equations with periodic coefficients from a rotating coordinate system to a nonrotating system is also demonstrated. It is shown that using Fourier operations to perform this transformation make it easily understood, simple to apply, and generally applicable.

  6. Occurrence of Chlorotriazine herbicides and their transformation products in arable soils.

    PubMed

    Scherr, Kerstin E; Bielská, Lucie; Kosubová, Petra; Dinisová, Petra; Hvězdová, Martina; Šimek, Zdeněk; Hofman, Jakub

    2017-03-01

    Chlorotriazine herbicides (CTs) are widely used pest control chemicals. In contrast to groundwater contamination, little attention has been given to the circumstances of residue formation of parent compounds and transformation products in soils. Seventy-five cultivated floodplain topsoils in the Czech Republic were sampled in early spring of 2015, corresponding to a minimum of six months (current-use terbuthylazine, TBA) and a up to a decade (banned atrazine, AT and simazine, SIM) after the last herbicide application. Soil residues of parent compounds and nine transformation products were quantified via multiple residue analysis using liquid chromatography - tandem mass spectrometry of acetonitrile partitioning extracts (QuEChERS). Using principal component analysis (PCA), their relation to soil chemistry, crops and environmental parameters was determined. Of the parent compounds, only TBA was present in more than one sample. In contrast, at least one CT transformation product, particularly hydroxylated CTs, was detected in 89% of the sites, or 54% for banned triazines. Deethylated and bi-dealkylated SIM or AT residues were not detectable. PCA suggests the formation and/or retention of CT hydroxy-metabolite residues to be related to low soil pH, and a direct relation between TBA and soil organic carbon, and between deethyl-TBA and clay or Ca contents, respectively, the latter pointing towards distinct sorption mechanisms. The low historic application of simazine contrasted by the high abundance of its residues, and the co-occurrence with AT residues suggests the post-ban application of AT and SIM banned triazines as a permitted impurity of TBA formulations as a recent, secondary source. The present data indicate that topsoils do not contain abundant extractable residues of banned parent chlorotriazines, and are thus likely not the current source for related ground- and surface water contamination. In contrast, topsoils might pose a long-term source of TBA and CT

  7. Investigation of nanoparticle transformations to guide the design of greener products and processes

    NASA Astrophysics Data System (ADS)

    Hutchison, James

    2012-02-01

    Nanoscale particles and products containing nanoparticles hold promise as higher performance materials; however, there are concerns that the production and use of nanoparticles might negatively impact human health or the environment. Within the context of greener nanoscience we aim to maximize the benefits, while minimizing hazards, of nanoscale products. A significant gap in the knowledge needed to develop greener products and processes is our understanding of the formation and transformation of nanoparticles. Such studies of nanoparticle dynamics are technically challenging and few studies have been reported. In this presentation, I will describe convenient methods to monitor nanoparticle dynamics and show how knowledge of nanoparticle transformations can guide the design of greener products and processes. In one example, chemically-modified transmission electron microscopy (TEM) grids are used to directly visualize silver nanoparticle transformations on surfaces. By indexing the TEM grids, it was possible to examine the same nanoparticles repeatedly throughout exposure to different environments. These studies show that larger particles can act as a source of smaller nanoparticles and that much larger particles also produce nanoparticles. With this knowledge, an improved design of nanoparticle coatings for antimicrobial fabrics was developed. A second example involves the use of small angle x-ray scattering (SAXS) to monitor nanoparticle formation reactions in solution in real-time. A combination of beam-line and lab-scale SAXS measurements, combined with simultaneous optical studies, showed that particle growth and coalescence compete under typical synthesis conditions, leading to loss of structural definition of the product. This mechanistic insight, in turn, guided the design of efficient and greener syntheses of well-defined nanoparticles.

  8. Dynamic Loading of Substation Distribution Transformers: An Application for use in a Production Grade Environment

    NASA Astrophysics Data System (ADS)

    Zhang, Ming

    Recent trends in the electric power industry have led to more attention to optimal operation of power transformers. In a deregulated environment, optimal operation means minimizing the maintenance and extending the life of this critical and costly equipment for the purpose of maximizing profits. Optimal utilization of a transformer can be achieved through the use of dynamic loading. A benefit of dynamic loading is that it allows better utilization of the transformer capacity, thus increasing the flexibility and reliability of the power system. This document presents the progress on a software application which can estimate the maximum time-varying loading capability of transformers. This information can be used to load devices closer to their limits without exceeding the manufacturer specified operating limits. The maximally efficient dynamic loading of transformers requires a model that can accurately predict both top-oil temperatures (TOTs) and hottest-spot temperatures (HSTs). In the previous work, two kinds of thermal TOT and HST models have been studied and used in the application: the IEEE TOT/HST models and the ASU TOT/HST models. And, several metrics have been applied to evaluate the model acceptability and determine the most appropriate models for using in the dynamic loading calculations. In this work, an investigation to improve the existing transformer thermal models performance is presented. Some factors that may affect the model performance such as improper fan status and the error caused by the poor performance of IEEE models are discussed. Additional methods to determine the reliability of transformer thermal models using metrics such as time constant and the model parameters are also provided. A new production grade application for real-time dynamic loading operating purpose is introduced. This application is developed by using an existing planning application, TTeMP, as a start point, which is designed for the dispatchers and load specialists. To

  9. JLAB CLAS Results on Pion Production from Nuclear Target

    NASA Astrophysics Data System (ADS)

    Lee, Hyupwoo; Manly, Steven

    Preliminary results on single charged pion production in eA collisions at Ebeam = 5 GeV/c2 are presented. The data were collected using the CLAS detector, which is a multipurpose, large acceptance, magnetic spectrometer located in Hall B at the Thomas Jefferson National Accelerator Facility. Distributions in W, Q2, pπ, and θπ are shown for data produced using deuterium, carbon, iron, and lead targets. The motivation for this work is to provide distributions useful for tuning the hadronic final state interaction models used in extracting results from current and next generation neutrino oscillation experiments.

  10. Nuclear modification of charged hadron production at the LHC

    NASA Astrophysics Data System (ADS)

    De, Somnath; Srivastava, Dinesh K.

    2013-07-01

    We analyze recent results for the suppressed production of charged hadrons for Pb+Pb collisions at the center-of-mass energy of 2.76 TeV/nucleon-pair. We closely follow the treatment recently used by us in which partons lose energy due to the radiation of gluons following multiple scatterings while traversing the quark-gluon plasma, before fragmenting into hadrons at the center-of-mass energy of 200 GeV/nucleon-pair. We obtain an empirical value for the momentum transport coefficient (\\widehat{q}) and provide predictions for azimuthal anisotropy of hadron momenta for non-central collisions. Communicated by Steffen Bass

  11. A High-Throughput Regeneration and Transformation Platform for Production of Genetically Modified Banana.

    PubMed

    Tripathi, Jaindra N; Oduor, Richard O; Tripathi, Leena

    2015-01-01

    Banana (Musa spp.) is an important staple food as well as cash crop in tropical and subtropical countries. Various bacterial, fungal, and viral diseases and pests such as nematodes are major constraints in its production and are currently destabilizing the banana production in sub-Saharan Africa. Genetic engineering is a complementary option used for incorporating useful traits in banana to bypass the long generation time, polyploidy, and sterility of most of the cultivated varieties. A robust transformation protocol for farmer preferred varieties is crucial for banana genomics and improvement. A robust and reproducible system for genetic transformation of banana using embryogenic cell suspensions (ECS) has been developed in this study. Two different types of explants (immature male flowers and multiple buds) were tested for their ability to develop ECS in several varieties of banana locally grown in Africa. ECS of banana varieties "Cavendish Williams" and "Gros Michel" were developed using multiple buds, whereas ECS of "Sukali Ndiizi" was developed using immature male flowers. Regeneration efficiency of ECS was about 20,000-50,000 plantlets per ml of settled cell volume (SCV) depending on variety. ECS of three different varieties were transformed through Agrobacterium-mediated transformation using gusA reporter gene and 20-70 independent transgenic events per ml SCV of ECS were regenerated on selective medium. The presence and integration of gusA gene in transgenic plants was confirmed by PCR, dot blot, and Southern blot analysis and expression by histochemical GUS assays. The robust transformation platform was successfully used to generate hundreds of transgenic lines with disease resistance. Such a platform will facilitate the transfer of technologies to national agricultural research systems (NARS) in Africa.

  12. A High-Throughput Regeneration and Transformation Platform for Production of Genetically Modified Banana

    PubMed Central

    Tripathi, Jaindra N.; Oduor, Richard O.; Tripathi, Leena

    2015-01-01

    Banana (Musa spp.) is an important staple food as well as cash crop in tropical and subtropical countries. Various bacterial, fungal, and viral diseases and pests such as nematodes are major constraints in its production and are currently destabilizing the banana production in sub-Saharan Africa. Genetic engineering is a complementary option used for incorporating useful traits in banana to bypass the long generation time, polyploidy, and sterility of most of the cultivated varieties. A robust transformation protocol for farmer preferred varieties is crucial for banana genomics and improvement. A robust and reproducible system for genetic transformation of banana using embryogenic cell suspensions (ECS) has been developed in this study. Two different types of explants (immature male flowers and multiple buds) were tested for their ability to develop ECS in several varieties of banana locally grown in Africa. ECS of banana varieties “Cavendish Williams” and “Gros Michel” were developed using multiple buds, whereas ECS of “Sukali Ndiizi” was developed using immature male flowers. Regeneration efficiency of ECS was about 20,000–50,000 plantlets per ml of settled cell volume (SCV) depending on variety. ECS of three different varieties were transformed through Agrobacterium-mediated transformation using gusA reporter gene and 20–70 independent transgenic events per ml SCV of ECS were regenerated on selective medium. The presence and integration of gusA gene in transgenic plants was confirmed by PCR, dot blot, and Southern blot analysis and expression by histochemical GUS assays. The robust transformation platform was successfully used to generate hundreds of transgenic lines with disease resistance. Such a platform will facilitate the transfer of technologies to national agricultural research systems (NARS) in Africa. PMID:26635849

  13. HIGH-TEMPERATURE ELECTROLYSIS FOR HYDROGEN PRODUCTION FROM NUCLEAR ENERGY

    SciTech Connect

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Joseph J. Hartvigsen

    2005-10-01

    An experimental study is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from a ten-cell planar electrolysis stack, with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 µm thick), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions (0.1 - 0.6), gas flow rates (1000 - 4000 sccm), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Hydrogen production rates up to 90 Normal liters per hour were demonstrated. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Stack performance is shown to be dependent on inlet steam flow rate.

  14. Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review

    NASA Astrophysics Data System (ADS)

    Chen, Jinglong; Li, Zipeng; Pan, Jun; Chen, Gaige; Zi, Yanyang; Yuan, Jing; Chen, Binqiang; He, Zhengjia

    2016-03-01

    As a significant role in industrial equipment, rotating machinery fault diagnosis (RMFD) always draws lots of attention for guaranteeing product quality and improving economic benefit. But non-stationary vibration signal with a large amount of noise on abnormal condition of weak fault or compound fault in many cases would lead to this task challenging. As one of the most powerful non-stationary signal processing techniques, wavelet transform (WT) has been extensively studied and widely applied in RMFD. Numerous publications about the study and applications of WT for RMFD have been presented to academic journals, technical reports and conference proceedings. Many previous publications admit that WT can be realized by means of inner product principle of signal and wavelet base. This paper verifies the essence on inner product operation of WT by simulation and field experiments. Then the development process of WT based on inner product is concluded and the applications of major developments in RMFD are also summarized. Finally, super wavelet transform as an important prospect of WT based on inner product are presented and discussed. It is expected that this paper can offer an in-depth and comprehensive references for researchers and help them with finding out further research topics.

  15. Transforming Water: Social Influence Moderates Psychological, Physiological, and Functional Response to a Placebo Product

    PubMed Central

    Crum, Alia J.; Phillips, Damon J.; Goyer, J. Parker; Akinola, Modupe; Higgins, E. Tory

    2016-01-01

    This paper investigates how social influence can alter physiological, psychological, and functional responses to a placebo product and how such responses influence the ultimate endorsement of the product. Participants consumed a product, “AquaCharge Energy Water,” falsely-labeled as containing 200 mg of caffeine but which was actually plain spring water, in one of three conditions: a no social influence condition, a disconfirming social influence condition, and a confirming social influence condition. Results demonstrated that the effect of the product labeling on physiological alertness (systolic blood pressure), psychological alertness (self-reported alertness), functional alertness (cognitive interference), and product endorsement was moderated by social influence: participants experienced more subjective, physiological and functional alertness and stronger product endorsement when they consumed the product in the confirming social influence condition than when they consumed the product in the disconfirming social influence condition. These results suggest that social influence can alter subjective, physiological, and functional responses to a faux product, in this case transforming the effects of plain water. PMID:27875567

  16. High-content screening of natural products reveals novel nuclear export inhibitors.

    PubMed

    Cautain, Bastien; de Pedro, Nuria; Murillo Garzón, Virginia; Muñoz de Escalona, María; González Menéndez, Victor; Tormo, José R; Martin, Jesús; El Aouad, Noureddine; Reyes, Fernando; Asensio, Francisco; Genilloud, Olga; Vicente, Francisca; Link, Wolfgang

    2014-01-01

    Natural products are considered an extremely valuable source for the discovery of new drugs against diverse pathologies. As yet, we have only explored a fraction of the diversity of bioactive compounds, and opportunities for discovering new natural products leading to new drugs are huge. In the present study, U2nesRELOC, a previously established cell-based imaging assay, was employed to screen a collection of extracts of microbial origin for nuclear export inhibition activity. The fluorescent signal of untreated U2nesRELOC cells localizes predominantly to the cytoplasm. Upon treatment with the nuclear export inhibitor leptomycin B, the fluorescent-tagged reporter proteins appear as speckles in the nucleus. A proprietary collection of extracts from fungi, actinomycetes, and unicellular bacteria that covers an uncommonly broad chemical space was used to interrogate this nuclear export assay system. A two-step image-based analysis allowed us to identify 12 extracts with biological activities that are not associated with previously known active metabolites. The fractionation and structural elucidation of active compounds revealed several chemical structures with nuclear export inhibition activity. Here we show that substrates of the nuclear export receptor CRM1, such as Rev, FOXO3a and NF-κB, accumulate in the nucleus in the presence of the fungal metabolite MDN-0105 with an IC50 value of 3.4 µM. Many important processes in tumor formation and progression, as well as in many viral infections, critically depend on the nucleocytoplasmic trafficking of proteins and RNA molecules. Therefore, the disruption of nuclear export is emerging as a novel therapeutic approach with enormous clinical potential. Our work highlights the potential of applying high-throughput phenotypic imaging on natural product extracts to identify novel nuclear export inhibitors.

  17. Phenomenology of photon and dilepton production in relativistic nuclear collisions

    NASA Astrophysics Data System (ADS)

    Bratkovskaya, Elena

    2014-11-01

    We discuss the latest theoretical results on direct photon and dilepton production from relativistic heavy-ion collisions. While the dilepton spectra at low invariant mass show in-medium effects like collisional broadening of the vector meson spectral functions, the dilepton yield at high invariant masses (above 1.1 GeV) is dominated by QGP contributions for central heavy-ion collisions at relativistic energies. The present status of the photon v2 "puzzle" - a large elliptic flow v2 of the direct photons experimentally observed at RHIC and LHC energies - is also addressed. The role of hadronic and partonic sources for the photon spectra and v2 is considered as well as the possibility to subtract the QGP signal from the experimental observables.

  18. Structure Determination of Natural Products by Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Du.

    High-field NMR experiments were used to determine the full structures of six new natural products extracted from plants. These are: four saponins (PT-2, P1, P2 and P3) from the plant Alphitonia zizyphoides found in Samoa; one sesquiterpene (DF-4) from Douglas fir and one diterpene derivative (E-2) from a Chinese medicinal herb. By concerted use of various 1D and 2D NMR techniques, the structures of the above compounds were established and complete resonance assignments were achieved. The 2D INADEQUATE technique coupled with a computerized spectral analysis was extensively used. When carried out on concentrations as low as 60 mg of sample, this technique provided absolute confirmation of the assignments for 35 of the possible 53 C-C bonds for PT-2. On 30 mg of sample of E-21, it revealed 22 of 28 possible C-C bonds.

  19. Identification of transformation products during advanced oxidation of diatrizoate: Effect of water matrix and oxidation process.

    PubMed

    Azerrad, Sara P; Lütke Eversloh, Christian; Gilboa, Maayan; Schulz, Manoj; Ternes, Thomas; Dosoretz, Carlos G

    2016-10-15

    Removal of micropollutants from reverse osmosis (RO) brines of wastewater desalination by oxidation processes is influenced by the scavenging capacity of brines components, resulting in the accumulation of transformation products (TPs) rather than complete mineralization. In this work the iodinated contrast media diatrizoate (DTZ) was used as model compound due to its relative resistance to oxidation. Identification of TPs was performed in ultrapure water (UPW) and RO brines applying nonthermal plasma (NTP) and UVA-TiO2 as oxidation techniques. The influence of main RO brines components in the formation and accumulation of TPs, such as chloride, bicarbonate alkalinity and humic acid, was also studied during UVA-TiO2. DTZ oxidation pattern in UPW resulted similar in both UVA-TiO2 and NTP achieving 66 and 61% transformation, respectively. However, DTZ transformation in RO brines was markedly lower in UVA-TiO2 (9%) than in NTP (27%). These differences can be attributed to the synergic effect of RO brines components during NTP. Moreover, reactive species other than hydroxyl radical contributed to DTZ transformation, i.e., direct photolysis in UVA-TiO2 and direct photolysis + O3 in NTP accounted for 16 and 23%, respectively. DTZ transformation led to iodide formation in both oxidation techniques but it further oxidized to iodate by ozone in NTP. In total 14 transformation products were identified in UPW of which 3 were present only in UVA-TiO2 and 2 were present exclusively in NTP; 5 of the 14 TPs were absent in RO brines. Five of them were new and were denoted as TP-474A/B, TP-522, TP-586, TP-602, TP-628. TP-522 (mono-chlorinated) was elucidated only in presence of high chloride titer-synthetic water matrix in NTP, most probably formed by active chlorine species generated in situ. TPs accumulation in RO brines was markedly different in comparison to UPW. This denotes the influence of RO brines components in the formation of reactive species that could further attack

  20. Transformation products of submicron-sized aluminum-substituted magnetite: Color and reductant solubility

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.; Lauer, H. V., Jr.

    1991-01-01

    Magnetite, when present as fine particles, is soluble in acid ammonium oxalate (pH equals 3). However, the commonly used extractant for free iron oxides (i.e., citrate dithionite-bicarbonate (CDB) is not very effective in dissolving magnetite in soils and geologic materials. Upon oxidation, magnetite transforms to maghemite; at elevated temperatures, maghemite inverts to hematite. This transformation causes a change in color from black to red and may affect the reductant solubility as well. The objectives here were to examine the color and reflectance spectral characteristics of products during the transformation of magnetite to maghemite to hematite and to study the effect of Al-substitution in magnetite on the above process. Reductant solubility of Al-substituted magnetite, maghemite, and hematite was also studied. In summary, the transformation of magnetite to maghemite was accompanied by a change in color from black to red because of the oxidation of Fe2(+) to Fe3(+). The phase change maghemite to hematite had a relatively minor effect on the color and the reflectance spectra.

  1. Oxidative transformation of levofloxacin by δ-MnO2: products, pathways and toxicity assessment.

    PubMed

    Li, Yuan; Wei, Dongbin; Du, Yuguo

    2015-01-01

    The characteristics of the oxidative transformation of the antibiotic levofloxacin (abbreviated as LEV) by manganese oxide were investigated. Up to 91% of LEV were removed with an equivalent of 200 units (abbreviated as equiv) of manganese oxide within a 35-day treatment period. A total of ten transformation products were identified, and five of them were newly reported. A tentative transformation pathway of LEV in the manganese oxide system involving oxidation and dealkylation was proposed. In addition, the variation in the genotoxicity and antibacterial activity along with the treatment by manganese oxide were traced using a SOS/umu assay and Escherichia coli growth inhibition assay, respectively. The results indicated that the genotoxicity significantly decreased in response to treatment with manganese oxide, while the antibacterial activity was not markedly affected until 160-equiv of δ-MnO2 were added. This study suggests that the oxidative degradation of LEV by manganese oxide can play an important role in the natural attenuation of LEV in sediment or soil matrices. The transformation reaction may be further optimized for removing quinolone antibiotics from wastewater or other environmental matrices to reduce the potential risk.

  2. Assessement of Codes and Standards Applicable to a Hydrogen Production Plant Coupled to a Nuclear Reactor

    SciTech Connect

    M. J. Russell

    2006-06-01

    This is an assessment of codes and standards applicable to a hydrogen production plant to be coupled to a nuclear reactor. The result of the assessment is a list of codes and standards that are expected to be applicable to the plant during its design and construction.

  3. Supplying the nuclear arsenal: Production reactor technology, management, and policy, 1942--1992

    SciTech Connect

    Carlisle, R.P.; Zenzen, J.M.

    1994-01-01

    This book focuses on the lineage of America`s production reactors, those three at Hanford and their descendants, the reactors behind America`s nuclear weapons. The work will take only occasional sideways glances at the collateral lines of descent, the reactor cousins designed for experimental purposes, ship propulsion, and electric power generation. Over the decades from 1942 through 1992, fourteen American production reactors made enough plutonium to fuel a formidable arsenal of more than twenty thousand weapons. In the last years of that period, planners, nuclear engineers, and managers struggled over designs for the next generation of production reactors. The story of fourteen individual machines and of the planning effort to replace them might appear relatively narrow. Yet these machines lay at the heart of the nation`s nuclear weapons complex. The story of these machines is the story of arming the winning weapon, supplying the nuclear arms race. This book is intended to capture the history of the first fourteen production reactors, and associated design work, in the face of the end of the Cold War.

  4. Production of iodine-124 and its applications in nuclear medicine.

    PubMed

    Braghirolli, Ana Maria S; Waissmann, William; da Silva, Juliana Batista; dos Santos, Gonçalo R

    2014-08-01

    Until recently, iodine-124 was not considered to be an attractive isotope for medical applications owing to its complex radioactive decay scheme, which includes several high-energy gamma rays. However, its unique chemical properties, and convenient half-life of 4.2 days indicated it would be only a matter of time for its frequent application to become a reality. The development of new medical imaging techniques, especially improvements in the technology of positron emission tomography (PET), such as the development of new detectors and signal processing electronics, has opened up new prospects for its application. With the increasing use of PET in medical oncology, pharmacokinetics, and drug metabolism, (124)I-labeled radiopharmaceuticals are now becoming one of the most useful tools for PET imaging, and owing to the convenient half-life of I-124, they can be used in PET scanners far away from the radionuclide production site. Thus far, the limited availability of this radionuclide has been an impediment to its wider application in clinical use. For example, sodium [(124)I]-iodide is potentially useful for diagnosis and dosimetry in thyroid disease and [(124)I]-M-iodobenzylguanidine ([(124)I]-MIBG) has enormous potential for use in cardiovascular imaging, diagnosis, and dosimetry of malignant diseases such as neuroblastoma, paraganglioma, pheochromocytoma, and carcinoids. However, despite that potential, both are still not widely used. This is a typical scenario of a rising new star among the new PET tracers.

  5. Effective-energy budget in multiparticle production in nuclear collisions

    NASA Astrophysics Data System (ADS)

    Mishra, Aditya Nath; Sahoo, Raghunath; Sarkisyan, Edward K. G.; Sakharov, Alexander S.

    2014-11-01

    The dependencies of charged particle pseudorapidity density and transverse energy pseudorapidity density at midrapidity on the collision energy and on the number of nucleon participants, or centrality, measured in nucleus-nucleus collisions are studied in the energy range spanning a few GeV to a few TeV per nucleon. The approach in which the multiparticle production is driven by the dissipating effective energy of participants is introduced. This approach is based on the earlier proposed consideration, combining the constituent quark picture together with Landau relativistic hydrodynamics shown to interrelate the measurements from different types of collisions. Within this picture, the dependence on the number of participants in heavy-ion collisions are found to be well described in terms of the effective energy defined as a centrality-dependent fraction of the collision energy. For both variables under study, the effective-energy approach reveals a similarity in the energy dependence obtained for the most central collisions and centrality data in the entire available energy range. Predictions are made for the investigated dependencies for the forthcoming higher-energy measurements in heavy-ion collisions at the LHC.

  6. ^26Al Beam Production and its Application to Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Richard, Brad

    2012-10-01

    Presumably produced during the supernova stage of stellar evolution, ^26Al offers unique opportunities to better understand the processes of nucleosynthesis occurring in pre-SN phases of stellar evolution and within the Galactic disk. When decaying to ^26Mg, ^26Al emits a unique 1.8MeV gamma ray, detectable by satellite telescopes. The production and destruction pathways of ^26Al is a key portion of understanding the on-going stellar nucleosynthesis. In order to measure the cross-section of ^26Al(n, p) ^26Mg at the astrophysical relevant energies, an indirect method, called the Trojan Horse Method(THM), is utilized. The THM allows the study of neutron induced reactions at astrophysical energies via the d break-up. This method requires the three-body cross section for the ^26Al(d, p ^26Mg)H reaction to be measured at a beam of 60 MeV. This requires that the ^26Al secondary beam is produced by the MARS facility at Cyclotron institute of Texas A&M University from a primary ^26Mg beam (E 16MeV/u) impinging on a H2 target. ^26Al beam was then degraded to 2.25MeV/u energy by means of a Beryllium foil. The obtained results will be shown and discussed in details together with the features of the obtained intense and pure beam.

  7. Photodegradation kinetics and transformation products of ketoprofen, diclofenac and atenolol in pure water and treated wastewater.

    PubMed

    Salgado, R; Pereira, V J; Carvalho, G; Soeiro, R; Gaffney, V; Almeida, C; Vale Cardoso, V; Ferreira, E; Benoliel, M J; Ternes, T A; Oehmen, A; Reis, M A M; Noronha, J P

    2013-01-15

    Pharmaceutical compounds such as ketoprofen, diclofenac and atenolol are frequently detected at relatively high concentrations in secondary effluents from wastewater treatment plants. Therefore, it is important to assess their transformation kinetics and intermediates in subsequent disinfection processes, such as direct ultraviolet (UV) irradiation. The photodegradation kinetics of these compounds using a medium pressure (MP) lamp was assessed in pure water, as well as in filtered and unfiltered treated wastewater. Ketoprofen had the highest time- and fluence-based rate constants in all experiments, whereas atenolol had the lowest values, which is consistent with the corresponding decadic molar absorption coefficient and quantum yield. The fluence-based rate constants of all compounds were evaluated in filtered and unfiltered wastewater matrices as well as in pure water. Furthermore, transformation products of ketoprofen, diclofenac and atenolol were identified and monitored throughout the irradiation experiments, and photodegradation pathways were proposed for each compound. This enabled the identification of persistent transformation products, which are potentially discharged from WWTP disinfection works employing UV photolysis.

  8. Interactions of Bacillus mojavensis and Fusarium verticillioides with a benzoxazolinone (BOA) and its transformation product, APO.

    PubMed

    Bacon, Charles W; Hinton, Dorothy M; Glenn, Anthony E; Macías, Francisco A; Marin, David

    2007-10-01

    The benzoxazolinones, specifically benzoxazolin-2(3H)-one (BOA), are important transformation products of the benzoxazinones that can serve as allelochemicals providing resistance to maize from pathogenic bacteria, fungi, and insects. However, maize pathogens such as Fusarium verticillioides are capable of detoxifying the benzoxazolinones to 2-aminophenol (AP), which is converted to the less toxic N-(2-hydroxyphenyl) malonamic acid (HPMA) and 2-acetamidophenol (HPAA). As biocontrol strategies that utilize a species of endophytic bacterium, Bacillus mojavensis, are considered efficacious as a control of this Fusarium species, the in vitro transformation and effects of BOA on growth of this bacterium was examined relative to its interaction with strains of F. verticillioides. The results showed that a red pigment was produced and accumulated only on BOA-amended media when wild type and the progeny of genetic crosses of F. verticillioides are cultured in the presence of the bacterium. The pigment was identified as 2-amino-3H-phenoxazin-3-one (APO), which is a stable product. The results indicate that the bacterium interacts with the fungus preventing the usual transformation of AP to the nontoxic HPMA, resulting in the accumulation of higher amounts of APO than when the fungus is cultured alone. APO is highly toxic to F. verticillioides and other organisms. Thus, an enhanced biocontrol is suggested by this in vitro study.

  9. Oxidative Transformation of Demethoxy- and Bisdemethoxycurcumin: Products, Mechanism of Formation, and Poisoning of Human Topoisomerase IIα.

    PubMed

    Gordon, Odaine N; Luis, Paula B; Ashley, Rachel E; Osheroff, Neil; Schneider, Claus

    2015-05-18

    Extracts from the rhizome of the turmeric plant are widely consumed as anti-inflammatory dietary supplements. Turmeric extract contains the three curcuminoids, curcumin (≈80% relative abundance), demethoxycurcumin (DMC; ≈15%), and bisdemethoxycurcumin (BDMC; ≈5%). A distinct feature of pure curcumin is its instability at physiological pH, resulting in rapid autoxidation to a bicyclopentadione within 10-15 min. Here, we describe oxidative transformation of turmeric extract, DMC, and BDMC and the identification of their oxidation products using LC-MS and NMR analyses. DMC autoxidized over the course of 24 h to the expected bicyclopentadione diastereomers. BDMC was resistant to autoxidation, and oxidative transformation required catalysis by horseradish peroxidase and H2O2 or potassium ferricyanide. The product of BDMC oxidation was a stable spiroepoxide that was equivalent to a reaction intermediate in the autoxidation of curcumin. The ability of DMC and BDMC to poison recombinant human topoisomerase IIα was significantly increased in the presence of potassium ferricyanide, indicating that oxidative transformation was required to achieve full DNA cleavage activity. DMC and BDMC are less prone to autoxidation than curcumin and contribute to the enhanced stability of turmeric extract at physiological pH. Their oxidative metabolites may contribute to the biological effects of turmeric extract.

  10. Continuous wavelet transform analysis and modal location analysis acoustic emission source location for nuclear piping crack growth monitoring

    SciTech Connect

    Mohd, Shukri; Holford, Karen M.; Pullin, Rhys

    2014-02-12

    Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed 'Wavelet Transform analysis and Modal Location (WTML)' based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup using H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) techniqueand DeltaTlocation. Theresults of the study show that the WTML method produces more accurate location resultscompared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure.

  11. Screening and human health risk assessment of pharmaceuticals and their transformation products in Dutch surface waters and drinking water.

    PubMed

    de Jongh, Cindy M; Kooij, Pascal J F; de Voogt, Pim; ter Laak, Thomas L

    2012-06-15

    Numerous studies describe the presence of pharmaceuticals in the water cycle, while their transformation products are usually not included. In the current study 17 common pharmaceuticals and 9 transformation products were monitored in the Dutch waters, including surface waters, pre-treated surface waters, river bank filtrates, two groundwater samples affected by surface water and drinking waters. In these samples, 12 pharmaceuticals and 7 transformation products were present. Concentrations were generally highest in surface waters, intermediate in treated surface waters and river bank filtrates and lowest or not detected in produced drinking water. However, the concentrations of phenazone and its environmental transformation product AMPH were significantly higher in river bank filtrates, which is likely due to historical contamination. Fairly constant ratios were observed between concentrations of transformation products and parent pharmaceuticals. This might enable prediction of concentrations of transformation products from concentrations of parent pharmaceuticals. The toxicological relevance of the observed pharmaceuticals and transformation products was assessed by deriving (i) a substance specific provisional guideline value (pGLV) and (ii) a group pGLV for groups of related compounds were under the assumption of additivity of effects within each group. A substantial margin exists between the maximum summed concentrations of these compounds present in different water types and the derived (group) pGLVs. Based on the results of this limited screening campaign no adverse health effects of the studied compounds are expected in (sources of) drinking water in the Netherlands. The presence of transformation products with similar pharmacological activities and concentration levels as their parents illustrates the relevance of monitoring transformation products, and including these in risk assessment. More thorough monitoring yielding information on statistical

  12. Production and transformation of mixed-valent nanoparticles generated by Fe(0) electrocoagulation.

    PubMed

    Dubrawski, Kristian L; van Genuchten, Case M; Delaire, Caroline; Amrose, Susan E; Gadgil, Ashok J; Mohseni, Madjid

    2015-02-17

    Mixed-valent iron nanoparticles (NP) generated electrochemically by Fe(0) electrocoagulation (EC) show promise for on-demand industrial and drinking water treatment in engineered systems. This work applies multiple characterization techniques (in situ Raman spectroscopy, XRD, SEM, and cryo-TEM) to investigate the formation and persistence of magnetite and green rust (GR) NP phases produced via the Fe(0) EC process. Current density and background electrolyte composition were examined in a controlled anaerobic system to determine the initial Fe phases generated as well as transformation products with aging. Fe phases were characterized in an aerobic EC system with both simple model electrolytes and real groundwater to investigate the formation and aging of Fe phases produced in a system representing treatment of arsenic-contaminated ground waters in South Asia. Two central pathways for magnetite production via Fe(0) EC were identified: (i) as a primary product (formation within seconds when DO absent, no intermediates detected) and (ii) as a transformation product of GR (from minutes to days depending on pH, electrolyte composition, and aging conditions). This study provides a better understanding of the formation conditions of magnetite, GR, and ferric (oxyhydr)oxides in Fe EC, which is essential for process optimization for varying source waters.

  13. Retinoic acid modulates rat Ito cell proliferation, collagen, and transforming growth factor beta production.

    PubMed Central

    Davis, B H; Kramer, R T; Davidson, N O

    1990-01-01

    Recent studies suggest that vitamin A plays an inhibitory role with respect to "activation" of the hepatic Ito cell, a likely effector of hepatic fibrogenesis. Ito cell "activation" during fibrogenesis is characterized by a decrease in intracellular vitamin A and an increase in cellular proliferation and collagen production. To explore the hypothesis that retinoids have the capacity to diminish Ito cell activation, cultured Ito cells were exposed to retinoic acid and its effects assessed on three key features: cell proliferation, collagen protein production and mRNA abundance, and transforming growth factor beta protein production. Retinoic acid was 100-1,000X more potent than retinol with respect to inhibition of Ito cell proliferation. Interstitial collagen and transforming growth factor beta production were also reduced by 10(-6) M retinoic acid. The relative abundance of type I collagen mRNA however, was not significantly altered. By contrast, retinoic acid administration to rats caused a marked reduction in the abundance of type I collagen mRNA in both total hepatic and purified Ito cell RNA. The relative abundance of rat hepatic fibronectin or apolipoprotein E mRNA was not significantly altered. These studies demonstrate that retinoic acid can differentially modulate several key features of hepatic fibrogenesis in vitro and in vivo. Images PMID:2254460

  14. Photodegradation of the novel fungicide fluopyram in aqueous solution: kinetics, transformation products, and toxicity evolvement.

    PubMed

    Dong, Bizhang; Hu, Jiye

    2016-10-01

    The aqueous photodegradation of fluopyram was investigated under UV light (λ ≥ 200 nm) and simulated sunlight irradiation (λ ≥ 290 nm). The effect of solution pH, fulvic acids (FA), nitrate (NO3 (-)), Fe (III) ions, and titanium dioxide (TiO2) on direct photolysis of fluopyram was explored. The results showed that fluopyram photodegradation was faster in neutral solution than that in acidic and alkaline solutions. The presence of FA, NO3 (-), Fe (III), and TiO2 slightly affected the photodegradation of fluopyram under UV irradiation, whereas the photodegradation rates of fluopyram with 5 mg L(-1) Fe (III) and 500 mg L(-1) TiO2 were about 7-fold and 13-fold faster than that without Fe (III) and TiO2 under simulated sunlight irradiation, respectively. Three typical products for direct photolysis of fluopyram have been isolated and characterized by liquid chromatography tandem mass spectrometry. These products resulted from the intramolecular elimination of HCl, hydroxyl-substitution, and hydrogen extraction. Based on the identified transformation products and evolution profile, a plausible degradation pathway for the direct photolysis of fluopyram in aqueous solution was proposed. In addition, acute toxicity assays using the Vibrio fischeri bacteria test indicated that the transformation products were more toxic than the parent compound.

  15. Development of analytical Fourier transform nuclear magnetic resonance spectroscopy for sensitivity enhancement and mixture analyses

    SciTech Connect

    Ha, Steven Tung-Kuen.

    1989-01-01

    FT-NMR has been explored with regard to its ability to analyze mixtures. The recycled-flow NMR method, which permits premagnetized nuclei to flow into the detector before acquisition, allows substantial sensitivity enhancement, especially for those nuclei with inefficient relaxation mechanisms. The enhancement factor of flow NMR over static NMR is between 3.5-5 for the slowly relaxing carbon nuclei. Similar enhancements have been observed in 1D spin-echo and 2D J-resolved experiments. A mathematical discussion of the potential enhancement in recycled-flow NMR indicates that this enhancement could be as large as 20. In addition, flow NMR also provides accurate quantitative {sup 13}C data in substantially less time. These dual advantages of recycled-flow NMR have been applied to analyze two mixtures and to determine the MW{sub n} of several polyethylene glycols. An on-line continuous-flow high performance liquid chromatography (HPLC)/{sup 1}H NMR system has been developed on a 400 MHz FT-NMR spectrometer. The detection limit of this system is estimated to be 30 {mu}g, using alanine and caffeine as test samples. For practical HPLC/NMR analyses, a 200 {mu}g quantity of material may be required. The eluent used in reversed-phase (RP)-HPLC, which interfaces with the proton signals of the eluates, is suppressed by the binomial and WATR (Water Attenuation by T{sub 2} Relaxation) pulse methods. RP-HPLC/{sup 1}H NMR is applied to the separation and identification of antimycin A, a class of antibiotics used in fishery management, and its degradation products, antimycin lactones. A method based on the long range J-resolved (LRJR) NMR experiment is developed to analyze mixtures. LRJR is used to select those carbons that are modulated due to the long range {sub 1}H-{sup 13}C coupling to a specific proton(s).

  16. Post transcriptional regulation of chloroplast gene expression by nuclear encoded gene products

    SciTech Connect

    Kuchka, M.R.

    1992-01-01

    The following is a review of research accomplished in the first two years of funding for the above mentioned project. The work performed is a molecular characterization of nuclear mutants of Chlamydomonas reinhardtii which are deficient in different stages in the post-transcriptional expression of a single chloroplast encoded polypeptide, the D2 protein of Photosystem II. Our long-term goals are to understand the molecular mechanisms by which nuclear gene products affect the expression of chloroplast genes. Specifically, we which to understand how specific nuclear gene products affect the turnover rate of the D2 encoding mRNA (psbD), how other nuclear encoded factors work to promote the translation of psbD mRNA and/or stabilize the D2 protein, and what the role of the D2 protein itself is in Photosystem II assembly and in the control of expression of other chloroplast genes. This progress report will be organized into four major sections concerning (I) The characterization of nuclear mutants affected in D2 translation/turnover, (II) The study of trans-acting factors which associate with the 5{prime} end of the psbD mRNA, (III) In vitro mutagenesis of the psbD gene, and (IV) Additional studies.

  17. Scientific production and technological production: transforming a scientific paper into patent applications.

    PubMed

    Dias, Cleber Gustavo; Almeida, Roberto Barbosa de

    2013-01-01

    Brazil has been presenting in the last years a scientific production well-recognized in the international scenario, in several areas of knowledge, according to the impact of their publications in important events and especially in indexed journals of wide circulation. On the other hand, the country does not seem to be in the same direction regarding to the technological production and wealth creation from the established scientific development, and particularly from the applied research. The present paper covers such issue and discloses the main similarities and differences between a scientific paper and a patent application, in order to contribute to a better understanding of both types of documents and help the researchers to chose and select the results with technological potential, decide what is appropriated for industrial protection, as well as foster new business opportunities for each technology which has been created.

  18. Scientific production and technological production: transforming a scientific paper into patent applications

    PubMed Central

    Dias, Cleber Gustavo; de Almeida, Roberto Barbosa

    2013-01-01

    ABSTRACT Brazil has been presenting in the last years a scientific production well-recognized in the international scenario, in several areas of knowledge, according to the impact of their publications in important events and especially in indexed journals of wide circulation. On the other hand, the country does not seem to be in the same direction regarding to the technological production and wealth creation from the established scientific development, and particularly from the applied research. The present paper covers such issue and discloses the main similarities and differences between a scientific paper and a patent application, in order to contribute to a better understanding of both types of documents and help the researchers to chose and select the results with technological potential, decide what is appropriated for industrial protection, as well as foster new business opportunities for each technology which has been created. PMID:23579737

  19. Refurbishing of a Freeze Drying Machine, used in Nuclear Medicine for Radiopharmaceuticals Production

    NASA Astrophysics Data System (ADS)

    Gaytán-Gallardo, E.; Desales-Galeana, G.

    2006-09-01

    The refurbishing of a freeze drying machine used in the radiopharmaceuticals production, applied in nuclear medicine in the Radioactive Materials Department of the Nuclear Research National Institute in México (ININ in Spanish), is presented. The freeze drying machine was acquired in the 80's decade and some components started having problems. Then it was necessary to refurbish this equipment by changing old cam-type temperature controllers and outdated recording devices, developing a sophisticated software system that substitutes those devices. The system is composed by a freeze drying machine by Hull, AC output modules for improved temperature control, a commercial data acquisition card, and the software system.

  20. Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays

    NASA Astrophysics Data System (ADS)

    Yusibani, Elin; Kamil, Insan; Suud, Zaki

    2010-06-01

    Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

  1. Reactor production and processing of radioisotopes for therapeutic applications in nuclear medicine

    SciTech Connect

    Knapp, F.F. Jr.; Mirzadeh, S.; Beets, A.L.

    1995-02-01

    Nuclear reactors continue to play an important role in providing radioisotopes for nuclear medicine. Many reactor-produced radioisotopes are ``neutron rich`` and decay by beta-emission and are thus of interest for therapeutic applications. This talk discusses the production and processing of a variety of reactor-produced radioisotopes of current interest, including those produced by the single neutron capture process, double neutron capture and those available from beta-decay of reactorproduced radioisotopes. Generators prepared from reactorproduced radioisotopes are of particular interest since repeated elution inexpensively provides many patient doses. The development of the alumina-based W-188/Re-188 generator system is discussed in detail.

  2. Radioactivity inspection of Taiwan for food products imported from Japan after the Fukushima nuclear accident.

    PubMed

    Chiu, Huang-Sheng; Huang, Ping-Ji; Wuu, Jyi-Lan; Wang, Jeng-Jong

    2013-11-01

    The 3-11 Earthquake occurred in Japan last year had greatly damaged the lives and properties and also caused the core meltdown accident in the Fukushima nuclear power plant followed by the leakage of radioactive materials into biosphere. In order to protect against the detriment of radiation from foods which were imported from Japan, the Institute of Nuclear Energy Research (INER) in Taiwan started to conduct radioactivity inspection of food products from Japan after the accident. A total of about 20,000 samples had been tested from March 24 2011 to March 31 2012.

  3. Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays

    SciTech Connect

    Yusibani, Elin; Kamil, Insan; Suud, Zaki

    2010-06-22

    Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

  4. γ production as a probe for early state dynamics in high energy nuclear collisions at RHIC

    DOE PAGES

    Liu, Yunpeng; Chen, Baoyi; Xu, Nu; ...

    2011-02-01

    γ production in heavy ion collisions at RHIC energy is investigated. While the transverse momentum spectra of the ground state γ(1s) are controlled by the initial state Cronin effect, the excited bb⁻ states are characterized by the competition between the cold and hot nuclear matter effects and sensitive to the dissociation temperatures determined by the heavy quark potential. We emphasize that it is necessary to measure the excited heavy quark states in order to extract the early stage information in high energy nuclear collisions at RHIC.

  5. Measurements of extinct fission products in nuclear bomb debris: Determination of the yield of the Trinity nuclear test 70 y later.

    PubMed

    Hanson, Susan K; Pollington, Anthony D; Waidmann, Christopher R; Kinman, William S; Wende, Allison M; Miller, Jeffrey L; Berger, Jennifer A; Oldham, Warren J; Selby, Hugh D

    2016-07-19

    This paper describes an approach to measuring extinct fission products that would allow for the characterization of a nuclear test at any time. The isotopic composition of molybdenum in five samples of glassy debris from the 1945 Trinity nuclear test has been measured. Nonnatural molybdenum isotopic compositions were observed, reflecting an input from the decay of the short-lived fission products (95)Zr and (97)Zr. By measuring both the perturbation of the (95)Mo/(96)Mo and (97)Mo/(96)Mo isotopic ratios and the total amount of molybdenum in the Trinity nuclear debris samples, it is possible to calculate the original concentrations of the (95)Zr and (97)Zr isotopes formed in the nuclear detonation. Together with a determination of the amount of plutonium in the debris, these measurements of extinct fission products allow for new estimates of the efficiency and yield of the historic Trinity test.

  6. Measurements of extinct fission products in nuclear bomb debris: Determination of the yield of the Trinity nuclear test 70 y later

    PubMed Central

    Hanson, Susan K.; Pollington, Anthony D.; Waidmann, Christopher R.; Kinman, William S.; Wende, Allison M.; Miller, Jeffrey L.; Berger, Jennifer A.; Oldham, Warren J.; Selby, Hugh D.

    2016-01-01

    This paper describes an approach to measuring extinct fission products that would allow for the characterization of a nuclear test at any time. The isotopic composition of molybdenum in five samples of glassy debris from the 1945 Trinity nuclear test has been measured. Nonnatural molybdenum isotopic compositions were observed, reflecting an input from the decay of the short-lived fission products 95Zr and 97Zr. By measuring both the perturbation of the 95Mo/96Mo and 97Mo/96Mo isotopic ratios and the total amount of molybdenum in the Trinity nuclear debris samples, it is possible to calculate the original concentrations of the 95Zr and 97Zr isotopes formed in the nuclear detonation. Together with a determination of the amount of plutonium in the debris, these measurements of extinct fission products allow for new estimates of the efficiency and yield of the historic Trinity test. PMID:27382169

  7. Measurements of extinct fission products in nuclear bomb debris: Determination of the yield of the Trinity nuclear test 70 y later

    DOE PAGES

    Hanson, Susan Kloek; Pollington, Anthony Douglas; Waidmann, Christopher Russell; ...

    2016-07-05

    This study describes an approach to measuring extinct fission products that would allow for the characterization of a nuclear test at any time. The isotopic composition of molybdenum in five samples of glassy debris from the 1945 Trinity nuclear test has been measured. Nonnatural molybdenum isotopic compositions were observed, reflecting an input from the decay of the short-lived fission products 95Zr and 97Zr. By measuring both the perturbation of the 95Mo/96Mo and 97Mo/96Mo isotopic ratios and the total amount of molybdenum in the Trinity nuclear debris samples, it is possible to calculate the original concentrations of the 95Zr and 97Zrmore » isotopes formed in the nuclear detonation. Together with a determination of the amount of plutonium in the debris, these measurements of extinct fission products allow for new estimates of the efficiency and yield of the historic Trinity test.« less

  8. Efficiency and cost advantages of an advanced-technology nuclear electrolytic hydrogen-energy production facility

    NASA Technical Reports Server (NTRS)

    Donakowski, T. D.; Escher, W. J. D.; Gregory, D. P.

    1977-01-01

    The concept of an advanced-technology (viz., 1985 technology) nuclear-electrolytic water electrolysis facility was assessed for hydrogen production cost and efficiency expectations. The facility integrates (1) a high-temperature gas-cooled nuclear reactor (HTGR) operating a binary work cycle, (2) direct-current (d-c) electricity generation via acyclic generators, and (3) high-current-density, high-pressure electrolyzers using a solid polymer electrolyte (SPE). All subsystems are close-coupled and optimally interfaced for hydrogen production alone (i.e., without separate production of electrical power). Pipeline-pressure hydrogen and oxygen are produced at 6900 kPa (1000 psi). We found that this advanced facility would produce hydrogen at costs that were approximately half those associated with contemporary-technology nuclear electrolysis: $5.36 versus $10.86/million Btu, respectively. The nuclear-heat-to-hydrogen-energy conversion efficiency for the advanced system was estimated as 43%, versus 25% for the contemporary system.

  9. Stereoselective Microbial Transformation of Triadimefon to Triadimenol in Soils: Varying Production Rates of Triadimenol Stereoisomers Could Impact Risk Assessment

    EPA Science Inventory

    The microbial transformation of triadimefon, an agricultural fungicide of the 1,2,4-triazole class, was followed over several months under aerobic conditions in 3 different soil types to observe rates and products of transformation as well as enantiomer fractions of parent and pr...

  10. Microbial Transformation of Triadimefon to Triadimenol in Soils: Selective Production Rates of Triadimenol Stereoisomers Affect Exposure and Risk

    EPA Science Inventory

    The microbial transformation of triadimefon, an agricultural fungicide of the 1,2,4-triazole class, was followed at a nominal concentration of 50 μg/mL over 4 months under aerobic conditions in three different soil types. Rates and products of transformation were measured, as wel...

  11. Indications of Transformation Products from Hydraulic Fracturing Additives in Shale Gas Wastewater

    NASA Astrophysics Data System (ADS)

    Elsner, Martin; Hoelzer, Kathrin; Sumner, Andrew J.; Karatum, Osman; Nelson, Robert K.; Drollette, Brian D.; O'Connor, Megan P.; D'Ambro, Emma; Getzinger, Gordon J.; Ferguson, P. Lee; Reddy, Christopher M.; Plata, Desiree L.

    2016-04-01

    Unconventional natural gas development (UNGD) generates large volumes of wastewater, whose detailed composition must be known for adequate risk assessment and treatment. In particular, there is a need to elucidate the structures of organic chemical additives, extracted geogenic compounds, and transformation products. This study investigated six Fayetteville Shale UNGD wastewater samples for their organic composition using purge-and-trap gas chromatography-mass spectrometry (P&T-GC-MS) in combination with liquid-liquid extraction with comprehensive two-dimensional gas chromatography-time of flight-mass spectrometry (GCxGC-TOF-MS). Following application of strict compound identification confidence criteria, we classified compounds according to their putative origin. Samples displayed distinct chemical distributions composed of typical geogenic substances (hydrocarbons), disclosed UNGD additives (e.g., hydrocarbons, phthalates, such as diisobutyl phthalate, and radical initiators, such as azobisisobutyronitrile), and undisclosed compounds (e.g., halogenated hydrocarbons, such as 2-bromohexane or 4-bromoheptane). Undisclosed chloromethyl alkanoates (chloromethyl propanoate, pentanoate, and octanoate) were identified as putative delayed acids (those that release acidic moieties only after hydrolytic cleavage, whose rate could potentially be controlled), suggesting they were deliberately introduced to react in the subsurface. Identification of halogenated methanes and acetones, in contrast, suggested they were formed as unintended by-products. Our study highlights the possibility that UNGD operations generate transformation products, knowledge of which is crucial for risk assessment and treatment strategies, and underscores the value of disclosing potential precursors that are injected into the subsurface.

  12. Degradation of caffeine and identification of the transformation products generated by ozonation.

    PubMed

    Rosal, Roberto; Rodríguez, Antonio; Perdigón-Melón, José Antonio; Petre, Alice; García-Calvo, Eloy; Gómez, María José; Agüera, Ana; Fernández-Alba, Amadeo R

    2009-02-01

    The ozonation of caffeine in water was performed at different pH values, including acidic conditions. Kinetic experiments were conducted by adding pulses of a concentrated caffeine solution to ozone saturated water. The results showed a rapid decrease of ozone concentration during the first 15s after injection, followed by a gradual decline at a much slower rate. The data were fitted to a second order kinetic model with rate constants increasing from 0.25 to 1.05 M(-1)s(-1) for pH in the 3-10 range. The initial ozone consumption per mol of ozonated caffeine was greater at high pH values, reflecting a higher ozone decomposition rate. The decomposition of ozone was positively affected by the concentration of caffeine, an effect that could be attributed to the presence of a reaction intermediate from the ozonation of caffeine that behaved as a strong promoter of ozone decomposition. A study of the transformation products identified by liquid chromatography in combination with time-of-flight mass spectrometry was carried out, which permitted a tentative degradation pathway to be proposed and several persistent by-products to be identified at both pH 3 and 8. Most transformation products were the result of the opening of the imidazole ring after breaking caffeine's N9C8 double bond.

  13. Separation Requirements for a Hydrogen Production Plant and High-Temperature Nuclear Reactor

    SciTech Connect

    Curtis Smith; Scott Beck; Bill Galyean

    2005-09-01

    This report provides the methods, models, and results of an evaluation for locating a hydrogen production facility near a nuclear power plant. In order to answer the risk-related questions for this combined nuclear and chemical facility, we utilized standard probabilistic safety assessment methodologies to answer three questions: what can happen, how likely is it, and what are the consequences? As part of answering these questions, we developed a model suitable to determine separation distances for hydrogen process structures and the nuclear plant structures. Our objective of the model-development and analysis is to answer key safety questions related to the placement of one or more hydrogen production plants in the vicinity of a high-temperature nuclear reactor. From a thermal-hydraulic standpoint we would like the two facilities to be quite close. However, safety and regulatory implications force the separation distance to be increased, perhaps substantially. Without answering these safety questions, the likelihood for obtaining a permit to construct and build such as facility in the U.S. would be questionable. The quantitative analysis performed for this report provides us with a scoping mechanism to determine key parameters related to the development of a nuclear-based hydrogen production facility. From our calculations, we estimate that when the separation distance is less than 100m, the core damage frequency is large enough (greater than 1E-6/yr) to become problematic in a risk-informed environment. However, a variety of design modifications, for example blast-deflection barriers, were explored to determine the impact of potential mitigating strategies. We found that these mitigating cases may significantly reduce risk and should be explored as the design for the hydrogen production facility evolves.

  14. Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy

    SciTech Connect

    Zhiwei Zhou

    2006-07-01

    Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are

  15. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect

    Forsberg, C.

    2012-07-01

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing

  16. The use of a hydrophobic resin as a product reservoir in steroid transformations.

    PubMed

    Saunders, R P; Hardman, R; Cheetham, P S

    1985-06-01

    Particles of the hydrophobic resin polydimethylsiloxane were found to preferentially accumulate steriods on the basis of their hydrophobicity. Thus, the resin selectively sorped the steroid products resulting from the transformation of diosgenin by Nocardia rhodochrous, with the result that higher yields of the later biotransformation product, 1-dehydrodiosgenone, and lower yields of the first product, diosgenone, were obtained than in the absence of resin. Furthermore, steroids accumulated by the resin were available for further biotransformation, so that a two-step reaction forming androstenes from a crude extract of furostanol glycosides (obtained from fenugreek seed) could be carried out. The first step involves deglycosylation and is catalyzed by Fusarium solani. In the presence of resin the water-insoluble diosgenin product becomes sorped to the resin and can be easily transferred to a second fermentation in which diosgenone, 1-dehydrodiosgenone, and androstenes were formed by Mycobacterium phlei. These compounds were completely accumulated by the resin at the end of the fermentation. This procedure is logistically more convenient than the conventional chemical process and illustrates the potential of biotechnological processes in which simultaneous reaction, product isolation, and product purification occur.

  17. Tensor Product Model Transformation Based Adaptive Integral-Sliding Mode Controller: Equivalent Control Method

    PubMed Central

    Zhao, Guoliang; Li, Hongxing

    2013-01-01

    This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model. PMID:24453897

  18. Tensor product model transformation based adaptive integral-sliding mode controller: equivalent control method.

    PubMed

    Zhao, Guoliang; Sun, Kaibiao; Li, Hongxing

    2013-01-01

    This paper proposes new methodologies for the design of adaptive integral-sliding mode control. A tensor product model transformation based adaptive integral-sliding mode control law with respect to uncertainties and perturbations is studied, while upper bounds on the perturbations and uncertainties are assumed to be unknown. The advantage of proposed controllers consists in having a dynamical adaptive control gain to establish a sliding mode right at the beginning of the process. Gain dynamics ensure a reasonable adaptive gain with respect to the uncertainties. Finally, efficacy of the proposed controller is verified by simulations on an uncertain nonlinear system model.

  19. Measuring nuclear transparency from exclusive vector meson production in lepton-nucleus scattering

    SciTech Connect

    Fang, G.Y.

    1994-04-01

    Preliminary results on the measurement of nuclear transparencies from exclusive {rho}{sup 0} meson production from E665 at Fermilab are reported. The data were collected on hydrogen, deuterium, carbon, calcium, and lead targets with a mean beam energy of 470 GeV. Increases in the transparencies are observed in both coherent and incoherent production channels as the virtuality of the photon increases, as expected of color transparency. Ideas of systematic studies of color transparency in exclusive vector meson production at CEBAF are discussed.

  20. Impact of circadian nuclear receptor REV-ERBα on midbrain dopamine production and mood regulation.

    PubMed

    Chung, Sooyoung; Lee, Eun Jeong; Yun, Seongsik; Choe, Han Kyoung; Park, Seong-Beom; Son, Hyo Jin; Kim, Kwang-Soo; Dluzen, Dean E; Lee, Inah; Hwang, Onyou; Son, Gi Hoon; Kim, Kyungjin

    2014-05-08

    The circadian nature of mood and its dysfunction in affective disorders is well recognized, but the underlying molecular mechanisms are still unclear. Here, we show that the circadian nuclear receptor REV-ERBα, which is associated with bipolar disorder, impacts midbrain dopamine production and mood-related behavior in mice. Genetic deletion of the Rev-erbα gene or pharmacological inhibition of REV-ERBα activity in the ventral midbrain induced mania-like behavior in association with a central hyperdopaminergic state. Also, REV-ERBα repressed tyrosine hydroxylase (TH) gene transcription via competition with nuclear receptor-related 1 protein (NURR1), another nuclear receptor crucial for dopaminergic neuronal function, thereby driving circadian TH expression through a target-dependent antagonistic mechanism. In conclusion, we identified a molecular connection between the circadian timing system and mood regulation, suggesting that REV-ERBα could be targeting in the treatment of circadian rhythm-related affective disorders.

  1. Nuclear Fission and Fission{minus}Product Spectroscopy: Second International Workshop. Proceedings

    SciTech Connect

    Fioni, G.; Faust, H.; Oberstedt, S.; Hambsch, F.

    1998-10-01

    These proceedings represent papers presented at the Second International Workshop on Nuclear Fission and Fission{minus}Product Spectroscopy held in Seyssins, France in April, 1998. The objective was to bring together the specialists in the field to overview the situation and to assess our present understanding of the fission process. The topics presented at the conference included nuclear waste management, incineration, neutron driven transmutation, leakage etc., radioactive beams, neutron{minus}rich nuclei, neutron{minus}induced and spontaneous fission, ternary fission phenomena, angular momentum, parity and time{minus}reversal phenomena, and nuclear fission at higher excitation energy. Modern spectroscopic tools for gamma spectroscopy as applied to fission were also discussed. There were 53 papers presented at the conference,out of which 3 have been abstracted for the Energy,Science and Technology database.(AIP)

  2. Preparation and identification of anti-transforming growth factor β1 U1 small nuclear RNA chimeric ribozyme in vitro

    PubMed Central

    Lin, Ju-Sheng; Song, Yu-Hu; Kong, Xin-Juan; Li, Bin; Liu, Nan-Zhi; Wu, Xiao-Li; Jin, You-Xin

    2003-01-01

    AIM: To study the preparation and cleavage activity of anti-transforming growth factor (TGF)β1 U1 small nuclear (sn) RNA chimeric hammerhead ribozymes in vitro. METHODS: TGFβ1 partial gene fragment was cloned into T-vector at the downstream of T7 promoter. 32p-labeled TGFβ1 partial transcripts as target RNA were transcribed in vitro and purified by denaturing polyacrylamide gel electrophoresis (PAGE). Anti-TGFβ1 ribozymes were designed by computer, then synthetic ribozyme fragments were cloned into the U1 ribozyme vector pZeoU1EcoSpe containing U1 snRNA promoter/enhancer and terminator. 32p-labeled U1 snRNA chimeric ribozyme transcripts were gel-purified, incubated with target-RNAs at different conditions and autoradiographed after running denaturing PAGE. RESULTS: Active U1snRNA chimeric ribozyme (U1Rz803) had the best cleavage activity at 50 °C; at 37 °C, it was active, Km = 34.48 nmol/L, Kcat = 0.14 min-1; while the point mutant ribozyme U1Rz803m had no cleavage activity, so these indicated the design of U1Rz803 was correct. CONCLUSION: U1Rz803 prepared in this study possessed the perfect specific catalytic cleavage activity. These results indicate U1 snRNA chimeric ribozyme U1Rz803 may suppress the expression of TGFβ1 in vivo, therefore it may provide a new avenue for the treatment of liver fibrosis in the future. PMID:12632521

  3. The Occurrence of Chlorothalonil, its Transformation Products, and Selected Other Pesticides in Texas and Oklahoma Streams, 2003-2004

    NASA Astrophysics Data System (ADS)

    Battaglin, W. A.; Kuivila, K. M.; Winton, K. T.; Meyer, M. T.

    2005-12-01

    The purpose of this study is to determine if the fungicide chlorothalonil (2,4,5,6-tetrachloro-isophthalonitrile) or three of its transformation products are transported to surface water after use on peanuts or other crops. Chlorothalonil is classified as a probable carcinogen, and the 4-hydroxy of chlorothalonil transformation product is more soluble, stable, and toxic than its parent compound. In 2003, 14 water samples were collected from three sites in Texas and two sites in Oklahoma. In 2004, six samples were collected from the two Oklahoma sites. Chlorothalonil was not detected in any sample. The 4-hydroxy of chlorothalonil transformation product was detected in three of the six samples collected in 2004, with a maximum concentration of 0.018 μg/L; the other two transformation products were not detected in any sample. In addtion, samples were analyzed for as many as 109 other pesticides and transformation products. Atrazine was detected in 13 of the 19 samples with a maximum concentration of 0.122 μg/L. Deethyatrazine was detected in 10 of the 19 samples with a maximum concentration of 0.04 μg/L. Metolachlor was detected in 8 of the 19 samples with a maximum concentration of 0.019 μg/L. Fifteen other pesticides or pesticide transformation products including 2,4-D, carbaryl, simazine, oryzalin, prometon, tebuthiuron were detected in four or fewer samples. In general, concentrations of pesticides were less than is commonly observed in Midwestern streams.

  4. Complete quality analysis of commercial surface-active products by Fourier-transform near infrared spectroscopy.

    PubMed

    Martínez-Aguilar, Juan Fco; Ibarra-Montaño, Emma L

    2007-10-15

    Using proper calibration data Fourier-transform near infrared spectroscopy is used for developing multivariate calibrations for different analytical determinations routinely used in the surfactants industry. Four products were studied: oleyl-cetyl alcohol polyethoxylated, cocamidopropyl betaine (CAPB), sodium lauryl sulfate (SLS) and nonylphenol polyethoxylated (NPEO). Calibrations for major as well as very low concentrated compounds were achieved and every model was validated through linearity, bias, accuracy and precision tests, showing good results and the viability of NIR spectroscopy as a full quality control method for this products. Duplicate and complete analysis on a single sample takes at most 3min, requiring neither sample preparation nor the use of reagents. The analytical reference procedures involved in this work represent the typical ones used in the industry and the NIR method shows good results in the analysis of components with weight concentrations less than 1%.

  5. 2,5,6,9,10-Pentabromocyclododecanols (PBCDOHs): a new class of HBCD transformation products.

    PubMed

    Heeb, Norbert V; Zindel, Daniel; Schweizer, W Bernd; Lienemann, Peter

    2012-07-01

    Pentabromocyclododecanols (PBCDOHs) are potential environmental transformation products of hexabromocyclododecanes (HBCDs). They are also potential stage one metabolites of biological HBCD transformations. Herein, we present analytical evidence that PBCDOHs are also constituents of technical HBCDs and flame-proofed polystyrenes (FP-PSs). PBCDOHs are possibly formed during the synthesis of technical HBCD, presumably during the bromination of cyclododecatrienes in aqueous isobutanol together with isobutoxypentabromocyclododecanes (iBPBCDs), which have been identified in these materials recently. Of the 64 stereoisomers possible, eight pairs of enantiomers, named α-, β-, γ-, δ-, ε-, ζ-, η-, and θ-PBCDOHs were separated with a combination of normal-, reversed- and chiral-phase LC. Crystal structure analysis revealed the stereochemistry of the α-PBCDOH pair of enantiomers, which was assigned to (1S,2S,5R,6S,9S,10R)-2,5,6,9,10-pentabromocyclododecanol and its enantiomer. Mass spectrometric data are in accordance with the expected isotope patterns. On a C(18)-RP-column, the polar PBCDOHs eluted before the HBCD and iBPBCD classes of compounds. PBCDOHs were also found in FP-PS materials. The stereoisomer patterns varied considerably in these materials like those of HBCDs and iBPBCDs. Expanded polystyrenes were rich in late-eluting stereoisomers, similar to technical HBCD mixtures. Extruded polystyrenes contained more of the polar, faster-eluting isomers. The presented chromatographic and analytical methods allow a stereoisomer-specific search for PBCDOHs in biota samples, which might have experienced metabolic HBCD transformation reactions. Besides this potential source, it has to be recognized that PBCDOHs are by-products in technical HBCDs and in flame-proofed polystyrenes. Therefore, it is likely that PBCDOHs and iBPBCDs are released to the environment together with HBCD-containing plastic materials.

  6. Transformation products and reaction pathways of carbamazepine during photocatalytic and sonophotocatalytic treatment.

    PubMed

    Jelic, A; Michael, I; Achilleos, A; Hapeshi, E; Lambropoulou, D; Perez, S; Petrovic, M; Fatta-Kassinos, D; Barcelo, D

    2013-12-15

    This study examines the degradation of the antiepileptic carbamazepine (CBZ) by sonolysis, TiO2-based heterogeneous photocatalysis under UV-A and simulated solar irradiation, and by the combined use of UV-A and ultrasound irradiation (i.e. sonophotocatalysis) in demineralized water, ground water and effluent wastewater. The processes were compared with respect to substrate conversion rate and the extent of DOC reduction as a measure of mineralization. CBZ was degraded following a pseudo-first order kinetics. Sonophotocatalysis provided the highest rate of CBZ transformation over the time-course of the experiment while the degree of DOC removal in pure water was similar for all the studied treatments (around 40%), and always lower than CBZ conversion. This indicated that a considerable organic load remained in the treated solutions that could also be attributed to the presence of persistent oxidation products. UPLC-(+ESI)-QToF-MS was employed to determine major CBZ-related transformation products. Several recalcitrant hydroxy- and keto-derivatives of CBZ were tentatively identified. A Daphnia magna bioassay was used to evaluate the potential toxicity of the samples collected at different time points showing that the mixtures were highly toxic to D. magna.

  7. In vitro biodurability of the product of thermal transformation of cement-asbestos.

    PubMed

    Gualtieri, Alessandro F; Viani, Alberto; Sgarbi, Giulia; Lusvardi, Gigliola

    2012-02-29

    To safely recycle the product of the thermal transformation of cement-asbestos as secondary raw material, its toxicity potential should be assessed by in vitro biodurability tests. In this work, the acellular in vitro biodurability of the products of transformation of cement-asbestos at 1200 °C (named KRY·AS) was tested using both inorganic and organic simulated lung fluids at pH 4.5. The dissolution kinetics were followed using chemical, mineralogical and microstructural analyses. The total dissolution time estimated from the experiments with inorganic HCl diluted solution is one order of magnitude higher than that determined from the experiments with buffered Gamble solution (253 days vs. 20 days). The key parameter determining the difference in dissolution rate turns out to be the solidus/liquidus ratio which prompts a fast saturation of the solution with monosilicic acid. The calculated dissolution rate constants showed that the biodurability in vitro of KRY·AS is much lower with respect to that of standard chrysotile asbestos (total estimated dissolution time of 20 days vs. 298 days, respectively). This proves a low potential toxicity of this secondary raw material.

  8. Indications of Transformation Products from Hydraulic Fracturing Additives in Shale-Gas Wastewater.

    PubMed

    Hoelzer, Kathrin; Sumner, Andrew J; Karatum, Osman; Nelson, Robert K; Drollette, Brian D; O'Connor, Megan P; D'Ambro, Emma L; Getzinger, Gordon J; Ferguson, P Lee; Reddy, Christopher M; Elsner, Martin; Plata, Desiree L

    2016-08-02

    Unconventional natural gas development (UNGD) generates large volumes of wastewater, the detailed composition of which must be known for adequate risk assessment and treatment. In particular, transformation products of geogenic compounds and disclosed additives have not been described. This study investigated six Fayetteville Shale wastewater samples for organic composition using a suite of one- and two-dimensional gas chromatographic techniques to capture a broad distribution of chemical structures. Following the application of strict compound-identification-confidence criteria, we classified compounds according to their putative origin. Samples displayed distinct chemical distributions composed of typical geogenic substances (hydrocarbons and hopane biomarkers), disclosed UNGD additives (e.g., hydrocarbons, phthalates such as diisobutyl phthalate, and radical initiators such as azobis(isobutyronitrile)), and undisclosed compounds (e.g., halogenated hydrocarbons, such as 2-bromohexane or 4-bromoheptane). Undisclosed chloromethyl alkanoates (chloromethyl propanoate, pentanoate, and octanoate) were identified as potential delayed acids (i.e., those that release acidic moieties only after hydrolytic cleavage, the rate of which could be potentially controlled), suggesting they were deliberately introduced to react in the subsurface. In contrast, the identification of halogenated methanes and acetones suggested that those compounds were formed as unintended byproducts. Our study highlights the possibility that UNGD operations generate transformation products and underscores the value of disclosing additives injected into the subsurface.

  9. Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products.

    PubMed

    Kassotaki, Elissavet; Buttiglieri, Gianluigi; Ferrando-Climent, Laura; Rodriguez-Roda, Ignasi; Pijuan, Maite

    2016-05-01

    The occurrence of the widely-used antibiotic sulfamethoxazole (SFX) in wastewaters and surface waters has been reported in a large number of studies. However, the results obtained up-to-date have pointed out disparities in its removal. This manuscript explores the enhanced biodegradation potential of an enriched culture of Ammonia Oxidizing Bacteria (AOB) towards SFX. Several sets of batch tests were conducted to establish a link between SFX degradation and specific ammonia oxidation rate. The occurrence, degradation and generation of SFX and some of its transformation products (4-Nitro SFX, Desamino-SFX and N(4)-Acetyl-SFX) was also monitored. A clear link between the degradation of SFX and the nitrification rate was found, resulting in an increased SFX removal at higher specific ammonia oxidation rates. Moreover, experiments conducted under the presence of allylthiourea (ATU) did not present any removal of SFX, suggesting a connection between the AMO enzyme and SFX degradation. Long term experiments (up to 10 weeks) were also conducted adding two different concentrations (10 and 100 μg/L) of SFX in the influent of a partial nitrification sequencing batch reactor, resulting in up to 98% removal. Finally, the formation of transformation products during SFX degradation represented up to 32%, being 4-Nitro-SFX the most abundant.

  10. Aqueous chlorination of levofloxacin: kinetic and mechanistic study, transformation product identification and toxicity.

    PubMed

    El Najjar, Nasma Hamdi; Deborde, Marie; Journel, Romain; Vel Leitner, Nathalie Karpel

    2013-01-01

    The aim of this study was to gain further insight into the fate of levofloxacin during the chlorination process. First, a kinetic study was thus performed at pH 7.2, 20 °C and in the presence of an excess of total chlorine. A slower apparent removal of levofloxacin (k ~ 26 M(-1) s(-1)) was noted when sodium thiosulfate was used to stop the chlorination reaction compared to the degradation observed without using a reducing agent (k ~ 4400 M(-1) s(-1)). The formation of a chlorammonium intermediate which could be converted back into the parent compound through a reaction with thiosulfate was thus expected. This intermediate would result from an initial chlorine attack on the tertiary amine function of levofloxacin. Secondly, four chlorination transformation products were detected by LC/UV/MS analysis. The chemical structures of two of them are proposed. It was suggested that these compounds could come from a secondary reaction of the chlorammonium intermediate on levofloxacin. A reactional pathway is then proposed. Finally, a bioassay using Vibrio fisheri was carried out to study the toxicity pattern during levofloxacin chlorination. An increase in toxicity was observed during chlorination suggesting that the first transformations products formed were more toxic than the parent compound.

  11. Estimates for production of radioisotopes of medical interest at Extreme Light Infrastructure - Nuclear Physics facility

    NASA Astrophysics Data System (ADS)

    Luo, Wen; Bobeica, Mariana; Gheorghe, Ioana; Filipescu, Dan M.; Niculae, Dana; Balabanski, Dimiter L.

    2016-01-01

    We report Monte Carlo simulations of the production of radioisotopes of medical interest through photoneutron reactions using the high-brilliance γ-beam of the Extreme Light Infrastructure - Nuclear Physics (ELI-NP) facility. The specific activity for three benchmark radioisotopes, 99Mo/99Tc, 225Ra/225Ac and 186Re, was obtained as a function of target geometry, irradiation time and γ-beam energy. Optimized conditions for the generation of these radioisotopes of medical interest with the ELI-NP γ-beams were discussed. We estimated that a saturation specific activity of the order of 1-2 mCi/g can be achieved for thin targets with about one gram of mass considering a γ-beam flux of 10^{11} photons/s. Based on these results, we suggest that the ELI-NP facility can provide a unique possibility for the production of radioisotopes in sufficient quantities for nuclear medicine research.

  12. The economic and community impacts of closing Hanford's N Reactor and nuclear materials production facilities

    SciTech Connect

    Scott, M.J.; Belzer, D.B.; Nesse, R.J.; Schultz, R.W.; Stokowski, P.A.; Clark, D.C.

    1987-08-01

    This study discusses the negative economic impact on local cities and counties and the State of Washington of a permanent closure of nuclear materials production at the Hanford Site, located in the southeastern part of the state. The loss of nuclear materials production, the largest and most important of the five Department of Energy (DOE) missions at Hanford, could occur if Hanford's N Reactor is permanently closed and not replaced. The study provides estimates of statewide and local losses in jobs, income, and purchases from the private sector caused by such an event; it forecasts impacts on state and local government finances; and it describes certain local community and social impacts in the Tri-Cities (Richland, Kennewick, and Pasco) and surrounding communities. 33 refs., 8 figs., 22 tabs.

  13. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    SciTech Connect

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A. Ignatiev, V. V.; Subbotin, S. A. Tsibulskiy, V. F.

    2015-12-15

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  14. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    NASA Astrophysics Data System (ADS)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-12-01

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  15. Routine inspection effort required for verification of a nuclear material production cutoff convention

    SciTech Connect

    Dougherty, D.; Fainberg, A.; Sanborn, J.; Allentuck, J.; Sun, C.

    1996-11-01

    On 27 September 1993, President Clinton proposed {open_quotes}... a multilateral convention prohibiting the production of highly enriched uranium or plutonium for nuclear explosives purposes or outside of international safeguards.{close_quotes} The UN General Assembly subsequently adopted a resolution recommending negotiation of a non-discriminatory, multilateral, and internationally and effectively verifiable treaty (hereinafter referred to as {open_quotes}the Cutoff Convention{close_quotes}) banning the production of fissile material for nuclear weapons. The matter is now on the agenda of the Conference on Disarmament, although not yet under negotiation. This accord would, in effect, place all fissile material (defined as highly enriched uranium and plutonium) produced after entry into force (EIF) of the accord under international safeguards. {open_quotes}Production{close_quotes} would mean separation of the material in question from radioactive fission products, as in spent fuel reprocessing, or enrichment of uranium above the 20% level, which defines highly enriched uranium (HEU). Facilities where such production could occur would be safeguarded to verify that either such production is not occurring or that all material produced at these facilities is maintained under safeguards.

  16. Potassium inhibits dietary salt-induced transforming growth factor-beta production.

    PubMed

    Ying, Wei-Zhong; Aaron, Kristal; Wang, Pei-Xuan; Sanders, Paul W

    2009-11-01

    Human and animal studies demonstrate an untoward effect of excess dietary NaCl (salt) intake on cardiovascular function and life span. The endothelium in particular augments the production of transforming growth factor (TGF)-beta, a fibrogenic growth factor, in response to excess dietary salt intake. This study explored the initiating mechanism that regulates salt-induced endothelial cell production of TGF-beta. Male Sprague-Dawley rats were given diets containing different amounts of NaCl and potassium for 4 days. A bioassay for TGF-beta demonstrated increased (35.2%) amounts of active TGF-beta in the medium of aortic ring segments from rats on the high-salt diet compared with rats maintained on a 0.3% NaCl diet. Inhibition of the large-conductance, calcium-activated potassium channel inhibited dietary salt-induced vascular production of TGF-beta but did not affect production of TGF-beta by ring segments from rats on the low-salt diet. Immunohistochemical and Western analyses demonstrated the alpha subunit of the calcium-activated potassium channel in endothelial cells. Increasing medium [K+] inhibited production of dietary salt-induced vascular production levels of total and active TGF-beta but did not alter TGF-beta production by aortic rings from rats on the 0.3% NaCl diet. Increasing dietary potassium content decreased urinary active TGF-beta in animals receiving the high-salt diet but did not change urinary active TGF-beta in animals receiving the low-salt diet. The findings demonstrated an interesting interaction between the dietary intake of potassium and excess NaCl and further showed the fundamental role of the endothelial calcium-activated potassium channel in the vascular response to excess salt intake.

  17. Potassium Inhibits Dietary Salt-Induced Transforming Growth Factor-β Production

    PubMed Central

    Ying, Wei-Zhong; Aaron, Kristal; Wang, Pei-Xuan; Sanders, Paul W.

    2009-01-01

    Human and animal studies demonstrate an untoward effect of excess dietary NaCl (salt) intake on cardiovascular function and life span. The endothelium in particular augments the production of transforming growth factor (TGF)-β, a fibrogenic growth factor, in response to excess dietary salt intake. This study explored the initiating mechanism that regulates salt-induced endothelial cell production of TGF-β. Male Sprague-Dawley rats were given diets containing different amounts of NaCl and potassium for 4 days. A bioassay for TGF-β demonstrated increased (35.2%) amounts of active TGF-β in the medium of aortic ring segments from rats on the high-salt diet compared with rats maintained on a 0.3% NaCl diet. Inhibition of the large-conductance, calcium-activated potassium channel inhibited dietary salt-induced vascular production of TGF-β but did not affect production of TGF-β by ring segments from rats on the low-salt diet. Immunohistochemical and Western analyses demonstrated the α subunit of the calcium-activated potassium channel in endothelial cells. Increasing medium [K+] inhibited production of dietary salt-induced vascular production levels of total and active TGF-β but did not alter TGF-β production by aortic rings from rats on the 0.3% NaCl diet. Increasing dietary potassium content decreased urinary active TGF-β in animals receiving the high-salt diet but did not change urinary active TGF-β in animals receiving the low-salt diet. The findings demonstrated an interesting interaction between the dietary intake of potassium and excess NaCl and further showed the fundamental role of the endothelial calcium-activated potassium channel in the vascular response to excess salt intake. PMID:19738156

  18. High Temperature Electrolysis for Hydrogen Production from Nuclear Energy – TechnologySummary

    SciTech Connect

    J. E. O'Brien; C. M. Stoots; J. S. Herring; M. G. McKellar; E. A. Harvego; M. S. Sohal; K. G. Condie

    2010-02-01

    The Department of Energy, Office of Nuclear Energy, has requested that a Hydrogen Technology Down-Selection be performed to identify the hydrogen production technology that has the best potential for timely commercial demonstration and for ultimate deployment with the Next Generation Nuclear Plant (NGNP). An Independent Review Team has been assembled to execute the down-selection. This report has been prepared to provide the members of the Independent Review Team with detailed background information on the High Temperature Electrolysis (HTE) process, hardware, and state of the art. The Idaho National Laboratory has been serving as the lead lab for HTE research and development under the Nuclear Hydrogen Initiative. The INL HTE program has included small-scale experiments, detailed computational modeling, system modeling, and technology demonstration. Aspects of all of these activities are included in this report. In terms of technology demonstration, the INL successfully completed a 1000-hour test of the HTE Integrated Laboratory Scale (ILS) technology demonstration experiment during the fall of 2008. The HTE ILS achieved a hydrogen production rate in excess of 5.7 Nm3/hr, with a power consumption of 18 kW. This hydrogen production rate is far larger than has been demonstrated by any of the thermochemical or hybrid processes to date.

  19. Maximum reasonable radioxenon releases from medical isotope production facilities and their effect on monitoring nuclear explosions.

    PubMed

    Bowyer, Theodore W; Kephart, Rosara; Eslinger, Paul W; Friese, Judah I; Miley, Harry S; Saey, Paul R J

    2013-01-01

    Fission gases such as (133)Xe are used extensively for monitoring the world for signs of nuclear testing in systems such as the International Monitoring System (IMS). These gases are also produced by nuclear reactors and by fission production of (99)Mo for medical use. Recently, medical isotope production facilities have been identified as the major contributor to the background of radioactive xenon isotopes (radioxenon) in the atmosphere (Stocki et al., 2005; Saey, 2009). These releases pose a potential future problem for monitoring nuclear explosions if not addressed. As a starting point, a maximum acceptable daily xenon emission rate was calculated, that is both scientifically defendable as not adversely affecting the IMS, but also consistent with what is possible to achieve in an operational environment. This study concludes that an emission of 5 × 10(9) Bq/day from a medical isotope production facility would be both an acceptable upper limit from the perspective of minimal impact to monitoring stations, but also appears to be an achievable limit for large isotope producers.

  20. Nuclear data production, calculation and measurement: a global overview of the gamma heating issue

    NASA Astrophysics Data System (ADS)

    Colombier, A.-C.; Amharrak, H.; Fourmentel, D.; Ravaux, S.; Régnier, D.; Gueton, O.; Hudelot, J.-P.; Lemaire, M.

    2013-03-01

    The gamma heating evaluation in different materials found in current and future generations of nuclear reactor (EPRTM, GENIV, MTR-JHR), is becoming an important issue especially for the design of many devices (control rod, heavy reflector, in-core & out-core experiments…). This paper deals with the works started since 2009 in the Reactor Studies Department of CEA Cadarache in ordre to answer to several problematic which have been identified as well for nuclear data production and calculation as for experimental measurement methods. The selected subjects are: Development of a Monte Carlo code (FIFRELIN) to simulate the prompt fission gamma emission which represents the major part of the gamma heating production inside the core Production and qualification of new evaluations of nuclear data especially for radiative capture and inelastic neutron scattering which are the main sources of gamma heating out-core Development and qualification of a recommended method for the total gamma heating calculation using the Monte Carlo simulation code TRIPOLI-4 Development, test and qualification of new devices dedicated to the in-core gamma heating measurement as well in MTR-JHR as in zero power facilities (EOLE-MINERVE) of CEA, Cadarache to increase the experimental measurement accuracy.

  1. Conceptual Design of Low-Temperature Hydrogen Production and High-Efficiency Nuclear Reactor Technology

    NASA Astrophysics Data System (ADS)

    Fukushima, Kimichika; Ogawa, Takashi

    Hydrogen, a potential alternative energy source, is produced commercially by methane (or LPG) steam reforming, a process that requires high temperatures, which are produced by burning fossil fuels. However, as this process generates large amounts of CO2, replacement of the combustion heat source with a nuclear heat source for 773-1173K processes has been proposed in order to eliminate these CO2 emissions. In this paper, a novel method of nuclear hydrogen production by reforming dimethyl ether (DME) with steam at about 573K is proposed. From a thermodynamic equilibrium analysis of DME steam reforming, the authors identified conditions that provide high hydrogen production fraction at low pressure and temperatures of about 523-573K. By setting this low-temperature hydrogen production process upstream from a turbine and nuclear reactor at about 573K, the total energy utilization efficiency according to equilibrium mass and heat balance analysis is about 50%, and it is 75%for a fast breeder reactor (FBR), where turbine is upstream of the reformer.

  2. Study of components and statistical reaction mechanism in simulation of nuclear process for optimized production of {sup 64}Cu and {sup 67}Ga medical radioisotopes using TALYS, EMPIRE and LISE++ nuclear reaction and evaporation codes

    SciTech Connect

    Nasrabadi, M. N. Sepiani, M.

    2015-03-30

    Production of medical radioisotopes is one of the most important tasks in the field of nuclear technology. These radioactive isotopes are mainly produced through variety nuclear process. In this research, excitation functions and nuclear reaction mechanisms are studied for simulation of production of these radioisotopes in the TALYS, EMPIRE and LISE++ reaction codes, then parameters and different models of nuclear level density as one of the most important components in statistical reaction models are adjusted for optimum production of desired radioactive yields.

  3. Plastid Molecular Pharming I. Production of Oral Vaccines via Plastid Transformation.

    PubMed

    Berecz, Bernadett Berecz; Zelenyánszki, Helga; Pólya, Sára; Tamás-Nyitrai, Cecília; Oszvald, Mária

    2016-10-04

    Vaccines produced in plants have opened up new opportunities in vaccination. Among the various categories of vaccines, the recombinant vaccine is generally regarded as the most economical and safest type because it cannot cause disease and does not require large-scale cultivation of pathogens. Due to the low cost of their cultivation, plants may represent viable alternative platforms for producing subunit vaccines. Genetic engineering of plastids is the innovation of the last three decades and has numerous benefits when compared to nuclear transformation. Due to the high level of expression, oral vaccines produced in transplastomic plants do not have to be purified as they can be consumed raw, which, therefore, reduces the cost of preparation, transportation and handling of the vaccines. Oral vaccination also excludes the risk of other infections or contaminations, while compartmentation of the plant cell provides an excellent encapsulation to the antigen within the plastid. Herein we review the main biotechnological and immunological aspects of the progress achieved in the field of plastid derived edible vaccines during the last decade. As there is a public debate against genetically modified crops, the advantages and limitations of oral vaccines are also discussed.

  4. Fourier Transform Infrared Spectroscopy and Multivariate Analysis for Online Monitoring of Dibutyl Phosphate Degradation Product in Tributyl Phosphate /n-Dodecane/Nitric Acid Solvent

    SciTech Connect

    Levitskaia, Tatiana G.; Peterson, James M.; Campbell, Emily L.; Casella, Amanda J.; Peterman, Dean; Bryan, Samuel A.

    2013-11-05

    In liquid-liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness and frequent solvent analysis is warranted. Our research explores feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutyl phosphoric acid (HDBP) was assessed. Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to the high dose external gamma irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.

  5. Fourier Transform Infrared Spectroscopy and Multivariate Analysis for Online Monitoring of Dibutyl Phosphate Degradation Product in Tributyl Phosphate/n-Dodecane/Nitric Acid Solvent

    SciTech Connect

    Tatiana G. Levitskaia; James M. Peterson; Emily L. Campbell; Amanda J. Casella; Dean R. Peterman; Samuel A. Bryan

    2013-12-01

    In liquid–liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness, and frequent solvent analysis is warranted. Our research explores the feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutylphosphoric acid (HDBP) was assessed. Fourier transform infrared (FTIR) spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to high-dose external ?-irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus, demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.

  6. Study of the transformation of two salicylates used in personal care products in chlorinated water.

    PubMed

    de Oliveira e Sá, Mariana M; Miranda, Margarida S; da Silva, Joaquim C G Esteves

    2014-11-15

    Disinfection of swimming pool water is essential to inactivate pathogenic microorganisms. However chlorine based disinfectants, the most commonly used, are known to lead to the formation of disinfection by-products (DBPs), some of which have been associated with adverse health effects. Precursors of DBPs include the organic matter present in the water used to fill the swimming pool, human body fluids and personal care products (PCPs) used by swimmers and bathers. The increased use, in the last years, of PCPs lead to an increased concern about the fate of PCPs in swimming pool waters and potential health risks of formed DBPs. In this study, the chemical transformations of two salicylates, benzyl salicylate (BzS) and phenyl salicylate (PS), incorporated in several PCPs, in chlorinated water were investigated. High-performance liquid chromatography (HPLC) with UV-diode-array detection (HPLC-UV-DAD) was used to follow the reaction kinetics and HPLC with mass spectrometry (HPLC-MS) was used to tentatively identify the major transformation by-products. Under the experimental conditions used in this work both salicylates reacted with chlorine following pseudo-first order kinetics: rate constant k = (0.0038 ± 0.0002) min(-1) and half-life t1/2 = (182 ± 10) min for BzS and rate constant k = (0.0088 ± 0.0005) min(-1) and half-life t1/2 = (79 ± 4) min for PS (mean ± standard deviation). The reactions of the two salicylates in chlorinated water led to the formation of DBPs that were tentatively identified as mono- and dichloro- substituted compounds. Most probably they result from an electrophilic substitution of one or two hydrogen atoms in the phenolic ring of both salicylates by one or two chlorine atoms.

  7. A strategy for intensive production of molybdenum-99 isotopes for nuclear medicine using CANDU reactors.

    PubMed

    Morreale, A C; Novog, D R; Luxat, J C

    2012-01-01

    Technetium-99m is an important medical isotope utilized worldwide in nuclear medicine and is produced from the decay of its parent isotope, molybdenum-99. The online fueling capability and compact fuel of the CANDU(®)(1) reactor allows for the potential production of large quantities of (99)Mo. This paper proposes (99)Mo production strategies using modified target fuel bundles loaded into CANDU fuel channels. Using a small group of channels a yield of 89-113% of the weekly world demand for (99)Mo can be obtained.

  8. Studies of the use of high-temperature nuclear heat from an HTGR for hydrogen production

    NASA Technical Reports Server (NTRS)

    Peterman, D. D.; Fontaine, R. W.; Quade, R. N.; Halvers, L. J.; Jahromi, A. M.

    1975-01-01

    The results of a study which surveyed various methods of hydrogen production using nuclear and fossil energy are presented. A description of these methods is provided, and efficiencies are calculated for each case. The process designs of systems that utilize the heat from a general atomic high temperature gas cooled reactor with a steam methane reformer and feed the reformer with substitute natural gas manufactured from coal, using reforming temperatures, are presented. The capital costs for these systems and the resultant hydrogen production price for these cases are discussed along with a research and development program.

  9. [Attenuated total reflection-fourier transform infrared spectroscopic study of dried shark fin products].

    PubMed

    Han, Wan-qing; Luo, Hai-ying; Xian, Yan-ping; Luo, Dong-hui; Mu, Torng-na; Guo, Xin-dong

    2015-02-01

    Sixty-four pieces of shark fin dried products (including real, fake and artificial shark fin products) and real products coated with gelatin were rapidly and nondestructively analyzed by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). The characteristic of IR spectrograms among the above four kinds of samples were systematically studied and comparied, the results showed that the spectrograms of the same kind of samples were repeatable, and different kinds of shark fin products presented significant differences in the spectrograms, which mainly manifested as the specific absorption peaks of amido bonds in protein (1650, 1544 cm(-1)) and skeletal vibration in polysaccharide (1050 cm(-1)). The spectrograms of real shark fins were characterized by the strong absorption peaks of protein characteristic amide I and II absorbent (1650, 1544 cm(-1)) and relatively weak C--O--C vibration absorbent (1050 cm(-1)) owing to the high content of protein and relatively low level of polysaccharide. For fake shark fin products that were molded form by mixing together with the offcut of shark, collagen and other substances, the introduction of non-protein materials leaded to the weaker amido bonds absorbent than real products along with a 30 cm(-1) blue shift of amide I absorbent. Opposite to the real sample, the relatively strong absorption peak of polysaccharide (approximately 1047 cm(-1)) and barely existed amide absorbent were the key features of the spectrogram of artificial samples, which was synthersized by polysaccharide like sodium alginate. Real samples coated with gelatin, the peak strength of protein and polysaccharide were decreased simultaneously when the data collection was taken at the surface of sample, while the spectrogram presented no significant difference to real samples when the data was collected in the section. The results above indicated that by analyzing the characteristic of IR spectrograms and the value range of Apro

  10. Biodegradation of sulfamethoxazole photo-transformation products in a water/sediment test.

    PubMed

    Su, Tong; Deng, Huiping; Benskin, Jonathan P; Radke, Michael

    2016-04-01

    Occurrence of the antibiotic sulfamethoxazole (SMX) in the aquatic environment is of concern due to its potential to induce antibiotic resistance in pathogenic bacteria. While degradation of SMX can occur by numerous processes, the environmental fate of its transformation products (TPs) remains poorly understood. In the present work, biodegradation of SMX photo-TPs was investigated in a water/sediment system. Photo-TPs were produced by exposing SMX to artificial sunlight for 48 h. The resulting mixture of 8 photo-TPs was characterized using a combination of ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry and tandem mass spectrometry, and then used in biodegradation experiments. Significant differences in transformation among SMX photo-TPs were observed in the water/sediment system, with four photo-TPs displaying evidence of biodegradation (dissipation half-lives [DT50] of 39.7 d for 3-amino-5-methylisoxazole, 12.7 d for 4-nitro-sulfamethxoazole, 7.6 d for an SMX isomer and 2.4 d for [C10H13N3O4S]), two displaying primarily abiotic degradation (DT50 of 31 d for sulfanilic acid and 74.9 d for 5-methylisoxazol-3-yl-sulfamate), and two photo-TPs behaving largely recalcitrantly. Remarkably, TPs previously reported to be photo-stable also were persistent in biodegradation experiments. The most surprising observation was an increase in SMX concentrations when the irradiated solution was incubated, which we attribute to back-transformation of certain photo-TPs by sediment bacteria (85% from 4-nitro-sulfamethoxazole). This process could contribute to exposure to SMX in the aquatic environment that is higher than one would expect based on the fate of SMX alone. The results highlight the importance of considering TPs along with their parent compounds when characterizing environmental risks of emerging contaminants.

  11. Multistage production of Autographa californica nuclear polyhedrosis virus in insect cell cultures.

    PubMed

    Klöppinger, M; Fertig, G; Fraune, E; Miltenburger, H G

    1990-11-01

    The aim of our study was to establish an efficient system for the in vitro production of the insect pathogenic Autographa californica nuclear polyhedrosis virus in a Spodoptera frugiperda cell line. We optimized cultivation conditions for cell proliferation as well as for virus replication in a 1.5 litre stirred tank bioreactor. Cell and virus propagation were found to be optimal at a constant oxygen tension of 40%. In order to provide sufficient nutrients during virus synthesis filtration and perfusion devices were connected to the bioreactor. A virus production procedure in a repeated batch mode by using a two stage bioreactor system is described. Stage I was optimized for cell production and stage II for virus production.

  12. Assessment of fission product yields data needs in nuclear reactor applications

    SciTech Connect

    Kern, K.; Becker, M.; Broeders, C.

    2012-07-01

    Studies on the build-up of fission products in fast reactors have been performed, with particular emphasis on the effects related to the physics of the nuclear fission process. Fission product yields, which are required for burn-up calculations, depend on the proton and neutron number of the target nucleus as well as on the incident neutron energy. Evaluated nuclear data on fission product yields are available for all relevant target nuclides in reactor applications. However, the description of their energy dependence in evaluated data is still rather rudimentary, which is due to the lack of experimental fast fission data and reliable physical models. Additionally, physics studies of evaluated JEFF-3.1.1 fission yields data have shown potential improvements, especially for various fast fission data sets of this evaluation. In recent years, important progress in the understanding of the fission process has been made, and advanced model codes are currently being developed. This paper deals with the semi-empirical approach to the description of the fission process, which is used in the GEF code being developed by K.-H. Schmidt and B. Jurado on behalf of the OECD Nuclear Energy Agency, and with results from the corresponding author's diploma thesis. An extended version of the GEF code, supporting the calculation of spectrum weighted fission product yields, has been developed. It has been applied to the calculation of fission product yields in the fission rate spectra of a MOX fuelled sodium-cooled fast reactor. Important results are compared to JEFF-3.1.1 data and discussed in this paper. (authors)

  13. Flume experiments to investigate the environmental fate of pharmaceuticals and their transformation products in streams.

    PubMed

    Li, Zhe; Sobek, Anna; Radke, Michael

    2015-05-19

    The hyporheic zone—the transition region beneath and alongside the stream bed—is a central compartment for attenuation of organic micropollutants in rivers. It provides abundant sorption sites and excellent conditions for biotransformation. We used a bench-scale flume to study the fate of 19 parent pharmaceuticals (PPs) and the formation of 11 characteristic transformation products (TPs) under boundary conditions similar to those in hyporheic zones. The persistence of PPs ranged from readily degradable with a dissipation half-life (DT50) as short as 1.8 days (acetaminophen, ibuprofen) to not degradable (chlorthalidone, fluconazole). The temporal and spatial patterns of PP and TP concentrations in pore water were heterogeneous, reflecting the complex hydraulic and biogeochemical conditions in hyporheic zones. Four TPs (carbamazepine-10,11-epoxide, metoprolol acid, 1-naphthol, and saluamine) were exclusively formed in the sediment compartment and released to surface water, highlighting their potential to be used as indicators for characterizing hyporheic transformation of micropollutants in streams. The accumulation of certain TPs over the experimental period illustrates that we might face a peak of secondary contamination by TPs far from the point of release of the original contaminants into a stream. Such TPs should be considered as priority candidates for a higher-tier environmental risk assessment.

  14. Herbicides and transformation products in surface waters of the Midwestern United States

    USGS Publications Warehouse

    Battaglin, W.A.; Thurman, E.M.; Kalkhoff, S.J.; Porter, S.D.

    2003-01-01

    Most herbicides applied to crops are adsorbed by plants or transformed (degraded) in the soil, but small fractions are lost from fields and either move to streams in overland runoff, near surface flow, or subsurface drains, or they infiltrate slowly to ground water. Herbicide transformation products (TPs) can be more or less mobile and more or less toxic in the environment than their source herbicides. To obtain information on the concentrations of selected herbicides and TPs in surface waters of the Midwestern United States, 151 water samples were collected from 71 streams and five reservoir outflows in 1998. These samples were analyzed for 13 herbicides and 10 herbicide TPs. Herbicide TPs were found to occur as frequently or more frequently than source herbicides and at concentrations that were often larger than their source herbicides. Most samples contained a mixture of more than 10 different herbicides or TPs. The ratios of TPs to herbicide concentrations can be used to determine the source of herbicides in streams. Results of a two-component mixing model suggest that on average 90 percent or more of the herbicide mass in Midwestern streams during early summer runoff events originates from the runoff and 10 percent or less comes from increased ground water discharge.

  15. Identification of ultraviolet transformation products of diclofenac by means of liquid chromatography and mass spectrometry.

    PubMed

    Roscher, Jörg; Vogel, Martin; Karst, Uwe

    2016-07-29

    The removal of the anti-inflammatory drug diclofenac, which can be determined in concentrations up to 1μg/mL in the aquatic environment, from water samples by the use of UV light is investigated by liquid chromatography/mass spectrometry (LC/MS). It is very important to find out whether diclofenac is fully mineralized into non-toxic products or if the UV treatment leads to other potentially bioactive products. The irradiation of an aqueous solution of diclofenac with light in the wavelength range of 220nm-500nm provides a fast degradation of diclofenac in less than four minutes. Eleven transformation products have been detected by means of reversed-phase LC/MS, seven of which have not been described in literature before. Fragmentation experiments allowed their characterization and lead to proposed structures for most of them. Some of the structures may explain the increased toxicity, which was observed after irradiation of diclofenac solution by other groups.

  16. Department of Defense transformation: Organizational barriers to commercial product use in aerospace projects

    NASA Astrophysics Data System (ADS)

    Fellenzer, Sally Jean

    Over the past decade, the benefits of using commercial products in Department of Defense (DOD) projects have become evident. As a result, the DOD has been mandated to incorporate technology from the private sector by the increased use of commercially available products when feasible. This significant organizational transformation not only includes the adoption of new technologies, but also a new business philosophy. These changes have come slowly and have been problematic. This inductive study seeks to determine the organizational barriers that have prevented this new business concept from being incorporated to a greater extent than it has been to date. Based on the comparison of two Earth orbiting satellite ground control facilities; each with identical operational requirements, but built using different technologies, contract and management types, analysis on commercial product incorporation has been performed. Additionally, qualitative interview data from government procurement personnel and commercial vendors as well as data from DOD documents was collected and analyzed. Findings suggest that a misaligned reward system, entrenched networks, and historical precedent are the primary organizational impediments to adopting this significant change in business philosophy.

  17. Transformation of synthetic allicin: the influence of ultrasound, microwaves, different solvents and temperatures, and the products isolation.

    PubMed

    Ilić, Dušica; Nikolić, Vesna; Stanković, Mihajlo; Nikolić, Ljubiša; Stanojević, Ljiljana; Mladenović-Ranisavljević, Ivana; Smelcerović, Andrija

    2012-01-01

    The transformation of the synthesized allicin, using conventional method, the influence of ultrasound and microwaves, in different organic solvents (acetonitrile, acetone, methanol, and chloroform), at various temperatures (room temperature, 45 °C, and 55 °C) was investigated. Allicin degradation kinetic was monitored by HPLC. Allicin transformation under the effect of microwaves is faster than transformations performed under the influence of ultrasound or by conventional method. Increase of the temperature accelerates allicin transformation. Pharmacologically active compounds of (E)-ajoene, (Z)-ajoene, 3-vinyl-4H-1,2-dithiin, 2-vinyl-4H-1,3-dithiin, and diallyl disulfide were isolated from the mixture of transformation products of allicin under the influence of microwaves in methanol at 55 °C, which is according to kinetic parameters (highest values of the order of reaction and the lowest activation energy) the optimal method.

  18. A Novel Generation Method of Dielectric Barrier Discharge and Ozone Production Using a Piezoelectric Transformer

    NASA Astrophysics Data System (ADS)

    Teranishi, Kenji; Suzuki, Susumu; Itoh, Haruo

    2004-09-01

    A novel generation method of a dielectric barrier discharge (DBD) using a piezoelectric transformer (PT) is proposed. Spatio-temporal variations of microdischarges were investigated and discussed on the basis of the observations using a charge-coupled device (CCD) camera. As an example of a practical application of the DBD to a plasma reactor, an ozonizer using the PT was developed and ozone productions were performed in air and oxygen. Maximum ozone concentrations of 3.38 and 20.3 g/Nm3 were obtained in air and oxygen, respectively. The ozonizer can be designed in a compact configuration and driven with low applied voltages because the PT serves as both a high-voltage generator and a discharge electrode.

  19. Phytoremediative urban design: transforming a derelict and polluted harbour area into a green and productive neighbourhood.

    PubMed

    Wilschut, M; Theuws, P A W; Duchhart, I

    2013-12-01

    Many urban areas are polluted by industrial activities and waste disposal in landfills. Since conventional soil remediation techniques are costly and unsustainable, phytoremediation might offer an alternative. In this article, we explore how phytoremediation can be integrated into the transformation of urban post-industrial areas, while improving public space. Buiksloterham, a polluted and deprived industrial area in Amsterdam, serves as case study. Buiksloterham is polluted with heavy metals, with Zinc (Zn) concentrations being the highest. A regression-model for Alpine Pennycress (Thlaspi caerulescens) is used to estimate the time needed to remediate the site. This reveals a conflict in time between remediation and urban development. A research by design experiment shows how to overcome this conflict by dealing with polluted soil innovatively while emphasizing spatial and aesthetic qualities of the phytoremediation plant species. The resulting landscape framework integrates phytoremediation with biomass production and gives new ecological, economic and social value to Buiksloterham.

  20. Production of taxadiene from cultured ginseng roots transformed with taxadiene synthase gene.

    PubMed

    Cha, Mijeong; Shim, Sang Hee; Kim, Sung Hong; Kim, Ok Tae; Lee, Se-Weon; Kwon, Suk-Yoon; Baek, Kwang-Hyun

    2012-10-01

    Paclitaxel is produced by various species of yew trees and has been extensively used to treat tumors. In our research, a taxadiene synthase (TS) gene from Taxus brevifolia was used to transform the roots of cultured ginseng (Panax ginseng C.A. Meyer) to produce taxadiene, the unique skeletal precursor to taxol. The TS gene was successfully introduced into the ginseng genome, and the de novo formation of taxadiene was identified by mass spectroscopy profiling. Without any change in phenotypes or growth difference in a TS-transgenic ginseng line, the transgenic TSS3-2 line accumulated 9.1 μg taxadiene per gram of dry weight. In response to the treatment of methyl jasmonate for 3 or 6 days, the accumulation was 14.6 and 15.9 μg per g of dry weight, respectively. This is the first report of the production of taxadiene by engineering ginseng roots with a taxadiene synthase gene.

  1. Artificial stimulation of soil amine production by addition of organic carbon and nitrogen transforming enzymes

    NASA Astrophysics Data System (ADS)

    Kieloaho, Antti-Jussi; Parshintsev, Jevgeni; Riekkola, Marja-Liisa; Kulmala, Markku; Pumpanen, Jukka; Heinonsalo, Jussi

    2013-04-01

    The major part of nitrogen (N) in boreal forest soil is in organic form (Soil Organic Nitrogen, SON). One of the main pathways for amine production is the decay of SON in soil. Amino acids react with specific decarboxylase enzymes which transform them to amines. Amino acid turnover time in forest soil is relatively fast (in hours) because amino acids can be used as N and C source by plants and microbes. Therefore, amino acid production by protease enzymes might be the critical step for amine production and release from forest soil. The aim of the study was to artificially introduce enzymes responsible for protein transformation into amino acids (proteases) as well as soil organic matter (SOM) decomposition (laccase and manganese peroxidase) in order to increase SON transformation and amine synthesis. Glucose addition has been shown to induce natural soil protease activity. Bovine serum albumin (BSA) was used as control protein. Treatments were conducted both in Scots pine seedlings containing as well as non-planted microcosms. N transformations were examined, as well as amine concentration in soil. The experiment consisted of eight different treatments; two as controls concerning enzyme addition, four treatments were planted with one year old nursery grown Scots pine (Pinus sylvestris L.) seedlings and four were non-planted. The experiment lasted approximately six months and the treatments with the additions were conducted within one more month. The protease activity was discovered more commonly after the treatment with protease or glucose additions. In planted BSA-control some natural protease activity was found but not in non-planted controls. Different substrate additions did not cause any differences in total N percentage, but the presence of the seedlings diminished soil N% by approximately 20%. In addition, the same effect was clearly seen in dissolved N, NH4+ and NO3-. Plant has exploited the soluble N forms almost entirely from the system, irrespective of

  2. Comprehensive study of the antidiabetic drug metformin and its transformation product guanylurea in Greek wastewaters.

    PubMed

    Kosma, Christina I; Lambropoulou, Dimitra A; Albanis, Triantafyllos A

    2015-03-01

    Many pollutants such as pharmaceuticals and their transformation products (TPs) are not efficiently removed from wastewater treatment plants and enter into surface waters. The aim of this study was to investigate the occurrence and behavior of metformin, one of the most prescribed drugs worldwide, and its biological transformation product guanylurea, in eight wastewater treatment plants (WWTPs) of Greece. All WWTPs were equipped with conventional activated sludge treatment and the samples were taken from the influents and the effluents, over the four seasons of one year. The analytical method developed based on SPE followed by LC-UV/Vis-ESI/MS analysis, while positive findings were confirmed also by means of LTQ Orbitrap mass spectrometer. High polarity of both compounds led to the extraction with Oasis HLB and the use of the anionic surfactant SDS. The results showed that metformin dominated in the influents (bql-1167 ng/L), while guanylurea in the effluents (bql-627 ng/L) of the wastewater treatment plants, with Metformin/Guanylurea ratio ranging between 0.88 and 81.3 in the influents and between 0.005 and 0.78 in the effluents. Lack of a clear seasonal tendency in the occurrence and removal or formation was observed. Finally, an ecotoxicological risk assessment of metformin in effluent wastewaters took place by calculating the ratio between the environmental concentrations (MEC) and the predicted no effect concentrations (PNEC). Despite the fact that metformin presented low risk in all cases, an environmental concern is suspected for guanylurea since it is continuously released into the aquatic environment.

  3. Development of a Nuclear Hydrogen Production System by Dimethyl Ether (DME) Steam Reforming and Related Technology

    NASA Astrophysics Data System (ADS)

    Fukushima, Kimichika; Oota, Hiroyuki; Yamada, Kazuya; Makino, Shinichi; Yagyu, Motoshige; Ikeda, Tatsumi; Asayama, Masahiro; Ogawa, Takashi; Yoshino, Masato

    Targeting a hydrogen production system using heat produced by a nuclear reactor at about 300°C, we are developing a dimethyl ether (DME) steam reformer and hydrogen purification systems as well as catalysts for DME reforming. The use of heat from a nuclear reactor suppresses the CO2 concentration change in the atmosphere. In our developments, a catalyst, consisting of mixed oxides, produced hydrogen at a rate of about 1.9 Nm3/h per catalyst volume (m3) at about 300°C. Subsequently, the DME steam reformer achieved a hydrogen production rate of approximately, at least, 1.4 Nm3/h at about 300°C, by absorbing heat from the supplied steam. The aforementioned hydrogen production system via DME steam reforming is to be demonstrated using a thermal power plant. DME steam reforming by using waste heat and the utilization of the produced hydrogen within a combined cycle power plant can reduce fuel consumption, for instance, by about 17% compared to the case of direct DME combustion. The total system, with the use of DME, was compared with the methane case. If necessary, the byproduced CO2 may be injected into coal seams, increasing CH4 production via the substitution of CO2 for CH4 on coal, where CO2 adsorption is expected to be stronger than the CH4 adsorption.

  4. Estimation of pesticide and transformation product export pathways in a headwater catchment

    NASA Astrophysics Data System (ADS)

    Gassmann, Matthias; Olsson, Oliver; Stamm, Christian; Weiler, Markus; Lange, Jens; Kümmerer, Klaus

    2014-05-01

    Following their application, pesticide residues are exported towards rivers along several hydrological pathways in agricultural areas. The importance of each pathway is influenced by the substances' physico-chemical characteristics, mainly sorption and degradation. Incomplete mineralization results in the formation of transformation products (TPs) which have generally different environmental fate characteristics than their parent compounds (PCs). Therefore, the export pathways of pesticides and their transformation products towards rivers may also be different. In order to investigate this hypothesis, we extended a distributed process-based hydrological model (ZIN-AgriTra) by the environmental fate of pesticides and their TPs. The process-based nature of the model allowed for an analysis of PC and TP export pathways including overland flow, lateral preferential flow in soils and soil water flow to tile drains. The model was applied to a Swiss headwater catchment using three pesticides and their TPs as test substances. It was successfully calibrated to three sampling stations in the catchment. At the end of the simulated three-months period, most of the applied pesticides were either fully mineralized or incompletely transformed. Less than 2% of each pesticide was exported to the river as PC or TP. Although all three pesticides could be classified as slightly mobile they remained in the top soil layer during the whole period, whereas the more mobile TPs were additionally leached through the soil towards tile drains. Accordingly, PCs were exported largely by surface runoff, while a larger share of TPs was exported via tile drains. Additionally, the delayed formation and degradation of TPs led to an export under different hydrological conditions resulting in an increased subsurface export of TPs towards the end of the simulation period. A consequence of the different export pathways of PCs and TPs could be shown by an assessment of critical source areas (CSA) in the

  5. Nuclear structure and shapes from prompt gamma ray spectroscopy of fission products

    SciTech Connect

    Ahmad, I.; Morss, L.R.; Durell, J.L.

    1996-10-01

    Many nuclear shape phenomena are predicted to occur in neutron-rich nuclei. The best source for the production of these nuclides is the spontaneous fission which produces practically hundreds of nuclides with yields of greater than 0.1 % per decay. Measurements of coincident gamma rays with large Ge arrays have recently been made to obtain information on nuclear structures and shapes of these neutron- rich nuclei. Among the important results that have been obtained from such measurements are octupole correlations in Ba isotopes, triaxial shapes in Ru nuclei, two-phonon vibrations in {sup 106}Mo and level lifetimes and quadrupole moments in Nd isotopes and A=100 nuclei. These data have been used to test theoretical models.

  6. Production of an English/Russian glossary of terminology for nuclear materials control and accounting

    SciTech Connect

    Schachowskoj, S.; Smith, H.A. Jr.

    1995-05-01

    The program plans for Former Soviet Union National Nuclear Materials Control and Accounting (MC and A) Systems Enhancements call for the development of an English/Russian Glossary of MC and A terminology. This glossary was envisioned as an outgrowth of the many interactions, training sessions, and other talking and writing exercises that would transpire in the course of carrying out these programs. This report summarizes the status of the production of this glossary, the most recent copy of which is attached to this report. The glossary contains over 950 terms and acronyms associated with nuclear material control and accounting for safeguards and nonproliferation. This document is organized as follows: English/Russian glossary of terms and acronyms; Russian/English glossary of terms and acronyms; English/Russian glossary of acronyms; and Russian/English glossary of acronyms.

  7. Screening of transformation products in soils contaminated with unsymmetrical dimethylhydrazine using headspace SPME and GC-MS.

    PubMed

    Kenessov, Bulat N; Koziel, Jacek A; Grotenhuis, Tim; Carlsen, Lars

    2010-07-26

    The paper describes a novel SPME-based approach for sampling and analysis of transformation products of highly reactive and toxic unsymmetrical dimethylhydrazine (UDMH) which is used as a fuel in many Russian, European, Indian, and Chinese heavy cargo carrier rockets. The effects of several parameters were studied to optimize analyte recovery. It was found that the 85 microm Carboxen/polydimethylsiloxane fiber coating provides the highest selectivity for selected UDMH transformation products. Optimal sampling/sample preparation parameters were determined to be 1-h soil headspace sampling time at 40 degrees C. The GC inlet temperature was optimized to 170 degrees C held for 0.1 min, then 1 degrees C s(-1) ramp to 250 degrees C where it was held for 40 min. Temperature programming resulted in a fast desorption along with minimal chemical transformation in the GC inlet. SPME was very effective extracting UDMH transformation products from soil samples contaminated with rocket fuel. The use of SPME resulted in high sensitivity, speed, small labor consumption due to an automation and simplicity of use. It was shown that water addition to soil leads to a significant decrease of recovery of almost all target transformation products of UDMH. The use of SPME for sampling and sample preparation resulted in detection of the total of 21 new compounds that are relevant to the UDMH transformation in soils. In addition, the number of confirmed transformation products of UDMH increased from 15 to 27. This sampling/sample preparation approach can be recommended for environmental assessment of soil samples from areas affected by space rocket activity.

  8. A generic, computerized nuclear materials accountability system (NucMAS) and its layered products

    SciTech Connect

    Davis, Jr, J M

    1989-01-01

    NucMAS provides a material balance area with a computerized data management system for nuclear materials accountability. NucMAS is a generic application. It handles the data management and reporting functions for different processing facilities by storing all process-specific information as data rather than procedure. A NucMAS application is configured for each facility it supports. NucMAS and its layered products are compatible with three types of data clients. Core NucMAS has a screen-oriented user interface to support the accountability clerk as a client. Accountability clerks enter data from operating logs and laboratory analyses one to three days after actual processing. Layered products support process operators and automated systems as near-real-time and real-time data clients. The core and layered products use a data-driven approach which results in software that is configurable and maintainable. 3 refs., 5 figs.

  9. Hydrogen Production System with High Temperature Electrolysis for Nuclear Power Plant

    SciTech Connect

    Kentaro, Matsunaga; Eiji, Hoashi; Seiji, Fujiwara; Masato, Yoshino; Taka, Ogawa; Shigeo, Kasai

    2006-07-01

    Steam electrolysis with solid oxide cells is one of the most promising methods for hydrogen production, which has the potential to be high efficiency. Its most parts consist of environmentally sound and common materials. Recent development of ceramics with high ionic conductivity suggests the possibility of widening the range of operating temperature with maintaining the high efficiency. Toshiba is constructing a hydrogen production system with solid oxide electrolysis cells for nuclear power plants. Tubular-type cells using YSZ (Yttria-Stabilized- Zirconia) as electrolyte showed good performance of steam electrolysis at 800 to 900 deg C. Larger electrolysis cells with present configuration are to be combined with High Temperature Reactors. The hydrogen production efficiency on the present designed system is expected around 50% at 800 to 900 deg C of operating temperature. For the Fast Reactors, 'advanced cell' with higher efficiency at lower temperature are to be introduced. (authors)

  10. BRIEF REPORT: Pair production from nuclear collisions and cosmic ray transport

    NASA Astrophysics Data System (ADS)

    Norbury, John W.

    2006-09-01

    Modern cosmic ray transport codes, that are capable of use for a variety of applications, need to include all significant atomic, nuclear and particle reactions at a variety of energies. Lepton pair production from nucleus nucleus collisions has not been included in transport codes to date. Using the methods of Baur, Bertulani and Baron, the present report provides estimates of electron positron pair production cross sections for nuclei and energies relevant to cosmic ray transport. It is shown that the cross sections are large compared to other typical processes such as single neutron removal due to strong or electromagnetic interactions. Therefore, lepton pair production may need to be included in some transport code applications involving MeV electrons.

  11. Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2008-08-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled nuclear reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen includes 4,009,177 cells with a per-cell active area of 225 cm2. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode (oxygen) side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating-current, AC, to direct-current, DC, conversion efficiency is 96%. The overall system thermal-to-hydrogen production efficiency (based on the lower heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost. A cost of $3.23/kg of hydrogen was calculated assuming an internal rate of return of 10%.

  12. Automated sample preparation for monitoring groundwater pollution by carbamate insecticides and their transformation products.

    PubMed

    Chiron, S; Valverde, A; Fernandez-Alba, A; Barceló, D

    1995-01-01

    We investigated automated on-line solid-phase extraction (SPE) followed by liquid chromatographic (LC) techniques for monitoring carbamates and their transformation products. Analytical determinations were performed by LC with UV or postcolumn fluorescence detection (U.S. Environmental Protection Agency Method 531.1 for carbamate insecticides) after preconcentration with on-line SPE using C18 Empore extraction disks. On-line SPE/LC/thermospray mass spectrometry with time-scheduled selected-ion monitoring was used as confirmatory method. The method was used to determine pesticide traces in well waters of a typical aquifer in the Almeria area (Andalucia, south of Spain) from March 1993 to February 1994. The major pollutants, found in highest amounts, were carbofuran, methiocarb, and methomyl, at levels of 0.32, 0.3, and 0.8 micrograms/L, respectively. According to results of seasonal variation studies, pollution by carbamate insecticides is sporadic and exceeds the limit of 0.5 micrograms/L for total pesticides allowed by the European Economic Community Drinking Water Directive only twice a year. 3-Hydroxycarbofuran and methiocarb sulfone also were detected, showing the importance of including the main toxic break-down products of carbamate insecticides in future monitoring programs.

  13. Cytotoxic activities of extracts and compounds from Viscum coloratum and its transformation products by Rhodobacter sphaeroides.

    PubMed

    Yang, Guan-E; Chen, Bainian; Zhang, Zhaoming; Gong, Jun; Bai, Hongjun; Li, Jiankuan; Wang, Yufen; Li, Baozhen

    2009-03-01

    The bioassay-oriented fractionation of mistletoe crude extracts (MCEE) using 75% ethanol and culture products of mistletoe transformed by Rhodobacter sphaeroides, a photosynthetic bacterium (PSBT), revealed that the high cytotoxic activities were due to the petroleum ether extracts (PEs) and the acid-precipitated proteins from the aqueous extracts (AQs) of MCEE and PSBT. The isolated triterpenes may account for the activities of the PEs of MCEE and PSBT, respectively. Extraction of MCEE using petroleum ether led to the isolation of 3-epi-betulinic acid (1), betulonic acid (2), oleanolic acid (3), and beta-amyrin acetate (4), while petroleum ether extraction of PSBT led to the isolation of 1,3,4,betulinic acid (5), erythrodiol (6), and (3beta)-olean-12-ene-3,23-diol (7). The PE of PSBT exerted higher cytotoxicity than the PE of MCEE, which was due to the different triterpene contents of these two extracts. The cytotoxic activities of all compounds were tested, and the results revealed that compounds 1, 2, 3, 5, 6, and 7 contributed significantly to the cytotoxicities of both PEs. The AQ of the PSBT exerted almost the same cytotoxic activity and lower toxicity compared to the AQ of the MCEE. These findings indicate that mistletoe products biotransformed by R. sphaeroides could be used to treat cancers, since they have lower toxicities and higher antitumor activities compared to standard treatments.

  14. Occurrence of Chlorothalonil, Its Transformation Products, and Selected Other Pesticides in Texas and Oklahoma Streams, 2003-2004

    USGS Publications Warehouse

    Battaglin, William A.; Kuivila, Kathryn; Winton, Kim; Meyer, Michael

    2008-01-01

    The primary purpose of the study described in this report was to determine if the fungicide chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile), three of its transformation products, or selected other pesticides are transported to surface water after use on peanuts or other crops in Texas and Oklahoma. The results summarized here are part of a larger study that includes data from sites in Alabama, Florida, and Georgia. Chlorothalonil is classified as a probable carcinogen, and the 4-hydroxy of chlorothalonil transformation product is more soluble, more stable, and, for some species, more toxic than its parent compound. In 2003, water samples were collected from three surface-water sites in Texas and two surface-water sites in Oklahoma; in 2004, samples were collected from the two Oklahoma sites. Chlorothalonil was not detected in any of the 20 samples analyzed. The 4-hydroxy of chlorothalonil transformation product was detected in three samples collected in 2004, with a maximum concentration of 0.018 microgram per liter (?g/L); the other two transformation products (diamide chlorothalonil and 1-amide-4-hydroxy chlorothalonil) were not detected in any sample. In addition, 19 samples were analyzed for as many as 109 other pesticides and transformation products. Atrazine was detected in 13 samples and had a maximum concentration of 0.122 ?g/L. Deethylatrazine was detected in 10 samples and had a maximum concentration of 0.04 ?g/L. Metolachlor was detected in eight samples and had a maximum concentration of 0.019 ?g/L. Fifteen other pesticides or pesticide transformation products also were detected. In general, concentrations of pesticides were less than concentrations that are commonly observed in Midwestern streams. The results indicate that the use of chlorothalonil on peanut crops has not resulted in substantial contamination of the studied streams in Texas and Oklahoma.

  15. Nuclear waste glass product consistency test (PCT): Version 7.0. Revision 3

    SciTech Connect

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Ramsey, W.G.

    1994-06-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF), poured into stainless steel canisters, and eventually disposed of in a geologic repository. In order to comply with the Waste Acceptance Product Specifications (WAPS), the durability of the glass needs to be measured during production to assure its long term stability and radionuclide release properties. A durability test, designated the Product Consistency Test (PCT), was developed for DWPF glass in order to meet the WAPS requirements. The response of the PCT procedure was based on extensive testing with glasses of widely different compositions. The PCT was determined to be very reproducible, to yield reliable results rapidly, and to be easily performed in shielded cell facilities with radioactive samples. Version 7.0 of the PCT procedure is attached. This draft version has been submitted to ASTM for full committee (C26, Nuclear Fuel Cycle) ballot after being balloted successfully through subcommittee C26.13 on Repository Waste Package Materials Testing.

  16. Nuclear Structure Measurements of Fermium-254 and Advances in Target Production Methodologies

    NASA Astrophysics Data System (ADS)

    Gothe, Oliver Ralf

    The Berkeley Gas-filled Separator (BGS) has been upgraded with a new gas control system. It allows for accurate control of hydrogen and helium gas mixtures. This greatly increases the capabilities of the separator by reducing background signals in the focal plane detector for asymmetric nuclear reactions. It has also been shown that gas mixtures can be used to focus the desired reaction products into a smaller area, thereby increasing the experimental efficiency. A new electrodeposition cell has been developed to produce metal oxide targets for experiments at the BGS. The new cell has been characterized and was used to produce americium targets for the production of element 115 in the reaction 243Am(48Ca.3n) 288115. Additionally, a new method of producing targets for nuclear reactions was explored. A procedure for producing targets via Polymer Assisted Deposition (PAD) was developed and targets produced via this method were tested using the nuclear reaction 208Pb(40Ar.4 n)244Fm to determine their in-beam performance. It was determined that the silicon nitride backings used in this procedure are not feasible due to their crystal structures, and alternative backing materials have been tested and proposed. A previously unknown level in 254Fm has been identified at 985.7 keV utilizing a newly developed low background coincident apparatus. 254m was produced in the reaction 208Pb(48Ca. n)254No. Reaction products were guided to the two-clover low background detector setup via a recoil transfer chamber. The new level has been assigned a spin of 2- and has tentatively been identified as the octupole vibration in 254Fm. Transporting evaporation residues to a two-clover, low background detector setup can effectively be used to perform gamma-spectroscopy measurements of nuclei that are not accessible by current common methodologies. This technique provides an excellent addition to previously available tools such as in-beam spectroscopy and gamma-ray tracking arrays.

  17. An alternate approach to the production of radioisotopes for nuclear medicine applications

    NASA Astrophysics Data System (ADS)

    D'Auria, John M.; Keller, Roderich; Ladouceur, Keith; Lapi, Suzanne E.; Ruth, Thomas J.; Schmor, Paul

    2013-03-01

    There is a growing need for the production of radioisotopes for both diagnostic and therapeutic medical applications. Radioisotopes that are produced using the (n,γ) or (γ,n) reactions, however, typically result in samples with low specific activity (radioactivity/gram) due to the high abundance of target material of the same element. One method to effectively remove the isotopic impurity is electro-magnetic mass separation. An Ion Source Test Facility has been constructed at TRIUMF to develop high-intensity, high-efficiency, reliable ion sources for purification of radioactive isotopes, particularly those used in nuclear medicine. In progress studies are presented.

  18. An alternate approach to the production of radioisotopes for nuclear medicine applications.

    PubMed

    D'Auria, John M; Keller, Roderich; Ladouceur, Keith; Lapi, Suzanne E; Ruth, Thomas J; Schmor, Paul

    2013-03-01

    There is a growing need for the production of radioisotopes for both diagnostic and therapeutic medical applications. Radioisotopes that are produced using the (n,γ) or (γ,n) reactions, however, typically result in samples with low specific activity (radioactivity∕gram) due to the high abundance of target material of the same element. One method to effectively remove the isotopic impurity is electro-magnetic mass separation. An Ion Source Test Facility has been constructed at TRIUMF to develop high-intensity, high-efficiency, reliable ion sources for purification of radioactive isotopes, particularly those used in nuclear medicine. In progress studies are presented.

  19. Properties of colloidal corrosion products and their effects on nuclear plants. Final report. [PWR; BWR

    SciTech Connect

    Matijevic, E.

    1982-09-01

    Detailed results from the first two years of work on the properties of corrosion product oxides common to light water nuclear reactor systems are presented. A smaller companion volume describes the results in overview fashion. Numerous methods are described for producing these model oxides in forms making their study simpler, i.e., particles with uniform diameter and composition. A number of studies of particle adhesion to simulated power plant surfaces are described. The magnetic properties of hematite of various particle sizes are described - a property important to the use of electromagnetic filtration in LWRs.

  20. Nonextensive statistical effects and strangeness production in hot and dense nuclear matter

    NASA Astrophysics Data System (ADS)

    Lavagno, A.; Pigato, D.

    2012-12-01

    By means of an effective relativistic nuclear equation of state in the framework of the nonextensive statistical mechanics, characterized by power-law quantum distributions, we study the phase transition from hadronic matter to quark-gluon plasma at finite temperature and baryon density. The analysis is performed by requiring the Gibbs conditions on the global conservation of baryon number, electric charge fraction and zero net strangeness. We show that nonextensive statistical effects strongly influence the strangeness production during the pure hadronic phase and the hadron-quark-gluon mixed phase transition, also for small deviations from the standard Boltzmann-Gibbs statistics.

  1. Reactivity of β-blockers/agonists with aqueous permanganate. Kinetics and transformation products of salbutamol.

    PubMed

    Rodríguez-Álvarez, Tania; Rodil, Rosario; Quintana, José Benito; Cela, Rafael

    2015-08-01

    The possible oxidation of two β-blockers, atenolol and propranolol, and one β-agonist, salbutamol, with aqueous potassium permanganate (KMnO4) was investigated by liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QTOF-MS). Under strong oxidation conditions (2 mg L(-1) KMnO4, 24 h), only salbutamol did significantly react. In this way, the oxidation kinetics of salbutamol was further investigated at different concentrations of KMnO4, chloride, phosphate and sample pH by means of a full factorial experimental design. Depending on these factors, half-lives were in the range 1-144 min for drug and it was observed that KMnO4 concentration was the most significant factor, resulting in increased reaction rate as it is increased. Moreover, the reaction of salbutamol is also enhanced at basic pH and to a minor extent by the presence of phosphates, being both factors more relevant at low KMnO4 concentrations. The use of an accurate-mass LC-QTOF-MS system permitted the identification of a total of seven transformation products (TPs). The transformation path of the drug begins by the attack of KMnO4 on two double bonds of the aromatic ring of salbutamol via 3 + 2 and 2 + 2 addition reactions, which resulted in the ring opening and that continues with oxidative reactions to finally produce smaller size TPs, ending with tert-butyl-formamide, as the smallest TP identified. Reaction in real samples showed a slower and partial oxidation of the pharmaceutical, due to other competing water organic constituents, but still exceeding 60%. Moreover, the software predicted toxicity of TPs indicates that they are expected not to be more toxic than salbutamol, in contrast to the results obtained for the predicted toxicity of chlorination TPs, excepting predicted developmental toxicity.

  2. Assessment of model uncertainty during the river export modelling of pesticides and transformation products

    NASA Astrophysics Data System (ADS)

    Gassmann, Matthias; Olsson, Oliver; Kümmerer, Klaus

    2013-04-01

    The modelling of organic pollutants in the environment is burdened by a load of uncertainties. Not only parameter values are uncertain but often also the mass and timing of pesticide application. By introducing transformation products (TPs) into modelling, further uncertainty coming from the dependence of these substances on their parent compounds and the introduction of new model parameters are likely. The purpose of this study was the investigation of the behaviour of a parsimonious catchment scale model for the assessment of river concentrations of the insecticide Chlorpyrifos (CP) and two of its TPs, Chlorpyrifos Oxon (CPO) and 3,5,6-trichloro-2-pyridinol (TCP) under the influence of uncertain input parameter values. Especially parameter uncertainty and pesticide application uncertainty were investigated by Global Sensitivity Analysis (GSA) and the Generalized Likelihood Uncertainty Estimation (GLUE) method, based on Monte-Carlo sampling. GSA revealed that half-lives and sorption parameters as well as half-lives and transformation parameters were correlated to each other. This means, that the concepts of modelling sorption and degradation/transformation were correlated. Thus, it may be difficult in modelling studies to optimize parameter values for these modules. Furthermore, we could show that erroneous pesticide application mass and timing were compensated during Monte-Carlo sampling by changing the half-life of CP. However, the introduction of TCP into the calculation of the objective function was able to enhance identifiability of pesticide application mass. The GLUE analysis showed that CP and TCP were modelled successfully, but CPO modelling failed with high uncertainty and insensitive parameters. We assumed a structural error of the model which was especially important for CPO assessment. This shows that there is the possibility that a chemical and some of its TPs can be modelled successfully by a specific model structure, but for other TPs, the model

  3. Accelerator Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    SciTech Connect

    Brown, Nicholas R.; Heidet, Florent; Haj Tahar, Malek

    2016-01-01

    This article is a review of several accelerator–reactor interface issues and nuclear fuel cycle applications of acceleratordriven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systems on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.

  4. Accelerator Reactor Coupling for Energy Production in Advanced Nuclear Fuel Cycles

    DOE PAGES

    Brown, Nicholas R.; Heidet, Florent; Haj Tahar, Malek

    2016-01-01

    This article is a review of several accelerator–reactor interface issues and nuclear fuel cycle applications of acceleratordriven subcritical systems. The systems considered here have the primary goal of energy production, but that goal is accomplished via a specific application in various proposed nuclear fuel cycles, such as breed-and-burn of fertile material or burning of transuranic material. Several basic principles are reviewed, starting from the proton beam window including the target, blanket, reactor core, and up to the fuel cycle. We focus on issues of interest, such as the impact of the energy required to run the accelerator and associated systemsmore » on the potential electricity delivered to the grid. Accelerator-driven systems feature many of the constraints and issues associated with critical reactors, with the added challenges of subcritical operation and coupling to an accelerator. Reliable accelerator operation and avoidance of beam trips are critically important. One interesting challenge is measurement of blanket subcriticality level during operation. We also review the potential benefits of accelerator-driven systems in various nuclear fuel cycle applications. Ultimately, accelerator-driven subcritical systems with the goal of transmutation of transuranic material have lower 100,000-year radioactivity than a critical fast reactor with recycling of uranium and plutonium.« less

  5. Secondary organic aerosol (trans)formation through aqueous phase guaiacol photonitration: chemical characterization of the products

    NASA Astrophysics Data System (ADS)

    Grgić, Irena; Kitanovski, Zoran; Kroflič, Ana; Čusak, Alen

    2014-05-01

    One of the largest primary sources of organic aerosol in the atmosphere is biomass burning (BB) (Laskin et al. 2009); in Europe its contribution to annual mean of PM10 is between 3 and 14 % (Maenhaut et al. 2012). During the process of wood burning many different products are formed via thermal degradation of wood lignin. Hardwood burning produces mainly syringol (2,6-dimetoxyphenol) derivatives, while softwood burning exclusively guaiacol (2-methoxyphenol) and its derivatives. Taking into account physical properties of methoxyphenols only, their concentrations in atmospheric waters might be underestimated. So, their aqueous phase reactions can be an additional source of SOA, especially in regions under significant influence of wood combustion. An important class of compounds formed during physical and chemical aging of the primary BBA in the atmosphere is nitrocatechols, known as strong absorbers of UV and Vis light (Claeys et al. 2012). Very recently, methyl-nitrocatechols were proposed as suitable markers for highly oxidized secondary BBA (Iinuma et al. 2010, Kitanovski et al. 2012). In the present work, the formation of SOA through aqueous phase photooxidation and nitration of guaiacol was examined. The key objective was to chemically characterize the main low-volatility products and further to check their possible presence in the urban atmospheric aerosols. The aqueous phase reactions were performed in a thermostated reactor under simulated sunlight in the presence of H2O2 and nitrite. Guaiacol reaction products were first concentrated by solid-phase extraction (SPE) and then subjected to semi-preparative liquid chromatography.The main product compounds were fractionated and isolated as pure solids and their structure was further elucidated by using nuclear magnetic resonance spectroscopy (1H, 13C and 2D NMR) and direct infusion negative ion electro-spray ionization tandem mass spectrometry (( )ESI-MS/MS). The main photonitration products of guaiacol (4

  6. Physical stability and recrystallization kinetics of amorphous ibipinabant drug product by fourier transform raman spectroscopy.

    PubMed

    Sinclair, Wayne; Leane, Michael; Clarke, Graham; Dennis, Andrew; Tobyn, Mike; Timmins, Peter

    2011-11-01

    The solid-state physical stability and recrystallization kinetics during storage stability are described for an amorphous solid dispersed drug substance, ibipinabant, at a low concentration (1.0%, w/w) in a solid oral dosage form (tablet). The recrystallization behavior of the amorphous ibipinabant-polyvinylpyrrolidone solid dispersion in the tablet product was characterized by Fourier transform (FT) Raman spectroscopy. A partial least-square analysis used for multivariate calibration based on Raman spectra was developed and validated to detect less than 5% (w/w) of the crystalline form (equivalent to less than 0.05% of the total mass of the tablet). The method provided reliable and highly accurate predictive crystallinity assessments after exposure to a variety of stability storage conditions. It was determined that exposure to moisture had a significant impact on the crystallinity of amorphous ibipinabant. The information provided by the method has potential utility for predictive physical stability assessments. Dissolution testing demonstrated that the predicted crystallinity had a direct correlation with this physical property of the drug product. Recrystallization kinetics was measured using FT Raman spectroscopy for the solid dispersion from the tablet product stored at controlled temperature and relative humidity. The measurements were evaluated by application of the Johnson-Mehl-Avrami (JMA) kinetic model to determine recrystallization rate constants and Avrami exponent (n = 2). The analysis showed that the JMA equation could describe the process very well, and indicated that the recrystallization kinetics observed was a two-step process with an induction period (nucleation) followed by rod-like crystal growth.

  7. Exposure of small water bodies to pesticides and their transformation products in a lowland catchment

    NASA Astrophysics Data System (ADS)

    Ulrich, Uta; Fohrer, Nicola

    2016-04-01

    INTRODUCTION Based on the European Directive 2009/128/EC (2009), all member states were obliged to set up National Action Plans for the sustainable use of pesticides. In the German National Action Plan (GNAP), the status of small water bodies (swb) defined as water bodies with a catchment <10km² was stressed among other issues. Since the GNAP stated that knowledge and data base of pesticide contamination of swbs is insufficient, a monitoring of 10 swbs in the catchment of the lowland river Kielstau was carried out in summer and autumn 2015 for selected herbicides and their transformation products (TP). METHODS Grab samples of the water phase were collected once at the end of the spring/summer application period and a screening was carried out for 102 pesticides and 6 TPs. During autumn application, the rape herbicide metazachlor and the winter grain herbicide flufenacet as well as their TPs oxalic acid (OA) and sulfonic acid (ESA) were in the focus of the study. The sampling was carried out event based after the first and second relevant rainfall events after application. The third sample was collected four weeks after the second sampling to observe the occurrence of the TPs. The target compounds were quantified by LC-MSMSMS. RESULTS For all swbs, the pesticide screening after the spring application showed pesticide/TP concentrations below the quantification limits (0.01-0.05 μg L-1) except of the corn herbicdes metolachlor, terbuthylazine and its TP desethylterbuthylazine. These findings were independent from the time elapsed since the last application of these compounds took place which was partly 4 years ago. After autumn application, the samples were analyzed for the herbicides metazachlor, flufenacet and their TPs which were sprayed on the fields where the swb are located in. These results showed that TPs of both herbicides remained from the year before and reached concentrations up to 1.9 μg L-1 for metazachlor ESA, 0.55 μg L-1 for metazachlor OA, 0.16

  8. Measurements of extinct fission products in nuclear bomb debris: Determination of the yield of the Trinity nuclear test 70 y later

    SciTech Connect

    Hanson, Susan Kloek; Pollington, Anthony Douglas; Waidmann, Christopher Russell; Kinman, William Scott; Wende, Allison Marie; Miller, Jeffrey L.; Berger, Jennifer A.; Oldham, Warren James; Selby, Hugh D.

    2016-07-05

    This study describes an approach to measuring extinct fission products that would allow for the characterization of a nuclear test at any time. The isotopic composition of molybdenum in five samples of glassy debris from the 1945 Trinity nuclear test has been measured. Nonnatural molybdenum isotopic compositions were observed, reflecting an input from the decay of the short-lived fission products 95Zr and 97Zr. By measuring both the perturbation of the 95Mo/96Mo and 97Mo/96Mo isotopic ratios and the total amount of molybdenum in the Trinity nuclear debris samples, it is possible to calculate the original concentrations of the 95Zr and 97Zr isotopes formed in the nuclear detonation. Together with a determination of the amount of plutonium in the debris, these measurements of extinct fission products allow for new estimates of the efficiency and yield of the historic Trinity test.

  9. A two-dimensional Fourier transform electron-spin resonance (ESR) study of nuclear modulation and spin relaxation in irradiated malonic acid

    NASA Astrophysics Data System (ADS)

    Lee, Sanghyuk; Patyal, Baldev R.; Freed, Jack H.

    1993-03-01

    Nuclear modulation in electron-spin-echo spectroscopy is conventionally studied by one-dimensional electron-spin-echo envelope modulation (1D-ESEEM). Two-dimensional Fourier transform electron-spin resonance (2D-FTESR) studies of nuclear modulation have the promise of enhancing the spectral resolution and clarifying the key details of the relaxation processes. We present a 2D-FTESR study on single proton nuclear modulation from γ-irradiated malonic acid single crystals to test the validity of the Gamliel-Freed theory and to assess the value of the new methods. The two pulse spin-echo correlation spectroscopy (SECSY) spectra as a function of orientation of the single crystal show very good agreement with the Gamliel-Freed theory extended to the general case of nonaxially symmetric hyperfine interaction. It is very simply affected by spin relaxation, such that relative intensities are essentially unaffected. Thus SECSY-ESR can most reliably be utilized for studying nuclear modulation. Stimulated SECSY provides the simplest nuclear modulation patterns, which, however, do exhibit the suppression effect well known in three-pulse ESEEM studies. Two-dimensional electron-electron double resonance (2D-ELDOR) provides nuclear modulation patterns similar to that of SECSY-ESR, so the suppression effect is absent. Both three-pulse methods exhibit complex relaxation behavior which can affect relative intensities. This is a feature characteristic of three-pulse ESEEM, but is not well understood. It is shown how the 2D-FTESR methods enable one to obtain the details of the complex spin relaxation, and in the process, obtain very good agreement between experiment and theory. 2D-ELDOR exhibits exchange cross peaks as well as coherence peaks from the nuclear modulation. It is shown how experiments, as a function of mixing time, enable one to separate the effects of the two. It is pointed out that such experiments are in the spirit of 3D spectroscopy. A new observation of the

  10. Capsaicinoids improve egg production by regulating ovary nuclear transcription factors against heat stress in quail.

    PubMed

    Sahin, N; Orhan, C; Tuzcu, M; Juturu, V; Sahin, K

    2016-12-12

    To examine the molecular mechanism of capsaicinoid supplementation from capsicum extract, laying Japanese quail (n = 180, 5 weeks old) were reared either at 22°C for 24 h/d (thermoneutral, TN) or at 34°C for 8 h/d (heat stress, HS) and fed on one of three diets containing 0, 25 or 50 mg of capsaicinoids per kilogram for 12 weeks (2 × 3 factorial arrangement). The results revealed that exposure to HS decreased feed consumption by 10.7% and egg production by 13.6%, increased serum and ovary malondialdehyde (MDA) levels by 66.9% and 88.1%, respectively, and reduced ovary superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities by 28.3%, 48.7% and 43.8%, respectively. There were magnifications in the ovary nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) levels by 42.4% and suppressions in nuclear factor (erythroid-derived 2)-like 2 (Nrf2), protein kinase B (Akt) and haem-oxygenase 1 (HO-1) levels by 29.2%, 38.2% and 30.7%, respectively, in heat-stressed quail. With increasing supplemental capsaicinoids, there were linear increases in egg production, antioxidant enzyme activity, linear decreases in ovary MDA and NF-κB levels and linear increases in ovary Nrf2, Akt and HO-1 levels at a greater extent in quail reared under TN condition than those reared under HS condition. Two-way treatment interactions showed that the degree of restorations in all response variables was more notable under the HS environment than under the TN environment as supplemental capsaicinoid level was increased. In conclusion, capsaicinoid supplementation alleviates oxidative stress through regulating the ovary nuclear transcription factors in heat-stressed quail.

  11. High-power proton linac for transmuting the long-lived fission products in nuclear waste

    SciTech Connect

    Lawrence, G.P.

    1991-01-01

    High power proton linacs are being considered at Los Alamos as drivers for high-flux spallation neutron sources that can be used to transmute the troublesome long-lived fission products in defense nuclear waste. The transmutation scheme being studied provides a high flux (> 10{sup 16}/cm{sup 2}{minus}s) of thermal neutrons, which efficiently converts fission products to stable or short-lived isotopes. A medium-energy proton linac with an average beam power of about 110 MW can burn the accumulated Tc99 and I129 inventory at the DOE's Hanford Site within 30 years. Preliminary concepts for this machine are described. 3 refs., 5 figs., 2 tabs.

  12. High power linear accelerators for tritium production and transmutation of nuclear waste

    SciTech Connect

    Lawrence, G.P.

    1990-01-01

    Proton linacs driving high-flux spallation neutron sources are being considered for transmutation of nuclear waste and production of tritium. Advances in high-current linac technology have provided a basis for the development of credible designs for the required accelerator, which has a nominal 1.6-GeV energy, and a 250-mA cw current. A beam with these parameters incident on a liquid lead-bismuth (Pb-Bi) target can generate a thermal neutron flux of up to 5 {times} 10{sup 16} n/cm{sup 2}-s in a cylindrical blanket surrounding the spallation source. This high flux can produce tritium through the {sup 6}Li(n,{alpha})T or {sup 3}He(n,{gamma})T reactions, or can burn long-lived actinides and fission products from nuclear waste through capture and fission processes. In some system scenarios, waste actinides and/or other fissile materials in the blanket can produce sufficient fission energy to power the accelerator.

  13. A preliminary systems-engineering study of an advanced nuclear-electrolytic hydrogen-production facility

    NASA Technical Reports Server (NTRS)

    Escher, W. J. D.; Donakowski, T. D.; Tison, R. R.

    1975-01-01

    An advanced nuclear-electrolytic hydrogen-production facility concept was synthesized at a conceptual level with the objective of minimizing estimated hydrogen-production costs. The concept is a closely-integrated, fully-dedicated (only hydrogen energy is produced) system whose components and subsystems are predicted on ''1985 technology.'' The principal components are: (1) a high-temperature gas-cooled reactor (HTGR) operating a helium-Brayton/ammonia-Rankine binary cycle with a helium reactor-core exit temperature of 980 C, (2) acyclic d-c generators, (3) high-pressure, high-current-density electrolyzers based on solid-polymer electrolyte technology. Based on an assumed 3,000 MWt HTGR the facility is capable of producing 8.7 million std cu m/day of hydrogen at pipeline conditions, 6,900 kPa. Coproduct oxygen is also available at pipeline conditions at one-half this volume. It has further been shown that the incorporation of advanced technology provides an overall efficiency of about 43 percent, as compared with 25 percent for a contemporary nuclear-electric plant powering close-coupled contemporary industrial electrolyzers.

  14. Production of Cloned Korean Native Pig by Somatic Cell Nuclear Transfer.

    PubMed

    Hwang, In-Sul; Kwon, Dae-Jin; Oh, Keun Bong; Ock, Sun-A; Chung, Hak-Jae; Cho, In-Cheol; Lee, Jeong-Woong; Im, Gi-Sun; Hwang, Seongsoo

    2015-06-01

    The Korean native pig (KNP) have been considered as animal models for animal biotechnology research because of their relatively small body size and their presumably highly inbred status due to the closed breeding program. However, little is reported about the use of KNP for animal biotechnology researches. This study was performed to establish the somatic cell nuclear transfer (SCNT) protocol for the production of swine leukocyte antigens (SLA) homotype-defined SCNT KNP. The ear fibroblast cells originated from KNP were cultured and used as donor cell. After thawing, the donor cells were cultured for 1 hour with 15 μM roscovitine prior to the nuclear transfer. The numbers of reconstructed and parthenogenetic embryos transferred were 98 ± 35.2 and 145 ± 11.2, respectively. The pregnancy and delivery rate were 3/5 (60%) and 2/5 (40%). One healthy SLA homotype-defined SCNT KNP was successfully generated. The recipient-based individual cloning efficiency ranged from 0.65 to 1.08%. Taken together, it can be postulated that the methodological establishment of the production of SLA homotype-defined cloned KNP can be applied to the generation of transgenic cloned KNP as model animals for human disease and xenotransplantation researches.

  15. Nuclear effects on heavy quark production: Results from Fermilab Experiments E772 and E789

    SciTech Connect

    E772 and E789 Collaborations

    1991-12-31

    Fermilab Experiments E772 and E789 are fixed target experiments with 800 GeV protons incident on nuclear targets corresponding to a center-of-mass energy of {radical}{bar s} {approximately} 39 GeV. Measurements are made with a pair spectrometer which has a solid angle of a few percent and operates at high luminosity with up to {approximately}10{sup 12}(E772) or {approximately}10{sup 11}(E789) protons/spill. Our experimental program explores several types of nuclear medium effects: the modification of quark and gluon structure functions by the nucleus, effects on the production of vector mesons (e.g. J/{psi} and {gamma}), and effects on the production of D mesons. The latter is accomplished with the use of a new silicon vertex detector. E789 also looks at the decays of B mesons including the decay to J/{psi} and searches for the decays to two-charged particles (e.g. B {yields} h{sup +}h{sup {minus}}) but I will not discuss this part of our program in this paper.

  16. Nuclear model calculation and targetry recipe for production of 110mIn.

    PubMed

    Kakavand, T; Mirzaii, M; Eslami, M; Karimi, A

    2015-10-01

    (110m)In is potentially an important positron emitting that can be used in positron emission tomography. In this work, the excitation functions and production yields of (110)Cd(d, 2n), (111)Cd(d, 3n), (nat)Cd(d, xn), (110)Cd(p, n), (111)Cd(p, 2n), (112)Cd(p, 3n) and (nat)Cd(p, xn) reactions to produce the (110m)In were calculated using nuclear model code TALYS and compared with the experimental data. The yield of isomeric state production of (110)In was also compared with ground state production ones to reach the optimal energy range of projectile for the high yield production of metastable state. The results indicate that the (110)Cd(p, n)(110m)In is a high yield reaction with an isomeric ratio (σ(m)/σ(g)) of about 35 within the optimal incident energy range of 15-5 MeV. To make the target, cadmium was electroplated on a copper substrate in varying electroplating conditions such as PH, DC current density, temperature and time. A set of cold tests were also performed on the final sample under several thermal shocks to verify target resistance. The best electroplated cadmium target was irradiated with 15 MeV protons at current of 100 µA for one hour and the production yield of (110m)In and other byproducts were measured.

  17. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene

    PubMed Central

    Chang, Zhenyi; Chen, Zhufeng; Wang, Na; Xie, Gang; Lu, Jiawei; Yan, Wei; Zhou, Junli; Tang, Xiaoyan; Deng, Xing Wang

    2016-01-01

    The breeding and large-scale adoption of hybrid seeds is an important achievement in agriculture. Rice hybrid seed production uses cytoplasmic male sterile lines or photoperiod/thermo-sensitive genic male sterile lines (PTGMS) as female parent. Cytoplasmic male sterile lines are propagated via cross-pollination by corresponding maintainer lines, whereas PTGMS lines are propagated via self-pollination under environmental conditions restoring male fertility. Despite huge successes, both systems have their intrinsic drawbacks. Here, we constructed a rice male sterility system using a nuclear gene named Oryza sativa No Pollen 1 (OsNP1). OsNP1 encodes a putative glucose–methanol–choline oxidoreductase regulating tapetum degeneration and pollen exine formation; it is specifically expressed in the tapetum and miscrospores. The osnp1 mutant plant displays normal vegetative growth but complete male sterility insensitive to environmental conditions. OsNP1 was coupled with an α-amylase gene to devitalize transgenic pollen and the red fluorescence protein (DsRed) gene to mark transgenic seed and transformed into the osnp1 mutant. Self-pollination of the transgenic plant carrying a single hemizygous transgene produced nontransgenic male sterile and transgenic fertile seeds in 1:1 ratio that can be sorted out based on the red fluorescence coded by DsRed. Cross-pollination of the fertile transgenic plants to the nontransgenic male sterile plants propagated the male sterile seeds of high purity. The male sterile line was crossed with ∼1,200 individual rice germplasms available. Approximately 85% of the F1s outperformed their parents in per plant yield, and 10% out-yielded the best local cultivars, indicating that the technology is promising in hybrid rice breeding and production. PMID:27864513

  18. Marine ecotoxicity of nitramines, transformation products of amine-based carbon capture technology.

    PubMed

    Coutris, Claire; Macken, Ailbhe L; Collins, Andrew R; El Yamani, Naouale; Brooks, Steven J

    2015-09-15

    In the context of reducing CO2 emissions to the atmosphere, chemical absorption with amines is emerging as the most advanced technology for post-combustion CO2 capture from exhaust gases of fossil fuel power plants. Despite amine solvent recycling during the capture process, degradation products are formed and released into the environment, among them aliphatic nitramines, for which the environmental impact is unknown. In this study, we determined the acute and chronic toxicity of two nitramines identified as important transformation products of amine-based carbon capture, dimethylnitramine and ethanolnitramine, using a multi-trophic suite of bioassays. The results were then used to produce the first environmental risk assessment for the marine ecosystem. In addition, the in vivo genotoxicity of nitramines was studied by adapting the comet assay to cells from experimentally exposed fish. Overall, based on the whole organism bioassays, the toxicity of both nitramines was considered to be low. The most sensitive response to both compounds was found in oysters, and dimethylnitramine was consistently more toxic than ethanolnitramine in all bioassays. The Predicted No Effect Concentrations for dimethylnitramine and ethanolnitramine were 0.08 and 0.18 mg/L, respectively. The genotoxicity assessment revealed contrasting results to the whole organism bioassays, with ethanolnitramine found to be more genotoxic than dimethylnitramine by three orders of magnitude. At the lowest ethanolnitramine concentration (1mg/L), 84% DNA damage was observed, whereas 100mg/L dimethylnitramine was required to cause 37% DNA damage. The mechanisms of genotoxicity were also shown to differ between the two compounds, with oxidation of the DNA bases responsible for over 90% of the genotoxicity of dimethylnitramine, whereas DNA strand breaks and alkali-labile sites were responsible for over 90% of the genotoxicity of ethanolnitramine. Fish exposed to >3mg/L ethanolnitramine had virtually no DNA

  19. Chlorination of benzothiazoles and benzotriazoles and transformation products identification by LC-HR-MS/MS.

    PubMed

    Nika, Maria-Christina; Bletsou, Anna A; Koumaki, Elena; Noutsopoulos, Constantinos; Mamais, Daniel; Stasinakis, Athanasios S; Thomaidis, Nikolaos S

    2017-02-05

    The fate of four benzotriazoles [1-H-benzotriazole (1-H-BTRi), tolyltriazole (TTRi), xylyltriazole (XTRi) and 1-hydroxy-benzotriazole (1-OH-BTRi)] and three benzothiazoles [benzothiazole (BTH), 2-hydroxy-benzothiazole (2-OH-BTH) and 2-amino-benzothiazole (2-amino-BTH)], during chlorination batch experiments was investigated. In the first step, their degradation under different experimental conditions (applied molar ratio of NaOCl and the target contaminant (m.r.), reaction's contact time, pH value of the reaction's solution and the influence of total suspended solids (TSS) presence) was investigated and their removal kinetics parameters (kobs and t1/2) were determined. In the second step, LC-QTOFMS/MS was used for the detection and identification of transformation products (TPs) formed during chlorination, through the application of suspect and non-target screening approaches. Four and five TPs of XTRi and 2-amino-BTH, respectively, were detected and tentatively identified, while 1-H-BTRi was proven to be formed by the chlorination of 1-OH-BTRi. Moreover, since the identified TPs were also detected in spiked wastewater samples, after lab-scale chlorination experiments, toxicity assessment was carried out by ECOSAR calculations for the environmental relevance of their occurrence. The proposed chlorinated TPs were proven to be more toxic than their parent compounds.

  20. Identification and characterization of tebuconazole transformation products in soil by combining suspect screening and molecular typology.

    PubMed

    Storck, Veronika; Lucini, Luigi; Mamy, Laure; Ferrari, Federico; Papadopoulou, Evangelia S; Nikolaki, Sofia; Karas, Panagiotis A; Servien, Remi; Karpouzas, Dimitrios G; Trevisan, Marco; Benoit, Pierre; Martin-Laurent, Fabrice

    2016-01-01

    Pesticides generate transformation products (TPs) when they are released into the environment. These TPs may be of ecotoxicological importance. Past studies have demonstrated how difficult it is to predict the occurrence of pesticide TPs and their environmental risk. The monitoring approaches mostly used in current regulatory frameworks target only known ecotoxicologically relevant TPs. Here, we present a novel combined approach which identifies and categorizes known and unknown pesticide TPs in soil by combining suspect screening time-of-flight mass spectrometry with in silico molecular typology. We used an empirical and theoretical pesticide TP library for compound identification by both non-target and target time-of-flight (tandem) mass spectrometry, followed by structural proposition through a molecular structure correlation program. In silico molecular typology was then used to group TPs according to common molecular descriptors and to indirectly elucidate their environmental parameters by analogy to known pesticide compounds with similar molecular descriptors. This approach was evaluated via the identification of TPs of the triazole fungicide tebuconazole occurring in soil during a field dissipation study. Overall, 22 empirical and 12 yet unknown TPs were detected, and categorized into three groups with defined environmental properties. This approach combining suspect screening time-of-flight mass spectrometry with molecular typology could be extended to other organic pollutants and used to rationalize the choice of TPs to be investigated towards a more comprehensive environmental risk assessment scheme.

  1. Monitoring a large number of pesticides and transformation products in water samples from Spain and Italy.

    PubMed

    Rousis, Nikolaos I; Bade, Richard; Bijlsma, Lubertus; Zuccato, Ettore; Sancho, Juan V; Hernandez, Felix; Castiglioni, Sara

    2017-03-14

    Assessing the presence of pesticides in environmental waters is particularly challenging because of the huge number of substances used which may end up in the environment. Furthermore, the occurrence of pesticide transformation products (TPs) and/or metabolites makes this task even harder. Most studies dealing with the determination of pesticides in water include only a small number of analytes and in many cases no TPs. The present study applied a screening method for the determination of a large number of pesticides and TPs in wastewater (WW) and surface water (SW) from Spain and Italy. Liquid chromatography coupled to high-resolution mass spectrometry (HRMS) was used to screen a database of 450 pesticides and TPs. Detection and identification were based on specific criteria, i.e. mass accuracy, fragmentation, and comparison of retention times when reference standards were available, or a retention time prediction model when standards were not available. Seventeen pesticides and TPs from different classes (fungicides, herbicides and insecticides) were found in WW in Italy and Spain, and twelve in SW. Generally, in both countries more compounds were detected in effluent WW than in influent WW, and in SW than WW. This might be due to the analytical sensitivity in the different matrices, but also to the presence of multiple sources of pollution. HRMS proved a good screening tool to determine a large number of substances in water and identify some priority compounds for further quantitative analysis.

  2. Continuous ozonation treatment of ofloxacin: transformation products, water matrix effect and aquatic toxicity.

    PubMed

    Carbajo, Jose B; Petre, Alice L; Rosal, Roberto; Herrera, Sonia; Letón, Pedro; García-Calvo, Eloy; Fernández-Alba, Amadeo R; Perdigón-Melón, Jose A

    2015-07-15

    The continuous ozonation of the antibiotic ofloxacin (OFX) has been performed using a synthetic water matrix and in a sewage treatment plant (STP) effluent. The aim was to study the effect of the water matrix on the ozonation with particular emphasis on the aquatic toxicity of treated water. OFX was completely removed in both water matrices, although the amount of ozone consumed for its depletion was strongly matrix-dependent. The extent of mineralization was limited and a number of intermediate transformation products (TPs) appeared, twelve of which could be identified. OFX reaction pathway includes the degradation of piperazinyl and quinolone moieties. The further oxidation of TPs gave rise to the formation and accumulation of carboxylic acids, aldehydes, nitrogen-containing organic compounds and inorganic ions. Aquatic toxicity of treated mixtures was assessed using four standard species: the bacteria Vibrio fischeri and Pseudomonas putida as target organisms and the algae Pseudokirchneriella subcapitata and the protozoan Tetrahymena thermophila as non-target organisms. OFX was toxic for the bacteria and the microalgae at the spiked concentration in untreated water. However, the continuous ozonation at the upper operational limit removed its toxic effects. T. thermophila was not affected by OFX, but was sensitive to STP effluent.

  3. Photodegradation of malachite green under natural sunlight irradiation: kinetic and toxicity of the transformation products.

    PubMed

    Pérez-Estrada, L A; Agüera, A; Hernando, M D; Malato, S; Fernández-Alba, A R

    2008-02-01

    This article describes the photolytic degradation of malachite green (MG), a cationic triphenylmethane dye used worldwide as a fungicide and antiseptic in the aquaculture industry. Photolysis experiments were performed by direct exposure of a solution of MG in water to natural sunlight. The main transformation products (TPs) generated during the process were identified by liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) and gas chromatography mass spectrometry (GC-MS). The 28 TPs identified with this strategy indicate that MG undergoes three main reactions, N-demethylation, hydroxylation and cleavage of the conjugated structure forming benzophenone derivatives. These processes involve hydroxyl radical attack on the phenyl ring, the N,N-dimethylamine group and the central carbon atom. The Vibrio fischeri acute toxicity test showed that the solution remains toxic after MG has completely disappeared. This toxicity could be assigned, at least in part, to the formation of 4-(dimethylamine)benzophenone, which has an EC(50,30 min) of 0.061 mg l(-1), and is considered "very toxic to aquatic organisms" by current EU legislation.

  4. Oxidation of cetirizine, fexofenadine and hydrochlorothiazide during ozonation: Kinetics and formation of transformation products.

    PubMed

    Borowska, Ewa; Bourgin, Marc; Hollender, Juliane; Kienle, Cornelia; McArdell, Christa S; von Gunten, Urs

    2016-05-01

    The efficiency of wastewater ozonation for the abatement of three nitrogen-containing pharmaceuticals, two antihistamine drugs, cetirizine (CTR) and fexofenadine (FXF), and the diuretic drug, hydrochlorothiazide (HCTZ), was investigated. Species-specific second-order rate constants for the reactions of the molecular, protonated (CTR, FXF) or deprotonated (HCTZ) forms of these compounds with ozone were determined. All three compounds are very reactive with ozone (apparent second order rate constants at pH 7: kO3,pH7 = 1.7·10(5) M(-1)s(-1), 8.5·10(4) M(-1)s(-1) and 9.0·10(3) M(-1)s(-1) for CTR, HCTZ and FXF, respectively). Transformation product (TP) structures were elucidated using liquid chromatography coupled with high-resolution tandem mass spectrometry, including isotope-labeled standards. For cetirizine and hydrochlorothiazide 8 TPs each and for fexofenadine 7 TPs were identified. The main TPs of cetirizine and fexofenadine are their respective N-oxides, whereas chlorothiazide forms to almost 100% from hydrochlorothiazide. In the bacteria bioluminescence assay the toxicity was slightly increased only during the ozonation of cetirizine at very high cetirizine concentrations. The main TPs detected in bench-scale experiments were also detected in full-scale ozonation of a municipal wastewater, for >90% elimination of the parent compounds.

  5. Nuclear Fuels.

    ERIC Educational Resources Information Center

    Nash, J. Thomas

    1983-01-01

    Trends in and factors related to the nuclear industry and nuclear fuel production are discussed. Topics addressed include nuclear reactors, survival of the U.S. uranium industry, production costs, budget cuts by the Department of Energy and U.S. Geological survey for resource studies, mining, and research/development activities. (JN)

  6. Comparison of fipronil sources in North Carolina surface water and identification of a novel fipronil transformation product in recycled wastewater

    EPA Science Inventory

    Fipronil is a phenylpyrazole insecticide that is widely used in residential and agricultural settings to control ants, roaches, termites, and other pests. Fipronil and its transformation products have been found in a variety of environmental matrices, but the source[s] which make...

  7. Fate and Distribution of the Octyl- and Nonylphenol Ethoxylates and Some Carboxylated Transformation Products in the Back River, Maryland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Back River is a sub-estuary of the Chesapeake Bay that receives effluent from a wastewater treatment plant (WWTP) and urban runoff from the metropolitan area of Baltimore, MD. In order to study the fate of the alkylphenol ethoxylates (APEOs) and their transformation products, including those th...

  8. [Discrimination of polysaccharides from Angelica sinensis and its different processed products based on Fourier transform infrared spectroscopy].

    PubMed

    Ji, Peng; Wei, Yan-Ming; Hua, Yong-Li; Zhang, Wen-quan

    2014-05-01

    A new rapid and nondestructive method for identifying polysaccharides from Angelica sinensis and its different processed products was developed, and this method was based on Fourier transform infrared spectroscopy (FTIR). In the clinic of traditional Chinese medicine, unprocessed Angelica sinensis(UAS) is of ten used after processed, the common processed products are Angelica sinensis parched with wine(WAS), Angelica sinensis parched with soil(SAS), Angelica sinensis parched with oil(OAS) and Charred Angelica sinensis(CAS). In order to use polysaccharides from Angelica sinensis and its processed products effectively and reasonably in clinic, it is very necessary to identify them. FTIR of polysaccharides from Angelica sinensis and its different processed products was determined, and then it was decomposed by discrete wavelet transform (DWT). The high frequency information in scale 2, 3 and 4 was selected as feature information, from which the each wavelet entropy was extracted as characteristic value. BP neural network was trained with these characteristic values. The trained BP neural network was used to identify polysaccharides from Angelica sinensis and its different processed products. According to 30 prediction samples, the correct rate for recognition was 93. 3%, which indicates that: it has better feasibility to identify polysaccharides from Angelica sinensis and its different processed products by this method, which is based on FTIR, discrete wavelet transform and BP neural network

  9. Development of a nuclear transformation system for Oleaginous Green Alga Lobosphaera (Parietochloris) incisa and genetic complementation of a mutant strain, deficient in arachidonic acid biosynthesis.

    PubMed

    Zorin, Boris; Grundman, Omer; Khozin-Goldberg, Inna; Leu, Stefan; Shapira, Michal; Kaye, Yuval; Tourasse, Nicolas; Vallon, Olivier; Boussiba, Sammy

    2014-01-01

    Microalgae are considered a promising source for various high value products, such as carotenoids, ω-3 and ω-6 polyunsaturated fatty acids (PUFA). The unicellular green alga Lobosphaera (Parietochloris) incisa is an outstanding candidate for the efficient phototrophic production of arachidonic acid (AA), an essential ω-6 PUFA for infant brain development and a widely used ingredient in the baby formula industry. Although phototrophic production of such algal products has not yet been established, estimated costs are considered to be 2-5 times higher than competing heterotrophic production costs. This alga accumulates unprecedented amounts of AA within triacylglycerols and the molecular pathway of AA biosynthesis in L. incisa has been previously elucidated. Thus, progress in transformation and metabolic engineering of this high value alga could be exploited for increasing the efficient production of AA at competitive prices. We describe here the first successful transformation of L. incisa using the ble gene as a selection marker, under the control of the endogenous RBCS promoter. Furthermore, we have succeeded in the functional complementation of the L. incisa mutant strain P127, containing a mutated, inactive version of the delta-5 (Δ5) fatty acid desaturase gene. A copy of the functional Δ5 desaturase gene, linked to the ble selection marker, was transformed into the P127 mutant. The resulting transformants selected for zeocine resistant, had AA biosynthesis partially restored, indicating the functional complementation of the mutant strain with the wild-type gene. The results of this study present a platform for the successful genetic engineering of L. incisa and its long-chain PUFA metabolism.

  10. Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2010-06-01

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents

  11. Modulation of gluconeogenesis and lipid production in an engineered oleaginous Saccharomyces cerevisiae transformant.

    PubMed

    Kamisaka, Yasushi; Kimura, Kazuyoshi; Uemura, Hiroshi; Ledesma-Amaro, Rodrigo

    2016-09-01

    We previously created an oleaginous Saccharomyces cerevisiae transformant as a dga1 mutant overexpressing Dga1p lacking 29 amino acids at the N-terminal (Dga1∆Np). Because we have already shown that dga1 disruption decreases the expression of ESA1, which encodes histone acetyltransferase, the present study was aimed at exploring how Esa1p was involved in lipid accumulation. We based our work on the previous observation that Esa1p acetylates and activates phosphoenolpyruvate carboxykinase (PEPCK) encoded by PCK1, a rate-limiting enzyme in gluconeogenesis, and subsequently evaluated the activation of Pck1p by yeast growth with non-fermentable carbon sources, thus dependent on gluconeogenesis. This assay revealed that the ∆dga1 mutant overexpressing Dga1∆Np had much lower growth in a glycerol-lactate (GL) medium than the wild-type strain overexpressing Dga1∆Np. Moreover, overexpression of Esa1p or Pck1p in mutants improved the growth, indicating that the ∆dga1 mutant overexpressing Dga1∆Np had lower activities of Pck1p and gluconeogenesis due to lower expression of ESA1. In vitro PEPCK assay showed the same trend in the culture of the ∆dga1 mutant overexpressing Dga1∆Np with 10 % glucose medium, indicating that Pck1p-mediated gluconeogenesis decreased in this oleaginous transformant under the lipid-accumulating conditions introduced by the glucose medium. The growth of the ∆dga1 mutant overexpressing Dga1∆Np in the GL medium was also improved by overexpression of acetyl-CoA synthetase, Acs1p or Acs2p, indicating that supply of acetyl-CoA was crucial for Pck1p acetylation by Esa1p. In addition, the ∆dga1 mutant without Dga1∆Np also showed better growth in the GL medium, indicating that decreased lipid accumulation was enhancing Pck1p-mediated gluconeogenesis. Finally, we found that overexpression of Ole1p, a fatty acid ∆9-desaturase, in the ∆dga1 mutant overexpressing Dga1∆Np improved its growth in the GL medium. Although the exact

  12. Nuclear cathepsin D enhances TRPS1 transcriptional repressor function to regulate cell cycle progression and transformation in human breast cancer cells.

    PubMed

    Bach, Anne-Sophie; Derocq, Danielle; Laurent-Matha, Valérie; Montcourrier, Philippe; Sebti, Salwa; Orsetti, Béatrice; Theillet, Charles; Gongora, Céline; Pattingre, Sophie; Ibing, Eva; Roger, Pascal; Linares, Laetitia K; Reinheckel, Thomas; Meurice, Guillaume; Kaiser, Frank J; Gespach, Christian; Liaudet-Coopman, Emmanuelle

    2015-09-29

    The lysosomal protease cathepsin D (Cath-D) is overproduced in breast cancer cells (BCC) and supports tumor growth and metastasis formation. Here, we describe the mechanism whereby Cath-D is accumulated in the nucleus of ERα-positive (ER+) BCC. We identified TRPS1 (tricho-rhino-phalangeal-syndrome 1), a repressor of GATA-mediated transcription, and BAT3 (Scythe/BAG6), a nucleo-cytoplasmic shuttling chaperone protein, as new Cath-D-interacting nuclear proteins. Cath-D binds to BAT3 in ER+ BCC and they partially co-localize at the surface of lysosomes and in the nucleus. BAT3 silencing inhibits Cath-D accumulation in the nucleus, indicating that Cath-D nuclear targeting is controlled by BAT3. Fully mature Cath-D also binds to full-length TRPS1 and they co-localize in the nucleus of ER+ BCC where they are associated with chromatin. Using the LexA-VP16 fusion co-activator reporter assay, we then show that Cath-D acts as a transcriptional repressor, independently of its catalytic activity. Moreover, microarray analysis of BCC in which Cath-D and/or TRPS1 expression were silenced indicated that Cath-D enhances TRPS1-mediated repression of several TRPS1-regulated genes implicated in carcinogenesis, including PTHrP, a canonical TRPS1 gene target. In addition, co-silencing of TRPS1 and Cath-D in BCC affects the transcription of cell cycle, proliferation and transformation genes, and impairs cell cycle progression and soft agar colony formation. These findings indicate that Cath-D acts as a nuclear transcriptional cofactor of TRPS1 to regulate ER+ BCC proliferation and transformation in a non-proteolytic manner.

  13. Deposition of fission and activation products after the Fukushima Dai-ichi nuclear power plant accident.

    PubMed

    Shozugawa, Katsumi; Nogawa, Norio; Matsuo, Motoyuki

    2012-04-01

    The Great Eastern Japan Earthquake on March 11, 2011, damaged reactor cooling systems at Fukushima Dai-ichi nuclear power plant. The subsequent venting operation and hydrogen explosion resulted in a large radioactive nuclide emission from reactor containers into the environment. Here, we collected environmental samples such as soil, plant species, and water on April 10, 2011, in front of the power plant main gate as well as 35 km away in Iitate village, and observed gamma-rays with a Ge(Li) semiconductor detector. We observed activation products ((239)Np and (59)Fe) and fission products ((131)I, (134)Cs ((133)Cs), (137)Cs, (110m)Ag ((109)Ag), (132)Te, (132)I, (140)Ba, (140)La, (91)Sr, (91)Y, (95)Zr, and (95)Nb). (239)Np is the parent nuclide of (239)Pu; (59)Fe are presumably activation products of (58)Fe obtained by corrosion of cooling pipes. The results show that these activation and fission products, diffused within a month of the accident.

  14. Assessment of organochlorine hydrocarbons transformation in contaminated agricultural products and foodstuffs under gamma-radiation

    NASA Astrophysics Data System (ADS)

    Mel’nikova, T. V.; Polyakova, L. P.; Oudalova, A. A.

    2017-01-01

    The problem of an estimation of organochlorinated pollutants transformation (particularly organochlorinated pesticides (OCP) and polychlorinated biphenyls (PCB)) under gamma-irradiation has become important in connection with radiation technologies application in the food industry. According to earlier researches, small doses of OCP lead to serious damages of an organism, comparable with damages from high doses. Among radiolysis products of OCP in model solutions various substances on a structure have been found out. Though of trace concentration of each of them, in sum with the initial pesticides residue they make up significant of mass contamination (as shown earlier up to 90% from initial OCP). In this work fish samples (bream) containing OCPs (15.20 ng/g of hexachlorocyclohexane isomers and 87.10 ng/g of DDT and its metabolites), as well as PCB (18.51 ng/g) were studied. The minced fish was irradiated at dose of 10 kGy with dose rate of 1.35 Gy/sec. Then, by methods of gas-liquid chromatography (GLC) and gas chromatography-mass spectrometry (GC-MS), it was found that the OCPs degradation varied from 3 up to 61% and the PCB degradation – 24-52%. Significant complication of chemical composition was shown comparing to the primary biological sample contamination. As a result of fish irradiation, secondary pollution appeared that included residues of primary organochlorine hydrocarbons and their radiation-induced metabolites. Among the investigated OCPs the most stable proved to be alfa-hexachlorocyclohexane (alfa-HCH), the least stable – DDT which corresponds to the previous findings about the radiation stability of OCPs in model solutions. Mass spectra of the irradiated samples of minced bream showed the presence of radiation metabolites of OCPs, that had also been found at irradiation of model solutions of 2,2-di(4-chlorophenyl)-1-chlorethylene (DDMU), DDD and 1a, 2e, 3e, 4e, 5e-pentahlorcyclohexane. There was revealed a decomposition product formed during

  15. LARGE-SCALE HYDROGEN PRODUCTION FROM NUCLEAR ENERGY USING HIGH TEMPERATURE ELECTROLYSIS

    SciTech Connect

    James E. O'Brien

    2010-08-01

    Hydrogen can be produced from water splitting with relatively high efficiency using high-temperature electrolysis. This technology makes use of solid-oxide cells, running in the electrolysis mode to produce hydrogen from steam, while consuming electricity and high-temperature process heat. When coupled to an advanced high temperature nuclear reactor, the overall thermal-to-hydrogen efficiency for high-temperature electrolysis can be as high as 50%, which is about double the overall efficiency of conventional low-temperature electrolysis. Current large-scale hydrogen production is based almost exclusively on steam reforming of methane, a method that consumes a precious fossil fuel while emitting carbon dioxide to the atmosphere. Demand for hydrogen is increasing rapidly for refining of increasingly low-grade petroleum resources, such as the Athabasca oil sands and for ammonia-based fertilizer production. Large quantities of hydrogen are also required for carbon-efficient conversion of biomass to liquid fuels. With supplemental nuclear hydrogen, almost all of the carbon in the biomass can be converted to liquid fuels in a nearly carbon-neutral fashion. Ultimately, hydrogen may be employed as a direct transportation fuel in a “hydrogen economy.” The large quantity of hydrogen that would be required for this concept should be produced without consuming fossil fuels or emitting greenhouse gases. An overview of the high-temperature electrolysis technology will be presented, including basic theory, modeling, and experimental activities. Modeling activities include both computational fluid dynamics and large-scale systems analysis. We have also demonstrated high-temperature electrolysis in our laboratory at the 15 kW scale, achieving a hydrogen production rate in excess of 5500 L/hr.

  16. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA

    2009-05-05

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  17. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B.; Prussin, Stanley G.

    2009-01-27

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  18. Detecting special nuclear materials in suspect containers using high-energy gamma rays emitted by fission products

    DOEpatents

    Norman, Eric B.; Prussin, Stanley G.

    2009-01-06

    A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.

  19. Mortality of workers at a nuclear materials production plant at Oak Ridge, Tennessee, 1947-1990.

    PubMed

    Loomis, D P; Wolf, S H

    1996-02-01

    The Y-12 plant at Oak Ridge, Tennessee, produced nuclear materials for the U.S. government's nuclear weapons program beginning in 1943. Workers at Y-12 were exposed to low dose, internal, alpha radiation and external, penetrating radiation, as well as to beryllium, mercury, solvents, and other industrial agents. This paper presents updated results from a long-term mortality study of workers at Y-12 between 1947 and 1974, with follow-up of white men through 1990 and data reported for the first time for women and men of other races. Vital status was determined through searches of the National Death Index and other records, and the workers' mortality was compared to the national population's using standardized mortality ratios (SMRs). Total mortality was low for all Y-12 workers and total cancer mortality was as expected. Among the 6,591 white men, there were 20% more lung cancer deaths than expected (95% confidence interval [CI] 1.04-1.38). Death rates from brain cancer and several lymphopoietic system cancers were also elevated among white men, with SMRs of 1.28 and 1.46. Mortality from cancer of the pancreas, prostate, and kidney was similarly elevated. There was evidence of excess breast cancer among the 1,073 female workers (SMR 1.21, 95% CI 0.60-2.17). Lung cancer mortality among these workers warrants continued surveillance because of the link between internal alpha radiation exposure and this disease, but other agents, notably beryllium, also merit considerations as potential causes of lung cancer. Other cancers and agents should also be investigated as part of a comprehensive study of the health consequences of the production of nuclear weapons.

  20. Cold Nuclear Matter Effects on Heavy Quark Production in Relativistic Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Durham, John Matthew

    2011-12-01

    The experimental collaborations at the Relativistic Heavy Ion Collider (RHIC) have established that dense nuclear matter with partonic degrees of freedom is formed in collisions of heavy nuclei at 200 GeV. Information from heavy quarks has given significant insight into the dynamics of this matter. Charm and bottom quarks are dominantly produced by gluon fusion in the early stages of the collision, and thus experience the complete evolution of the medium. The production baseline measured in p + p collisions can be described by fixed order plus next to leading log perturbative QCD calculations within uncertainties. In central Au+Au collisions, suppression has been measured relative to the yield in p + p scaled by the number of nucleon-nucleon collisions, indicating a significant energy loss by heavy quarks in the medium. The large elliptic flow amplitude v2 provides evidence that the heavy quarks flow along with the lighter partons. The suppression and elliptic flow of these quarks are in qualitative agreement with calculations based on Langevin transport models that imply a viscosity to entropy density ratio close to the conjectured quantum lower bound of 1/4pi. However, a full understanding of these phenomena requires measurements of cold nuclear matter (CNM) effects, which should be present in Au+Au collisions but are difficult to distinguish experimentally from effects due to interactions with the medium. This thesis presents measurements of electrons at midrapidity from the decays of heavy quarks produced in d+Au collisions at RHIC. A significant enhancement of these electrons is seen at a transverse momentum below 5 GeV/c, indicating strong CNM effects on charm quarks that are not present for lighter quarks. A simple model of CNM effects in Au+Au collisions suggests that the level of suppression in the hot nuclear medium is comparable for all quark flavors.

  1. Determination of production biology of cladocera in a reservoir receiving hyperthermal effluents from a nuclear production reactor. [Par Pond

    SciTech Connect

    Vigerstad, T J

    1980-01-01

    The effects on zooplankton of residence in a cooling reservoir receiving hyperthermal effluents directly from a nuclear-production-reactor were studied. Rates of cladoceran population production were compared at two stations in the winter and summer of 1976 on Par Pond located on the Savannah River Plant, Aiken, SC. One station was located in an area of the reservoir directly receiving hyperthermal effluent (Station MAS) and the second was located about 4 km away in an area where surface temperatures were normal for reservoirs in the general geographical region (Station CAS). A non-parametric comparison between stations of standing stock and fecundity data for Bosmina longirostris, taken for the egg ratio model, was used to observe potential hyperthermal effluent effects. There was a statistically higher incidence of deformed eggs in the Bosmina population at Station MAS in the summer. Bosmina standing stock underwent two large oscillations in the winter and three large oscillations in the summer at Station MAS compared with two in the winter and one in the summer at Station CAS. These results are consistent with almost all other Par Pond studies which have found the two stations to be essentially similar in spectra composition but with some statistically significant differences in various aspects of the biology of the species.

  2. Multiwalled carbon nanotubes induce a fibrogenic response by stimulating reactive oxygen species production, activating NF-κB signaling, and promoting fibroblast-to-myofibroblast transformation.

    PubMed

    He, Xiaoqing; Young, Shih-Houng; Schwegler-Berry, Diane; Chisholm, William P; Fernback, Joseph E; Ma, Qiang

    2011-12-19

    Carbon nanotubes (CNTs) are novel materials with unique electronic and mechanical properties. The extremely small size, fiberlike shape, large surface area, and unique surface chemistry render their distinctive chemical and physical characteristics and raise potential hazards to humans. Several reports have shown that pulmonary exposure to CNTs caused inflammation and lung fibrosis in rodents. The molecular mechanisms that govern CNT lung toxicity remain largely unaddressed. Here, we report that multiwalled carbon nanotubes (MWCNTs) have potent, dose-dependent toxicity on cultured human lung cells (BEAS-2B, A549, and WI38-VA13). Mechanistic analyses were carried out at subtoxic doses (≤20 μg/mL, ≤ 24 h). MWCNTs induced substantial ROS production and mitochondrial damage, implicating oxidative stress in cellular damage by MWCNT. MWCNTs activated the NF-κB signaling pathway in macrophages (RAW264.7) to increase the secretion of a panel of cytokines and chemokines (TNFα, IL-1β, IL-6, IL-10, and MCP1) that promote inflammation. Activation of NF-κB involved rapid degradation of IκBα, nuclear accumulation of NF-κBp65, binding of NF-κB to specific DNA-binding sequences, and transactivation of target gene promoters. Finally, MWCNTs induced the production of profibrogenic growth factors TGFβ1 and PDGF from macrophages that function as paracrine signals to promote the transformation of lung fibroblasts (WI38-VA13) into myofibroblasts, a key step in the development of fibrosis. Our results revealed that MWCNTs elicit multiple and intertwining signaling events involving oxidative damage, inflammatory cytokine production, and myofibroblast transformation, which potentially underlie the toxicity and fibrosis in human lungs by MWCNTs.

  3. New trends in the analytical determination of emerging contaminants and their transformation products in environmental waters.

    PubMed

    Agüera, Ana; Martínez Bueno, María Jesús; Fernández-Alba, Amadeo R

    2013-06-01

    Since the so-called emerging contaminants were established as a new group of pollutants of environmental concern, a great effort has been devoted to the knowledge of their distribution, fate and effects in the environment. After more than 20 years of work, a significant improvement in knowledge about these contaminants has been achieved, but there is still a large gap of information on the growing number of new potential contaminants that are appearing and especially of their unpredictable transformation products. Although the environmental problem arising from emerging contaminants must be addressed from an interdisciplinary point of view, it is obvious that analytical chemistry plays an important role as the first step of the study, as it allows establishing the presence of chemicals in the environment, estimate their concentration levels, identify sources and determine their degradation pathways. These tasks involve serious difficulties requiring different analytical solutions adjusted to purpose. Thus, the complexity of the matrices requires highly selective analytical methods; the large number and variety of compounds potentially present in the samples demands the application of wide scope methods; the low concentrations at which these contaminants are present in the samples require a high detection sensitivity, and high demands on the confirmation and high structural information are needed for the characterisation of unknowns. New developments on analytical instrumentation have been applied to solve these difficulties. Furthermore and not less important has been the development of new specific software packages intended for data acquisition and, in particular, for post-run analysis. Thus, the use of sophisticated software tools has allowed successful screening analysis, determining several hundreds of analytes, and assisted in the structural elucidation of unknown compounds in a timely manner.

  4. Production and transformation of dissolved neutral sugars and amino acids by bacteria in seawater

    NASA Astrophysics Data System (ADS)

    Jørgensen, L.; Lechtenfeld, O. J.; Benner, R.; Middelboe, M.; Stedmon, C. A.

    2014-10-01

    Dissolved organic matter (DOM) in the ocean consists of a heterogeneous mixture of molecules, most of which are of unknown origin. Neutral sugars and amino acids are among the few recognizable biomolecules in DOM, and the molecular composition of these biomolecules is shaped primarily by biological production and degradation processes. This study provides insight into the bioavailability of biomolecules as well as the chemical composition of DOM produced by bacteria. The molecular compositions of combined neutral sugars and amino acids were investigated in DOM produced by bacteria and in DOM remaining after 32 days of bacterial degradation. Results from bioassay incubations with natural seawater (sampled from water masses originating from the surface waters of the Arctic Ocean and the North Atlantic Ocean) and artificial seawater indicate that the molecular compositions following bacterial degradation are not strongly influenced by the initial substrate or bacterial community. The molecular composition of neutral sugars released by bacteria was characterized by a high glucose content (47 mol %) and heterogeneous contributions from other neutral sugars (3-14 mol %). DOM remaining after bacterial degradation was characterized by a high galactose content (33 mol %), followed by glucose (22 mol %) and the remaining neutral sugars (7-11 mol %). The ratio of D-amino acids to L-amino acids increased during the experiments as a response to bacterial degradation, and after 32 days, the D/L ratios of aspartic acid, glutamic acid, serine and alanine reached around 0.79, 0.32, 0.30 and 0.51 in all treatments, respectively. The striking similarity in neutral sugar and amino acid compositions between natural (representing marine semi-labile and refractory DOM) and artificial (representing bacterially produced DOM) seawater samples, suggests that microbes transform bioavailable neutral sugars and amino acids into a common, more persistent form.

  5. Application of XCMS Online and toxicity bioassays to the study of transformation products of levofloxacin.

    PubMed

    Segura, Pedro A; Saadi, Karim; Clair, Alexandra; Lecours, Marc-André; Yargeau, Viviane

    2015-01-01

    We studied the nature and antimicrobial activity of ozonolysis transformation products (OTPs) of levofloxacin (LEV), a frequently detected fluoroquinolone antimicrobial in environmental waters. Two bioassays, the Kirby-Bauer test and the broth microdilution assay, were used to measure changes in the antimicrobial activity of solutions at low LEV to O3 molar ratios (2:1, 2:3 and 1:3) compared to solutions without added O3 (LEV:O3 1:0). The Kirby-Bauer test was not sensitive enough to detect significant differences in the growth inhibition zones in samples LEV:O3 2:1 and LEV:O3 1:0; however, the broth microdilution assay showed that bacterial growth inhibition was significantly lower (P<0.001) in the solutions exposed to O3. Loss of antimicrobial activity in LEV:O3 2:1 solutions of (48±16)% was in agreement with the concentration decrease of LEV of (36±3)% in those same samples. A method of identification of OTPs using XCMS Online was applied to LEV:O3 2:1 and 1:0 samples and indicated the presence of an OTP of LEV of formula C18H20O5N3F, which was identified as LEV-N-oxide. The molecular structure of this compound was partially confirmed by tandem mass spectrometry experiments. This study showed that even at sub-optimal ozone doses, OTPs of higher antimicrobial activity than LEV were not formed.

  6. Optimization of fipronil degradation by heterogeneous photocatalysis: Identification of transformation products and toxicity assessment.

    PubMed

    Gomes Júnior, Oswaldo; Borges Neto, Waldomiro; Machado, Antonio E H; Daniel, Daniela; Trovó, Alam G

    2017-03-01

    In this work it was studied the degradation of the insecticide fipronil (FIP) by heterogeneous photocatalysis induced by TiO2 P25. Using chemometric methods (Factorial Design and Response Surface Methodology), it was possible to evaluate the role of interaction between pH of the reaction medium, the reaction time and concentration of TiO2, optimizing the conditions for degradation using artificial radiation. Under the optimized conditions (79.4 mg L(-1) TiO2 and 66.3 min of reaction time for 1.1 mg L(-1) of FIP, at pH 5.6-5.8 (natural pH of the irradiated suspension)), 90.9% of FIP degradation was achieved at a degradation rate of 1.54 × 10(-2) m(2) kJ(-1) in terms of accumulated UVA radiation, corresponding to a pseudo-first order rate constant of 1.34 × 10(-2) min(-1) and a half-life of 51.7 min. Under the same conditions, these assays were extended to the use of solar radiation, when the degradation rate was 14% higher, with half-life of 45 min, suggesting that in both cases FIP degradation was successful. Four by-products of FIP photocatalytic degradation could be separated, identified, and their formation and consumption followed by UHPLC-Q-TOF. Although the same intermediates have been obtained using both irradiation sources, a faster degradation of the transformation products (TPs) was observed under solar irradiation due to its expressive photonic flux covering the UVA and UVB. It is noteworthy that both the untreated effluent and the identified compounds have low toxicity with respect to V. fischeri, suggesting that the heterogeneous photocatalysis may be a good alternative for treatment of wastewaters containing FIP and its TPs, mainly when solar radiation is the source of radiation, since under this condition the power consumption during the treatment can be significantly reduced.

  7. Nuclear waste glass product consistency test (PCT), Version 5.0. Revision 2

    SciTech Connect

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Ramsey, W.G.; Waters, B.J.

    1992-06-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced in the Defense Waste Processing Facility (DWPF), poured into stainless steel canisters, and eventually disposed of in a geologic repository. In order to comply with the Waste Acceptance Preliminary Specifications (WAPS), the durability of the glass needs to be measured during production to assure its long term stability and radionuclide release properties. A durability test, designated the Produce Consistency Test (PCT), was developed for DWPF glass in order to meet the WAPS requirements. The response of the PCT procedure was based on extensive testing with glasses of widely different compositions. The PCT was determined to be very reproducible, to yield reliable results rapidly, and to be easily performed in shielded cell facilities with radioactive samples. Version 5.0 of the PCT procedure is attached.

  8. High Efficiency Hydrogen Production from Nuclear Energy: Laboratory Demonstration of S-I Water-Splitting

    SciTech Connect

    Buckingham, R.; Russ, B.; Brown, L.; Besenbruch, G.E.; Gelbard, F.; Pickard F.S.; Leybros, J.; Le Duigou, A.; Borgard, J.M.

    2004-11-30

    The objective of the French CEA, US-DOE INERI project is to perform a lab scale demonstration of the sulfur iodine (S-I) water splitting cycle, and assess the potential of this cycle for application to nuclear hydrogen production. The project will design, construct and test the three major component reaction sections that make up the S-I cycle. The CEA will design and test the prime (Bunsen) reaction section. General Atomics will develop and test the HI decomposition section, and SNL will develop and test the H2SO4 decomposition section. Activities for this period included initial program coordination and information exchange, the development of models and analyses that will support the design of the component sections, and preliminary designs for the component reaction sections. The sections are being designed to facilitate integration into a closed loop demonstration in a later stage of the program.

  9. Impact of nuclear effects on weak pion production at energies below 1 GeV

    NASA Astrophysics Data System (ADS)

    Sobczyk, Jan T.; Żmuda, Jakub

    2013-06-01

    Charged-current single-pion production in scattering off 12C is investigated for neutrino energies up to 1 GeV. A model of Nieves [Phys. Rev. C10.1103/PhysRevC.83.045501 83, 045501 (2011)] is further developed by performing exact integration and avoiding several approximations. The effect of exact integration is investigated both for double-differential and total neutrino-nucleus cross sections. The impact of nuclear effects with in-medium modifications of the Δ(1232) resonance properties as well as an effective field theory nonresonant background contribution are discussed. The dependence of the fraction of Δ(1232) decays into n-particle-n-hole states on incident neutrino energy is estimated. The impact of various ingredients of the model on the ratio of muon to electron neutrino cross sections is investigated in detail.

  10. Fission product partitioning in aerosol release from simulated spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Di Lemma, F. G.; Colle, J. Y.; Rasmussen, G.; Konings, R. J. M.

    2015-10-01

    Aerosols created by the vaporization of simulated spent nuclear fuel (simfuel) were produced by laser heating techniques and characterised by a wide range of post-analyses. In particular attention has been focused on determining the fission product behaviour in the aerosols, in order to improve the evaluation of the source term and consequently the risk associated with release from spent fuel sabotage or accidents. Different simulated spent fuels were tested with burn-up up to 8 at. %. The results from the aerosol characterisation were compared with studies of the vaporization process by Knudsen Effusion Mass Spectrometry and thermochemical equilibrium calculations. These studies permit an understanding of the aerosol gaseous precursors and the gaseous reactions taking place during the aerosol formation process.

  11. Linear free energy correlations for fission product release from the Fukushima-Daiichi nuclear accident.

    PubMed

    Abrecht, David G; Schwantes, Jon M

    2015-03-03

    This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the initial source of the radionuclides to the environment to be from active reactors rather than the spent fuel pool. Linear correlations of the form In χ = −α ((ΔGrxn°(TC))/(RTC)) + β were obtained between the deposited concentrations, and the reduction potentials of the fission product oxide species using multiple reduction schemes to calculate ΔG°rxn (TC). These models allowed an estimate of the upper bound for the reactor temperatures of TC between 2015 and 2060 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, and 151Sm through atmospheric venting during the first month following the accident were obtained, indicating that large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.

  12. A combined nuclear magnetic resonance and computational study of monohydroxyflavones applied to product ion mass spectra.

    PubMed

    Burns, Darcy C; Ellis, David A; Li, Hongxia; Lewars, Errol G; March, Raymond E

    2007-01-01

    A method is presented for the estimation of 13C-chemical shifts for carbon atoms in protonated and deprotonated molecules; in principle, this method can be applied to ions in general. Experimental 13C-chemical shifts were found to vary linearly with computed atomic charges using the PM3 method. Pseudo-13C-chemical shifts for atoms in protonated and deprotonated molecules can be estimated from computed atomic charges for such atoms using the above linear relationship. The pseudo-13C-chemical shifts obtained were applied to the rationalization of product ion mass spectra of protonated and deprotonated molecules of flavone and 3-, 5-, 6-, 7-, 2'-, 3'-, and 4'-hydroxyflavones, where product ion formation is due to either cross-ring cleavage of the C-ring (retro-Diels-Alder reaction) or to cleavage of a C-ring bond followed by loss of either a small neutral molecule or a radical. The total product ion abundance ratio of C-ring cross cleavage to C-ring bond cleavage, gamma, varied by a factor of 660 for deprotonated monohydroxyflavones, i.e., from 0.014:1 to 9.27:1. The magnitude of gamma, which is dependent on the relative bond orders within the C-ring of the protonated and deprotonated molecules of monohydroxyflavones, can be rationalized on the basis of the magnitudes of the 13C- and 1H-chemical shifts as determined by nuclear magnetic resonance spectroscopy.

  13. Linear Free Energy Correlations for Fission Product Release from the Fukushima-Daiichi Nuclear Accident

    SciTech Connect

    Abrecht, David G.; Schwantes, Jon M.

    2015-03-03

    This paper extends the preliminary linear free energy correlations for radionuclide release performed by Schwantes, et al., following the Fukushima-Daiichi Nuclear Power Plant accident. Through evaluations of the molar fractionations of radionuclides deposited in the soil relative to modeled radionuclide inventories, we confirm the source of the radionuclides to be from active reactors rather than the spent fuel pool. Linear correlations of the form ln χ = -α (ΔGrxn°(TC))/(RTC)+β were obtained between the deposited concentration and the reduction potential of the fission product oxide species using multiple reduction schemes to calculate ΔG°rxn(TC). These models allowed an estimate of the upper bound for the reactor temperatures of TC between 2130 K and 2220 K, providing insight into the limiting factors to vaporization and release of fission products during the reactor accident. Estimates of the release of medium-lived fission products 90Sr, 121mSn, 147Pm, 144Ce, 152Eu, 154Eu, 155Eu, 151Sm through atmospheric venting and releases during the first month following the accident were performed, and indicate large quantities of 90Sr and radioactive lanthanides were likely to remain in the damaged reactor cores.

  14. Production of human apolipoprotein(a) transgenic NIBS miniature pigs by somatic cell nuclear transfer.

    PubMed

    Shimatsu, Yoshiki; Horii, Wataru; Nunoya, Tetsuo; Iwata, Akira; Fan, Jianglin; Ozawa, Masayuki

    2016-01-01

    Most cases of ischemic heart disease and stroke occur as a result of atherosclerosis. The purpose of this study was to produce a new Nippon Institute for Biological Science (NIBS) miniature pig model by somatic cell nuclear transfer (SCNT) for studying atherosclerosis. The human apolipoprotein(a) (apo(a)) genes were transfected into kidney epithelial cells derived from a male and a female piglet. Male cells were used as donors initially, and 275 embryos were transferred to surrogates. Three offspring were delivered, and the production efficiency was 1.1% (3/275). Serial female cells were injected into 937 enucleated oocytes. Eight offspring were delivered (production efficiency: 0.9%) from surrogates. One male and 2 female transgenic miniature pigs matured well. Lipoprotein(a) was found in the male and one of the female transgenic animals. These results demonstrate successful production of human apo(a) transgenic NIBS miniature pigs by SCNT. Our goal is to establish a human apo(a) transgenic NIBS miniature pig colony for studying atherosclerosis.

  15. Photon Production through Multi-step Processes Important in Nuclear Fluorescence Experiments

    SciTech Connect

    Hagmann, C; Pruet, J

    2006-10-26

    The authors present calculations describing the production of photons through multi-step processes occurring when a beam of gamma rays interacts with a macroscopic material. These processes involve the creation of energetic electrons through Compton scattering, photo-absorption and pair production, the subsequent scattering of these electrons, and the creation of energetic photons occurring as these electrons are slowed through Bremsstrahlung emission. Unlike single Compton collisions, during which an energetic photon that is scattered through a large angle loses most of its energy, these multi-step processes result in a sizable flux of energetic photons traveling at large angles relative to an incident photon beam. These multi-step processes are also a key background in experiments that measure nuclear resonance fluorescence by shining photons on a thin foil and observing the spectrum of back-scattered photons. Effective cross sections describing the production of backscattered photons are presented in a tabular form that allows simple estimates of backgrounds expected in a variety of experiments. Incident photons with energies between 0.5 MeV and 8 MeV are considered. These calculations of effective cross sections may be useful for those designing NRF experiments or systems that detect specific isotopes in well-shielded environments through observation of resonance fluorescence.

  16. Cell-free production of transducible transcription factors for nuclear reprogramming

    PubMed Central

    Yang, William C.; Patel, Kedar G.; Lee, Jieun; Ghebremariam, Yohannes T.; Wong, H. Edward; Cooke, John P.; Swartz, James R.

    2011-01-01

    Ectopic expression of a defined set of transcription factors chosen from Oct3/4, Sox2, c-Myc, Klf4, Nanog, and Lin28 can directly reprogram somatic cells to pluripotency. These reprogrammed cells are referred to as induced pluripotent stem cells (iPSCs). To date, iPSCs have been successfully generated using lentiviruses, retroviruses, adenoviruses, plasmids, transposons, and recombinant proteins. Nucleic acid-based approaches raise concerns about genomic instability. In contrast, a protein-based approach for iPSC generation can avoid DNA integration concerns as well as provide greater control over the concentration, timing, and sequence of transcription factor stimulation. Researchers recently demonstrated that polyarginine peptide conjugation can deliver recombinant protein reprogramming factor (RF) cargoes into cells and reprogram somatic cells into iPSCs. However, the protein-based approach requires a significant amount of protein for the reprogramming process. Producing fusion reprogramming factors in the large amounts required for this approach using traditional heterologous in vivo production methods is difficult and cumbersome since toxicity, product aggregation, and proteolysis by endogenous proteases limit yields. In this work, we show that cell-free protein synthesis (CFPS) is a viable option for producing soluble and functional transducible transcription factors for nuclear reprogramming. We used an E. coli-based cell-free protein synthesis system to express the above set of six human RFs as fusion proteins, each with a nona-arginine (R9) protein transduction domain. Using the flexibility offered by the CFPS platform, we successfully addressed proteolysis and protein solubility problems to produce full-length and soluble R9-RF fusions. We subsequently showed that R9-Oct3/4, R9-Sox2, and R9-Nanog exhibit cognate DNA binding activities, R9-Nanog translocates across the plasma and nuclear membranes, and R9-Sox2 exerts transcriptional activity on a known

  17. HIGH-TEMPERATURE ELECTROLYSIS FOR LARGE-SCALE HYDROGEN AND SYNGAS PRODUCTION FROM NUCLEAR ENERGY – SYSTEM SIMULATION AND ECONOMICS

    SciTech Connect

    J. E. O'Brien; M. G. McKellar; E. A. Harvego; C. M. Stoots

    2009-05-01

    A research and development program is under way at the Idaho National Laboratory (INL) to assess the technological and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for efficient high-temperature hydrogen production from steam. This work is supported by the US Department of Energy, Office of Nuclear Energy, under the Nuclear Hydrogen Initiative. This paper will provide an overview of large-scale system modeling results and economic analyses that have been completed to date. System analysis results have been obtained using the commercial code UniSim, augmented with a custom high-temperature electrolyzer module. Economic analysis results were based on the DOE H2A analysis methodology. The process flow diagrams for the system simulations include an advanced nuclear reactor as a source of high-temperature process heat, a power cycle and a coupled steam electrolysis loop. Several reactor types and power cycles have been considered, over a range of reactor outlet temperatures. Pure steam electrolysis for hydrogen production as well as coelectrolysis for syngas production from steam/carbon dioxide mixtures have both been considered. In addition, the feasibility of coupling the high-temperature electrolysis process to biomass and coal-based synthetic fuels production has been considered. These simulations demonstrate that the addition of supplementary nuclear hydrogen to synthetic fuels production from any carbon source minimizes emissions of carbon dioxide during the production process.

  18. Management of Hanford Site non-defense production reactor spent nuclear fuel, Hanford Site, Richland, Washington

    SciTech Connect

    1997-03-01

    The US Department of Energy (DOE) needs to provide radiologically, and industrially safe and cost-effective management of the non-defense production reactor spent nuclear fuel (SNF) at the Hanford Site. The proposed action would place the Hanford Site`s non-defense production reactor SNF in a radiologically- and industrially-safe, and passive storage condition pending final disposition. The proposed action would also reduce operational costs associated with storage of the non-defense production reactor SNF through consolidation of the SNF and through use of passive rather than active storage systems. Environmental, safety and health vulnerabilities associated with existing non-defense production reactor SNF storage facilities have been identified. DOE has determined that additional activities are required to consolidate non-defense production reactor SNF management activities at the Hanford Site, including cost-effective and safe interim storage, prior to final disposition, to enable deactivation of facilities where the SNF is now stored. Cost-effectiveness would be realized: through reduced operational costs associated with passive rather than active storage systems; removal of SNF from areas undergoing deactivation as part of the Hanford Site remediation effort; and eliminating the need to duplicate future transloading facilities at the 200 and 400 Areas. Radiologically- and industrially-safe storage would be enhanced through: (1) removal from aging facilities requiring substantial upgrades to continue safe storage; (2) utilization of passive rather than active storage systems for SNF; and (3) removal of SNF from some storage containers which have a limited remaining design life. No substantial increase in Hanford Site environmental impacts would be expected from the proposed action. Environmental impacts from postulated accident scenarios also were evaluated, and indicated that the risks associated with the proposed action would be small.

  19. Reductive dechlorination pathways of tetrachloroethylene and trichloroethylene and subsequent transformation of their dechlorination products by mackinawite (FeS) in the presence of metals.

    PubMed

    Jeong, Hoon Y; Kim, Haekyung; Hayes, Kim F

    2007-11-15

    Because of frequent co-occurrence of metals with chlorinated organic pollutants, Fe(II), Co(II), Ni(II), and Hg(II) were evaluated for their impact on the dechlorination pathways of PCE and TCE and the subsequent transformation of the initial dechlorination products by FeS. PCE transforms to acetylene via beta-elimination, TCE via hydrogenolysis, and 1,1-DCE via alpha-elimination, while TCE transforms to acetylene via beta-elimination and cis-DCE and 1,1-DCE via hydrogenolysis. Acetylene subsequently transforms in FeS batches, but little transformation of cis-DCE and 1,1-DCE was observed. Branching ratio calculations indicate that the added metals decrease the reductive transformation of PCE and TCE via beta-elimination relative to hydrogenolysis, resulting in a higher production of the toxic DCE byproducts. Nonetheless, acetylene is generally the dominant product. Production of highly water-soluble compound(s) is suspected as a significant source for incomplete mass recoveries. In the transformation of PCE and TCE, the formation of unidentified product(s) is most significant in Co(II)-added FeS batches. Although nearly complete mass recoveries were observed in the other FeS batches, the subsequent transformation of acetylene would lead to the formation of unidentified product(s) over long time periods.

  20. Production of triterpenoid anti-cancer compound taraxerol in Agrobacterium-transformed root cultures of butterfly pea (Clitoria ternatea L.).

    PubMed

    Swain, Swasti S; Rout, Kedar K; Chand, Pradeep K

    2012-10-01

    Independent transformed root somaclones (rhizoclones) of butterfly pea (Clitoria ternatea L.) were established using explant co-cultivation with Agrobacterium rhizogenes. Rhizoclones capable of sustained growth were maintained under low illumination in auxin-free agar-solidified MS medium through subcultures at periodic intervals. Integration of T(L)-DNA rolB gene in the transformed rhizoclone genome was verified by Southern blot hybridization, and the transcript expression of T(R)-DNA ags and man2 genes was ascertained by reverse transcription polymerase chain reaction analysis. The major compound isolated and purified from the transformed root extracts was identified as the pentacyclic triterpenoid compound taraxerol using IR, (1)H-NMR, and (13)C-NMR spectroscopy. The taraxerol yield in cultured hairy roots, as quantified by HPTLC analysis, was up to 4-fold on dry weight basis compared to that in natural roots. Scanning of bands from cultured transformed roots and natural roots gave super-imposable spectra with standard taraxerol, suggesting a remarkable homology in composition. To date, this is the first report claiming production of the cancer therapeutic phytochemical taraxerol in genetically transformed root cultures as a viable alternative to in vivo roots of naturally occurring plant species.

  1. A separate effect study of the influence of metallic fission products on CsI radioactive release from nuclear fuel

    NASA Astrophysics Data System (ADS)

    Di Lemma, F. G.; Colle, J. Y.; Beneš, O.; Konings, R. J. M.

    2015-10-01

    The chemistry of cesium and iodine is of main importance to quantify the radioactive release in case of a nuclear reactor accident, or sabotage involving irradiated nuclear materials. We studied the interaction of CsI with different metallic fission products such as Mo and Ru. These elements can be released from nuclear fuel when exposed to oxidising conditions, as in the case of contact of overheated nuclear fuel with air (e.g. in a spent fuel cask sabotage, uncovering of a spent fuel pond, or air ingress accidents). Experiments were performed by vaporizing mixtures of the compounds in air, and analysing the produced aerosols in view of a possible gas-gas and gas-aerosol reactions between the compounds. These results were compared with the gaseous species predicted by thermochemical equilibrium calculations and experimental equilibrium vaporization tests using Knudsen Effusion Mass Spectrometry.

  2. Modeling the Production of Beta-Delayed Gamma Rays for the Detection of Special Nuclear Materials

    SciTech Connect

    Hall, J M; Pruet, J A; Brown, D A; Descalle, M; Hedstrom, G W; Prussin, S G

    2005-02-14

    The objective of this LDRD project was to develop one or more models for the production of {beta}-delayed {gamma} rays following neutron-induced fission of a special nuclear material (SNM) and to define a standardized formatting scheme which will allow them to be incorporated into some of the modern, general-purpose Monte Carlo transport codes currently being used to simulate inspection techniques proposed for detecting fissionable material hidden in sea-going cargo containers. In this report, we will describe a Monte Carlo model for {beta}-delayed {gamma}-ray emission following the fission of SNM that can accommodate arbitrary time-dependent fission rates and photon collection histories. The model involves direct sampling of the independent fission yield distributions of the system, the branching ratios for decay of individual fission products and spectral distributions representing photon emission from each fission product and for each decay mode. While computationally intensive, it will be shown that this model can provide reasonably detailed estimates of the spectra that would be recorded by an arbitrary spectrometer and may prove quite useful in assessing the quality of evaluated data libraries and identifying gaps in the libraries. The accuracy of the model will be illustrated by comparing calculated and experimental spectra from the decay of short-lived fission products following the reactions {sup 235}U(n{sub th}, f) and {sup 239}Pu(n{sub th}, f). For general-purpose transport calculations, where a detailed consideration of the large number of individual {gamma}-ray transitions in a spectrum may not be necessary, it will be shown that a simple parameterization of the {gamma}-ray source function can be defined which provides high-quality average spectral distributions that should suffice for calculations describing photons being transported through thick attenuating media. Finally, a proposal for ENDF-compatible formats that describe each of the models and

  3. Ecotoxicity and genotoxicity of cyclophosphamide, ifosfamide, their metabolites/transformation products and their mixtures.

    PubMed

    Česen, Marjeta; Eleršek, Tina; Novak, Matjaž; Žegura, Bojana; Kosjek, Tina; Filipič, Metka; Heath, Ester

    2016-03-01

    Cyclophosphamide (CP) and ifosfamide (IF) are commonly used cytostatic drugs that repress cell division by interaction with DNA. The present study investigates the ecotoxicity and genotoxicity of CP, IF, their human metabolites/transformation products (TPs) carboxy-cyclophosphamide (CPCOOH), keto-cyclophosphamide (ketoCP) and N-dechloroethyl-cyclophosphamide (NdCP) as individual compounds and as mixture. The two parent compounds (CP and IF), at concentrations up to 320 mg L(-1), were non-toxic towards the alga Pseudokirchneriella subcapitata and cyanobacterium Synecococcus leopoliensis. Further ecotoxicity studies of metabolites/TPs and a mixture of parent compounds and metabolites/TPs performed in cyanobacteria S. leopoliensis, showed that only CPCOOH (EC50 = 17.1 mg L(-1)) was toxic. The measured toxicity (EC50 = 11.5 mg L(-1)) of the mixture was lower from the toxicity predicted by concentration addition model (EC50 = 21.1 mg L(-1)) indicating potentiating effects of the CPCOOH toxicity. The SOS/umuC assay with Salmonella typhimurium revealed genotoxic activity of CP, CPCOOH and the mixture in the presence of S9 metabolic activation. Only CPCOOH was genotoxic also in the absence of metabolic activation indicating that this compound is a direct acting genotoxin. This finding is of particular importance as in the environment such compounds can directly affect DNA of non-target organisms and also explains toxicity of CPCOOH against cyanobacteria S. leopoliensis. The degradation study with UV irradiation of samples containing CP and IF showed efficient degradation of both compounds and remained non-toxic towards S. leopoliensis, suggesting that no stable TPs with adverse effects were formed. To our knowledge, this is the first study describing the ecotoxicity and genotoxicity of the commonly used cytostatics CP and IF, their known metabolites/TPs and their mixture. The results indicate the importance of toxicological evaluation and monitoring of

  4. Characterization of biomass burning: Fourier transform infrared analysis of wood and vegetation combustion products

    NASA Astrophysics Data System (ADS)

    Padilla, Diomaris

    The Fourier transform infrared examination of the combustion products of a selection of forest materials has been undertaken in order to guide future detection of biomass burning using satellite remote sensing. Combustion of conifer Pinus strobus (white pine) and deciduous Prunus serotina (cherry), Acer rubrum (red maple), Friglans nigra (walnut), Fraxinus americana (ash), Betula papyrifera (birch), Querus alba (white oak) and Querus rubra (red oak) lumber, in a Meeker burner flame at temperatures of 400 to 900 degrees Fahrenheit produces a broad and relatively flat signal with a few distinct peaks throughout the wavelength spectra (400 to 4000 cm-1). The distinct bands located near wavelengths of 400-700, 1500-1700, 2200-2400 and 3300-3600 cm-1 vary in intensity with an average difference between the highest and lowest absorbing species of 47 percent. Spectral band differences of 10 percent are within the range of modern satellite spectrometers, and support the argument that band differences can be used to discriminate between various types of vegetation. A similar examination of soot and smoke derived from the leaves and branches of the conifer Pinus strobus and deciduous Querus alba (white oak), Querus rubra (red oak), Liquidambar styraciflua (sweetgum), Acer rubrum (maple) and Tilea americana (American basswood) at combustion temperatures of 400 to 900 degrees Fahrenheit produce a similar broad spectrum with a shift in peak location occurring in peaks below the 1700 cm-1 wavelength. The new peaks occur near wavelengths of 1438-1444, 875 and 713 cm-1. This noted shift in wavelength location may be indicative of a fingerprint region for green woods distinguishable from lumber through characteristic biomass suites. Temperature variations during burning show that the spectra of low temperature smoldered aerosols, occurring near 400 to 450 degrees Fahrenheit, may be distinguished from higher temperature soot aerosols that occur above 600 degrees Fahrenheit. A

  5. Empowering biotechnology in southern Africa: establishment of a robust transformation platform for the production of transgenic industry-preferred cassava.

    PubMed

    Chetty, C C; Rossin, C B; Gruissem, W; Vanderschuren, H; Rey, M E C

    2013-01-25

    Knowledge and technology transfer to African laboratories and farmers is an important objective for achieving food security and sustainable crop production on the sub-Saharan African continent. Cassava (Manihot esculenta Crantz) is a vital source of calories for more than a billion people in developing countries, and its potential industrial use for starch and bioethanol in the tropics is increasingly being recognized. However, cassava production remains constrained by the susceptibility of the crop to several biotic and abiotic stresses. For more than a decade, biotechnology has been considered an attractive tool to improve cassava as it substantially circumvents the limitations of traditional breeding, which is particularly time-consuming and tedious because of the high heterozygosity of the crop. A major constraint to the development of biotechnological approaches for cassava improvement has been the lack of an efficient and robust transformation and regeneration system. Despite some success achieved in genetic modification of the model cassava cultivar Tropical Manihot Series (TMS), TMS 60444, in some European and U.S. laboratories, the lack of a reproducible and robust protocol has not allowed the establishment of a routine transformation system in sub-Saharan Africa. In this study, we optimized a robust and efficient protocol developed at ETH Zurich to successfully establish transformation of a commercially cultivated South African landrace, T200, and compared this with the benchmark model cultivar TMS 60444. Results from our study demonstrated high transformation rates for both T200 (23 transgenic lines from 100 friable embryogenic callus (FEC) clusters) compared with TMS 60444 (32 transgenic lines from 100 FEC clusters). The success in transforming landraces or farmer-preferred cultivars has been limited, and the high transformation rate of an industry-preferred landrace in this study is encouraging for a feasible transformation program for cassava

  6. 9,10-Phenanthrenedione biodegradation by a soil bacterium and identification of transformation products by LC/ESI-MS/MS.

    PubMed

    Kanaly, Robert A; Hamamura, Natsuko

    2013-09-01

    Transformation of 9,10-phenanthrenedione, a cytotoxic derivative of phenanthrene, was shown to occur by a soil bacterium belonging to the genus Sphingobium. Phenanthrene-grown cells of this strain were exposed to 50mgL(-1) 9,10-phenanthrenedione in liquid cultures, extracted, and extracts were analyzed by liquid chromatography electrospray ionization mass spectrometry in negative ionization mode. Full scan analyses of exposed cells over the range from m/z 50 to m/z 500 were compared to abiotic and biotic controls. Product and precursor ion scan mode analyses indicated that at least three aromatic ring-cleavage transformation products of 9,10-phenanthrenedione were present and structures for these products, corresponding to [M-H](-)=271, [M-H](-)=241, and [M-H](-)=339 were proposed to be 4-(1-hydroxy-3,4-dioxo-2-naphthyl)-2-oxo-but-3-enoic acid, 2,2'-diphenic acid and 2-[(6-carboxy-2,3-dihydroxy-phenyl)-hydroxy-methyl]-5-oxo-hex-3-enedioic acid. The identity of 2,2'-diphenic acid was confirmed by comparison to an authentic standard and when the strain was exposed to 50mgL(-1) 2,2'-diphenic acid in separate assays, a transformation product with a similar mass spectrum as 9,10-phenanthrenedione-derived [M-H](-)=339 was revealed. Based upon these results, pathways for the transformation of 9,10-phenanthrenedione by strain KK22 were proposed. Strain KK22 appeared unable to use 9,10-phenanthrenedione as a growth substrate under these conditions. This is the first report of potential biotransformation pathways of 9,10-phenanthrenedione by a bacterium.

  7. Transformation of Bacillus subtilis in alpha-amylase productivity by deoxyribonucleic acid from B. subtilis var. amylosacchariticus.

    PubMed

    Yoneda, Y; Yamane, K; Yamaguchi, K; Nagata, Y; Maruo, B

    1974-12-01

    Deoxyribonucleic acid (DNA) of Bacillus subtilis var. amylosacchariticus showed almost the same ability as B. subtilis Marburg to induce transfer of several genetic markers in DNA-mediated transformation. DNA-DNA hybridization data also showed an intimate relationship between the two strains. Genetic elements involved in the production of extracellular alpha-amylase (EC 3.2.1.1.) in B. subtilis var. amylosacchariticus were studied by using DNA-mediated transformation. Two Marburg derivatives, NA20(amyR2) and NA20-22(amyR1), produced about 50 and 10 U of alpha-amylase per mg of cells, respectively, whereas B. subtilis var. amylosacchariticus produced as much as 150 U of the enzyme per mg of cells. When B. subtilis var. amylosacchariticus was crossed with strain NA20-22 as recipient, transformants that acquired high alpha-amylase productivity (about 50 U/mg of cells) were obtained. Genetic analysis revealed that a regulator gene (amyR) for alpha-amylase synthesis was found in B. subtilis var. amylosacchariticus, as in the case of B. natto 1212 (amyR2) and B. subtilis Marburg (amyR1). The allele was designated amyR3; it is phenotypically indistinguishable from amyR2, but is readily distinguishable from amyR1. The presence of amyR3 was not sufficient for an organism to render production of an exceptional amount of alpha-amylase. Extra-high alpha-amylase producers could be obtained by crossing B. subtilis var. amylosacchariticus as donor with strain NA20 as recipient. The transformants produced the same or even greater amounts of the enzyme than the donor strain. Results suggest the presence of another gene that is involved in the production of the exceptional amount of alpha-amylase.

  8. Forward production of charged pions with incident protons on nuclear targets at the CERN Proton Synchrotron

    SciTech Connect

    Apollonio, M.; Chimenti, P.; Giannini, G.; Artamonov, A.; Giani, S.; Gilardoni, S.; Gorbunov, P.; Grant, A.; Grossheim, A.; Ivanchenko, A.; Ivanchenko, V.; Kayis-Topaksu, A.; Panman, J.; Papadopoulos, I.; Tcherniaev, E.; Tsukerman, I.; Wiebusch, C.; Zucchelli, P.; Bagulya, A.; Grichine, V.

    2009-09-15

    Measurements of the double-differential {pi}{sup {+-}} production cross section in the range of momentum 0.5{<=}p{<=}8.0 GeV/c and angle 0.025{<=}{theta}{<=}0.25 rad in collisions of protons on beryllium, carbon, nitrogen, oxygen, aluminum, copper, tin, tantalum, and lead are presented. The data were taken with the large-acceptance HAdRon Production (HARP) detector in the T9 beamline of the CERN Proton Synchrotron. Incident particles were identified by an elaborate system of beam detectors. Thin targets of 5% of a nuclear interaction length were used. The tracking and identification of the produced particles were performed using the forward system of the HARP experiment. Results are obtained for the double-differential cross sections d{sup 2}{sigma}/dp d{omega} mainly at four incident proton beam momenta (3, 5, 8, and 12 GeV/c). Measurements are compared with the GEANT4 and MARS Monte Carlo generators. A global parametrization is provided as an approximation of all the collected datasets, which can serve as a tool for quick yield estimates.

  9. Large-angle production of charged pions with incident pion beams on nuclear targets

    SciTech Connect

    Apollonio, M.; Chimenti, P.; Giannini, G.; Artamonov, A.; Giani, S.; Gilardoni, S.; Gorbunov, P.; Grant, A.; Grossheim, A.; Ivanchenko, A.; Ivanchenko, V.; Kayis-Topaksu, A.; Panman, J.; Papadopoulos, I.; Tcherniaev, E.; Tsukerman, I.; Wiebusch, C.; Zucchelli, P.; Bagulya, A.; Grichine, V.

    2009-12-15

    Measurements of the double-differential {pi}{sup {+-}} production cross section in the range of momentum 100{<=}p{<=}800 MeV/c and angle 0.35{<=}{theta}{<=}2.15 rad using {pi}{sup {+-}} beams incident on beryllium, aluminum, carbon, copper, tin, tantalum, and lead targets are presented. The data were taken with the large-acceptance hadron production (HARP) detector in the T9 beam line of the CERN Proton Synchrotron. The secondary pions were produced by beams in a momentum range from 3 to 12.9GeV/c hitting a solid target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross sections d{sup 2}{sigma}/dp d{theta} at six incident-beam momenta. Data at 3,5,8, and 12GeV/c are available for all targets, while additional data at 8.9 and 12.9GeV/c were taken in positive particle beams on Be and Al targets, respectively. The measurements are compared with several generators of GEANT4 and the MARS Monte Carlo simulation.

  10. Identification and RP-HPLC-ESI-MS/MS quantitation of bitter-tasting beta-acid transformation products in beer.

    PubMed

    Haseleu, Gesa; Intelmann, Daniel; Hofmann, Thomas

    2009-08-26

    Thermal treatment of the hop beta-acid colupulone under wort boiling conditions, followed by LC-TOF-MS and 1D/2D NMR spectroscopy, revealed cohulupone, hulupinic acid, nortricyclocolupone, two tricyclocolupone epimers, two dehydrotricyclocolupone epimers, two hydroxytricyclocolupone epimers, and two hydroperoxytricyclocolupone epimers as the major bitter-tasting beta-acid transformation products. Among these compounds, the chemical structures of the hydroxy- as well as the hydroperoxytricyclocolupone epimers have not previously been confirmed by 1D/2D NMR experiments. Depending on their chemical structure, these compounds showed rather low recognition thresholds ranging from 7.9 to 90.3 micromol/L. The lowest thresholds of 7.9 and 14.7 micromol/L were found for cohulupone, imparting a short-lasting, iso-alpha-acid-like bitter impression, and for hydroxytricyclocolupone, exhibiting a long-lasting, lingering, and harsh bitterness perceived on the posterior tongue and throat. Furthermore, HPLC-ESI-MS/MS analysis allowed for the first time a simultaneous detection and quantitation of these bitter-tasting beta-acid transformation products in a range of commercial beer samples without any sample cleanup. Depending on the type of beer, these studies revealed remarkable differences in the concentrations of the individual beta-acid transformation products.

  11. Rhizophagus irregularis as an elicitor of rosmarinic acid and antioxidant production by transformed roots of Ocimum basilicum in an in vitro co-culture system.

    PubMed

    Srivastava, Shivani; Conlan, Xavier A; Cahill, David M; Adholeya, Alok

    2016-11-01

    Arbuscular mycorrhiza is a symbiotic association formed between plant roots and soil borne fungi that alter and at times improve the production of secondary metabolites. Detailed information is available on mycorrhizal development and its influence on plants grown under various edapho-climatic conditions, however, very little is known about their influence on transformed roots that are rich reserves of secondary metabolites. This raises the question of how mycorrhizal colonization progresses in transformed roots grown in vitro and whether the mycorrhizal fungus presence influences the production of secondary metabolites. To fully understand mycorrhizal ontogenesis and its effect on root morphology, root biomass, total phenolics, rosmarinic acid, caffeic acid and antioxidant production under in vitro conditions, a co-culture was developed between three Agrobacterium rhizogenes-derived, elite-transformed root lines of Ocimum basilicum and Rhizophagus irregularis. We found that mycorrhizal ontogenesis in transformed roots was similar to mycorrhizal roots obtained from an in planta system. Mycorrhizal establishment was also found to be transformed root line-specific. Colonization of transformed roots increased the concentration of rosmarinic acid, caffeic acid and antioxidant production while no effect was observed on root morphological traits and biomass. Enhancement of total phenolics and rosmarinic acid in the three mycorrhizal transformed root lines was found to be transformed root line-specific and age dependent. We reveal the potential of R. irregularis as a biotic elicitor in vitro and propose its incorporation into commercial in vitro secondary metabolite production via transformed roots.

  12. Quantum mechanical theory of positron production in heavy ion collisions with nuclear contact

    SciTech Connect

    Heinz, U.

    1986-01-01

    The interplay between atomic and nuclear interactions in heavy ion collisions with nuclear contact is studied. The general theoretical description is outlined and analyzed in a number of different limits (semiclassical approximation, DWBA, fully quantal description). The two most important physical mechanisms for generating atomic-nuclear interference, i.e., energy conservation and the introduction of additional phase shifts by nuclear reactions, are extracted. The resulting typical coupling matrix elements are analyzed for their relative importance in atomic and nuclear excitations. The description of nuclear influence on atomic excitations in terms of a classical time delay caused by nuclear reactions is reviewed, and its relationship to the underlying quantal character of the nuclear reaction is discussed. The theory is applied to spontaneous positron emission in supercritical heavy-ion collisions (Z/sub tot/ greater than or equal to 173). It is shown that nuclear contact can lead to line structures in the positron energy spectra if the probability distribution for nuclear delay times caused by the contact has contributions for T greater than or equal to 10/sup -19/ sec. We explicitly evaluate a model where a pocket in the internuclear potential near the touching configuration leads to formation of nuclear molecules, and predict a resonance-like excitation function for the positron peak. 25 refs., 7 figs.

  13. Nuclear translocation of NF-κB in intact human gut tissue upon stimulation with coffee and roasting products.

    PubMed

    Sauer, Tanja; Raithel, Martin; Kressel, Jürgen; Muscat, Sonja; Münch, Gerald; Pischetsrieder, Monika

    2011-09-01

    In the healthy gut, NF-κB is a critical factor of the intestinal immune system, whereas inflammatory bowel diseases are associated with chronic activation of NF-κB. Previous studies indicated that coffee induces nuclear translocation of NF-κB in macrophages, an effect attributed to roasting products. In the present work, coffee extract or roasting products induced nuclear translocation of NF-κB in macrophages, Caco-2 cells, and primary human intestinal microvascular endothelial cells (up to fivefold, p<0.001). Since the effect clearly depended on the cell type, ex vivo experiments were performed with intact human gut tissue from biopsies. The uniformity of the specimens and tissue viability during ex vivo incubation for up to 2 h were verified. Roasting products led to a concentration dependent significant increase of nuclear translocation of NF-κB in human gut tissue (up to 2.85 fold increase, p=0.0321), whereas coffee extract induced a trend towards higher nuclear NF-κB concentration. NF-κB activation in macrophages and Caco-2 cells by roasting products was significantly blocked by co-incubation with catalase (p=0.011 and p=0.024) indicating involvement of H(2)O(2)-signaling. Monitoring of extracellular H(2)O(2) indicated that roasting products in coffee constantly generate H(2)O(2) by spontaneous oxygen reduction, which is only partially detoxified by cellular antioxidative systems. Thus, it can be concluded that ex vivo stimulation of intact human gut tissue is a valuable model to study nutritional effects on complex tissue systems. Furthermore, the consumption of coffee and roasting products may be able to induce nuclear NF-κB translocation in the human gut.

  14. Dilepton and φ meson production in elementary and nuclear collisions at the NICA fixed-target experiment

    NASA Astrophysics Data System (ADS)

    Wolf, György; Zétényi, Miklós

    2016-08-01

    We argue that the NICA fixed-target experiment will be able to provide very important new experimental data on dilepton and φ meson production in the basically undiscovered energy domain between the SIS and SPS energies. Experimental information about elementary cross sections in this energy region is an essential ingredient of models of nuclear collisions in the same energy range.

  15. Advanced Borobond™ Shields for Nuclear Materials Containment and Borobond™ Immobilization of Volatile Fission Products - Final CRADA Report

    SciTech Connect

    Wagh, Arun S.

    2016-05-19

    Borobond is a company-proprietary material developed by the CRADA partner in collaboration with Argonne, and is based on Argonne's Ceramicrete technology. It is being used by DOE for nuclear materials safe storage, and Boron Products, LLC is the manufacturer and supplier of Borobond.

  16. Discourse, Power, and Knowledge in the Management of "Big Science": The Production of Consensus in a Nuclear Fusion Research Laboratory.

    ERIC Educational Resources Information Center

    Kinsella, William J.

    1999-01-01

    Extends a Foucauldian view of power/knowledge to the archetypical knowledge-intensive organization, the scientific research laboratory. Describes the discursive production of power/knowledge at the "big science" laboratory conducting nuclear fusion research and illuminates a critical incident in which the fusion research…

  17. Mortality from malignant tumors in hematopoiotic and lymphatic tissues among personnel of the first nuclear production complex in the USSR

    SciTech Connect

    Kochurnikova, N.A.; Buldakov, L.A.; Bysogolov, G.D.

    1992-06-01

    This paper reports on results from the study of haemo-lymphoblostosis (HLB) mortality among personnel of the first nuclear materials production complex in the USSR in 1948-1953. A cohort of men started to work in the same complex in 1954-58 was used as a comparative group. 6 refs., 4 figs., 6 tabs.

  18. Measuring the impact of temperature changes on the wine production in the Douro Region using the short time fourier transform.

    PubMed

    Cunha, Mário; Richter, Christian

    2012-03-01

    This paper investigates the cyclical behaviour of the wine production in Douro region during the period 1932-2008. In general, wine production is characterised by large fluctuations which are composed of short-term and/or long-term cycles. The aim of this paper is twofold: firstly, we decompose the wine production's variance in order to find the dominating production cycles, i.e we try to explain whether wine production follows more long-term or short-term cycles. In the next step, we try to explain those cycles using a dependent variable, namely the medium spring temperature (Tm_Sp) for the period 1967-2008. We estimated a Time-Varying Autoregressive Model, which could explain 75% of the production that is characterised by 4.8- and 2.5-year cycles. We use the Short Time Fourier Transform to decompose the link between wine production and temperature. When the temperature was incorporated, the R (2) increased and the Akaike criterion value was lower. Hence, Tm_Sp causes a large amount of these cycles and the wine production variation reflects this relationship. In addition to an upward trend, there is a clearly identifiable cycle around the long-term trend in production. We also show how much of the production cycle and what cycle in particular is explained by the Tm_Sp. There is a stable but not constant link between production and the Tm_Sp. In particular, the temperature is responsible for 5.2- and 2.4-year cycles which has been happening since the 1980s. The Tm_Sp can also be used as an indicator for the 4.8- and 2.5-year cycles of production. The developed model suggests that stationarity is a questionable assumption, and this means that historical distributions of wine production are going to need dynamic updating.

  19. Measuring the impact of temperature changes on the wine production in the Douro Region using the short time fourier transform

    NASA Astrophysics Data System (ADS)

    Cunha, Mário; Richter, Christian

    2012-03-01

    This paper investigates the cyclical behaviour of the wine production in Douro region during the period 1932-2008. In general, wine production is characterised by large fluctuations which are composed of short-term and/or long-term cycles. The aim of this paper is twofold: firstly, we decompose the wine production's variance in order to find the dominating production cycles, i.e we try to explain whether wine production follows more long-term or short-term cycles. In the next step, we try to explain those cycles using a dependent variable, namely the medium spring temperature (Tm_Sp) for the period 1967-2008. We estimated a Time-Varying Autoregressive Model, which could explain 75% of the production that is characterised by 4.8- and 2.5-year cycles. We use the Short Time Fourier Transform to decompose the link between wine production and temperature. When the temperature was incorporated, the R 2 increased and the Akaike criterion value was lower. Hence, Tm_Sp causes a large amount of these cycles and the wine production variation reflects this relationship. In addition to an upward trend, there is a clearly identifiable cycle around the long-term trend in production. We also show how much of the production cycle and what cycle in particular is explained by the Tm_Sp. There is a stable but not constant link between production and the Tm_Sp. In particular, the temperature is responsible for 5.2- and 2.4-year cycles which has been happening since the 1980s. The Tm_Sp can also be used as an indicator for the 4.8- and 2.5-year cycles of production. The developed model suggests that stationarity is a questionable assumption, and this means that historical distributions of wine production are going to need dynamic updating.

  20. Organizing the "Productive Transformation of Knowledge": Linking University and Industry in Traditional Manufacturing Areas

    ERIC Educational Resources Information Center

    Balduzzi, Giacomo; Rostan, Michele

    2016-01-01

    The article aims at underlining the role played by extra-academic and autonomous organizations strongly connected with university institutions and researchers in producing, acquiring, transferring and transforming knowledge. The study examines a particular Italian case, the "Politecnico Calzaturiero", a private institution providing…

  1. Nuclear glutathione S-transferase pi prevents apoptosis by reducing the oxidative stress-induced formation of exocyclic DNA products.

    PubMed

    Kamada, Kensaku; Goto, Shinji; Okunaga, Tomohiro; Ihara, Yoshito; Tsuji, Kentaro; Kawai, Yoshichika; Uchida, Koji; Osawa, Toshihiko; Matsuo, Takayuki; Nagata, Izumi; Kondo, Takahito

    2004-12-01

    We previously found that nuclear glutathione S-transferase pi (GSTpi) accumulates in cancer cells resistant to anticancer drugs, suggesting that it has a role in the acquisition of resistance to anticancer drugs. In the present study, the effect of oxidative stress on the nuclear translocation of GSTpi and its role in the protection of DNA from damage were investigated. In human colonic cancer HCT8 cells, the hydrogen peroxide (H(2)O(2))-induced increase in nuclear condensation, the population of sub-G(1) peak, and the number of TUNEL-positive cells were observed in cells pretreated with edible mushroom lectin, an inhibitor of the nuclear transport of GSTpi. The DNA damage and the formation of lipid peroxide were dependent on the dose of H(2)O(2) and the incubation time. Immunological analysis showed that H(2)O(2) induced the nuclear accumulation of GSTpi but not of glutathione peroxidase. Formation of the 7-(2-oxo-hepyl)-substituted 1,N(2)-etheno-2'-deoxyguanosine adduct by the reaction of 13-hydroperoxyoctadecadienoic acid (13-HPODE) with 2'-deoxyguanosine was inhibited by GSTpi in the presence of glutathione. The conjugation product of 4-oxo-2-nonenal, a lipid aldehyde of 13-HPODE, with GSH in the presence of GSTpi, was identified by LS/MS. These results suggested that nuclear GSTpi prevents H(2)O(2)-induced DNA damage by scavenging the formation of lipid-peroxide-modified DNA.

  2. Soybean genetic transformation: A valuable tool for the functional study of genes and the production of agronomically improved plants

    PubMed Central

    Homrich, Milena Schenkel; Wiebke-Strohm, Beatriz; Weber, Ricardo Luís Mayer; Bodanese-Zanettini, Maria Helena

    2012-01-01

    Transgenic plants represent an invaluable tool for molecular, genetic, biochemical and physiological studies by gene overexpression or silencing, transposon-based mutagenesis, protein sub-cellular localization and/or promoter characterization as well as a breakthrough for breeding programs, allowing the production of novel and genetically diverse genotypes. However, the stable transformation of soybean cannot yet be considered to be routine because it depends on the ability to combine efficient transformation and regeneration techniques. Two methods have been used with relative success to produce completely and stably transformed plants: particle bombardment and the Agrobacterium tumefaciens system. In addition, transformation by Agrobacterium rhizogenes has been used as a powerful tool for functional studies. Most available information on gene function is based on heterologous expression systems. However, as the activity of many promoters or proteins frequently depends on specific interactions that only occur in homologous backgrounds, a final confirmation based on a homologous expression system is desirable. With respect to soybean biotech improvement, transgenic lines with agronomical, nutritional and pharmaceutical traits have been obtained, including herbicide-tolerant soybeans, which represented the principal biotech crop in 2011, occupying 47% of the global biotech area. PMID:23412849

  3. Highly specific antibody to Rous sarcoma virus src gene product recognizes nuclear and nucleolar antigens in human cells.

    PubMed Central

    David-Pfeuty, T; Nouvian-Dooghe, Y

    1995-01-01

    An antiserum to the Rous sarcoma virus-transforming protein pp60v-src, raised in rabbits immunized with the bacterially produced protein alpha p60 serum (M. D. Resh and R. L. Erikson, J. Cell Biol. 100:409-417, 1985) previously reported to detect very specifically a novel population of pp60v-src and pp60c-src molecules associated with juxtareticular nuclear membranes in normal and Rous sarcoma virus-infected cells of avian and mammalian origin, was used here to investigate by immunofluorescence microscopy localization patterns of Src molecules in human cell lines, either normal or derived from spontaneous tumors. We found that the alpha p60 serum reveals nuclear and nucleolar concentrations of antigens in all the human cell lines tested and in two rat and mouse hepatoma cell lines derived from adult tumorous tissues but not in any established rat and mouse cell lines either untransformed or transformed by the src and ras oncogenes. Both the nuclear and nucleolar stainings can be totally extinguished by preincubation of the serum with highly purified chicken c-Src. We show also that the partitioning of the alpha p60-reactive proteins among the whole nucleus and the nucleolus depends mostly on two different parameters: the position in the cell cycle and the degree of cell confluency. Our observations raise the attractive possibility that, in differentiated cells, pp60c-src and related proteins might be involved not only in mediating the transduction of mitogenic signals at the plasma membrane level but also in controlling progression through the cell cycle and entry in mitosis by interacting with cell division cycle regulatory components at the nuclear level. PMID:7853507

  4. Spindlin1, a novel nuclear protein with a role in the transformation of NIH3T3 cells.

    PubMed

    Gao, Yanhong; Yue, Wen; Zhang, Peng; Li, Li; Xie, Xiaoyan; Yuan, Hongfeng; Chen, Lin; Liu, Daqing; Yan, Fang; Pei, Xuetao

    2005-09-23

    spindlin1, a novel human gene recently isolated by our laboratory, is highly homologous to mouse spindlin gene. In this study, we cloned cDNA full-length of this novel gene and send it to GenBank database as spindlin1 (Homo sapiens spindlin1) with Accession No. AF317228. In order to investigate the function of spindlin1, we studied further the subcellular localization of Spindlin1 protein and the effects of spindlin1 overexpression in NIH3T3 cells. The results showed that the fusion protein pEGFP-N1-spindlin1 was located in the nucleus and the C-terminal is correlated with nuclear localization of Spindlin1 protein. NIH3T3 cells which could stably express spindlin1 as a result of RT-PCR analysis compared with the control cells displayed a complete morphological change; made cell growth faster; and increased the percentage of cells in G2/M and S phase. Furthermore, overexpressed spindlin1 cells formed colonies in soft agar in vitro and formed tumors in nude mice. Our findings provide direct evidence that spindlin1 gene may contribute to tumorigenesis.

  5. Genetic transformation of Bacopa monnieri by wild type strains of Agrobacterium rhizogenes stimulates production of bacopa saponins in transformed calli and plants.

    PubMed

    Majumdar, Sukanya; Garai, Saraswati; Jha, Sumita

    2011-05-01

    We have developed an efficient transformation system for Bacopa monnieri, an important Indian medicinal plant, using Agrobacterium rhizogenes strains LBA 9402 and A4. Transformed roots induced by strain LBA 9402 spontaneously dedifferentiated to callus while excised roots induced by strain A4 spontaneously showed induction of shoot buds within 10 days. PCR and RT-PCR analysis revealed the presence and expression of the rolAB and rolC genes at the transcription level in pRi A4 transformed cultures indicating that the TL-DNA was integrated retained and expressed in the A4-Ri transformed shoots. Transformed calli showed the presence of rolAB or rol A, TR and ags genes. Transformed plants showed morphological features typically seen in transgenic plants produced by A. rhizogenes. Growth and biomass accumulation was significantly higher in the transformed shoots (twofold) and roots (fourfold) than in the non-transformed (WT) plants. In pRi A4-transformed plants, the content of bacopasaponin D, bacopasaponin F, bacopaside II and bacopaside V was enhanced significantly as compared to WT plants of similar age while bacoside A3 and bacopasaponin C content was comparable with that of WT plants. Significant increase in content of five bacopa saponins could be detected in pRi 9402-transformed callus cultures. There is an overall stimulatory effect on accumulation of bacopa saponins in transformed plants and cells of B. monnieri establishing the role of endogenous elicitation by Ri T-DNA of A. rhizogenes.

  6. Road asphalt modifiers based on oil-resistant rubbers and products of thermal transformations of coals

    SciTech Connect

    Sharypov, V.I.; Kiselev, V.P.; Beregovtsova, N.G.; Bugaenko, M.B.; Kuznetsov, B.N.

    2008-07-15

    The properties of asphalt binder modifiers prepared by dissolving butadiene-acrylonitrile rubbers and their production waste in liquid products of heat treatment of various brands of coal were studied.

  7. Gas-phase detection of solid-state fission product complexes for post-detonation nuclear forensic analysis.

    PubMed

    Stratz, S Adam; Jones, Steven A; Oldham, Colton J; Mullen, Austin D; Jones, Ashlyn V; Auxier, John D; Hall, Howard L

    2016-01-01

    This study presents the first known detection of fission products commonly found in post-detonation nuclear debris samples using solid sample introduction and a uniquely coupled gas chromatography inductively-coupled plasma time-of-flight mass spectrometer. Rare earth oxides were chemically altered to incorporate a ligand that enhances the volatility of the samples. These samples were injected (as solids) into the aforementioned instrument and detected for the first time. Repeatable results indicate the validity of the methodology, and this capability, when refined, will prove to be a valuable asset for rapid post-detonation nuclear forensic analysis.

  8. Proliferation dangers associated with nuclear medicine: getting weapons-grade uranium out of radiopharmaceutical production.

    PubMed

    Williams, Bill; Ruff, Tilman A

    2007-01-01

    Abolishing the threat of nuclear war requires the outlawing of nuclear weapons and dismantling current nuclear weapon stockpiles, but also depends on eliminating access to fissile material (nuclear weapon fuel). The near-universal use of weapons-grade, highly enriched uranium (HEU) to produce radiopharmaceuticals is a significant proliferation hazard. Health professionals have a strategic opportunity and obligation to progress the elimination of medically-related commerce in HEU, closing one of the most vulnerable pathways to the much-feared 'terrorist bomb'.

  9. Organohalogen products from chlorination of cooling water at nuclear power stations

    SciTech Connect

    Bean, R.M.

    1983-10-01

    Eight nuclear power units at seven locations in the US were studied to determine the effects of chlorine, added as a biocide, on the composition of cooling water discharge. Water, sediment and biota samples from the sites were analyzed for total organic halogen and for a variety of organohalogen compounds. Haloforms were discharged from all plants studied, at concentrations of a few ..mu..g/L (parts-per-billion). Evidence was obtained that power plants with cooling towers discharge a significant portion of the haloforms formed during chlorination to the atmosphere. A complex mixture of halogenated phenols was found in the cooling water discharges of the power units. Cooling towers can act to concentrate halogenated phenols to levels approaching those of the haloforms. Examination of samples by capillary gas chromatography/mass spectrometry did not result in identification of any significant concentrations of lipophilic base-neutral compounds that could be shown to be formed by the chlorination process. Total concentrations of lipophilic (Bioabsorbable) and volatile organohalogen material discharged ranged from about 2 to 4 ..mu..g/L. Analysis of sediment samples for organohalogen material suggests that certain chlorination products may accumulate in sediments, although no tissue bioaccumulation could be demonstrated from analysis of a limited number of samples. 58 references, 25 figures, 31 tables.

  10. Multihadron production dynamics exploring the energy balance in hadronic and nuclear collisions

    NASA Astrophysics Data System (ADS)

    Sarkisyan, Edward K. G.; Mishra, Aditya Nath; Sahoo, Raghunath; Sakharov, Alexander S.

    2016-03-01

    The relation of multihadron production in nucleus-nucleus and (anti)proton-proton collisions is studied by exploring the collision-energy and centrality dependencies of the charged particle mean multiplicity in the measurements to date. The study is performed in the framework of the recently proposed effective-energy approach which, under the proper scaling of the collision energy, combines the constituent quark picture with Landau relativistic hydrodynamics counting for the centrality-defined effective energy of participants. Within this approach, the multiplicity energy dependence and the pseudorapidity spectra from the most central nuclear collisions are well reproduced. The study of the multiplicity centrality dependence reveals a new scaling between the measured pseudorapidity spectra and the calculations. By means of this scaling, referred to as energy-balanced limiting fragmentation scaling, one reproduces the pseudorapidity spectra for all centralities. The scaling elucidates some differences in the multiplicity and midrapidity density centrality dependence obtained at RHIC and LHC. These findings reveal an inherent similarity in the multiplicity energy dependence from the most central collisions and centrality data. Predictions are made for the mean multiplicities to be measured in proton-proton and heavy-ion collisions at the LHC.

  11. Universality of particle production and energy balance in hadronic and nuclear collisions

    NASA Astrophysics Data System (ADS)

    Nath Mishra, Aditya; Sarkisyan, Edward K. G.; Sahoo, Raghunath; Sakharov, Alexander S.

    2016-07-01

    The multihadron production in nucleus-nucleus and (anti)proton-proton collisions is studied by exploring the collision-energy and centrality dependencies of the mean multiplicity in the existing data. The study is performed in the framework of the recently proposed effective-energy approach which combines the constituent quark picture and Landau hydrodynamics counting for the centrality-defined effective energy of participants. Within this approach, the multiplicity energy dependence and the pseudorapidity spectra from the most central nuclear collisions are well reproduced. The study of the multiplicity centrality dependence reveals a new scaling between the measured pseudorapidity spectra and the calculations. Using this scaling, called the energy balanced limiting fragmentation scaling, the pseudorapidity spectra are well reproduced for all centralities. The scaling clarifies some differences in the multiplicity and midrapidity density centrality dependence from RHIC and LHC. A similarity in the multiplicity energy dependence in the most central collisions and centrality data is shown. Predictions are drawn for the mean multiplicities to be measured in hadronic and heavy-ion collisions at the LHC.

  12. Nuclear magnetic resonance of J-coupled quadrupolar nuclei: Use of the tensor operator product basis

    NASA Astrophysics Data System (ADS)

    Kemp-Harper, R.; Philp, D. J.; Kuchel, P. W.

    2001-08-01

    In nuclear magnetic resonance (NMR) of I=1/2 nuclei that are scalar coupled to quadrupolar spins, a tensor operator product (TOP) basis set provides a convenient description of the time evolution of the density operator. Expressions for the evolution of equivalent I=1/2 spins, coupled to an arbitrary spin S>1/2, were obtained by explicit algebraic density operator calculations in Mathematica, and specific examples are given for S=1 and S=3/2. Tensor operators are described by the convenient quantum numbers rank and order and this imparts to the TOP basis features that enable an intuitive understanding of NMR behavior of these spin systems. It is shown that evolution as a result of J coupling alone changes the rank of tensors for the coupling partner, generating higher-rank tensors, which allow efficient excitation of S-spin multiple-quantum coherences. Theoretical predictions obtained using the TOP formalism were confirmed using multiple-quantum filtered heteronuclear spin-echo experiments and were further employed to demonstrate polarization transfer directly to multiple-quantum transitions using the insensitive nucleus enhancement by polarization transfer pulse sequence. This latter experiment is the basis of two-dimensional heteronuclear correlation experiments and direct generation of multiple-quantum S-spin coherences can therefore be exploited to yield greater spectral resolution in such experiments. Simulated spectra and experimental results are presented.

  13. Gas production and behavior in the coolant of the SP-100 space nuclear power system

    NASA Astrophysics Data System (ADS)

    McGhee, John Morton

    1989-08-01

    The radiologic generation and subsequent behavior of helium gas in the lithium coolant of SP-100 class space nuclear power reactors was investigated analytically in a two part study. Part One of the study consisted of a calculation of coolant radiologic helium gas production rates in a SP-100 class reactor using the discrete ordinates code TWODANT. Cross sections were developed from ENDF/B-V data via the MATXS6s master cross section library. Cross sections were self shielded assuming one homogeneous core region, and Doppler broadened to 1300 K using the cross section preparation code TRANSX. Calculations were performed using an S sub 4/P sub 1 approximation and 80 neutron energy groups. Part Two of the study consisted of a theoretical investigation into the behavior of helium gas in the primary loop of lithium cooled space reactors. The SP-100 space power system was used as a representative of such a system. Topics investigated included: (1) heterogeneous and homogeneous nucleation; (2) bubble growth/collapse by diffusion, mechanical temperature/pressure effects, and coalescence; and, (3) the effects on bubble distribution of microgravity, magnetic fields, and inertially induced buoyancy.

  14. Nuclear-Driven Copper-Based Hybrid Thermo/Electro Chemical Cycle for Hydrogen Production

    SciTech Connect

    Khalil, Yehia F.; Rostkowski, Katherine H.

    2006-07-01

    With a worldwide need for reduction of greenhouse gas emissions, hydrogen gas has become a primary focus of energy researchers as a promising substitute of nonrenewable energy sources. For instance, use of hydrogen gas in fuel cells has received special technological interest particularly from the transportation sector, which is presently dominated by fuel oil. It is not only gaseous hydrogen that is in demand, but the need for liquid hydrogen is growing as well. For example, the aerospace industry uses liquid hydrogen as fuel for space shuttles. The use of liquid hydrogen during a single space shuttle launch requires about 15,000 gallons per minute, which is equivalent to about forty-five hydrogen trailers, each with 13,000 gallons capacity. The hydrogen required to support a single Mars mission would be at least ten times that required for one space shuttle launch. In this work, we provide mass and energy balances, major equipment sizing, and costing of a hybrid CuO-CuSO{sub 4} plant with 1000 MW (30,240 kg/hr) H{sub 2} production capacity. With a 90% annual availability factor, the estimated hydrogen production rate is about 238,412 tons annually, the predicted plant efficiency is about 36%, and the estimated hydrogen production cost is about $4.0/kg (not including storage and transportation costs). In addition to hydrogen production, the proposed plant generates oxygen gas as a byproduct with an estimated flowrate of about 241,920 kg/hr (equivalent to 1,907,297 tons annually). We also propose a novel technology for separating SO{sub 2} and SO{sub 3} from O{sub 2} using a battery of redundant fixed-bed reactors containing CuO impregnated in porous alumina (Al{sub 2}O{sub 3}). This technology accommodates online regeneration of the CuO. Other practical approaches for gaseous separation are also examined including use of ceramic membranes, liquefaction, and regenerable wet scrubbing with slurried magnesium oxide or solutions of sodium salts such as sodium sulfite

  15. Insights into native epitopes of proliferating cell nuclear antigen using recombinant DNA protein products

    PubMed Central

    1990-01-01

    A cDNA clone encoding full-length human proliferating cell nuclear antigen (PCNA) was used to generate a panel of in vitro translated labeled protein products with COOH-terminal deletions and to construct a set of fusion proteins with COOH- and NH2-terminal deletions. A rabbit antiserum raised against an NH2-terminal peptide, a well- characterized murine monoclonal antibody (mAb), and 14 human lupus sera with autoantibody to PCNA were analyzed for their reactivity with the constructs using both immunoprecipitation and immunoblotting techniques. The rabbit antiserum reacted in immunoprecipitation and immunoblotting with constructs containing the appropriate NH2-terminal sequence and mAb reacted with a sequence from the midregion of PCNA. These experimentally induced antibodies also reacted with 15-mer synthetic peptides in enzyme-linked immunosorbent assay (ELISA). In contrast, none of the lupus sera reacted with synthetic peptides in ELISA. 9 of the 14 lupus sera also failed to react in Western immunoblotting with any recombinant fusion protein, although they all immunoprecipitated in vitro translated full-length protein. Four of the nine had variable patterns of immunoprecipitation with shorter constructs. The remaining five lupus sera were able to immunoprecipitate translation products as well as Western blot recombinant fusion proteins. From analysis of the patterns of reactivity of human lupus sera, it was deduced that the apparent heterogeneity of human autoantibodies to PCNA could be explained by immune response to highly conformational epitopes. These observations demonstrate that there might be special features in "native" epitopes of intranuclear antigens that are recognized by autoantibodies, and that these special features of native epitopes might not be present in prepared antigen used for experimental immunization. These features may be related to protein folding or to association of the antigen with other intranuclear proteins or nucleic acids, as

  16. Transformation process for production of ultrahigh carbon steels and new alloys

    DOEpatents

    Strum, Michael J.; Goldberg, Alfred; Sherby, Oleg D.; Landingham, Richard L.

    1995-01-01

    Ultrahigh carbon steels with superplastic properties are produced by heating a steel containing ferrite and carbide phases to a soaking temperature approximately 50.degree. C. above the A.sub.1 transformation temperature, soaking the steel above the A.sub.1 temperature for a sufficient time that the major portion of the carbides dissolve into the austenite matrix, and then cooling the steel in a controlled manner within predetermined limits of cooling rate or transformation temperature, to obtain a steel having substantially spheroidal carbides. New alloy compositions contain aluminum and solute additions which promote the formation of a fine grain size and improve the resistance of the carbides to coarsening at the forming temperature.

  17. Transformation process for production of ultrahigh carbon steels and new alloys

    DOEpatents

    Strum, M.J.; Goldberg, A.; Sherby, O.D.; Landingham, R.L.

    1995-08-29

    Ultrahigh carbon steels with superplastic properties are produced by heating a steel containing ferrite and carbide phases to a soaking temperature approximately 50 C above the A{sub 1} transformation temperature, soaking the steel above the A{sub 1} temperature for a sufficient time that the major portion of the carbides dissolve into the austenite matrix, and then cooling the steel in a controlled manner within predetermined limits of cooling rate or transformation temperature, to obtain a steel having substantially spheroidal carbides. New alloy compositions contain aluminum and solute additions which promote the formation of a fine grain size and improve the resistance of the carbides to coarsening at the forming temperature. 9 figs.

  18. Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation.

    PubMed

    Tarte, Karin; Gaillard, Julien; Lataillade, Jean-Jacques; Fouillard, Loic; Becker, Martine; Mossafa, Hossein; Tchirkov, Andrei; Rouard, Hélène; Henry, Catherine; Splingard, Marie; Dulong, Joelle; Monnier, Delphine; Gourmelon, Patrick; Gorin, Norbert-Claude; Sensebé, Luc

    2010-02-25

    Clinical-grade human mesenchymal stromal cells (MSCs) have been expanded in vitro for tissue engineering or immunoregulatory purposes without standardized culture conditions or release criteria. Although human MSCs show poor susceptibility for oncogenic transformation, 2 recent studies described their capacity to accumulate chromosomal instability and to give rise to carcinoma in immunocompromised mice after long-term culture. We thus investigated the immunologic and genetic features of MSCs expanded with fetal calf serum and fibroblast growth factor or with platelet lysate in 4 cell-therapy facilities during 2 multicenter clinical trials. Cultured MSCs showed a moderate expression of human leukocyte antigen-DR without alteration of their low immunogenicity or their immunomodulatory capacity. Moreover, some transient and donor-dependent recurring aneuploidy was detected in vitro, independently of the culture process. However, MSCs with or without chromosomal alterations showed progressive growth arrest and entered senescence without evidence of transformation either in vitro or in vivo.

  19. Delayed Leaf Senescence in Tobacco Plants Transformed with tmr, a Gene for Cytokinin Production in Agrobacterium.

    PubMed Central

    Smart, CM; Scofield, SR; Bevan, MW; Dyer, TA

    1991-01-01

    The aim of this study was to investigate whether enhanced levels of endogenous cytokinins could influence plant development, particularly leaf senescence. Tobacco plants were transformed with the Agrobacterium tumefaciens gene tmr, under the control of the soybean heat shock promoter HS6871. This gene encodes the enzyme isopentenyl transferase, which catalyzes the initial step in cytokinin biosynthesis. After heat shock, the cytokinin level increased greatly and the level of tmr mRNA, undetectable at 20[deg]C, rose and remained high for up to 8 hours. The levels of cytokinin and tmr mRNA were substantially lower by 24 hours. Transformed plants grown at 20[deg]C were shorter, had larger side shoots, and remained green for longer than untransformed plants. The differences were more pronounced after several heat shocks of whole plants or defined areas of leaves. Our results demonstrated that plant morphology and leaf senescence can be manipulated by changing the endogenous level of cytokinins. PMID:12324608

  20. Generation of mutagenic transformation products during the irradiation of simulated urban atmospheres

    SciTech Connect

    Kleindienst, T.E.; Smith, D.F.; Hudgens, E.E.; Claxton, L.D.; Bufalini, J.J.

    1992-01-01

    Mixtures of air pollutants simulating urban atmospheres were irradiated in a smog chamber, and the resultant products were monitored for the production of mutagenic and other hazardous compounds. The production of biologically active compounds was detected through use of the Ames mutagenicity assay with Salmonella typhimurium, strain TA100. Irradiations of the pollutant mixture were conducted at HC/NOx ratios of 20 and 11. Overall, the mutagenicity of the products and the formation of oxygenated primary and secondary reactions products were greater for the simulations with the higher initial HC/NOx value. The origin of the mutagenicity from the reactant mixture was examined by conducting experiments with individual paraffinic, olefinic, and aromatic hydrocarbons. The chemicals examined during this aspect of the study were the paraffin n-butane, the olefin propylene, and the aromatic toluene. For the conditions studied, the activity of the toluene products was generally greater than that of propylene or n-butane, and the propylene products showed greater activity than did the n-butane products. The production of n-butane products was generally limited by its low rate of reaction with hydroxyl radicals. Photooxidation products from secondary reactions were most important in the toluene and propylene systems.

  1. Production of transgenic canine embryos using interspecies somatic cell nuclear transfer.

    PubMed

    Hong, So Gun; Oh, Hyun Ju; Park, Jung Eun; Kim, Min Jung; Kim, Geon A; Koo, Ok Jae; Jang, Goo; Lee, Byeong Chun

    2012-02-01

    Somatic cell nuclear transfer (SCNT) has emerged as an important tool for producing transgenic animals and deriving transgenic embryonic stem cells. The process of SCNT involves fusion of in vitro matured oocytes with somatic cells to make embryos that are transgenic when the nuclear donor somatic cells carry 'foreign' DNA and are clones when all the donor cells are genetically identical. However, in canines, it is difficult to obtain enough mature oocytes for successful SCNT due to the very low efficiency of in vitro oocyte maturation in this species that hinders canine transgenic cloning. One solution is to use oocytes from a different species or even a different genus, such as bovine oocytes, that can be matured easily in vitro. Accordingly, the aim of this study was: (1) to establish a canine fetal fibroblast line transfected with the green fluorescent protein (GFP) gene; and (2) to investigate in vitro embryonic development of canine cloned embryos derived from transgenic and non-transgenic cell lines using bovine in vitro matured oocytes. Canine fetal fibroblasts were transfected with constructs containing the GFP and puromycin resistance genes using FuGENE 6®. Viability levels of these cells were determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. Interspecies SCNT (iSCNT) embryos from normal or transfected cells were produced and cultured in vitro. The MTT measurement of GFP-transfected fetal fibroblasts (mean OD = 0.25) was not significantly different from non-transfected fetal fibroblasts (mean OD = 0.35). There was no difference between transgenic iSCNT versus non-transgenic iSCNT embryos in terms of fusion rates (73.1% and 75.7%, respectively), cleavage rates (69.7% vs. 73.8%) and development to the 8-16-cell stage (40.1% vs. 42.7%). Embryos derived from the transfected cells completely expressed GFP at the 2-cell, 4-cell, and 8-16-cell stages without mosaicism. In summary, our results demonstrated that

  2. Evaluation of nuclear reaction cross sections for optimization of production of the emerging diagnostic radionuclide ⁵⁵Co.

    PubMed

    Amjed, N; Hussain, M; Aslam, M N; Tárkányi, F; Qaim, S M

    2016-02-01

    The excitation functions of the (54)Fe(d,n)(55)Co, (56)Fe(p,2n)(55)Co and (58)Ni(p,α)(55)Co reactions were analyzed with relevance to the production of the β(+)-emitter (55)Co (T½=17.53 h), a promising cobalt radionuclide for PET imaging. The nuclear model codes ALICE-IPPE, EMPIRE and TALYS were used to check the consistency of the experimental data. The statistically fitted excitation function was employed to calculate the integral yield of the product. The amounts of the radioactive impurities (56)Co and (57)Co were assessed. A comparison of the three investigated production routes is given.

  3. Synergism between fibronectin and transforming growth factor-β1 in the production of substance P in monocytes of patients with myelofibrosis.

    PubMed

    Chang, Victor T; Yook, Clara; Rameshwar, Pranela

    2013-03-01

    Substance P (SP), also considered a proinflammatory cytokine, as well as others such as transforming growth factor-β1 (TGF-β1) and interleukin-1 (IL-1), and the extracellular matrix protein fibronectin (FN) have been associated with the pathophysiology of myelofibrosis. SP is encoded by the TAC1 gene. The relationships among SP, TGF-β1, IL-1 and FN are poorly understood. This study determined the mechanisms for concomitant production of IL-1, TGF-β1 and SP and also determined the synergistic role of FN in SP release. Enzyme-linked immunosorbent assay (ELISA) indicated increased levels of SP and TGF-β1 in the blood of patients with myelofibrosis. Monocytes, shown to be activated in patients with bone marrow (BM) fibrosis, expressed the TAC1 gene for SP release, in a nuclear factor-κB (NFκB)-dependent manner. Reporter gene assay with the 5' regulatory region of TAC1 indicated its expression by high levels of FN and TGF-β1. Immunohistochemical studies of paraffin-embedded BM biopsies from patients with myelofibrosis, and age-matched controls without fibrosis, indicated co-localization of SP and its receptor neurokinin-1 (NK1). In summary, myelofibrotic monocytes have autocrine loops that stimulate the release of SP and TGF-β1, and that are potentiated by fibronectin. The FN-mediated induction of SP in turn stimulates monocytes through autostimulation by NK1 receptors. These findings, combined with those of previous studies, demonstrate an adhesion-mediated NFκB/IL-1/TGF-β1 axis that can be initiated by increased FN in patients with myelofibrosis for the production of SP. These findings show how TGF-β1 and SP production are coupled, and suggest new therapeutic targets to reverse immune-mediated fibrosis.

  4. Transformation of atenolol, metoprolol, and carbamazepine in soils: The identification, quantification, and stability of the transformation products and further implications for the environment.

    PubMed

    Koba, Olga; Golovko, Oksana; Kodešová, Radka; Klement, Aleš; Grabic, Roman

    2016-11-01

    Pharmaceuticals are a large group of substances that have been recognized as environmental contaminants in recent years. Research on the pharmaceutical fate in soils is currently limited or missing. In this study, three pharmaceuticals (atenolol (ATE), carbamazepine (CAR), and metoprolol (MET)) were introduced to soils and exposed for 61 day under aerobic conditions. Thirteen different soils were used in the study to increase the understanding of pharmaceutical behaviour in the soil matrix. Ten metabolites were detected and tentatively identified. Some of them, such as atenolol acid (AAC), carbamazepine 10,11-epoxide (EPC), 10,11-dihydrocarbamazepine (DHC), trans-10,11-Dihydro-10,11-dihydroxy carbamazepine (RTC), and metoprolol acid (MAC), were consequently confirmed using commercial reference standards. It was concluded that the aerobic conditions of the experiment determined the pharmaceutical degradation pathway of studied compounds in the soils. The different amounts/rates and degradation of the transformation products can be attributed to differences in the soil properties. ATE degraded relatively quickly compared with CAR, whereas MET degradation in the soils was unclear. The persistence of CAR and its metabolites, in combination with low CAR sorption, enable the transportation of CAR and its metabolites within soils and into the ground water. Thus, CAR may cause adverse effects on the environment and humans.

  5. Transforming Beef By-products into Valuable Ingredients: Which Spell/Recipe to Use?

    PubMed Central

    Henchion, Maeve; McCarthy, Mary; O’Callaghan, Jim

    2016-01-01

    Satisfying the increasing global demand for protein results in challenges from a supply perspective. Increased use of animal proteins, through greater use of meat by-products, could form part of the solution, subject to consumer acceptance. This research investigates consumer evaluations of food products that incorporate ingredients derived from offals that have been produced through a range of food processing technologies. Using focus groups incorporating product stimuli representing various combinations of offals, processing, and carrier products, the research finds that the physical state and perceived naturalness of the ingredients influences acceptance. It also highlights the impact of life experiences, linked to demographic characteristics, on interpretations and evaluations of products and processes. Ideational influences, i.e., knowledge of the nature or origin of the substance, are reasons for rejecting some concepts, with misalignment between nature of processing and the product resulting in rejection of others. Lack of perceived necessity also results in rejection. Alignment of ingredients with existing culinary practices and routines, communication of potential sensory, or other benefits as well as naturalness are factors likely to promote acceptance, and generate repeat purchase, in some consumer segments. Trust in oversight that the products are safe is a prerequisite for acceptance in all cases. These findings have implications for pathways to increase sustainability of beef production and consumption through increased use of beef by-products. PMID:27965963

  6. Production of androgens by microbial transformation of progesterone in vitro: a model for androgen production in rivers.

    PubMed

    Jenkins, Ronald L; Wilson, Elizabeth M; Angus, Robert A; Howell, W Mike; Kirk, Marion; Moore, Ray; Nance, Marione; Brown, Amber

    2004-11-01

    We have previously documented the presence of progesterone and androstenedione in the water column and bottom sediments of the Fenholloway River, Taylor County, Florida. This river receives paper mill effluent and contains masculinized female mosquitofish. We hypothesized that plant sterols (e.g., ss-sitosterol) derived from the pulping of pine trees are transformed by bacteria into progesterone and subsequently into 17alpha-hydroxyprogesterone, androstenedione, and other androgens. In this study, we demonstrate that these same androgens can be produced in vitro from the bacterium Mycobacterium smegmatis. In a second part to this study, we reextracted and reanalyzed the sediment from the Fenholloway River and verified the presence of androstadienedione, a delta1 steroid with androgen activity.

  7. The Nuclear Power and Nuclear Weapons Connection.

    ERIC Educational Resources Information Center

    Leventhal, Paul

    1990-01-01

    Explains problems enforcing the Nuclear Non-Proliferation Treaty (NPT) of 1968. Provides factual charts and details concerning the production of nuclear energy and arms, the processing and disposal of waste products, and outlines the nuclear fuel cycle. Discusses safeguards, the risk of nuclear terrorism, and ways to deal with these problems. (NL)

  8. Her2 oncogene transformation enhances 5-aminolevulinic acid-mediated protoporphyrin IX production and photodynamic therapy response

    PubMed Central

    Yang, Xue; Palasuberniam, Pratheeba; Myers, Kenneth A.; Wang, Chenguang; Chen, Bin

    2016-01-01

    Enhanced protoporphyrin IX (PpIX) production in tumors derived from the administration of 5-aminolevulinic acid (ALA) enables the use of ALA as a prodrug for photodynamic therapy (PDT) and fluorescence-guided tumor resection. Although ALA has been successfully used in the clinic, the mechanism underlying enhanced ALA-induced PpIX production in tumors is not well understood. Human epidermal growth receptor 2 (Her2, Neu, ErbB2) is a driver oncogene in human cancers, particularly breast cancers. Here we showed that, in addition to activating Her2/Neu cell signaling, inducing epithelial-mesenchymal transition and upregulating glycolytic enzymes, transfection of NeuT (a mutated Her2/Neu) oncogene in MCF10A human breast epithelial cells significantly enhanced ALA-induced PpIX fluorescence by elevating some enzymes involved in PpIX biosynthesis. Furthermore, NeuT-transformed and vector control cells exhibited drastic differences in the intracellular localization of PpIX, either produced endogenously from ALA or applied exogenously. In vector control cells, PpIX displayed a cell contact-dependent membrane localization at high cell densities and increased mitochondrial localization at low cell densities. In contrast, no predominant membrane localization of PpIX was observed in NeuT cells and ALA-induced PpIX showed a consistent mitochondrial localization regardless of cell density. PDT with ALA caused significantly more decrease in cell viability in NeuT cells than in vector cells. Our data demonstrate that NeuT oncogene transformation enhanced ALA-induced PpIX production and altered PpIX intracellular localization, rendering NeuT-transformed cells increased response to ALA-mediated PDT. These results support the use of ALA for imaging and photodynamic targeting Her2/Neu-positive tumors. PMID:27527860

  9. Nuclear Translocation Sequence and Region in Autographa californica Multiple Nucleopolyhedrovirus ME53 That Are Important for Optimal Baculovirus Production

    PubMed Central

    Liu, Yang; de Jong, Jondavid; Nagy, Éva; Theilmann, David A.

    2016-01-01

    ABSTRACT Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is in the family Baculoviridae, genus Alphabaculovirus. AcMNPV me53 is a highly conserved immediate early gene in all lepidopteran baculoviruses that have been sequenced and is transcribed up to late times postinfection. Although me53 is not essential for viral DNA synthesis, infectious budded virus (BV) production is greatly attenuated when it is deleted. ME53 associates with the nucleocapsid on both budded virus and occlusion-derived virus, but not with the virus envelope. ME53 colocalizes in plasma membrane foci with the envelope glycoprotein GP64 in a GP64-dependent manner. ME53 localizes in the cytoplasm early postinfection, and despite the lack of a reported nuclear localization signal (NLS), ME53 translocates to the nucleus at late times postinfection. To map determinants of ME53 that facilitate its nuclear translocation, recombinant AcMNPV bacmids containing a series of ME53 truncations, internal deletions, and peptides fused with hemagglutinin (HA) or green fluorescent protein (GFP) tags were constructed. Intracellular-localization studies identified residues within amino acids 109 to 137 at the N terminus of ME53 that acted as the nuclear translocation sequence (NTS), facilitating its nuclear transport at late times postinfection. The first 100 N-terminal amino acids and the last 50 C-terminal amino acids of ME53 are dispensable for high levels of budded virus production. The region within amino acids 101 to 398, which also contains the NTS, is critical for optimal levels of budded virus production. IMPORTANCE Baculovirus me53 is a conserved immediate early gene found in all sequenced lepidopteran alpha- and betabaculoviruses. We first identified residues within amino acids 109 to 137 at the N terminus that act as the ME53 nuclear translocation sequence (NTS) to facilitate its nuclear translocation and defined an internal region within amino acids 101 to 398, which includes the NTS, as

  10. RET/PTC1-Driven Neoplastic Transformation and Proinvasive Phenotype of Human Thyrocytes Involve Met Induction and β-Catenin Nuclear Translocation1

    PubMed Central

    Cassinelli, Giuliana; Favini, Enrica; Degl'Innocenti, Debora; Salvi, Alessandro; De Petro, Giuseppina; Pierotti, Marco A; Zunino, Franco; Borrello, Maria Grazia; Lanzi, Cinzia

    2009-01-01

    Activation of the RET gene by chromosomal rearrangements generating RET/PTC oncogenes is a frequent, early, and causative event in papillary thyroid carcinoma (PTC). We have previously shown that, in human primary thyrocytes, RET/PTC1 induces a transcriptional program including the MET proto-oncogene. In PTCs, β-catenin is frequently mislocated to the cytoplasm nucleus. We investigated the interplay between Ret/ptc1 signaling and Met in regulating the proinvasive phenotype and β-catenin localization in cellular models of human PTC. Here, we show that Met protein is expressed and is constitutively active in human thyrocytes exogenously expressing RET/PTC1 as well as a mutant (Y451F) devoid of the main Ret/ptc1 multidocking site. Both in transformed thyrocytes and in the human PTC cell line TPC-1, Ret/ptc1-Y451-dependent signaling and Met cooperated to promote a proinvasive phenotype. Accordingly, gene/functional silencing of either RET/PTC1 or MET abrogated early branching morphogenesis in TPC-1 cells. The same effect was obtained by blocking the common downstream effector Akt. Y451 of Ret/ptc1 was required to promote proliferation and nuclear translocation of β-catenin, suggesting that these oncogene-driven effects are Met-independent. Pharmacologic inhibition of Ret/ptc1 and Met tyrosine kinases by the multitarget small molecule RPI-1 blocked cell proliferation and invasive ability and dislocated β-catenin from the nucleus. Altogether, these results support that Ret/ptc1 cross talks with Met at transcriptional and signaling levels and promotes β-catenin transcriptional activity to drive thyrocyte neoplastic transformation. Such molecular network, promoting disease initiation and acquisition of a proinvasive phenotype, highlights new options to design multitarget therapeutic strategies for PTCs. PMID:19107227

  11. Transformation of Nasturtium officinale, Barbarea verna and Arabis caucasica for hairy roots and glucosinolate-myrosinase system production.

    PubMed

    Wielanek, Marzena; Królicka, Aleksandra; Bergier, Katarzyna; Gajewska, Ewa; Skłodowska, Maria

    2009-06-01

    Hairy roots of Nasturtium officinale, Barbarea verna and Arabis caucasica with active glucosinolate-myrosinase system were obtained after transformation with Agrobacterium rhizogenes. Hairy roots of N. officinale produced phenylalanine-derived gluconasturtiin and glucotropaeolin (max. 24 and 7 mg g(-1) DW). B. verna and A. caucasica hairy roots produced gluconasturtiin (max. 41 mg g(-1) DW) and methionine-derived glucoiberverin (max. 32 mg g(-1) DW), respectively. Treatment of the roots with amino acid precursors of glucosinolate or/and cysteine biosynthesis increased levels of glucosinolate production, combinations of phenylalanine with cysteine (for gluconasturtiin and glucotropaeolin) and methionine with o-acetylserine (for glucoiberverin) were the most effective.

  12. Gene disruption technologies have the potential to transform stored product insect pest control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, ...

  13. INVESTIGATION OF TRANSFORMATION PRODUCTS FROM THE CHLORINATION OF ESTROGENIC AND ANDROGENIC COMPOUNDS- Poster

    EPA Science Inventory

    The objective of this research is to investigate chlorinated by-products of a selected number of steroids representing both estrogens and androgens. Highly controlled reaction conditions were used to ascertain product distribution. Bench-scale studies were conducted to identify...

  14. Work plan for determining the occurrence of glyphosate, its transformation product AMPA, other herbicide compounds, and antibiotics in midwestern United States streams, 2002

    USGS Publications Warehouse

    Battaglin, W.A.; Thurman, E.M.; Kolpin, D.W.; Scribner, E.A.; Sandstrom, M.W.; Kuivila, K.M.

    2003-01-01

    The objective of this study is to determine the distribution of glyphosate and its primary transformation product aminomethylphosphonic acid (AMPA) in midwestern streams during post-application and harvest-season runoff events. Water samples will be collected in 2002 during two post-herbicide-application runoff events and one harvest-season runoff event from 53 sites on streams in the Midwestern United States. All samples will be analyzed at the U.S. Geological Survey Organic Geochemistry Research Laboratory in Lawrence, Kansas, for glyphosate and 20 other herbicides. Samples will also be analyzed for a glyphosate transformation product (AMPA) and 26 other herbicide transformation products, using GC/MS or HPLC/MS. Selected samples will be analyzed for 36 antibiotics or antibiotic transformational products. Results from this study will represent the first broad-scale investigation of glyphosate and AMPA in U.S. water resources.

  15. STEPWISE INTRATYPE TRANSFORMATION OF PNEUMOCOCCUS FROM R TO S BY WAY OF A VARIANT INTERMEDIATE IN CAPSULAR POLYSACCHARIDE PRODUCTION

    PubMed Central

    MacLeod, Colin M.; Krauss, Marjorie R.

    1947-01-01

    1. A variant intermediate between the classical R and S forms has been isolated by selective procedures from a rough strain of pneumococcus originally derived from Type II S. 2. The intermediate variant D39/Int53 is avirulent for mice, forms rough colonies, and does not possess a demonstrable capsule. However, it synthesizes SSSII which is immunologically indistinguishable from that produced by fully encapsulated pneumococcus Type II, though in much smaller amount. The polysaccharide is present as a surface component and as it exists in the cell is highly antigenic for rabbits. 3. An extract of the intermediate variant causes the transformation in vitro of an R strain into a variant resembling the intermediate in SSSII production but without any apparent alteration in the colonial characteristics of the R variant. 4. The intermediate variant is convertible in vivo, into a fully encapsulated strain of pneumococcus Type II. Transformation of the intermediate to a heterologous type of pneumococcus (Type III) was unsuccessful. 5. A method is described for the preparation of transforming extracts of pneumococci utilizing the massive growth of the organisms obtained in the presence of a large concentration of glucose. PMID:19871689

  16. Experimental and theoretical insights into photochemical transformation kinetics and mechanisms of aqueous propylparaben and risk assessment of its degradation products.

    PubMed

    An, Taicheng; Fang, Hansun; Li, Guiying; Wang, Shilong; Yao, Side

    2014-08-01

    The kinetics and mechanisms of ultraviolet photochemical transformation of propylparaben (PPB) were studied. Specific kinetics scavenging experiments coupled with quantum yield determinations were used to distinguish the roles of various reactive species induced by self-sensitized and direct photolysis reactions, and the excited triplet state of PPB ((3) PPB*) was identified as the most important species to initiate the photochemical degradation of PPB in aquatic environments. The computational results of time-resolved absorption spectra proved that (3) PPB* is a highly reactive electron acceptor, and a head-to-tail hydrogen transfer mechanism probably occurs through electron coupled with proton transfer. Physical quenching by, or chemical reaction of (3) PPB* with, O2 was confirmed as a key step affecting the initial PPB transformation pathways and degradation mechanisms. The transformation products were identified and the toxicity evolutions of PPB solutions during photochemical degradation under aerobic and anaerobic conditions were compared. The results indicate that anaerobic conditions are more likely than aerobic conditions to lead to the elimination and detoxification of PPB but less likely to lead to PPB mineralization.

  17. Production of transgenic dairy goat expressing human α-lactalbumin by somatic cell nuclear transfer.

    PubMed

    Feng, Xiujing; Cao, Shaoxian; Wang, Huili; Meng, Chunhua; Li, Jingxin; Jiang, Jin; Qian, Yong; Su, Lei; He, Qiang; Zhang, Qingxiao

    2015-02-01

    Production of human α-lactalbumin (hα-LA) transgenic cloned dairy goats has great potential in improving the nutritional value and perhaps increasing the yield of dairy goat milk. Here, a mammary-specific expression vector 5A, harboring goat β-lactoglobulin (βLG) promoter, the hα-LA gene, neo(r) and EGFP dual markers, was constructed. Then, it was effectively transfected into goat mammary epithelial cells (GMECs) and the expression of hα-LA was investigated. Both the hα-LA transcript and protein were detected in the transfected GMECs after the induction of hormonal signals. In addition, the 5A vector was introduced into dairy goat fetal fibroblasts (transfection efficiency ≈60-70%) to prepare competent transgenic donor cells. A total of 121 transgenic fibroblast clones were isolated by 96-well cell culture plates and screened with nested-PCR amplification and EGFP fluorescence. After being frozen for 8 months, the transgenic cells still showed high viabilities, verifying their ability as donor cells. Dairy goat cloned embryos were produced from these hα-LA transgenic donor cells by somatic cell nuclear transfer (SCNT), and the rates of fusion, cleavage, and the development to blastocyst stages were 81.8, 84.4, and 20.0%, respectively. A total of 726 reconstructed embryos derived from the transgenic cells were transferred to 74 recipients and pregnancy was confirmed at 90 days in 12 goats. Of six female kids born, two carried hα-LA and the hα-LA protein was detected in their milk. This study provides an effective system to prepare SCNT donor cells and transgenic animals for human recombinant proteins.

  18. A Polyethylene Glycol-Mediated Protoplast Transformation System for Production of Fertile Transgenic Rice Plants 1

    PubMed Central

    Hayashimoto, Akio; Li, Zhijian; Murai, Norimoto

    1990-01-01

    We have established an efficient procedure for protoplast transformation and regeneration of fertile transgenic plants of rice (Oryza sativa L.) cultivars Nipponbare and Taipei 309. Protoplasts were mixed with a plant-expressible hygromycin resistance gene and treated with 25% (w/v) polyethylene glycol. Stringent selection of transformed colonies was applied to 14-day-old regenerated protoplasts in the presence of 95 micromolar of hygromycin B for 12 days. After selection, 450 and 200 resistant colonies were recovered per million treated Taipei 309 and Nipponbare protoplasts, respectively. Southern hybridization analysis of hygromycin-resistant cell lines and regenerated plants indicated that 1 to 10 copies of transferred DNA were integrated at 1 to 4 loci of the rice genome. Southern DNA analysis suggests that the introduced plasmid DNA may form concatemers by intermolecular recombination prior to integration. Four Taipei 309 and 39 Nipponbare transgenic rice plants were regenerated and grown to maturity in the greenhouse. Two Taipei 309 and 35 Nipponbare plants set viable seeds. Agronomic traits of Taipei 309 transgenic plants and inheritance of the hygromycin resistance trait by progeny of the selfed transgenic plants were analyzed. Images Figure 5 Figure 6 PMID:16667593

  19. Effects of the nuclear disaster on marine products in Fukushima: An update after five years.

    PubMed

    Wada, Toshihiro; Fujita, Tsuneo; Nemoto, Yoshiharu; Shimamura, Shinya; Mizuno, Takuji; Sohtome, Tadahiro; Kamiyama, Kyoichi; Narita, Kaoru; Watanabe, Masato; Hatta, Nobuyuki; Ogata, Yasuo; Morita, Takami; Igarashi, Satoshi

    2016-11-01

    Original data ((134)Cs and (137)Cs, and sampling location) of marine products in Fukushima Prefecture monitored during 2011-2015 (n = 32,492) were analyzed to present an updated detailed description of radiocesium contamination after the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident and to examine taxon/habitat-specific decreasing trends in different areas. Furthermore, marine species data presented by the Tokyo Electric Power Company (TEPCO) during 2012-2015 (n = 5458) were analyzed to evaluate the decreasing trends of (137)Cs inside and outside (within a 20 km radius) of the FDNPP port. Monitoring results by Fukushima Prefecture show that percentages of samples higher than the Japanese regulatory limit of 100 Bq kg(-1)-wet (>RL%) were higher, whereas those below the detection limit (RL% and products in Fukushima Prefecture, even within the 20 km radius area, has decreased drastically during the five years after the FDNPP accident, although (137)Cs

  20. EXAMINING THE INFLAMMATORY RESPONSES OF HAPS: THE ROLE OF OZONE AND OTHER PHTOTCHEMICAL TRANSFORMATION PRODUCTS

    EPA Science Inventory

    The chemistry and health effects of individual hazardous air pollutants (HAPS) have been studied for many years. Once released into the atmosphere, HAPS interact with hydroxyl radicals and ozone (created by photochemical processes), to produce many different products, whose toxic...

  1. Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production

    SciTech Connect

    Forsberg, Charles W; Conklin, Jim

    2007-09-01

    A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the

  2. Investigation of gamma radiation effect on the anion exchange resin Amberlite IRA-400 in hydroxide form by Fourier transformed infrared and 13C nuclear magnetic resonance spectroscopies.

    PubMed

    Traboulsi, A; Dupuy, N; Rebufa, C; Sergent, M; Labed, V

    2012-03-02

    Radiation-induced decomposition of the anion exchange resin Amberlite IRA-400 in hydroxide form by gamma radiolysis has been studied under different irradiation doses and irradiation atmospheres. In this work, we focused on the degradation of the solid part of the resin by Fourier transformed infrared (FTIR) and (13)C nuclear magnetic resonance (NMR) spectroscopies associated with chemometric treatments. FTIR and (13)C NMR techniques showed that only -CH(2)N(+)(CH(3))(3) groups were detached from the resin whereas the polystyrene divinylbenzene backbone remains intact. The quaternary ammonium groups were replaced by amine or carbonyl groups according to the irradiation atmosphere (with or without water or oxygen). Principal components analysis (PCA) was used to classify the degraded resins according to their irradiation conditions by separating the effect of the dose or the environment. The PCA loadings have shown spectral regions which discriminate the irradiated resins whereas SIMPLe-to-use Interactive Self-modeling Mixture Analysis (SIMPLISMA) allows to identify families of component characterizing the chemical structure of resins and estimate their relative contributions according to the irradiation atmospheres.

  3. Environmental Transformation Products of Nitroaromatics and Nitramines: Literature Review and Recommendations for Analytical Method Development

    DTIC Science & Technology

    1990-02-01

    TNT and ten other 1983) found similar binding reactions between munition wastewater constituents in two rivers TNT and its metabolites and humic...digesters Enzinger (1970) Broth cultures Probably 4-A and 4,4’-Az Klausmeier et al. Fungi, yeasts, Reduction products (1973) actinomycetes , gram-positive...troazoxy derivatives formed by the coupling of derivatives of TNT as metabolites . In addition, an nitroso and hydroxylamine products. While

  4. Direct Production of Electron-Positron Pairs by 200-GeV/Nucleon Oxygen and Sulfur Ions in Nuclear Emulsion

    NASA Technical Reports Server (NTRS)

    Derrickson, J. H.; Eby, P. B.; Moon, K. H.; Parnell, T. A.; King, D. T.; Gregory, J. C.; Takahashi, Y.; Ogata, T.

    1995-01-01

    Measurements of direct Coulomb electron-positron pair production have been made on the tracks of relativistic heavy ions in nuclear track emulsion. Tracks of 0(16) and S(32) at 200 GeV/nucleon were studied. The measured total cross sections and energy and emission angle distributions for the pair members are compared to theoretical predictions. The data are consistent with some recent calculations when knock-on electron contamination is accounted for.

  5. Production and dissolution of nuclear explosive melt glasses at underground test sites in the Pacific Region

    SciTech Connect

    Bourcier, W.L.; Smith, D.K.

    1998-11-06

    From 1975 to 1996 the French detonated 140 underground nuclear explosions beneath the atolls of Mururoa and Fangataufa in the South Pacific; from 1965 to 1971 the United States detonated three high yield nuclear tests beneath Amchitka Island in the Aleutian chain. Approximately 800 metric tons of basalt is melted per kiloton of nuclear yield; almost lo7 metric tons of basalt were melted in these tests. Long-lived and toxic radionuclides are partitioned into the melt glass at the time of explosion and are released by dissolution with seawater under saturated conditions. A glass dissolution model predicts that nuclear melt glasses at these sites will dissolve in lo6 to lo7 yea

  6. Review of ENDF/B-VI Fission-Product Cross Sections[Evaluated Nuclear Data File

    SciTech Connect

    Wright, R.Q.; MacFarlane, R.E.

    2000-04-01

    In response to concerns raised in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 93-2, the US Department of Energy (DOE) developed a comprehensive program to help assure that the DOE maintain and enhance its capability to predict the criticality of systems throughout the complex. Tasks developed to implement the response to DNFSB recommendation 93-2 included Critical Experiments, Criticality Benchmarks, Training, Analytical Methods, and Nuclear Data. The Nuclear Data Task consists of a program of differential measurements at the Oak Ridge Electron Linear Accelerator (ORELA), precise fitting of the differential data with the generalized least-squares fitting code SAMMY to represent the data with resonance parameters using the Reich-Moore formalism along with covariance (uncertainty) information, and the development of complete evaluations for selected nuclides for inclusion in the Evaluated Nuclear Data File (ENDFB).

  7. Routine inspection effort required for verification of a nuclear material production cutoff convention

    SciTech Connect

    Fishbone, L.G.; Sanborn, J.

    1995-08-01

    Preliminary estimates of the inspection effort to verify a Nuclear Material Cutoff Convention are presented. The estimates are based on a database of about 650 facilities in a total of eight states, the five nuclear-weapons states and three ``threshold`` states plus facility-specific inspection requirements. Typical figures for inspection requirements for specific facility types derive from IAEA experience, where applicable. Alternative estimates of inspection effort are used in cutoff options where full IAEA safeguards are not stipulated.

  8. Multidimensional Separation of Natural Products Using Liquid Chromatography Coupled to Hadamard Transform Ion Mobility Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Wenjie; Zhang, Xing; Knochenmuss, Richard; Siems, William F.; Hill, Herbert H.

    2016-05-01

    A high performance liquid chromatograph (HPLC)was interfaced to an atmospheric drift tube ion mobility time of flight mass spectrometry. The power of multidimensional separation was demonstrated using chili pepper extracts. The ambient pressure drift tube ion mobility provided high resolving powers up to 166 for the HPLC eluent. With implementation of Hadamard transform (HT), the duty cycle for the ion mobility drift tube was increased from less than 1% to 50%, and the ion transmission efficiency was improved by over 200 times compared with pulsed mode, improving signal to noise ratio 10 times. HT ion mobility and TOF mass spectrometry provide an additional dimension of separation for complex samples without increasing the analysis time compared with conventional HPLC.

  9. Toxicology of 3-epi-deoxynivalenol, a deoxynivalenol-transformation product by Devosia mutans 17-2-E-8.

    PubMed

    He, Jian Wei; Bondy, Genevieve S; Zhou, Ting; Caldwell, Don; Boland, Greg J; Scott, Peter M

    2015-10-01

    Microbial detoxification of deoxynivalenol (DON) represents a new approach to treating DON-contaminated grains. A bacterium Devosia mutans 17-2-E-8 was capable of completely transforming DON into a major product 3-epi-DON and a minor product 3-keto-DON. Evaluation of toxicities of these DON-transformation products is an important part of hazard characterization prior to commercialization of the biotransformation application. Cytotoxicities of the products were demonstrated by two assays: a MTT bioassay assessing cell viability and a BrdU assay assessing DNA synthesis. Compared with DON, the IC50 values of 3-epi-DON and 3-keto-DON were respectively 357 and 3.03 times higher in the MTT bioassay, and were respectively 1181 and 4.54 times higher in the BrdU bioassay. Toxicological effects of 14-day oral exposure of the B6C3F1 mouse to DON and 3-epi-DON were also investigated. Overall, there were no differences between the control (free of toxin) and the 25 mg/kg bw/day or 100 mg/kg bw/day 3-epi-DON treatments in body and organ weights, hematology and organ histopathology. However, in mice exposed to DON (2 mg/kg bw/day), white blood cell numbers and serum immunoglobulin levels were altered relative to controls, and lesions were observed in adrenals, thymus, stomach, spleen and colon. Taken together, in vitro and in vivo studies indicate that 3-epi-DON is substantially less toxic than DON.

  10. Application of in vitro cell transformation assays in regulatory toxicology for pharmaceuticals, chemicals, food products and cosmetics.

    PubMed

    Vanparys, Philippe; Corvi, Raffaella; Aardema, Marilyn J; Gribaldo, Laura; Hayashi, Makoto; Hoffmann, Sebastian; Schechtman, Leonard

    2012-04-11

    Two year rodent bioassays play a key role in the assessment of carcinogenic potential of chemicals to humans. The seventh amendment to the European Cosmetics Directive will ban in 2013 the marketing of cosmetic and personal care products that contain ingredients that have been tested in animal models. Thus 2-year rodent bioassays will not be available for cosmetics/personal care products. Furthermore, for large testing programs like REACH, in vivo carcinogenicity testing is impractical. Alternative ways to carcinogenicity assessment are urgently required. In terms of standardization and validation, the most advanced in vitro tests for carcinogenicity are the cell transformation assays (CTAs). Although CTAs do not mimic the whole carcinogenesis process in vivo, they represent a valuable support in identifying transforming potential of chemicals. CTAs have been shown to detect genotoxic as well as non-genotoxic carcinogens and are helpful in the determination of thresholds for genotoxic and non-genotoxic carcinogens. The extensive review on CTAs by the OECD (OECD (2007) Environmental Health and Safety Publications, Series on Testing and Assessment, No. 31) and the proven within- and between-laboratories reproducibility of the SHE CTAs justifies broader use of these methods to assess carcinogenic potential of chemicals.

  11. [Transformation Regularity of Nitrogen in Aqueous Product Derived from Hydrothermal Liquefaction of Sewage Sludge in Subcritical Water].

    PubMed

    Sun, Yan-qing; Sun, Zhen; Zhang, Jing-lai

    2015-06-01

    Hydrothermal liquefaction in subcritical water is a potential way to treat sewage sludge as a resource rather than a waste. This study focused on the transformation regularity of nitrogen in aqueous product which was derived from hydrothermal liquefaction of sewage sludge under different operating conditions. Results showed, within the studied temperature scope and time span, the concentration of total nitrogen (TN) fluctuated in the range of 2867.62 mg x L(-1) to 4171.30 mg x L(-1). The two major exiting formation of nitrogen in aqueous product was ammonia nitrogen (NH4+ -N) and organic nitrogen (Org-N). NH4+ -N possessed 54.6%-90.7% of TN, while Org-N possessed 7.4%-44.5%. The concentration of nitrate nitrogen (NO- -N) was far more less than NH4+ -N and Org-N. Temperature had a great influence on the transformation regularity of nitrogen. Both the concentration of TN and Org-N increased accordingly to the increase of reaction temperature. With the reaction time prolonging, the concentration of TN and Org-N increased, while the concentration of NH4+ -N increased first, then became stationary, and then decreased slightly.

  12. Genotoxicity of quinolones: substituents contribution and transformation products QSAR evaluation using 2D and 3D models.

    PubMed

    Li, Min; Wei, Dongbin; Zhao, Huimin; Du, Yuguo

    2014-01-01

    The genotoxicity of 21 quinolones antibiotics was determined using SOS/umu assay. Some quinolones exhibited high genotoxicity, and the chemical substituent on quinolone ring significantly affected genotoxicity. To establish the relationship between genotoxicity and substituent, a 2D-QSAR model based on quantum chemical parameters was developed. Calculation suggested that both steric and electrostatic properties were correlated well with genotoxicity. Furthermore, the specific effect on three key active sites (1-, 7- and 8-positions) of quinolone ring was investigated using a 3D-QSAR (comparative molecular field analysis, CoMFA) method. From our modeling, the genotoxicity increased when substituents had: (1) big volume and/or positive charge at 1-position; (2) negative charge at 7-position; and (3) small volume and/or negative charge at 8-position. The developed QSAR models were applicable to estimate genotoxicity of quinolones antibiotics and their transformation products. It is noted that some of the transformation products exhibited higher genotoxicity comparing to their precursor (e.g., ciprofloxacin). This study provided an alternative way to understand the molecule genotoxicity of quinolones derivatives, as well as to evaluate their potential environmental risks.

  13. Antibiotic pollution in the Katari subcatchment of the Titicaca Lake: Major transformation products and occurrence of resistance genes.

    PubMed

    Archundia, D; Duwig, C; Lehembre, F; Chiron, S; Morel, M-C; Prado, B; Bourdat-Deschamps, M; Vince, E; Aviles, G Flores; Martins, J M F

    2017-01-15

    An increasing number of studies pointed out the ubiquitous presence of medical residues in surface and ground water as well as in soil compartments. Not only antibiotics can be found in the environment but also their transformation products about which little information is generally available. The development of bacterial resistance to antibiotics is particularly worrying as it can lead to sanitary and health problems. Studies about the dissemination of antibiotics and associated resistances in the Bolivian Altiplano are scarce. We provide baseline information on the occurrence of Sulfamethoxazole (SMX) and Trimethoprim (TMP) antibiotics as well as on the most common human SMX transformation products (TP) and on the occurrence of sulfonamide resistance genes. The studied water and soil compartments presented high levels of antibiotic pollution. This situation was shown to be mainly linked with uncontrolled discharges of treated and untreated wastewaters, resulting on the presence of antibiotics in the Titicaca Lake. SMX TPs were detected in surface waters and on soil sampled next to the wastewater treatment plant (WWTP). SMX resistance genes sulI and sulII were widely detected in the basin hydrological network, even in areas unpolluted with antibiotics. Mechanisms of co-selection of antibiotic- and metal- resistance may be involved in the prevalence of ARG's in pristine areas with no anthropogenic activity and free of antibiotic pollution.

  14. Ready biodegradability of trifluoromethylated phenothiazine drugs, structural elucidation of their aquatic transformation products, and identification of environmental risks studied by LC-MS( n ) and QSAR.

    PubMed

    Trautwein, Christoph; Kümmerer, Klaus

    2012-09-01

    The environmental fate of transformation products from organic pollutants such as drugs has become a new research area of increasing interest over the last few years. Whereas in the past mainly parent compounds or their major human metabolites were studied, new questions have arisen what compounds could be formed during incomplete degradation in the aquatic environment and what effects the resulting transformation products might have on nature and mankind. Psychiatric drugs are among the most important prescription drugs worldwide, but so far only little data is provided upon their degradation behavior. This especially accounts for tricyclic antipsychotic drugs of the phenothiazine class. Therefore, the degradation of such drugs was investigated in this study. In this study the aerobic Closed Bottle test (The Organisation for Economic Co-operation and Development (OECD) 301D) was used to assess the ready biodegradability of three trifluoromethylated phenothiazine drugs: fluphenazine, triflupromazine, and trifluoperazine. As it is known from literature that phenothiazine drugs can easily form various photolytic transformation products under light exposure, photochemical transformation was also investigated. Since transformation products are usually not available commercially, the calculation of environmental parameters with the aid of quantitative structure activity relationship (QSAR) software was used for first evaluation of these compounds. According to the OECD test guideline, all trifluoromethylated phenothiazines had to be classified as not readily biodegradable. Chromatographic data revealed the formation of some transformation products. Comparing retention time and mass spectrometric data with the analytical results of the light exposure experiments, we found peaks with the same retention time and mass spectra. So these transformation products were not of bacterial, but photolytic, origin and are formed very quickly even under low light doses. A special

  15. Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control.

    PubMed

    Perkin, Lindsey C; Adrianos, Sherry L; Oppert, Brenda

    2016-09-19

    Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, but is the most effective and economical control method, and thus is used extensively worldwide. However, many insect populations have become resistant to phosphine, in some cases to very high levels. New, environmentally benign and more effective control strategies are needed for stored product pests. RNA interference (RNAi) may overcome pesticide resistance by targeting the expression of genes that contribute to resistance in insects. Most data on RNAi in stored product insects is from the coleopteran genetic model, Tribolium castaneum, since it has a strong RNAi response via injection of double stranded RNA (dsRNA) in any life stage. Additionally, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology has been suggested as a potential resource for new pest control strategies. In this review we discuss background information on both gene disruption technologies and summarize the advances made in terms of molecular pest management in stored product insects, mainly T. castaneum, as well as complications and future needs.

  16. Gene Disruption Technologies Have the Potential to Transform Stored Product Insect Pest Control

    PubMed Central

    Perkin, Lindsey C.; Adrianos, Sherry L.; Oppert, Brenda

    2016-01-01

    Stored product insects feed on grains and processed commodities manufactured from grain post-harvest, reducing the nutritional value and contaminating food. Currently, the main defense against stored product insect pests is the pesticide fumigant phosphine. Phosphine is highly toxic to all animals, but is the most effective and economical control method, and thus is used extensively worldwide. However, many insect populations have become resistant to phosphine, in some cases to very high levels. New, environmentally benign and more effective control strategies are needed for stored product pests. RNA interference (RNAi) may overcome pesticide resistance by targeting the expression of genes that contribute to resistance in insects. Most data on RNAi in stored product insects is from the coleopteran genetic model, Tribolium castaneum, since it has a strong RNAi response via injection of double stranded RNA (dsRNA) in any life stage. Additionally, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology has been suggested as a potential resource for new pest control strategies. In this review we discuss background information on both gene disruption technologies and summarize the advances made in terms of molecular pest management in stored product insects, mainly T. castaneum, as well as complications and future needs. PMID:27657138

  17. Catalytic Transformation of Waste CO{sub 2} into Valuable Products

    SciTech Connect

    Anderson, Jason; Shepard, Peter; Valente, Ron

    2013-09-30

    Novomer’s novel materials contain up to 50% by mass CO{sub 2} and provide a unique platform for re-using CO{sub 2} from waste industrial sources and converting it into useful products. This Report covers the progress made by Novomer during the DOE funded project (DOE Award #: DE-FE0002474) under the “Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO{sub 2} Use” program. This includes Phase 1 and Phase 2, including all three subphases of the latter. Novomer completed all technical and commercial objectives in both Phase 1 and Phase 2, including the six Phase 2 Objectives outlined in the SOPO within budget by the project end date of September 30, 2013. These are: validating the economics are competitive, validate the carbon footprint, validate acceptable product performance, verify robust manufacturing process, validate large markets exist, and qualify at least 3 products with customers.

  18. Chemical transformations of glucose to value added products using Cu-based catalytic systems.

    PubMed

    Yepez, Alfonso; Pineda, Antonio; Garcia, Angel; Romero, Antonio A; Luque, Rafael

    2013-08-07

    Cu nanoparticles have been supported by two types of aluminosilicate materials with and without Zn in their composition in view of their application in the microwave-assisted conversion of glucose to valuable products via tandem formic acid-promoted dehydration (to 5-hydroxymethylfurfural--HMF) and further selective hydrogenation to 5-methylfurfuryl alcohol (MFA). Results show that interesting selectivities (up to 60% to MFA or HMF) could be achieved after short times of reaction (typically 2-30 min) using Cu-containing nanomaterials. Zn was found to play an interesting role in the selectivity to reduced products, even if present in very small quantities (0.2 wt%).

  19. Degradation of the anticancer drug erlotinib during water chlorination: Non-targeted approach for the identification of transformation products.

    PubMed

    Negreira, Noelia; Regueiro, Jorge; López de Alda, Miren; Barceló, Damià

    2015-11-15

    Erlotinib is a highly potent tyrosine kinase inhibitor used in the treatment of the most common type of lung cancer. Due to its recent introduction, very scarce information is available on its occurrence, environmental fate and toxicological effects on aquatic organisms. During chlorination processes normally carried out in wastewater treatment plants and in the pretreatment of hospital effluents, chlorinated transformation products can be formed with an enhanced toxicity relative to the parent compound. Thus, the reactivity of the cytostatic drug erlotinib in free chlorine-containing water was investigated for the first time in the present work. A non-targeted screening approach based on the use of differential profiling tools was applied in order to reveal its potential transformation products. Structural elucidation of the detected transformation products was performed by ultra-performance liquid chromatography coupled to high-resolution hybrid quadrupole-Orbitrap tandem mass spectrometry. The proposed approach allowed detecting a total of nineteen transformation products, being eighteen of them described for the first time in this work, which demonstrates its potential in environmental analysis. Among them, six compounds presented chlorine atoms in their structures, which may be of major concern. Other transformation products involved hydroxylation and oxidation reactions. Time-course profiles of erlotinib and its transformation products were followed in real wastewater samples under conditions that simulate wastewater disinfection. Although the structures of these transformation products could not be positively confirmed due to lack of standards, their chemical formulas and product ions can be added to databases, which will allow their screening in future monitoring studies.

  20. Transformation to a Customer-Oriented Perspective through Action Learning in Product and Service Development

    ERIC Educational Resources Information Center

    Olsson, Annika

    2007-01-01

    Customer orientation is strongly visible in the visions and strategies of most organizations, but how do these visions and strategies move from intentions to practice? This question provides the focus for this research which aims to acquire deeper insights into this process. The point of departure is the change in perspective from a product to a…

  1. Proazaphosphatranes: Versatile molecules with applications in fuel cell technology, biodiesel production and important organic transformations

    NASA Astrophysics Data System (ADS)

    Wadhwa, Kuldeep

    In recent years proazaphosphatranes of type P(RNCH2CH 2)3N have proven their synthetic utility as catalysts and as stoichiometric bases in a variety of organic transformations. Several reports from our group appeared in which the use of proazaphosphatranes for the activation of the silicon to synthesize useful organic intermediates. Herein we report the use of proazaphosphatranes to synthesize various useful small organic molecules by the activation of Si-O and Si-C bonds, along with efforts to gain evidence for silicon group activation. We previously demonstrated that a phosphatranium cation for which the counter anion is nitrate, is an excellent catalyst for aza- and thia-Michael reactions. Evidence was presented that such a nitrate salt in which the cation was bound to a solid support was superior to a commercially available nitrate anion exchange resin. These results prompted us to chemically bind phosphatranium salts to NafionRTM membrane supports to function as nitrate and hydroxide ion conducting membranes for fuel cell applications. Here we report the synthesis of a novel anion exchange fuel cell membrane by chemically attaching proazaphosphatranium and phosphatranium cations under microwave conditions to the sulfonic groups of Nafion-F RTM and the use of solid-state NMR techniques to determine the structure and composition of this anion exchange membrane. A thermally and air stable derivative of a proazaphosphatrane i.e., a benzyl azidoproazaphosphatrane, was discovered in our laboratory which was shown to be an excellent catalyst for biodiesel synthesis via the transesterification of soybean oil and for other Lewis base- catalyzed important organic transformations. However, the heterogeneous analog i.e., a Merrifield resin-bound azidoproazaphosphatrane, was found to be deactivated after 11 cycles for the transesterification of soybean oil. We report here an attempted synthesis of a TeflonRTM - and NafionRTM-bound azidoproazaphosphatrane. Such a solid

  2. Quantification of Uncertainties due to 235,238U, 239,240,241Pu and Fission Products Nuclear Data Uncertainties for a PWR Fuel Assembly

    NASA Astrophysics Data System (ADS)

    da Cruz, D. F.; Rochman, D.; Koning, A. J.

    2014-04-01

    Uncertainty analysis on reactivity and discharged inventory for a typical PWR fuel element as a result of uncertainties in 235,238U, 239,240,241Pu, and fission products nuclear data was performed. The Total Monte-Carlo (TMC) method was applied using the deterministic transport code DRAGON. The nuclear data used in this study is from the JEFF-3.1 evaluations, with the exception of the nuclear data files for U, Pu and fission products isotopes, which are taken from the nuclear data library TENDL-2012. Results show that the calculated total uncertainty in keff (as result of uncertainties in nuclear data of the considered isotopes) is virtually independent on fuel burnp and amounts to 700 pcm. The uncertainties in inventory of the discharged fuel is dependent on the element considered and lies in the range 1-15% for most fission products, and is below 5% for the most important actinides.

  3. Non-affine fields in solid-solid transformations: the structure and stability of a product droplet.

    PubMed

    Paul, Arya; Sengupta, Surajit; Rao, Madan

    2014-01-08

    We describe the microstructure, morphology, and dynamics of growth of a droplet of martensite nucleating in a parent austenite during a solid-solid transformation, using a Landau theory written in terms of both conventional affine elastic deformations and non-affine deformations. Non-affineness, φ, serves as a source of strain incompatibility and screens long-ranged elastic interactions. It is produced wherever the local stress exceeds a threshold and anneals diffusively thereafter. Using a variational calculation, we find three types of stable solution (labeled I, II, and III) for the structure of the product droplet, depending on the stress threshold and the scaled mobilities of φ parallel and perpendicular to the parent-product interface. The profile of the non-affine field φ is different in these three solutions: I is characterized by a vanishingly small φ, II admits large values of φ localized in regions of high stress within the parent-product interface, and III is a structure in which φ completely wets the parent-product interface. The width l and size W of the twins follow the relation l is proportional to √W in solution I; this relation does not hold for II or III. We obtain a dynamical phase diagram featuring these solutions, and argue that they represent specific solid-state microstructures.

  4. Production of lymphokine-like factors (cytokines) by simian virus 40-infected and simian virus 40-transformed cells.

    PubMed Central

    Bigazzi, P. E.; Yoshida, T.; Ward, P. A.; Cohen, S.

    1975-01-01

    Macrophage migration inhibitory (MIF-like) activity was demonstrated in the supernatant fluids from primary cultures of African green monkey kidney cells infected with simian virus 40 (SV 40) virus. Kidney cell cultures not infected by virus had no MIF activity. Supernatant fluids from continuous cultures of nontransformed and SV 40-transformed human fibroblasts contained MIF-like activity. Productive infection with SV 40 virus results in the production of a lymphokine-like factor, as previously observed in other virus-cell systems, involving mumps virus and Newcast,le disease virus. However, while infection with these paramyxoviruses causes the production of macrophage and neutrophil chemotactic agents as well as an MIF, SV 40 infection does not induce chemotactic factors. The results reported here, taken in conjunction with previous observations by ourselves and others, suggest that the production of lymphokine-like factors (cytokines) may represent a general biologic phenomenon, and that many, if not all, cell types, when appropriately stimulated, may be capable of such activity. PMID:168779

  5. Mercury transformation and distribution across a polyvinyl chloride (PVC) production line in China.

    PubMed

    Ren, Wen; Duan, Lei; Zhu, Zhenwu; Du, Wen; An, Zhongyi; Xu, Lingjun; Zhang, Chi; Zhuo, Yuqun; Chen, Changhe

    2014-02-18

    The production of polyvinyl chloride (PVC) via the calcium carbide process utilizes a catalyst containing large amounts of mercury (Hg) and is therefore one of the most important sources of anthropogenic Hg in China. To measure the emission of Hg from PVC production, we established a flowchart for the calcium carbide process, for which we quantified the Hg content of the material/product at each step. Results indicated that 71.5% of the total Hg (Hg(T)) was lost from the catalyst, most of which was recovered by the Hg remover, accounting for 46.0% of the total Hg (Hg(T)). We determined that 3.7% of the Hg(T) was released into the environment, mostly in solid wastes and byproducts such as hydrochloric acid. Furthermore, no Hg has been detected in the PVC end product. However, we were only able to account for 78.1% of the Hg across the whole system, leaving 21.7% unaccounted for in the mass balance. A rough estimation indicates that most of the "missing" Hg had accumulated in deposits on the inner surface of converters and downstream pipelines; however, the emission to the atmosphere was ≤ 1% of the Hg(T). For a PVC production line equipped with a Hg remover, emissions of Hg to the atmosphere have been estimated to be 4.9 g per tonne PVC. Currently, almost all calcium carbide facilities have been equipped with a Hg remover, which may reduce the release of Hg in China by ∼ 500 t/year.

  6. Model nitride irradiated nuclear fuel: production, reaction with water and dilution in nitric acid

    SciTech Connect

    Dvoeglazov, K.; Glushenkov, A.; Sharin, A.; Arseenkov, L.; Lobachev, E.; Davydov, A.; Chebotarev, A.

    2013-07-01

    Samples of the model nuclear fuel (MNF) were made from separately synthesized nitride powders uranium-plutonium, zirconium, lanthanum and metal additives of simulators (Mo, Pd, Rh, Ag) fission products. Synthesis of initial nitride components was carried out from individual oxides, using a carbo-thermal restoration method. From MNF samples baked at a temperature of 1750 C. degrees, were made ceramographic specimens which were investigated by a scanning electron microscope. The analysis showed that distribution of the MNF components and structure of the samples corresponds to distribution of these components in the irradiated nitride fuel. The samples of MNF of nitride fuel were used for carrying out researches on dissolution in water and nitric acid. Experiments on studying the interaction of MNF with water have been made at 20, 50 and 80 C. degrees. The speed of leaching has been determined by a way of measuring the activity of water (Bq/l) in time. It is shown that an increase of temperature leads to an increase of the speed of leaching of plutonium. The formation of a precipitation, allegedly polymeric forms of plutonium, has been observed. The estimated speed of leaching of plutonium from MNF in water at 80 C. degrees is -0,0064 μgPu/(mm{sup 2}*h). From elements of FP simulators, molybdenum appears to be the most significantly leached. The dissolution of MNF in nitric acid (7,8 and 9,4 mol/l) has been carried out at boiling temperature (106-109 C. degrees). During the process of dissolution, gases were emitted. The assessment of composition of the emitted gases has been carried out. During the filtering of the solutions a precipitate whose weight makes about 2% from the weight of initial fuel has been found. Precipitate represents small powder of metal with gray color. Precipitate was investigated by a scanning electron microscope. The analysis of ranges of absorption of solution showed that the Pu(VI) share to the general content of plutonium in solution can

  7. Production of ABA responses requires both the nuclear and cytoplasmic functional involvement of PYR1.

    PubMed

    Park, EunJoo; Kim, Tae-Houn

    2017-02-26

    Abscisic acid (ABA) enhances stress tolerant responses in plants against unfavorable environmental conditions. In Arabidopsis, ABA promotes interactions between PYR/PYL/RCARs and PP2C, thereby allowing SnRK2s to phosphorylate downstream components required for the regulation of gene expression or for gating ion channels. Because PYR1 is known to localize to nucleus and cytoplasm it is a question whether nuclear or cytoplasmic PYR1 confer different functions to the ABA signaling pathway, as has been previously shown for regulatory proteins. In order to answer this question, transgenic lines expressing nuclear PYR1 were generated in an ABA insensitive mutant background. Enforced nuclear expression of PYR1 was examined by confocal microscopy and western blot analysis. Physiological analyses of the transgenic lines demonstrated that nuclear PYR1 is sufficient to generate ABA responses, such as, the inhibition of seed germination, root growth inhibition, the induction of gene expression, and stomatal closing movement. However, for the full recovery of ABA responses in the mutant background cytoplasmic PYR1 was required. The study suggests both nuclear and cytoplasmic PYR1 participate in the control of ABA signal transduction.

  8. Copper sludge from printed circuit board production/recycling for ceramic materials: a quantitative analysis of copper transformation and immobilization.

    PubMed

    Tang, Yuanyuan; Lee, Po-Heng; Shih, Kaimin

    2013-08-06

    The fast development of electronic industries and stringent requirement of recycling waste electronics have produced a large amount of metal-containing waste sludge. This study developed a waste-to-resource strategy to beneficially use such metal-containing sludge from the production and recycling processes of printed circuit board (PCBs). To observe the metal incorporation mechanisms and phase transformation processes, mixtures of copper industrial waste sludge and kaolinite-based materials (kaolinite and mullite) were fired between 650 and 1250 °C for 3 h. The different copper-hosting phases were identified by powder X-ray diffraction (XRD) in the sintered products, and CuAl2O4 was found to be the predominant hosting phase throughout the reactions, regardless of the strong reduction potential of copper expected at high temperatures. The experimental results indicated that CuAl2O4 was generated more easily and in larger quantities at low-temperature processing when using the kaolinite precursor. Maximum copper transformations reached 86% and 97% for kaolinite and mullite systems, respectively, when sintering at 1000 °C. To monitor the stabilization effect after thermal process, prolonged leaching tests were carried out using acetic acid with an initial pH value of 2.9 to leach the sintered products for 20 days. The results demonstrated the decrease of copper leachability with the formation of CuAl2O4, despite different sintering behavior in kaolinite and mullite systems. This study clearly indicates spinel formation as the most crucial metal stabilization mechanism when sintering copper sludge with aluminosilicate materials, and suggests a promising and reliable technique for reusing metal-containing sludge as ceramic materials.

  9. Transforming nanostructured chitin from crustacean waste into beneficial health products: a must for our society

    PubMed Central

    Morganti, P; Morganti, G; Morganti, A

    2011-01-01

    Chitin, obtained principally from crustacean waste, is a sugar-like polymer that is available at low cost. It has been shown to be bio- and ecocompatible, and has a very low level of toxicity. Recently, it has become possible to industrially produce pure chitin crystals, named “chitin nanofibrils” (CN) for their needle-like shape and nanostructured average size (240 × 5 × 7 nm). Due to their specific chemical and physical characteristics, CN may have a range of industrial applications, from its use in biomedical products and biomimetic cosmetics, to biotextiles and health foods. At present, world offshore disposal of this natural waste material is around 250 billion tons per year. It is an underutilized resource and has the potential to supply a wide range of useful products if suitably recycled, thus contributing to sustainable growth and a greener economy. PMID:24198491

  10. Direct Investigations of the Immobilization of Radionuclides in the Alteration Products of Spent Nuclear Fuel

    SciTech Connect

    Peter C. Burns; Robert J. Finch; David J. Wronkiewicz

    2004-12-27

    Safe disposal of the nation's nuclear waste in a geological repository involves unique scientific and engineering challenges owing to the very long-lived radioactivity of the waste. The repository must retain a variety of radionuclides that have vastly different chemical characters for several thousand years. Most of the radioactivity that will be housed in the proposed repository at Yucca Mountain will be associated with spent nuclear fuel, much of which is derived from commercial reactors. DOE is custodian of approximately 8000 tons of spent nuclear fuel that is also intended for eventual disposal in a geological repository. Unlike the spent fuel from commercial reactors, the DOE fuel is diverse in composition with more than 250 varieties. Safe disposal of spent fuel requires a detailed knowledge of its long-term behavior under repository conditions, as well as the fate of radionuclides released from the spent fuel as waste containers are breached.

  11. Partial Transformation Products as Indicators of Microbial Hydrocarbon Degradation in Soils

    NASA Astrophysics Data System (ADS)

    Stringfellow, W. T.

    2001-12-01

    Monitored natural decay (intrinsic bioremediation), a cost-effective method for remediating contaminated property, is widely applied to fuel contaminated sites. If an intrinsic bioremediation approach could be supported for the clean up of polynuclear aromatic hydrocarbon (PAH) contaminated properties, millions of dollars in clean-up costs could potential be saved, especially in transfers of industrial properties that will continue to be used for industrial purposes. Proving intrinsic biodegradation of polynuclear aromatic hydrocarbons (PAHs) is problematic. Slow PAH biodegradation rates in contaminated soils mean that oxygen mass transfer rates into the soil exceeds bacterial oxygen demand. Likewise carbon dioxide production during degradation is sufficiently slow that carbon dioxide will not accumulate in the soil gas to levels exceeding background, uncontaminated soils. Therefore, oxygen depletion and carbon dioxide accumulation, typical indicators of intrinsic remediation activity at fuel contaminated sites, are of little use in demonstrating intrinsic PAH remediation. Additionally, direct measurement of PAH loss over time is of limited use in the absence of extensive historical records, especially at sites that are still emitting PAHs as part of their operations. PAH loss rates may be in the order of 10% per year, whereas combined sampling and analytical error can be greater than 50%. It is our hypothesis that PAH degradation products, such as aromatic carboxylic acids and dihydrodiols, will be present in soils where biodegradation is occurring and absent in soils that are biologically inactive. We have developed methods for the extraction of PAH biodegradation products from soils and the analysis of these metabolites by both gas chromatography and high performance liquid chromatography. We have tested our hypothesis against soils undergoing both active and passive bioremediation. Our results indicate that PAH degradation products are detectable in many soils

  12. Dressed qubits in nuclear spin baths

    SciTech Connect

    Wu Lianao

    2010-04-15

    We present a method to encode a dressed qubit into the product state of an electron spin localized in a quantum dot and its surrounding nuclear spins via a dressing transformation. In this scheme, the hyperfine coupling and a portion of a nuclear dipole-dipole interaction become logic gates, while they are the sources of decoherence in electron-spin qubit proposals. We discuss errors and corrections for the dressed qubits. Interestingly, the effective Hamiltonian of nuclear spins is equivalent to a pairing Hamiltonian, which provides the microscopic mechanism to protect dressed qubits against decoherence.

  13. Transformation products of 1,1-dimethylhydrazine and their distribution in soils of fall places of rocket carriers in Central Kazakhstan.

    PubMed

    Kenessov, Bulat; Alimzhanova, Mereke; Sailaukhanuly, Yerbolat; Baimatova, Nassiba; Abilev, Madi; Batyrbekova, Svetlana; Carlsen, Lars; Tulegenov, Akyl; Nauryzbayev, Mikhail

    2012-06-15

    In our research, three fall places of first stages of Proton rockets have been studied for the presence and distribution of transformation products of 1,1-dimethylhydrazine (1,1-DMH). Results of identification of transformation products of 1,1-DMH in real soil samples polluted due to rocket fuel spills allowed to detect 18 earlier unknown metabolites of 1,1-DMH being formed only under field conditions. According to the results of quantitative analyses, maximum concentrations of 1-methyl-1H-1,2,4-triazole made up 57.3, 44.9 and 13.3 mg kg(-1), of 1-ethyl-1H-1,2,4-triazole - 5.45, 3.66 and 0.66 mg kg(-1), of 1,3-dimethyl-1H-1,2,4-triazole - 24.0, 17.8 and 4.9 mg kg(-1) in fall places 1, 2 and 3, respectively. 4-Methyl-4H-1,2,4-triazole was detected only in fall places 2 and 3 where its maximum concentrations made up 4.2 and 0.66 mg kg(-1), respectively. The pollution of soils with transformation products of 1,1-DMH was only detected in epicenters of fall places having a diameter of 8 to10 m where rocket boosters landed. The results of a detailed study of distribution of 1,1-DMH transformation products along the soil profile indicate that transformation products can migrate down to the depth of 120 cm, The highest concentrations of 1,1-DMH transformation products were detected, as a rule, at the depth 20 to 60 cm. However, this index can vary depending on the compound, humidity and physical properties of soil, landscape features and other conditions. In the surface layer, as a rule, only semi-volatile products of transformation were detected which was caused by fast evaporation and biodegradation of volatile metabolites.

  14. Analyzing Nuclear Fuel Cycles from Isotopic Ratios of Waste Products Applicable to Measurement by Accelerator Mass Spectrometry

    SciTech Connect

    Biegalski, S R; Whitney, S M; Buchholz, B

    2005-08-24

    An extensive study was conducted to determine isotopic ratios of nuclides in spent fuel that may be utilized to reveal historical characteristics of a nuclear reactor cycle. This forensic information is important to determine the origin of unknown nuclear waste. The distribution of isotopes in waste products provides information about a nuclear fuel cycle, even when the isotopes of uranium and plutonium are removed through chemical processing. Several different reactor cycles of the PWR, BWR, CANDU, and LMFBR were simulated for this work with the ORIGEN-ARP and ORIGEN 2.2 codes. The spent fuel nuclide concentrations of these reactors were analyzed to find the most informative isotopic ratios indicative of irradiation cycle length and reactor design. Special focus was given to long-lived and stable fission products that would be present many years after their creation. For such nuclides, mass spectrometry analysis methods often have better detection limits than classic gamma-ray spectroscopy. The isotopic ratios {sup 151}Sm/{sup 146}Sm, {sup 149}Sm/{sup 146}Sm, and {sup 244}Cm/{sup 246}Cm were found to be good indicators of fuel cycle length and are well suited for analysis by accelerator mass spectroscopy.

  15. Transformation of Swine Manure and Algal Consortia to Value-added Products

    NASA Astrophysics Data System (ADS)

    Sharara, Mahmoud A.

    The swine production sector is projected to grow globally. In the past, this growth manifested itself in increased herd sizes and geographically concentrated production. Although economically sound, these trends had negative consequences on surrounding ecosystems. Over-application of manure resulted in water quality degradation, while long-term storage of manure slurries was found to promote release of potent GHG emissions. There is a need for innovative approaches for swine manure management that are compatible with current scales of production, and increasingly strict environmental regulations. This study aims to investigate the potential for incorporating gasification as part of a novel swine manure management system which utilizes liquid-solid separation and periphytic algal consortia as a phycoremediation vector for the liquid slurry. The gasification of swine manure solids, and algal biomass solids generate both a gaseous fuel product (producer gas) in addition to a biochar co-product. First, the decomposition kinetics for both feedstock, i.e., swine manure solids, and algal solids, were quantified using thermogravimetry at different heating rates (1 ~ 40°C min-1) under different atmospheres (nitrogen, and air). Pyrolysis kinetics were determined for manure solids from two farms with different manure management systems. Similarly, the pyrolysis kinetics were determined for phycoremediation algae grown on swine manure slurries. Modeling algal solids pyrolysis as first-order independent parallel reactions was sufficient to describe sample devolatilization. Combustion of swine manure solids blended with algal solids, at different ratios, showed no synergistic effects. Gasification of phycoremediation algal biomass was studied using a bench-scale auger gasification system at temperatures between 760 and 960°C. The temperature profile suggested a stratification of reaction zones common to fixed-bed reactors. The producer gas heating value ranged between 2.2 MJ m

  16. Vacuum ultraviolet light production by nuclear irradiation of liquid and gaseous xenon

    NASA Technical Reports Server (NTRS)

    Baldwin, G. C.

    1981-01-01

    Recent Los Alamos investigations suggest that a liquefied noble element may be the long-sought medium for a nuclear-excited laser or flashlamp. Research is needed to confirm this finding and to provide a basis for design and application studies. Quantitative and qualitative information are needed on the nature and behavior of the excited species, the effects of impurities and additives in the liquid phase under nuclear excitation, and the existence and magnitudes of nonlinear effects. Questions that need to be addressed and the most appropriate types of facilities for this task are identified.

  17. Hadron production in deuteron-gold collisions and nuclear parton distributions

    SciTech Connect

    Adeluyi, Adeola; Fai, George

    2007-11-15

    We calculate nuclear modification factors R{sub dAu}, central-to-peripheral ratios, R{sub CP}, and pseudorapidity asymmetries Y{sub Asym} in deuteron-gold collisions at {radical}(s)=200 GeV in the framework of leading-order (LO) perturbative quantum chromodynamics. We use the Eskola-Kolhinen-Salgado (EKS), the Frankfurt-Guzey-Strikman (FGS), and the Hirai-Kumano-Nagai (HKN) nuclear parton distribution functions and the Albino-Kramer-Kniehl (AKK) fragmentation functions in our calculations. Results are compared to experimental data from the BRAHMS and STAR collaborations.

  18. Hadron production in deuteron-gold collisions and nuclear parton distributions

    NASA Astrophysics Data System (ADS)

    Adeluyi, Adeola; Fai, George

    2007-11-01

    We calculate nuclear modification factors RdAu, central-to-peripheral ratios, RCP, and pseudorapidity asymmetries YAsym in deuteron-gold collisions at s=200 GeV in the framework of leading-order (LO) perturbative quantum chromodynamics. We use the Eskola-Kolhinen-Salgado (EKS), the Frankfurt-Guzey-Strikman (FGS), and the Hirai-Kumano-Nagai (HKN) nuclear parton distribution functions and the Albino-Kramer-Kniehl (AKK) fragmentation functions in our calculations. Results are compared to experimental data from the BRAHMS and STAR collaborations.

  19. The Army Before Last: Military Transformation and the Impact of Nuclear Weapons on the US Army During the Early Cold War

    DTIC Science & Technology

    2004-09-01

    deterrent rather than increasing investment in nuclear weapons and delivery systems .9 This thinking was based on the Army’s belief that nuclear weapons...War .................................................. 21 Table 2. US Army Cannon Delivery System (Nuclear Capable)....................... 42 Table 3...US Army Rocket & Missile Systems 1953-1991................................. 43 x THIS PAGE INTENTIONALLY

  20. COMPARISON OF AN INNOVATIVE NONLINEAR ALGORITHM TO CLASSICAL LEAST SQUARES FOR ANALYZING OPEN-PATH FOURIER TRANSFORM INFRARED SPECTRA COLLECTED AT A CONCENTRATED SWINE PRODUCTION FACILITY

    EPA Science Inventory

    Open-path Fourier transform infrared (OP/FTIR) spectrometry was used to measure the concentrations of ammonia, methane, and other atmospheric gases at an integrated swine production facility. The concentration-pathlength products of the target gases at this site often exceeded th...

  1. Analysis, occurrence, fate and risks of proton pump inhibitors, their metabolites and transformation products in aquatic environment: A review.

    PubMed

    Kosma, Christina I; Lambropoulou, Dimitra A; Albanis, Triantafyllos A

    2016-11-01

    Proton pump inhibitors (PPIs) which include omeprazole, esomeprazole, lansoprazole, pantoprazole and rabeprazole, are extensively used for the relief of gastro-intestinal disorders. Despite their high worldwide consumption, PPIs are extensively metabolized in human bodies and therefore are not regularly detected in monitoring studies. Very recently, however, it has been shown that some omeprazole metabolites may enter and are likely to persist in aquatic environment. Hence, to fully assess the environmental exposures and risks associated with PPIs, it is important to better understand and evaluate the fate and behavior not only of the parent compound but also of their metabolites and their transformation products arising from biotic and abiotic processes (hydrolysis, photodegradation, biodegradation etc.) in the environment. In this light, the purpose of this review is to summarize the present state of knowledge on the introduction and behavior of these chemicals in natural and engineering systems and highlight research needs and gaps. It draws attention to their transformation, the increase contamination by their metabolites/TPs in different environmental matrices and their potential adverse effects in the environment. Furthermore, existing research on analytical developments with respect to sample treatment, separation and detection of PPIs and their metabolites/TPs is provided.

  2. Some implications of the Hartree product treatment of the quantum nuclei in the ab initio nuclear-electronic orbital methodology

    NASA Astrophysics Data System (ADS)

    Gharabaghi, Masumeh; Shahbazian, Shant

    2016-12-01

    In this letter the conceptual and computational implications of the Hartree product type nuclear wavefunction introduced recently within the context of the ab initio non-Born-Oppenheimer Nuclear-electronic orbital (NEO) methodology are considered. It is demonstrated that this wavefunction may imply a pseudo-adiabatic separation of the nuclei and electrons and each nucleus is conceived as a quantum oscillator while a non-Coulombic effective Hamiltonian is deduced for electrons. Using the variational principle this Hamiltonian is employed to derive a modified set of single-component Hartree-Fock equations which are equivalent to the multi-component version derived previously within the context of the NEO and, easy to be implemented computationally.

  3. Melphalan-induced apoptosis of EBV-transformed B cells through upregulation of TAp73 and XAF1 and nuclear import of XPA.

    PubMed

    Park, Ga Bin; Kim, Yeong-Seok; Kim, Daejin; Kim, Seonghan; Lee, Hyun-Kyung; Cho, Dae-Ho; Lee, Wang Jae; Hur, Dae Young

    2013-12-15

    Melphalan (Mel) is widely used to treat patients with hematologic cancer, including multiple myeloma, but its mechanism of action in EBV-transformed B cells is poorly described. In this study, we demonstrate a novel mechanism by which transcriptionally active p73 (TAp73) induces translocation of X-linked inhibitor of apoptosis protein-associated factor 1 (XAF1) and xeroderma pigmentosum group A (XPA) during apoptosis caused by Mel treatment. We observed that Mel induced significant generation of reactive oxygen species (ROS) and subsequent apoptosis, as well as an early phosphorylation of p38 MAPK that preceded expression of the mitochondria membrane potential disruption-related molecules and the cleavage of caspases. In particular, Mel led to upregulation of TAp73, XAF1, and Puma and induced XPA nuclear import and translocation of Bax into mitochondria. Mel-induced apoptosis was inhibited by pretreatment with the ROS scavenger 4-amino-2,4-pyrrolidine-dicarboxylic acid (APDC) and the p38 MAPK inhibitor SB203580. We supposed that ROS generation might be the first event in Mel-induced apoptosis, because APDC blocked the increase in ROS, p38 MAPK, and TAp73, but SB203580 did not block ROS generation. Moreover, Mel elicited activation of ATR, and APDC inhibited phosphorylation of ATR but not SB203580. APDC and SB203580 completely blocked XPA and Bax translocation. We conclude that Mel promotes TAp73-mediated XAF1 and Puma expression via ROS generation and ATR/p38 MAPK pathway activation, thereby triggering apoptosis. Our results provide evidence of a novel alternate regulatory mechanism of TAp73 and reveal that Mel may be a therapeutic drug for curing EBV-related malignancies.

  4. Feasibility Study of Hydrogen Production from Existing Nuclear Power Plants Using Alkaline Electrolysis

    SciTech Connect

    Dana R. Swalla

    2008-12-31

    The mid-range industrial market currently consumes 4.2 million metric tons of hydrogen per year and has an annual growth rate of 15% industries in this range require between 100 and 1000 kilograms of hydrogen per day and comprise a wide range of operations such as food hydrogenation, electronic chip fabrication, metals processing and nuclear reactor chemistry modulation.

  5. Transformation products of emerging contaminants in the environment and high-resolution mass spectrometry: a new horizon.

    PubMed

    Picó, Yolanda; Barceló, Damià

    2015-08-01

    It is crucial to study the presence of transformation products (TPs) of emerging contaminants that can be potentially found in the environment after biological or chemical degradation. This review focuses on the potential and shortcomings of high-resolution mass spectrometry (HRMS) to identify these TPs, with emphasis on recent developments in mass analyzers, data evaluation, and compound identification workflows and applications. Advances in HRMS technologies, including direct introduction or in-line chromatographic separation modes, ionization techniques, mass analyzers, and detection methods, have led to powerful tools to assess the molecular changes and the opening of new horizons to identify unknown molecules. Advances in HRMS pertaining to the generation of analytical data for the main methods to identify TPs, including nontargeted and targeted approaches as they are applied to elucidate the structure of TPs, are also discussed.

  6. Economic Analysis of the Reference Design for a Nuclear-Driven High-Temperature-Electrolysis Hydrogen Production Plant

    SciTech Connect

    E. A. Harvego; M. G. McKellar; M. S. Sohal; J. E. O'Brien; J. S. Herring

    2008-01-01

    A reference design for a commercial-scale high-temperature electrolysis (HTE) plant for hydrogen production was developed to provide a basis for comparing the HTE concept with other hydrogen production concepts. The reference plant design is driven by a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle. The reference design reactor power is 600 MWt, with a primary system pressure of 7.0 MPa, and reactor inlet and outlet fluid temperatures of 540°C and 900°C, respectively. The electrolysis unit used to produce hydrogen consists of 4,009,177 cells with a per-cell active area of 225 cm2. A nominal cell area-specific resistance, ASR, value of 0.4 Ohm•cm2 with a current density of 0.25 A/cm2 was used, and isothermal boundary conditions were assumed. The optimized design for the reference hydrogen production plant operates at a system pressure of 5.0 MPa, and utilizes an air-sweep system to remove the excess oxygen that is evolved on the anode side of the electrolyzer. The inlet air for the air-sweep system is compressed to the system operating pressure of 5.0 MPa in a four-stage compressor with intercooling. The alternating current, AC, to direct current, DC, conversion is 96%. The overall system thermal-to-hydrogen production efficiency (based on the low heating value of the produced hydrogen) is 47.12% at a hydrogen production rate of 2.356 kg/s. An economic analysis of the plant was also performed using the H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a competitive cost using realistic financial and cost estimating assumptions. A required cost of $3.23 per kg of hydrogen produced was calculated assuming an internal rate of return of 10%. Approximately 73% of this cost ($2.36/kg) is the result of capital costs associated

  7. Model-based estimation of pesticides and transformation products and their export pathways in a headwater catchment

    NASA Astrophysics Data System (ADS)

    Gassmann, M.; Stamm, C.; Olsson, O.; Lange, J.; Kümmerer, K.; Weiler, M.

    2013-12-01

    Pesticides applied onto agricultural fields are frequently found in adjacent rivers. To what extent and along which pathways they are transported is influenced by intrinsic pesticide properties such as sorption and degradation. In the environment, incomplete degradation of pesticides leads to the formation of transformation products (TPs), which may differ from the parent compounds regarding their intrinsic fate characteristics. Thus, the export processes of TPs in catchments and streams may also be different. In order to test this hypothesis, we extended a distributed hydrological model by the fate and behaviour of pesticides and transformation products and applied it to a small, well-monitored headwater catchment in Switzerland. The successful model evaluation of three pesticides and their TPs at three sampling locations in the catchment enabled us to estimate the quantity of contributing processes for pollutant export. Since all TPs were more mobile than their parent compounds (PCs), they exhibited larger fractions of export via subsurface pathways. However, besides freshly applied pesticides, subsurface export was found to be influenced by residues of former applications. Export along preferential flow pathways was less dependent on substance fate characteristics than soil matrix export, but total soil water flow to tile drains increased more due to preferential flow for stronger sorbing substances. Our results indicate that runoff generation by matrix flow to tile drains gained importance towards the end of the modelling period whereas the contributions from fast surface runoff and preferential flow decreased. Accordingly, TPs were to a large extent exported under different hydrological conditions than their PCs, due to their delayed formation and longer half-lives. Thus, not only their different intrinsic characteristics but also their delayed formation could be responsible for the fact that TPs generally took different pathways than their PCs. We suggest

  8. Model-based estimation of pesticides and transformation products and their export pathways in a headwater catchment

    NASA Astrophysics Data System (ADS)

    Gassmann, M.; Stamm, C.; Olsson, O.; Lange, J.; Kümmerer, K.; Weiler, M.

    2013-07-01

    Pesticides applied onto agricultural fields are frequently found in adjacent rivers. To what extent and along which pathways they are transported is influenced by intrinsic pesticide properties such as sorption and degradation. In the environment, incomplete degradation of pesticides leads to the formation of transformation products (TPs), which may differ from the parent compounds regarding their intrinsic fate characteristics. Thus, the export processes of TPs in catchments and streams may also be different. In order to test this hypothesis, we extended a distributed hydrological model by the fate and behaviour of pesticides and transformation products and applied it to a small, well-monitored headwater catchment in Switzerland. The successful model evaluation of three pesticides and their TPs at three sampling locations in the catchment enabled us to estimate the quantity of contributing processes for pollutant export. Since all TPs were more mobile than their parent compounds (PCs), they exhibited larger fractions of export via subsurface pathways. However, besides freshly applied pesticides, subsurface export was found to be influenced by residues of former applications. Export along preferential flow pathways was less dependent on substance fate characteristics than soil matrix export, but total soil water flow to tile drains increased more due to preferential flow for stronger sorbing substances. Our results indicate that runoff generation by matrix flow to tile drains gained importance towards the end of the modelling period whereas the contributions from fast surface runoff and preferential flow decreased. Accordingly, TPs were to a large extent exported under different hydrological conditions than their PCs, due to their delayed formation and longer half-lives. Thus, not only their different intrinsic characteristics but also their delayed formation could be responsible for the fact that TPs generally took different pathways than their PCs. We suggest

  9. Applications of nuclear physics.

    PubMed

    Hayes, A C

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  10. Applications of nuclear physics

    DOE PAGES

    Hayes-Sterbenz, Anna Catherine

    2017-01-10

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less

  11. Applications of nuclear physics

    NASA Astrophysics Data System (ADS)

    Hayes, A. C.

    2017-02-01

    Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.

  12. Production, Organic Characterization, and Phase Transformations of Marine Particles Aerosolized from a Laboratory Mesocosm Phytoplankton Bioreactor

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Knopf, D. A.; Aller, J. Y.; Radway, J.; Kilthau, W.

    2012-12-01

    Previous studies have shown that particles emitted from bubble bursting and wave breaking of ocean waters with high biological activity can contain sea salts associated with organic material, with smaller particles containing a larger mass fraction of organics than larger particles. This likely indicates a link between phytoplankton productivity in oceans and particulate organic material in marine air. Once aerosolized, particles with significant amount of organic material can affect cloud activation and formation of ice crystals, among other atmospheric processes, thus influencing climate. This is significant for clouds and climate particularly over nutrient rich polar seas, in which concentrations of biological organisms can reach up to 109 cells per ml during spring phytoplankton blooms. Here we present results of bubble bursting aerosol production from a seawater mesocosm containing artificial seawater, natural seawater and unialgal cultures of three representative phytoplankton species. These phytoplankton (Thalassiosira pseudonana, Emilianaia huxleyi, and Nannochloris atomus), possessed siliceous frustules, calcareous frustules and no frustules, respectively. Bubbles were generated employing recirculating impinging water jets or glass frits. Dry and humidified aerosol size distributions and bulk aerosol organic composition were measured as a function of phytoplankton growth, and chlorophyll composition and particulate and dissolved organic carbon in the water were determined. Finally, particles were collected on substrates for ice nucleation and water uptake experiments, their elemental compositions were determined using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEMEDAX), and their carbon speciation was determined using scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Particle size distributions exposed to dry and humidified air employing

  13. A QSAR/QSTR Study on the Environmental Health Impact by the Rocket Fuel 1,1-Dimethyl Hydrazine and its Transformation Products

    PubMed Central

    Carlsen, Lars; Kenessov, Bulat N.; Batyrbekova, Svetlana Ye.

    2008-01-01

    QSAR/QSTR modelling constitutes an attractive approach to preliminary assessment of the impact on environmental health by a primary pollutant and the suite of transformation products that may be persistent in and toxic to the environment. The present paper studies the impact on environmental health by residuals of the rocket fuel 1,1-dimethyl hydrazine (heptyl) and its transformation products. The transformation products, comprising a variety of nitrogen containing compounds are suggested all to possess a significant migration potential. In all cases the compounds were found being rapidly biodegradable. However, unexpected low microbial activity may cause significant changes. None of the studied compounds appear to be bioaccumulating. Apart from substances with an intact hydrazine structure or hydrazone structure the transformation products in general display rather low environmental toxicities. Thus, it is concluded that apparently further attention should be given to tri- and tetramethyl hydrazine and 1-formyl 2,2-dimethyl hydrazine as well as to the hydrazones of formaldehyde and acetaldehyde as these five compounds may contribute to the overall environmental toxicity of residual rocket fuel and its transformation products. PMID:21572843

  14. A Storage-Efficient WY Representation for Products of Householder Transformations

    NASA Technical Reports Server (NTRS)

    Schreiber, Robert; VanLoan, Charles

    1989-01-01

    A product Q=P1 ... P(sub r) of m x m Householder matrices can be written in the form Q = I + WY(sup T), where W and Y are each m x r. This is called the WY representation of Q. It is of interest when implementing Householder techniques in high-performance computing environments that are especially good at matrix-matrix multiplication. In this note a storage-efficient way to implement the WY representation is described. In particular, it is shown how the matrix Q can be expressed in the form Q = I + YTY(sup T). Usually r much less than m and so this 'compact' WY representation requires less storage. When compared with the recent block-reflector strategy the new technique still has a storage advantage and involves a comparable amount of work.

  15. Isochoric Burn, an Internally Consistent Method for the Reactant to Product Transformation in Reactive Flow

    SciTech Connect

    Reaugh, J E; Lee, E L

    2002-07-01

    Mixture rules for partially reacted explosives differ amongst various models. For instance, JWL++ uses a partial pressure addition to compute an average zonal pressure, Ignition and Growth requires pressure equilibration and thermal equilibration of temperature dependent JWL EOSs, CHEETAH In Line RF also assumes temperature and pressure equilibration. It has been suggested in the past that a more realistic equilibration scheme should comprise isentropic pressure equilibration of the separate reacted and unreacted phases. This turns out not to be a proper path for equilibration. Rather, we find that the only internally consistent method is the evaluation of the equilibrium pressure that satisfies the particular conditions of reactant and product resulting from deflagration in a fixed volume.

  16. Incomplete aerobic degradation of the antidiabetic drug Metformin and identification of the bacterial dead-end transformation product Guanylurea.

    PubMed

    Trautwein, Christoph; Kümmerer, Klaus

    2011-10-01

    Active pharmaceutical ingredients as well as personal care products are detected in increasing prevalence in different environmental compartments such as surface water, groundwater and soil. Still little is known about the environmental fate of these substances. The type II antidiabetic drug Metformin has already been detected in different surface waters worldwide, but concentrations were significantly lower than the corresponding predicted environmental concentration (PEC). In human and mammal metabolism so far no metabolites of Metformin have been identified, so the expected environmental concentrations should be very high. To assess the aerobic biodegradability of Metformin and the possible formation of degradation products, three Organisation of Economic Cooperation and Development (OECD) test series were performed in the present study. In the Closed Bottle test (OECD 301 D), a screening test that simulates the conditions of an environmental surface water compartment, Metformin was classified as not readily biodegradable (no biodegradation). In the Manometric Respiratory test (OEDC 301 F) working with high bacterial density, Metformin was biodegraded in one of three test bottles to 48.7% and in the toxicity control bottle to 57.5%. In the Zahn-Wellens test (OECD 302 B) using activated sludge, Metformin was biodegraded in both test vessels to an extent of 51.3% and 49.9%, respectively. Analysis of test samples by high performance liquid chromatography coupled to multiple stage mass spectrometry (HPLC-MS(n)) showed in the tests vessels were biodegradation was observed full elimination of Metformin and revealed Guanylurea (Amidinourea, Dicyandiamidine) as single and stable aerobic bacterial degradation product. In another Manometric Respiratory test Guanylurea showed no more transformation. Photodegradation of Guanylurea was also negative. A first screening in one of the greatest sewage treatment plant in southern Germany found Metformin with high concentrations

  17. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    SciTech Connect

    Chadwick, M.B.; Herman, M.; Author : Chadwick,M.B.; Herman,M.; Oblozinsky,P.; Dunn,M.E.; Danon,Y.; Kahler,A.C.; Smith,D.L.; Pritychenko,B.; Arbanas,G.; Arcilla,R.; Brewer,R.; Brown,D.A.; Capote,R.; Carlson,A.D.; Cho,Y.S.; Derrien,H.; Guber,K.; Hale,G.M.; Hoblit,S.; Holloway,S.: Johnson,T.D.; Kawano,T.; Kiedrowski,B.C.; Kim,H.; Kunieda,S.; Larson,N.M.; Leal,L.; Lestone,J.P.; Little,R.C.; McCutchan,E.A.; MacFarlane,R.E.; MacInnes,M.; Mattoon,C.M.; McKnight,R.D.; Mughabghab,S.F.; Nobre,G.P.A.; Palmiotti,G.; Palumbo,A.; Pigni,M.T.; Pronyaev,V.G.; Sayer,R.O.; Sonzogni,A.A.; Summers,N.C.; Talou,P.; Thompson,I.J.; Trkov,A.; Vogt,R.L.; van der Marck,S.C.; Wallner,A.; White,M.C.; Wiarda,D.; Young,P.G.

    2011-12-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides {sup 235,238}U and {sup 239}Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on {sup 239}Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0

  18. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Herman, M.; Obložinský, P.; Dunn, M. E.; Danon, Y.; Kahler, A. C.; Smith, D. L.; Pritychenko, B.; Arbanas, G.; Arcilla, R.; Brewer, R.; Brown, D. A.; Capote, R.; Carlson, A. D.; Cho, Y. S.; Derrien, H.; Guber, K.; Hale, G. M.; Hoblit, S.; Holloway, S.; Johnson, T. D.; Kawano, T.; Kiedrowski, B. C.; Kim, H.; Kunieda, S.; Larson, N. M.; Leal, L.; Lestone, J. P.; Little, R. C.; McCutchan, E. A.; MacFarlane, R. E.; MacInnes, M.; Mattoon, C. M.; McKnight, R. D.; Mughabghab, S. F.; Nobre, G. P. A.; Palmiotti, G.; Palumbo, A.; Pigni, M. T.; Pronyaev, V. G.; Sayer, R. O.; Sonzogni, A. A.; Summers, N. C.; Talou, P.; Thompson, I. J.; Trkov, A.; Vogt, R. L.; van der Marck, S. C.; Wallner, A.; White, M. C.; Wiarda, D.; Young, P. G.

    2011-12-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides 235,238U and 239Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on 239Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide range

  19. Development of a Double Nuclear Gene-Targeting Method by Two-Step Transformation Based on a Newly Established Chloramphenicol-Selection System in the Red Alga Cyanidioschyzon merolae

    PubMed Central

    Fujiwara, Takayuki; Ohnuma, Mio; Kuroiwa, Tsuneyoshi; Ohbayashi, Ryudo; Hirooka, Shunsuke; Miyagishima, Shin-Ya

    2017-01-01

    The unicellular red alga Cyanidioschyzon merolae possesses a simple cellular architecture that consists of one mitochondrion, one chloroplast, one peroxisome, one Golgi apparatus, and several lysosomes. The nuclear genome content is also simple, with very little genetic redundancy (16.5 Mbp, 4,775 genes). In addition, molecular genetic tools such as gene targeting and inducible gene expression systems have been recently developed. These cytological features and genetic tractability have facilitated various omics analyses. However, only a single transformation selection marker URA has been made available and thus the application of genetic modification has been limited. Here, we report the development of a nuclear targeting method by using chloramphenicol and the chloramphenicol acetyltransferase (CAT) gene. In addition, we found that at least 200-bp homologous arms are required and 500-bp arms are sufficient for a targeted single-copy insertion of the CAT selection marker into the nuclear genome. By means of a combination of the URA and CAT transformation systems, we succeeded in producing a C. merolae strain that expresses HA-cyclin 1 and FLAG-CDKA from the chromosomal CYC1 and CDKA loci, respectively. These methods of multiple nuclear targeting will facilitate genetic manipulation of C. merolae. PMID:28352279

  20. Neoplastic transformation of rat thyroid cells requires the junB and fra-1 gene induction which is dependent on the HMGI-C gene product.

    PubMed Central

    Vallone, D; Battista, S; Pierantoni, G M; Fedele, M; Casalino, L; Santoro, M; Viglietto, G; Fusco, A; Verde, P

    1997-01-01

    The expression of the high mobility group I (HMGI)-C chromatin component was shown previously to be essential for the establishment of the neoplastic phenotype in retrovirally transformed thyroid cell lines. To identify possible targets of the HMGI-C gene product, we have analyzed the AP-1 complex in normal, fully transformed and antisense HMGI-C-expressing rat thyroid cells. We show that neoplastic transformation is associated with a drastic increase in AP-1 activity, which reflects multiple compositional changes. The strongest effect is represented by the dramatic junB and fra-1 gene induction, which is prevented in cell lines expressing the antisense HMGI-C. These results indicate that the HMGI-C gene product is essential for the junB and fra-1 transcriptional induction associated with neoplastic transformation. The inhibition of Fra-1 protein synthesis by stable transfection with a fra-1 antisense RNA vector significantly reduces the malignant phenotype of the transformed thyroid cells, indicating a pivotal role for the fra-1 gene product in the process of cellular transformation. PMID:9311991

  1. Measurement of inclusive jet production and nuclear modifications in pPb collisions at [Formula: see text].

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Knünz, V; König, A; Krammer, M; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rad, N; Rahbaran, B; Rohringer, H; Schieck, J; Schöfbeck, R; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Lauwers, J; Luyckx, S; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Heracleous, N; Keaveney, J; Lowette, S; Moreels, L; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Van Parijs, I; Barria, P; Brun, H; Caillol, C; Clerbaux, B; De Lentdecker, G; Fang, W; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Maerschalk, T; Marinov, A; Perniè, L; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Yonamine, R; Zenoni, F; Zhang, F; Beernaert, K; Benucci, L; Cimmino, A; Crucy, S; Dobur, D; Fagot, A; Garcia, G; Gul, M; Mccartin, J; Ocampo Rios, A A; Poyraz, D; Ryckbosch, D; Salva, S; Sigamani, M; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; Ceard, L; Delaere, C; Delcourt, M; Favart, D; Forthomme, L; Giammanco, A; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Mertens, A; Musich, M; Nuttens, C; Perrini, L; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Beliy, N; Hammad, G H; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hamer, M; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; De Souza Santos, A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Cheng, T; Du, R; Jiang, C H; Leggat, D; Plestina, R; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Micanovic, S; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Bodlak, M; Finger, M; Finger, M; Abdelalim, A A; Awad, A; Mahrous, A; Radi, A; Calpas, B; Kadastik, M; Murumaa, M; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Peltola, T; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Abdulsalam, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Filipovic, N; Granier de Cassagnac, R; Jo, M; Lisniak, S; Mastrolorenzo, L; Miné, P; Naranjo, I N; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sauvan, J B; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Le Bihan, A-C; Merlin, J A; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Ruiz Alvarez, J D; Sabes, D; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Tsamalaidze, Z; Autermann, C; Beranek, S; Feld, L; Heister, A; Kiesel, M K; Klein, K; Lipinski, M; Ostapchuk, A; Preuten, M; Raupach, F; Schael, S; Schulte, J F; Verlage, T; Weber, H; Zhukov, V; Ata, M; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Olschewski, M; Padeken, K; Papacz, P; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Hoehle, F; Kargoll, B; Kress, T; Künsken, A; Lingemann, J; Nehrkorn, A; Nowack, A; Nugent, I M; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Asin, I; Bartosik, N; Behnke, O; Behrens, U; Borras, K; Burgmeier, A; Campbell, A; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Dolinska, G; Dooling, S; Dorland, T; Eckerlin, G; Eckstein, D; Eichhorn, T; Flucke, G; Gallo, E; Garcia, J Garay; Geiser, A; Gizhko, A; Gunnellini, P; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Katsas, P; Kieseler, J; Kleinwort, C; Korol, I; Lange, W; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Naumann-Emme, S; Nayak, A; Ntomari, E; Perrey, H; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Seitz, C; Spannagel, S; Stefaniuk, N; Trippkewitz, K D; Walsh, R; Wissing, C; Blobel, V; Centis Vignali, M; Draeger, A R; Erfle, J; Garutti, E; Goebel, K; Gonzalez, D; Görner, M; Haller, J; Hoffmann, M; Höing, R S; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Lapsien, T; Lenz, T; Marchesini, I; Marconi, D; Meyer, M; Nowatschin, D; Ott, J; Pantaleo, F; Peiffer, T; Perieanu, A; Pietsch, N; Poehlsen, J; Rathjens, D; Sander, C; Scharf, C; Schleper, P; Schlieckau, E; Schmidt, A; Schumann, S; Schwandt, J; Sola, V; Stadie, H; Steinbrück, G; Stober, F M; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; Colombo, F; De Boer, W; Descroix, A; Dierlamm, A; Fink, S; Frensch, F; Friese, R; Giffels, M; Gilbert, A; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Katkov, I; Kornmayer, A; Lobelle Pardo, P; Maier, B; Mildner, H; Mozer, M U; Müller, T; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Schröder, M; Sieber, G; Simonis, H J; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Psallidas, A; Topsis-Giotis, I; Agapitos, A; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Strologas, J; Bencze, G; Hajdu, C; Hazi, A; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Molnar, J; Szillasi, Z; Bartók, M; Makovec, A; Raics, P; Trocsanyi, Z L; Ujvari, B; Choudhury, S; Mal, P; Mandal, K; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Gupta, R; Bhawandeep, U; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Malhotra, S; Naimuddin, M; Nishu, N; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, S; Chatterjee, K; Dey, S; Dutta, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Banerjee, S; Bhowmik, S; Chatterjee, R M; Dewanjee, R K; Dugad, S; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Jain, Sa; Kole, G; Kumar, S; Mahakud, B; Maity, M; Majumder, G; Mazumdar, K; Mitra, S; Mohanty, G B; Parida, B; Sarkar, T; Sur, N; Sutar, B; Wickramage, N; Chauhan, S; Dube, S; Kapoor, A; Kothekar, K; Sharma, S; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Silvestris, L; Venditti, R; Abbiendi, G; Battilana, C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Cappello, G; Chiorboli, M; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Lo Vetere, M; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Dinardo, M E; Fiorendi, S; Gennai, S; Gerosa, R; Ghezzi, A; Govoni, P; Malvezzi, S; Manzoni, R A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Esposito, M; Fabozzi, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Merola, M; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Branca, A; Carlin, R; Checchia, P; Dall'Osso, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Gozzelino, A; Kanishchev, K; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Zanetti, M; Zotto, P; Zucchetta, A; Zumerle, G; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Foà, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Serban, A T; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; D'imperio, G; Del Re, D; Diemoz, M; Gelli, S; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Traczyk, P; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bellan, R; Biino, C; Cartiglia, N; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; La Licata, C; Marone, M; Schizzi, A; Zanetti, A; Kropivnitskaya, A; Nam, S K; Kim, D H; Kim, G N; Kim, M S; Kong, D J; Lee, S; Oh, Y D; Sakharov, A; Son, D C; Brochero Cifuentes, J A; Kim, H; Kim, T J; Song, S; Cho, S; Choi, S; Go, Y; Gyun, D; Hong, B; Kim, H; Kim, Y; Lee, B; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Yoo, H D; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Kim, D; Kwon, E; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Komaragiri, J R; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Casimiro Linares, E; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Khurshid, T; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Brona, G; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Walczak, M; Bargassa, P; Da Cruz E Silva, C Beirão; Di Francesco, A; Faccioli, P; Parracho, P G Ferreira; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, L; Safronov, G; Spiridonov, A; Vlasov, E; Zhokin, A; Chadeeva, M; Chistov, R; Danilov, M; Rusinov, V; Tarkovskii, E; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Baskakov, A; Belyaev, A; Boos, E; Ershov, A; Gribushin, A; Kaminskiy, A; Kodolova, O; Korotkikh, V; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Vardanyan, I; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Ramos, J P Fernández; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Yzquierdo, A Pérez-Calero; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; Albajar, C; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Palencia Cortezon, E; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Castiñeiras De Saa, J R; Curras, E; De Castro Manzano, P; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benaglia, A; Bendavid, J; Benhabib, L; Berruti, G M; Bloch, P; Bocci, A; Bonato, A; Botta, C; Breuker, H; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; D'Alfonso, M; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Guio, F; De Roeck, A; De Visscher, S; Di Marco, E; Dobson, M; Dordevic, M; Dorney, B; du Pree, T; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Giordano, D; Girone, M; Glege, F; Guida, R; Gundacker, S; Guthoff, M; Hammer, J; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kirschenmann, H; Kortelainen, M J; Kousouris, K; Krajczar, K; Lecoq, P; Lourenço, C; Lucchini, M T; Magini, N; Malgeri, L; Mannelli, M; Martelli, A; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Morovic, S; Mulders, M; Nemallapudi, M V; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Piparo, D; Racz, A; Reis, T; Rolandi, G; Rovere, M; Ruan, M; Sakulin, H; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Simon, M; Sphicas, P; Steggemann, J; Stieger, B; Stoye, M; Takahashi, Y; Treille, D; Triossi, A; Tsirou, A; Veres, G I; Wardle, N; Wöhri, H K; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Eller, P; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lecomte, P; Lustermann, W; Mangano, B; Marionneau, M; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Rossini, M; Schönenberger, M; Starodumov, A; Takahashi, M; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; Chiochia, V; De Cosa, A; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Ngadiuba, J; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Yang, Y; Chen, K H; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Lu, Y J; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Fiori, F; Grundler, U; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Petrakou, E; Tsai, J F; Tzeng, Y M; Asavapibhop, B; Kovitanggoon, K; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Gurpinar, E; Hos, I; Kangal, E E; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Sunar Cerci, D; Tali, B; Topakli, H; Zorbilmez, C; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Vardarlı, F I; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Senkin, S; Smith, D; Smith, V J; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Burton, D; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Dunne, P; Elwood, A; Futyan, D; Hall, G; Iles, G; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Seez, C; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Alimena, J; Benelli, G; Berry, E; Cutts, D; Ferapontov, A; Garabedian, A; Hakala, J; Heintz, U; Jesus, O; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Syarif, R; Breedon, R; Breto, G; De La Barca Sanchez, M Calderon; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Wilbur, S; Yohay, R; Cousins, R; Everaerts, P; Florent, A; Hauser, J; Ignatenko, M; Saltzberg, D; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Ivova Paneva, M; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Malberti, M; Negrete, M Olmedo; Shrinivas, A; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Derdzinski, M; Holzner, A; Kelley, R; Klein, D; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Welke, C; Würthwein, F; Yagil, A; Zevi Della Porta, G; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Gouskos, L; Gran, J; Incandela, J; Mccoll, N; Mullin, S D; Richman, J; Stuart, D; Suarez, I; West, C; Yoo, J; Anderson, D; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Mott, A; Newman, H B; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Azzolini, V; Calamba, A; Carlson, B; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Cumalat, J P; Ford, W T; Gaz, A; Jensen, F; Johnson, A; Krohn, M; Mulholland, T; Nauenberg, U; Stenson, K; Wagner, S R; Alexander, J; Chatterjee, A; Chaves, J; Chu, J; Dittmer, S; Eggert, N; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Sun, W; Tan, S M; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Wittich, P; Abdullin, S; Albrow, M; Apollinari, G; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hanlon, J; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Lewis, J; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; Newman-Holmes, C; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Konigsberg, J; Korytov, A; Kotov, K; Ma, P; Matchev, K; Mei, H; Milenovic, P; Mitselmakher, G; Rank, D; Rossin, R; Shchutska, L; Snowball, M; Sperka, D; Terentyev, N; Thomas, L; Wang, J; Wang, S; Yelton, J; Hewamanage, S; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Ackert, A; Adams, J R; Adams, T; Askew, A; Bein, S; Bochenek, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Khatiwada, A; Prosper, H; Weinberg, M; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Kalakhety, H; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Kurt, P; O'Brien, C; Sandoval Gonzalez, L D; Turner, P; Varelas, N; Wu, Z; Zakaria, M; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Barnett, B A; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Osherson, M; Roskes, J; Sarica, U; Swartz, M; Xiao, M; Xin, Y; You, C; Baringer, P; Bean, A; Bruner, C; Kenny, R P; Majumder, D; Malek, M; Mcbrayer, W; Murray, M; Sanders, S; Stringer, R; Wang, Q; Ivanov, A; Kaadze, K; Khalil, S; Makouski, M; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Lange, D; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Kellogg, R G; Kolberg, T; Kunkle, J; Lu, Y; Mignerey, A C; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Baty, A; Bi, R; Bierwagen, K; Brandt, S; Busza, W; Cali, I A; Demiragli, Z; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Sumorok, K; Tatar, K; Varma, M; Velicanu, D; Veverka, J; Wang, J; Wang, T W; Wyslouch, B; Yang, M; Zhukova, V; Benvenuti, A C; Dahmes, B; Evans, A; Finkel, A; Gude, A; Hansen, P; Kalafut, S; Kao, S C; Klapoetke, K; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bartek, R; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Knowlton, D; Kravchenko, I; Meier, F; Monroy, J; Ratnikov, F; Siado, J E; Snow, G R; Alyari, M; Dolen, J; George, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Kharchilava, A; Kumar, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wang, R-J; Wood, D; Zhang, J; Bhattacharya, S; Hahn, K A; Kubik, A; Low, J F; Mucia, N; Odell, N; Pollack, B; Schmitt, M; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Smith, G; Taroni, S; Valls, N; Wayne, M; Wolf, M; Woodard, A; Antonelli, L; Brinson, J; Bylsma, B; Durkin, L S; Flowers, S; Hart, A; Hill, C; Hughes, R; Ji, W; Ling, T Y; Liu, B; Luo, W; Puigh, D; Rodenburg, M; Winer, B L; Wulsin, H W; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Tully, C; Zuranski, A; Malik, S; Barker, A; Barnes, V E; Benedetti, D; Bortoletto, D; Gutay, L; Jha, M K; Jones, M; Jung, A W; Jung, K; Kumar, A; Miller, D H; Neumeister, N; Radburn-Smith, B C; Shi, X; Shipsey, I; Silvers, D; Sun, J; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Redjimi, R; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Chou, J P; Contreras-Campana, E; Ferencek, D; Gershtein, Y; Halkiadakis, E; Heindl, M; Hidas, D; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Lath, A; Nash, K; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Foerster, M; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Castaneda Hernandez, A; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Gilmore, J; Huang, T; Kamon, T; Krutelyov, V; Mueller, R; Osipenkov, I; Pakhotin, Y; Patel, R; Perloff, A; Rose, A; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Undleeb, S; Volobouev, I; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Mao, Y; Melo, A; Ni, H; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Lin, C; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Wood, J; Xia, F; Clarke, C; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sturdy, J; Belknap, D A; Carlsmith, D; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ruggles, T; Sarangi, T; Savin, A; Sharma, A; Smith, N; Smith, W H; Taylor, D; Verwilligen, P; Woods, N; Collaboration, Authorinst The Cms

    2016-01-01

    Inclusive jet production in pPb collisions at a nucleon-nucleon (NN) center-of-mass energy of [Formula: see text] is studied with the CMS detector at the LHC. A data sample corresponding to an integrated luminosity of 30.1 nb[Formula: see text] is analyzed. The jet transverse momentum spectra are studied in seven pseudorapidity intervals covering the range [Formula: see text] in the NN center-of-mass frame. The jet production yields at forward and backward pseudorapidity are compared and no significant asymmetry about [Formula: see text] is observed in the measured kinematic range. The measurements in the pPb system are compared to reference jet spectra obtained by extrapolation from previous measurements in pp collisions at [Formula: see text]. In all pseudorapidity ranges, nuclear modifications in inclusive jet production are found to be small, as predicted by next-to-leading order perturbative QCD calculations that incorporate nuclear effects in the parton distribution functions.

  2. Cement As a Waste Form for Nuclear Fission Products: The Case of (90)Sr and Its Daughters.

    PubMed

    Dezerald, Lucile; Kohanoff, Jorge J; Correa, Alfredo A; Caro, Alfredo; Pellenq, Roland J-M; Ulm, Franz J; Saúl, Andrés

    2015-11-17

    One of the main challenges faced by the nuclear industry is the long-term confinement of nuclear waste. Because it is inexpensive and easy to manufacture, cement is the material of choice to store large volumes of radioactive materials, in particular the low-level medium-lived fission products. It is therefore of utmost importance to assess the chemical and structural stability of cement containing radioactive species. Here, we use ab initio calculations based on density functional theory (DFT) to study the effects of (90)Sr insertion and decay in C-S-H (calcium-silicate-hydrate) in order to test the ability of cement to trap and hold this radioactive fission product and to investigate the consequences of its β-decay on the cement paste structure. We show that (90)Sr is stable when it substitutes the Ca(2+) ions in C-S-H, and so is its daughter nucleus (90)Y after β-decay. Interestingly, (90)Zr, daughter of (90)Y and final product in the decay sequence, is found to be unstable compared to the bulk phase of the element at zero K but stable when compared to the solvated ion in water. Therefore, cement appears as a suitable waste form for (90)Sr storage.

  3. MODELING OF FLOW AND TRANSPORT INDUCED BY PRODUCTION OF HYDROFRACTURE-STIMULATED GAS WELLS NEAR THE RULISON NUCLEAR TEST

    SciTech Connect

    Hodges, Rex A.; Cooper, Clay; Falta, Ronald

    2012-09-17

    The Piceance Basin in western Colorado contains significant reserves of natural gas in poorly connected, low-permeability (tight) sandstone lenses of the Mesaverde Group. The ability to enhance the production of natural gas in this area has long been a goal of the oil and gas industry. The U.S. Atomic Energy Commission, a predecessor agency to the U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission, participated in three tests using nuclear detonations to fracture tight formations in an effort to enhance gas production. The tests were conducted under Project Plowshare, a program designed to identify peaceful, beneficial uses for nuclear devices. The first, Project Gasbuggy, was conducted in 1967 in the San Juan Basin of New Mexico. The two subsequent tests, Project Rulison in 1969 and Project Rio Blanco in 1973, were in the Piceance Basin. The ability to enhance natural gas production from tight sands has become practical through advances in hydraulic fracturing technology (hydrofracturing). This technology has led to an increase in drilling activity near the Rulison site, raising concerns that contamination currently contained in the subsurface could be released through a gas well drilled too close to the site. As wells are drilled nearer the site, the DOE Office of Legacy Management has taken the approach outlined in the June 2010 Rulison Path Forward document (DOE 2010), which recommends a conservative, staged approach to gas development. Drillers are encouraged to drill wells in areas with a low likelihood of encountering contamination (both distance and direction from the detonation zone are factors) and to collect data from these wells prior to drilling nearer the site’s 40 acre institutional control boundary (Lot 11). Previous modeling results indicate that contamination has been contained within Lot 11 (Figure 1). The Path Forward document couples the model predictions with the monitoring of gas and produced water from the gas wells

  4. Fluorene biodegradation and identification of transformation products by white-rot fungus Armillaria sp. F022.

    PubMed

    Hadibarata, Tony; Kristanti, Risky Ayu

    2014-06-01

    A diverse surfactant, including the nonionic Tween 80 and Brij 30, the anionic sodium dodecyl sulphate, the cationic surfactant Tetradecyltrimethylammonium bromide, and biosurfactant Rhamnolipid were investigated under fluorine-enriched medium by Armilaria sp. F022. The cultures were performed at 25 °C in malt extract medium containing 1 % of surfactant and 5 mg/L of fluorene. The results showed among the tested surfactants, Tween-80 harvested the highest cell density and obtained the maximum specific growth rate. This due Tween-80 provide a suitable carbon source for fungi. Fluorane was also successfully eliminated (>95 %) from the cultures within 30 days in all flasks. During the experiment, laccase production was the highest among other enzymes and Armillaria sp. F022-enriched culture containing Non-ionic Tween 80 showed a significant result for laccase activity (1,945 U/L). The increased enzyme activity was resulted by the increased biodegradation activity as results of the addition of suitable surfactants. The biotransformation of fluorene was accelerated by Tween 80 at the concentration level of 10 mg/L. Fluorene was initially oxidized at C-2,3 positions resulting 9-fluorenone. Through oxidative decarboxylation, 9-fluorenone subjected to meta-cleavage to form salicylic acid. One metabolite detected in the end of experiment, was identified as catechol. Armillaria sp. F022 evidently posses efficient, high effective degrader and potential for further application on the enhanced bioremediation technologies for treating fluorene-contaminated soil.

  5. Production of human CD59-transgenic pigs by embryonic germ cell nuclear transfer

    SciTech Connect

    Ahn, Kwang Sung; Won, Ji Young; Park, Jin-Ki; Sorrell, Alice M.; Heo, Soon Young; Kang, Jee Hyun; Woo, Jae-Seok; Choi, Bong-Hwan; Chang, Won-Kyong; Shim, Hosup

    2010-10-01

    Research highlights: {yields} Human CD59 (hCD59) gene was introduced into porcine embryonic germ (EG) cells. {yields} hCD59-transgenic EG cells were resistant to hyperacute rejection in cytolytic assay. {yields} hCD59-transgenic pigs were produced by EG cell nuclear transfer. -- Abstract: This study was performed to produce transgenic pigs expressing the human complement regulatory protein CD59 (hCD59) using the nuclear transfer (NT) of embryonic germ (EG) cells, which are undifferentiated stem cells derived from primordial germ cells. Because EG cells can be cultured indefinitely in an undifferentiated state, they may provide an inexhaustible source of nuclear donor cells for NT to produce transgenic pigs. A total of 1980 NT embryos derived from hCD59-transgenic EG cells were transferred to ten recipients, resulting in the birth of fifteen piglets from three pregnancies. Among these offspring, ten were alive without overt health problems. Based on PCR analysis, all fifteen piglets were confirmed as hCD59 transgenic. The expression of the hCD59 transgene in the ten living piglets was verified by RT-PCR. Western analysis showed the expression of the hCD59 protein in four of the ten RT-PCR-positive piglets. These results demonstrate that hCD59-transgenic pigs could effectively be produced by EG cell NT and that such transgenic pigs may be used as organ donors in pig-to-human xenotransplantation.

  6. Nuclear dependence coefficient α(A,qT) for Drell-Yan and J/ψ production

    NASA Astrophysics Data System (ADS)

    Guo, Xiaofeng; Qiu, Jianwei; Zhang, Xiaofei

    2000-09-01

    Define the nuclear dependence coefficient α(A,qT) in terms of the ratio of the transverse momentum spectrum in hadron-nucleus and in hadron-nucleon collisions dσhA/dq2T/dσhN/dq2T≡Aα(A,qT). We argue that, in the small qT region, the α(A,qT) for the Drell-Yan and J/ψ production is given by a universal function a+bq2T, where the parameters a and b are completely determined by either calculable quantities or independently measurable physical observables. We demonstrate that this universal function α(A,qT) is insensitive to A for normal nuclear targets. For a color deconfined nuclear medium, α(A,qT) becomes strongly dependent on A. We also show that our α(A,qT) for the Drell-Yan process is naturally linked to the perturbatively calculated α(A,qT) at large qT without any free parameters, and α(A,qT) is consistent with E772 data for all qT.

  7. Bacterial production and transformation of dissolved neutral sugars and amino acids in seawater

    NASA Astrophysics Data System (ADS)

    Jørgensen, L.; Lechtenfeld, O.; Benner, R.; Middelboe, M.; Stedmon, C. A.

    2014-04-01

    Dissolved organic matter (DOM) in the ocean consists of a heterogeneous mixture of molecules, most of which are of unknown origin. Neutral sugars and amino acids are among the few recognizable biomolecules in DOM, and the molecular composition of these biomolecules is shaped primarily by biological production and degradation processes. This study provides insight into the bioavailability of biomolecules as well as the chemical composition of DOM produced by bacteria. The molecular compositions of neutral sugars and amino acids were investigated in DOM produced by bacteria and in DOM remaining after long-term bacterial degradation. Results from bioassay incubations (32 days) with natural and artificial seawater, indicate that the molecular compositions following bacterial degradation are not strongly influenced by the initial substrate or bacterial community. The molecular composition of neutral sugars released by bacteria was characterized by a high glucose content (47 mol%) and heterogeneous contributions from other neutral sugars (3-14 mol%). DOM remaining after bacterial degradation was characterized by a high galactose content (33 mol%), followed by glucose (22 mol%) and the remaining neutral sugars (7-11 mol%). The ratio of D-amino acids to L-amino acids increased during the experiments as a response to bacterial degradation, and after 32 days the D/L ratios of aspartic acid, glutamic acid, serine and alanine reached around 0.79, 0.32, 0.30 and 0.51 in all treatments, respectively. The striking similarity in neutral sugar and amino acid compositions between natural and artificial seawater samples, suggests that the microbial carbon pump also applies for neutral sugars and amino acids and that bacterially-produced biomolecules persist for long periods in the ocean.

  8. Suspect screening of emerging pollutants and their major transformation products in wastewaters treated with fungi by liquid chromatography coupled to a high resolution mass spectrometry.

    PubMed

    Llorca, Marta; Lucas, Daniel; Ferrando-Climent, Laura; Badia-Fabregat, Marina; Cruz-Morató, Carles; Barceló, Damià; Rodríguez-Mozaz, Sara

    2016-03-25

    A new approach for the screening of 33 pharmaceuticals and 113 of their known transformation products in wastewaters was developed. The methodology is based on the analysis of samples by liquid chromatography coupled to high resolution mass spectrometry (HRMS) followed by data processing using specific software and manual confirmation. A home-made library was built with the transformation products reported in literature for the target pharmaceuticals after treatment with various fungi. The method was applied to the search of these contaminants in 67 samples generated along treatment of wastewaters with white-rot fungus Trametes versicolor. The screening methodology allowed the detection of different transformation products (TPs) generated from degradation of parent compounds after fungal treatment. This approach can be a useful tool for the rapid screening and tentative detection of emerging contaminants during water treatment in both full and batch-scale studies when pure standards are not available.

  9. Fourier Transform Infrared Spectroscopy (FTIR) and Multivariate Analysis for Identification of Different Vegetable Oils Used in Biodiesel Production

    PubMed Central

    Mueller, Daniela; Ferrão, Marco Flôres; Marder, Luciano; da Costa, Adilson Ben; de Cássia de Souza Schneider, Rosana

    2013-01-01

    The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources—canola, cotton, corn, palm, sunflower and soybeans—were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to de