A Nuclear Waste Management Cost Model for Policy Analysis
NASA Astrophysics Data System (ADS)
Barron, R. W.; Hill, M. C.
2017-12-01
Although integrated assessments of climate change policy have frequently identified nuclear energy as a promising alternative to fossil fuels, these studies have often treated nuclear waste disposal very simply. Simple assumptions about nuclear waste are problematic because they may not be adequate to capture relevant costs and uncertainties, which could result in suboptimal policy choices. Modeling nuclear waste management costs is a cross-disciplinary, multi-scale problem that involves economic, geologic and environmental processes that operate at vastly different temporal scales. Similarly, the climate-related costs and benefits of nuclear energy are dependent on environmental sensitivity to CO2 emissions and radiation, nuclear energy's ability to offset carbon emissions, and the risk of nuclear accidents, factors which are all deeply uncertain. Alternative value systems further complicate the problem by suggesting different approaches to valuing intergenerational impacts. Effective policy assessment of nuclear energy requires an integrated approach to modeling nuclear waste management that (1) bridges disciplinary and temporal gaps, (2) supports an iterative, adaptive process that responds to evolving understandings of uncertainties, and (3) supports a broad range of value systems. This work develops the Nuclear Waste Management Cost Model (NWMCM). NWMCM provides a flexible framework for evaluating the cost of nuclear waste management across a range of technology pathways and value systems. We illustrate how NWMCM can support policy analysis by estimating how different nuclear waste disposal scenarios developed using the NWMCM framework affect the results of a recent integrated assessment study of alternative energy futures and their effects on the cost of achieving carbon abatement targets. Results suggest that the optimism reflected in previous works is fragile: Plausible nuclear waste management costs and discount rates appropriate for intergenerational cost-benefit analysis produce many scenarios where nuclear energy is economically unattractive.
Safety aspects of nuclear waste disposal in space
NASA Technical Reports Server (NTRS)
Rice, E. E.; Edgecombe, D. S.; Compton, P. R.
1981-01-01
Safety issues involved in the disposal of nuclear wastes in space as a complement to mined geologic repositories are examined as part of an assessment of the feasibility of nuclear waste disposal in space. General safety guidelines for space disposal developed in the areas of radiation exposure and shielding, containment, accident environments, criticality, post-accident recovery, monitoring systems and isolation are presented for a nuclear waste disposal in space mission employing conventional space technology such as the Space Shuttle. The current reference concept under consideration by NASA and DOE is then examined in detail, with attention given to the waste source and mix, the waste form, waste processing and payload fabrication, shipping casks and ground transport vehicles, launch site operations and facilities, Shuttle-derived launch vehicle, orbit transfer vehicle, orbital operations and space destination, and the system safety aspects of the concept are discussed for each component. It is pointed out that future work remains in the development of an improved basis for the safety guidelines and the determination of the possible benefits and costs of the space disposal option for nuclear wastes.
U.S. program assessing nuclear waste disposal in space - A 1981 status report
NASA Technical Reports Server (NTRS)
Rice, E. E.; Edgecombe, D. S.; Best, R. E.; Compton, P. R.
1982-01-01
Concepts, current studies, and technology and equipment requirements for using the STS for space disposal of selected nuclear wastes as a complement to geological storage are reviewed. An orbital transfer vehicle carried by the Shuttle would kick the waste cannister into a 0.85 AU heliocentric orbit. One flight per week is regarded as sufficient to dispose of all high level wastes chemically separated from reactor fuel rods from 200 GWe nuclear power capacity. Studies are proceeding for candidate wastes, the STS system suited to each waste, and the risk/benefits of a space disposal system. Risk assessments are being extended to total waste disposal risks for various disposal programs with and without a space segment, and including side waste streams produced as a result of separating substances for launch.
Nuclear system that burns its own wastes shows promise
NASA Technical Reports Server (NTRS)
Atchison, K.
1975-01-01
A nuclear fission energy system, capable of eliminating a significant amount of its radioactive wastes by burning them, is described. A theoretical investigation of this system conducted by computer analysis, is based on use of gaseous fuel nuclear reactors. Gaseous core reactors using a uranium plasma fuel are studied along with development for space propulsion.
NASA Technical Reports Server (NTRS)
1982-01-01
The impact on space systems of three alternative waste mixes was evaluated as part of an effort to investigate the disposal of certain high-level nuclear wastes in space as a complement to mined geologic repositories. A brief overview of the study background, objectives, scope, approach and guidelines, and limitations is presented. The effects of variations in waste mixes on space system concepts were studied in order to provide data for determining relative total system risk benefits resulting from space disposal of the alternative waste mixes. Overall objectives of the NASA-DOE sustaining-level study program are to investigate space disposal concepts which can provide information to support future nuclear waste terminal storage programmatic decisions and to maintain a low level of research activity in this area to provide a baseline for future development should a decision be made to increase the emphasis on this option.
NASA Astrophysics Data System (ADS)
Khankhasayev, Zhanat B.; Kurmanov, Hans; Plendl, Mikhail Kh.
1996-12-01
The Table of Contents for the full book PDF is as follows: * Preface * I. Review of Current Status of Nuclear Transmutation Projects * Accelerator-Driven Systems — Survey of the Research Programs in the World * The Los Alamos Accelerator-Driven Transmutation of Nuclear Waste Concept * Nuclear Waste Transmutation Program in the Czech Republic * Tentative Results of the ISTC Supported Study of the ADTT Plutonium Disposition * Recent Neutron Physics Investigations for the Back End of the Nuclear Fuel Cycle * Optimisation of Accelerator Systems for Transmutation of Nuclear Waste * Proton Linac of the Moscow Meson Factory for the ADTT Experiments * II. Computer Modeling of Nuclear Waste Transmutation Methods and Systems * Transmutation of Minor Actinides in Different Nuclear Facilities * Monte Carlo Modeling of Electro-nuclear Processes with Nonlinear Effects * Simulation of Hybrid Systems with a GEANT Based Program * Computer Study of 90Sr and 137Cs Transmutation by Proton Beam * Methods and Computer Codes for Burn-Up and Fast Transients Calculations in Subcritical Systems with External Sources * New Model of Calculation of Fission Product Yields for the ADTT Problem * Monte Carlo Simulation of Accelerator-Reactor Systems * III. Data Basis for Transmutation of Actinides and Fission Products * Nuclear Data in the Accelerator Driven Transmutation Problem * Nuclear Data to Study Radiation Damage, Activation, and Transmutation of Materials Irradiated by Particles of Intermediate and High Energies * Radium Institute Investigations on the Intermediate Energy Nuclear Data on Hybrid Nuclear Technologies * Nuclear Data Requirements in Intermediate Energy Range for Improvement of Calculations of ADTT Target Processes * IV. Experimental Studies and Projects * ADTT Experiments at the Los Alamos Neutron Science Center * Neutron Multiplicity Distributions for GeV Proton Induced Spallation Reactions on Thin and Thick Targets of Pb and U * Solid State Nuclear Track Detector and Radiochemical Studies on the Transmutation of Nuclei Using Relativistic Heavy Ions * Experimental and Theoretical Study of Radionuclide Production on the Electronuclear Plant Target and Construction Materials Irradiated by 1.5 GeV and 130 MeV Protons * Neutronics and Power Deposition Parameters of the Targets Proposed in the ISTC Project 17 * Multicycle Irradiation of Plutonium in Solid Fuel Heavy-Water Blanket of ADS * Compound Neutron Valve of Accelerator-Driven System Sectioned Blanket * Subcritical Channel-Type Reactor for Weapon Plutonium Utilization * Accelerator Driven Molten-Fluoride Reactor with Modular Heat Exchangers on PB-BI Eutectic * A New Conception of High Power Ion Linac for ADTT * Pions and Accelerator-Driven Transmutation of Nuclear Waste? * V. Problems and Perspectives * Accelerator-Driven Transmutation Technologies for Resolution of Long-Term Nuclear Waste Concerns * Closing the Nuclear Fuel-Cycle and Moving Toward a Sustainable Energy Development * Workshop Summary * List of Participants
Advances in Geologic Disposal System Modeling and Shale Reference Cases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariner, Paul E.; Stein, Emily R.; Frederick, Jennifer M.
The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance formore » nuclear waste in geologic media (e.g., salt, granite, shale, and deep borehole disposal).« less
NASA Technical Reports Server (NTRS)
1981-01-01
Space systems concepts were identified and defined and evaluated as to their performance, risks, and technical viability in order to select the most attractive approach for disposal of high level nuclear wastes in space. Major study areas discussed include: (1) mission and operations analysis; (2) waste payload systems; (3) flight support system; (4) launch site systems; (5) launch vehicle systems; (6) orbit transfer system; (7) space disposal destinations; and (8) systems integration and evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, T.W.
1991-09-01
This report is volume 3, part B, of the program to satisfy the allocated requirements of the Office of Civilian Radioactive Waste Management Program, in the development of the nuclear waste management system. The report is divided into the following sections: regulatory compliance; external relations; international programs; strategic and contingency planning; contract business management; and administrative services. (CS)
Merk, Bruno; Litskevich, Dzianis; Bankhead, Mark; Taylor, Richard J
2017-01-01
A solution for the nuclear waste problem is the key challenge for an extensive use of nuclear reactors as a major carbon free, sustainable, and applied highly reliable energy source. Partitioning and Transmutation (P&T) promises a solution for improved waste management. Current strategies rely on systems designed in the 60's for the massive production of plutonium. We propose an innovative strategic development plan based on invention and innovation described with the concept of developments in s-curves identifying the current boundary conditions, and the evolvable objectives. This leads to the ultimate, universal vision for energy production characterized by minimal use of resources and production of waste, while being economically affordable and safe, secure and reliable in operation. This vision is transformed into a mission for a disruptive development of the future nuclear energy system operated by burning of existing spent nuclear fuel (SNF) without prior reprocessing. This highly innovative approach fulfils the sustainability goals and creates new options for P&T. A proof on the feasibility from neutronic point of view is given demonstrating sufficient breeding of fissile material from the inserted SNF. The system does neither require new resources nor produce additional waste, thus it provides a highly sustainable option for a future nuclear system fulfilling the requests of P&T as side effect. In addition, this nuclear system provides enhanced resistance against misuse of Pu and a significantly reduced fuel cycle. However, the new system requires a demand driven rethinking of the separation process to be efficient.
Litskevich, Dzianis; Bankhead, Mark; Taylor, Richard J.
2017-01-01
A solution for the nuclear waste problem is the key challenge for an extensive use of nuclear reactors as a major carbon free, sustainable, and applied highly reliable energy source. Partitioning and Transmutation (P&T) promises a solution for improved waste management. Current strategies rely on systems designed in the 60’s for the massive production of plutonium. We propose an innovative strategic development plan based on invention and innovation described with the concept of developments in s-curves identifying the current boundary conditions, and the evolvable objectives. This leads to the ultimate, universal vision for energy production characterized by minimal use of resources and production of waste, while being economically affordable and safe, secure and reliable in operation. This vision is transformed into a mission for a disruptive development of the future nuclear energy system operated by burning of existing spent nuclear fuel (SNF) without prior reprocessing. This highly innovative approach fulfils the sustainability goals and creates new options for P&T. A proof on the feasibility from neutronic point of view is given demonstrating sufficient breeding of fissile material from the inserted SNF. The system does neither require new resources nor produce additional waste, thus it provides a highly sustainable option for a future nuclear system fulfilling the requests of P&T as side effect. In addition, this nuclear system provides enhanced resistance against misuse of Pu and a significantly reduced fuel cycle. However, the new system requires a demand driven rethinking of the separation process to be efficient. PMID:28749952
NASA Technical Reports Server (NTRS)
1982-01-01
The space option for disposal of certain high-level nuclear wastes in space as a complement to mined geological repositories is studied. A brief overview of the study background, scope, objective, guidelines and assumptions, and contents is presented. The determination of the effects of variations in the waste mix on the space systems concept to allow determination of the space systems effect on total system risk benefits when used as a complement to the DOE reference mined geological repository is studied. The waste payload system, launch site, launch system, and orbit transfer system are all addressed. Rescue mission requirements are studied. The characteristics of waste forms suitable for space disposal are identified. Trajectories and performance requirements are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Darrell; Poinssot, Christophe; Begg, Bruce
Management of nuclear waste remains an important international topic that includes reprocessing of commercial nuclear fuel, waste-form design and development, storage and disposal packaging, the process of repository site selection, system design, and performance assessment. Requirements to manage and dispose of materials from the production of nuclear weapons, and the renewed interest in nuclear power, in particular through the Generation IV Forum and the Advanced Fuel Cycle Initiative, can be expected to increase the need for scientific advances in waste management. A broad range of scientific and engineering disciplines is necessary to provide safe and effective solutions and address complexmore » issues. This volume offers an interdisciplinary perspective on materials-related issues associated with nuclear waste management programs. Invited and contributed papers cover a wide range of topics including studies on: spent fuel; performance assessment and models; waste forms for low- and intermediate-level waste; ceramic and glass waste forms for plutonium and high-level waste; radionuclides; containers and engineered barriers; disposal environments and site characteristics; and partitioning and transmutation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollaway, W.R.
1991-08-01
If there is to be a next generation of nuclear power in the United States, then the four fundamental obstacles confronting nuclear power technology must be overcome: safety, cost, waste management, and proliferation resistance. The Combined Hybrid System (CHS) is proposed as a possible solution to the problems preventing a vigorous resurgence of nuclear power. The CHS combines Thermal Reactors (for operability, safety, and cost) and Integral Fast Reactors (for waste treatment and actinide burning) in a symbiotic large scale system. The CHS addresses the safety and cost issues through the use of advanced reactor designs, the waste management issuemore » through the use of actinide burning, and the proliferation resistance issue through the use of an integral fuel cycle with co-located components. There are nine major components in the Combined Hybrid System linked by nineteen nuclear material mass flow streams. A computer code, CHASM, is used to analyze the mass flow rates CHS, and the reactor support ratio (the ratio of thermal/fast reactors), IFR of the system. The primary advantages of the CHS are its essentially actinide-free high-level radioactive waste, plus improved reactor safety, uranium utilization, and widening of the option base. The primary disadvantages of the CHS are the large capacity of IFRs required (approximately one MW{sub e} IFR capacity for every three MW{sub e} Thermal Reactor) and the novel radioactive waste streams produced by the CHS. The capability of the IFR to burn pure transuranic fuel, a primary assumption of this study, has yet to be proven. The Combined Hybrid System represents an attractive option for future nuclear power development; that disposal of the essentially actinide-free radioactive waste produced by the CHS provides an excellent alternative to the disposal of intact actinide-bearing Light Water Reactor spent fuel (reducing the toxicity based lifetime of the waste from roughly 360,000 years to about 510 years).« less
Summary of the study of disposal of nuclear waste into space
NASA Technical Reports Server (NTRS)
Rom, F. E.
1973-01-01
NASA, at the request of the AEC, is conducting a preliminary study to determine the feasibility of disposing of nuclear waste material into space. The study has indicated that the Space Shuttle together with expendable and nonexpendable orbital stages such as the Space Tug or Centaur can safety dispose of waste material by ejecting it from the solar system. The safety problems associated with all phases of launching and operation (normal, emergency and accident) of such a system are being examined. From the preliminary study it appears that solutions can be found that should make the risks acceptable when compared to the benefits to be obtained from the disposal of the nuclear waste.
Feasibility study for a transportation operations system cask maintenance facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rennich, M.J.; Medley, L.G.; Attaway, C.R.
The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the caskmore » systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs.« less
Incineration of nuclear waste by accelerator
NASA Astrophysics Data System (ADS)
Martino, J.; Fioni, G.; Leray, S.
1998-10-01
An important international effort is devoted to find a suitable solution to incinerate radioactive nuclear waste issued from conventional power plants and from nuclear disarmament. Practically all innovative projects consist of a sub critical system driven by an external neutron source obtained by spallation induced by a high intensity proton accelerator irradiating a heavy target. New nuclear data measurements are necessary for the realization of these systems, in particular a good knowledge of the spallation process and of the neutron cross sections for transuranic elements are essential.
ERIC Educational Resources Information Center
Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.
This guide is Unit 4 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office Civilian Radioactive Waste Management. The goal of this unit is to explain how transportation, a geologic repository, and the multi-purpose canister will work together to provide short-term and long-term…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutt, M.; Nuclear Engineering Division
2010-05-25
The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of themore » Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors to consider in repository design and optimization were then discussed. Japan is considering various alternatives and options for the geologic disposal facility and the framework for future analysis of repository concepts was discussed. Regarding the advanced waste and storage form development, waste form technologies developed in both countries were surveyed and compared. Potential collaboration areas and activities were next identified. Disposal system optimization processes and techniques were reviewed, and factors to consider in future repository design optimization activities were also discussed. Then the potential collaboration areas and activities related to the optimization problem were extracted.« less
Functional specifications for a radioactive waste decision support system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westrom, G.B.; Kurrasch, E.R.; Carlton, R.E.
1989-09-01
It is generally recognized that decisions relative to the treatment, handling, transportation and disposal of low-level wastes produced in nuclear power plants involve a complex array of many inter-related elements or considerations. Complex decision processes can be aided through the use of computer-based expert systems which are based on the knowledge of experts and the inferencing of that knowledge to provide advice to an end-user. To determine the feasibility of developing and applying an expert system in nuclear plant low level waste operations, a Functional Specification for a Radwaste Decision Support System (RDSS) was developed. All areas of radwaste management,more » from the point of waste generation to the disposition of the waste in the final disposal location were considered for inclusion within the scope of the RDSS. 27 figs., 8 tabs.« less
Preliminary feasibility assessment for Earth-to-space electromagnetic (Railgun) launchers
NASA Technical Reports Server (NTRS)
Rice, E. E.; Miller, L. A.; Earhart, R. W.
1982-01-01
An Earth to space electromagnetic (railgun) launcher (ESRL) for launching material into space was studied. Potential ESRL applications were identified and initially assessed to formulate preliminary system requirements. The potential applications included nuclear waste disposal in space, Earth orbital applications, deep space probe launchers, atmospheric research, and boost of chemical rockets. The ESRL system concept consisted of two separate railgun launcher tubes (one at 20 deg from the horizontal for Earth orbital missions, the other vertical for solar system escape disposal missions) powered by a common power plant. Each 2040 m launcher tube is surrounded by 10,200 homopolar generator/inductor units to transmit the power to the walls. Projectile masses are 6500 kg for Earth orbital missions and 2055 kg for nuclear waste disposal missions. For the Earth orbital missions, the projectile requires a propulsion system, leaving an estimated payload mass of 650 kg. For the nuclear waste disposal in space mission, the high level waste mass was estimated at 250 kg. This preliminary assessment included technical, environmental, and economic analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherkas, Dmytro
2011-10-01
As a result of the nuclear accident at the Chernobyl NPP in 1986, the explosion dispeesed nuclear materials contained in the nuclear fuel of the reactor core over the destroyed facilities at Unit No. 4 and over the territory immediately adjacent to the destroyed unit. The debris was buried under the Cascade Wall. Nuclear materials at the SHELTER can be characterized as spent nuclear fuel, fresh fuel assemblies (including fuel assemblies with damaged geometry and integrity, and individual fuel elements), core fragments of the Chernobyl NPP Unit No. 4, finely-dispersed fuel (powder/dust), uranium and plutonium compounds in water solutions, andmore » lava-like nuclear fuel-containing masses. The new safe confinement (NSC) is a facility designed to enclose the Chernobyl NPP Unit No. 4 destroyed by the accident. Construction of the NSC involves excavating operations, which are continuously monitored including for the level of radiation. The findings of such monitoring at the SHELTER site will allow us to characterize the recovered radioactive waste. When a process material categorized as high activity waste (HAW) is detected the following HLW management operations should be involved: HLW collection; HLW fragmentation (if appropriate); loading HAW into the primary package KT-0.2; loading the primary package filled with HAW into the transportation cask KTZV-0.2; and storing the cask in temporary storage facilities for high-level solid waste. The CDAS system is a system of 3He tubes for neutron coincidence counting, and is designed to measure the percentage ratio of specific nuclear materials in a 200-liter drum containing nuclear material intermixed with a matrix. The CDAS consists of panels with helium counter tubes and a polyethylene moderator. The panels are configured to allow one to position a waste-containing drum and a drum manipulator. The system operates on the ‘add a source’ basis using a small Cf-252 source to identify irregularities in the matrix during an assay. The platform with the source is placed under the measurement chamber. The platform with the source material is moved under the measurement chamber. The design allows one to move the platform with the source in and out, thus moving the drum. The CDAS system and radioactive waste containers have been built. For each drum filled with waste two individual measurements (passive/active) will be made. This paper briefly describes the work carried out to assess qualitatively and quantitatively the nuclear materials contained in high-level waste at the SHELTER facility. These efforts substantially increased nuclear safety and security at the facility.« less
U.S. program assessing nuclear waste disposal in space - A status report
NASA Technical Reports Server (NTRS)
Rice, E. E.; Priest, C. C.; Friedlander, A. L.
1980-01-01
Various concepts for the space disposal of nuclear waste are discussed, with attention given to the destinations now being considered (high earth orbit, lunar orbit, lunar surface, solar orbit, solar system escape, sun). Waste mixes are considered in the context of the 'Purex' (Plutonium and Uranium extraction) process and the potential forms for nuclear waste disposal (ORNL cermet, Boro-silicate glass, Metal matrix, Hot-pressed supercalcine) are described. Preliminary estimates of the energy required and the cost surcharge needed to support the space disposal of nuclear waste are presented (8 metric tons/year, requiring three Shuttle launches). When Purex is employed, the generated electrical energy needed to support the Shuttle launches is shown to be less than 1%, and the projected surcharge to electrical users is shown to be slightly more than two mills/kW-hour.
Nuclear Power and the Environment.
ERIC Educational Resources Information Center
Dukert, Joseph M.
Described are the major environmental effects resulting from the production of electricity by nuclear power plants. Discussed are effects of waste heat, radioactivity, radioactive waste elimination, costs, and future prospects. Included are diagrams illustrating cooling tower operation, effects of thermal discharge into water systems, radioactive…
Summary of the study of disposal of nuclear waste into space
NASA Technical Reports Server (NTRS)
Rom, F. E.
1973-01-01
The space shuttle together with expendable and nonexpendable orbital stages such as the space tug or Centaur can safely dispose of waste material by ejecting it from the solar system. The safety problems associated with all phases of launching and operation (normal, emergency, and accident) of such a system are being examined. It appears that solutions can be found that should make the risks acceptable when compared to the benefits to be obtained from the disposal of the nuclear waste. The techniques proposed to make such a system acceptable need to be carefully verified by further study and experiment.
An evaluation of some special techniques for nuclear waste disposal in space
NASA Technical Reports Server (NTRS)
Mackay, J. S.
1973-01-01
A preliminary examination is reported of several special ways for space disposal of nuclear waste material which utilize the radioactive heat in the waste to assist in the propulsion for deep space trajectories. These include use of the wastes in a thermoelectric generator (RTG) which operates an electric propulsion device and a radioisotope - thermal thruster which uses hydrogen or ammonia as the propellant. These propulsive devices are compared to the space tug and the space tug/solar electric propulsion combination for disposal of waste on a solar system escape trajectory. Such comparisons indicate that the waste-RTG approach has considerable potential provided the combined specific mass of the waste container - RTG system does not exceed approximately 150 kg/kw sub e. Several exploratory numerical calculations have been made for high earth orbit and Earth escape destinations.
A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles
NASA Astrophysics Data System (ADS)
Djokic, Denia
The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.
Advances in Geologic Disposal System Modeling and Application to Crystalline Rock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariner, Paul E.; Stein, Emily R.; Frederick, Jennifer M.
The Used Fuel Disposition Campaign (UFDC) of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of used nuclear fuel (UNF) and high-level nuclear waste (HLW). Two of the high priorities for UFDC disposal R&D are design concept development and disposal system modeling (DOE 2011). These priorities are directly addressed in the UFDC Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic mediamore » (e.g., salt, granite, clay, and deep borehole disposal). This report describes specific GDSA activities in fiscal year 2016 (FY 2016) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code and the Dakota uncertainty sampling and propagation code. Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through engineered barriers and natural geologic barriers to the biosphere. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.« less
Functions of an engineered barrier system for a nuclear waste repository in basalt
NASA Astrophysics Data System (ADS)
Coons, W. E.; Moore, E. L.; Smith, M. J.; Kaser, J. D.
1980-01-01
The functions of components selected for an engineered barrier system for a nuclear waste repository in basalt are defined providing a focal point for barrier material research and development by delineating the purpose and operative lifetime of each component of the engineered system. A five component system (comprised of waste form, canister, buffer, overpack, and tailored backfill) is discussed. Redundancy is provided by subsystems of physical and chemical barriers which act in concert with the geology to provide a formidable barrier to transport of hazardous materials to the biosphere. The barrier system is clarified by examples pertinent to storage in basalt, and a technical approach to barrier design and material selection is proposed.
Natural analogues of nuclear waste glass corrosion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.
1999-01-06
This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information availablemore » on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.« less
Tank waste remediation system nuclear criticality safety program management review
DOE Office of Scientific and Technical Information (OSTI.GOV)
BRADY RAAP, M.C.
1999-06-24
This document provides the results of an internal management review of the Tank Waste Remediation System (TWRS) criticality safety program, performed in advance of the DOE/RL assessment for closure of the TWRS Nuclear Criticality Safety Issue, March 1994. Resolution of the safety issue was identified as Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-40-12, due September 1999.
Radionuclide metrology research for nuclear site decommissioning
NASA Astrophysics Data System (ADS)
Judge, S. M.; Regan, P. H.
2017-11-01
The safe and cost-effective decommissioning of legacy nuclear sites relies on accurate measurement of the radioactivity content of the waste materials, so that the waste can be assigned to the most appropriate disposal route. Such measurements are a new challenge for the science of radionuclide metrology which was established largely to support routine measurements on operating nuclear sites and other applications such as nuclear medicine. In this paper, we provide a brief summary of the international measurement system that is established to enable nuclear site operators to demonstrate that measurements are accurate, independent and fit for purpose, and highlight some of the projects that are underway to adapt the measurement system to meet the changing demands from the industry.
NASA Astrophysics Data System (ADS)
Yurov, D. V.; Prikhod'ko, V. V.
2014-11-01
The features of subcritical hybrid systems (HSs) are discussed in the context of burning up transuranic wastes from the U-Pu nuclear fuel cycle. The advantages of HSs over conventional atomic reactors are considered, and fuel cycle closure alternatives using HSs and fast neutron reactors are comparatively evaluated. The advantages and disadvantages of two HS types with neutron sources (NSs) of widely different natures -- nuclear spallation in a heavy target by protons and nuclear fusion in magnetically confined plasma -- are discussed in detail. The strengths and weaknesses of HSs are examined, and demand for them for closing the U-Pu nuclear fuel cycle is assessed.
NASA Astrophysics Data System (ADS)
Artisyuk, V.; Ignatyuk, A.; Korovin, Yu.; Lopatkin, A.; Matveenko, I.; Stankovskiy, A.; Titarenko, Yu.
2005-05-01
Transmutation of nuclear wastes (Minor Actinides and Long-Lived Fission Products) remains an important option to reduce the burden of high-level waste on final waste disposal in deep geological structures. Accelerator-Driven Systems (ADS) are considered as possible candidates to perform transmutation due to their subcritical operation mode that eliminates some of the serious safety penalties unavoidable in critical reactors. Specific requirements to nuclear data necessary for ADS transmutation analysis is the main subject of the ISTC Project ♯2578 which started in 2004 to identify the areas of research priorities in the future. The present paper gives a summary of ongoing project stressing the importance of nuclear data for blanket performance (reactivity behavior with associated safety characteristics) and uncertainties that affect characteristics of neutron producing target.
The disposal of nuclear waste in space
NASA Technical Reports Server (NTRS)
Burns, R. E.
1978-01-01
The important problem of disposal of nuclear waste in space is addressed. A prior study proposed carrying only actinide wastes to space, but the present study assumes that all actinides and all fission products are to be carried to space. It is shown that nuclear waste in the calcine (oxide) form can be packaged in a container designed to provide thermal control, radiation shielding, mechanical containment, and an abort reentry thermal protection system. This package can be transported to orbit via the Space Shuttle. A second Space Shuttle delivers an oxygen-hydrogen orbit transfer vehicle to a rendezvous compatible orbit and the mated OTV and waste package are sent to the preferred destination. Preferred locations are either a lunar crater or a solar orbit. Shuttle traffic densities (which vary in time) are given and the safety of space disposal of wastes discussed.
Waste Isolation Safety Assessment Program. Technical progress report for FY-1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandstetter, A.; Harwell, M.A.; Howes, B.W.
1979-07-01
Associated with commercial nuclear power production in the United States is the generation of potentially hazardous radioactive wastes. The Department of Energy (DOE) is seeking to develop nuclear waste isolation systems in geologic formations that will preclude contact with the biosphere of waste radionuclides in concentrations which are sufficient to cause deleterious impact on humans or their environments. Comprehensive analyses of specific isolation systems are needed to assess the expectations of meeting that objective. The Waste Isolation Safety Assessment Program (WISAP) has been established at the Pacific Northwest Laboratory (operated by Battelle Memorial Institute) for developing the capability of makingmore » those analyses. Progress on the following tasks is reported: release scenario analysis, waste form release rate analysis, release consequence analysis, sorption-desorption analysis, and societal acceptance analysis. (DC)« less
NASA Technical Reports Server (NTRS)
Rice, E. E.; Miller, L. A.; Marshall, R. A.; Kerslake, W. R.
1982-01-01
The feasibility of earth-to-space electromagnetic (railgun) launchers (ESRL) is considered, in order to determine their technical practicality and economic viability. The potential applications of the launcher include nuclear waste disposal into space, deep space probe launches, and atmospheric research. Examples of performance requirements of the ESRL system are a maximum acceleration of 10,000 g's for nuclear waste disposal in space (NWDS) missions and 2,500 g's for earth orbital missions, a 20 km/sec launch velocity for NWDS missions, and a launch azimuth of 90 degrees E. A brief configuration description is given, and test results indicate that for the 2020-2050 time period, as much as 3.0 MT per day of bulk material could be launched, and about 0.5 MT per day of high-level nuclear waste could be launched. For earth orbital missions, a significant projectile mass was approximately 6.5 MT, and an integral distributed energy store launch system demonstrated a good potential performance. ESRL prove to be economically and environmentally feasible, but an operational ESRL of the proposed size is not considered achievable before the year 2020.
Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8
DOE Office of Scientific and Technical Information (OSTI.GOV)
First, M.W.
1991-02-01
Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)
Preliminary risk assessment for nuclear waste disposal in space, volume 2
NASA Technical Reports Server (NTRS)
Rice, E. E.; Denning, R. S.; Friedlander, A. L.
1982-01-01
Safety guidelines are presented. Waste form, waste processing and payload fabrication facilities, shipping casks and ground transport vehicles, payload primary container/core, radiation shield, reentry systems, launch site facilities, uprooted space shuttle launch vehicle, Earth packing orbits, orbit transfer systems, and space destination are discussed. Disposed concepts and risks are then discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marietta, Melvin Gary; Anderson, D. Richard; Bonano, Evaristo J.
2011-11-01
Sandia National Laboratories (SNL) is the world leader in the development of the detailed science underpinning the application of a probabilistic risk assessment methodology, referred to in this report as performance assessment (PA), for (1) understanding and forecasting the long-term behavior of a radioactive waste disposal system, (2) estimating the ability of the disposal system and its various components to isolate the waste, (3) developing regulations, (4) implementing programs to estimate the safety that the system can afford to individuals and to the environment, and (5) demonstrating compliance with the attendant regulatory requirements. This report documents the evolution of themore » SNL PA methodology from inception in the mid-1970s, summarizing major SNL PA applications including: the Subseabed Disposal Project PAs for high-level radioactive waste; the Waste Isolation Pilot Plant PAs for disposal of defense transuranic waste; the Yucca Mountain Project total system PAs for deep geologic disposal of spent nuclear fuel and high-level radioactive waste; PAs for the Greater Confinement Borehole Disposal boreholes at the Nevada National Security Site; and PA evaluations for disposal of high-level wastes and Department of Energy spent nuclear fuels stored at Idaho National Laboratory. In addition, the report summarizes smaller PA programs for long-term cover systems implemented for the Monticello, Utah, mill-tailings repository; a PA for the SNL Mixed Waste Landfill in support of environmental restoration; PA support for radioactive waste management efforts in Egypt, Iraq, and Taiwan; and, most recently, PAs for analysis of alternative high-level radioactive waste disposal strategies including repositories deep borehole disposal and geologic repositories in shale and granite. Finally, this report summarizes the extension of the PA methodology for radioactive waste disposal toward development of an enhanced PA system for carbon sequestration and storage systems. These efforts have produced a generic PA methodology for the evaluation of waste management systems that has gained wide acceptance within the international community. This report documents how this methodology has been used as an effective management tool to evaluate different disposal designs and sites; inform development of regulatory requirements; identify, prioritize, and guide research aimed at reducing uncertainties for objective estimations of risk; and support safety assessments.« less
Radioactive waste management treatments: A selection for the Italian scenario
DOE Office of Scientific and Technical Information (OSTI.GOV)
Locatelli, G.; Mancini, M.; Sardini, M.
2012-07-01
The increased attention for radioactive waste management is one of the most peculiar aspects of the nuclear sector considering both reactors and not power sources. The aim of this paper is to present the state-of-art of treatments for radioactive waste management all over the world in order to derive guidelines for the radioactive waste management in the Italian scenario. Starting with an overview on the international situation, it analyses the different sources, amounts, treatments, social and economic impacts looking at countries with different industrial backgrounds, energetic policies, geography and population. It lists all these treatments and selects the most reasonablemore » according to technical, economic and social criteria. In particular, a double scenario is discussed (to be considered in case of few quantities of nuclear waste): the use of regional, centralized, off site processing facilities, which accept waste from many nuclear plants, and the use of mobile systems, which can be transported among multiple nuclear sites for processing campaigns. At the end the treatments suitable for the Italian scenario are presented providing simplified work-flows and guidelines. (authors)« less
NASA Technical Reports Server (NTRS)
1981-01-01
Reasonable space systems concepts were systematically identified and defined and a total system was evaluated for the space disposal of nuclear wastes. Areas studied include space destinations, space transportation options, launch site options payload protection approaches, and payload rescue techniques. Systems level cost and performance trades defined four alternative space systems which deliver payloads to the selected 0.85 AU heliocentric orbit destination at least as economically as the reference system without requiring removal of the protective radiation shield container. No concepts significantly less costly than the reference concept were identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenberg, Harris R.; Blink, James A.; Halsey, William G.
2011-08-11
The Used Fuel Disposition Campaign (UFDC) within the Department of Energy’s Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation’s spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. This Lessons Learned task is part of a multi-laboratory effort, with this LLNL report providing input to a Level 3 SNL milestone (System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW). The work package number is: FTLL11UF0328; the work package title is: Technical Bases / Lessons Learned;more » the milestone number is: M41UF032802; and the milestone title is: “LLNL Input to SNL L3 MS: System-Wide Integration and Site Selection Concepts for Future Disposition Options for HLW”. The system-wide integration effort will integrate all aspects of waste management and disposal, integrating the waste generators, interim storage, transportation, and ultimate disposal at a repository site. The review of international experience in these areas is required to support future studies that address all of these components in an integrated manner. Note that this report is a snapshot of nuclear power infrastructure and international waste management programs that is current as of August 2011, with one notable exception. No attempt has been made to discuss the currently evolving world-wide response to the tragic consequences of the earthquake and tsunami that devastated Japan on March 11, 2011, leaving more than 15,000 people dead and more than 8,000 people missing, and severely damaging the Fukushima Daiichi nuclear power complex. Continuing efforts in FY 2012 will update the data, and summarize it in an Excel spreadsheet for easy comparison and assist in the knowledge management of the study cases.« less
Annual report to Congress, FY 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-07-01
The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for disposing of the Nation`s spent nuclear fuel from civilian nuclear power reactors and high-level radioactive waste from its defense activities in a cost-effective manner that protects the health and safety of the public and workers and the quality of the environment. To accomplish this mission OCRWM is developing a waste management system consisting of a geologic repository, a facility for monitored retrievable storage, and a system for transporting the waste. This is the ninth annual report submitted by the OCRWM to Congress. The OCRWM submits this report to informmore » Congress of its activities and expenditures during fiscal year 1992 (October 1, 1991 through September 30, 1992).« less
Feasibility of space disposal of radioactive nuclear waste. 2: Technical summary
NASA Technical Reports Server (NTRS)
1974-01-01
The feasibility of transporting radioactive waste produced in the process of generating electricity in nuclear powerplants into space for ultimate disposal was investigated at the request of the AEC as a NASA in-house effort. The investigation is part of a broad AEC study of methods for long-term storage or disposal of radioactive waste. The results of the study indicate that transporting specific radioactive wastes, particularly the actinides with very long half-lives, into space using the space shuttle/tug as the launch system, appears feasible from the engineering and safety viewpoints. The space transportation costs for ejecting the actinides out of the solar system would represent less than a 5-percent increase in the average consumer's electric bill.
Performance Assessments of Generic Nuclear Waste Repositories in Shale
NASA Astrophysics Data System (ADS)
Stein, E. R.; Sevougian, S. D.; Mariner, P. E.; Hammond, G. E.; Frederick, J.
2017-12-01
Simulations of deep geologic disposal of nuclear waste in a generic shale formation showcase Geologic Disposal Safety Assessment (GDSA) Framework, a toolkit for repository performance assessment (PA) whose capabilities include domain discretization (Cubit), multiphysics simulations (PFLOTRAN), uncertainty and sensitivity analysis (Dakota), and visualization (Paraview). GDSA Framework is used to conduct PAs of two generic repositories in shale. The first considers the disposal of 22,000 metric tons heavy metal of commercial spent nuclear fuel. The second considers disposal of defense-related spent nuclear fuel and high level waste. Each PA accounts for the thermal load and radionuclide inventory of applicable waste types, components of the engineered barrier system, and components of the natural barrier system including the host rock shale and underlying and overlying stratigraphic units. Model domains are half-symmetry, gridded with Cubit, and contain between 7 and 22 million grid cells. Grid refinement captures the detail of individual waste packages, emplacement drifts, access drifts, and shafts. Simulations are run in a high performance computing environment on as many as 2048 processes. Equations describing coupled heat and fluid flow and reactive transport are solved with PFLOTRAN, an open-source, massively parallel multiphase flow and reactive transport code. Additional simulated processes include waste package degradation, waste form dissolution, radioactive decay and ingrowth, sorption, solubility, advection, dispersion, and diffusion. Simulations are run to 106 y, and radionuclide concentrations are observed within aquifers at a point approximately 5 km downgradient of the repository. Dakota is used to sample likely ranges of input parameters including waste form and waste package degradation rates and properties of engineered and natural materials to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND2017- 8305 A
Natural geochemical analogues of the near field of high-level nuclear waste repositories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apps, J.A.
1995-09-01
United States practice has been to design high-level nuclear waste (HLW) geological repositories with waste densities sufficiently high that repository temperatures surrounding the waste will exceed 100{degrees}C and could reach 250{degrees}C. Basalt and devitrified vitroclastic tuff are among the host rocks considered for waste emplacement. Near-field repository thermal behavior and chemical alteration in such rocks is expected to be similar to that observed in many geothermal systems. Therefore, the predictive modeling required for performance assessment studies of the near field could be validated and calibrated using geothermal systems as natural analogues. Examples are given which demonstrate the need for refinementmore » of the thermodynamic databases used in geochemical modeling of near-field natural analogues and the extent to which present models can predict conditions in geothermal fields.« less
Joint Integration Office Independent Review Committee annual report, 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Comprised of seven persons with extensive experience in the issues of nuclear waste, the Independent Review Committee (IRC) provides independent and objective review of Defense Transuranic Waste Program (DTWP) activities managed by the Joint Integration Office (JIO), formerly the Defense Transuranic Waste Lead Organization (TLO). The Committee is ensured a broad, interdisciplinary perspective since its membership includes representatives from the fields of nuclear engineering, nuclear waste transportation, industrial quality control, systems and environmental engineering and state and local government. The scope of IRC activities includes overall review of specific TLO plans, projects and activities, and technical review of particular researchmore » and development projects. The Committee makes specific suggestions and recommendations based upon expertise in the field of TRU Waste Management. The IRC operates as a consulting group, under an independent charter providing objective review of program activities. This report summarizes the 12 major topics reviewed by the committee during 1985.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: February 16, 2011--Las Vegas, NV, the U.S. Nuclear Waste Technical Review Board Will Meet To Discuss DOE Activities Related to Managing Spent Nuclear...-203, Nuclear Waste Policy Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will...
Method for aqueous radioactive waste treatment
Bray, L.A.; Burger, L.L.
1994-03-29
Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.
Method for aqueous radioactive waste treatment
Bray, Lane A.; Burger, Leland L.
1994-01-01
Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions.
Scenario for the safety assessment of near surface radioactive waste disposal in Serpong, Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purnomo, A.S.
2007-07-01
Near surface disposal has been practiced for some decades, with a wide variation in sites, types and amounts of wastes, and facility designs employed. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components or barriers: the site, the disposal facility and the waste form. The objective of radioactive waste disposal is to isolate waste so that it does not result in undue radiation exposure to humans and the environment. In near surface disposal, the disposal facility is located on or below themore » ground surface, where the protective covering is generally a few meters thick. These facilities are intended to contain low and intermediate level waste without appreciable quantities of long-lived radionuclides. Safety is the most important aspect in the applications of nuclear technology and the implementation of nuclear activities in Indonesia. This aspect is reflected by a statement in the Act Number 10 Year 1997, that 'The Development and use of nuclear energy in Indonesia has to be carried out in such away to assure the safety and health of workers, the public and the protection of the environment'. Serpong are one of the sites for a nuclear research center facility, it is the biggest one in Indonesia. In the future will be developed the first near surface disposal on site of the nuclear research facility in Serpong. The paper will mainly focus on scenario of the safety assessments of near-surface radioactive waste disposal is often important to evaluate the performance of the disposal system (disposal facility, geosphere and biosphere). It will give detail, how at the present and future conditions, including anticipated and less probable events in order to prevent radionuclide migration to human and environment. Refer to the geology characteristic and ground water table is enable to place something Near Surface Disposal on unsaturated zone in Serpong site. (authors)« less
Structural mechanics simulations
NASA Technical Reports Server (NTRS)
Biffle, Johnny H.
1992-01-01
Sandia National Laboratory has a very broad structural capability. Work has been performed in support of reentry vehicles, nuclear reactor safety, weapons systems and components, nuclear waste transport, strategic petroleum reserve, nuclear waste storage, wind and solar energy, drilling technology, and submarine programs. The analysis environment contains both commercial and internally developed software. Included are mesh generation capabilities, structural simulation codes, and visual codes for examining simulation results. To effectively simulate a wide variety of physical phenomena, a large number of constitutive models have been developed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
CARLSON, A.B.
The document presents updated results of the preliminary reliability, availability, maintainability analysis performed for delivery of waste feed from tanks 241-AZ-101 and 241-AN-105 to British Nuclear Fuels Limited, inc. under the Tank Waste Remediation System Privatization Contract. The operational schedule delay risk is estimated and contributing factors are discussed.
A Fruit of Yucca Mountain: The Remote Waste Package Closure System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin Skinner; Greg Housley; Colleen Shelton-Davis
2011-11-01
Was the death of the Yucca Mountain repository the fate of a technical lemon or a political lemon? Without caution, this debate could lure us away from capitalizing on the fruits of the project. In March 2009, Idaho National Laboratory (INL) successfully demonstrated the Waste Package Closure System, a full-scale prototype system for closing waste packages that were to be entombed in the now abandoned Yucca Mountain repository. This article describes the system, which INL designed and built, to weld the closure lids on the waste packages, nondestructively examine the welds using four different techniques, repair the welds if necessary,more » mitigate crack initiating stresses in the surfaces of the welds, evacuate and backfill the packages with an inert gas, and perform all of these tasks remotely. As a nation, we now have a proven method for securely sealing nuclear waste packages for long term storage—regardless of whether or not the future destination for these packages will be an underground repository. Additionally, many of the system’s features and concepts may benefit other remote nuclear applications.« less
Environmental analysis burial of offsite low-level waste at SRP
NASA Astrophysics Data System (ADS)
Poe, W. L.; Moyer, R. A.
1980-12-01
The environmental effects of receipt and burial of low level naval waste are assessed. This low level waste was sent to the NRC-licensed burial ground operated by Chem-Nuclear Systems, Inc., at Barnwell, South Carolina. The DOE announced that DOE-generated low level waste would no longer be buried at commercial waste burial sites. The SRP was selected to receive the Naval waste described in this analysis. Receipt and burial of these wastes will have a negligible effect on SRP's environment and increase only sightly the environmental effects of the SRP operations discussed in the EIS on SRP waste management operations. The environmental effects of burial of this waste at Chem-Nuclear Burial Ground or at the SRP Burial Ground are described in this environmental analysis to permit assessment of incremental effects caused by the decision to bury this Naval waste in the SRP Burial Ground rather than in the Barnwell Burial Ground. The radiological effects from burial of this waste in either the SRP or Chem-Nuclear Burial Ground are very small when compared to those from natural background radiation or to the annual population dose commitment from operation of SRP. The environmental effects of burial at SRP to dose commitments normally received by the population surrounding SRP are compared.
ERIC Educational Resources Information Center
Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.
This guide is Unit 3 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to identify the key elements of the United States' nuclear waste dilemma and introduce the Nuclear Waste Policy Act and the role of the…
10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.
Code of Federal Regulations, 2013 CFR
2013-01-01
... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the...
10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.
Code of Federal Regulations, 2014 CFR
2014-01-01
... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the...
Gamma-ray imaging system for real-time measurements in nuclear waste characterisation
NASA Astrophysics Data System (ADS)
Caballero, L.; Albiol Colomer, F.; Corbi Bellot, A.; Domingo-Pardo, C.; Leganés Nieto, J. L.; Agramunt Ros, J.; Contreras, P.; Monserrate, M.; Olleros Rodríguez, P.; Pérez Magán, D. L.
2018-03-01
A compact, portable and large field-of-view gamma camera that is able to identify, locate and quantify gamma-ray emitting radioisotopes in real-time has been developed. The device delivers spectroscopic and imaging capabilities that enable its use it in a variety of nuclear waste characterisation scenarios, such as radioactivity monitoring in nuclear power plants and more specifically for the decommissioning of nuclear facilities. The technical development of this apparatus and some examples of its application in field measurements are reported in this article. The performance of the presented gamma-camera is also benchmarked against other conventional techniques.
Radiation and Thermal Ageing of Nuclear Waste Glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, William J
2014-01-01
The radioactive decay of fission products and actinides incorporated into nuclear waste glass leads to self-heating and self-radiation effects that may affect the stability, structure and performance of the glass in a closed system. Short-lived fission products cause significant self-heating for the first 600 years. Alpha decay of the actinides leads to self-radiation damage that can be significant after a few hundred years, and over the long time periods of geologic disposal, the accumulation of helium and radiation damage from alpha decay may lead to swelling, microstructural evolution and changes in mechanical properties. Four decades of research on the behaviormore » of nuclear waste glass are reviewed.« less
Operations research applications in nuclear energy
NASA Astrophysics Data System (ADS)
Johnson, Benjamin Lloyd
This dissertation consists of three papers; the first is published in Annals of Operations Research, the second is nearing submission to INFORMS Journal on Computing, and the third is the predecessor of a paper nearing submission to Progress in Nuclear Energy. We apply operations research techniques to nuclear waste disposal and nuclear safeguards. Although these fields are different, they allow us to showcase some benefits of using operations research techniques to enhance nuclear energy applications. The first paper, "Optimizing High-Level Nuclear Waste Disposal within a Deep Geologic Repository," presents a mixed-integer programming model that determines where to place high-level nuclear waste packages in a deep geologic repository to minimize heat load concentration. We develop a heuristic that increases the size of solvable model instances. The second paper, "Optimally Configuring a Measurement System to Detect Diversions from a Nuclear Fuel Cycle," introduces a simulation-optimization algorithm and an integer-programming model to find the best, or near-best, resource-limited nuclear fuel cycle measurement system with a high degree of confidence. Given location-dependent measurement method precisions, we (i) optimize the configuration of n methods at n locations of a hypothetical nuclear fuel cycle facility, (ii) find the most important location at which to improve method precision, and (iii) determine the effect of measurement frequency on near-optimal configurations and objective values. Our results correspond to existing outcomes but we obtain them at least an order of magnitude faster. The third paper, "Optimizing Nuclear Material Control and Accountability Measurement Systems," extends the integer program from the second paper to locate measurement methods in a larger, hypothetical nuclear fuel cycle scenario given fixed purchase and utilization budgets. This paper also presents two mixed-integer quadratic programming models to increase the precision of existing methods given a fixed improvement budget and to reduce the measurement uncertainty in the system while limiting improvement costs. We quickly obtain similar or better solutions compared to several intuitive analyses that take much longer to perform.
Westinghouse Cementation Facility of Solid Waste Treatment System - 13503
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Torsten; Aign, Joerg
2013-07-01
During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the deliverymore » of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutton, M; Blink, J A; Greenberg, H R
2012-04-25
The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of wastemore » forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were encapsulated in borosilicate glass. Because the heat load of the glass was much less than the PWR and BWR assemblies, the glass waste form was able to be co-disposed with the open cycle waste, by interspersing glass waste packages among the spent fuel assembly waste packages. In addition, the Yucca Mountain repository was designed to include some research reactor spent fuel and naval reactor spent fuel, within the envelope that was set using the commercial reactor assemblies as the design basis waste form. This milestone report supports Sandia National Laboratory milestone M2FT-12SN0814052, and is intended to be a chapter in that milestone report. The independent technical review of this LLNL milestone was performed at LLNL and is documented in the electronic Information Management (IM) system at LLNL. The objective of this work is to investigate what aspects of quantifying, characterizing, and representing the uncertainty associated with the engineered barrier are affected by implementing different advanced nuclear fuel cycles (e.g., partitioning and transmutation scenarios) together with corresponding designs and thermal constraints.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-29
... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Workshop: June 6-7, 2011--Arlington, Virginia; the U.S. Nuclear Waste Technical Review Board Will Hold a Workshop on Methods for Evaluating Nuclear Waste Streams... 1987, the U.S. Nuclear Waste Technical Review Board will hold a workshop on Monday, June 6, and Tuesday...
System Design for a Nuclear Electric Spacecraft Utilizing Out-of-core Thermionic Conversion
NASA Technical Reports Server (NTRS)
Estabrook, W. C.; Phillips, W. M.; Hsieh, T.
1976-01-01
Basic guidelines are presented for a nuclear space power system which utilizes heat pipes to transport thermal power from a fast nuclear reactor to an out of core thermionic converter array. Design parameters are discussed for the nuclear reactor, heat pipes, thermionic converters, shields (neutron and gamma), waste heat rejection systems, and the electrical bus bar-cable system required to transport the high current/low voltage power to the processing equipment. Dimensions are compatible with shuttle payload bay constraints.
Nuclear Waste: Increasing Scale and Sociopolitical Impacts
ERIC Educational Resources Information Center
La Porte, Todd R.
1978-01-01
Discusses the impact of radioactive waste management system on social and political development. The article also presents (1) types of information necessary to estimate the costs and consequences of radioactive waste management; and (2) an index of radioactive hazards to improve the basis for policy decisions. (HM)
Spent fuel and high-level radioactive waste transportation report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educatedmore » layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.« less
Spent fuel and high-level radioactive waste transportation report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educatedmore » layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.« less
Spent Fuel and High-Level Radioactive Waste Transportation Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by SSEB in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or nomore » background in nuclear waste Issues. In addition. this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.« less
Decide, design, and dewater de waste: A blueprint from Fitzpatrick
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert, D.E.
1994-04-01
Using a different process to clean concentrated waste tanks at the James A. FitzPatrick nuclear power plant in New York saved nearly half million dollars. The plan essentially allowed processing concentrator bottoms as waste sludge (solidification versus dewatering) that could still meet burial ground requirements. The process reduced the volume from 802.2 to 55 cubic feet. This resin throwaway system eliminated chemicals in the radwaste systems and was designed to ease pressure on the pradwaste processing system, reduce waste and improve plant chemistry. This article discusses general aspects of the process.
[Conservative calibration of a clearance monitor system for waste material from nuclear medicine].
Wanke, Carsten; Geworski, Lilli
2014-09-01
Clearance monitor systems are used for gross gamma measurements of waste potentially contaminated with radioactivity. These measurements are to make sure that legal requirements, e.g. clearance criteria according to the german radiation protection ordinance, are met. This means that measurement results may overestimate, but must not underestimate the true values. This paper describes a pragmatic way using a calibrated Cs-137 point source to generate a conservative calibration for the clearance monitor system used in the Medizinische Hochschule Hannover (MHH). The most important nuclides used in nuclear medicine are considered. The measurement result reliably overestimates the true value of the activity present in the waste. The calibration is compliant with the demands for conservativity and traceability to national standards. Copyright © 2014. Published by Elsevier GmbH.
Performance Assessment of a Generic Repository in Bedded Salt for DOE-Managed Nuclear Waste
NASA Astrophysics Data System (ADS)
Stein, E. R.; Sevougian, S. D.; Hammond, G. E.; Frederick, J. M.; Mariner, P. E.
2016-12-01
A mined repository in salt is one of the concepts under consideration for disposal of DOE-managed defense-related spent nuclear fuel (SNF) and high level waste (HLW). Bedded salt is a favorable medium for disposal of nuclear waste due to its low permeability, high thermal conductivity, and ability to self-heal. Sandia's Generic Disposal System Analysis framework is used to assess the ability of a generic repository in bedded salt to isolate radionuclides from the biosphere. The performance assessment considers multiple waste types of varying thermal load and radionuclide inventory, the engineered barrier system comprising the waste packages, backfill, and emplacement drifts, and the natural barrier system formed by a bedded salt deposit and the overlying sedimentary sequence (including an aquifer). The model simulates disposal of nearly the entire inventory of DOE-managed, defense-related SNF (excluding Naval SNF) and HLW in a half-symmetry domain containing approximately 6 million grid cells. Grid refinement captures the detail of 25,200 individual waste packages in 180 disposal panels, associated access halls, and 4 shafts connecting the land surface to the repository. Equations describing coupled heat and fluid flow and reactive transport are solved numerically with PFLOTRAN, a massively parallel flow and transport code. Simulated processes include heat conduction and convection, waste package failure, waste form dissolution, radioactive decay and ingrowth, sorption, solubility limits, advection, dispersion, and diffusion. Simulations are run to 1 million years, and radionuclide concentrations are observed within an aquifer at a point approximately 4 kilometers downgradient of the repository. The software package DAKOTA is used to sample likely ranges of input parameters including waste form dissolution rates and properties of engineered and natural materials in order to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swazo, S.
The federal government`s monopoly over America`s nuclear energy production began during World War II with the birth of the Atomic Age. During the next thirty years, nuclear waste inventories increased with minor congressional concern. In the early 1970s, the need for federal legislation to address problems surrounding nuclear waste regulation, along with federal efforts to address these problems, became critical. Previous federal efforts had completely failed to address nuclear waste disposal. In 1982, Congress enacted the Nuclear Waste Policy Act (NWPA) to deal with issues of nuclear waste management and disposal, and to set an agenda for the development ofmore » two national high-level nuclear waste repositories. This article discusses the legal challenge to the NWPA in the Nevada v. Watkins case. This case illustrates the federalism problems faced by the federal government in trying to site the nation`s only high-level nuclear waste repository within a single state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.
Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.
Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation, and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less
NASA Astrophysics Data System (ADS)
Hamdan, L. K.; Walton, J. C.; Woocay, A.
2009-12-01
Nuclear power use is expected to expand in the future, as part of the global clean energy initiative, to meet the world’s surging energy demand, and attenuate greenhouse gas emissions, which are mainly caused by fossil fuels. As a result, it is estimated that hundreds of thousands of metric tons of spent nuclear fuel (SNF) will accumulate. SNF disposal has major environmental (radiation exposure) and security (nuclear proliferation) concerns. Storage in unsaturated zone geological repositories is a reasonable solution for dealing with SNF. One of the key factors that determine the performance of the geological repository is the release of radionuclides from the engineered barrier system. Over time, the nuclear waste containers are expected to fail gradually due to general and localized corrosions and eventually infiltrating water will have access to the nuclear waste. Once radionuclides are released, they will be transported by water, and make their way to the accessible environment. Physical and chemical disturbances in the environment over the container will lead to different corrosion rates, causing different times and locations of penetration. One possible scenario for waste packages failure is the bathtub model, where penetrations occur on the top of the waste package and water pools inside it. In this paper the bathtub-type failed waste container is considered. We shed some light on chemical and physical processes that take place in the pooled water inside a partially failed waste container (bathtub category), and the effects of these processes on radionuclide release. Our study considers two possibilities: temperature stratification of the pooled water versus mixing process. Our calculations show that temperature stratification of the pooled water is expected when the waste package is half (or less) filled with water. On the other hand, when the waste package is fully filled (or above half) there will be mixing in the upper part of water. The effect of these cases on oxygen availability and consequently spent fuel alteration and radionuclide release will be considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinina, Elena Arkadievna; Samsa, Michael
The purpose of this work was to compile a comprehensive initial set of potential nuclear waste management system attributes. This initial set of attributes is intended to serve as a starting point for additional consideration by system analysts and planners to facilitate the development of a waste management system multi-objective evaluation framework based on the principles and methodology of multi-attribute utility analysis. The compilation is primarily based on a review of reports issued by the Canadian Nuclear Waste Management Organization (NWMO) and the Blue Ribbon Commission on America's Nuclear Future (BRC), but also an extensive review of the available literaturemore » for similar and past efforts as well. Numerous system attributes found in different sources were combined into a single objectives-oriented hierarchical structure. This study provides a discussion of the data sources and the descriptions of the hierarchical structure. A particular focus of this study was on collecting and compiling inputs from past studies that involved the participation of various external stakeholders. However, while the important role of stakeholder input in a country's waste management decision process is recognized in the referenced sources, there are only a limited number of in-depth studies of the stakeholders' differing perspectives. Compiling a comprehensive hierarchical listing of attributes is a complex task since stakeholders have multiple and often conflicting interests. The BRC worked for two years (January 2010 to January 2012) to "ensure it has heard from as many points of view as possible." The Canadian NWMO study took four years and ample resources, involving national and regional stakeholders' dialogs, internet-based dialogs, information and discussion sessions, open houses, workshops, round tables, public attitude research, website, and topic reports. The current compilation effort benefited from the distillation of these many varied inputs conducted by the previous studies.« less
Testing of candidate waste-package backfill and canister materials for basalt
NASA Astrophysics Data System (ADS)
Wood, M. I.; Anderson, W. J.; Aden, G. D.
1982-09-01
The Basalt Waste Isolation Project (BWIP) is developing a multiple-barrier waste package to contain high-level nuclear waste as part of an overall system (e.g., waste package, repository sealing system, and host rock) designed to isolate the waste in a repository located in basalt beneath the Hanford Site, Richland, Washington. The three basic components of the waste package are the waste form, the canister, and the backfill. An extensive testing program is under way to determine the chemical, physical, and mechanical properties of potential canister and backfill materials. The data derived from this testing program will be used to recommend those materials that most adequately perform the functions assigned to the canister and backfill.
Supported liquid inorganic membranes for nuclear waste separation
Bhave, Ramesh R; DeBusk, Melanie M; DelCul, Guillermo D; Delmau, Laetitia H; Narula, Chaitanya K
2015-04-07
A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.J. Orchard; L.A. Harvego; T.L. Carlson
The Idaho National Laboratory (INL) is a multipurpose national laboratory delivering specialized science and engineering solutions for the U.S. Department of Energy (DOE). Sponsorship of INL was formally transferred to the DOE Office of Nuclear Energy, Science and Technology (NE) by Secretary Spencer Abraham in July 2002. The move to NE, and designation as the DOE lead nuclear energy laboratory for reactor technology, supports the nation’s expanding nuclear energy initiatives, placing INL at the center of work to develop advanced Generation IV nuclear energy systems; nuclear energy/hydrogen coproduction technology; advanced nuclear energy fuel cycle technologies; and providing national security answersmore » to national infrastructure needs. As a result of the Laboratory’s NE mission, INL generates both contact-handled and remote-handled transuranic (TRU) waste from ongoing operations. Generation rates are relatively small and fluctuate based on specific programs and project activities being conducted; however, the Laboratory will continue to generate TRU waste well into the future in association with the NE mission. Currently, plans and capabilities are being established to transfer INL’s contact-handled TRU waste to the Advanced Mixed Waste Treatment Plant (AMWTP) for certification and disposal to the Waste Isolation Pilot Plant (WIPP). Remote-handled TRU waste is currently placed in storage at the Materials and Fuels Complex (MFC). In an effort to minimize future liabilities associated with the INL NE mission, INL is evaluating and assessing options for the management and disposition of all its TRU waste on a real-time basis at time of generation. This paper summarizes near-term activities to minimize future re handling of INL’s TRU waste, as well as, potential complications associated with the long-term disposition of newly-generated TRU waste. Potential complications impacting the disposition of INL newly-generated TRU waste include, but are not limited to: 1) required remote-handled TRU packaging configuration(s) vs. current facility capabilities, 2) long-term NE mission activities, 3) WIPP certification requirements, and 4) budget considerations.« less
Benchmarking transportation logistics practices for effective system planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thrower, A.W.; Dravo, A.N.; Keister, M.
2007-07-01
This paper presents preliminary findings of an Office of Civilian Radioactive Waste Management (OCRWM) benchmarking project to identify best practices for logistics enterprises. The results will help OCRWM's Office of Logistics Management (OLM) design and implement a system to move spent nuclear fuel (SNF) and high-level radioactive waste (HLW) to the Yucca Mountain repository for disposal when that facility is licensed and built. This report suggests topics for additional study. The project team looked at three Federal radioactive material logistics operations that are widely viewed to be successful: (1) the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico; (2)more » the Naval Nuclear Propulsion Program (NNPP); and (3) domestic and foreign research reactor (FRR) SNF acceptance programs. (authors)« less
Developing a structural health monitoring system for nuclear dry cask storage canister
NASA Astrophysics Data System (ADS)
Sun, Xiaoyi; Lin, Bin; Bao, Jingjing; Giurgiutiu, Victor; Knight, Travis; Lam, Poh-Sang; Yu, Lingyu
2015-03-01
Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. In total, there are over 1482 dry cask storage system (DCSS) in use at US plants, storing 57,807 fuel assemblies. Nondestructive material condition monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health", and more importantly, to guarantee the safe operation of radioactive waste storage systems (RWSS) during their extended usage period. A state-of-the-art nuclear structural health monitoring (N-SHM) system based on in-situ sensing technologies that monitor material degradation and aging for nuclear spent fuel DCSS and similar structures is being developed. The N-SHM technology uses permanently installed low-profile piezoelectric wafer sensors to perform long-term health monitoring by strategically using a combined impedance (EMIS), acoustic emission (AE), and guided ultrasonic wave (GUW) approach, called "multimode sensing", which is conducted by the same network of installed sensors activated in a variety of ways. The system will detect AE events resulting from crack (case for study in this project) and evaluate the damage evolution; when significant AE is detected, the sensor network will switch to the GUW mode to perform damage localization, and quantification as well as probe "hot spots" that are prone to damage for material degradation evaluation using EMIS approach. The N-SHM is expected to eventually provide a systematic methodology for assessing and monitoring nuclear waste storage systems without incurring human radiation exposure.
Plasma filtering techniques for nuclear waste remediation
Gueroult, Renaud; Hobbs, David T.; Fisch, Nathaniel J.
2015-04-24
Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. As a result, this advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horak, W.C.; Reisman, A.; Purvis, E.E. III
1997-07-01
The Soviet Union established a system of specialized regional facilities to dispose of radioactive waste generated by sources other than the nuclear fuel cycle. The system had 16 facilities in Russia, 5 in Ukraine, one in each of the other CIS states, and one in each of the Baltic Republics. These facilities are still being used. The major generators of radioactive waste they process these are research and industrial organizations, medical and agricultural institution and other activities not related to nuclear power. Waste handled by these facilities is mainly beta- and gamma-emitting nuclides with half lives of less than 30more » years. The long-lived and alpha-emitting isotopic content is insignificant. Most of the radwaste has low and medium radioactivity levels. The facilities also handle spent radiation sources, which are highly radioactive and contain 95-98 percent of the activity of all the radwaste buried at these facilities.« less
Chemical Technology Division annual technical report, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battles, J.E.; Myles, K.M.; Laidler, J.J.
1993-06-01
In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7)more » processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less
Science, Society, and America's Nuclear Waste: Nuclear Waste, Unit 1. Teacher Guide. Second Edition.
ERIC Educational Resources Information Center
Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.
This guide is Unit 1 of the four-part series Science, Society, and America's Nuclear Waste produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to help students establish the relevance of the topic of nuclear waste to their everyday lives and activities. Particular attention is…
Groundwork for Universal Canister System Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Laura L.; Gross, Mike; Prouty, Jeralyn L.
2015-09-01
The mission of the United States Department of Energy's Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and go vernment - sponsored nuclear energy re search. S ome of the waste s that that must be managed have be en identified as good candidates for disposal in a deep borehole in crystalline rock (SNL 2014 a). In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister - based system that can be used formore » handling these wastes during the disposition process (i.e., storage, transfers, transportation, and disposal) could facilitate the eventual disposal of these wastes. This report provides information for a program plan for developing specifications regarding a canister - based system that facilitates small waste form packaging and disposal and that is integrated with the overall efforts of the DOE's Office of Nuclear Energy Used Fuel Dis position Camp aign's Deep Borehole Field Test . Groundwork for Universal Ca nister System Development September 2015 ii W astes to be considered as candidates for the universal canister system include capsules containing cesium and strontium currently stored in pools at the Hanford Site, cesium to be processed using elutable or nonelutable resins at the Hanford Site, and calcine waste from Idaho National Laboratory. The initial emphasis will be on disposal of the cesium and strontium capsules in a deep borehole that has been drilled into crystalline rock. Specifications for a universal canister system are derived from operational, performance, and regulatory requirements for storage, transfers, transportation, and disposal of radioactive waste. Agreements between the Department of Energy and the States of Washington and Idaho, as well as the Deep Borehole Field Test plan provide schedule requirements for development of the universal canister system . Future work includes collaboration with the Hanford Site to move the cesium and strontium capsules into dry storage, collaboration with the Deep Borehole Field Tes t to develop surface handling and emplacement techniques and to develop the waste package design requirements, developing universal canister system design options and concepts of operations, and developing system analysis tools. Areas in which f urther research and development are needed include material properties and structural integrity, in - package sorbents and fillers, waste form tolerance to heat and postweld stress relief, waste package impact limiters, sensors, cesium mobility under downhol e conditions, and the impact of high pressure and high temperature environment on seals design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eide, J.; Baillieul, T. A.; Biedscheid, J.
2003-02-26
Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning (D&D) activities for nuclear research buildings and grounds by 2006, as directed by Congress. Most of the resulting waste (approximately 27 cubic meters [m3]) is remote-handled (RH) transuranic (TRU) waste destined for disposal at the Waste Isolation Pilot Plant (WIPP). The BCL, under a contract to the U.S. Department of Energy (DOE) Ohio Field Office, has initiated a plan to ship the TRU waste to the DOE Hanford Nuclear Facility (Hanford) for interim storage pending the authorization of WIPP for the permanent disposal of RH-TRU waste. Themore » first of the BCL RH-TRU waste shipments was successfully completed on December 18, 2002. This BCL shipment of one fully loaded 10-160B Cask was the first shipment of RH-TRU waste in several years. Its successful completion required a complex effort entailing coordination between different contractors and federal agencies to establish necessary supporting agreements. This paper discusses the agreements and funding mechanisms used in support of the BCL shipments of TRU waste to Hanford for interim storage. In addition, this paper presents a summary of the efforts completed to demonstrate the effectiveness of the 10-160B Cask system. Lessons learned during this process are discussed and may be applicable to other TRU waste site shipment plans.« less
The physics design of accelerator-driven transmutation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venneri, F.
1995-10-01
Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed represent a radical departure from traditional nuclear concepts (reactors), yet the actual implementation of ADTT systems is based on modest extrapolations of existing technology. These systems strive to keep the best that the nuclear technology has developed over the years, within a sensible conservative design envelope and eventually manage to offer a safe, lessmore » expensive and more environmentally sound approach to nuclear power.« less
Mobile site safety review for the transuranic (TRU) waste characterization program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1996-11-01
This Safety Review Document (SRD) applies to the Active/Passive Neutron Examination and Assay (APNEA) system installed on a Lockheed Martin Specialty Components, Inc., (Specialty Components) trailer. The APNEA is designed to perform nuclear waste drum assay. The purpose of this document is to describe the safety features of the APNEA system.
International development workshops. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-08-06
The US Department of Energy (DOE) and the Nuclear Energy Agency of the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) began to act on their recognition of the importance of education in nuclear literacy, specifically in radioactive waste management (RWM), several years ago. To address this Goal for nuclear literacy, the US DOE; through the Information and Education Division of the Office of Civilian Radioactive Waste Management (OCRWM) and in cooperation with the OECD/NEA, organized an ``International Workshop on Education in the Field of Radioactive Waste Management`` in Engelberg, Switzerland in June of 1991. To this end, amore » grant to support nuclear literacy and RWM was written and funded by the OCRWM and the education division of the DOE Yucca Mountain Office in 1990. The over-riding Goal of that workshop and the DOE grant was to find ways of raising the level of nuclear literacy in the general public through educational programs in radioactive waste management (RWM). The two Main Objectives of the workshop were: first, to contribute to an information base for education systems, on global aspects of radioactive waste management; and second, to achieve international consensus on the basic tools and methods required to develop the information base. These two objectives also became the principal objectives of the DOE International Workshops grant. In other words, the global and local (Nevada) objectives were one and the same. Workshop overviews and accomplishments are summarized in this report.« less
Energy Production and Transmutation of Nuclear Waste by Accelerator Driven Systems
NASA Astrophysics Data System (ADS)
Zhivkov, P. K.
2018-05-01
There is a significant amount of highly radiotoxic long-life nuclear waste (NW) produced by NPP (Nuclear Power Plants). Transmutation is a process which transforms NW into less radiotoxic nuclides with a shorter period of half-life by spallation neutrons or radiative capture of neutrons produced by ADS (Accelerator Driven System). In the processes of transmutation new radioactive nuclides are produced. ADS is big energy consumer equipment. It is a method for production of a high-flux and high-energy neutron field. All these processes occur in ADS simultaneously. ADS is able to transmute actinides and produce energy simultaneously. The article considers the energy production problems in ADS. Several ideas are developed regarding the solution of the global energy supply.
Plasma filtering techniques for nuclear waste remediation.
Gueroult, Renaud; Hobbs, David T; Fisch, Nathaniel J
2015-10-30
Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste. Copyright © 2015 Elsevier B.V. All rights reserved.
Nuclear Resonance Fluorescence and Isotopic Mapping of Containers
NASA Astrophysics Data System (ADS)
Johnson, Micah S.; McNabb, Dennis P.
2009-03-01
National security programs have expressed interest in developing systems to isotopically map shipping containers, fuel assemblies, and waste barrels for various materials including special nuclear material (SNM). Current radiographic systems offer little more than an ambiguous density silhouette of a container's contents. In this paper we will present a system being developed at LLNL to isotopically map containers using the nuclear resonance fluorescence (NRF) method. Recent experimental measurements on NRF strengths in SNM are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skibo, A.
SRNL has considerable experience in designing, engineering, and operating systems for removing iodine-129 (I-129) and ruthenium-106 (Ru-106) from waste streams that are directly analogous to the Advanced Liquid Processing System (ALPS) waste streams. SRNL proposes to provide the technical background and design and engineering support for an improved I-129 and Ru-106 removal system for application to ALPS on the Fukushima Daiichi Nuclear Power Station (NPS).
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... High-Level Radioactive Waste AGENCY: U.S. Nuclear Regulatory Commission. ACTION: Public meeting... Nuclear Fuel, High-Level Radioactive Waste, and Reactor-Related Greater Than Class C Waste,'' and 73... Spent Nuclear Fuel (SNF) and High-Level Radioactive Waste (HLW) storage facilities. The draft regulatory...
Development of advanced technological systems for accelerator transmutation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batskikh, G.I.; Bondarev, B.I.; Durkin, A.P.
1995-10-01
A development concept of the accelerator nuclear energy reactors is considered for energy generation and nuclear power plant waste conversion into short-lived nuclides along with the requirements imposed on the technological systems necessary for implementation of such projects. The state of art in the field is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsha Keister; Kathryn McBride
The Nuclear Waste Policy Act of 1982 (NWPA), as amended, assigned the Department of Energy (DOE) responsibility for developing and managing a Federal system for the disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for accepting, transporting, and disposing of SNF and HLW at the Yucca Mountain repository in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. OCRWM faces a near-term challenge—to develop and demonstrate a transportation system that will sustain safe and efficient shipments ofmore » SNF and HLW to a repository. To better inform and improve its current planning, OCRWM has extensively reviewed plans and other documents related to past high-visibility shipping campaigns of SNF and other radioactive materials within the United States. This report summarizes the results of this review and, where appropriate, lessons learned.« less
NASA Astrophysics Data System (ADS)
Miura, Hitoshi
The development of compact separation and recovery methods using selective ion-exchange techniques is very important for the reprocessing and high-level liquid wastes (HLLWs) treatment in the nuclear backend field. The selective nuclide separation techniques are effective for the volume reduction of wastes and the utilization of valuable nuclides, and expected for the construction of advanced nuclear fuel cycle system and the rationalization of waste treatment. In order to accomplish the selective nuclide separation, the design and synthesis of novel adsorbents are essential for the development of compact and precise separation processes. The present paper deals with the preparation of highly functional and selective hybrid microcapsules enclosing nano-adsorbents in the alginate gel polymer matrices by sol-gel methods, their characterization and the clarification of selective adsorption properties by batch and column methods. The selective separation of Cs, Pd and Re in real HLLW was further accomplished by using novel microcapsules, and an advanced nuclide separation system was proposed by the combination of selective processes using microcapsules.
The Euratom Seventh Framework Programme FP7 (2007-2011)
NASA Astrophysics Data System (ADS)
Garbil, R.
2010-10-01
The objective of the Seventh Euratom Framework Program in the area of nuclear fission and radiation protection is to establish a sound scientific and technical basis to accelerate practical developments of nuclear energy related to resource efficiency, enhancing safety performance, cost-effectiveness and safer management of long-lived radioactive waste. Key cross-cutting topics such as the nuclear fuel cycle, actinide chemistry, risk analysis, safety assessment, even societal and governance issues are linked to the individual technical areas. Research need to explore new scientific and techno- logical opportunities and to respond in a flexible way to new policy needs that arise. The following activities are to be pursued. (a) Management of radioactive waste, research on partitioning and transmutation and/or other concepts aimed at reducing the amount and/or hazard of the waste for disposal; (b) Reactor systems research to underpin the con- tinued safe operation of all relevant types of existing reactor systems (including fuel cycle facilities), life-time extension, development of new advanced safety assessment methodologies and waste-management aspects of future reactor systems; (c) Radiation protection research in particular on the risks from low doses on medical uses and on the management of accidents; (d) Infrastructures and support given to the availability of, and cooperation between, research infrastructures necessary to maintain high standards of technical achievement, innovation and safety in the European nuclear sector and Research Area. (e) Human resources, mobility and training support to be provided for the retention and further development of scientific competence, human capacity through joint training activities in order to guarantee the availability of suitably qualified researchers, engineers and employees in the nuclear sector over the longer term.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrum, Lee; Manic, Milos
The debate continues on the magnitude and validity of climate change caused by human activities. However, there is no debate about the need to make buildings, modes of transportation, factories, and homes as energy efficient as possible. Given that climate change could occur with the wasteful use of fossil fuel and the fact that fossil energy costs could and will swing wildly, it is imperative that every effort be made to utilize energy sources to their fullest. Hybrid energy systems (HES) are two or more separate energy producers used together to produce energy commodities. The HES this report focuses onmore » is the use of nuclear reactor waste heat as a source of further energy utilization. Nuclear reactors use a fluid to cool the core and produce the steam needed for the production of electricity. Traditionally this steam, or coolant, is used to convert the energy then cooled elsewhere. The heat is released into the environment without being used further. By adding technologies to nuclear reactors to use the wasted heat, a system can be developed to make more than just electricity and allow for loading following capabilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobi, Lawrence R.
2012-07-01
In 1979, radioactive waste disposal was an important national issue. State governors were closing the gates on the existing low-level radioactive waste disposal sites and the ultimate disposition of spent fuel was undecided. A few years later, the United States Congress thought they had solved both problems by passing the Low-Level Radioactive Waste Policy Act of 1981, which established a network of regional compacts for low-level radioactive waste disposal, and by passing the Nuclear Waste Policy Act of 1982 to set out how a final resting place for high-level waste would be determined. Upon passage of the acts, State, Regionalmore » and Federal officials went to work. Here we are some 30 years later with little to show for our combined effort. The envisioned national repository for high-level radioactive waste has not materialized. Efforts to develop the Yucca Mountain high-level radioactive waste disposal facility were abandoned after spending $13 billion on the failed project. Recently, the Blue Ribbon Commission on America's Nuclear Future issued its draft report that correctly concludes the existing policy toward high-level nuclear waste is 'all but completely broken down'. A couple of new low-level waste disposal facilities have opened since 1981, but neither were the result of efforts under the act. What the Act has done is interject a system of interstate compacts with a byzantine interstate import and export system to complicate the handling of low-level radioactive waste, with attendant costs. As this paper is being written in the fourth-quarter of 2011, after 30 years of political and bureaucratic turmoil, a new comprehensive low-level waste disposal facility at Andrews Texas is approaching its initial operating date. The Yucca Mountain project might be completed or it might not. The US Nuclear Regulatory Commission is commencing a review of their 1981 volume reduction policy statement. The Department of Energy after 26 years has yet to figure out how to implement its obligations under the 1985 amendments to the Low-Level Radioactive Waste Policy Act. But, the last three decades have not been a total loss. A great deal has been learned about radioactive waste disposal since 1979 and the efforts of the public and private sector have shaped and focused the work to be done in the future. So, this lecturer asks the question: 'What have we wrought?' to which he provides his perspective and his recommendations for radioactive waste management policy for the next 30 years. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laney, T.
The configuration management architecture presented in this Configuration Management Plan is based on the functional model established by DOE-STD-1073-93, ``Guide for Operational Configuration Management Program.`` The DOE Standard defines the configuration management program by the five basic program elements of ``program management,`` ``design requirements,`` ``document control,`` ``change control,`` and ``assessments,`` and the two adjunct recovery programs of ``design reconstitution,`` and ``material condition and aging management.`` The CM model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOEmore » Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phases of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life cycle of the Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System.« less
Rechard, R P
1999-10-01
This article describes the evolution of the process for assessing the hazards of a geologic disposal system for radioactive waste and, similarly, nuclear power reactors, and the relationship of this process with other assessments of risk, particularly assessments of hazards from manufactured carcinogenic chemicals during use and disposal. This perspective reviews the common history of scientific concepts for risk assessment developed until the 1950s. Computational tools and techniques developed in the late 1950s and early 1960s to analyze the reliability of nuclear weapon delivery systems were adopted in the early 1970s for probabilistic risk assessment of nuclear power reactors, a technology for which behavior was unknown. In turn, these analyses became an important foundation for performance assessment of nuclear waste disposal in the late 1970s. The evaluation of risk to human health and the environment from chemical hazards is built on methods for assessing the dose response of radionuclides in the 1950s. Despite a shared background, however, societal events, often in the form of legislation, have affected the development path for risk assessment for human health, producing dissimilarities between these risk assessments and those for nuclear facilities. An important difference is the regulator's interest in accounting for uncertainty.
10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.
Code of Federal Regulations, 2012 CFR
2012-01-01
... notification of shipment of irradiated reactor fuel and nuclear waste. (a) As specified in paragraphs (b), (c... of the shipper, carrier, and receiver of the irradiated reactor fuel or nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the shipment, as specified in the...
Development of a Universal Canister for Disposal of High-Level Waste in Deep Boreholes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Laura L.; Gomberg, Steve
2015-11-01
The mission of the United States Department of Energy’s Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research. Some of the wastes that must be managed have been identified as good candidates for disposal in a deep borehole in crystalline rock. In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister-based system that can be used for handling these wastes during the disposition process (i.e., storage, transfer, transportation, and disposal)more » could facilitate the eventual disposal of these wastes. Development of specifications for the universal canister system will consider the regulatory requirements that apply to storage, transportation, and disposal of the capsules, as well as operational requirements and limits that could affect the design of the canister (e.g., deep borehole diameter). In addition, there are risks and technical challenges that need to be recognized and addressed as Universal Canister system specifications are developed. This paper provides an approach to developing specifications for such a canister system that is integrated with the overall efforts of the DOE’s Used Fuel Disposition Campaign's Deep Borehole Field Test and compatible with planned storage of potential borehole-candidate wastes.« less
2011-12-01
Services; Nuclear Reactors, Materials, and Waste; Information Technology; Communications ; Postal and Shipping; Transportation Systems; and Government...Materials, and Waste; Information Technology; Communications ; Postal and Shipping; Transportation Systems; and Government Facilities). 4 National...recommendations for best practices, including outreach and communications ; and e) Recommend how DHS can improve its risk analyses and how those analyses can
Reactor-based management of used nuclear fuel: assessment of major options.
Finck, Phillip J; Wigeland, Roald A; Hill, Robert N
2011-01-01
This paper discusses the current status of the ongoing Advanced Fuel Cycle Initiative (AFCI) program in the U.S. Department of Energy that is investigating the potential for using the processing and recycling of used nuclear fuel to improve radioactive waste management, including used fuel. A key element of the strategies is to use nuclear reactors for further irradiation of recovered chemical elements to transmute certain long-lived highly-radioactive isotopes into less hazardous isotopes. Both thermal and fast neutron spectrum reactors are being studied as part of integrated nuclear energy systems where separations, transmutation, and disposal are considered. Radiotoxicity is being used as one of the metrics for estimating the hazard of used fuel and the processing of wastes resulting from separations and recycle-fuel fabrication. Decay heat from the used fuel and/or wastes destined for disposal is used as a metric for use of a geologic repository. Results to date indicate that the most promising options appear to be those using fast reactors in a repeated recycle mode to limit buildup of higher actinides, since the transuranic elements are a key contributor to the radiotoxicity and decay heat. Using such an approach, there could be much lower environmental impact from the high-level waste as compared to direct disposal of the used fuel, but there would likely be greater generation of low-level wastes that will also require disposal. An additional potential waste management benefit is having the ability to tailor waste forms and contents to one or more targeted disposal environments (i.e., to be able to put waste in environments best-suited for the waste contents and forms). Copyright © 2010 Health Physics Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirk Gombert; Jay Roach
The U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP) was announced in 2006. As currently envisioned, GNEP will be the basis for growth of nuclear energy worldwide, using a closed proliferation-resistant fuel cycle. The Integrated Waste Management Strategy (IWMS) is designed to ensure that all wastes generated by fuel fabrication and recycling will have a routine disposition path making the most of feedback to fuel and recycling operations to eliminate or minimize byproducts and wastes. If waste must be generated, processes will be designed with waste treatment in mind to reduce use of reagents that complicate stabilizationmore » and minimize volume. The IWMS will address three distinct levels of technology investigation and systems analyses and will provide a cogent path from (1) research and development (R&D) and engineering scale demonstration, (Level I); to (2) full scale domestic deployment (Level II); and finally to (3) establishing an integrated global nuclear energy infrastructure (Level III). The near-term focus of GNEP is on achieving a basis for large-scale commercial deployment (Level II), including the R&D and engineering scale activities in Level I that are necessary to support such an accomplishment. Throughout these levels is the need for innovative thinking to simplify, including regulations, separations and waste forms to minimize the burden of safe disposition of wastes on the fuel cycle.« less
Applications in Nuclear Energy Security
NASA Astrophysics Data System (ADS)
Sheffield, Richard
2009-05-01
A key roadblock to development of additional nuclear power capacity is a concern over management of nuclear waste. Nuclear waste is predominantly comprised of used fuel discharged from operating nuclear reactors. The roughly 100 operating US reactors currently produce about 20% of the US electricity and will create about 87,000 tons of such discharged or ``spent'' fuel over the course of their lifetimes. The long-term radioactivity of the spent fuel drives the need for deep geologic storage that remains stable for millions of years. Nearly all issues related to risks to future generations arising from long-term disposal of such spent nuclear fuel is attributable to approximately the 1% made up primarily of minor actinides. If we can reduce or eliminate this 1% of the spent fuel, then within a few hundred years the toxic nature of the spent fuel drops below that of the natural uranium ore that was originally mined for nuclear fuel. The minor actinides can be efficiently eliminated through nuclear transmutation using as a driver fast-neutrons produced by a spallation process initiated with a high-energy proton beam. This presentation will cover the system design considerations and issues of an accelerator driven transmutation system.
The Use of Basalt, Basalt Fibers and Modified Graphite for Nuclear Waste Repository - 12150
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulik, V.I.; Biland, A.B.
2012-07-01
New materials enhancing the isolation of radioactive waste and spent nuclear fuel are continuously being developed.. Our research suggests that basalt-based materials, including basalt roving chopped basalt fiber strands, basalt composite rebar and materials based on modified graphite, could be used for enhancing radioactive waste isolation during the storage and disposal phases and maintaining it during a significant portion of the post-closure phase. The basalt vitrification process of nuclear waste is a viable alternative to glass vitrification. Basalt roving, chopped basalt fiber strands and basalt composite rebars can significantly increase the strength and safety characteristics of nuclear waste and spentmore » nuclear fuel storages. Materials based on MG are optimal waterproofing materials for nuclear waste containers. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leigh, Christi D.; Hansen, Francis D.
This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principlesmore » of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.« less
Nuclear waste disposal: Gambling on Yucca Mountain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginsburg, S.
1995-05-01
This document describes the historical aspects of nuclear energy ,nuclear weapons usage, and development of the nuclear bureaucracy in the United States, and discusses the selection and siting of Yucca Mountain, Nevada for a federal nuclear waste repository. Litigation regarding the site selection and resulting battles in the political arena and in the Nevada State Legislature are also presented. Alternative radioactive waste disposal options, risk assessments of the Yucca Mountain site, and logistics regarding the transportation and storage of nuclear waste are also presented. This document also contains an extensive bibliography.
Preliminary post-emplacement safety analysis of the subseabed disposal of high-level nuclear waste
NASA Astrophysics Data System (ADS)
Kaplan, M. F.; Koplik, C. M.; Klett, R. D.
1984-09-01
The radiological hazard from the disposal of high-level nuclear waste within the deep ocean sediments is evaluated, on a preliminary basis, for locations in the central North Pacific and in the northwestern Atlantic. Radio-nuclide transport in the sediment and water column and by marine organisms is considered. Peak doses to an individual are approximately five orders of magnitude below background levels for both sites. Sensitivity analyses for most aspects of the post-emplacement systems models are included.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-05
... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: September 13-14, 2011--Salt Lake City, UT; the U.S. Nuclear Waste Technical Review Board Will Meet To Discuss DOE Plans for Used Fuel Disposition R... Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will hold a public meeting in Salt Lake...
NASA Technical Reports Server (NTRS)
Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyke, L. C.
1973-01-01
A preliminary design study of a conceptual 6000-megawatt open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 196,600 newtons (44,200 lb) and a specific impulse of 4400 seconds. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel, and waste heat rejection system) were considered conceptually and were sized.
NASA Technical Reports Server (NTRS)
English, T.; Miller, C.; Bullard, E.; Campbell, R.; Chockie, A.; Divita, E.; Douthitt, C.; Edelson, E.; Lees, L.
1977-01-01
The technical status of the old U.S. mailine program for high level radioactive nuclear waste management, and the newly-developing program for disposal of unreprocessed spent fuel was assessed. The method of long term containment for both of these waste forms is considered to be deep geologic isolation in bedded salt. Each major component of both waste management systems is analyzed in terms of its scientific feasibility, technical achievability and engineering achievability. The resulting matrix leads to a systematic identification of major unresolved technical or scientific questions and/or gaps in these programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazile, F.
2007-07-01
The sustainability of an energy policy depends on the manner in which it satisfies environmental, economical and social requirements. Nuclear energy is not an exception. The objectives of the future nuclear systems, as defined in the Generation IV International Forum, tend to optimize the ability of nuclear energy to satisfy sustainable development goals. In this regard, they involve strong commitments concerning waste management policy : five designs in six are based on a closed fuel cycle, in order to minimize the volume and radiotoxicity of final waste, and to recycle the fissile materials to save natural resources. Since its beginnings,more » the French civil nuclear programme has considered a long-term perspective and has developed spent fuel reprocessing. The French current industrial technology has already permitted to recycle 96% of spent fuel materials, to save 30% of natural resources, to reduce by 5 the amount of waste and to reduce by 10 the waste radiotoxicity, all these benefits for less than 6% of the kWh total cost. This strategy has always been criticized by the nuclear opponents, precisely because they saw that it was a sustainable way, and didn't accept to consider nuclear energy as a sustainable source of power. Two arguments were put forward these criticisms. First, the cost of reprocessing versus once-through cycle and second, the risk of proliferation induced by U-Pu partitioning process. These arguments were also invoked in international debates, and they have also been pleaded by the anti-nukes during the National Debate on HLLLW, at the end of 2005, preceding the vote of a new law in 2006 by the French parliament. Fortunately they have not convinced public opinion in France nor political decision-makers. A majority of people with no regard to technical background understand that recycling and saving the natural resources are sustainable principles. And, from a technical point of view, the 6% over cost does not seem significant considering the economics of nuclear power. Lastly, the risk proliferation is more related to the front-end technologies than to the back-end ones. So, the 2006 French Law 'for a sustainable radioactive waste management' has reinforced the closed-cycle strategy and has paved the way for a long-term development of nuclear energy in the 21. century and beyond, towards the third and fourth generations of nuclear systems. It has defined an R and D programme including the continuation of partitioning-transmutation of minor actinides and their recycling in 4. generation fast reactors. In parallel, the French president has committed the French Atomic Energy Commission to implement a 4. generation prototype reactor by 2020, with international cooperation, to guarantee the permanence of technology progress. In this regard, the waste management strategy can't be built without taking into account the perspectives of development of nuclear energy. These perspectives must include the best available technologies and, in the other hand, an adaptation to the political evolutions of societies. (authors)« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARD CONTRACT FOR DISPOSAL OF SPENT NUCLEAR FUEL AND/OR HIGH-LEVEL RADIOACTIVE WASTE General § 961.1... fuel (SNF) and high-level radioactive waste (HLW) as provided in section 302 of the Nuclear Waste... title to, transport, and dispose of spent nuclear fuel and/or high-level radioactive waste delivered to...
A Novel Fuel/Reactor Cycle to Implement the 300 Years Nuclear Waste Policy Approach - 12377
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carelli, M.D.; Franceschini, F.; Lahoda, E.J.
2012-07-01
A thorium-based fuel cycle system can effectively burn the currently accumulated commercial used nuclear fuel and move to a sustainable equilibrium where the actinide levels in the high level waste are low enough to yield a radiotoxicity after 300 years lower than that of the equivalent uranium ore. The second step of the Westinghouse approach to solving the waste 'problem' has been completed. The thorium fuel cycle has indeed the potential of burning the legacy TRU and achieve the waste objective proposed. Initial evaluations have been started for the third step, development and selection of appropriate reactors. Indications are thatmore » the probability of show-stoppers is rather remote. It is, therefore, believed that development of the thorium cycle and associated technologies will provide a permanent solution to the waste management. Westinghouse is open to the widest collaboration to make this a reality. (authors)« less
Evaluation of conventional power systems. [emphasizing fossil fuels and nuclear energy
NASA Technical Reports Server (NTRS)
Smith, K. R.; Weyant, J.; Holdren, J. P.
1975-01-01
The technical, economic, and environmental characteristics of (thermal, nonsolar) electric power plants are reviewed. The fuel cycle, from extraction of new fuel to final waste management, is included. Emphasis is placed on the fossil fuel and nuclear technologies.
Accelerator-driven Transmutation of Waste
NASA Astrophysics Data System (ADS)
Venneri, Francesco
1998-04-01
Nuclear waste from commercial power plants contains large quantities of plutonium, other fissionable actinides, and long-lived fission products that are potential proliferation concerns and create challenges for the long-term storage. Different strategies for dealing with nuclear waste are being followed by various countries because of their geologic situations and their views on nuclear energy, reprocessing and non-proliferation. The current United States policy is to store unprocessed spent reactor fuel in a geologic repository. Other countries are opting for treatment of nuclear waste, including partial utilization of the fissile material contained in the spent fuel, prior to geologic storage. Long-term uncertainties are hampering the acceptability and eventual licensing of a geologic repository for nuclear spent fuel in the US, and driving up its cost. The greatest concerns are with the potential for radiation release and exposure from the spent fuel for tens of thousands of years and the possible diversion and use of the actinides contained in the waste for weapons construction. Taking advantage of the recent breakthroughs in accelerator technology and of the natural flexibility of subcritical systems, the Accelerator-driven Transmutation of Waste (ATW) concept offers the United States and other countries the possibility to greatly reduce plutonium, higher actinides and environmentally hazardous fission products from the waste stream destined for permanent storage. ATW does not eliminate the need for, but instead enhances the viability of permanent waste repositories. Far from being limited to waste destruction, the ATW concept also brings to the table new technologies that could be relevant for next-generation power producing reactors. In the ATW concept, spent fuel would be shipped to the ATW site where the plutonium, transuranics and selected long-lived fission products would be destroyed by fission or transmutation in their first and only pass through the facility, using an accelerator-driven subcritical burner cooled by liquid lead/bismuth and limited pyrochemical treatment of the spent fuel and residual waste. This approach contrasts with the present-day practices of aqueous reprocessing (Europe and Japan), in which high purity plutonium is produced and used in the fabrication of fresh mixed oxide fuel (MOX) that is shipped off-site for use in light water reactors.
Nuclear reference materials to meet the changing needs of the global nuclear community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, H.R.; Gradle, C.G.; Narayanan, U.I.
New Brunswick Laboratory (NBL) serves as the U.S. Government`s certifying authority for nuclear reference materials and measurement calibration standards. In this role, NBL provides nuclear reference materials certified for chemical and/or isotopic compositions traceable to a nationally accepted, internationally compatible reference base. Emphasis is now changing as to the types of traceable nuclear reference materials needed as operations change within the Department of Energy complex and at nuclear facilities around the world. New challenges include: environmental and waste minimization issues, facilities and materials transitioning from processing to storage modes with corresponding changes in the types of measurements being performed, emphasismore » on requirements for characterization of waste materials, and difficulties in transporting nuclear materials and international factors, including IAEA influences. During these changing times, it is critical that traceable reference materials be provided for calibration or validation of the performance of measurement systems. This paper will describe actions taken and planned to meet the changing reference material needs of the global nuclear community.« less
78 FR 56775 - Waste Confidence-Continued Storage of Spent Nuclear Fuel
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
... radiological impacts of spent nuclear fuel and high-level waste disposal. DATES: Submit comments on the... determination. The ``Offsite radiological impacts of spent nuclear fuel and high-level waste disposal'' issue.... Geologic Repository--Technical Feasibility and Availability C3. Storage of Spent Nuclear Fuel C3.a...
10 CFR 1.18 - Advisory Committee on Nuclear Waste.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Advisory Committee on Nuclear Waste. 1.18 Section 1.18 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Panels, Boards, and Committees § 1.18 Advisory Committee on Nuclear Waste. The Advisory Committee on...
10 CFR 1.18 - Advisory Committee on Nuclear Waste.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Advisory Committee on Nuclear Waste. 1.18 Section 1.18 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Panels, Boards, and Committees § 1.18 Advisory Committee on Nuclear Waste. The Advisory Committee on...
10 CFR 1.18 - Advisory Committee on Nuclear Waste.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Advisory Committee on Nuclear Waste. 1.18 Section 1.18 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Panels, Boards, and Committees § 1.18 Advisory Committee on Nuclear Waste. The Advisory Committee on...
10 CFR 1.18 - Advisory Committee on Nuclear Waste.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Advisory Committee on Nuclear Waste. 1.18 Section 1.18 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Panels, Boards, and Committees § 1.18 Advisory Committee on Nuclear Waste. The Advisory Committee on...
10 CFR 1.18 - Advisory Committee on Nuclear Waste.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Advisory Committee on Nuclear Waste. 1.18 Section 1.18 Energy NUCLEAR REGULATORY COMMISSION STATEMENT OF ORGANIZATION AND GENERAL INFORMATION Headquarters Panels, Boards, and Committees § 1.18 Advisory Committee on Nuclear Waste. The Advisory Committee on...
Extraction of cesium and strontium from nuclear waste
Davis, Jr., Milton W.; Bowers, Jr., Charles B.
1988-01-01
Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5') [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution.
NASA Astrophysics Data System (ADS)
Valtseva, A. I.; Bibik, I. S.
2017-11-01
This article discusses how the latest system of special water purification KPF-30, designed specifically for the fourth power unit of Beloyarskaya nuclear power plant, which has a number of advantages over other water purification systems as chemical-physical and technical-economic, environmental, and other industrial indicators. The scheme covered in this article systems of special water purification involves the use of a hydrocyclone at the preliminary stage of water treatment, as a worthy alternative to ion-exchange filters, which can significantly reduce the volume of toxic waste. The world community implements the project of closing the nuclear fuel cycle, there is a need to improve the reliability of the equipment for safe processes and development of critical and supercritical parameters in the nuclear industry. Essentially, on operated NPP units, the only factor that can cost-effectively optimize to improve the reliability of equipment is the water chemistry. System KPF30 meets the principles and criteria of ecological safety, demonstrating the justification for reagent less method of water treatment on the main stages, in which no formation of toxic wastes, leading to irreversible consequences of environmental pollution and helps to conserve water.
License restrictions at Barnwell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Autry, V.R.
1991-12-31
The State of South Carolina was delegated the authority by the US Nuclear Regulatory Commission to regulate the receipt, possession, use and disposal of radioactive material as an Agreement State. Since 1970, the state has been the principal regulatory authority for the Barnwell Low-Level Waste Disposal Facility operated by Chem-Nuclear Systems, Inc. The radioactive material license issued authorizing the receipt and disposal of low-level waste contains numerous restrictions to ensure environmental protection and compliance with shallow land disposal performance criteria. Low-level waste has evolved from minimally contaminated items to complex waste streams containing high concentrations of radionuclides and processing chemicalsmore » which necessitated these restrictions. Additionally, some waste with their specific radionuclides and concentration levels, many classified as low-level radioactive waste, are not appropriate for shallow land disposal unless additional precautions are taken. This paper will represent a number of these restrictions, the rationale for them, and how they are being dealt with at the Barnwell disposal facility.« less
75 FR 61228 - Board Meeting: Technical Lessons Gained From High-Level Nuclear Waste Disposal Efforts
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-04
... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: Technical Lessons Gained From High-Level... Waste Policy Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will meet in Dulles... of Energy on technical issues and to review the technical validity of DOE activities related to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
RECHARD,ROBERT P.
This paper describes the evolution of the process for assessing the hazards of a geologic disposal system for radioactive waste and, similarly, nuclear power reactors, and the relationship of this process with other assessments of risk, particularly assessments of hazards from manufactured carcinogenic chemicals during use and disposal. This perspective reviews the common history of scientific concepts for risk assessment developed to the 1950s. Computational tools and techniques developed in the late 1950s and early 1960s to analyze the reliability of nuclear weapon delivery systems were adopted in the early 1970s for probabilistic risk assessment of nuclear power reactors, amore » technology for which behavior was unknown. In turn, these analyses became an important foundation for performance assessment of nuclear waste disposal in the late 1970s. The evaluation of risk to human health and the environment from chemical hazards is built upon methods for assessing the dose response of radionuclides in the 1950s. Despite a shared background, however, societal events, often in the form of legislation, have affected the development path for risk assessment for human health, producing dissimilarities between these risk assessments and those for nuclear facilities. An important difference is the regulator's interest in accounting for uncertainty and the tools used to evaluate it.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-04-01
The design calculations for the Waste Isolation Pilot Plant (WIPP) are presented. The following categories are discussed: general nuclear calculations; radwaste calculations; structural calculations; mechanical calculations; civil calculations; electrical calculations; TRU waste surface facility time and motion analysis; shaft sinking procedures; hoist time and motion studies; mining system analysis; mine ventilation calculations; mine structural analysis; and miscellaneous underground calculations.
PL-3, PHASE I, TASK 3, RESEARCH AND DEVELOPMENT REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphries, G. E.
1962-03-12
Results of researeh and development tasks are presented along with recommendations for future development work Work (s reported ofn the areas of plant assembly and relocation, housings and footings, waste heat dissipation, instrumentation, refueling systems, waste disposal, shiceding, core nuclear thermal and hydraulic studies, gaseous waste processing, and critical experiments on a 5 x 5 array of Type 3 fuel elements. (auth)
ERIC Educational Resources Information Center
Himmelberger, Jeffery J.; And Others
1995-01-01
Summarizes key research implications of Three Mile Island and other major hazard events as related to tourism. Examines how the proposed Yucca Mountain nuclear waste repository system will impact tourism in southern Nevada and other visitor-oriented rural counties bisected by planned waste transportation corridors. (AIM)
Molecular hydrogen: An abundant energy source for bacterial activity in nuclear waste repositories
NASA Astrophysics Data System (ADS)
Libert, M.; Bildstein, O.; Esnault, L.; Jullien, M.; Sellier, R.
A thorough understanding of the energy sources used by microbial systems in the deep terrestrial subsurface is essential since the extreme conditions for life in deep biospheres may serve as a model for possible life in a nuclear waste repository. In this respect, H 2 is known as one of the most energetic substrates for deep terrestrial subsurface environments. This hydrogen is produced from abiotic and biotic processes but its concentration in natural systems is usually maintained at very low levels due to hydrogen-consuming bacteria. A significant amount of H 2 gas will be produced within deep nuclear waste repositories, essentially from the corrosion of metallic components. This will consequently improve the conditions for microbial activity in this specific environment. This paper discusses different study cases with experimental results to illustrate the fact that microorganisms are able to use hydrogen for redox processes (reduction of O 2, NO3-, Fe III) in several waste disposal conditions. Consequences of microbial activity include: alteration of groundwater chemistry and shift in geochemical equilibria, gas production or consumption, biocorrosion, and potential modifications of confinement properties. In order to quantify the impact of hydrogen bacteria, the next step will be to determine the kinetic rate of the reactions in realistic conditions.
Commercial Nuclear Steam-Electric Power Plants, Part II
ERIC Educational Resources Information Center
Shore, Ferdinand J.
1974-01-01
Presents the pros and cons of nuclear power systems. Includes a discussion of the institutional status of the AEC, AEC regulatory record, routine low-level radiation hazards, transport of radioactive materials, storage of wastes, and uranium resources and economics of supply. (GS)
NASA Astrophysics Data System (ADS)
Evans, Andrew J.; Kingston, Richard; Carver, Steve
This paper elucidates the manner in which users of an online decision support system respond to spatially distributed data when assessing the solution to environmental risks, specifically, nuclear waste disposal. It presents tests for revealing whether users are responding to geographical data and whether they are influenced by their home location (Not in My Back Yard - style behavior). The tests specifically cope with problems associated with testing home-to-risk distances where both locations are constrained by the shape of the landmass available. In addition, we detail the users' wider feelings towards such a system, and reflect upon the possibilities such systems offer for participatory democracy initiatives.
Extraction of cesium and strontium from nuclear waste
Davis, M.W. Jr.; Bowers, C.B. Jr.
1988-06-07
Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5[prime]) [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution. 3 figs.
NASA Astrophysics Data System (ADS)
Bai, Y.; Collier, N. C.; Milestone, N. B.; Yang, C. H.
2011-06-01
The UK currently uses composite blends of Portland cement and other inorganic cementitious material such as blastfurnace slag and pulverised fuel ash to encapsulate or immobilise intermediate and low level radioactive wastes. Typically levels up 9:1 blast furnace slag:Portland cement or 4:1 pulverised fuel ash:Portland cement are used. Whilst these systems offer many advantages, their high pH causes corrosion of various metallic intermediate level radioactive wastes. To address this issue, lower pH/weakly alkaline cementitious systems have to be explored. While the blast furnace slag:Portland cement system is referred to as a composite cement system, the underlying reaction is actually an indirect activation of the slag hydration by the calcium hydroxide generated by the cement hydration, and by the alkali ions and gypsum present in the cement. However, the slag also can be activated directly with activators, creating a system known as alkali-activated slag. Whilst these activators used are usually strongly alkaline, weakly alkaline and near neutral salts can also be used. In this paper, the potential for using weakly alkaline and near neutral salts to activate slag in this manner is reviewed and discussed, with particular emphasis placed on the immobilisation of reactive metallic nuclear wastes.
Nuclear waste disposal in space
NASA Technical Reports Server (NTRS)
Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.
1978-01-01
Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasbarro, Christina; Bello, Job M.; Bryan, Samuel A.
2013-02-24
Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasbarro, Christina; Bello, Job; Bryan, Samuel
2013-07-01
Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halsey, W
This report provides a summary for FY-2008 of activities, analyses and products from the Material Transportation, Storage and Disposal (M-TSD) sub-task of Systems Analysis within the Advanced Fuel Cycle Research & Development area of the Global Nuclear Energy Partnership. The objective of this work is to evaluate near-term material management requirements for initial GNEP facilities and activities, long-term requirements for large-scale GNEP technology deployment, and alternatives and paths forward to meet these needs. For FY-08, the work expanded to include the Integrated Waste Management Strategy as well as integration with the newly formed Waste Forms Campaign. The M-TSD team wasmore » expanded with the addition of support from Savannah River National Lab (SRNL) to the existing team of Lawrence Livermore National Lab (LLNL), Argonne National Lab (ANL), Idaho National Lab (INL), Sandia National Lab (SNL) and University of Nevada - Reno (UN-R). During the first half of the year, analysis was focused on providing supporting technical analysis and documentation to support anticipated high-level decisions on program direction. A number of analyses were conducted and reports prepared as program deliverables. This work is briefly summarized in this report. Analyses provided informally to other program efforts are included in this report to provide documentation. This year-end summary was planned primarily as a compilation of activities following the anticipated programmatic decisions. These decisions were deferred beyond the end of the year, and funds were reallocated in a number of areas, thus reducing the M-TSD activities. This report summarizes the miscellaneous 'ad-hoc' work conducted during the later part of the year, such as support to the draft Programmatic Environmental Impact Statement (PEIS), and support to other program studies. Major programmatic contributions from the M-TSD team during the year included: (1) Completion of the IWMS in March 2008 as the baseline for waste management calculations for the GNEP Programmatic Environmental Impact Statement (PEIS). The IWMS represents a collaborative effort between the Systems Analysis, Waste Forms, and Separations Campaigns with contributing authors from multiple laboratories. The IWMS reference is: 'Global Nuclear Energy Partnership Integrated Waste Management Strategy, D. Gombert, INL, et al, GNEP-WAST-WAST-AI-RT-2008-000214, March 2008'. (2) As input to the IWMS and support for program decisions, an evaluation of the current regulatory framework in the U.S. pertaining to the disposal of radioactive wastes under an advanced nuclear fuel cycle was completed by ANL. This evaluation also investigated potential disposal pathways for these wastes. The entire evaluation is provided in Appendix A of this report. (3) Support was provided to the development of the GNEP Programmatic Environmental Impact Statement from INL, SNL and ANL M-TSD staff. (4) M-TSD staff prepared input for DSARR (Dynamic Systems Analysis Report for Nuclear Fuel Recycle) report. The DSARR is an INL led report to examine the time-dependent dynamics for a transition from the current open fuel cycle to either a 1-tier or 2-tier closed fuel cycle. Section 5.3 Waste Management Impacts was provided to INL for incorporation into the DSARR. (5) SNL M-TSD staff prepared a M2 milestone report 'Material Transportation, Storage and Disposal Contribution for Secretarial Decision Package'. The report purpose was to comprehensively evaluate and discuss packaging, storage, and transportation for all potential nuclear and radioactive materials in the process and waste streams being considered by the GNEP program. In particular, a systems view was used to capture all packaging, storage, and transport operations needed to link the various functional aspects of the fuel cycle. (6) SRNL M-TSD staff developed a deliverable report 'Management of Decay Heat from Spent Nuclear Fuel'. This report evaluated a range of options for managing the near-term decay heat associated with Cs and Sr in spent nuclear fuel (SNF) reprocessing wastes. (7) M-TSD staff participated in a series of meetings of the US-Japan GNEP Working Group on Waste Management, developing the content for the first deliverable of the working group.« less
System for decision analysis support on complex waste management issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shropshire, D.E.
1997-10-01
A software system called the Waste Flow Analysis has been developed and applied to complex environmental management processes for the United States Department of Energy (US DOE). The system can evaluate proposed methods of waste retrieval, treatment, storage, transportation, and disposal. Analysts can evaluate various scenarios to see the impacts to waste slows and schedules, costs, and health and safety risks. Decision analysis capabilities have been integrated into the system to help identify preferred alternatives based on a specific objectives may be to maximize the waste moved to final disposition during a given time period, minimize health risks, minimize costs,more » or combinations of objectives. The decision analysis capabilities can support evaluation of large and complex problems rapidly, and under conditions of variable uncertainty. The system is being used to evaluate environmental management strategies to safely disposition wastes in the next ten years and reduce the environmental legacy resulting from nuclear material production over the past forty years.« less
Code System for Performance Assessment Ground-water Analysis for Low-level Nuclear Waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MATTHEW,; KOZAK, W.
1994-02-09
Version 00 The PAGAN code system is a part of the performance assessment methodology developed for use by the U. S. Nuclear Regulatory Commission in evaluating license applications for low-level waste disposal facilities. In this methodology, PAGAN is used as one candidate approach for analysis of the ground-water pathway. PAGAN, Version 1.1 has the capability to model the source term, vadose-zone transport, and aquifer transport of radionuclides from a waste disposal unit. It combines the two codes SURFACE and DISPERSE which are used as semi-analytical solutions to the convective-dispersion equation. This system uses menu driven input/out for implementing a simplemore » ground-water transport analysis and incorporates statistical uncertainty functions for handling data uncertainties. The output from PAGAN includes a time- and location-dependent radionuclide concentration at a well in the aquifer, or a time- and location-dependent radionuclide flux into a surface-water body.« less
Accelerator Driven Nuclear Energy: The Thorium Option
Raja, Rajendran
2018-01-05
Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.  At the current rate of use, existing sources of Uranium will last for 50-100 years. We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy. Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem. Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality. Â
Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste
Boatner, Lynn A.; Sales, Brian C.
1989-01-01
Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.
Simmons, Ardyth M.; Stuckless, John S.; with a Foreword by Abraham Van Luik, U.S. Department of Energy
2010-01-01
Natural analogues are defined for this report as naturally occurring or anthropogenic systems in which processes similar to those expected to occur in a nuclear waste repository are thought to have taken place over time periods of decades to millennia and on spatial scales as much as tens of kilometers. Analogues provide an important temporal and spatial dimension that cannot be tested by laboratory or field-scale experiments. Analogues provide one of the multiple lines of evidence intended to increase confidence in the safe geologic disposal of high-level radioactive waste. Although the work in this report was completed specifically for Yucca Mountain, Nevada, as the proposed geologic repository for high-level radioactive waste under the U.S. Nuclear Waste Policy Act, the applicability of the science, analyses, and interpretations is not limited to a specific site. Natural and anthropogenic analogues have provided and can continue to provide value in understanding features and processes of importance across a wide variety of topics in addressing the challenges of geologic isolation of radioactive waste and also as a contribution to scientific investigations unrelated to waste disposal. Isolation of radioactive waste at a mined geologic repository would be through a combination of natural features and engineered barriers. In this report we examine analogues to many of the various components of the Yucca Mountain system, including the preservation of materials in unsaturated environments, flow of water through unsaturated volcanic tuff, seepage into repository drifts, repository drift stability, stability and alteration of waste forms and components of the engineered barrier system, and transport of radionuclides through unsaturated and saturated rock zones.
Skarlatidou, A; Cheng, T; Haklay, M
2012-09-01
Public participation requires the involvement of lay people in the decision-making processes of issues that concern them. It is currently practiced in a variety of domains, such as transport and environmental planning. Communicating risks can be a complex task, as there may be significant differences between the risk perceptions of experts and those of lay people. Among the plethora of problems that require public involvement is the site selection of a nuclear waste disposal site in the United Kingdom, which is discussed in this article. Previous ineffective attempts to locate a site provide evidence that the problem has a strong social dimension, and studies ascribe public opposition to a loss of public trust in governmental agencies and decisionmakers, and to a lack of public understanding of nuclear waste issues. Although the mental models approach has been successfully used in the effective communication of such risks as climate change, no attempt has been made to follow a prescriptive mental model approach to develop risk communication messages that inform lay people about nuclear waste disposal. After interviewing 20 lay people and 5 experts, we construct and compare their corresponding mental models to reveal any gaps and misconceptions. The mental models approach is further applied here to identify lay people's requirements regarding what they want to know about nuclear waste, and how this information should be presented so that it is easily understood. This article further describes how the mental models approach was used in the subsequent development of an online information system for the site selection of a nuclear waste repository in the United Kingdom, which is considered essential for the improvement of public understanding and the reestablishment of trust. © 2012 Society for Risk Analysis.
Nuclear energy and radioactive waste disposal in the age of recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conca, James L.; Apted, Michael
2007-07-01
The magnitude of humanity's energy needs requires that we embrace a multitude of various energy sources and applications. For a variety of reasons, nuclear energy must be a major portion of the distribution, at least one third. The often-cited strategic hurdle to this approach is nuclear waste disposal. Present strategies concerning disposal of nuclear waste need to be changed if the world is to achieve both a sustainable energy distribution by 2040 and solve the largest environmental issue of the 21. century - global warming. It is hoped that ambitious proposals to replace fossil fuel power generation by alternatives willmore » drop the percentage of fossil fuel use substantially, but the absolute amount of fossil fuel produced electricity must be kept at or below its present 10 trillion kW-hrs/year. Unfortunately, the rapid growth in consumption to over 30 trillion kW-hrs/year by 2040, means that 20 trillion kW-hrs/yr of non-fossil fuel generated power has to come from other sources. If half of that comes from alternative non-nuclear, non-hydroelectric sources (an increase of 3000%), then nuclear still needs to increase by a factor of four worldwide to compensate. Many of the reasons nuclear energy did not expand after 1970 in North America (proliferation, capital costs, operational risks, waste disposal, and public fear) are no longer a problem. The WIPP site in New Mexico, an example of a solution to the nuclear waste disposal issue, and also to public fear, is an operating deep geologic nuclear waste repository in the massive bedded salt of the Salado Formation. WIPP has been operating for eight years, and as of this writing, has disposed of over 50,000 m{sup 3} of transuranic waste (>100 nCi/g but <23 Curie/liter) including high activity waste. The Salado Formation is an ideal host for any type of nuclear waste, especially waste from recycled spent fuel. (authors)« less
Can you say `N`? NIMBY, NWPA and nuclear Preemption
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
In Nevada v. Watkins, the Ninth Circuit Court of Appeals upheld the constitutionality of the 1987 NWPA amendments, which enabled the continued site characterization of Yucca Mountain and thwarted Nevada`s attempt to ban nuclear waste within its borders. The Watkins court ruled that Nevada`s statute, which banned nuclear waste, was preempted by NWPA. Nevada, like many states has passed laws that limit the storage, transportation or disposal of nuclear waste within its state boundaries. These statutes will meet the same fate as the one struck down in the Watkins decision - that is, until states rights in the area ofmore » nuclear energy are clarified. This note examines Watkins` application of the preemption doctrine, as well as general preemption principles, to determine what avenues may still be open to states seeking to regulate the disposal of nuclear waste. The Watkins decision neither discussed the fully authority of NWPA nor defined the extent of the federal government`s preemption of state regulation of nuclear waste disposal. However, Watkins seems to solidify the rationale of other recent court decisions holdings that Congress has occupied the nuclear-energy field. This interpretation could effectively eliminate any state regulatory power over the nuclear-energy field, including nuclear-waste disposal.« less
Pajo, Judi
2016-01-01
This project set out to illuminate the discursive existence of nuclear waste in American culture. Given the significant temporal dimension of the phenomenon as well as the challenging size of the United States setting, the project adapted key methodological elements of the sociocultural anthropology tradition and produced proxies for ethnographic fieldnotes and key informant interviews through sampling the digital archives of the New York Times over a 64-year period that starts with the first recorded occurrence of the notion of nuclear waste and ends with the conclusion of the presidency of George W. Bush. Two paradigmatic waves of American public discourse on nuclear waste come to light when subjecting this empirical data to quantitative inventorying and interpretive analysis: between 1945 and 1969 nuclear waste was generally framed in light of the beneficial utilizations of nuclear reactions and with optimistic expectations for a scientific/technological solution; by contrast, between 1969 and 2009 nuclear waste was conceptualized as inherited harm that could not be undone and contestation that required political/legal management. Besides this key finding and the empirical timing of the two paradigms, the study's value lies also with its detailed empirical documentation of nuclear waste in its sociocultural existence.
Pajo, Judi
2016-01-01
This project set out to illuminate the discursive existence of nuclear waste in American culture. Given the significant temporal dimension of the phenomenon as well as the challenging size of the United States setting, the project adapted key methodological elements of the sociocultural anthropology tradition and produced proxies for ethnographic fieldnotes and key informant interviews through sampling the digital archives of the New York Times over a 64-year period that starts with the first recorded occurrence of the notion of nuclear waste and ends with the conclusion of the presidency of George W. Bush. Two paradigmatic waves of American public discourse on nuclear waste come to light when subjecting this empirical data to quantitative inventorying and interpretive analysis: between 1945 and 1969 nuclear waste was generally framed in light of the beneficial utilizations of nuclear reactions and with optimistic expectations for a scientific/technological solution; by contrast, between 1969 and 2009 nuclear waste was conceptualized as inherited harm that could not be undone and contestation that required political/legal management. Besides this key finding and the empirical timing of the two paradigms, the study’s value lies also with its detailed empirical documentation of nuclear waste in its sociocultural existence. PMID:27310719
NASA Astrophysics Data System (ADS)
Mariani, A.; Passard, C.; Jallu, F.; Toubon, H.
2003-11-01
The design of a specific nuclear assay system for a dedicated application begins with a phase of development, which relies on information from the literature or on knowledge resulting from experience, and on specific experimental verifications. The latter ones may require experimental devices which can be restricting in terms of deadline, cost and safety. One way generally chosen to bypass these difficulties is to use simulation codes to study particular aspects. This paper deals with the potentialities offered by the simulation in the case of a passive-active neutron (PAN) assay system for alpha low level waste characterization; this system has been carried out at the Nuclear Measurements Development Laboratory of the French Atomic Energy Commission. Due to the high number of parameters to be taken into account for its development, this is a particularly sophisticated example. Since the PAN assay system, called PROMETHEE (prompt epithermal and thermal interrogation experiment), must have a detection efficiency of more than 20% and preserve a high level of modularity for various applications, an improved version has been studied using the MCNP4 (Monte Carlo N-Particle) transport code. Parameters such as the dimensions of the assay system, of the cavity and of the detection blocks, and the thicknesses of the nuclear materials of neutronic interest have been optimised. Therefore, the number of necessary experiments was reduced.
Nuclear reference materials to meet the changing needs of the global nuclear community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, H.R.; Gradle, C.G.; Narayanan, U.I.
New Brunswick Laboratory (NBL) serves as the US Government`s Certifying Authority for nuclear reference materials and measurement calibration standards. In this role, NBL provides nuclear reference materials certified for chemical and/or isotopic compositions traceable to a nationally accepted, internationally compatible reference base. Emphasis is now changing as to the types of traceable nuclear reference materials needed as operations change within the Department of Energy (DOE) complex and at nuclear facilities around the world. Environmental and waste minimization issues, facilities and materials transitioning from processing to storage modes with corresponding changes in the types of measurements being performed, emphasis on requirementsmore » for characterization of waste materials, difficulties in transporting nuclear materials, and International factors, including International Atomic Energy Agency (IAEA) inspection of excess US nuclear materials, are all contributing influences. During these changing times, ft is critical that traceable reference materials be provided for calibration or validation of the performance of measurement systems. This paper will describe actions taken and planned to meet the changing reference material needs of the global nuclear community.« less
Numerical Modeling of Thermal-Hydrology in the Near Field of a Generic High-Level Waste Repository
NASA Astrophysics Data System (ADS)
Matteo, E. N.; Hadgu, T.; Park, H.
2016-12-01
Disposal in a deep geologic repository is one of the preferred option for long term isolation of high-level nuclear waste. Coupled thermal-hydrologic processes induced by decay heat from the radioactive waste may impact fluid flow and the associated migration of radionuclides. This study looked at the effects of those processes in simulations of thermal-hydrology for the emplacement of U. S. Department of Energy managed high-level waste and spent nuclear fuel. Most of the high-level waste sources have lower thermal output which would reduce the impact of thermal propagation. In order to quantify the thermal limits this study concentrated on the higher thermal output sources and on spent nuclear fuel. The study assumed a generic nuclear waste repository at 500 m depth. For the modeling a representative domain was selected representing a portion of the repository layout in order to conduct a detailed thermal analysis. A highly refined unstructured mesh was utilized with refinements near heat sources and at intersections of different materials. Simulations looked at different values for properties of components of the engineered barrier system (i.e. buffer, disturbed rock zone and the host rock). The simulations also looked at the effects of different durations of surface aging of the waste to reduce thermal perturbations. The PFLOTRAN code (Hammond et al., 2014) was used for the simulations. Modeling results for the different options are reported and include temperature and fluid flow profiles in the near field at different simulation times. References:G. E. Hammond, P.C. Lichtner and R.T. Mills, "Evaluating the Performance of Parallel Subsurface Simulators: An Illustrative Example with PFLOTRAN", Water Resources Research, 50, doi:10.1002/2012WR013483 (2014). Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7510 A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rechard, Robert P.
This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2008 of the performance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance usingmore » surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment-specific laboratory experiments, in-situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site-specific characterization. Because the relationship is important to understanding the evolution of the Yucca Mountain Project, the tabulation also shows the interaction between four broad categories of political bodies and government agencies/institutions: (a) technical milestones of the implementing institutions, (b) development of the regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives and decisions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste.« less
McCarthy, Kathy
2018-01-01
Nuclear engineer Dr. Kathy McCarthy talks about nuclear energy, the challenge of nuclear waste and the research aimed at solutions. For more information about nuclear energy research, visit http://www.facebook.com/idahonationallaboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.
The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enablemore » the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction ofWTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration & Controls, Front-End Design & Project Definition, Commissioning, Nuclear Safety & Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH&QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant Foundation-configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan.« less
Ceramics in nuclear waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chikalla, T D; Mendel, J E
1979-05-01
Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-21
... NUCLEAR REGULATORY COMMISSION [NRC-2010-0362] Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... Commission) has issued for public comment a document entitled: NUREG-1307 Revision 15, ``Report on Waste...
Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conca, James; Wright, Judith
2012-07-01
To some, the perceived inability of the United States to dispose of high-level nuclear waste justifies a moratorium on expansion of nuclear power in this country. Instead, it is more an example of how science yields to social pressure, even on a subject as technical as nuclear waste. Most of the problems, however, stem from confusion on the part of the public and their elected officials, not from a lack of scientific knowledge. We know where to put nuclear waste, how to put it there, how much it will cost, and how well it will work. And it's all aboutmore » the geology. The President's Blue Ribbon Commission on America's Nuclear Future has drafted a number of recommendations addressing nuclear energy and waste issues (BRC 2011) and three recommendations, in particular, have set the stage for a new strategy to dispose of high-level nuclear waste and to manage spent nuclear fuel in the United States: 1) interim storage for spent nuclear fuel, 2) resumption of the site selection process for a second repository, and 3) a quasi-government entity to execute the program and take control of the Nuclear Waste Fund in order to do so. The first two recommendations allow removal and storage of spent fuel from reactor sites to be used in the future, and allows permanent disposal of actual waste, while the third controls cost and administration. The Nuclear Waste Policy Act of 1982 (NPWA 1982) provides the second repository different waste criteria, retrievability, and schedule, so massive salt returns as the candidate formation of choice. The cost (in 2007 dollars) of disposing of 83,000 metric tons of heavy metal (MTHM) high-level waste (HLW) is about $ 83 billion (b) in volcanic tuff, $ 29 b in massive salt, and $ 77 b in crystalline rock. Only in salt is the annual revenue stream from the Nuclear Waste Fund more than sufficient to accomplish this program without additional taxes or rate hikes. The cost is determined primarily by the suitability of the geologic formation, i.e., how well it performs on its own for millions of years with little engineering assistance from humans. It is critical that the states most affected by this issue (WA, SC, ID, TN, NM and perhaps others) develop an independent multi-state agreement in order for a successful program to move forward. Federal approval would follow. Unknown to most, the United States has a successful operating deep permanent geologic nuclear repository for high and low activity waste, called the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Its success results from several factors, including an optimal geologic and physio-graphic setting, a strong scientific basis, early regional community support, frequent interactions among stakeholders at all stages of the process, long-term commitment from the upper management of the U.S. Department of Energy (DOE) over several administrations, strong New Mexico State involvement and oversight, and constant environmental monitoring from before nuclear waste was first emplaced in the WIPP underground (in 1999) to the present. WIPP is located in the massive bedded salts of the Salado Formation, whose geological, physical, chemical, redox, thermal, and creep-closure properties make it an ideal formation for long-term disposal, long-term in this case being greater than 200 million years. These properties also mean minimal engineering requirements as the rock does most of the work of isolating the waste. WIPP has been operating for twelve years, and as of this writing, has disposed of over 80,000 m{sup 3} of nuclear weapons waste, called transuranic or TRU waste (>100 nCurie/g but <23 Curie/1000 cm{sup 3}) including some high activity waste from reprocessing of spent fuel from old weapons reactors. All nuclear waste of any type from any source can be disposed in this formation better, safer and cheaper than in any other geologic formation. At the same time, it is critical that we complete the Yucca Mountain license application review so as not to undermine the credibility of the Nuclear Regulatory Commission and the scientific community. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargo, G.F. Jr.
1994-10-11
The DOE Standard defines the configuration management program by the five basic program elements of ``program management,`` ``design requirements,`` ``document control,`` ``change control,`` and ``assessments,`` and the two adjunct recovery programs of ``design reconstitution,`` and ``material condition and aging management. The C-M model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOE Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phasesmore » of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life-cycle of the 101-SY Hydrogen Mitigation Test Project Mini-Data Acquisition and Control System of Tank Waste Remediation System.« less
Space disposal of nuclear wastes. Volume 1: Socio-political aspects
NASA Technical Reports Server (NTRS)
Laporte, T.; Rochlin, G. I.; Metlay, D.; Windham, P.
1976-01-01
The history and interpretation of radioactive waste management in the U.S., criteria for choosing from various options for waste disposal, and the impact of nuclear power growth from 1975 to 2000 are discussed. Preconditions for the existence of high level wastes in a form suitable for space disposal are explored. The role of the NASA space shuttle program in the space disposal of nuclear wastes, and the impact on program management, resources and regulation are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfan, E.; Jannik, T.
2011-10-01
Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities of the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste related problems in Ukraine and the Chernobyl Exclusion Zone, and in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program. The brief overview of the radioactive waste issues in the ChEZ presented in this article demonstrates that management of radioactive waste resulting from amore » beyond-designbasis accident at a nuclear power plant becomes the most challenging and the costliest effort during the mitigation and remediation activities. The costs of these activities are so high that the provision of radioactive waste final disposal facilities compliant with existing radiation safety requirements becomes an intolerable burden for the current generation of a single country, Ukraine. The nuclear accident at the Fukushima-1 NPP strongly indicates that accidents at nuclear sites may occur in any, even in a most technologically advanced country, and the Chernobyl experience shows that the scope of the radioactive waste management activities associated with the mitigation of such accidents may exceed the capabilities of a single country. Development of a special international program for broad international cooperation in accident related radioactive waste management activities is required to handle these issues. It would also be reasonable to consider establishment of a dedicated international fund for mitigation of accidents at nuclear sites, specifically, for handling radioactive waste problems in the ChEZ. The experience of handling Chernobyl radioactive waste management issues, including large volumes of radioactive soils and complex structures of fuel containing materials can be fairly useful for the entire world's nuclear community and can help make nuclear energy safer.« less
Bowman, C.D.
1992-11-03
Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.
Bowman, Charles D.
1992-01-01
Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.
Bobrowski, Krzysztof; Skotnicki, Konrad; Szreder, Tomasz
2016-10-01
The most important contributions of radiation chemistry to some selected technological issues related to water-cooled reactors, reprocessing of spent nuclear fuel and high-level radioactive wastes, and fuel evolution during final radioactive waste disposal are highlighted. Chemical reactions occurring at the operating temperatures and pressures of reactors and involving primary transients and stable products from water radiolysis are presented and discussed in terms of the kinetic parameters and radiation chemical yields. The knowledge of these parameters is essential since they serve as input data to the models of water radiolysis in the primary loop of light water reactors and super critical water reactors. Selected features of water radiolysis in heterogeneous systems, such as aqueous nanoparticle suspensions and slurries, ceramic oxides surfaces, nanoporous, and cement-based materials, are discussed. They are of particular concern in the primary cooling loops in nuclear reactors and long-term storage of nuclear waste in geological repositories. This also includes radiation-induced processes related to corrosion of cladding materials and copper-coated iron canisters, dissolution of spent nuclear fuel, and changes of bentonite clays properties. Radiation-induced processes affecting stability of solvents and solvent extraction ligands as well oxidation states of actinide metal ions during recycling of the spent nuclear fuel are also briefly summarized.
Characterising encapsulated nuclear waste using cosmic-ray muon tomography
NASA Astrophysics Data System (ADS)
Clarkson, A.; Hamilton, D. J.; Hoek, M.; Ireland, D. G.; Johnstone, J. R.; Kaiser, R.; Keri, T.; Lumsden, S.; Mahon, D. F.; McKinnon, B.; Murray, M.; Nutbeam-Tuffs, S.; Shearer, C.; Yang, G.; Zimmerman, C.
2015-03-01
Tomographic imaging techniques using the Coulomb scattering of cosmic-ray muons have been shown previously to successfully identify and characterise low- and high-Z materials within an air matrix using a prototype scintillating-fibre tracker system. Those studies were performed as the first in a series to assess the feasibility of this technology and image reconstruction techniques in characterising the potential high-Z contents of legacy nuclear waste containers for the U.K. Nuclear Industry. The present work continues the feasibility study and presents the first images reconstructed from experimental data collected using this small-scale prototype system of low- and high-Z materials encapsulated within a concrete-filled stainless-steel container. Clear discrimination is observed between the thick steel casing, the concrete matrix and the sample materials assayed. These reconstructed objects are presented and discussed in detail alongside the implications for future industrial scenarios.
Environmental Hazards of Nuclear Wastes
ERIC Educational Resources Information Center
Micklin, Philip P.
1974-01-01
Present methods for storage of radioactive wastes produced at nuclear power facilities are described. Problems arising from present waste management are discussed and potential solutions explored. (JP)
Depleted uranium as a backfill for nuclear fuel waste package
Forsberg, Charles W.
1998-01-01
A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.
Depleted uranium as a backfill for nuclear fuel waste package
Forsberg, C.W.
1998-11-03
A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberto, J.; Diaz de la Rubia, T.; Gibala, R.
2006-10-01
The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 newmore » nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.« less
Nuclear Waste Disposal and Strategies for Predicting Long-Term Performance of Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wicks, G G
2001-03-28
Ceramics have been an important part of the nuclear community for many years. On December 2, 1942, an historic event occurred under the West Stands of Stagg Field, at the University of Chicago. Man initiated his first self-sustaining nuclear chain reaction and controlled it. The impact of this event on civilization is considered by many as monumental and compared by some to other significant events in history, such as the invention of the steam engine and the manufacturing of the first automobile. Making this event possible and the successful operation of this first man-made nuclear reactor, was the use ofmore » forty tons of UO2. The use of natural or enriched UO2 is still used today as a nuclear fuel in many nuclear power plants operating world-wide. Other ceramic materials, such as 238Pu, are used for other important purposes, such as ceramic fuels for space exploration to provide electrical power to operate instruments on board spacecrafts. Radioisotopic Thermoelectric Generators (RTGs) are used to supply electrical power and consist of a nuclear heat source and converter to transform heat energy from radioactive decay into electrical power, thus providing reliable and relatively uniform power over the very long lifetime of a mission. These sources have been used in the Galileo spacecraft orbiting Jupiter and for scientific investigations of Saturn with the Cassini spacecraft. Still another very important series of applications using the unique properties of ceramics in the nuclear field, are as immobilization matrices for management of some of the most hazardous wastes known to man. For example, in long-term management of radioactive and hazardous wastes, glass matrices are currently in production immobilizing high-level radioactive materials, and cementious forms have also been produced to incorporate low level wastes. Also, as part of nuclear disarmament activities, assemblages of crystalline phases are being developed for immobilizing weapons grade plutonium, to not only produce environmentally friendly products, but also forms that are proliferation resistant. All of these waste forms as well as others, are designed to take advantage of the unique properties of the ceramic systems.« less
Generic repository design concepts and thermal analysis (FY11).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, Robert; Dupont, Mark; Blink, James A.
2011-08-01
Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generatedmore » in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the disposal system. Clay/shale, salt, and crystalline rock media are selected as the basis for reference mined geologic disposal concepts in this study, consistent with advanced international repository programs, and previous investigations in the U.S. The U.S. pursued deep geologic disposal programs in crystalline rock, shale, salt, and volcanic rock in the years leading up to the Nuclear Waste Policy Act, or NWPA (Rechard et al. 2011). The 1987 NWPA amendment act focused the U.S. program on unsaturated, volcanic rock at the Yucca Mountain site, culminating in the 2008 license application. Additional work on unsaturated, crystalline rock settings (e.g., volcanic tuff) is not required to support this generic study. Reference disposal concepts are selected for the media listed above and for deep borehole disposal, drawing from recent work in the U.S. and internationally. The main features of the repository concepts are discussed in Section 4.5 and summarized in Table ES-1. Temperature histories at the waste package surface and a specified distance into the host rock are calculated for combinations of waste types and reference disposal concepts, specifying waste package emplacement modes. Target maximum waste package surface temperatures are identified, enabling a sensitivity study to inform the tradeoff between the quantity of waste per disposal package, and decay storage duration, with respect to peak temperature at the waste package surface. For surface storage duration on the order of 100 years or less, waste package sizes for direct disposal of SNF are effectively limited to 4-PWR configurations (or equivalent size and output). Thermal results are summarized, along with recommendations for follow-on work including adding additional reference concepts, verification and uncertainty analysis for thermal calculations, developing descriptions of surface facilities and other system details, and cost estimation to support system-level evaluations.« less
Space disposal of nuclear wastes
NASA Technical Reports Server (NTRS)
Priest, C. C.; Nixon, R. F.; Rice, E. E.
1980-01-01
The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.
Code of Federal Regulations, 2010 CFR
2010-07-01
... TRANSURANIC RADIOACTIVE WASTES Environmental Standards for Management and Storage § 191.02 Definitions. Unless... the Department of Energy. (e) NWPA means the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425). (f... radioactive waste, as used in this part, means high-level radioactive waste as defined in the Nuclear Waste...
Code of Federal Regulations, 2013 CFR
2013-07-01
... TRANSURANIC RADIOACTIVE WASTES Environmental Standards for Management and Storage § 191.02 Definitions. Unless... the Department of Energy. (e) NWPA means the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425). (f... radioactive waste, as used in this part, means high-level radioactive waste as defined in the Nuclear Waste...
Code of Federal Regulations, 2012 CFR
2012-07-01
... TRANSURANIC RADIOACTIVE WASTES Environmental Standards for Management and Storage § 191.02 Definitions. Unless... the Department of Energy. (e) NWPA means the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425). (f... radioactive waste, as used in this part, means high-level radioactive waste as defined in the Nuclear Waste...
Code of Federal Regulations, 2014 CFR
2014-07-01
... TRANSURANIC RADIOACTIVE WASTES Environmental Standards for Management and Storage § 191.02 Definitions. Unless... the Department of Energy. (e) NWPA means the Nuclear Waste Policy Act of 1982 (Pub. L. 97-425). (f... radioactive waste, as used in this part, means high-level radioactive waste as defined in the Nuclear Waste...
Design Evolution Study - Aging Options
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. McDaniel
The purpose of this study is to identify options and issues for aging commercial spent nuclear fuel received for disposal at the Yucca Mountain Mined Geologic Repository. Some early shipments of commercial spent nuclear fuel to the repository may be received with high-heat-output (younger) fuel assemblies that will need to be managed to meet thermal goals for emplacement. The capability to age as much as 40,000 metric tons of heavy metal of commercial spent nuclear he1 would provide more flexibility in the design to manage this younger fuel and to decouple waste receipt and waste emplacement. The following potential agingmore » location options are evaluated: (1) Surface aging at four locations near the North Portal; (2) Subsurface aging in the permanent emplacement drifts; and (3) Subsurface aging in a new subsurface area. The following aging container options are evaluated: (1) Complete Waste Package; (2) Stainless Steel inner liner of the waste package; (3) Dual Purpose Canisters; (4) Multi-Purpose Canisters; and (5) New disposable canister for uncanistered commercial spent nuclear fuel. Each option is compared to a ''Base Case,'' which is the expected normal waste packaging process without aging. A Value Engineering approach is used to score each option against nine technical criteria and rank the options. Open issues with each of the options and suggested future actions are also presented. Costs for aging containers and aging locations are evaluated separately. Capital costs are developed for direct costs and distributable field costs. To the extent practical, unit costs are presented. Indirect costs, operating costs, and total system life cycle costs will be evaluated outside of this study. Three recommendations for aging commercial spent nuclear fuel--subsurface, surface, and combined surface and subsurface are presented for further review in the overall design re-evaluation effort. Options that were evaluated but not recommended are: subsurface aging in a new subsurface area (high cost); surface aging in the complete waste package (risk to the waste package and impact on the Waste Handling Facility); and aging in the stainless steel liner (impact on the waste package design and new high risk operations added to the waste packaging process). The selection of a design basis for aging will be made in conjunction with the other design re-evaluation studies.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... ENERGY STANDARD CONTRACT FOR DISPOSAL OF SPENT NUCLEAR FUEL AND/OR HIGH-LEVEL RADIOACTIVE WASTE General... means any person who has title to spent nuclear fuel or high-level radioactive waste. Purchaser means... (42 U.S.C. 2133, 2134) or who has title to spent nuclear fuel or high level radioactive waste and who...
Nuclear waste disposal utilizing a gaseous core reactor
NASA Technical Reports Server (NTRS)
Paternoster, R. R.
1975-01-01
The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, S.B.; Srivastava, P.; Mishra, S.K.
2013-07-01
Radioactive waste management is a vital aspect of any nuclear program. The commercial feasibility of the nuclear program largely depends on the efficiency of the waste management techniques. One of such techniques is the separation of high yield radio-nuclides from the waste and making it suitable for medical and industrial applications. This will give societal benefit in addition to revenue generation. Co-60, the isotope presently being used for medical applications, needs frequent replacement because of its short half life. Cs-137, the major constituent of the nuclear waste, is a suitable substitute for Co-60 as a radioactive source because of itsmore » longer half life (28 years). Indian nuclear waste management program has given special emphasis on utilization of Cs-137 for such applications. In view of this a demonstration facility has been designed for vitrification of Cs-137 in borosilicate glass, cast in stainless steel pencils, to be used as source pencils of 300 Ci strength for blood irradiation. An induction heated metallic melter of suitable capacity has been custom designed for the application and employed for the Cs-137 pencil fabrication facility. This article describes various systems, design features, experiments and resulting modifications, observations and remote handling features necessary for the actual operation of such facility. The layout of the facility has been planned in such a way that the same can be adopted in a hot cell for commercial production of source pencils. (authors)« less
Guide to radioactive waste management literature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houser, B.L.; Holoway, C.F.; Madewell, D.G.
Increased public concern about radioactive waste management has called attention to this aspect of the nuclear fuel cycle. Socio-economic planning and technical development are being undertaken to assure that such wastes will be managed safely. This Guide to Radioactive Waste Management Literature has been compiled to serve scientists, engineers, administrators, legislators, and private citizens by directing them to sources of information on various aspects of the subject. References were selected from about 6000 documents on waste management in the computerized information centers in Oak Ridge. The documents were selected, examined, indexed, and abstracted between 1966-1976 by several knowledgeable indexers, principallymore » at the Nuclear Safety Information Center. The selected references were further indexed and classified into 12 categories. Each category is discussed in enough detail to give some understandng of present technology in various phases of waste management and some appreciation of the attendant issues and problems. The bibliographic part of this guide exists in computerized form in the Health Physics Information System and is available through the Oak Ridge Information Center Complex for searching from remote terminals.« less
Improvement of Leaching Resistance of Low-level Waste Form in Korea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J.Y.; Lee, B.C.; Kim, C.L.
2006-07-01
Low-level liquid concentrate wastes including boric acid have been immobilized with paraffin wax using concentrate waste drying system in Korean nuclear power plants since 1995. Small amount of low density polyethylene (LDPE) was added to increase the leaching resistance of the existing paraffin waste form and the influence of LDPE on the leaching behavior of waste form was investigated. It was observed that the leaching of nuclides immobilized within paraffin waste form remarkably reduced as the content of LDPE increased. The acceptance criteria of paraffin waste form associated with leachability index and compressive strength after the leaching test were successfullymore » satisfied with the help of LDPE. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Jun-hyung
University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a hugemore » opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)« less
Ablation and deceleration of mass-driver launched projectiles for space disposal of nuclear wastes
NASA Astrophysics Data System (ADS)
Park, C.; Bowen, S. W.
1981-01-01
The energy cost of launching a projectile containing nuclear waste is two orders of magnitude lower with a mass driver than with a typical rocket system. A mass driver scheme will be feasible, however, only if ablation and deceleration are within certain tolerable limits. It is shown that if a hemisphere-cylinder-shaped projectile protected thermally with a graphite nose is launched vertically to attain a velocity of 17 km/sec at an altitude of 40 km, the mass loss from ablation during atmospheric flight will be less than 0.1 ton, provided the radius of the projectile is under 20 cm and the projectile's mass is of the order of 1 ton. The velocity loss from drag will vary from 0.4 to 30 km/sec, depending on the mass and radius of the projectile, the smaller velocity loss corresponding to large mass and small radius. Ablation is always within a tolerable range for schemes using a mass driver launcher to dispose of nuclear wastes outside the solar system. Deceleration can also be held in the tolerable range if the mass and diameter of the projectile are properly chosen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faybishenko, Boris; Birkholzer, Jens; Persoff, Peter
2016-08-01
An important issue for present and future generations is the final disposal of spent nuclear fuel. Over the past over forty years, the development of technologies to isolate both spent nuclear fuel (SNF) and other high-level nuclear waste (HLW) generated at nuclear power plants and from production of defense materials, and low- and intermediate-level nuclear waste (LILW) in underground rock and sediments has been found to be a challenging undertaking. Finding an appropriate solution for the disposal of nuclear waste is an important issue for protection of the environment and public health, and it is a prerequisite for the futuremore » of nuclear power. The purpose of a deep geological repository for nuclear waste is to provide to future generations, protection against any harmful release of radioactive material, even after the memory of the repository may have been lost, and regardless of the technical knowledge of future generations. The results of a wide variety of investigations on the development of technology for radioactive waste isolation from 19 countries were published in the First Worldwide Review in 1991 (Witherspoon, 1991). The results of investigations from 26 countries were published in the Second Worldwide Review in 1996 (Witherspoon, 1996). The results from 32 countries were summarized in the Third Worldwide Review in 2001 (Witherspoon and Bodvarsson, 2001). The last compilation had results from 24 countries assembled in the Fourth Worldwide Review (WWR) on radioactive waste isolation (Witherspoon and Bodvarsson, 2006). Since publication of the last report in 2006, radioactive waste disposal approaches have continued to evolve, and there have been major developments in a number of national geological disposal programs. Significant experience has been obtained both in preparing and reviewing cases for the operational and long-term safety of proposed and operating repositories. Disposal of radioactive waste is a complex issue, not only because of the nature of the waste, but also because of the detailed regulatory structure for dealing with radioactive waste, the variety of stakeholders involved, and (in some cases) the number of regulatory entities involved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osmanlioglu, Ahmet Erdal
Pre-treatment of radioactive waste is the first step in waste management program that occurs after waste generation from various applications in Turkey. Pre-treatment and characterization practices are carried out in Radioactive Waste Management Unit (RWMU) at Cekmece Nuclear Research and Training Center (CNRTC) in Istanbul. This facility has been assigned to take all low-level radioactive wastes generated by nuclear applications in Turkey. The wastes are generated from research and nuclear applications mainly in medicine, biology, agriculture, quality control in metal processing and construction industries. These wastes are classified as low- level radioactive wastes. Pre-treatment practices cover several steps. In thismore » paper, main steps of pre-treatment and characterization are presented. Basically these are; collection, segregation, chemical adjustment, size reduction and decontamination operations. (author)« less
The Public and Nuclear Waste Management.
ERIC Educational Resources Information Center
Zinberg, Dorothy
1979-01-01
Discusses the public's negative attitude towards nuclear energy development. Explains the perceptions for the nuclear waste disposal problem, and the concern for the protection of the environment. (GA)
78 FR 63251 - Board Meeting; November 20, 2013 in Washington, DC
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-23
... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting; November 20, 2013 in Washington, DC The U.S. Nuclear Waste Technical Review Board will meet to discuss DOE SNF and HLW management research and... Policy Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will hold a public meeting...
76 FR 77270 - Board Meeting; January 9, 2012, Arlington, VA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-12
... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting; January 9, 2012, Arlington, VA The U.S. Nuclear Waste Technical Review Board will meet to discuss integration efforts undertaken by DOE-NE and DOE... Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will hold a public meeting in Arlington...
Deep rock nuclear waste disposal test: design and operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klett, Robert D.
1974-09-01
An electrically heated test of nuclear waste simulants in granitic rock was conducted to demonstrate the feasibility of the concept of deep rock nuclear waste disposal and to obtain design data. This report describes the deep rock disposal sytstems study and the design and operation of the first concept feasibility test.
Lead-iron phosphate glass as a containment medium for the disposal of high-level nuclear wastes
Boatner, L.A.; Sales, B.C.
1984-04-11
Disclosed are lead-iron phosphate glasses containing a high level of Fe/sub 2/O/sub 3/ for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolshov, L.A.; Linge, I.I.; Kovalchuk, V.D.
This year the Federal Law 'On Radioactive Waste management' was adopted in the Russian Federation. The law significantly changes the existing radioactive waste management regulatory system and assigns a lot of new tasks in order to implement new principles and overcome inevitable respective difficulties. Nuclear Safety Institute was largely involved in the process of the development of the law as well as its further co-ordination among the stakeholders, during which some important initial provisions were excluded. In the paper special features of the Russian safety regulation system for radioactive waste management are analyzed. Most significant requirements adopted by the lawmore » as well as tasks and expected difficulties related to its implementation are discussed. (authors)« less
Workshop on the role of natural analogs in geologic disposal of high-level nuclear waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, W.M.
1995-09-01
A workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste (HLW) was held in San Antonio, Texas, on July 22-25, 1991. It was sponsored by the US Nuclear Regulatory Commission (NRC) and the Center for Nuclear Waste Regulatory Analyses (CNWRA). Invitations to the workshop were extended to a large number of individuals with a variety of technical and professional interests related to geologic disposal of nuclear waste and natural analog studies. The objective of the workshop was to examine the role of natural analog studies in performance assessment, site characterization, and prioritization of research relatedmore » to geologic disposal of HLW.« less
This regulation sets environmental standards for public protection from the management and disposal of spent nuclear fuel, high-level wastes and wastes that contain elements with atomic numbers higher than uranium (transuranic wastes).
Comments on dual-mode nuclear space power and propulsion system concepts
NASA Technical Reports Server (NTRS)
Layton, J. Preston; Grey, Jerry
1991-01-01
Some form of Dual-Mode Nuclear Space Power & Propulsion System (D-MNSP&PS) will be essential to spacefaring throughout teh solar system and that such systems must evolve as mankind moves into outer space. The initial D-MNPSP&PS Reference System should be based on (1) present (1990), and (2) advanced (1995) technology for use on comparable mission in the 2000 and 2005 time period respectively. D-MNSP&PS can be broken down into a number of subsystems: Nuclear subsystems including the energy source and controls for the release of thermal power at elevated temperatures; power conversion subsystems; waste heat rejection subsystems; and control and safety subsystems. These systems are briefly detailed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, Brian; May, Doug; Howlett, Don
2013-07-01
Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and developmentmore » associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m{sup 2}. In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition. Maintenance of building heating, ventilation and air conditioning (HVAC) balancing was critical to ensure proper airflow and worker safety. Approximately 103 m{sup 3} of equipment and materials were recovered or generated by the project. Low level waste accounted for approximately 37.4 m{sup 3}. Where possible, ducting was free released for metal recycling. Contaminated ducts were compacted into B-1000 containers and stored in a Shielded Modular Above-Ground Storage Facility (SMAGS) on the WL site awaiting final disposition. The project is divided into three significant phases, with Phases 1 and 2 completed. Lessons learned during the execution of Phases 1 and 2 have been incorporated into the current ventilation removal. (authors)« less
78 FR 66858 - Waste Confidence-Continued Storage of Spent Nuclear Fuel
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
...-2012-0246] RIN 3150-AJ20 Waste Confidence--Continued Storage of Spent Nuclear Fuel AGENCY: Nuclear... its generic determination on the environmental impacts of the continued storage of spent nuclear fuel... revising the generic determination of the environmental impacts of the continued storage of spent nuclear...
Modeling transient heat transfer in nuclear waste repositories.
Yang, Shaw-Yang; Yeh, Hund-Der
2009-09-30
The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amoroso, J. W.; Marra, J. C.
2015-08-26
A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amoroso, J. W.; Marra, J. C.
2015-08-26
A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less
World Energy Data System (WENDS). Volume XI. Nuclear fission program summaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-06-01
Brief management and technical summaries of nuclear fission power programs are presented for nineteen countries. The programs include the following: fuel supply, resource recovery, enrichment, fuel fabrication, light water reactors, heavy water reactors, gas cooled reactors, breeder reactors, research and test reactors, spent fuel processing, waste management, and safety and environment. (JWR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M.; Lukens, Wayne W.; Fitts, Jeff. P.
2013-12-01
A key component to closing the nuclear fuel cycle is the storage and disposition of nuclear waste in geologic systems. Multiphase ceramic waste forms have been studied extensively as a potential host matrix for nuclear waste. Understanding the speciation, partitioning, and release behavior of radionuclides immobilized in multiphase ceramic waste forms is a critical aspect of developing the scientific and technical basis for nuclear waste management. In this study, we evaluated a sodalite-bearing multiphase ceramic waste form (i.e., fluidized-bed steam reform sodium aluminosilicate [FBSR NAS] product) as a potential host matrix for long-lived radionuclides, such as technetium (99Tc). The FBSRmore » NAS material consists primarily of nepheline (ideally NaAlSiO4), anion-bearing sodalites (ideally M8[Al6Si6O24]X2, where M refers to alkali and alkaline earth cations and X refers to monovalent anions), and nosean (ideally Na8[AlSiO4]6SO4). Bulk X-ray absorption fine structure analysis of the multiphase ceramic waste form, suggest rhenium (Re) is in the Re(VII) oxidation state and has partitioned to a Re-bearing sodalite phase (most likely a perrhenate sodalite Na8[Al6Si6O24](ReO4)2). Rhenium was added as a chemical surrogate for 99Tc during the FBSR NAS synthesis process. The weathering behavior of the FBSR NAS material was evaluated under hydraulically unsaturated conditions with deionized water at 90 ?C. The steady-state Al, Na, and Si concentrations suggests the weathering mechanisms are consistent with what has been observed for other aluminosilicate minerals and include a combination of ion exchange, network hydrolysis, and the formation of an enriched-silica surface layer or phase. The steady-state S and Re concentrations are within an order of magnitude of the nosean and perrhenate sodalite solubility, respectively. The order of magnitude difference between the observed and predicted concentration for Re and S may be associated with the fact that the anion-bearing sodalites contained in the multiphase ceramic matrix are present as mixed-anion sodalite phases. These results suggest the multiphase FBSR NAS material may be a viable host matrix for long-lived, highly mobilie radionuclides which is a critical aspect in the management of nuclear waste.« less
Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.
Bergelson, B R; Gerasimov, A S; Tikhomirov, G V
2005-01-01
Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment.
Waste canister for storage of nuclear wastes
Duffy, James B.
1977-01-01
A waste canister for storage of nuclear wastes in the form of a solidified glass includes fins supported from the center with the tips of the fins spaced away from the wall to conduct heat away from the center without producing unacceptable hot spots in the canister wall.
Advanced ceramic materials for next-generation nuclear applications
NASA Astrophysics Data System (ADS)
Marra, John
2011-10-01
The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high-temperature plasma systems. Fusion reactors will likely depend on lithium-based ceramics to produce tritium that fuels the fusion plasma, while high-temperature alloys or ceramics will contain and control the hot plasma. All the while, alloys, ceramics, and ceramic-related processes continue to find applications in the management of wastes and byproducts produced by these processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dragolici, F.; Turcanu, C. N.; Rotarescu, G.
2003-02-25
The proper application of the nuclear techniques and technologies in Romania started in 1957, once with the commissioning of the Research Reactor VVR-S from IFIN-HH-Magurele. During the last 45 years, appear thousands of nuclear application units with extremely diverse profiles (research, biology, medicine, education, agriculture, transport, all types of industry) which used different nuclear facilities containing radioactive sources and generating a great variety of radioactive waste during the decommissioning after the operation lifetime is accomplished. A new aspect appears by the planning of VVR-S Research Reactor decommissioning which will be a new source of radioactive waste generated by decontamination, disassemblingmore » and demolition activities. By construction and exploitation of the Radioactive Waste Treatment Plant (STDR)--Magurele and the National Repository for Low and Intermediate Radioactive Waste (DNDR)--Baita, Bihor county, in Romania was solved the management of radioactive wastes arising from operation and decommissioning of small nuclear facilities, being assured the protection of the people and environment. The present paper makes a review of the present technical status of the Romanian waste management facilities, especially raising on treatment capabilities of ''problem'' wastes such as Ra-266, Pu-238, Am-241 Co-60, Co-57, Sr-90, Cs-137 sealed sources from industrial, research and medical applications. Also, contain a preliminary estimation of quantities and types of wastes, which would result during the decommissioning project of the VVR-S Research Reactor from IFIN-HH giving attention to some special category of wastes like aluminum, graphite and equipment, components and structures that became radioactive through neutron activation. After analyzing the technical and scientific potential of STDR and DNDR to handle big amounts of wastes resulting from the decommissioning of VVR-S Research Reactor and small nuclear facilities, the necessity of up-gradation of these nuclear objectives before starting the decommissioning plan is revealed. A short presentation of the up-grading needs is also presented.« less
Getting Beyond Yucca Mountain - 12305
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halstead, Robert J.; Williams, James M.
2012-07-01
The U.S. Department of Energy has terminated the Yucca Mountain repository project. The U.S. Nuclear Regulatory Commission has indefinitely suspended the Yucca Mountain licensing proceeding. The presidentially-appointed Blue Ribbon Commission (BRC) on America's Nuclear Future is preparing a report, due in January 2012, to the Secretary of Energy on recommendations for a new national nuclear waste management and disposal program. The BRC Draft Report published in July 2011 provides a compelling critique of the past three decades failed efforts in the United States to site storage and disposal facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLW). However,more » the BRC Draft Report fails to provide detailed guidance on how to implement an alternative, successful approach to facility site selection. The comments submitted to the BRC by the State of Nevada Agency for Nuclear Projects provide useful details on how the US national nuclear waste program can get beyond the failed Yucca Mountain repository project. A detailed siting process, consisting of legislative elements, procedural elements, and 'rules' for volunteer sites, could meet the objectives of the BRC and the Western Governors Association (WGA), while promoting and protecting the interests of potential host states. The recent termination of the proposed Yucca Mountain repository provides both an opportunity and a need to re-examine the United States' nuclear waste management program. The BRC Draft Report published in July 2011 provides a compelling critique of the past three decades failed efforts in the United States to site storage and disposal facilities for SNF and HLW. It is anticipated that the BRC Final report in January 2012 will recommend a new general course of action, but there will likely continue to be a need for detailed guidance on how to implement an alternative, successful approach to facility site selection. Getting the nation's nuclear waste program back on track requires, among other things, new principles for siting-principles based on partnership between the federal implementing agency and prospective host states. These principles apply to the task of developing an integrated waste management strategy, to interactions between the federal government and prospective host states for consolidated storage and disposal facilities, and to the logistically and politically complicated task of transportation system design. Lessons from the past 25 years, in combination with fundamental parameters of the nuclear waste management task in the US, suggest new principles for partnership outlined in this paper. These principles will work better if well-grounded and firm guidelines are set out beforehand and if the challenge of maintaining competence, transparency and integrity in the new organization is treated as a problem to be addressed rather than a result to be expected. (authors)« less
New high-throughput measurement systems for radioactive wastes segregation and free release.
Suran, J; Kovar, P; Smoldasova, J; Solc, J; Skala, L; Arnold, D; Jerome, S; de Felice, P; Pedersen, B; Bogucarska, T; Tzika, F; van Ammel, R
2017-12-01
This paper addresses the measurement facilities for pre-selection of waste materials prior to measurement for repository acceptance or possible free release (segregation measurement system); and free release (free release measurement system), based on a single standardized concept characterized by unique, patented lead-free shielding. The key objective is to improve the throughput, accuracy, reliability, modularity and mobility of segregation and free-release measurement. This will result in a more reliable decision-making with regard to the safe release and disposal of radioactive wastes into the environment and, resulting in positive economic outcomes. The research was carried out within "Metrology for Decommissioning Nuclear Facilities" (MetroDecom) project. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faybishenko, Boris; Birkholzer, Jens; Sassani, David
The overall objective of the Fifth Worldwide Review (WWR-5) is to document the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and to summarize challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories. The scope of the Review is to address current specific technical issues and challenges in safety case development along with the interplay of technical feasibility, siting, engineering design issues, and operational and post-closure safety. In particular, the chapters included inmore » the report present the following types of information: the current status of the deep geological repository programs for high level nuclear waste and low- and intermediate level nuclear waste in each country, concepts of siting and radioactive waste and spent nuclear fuel management in different countries (with the emphasis of nuclear waste disposal under different climatic conditions and different geological formations), progress in repository site selection and site characterization, technology development, buffer/backfill materials studies and testing, support activities, programs, and projects, international cooperation, and future plans, as well as regulatory issues and transboundary problems.« less
Precipitation-adsorption process for the decontamination of nuclear waste supernates
Lee, Lien-Mow; Kilpatrick, Lester L.
1984-01-01
High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.
Precipitation-adsorption process for the decontamination of nuclear waste supernates
Lee, L.M.; Kilpatrick, L.L.
1982-05-19
High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.
Solid wastes from nuclear power production.
Soule, H F
1978-01-01
Radioactivity in nuclear power effluents is negligible compared to that in retained wastes to be disposed of as solids. Two basic waste categories are those for which shallow disposal is accepted and those for which more extreme isolation is desired. The latter includes "high level" wastes and others contaminated with radionuclides with the unusual combined properties of long radioactive half-life and high specific radiotoxicity. The favored method for extreme isolation is emplacement in a deep stable geologic formation. Necessary technologies for waste treatment and disposal are considered available. The present program to implement these technologies is discussed, including the waste management significance of current policy on spent nuclear fuel reprocessing. Recent difficulties with shallow disposal of waste are summarized. PMID:738244
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins-Smith, Hank C.; Silva, Carol L.; Gupta, Kuhika
This report presents the questions and responses to a nationwide survey taken June 2016 to track preferences of US residents concerning the environment, energy, and radioactive waste management. A focus of the 2016 survey is public perceptions on different options for managing spent nuclear fuel, including on-site storage, interim storage, deep boreholes, general purpose geologic repositories, and geologic repositories for only defense-related waste. Highlights of the survey results include the following: (1) public attention to the 2011 accident and subsequent cleanup at the Fukushima nuclear facility continues to influence the perceived balance of risk and benefit for nuclear energy; (2)more » the incident at the Waste Isolation Pilot Plant in 2014 could influence future public support for nuclear waste management; (3) public knowledge about US nuclear waste management policies has remined higher than seen prior to the Fukushima nuclear accident and submittal of the Yucca Mountain application; (6) support for a mined disposal facility is higher than for deep borehole disposal, building one more interim storage facilities, or continued on-site storage of spent nuclear fuel; (7) support for a repository that comingles commercial and defense related waste is higher than for a repository for only defense related waste; (8) the public’s level of trust accorded to the National Academies, university scientists, and local emergency responders is the highest and the level trust accorded to advocacy organizations, public utilities, and local/national press is the lowest; and (9) the public is willing to serve on citizens panels but, in general, will only modestly engage in issues related to radioactive waste management.« less
Turning nuclear waste into glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pegg, Ian L.
2015-02-15
Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.
Bubblers Speed Nuclear Waste Processing at SRS
None
2018-05-23
At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uzochukwu, G.A.
1997-12-31
Nuclear and commercial non-nuclear technologies that have the potential of meeting the environmental restoration, decontamination and decommissioning, and high-level waste management objectives are being assessed and evaluated. A detailed comparison of innovative technologies available will be performed to determine the safest and most economical technology for meeting these objectives. Information derived from this effort will be matched with the multi-objectives of the environmental restoration, decontamination and decommissioning, and high-level waste management effort to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formattedmore » and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the best, most economical, and the safest technologies are used in decision making at USDOE-SRS. Technology-related variables will be developed and the resulting data formatted and computerized for multimedia systems. The multimedia system will be made available to technology developers and evaluators to ensure that the safest and most economical technologies are developed for use at SRS and other DOE sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
ERMI, A.M.
2000-01-24
This document describes the hardware and software of the computer subsystems for the Data Acquisition and Control System (DACS) used in mitigation tests conducted on waste tank 241-SY-101 at the Hanford Nuclear Reservation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
This EIS analyzes the significant environmental impacts that could occur if various technologies for management and disposal of high-level and transuranic wastes from commercial nuclear power reactors were to be developed and implemented. This EIS will serve as the environmental input for the decision on which technology, or technologies, will be emphasized in further research and development activities in the commercial waste management program. The action proposed in this EIS is to (1) adopt a national strategy to develop mined geologic repositories for disposal of commercially generated high-level and transuranic radioactive waste (while continuing to examine subseabed and very deepmore » hole disposal as potential backup technologies) and (2) conduct a R and D program to develop such facilities and the necessary technology to ensure the safe long-term containment and isolation of these wastes. The Department has considered in this statement: development of conventionally mined deep geologic repositories for disposal of spent fuel from nuclear power reactors and/or radioactive fuel reprocessing wastes; balanced development of several alternative disposal methods; and no waste disposal action. This EIS reflects the public review of and comments offered on the draft statement. Included are descriptions of the characteristics of nuclear waste, the alternative disposal methods under consideration, and potential environmental impacts and costs of implementing these methods. Because of the programmatic nature of this document and the preliminary nature of certain design elements assumed in assessing the environmental consequences of the various alternatives, this study has been based on generic, rather than specific, systems. At such time as specific facilities are identified for particular sites, statements addressing site-specific aspects will be prepared for public review and comment.« less
The radioactive waste debate in the United States and nuclear technology for peaceful purposes
NASA Astrophysics Data System (ADS)
Tehan, Terrence Norbert
Many ethical, cultural, and economic concerns have accompanied the rapid growth of Western technology. Nuclear technology in particular has experienced considerable opposition because of its perceived dangers, especially disposal of atomic waste. While this field of science remains in its infancy, many legal, political and ecological groups oppose any further application of nuclear technology--including the significant medical, environmental, and economic benefits possible from a safe and responsible application of nuclear energy. Complete and objective knowledge of this technology is needed to balance a healthy respect for the danger of atomic power with its many advantages. This study focuses on one aspect of nuclear technology that has particularly aroused political and social controversy: nuclear waste. Finding ways of disposing safely of nuclear waste has become an extremely volatile issue because of the popular misconception that there is no permanent solution to this problem. This investigation will demonstrate that the supposedly enduring waste problem has been resolved in several industrial countries that now outstrip the United States in safe commercial applications of nuclear science. This dissertation offers a reasoned and objective contribution to the continuing national debate on the peaceful uses of nuclear technology. This debate becomes more crucial as the nation seeks a dependable substitute for the non-renewable sources of energy now rapidly being exhausted.
High-level waste disposal, ethics and thermodynamics
NASA Astrophysics Data System (ADS)
Schwartz, Michael O.
2008-06-01
Moral philosophy applied to nuclear waste disposal can be linked to paradigmatic science. Simple thermodynamic principles tell us something about rightness or wrongness of our action. Ethical judgement can be orientated towards the chemical compatibility between waste container and geological repository. A container-repository system as close as possible to thermodynamic equilibrium is ethically acceptable. It aims at unlimited stability, similar to the stability of natural metal deposits within the Earth’s crust. The practicability of the guideline can be demonstrated.
Calcined Waste Storage at the Idaho Nuclear Technology and Engineering Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. D. Staiger
2007-06-01
This report provides a quantitative inventory and composition (chemical and radioactivity) of calcined waste stored at the Idaho Nuclear Technology and Engineering Center. From December 1963 through May 2000, liquid radioactive wastes generated by spent nuclear fuel reprocessing were converted into a solid, granular form called calcine. This report also contains a description of the calcine storage bins.
Walker, Darrel D.; Ebra, Martha A.
1987-01-01
High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.
10 CFR 1304.115 - Systems of records covered by exemptions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Systems of records covered by exemptions. 1304.115 Section 1304.115 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.115 Systems of records covered by exemptions. The Board currently has no exempt systems of records. ...
10 CFR 1304.115 - Systems of records covered by exemptions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Systems of records covered by exemptions. 1304.115 Section 1304.115 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.115 Systems of records covered by exemptions. The Board currently has no exempt systems of records. ...
10 CFR 1304.115 - Systems of records covered by exemptions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Systems of records covered by exemptions. 1304.115 Section 1304.115 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.115 Systems of records covered by exemptions. The Board currently has no exempt systems of records. ...
10 CFR 1304.115 - Systems of records covered by exemptions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Systems of records covered by exemptions. 1304.115 Section 1304.115 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.115 Systems of records covered by exemptions. The Board currently has no exempt systems of records. ...
10 CFR 1304.115 - Systems of records covered by exemptions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Systems of records covered by exemptions. 1304.115 Section 1304.115 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.115 Systems of records covered by exemptions. The Board currently has no exempt systems of records. ...
Separation of Long-Lived Fission Products Tc-99 and I-129 from Synthetic Effluents by Crown Ethers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paviet-Hartmann, P.; Hartmann, T.
2006-07-01
To minimize significantly the radio-toxic inventory of nuclear geological repositories to come as well as to reduce the potential of radionuclides migration and to minimize long-term exposure, the concept of partitioning and transmutation (P/T) of nuclear waste is currently discussed. Transmutation offers the possibility to convert radio-toxic radionuclides with long half-lives into radionuclides of shorter half-lives, less toxic isotopes, or even into stable isotopes. Besides the most prominent isotopes of neptunium, plutonium, americium, and curium, the long-lived fission products Tc-99 and I-129 (half-lives of 2.13 x 10{sup 5} years, and 1.57 x 10{sup 7} years, respectively) are promising candidates formore » transmutation in order to prevent their migration from a nuclear repository. Partitioning and transmutation of the most radio-toxic radionuclides will not only minimize the nuclear waste load but most importantly will significantly reduce the long-term radio-toxic hazard of nuclear waste repositories to come. Prior to the deployment of partitioning and transmutation, selective extraction techniques are required to separate the radionuclides of concern. Since the discovery of crown ethers by C. Pedersen, various applications of crown ethers have drawn much attention. Although liquid-liquid extraction of alkali and alkali earth metals by crown ethers has been extensively studied, little data is available on the extraction of Tc-99 and I-129 by crown ethers. The methods developed herein for the specific extraction of Tc-99 and I-129 provide recommendations in support of their selectively extraction from liquid radioactive waste streams, mainly ILW. We report data on the solvent extraction of Tc-99 and I-129 from synthetic effluents by six crown ethers of varying cavity dimensions and derivatization. To satisfy the needs of new extractant systems we are demonstrating that crown ether (CE) based systems have the potential to serve as selective extractants for the separation of these long lived radionuclides from high level nuclear waste (HLW), intermediate level nuclear waste (ILW), and low level nuclear waste (LLW) streams. The experimental results show that dibenzo-18-crown-6 (DB 18C6) is highly selective towards Tc-99, and dicyclohexano-18-crown-6 (DC18C6) is highly selective towards I-129. The nature of the diluent was examined and was shown to be the most influential variable in controlling the extraction coefficients of Tc-99 and I-129. Therefore the addition of polar diluent acetone to non-polar diluent toluene enhanced the distribution coefficient of Tc-99 (DTc) was by a factor of 30. For I-129, the best extraction yield was obtained after introducing tetrachloroethane. Through the process, by a single extraction step, 85 % to 95 % of Tc-99 was extracted from synthetic effluents, while 84 % to 88 % of I-129 was extracted from different acidic media. The extraction by crown ether is a fairly rapid process and the total preparation time of the chemical separation takes about 20 minutes for a batch of eight samples. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mineo, Hideaki; Matsumura, Tatsuro; Takeshita, Isao
1997-03-01
The Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) is a large complex of research facilities where transuranic (TRU) elements are used. Liquid and solid waste containing TRU elements is generated mainly in the treatment of fuel for critical experiments and in the research of reprocessing and TRU waste management in hot cells and glove boxes. The rational management of TRU wastes is a very important issue not only for NUCEF but also for Japan. An integrated TRU waste management system is being developed with NUCEF as the test bed. The basic policy for establishing the system is to classifymore » wastes by TRU concentration, to reduce waste volume, and to maximize reuse of TRU elements. The principal approach of the development program is to apply the outcomes of the research carried out in NUCEF. Key technologies are TRU measurement for classification of solid wastes and TRU separation and volume reduction for organic and aqueous wastes. Some technologies required for treating the wastes specific to the research activities in NUCEF need further development. Specifically, the separation and stabilization technologies for americium recovery from concentrated aqueous waste, which is generated in dissolution of mixed oxide when preparing fuel for critical experiments, needs further research.« less
10 CFR 72.78 - Nuclear material transaction reports.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material transaction reports. 72.78 Section 72.78 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Records...
10 CFR 72.78 - Nuclear material transaction reports.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material transaction reports. 72.78 Section 72.78 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Records...
10 CFR 72.78 - Nuclear material transaction reports.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Nuclear material transaction reports. 72.78 Section 72.78 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Records...
10 CFR 72.78 - Nuclear material transaction reports.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material transaction reports. 72.78 Section 72.78 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Records...
Waste management technology development and demonstration programs at Brookhaven National Laboratory
NASA Technical Reports Server (NTRS)
Kalb, Paul D.; Colombo, Peter
1991-01-01
Two thermoplastic processes for improved treatment of radioactive, hazardous, and mixed wastes were developed from bench scale through technology demonstration: polyethylene encapsulation and modified sulfur cement encapsulation. The steps required to bring technologies from the research and development stage through full scale implementation are described. Both systems result in durable waste forms that meet current Nuclear Regulatory Commission and Environmental Protection Agency regulatory criteria and provide significant improvements over conventional solidification systems such as hydraulic cement. For example, the polyethylene process can encapsulate up to 70 wt pct. nitrate salt, compared with a maximum of about 20 wt pct. for the best hydraulic cement formulation. Modified sulfur cement waste forms containing as much as 43 wt pct. incinerator fly ash were formulated, whereas the maximum quantity of this waste in hydraulic cement is 16 wt pct.
Concept for Underground Disposal of Nuclear Waste
NASA Technical Reports Server (NTRS)
Bowyer, J. M.
1987-01-01
Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-09-01
Radioactive waste is mounting at U.S. nuclear power plants at a rate of more than 2,000 metric tons a year. Pursuant to statute and anticipating that a geologic repository would be available in 1998, the Department of Energy (DOE) entered into disposal contracts with nuclear utilities. Now, however, DOE does not expect the repository to be ready before 2010. For this reason, DOE does not want to develop a facility for monitored retrievable storage (MRS) by 1998. This book is concerned about how best to store the waste until a repository is available, congressional requesters asked GAO to review themore » alternatives of continued storage at utilities' reactor sites or transferring waste to an MRS facility, GAO assessed the likelihood of an MRSA facility operating by 1998, legal implications if DOE is not able to take delivery of wastes in 1998, propriety of using the Nuclear Waste Fund-from which DOE's waste program costs are paid-to pay utilities for on-site storage capacity added after 1998, ability of utilities to store their waste on-site until a repository is operating, and relative costs and safety of the two storage alternatives.« less
Off-Gas Treatment: Evaluation of Nano-structured Sorbents for Selective Removal of Contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utgikar, Vivek; Aston, D. Eric; Sabharwall, Piyush
Nuclear energy has practically unlimited potential to satisfy world’s energy needs for the foreseeable future. However, a comprehensive and reliable solution must be devised to address the key issues related to nuclear waste management in order to develop nuclear energy in a safe and responsible manner. Capture and immobilization of volatile radionuclides from nuclear operations is an essential component of an integrated nuclear waste management system. The majority of emissions occur during the treatment of the used nuclear fuel (UNF) as it is chopped and dissolved in the boiling nitric acid for subsequent extraction steps. The radionuclides contained in themore » off-gas include 129I, 85Kr, tritium (3H) and 14C. Several alternative technologies have been investigated, with effective adsorption based processes holding the most potential for controlling these emissions, which is highly desirable for the development of the advanced fuel cycle. Proposed project is aimed at developing using a nanosorbent-based process for the capture and immobilization of the radionuclides of interest.« less
NASA Astrophysics Data System (ADS)
2013-01-01
U.S. president Barack Obama recently announced his intent to appoint several people, four of whom are AGU members, to the Nuclear Waste Technical Review Board, an independent agency of the U.S. federal government that provides independent scientific and technical oversight of the Department of Energy's program for managing and disposing of high-level radioactive waste and spent nuclear fuel. The appointees include Jean Bahr, professor in the Department of Geoscience at the University of Wisconsin-Madison; Susan Brantley, distinguished professor of geosciences and director of the Earth and Environmental Systems Institute at The Pennsylvania State University; Efi Foufoula-Georgiou, professor of civil engineering and director of the National Center for Earth-Surface Dynamics at the University of Minnesota; and Mary Lou Zoback, consulting professor in the Environmental Earth System Science Department at Stanford University.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... NUCLEAR REGULATORY COMMISSION 10 CFR Parts 71 and 73 RIN 3150-AG41 [NRC-1999-0005] Advance Notification to Native American Tribes of Transportation of Certain Types of Nuclear Waste AGENCY: Nuclear Regulatory Commission. ACTION: Final rule. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is amending...
Buying time: Franchising hazardous and nuclear waste cleanup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, D.R.
This paper describes a private franchise approach to long-term custodial care, monitoring and eventual cleanup of hazardous and nuclear waste sites. The franchise concept could be applied to Superfund sites, decommissioning commercial reactors and safeguarding their wastes and to Department of Energy sites. Privatization would reduce costs by enforcing efficient operations and capital investments during the containment period, by providing incentives for successful innovation and by sustaining containment until the cleanup`s net benefits exceed its costs. The franchise system would also permit local governments and citizens to demand and pay for more risk reduction than provided by the federal government.more » In principle, they would have the option of taking over site management. The major political drawback of the idea is that it requires society to be explicit about what it is willing to pay for now to protect current and future generations. Hazardous waste sites are enduring legacies of energy development. Abandoned mines, closed refineries, underground storage tanks and nuclear facilities have often become threats to human health and water quality. The policy of the United States government is that such sites should quickly be made nonpolluting and safe for unrestricted use. That is, the policy of the United States is prompt cleanup. Orphaned commercial hazardous waste sites are addressed by the US Environmental Protection Agency`s Superfund program. 17 refs., 2 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Kaushik; Clarity, Justin B; Cumberland, Riley M
This will be licensed via RSICC. A new, integrated data and analysis system has been designed to simplify and automate the performance of accurate and efficient evaluations for characterizing the input to the overall nuclear waste management system -UNF-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS). A relational database within UNF-ST&DARDS provides a standard means by which UNF-ST&DARDS can succinctly store and retrieve modeling and simulation (M&S) parameters for specific spent nuclear fuel analysis. A library of various analysis model templates provides the ability to communicate the various set of M&S parameters to the most appropriate M&S application.more » Interactive visualization capabilities facilitate data analysis and results interpretation. UNF-ST&DARDS current analysis capabilities include (1) assembly-specific depletion and decay, (2) and spent nuclear fuel cask-specific criticality and shielding. Currently, UNF-ST&DARDS uses SCALE nuclear analysis code system for performing nuclear analysis.« less
Feasibility of Space Disposal of Radioactive Nuclear Waste. 1: Executive Summary
NASA Technical Reports Server (NTRS)
1973-01-01
This NASA study, performed at the request of the AEC, concludes that transporting radioactive waste (primarily long-lived isotopes) into space is feasible. Tentative solutions are presented for technical problems involving safe packaging. Launch systems (existing and planned), trajectories, potential hazards, and various destinations were evaluated. Solar system escape is possible and would have the advantage of ultimate removal of the radioactive waste from man's environment. Transportation costs would be low (comparable to less than a 5 percent increase in the cost of electricity) even though more than 100 space shuttle launches per year would be required by the year 2000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colglazier, E.W. Jr.
1982-01-01
In November of 1979, the Program in Science, Technology and Humanism and the Energy Committee of the Aspen Institute organized a conference on resolving the social, political, and institutional conflicts over the permanent siting of radioactive wastes. This book was written as a result of this conference. The chapters provide a comprehensive and up-to-date overview of the governance issues connected with radioactive waste management as well as a sampling of the diverse views of the interested parties. Chapter 1 looks in depth of radioactive waste management in the United States, with special emphasis on the events of the Carter Administrationmore » as well as on the issues with which the Reagen administration must deal. Chapter 2 compares waste management policies and programs among the industralized countries. Chapter 3 examines the factional controversies in the last administration and Congress over nuclear waste issues. Chapter 4 examines the complex legal questions involved in the federal-state conflicts over nuclear waste management. Chapter 5 examines the concept of consultation and concurrence from the perspectives of a host state that is a candidate for a repository and an interested state that has special concerns regarding the demonstration of nuclear waste disposal technology. Chapter 6 examines US and European perspectives concerning public participation in nuclear waste management. Chapter 7 discusses propaganda in the issues. The epilogue attempts to assess the prospects for consensus in the United States on national policies for radioactive waste management. All of the chapter in this book should be interpreted as personal assessments. (DP)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, P.J.; Vance, J.N.
1990-08-01
Over the past several years, there has been considerable interest by the nuclear industry in the Nuclear Regulatory Commission (NRC) explicitly defined an activity level in plant waste materials at which the radiological impacts would be so low as to be considered Below Regulatory Concern (BRC). In January 1989, Electric Power Research Institute (EPRI) completed an extensive industry research effort to develop the technical bases for establishing criteria for the disposal of very low activity wastes in ordinary disposal facilities. The Nuclear Management and Resources Council (NUMARC), with assistance from the Edison Electric Institute (EEI) and the Electric Power Researchmore » Institute (EPRI), drafted a petition titled: Petition for Rulemaking Regarding Disposal of Below Regulatory Concern Radioactive Wastes from Commercial Nuclear Power Plants.'' Subsequent to the industry making a final decision for submittal of the drafted BRC petition, EPRI was requested to evaluate the technical and economic impact of six BRC options. These options are: take no action in pursuing a BRC waste exemption, petition the NRC for authorization to disposal of any BRC waste in any ordinary disposal facility, limit disposal of BRC waste to the nuclear power plant site, limit disposal of BRC waste to the nuclear power plant site and other utility owned property, petition for a mixed waste exemption, and petition for single waste stream exemptions in sequence (i.e. soil, followed by sewage sludge, etc.). The petition and technical bases were written to support the disposal of any BRC waste type in any ordinary disposal facility. These documents do not provide all of the technical and economic information needed to completely assessment the BRC options. This report provides the technical and economic basis for a range of options concerning disposal of very low activity wastes. 3 figs., 20 tabs.« less
NASA Astrophysics Data System (ADS)
Mimura, Hitoshi; Yamagishi, Isao
In an action for the convergence of the Fukushima Daiichi Nuclear Power Plant accident, the completion of Step 2 was declared in last December, 2011. As for the circulating cooling system supporting the cold shutdown of nuclear reactor, the temporary treatment equipment operation maintains stability. On the other hand, the establishment of permanent equipments, safety storage, treatment and disposal for the secondary solid wastes are urgent subjects. This special issue deals with the development of highly functional composite adsorbents and the evaluation of selective adsorption properties. The technical issues for the stable treatment and disposal of solid wastes are further discussed.
76 FR 4646 - Blue Ribbon Commission on America's Nuclear Future
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-26
.... ADDRESSES: Navy Shipyard, 1333 Isaac Hull Avenue, SE., Washington, DC 20376. FOR FURTHER INFORMATION CONTACT... spent nuclear fuel and nuclear waste. The Commission is scheduled to submit a draft report to the..., high-level waste, and materials derived from nuclear activities.'' In support of that effort, the...
The Hazards Posed by the Global Development of Nuclear Power
ERIC Educational Resources Information Center
O'Reilly, S. A.
1976-01-01
Outlines the growth in the demand for energy on a world-wide basis. Reviews the development of nuclear power and points out the many hazards in the nuclear fuel cycle. Describes the nature of nuclear wastes and explains the quantities involved and the current techniques for waste disposal. (GS)
Chemical Technology Division, Annual technical report, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-03-01
Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less
Chemical Technology Division, Annual technical report, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-03-01
Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less
Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, William J.; Zhang, Yanwen
This is the final report of the NEUP project “Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms.” This project started on July 1, 2012 and was successfully completed on June 30, 2016. This report provides an overview of the main achievements, results and findings through the duration of the project. Additional details can be found in the main body of this report and in the individual Quarterly Reports and associated Deliverables of this project, which have been uploaded in PICS-NE. The objective of this research was to advance understanding and develop validated models on the effectsmore » of self-radiation from beta and alpha decay on the response of used nuclear fuel and nuclear waste forms during high-temperature interim storage and long-term permanent disposition. To achieve this objective, model used-fuel materials and model waste form materials were identified, fabricated, and studied.« less
Subseabed storage of radioactive waste
NASA Astrophysics Data System (ADS)
Bell, Peter M.
The subject of the storage of nuclear wastes products incites emotional responses from the public, and thus the U.S. Subseabed Disposal Program will have to make a good case for waste storage beneath the ocean floor. The facts attendant, however, describe circumstances necessitating cool-headed analysis to achieve a solution to the growing nuclear waste problem. Emotion aside, a good case indeed is being made for safe disposal beneath the ocean floor.The problems of nuclear waste storage are acute. A year ago, U.S. military weapons production had accumulated over seventy-five million gallons of high-level radioactive liquid waste; solid wastes, such as spent nuclear fuel rods from reactors, amounted to more than 12,000 tons. These wastes are corrosive and will release heat for 1000 years or more. The wastes will remain dangerously radioactive for a period of 10,000 years. There are advantages in storing the wastes on land, in special underground repositories, or on the surface. These include the accessibility to monitor the waste and the possibility of taking action should a container rupture occur, and thus the major efforts to determine suitable disposal at this time are focused on land-based storage. New efforts, not to be confused with ocean dumping practices of the past, are demonstrating that waste containers isolated in the clays and sediments of the ocean floor may be superior (Environ. Sci. Tech., 16, 28A-37A 1982).
NASA Astrophysics Data System (ADS)
Verma, A.; Pruess, K.
1988-02-01
Evaluation of the thermohydrological conditions near high-level nuclear waste packages is needed for the design of the waste canister and for overall repository design and performance assessment. Most available studies in this area have assumed that the hydrologic properties of the host rock are not changed in response to the thermal, mechanical, or chemical effects caused by waste emplacement. However, the ramifications of this simplifying assumption have not been substantiated. We have studied dissolution and precipitation of silica in liquid-saturated hydrothermal flow systems, including changes in formation porosity and permeability. Using numerical simulation, we compare predictions of thermohydrological conditions with and without inclusion of silica redistribution effects. Two cases were studied, namely, a canister-scale problem, and a repository-wide thermal convection problem and different pore models were employed for the permeable medium (fractures with uniform or nonuniform cross sections). We find that silica redistribution in water-saturated conditions does not have a sizeable effect on host rock and canister temperatures, pore pressures, or flow velocities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-10-01
This report is published as a product of the National Waste Terminal Storage (NWTS) Program. The objective of this program is the development of terminal waste storage facilities in deep, stable geologic formations for high-level nuclear waste, including spent fuel elements from commercial power reactors and transuranic nuclear waste for which the federal government is responsible. The report is part of the area study phase and contains environmental information for the Texas Study Area of the Gulf Interior Region acquired from federal, state, and regional agencies. The data in this report meet the requirements of predetermined survey plans and willmore » be used in determining locations of approximately 80 square kilometers (30 square miles) that will be further characterized. Information on surface water, atmosphere, background radiation, natural ecosystems, agricultural systems, demography, socioeconomics, land use, and transportation is presented. The environmental characterization will ensure that data on environmental values required by the National Environmental Policy Act (NEPA) of 1969 are available.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.
The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable themore » earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction of WTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration and Controls, Front-End Design and Project Definition, Commissioning, Nuclear Safety and Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH and QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant{sup R} Foundation-Configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan. (authors)« less
Status of the French Research on Partitioning and Transmutation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warin, Dominique
2007-07-01
The global energy context pleads in favor of a sustainable development of nuclear energy since the demand for energy will likely increase, whereas resources will tend to get scarcer and the prospect of global warming will drive down the consumption of fossil fuel sources. How we deal with radioactive waste is crucial in this context. The production of nuclear energy in France has been associated, since its inception, with the optimization of radioactive waste management, including the partitioning and the recycling of recoverable energetic materials. The public's concern regarding the long-term waste management made the French Government prepare and passmore » the December 1991 Law, requesting in particular, the study for fifteen years of solutions for still minimizing the quantity and the hazardousness of final waste, via partitioning and transmutation. At the end of these fifteen years of research, it is considered that partitioning techniques, which have been validated on real solutions, are at disposal. Indeed, aqueous process for separation of minor actinides from the PUREX raffinate has been brought to a point where there is reasonable assurance that industrial deployment can be successful. A key experiment has been the successful kilogram scale trials in the CEA-Marcoule Atalante facility in 2005 and this result, together with the results obtained in the frame of the successive European projects, constitutes a considerable step forward. For transmutation, CEA has conducted programs proving the feasibility of the elimination of minor actinides and fission products: fabrication of specific targets and fuels for transmutation tests in the HFR and Phenix reactors, neutronics and technology studies for critical reactors and ADS developments. Scenario studies have also allowed assessing the feasibility, at the level of cycle and fuel facilities, and the efficiency of transmutation in terms of the quantitative reduction of the final waste inventory depending of the reactor fleet (PWR-FR-ADS). Important results are now available concerning the possibility of significantly reducing the quantity and the radiotoxicity of long-lived waste in association with a sustainable development of nuclear energy. As France has confirmed its long-term approach to nuclear energy, the most effective implementation of P and T of minor actinides relies on the fast neutron GEN IV systems, which are designed to recycle and manage their own actinides. The perspective to deploy a first series of such systems around 2040 supports the idea that progress is being made: the long-term waste would only be made up of fission products, with very low amounts of minor actinides. In this sense, the new waste management law passed by the French Parliament on June 28, 2006, demands that P and T research continues in strong connection to GEN IV systems and ADS development and allowing the assessment of the industrial perspectives of such systems in 2012 and to put into operation a transmutation demo facility in 2020. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong-Sang
2015-03-02
The legacy nuclear wastes stored in underground tanks at the US Department of Energy’s Hanford site is planned to be separated into high-level waste and low-activity waste fractions and vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. The property models with associated uncertainties and combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification processmore » control and waste form qualification at the planned waste vitrification plant. This paper provides an overview of current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salgado, M.M.; Benitez, J.C.; Pernas, R.
2007-07-01
The Center for Radiation Protection and Hygiene (CPHR) is the institution responsible for the management of radioactive wastes generated from nuclear applications in medicine, industry and research in Cuba. Radioactive Waste Management Service is provided at a national level and it includes the collection and transportation of radioactive wastes to the Centralized Waste Management Facilities, where they are characterized, segregated, treated, conditioned and stored. A Quality Management System, according to the ISO 9001 Standard has been implemented for the RWM Service at CPHR. The Management System includes the radiation safety requirements established for RWM in national regulations and in themore » Licence's conditions. The role of the Regulatory Body and the Radiation Protection Officer in the Quality Management System, the authorization of practices, training and personal qualification, record keeping, inspections of the Regulatory Body and internal inspection of the Radiation Protection Officer, among other aspects, are described in this paper. The Quality Management System has shown to be an efficient tool to demonstrate that adequate measures are in place to ensure the safety in radioactive waste management activities and their continual improvement. (authors)« less
Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behrouzi, Aria; Zamecnik, Jack
2012-07-01
The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolutionmore » of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been effectively purified and collected in the Mercury Purification Cell (MPC) since 2008. A significant cleaning campaign aims to bring the MPC back up to facility housekeeping standards. Two significant investigations are being undertaken to restore mercury collection. The SMECT mercury pump has been removed from the tank and will be functionally tested. Also, research is being conducted by the Savannah River National Laboratory to determine the effects of antifoam addition on the behavior of mercury. These path forward items will help us better understand what is occurring in the mercury collection system and ultimately lead to an improved DWPF production rate and mercury recovery rate. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartmann, Thomas
Technetium-99 (Tc, t 1/2 = 2.13x10 5 years) is a challenge from a nuclear waste perspective and is one of the most abundant, long-lived radioisotopes found in used nuclear fuel (UNF). Within the Hanford Tank Waste Treatment and Immobilization Plant, technetium volatilizes at typical glass melting temperature, is captured in the off-gas treatment system and recycled back into the feed to eventually increase Tc-loadings of the glass. The aim of this NEUP project was to provide an alternative strategy to immobilize fission technetium as durable ceramic waste form and also to avoid the accumulation of volatile technetium within the offmore » gas melter system in the course of vitrifying radioactive effluents in a ceramic melter. During this project our major attention was turned to the fabrication of chemical durable mineral phases where technetium is structurally bond entirely as tetravalent cation. These mineral phases will act as the primary waste form with optimal waste loading and superior resistance against leaching and corrosion. We have been very successful in fabricating phase-pure micro-gram amounts of lanthanide-technetium pyrochlores by dry-chemical synthesis. However, upscaling to a gram-size synthesis route using either dry- or wet-chemical processing was not always successful, but progress can be reported on a variety of aspects. During the course of this 5-year NEUP project (including a 2-year no-cost extension) we have significantly enhanced the existing knowledge on the fabrication and properties of ceramic technetium waste forms.« less
YUCCA MOUNTAIN PROJECT - A BRIEFING --
DOE Office of Scientific and Technical Information (OSTI.GOV)
NA
2003-08-05
This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statementmore » for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet.« less
The roles and functions of a lunar base Nuclear Technology Center
NASA Astrophysics Data System (ADS)
Buden, D.; Angelo, J. A., Jr.
This paper describes the roles and functions of a special Nuclear Technology Center which is developed as an integral part of a permanent lunar base. Numerous contemporary studies clearly point out that nuclear energy technology will play a major role in any successful lunar/Mars initiative program and in the overall establishment of humanity's solar system civilization. The key role of nuclear energy in the providing power has been recognized. A Nuclear Technology Center developed as part of a permanent lunar base can also help bring about many other nuclear technology applications, such as producing radioisotopes for self-illumination, food preservation, waste sterilization, and medical treatment; providing thermal energy for mining, materials processing and agricultural; and as a source of emergency habitat power. Designing such a center will involve the deployment, operation, servicing and waste product management and disposal of megawatt class reactor power plants. This challenge must be met with a minimum of direct human support at the facility. Furthermore, to support the timely, efficient integration of this Nuclear Technology Center in the evolving lunar base infrastructure, an analog of such a facility will be needed here on Earth.
Fully ceramic nuclear fuel and related methods
Venneri, Francesco; Katoh, Yutai; Snead, Lance Lewis
2016-03-29
Various embodiments of a nuclear fuel for use in various types of nuclear reactors and/or waste disposal systems are disclosed. One exemplary embodiment of a nuclear fuel may include a fuel element having a plurality of tristructural-isotropic fuel particles embedded in a silicon carbide matrix. An exemplary method of manufacturing a nuclear fuel is also disclosed. The method may include providing a plurality of tristructural-isotropic fuel particles, mixing the plurality of tristructural-isotropic fuel particles with silicon carbide powder to form a precursor mixture, and compacting the precursor mixture at a predetermined pressure and temperature.
10 CFR 960.4-1 - System guideline.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false System guideline. 960.4-1 Section 960.4-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Postclosure Guidelines § 960.4-1 System guideline. (a) Qualifying Condition. The geologic setting...
10 CFR 960.4-1 - System guideline.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false System guideline. 960.4-1 Section 960.4-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Postclosure Guidelines § 960.4-1 System guideline. (a) Qualifying Condition. The geologic setting...
10 CFR 960.4-1 - System guideline.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false System guideline. 960.4-1 Section 960.4-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Postclosure Guidelines § 960.4-1 System guideline. (a) Qualifying Condition. The geologic setting...
10 CFR 960.5-1 - System guidelines.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false System guidelines. 960.5-1 Section 960.5-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines § 960.5-1 System guidelines. (a) Qualifying conditions—(1) Preclosure...
10 CFR 960.5-1 - System guidelines.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false System guidelines. 960.5-1 Section 960.5-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines § 960.5-1 System guidelines. (a) Qualifying conditions—(1) Preclosure...
10 CFR 960.5-1 - System guidelines.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false System guidelines. 960.5-1 Section 960.5-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Preclosure Guidelines § 960.5-1 System guidelines. (a) Qualifying conditions—(1) Preclosure...
10 CFR 960.4-1 - System guideline.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false System guideline. 960.4-1 Section 960.4-1 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Postclosure Guidelines § 960.4-1 System guideline. (a) Qualifying Condition. The geologic setting...
NASA Astrophysics Data System (ADS)
Zheng, L.; Rutqvist, J.; Birkholzer, J. T.; Liu, H. H.
2014-12-01
Geological repositories for disposal of high-level nuclear waste generally rely on a multi-barrier system to isolate radioactive waste from the biosphere. An engineered barrier system (EBS), which comprises in many design concepts a bentonite backfill, is widely used. Clay formations have been considered as a host rock throughout the world. Illitization, the transformation of smectite to illite, could compromise some beneficiary features of EBS bentonite and clay host rock such as sorption and swelling capacity. It is the major determining factor to establish the maximum design temperature of the repositories because it is believed that illitization could be greatly enhanced at temperatures higher than 100 oC. However, existing experimental and modeling studies on the occurrence of illitization and related performance impacts are not conclusive, in part because the relevant couplings between the thermal, hydrological, chemical, and mechanical (THMC) processes have not been fully represented in the models. Here we present a fully coupled THMC simulation study of a generic nuclear waste repository in a clay formation with a bentonite-backfilled EBS. Two scenarios were simulated for comparison: a case in which the temperature in the bentonite near the waste canister can reach about 200 oC and a case in which the temperature in the bentonite near the waste canister peaks at about 100 oC. The model simulations demonstrate that illitization is in general more significant under higher temperature. However, the quantity of illitization is affected by many chemical factors and therefore varies a great deal. The most important chemical factors are the concentration of K in the pore water as well as the abundance and dissolution rate of K-feldspar. For the particular case and bentonite properties studied, the reduction in swelling stress as a result of chemical changes vary from 2% up to 70% depending on chemical and temperature conditions, and key mechanical parameters. The modeling work is illustrative in light of the relative importance of different processes occurring in EBS bentonite and clay host rock at higher than 100 oC conditions, and could be of greater use when site specific data are available.
LANL OPERATING EXPERIENCE WITH THE WAND AND HERCULES PROTOTYPE SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. M. GRUETZMACHER; C. L. FOXX; S. C. MYERS
2000-09-01
The Waste Assay for Nonradioactive Disposal (WAND) and the High Efficiency Radiation Counters for Ultimate Low Emission Sensitivity (HERCULES) prototype systems have been operating at Los Alamos National Laboratory's (LANL's) Solid Waste Operation's (SWO'S) non-destructive assay (NDA) building since 1997 and 1998, respectively. These systems are the cornerstone of the verification program for low-density Green is Clean (GIC) waste at the Laboratory. GIC waste includes all non-regulated waste generated in radiological controlled areas (RCAS) that has been actively segregated as clean (i.e., nonradioactive) through the use of waste generator acceptable knowledge (AK). The use of this methodology alters LANL's pastmore » practice of disposing of all room trash generated in nuclear facilities in radioactive waste landfills. Waste that is verified clean can be disposed of at the Los Alamos County Landfill. It is estimated that 50-90% of the low-density room trash from radioactive material handling areas at Los Alamos might be free of contamination. This approach avoids the high cost of disposal of clean waste at a radioactive waste landfill. It also reduces consumption of precious space in the radioactive waste landfill where disposal of this waste provides no benefit to the public or the environment. Preserving low level waste (LLW) disposal capacity for truly radioactive waste is critical in this era when expanding existing radioactive waste landfills or permitting new ones is resisted by regulators and stakeholders. This paper describes the operating experience with the WAND and HERCULES since they began operation at SWO. Waste for verification by the WAND system has been limited so far to waste from the Plutonium Facility and the Solid Waste Operations Facility. A total of461 ft3 (13.1 m3) of low-density shredded waste and paper have been verified clean by the WAND system. The HERCULES system has been used to verify waste from four Laboratory facilities. These are the Solid Waste Operations Facility, the TA-48 Chemistry Facility, the Shops Facility, and the Environmental Facility. A total of 3150 ft3 (89.3 m3) of low-density waste has been verified clean by the HERCULES system.« less
Security risks in nuclear waste management: Exceptionalism, opaqueness and vulnerability.
Vander Beken, Tom; Dorn, Nicholas; Van Daele, Stijn
2010-01-01
This paper analyses some potential security risks, concerning terrorism or more mundane forms of crime, such as fraud, in management of nuclear waste using a PEST scan (of political, economic, social and technical issues) and some insights of criminologists on crime prevention. Nuclear waste arises as spent fuel from ongoing energy generation or other nuclear operations, operational contamination or emissions, and decommissioning of obsolescent facilities. In international and EU political contexts, nuclear waste management is a sensitive issue, regulated specifically as part of the nuclear industry as well as in terms of hazardous waste policies. The industry involves state, commercial and mixed public-private bodies. The social and cultural dimensions--risk, uncertainty, and future generations--resonate more deeply here than in any other aspect of waste management. The paper argues that certain tendencies in regulation of the industry, claimed to be justified on security grounds, are decreasing transparency and veracity of reporting, opening up invisible spaces for management frauds, and in doing allowing a culture of impunity in which more serious criminal or terrorist risks could arise. What is needed is analysis of this 'exceptional' industry in terms of the normal cannons of risk assessment - a task that this paper begins. Copyright 2009 Elsevier Ltd. All rights reserved.
Effects of Heat Generation on Nuclear Waste Disposal in Salt
NASA Astrophysics Data System (ADS)
Clayton, D. J.
2008-12-01
Disposal of nuclear waste in salt is an established technology, as evidenced by the successful operations of the Waste Isolation Pilot Plant (WIPP) since 1999. The WIPP is located in bedded salt in southeastern New Mexico and is a deep underground facility for transuranic (TRU) nuclear waste disposal. There are many advantages for placing radioactive wastes in a geologic bedded-salt environment. One desirable mechanical characteristic of salt is that it flows plastically with time ("creeps"). The rate of salt creep is a strong function of temperature and stress differences. Higher temperatures and deviatoric stresses increase the creep rate. As the salt creeps, induced fractures may be closed and eventually healed, which then effectively seals the waste in place. With a backfill of crushed salt emplaced around the waste, the salt creep can cause the crushed salt to reconsolidate and heal to a state similar to intact salt, serving as an efficient seal. Experiments in the WIPP were conducted to investigate the effects of heat generation on the important phenomena and processes in and around the repository (Munson et al. 1987; 1990; 1992a; 1992b). Brine migration towards the heaters was induced from the thermal gradient, while salt creep rates showed an exponential dependence on temperature. The project "Backfill and Material Behavior in Underground Salt Repositories, Phase II" (BAMBUS II) studied the crushed salt backfill and material behavior with heat generation at the Asse mine located near Remlingen, Germany (Bechthold et al. 2004). Increased salt creep rates and significant reconsolidation of the crushed salt were observed at the termination of the experiment. Using the data provided from both projects, exploratory modeling of the thermal-mechanical response of salt has been conducted with varying thermal loading and waste spacing. Increased thermal loading and decreased waste spacing drive the system to higher temperatures, while both factors are desired to reduce costs, as well as decrease the overall footprint of the repository. Higher temperatures increase the rate of salt creep which then effectively seals the waste quicker. Data of the thermal-mechanical response of salt at these higher temperatures is needed to further validate the exploratory modeling and provide meaningful constraints on the repository design. Sandia is a multi program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barariu, Gheorghe
2013-07-01
According to IAEA classification, Romania with two nuclear research centres, with 2 Nuclear Power Units in operation at Cernavoda Town and with 2 new Units envisaged to be in operation soon, can be considered as a country with an average nuclear activity. In Romania there was an extensive interest in management of radioactive wastes generated by the use of nuclear technology in industry and research. Using the most advanced technologies in the mentioned time periods, Romania successfully accomplished to solve all management issues related to radioactive wastes being addressed all safety concerns. Every step of nuclear activity development was accompaniedmore » by the suitable waste management facilities. So that, in order to improve the existing treatment and disposal capacities for institutional waste, the existing Radioactive Waste Treatment Facility (STDR) and the National Repository Radioactive Wastes (DNDR) at Baita, Bihor, will be improved to actual requirements on the occasion of VVR-S Research Reactor decommissioning. This activity is in development into the frame of a National funded project related to disposal galleries filling improvement and repository closure for DNDR Baita, Bihor. All improvements will be approved by Environmental Protection Authority and Regulatory Body, being a guaranty of human and environmental protection. Also, in accordance with national specific and international policies and taking into account decommissioning activities related to the present operating NPPs, all necessary measures were considered in order to avoid unnecessary generation of radioactive wastes, to minimize, as much as possible, waste production and accumulation and the necessity to develop optimum solutions for a new repository with the assurance of improved nuclear safety. (authors)« less
Socket welds in nuclear facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, P.A.; Torres, L.L.
1995-12-31
Socket welds are easier and faster to make than are butt welds. However, they are often not used in nuclear facilities because the crevices between the pipes and the socket sleeves may be subject to crevice corrosion. If socket welds can be qualified for wider use in facilities that process nuclear materials, the radiation exposures to welders can be significantly reduced. The current tests at the Idaho Chemical Processing Plant (ICPP) are designed to determine if socket welds can be qualified for use in the waste processing system at a nuclear fuel processing plant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-01-01
Some of the conclusions reached as a result of this study are summarized. Waste form parameters for the reference cermet waste form are available only by analogy. Detail design of the waste payload would require determination of actual waste form properties. The billet configuration constraints for the cermet waste form limit the packing efficiency to slightly under 75% net volume. The effect of this packing inefficiency in reducing the net waste form per waste payload can be seen graphically. The cermet waste form mass per unit mass of waste payload is lower than that of the iodine waste form evenmore » though the cermet has a higher density (6.5 versus 5.5). This is because the lead iodide is cast achieving almost 100% efficiency in packing. This inefficiency in the packing of the cermet results in a 20% increase in number of flights which increases both cost and risk. Alternative systems for waste mixes requiring low flight rates (technetium-99, iodine-129) can make effective use of the existing 65K space transportation system in either single- or dual-launch scenarios. A comprehensive trade study would be required to select the optimum orbit transfer system for low-launch-rate systems. This study was not conducted as part of the present effort due to selection of the cermet waste form as the reference for the study. Several candidates look attractive for both single- and dual-launch systems (see sec. 4.4), but due to the relatively small number of missions, a comprehensive comparison of life cycle costs including DDT and E would be required to select the best system. The reference system described in sections 5.0, 6.0, 7.0, and 8.0 offers the best combination of cost, risk, and alignment with ongoing NASA technology development efforts for disposal of the reference cermet waste form.« less
GEM*STAR: Time for an Alternative Way Forward
NASA Astrophysics Data System (ADS)
Vogelaar, R. Bruce
2011-10-01
The presumption that nuclear reactors will retain their role in global energy production is constantly being challenged - even more so following recent events at Fukushima. Nuclear energy, despite being ``green,'' has inexorably been coupled in the public mind with three paramount concerns: safety, weapons proliferation, and waste (and then ultimately cost). Over the past four decades, the safety of deployed fleets has greatly improved, yet the capital and political costs of a ``nuclear energy option'' appear insurmountable in several countries. The US approach to civilian nuclear energy has become deeply entrenched, first through choices made by the military, and then by the deployed nuclear reactor fleet. This extends to the research agencies as well, to the point where basic sciences and nuclear energy operate in separate spheres. But technologies and priorities have changed, and the time has arrived where a transformative re-think of nuclear energy is not only possible, but urgent. And nuclear physicists are uniquely positioned to accomplish this. This talk will show that by asking, and answering,``what would an accelerator-driven civilian nuclear energy program look like,'' ADNA Corporation's GEM*STAR design directly addresses all three fundamental concerns: safety, proliferation, and waste - and also the final hurdle: cost. GEM*STAR is not an ``add-on'' (to either Project-X, or GEN III+), but rather a base-line energy production capacity, for either electricity or transport fuel production. It integrates and advances the molten-salt reactor technology developed at ORNL, the MW beam accelerator technologies developed by basic sciences, and a reactor/target design optimized for accelerator driven-systems. The results include: the ability to use LWR spent fuel without reprocessing or additional waste; the ability to use natural uranium; no critical mass ever present; orders-of-magnitude less volatile radioactivity in the core; more efficient use of, and deeper burn of actinides, without additional waste; proliferation resistance (no enrichment or reprocessing); high-tolerance to ``beam-trips'' and ultimately, and perhaps most importantly, lower cost electricity or diesel fuel than any currently envisioned new energy source.
Jones, Christopher P; Brenner, Ceri M; Stitt, Camilla A; Armstrong, Chris; Rusby, Dean R; Mirfayzi, Seyed R; Wilson, Lucy A; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M H; Clarke, Robert J; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John; McKenna, Paul; Neely, David; Kar, Satya; Scott, Thomas B
2016-11-15
A small scale sample nuclear waste package, consisting of a 28mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500keV), with a source size of <0.5mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30cm(2) scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned. Copyright © 2016. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xiaonan; Neeway, James J.; Ryan, Joseph V.
Transition metal oxides are commonly present in nuclear waste and they can alter the structure, property and especially dissolution behaviors of the glasses used for waste immobilization. In this paper, we investigated vanadium and cobalt oxide induced structural and properties changes, especially dissolution behaviors, of International Simple Glass (ISG), a model nuclear waste glass system. Static chemical durability tests were performed at 90 °C with a pH value of 7 and a surface-area-to-solution-volume of 200 m-1 for 112 days on three glasses: ISG, ISG doped with 0.5 mol% Co2O3, and ISG doped with 2.0 mol% V2O5. ICP-MS was used tomore » analyze the dissolved ion concentrations. It was found that doping with vanadium and cobalt oxide, even at the low doping concentration, significantly reduced the extent of the ISG glass dissolution. Differential Scanning Calorimetry (DSC) analysis showed that vanadium oxide doping reduced the glass transition temperature (Tg) while cobalt oxide did not significantly change the Tg of ISG. X-ray diffraction (XRD), Raman spectrometry and scanning electron microscopy (SEM) were used to analyze the glass samples before and after corrosion to understand the phase and microstructure changes.« less
Method of preparing nuclear wastes for tansportation and interim storage
Bandyopadhyay, Gautam; Galvin, Thomas M.
1984-01-01
Nuclear waste is formed into a substantially water-insoluble solid for temporary storage and transportation by mixing the calcined waste with at least 10 weight percent powdered anhydrous sodium silicate to form a mixture and subjecting the mixture to a high humidity environment for a period of time sufficient to form cementitious bonds by chemical reaction. The method is suitable for preparing an interim waste form from dried high level radioactive wastes.
Improvement of nuclide leaching resistance of paraffin waste form with low density polyethylene.
Kim, Chang Lak; Park, Joo Wan; Kim, Ju Youl; Chung, Chang Hyun
2002-01-01
Low-level liquid borate wastes have been immobilized with paraffin wax using a concentrate waste drying system (CWDS) in Korean nuclear power plants. The possibility for improving chemical durability of paraffin waste form was suggested in this study. A small amount of low density polyethylene (LDPE) was added to increase the leaching resistance of the existing paraffin waste form. The influence of LDPE on the leaching behavior of waste form was investigated by performing leaching test according to ANSI/ANS-16.1 procedure during 325 days. It was observed that the leaching of nuclides immobilized within paraffin waste form made a marked reduction although little content of LDPE was added to waste form. The acceptance criteria of paraffin waste form associated with leachability index (LI) and compressive strength after the leaching test were fully satisfied with the help of LDPE.
Precipitation process for the removal of technetium values from nuclear waste solutions
Walker, D.D.; Ebra, M.A.
1985-11-21
High efficiency removal of techetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.
NASA Astrophysics Data System (ADS)
Birkholzer, J. T.
2017-12-01
This presentation provides an overview of an international research and model comparison collaboration (DECOVALEX) for advancing the understanding and modeling of coupled thermo-hydro-mechanical-chemical (THMC) processes in geological systems. Prediction of these coupled effects is an essential part of the performance and safety assessment of geologic disposal systems for radioactive waste and spent nuclear fuel, and is also relevant for a range of other sub-surface engineering activities. DECOVALEX research activities have been supported by a large number of radioactive-waste-management organizations and regulatory authorities. Research teams from more than a dozen international partner organizations have participated in the comparative modeling evaluation of complex field and laboratory experiments in the UK, Switzerland, Japan, France and Sweden. Together, these tasks (1) have addressed a wide range of relevant issues related to engineered and natural system behavior in argillaceous, crystalline and other host rocks, (2) have yielded in-depth knowledge of coupled THM and THMC processes associated with nuclear waste repositories and wider geo-engineering applications, and (3) have advanced the capability, as well as demonstrated the suitability, of numerical simulation models for quantitative analysis.
CESAR robotics and intelligent systems research for nuclear environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, R.C.
1992-07-01
The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less
CESAR robotics and intelligent systems research for nuclear environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, R.C.
1992-01-01
The Center for Engineering Systems Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) encompasses expertise and facilities to perform basic and applied research in robotics and intelligent systems in order to address a broad spectrum of problems related to nuclear and other environments. For nuclear environments, research focus is derived from applications in advanced nuclear power stations, and in environmental restoration and waste management. Several programs at CESAR emphasize the cross-cutting technology issues, and are executed in appropriate cooperation with projects that address specific problem areas. Although the main thrust of the CESAR long-term research is on developingmore » highly automated systems that can cooperate and function reliably in complex environments, the development of advanced human-machine interfaces represents a significant part of our research. 11 refs.« less
Developing a concept for a national used fuel interim storage facility in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Donald Wayne
2013-07-01
In the United States (U.S.) the nuclear waste issue has plagued the nuclear industry for decades. Originally, spent fuel was to be reprocessed but with the threat of nuclear proliferation, spent fuel reprocessing has been eliminated, at least for now. In 1983, the Nuclear Waste Policy Act of 1982 [1] was established, authorizing development of one or more spent fuel and high-level nuclear waste geological repositories and a consolidated national storage facility, called a 'Monitored Retrievable Storage' facility, that could store the spent nuclear fuel until it could be placed into the geological repository. Plans were under way to buildmore » a geological repository, Yucca Mountain, but with the decision by President Obama to terminate the development of Yucca Mountain, a consolidated national storage facility that can store spent fuel for an interim period until a new repository is established has become very important. Since reactor sites have not been able to wait for the government to come up with a storage or disposal location, spent fuel remains in wet or dry storage at each nuclear plant. The purpose of this paper is to present a concept developed to address the DOE's goals stated above. This concept was developed over the past few months by collaboration between the DOE and industry experts that have experience in designing spent nuclear fuel facilities. The paper examines the current spent fuel storage conditions at shutdown reactor sites, operating reactor sites, and the type of storage systems (transportable versus non-transportable, welded or bolted). The concept lays out the basis for a pilot storage facility to house spent fuel from shutdown reactor sites and then how the pilot facility can be enlarged to a larger full scale consolidated interim storage facility. (authors)« less
Doing the impossible: Recycling nuclear waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-01-01
A Science Channel feature explores how Argonne techniques could be used to safely reduce the amount of radioactive waste generated by nuclear power—the most plentiful carbon-neutral energy source. Read more at http://www.anl.gov/Media_Center/ArgonneNow/Fall_2009/nuclear.html
77 FR 40817 - Low-Level Radioactive Waste Regulatory Management Issues
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-11
...-2011-0012] RIN-3150-AI92 Low-Level Radioactive Waste Regulatory Management Issues AGENCY: Nuclear... Materials and Environmental Management Programs, U.S. Nuclear Regulatory Commission, Washington, DC 20555... State Materials and Environmental Management Programs, U.S. Nuclear Regulatory Commission, Washington...
Health Risks of Nuclear Power.
ERIC Educational Resources Information Center
Cohen, Bernard L.
1978-01-01
Deals with the wastes generated in nuclear power plants and the health risks involved as compared to those of wastes generated by coal-fired plants. Concludes that the risks of nuclear power plants are many times smaller than the risks from alternative energy resources. (GA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Criscenti, Louise Jacqueline; Sassani, David Carl; Arguello, Jose Guadalupe, Jr.
2011-02-01
This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs,more » and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.« less
Energy Conversion Loop: A Testbed for Nuclear Hybrid Energy Systems Use in Biomass Pyrolysis
NASA Astrophysics Data System (ADS)
Verner, Kelley M.
Nuclear hybrid energy systems are a possible solution for contemporary energy challenges. Nuclear energy produces electricity without greenhouse gas emissions. However, nuclear power production is not as flexible as electrical grids demand and renewables create highly variable electricity. Nuclear hybrid energy systems are able to address both of these problems. Wasted heat can be used in processes such as desalination, hydrogen production, or biofuel production. This research explores the possible uses of nuclear process heat in bio-oil production via biomass pyrolysis. The energy conversion loop is a testbed designed and built to mimic the heat from a nuclear reactor. Small scale biomass pyrolysis experiments were performed and compared to results from the energy conversion loop tests to determine future pyrolysis experimentation with the energy conversion loop. Further improvements must be made to the energy conversion loop before more complex experiments may be performed. The current conditions produced by the energy conversion loop are not conducive for current biomass pyrolysis experimentation.tion.
The on-line characterization of a radium slurry by gamma-ray spectrometry.
Philips, S; Croft, S
2005-01-01
We have developed an in-line monitor to directly measure the (226)Ra concentration in a nuclear waste stream using quantitative gamma-ray spectrometry applied to the 186keV emission. The waste stream is in the form of a slurry composed of the solid waste material mixed with water. The concentration measurement includes a self-attenuation correction factor determined from a transmission measurement using the 122keV gamma from (57)Co. Presented here is the model for the measurement system and results from some initial tests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ENERGY STANDARD CONTRACT FOR DISPOSAL OF SPENT NUCLEAR FUEL AND/OR HIGH-LEVEL RADIOACTIVE WASTE General... owns or generates spent nuclear fuel or high-level radioactive waste, of domestic origin, generated in... part will commit DOE to accept title to, transport, and dispose of such spent fuel and waste. In...
75 FR 29786 - Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-27
... plans for managing spent nuclear fuel and high-level radioactive waste. Pursuant to its authority under... of Energy (DOE) plans for managing spent nuclear fuel (SNF) and high-level radioactive waste (HLW... the packaging and movement of the waste, how the recent decision to terminate the Yucca Mountain...
NUCLEAR POWER PLANT WASTE HEAT HORTICULTURE
The report gives results of a study of the feasibility of using low grade (70 degrees F) waste heat from the condenser cooling water of the Vermont Yaknee nuclear plant for commercial food enhancement. The study addressed the possible impact of laws on the use of waste heat from ...
On evaluation of assessments of accruals of future dismantling costs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labor, Bea; Lindskog, Staffan
A major prerequisite in order for civilian commercial nuclear energy production to qualify as sustainable energy production is that systems for the management of the nuclear waste legacy are in operation. These waste types are present in a range from very low short lived waste (VLLW) to long lived high level waste (HLW) (including the used nuclear fuel). The second prerequisite is that financial responsibilities or other constraints must not be passed on to coming generations. The first condition for qualification corresponds to the Polluters Pays Principle (PPP) which demands that the responsibility for the waste management rests solely withmore » the polluter. The second qualification corresponds to the principle of fairness between generations and thus concerns the appropriate distribution of responsibilities between the generations. It is important to note that these two conditions must be met simultaneously, and that compliance with both is a necessary prerequisite in order for commercial use of nuclear power to qualify as a semi-sustainable energy source. Financial and technical planning for dismantling and decommissioning of nuclear installations cannot be regarded as successful unless it rests upon a distinctive way to describe and explain the well-founded values of different groups of stakeholders. This cumbersome task can be underpinned by transparent and easy to grasp models for calculation and estimation of future environmental liabilities. It essential that a systematic classification is done of all types of costs and that an effort is done to evaluate the precision level in the cost estimates. In this paper, a systematic and transparent way to develop a parametric approach that rest upon basic accounting standards is combined with data about younger stakeholder's values towards decommissioning and dismantling of nuclear installation. The former entity rests upon theoretical and practical methods from business administration, whilst the latter is based on current survey data retrieved from 667 personal interviews in one town in Poland and one town in Slovakia with a near 100 % response rate. The main conclusions from this field study may be summarised as follows: - Sustainable energy sources are prioritised. - Around one quarter of the respondents regards nuclear power as a future semi-sustainable commercial energy production mode subject to that the waste is managed in a sustainable, environmental friendly and safe way - The values are to a significant degree positioned on health, safety and environmental (HSE) attributes. - The polluter pays principle is honoured. - There are doubts regarding the compliance with these principles due to risks for delays in the implementation phase of repositories for disposal of the nuclear residues. - 1/5. of the respondents expressed an openness to reprocessing (which is linked to the concept of 'new nuclear power'). (authors)« less
Risk Reduction and Training using Simulation Based Tools - 12180
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Irin P.
2012-07-01
Process Modeling and Simulation (M and S) has been used for many years in manufacturing and similar domains, as part of an industrial engineer's tool box. Traditionally, however, this technique has been employed in small, isolated projects where models were created from scratch, often making it time and cost prohibitive. Newport News Shipbuilding (NNS) has recognized the value of this predictive technique and what it offers in terms of risk reduction, cost avoidance and on-schedule performance of highly complex work. To facilitate implementation, NNS has been maturing a process and the software to rapidly deploy and reuse M and Smore » based decision support tools in a variety of environments. Some examples of successful applications by NNS of this technique in the nuclear domain are a reactor refueling simulation based tool, a fuel handling facility simulation based tool and a tool for dynamic radiation exposure tracking. The next generation of M and S applications include expanding simulation based tools into immersive and interactive training. The applications discussed here take a tool box approach to creating simulation based decision support tools for maximum utility and return on investment. This approach involves creating a collection of simulation tools that can be used individually or integrated together for a larger application. The refueling simulation integrates with the fuel handling facility simulation to understand every aspect and dependency of the fuel handling evolutions. This approach translates nicely to other complex domains where real system experimentation is not feasible, such as nuclear fuel lifecycle and waste management. Similar concepts can also be applied to different types of simulation techniques. For example, a process simulation of liquid waste operations may be useful to streamline and plan operations, while a chemical model of the liquid waste composition is an important tool for making decisions with respect to waste disposition. Integrating these tools into a larger virtual system provides a tool for making larger strategic decisions. The key to integrating and creating these virtual environments is the software and the process used to build them. Although important steps in the direction of using simulation based tools for nuclear domain, the applications described here represent only a small cross section of possible benefits. The next generation of applications will, likely, focus on situational awareness and adaptive planning. Situational awareness refers to the ability to visualize in real time the state of operations. Some useful tools in this area are Geographic Information Systems (GIS), which help monitor and analyze geographically referenced information. Combined with such situational awareness capability, simulation tools can serve as the platform for adaptive planning tools. These are the tools that allow the decision maker to react to the changing environment in real time by synthesizing massive amounts of data into easily understood information. For the nuclear domains, this may mean creation of Virtual Nuclear Systems, from Virtual Waste Processing Plants to Virtual Nuclear Reactors. (authors)« less
Row erupts over US firm's plan to import nuclear waste
NASA Astrophysics Data System (ADS)
Gwynne, Peter
2008-06-01
A controversy is brewing in the US over a plan by a firm in Utah to import, process and dispose of 20 000 tonnes of low-level radioactive waste from decommissioned nuclear reactors built in Italy by American companies. EnergySolutions intends to recycle some of this waste at a site near Oak Ridge, Tennessee, so that it can be re-used as shielding blocks in nuclear plants. The firm then wants to dispose of the remaining radioactive material at a site in Clive, Utah, where over 90% of low-level radioactive waste generated in the US is currently buried.
Taipower`s radioactive waste management program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, B.C.C.
1996-09-01
Nuclear safety and radioactive waste management are the two major concerns of nuclear power in Taiwan. Recognizing that it is an issue imbued with political and social-economic concerns, Taipower has established an integrated nuclear backend management system and its associated financial and mechanism. For LLW, the Orchid Island storage facility will play an important role in bridging the gap between on-site storage and final disposal of LLW. Also, on-site interim storage of spent fuel for 40 years or longer will provide Taipower with ample time and flexibility to adopt the suitable alternative of direct disposal or reprocessing. In other words,more » by so exercising interim storage option, Taipower will be in a comfortable position to safely and permanently dispose of radwaste without unduly forgoing the opportunities of adopting better technologies or alternatives. Furthermore, Taipower will spare no efforts to communicate with the general public and make her nuclear backend management activities accountable to them.« less
Integration and Utilization of Nuclear Systems on the Moon and Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houts, Michael G.; Schmidt, George R.; Bragg-Sitton, Shannon
2006-01-20
Over the past five decades numerous studies have identified nuclear energy as an enhancing or enabling technology for planetary surface exploration missions. This includes both radioisotope and fission sources for providing both heat and electricity. Nuclear energy sources were used to provide electricity on Apollo missions 12, 14, 15, 16, and 17, and on the Mars Viking landers. Very small nuclear energy sources were used to provide heat on the Mars Pathfinder, Spirit, and Opportunity rovers. Research has been performed at NASA MSFC to help assess potential issues associated with surface nuclear energy sources, and to generate data that couldmore » be useful to a future program. Research areas include System Integration, use of Regolith as Radiation Shielding, Waste Heat Rejection, Surface Environmental Effects on the Integrated System, Thermal Simulators, Surface System Integration / Interface / Interaction Testing, End-to-End Breadboard Development, Advanced Materials Development, Surface Energy Source Coolants, and Planetary Surface System Thermal Management and Control. This paper provides a status update on several of these research areas.« less
ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, J.
2010-09-29
Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) formore » construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management, and proliferation), the worldwide community is working to develop and deploy new nuclear energy systems and advanced fuel cycles. These new nuclear systems address the key challenges and include: (1) extracting the full energy value of the nuclear fuel; (2) creating waste solutions with improved long term safety; (3) minimizing the potential for the misuse of the technology and materials for weapons; (4) continually improving the safety of nuclear energy systems; and (5) keeping the cost of energy affordable.« less
77 FR 73054 - Application for a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
... NUCLEAR REGULATORY COMMISSION Application for a License To Export Radioactive Waste Pursuant to 10 CFR 110.70(b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear..., October 25, 2012, XW020, radioactive 1178 pounds disposal by the 11006061. waste in the (approximately...
75 FR 74104 - Request for a License To Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... NUCLEAR REGULATORY COMMISSION Request for a License To Export Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear..., August 27, Radioactive waste Not to exceed Return to two Germany. 2010, November 3, 2010, XW018...
75 FR 74107 - Request for a License To Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... NUCLEAR REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70(b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear.... EnergySolutions, August 27, Radioactive waste 1,000 tons Incineration for Germany. 2010, November 3, 2010...
77 FR 20078 - Request for a License To Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-03
... NUCLEAR REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear.... docket No. Perma-Fix Northwest Richland, Radioactive waste Up to 500 tons of Thermal Mexico. Inc...
75 FR 68840 - Request for a License To Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-09
... NUCLEAR REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear.... Oregon Specialty Metals......... Radioactive Waste 186,000 kilograms Return of U.S. Canada August 30...
77 FR 25760 - Low-Level Radioactive Waste Management and Volume Reduction
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-01
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0183] Low-Level Radioactive Waste Management and Volume.... Nuclear Regulatory Commission (NRC or the Commission) is revising its 1981 Policy Statement on Low-Level..., the NRC staff issued SECY-10-0043, ``Blending of Low-Level Radioactive Waste'' (ADAMS Accession No...
Chem I Supplement. Chemistry Related to Isolation of High-Level Nuclear Waste.
ERIC Educational Resources Information Center
Hoffman, Darleane C.; Choppin, Gregory R.
1986-01-01
Discusses some of the problems associated with the safe disposal of high-level nuclear wastes. Describes several waste disposal plans developed by various nations. Outlines the multiple-barrier concept of isolation in deep geological questions associated with the implementation of such a method. (TW)
Technetium recovery from high alkaline solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash, Charles A.
2016-07-12
Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.
Industrial Technology of Decontamination of Liquid Radioactive Waste in SUE MosSIA 'Radon' - 12371
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamovich, Dmitry V.; Neveykin, Petr P.; Karlin, Yuri V.
SUE MosSIA 'RADON' - this enterprise was created more than 50 years ago, which deals with the recycling of radioactive waste and conditioning of spent sources of radiation in stationary and mobile systems in the own factory and operating organizations. Here is represented the experience SUE MosSIA 'Radon' in the field of the management with liquid radioactive waste. It's shown, that the activity of SUE MosSIA 'RADON' is developing in three directions - improvement of technical facilities for treatment of radioactive waters into SUE MosSIA 'RADON' development of mobile equipment for the decontamination of radioactive waters in other organizations, developmentmore » of new technologies for decontamination of liquid radioactive wastes as part of various domestic Russian and international projects including those related to the operation of nuclear power and nuclear submarines. SUE MosSIA 'RADON' has processed more than 270 thousand m{sup 3} of radioactive water, at that more than 7000 m{sup 3} in other organizations for more than 50 years. It is shown that a number of directions, particularly, the development of mobile modular units for decontamination of liquid radioactive waste, SUE MosSIA 'RADON' is a leader in the world. (authors)« less
Doing the impossible: Recycling nuclear waste
None
2018-06-07
A Science Channel feature explores how Argonne techniques could be used to safely reduce the amount of radioactive waste generated by nuclear powerâthe most plentiful carbon-neutral energy source. Read more at http://www.anl.gov/Media_Center/ArgonneNow/Fall_2009/nuclear.html
Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi
2013-07-01
Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these includemore » the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)« less
Review of NASA programs in applying aerospace technology to energy
NASA Technical Reports Server (NTRS)
Schwenk, F. C.
1981-01-01
NASA's role in energy research and development, with the aid of aerospace technology, is reviewed. A brief history, which began in 1974 with studies of solar energy systems on earth, is presented, and the major energy programs, consisting of over 60 different projects, are described, and include solar terrestrial systems, conservation and fossil energy systems, and space utilization systems. Special attention is given to the Satellite Power System and the isolation of nuclear wastes in space. Emerging prospects for NASA programs in energy technology include bioenergy, and ocean thermal energy conversion, coal extraction and conversion technologies, and support to the nuclear industry in power plant systems safety.
Oskolkov, Boris Y; Bondarkov, Mikhail D; Zinkevich, Lubov I; Proskura, Nikolai I; Farfán, Eduardo B; Jannik, G Timothy
2011-10-01
Radioactive waste management is an important component of the Chernobyl Nuclear Power Plant accident mitigation and remediation activities in the so-called Chernobyl Exclusion Zone. This article describes the localization and characteristics of the radioactive waste present in the Chernobyl Exclusion Zone and summarizes the pathways and strategy for handling the radioactive waste-related problems in Ukraine and the Chernobyl Exclusion Zone and, in particular, the pathways and strategies stipulated by the National Radioactive Waste Management Program.
de Blois, Erik; Chan, Ho Sze; Roy, Kamalika; Krenning, Eric P; Breeman, Wouter A P
PET with 68 Ga from the TiO 2 - or SnO 2 - based 68 Ge/ 68 Ga generators is of increasing interest for PET imaging in nuclear medicine. In general, radionuclidic purity ( 68 Ge vs. 68 Ga activity) of the eluate of these generators varies between 0.01 and 0.001%. Liquid waste containing low amounts of 68 Ge activity is produced by eluting the 68 Ge/ 68 Ga generators and residues from PET chemistry. Since clearance level of 68 Ge activity in waste may not exceed 10 Bq/g, as stated by European Directive 96/29/EURATOM, our purpose was to reduce 68 Ge activity in solution from >10 kBq/g to <10 Bq/g; which implies the solution can be discarded as regular waste. Most efficient method to reduce the 68 Ge activity is by sorption of TiO 2 or Fe 2 O 3 and subsequent centrifugation. The required 10 Bq per mL level of 68 Ge activity in waste was reached by Fe 2 O 3 logarithmically, whereas with TiO 2 asymptotically. The procedure with Fe 2 O 3 eliminates ≥90% of the 68 Ge activity per treatment. Eventually, to simplify the processing a recirculation system was used to investigate 68 Ge activity sorption on TiO 2 , Fe 2 O 3 or Zeolite. Zeolite was introduced for its high sorption at low pH, therefore 68 Ge activity containing waste could directly be used without further interventions. 68 Ge activity containing liquid waste at different HCl concentrations (0.05-1.0 M HCl), was recirculated at 1 mL/min. With Zeolite in the recirculation system, 68 Ge activity showed highest sorption.
Monte-Carlo Application for Nondestructive Nuclear Waste Analysis
NASA Astrophysics Data System (ADS)
Carasco, C.; Engels, R.; Frank, M.; Furletov, S.; Furletova, J.; Genreith, C.; Havenith, A.; Kemmerling, G.; Kettler, J.; Krings, T.; Ma, J.-L.; Mauerhofer, E.; Neike, D.; Payan, E.; Perot, B.; Rossbach, M.; Schitthelm, O.; Schumann, M.; Vasquez, R.
2014-06-01
Radioactive waste has to undergo a process of quality checking in order to check its conformance with national regulations prior to its transport, intermediate storage and final disposal. Within the quality checking of radioactive waste packages non-destructive assays are required to characterize their radio-toxic and chemo-toxic contents. The Institute of Energy and Climate Research - Nuclear Waste Management and Reactor Safety of the Forschungszentrum Jülich develops in the framework of cooperation nondestructive analytical techniques for the routine characterization of radioactive waste packages at industrial-scale. During the phase of research and development Monte Carlo techniques are used to simulate the transport of particle, especially photons, electrons and neutrons, through matter and to obtain the response of detection systems. The radiological characterization of low and intermediate level radioactive waste drums is performed by segmented γ-scanning (SGS). To precisely and accurately reconstruct the isotope specific activity content in waste drums by SGS measurement, an innovative method called SGSreco was developed. The Geant4 code was used to simulate the response of the collimated detection system for waste drums with different activity and matrix configurations. These simulations allow a far more detailed optimization, validation and benchmark of SGSreco, since the construction of test drums covering a broad range of activity and matrix properties is time consuming and cost intensive. The MEDINA (Multi Element Detection based on Instrumental Neutron Activation) test facility was developed to identify and quantify non-radioactive elements and substances in radioactive waste drums. MEDINA is based on prompt and delayed gamma neutron activation analysis (P&DGNAA) using a 14 MeV neutron generator. MCNP simulations were carried out to study the response of the MEDINA facility in terms of gamma spectra, time dependence of the neutron energy spectrum, neutron flux distribution. The validation of the measurements simulations with Mont-Carlo transport codes for the design, optimization and data analysis of further P&DGNAA facilities is performed in collaboration with LMN CEA Cadarache. The performance of the prompt gamma neutron activation analysis (PGNAA) for the nondestructive determination of actinides in small samples is investigated. The quantitative determination of actinides relies on the precise knowledge of partial neutron capture cross sections. Up to today these cross sections are not very accurate for analytical purpose. The goal of the TANDEM (Trans-uranium Actinides' Nuclear Data - Evaluation and Measurement) Collaboration is the evaluation of these cross sections. Cross sections are measured using prompt gamma activation analysis facilities in Budapest and Munich. Geant4 is used to optimally design the detection system with Compton suppression. Furthermore, for the evaluation of the cross sections it is strongly needed to correct the results to the self-attenuation of the prompt gammas within the sample. In the framework of cooperation RWTH Aachen University, Forschungszentrum Jülich and the Siemens AG will study the feasibility of a compact Neutron Imaging System for Radioactive waste Analysis (NISRA). The system is based on a 14 MeV neutron source and an advanced detector system (a-Si flat panel) linked to an exclusive converter/scintillator for fast neutrons. For shielding and radioprotection studies the codes MCNPX and Geant4 were used. The two codes were benchmarked in processing time and accuracy in the neutron and gamma fluxes. Also the detector response was simulated with Geant4 to optimize components of the system.
NASA Astrophysics Data System (ADS)
Blanco Martin, L.; Rutqvist, J.; Battistelli, A.; Birkholzer, J. T.
2015-12-01
Rock salt is a potential medium for the underground disposal of nuclear waste because it has several assets, such as its ability to creep and heal fractures and its water and gas tightness in the undisturbed state. In this research, we focus on disposal of heat-generating nuclear waste and we consider a generic salt repository with in-drift emplacement of waste packages and crushed salt backfill. As the natural salt creeps, the crushed salt backfill gets progressively compacted and an engineered barrier system is subsequently created [1]. The safety requirements for such a repository impose that long time scales be considered, during which the integrity of the natural and engineered barriers have to be demonstrated. In order to evaluate this long-term integrity, we perform numerical modeling based on state-of-the-art knowledge. Here, we analyze the impacts of halite dissolution and precipitation within the backfill and the host rock. For this purpose, we use an enhanced equation-of-state module of TOUGH2 that properly includes temperature-dependent solubility constraints [2]. We perform coupled thermal-hydraulic-mechanical modeling and we investigate the influence of the mentioned impacts. The TOUGH-FLAC simulator, adapted for large strains and creep, is used [3]. In order to quantify the importance of salt dissolution and precipitation on the effective porosity, permeability, pore pressure, temperature and stress field, we compare numerical results that include or disregard fluids of variable salinity. The sensitivity of the results to some parameters, such as the initial saturation within the backfill, is also addressed. References: [1] Bechthold, W. et al. Backfilling and Sealing of Underground Repositories for Radioactive Waste in Salt (BAMBUS II Project). Report EUR20621 EN: European Atomic Energy Community, 2004. [2] Battistelli A. Improving the treatment of saline brines in EWASG for the simulation of hydrothermal systems. Proceedings, TOUGH Symposium 2012, Lawrence Berkeley National Laboratory, Berkeley, California, Sept. 17-19, 2012. [3] Blanco-Martín L, Rutqvist J, Birkholzer JT. Long-term modelling of the thermal-hydraulic-mechanical response of a generic salt repository for heat generating nuclear waste. Eng Geol 2015;193:198-211. doi:10.1016/j.enggeo.2015.04.014.
Closed DTU fuel cycle with Np recycle and waste transmutation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beller, D.E.; Sailor, W.C.; Venneri, F.
1999-09-01
A nuclear energy scenario for the 21st century that included a denatured thorium-uranium-oxide (DTU) fuel cycle and new light water reactors (LWRs) supported by accelerator-driven transmutation of waste (ATW) systems was previously described. This coupled system with the closed DTU fuel cycle provides several improvements beyond conventional LWR (CLWR) (once-through, UO{sub 2} fuel) nuclear technology: increased proliferation resistance, reduced waste, and efficient use of natural resources. However, like CLWR fuel cycles, the spent fuel in the first one-third core discharged after startup contains higher-quality Pu than the equilibrium fuel cycle. To eliminate this high-grade Pu, Np is separated and recycledmore » with Th and U--rather than with higher actinides [(HA) including Pu]. The presence of Np in the LWR feed greatly increases the production of {sup 238}Pu so that a few kilograms of Pu generated enough alpha-decay heat that the separated Pu is highly resistant to proliferation. This alternate process also simplifies the pyrochemical separation of fuel elements (Th and U) from HAs. To examine the advantages of this concept, the authors modeled a US deployment scenario for nuclear energy that includes DTU-LWRs plus ATW`s to burn the actinides produced by these LWRs and to close the back-end of the DTU fuel cycle.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, D.C.
Nuclear Fuel Services sent more than 800 drums of nuclear waste to Oak Ridge National Laboratory, with the majority of the waste packaged into five different waste matrix types. A thorough and complete assay of the waste was performed at both NFS and at ORNL. A detailed comparing of the two assay sets provides valuable. insights into problems encountered in typical assay campaigns, particularly as there is, for the most part, excellent agreement between these two campaigns.
Kermisch, Celine
2016-12-01
The nuclear community frequently refers to the concept of "future generations" when discussing the management of high-level radioactive waste. However, this notion is generally not defined. In this context, we have to assume a wide definition of the concept of future generations, conceived as people who will live after the contemporary people are dead. This definition embraces thus each generation following ours, without any restriction in time. The aim of this paper is to show that, in the debate about nuclear waste, this broad notion should be further specified and to clarify the related implications for nuclear waste management policies. Therefore, we provide an ethical analysis of different management strategies for high-level waste in the light of two principles, protection of future generations-based on safety and security-and respect for their choice. This analysis shows that high-level waste management options have different ethical impacts across future generations, depending on whether the memory of the waste and its location is lost, or not. We suggest taking this distinction into account by introducing the notions of "close future generations" and "remote future generations", which has important implications on nuclear waste management policies insofar as it stresses that a retrievable disposal has fewer benefits than usually assumed.
DC graphite arc furnace, a simple system to reduce mixed waste volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittle, J.K.; Hamilton, R.A.; Trescot, J.
1995-12-31
The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE)more » complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Bill Walter; Chang, Fu-lin; Mattie, Patrick D.
2006-02-01
Sandia National Laboratories (SNL) and Taiwan's Institute for Nuclear Energy Research (INER) have teamed together to evaluate several candidate sites for Low-Level Radioactive Waste (LLW) disposal in Taiwan. Taiwan currently has three nuclear power plants, with another under construction. Taiwan also has a research reactor, as well as medical and industrial wastes to contend with. Eventually the reactors will be decomissioned. Operational and decommissioning wastes will need to be disposed in a licensed disposal facility starting in 2014. Taiwan has adopted regulations similar to the US Nuclear Regulatory Commission's (NRC's) low-level radioactive waste rules (10 CFR 61) to govern themore » disposal of LLW. Taiwan has proposed several potential sites for the final disposal of LLW that is now in temporary storage on Lanyu Island and on-site at operating nuclear power plants, and for waste generated in the future through 2045. The planned final disposal facility will have a capacity of approximately 966,000 55-gallon drums. Taiwan is in the process of evaluating the best candidate site to pursue for licensing. Among these proposed sites there are basically two disposal concepts: shallow land burial and cavern disposal. A representative potential site for shallow land burial is located on a small island in the Taiwan Strait with basalt bedrock and interbedded sedimentary rocks. An engineered cover system would be constructed to limit infiltration for shallow land burial. A representative potential site for cavern disposal is located along the southeastern coast of Taiwan in a tunnel system that would be about 500 to 800 m below the surface. Bedrock at this site consists of argillite and meta-sedimentary rocks. Performance assessment analyses will be performed to evaluate future performance of the facility and the potential dose/risk to exposed populations. Preliminary performance assessment analyses will be used in the site-selection process and to aid in design of the disposal system. Final performance assessment analyses will be used in the regulatory process of licensing a site. The SNL/INER team has developed a performance assessment methodology that is used to simulate processes associated with the potential release of radionuclides to evaluate these sites. The following software codes are utilized in the performance assessment methodology: GoldSim (to implement a probabilistic analysis that will explicitly address uncertainties); the NRC's Breach, Leach, and Transport - Multiple Species (BLT-MS) code (to simulate waste-container degradation, waste-form leaching, and transport through the host rock); the Finite Element Heat and Mass Transfer code (FEHM) (to simulate groundwater flow and estimate flow velocities); the Hydrologic Evaluation of Landfill performance Model (HELP) code (to evaluate infiltration through the disposal cover); the AMBER code (to evaluate human health exposures); and the NRC's Disposal Unit Source Term -- Multiple Species (DUST-MS) code (to screen applicable radionuclides). Preliminary results of the evaluations of the two disposal concept sites are presented.« less
Strategic Minimization of High Level Waste from Pyroprocessing of Spent Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Michael F.; Benedict, Robert W.
The pyroprocessing of spent nuclear fuel results in two high-level waste streams--ceramic and metal waste. Ceramic waste contains active metal fission product-loaded salt from the electrorefining, while the metal waste contains cladding hulls and undissolved noble metals. While pyroprocessing was successfully demonstrated for treatment of spent fuel from Experimental Breeder Reactor-II in 1999, it was done so without a specific objective to minimize high-level waste generation. The ceramic waste process uses “throw-away” technology that is not optimized with respect to volume of waste generated. In looking past treatment of EBR-II fuel, it is critical to minimize waste generation for technologymore » developed under the Global Nuclear Energy Partnership (GNEP). While the metal waste cannot be readily reduced, there are viable routes towards minimizing the ceramic waste. Fission products that generate high amounts of heat, such as Cs and Sr, can be separated from other active metal fission products and placed into short-term, shallow disposal. The remaining active metal fission products can be concentrated into the ceramic waste form using an ion exchange process. It has been estimated that ion exchange can reduce ceramic high-level waste quantities by as much as a factor of 3 relative to throw-away technology.« less
78 FR 45578 - Application For a License to Export Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-29
... NUCLEAR REGULATORY COMMISSION Application For a License to Export Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear... requestor or petitioner upon the applicant, the office of the General Counsel, U.S. Nuclear Regulatory...
78 FR 45579 - Request for a License to Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-29
... NUCLEAR REGULATORY COMMISSION Request for a License to Import Radioactive Waste Pursuant to 10 CFR 110.70 (b) ``Public Notice of Receipt of an Application,'' please take notice that the Nuclear... requestor or petitioner upon the applicant, the office of the General Counsel, U.S. Nuclear Regulatory...
NASA Astrophysics Data System (ADS)
Ortega, Luis H.; Kaminski, Michael D.; Zeng, Zuotao; Cunnane, James
2013-07-01
In the pursuit of methods to improve nuclear waste form thermal properties and combine potential nuclear fuel cycle wastes, a bronze alloy was combined with an alkali, alkaline earth metal bearing ceramic to form a cermet. The alloy was prepared from copper and tin (10 mass%) powders. Pre-sintered ceramic consisting of cesium, strontium, barium and rubidium alumino-silicates was mixed with unalloyed bronze precursor powders and cold pressed to 300 × 103 kPa, then sintered at 600 °C and 800 °C under hydrogen. Cermets were also prepared that incorporated molybdenum, which has a limited solubility in glass, under similar conditions. The cermet thermal conductivities were seven times that of the ceramic alone. These improved thermal properties can reduce thermal gradients within the waste forms thus lowering internal temperature gradients and thermal stresses, allowing for larger waste forms and higher waste loadings. These benefits can reduce the total number of waste packages necessary to immobilize a given amount of high level waste and immobilize troublesome elements.
DESIGN ANALYSIS FOR THE NAVAL SNF WASTE PACKAGE
DOE Office of Scientific and Technical Information (OSTI.GOV)
T.L. Mitchell
2000-05-31
The purpose of this analysis is to demonstrate the design of the naval spent nuclear fuel (SNF) waste package (WP) using the Waste Package Department's (WPD) design methodologies and processes described in the ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000b). The calculations that support the design of the naval SNF WP will be discussed; however, only a sub-set of such analyses will be presented and shall be limited to those identified in the ''Waste Package Design Sensitivity Report'' (CRWMS M&O 2000c). The objective of this analysis is to describe themore » naval SNF WP design method and to show that the design of the naval SNF WP complies with the ''Naval Spent Nuclear Fuel Disposal Container System Description Document'' (CRWMS M&O 1999a) and Interface Control Document (ICD) criteria for Site Recommendation. Additional criteria for the design of the naval SNF WP have been outlined in Section 6.2 of the ''Waste Package Design Sensitivity Report'' (CRWMS M&O 2000c). The scope of this analysis is restricted to the design of the naval long WP containing one naval long SNF canister. This WP is representative of the WPs that will contain both naval short SNF and naval long SNF canisters. The following items are included in the scope of this analysis: (1) Providing a general description of the applicable design criteria; (2) Describing the design methodology to be used; (3) Presenting the design of the naval SNF waste package; and (4) Showing compliance with all applicable design criteria. The intended use of this analysis is to support Site Recommendation reports and assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the technical product development plan (TPDP) ''Design Analysis for the Naval SNF Waste Package (CRWMS M&O 2000a).« less
76 FR 53980 - Request for a License To Import Radioactive Waste
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-30
... NUCLEAR REGULATORY COMMISSION Request for a License To Import Radioactive Waste Pursuant to 10 CFR... Hitachi Nuclear Energy, LLC. Radioactive waste Up to 210 Cobalt- Recycling, China August 1, 2011, August 5, consisting of 60 sealed forensic testing 2011, IW030. used Cobalt-60 sources. or storage and radioactive...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
... Safety Board, Pulse Jet Mixing at the Waste Treatment and Immobilization Plant AGENCY: Department of... their Recommendation 2010-2, concerning Pulse Jet Mixing at the Waste Treatment and Immobilization Plant... Nuclear Facilities Safety Board (Board) Recommendation 2010-2, Pulse Jet Mixing (PJM) at the Waste...
Nuclear Waste Primer: A Handbook for Citizens.
ERIC Educational Resources Information Center
Weber, Isabelle P.; Wiltshire, Susan D.
This publication was developed with the intention of offering the nonexpert a concise, balanced introduction to nuclear waste. It outlines the dimensions of the problem, discussing the types and quantities of waste. Included are the sources, types, and hazards of radiation, and some of the history, major legislation, and current status of both…
Glass corrosion in natural environments
NASA Technical Reports Server (NTRS)
Thorpe, Arthur N.; Barkatt, Aaron
1992-01-01
Experiments carried out during the progress period are summarized. Experiments carried out involving glass samples exposed to solutions of Tris have shown the appearance of 'spikes' upon monitoring glass dissolution as a function of time. The periodic 'spikes' observed in Tris-based media were interpreted in terms of cracking due to excessive stress in the surface region of the glass. Studies of the interactions of silicate glasses with metal ions in buffered media were extended to systems containing Al. Caps buffer was used to establish the pH. The procedures used are described and the results are given. Preliminary studies were initiated as to the feasibility of adding a slowly dissolving solid compound of the additive to the glass-water system to maintain a supply of dissolved additive. It appears that several magnesium compounds have a suitable combination of solubility and affinity towards silicate glass surfaces to have a pronounced retarding effect on the extraction of uranium from the glass. These preliminary findings raise the possibility that introducing a magnesium source into geologic repositories for nuclear waste glass in the form of a sparingly soluble Mg-based backfill material may cause a substantial reduction in the extent of long-term glass corrosion. The studies described also provide mechanistic understanding of the roles of various metal solutes in the leachant. Such understanding forms the basis for developing long-term predictions of nuclear waste glass durability under repository conditions. From what is known about natural highly reduced glasses such as tektites, it is clear that iron is dissolved as ferrous iron with little or no ferric iron. The reducing conditions were high enough to cause metallic iron to exsolve out of the glass in the form of submicroscopic spherules. As the nuclear waste glass is much less reduced, a study was initiated on other natural glasses in addition to the nuclear waste glass. Extensive measurements were carried out on these glasses in order to characterize their magnetic properties. Results of these studies are described.
NASA Astrophysics Data System (ADS)
Hadgu, T.; Kalinina, E.; Klise, K. A.; Wang, Y.
2015-12-01
Numerical modeling of disposal of nuclear waste in a deep geologic repository in fractured crystalline rock requires robust characterization of fractures. Various methods for fracture representation in granitic rocks exist. In this study we used the fracture continuum model (FCM) to characterize fractured rock for use in the simulation of flow and transport in the far field of a generic nuclear waste repository located at 500 m depth. The FCM approach is a stochastic method that maps the permeability of discrete fractures onto a regular grid. The method generates permeability fields using field observations of fracture sets. The original method described in McKenna and Reeves (2005) was designed for vertical fractures. The method has since then been extended to incorporate fully three-dimensional representations of anisotropic permeability, multiple independent fracture sets, and arbitrary fracture dips and orientations, and spatial correlation (Kalinina et al. 20012, 2014). For this study the numerical code PFLOTRAN (Lichtner et al., 2015) has been used to model flow and transport. PFLOTRAN solves a system of generally nonlinear partial differential equations describing multiphase, multicomponent and multiscale reactive flow and transport in porous materials. The code is designed to run on massively parallel computing architectures as well as workstations and laptops (e.g. Hammond et al., 2011). Benchmark tests were conducted to simulate flow and transport in a specified model domain. Distributions of fracture parameters were used to generate a selected number of realizations. For each realization, the FCM method was used to generate a permeability field of the fractured rock. The PFLOTRAN code was then used to simulate flow and transport in the domain. Simulation results and analysis are presented. The results indicate that the FCM approach is a viable method to model fractured crystalline rocks. The FCM is a computationally efficient way to generate realistic representation of complex fracture systems. This approach is of interest for nuclear waste disposal models applied over large domains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Peter Andrew
The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomicmore » scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.« less
Evaluation of americium-241 toxicity influence on the microbial growth of organic wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takehiro Marumo, Julio; Padua Ferreira, Rafael Vicente de; Keiko Isiki, Vera Lucia
2007-07-01
Available in abstract form only. Full text of publication follows: Since the licenses for using radioactive sources in radioactive lightning rods were lifted by the Brazilian national nuclear authority, in 1989, the radioactive devices have been replaced by Franklin type and collected as radioactive waste. However, only 20 percent of the estimated total number of installed rods was delivered to Brazilian Nuclear Commission. This situation causes concern, due to, first, the possibility of the rods being disposed as domestic waste, and second, the americium, the most commonly employed radionuclide, is classified as a high-toxicity element. In the present study, Am-241more » migration experiments were performed by a lysimeter system, in order to evaluate the risk of contamination caused by radioactive lightning rods disposed as a common solid waste. Besides the risk evaluation, it is important to know the mechanism of the Am-241 release or retention in waste as well as its influence in the waste decomposition processes. Many factors are involved, but microorganisms present in the waste play an important role in its degradation, which control the physical and chemical processes. The objective of this work was to evaluate the Am-241 influence on the microbial population by counting number of cells in lysimeters leachate. Preliminary results suggest that americium may influence significantly the bacteria growth in organic waste, evidenced by culture under aerobiosis and an-aerobiosis and the antimicrobial resistance test. (authors)« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... repository after permanent closure. 60.112 Section 60.112 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Performance Objectives § 60.112 Overall system performance objective for the geologic repository after permanent closure...
NASA Technical Reports Server (NTRS)
Lew, Jae Young; Book, Wayne J.
1991-01-01
Remote handling in nuclear waste management requires a robotic system with precise motion as well as a large workspace. The concept of a small arm mounted on the end of a large arm may satisfy such needs. However, the performance of such a serial configuration lacks payload capacity which is a crucial factor for handling a massive object. Also, this configuration induces more flexibility on the structure. To overcome these problems, the topology of bracing the tip of the small arm (not the large arm) and having an end effector in the middle of the chain is proposed in this paper. Also, control of these cooperating disparate manipulators is accomplished in computer simulations. Thus, this robotic system can have the accuracy of the small arm, and at the same time, it can have the payload capacity and large workspace of the large arm.
Department of Energy's first waste determinations under section 3116: how did the process work?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picha Jr, K.G.; Kaltreider, R.; Suttora, L.
2007-07-01
Congress passed the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005 on October 9, 2004, and the President signed it into law on October 28, 2004. Section 3116(a) of the NDAA allows the Department of Energy (DOE) to, in consultation with the Nuclear Regulatory Commission (NRC), determine whether certain radioactive waste resulting from reprocessing of spent nuclear fuel at two DOE sites is not high-level radioactive waste, and dispose of that waste in compliance with the performance objectives set out in subpart C of 10 CFR part 61 for low-level waste. On January 17, 2006, themore » Department issued its first waste determination under the NDAA for salt waste disposal at the Savannah River Site. On November 19, 2006, the Department issued its second waste determination for closure of tanks at the Idaho Nuclear Technology and Engineering Center Tank Farm Facility. These two determinations and a third draft determination illustrate the range of issues that may be encountered in preparing a waste determination in accordance with NDAA Section 3116. This paper discusses the experiences associated with these first two completed waste determinations and an in-progress third waste determination, and discusses lessons learned from the projects that can be applied to future waste determinations. (authors)« less
New Mexicans debate nuclear waste disposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepkowski, W.
1979-01-01
A brief survey of the background of the Waste Isolation Plant (WIPP) at Carlsbad, New Mexico and the forces at play around WIPP is presented. DOE has plans to establish by 1988 an underground repository for nuclear wastes in the salt formations near Carlsbad. Views of New Mexicans, both pro and con, are reviewed. It is concluded that DOE will have to practice public persuasion to receive approval for the burial of wastes in New Mexico.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolsey, G.B.; Wilhite, E.L.
1980-01-01
This paper confirmed with actual nuclear waste the thermodynamic predictions of the fate of some of the semivolatiles in off-gas. Ruthenium behaves erratically and it is postulated that it migrates as a finely divided solid, rather than as a volatile oxide. Provisions for handling these waste off-gasses will be incorporated in the design of facilities for vitrifying SRP waste.
Method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions
Horwitz, E. Philip; Delphin, Walter H.
1979-07-24
A method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions containing these and other values by contacting the waste solution with an extractant of tricaprylmethylammonium nitrate in an inert hydrocarbon diluent which extracts the palladium and technetium values from the waste solution. The palladium and technetium values are recovered from the extractant and from any other coextracted values with a strong nitric acid strip solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Kai; Hrma, Pavel; Washton, Nancy
The transition of Al phases in a simulated high-Al high-level nuclear waste melter feed heated at 5 K min-1 to 700°C was investigated with transmission electron microscopy, 27Al nuclear magnetic resonance spectroscopy, the Brunauer-Emmett-Teller method, and X-ray diffraction. At temperatures between 300 and 500°C, porous amorphous alumina formed from the dehydration of gibbsite, resulting in increased specific surface area of the feed (~8 m2 g-1). The high-surface-area amorphous alumina formed in this manner could potentially stop salt migration in the cold cap during nuclear waste vitrification.
NASA Technical Reports Server (NTRS)
1977-01-01
The programs and plans of the U.S. government for the "back end of the nuclear fuel cycle" were examined to determine if there were any significant technological or regulatory gaps and inconsistencies. Particular emphasis was placed on analysis of high-level nuclear waste management plans, since the permanent disposal of radioactive waste has emerged as a major factor in the public acceptance of nuclear power. The implications of various light water reactor fuel cycle options were examined including throwaway, stowaway, uranium recycle, and plutonium plus uranium recycle. The results of this study indicate that the U.S. program for high-level waste management has significant gaps and inconsistencies. Areas of greatest concern include: the adequacy of the scientific data base for geological disposal; programs for the the disposal of spent fuel rods; interagency coordination; and uncertainties in NRC regulatory requirements for disposal of both commercial and military high-level waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Tongan; Chun, Jaehun; Dixon, Derek R.
During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to themore » high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.« less
10 CFR 1304.112 - Notification of systems of Privacy Act records.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Notification of systems of Privacy Act records. 1304.112 Section 1304.112 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.112 Notification of systems of Privacy Act records. (a) Public notice. On November 22, 1996, the Board published a...
10 CFR 1304.112 - Notification of systems of Privacy Act records.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Notification of systems of Privacy Act records. 1304.112 Section 1304.112 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.112 Notification of systems of Privacy Act records. (a) Public notice. On November 22, 1996, the Board published a...
10 CFR 1304.112 - Notification of systems of Privacy Act records.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Notification of systems of Privacy Act records. 1304.112 Section 1304.112 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.112 Notification of systems of Privacy Act records. (a) Public notice. On November 22, 1996, the Board published a...
10 CFR 1304.112 - Notification of systems of Privacy Act records.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Notification of systems of Privacy Act records. 1304.112 Section 1304.112 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.112 Notification of systems of Privacy Act records. (a) Public notice. On November 22, 1996, the Board published a...
10 CFR 1304.112 - Notification of systems of Privacy Act records.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Notification of systems of Privacy Act records. 1304.112 Section 1304.112 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.112 Notification of systems of Privacy Act records. (a) Public notice. On November 22, 1996, the Board published a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giurgiutiu, Victor; Mendez Torres, Adrian E.
2013-07-01
Radioactive waste systems and structures (RWSS) are safety-critical facilities in need of monitoring over prolonged periods of time. Structural health monitoring (SHM) is an emerging technology that aims at monitoring the state of a structure through the use of networks of permanently mounted sensors. SHM technologies have been developed primarily within the aerospace and civil engineering communities. This paper addresses the issue of transitioning the SHM concept to the monitoring of RWSS and evaluates the opportunities and challenges associated with this process. Guided wave SHM technologies utilizing structurally-mounted piezoelectric wafer active sensors (PWAS) have a wide range of applications basedmore » on both propagating-wave and standing-wave methodologies. Hence, opportunities exist for transitioning these SHM technologies into RWSS monitoring. However, there exist certain special operational conditions specific to RWSS such as: radiation field, caustic environments, marine environments, and chemical, mechanical and thermal stressors. In order to address the high discharge of used nuclear fuel (UNF) and the limited space in the storage pools the U.S. the Department of Energy (DOE) has adopted a 'Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste' (January 2013). This strategy endorses the key principles that underpin the Blue Ribbon Commission's on America's Nuclear Future recommendations to develop a sustainable program for deploying an integrated system capable of transporting, storing, and disposing of UNF and high-level radioactive waste from civilian nuclear power generation, defense, national security, and other activities. This will require research to develop monitoring, diagnosis, and prognosis tools that can aid to establish a strong technical basis for extended storage and transportation of UNF. Monitoring of such structures is critical for assuring the safety and security of the nation's spent nuclear fuel until a national policy for closure of the nuclear fuel cycle is defined and implemented. In addition, such tools can provide invaluable and timely information for verification of the predicted mechanical performance of RWSS (e.g. concrete or steel barriers) during off-normal occurrence and accident events such as the tsunami and earthquake event that affected Fukushima Daiichi nuclear power plant. The ability to verify the conditions, health, and degradation behavior of RWSS over time by applying nondestructive testing (NDT) as well as development of nondestructive evaluation (NDE) tools for new degradation processes will become challenging. The paper discusses some of the challenges associated to verification and diagnosis for RWSS and identifies SHM technologies which are more readily available for transitioning into RWSS applications. Fundamental research objectives that should be considered for the transition of SHM technologies (e.g., radiation hardened piezoelectric materials) for RWSS applications are discussed. The paper ends with summary, conclusions, and suggestions for further work. (authors)« less
Preliminary risk assessment for nuclear waste disposal in space, volume 1
NASA Technical Reports Server (NTRS)
Rice, E. E.; Denning, R. S.; Friedlander, A. L.
1982-01-01
The feasibility, desirability and preferred approaches for disposal of selected high-level nuclear wastes in space were analyzed. Preliminary space disposal risk estimates and estimates of risk uncertainty are provided.
A study on artificial rare earth (RE2O3) based neutron absorber.
Kim, Kyung-O; Kyung Kim, Jong
2015-11-01
A new concept of a neutron absorption material (i.e., an artificial rare earth compound) was introduced for criticality control in a spent fuel storage system. In particular, spent nuclear fuels were considered as a potential source of rare earth elements because the nuclear fission of uranium produces a full range of nuclides. It was also found that an artificial rare earth compound (RE2O3) as a High-Level Waste (HLW) was naturally extracted from pyroprocessing technology developed for recovering uranium and transuranic elements (TRU) from spent fuels. In this study, various characteristics (e.g., activity, neutron absorption cross-section) were analyzed for validating the application possibility of this waste compound as a neutron absorption material. As a result, the artificial rare earth compound had a higher neutron absorption probability in the entire energy range, and it can be used for maintaining sub-criticality for more than 40 years on the basis of the neutron absorption capability of Boral™. Therefore, this approach is expected to vastly improve the efficiency of radioactive waste management by simultaneously keeping HLW and spent nuclear fuel in a restricted space. Copyright © 2015 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-11
... Safety Board, Pulse Jet Mixing at the Waste Treatment and Immobilization Plant AGENCY: Department of..., concerning Pulse Jet Mixing at the Waste Treatment and Immobilization Plant was published in the Federal... Defense Nuclear Facilities Safety Board (Board) Recommendation 2010-2, Pulse Jet Mixing at the Waste...
Method for calcining nuclear waste solutions containing zirconium and halides
Newby, Billie J.
1979-01-01
A reduction in the quantity of gelatinous solids which are formed in aqueous zirconium-fluoride nuclear reprocessing waste solutions by calcium nitrate added to suppress halide volatility during calcination of the solution while further suppressing chloride volatility is achieved by increasing the aluminum to fluoride mole ratio in the waste solution prior to adding the calcium nitrate.
Method for forming microspheres for encapsulation of nuclear waste
Angelini, Peter; Caputo, Anthony J.; Hutchens, Richard E.; Lackey, Walter J.; Stinton, David P.
1984-01-01
Microspheres for nuclear waste storage are formed by gelling droplets containing the waste in a gelation fluid, transferring the gelled droplets to a furnace without the washing step previously used, and heating the unwashed gelled droplets in the furnace under temperature or humidity conditions that result in a substantially linear rate of removal of volatile components therefrom.
Naturally occurring radioactive materials (NORM): a matter of wide societal implication.
Pescatore, C; Menon, S
2000-12-01
Naturally occurring radioactive materials are ubiquitous on Earth and their radioactivity may become concentrated as a result of human activities. Numerous industries produce concentrated radioactivity in their by-products: the coal industry, petroleum extraction and processing, water treatment, etc. The present reference system of radiation protection does not provide a complete framework for the coherent management of all types of radioactively contaminated materials. Inconsistencies in waste management policy and practice can be noted across the board, and especially vis-à-vis the management of radioactive waste from the nuclear industry. This article reviews the present societal approach to manage materials that are radioactive but are often not recognised as being such, and place the management of radioactive materials from the nuclear industry in perspective.
Hill, M.C.; D'Agnese, F. A.; Faunt, C.C.
2000-01-01
Fourteen guidelines are described which are intended to produce calibrated groundwater models likely to represent the associated real systems more accurately than typically used methods. The 14 guidelines are discussed in the context of the calibration of a regional groundwater flow model of the Death Valley region in the southwestern United States. This groundwater flow system contains two sites of national significance from which the subsurface transport of contaminants could be or is of concern: Yucca Mountain, which is the potential site of the United States high-level nuclear-waste disposal; and the Nevada Test Site, which contains a number of underground nuclear-testing locations. This application of the guidelines demonstrates how they may be used for model calibration and evaluation, and also to direct further model development and data collection.Fourteen guidelines are described which are intended to produce calibrated groundwater models likely to represent the associated real systems more accurately than typically used methods. The 14 guidelines are discussed in the context of the calibration of a regional groundwater flow model of the Death Valley region in the southwestern United States. This groundwater flow system contains two sites of national significance from which the subsurface transport of contaminants could be or is of concern: Yucca Mountain, which is the potential site of the United States high-level nuclear-waste disposal; and the Nevada Test Site, which contains a number of underground nuclear-testing locations. This application of the guidelines demonstrates how they may be used for model calibration and evaluation, and also to direct further model development and data collection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, A.; Hsiung, S.M.; Chowdhury, A.H.
Long-term stability of emplacement drifts and potential near-field fluid flow resulting from coupled effects are among the concerns for safe disposal of high-level nuclear waste (HLW). A number of factors can induce drift instability or change the near-field flow patterns. Repetitive seismic loads from earthquakes and thermal loads generated by the decay of emplaced waste are two significant factors. One of two key technical uncertainties (KTU) that can potentially pose a high risk of noncompliance with the performance objectives of 10 CFR Part 60 is the prediction of thermal-mechanical (including repetitive seismic load) effects on stability of emplacement drifts andmore » the engineered barrier system. The second KTU of concern is the prediction of thermal-mechanical-hydrological (including repetitive seismic load) effects on the host rock surrounding the engineered barrier system. The Rock Mechanics research project being conducted at the Center for Nuclear Waste Regulatory Analyses (CNWRA) is intended to address certain specific technical issues associated with these two KTUs. This research project has two major components: (i) seismic response of rock joints and a jointed rock mass and (ii) coupled thermal-mechanical-hydrological (TMH) response of a jointed rock mass surrounding the engineered barrier system (EBS). This final report summarizes the research activities concerned with the repetitive seismic load aspect of both these KTUs.« less
The Storage, Transportation, and Disposal of Nuclear Waste
NASA Astrophysics Data System (ADS)
Younker, J. L.
2002-12-01
The U.S. Congress established a comprehensive federal policy to dispose of wastes from nuclear reactors and defense facilities, centered on deep geologic disposal of high-level radioactive waste. Site screening led to selection of three potential sites and in 1987, Congress directed the Secretary of Energy to characterize only one site: Yucca Mountain in Nevada. For more than 20 years, teams of scientists and engineers have been evaluating the potential suitability of the site. On the basis of their work, the U.S. Secretary of Energy, Spencer Abraham, concluded in February 2002 that a safe repository can be sited at Yucca Mountain. On July 23, 2002, President Bush signed Joint Resolution 87 approving the site at Yucca Mountain for development of a repository, which allows the U.S. Department of Energy (DOE) to prepare and submit a license application to the U.S. Nuclear Regulatory Commission (NRC). Concerns have been raised relative to the safe transportation of nuclear materials. The U.S. history of transportation of nuclear materials demonstrates that high-level nuclear materials can be safely transported. Since the 1960s, over 1.6 million miles have been traveled by more than 2,700 spent nuclear fuel shipments, and there has never been an accident severe enough to cause a release of radioactive materials. The DOE will use NRC-certified casks that must be able to withstand very stringent tests. The same design features that allow the casks to survive severe accidents also limit their vulnerability to sabotage. In addition, the NRC will approve all shipping routes and security plans. With regard to long-term safety, the Yucca Mountain disposal system has five key attributes. First, the arid climate and geology of Yucca Mountain combine to ensure that limited water will enter the emplacement tunnels. Second, the DOE has designed a waste package and drip shield that are expected to have very long lifetimes in the repository environment. Third, waste form solubilities limit radionuclide releases, and the invert material below the package would further delay radionuclide movement. Fourth, rock units in the unsaturated and saturated zone at Yucca Mountain will delay and dilute any radionuclides that have migrated away from the emplacement tunnels. Fifth, disruptions due to volcanism, seismic events, or nuclear criticality have been evaluated and all are shown to have very low likelihood of causing unacceptable doses. Volcanism could result in a small, but calculable, dose during the regulatory period of 10,000 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thien, Mike G.; Barnes, Steve M.
2013-07-01
The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broadmore » spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described. (authors)« less
NASA Astrophysics Data System (ADS)
Schwartz, Michael O.
2018-02-01
A novel CO2 sequestration project at Wallula, Washington, USA, makes ample use of the geoscientific data collection of the old nuclear waste repository project at the Hanford Site nearby. Both projects target the Columbia River Basalt (CRB). The new publicity for the old project comes at a time when the approach to high-level nuclear waste disposal has undergone fundamental changes. The emphasis now is on a technical barrier that is chemically compatible with the host rock. In the ideal case, the waste container is in thermodynamic equilibrium with the host-rock groundwater regime. The CRB groundwater has what it takes to represent the ideal case.
Chemical Technology Division annual technical report, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-05-01
Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, andmore » treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.« less
The On-line Waste Library (OWL): Usage and Inventory Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sassani, David; Jang, Je-Hun; Mariner, Paul
The Waste Form Disposal Options Evaluation Report (SNL 2014) evaluated disposal of both Commercial Spent Nuclear Fuel (CSNF) and DOE-managed HLW and Spent Nuclear Fuel (DHLW and DSNF) in the variety of disposal concepts being evaluated within the Used Fuel Disposition Campaign. That work covered a comprehensive inventory and a wide range of disposal concepts. The primary goal of this work is to evaluate the information needs for analyzing disposal solely of a subset of those wastes in a Defense Repository (DRep; i.e., those wastes that are either defense related, or managed by DOE but are not commercial in origin).more » A potential DRep also appears to be safe in the range of geologic mined repository concepts, but may have different concepts and features because of the very different inventory of waste that would be included. The focus of this status report is to cover the progress made in FY16 toward: (1) developing a preliminary DRep included inventory for engineering/design analyses; (2) assessing the major differences of this included inventory relative to that in other analyzed repository systems and the potential impacts to disposal concepts; (3) designing and developing an on-line waste library (OWL) to manage the information of all those wastes and their waste forms (including CSNF if needed); and (4) constraining post-closure waste form degradation performance for safety assessments of a DRep. In addition, some continuing work is reported on identifying potential candidate waste types/forms to be added to the full list from SNL (2014 – see Table C-1) which also may be added to the OWL in the future. The status for each of these aspects is reported herein.« less
Initial Radionuclide Inventories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, H
The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclearmore » fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement, currently identified as 2030 and 2033, depending on the type of waste. TSPA-LA uses the results of this analysis to decay the inventory to the year of repository closure projected for the year of 2060.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quigley, K.D.; Butterworth, St.W.; Lockie, K.A.
2008-07-01
Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockie, K.A.; Suttora, L.C.; Quigley, K.D.
2007-07-01
Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to clean and close emptied radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain inmore » use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste and cleaned in preparation of final closure. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. In November 2006, three of the 113.5-kL (30,000-gal) tanks were filled with grout to provide long-term stability. It is currently planned that all seven cleaned 1,135.6-kL (300,000-gal) tanks, as well as the four 113.5-kL (30,000-gal) tanks and all associated tank vaults and interconnecting piping, will be stabilized with grout as early as 2008. (authors)« less
Rapid methods for radionuclide contaminant transport in nuclear fuel cycle simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huff, Kathryn
Here, nuclear fuel cycle and nuclear waste disposal decisions are technologically coupled. However, current nuclear fuel cycle simulators lack dynamic repository performance analysis due to the computational burden of high-fidelity hydrolgic contaminant transport models. The Cyder disposal environment and repository module was developed to fill this gap. It implements medium-fidelity hydrologic radionuclide transport models to support assessment appropriate for fuel cycle simulation in the Cyclus fuel cycle simulator. Rapid modeling of hundreds of discrete waste packages in a geologic environment is enabled within this module by a suite of four closed form models for advective, dispersive, coupled, and idealized con-more » taminant transport: a Degradation Rate model, a Mixed Cell model, a Lumped Parameter model, and a 1-D Permeable Porous Medium model. A summary of the Cyder module, its timestepping algorithm, and the mathematical models implemented within it are presented. Additionally, parametric demonstrations simulations performed with Cyder are presented and shown to demonstrate functional agreement with parametric simulations conducted in a standalone hydrologic transport model, the Clay Generic Disposal System Model developed by the Used Fuel Disposition Campaign Department of Energy Office of Nuclear Energy.« less
Rapid methods for radionuclide contaminant transport in nuclear fuel cycle simulation
Huff, Kathryn
2017-08-01
Here, nuclear fuel cycle and nuclear waste disposal decisions are technologically coupled. However, current nuclear fuel cycle simulators lack dynamic repository performance analysis due to the computational burden of high-fidelity hydrolgic contaminant transport models. The Cyder disposal environment and repository module was developed to fill this gap. It implements medium-fidelity hydrologic radionuclide transport models to support assessment appropriate for fuel cycle simulation in the Cyclus fuel cycle simulator. Rapid modeling of hundreds of discrete waste packages in a geologic environment is enabled within this module by a suite of four closed form models for advective, dispersive, coupled, and idealized con-more » taminant transport: a Degradation Rate model, a Mixed Cell model, a Lumped Parameter model, and a 1-D Permeable Porous Medium model. A summary of the Cyder module, its timestepping algorithm, and the mathematical models implemented within it are presented. Additionally, parametric demonstrations simulations performed with Cyder are presented and shown to demonstrate functional agreement with parametric simulations conducted in a standalone hydrologic transport model, the Clay Generic Disposal System Model developed by the Used Fuel Disposition Campaign Department of Energy Office of Nuclear Energy.« less
An Optical Disk-Based Information Retrieval System.
ERIC Educational Resources Information Center
Bender, Avi
1988-01-01
Discusses a pilot project by the Nuclear Regulatory Commission to apply optical disk technology to the storage and retrieval of documents related to its high level waste management program. Components and features of the microcomputer-based system which provides full-text and image access to documents are described. A sample search is included.…
ERIC Educational Resources Information Center
Department of Energy, Washington, DC. Office of Civilian Radioactive Waste Management, Washington, DC.
This guide is Unit 2 of the four-part series, Science, Society, and America's Nuclear Waste, produced by the U.S. Department of Energy's Office of Civilian Radioactive Waste Management. The goal of this unit is to convey factual information relevant to radioactivity and radiation and relate that information both to the personal lives of students…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schruder, Kristan; Goodwin, Derek
2013-07-01
AECL's Fuel Packaging and Storage (FPS) Project was initiated in 2004 to retrieve, transfer, and stabilize an identified inventory of degraded research reactor fuel that had been emplaced within in-ground 'Tile Hole' structures in Chalk River Laboratories' Waste Management Area in the 1950's and 60's. Ongoing monitoring of the legacy fuel storage conditions had identified that moisture present in the storage structures had contributed to corrosion of both the fuel and the storage containers. This prompted the initiation of the FPS Project which has as its objective to design, construct, and commission equipment and systems that would allow for themore » ongoing safe storage of this fuel until a final long-term management, or disposition, pathway was available. The FPS Project provides systems and technologies to retrieve and transfer the fuel from the Waste Management Area to a new facility that will repackage, dry, safely store and monitor the fuel for a period of 50 years. All equipment and the new storage facility are designed and constructed to meet the requirements for Class 1 Nuclear Facilities in Canada. (authors)« less
Thermodynamic model of natural, medieval and nuclear waste glass durability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C.M.; Plodinec, M.J.
1983-01-01
A thermodynamic model of glass durability based on hydration of structural units has been applied to natural glass, medieval window glasses, and glasses containing nuclear waste. The relative durability predicted from the calculated thermodynamics correlates directly with the experimentally observed release of structural silicon in the leaching solution in short-term laboratory tests. By choosing natural glasses and ancient glasses whose long-term performance is known, and which bracket the durability of waste glasses, the long-term stability of nuclear waste glasses can be interpolated among these materials. The current Savannah River defense waste glass formulation is as durable as natural basalt frommore » the Hanford Reservation (10/sup 6/ years old). The thermodynamic hydration energy is shown to be related to the bond energetics of the glass. 69 references, 2 figures, 1 table.« less
Transportation needs assessment: Emergency response section
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The transportation impacts of moving high level nuclear waste (HLNW) to a repository at Yucca Mountain in Nevada are of concern to the residents of the State as well as to the residents of other states through which the nuclear wastes might be transported. The projected volume of the waste suggests that shipments will occur on a daily basis for some period of time. This will increase the risk of accidents, including a catastrophic incident. Furthermore, as the likelihood of repository construction and operation and waste shipments increase, so will the attention given by the national media. This document ismore » not to be construed as a willingness to accept the HLNW repository on the part of the State. Rather it is an initial step in ensuring that the safety and well-being of Nevada residents and visitors and the State`s economy will be adequately addressed in federal decision-making pertaining to the transportation of HLNW into and across Nevada for disposal in the proposed repository. The Preferred Transportation System Needs Assessment identifies critical system design elements and technical and social issues that must be considered in conducting a comprehensive transportation impact analysis. Development of the needs assessment and the impact analysis is especially complex because of the absence of information and experience with shipping HLNW and because of the ``low probability, high consequence`` aspect of the transportation risk.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehto, J.; Ikaeheimonen, T.K.; Salbu, B.
The fallout from a major nuclear accident at a nuclear plant may result in a wide-scale contamination of the environment. Cleanup of contaminated areas is of special importance if these areas are populated or cultivated. All cleanup measures generate high amounts of radioactive waste, which have to be treated and disposed of in a safe manner. Scenarios assessing the amounts and activity concentrations of radioactive wastes for various cleanup measures after severe nuclear accidents have been worked out for urban, forest and agricultural areas. These scenarios are based on contamination levels and ares of contaminated lands from a model accident,more » which simulates a worst case accident at a nuclear power plant. Amounts and activity concentrations of cleanup wastes are not only dependent on the contamination levels and areas of affected lands, but also on the type of deposition, wet or dry, on the time between the deposition and the cleanup work, on the season, at which the deposition took place, and finally on the level of cleanup work. In this study practically all types of cleanup wastes were considered, whether or not the corresponding cleanup measures are cost-effective or justified. All cleanup measures are shown to create large amounts of radioactive wastes, but the amounts, as well as the activity concentrations vary widely from case to case.« less
Radioactive Liquid Waste Treatment Facility: Environmental Information Document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haagenstad, H.T.; Gonzales, G.; Suazo, I.L.
1993-11-01
At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end ofmore » its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.« less
Process for immobilizing plutonium into vitreous ceramic waste forms
Feng, Xiangdong; Einziger, Robert E.
1997-01-01
Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.
Process for immobilizing plutonium into vitreous ceramic waste forms
Feng, X.; Einziger, R.E.
1997-08-12
Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.
Process for immobilizing plutonium into vitreous ceramic waste forms
Feng, X.; Einziger, R.E.
1997-01-28
Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ojanen, K.
1984-07-01
While waiting for the federal government to develop a nuclear waste disposal strategy, California enacted legislation that bans the construction of nuclear reactors until permanent disposal technology for high-level wastes is demonstrated and approved. The US Supreme Court upheld this prohibition in Pacific Gas and Electric Co. v. State Energy Resources Conservation and Development Commission. The Court found that the California law did not attempt to regulate the construction or operation of a nuclear plant nor to infringe on federal regulation of radiation safety and nuclear wastes. The moratorium is a legitimate move by the state to avoid economic uncertainties.more » Federal preemption of the law would empower utilities to determine state energy needs and programs. 131 references.« less
Regulatory control of low level radioactive waste in Taiwan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, T.D.S.; Chiou, Syh-Tsong
1996-12-31
The commercial operation of Chinshan Nuclear Power Plant (NPP) Unit One marked the beginning of Taiwan`s nuclear power program. There are now three NPPs, each consisting of two units, in operation. This represents a generating capacity of 5,144 MWe. Nuclear power plants are sharing some 30 percent of electricity supplies in Taiwan. As far as low level radwaste (LLRW) is concerned, Taiwan Power Company (TPC) is the principal producer, contributing more than 90 percent of total volume of waste arising in Taiwan. Small producers, other than nuclear industries, medicine, research institutes, and universities, are responsible for the remaining 10 percent.more » In the paper, the LLRW management policy, organizational scheme, regulatory control over waste treatment, storage, transportation and disposal are addressed. Added to the paper in the last is how this country is managing its Naturally Occurring Radioactive Materials (NORM) waste.« less
Can Sisyphus succeed? Getting U.S. high-level nuclear waste into a geological repository.
North, D Warner
2013-01-01
The U.S. government has the obligation of managing the high-level radioactive waste from its defense activities and also, under existing law, from civilian nuclear power generation. This obligation is not being met. The January 2012 Final Report from the Blue Ribbon Commission on America's Nuclear Future provides commendable guidance but little that is new. The author, who served on the federal Nuclear Waste Technical Review Board from 1989 to 1994 and subsequently on the Board on Radioactive Waste Management of the National Research Council from 1994 to 1999, provides a perspective both on the Commission's recommendations and a potential path toward progress in meeting the federal obligation. By analogy to Sisyphus of Greek mythology, our nation needs to find a way to roll the rock to the top of the hill and have it stay there, rather than continuing to roll back down again. © 2012 Society for Risk Analysis.
National briefing summaries: Nuclear fuel cycle and waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, K.J.; Bradley, D.J.; Fletcher, J.F.
Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactivemore » waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ditmars, J.D.; Walbridge, E.W.; Rote, D.M.
1983-10-01
Repository performance assessment is analysis that identifies events and processes that might affect a repository system for isolation of radioactive waste, examines their effects on barriers to waste migration, and estimates the probabilities of their occurrence and their consequences. In 1983 Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) prepared two plans - one for performance assessment for a waste repository in salt and one for verification and validation of performance assessment technology. At the request of the US Department of Energy's Salt Repository Project Office (SRPO), Argonne National Laboratory reviewed those plans and prepared this report to advisemore » SRPO of specific areas where ONWI's plans for performance assessment might be improved. This report presents a framework for repository performance assessment that clearly identifies the relationships among the disposal problems, the processes underlying the problems, the tools for assessment (computer codes), and the data. In particular, the relationships among important processes and 26 model codes available to ONWI are indicated. A common suggestion for computer code verification and validation is the need for specific and unambiguous documentation of the results of performance assessment activities. A major portion of this report consists of status summaries of 27 model codes indicated as potentially useful by ONWI. The code summaries focus on three main areas: (1) the code's purpose, capabilities, and limitations; (2) status of the elements of documentation and review essential for code verification and validation; and (3) proposed application of the code for performance assessment of salt repository systems. 15 references, 6 figures, 4 tables.« less
NASA Astrophysics Data System (ADS)
Davies, C. W.; Davie, D. C.; Charles, D. A.
2015-12-01
Geological disposal of nuclear waste is being increasingly considered to deal with the growing volume of waste resulting from the nuclear legacy of numerous nations. Within the UK there is 650,000 cubic meters of waste safely stored and managed in near-surface interim facilities but with no conclusive permanent disposal route. A Geological Disposal Facility with incorporated Engineered Barrier Systems are currently being considered as a permanent waste management solution (Fig.1). This research focuses on the EBS bentonite buffer/waste canister interface, and experimentally replicates key environmental phases that would occur after canister emplacement. This progresses understanding of the temporal evolution of the EBS and the associated impact on its engineering, mineralogical and physicochemical state and considers any consequences for the EBS safety functions of containment and isolation. Correlation of engineering properties to the physicochemical state is the focus of this research. Changes to geotechnical properties such as Atterberg limits, swelling pressure and swelling kinetics are measured after laboratory exposure to THMC variables from interface and batch experiments. Factors affecting the barrier, post closure, include corrosion product interaction, precipitation of silica, near-field chemical environment, groundwater salinity and temperature. Results show that increasing groundwater salinity has a direct impact on the buffer, reducing swelling capacity and plasticity index by up to 80%. Similarly, thermal loading reduces swelling capacity by 23% and plasticity index by 5%. Bentonite/steel interaction studies show corrosion precipitates diffusing into compacted bentonite up to 3mm from the interface over a 4 month exposure (increasing with temperature), with reduction in swelling capacity in the affected zone, probably due to the development of poorly crystalline iron oxides. These results indicate that groundwater conditions, temperature and corrosion may affect the engineering performance of the bentonite buffer such that any interfaces between bentonite blocks that may be present immediately following buffer emplacement may persist in the longer term.
Impact of iron redox chemistry on nuclear waste disposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearce, Carolyn I.; Rosso, Kevin M.; Pattrick, Richard
For the safe disposal of nuclear waste, the ability to predict the changes in oxidation states of redox active actinide elements and fission products, such as U, Pu, Tc and Np is a key factor in determining their long term mobility. Both in the Geological Disposal Facility (GDF) near-field and in the far-field subsurface environment, the oxidation states of radionuclides are closely tied to changes in the redox condition of other elements in the subsurface such as iron. Iron pervades all aspects of the waste package environment, from the steel in the waste containers, through corrosion products, to the ironmore » minerals present in the host rock. Over the long period required for nuclear waste disposal, the chemical conditions of the subsurface waste package will vary along the entire continuum from oxidizing to reducing conditions. This variability leads to the expectation that redox-active components such as Fe oxides can undergo phase transformations or dissolution; to understand and quantify such a system with respect to potential impacts on waste package integrity and radionuclide fate is clearly a serious challenge. Traditional GDF performance assessment models currently rely upon surface adsorption or single phase solubility experiments and do not deal with the incorporation of radionuclides into specific crystallographic sites within the evolving Fe phases. In this chapter, we focus on the iron-bearing phases that are likely to be present in both the near and far-field of a GDF, examining their potential for redox activity and interaction with radionuclides. To support this, thermodynamic and molecular modelling is particularly important in predicting radionuclide behaviour in the presence of Fe-phases. Examination of radionuclide contamination of the natural environment provides further evidence of the importance of Fe-phases in far-field processes; these can be augmented by experimental and analogue studies.« less
Amft, Martin; Leisvik, Mathias; Carroll, Simon
2017-03-16
Half of the original 13 Swedish nuclear power reactors will be shut down by 2020. The decommissioning of these reactors is a challenge for all parties involved, including the licensees, the waste management system, the financing system, and the Swedish Radiation Safety Authority (SSM). This paper presents an overview of the Swedish regulations for decommissioning of nuclear facilities. It describes some of the experiences that SSM has gained from the application of these regulations. The focus of the present paper is on administrative aspects of decommissioning, such as SSM's guidelines, the definition of fundamental concepts in the regulatory framework, and a proposed revision of the licensing process according to the Environmental Act. These improvements will help to streamline the administration of the commercial nuclear power plant decommissioning projects that are anticipated to commence in Sweden in the near future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Systems and methods for harvesting and storing materials produced in a nuclear reactor
Heinold, Mark R.; Dayal, Yogeshwar; Brittingham, Martin W.
2016-04-05
Systems produce desired isotopes through irradiation in nuclear reactor instrumentation tubes and deposit the same in a robust facility for immediate shipping, handling, and/or consumption. Irradiation targets are inserted and removed through inaccessible areas without plant shutdown and placed in the harvesting facility, such as a plurality of sealable and shipping-safe casks and/or canisters. Systems may connect various structures in a sealed manner to avoid release of dangerous or unwanted matter throughout the nuclear plant, and/or systems may also automatically decontaminate materials to be released. Useable casks or canisters can include plural barriers for containment that are temporarily and selectively removable with specially-configured paths inserted therein. Penetrations in the facilities may limit waste or pneumatic gas escape and allow the same to be removed from the systems without over-pressurization or leakage. Methods include processing irradiation targets through such systems and securely delivering them in such harvesting facilities.
NASA Astrophysics Data System (ADS)
Lei, S.; Osborne, P.
2016-12-01
The Scoping of Options and Analyzing Risk (SOAR) model was developed by the U.S. Nuclear Regulatory Commission staff to assist in their evaluation of potential high-level radioactive waste disposal options. It is a 1-D contaminant transport code that contains a biosphere module to calculate mass fluxes and radiation dose to humans. As part of the Canadian Nuclear Safety Commission (CNSC)'s Coordinated Assessment Program to assist with the review of proposals for deep geological repositories (DGR's) for nuclear fuel wastes, CNSC conducted a research project to find out whether SOAR can be used by CNSC staff as an independent scoping tool to assist review of proponents' submissions related to safety assessment for DGRs. In the research, SOAR was applied to the post-closure safety assessment for a hypothetical DGR in sedimentary rock, as described in the 5th Case Study report by the Nuclear Waste Management Organization (NWMO) of Canada (2011). The report contains, among others, modeling of transport and releases of radionuclides at various locations within the geosphere and the radiation dose to humans over a period of one million years. One aspect covered was 1-D modeling of various scenarios and sensitivity cases with both deterministic and probabilistic approaches using SYVAC3-CC4, which stands for Systems Variability Analysis Code (generation 3, Canadian Concept generation 4), developed by Atomic Energy of Canada Limited (Kitson et al., 2000). Radionuclide fluxes and radiation dose to the humans calculated using SOAR were compared with that from NWMO's modeling. Overall, the results from the two models were similar, although SOAR gave lower mass fluxes and peak dose, mainly due to differences in modeling the waste package configurations. Sensitivity analyses indicate that both models are most sensitive to the diffusion coefficient of the geological media. The research leads to the conclusion that SOAR is a robust, user friendly, and flexible scoping tool that CNSC staff may use for safety assessments; however, some improvements may be needed, such as including dose contributions from other pathways in addition to drinking water and being more flexible for modeling different waste package configurations.
Process to separate transuranic elements from nuclear waste
Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.
1989-03-21
A process is described for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.
Process to separate transuranic elements from nuclear waste
Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.
1988-07-12
A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.
Colloid formation during waste form reaction: Implications for nuclear waste disposal
Bates, J. K.; Bradley, J.; Teetsov, A.; Bradley, C. R.; Buchholtz ten Brink, Marilyn R.
1992-01-01
Insoluble plutonium- and americium-bearing colloidal particles formed during simulated weathering of a high-level nuclear waste glass. Nearly 100 percent of the total plutonium and americium in test ground water was concentrated in these submicrometer particles. These results indicate that models of actinide mobility and repository integrity, which assume complete solubility of actinides in ground water, underestimate the potential for radionuclide release into the environment. A colloid-trapping mechanism may be necessary for a waste repository to meet long-term performance specifications.
Process to separate transuranic elements from nuclear waste
Johnson, Terry R.; Ackerman, John P.; Tomczuk, Zygmunt; Fischer, Donald F.
1989-01-01
A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR).
Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination.
Kyne, Dean; Bolin, Bob
2016-07-12
Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP) reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives.
Task 3 - Pyrolysis of Plastic Waste. Semiannual report, November 1, 1996--March 31, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ness, Robert O.; Aulich, Ted R.
1997-12-31
Over the last 50 years, the U.S. Department of Energy (DOE) has produced a wide variety of radioactive wastes from activities associated with nuclear defense and nuclear power generation. These wastes include low-level radioactive solid wastes, mixed wastes, and transuranic (TRU) wastes. A portion of these wastes consists of high- organic-content materials, such as resins, plastics, and other polymers; synthetic and natural rubbers; cellulosic-based materials; and oils, organic solvents, and chlorinated organic solvents. Many of these wastes contain hazardous and/or pyrophoric materials in addition to radioactive species. Physical forms of the waste include ion-exchange resins used to remove radioactive elementsmore » from nuclear reactor cooling water, lab equipment and tools (e.g., measurement and containment vessels, hoses, wrappings, equipment coverings and components, and countertops), oil products (e.g., vacuum pump and lubrication oils), bags and other storage containers (for liquids, solids, and gases), solvents, gloves, lab coats and anti-contamination clothing, and other items. Major polymer and chemical groups found in high-organic-content radioactive wastes include polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP), Teflon(TM), polystyrene (PS), nylon, latex, polyethylene terephthalate (PET), vinyl, high-density polyethylene (HDPE), polycarbonate, nitriles, Tygon(R), butyl, and Tyvec(R).« less
JPRS Report, Science & Technology, Europe
1992-05-07
Knowledge of Systems and Their Scope: Within their own domains , computer assistants must be able to provide information about their scope and its limits...Described 19 Effluent Treatment System [Bonn WISSENSCHAFT WIRTSCHAFT POLITIK, 25 Mar 92] 19 Waste Disposal by Pyrolysis [Bonn WISSENSCHAFT...Ditterich; Wuerzburg UMWELTMAGAZIN, Apr 92] 23 France Plans Nuclear Plant Monitoring System [Patrick Levy; Paris LVSINE NOUVELLE, 12 Mar 92] 24
Nuclear waste transportation: case studies of identifying stakeholder risk information needs.
Drew, Christina H; Grace, Deirdre A; Silbernagel, Susan M; Hemmings, Erin S; Smith, Alan; Griffith, William C; Takaro, Timothy K; Faustman, Elaine M
2003-01-01
The U.S. Department of Energy (DOE) is responsible for the cleanup of our nation's nuclear legacy, involving complex decisions about how and where to dispose of nuclear waste and how to transport it to its ultimate disposal site. It is widely recognized that a broad range of stakeholders and tribes should be involved in this kind of decision. All too frequently, however, stakeholders and tribes are only invited to participate by commenting on processes and activities that are near completion; they are not included in the problem formulation stages. Moreover, it is often assumed that high levels of complexity and uncertainty prevent meaningful participation by these groups. Considering the types of information that stakeholders and tribes need to be able to participate in the full life cycle of decision making is critical for improving participation and transparency of decision making. Toward this objective, the Consortium for Risk Evaluation with Stakeholder Participation (CRESP) participated in three public processes relating to nuclear waste transportation and disposal in 1997-1998. First, CRESP organized focus groups to identify concerns about nuclear waste transportation. Second, CRESP conducted exit surveys at regional public workshops held by DOE to get input from stakeholders on intersite waste transfer issues. Third, CRESP developed visual tools to synthesize technical information and allow stakeholders and tribes with varying levels of knowledge about nuclear waste to participate in meaningful discussion. In this article we share the results of the CRESP findings, discuss common themes arising from these interactions, and comment on special considerations needed to facilitate stakeholder and tribal participation in similar decision-making processes. PMID:12611653
Public Resistance is Waste-Based and What to Do About That - 13412
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, Laurie
2013-07-01
'Nuclear Communicators' connect a highly advanced sci-tech world with the world of everyday living. One challenge is helping stakeholders fit together three Big Ideas: (1) the valuable nuclear energy resource, (2) nuclear energy's invisible mortal dangers and potential bad-guy threats, and (3) critical scientific and engineering knowledge that is far over the heads of average (grade 8) USA reading levels. This article provides an overview of what does - and does not - work in our public communications. What does not work: 1. Going off topic. Address what concerns people most: how to manage nuclear wastes. 2. Underestimating public intelligence.more » What works: 1. Doing your homework on community history regarding nuclear materials. 2. Having discussion forums and public meetings with special guests from industry, government, and local leaders. 3. Regular cycles of communication with community groups to build a long-term dialogue. Solutions to some communication challenges require handling four gaps and one jungle: 1. Facts gap - Honest information about waste disposition. 2. Time gap - The timelines associated with waste management include 300 years, 10,000 years, and 703.8 million years. How do we talk about this? 3. Money gap - Who pays for new waste management challenges and technologies? 4. Confidence gap - Link local options to regional, national, and global knowledge. 5. Decision jungle - How can we make waste management rules and infrastructure more logical and transparent? Public communication needs to be grounded in facts for people who want to be credible actors in the new nuclear world. (authors)« less
Web-services-based spatial decision support system to facilitate nuclear waste siting
NASA Astrophysics Data System (ADS)
Huang, L. Xinglai; Sheng, Grant
2006-10-01
The availability of spatial web services enables data sharing among managers, decision and policy makers and other stakeholders in much simpler ways than before and subsequently has created completely new opportunities in the process of spatial decision making. Though generally designed for a certain problem domain, web-services-based spatial decision support systems (WSDSS) can provide a flexible problem-solving environment to explore the decision problem, understand and refine problem definition, and generate and evaluate multiple alternatives for decision. This paper presents a new framework for the development of a web-services-based spatial decision support system. The WSDSS is comprised of distributed web services that either have their own functions or provide different geospatial data and may reside in different computers and locations. WSDSS includes six key components, namely: database management system, catalog, analysis functions and models, GIS viewers and editors, report generators, and graphical user interfaces. In this study, the architecture of a web-services-based spatial decision support system to facilitate nuclear waste siting is described as an example. The theoretical, conceptual and methodological challenges and issues associated with developing web services-based spatial decision support system are described.
American power conference: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-01-01
The first volume of this conference contains papers on the following topics: (1) Controls, monitoring, and expert systems (Harnessing microprocessor revolution for a more competitive power industry; Plant control--Upgrades; Neural network applications); (2) Diversification and globalization (Electric utility diversification/globalization--Panel; Private power in developing countries); (3) Environment and clean air (Clean Air compliance costs; Site selection for power stations and related facilities; Electric utility trace substance emissions; Solid waste disposal and commercial use; Precipitators/fabric filters; and Effect of flow modifications on fisheries and water quality); (4) Generation--Fuel options equipment (Alternate fuels; Advances in fuel cells for electric power applications; Secondary containmentmore » and seismic requirements for petrochemical facilities; Clean coal technology demonstration; Advanced energy systems; Hydropower); (5) Nuclear operations options (Radioactive waste management and disposal; Off normal conditions; Advanced light water reactors--15 years after TMI; Structural dynamic analyses for nuclear power plants); (6) Retrofit, betterment, repowering maintenance (Project management; Improving competitiveness through process re-engineering; Central stations; Water and wastewater treatment); (7) System planning, operation demand maintenance (Transmission system access; Stability; Systems planning); (8) Transmission and distribution (Transformers; Relaying for system protection; Managing EMF effects); and (9) Education (Power engineering). 155 papers have been processed separately for inclusion on the data base.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herbst, A.K.; Rogers, A.Z.; McCray, J.A.
The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulm, Franz-Josef
2000-03-31
OAK-B135 Monitoring the Durability Performance of Concrete in Nuclear Waste Containment. Technical Progress Report No. 3(NOTE: Part II A item 1 indicates ''PAPER'', but a report is attached electronically)
Minerals and design of new waste forms for conditioning nuclear waste
NASA Astrophysics Data System (ADS)
Montel, Jean-Marc
2011-02-01
Safe storage of radioactive waste is a major challenge for the nuclear industry. Mineralogy is a good basis for designing ceramics, which could eventually replace nuclear glasses. This requires a new storage concept: separation-conditioning. Basic rules of crystal chemistry allow one to select the most suitable structures and natural occurrences allow assessing the long-term performance of ceramics in a geological environment. Three criteria are of special interest: compatibility with geological environment, resistance to natural fluids, and effects of self-irradiation. If mineralogical information is efficient for predicting the behaviour of common, well-known minerals, such as zircon, monazite or apatite, more research is needed to rationalize the long-term behaviour of uncommon waste form analogs.
NASA Astrophysics Data System (ADS)
Dobrowolska, M.; Velthuis, J.; Frazão, L.; Kikoła, D.
2018-05-01
Nuclear waste is deposited for many years in the concrete or bitumen-filled containers. With time hydrogen gas is produced, which can accumulate in bubbles. These pockets of gas may result in bitumen overflowing out of the waste containers and could result in spread of radioactivity. Muon Scattering Tomography is a non-invasive scanning method developed to examine the unknown content of nuclear waste drums. Here we present a method which allows us to successfully detect bubbles larger than 2 litres and determine their size with a relative uncertainty resolution of 1.55 ± 0.77%. Furthermore, the method allows to make a distinction between a conglomeration of bubbles and a few smaller gas volumes in different locations.
High-level waste program progress report, April 1, 1980-June 30, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-08-01
The highlights of this report are on: waste management analysis for nuclear fuel cycles; fixation of waste in concrete; study of ceramic and cermet waste forms; alternative high-level waste forms development; and high-level waste container development.
Calcine Waste Storage at the Idaho Nuclear Technology and Engineering Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staiger, Merle Daniel; M. C. Swenson
2005-01-01
This report documents an inventory of calcined waste produced at the Idaho Nuclear Technology and Engineering Center during the period from December 1963 to May 2000. The report was prepared based on calciner runs, operation of the calcined solids storage facilities, and miscellaneous operational information that establishes the range of chemical compositions of calcined waste stored at Idaho Nuclear Technology and Engineering Center. The report will be used to support obtaining permits for the calcined solids storage facilities, possible treatment of the calcined waste at the Idaho National Engineering and Environmental Laboratory, and to ship the waste to an off-sitemore » facility including a geologic repository. The information in this report was compiled from calciner operating data, waste solution analyses and volumes calcined, calciner operating schedules, calcine temperature monitoring records, and facility design of the calcined solids storage facilities. A compact disk copy of this report is provided to facilitate future data manipulations and analysis.« less
Power to the people: Can public referenda kill nuclear power?
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-01-01
This article is a review of the current public anxiety toward nuclear power. It focuses on activities in each member of the European nuclear community, with the common thread being concern over the disposal of radioactive wastes. It is noted that the consensus appears to be that disposal of high-level waste is a problem for tomorrow and not for today.
Developments and Tendencies in Fission Reactor Concepts
NASA Astrophysics Data System (ADS)
Adamov, E. O.; Fuji-Ie, Y.
This chapter describes, in two parts, new-generation nuclear energy systems that are required to be in harmony with nature and to make full use of nuclear resources. The issues of transmutation and containment of radioactive waste will also be addressed. After a short introduction to the first part, Sect. 58.1.2 will detail the requirements these systems must satisfy on the basic premise of peaceful use of nuclear energy. The expected designs themselves are described in Sect. 58.1.3. The subsequent sections discuss various types of advanced reactor systems. Section 58.1.4 deals with the light water reactor (LWR) whose performance is still expected to improve, which would extend its application in the future. The supercritical-water-cooled reactor (SCWR) will also be shortly discussed. Section 58.1.5 is mainly on the high temperature gas-cooled reactor (HTGR), which offers efficient and multipurpose use of nuclear energy. The gas-cooled fast reactor (GFR) is also included. Section 58.1.6 focuses on the sodium-cooled fast reactor (SFR) as a promising concept for advanced nuclear reactors, which may help both to achieve expansion of energy sources and environmental protection thus contributing to the sustainable development of mankind. The molten-salt reactor (MSR) is shortly described in Sect. 58.1.7. The second part of the chapter deals with reactor systems of a new generation, which are now found at the research and development (R&D) stage and in the medium term of 20-30 years can shape up as reliable, economically efficient, and environmentally friendly energy sources. They are viewed as technologies of cardinal importance, capable of resolving the problems of fuel resources, minimizing the quantities of generated radioactive waste and the environmental impacts, and strengthening the regime of nonproliferation of the materials suitable for nuclear weapons production. Particular attention has been given to naturally safe fast reactors with a closed fuel cycle (CFC) - as an advanced and promising reactor system that offers solutions to the above problems. The difference (not confrontation) between the approaches to nuclear power development based on the principles of “inherent safety” and “natural safety” is demonstrated.
Localized chemistry of 99Tc in simulated low activity waste glass
NASA Astrophysics Data System (ADS)
Weaver, Jamie L.
A priority of the United States Department of Energy (DOE) is to dispose of the nuclear waste accumulated in the underground tanks at the Hanford Nuclear Reservation in Richland, WA. Incorporation and stabilization of technetium (99Tc) from these tanks into vitrified waste forms is a concern to the waste glass community and DOE due to 99Tc's long half-life ( 2.13˙105 y), and its high mobility in the subsurface environment under oxidizing conditions. Working in collaboration with researchers at Pacific Northwest National Laboratory (PNNL) and other national laboratories, plans were formulated to obtain first-of-a-kind chemical structure determination of poorly understood and environmentally relevant technetium compounds that relate to the chemistry of the Tc in nuclear waste glasses. Knowledge of the structure and spectral signature of these compounds aid in refining the understanding of 99Tc incorporation into and release from oxide based waste glass. In this research a first-of-its kind mechanism for the behavior of 99Tc during vitrification is presented, and the structural role of Tc(VII) and (IV) in borosilicate waste glasses is readdressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uman, M A
2008-10-09
The University of Florida has surveyed all relevant publications reporting lightning damage to metals, metals which could be used as components of storage containers for nuclear waste materials. We show that even the most severe lightning could not penetrate the stainless steel thicknesses proposed for nuclear waste storage casks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiner, Ruth F.; Blink, James A.; Rechard, Robert Paul
This report examines the current policy, legal, and regulatory framework pertaining to used nuclear fuel and high level waste management in the United States. The goal is to identify potential changes that if made could add flexibility and possibly improve the chances of successfully implementing technical aspects of a nuclear waste policy. Experience suggests that the regulatory framework should be established prior to initiating future repository development. Concerning specifics of the regulatory framework, reasonable expectation as the standard of proof was successfully implemented and could be retained in the future; yet, the current classification system for radioactive waste, including hazardousmore » constituents, warrants reexamination. Whether or not consideration of multiple sites are considered simultaneously in the future, inclusion of mechanisms such as deliberate use of performance assessment to manage site characterization would be wise. Because of experience gained here and abroad, diversity of geologic media is not particularly necessary as a criterion in site selection guidelines for multiple sites. Stepwise development of the repository program that includes flexibility also warrants serious consideration. Furthermore, integration of the waste management system from storage, transportation, and disposition, should be examined and would be facilitated by integration of the legal and regulatory framework. Finally, in order to enhance acceptability of future repository development, the national policy should be cognizant of those policy and technical attributes that enhance initial acceptance, and those policy and technical attributes that maintain and broaden credibility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, M.B.
1994-07-01
Nuclear weapons production has contaminated parts of France, and measures to counter this contamination may be as much cover-up as cleanup. The nuclear weapons industry is trying to remedy some of the problems it created. But until France lifts military secrecy from weapons production matters that affect the environment, the public has no way to gauge the cleanup. No institution outside the Atomic Energy Commission (CEA) and the Ministry of Defense has control over waste disposal, decontamination, and dismantlement at military nuclear sites. The major generators of weapons production waste in France are the CEA and Cogema, one of itsmore » many subsidiaries. Regular operations in military production sites produce environmental contamination. The authors also discuss some accidents causing further contamination. The clean-up measures that the industry is known to be taking, diluting the waste and minimizing the amount of waste, are suspect. The earth`s atmosphere has been considered a prime medium for diluting waste by open air burning of radioactive materials. Releases of mercury to the atmosphere, 260 kilograms per year as of 1984, contributed to water pollution as rain washed the mercury out of the air. Ocean dumping was the CEA`s answer to disposal of sold as well as liquid wastes. Injection liquids into the soil has been a temptation at sites not near substantial bodies of water. Burial of solid wastes has been common. The nuclear industry and the military must make public where and in what form wastes are stored. They must allow independent experts and institutions to examine their research, fabrication, and waste disposal sites. 48 refs.« less
Thermal investigation of nuclear waste disposal in space
NASA Technical Reports Server (NTRS)
Wilkinson, C. L.
1981-01-01
A thermal analysis has been conducted to determine the allowable size and response of bare and shielded nuclear waste forms in both low earth orbit and at 0.85 astronomical units. Contingency conditions of re-entry with a 45 deg and 60 deg aeroshell are examined as well as re-entry of a spherical shielded waste form. A variety of shielded schemes were examined and the waste form thermal response for each determined. Two optimum configurations were selected. The thermal response of these two shielded waste configurations to indefinite exposure to ground conditions following controlled and uncontrolled re-entry is determined. In all cases the prime criterion is that waste containment must be maintained.
Hasselgren, Per-Olof; Alamdari, Nima; Aversa, Zaira; Gonnella, Patricia; Smith, Ira J; Tizio, Steven
2010-01-01
Purpose of review The purpose of this review is to discuss novel insight into mechanisms of glucocorticoid-regulated muscle wasting, in particular the role of transcription factors and nuclear cofactors. In addition, novel strategies that may become useful in the treatment or prevention of glucocorticoid-induced muscle wasting are reviewed. Recent findings Studies suggest that glucocorticoid-induced upregulation of the transcription factors FOXO1 and C/EBPβ and downregulation of MyoD and myogenin are involved in glucocorticoid-induced muscle wasting. In addition, glucocorticoid-induced hyperacetylation caused by increased expression of the nuclear cofactor p300 and its histone acetyl transferase activity and decreased expression and activity of histone deacetylases (HDACs) plays an important role in glucocorticoid-induced muscle proteolysis and wasting. Other mechanisms may also be involved in glucocorticoid-induced muscle wasting, including insulin resistance and store-operated calcium entry. Novel potential strategies to prevent or treat glucocorticoid-induced muscle wasting include the use of small molecule HDAC activators, dissociated glucocorticoid receptor agonists, and 11β-hydroxysteroid dehydrogenase type 1 inhibitors. Summary An increased understanding of molecular mechanisms regulating glucocorticoid-induced muscle wasting will help develop new strategies to prevent and treat this debilitating condition. PMID:20473154
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al Jebali, Ramsey; Mahon, David; Clarkson, Anthony
2015-07-01
A prototype scintillating-fibre detector system has been developed at the University of Glasgow in collaboration with the UK National Nuclear Laboratory (NNL) for the nondestructive assay of UK legacy nuclear waste containers. This system consists of two tracking modules above, and two below, the container under interrogation. Each module consists of two orthogonal planes of 2 mm-pitch fibres yielding one space point. Per plane, 128 fibres are read out by a single Hamamatsu H8500 64-channel MAPMT with two fibres multiplexed onto each pixel. A dedicated mapping scheme has been developed to avoid space point ambiguities and retain the high spatialmore » resolution provided by the fibres. The configuration allows the reconstruction of the incoming and scattered muon trajectories, thus enabling the container content, with respect to atomic number Z, to be determined. Results are shown from experimental data collected for high-Z objects within an air matrix and, for the first time, within a shielded, concrete-filled container. These reconstructed images show clear discrimination between the low, medium and high-Z materials present, with dimensions and positions determined with sub-centimetre precision. (authors)« less
The Geopolitics of Nuclear Waste.
ERIC Educational Resources Information Center
Marshall, Eliot
1991-01-01
The controversy surrounding the potential storage of nuclear waste at Yucca Mountain, Nevada, is discussed. Arguments about the stability of the site and the groundwater situation are summarized. The role of the U.S. Department of Energy and other political considerations are described. (CW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badwan, Faris M.; Demuth, Scott F
Department of Energy’s Office of Nuclear Energy, Fuel Cycle Research and Development develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development focused on used nuclear fuel recycling and waste management to meet U.S. needs. Used nuclear fuel is currently stored onsite in either wet pools or in dry storage systems, with disposal envisioned in interim storage facility and, ultimately, in a deep-mined geologic repository. The safe management and disposition of used nuclear fuel and/or nuclear waste is amore » fundamental aspect of any nuclear fuel cycle. Integrating safety, security, and safeguards (3Ss) fully in the early stages of the design process for a new nuclear facility has the potential to effectively minimize safety, proliferation, and security risks. The 3Ss integration framework could become the new national and international norm and the standard process for designing future nuclear facilities. The purpose of this report is to develop a framework for integrating the safety, security and safeguards concept into the design of Used Nuclear Fuel Storage Facility (UNFSF). The primary focus is on integration of safeguards and security into the UNFSF based on the existing Nuclear Regulatory Commission (NRC) approach to addressing the safety/security interface (10 CFR 73.58 and Regulatory Guide 5.73) for nuclear power plants. The methodology used for adaptation of the NRC safety/security interface will be used as the basis for development of the safeguards /security interface and later will be used as the basis for development of safety and safeguards interface. Then this will complete the integration cycle of safety, security, and safeguards. The overall methodology for integration of 3Ss will be proposed, but only the integration of safeguards and security will be applied to the design of the UNFSF. The framework for integration of safeguards and security into the UNFSF will include 1) identification of applicable regulatory requirements, 2) selection of a common system that share dual safeguard and security functions, 3) development of functional design criteria and design requirements for the selected system, 4) identification and integration of the dual safeguards and security design requirements, and 5) assessment of the integration and potential benefit.« less
Hydrogen speciation in hydrated layers on nuclear waste glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aines, R.D.; Weed, H.C.; Bates, J.K.
1987-12-31
The hydration of an outer layer on nuclear waste glasses in known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 & 165, and PNL 76-68), which were leached at 90{sup 0}C (all glasses) or hydrated in a vapor-saturated atmosphere at 202{sup 0}C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. In addition, molecular watermore » was found in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. The hydrated layer on the nuclear waste glasses appears to be of relatively low water content (4 to 7% by weight) and is not substantially hydroxylated. Thus, these layers do not have many of the properties associated with gel layers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neeway, James J.; Pierce, Eric M.; Freedman, Vicky L.
2014-08-04
The federal facilities located on the Hanford Site in southeastern Washington State have been used extensively by the U.S. government to produce nuclear materials for the U.S. strategic defense arsenal. Currently, the Hanford Site is under the stewardship of the U.S. Department of Energy (DOE) Office of Environmental Management (EM). A large inventory of radioactive and mixed waste resulting from the production of nuclear materials has accumulated, mainly in 177 underground single- and double-shell tanks located in the central plateau of the Hanford Site (Mann et al., 2001). The DOE-EM Office of River Protection (ORP) is proceeding with plans tomore » immobilize and permanently dispose of the low-activity waste (LAW) fraction onsite in a shallow subsurface disposal facility (the Integrated Disposal Facility [IDF]). Pacific Northwest National Laboratory (PNNL) was contracted to provide the technical basis for estimating radionuclide release from the engineered portion of the IDF (the source term) as part of an immobilized low-activity waste (ILAW) glass testing program to support future IDF performance assessments (PAs).« less
NASA Astrophysics Data System (ADS)
Adams, Mike; Smalian, Silva
2017-09-01
For nuclear waste packages the expected dose rates and nuclide inventory are beforehand calculated. Depending on the package of the nuclear waste deterministic programs like MicroShield® provide a range of results for each type of packaging. Stochastic programs like "Monte-Carlo N-Particle Transport Code System" (MCNP®) on the other hand provide reliable results for complex geometries. However this type of program requires a fully trained operator and calculations are time consuming. The problem here is to choose an appropriate program for a specific geometry. Therefore we compared the results of deterministic programs like MicroShield® and stochastic programs like MCNP®. These comparisons enable us to make a statement about the applicability of the various programs for chosen types of containers. As a conclusion we found that for thin-walled geometries deterministic programs like MicroShield® are well suited to calculate the dose rate. For cylindrical containers with inner shielding however, deterministic programs hit their limits. Furthermore we investigate the effect of an inhomogeneous material and activity distribution on the results. The calculations are still ongoing. Results will be presented in the final abstract.
Whitney, John W.; O'Leary, Dennis W.
1993-01-01
Tectonic characterization of a potential high-level nuclear waste repository at Yucca Mountain, Nevada, is needed to assess seismic and possible volcanic hazards that could affect the site during the preclosure (next 100 years) and the behavior of the hydrologic system during the postclosure (the following 10,000 years) periods. Tectonic characterization is based on assembling mapped geological structures in their chronological order of development and activity, and interpreting their dynamic interrelationships. Addition of mechanistic models and kinematic explanations for the identified tectonic processes provides one or more tectonic models having predictive power. Proper evaluation and application of tectonic models can aid in seismic design and help anticipate probable occurrence of future geologic events of significance to the repository and its design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulse, R.A.
1991-08-01
Planning for storage or disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of that waste to estimate volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate the characteristics and project volumes and radionuclide activities to the year 2035. GTCC LLW is categorized as: nuclear utilities waste, sealed sources waste, DOE-held potential GTCC LLW; and, other generator waste. It has been determined that the largest volume of those wastes, approximately 57%, is generated by nuclear power plants. The Other Generator waste category contributes approximately 10% of the totalmore » GTCC LLW volume projected to the year 2035. Waste held by the Department of Energy, which is potential GTCC LLW, accounts for nearly 33% of all waste projected to the year 2035; however, no disposal determination has been made for that waste. Sealed sources are less than 0.2% of the total projected volume of GTCC LLW.« less
On-line remote monitoring of radioactive waste repositories
NASA Astrophysics Data System (ADS)
Calì, Claudio; Cosentino, Luigi; Litrico, Pietro; Pappalardo, Alfio; Scirè, Carlotta; Scirè, Sergio; Vecchio, Gianfranco; Finocchiaro, Paolo; Alfieri, Severino; Mariani, Annamaria
2014-12-01
A low-cost array of modular sensors for online monitoring of radioactive waste was developed at INFN-LNS. We implemented a new kind of gamma counter, based on Silicon PhotoMultipliers and scintillating fibers, that behaves like a cheap scintillating Geiger-Muller counter. It can be placed in shape of a fine grid around each single waste drum in a repository. Front-end electronics and an FPGA-based counting system were developed to handle the field data, also implementing data transmission, a graphical user interface and a data storage system. A test of four sensors in a real radwaste storage site was performed with promising results. Following the tests an agreement was signed between INFN and Sogin for the joint development and installation of a prototype DMNR (Detector Mesh for Nuclear Repository) system inside the Garigliano radwaste repository in Sessa Aurunca (CE, Italy). Such a development is currently under way, with the installation foreseen within 2014.
Energy: An annotated selected bibliography
NASA Technical Reports Server (NTRS)
Blow, S. J. (Compiler); Peacock, R. W. (Compiler); Sholy, J. J. (Compiler)
1979-01-01
This updated bibliography contains approximately 7,000 selected references on energy and energy related topics from bibliographic and other data sources from June 1977. Under each subject heading the entries are arranged by the data, with the latest works first. Subject headings include: resources supply/demand, and forecasting; policy, legislation, and regulation; environment; consumption, conservation, and economics; analysis, systems, and modeling, and information sources and documentation. Fossil fuels, hydrogen and other fuels, liquid/solid wastes and biomass, waste heat utilization, and nuclear power sources are also included.
NASA Technical Reports Server (NTRS)
1998-01-01
Bio-Imaging Research, Inc., has been included in Spinoff 1990 and 1993 with spinoffs from their ACTIS (Advanced Computed Tomography Inspection System) product developed under a Marshall Space Flight Center SBIR (Small Business Innovative Research) contract. The latest application is for noninvasive nuclear waste drum inspection. With the ACTIS CT (computed tomography, CATScan) scanner, radioactive waste is examined to prove that they do not contain one-half percent free liquid or that the drum wall has lost integrity before being moved across state lines or before being permanently disposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thrower, Alex W.; Janairo, Lisa
2013-07-01
The Blue Ribbon Commission on America's Nuclear Future (BRC) was formed in January 2010 to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle, and to develop a new national strategy. Over two years, the BRC held dozens of meetings and heard from hundreds of Federal, State, Tribal, and local officials, as well as representatives of trade and labor organizations, technical groups, non-governmental organizations, and other stakeholders. The Commission's final report (issued January 26, 2012) offers a strategy to resolve longstanding challenges to responsible management of the United States' nuclear waste legacy. Themore » Commission recommended Congressional action to rewrite parts of the Nuclear Waste Policy Act (NWPA); however, a comprehensive legislative overhaul will likely take years to fully implement. The nature and characteristics of nuclear waste, the activities that generated it, and the past history of federal efforts to manage the waste make it virtually certain that finding workable solutions will be controversial and difficult. As the BRC report suggests, this difficulty can be made insurmountable if top-down, federally-mandated efforts are forced upon unwilling States, Tribes, and local communities. Decades of effort and billions of ratepayer and taxpayer dollars have been spent attempting to site and operate spent fuel storage and disposal facilities in this manner. The experience thus far indicates that voluntary consent and active partnership of States, Tribes, and local governments in siting, designing, and operating such facilities are critical. Some States, Tribes, and local communities have indicated that, given adequate scientific and technical information, along with appropriate incentives, assurances, and authority, they might be willing to consider hosting facilities for consolidated storage and disposal of spent nuclear fuel. The authors propose a new regional approach to identifying and resolving issues related to the selection of a consolidated storage site. The approach would be characterized by informed discussion and deliberation, bringing together stakeholders from government, the non-governmental (NGO) community, industry, and other sectors. Because site selection would result in regional transportation impacts, the development of the transportation system (e.g., route identification, infrastructure improvements) would be integrated into the issue-resolution process. In addition to laying out the necessary steps and associated timeline, the authors address the challenges of building public trust and confidence in the new waste management program, as well as the difficulty of reaching and sustaining broad-based consensus on a decision to host a consolidated storage facility. (authors)« less
Activities for the remediation of TEPCO's Fukushima Daiichi nuclear power plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinoshita, Hirofumi; Kometani, Yutaka; Asano, Takashi
2013-07-01
With the aim of fulfilling recovery work for the Fukushima Daiichi NPP, technological efforts have been made for the development of a survey robot system, adequate communication infrastructure technologies, high radiation environment compatible gamma cameras, heavy machinery-type robots (ASTACO-SoRa), remote decontamination devices (AROUNDER), and contaminated waste water treatment system. We have developed a new type of absorbents which remove cesium (Cs) and strontium (Sr) simultaneously at a high removal rate of 99 % or more. We will provide valuable solutions and rational systems for waste water treatment using this developed adsorbent as well as other various adsorbents for the recoverymore » of Fukushima Daiichi NPP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Mukesh; Niemi, Belinda; Paik, Ingle
2015-09-02
In 2012, One System Nuclear Safety performed a comparison of the safety bases for the Tank Farms Operations Contractor (TOC) and Hanford Tank Waste Treatment and Immobilization Plant (WTP) (RPP-RPT-53222 / 24590-WTP-RPT-MGT-12-018, “One System Report of Comparative Evaluation of Safety Bases for Hanford Waste Treatment and Immobilization Plant Project and Tank Operations Contract”), and identified 25 recommendations that required further evaluation for consensus disposition. This report documents ten NSSC approved consistent methodologies and guides and the results of the additional evaluation process using a new set of evaluation criteria developed for the evaluation of the new methodologies.
Greater-than-Class C low-level waste characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piscitella, R.R.
1991-12-31
In 1985, Public Law 99-240 (Low-Level Radioactive Waste Policy Amendments Act of 1985) made the Department of Energy (DOE) responsible for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW). DOE strategies for storage and disposal of GTCC LLW required characterization of volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate characteristics, project volumes, and determine radionuclide activities to the years 2035 and 2055. Twenty-year life extensions for 70% of the operating nuclear reactors were assumed to calculate the GTCC LLW available in 2055. The following categories of GTCCmore » LLW were addressed: Nuclear Utilities Waste; Potential Sealed Sources GTCC LLW; DOE-Held Potential GTCC LLW; and Other Generator Waste. It was determined that the largest volume of these wastes, approximately 57%, is generated by nuclear utilities. The Other Generator Waste category contributes approximately 10% of the total GTCC LLW volume projected to the year 2035. DOE-Held Potential GTCC LLW accounts for nearly 33% of all waste projected to the year 2035. Potential Sealed Sources GTCC LLW is less than 0.2% of the total projected volume. The base case total projected volume of GTCC LLW for all categories was 3,250 cubic meters. This was substantially less than previous estimates.« less
Nuclear waste storage container with metal matrix
Sump, Kenneth R.
1978-01-01
The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties.
Tower of Babel: a special report of the nuclear industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The southern U.S. region currently maintains 19 operating nuclear reactors, a large number of nuclear-related industries, and numerous radioactive waste storage facilities. To illustrate the greed of nuclear power proponents and the dangers of existing and future nuclear power plant operations, the southern nuclear power industry is surveyed. Detailed are the South's involvement in each phase of the nuclear fuel cycle, from uranium mining to waste disposal; efforts by the region's private electric utility companies to buttress the crumbling supports of the nuclear industry; and the serious threat that nuclear power poses to the region, the nation, and the world.more » The U.S. nuclear power industry can be viewed as a modern Tower of Babel. (4 maps, 20 photos, 2 tables)« less
Generation-IV Nuclear Energy Systems
NASA Astrophysics Data System (ADS)
McFarlane, Harold
2008-05-01
Nuclear power technology has evolved through roughly three generations of system designs: a first generation of prototypes and first-of-a-kind units implemented during the period 1950 to 1970; a second generation of industrial power plants built from 1970 to the turn of the century, most of which are still in operation today; and a third generation of evolutionary advanced reactors which began being built by the turn of the 20^th century, usually called Generation III or III+, which incorporate technical lessons learned through more than 12,000 reactor-years of operation. The Generation IV International Forum (GIF) is a cooperative international endeavor to develop advanced nuclear energy systems in response to the social, environmental and economic requirements of the 21^st century. Six Generation IV systems under development by GIF promise to enhance the future contribution and benefits of nuclear energy. All Generation IV systems aim at performance improvement, new applications of nuclear energy, and/or more sustainable approaches to the management of nuclear materials. High-temperature systems offer the possibility of efficient process heat applications and eventually hydrogen production. Enhanced sustainability is achieved primarily through adoption of a closed fuel cycle with reprocessing and recycling of plutonium, uranium and minor actinides using fast reactors. This approach provides significant reduction in waste generation and uranium resource requirements.
Glass former composition and method for immobilizing nuclear waste using the same
Cadoff, Laurence H.; Smith-Magowan, David B.
1988-01-01
An alkoxide glass former composition has silica-containing constituents present as solid particulates of a particle size of 0.1 to 0.7 micrometers in diameter in a liquid carrier phase substantially free of dissolved silica. The glass former slurry is resistant to coagulation and may contain other glass former metal constituents. The immobilization of nuclear waste employs the described glass former by heating the same to reduce the volume, mixing the same with the waste, and melting the resultant mixture to encapsulate the waste in the resultant glass.
NASA Astrophysics Data System (ADS)
Allison, Wade
2010-01-01
Expeditions in search of a rainbow's end never reach their goal. Efforts to solve the problem of nuclear-waste disposal have not had much success either - perhaps because they have been addressing questions the wrong way round. There are two basic challenges of waste disposal. The first is scientific: the waste must be kept somewhere out of harm's way, where it does not incur major risks to current or future residents of the planet. The second is political: scientists must persuade and reassure the community as a whole that the waste is being handled, stored and disposed of safely.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kani, Yuko; Kamosida, Mamoru; Watanabe, Daisuke
Waste water containing high levels of radionuclides due to the Fukushima Daiichi Nuclear Power Plant accident, has been treated by the adsorption removal and reverse-osmosis (RO) desalination to allow water re-use for cooling the reactors. Radionuclides in the waste water are collected in the adsorbent medium and the RO concentrate (RO brine) in the water treatment system currently operated at the Fukushima Daiichi site. In this paper, we have studied the behavior of radionuclides in the presently applied RO desalination system and the removal of radionuclides in possible additional adsorption systems for the Fukushima Daiichi waste water treatment. Regarding themore » RO desalination system, decontamination factors (DFs) of the elements present in the waste water were obtained by lab-scale testing using an RO unit and simulated waste water with non-radioactive elements. The results of the lab-scale testing using representative elements showed that the DF for each element depended on its hydrated ionic radius: the larger the hydrated ionic radius of the element, the higher its DF is. Thus, the DF of each element in the waste water could be estimated based on its hydrated ionic radius. For the adsorption system to remove radionuclides more effectively, we studied adsorption behavior of typical elements, such as radioactive cesium and strontium, by various kinds of adsorbents using batch and column testing. We used batch testing to measure distribution coefficients (K{sub d}s) for cesium and strontium onto adsorbents under different brine concentrations that simulated waste water conditions at the Fukushima Daiichi site. For cesium adsorbents, K{sub d}s with different dependency on the brine concentration were observed based on the mechanism of cesium adsorption. As for strontium, K{sub d}s decreased as the brine concentration increased for any adsorbents which adsorbed strontium by intercalation and by ion exchange. The adsorbent titanium oxide had higher K{sub d}s and it was used for the column testing to obtain breakthrough curves under various conditions of pH and brine concentration. The breakthrough point had a dependency on pH and the brine concentration. We found that when the pH was higher or the brine concentration was lower, the longer it took to reach the breakthrough point. The inhibition of strontium adsorption by alkali earth metals would be diminished for conditions of higher pH and lower brine concentration. (authors)« less
Transmutation of Nuclear Waste and the future MYRRHA Demonstrator
NASA Astrophysics Data System (ADS)
Mueller, Alex C.
2013-03-01
While a considerable and world-wide growth of the nuclear share in the global energy mix is desirable for many reasons, there are also, in particular in the "old world" major objections. These are both concerns about safety, in particular in the wake of the Fukushima nuclear accident and concerns about the long-term burden that is constituted by the radiotoxic waste from the spent fuel. With regard to the second topic, the present contribution will outline the concept of Partitioning & Transmutation (P&T), as scientific and technological answer. Deployment of P&T may use dedicated "Transmuter" or "Burner" reactors, using a fast neutron spectrum. For the transmutation of waste with a large content (up to 50%) of (very long-lived) Minor Actinides, a sub-critical reactor, using an external neutron source is a most attractive solution. It is constituted by coupling a proton accelerator, a spallation target and a subcritical core. This promising new technology is named ADS, for accelerator-driven system. The present paper aims at a short introduction into the field that has been characterized by a high collaborative activity during the last decade in Europe, in order to focus, in its later part, on the MYRRHA project as the European ADS technology demonstrator.
Back-end of the fuel cycle - Indian scenario
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wattal, P.K.
Nuclear power has a key role in meeting the energy demands of India. This can be sustained by ensuring robust technology for the back end of the fuel cycle. Considering the modest indigenous resources of U and a huge Th reserve, India has adopted a three stage Nuclear Power Programme (NPP) based on 'closed fuel cycle' approach. This option on 'Recovery and Recycle' serves twin objectives of ensuring adequate supply of nuclear fuel and also reducing the long term radio-toxicity of the wastes. Reprocessing of the spent fuel by Purex process is currently employed. High Level Liquid Waste (HLW) generatedmore » during reprocessing is vitrified and undergoes interim storage. Back-end technologies are constantly modified to address waste volume minimization and radio-toxicity reduction. Long-term management of HLW in Indian context would involve partitioning of long lived minor actinides and recovery of valuable fission products specifically cesium. Recovery of minor actinides from HLW and its recycle is highly desirable for the sustained growth of India's NPPs. In this context, programme for developing and deploying partitioning technologies on industrial scale is pursued. The partitioned elements could be either transmuted in Fast Reactors (FRs)/Accelerated Driven Systems (ADS) as an integral part of sustainable Indian NPP. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins-Smith, H.C.; Espey, J.L.; Rouse, A.A.
1991-06-01
This report describes the results of a set of five surveys designed to assess the perceived risks of nuclear waste management policy in Colorado and New Mexico. Within these states, mail surveys of randomly selected samples were taken of members of the American Association for the Advancement of Science, members of the Sierra Club, members of business associations, and state legislators. In addition, a telephone sample of randomly selected households was conducted in Colorado and New Mexico. Using these data, the perceptions of the risk of nuclear waste management -- from production of nuclear energy through permanent storage of nuclearmore » wastes -- are compared for each of the five samples. The degree of trust in, and the perceived political influence of, the more prominent policy actors are assessed. Certain cognitive attributes, including degree of subjective certainty regarding beliefs about risks of nuclear wastes, and likelihood of altering perceived risks when confronted with new information, are compared across samples. In addition, the sample scores from rudimentary knowledge tests about the characteristics of radiation are compared. The relationships among the knowledge scores, cognitive attributes and risk perceptions are evaluated. Perceptions of the balance of media coverage are measured, as are the possible direct and indirect roles of media exposure in risk perception. Aggregate models, testing an array of hypotheses about the bases of nuclear waste risk perceptions, are conducted. These tests indicate that risk perceptions are related to a complex set of factors, and that these factors may differ significantly across the different sub-populations. Finally, the relationships between risk perception and political participation -- including registering to vote, political party affiliation, and level of political activism -- are analyzed. 5 figs., 33 tabs.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-19
... Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... 15, ``Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level... for low-level waste. DATES: Submit comments by November 15, 2012. Comments received after this date...
Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-01
The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumedmore » to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely.« less
Marine pollution and management of shores; Pollutions marines et amenagement des rivages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubert, M.; Aubert, J.
1973-01-01
The fourteen chapters of the book are presented in three sections entitled description of marine pollution, oceanographic techniques in marine pollution studies, and prevention of marine pollution and management of shores. The first section discusses thermal, bacterial, radioactive, chemical and organic pollution. In the chapter on thermal pollution, emphasis is placed on the effects of heated effluents on the ecological balance of estuaries. Effects of waste products from nuclear industries are discussed in the chapter on radioactive pollution as well as the development of fission products, radioactive wastes from nuclear-propulsion ships, wastes from nuclear accidents, and wastes from atomic bombmore » explosions. Measures for prevention of pollution include management of stream mouths and studies on pollution of parts and artificial beaches. (approximately 200 references) (HLW)« less
Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination
Kyne, Dean; Bolin, Bob
2016-01-01
Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP) reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives. PMID:27420080
Transmutation of Isotopes --- Ecological and Energy Production Aspects
NASA Astrophysics Data System (ADS)
Gudowski, Waclaw
2000-01-01
This paper describes principles of Accelerator-Driven Transmutation of Nuclear Wastes (ATW) and gives some flavour of the most important topics which are today under investigations in many countries. An assessment of the potential impact of ATW on a future of nuclear energy is also given. Nuclear reactors based on self-sustained fission reactions --- after spectacular development in fifties and sixties, that resulted in deployment of over 400 power reactors --- are wrestling today more with public acceptance than with irresolvable technological problems. In a whole spectrum of reasons which resulted in today's opposition against nuclear power few of them are very relevant for the nuclear physics community and they arose from the fact that development of nuclear power had been handed over to the nuclear engineers and technicians with some generically unresolved problems, which should have been solved properly by nuclear scientists. In a certain degree of simplification one can say, that most of the problems originate from very specific features of a fission phenomenon: self-sustained chain reaction in fissile materials and very strong radioactivity of fission products and very long half-life of some of the fission and activation products. And just this enormous concentration of radioactive fission products in the reactor core is the main problem of managing nuclear reactors: it requires unconditional guarantee for the reactor core integrity in order to avoid radioactive contamination of the environment; it creates problems to handle decay heat in the reactor core and finally it makes handling and/or disposal of spent fuel almost a philosophical issue, due to unimaginable long time scales of radioactive decay of some isotopes. A lot can be done to improve the design of conventional nuclear reactors (like Light Water Reactors); new, better reactors can be designed but it seems today very improbable to expect any radical change in the public perception of conventional nuclear power. In this context a lot of hopes and expectations have been expressed for novel systems called Accelerator-Driven Systems, Accelerator-Driven Transmutation of Waste or just Hybrid Reactors. All these names are used for description of the same nuclear system combining a powerful particle accelerator with a subcritical reactor. A careful analysis of possible environmental impact of ATW together with limitation of this technology is presented also in this paper.
Optimum Water Chemistry in radiation field buildup control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chien, C.
1995-03-01
Nuclear utilities continue to face the challenGE of reducing exposure of plant maintenance personnel. GE Nuclear Energy has developed the concept of Optimum Water Chemistry (OWC) to reduce the radiation field buildup and minimize the radioactive waste production. It is believed that reduction of radioactive sources and improvement of the water chemistry quality should significantly reduce both the radiation exposure and radwaste production. The most important source of radioactivity is cobalt and replacement of cobalt containing alloy in the core region as well as in the entire primary system is considered the first priority to achieve the goal of lowmore » exposure and minimized waste production. A plant specific computerized cobalt transport model has been developed to evaluate various options in a BWR system under specific conditions. Reduction of iron input and maintaining low ionic impurities in the coolant have been identified as two major tasks for operators. Addition of depleted zinc is a proven technique to reduce Co-60 in reactor water and on out-of-core piping surfaces. The effect of HWC on Co-60 transport in the primary system will also be discussed.« less
Thorium Fuel Cycle Option Screening in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taiwo, Temitope A.; Kim, Taek K.; Wigeland, Roald A.
2016-05-01
As part of a nuclear fuel cycle Evaluation and Screening (E&S) study, a wide-range of thorium fuel cycle options were evaluated and their performance characteristics and challenges to implementation were compared to those of other nuclear fuel cycle options based on criteria specified by the Nuclear Energy Office of the U.S. Department of Energy (DOE). The evaluated nuclear fuel cycles included the once-through, limited, and continuous recycle options using critical or externally-driven nuclear energy systems. The E&S study found that the continuous recycle of 233U/Th in fuel cycles using either thermal or fast reactors is an attractive promising fuel cyclemore » option with high effective fuel resource utilization and low waste generation, but did not perform quite as well as the continuous recycle of Pu/U using a fast critical system, which was identified as one of the most promising fuel cycle options in the E&S study. This is because compared to their uranium counterparts the thorium-based systems tended to have higher radioactivity in the short term (about 100 years post irradiation) because of differences in the fission product yield curves, and in the long term (100,000 years post irradiation) because of the decay of 233U and daughters, and because of higher mass flow rates due to lower discharge burnups. Some of the thorium-based systems also require enriched uranium support, which tends to be detrimental to resource utilization and waste generation metrics. Finally, similar to the need for developing recycle fuel fabrication, fuels separations and fast reactors for the most promising options using Pu/U recycle, the future thorium-based fuel cycle options with continuous recycle would also require such capabilities, although their deployment challenges are expected to be higher since such facilities have not been developed in the past to a comparable level of maturity for Th-based systems.« less
Cuevas, Jaime; Ruiz, Ana Isabel; Fernández, Raúl
2018-02-21
Clay and cement are known nano-colloids originating from natural processes or traditional materials technology. Currently, they are used together as part of the engineered barrier system (EBS) to isolate high-level nuclear waste (HLW) metallic containers in deep geological repositories (DGR). The EBS should prevent radionuclide (RN) migration into the biosphere until the canisters fail, which is not expected for approximately 10 3 years. The interactions of cementitious materials with bentonite swelling clay have been the scope of our research team at the Autonomous University of Madrid (UAM) with participation in several European Union (EU) projects from 1998 up to now. Here, we describe the mineral and chemical nature and microstructure of the alteration rim generated by the contact between concrete and bentonite. Its ability to buffer the surrounding chemical environment may have potential for further protection against RN migration. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
10 CFR 60.135 - Criteria for the waste package and its components.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 60.135 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES... for the waste package and its components. (a) High-level-waste package design in general. (1) Packages... package's permanent written records. (c) Waste form criteria for HLW. High-level radioactive waste that is...
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... waste, and/or high level waste including possible reaction with water during wet loading and unloading... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor...
10 CFR 72.120 - General considerations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... waste, and/or high level waste including possible reaction with water during wet loading and unloading... NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design... reactor-related GTCC waste in an ISFSI or to store spent fuel, high-level radioactive waste, or reactor...
10 CFR 72.18 - Elimination of repetition.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Elimination of repetition. 72.18 Section 72.18 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE License...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Applicability. 72.13 Section 72.13 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.13...
10 CFR 72.5 - Interpretations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Interpretations. 72.5 Section 72.5 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.5...
10 CFR 72.5 - Interpretations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Interpretations. 72.5 Section 72.5 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.5...
10 CFR 72.18 - Elimination of repetition.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Elimination of repetition. 72.18 Section 72.18 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE License...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Applicability. 72.13 Section 72.13 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.13...
10 CFR 72.34 - Environmental report.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Environmental report. 72.34 Section 72.34 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE License Application, Form...
10 CFR 72.90 - General considerations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false General considerations. 72.90 Section 72.90 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Siting Evaluation Factors...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-15
... Repository Geologies Pursuant to its authority under section 5051 of Public Law 100-203, the Nuclear Waste... repository. A representative of the U.S. Geological Survey (USGS) will provide a USGS perspective on this...
System analyses on advanced nuclear fuel cycle and waste management
NASA Astrophysics Data System (ADS)
Cheon, Myeongguk
To evaluate the impacts of accelerator-driven transmutation of waste (ATW) fuel cycle on a geological repository, two mathematical models are developed: a reactor system analysis model and a high-level waste (HLW) conditioning model. With the former, fission products and residual trans-uranium (TRU) contained in HLW generated from a reference ATW plant operations are quantified and the reduction of TRU inventory included in commercial spent-nuclear fuel (CSNF) is evaluated. With the latter, an optimized waste loading and composition in solidification of HLW are determined and the volume reduction of waste packages associated with CSNF is evaluated. WACOM, a reactor system analysis code developed in this study for burnup calculation, is validated by ORIGEN2.1 and MCNP. WACOM is used to perform multicycle analysis for the reference lead-bismuth eutectic (LBE) cooled transmuter. By applying the results of this analysis to the reference ATW deployment scenario considered in the ATW roadmap, the HLW generated from the ATW fuel cycle is quantified and the reduction of TRU inventory contained in CSNF is evaluated. A linear programming (LP) model has been developed for determination of an optimized waste loading and composition in solidification of HLW. The model has been applied to a US-defense HLW. The optimum waste loading evaluated by the LP model was compared with that estimated by the Defense Waste Processing Facility (DWPF) in the US and a good agreement was observed. The LP model was then applied to the volume reduction of waste packages associated with CSNF. Based on the obtained reduction factors, the expansion of Yucca Mountain Repository (YMR) capacity is evaluated. It is found that with the reference ATW system, the TRU contained in CSNF could be reduced by a factor of ˜170 in terms of inventory and by a factor of ˜40 in terms of toxicity under the assumed scenario. The number of waste packages related to CSNF could be reduced by a factor of ˜8 in terms of volume and by factor of ˜10 on the basis of electricity generation when a sufficient cooling time for discharged spent fuel and zero process chemicals in HLW are assumed. The expansion factor of Yucca Mountain Repository capacity is estimated to be a factor of 2.4, much smaller than the reduction factor of CSNF waste packages, due to the existence of DOE-owned spent fuel and HLW. The YMR, however, could support 10 times greater electricity generation as long as the statutory capacity of DOE-owned SNF and HLW remains unchanged. This study also showed that the reduction of the number of waste packages could strongly be subject to the heat generation rate of HLW and the amount of process chemicals contained in HLW. For a greater reduction of the number of waste packages, a sufficient cooling time for discharged fuel and efforts to minimize the amount of process chemicals contained in HLW are crucial.
Preliminary risk benefit assessment for nuclear waste disposal in space
NASA Technical Reports Server (NTRS)
Rice, E. E.; Denning, R. S.; Friedlander, A. L.; Priest, C. C.
1982-01-01
This paper describes the recent work of the authors on the evaluation of health risk benefits of space disposal of nuclear waste. The paper describes a risk model approach that has been developed to estimate the non-recoverable, cumulative, expected radionuclide release to the earth's biosphere for different options of nuclear waste disposal in space. Risk estimates for the disposal of nuclear waste in a mined geologic repository and the short- and long-term risk estimates for space disposal were developed. The results showed that the preliminary estimates of space disposal risks are low, even with the estimated uncertainty bounds. If calculated release risks for mined geologic repositories remain as low as given by the U.S. DOE, and U.S. EPA requirements continue to be met, then no additional space disposal study effort in the U.S. is warranted at this time. If risks perceived by the public are significant in the acceptance of mined geologic repositories, then consideration of space disposal as a complement to the mined geologic repository is warranted.
Sanitary engineering aspects of nuclear energy developments*
Kenny, A. W.
1962-01-01
So many developments have taken place in the field of nuclear energy since 1956, when the author's previous paper on radioactive waste disposal was published in the Bulletin of the World Health Organization, that a fresh review of the subject is now appropriate. The present paper deals with those aspects of the problem which are of most interest to the sanitary engineer. It considers specific points in the latest recommendations of the International Commission on Radiological Protection in relation to public drinking-water supplies, and examines the problem of fall-out, with special reference to the presence and significance of strontium-90 in drinking-water. A general survey of the various uses of radioactive materials is followed by a discussion of the legislative and control measures necessary to ensure safe disposal of wastes. The methods of waste disposal adopted in a number of nuclear energy establishments are described in detail. The paper concludes with some remarks on solid waste disposal, siting of nuclear energy industries and area monitoring. PMID:14455214
Convection and thermal radiation analytical models applicable to a nuclear waste repository room
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, B.W.
1979-01-17
Time-dependent temperature distributions in a deep geologic nuclear waste repository have a direct impact on the physical integrity of the emplaced canisters and on the design of retrievability options. This report (1) identifies the thermodynamic properties and physical parameters of three convection regimes - forced, natural, and mixed; (2) defines the convection correlations applicable to calculating heat flow in a ventilated (forced-air) and in a nonventilated nuclear waste repository room; and (3) delineates a computer code that (a) computes and compares the floor-to-ceiling heat flow by convection and radiation, and (b) determines the nonlinear equivalent conductivity table for a repositorymore » room. (The tables permit the use of the ADINAT code to model surface-to-surface radiation and the TRUMP code to employ two different emissivity properties when modeling radiation exchange between the surface of two different materials.) The analysis shows that thermal radiation dominates heat flow modes in a nuclear waste repository room.« less
Satellite Power System (SPS) environmental impacts, preliminary assessment
NASA Technical Reports Server (NTRS)
Livingston, F. R.
1978-01-01
Present power plant assessment factors are used to present satellite power system (SPS) impacts. In contrast to oil, gas, nuclear and coal fueled power plants, the SPS and hydroelectric power plants produce air, water, and solid waste emissions only during the construction phase. Land use impacts result from the placement of rectennas used for microwave receiving and rectifying. Air quality impacts of the SPS resulting from the construction phase amount to 0.405 metric tons per megawatt year. Solid wastes impacts are 0.108 metric tons per year of operation. Other impacts such as those caused by heavy lift launch vehicle sites are also discussed.
A Roadmap of Innovative Nuclear Energy System
NASA Astrophysics Data System (ADS)
Sekimoto, Hiroshi
2017-01-01
Nuclear is a dense energy without CO2 emission. It can be used for more than 100,000 years using fast breeder reactors with uranium from the sea. However, it raises difficult problems associated with severe accidents, spent fuel waste and nuclear threats, which should be solved with acceptable costs. Some innovative reactors have attracted interest, and many designs have been proposed for small reactors. These reactors are considered much safer than conventional large reactors and have fewer technical obstructions. Breed-and-burn reactors have high potential to solve all inherent problems for peaceful use of nuclear energy. However, they have some technical problems with materials. A roadmap for innovative reactors is presented herein.
National Policy Implications of Storing Nuclear Waste in the Pacific Region,
1981-01-01
US Congress, Senate, Committee on Energy and Natural Resources, Pacific Spent Nuclear Fuel Storage , Hearing...selected. 17 One type of shipping cask which has been used to transport spent fuel assemblies to the Nevada Test Site is a leakproof steel cask that can...discussion the following conclusions on the nuclear waste storage issue appear valid. The Reagan decision to reprocess spent fuel has not changed US
A proliferation of nuclear waste for the Southeast.
Alvarez, Robert; Smith, Stephen
2007-12-01
The U.S. Department of Energy's (DOE) Global Nuclear Energy Partnership (GNEP) is being promoted as a program to bring about the expansion of worldwide nuclear energy. Here in the U.S. much of this proposed nuclear power expansion is slated to happen in the Southeast, including here in South Carolina. Under the GNEP plan, the United States and its nuclear partners would sell nuclear power plants to developing nations that agree not to pursue technologies that would aid nuclear weapons production, notably reprocessing and uranium enrichment. As part of the deal, the United States would take highly radioactive spent ("used") fuel rods to a reprocessing center in this country. Upon analysis of the proposal, it is clear that DOE lacks a credible plan for the safe management and disposal of radioactive wastes stemming from the GNEP program and that the high costs and possible public health and environmental impacts from the program pose significant risks, especially to this region. Given past failures to address waste problems before they were created, DOE's rush to invest major public funds for deployment of reprocessing should be suspended.
Metrics for comparing plasma mass filters
NASA Astrophysics Data System (ADS)
Fetterman, Abraham J.; Fisch, Nathaniel J.
2011-10-01
High-throughput mass separation of nuclear waste may be useful for optimal storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single step. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass filters: the plasma centrifuge, Ohkawa filter, and the magnetic centrifugal mass filter.
Nuclear waste forms for actinides
Ewing, Rodney C.
1999-01-01
The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium. PMID:10097054
Systems and methods for dismantling a nuclear reactor
Heim, Robert R; Adams, Scott Ryan; Cole, Matthew Denver; Kirby, William E; Linnebur, Paul Damon
2014-10-28
Systems and methods for dismantling a nuclear reactor are described. In one aspect the system includes a remotely controlled heavy manipulator ("manipulator") operatively coupled to a support structure, and a control station in a non-contaminated portion of a workspace. The support structure provides the manipulator with top down access into a bioshield of a nuclear reactor. At least one computing device in the control station provides remote control to perform operations including: (a) dismantling, using the manipulator, a graphite moderator, concrete walls, and a ceiling of the bioshield, the manipulator being provided with automated access to all internal portions of the bioshield; (b) loading, using the manipulator, contaminated graphite blocks from the graphite core and other components from the bioshield into one or more waste containers; and (c) dispersing, using the manipulator, dust suppression and contamination fixing spray to contaminated matter.
Treatment of Asbestos Wastes Using the GeoMelt Vitrification Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finucane, K.G.; Thompson, L.E.; Abuku, T.
The disposal of waste asbestos from decommissioning activities is becoming problematic in countries which have limited disposal space. A particular challenge is the disposal of asbestos wastes from the decommissioning of nuclear sites because some of it is radioactively contaminated or activated and disposal space for such wastes is limited. GeoMelt{sup R} vitrification is being developed as a treatment method for volume and toxicity minimization and radionuclide immobilization for UK radioactive asbestos mixed waste. The common practice to date for asbestos wastes is disposal in licensed landfills. In some cases, compaction techniques are used to minimize the disposal space requirements.more » However, such practices are becoming less practical. Social pressures have resulted in changes to disposal regulations which, in turn, have resulted in the closure of some landfills and increased disposal costs. In the UK, tens of thousands of tonnes of asbestos waste will result from the decommissioning of nuclear sites over the next 20 years. In Japan, it is estimated that over 40 million tonnes of asbestos materials used in construction will require disposal. Methods for the safe and cost effective volume reduction of asbestos wastes are being evaluated for many sites. The GeoMelt{sup R} vitrification process is being demonstrated at full-scale in Japan for the Japan Ministry of Environment and plans are being developed for the GeoMelt treatment of UK nuclear site decommissioning-related asbestos wastes. The full-scale treatment operations in Japan have also included contaminated soils and debris. The GeoMelt{sup R} vitrification process result in the maximum possible volume reduction, destroys the asbestos fibers, treats problematic debris associated with asbestos wastes, and immobilizes radiological contaminants within the resulting glass matrix. Results from recent full-scale treatment operations in Japan are discussed and plans for GeoMelt treatment of UK nuclear site decommissioning-related asbestos wastes are outlined. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, Carol M.; Lee, William E.; Ojovan, Michael I.
The main immobilization technologies that are available commercially and have been demonstrated to be viable are cementation, bituminization, and vitrification. Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either alkali borosilicate glass or alkali aluminophosphate glass. The exact compositions of nuclear waste glasses are tailored for easy preparation and melting, avoidance of glass-in-glass phase separation, avoidance of uncontrolled crystallization, and acceptable chemical durability, e.g., leach resistance. Glass has also been used to stabilize a variety of lowmore » level wastes (LLW) and mixed (radioactive and hazardous) low level wastes (MLLW) from other sources such as fuel rod cladding/decladding processes, chemical separations, radioactive sources, radioactive mill tailings, contaminated soils, medical research applications, and other commercial processes. The sources of radioactive waste generation are captured in other chapters in this book regarding the individual practices in various countries (legacy wastes, currently generated wastes, and future waste generation). Future waste generation is primarily driven by interest in sources of clean energy and this has led to an increased interest in advanced nuclear power production. The development of advanced wasteforms is a necessary component of the new nuclear power plant (NPP) flowsheets. Therefore, advanced nuclear wasteforms are being designed for robust disposal strategies. A brief summary is given of existing and advanced wasteforms: glass, glass-ceramics, glass composite materials (GCM’s), and crystalline ceramic (mineral) wasteforms that chemically incorporate radionuclides and hazardous species atomically in their structure. Cementitious, geopolymer, bitumen, and other encapsulant wasteforms and composites that atomically bond and encapsulate wastes are also discussed. The various processing technologies are cross-referenced to the various types of wasteforms since often a particular type of wasteform can be made by a variety of different processing technologies.« less
A review and overview of nuclear waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, R.L.
1984-12-31
An understanding of the status and issues in the management of radioactive wastes is based on technical information on radioactivity, radiation, biological hazard of radiation exposure, radiation standards, and methods of protection. The fission process gives rise to radioactive fission products and neutron bombardment gives activation products. Radioactive wastes are classified according to source: defense, commercial, industrial, and institutional; and according to physical features: uranium mill tailings, high-level, transuranic, and low-level. The nuclear fuel cycle, which contributes a large fraction of annual radioactive waste, starts with uranium ore, includes nuclear reactor use for electrical power generation, and ends with ultimatemore » disposal of residues. The relation of spent fuel storage and reprocessing is governed by technical, economic, and political considerations. Waste has been successfully solidified in glass and other forms and choices of the containers for the waste form are available. Methods of disposal of high-level waste that have been investigated are transmutation by neutron bombardment, shipment to Antartica, deep-hole insertion, subseabed placement, transfer by rocket to an orbit in space, and disposal in a mined cavity. The latter is the favored method. The choices of host geological media are salt, basalt, tuff, and granite.« less
10 CFR 61.55 - Waste classification.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Waste classification. 61.55 Section 61.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.55 Waste classification. (a) Classification of waste for near...
10 CFR 61.55 - Waste classification.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Waste classification. 61.55 Section 61.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.55 Waste classification. (a) Classification of waste for near...
10 CFR 61.55 - Waste classification.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Waste classification. 61.55 Section 61.55 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.55 Waste classification. (a) Classification of waste for near...
Can shale safely host US nuclear waste?
Neuzil, C.E.
2013-01-01
"Even as cleanup efforts after Japan’s Fukushima disaster offer a stark reminder of the spent nuclear fuel (SNF) stored at nuclear plants worldwide, the decision in 2009 to scrap Yucca Mountain as a permanent disposal site has dimmed hope for a repository for SNF and other high-level nuclear waste (HLW) in the United States anytime soon. About 70,000 metric tons of SNF are now in pool or dry cask storage at 75 sites across the United States [Government Accountability Office, 2012], and uncertainty about its fate is hobbling future development of nuclear power, increasing costs for utilities, and creating a liability for American taxpayers [Blue Ribbon Commission on America’s Nuclear Future, 2012].However, abandoning Yucca Mountain could also result in broadening geologic options for hosting America’s nuclear waste. Shales and other argillaceous formations (mudrocks, clays, and similar clay-rich media) have been absent from the U.S. repository program. In contrast, France, Switzerland, and Belgium are now planning repositories in argillaceous formations after extensive research in underground laboratories on the safety and feasibility of such an approach [Blue Ribbon Commission on America’s Nuclear Future, 2012; Nationale Genossenschaft für die Lagerung radioaktiver Abfälle (NAGRA), 2010; Organisme national des déchets radioactifs et des matières fissiles enrichies, 2011]. Other nations, notably Japan, Canada, and the United Kingdom, are studying argillaceous formations or may consider them in their siting programs [Japan Atomic Energy Agency, 2012; Nuclear Waste Management Organization (NWMO), (2011a); Powell et al., 2010]."
Removal of radioactive contaminants by polymeric microspheres.
Osmanlioglu, Ahmet Erdal
2016-11-01
Radionuclide removal from radioactive liquid waste by adsorption on polymeric microspheres is the latest application of polymers in waste management. Polymeric microspheres have significant immobilization capacity for ionic substances. A laboratory study was carried out by using poly(N-isopropylacrylamide) for encapsulation of radionuclide in the liquid radioactive waste. There are numbers of advantages to use an encapsulation technology in radioactive waste management. Results show that polymerization step of radionuclide increases integrity of solidified waste form. Test results showed that adding the appropriate polymer into the liquid waste at an appropriate pH and temperature level, radionuclide was encapsulated into polymer. This technology may provide barriers between hazardous radioactive ions and the environment. By this method, solidification techniques became easier and safer in nuclear waste management. By using polymer microspheres as dust form, contamination risks were decreased in the nuclear industry and radioactive waste operations.
10 CFR 72.7 - Specific exemptions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Specific exemptions. 72.7 Section 72.7 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.7...
10 CFR 72.20 - Public inspection of application.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Public inspection of application. 72.20 Section 72.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE License...
10 CFR 72.7 - Specific exemptions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Specific exemptions. 72.7 Section 72.7 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Provisions § 72.7...
10 CFR 72.70 - Safety analysis report updating.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Safety analysis report updating. 72.70 Section 72.70 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE Records...
10 CFR 72.20 - Public inspection of application.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Public inspection of application. 72.20 Section 72.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE License...
10 CFR 61.23 - Standards for issuance of a license.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.23 Standards for issuance of a license. A license for the receipt, possession, and disposal of waste containing or contaminated with source, special nuclear, or byproduct material will be...
10 CFR 61.23 - Standards for issuance of a license.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.23 Standards for issuance of a license. A license for the receipt, possession, and disposal of waste containing or contaminated with source, special nuclear, or byproduct material will be...
10 CFR 61.23 - Standards for issuance of a license.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.23 Standards for issuance of a license. A license for the receipt, possession, and disposal of waste containing or contaminated with source, special nuclear, or byproduct material will be...
10 CFR 61.23 - Standards for issuance of a license.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.23 Standards for issuance of a license. A license for the receipt, possession, and disposal of waste containing or contaminated with source, special nuclear, or byproduct material will be...
10 CFR 61.23 - Standards for issuance of a license.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.23 Standards for issuance of a license. A license for the receipt, possession, and disposal of waste containing or contaminated with source, special nuclear, or byproduct material will be...
Code of Federal Regulations, 2010 CFR
2010-01-01
..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...
Code of Federal Regulations, 2011 CFR
2011-01-01
..., reactor-related greater than Class C waste, and other radioactive waste storage and handling. 72.128... STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General Design Criteria § 72.128 Criteria for spent fuel, high-level radioactive waste, reactor...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, J.R.; Danneels, J.; Kenagy, W.D.
The Al Tuwaitha nuclear complex near Baghdad contains a significant number of nuclear facilities from Saddam Hussein's dictatorship. Because of past military operations, lack of upkeep and looting there is now an enormous radioactive waste problem at Al Tuwaitha. Al Tuwaitha contains uncharacterised radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals. The current security situation in Iraq hampers all aspects of radioactive waste management. Further, Iraq has never had a radioactive waste disposal facility, which means that ever increasing quantities of radioactive waste and material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposalmore » Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS has funded the International Atomic Energy Agency (IAEA) to provide technical assistance to the GOI via a Technical Cooperation Project. Program coordination will be provided by the DOS, consistent with U.S. and GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and for providing waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for the vast majority of the implementation of the NDs Program. (authors)« less
Permanent Disposal of Nuclear Waste in Salt
NASA Astrophysics Data System (ADS)
Hansen, F. D.
2016-12-01
Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. Both nations are revisiting nuclear waste disposal options, accompanied by extensive collaboration on applied salt repository research, design, and operation. Salt formations provide isolation while geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Salt response over a range of stress and temperature has been characterized for decades. Research practices employ refined test techniques and controls, which improve parameter assessment for features of the constitutive models. Extraordinary computational capabilities require exacting understanding of laboratory measurements and objective interpretation of modeling results. A repository for heat-generative nuclear waste provides an engineering challenge beyond common experience. Long-term evolution of the underground setting is precluded from direct observation or measurement. Therefore, analogues and modeling predictions are necessary to establish enduring safety functions. A strong case for granular salt reconsolidation and a focused research agenda support salt repository concepts that include safety-by-design. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Author: F. D. Hansen, Sandia National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maheras, Steven J.; Best, Ralph E.; Ross, Steven B.
This report presents a preliminary evaluation of removing used nuclear fuel (UNF) from 12 shutdown nuclear power plant sites. At these shutdown sites the nuclear power reactors have been permanently shut down and the sites have been decommissioned or are undergoing decommissioning. The shutdown sites are Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, Zion, Crystal River, Kewaunee, and San Onofre. The evaluation was divided into four components: characterization of the UNF and greater-than-Class C low-level radioactive waste (GTCC waste) inventory; a description of the on-site infrastructure and conditions relevant to transportationmore » of UNF and GTCC waste; an evaluation of the near-site transportation infrastructure and experience relevant to shipping transportation casks containing UNF and GTCC waste, including identification of gaps in information; and, an evaluation of the actions necessary to prepare for and remove UNF and GTCC waste. The primary sources for the inventory of UNF and GTCC waste are the U.S. Department of Energy (DOE) RW-859 used nuclear fuel inventory database, industry sources such as StoreFUEL and SpentFUEL, and government sources such as the U.S. Nuclear Regulatory Commission. The primary sources for information on the conditions of site and near-site transportation infrastructure and experience included observations and information collected during visits to the Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion sites; information provided by managers at the shutdown sites; Facility Interface Data Sheets compiled for DOE in 2005; Services Planning Documents prepared for DOE in 1993 and 1994; industry publications such as Radwaste Solutions; and Google Earth. State and Regional Group representatives, a Tribal representative, and a Federal Railroad Administration representative participated in six of the shutdown site visits. Every site was found to have at least one off-site transportation mode option for removing its UNF and GTCC waste; some have multiple options. Experience removing large components during reactor decommissioning provided an important source of information used to identify the transportation mode options for the sites. Especially important in conducting the evaluation were site visits, through which information was obtained that would not have been available otherwise. Extensive photographs taken during the site visits proved to be particularly useful in documenting the current conditions at or near the sites. Additional conclusions from this evaluation include: The 12 shutdown sites use designs from 4 different suppliers involving 9 different (horizontal and vertical) dry storage systems that would require the use of 8 different transportation cask designs to remove the UNF and GTCC waste from the shutdown sites; Although there are common aspects, each site has some unique features and/or conditions; Although some regulatory actions will be required, all UNF at the initial 9 shutdown sites (Maine Yankee, Yankee Rowe, Connecticut Yankee, Humboldt Bay, Big Rock Point, Rancho Seco, Trojan, La Crosse, and Zion) is in licensed systems that can be transported, including a small amount of high-burnup fuel; Each site indicated that 2-3 years of advance time would be required for its preparations before shipments could begin; Most sites have more than one transportation option, e.g., rail, barge, or heavy haul truck, as well as constraints and preferences. It is expected that additional site visits will be conducted to add to the information presented in the evaluation.« less
10 CFR 63.302 - Definitions for Subpart L.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Definitions for Subpart L. 63.302 Section 63.302 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC... hydraulic conductivity, gradient, and the screened interval. Yucca Mountain disposal system means the...
10 CFR 63.302 - Definitions for Subpart L.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Definitions for Subpart L. 63.302 Section 63.302 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC... hydraulic conductivity, gradient, and the screened interval. Yucca Mountain disposal system means the...