Science.gov

Sample records for nuclear-associated nucleosome assembly

  1. Histone chaperone-mediated nucleosome assembly process.

    PubMed

    Fan, Hsiu-Fang; Liu, Zi-Ning; Chow, Sih-Yao; Lu, Yi-Han; Li, Hsin

    2015-01-01

    A huge amount of information is stored in genomic DNA and this stored information resides inside the nucleus with the aid of chromosomal condensation factors. It has been reported that the repeat nucleosome core particle (NCP) consists of 147-bp of DNA and two copies of H2A, H2B, H3 and H4. Regulation of chromosomal structure is important to many processes inside the cell. In vivo, a group of histone chaperones facilitate and regulate nucleosome assembly. How NCPs are constructed with the aid of histone chaperones remains unclear. In this study, the histone chaperone-mediated nucleosome assembly process was investigated using single-molecule tethered particle motion (TPM) experiments. It was found that Asf1 is able to exert more influence than Nap1 and poly glutamate acid (PGA) on the nucleosome formation process, which highlights Asf1's specific role in tetrasome formation. Thermodynamic parameters supported a model whereby energetically favored nucleosomal complexes compete with non-nucleosomal complexes. In addition, our kinetic findings propose the model that histone chaperones mediate nucleosome assembly along a path that leads to enthalpy-favored products with free histones as reaction substrates.

  2. Assembly of RNA polymerase II preinitiation complexes before assembly of nucleosomes allows efficient initiation of transcription on nucleosomal templates

    SciTech Connect

    Knezetic, J.A.; Jacob, G.A.; Luse, D.S.

    1988-08-01

    The authors have previously shown that assembly of nucleosomes on the DNA template blocks transcription initiation by RNA polymerase II in vitro. In the studies reported here, they demonstrate that assembly of a complete RNA polymerase II preinitiation complex before nucleosome assembly results in nucleosomal templates which support initiation in vitro as efficiently as naked DNA. Control experiments prove that the observations are not the result of slow displacemnt of nucleosomes by the transcription machinery during chromatin assembly, nor are they an artifact of inefficient nucleosome deposition on templates already bearing an RNA polymerase. Thus, the RNA polymerase II preinitiation complex appears to be resistant to disruption by subsequent nucleosome assembly.

  3. Assembly of Drosophila Centromeric Nucleosomes Requires CID Dimerization

    PubMed Central

    Zhang, Weiguo; Colmenares, Serafin U.; Karpen, Gary H.

    2012-01-01

    SUMMARY Centromeres are essential chromosomal regions required for kinetochore assembly and chromosome segregation. The composition and organization of centromeric nucleosomes containing the essential histone H3 variant CENP-A (CID in Drosophila) is a fundamental, unresolved issue. Using immunoprecipitation of CID mononucleosomes and cysteine crosslinking, we demonstrate that centromeric nucleosomes contain CID dimers in vivo. Furthermore, CID dimerization and centromeric targeting require a residue implicated in formation of the four helix bundle, which mediates intra-nucleosomal H3 dimerization and nucleosome integrity. Taken together, our findings suggest that CID nucleosomes are octameric in vivo and that CID dimerization is essential for correct centromere assembly. PMID:22209075

  4. Assembly of nucleosomal arrays from recombinant core histones and nucleosome positioning DNA.

    PubMed

    Rogge, Ryan A; Kalashnikova, Anna A; Muthurajan, Uma M; Porter-Goff, Mary E; Luger, Karolin; Hansen, Jeffrey C

    2013-09-10

    Core histone octamers that are repetitively spaced along a DNA molecule are called nucleosomal arrays. Nucleosomal arrays are obtained in one of two ways: purification from in vivo sources, or reconstitution in vitro from recombinant core histones and tandemly repeated nucleosome positioning DNA. The latter method has the benefit of allowing for the assembly of a more compositionally uniform and precisely positioned nucleosomal array. Sedimentation velocity experiments in the analytical ultracentrifuge yield information about the size and shape of macromolecules by analyzing the rate at which they migrate through solution under centrifugal force. This technique, along with atomic force microscopy, can be used for quality control, ensuring that the majority of DNA templates are saturated with nucleosomes after reconstitution. Here we describe the protocols necessary to reconstitute milligram quantities of length and compositionally defined nucleosomal arrays suitable for biochemical and biophysical studies of chromatin structure and function.

  5. Assembly of Drosophila centromeric nucleosomes requires CID dimerization.

    PubMed

    Zhang, Weiguo; Colmenares, Serafin U; Karpen, Gary H

    2012-01-27

    Centromeres are essential chromosomal regions required for kinetochore assembly and chromosome segregation. The composition and organization of centromeric nucleosomes containing the essential histone H3 variant CENP-A (CID in Drosophila) is a fundamental, unresolved issue. Using immunoprecipitation of CID mononucleosomes and cysteine crosslinking, we demonstrate that centromeric nucleosomes contain CID dimers in vivo. Furthermore, CID dimerization and centromeric targeting require a residue implicated in formation of the four-helix bundle, which mediates intranucleosomal H3 dimerization and nucleosome integrity. Taken together, our findings suggest that CID nucleosomes are octameric in vivo and that CID dimerization is essential for correct centromere assembly.

  6. Nucleosome functions in spindle assembly and nuclear envelope formation

    PubMed Central

    Zierhut, Christian; Funabiki, Hironori

    2016-01-01

    Summary Chromosomes are not only carriers of the genetic material, but also actively regulate the assembly of complex intracellular architectures. During mitosis, chromosome-induced microtubule polymerisation ensures spindle assembly in cells without centrosomes and plays a supportive role in centrosome-containing cells. Chromosomal signals also mediate post-mitotic nuclear envelope (NE) re-formation. Recent studies using novel approaches to manipulate histones in oocytes, where functions can be analysed in the absence of transcription, have established that nucleosomes, but not DNA alone, mediate the chromosomal regulation of spindle assembly and NE formation. Both processes require the generation of RanGTP by RCC1 recruited to nucleosomes but nucleosomes also acquire cell cycle stage specific regulators, Aurora B in mitosis and ELYS, the initiator of nuclear pore complex assembly, at mitotic exit. Here, we review the mechanisms by which nucleosomes control assembly and functions of the spindle and the NE, and discuss their implications for genome maintenance. PMID:26222742

  7. Regulation of Replication Fork Advance and Stability by Nucleosome Assembly

    PubMed Central

    Prado, Felix; Maya, Douglas

    2017-01-01

    The advance of replication forks to duplicate chromosomes in dividing cells requires the disassembly of nucleosomes ahead of the fork and the rapid assembly of parental and de novo histones at the newly synthesized strands behind the fork. Replication-coupled chromatin assembly provides a unique opportunity to regulate fork advance and stability. Through post-translational histone modifications and tightly regulated physical and genetic interactions between chromatin assembly factors and replisome components, chromatin assembly: (1) controls the rate of DNA synthesis and adjusts it to histone availability; (2) provides a mechanism to protect the integrity of the advancing fork; and (3) regulates the mechanisms of DNA damage tolerance in response to replication-blocking lesions. Uncoupling DNA synthesis from nucleosome assembly has deleterious effects on genome integrity and cell cycle progression and is linked to genetic diseases, cancer, and aging. PMID:28125036

  8. Regulation of Replication Fork Advance and Stability by Nucleosome Assembly.

    PubMed

    Prado, Felix; Maya, Douglas

    2017-01-24

    The advance of replication forks to duplicate chromosomes in dividing cells requires the disassembly of nucleosomes ahead of the fork and the rapid assembly of parental and de novo histones at the newly synthesized strands behind the fork. Replication-coupled chromatin assembly provides a unique opportunity to regulate fork advance and stability. Through post-translational histone modifications and tightly regulated physical and genetic interactions between chromatin assembly factors and replisome components, chromatin assembly: (1) controls the rate of DNA synthesis and adjusts it to histone availability; (2) provides a mechanism to protect the integrity of the advancing fork; and (3) regulates the mechanisms of DNA damage tolerance in response to replication-blocking lesions. Uncoupling DNA synthesis from nucleosome assembly has deleterious effects on genome integrity and cell cycle progression and is linked to genetic diseases, cancer, and aging.

  9. Structure and Scm3-mediated assembly of budding yeast centromeric nucleosomes.

    PubMed

    Dechassa, Mekonnen Lemma; Wyns, Katharina; Li, Ming; Hall, Michael A; Wang, Michelle D; Luger, Karolin

    2011-01-01

    Much controversy exists regarding the structural organization of the yeast centromeric nucleosome and the role of the nonhistone protein, Scm3, in its assembly and architecture. Here we show that the substitution of H3 with its centromeric variant Cse4 results in octameric nucleosomes that organize DNA in a left-handed superhelix. We demonstrate by single-molecule approaches, micrococcal nuclease digestion and small-angle X-ray scattering that Cse4-nucleosomes exhibit an open conformation with weakly bound terminal DNA segments. The Cse4-octamer does not preferentially form nucleosomes on its cognate centromeric DNA. We show that Scm3 functions as a Cse4-specific nucleosome assembly factor, and that the resulting octameric nucleosomes do not contain Scm3 as a stably bound component. Taken together, our data provide insights into the assembly and structural features of the budding yeast centromeric nucleosome.

  10. Partially Assembled Nucleosome Structures at Atomic Detail.

    PubMed

    Rychkov, Georgy N; Ilatovskiy, Andrey V; Nazarov, Igor B; Shvetsov, Alexey V; Lebedev, Dmitry V; Konev, Alexander Y; Isaev-Ivanov, Vladimir V; Onufriev, Alexey V

    2017-02-07

    The evidence is now overwhelming that partially assembled nucleosome states (PANS) are as important as the canonical nucleosome structure for the understanding of how accessibility to genomic DNA is regulated in cells. We use a combination of molecular dynamics simulation and atomic force microscopy to deliver, in atomic detail, structural models of three key PANS: the hexasome (H2A·H2B)·(H3·H4)2, the tetrasome (H3·H4)2, and the disome (H3·H4). Despite fluctuations of the conformation of the free DNA in these structures, regions of protected DNA in close contact with the histone core remain stable, thus establishing the basis for the understanding of the role of PANS in DNA accessibility regulation. On average, the length of protected DNA in each structure is roughly 18 basepairs per histone protein. Atomistically detailed PANS are used to explain experimental observations; specifically, we discuss interpretation of atomic force microscopy, Förster resonance energy transfer, and small-angle x-ray scattering data obtained under conditions when PANS are expected to exist. Further, we suggest an alternative interpretation of a recent genome-wide study of DNA protection in active chromatin of fruit fly, leading to a conclusion that the three PANS are present in actively transcribing regions in a substantial amount. The presence of PANS may not only be a consequence, but also a prerequisite for fast transcription in vivo.

  11. Preferential Nucleosome Assembly at DNA Triplet Repeats from the Myotonic Dystrophy Gene

    NASA Astrophysics Data System (ADS)

    Wang, Yuh-Hwa; Amirhaeri, Sorour; Kang, Seongman; Wells, Robert D.; Griffith, Jack D.

    1994-07-01

    The expansion of CTG repeats in DNA occurs in or near genes involved in several human diseases, including myotonic dystrophy and Huntington's disease. Nucleosomes, the basic structural element of chromosomes, consist of 146 base pairs of DNA coiled about an octamer of histone proteins and mediate general transcriptional repression. Electron microscopy was used to examine in vitro the nucleosome assembly of DNA containing repeating CTG triplets. The efficiency of nucleosome formation increased with expanded triplet blocks, suggesting that such blocks may repress transcription through the creation of stable nucleosomes.

  12. A nucleosome assembly factor is a constituent of simian virus 40 minichromosomes.

    PubMed Central

    Krude, T; de Maddalena, C; Knippers, R

    1993-01-01

    Using in vitro replication assays, we compared native with salt-treated simian virus 40 minichromosomes isolated from infected cell nuclei. Minichromosomes from both preparations contain the full complement of nucleosomes, but salt treatment removes histone H1 and a fraction of nonhistone chromatin proteins. Both types of minichromosomes served well as templates for in vitro replication, but the structures of the replication products were strikingly different. Replicated salt-treated minichromosomes contained, on average, about half the normal number of nucleosomes as previously shown (T. Krude and R. Knippers, Mol. Cell. Biol. 11:6257-6267, 1991). In contrast, the replicated untreated minichromosomes were found to be densely packed with nucleosomes, indicating that an assembly of new nucleosomes occurred during in vitro replication. Biochemical and immunological data showed that the fraction of nonhistone chromatin proteins associated with native minichromosomes includes a nucleosome assembly activity that appears to be closely related to chromatin assembly factor I (S. Smith and B. W. Stillman, Cell 58:15-25, 1989). Furthermore, this minichromosome-bound nucleosome assembly factor is able to exert its activity in trans to replicating protein-free competitor DNA. Thus, native chromatin itself contains the activities required for an ordered assembly of nucleosomes during the replication process. Images PMID:8380890

  13. Heterochromatin assembly by interrupted Sir3 bridges across neighboring nucleosomes

    PubMed Central

    Behrouzi, Reza; Lu, Chenning; Currie, Mark A; Jih, Gloria; Iglesias, Nahid; Moazed, Danesh

    2016-01-01

    Heterochromatin is a conserved feature of eukaryotic chromosomes with central roles in regulation of gene expression and maintenance of genome stability. Heterochromatin formation involves spreading of chromatin-modifying factors away from initiation points over large DNA domains by poorly understood mechanisms. In Saccharomyces cerevisiae, heterochromatin formation requires the SIR complex, which contains subunits with histone-modifying, histone-binding, and self-association activities. Here, we analyze binding of the Sir proteins to reconstituted mono-, di-, tri-, and tetra-nucleosomal chromatin templates and show that key Sir-Sir interactions bridge only sites on different nucleosomes but not sites on the same nucleosome, and are therefore 'interrupted' with respect to sites on the same nucleosome. We observe maximal binding affinity and cooperativity to unmodified di-nucleosomes and propose that nucleosome pairs bearing unmodified histone H4-lysine16 and H3-lysine79 form the fundamental units of Sir chromatin binding and that cooperative binding requiring two appropriately modified nucleosomes mediates selective Sir recruitment and spreading. DOI: http://dx.doi.org/10.7554/eLife.17556.001 PMID:27835568

  14. Acetylation of Histone H3 Lysine 56 Regulates Replication-Coupled Nucleosome Assembly

    PubMed Central

    Li, Qing; Zhou, Hui; Wurtele, Hugo; Davies, Brian; Horazdovsky, Bruce; Verreault, Alain; Zhang, Zhiguo

    2008-01-01

    SUMMARY Chromatin assembly factor 1 (CAF-1) and Rtt106 participate in the deposition of newly synthesized histones onto replicating DNA to form nucleosomes. This process is critical for the maintenance of genome stability and inheritance of functionally specialized chromatin structures in proliferating cells. However, the molecular functions of the acetylation of newly synthesized histones in this DNA replication-coupled nucleosome assembly pathway remain enigmatic. Here we show that histone H3 acetylated at lysine 56 (H3K56Ac) is incorporated onto replicating DNA and, by increasing the binding affinity of CAF-1 and Rtt106 for histone H3, H3K56Ac enhances the ability of these histone chaperones to assemble DNA into nucleosomes. Genetic analysis indicates that H3K56Ac acts in a nonredundant manner with the acetylation of the N-terminal residues of H3 and H4 in nucleosome assembly. These results reveal a mechanism by which H3K56Ac regulates replication-coupled nucleosome assembly mediated by CAF-1 and Rtt106. PMID:18662540

  15. Nucleosome assembly in mammalian cell extracts before and after DNA replication.

    PubMed Central

    Gruss, C; Gutierrez, C; Burhans, W C; DePamphilis, M L; Koller, T; Sogo, J M

    1990-01-01

    Protein-free DNA in a cytosolic extract supplemented with SV40 large T-antigen (T-Ag), is assembled into chromatin structure when nuclear extract is added. This assembly was monitored by topoisomer formation, micrococcal nuclease digestion and psoralen crosslinking of the DNA. Plasmids containing SV40 sequences (ori- and ori+) were assembled into chromatin with similar efficiencies whether T-Ag was present or not. Approximately 50-80% of the number of nucleosomes in vivo could be assembled in vitro; however, the kinetics of assembly differed on replicated and unreplicated molecules. In replicative intermediates, nucleosomes were observed on both the pre-replicated and post-replicated portions. We conclude that the extent of nucleosome assembly in mammalian cell extracts is not dependent upon DNA replication, in contrast to previous suggestions. However, the highly sensitive psoralen assay revealed that DNA replication appears to facilitate precise folding of DNA in the nucleosome. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. PMID:2167837

  16. Assembly of recombinant nucleosomes on nanofabricated DNA curtains for single-molecule imaging.

    PubMed

    Lee, Ja Yil; Greene, Eric C

    2011-01-01

    Eukaryotic chromosomes are highly packed into chromatin, the basic unit of which is the nucleosome. The presence of nucleosomes and the resulting organization of the genome into higher-order chromatin structures has profound consequences for virtually all aspects of DNA metabolism, including DNA transcription, repair, and chromosome segregation. We have developed novel approaches for nanofabricating "DNA curtains" for high-throughput single-molecule imaging, and we have begun adapting these new research tools in an effort to begin studying chromatin biology at the single-molecule level. In this protocol, we describe procedures for assembly and real-time single-molecule visualization of DNA curtains bound by reconstituted nucleosomes made from recombinant histones.

  17. Nucleosome assembly dynamics involve spontaneous fluctuations in the handedness of tetrasomes.

    PubMed

    Vlijm, Rifka; Lee, Mina; Lipfert, Jan; Lusser, Alexandra; Dekker, Cees; Dekker, Nynke H

    2015-01-13

    DNA wrapping around histone octamers generates nucleosomes, the basic compaction unit of eukaryotic chromatin. Nucleosome stability is carefully tuned to maintain DNA accessibility in transcription, replication, and repair. Using freely orbiting magnetic tweezers, which measure the twist and length of single DNA molecules, we monitor the real-time loading of tetramers or complete histone octamers onto DNA by Nucleosome Assembly Protein-1 (NAP1). Remarkably, we find that tetrasomes exhibit spontaneous flipping between a preferentially occupied left-handed state (ΔLk = -0.73) and a right-handed state (ΔLk = +1.0), separated by a free energy difference of 2.3 kBT (1.5 kcal/mol). This flipping occurs without concomitant changes in DNA end-to-end length. The application of weak positive torque converts left-handed tetrasomes into right-handed tetrasomes, whereas nucleosomes display more gradual conformational changes. Our findings reveal unexpected dynamical rearrangements of the nucleosomal structure, suggesting that chromatin can serve as a "twist reservoir," offering a mechanistic explanation for the regulation of DNA supercoiling in chromatin.

  18. The N-terminal domains of histones H3 and H4 are not necessary for chromatin assembly factor-1- mediated nucleosome assembly onto replicated DNA in vitro

    PubMed Central

    Shibahara, Kei-ichi; Verreault, Alain; Stillman, Bruce

    2000-01-01

    An in vitro reconstitution system for the analysis of replication-coupled nucleosome assembly is described. In this “two-step system,” nucleosome assembly is performed in a separate reaction from DNA replication, wherein purified newly replicated DNA remains noncovalently marked for subsequent chromatin assembly factor-1 (CAF-1)-dependent nucleosome assembly. Because the nucleosome assembly is performed separately from the DNA replication step, this system is more versatile and biochemically tractable when compared with nucleosome assembly during simian virus 40 (SV40) DNA replication. The N-terminal domains of histones H3 and H4 play an important but redundant function in nucleosome assembly in the budding yeast, Saccharomyces cerevisiae. It had been proposed that at least one tail of histone H3 or H4 is required for replication-coupled nucleosome assembly. However, we demonstrate that the N-terminal domains of both histone H3 and H4 are dispensable for CAF-1-mediated formation of nucleosome cores onto newly replicated DNA in vitro. CAF-1 and each of its individual subunits stably bound to recombinant (H3.H4)2 tetramers lacking the N-terminal domains of both H3 and H4. Therefore, the N-terminal tails of histone H3 and H4 that contain the specific acetylation sites are not necessary for CAF-1-dependent nucleosome assembly onto replicated DNA. We suggest that the histone acetylation may be required for a CAF-1 independent pathway or function after deposition, by marking of newly replicated chromatin. PMID:10884407

  19. Methods to study histone chaperone function in nucleosome assembly and chromatin transcription.

    PubMed

    Senapati, Parijat; Sudarshan, Deepthi; Gadad, Shrikanth S; Shandilya, Jayasha; Swaminathan, Venkatesh; Kundu, Tapas K

    2015-01-01

    Histone chaperones are histone interacting proteins that are involved in various stages of histone metabolism in the cell such as histone storage, transport, nucleosome assembly and disassembly. Histone assembly and disassembly are essential processes in certain DNA-templated phenomena such as replication, repair and transcription in eukaryotes. Since the first histone chaperone Nucleoplasmin was discovered in Xenopus, a plethora of histone chaperones have been identified, characterized and their functional significance elucidated in the last 35 years or so. Some of the histone chaperone containing complexes such as FACT have been described to play a significant role in nucleosome disassembly during transcription elongation. We have reported earlier that human Nucleophosmin (NPM1), a histone chaperone belonging to the Nucleoplasmin family, is a co-activator of transcription. In this chapter, we describe several methods that are used to study the histone chaperone activity of proteins and their role in transcription.

  20. Minichromosome replication in vitro: inhibition of re-replication by replicatively assembled nucleosomes.

    PubMed

    Krude, T; Knippers, R

    1994-08-19

    Single-stranded circular DNA, containing the SV40 origin sequence, was used as a template for complementary DNA strand synthesis in cytosolic extracts from HeLa cells. In the presence of the replication-dependent chromatin assembly factor CAF-1, defined numbers of nucleosomes were assembled during complementary DNA strand synthesis. These minichromosomes were then induced to semiconservatively replicate by the addition of the SV40 initiator protein T antigen (re-replication). The results indicate that re-replication of minichromosomes appears to be inhibited by two independent mechanisms. One acts at the initiation of minichromosome re-replication, and the other affects replicative chain elongation. To directly demonstrate the inhibitory effect of replicatively assembled nucleosomes, two types of minichromosomes were prepared: (i) post-replicative minichromosomes were assembled in a reaction coupled to replication as above; (ii) pre-replicative minichromosomes were assembled independently of replication on double-stranded DNA. Both types of minichromosomes were used as templates for DNA replication under identical conditions. Replicative fork movement was found to be impeded only on post-replicative minichromosome templates. In contrast, pre-replicative minichromosomes allowed one unconstrained replication cycle, but re-replication was inhibited due to a block in fork movement. Thus, replicatively assembled chromatin may have a profound influence on the re-replication of DNA.

  1. The human IL-2 gene promoter can assemble a positioned nucleosome that becomes remodeled upon T cell activation.

    PubMed

    Attema, Joanne L; Reeves, Raymond; Murray, Vincent; Levichkin, Ilya; Temple, Mark D; Tremethick, David J; Shannon, M Frances

    2002-09-01

    Controlled production of the cytokine IL-2 plays a key role in the mammalian immune system. Expression from the gene is tightly regulated with no detectable expression in resting T cells and a strong induction following T cell activation. The IL-2 proximal promoter (+1 to -300) contains many well-defined transcriptional activation elements that respond to T cell stimulation. To determine the role of chromatin structure in the regulation of interleukin-2 gene transcription, nucleosome assembly across the IL-2 promoter region was examined using in vitro chromatin reconstitution assays. The IL-2 promoter assembles a nucleosome that is both translationally and rotationally positioned, spanning some of the major functional control elements. The binding of transcription factors to these elements, with the exception of the architectural protein HMGA1, was occluded by the presence of the nucleosome. Analysis of the chromatin architecture of the IL-2 gene in Jurkat T cells provided evidence for the presence of a similarly positioned nucleosome in vivo. The region encompassed by this nucleosome becomes remodeled following activation of Jurkat T cells. These observations suggest that the presence of a positioned nucleosome across the IL-2 proximal promoter may play an important role in maintaining an inactive gene in resting T cells and that remodeling of this nucleosome is important for gene activation.

  2. Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases

    PubMed Central

    Dahlin, Jayme L; Chen, Xiaoyue; Walters, Michael A.; Zhang, Zhiguo

    2015-01-01

    During DNA replication, nucleosomes ahead of replication forks are disassembled to accommodate replication machinery. Following DNA replication, nucleosomes are then reassembled onto replicated DNA using both parental and newly synthesized histones. This process, termed DNA replication-coupled nucleosome assembly (RCNA), is critical for maintaining genome integrity and for the propagation of epigenetic information, dysfunctions of which have been implicated in cancers and aging. In recent years, it has been shown that RCNA is carefully orchestrated by a series of histone modifications, histone chaperones and histone-modifying enzymes. Interestingly, many features of RCNA are also found in processes involving DNA replication-independent nucleosome assembly like histone exchange and gene transcription. In yeast, histone H3 lysine K56 acetylation (H3K56ac) is found in newly synthesized histone H3 and is critical for proper nucleosome assembly and for maintaining genomic stability. The histone acetyltransferase (HAT) regulator of Ty1 transposition 109 (Rtt109) is the sole enzyme responsible for H3K56ac in yeast. Much research has centered on this particular histone modification and histone-modifying enzyme. This Critical Review summarizes much of our current understanding of nucleosome assembly and highlights many important insights learned from studying Rtt109 HATs in fungi. We highlight some seminal features in nucleosome assembly conserved in mammalian systems and describe some of the lingering questions in the field. Further studying fungal and mammalian chromatin assembly may have important public health implications, including deeper understandings of human cancers and aging as well as the pursuit of novel anti-fungal therapies. PMID:25365782

  3. A basic domain in the histone H2B N-terminal tail is important for nucleosome assembly by FACT

    PubMed Central

    Mao, Peng; Kyriss, McKenna N. M.; Hodges, Amelia J.; Duan, Mingrui; Morris, Robert T.; Lavine, Mark D.; Topping, Traci B.; Gloss, Lisa M.; Wyrick, John J.

    2016-01-01

    Nucleosome assembly in vivo requires assembly factors, such as histone chaperones, to bind to histones and mediate their deposition onto DNA. In yeast, the essential histone chaperone FACT (FAcilitates Chromatin Transcription) functions in nucleosome assembly and H2A–H2B deposition during transcription elongation and DNA replication. Recent studies have identified candidate histone residues that mediate FACT binding to histones, but it is not known which histone residues are important for FACT to deposit histones onto DNA during nucleosome assembly. In this study, we report that the histone H2B repression (HBR) domain within the H2B N-terminal tail is important for histone deposition by FACT. Deletion of the HBR domain causes significant defects in histone occupancy in the yeast genome, particularly at HBR-repressed genes, and a pronounced increase in H2A–H2B dimers that remain bound to FACT in vivo. Moreover, the HBR domain is required for purified FACT to efficiently assemble recombinant nucleosomes in vitro. We propose that the interaction between the highly basic HBR domain and DNA plays an important role in stabilizing the nascent nucleosome during the process of histone H2A–H2B deposition by FACT. PMID:27369377

  4. The histone-fold protein complex CHRAC-15/17 enhances nucleosome sliding and assembly mediated by ACF.

    PubMed

    Kukimoto, Iwao; Elderkin, Sarah; Grimaldi, Margaret; Oelgeschläger, Thomas; Varga-Weisz, Patrick D

    2004-01-30

    The histone fold is a structural motif with which two related proteins interact and is found in complexes involved in wrapping DNA, the nucleosome, and transcriptional regulation, as in NC2. We reveal a novel function for histone-fold proteins: facilitation of nucleosome remodeling. ACF1-ISWI complex (ATP-dependent chromatin assembly and remodeling factor [ACF]) associates with histone-fold proteins (CHRAC-15 and CHRAC-17 in the human chromatin accessibility complex [CHRAC]) whose functional relevance has been unclear. We show that these histone-fold proteins facilitate ATP-dependent nucleosome sliding by ACF. Direct interaction of the CHRAC-15/17 complex with the ACF1 subunit is essential for this process. CHRAC-17 interacts with another histone-fold protein, p12, in DNA polymerase epsilon, but CHRAC-15 is essential for interaction with ACF and enhancement of nucleosome sliding. Surprisingly, CHRAC-15/17, p12/CHRAC-17, and NC2 complexes facilitate ACF-mediated chromatin assembly by a mechanism different from nucleosome sliding enhancement, suggesting a general activity of H2A/H2B type histone-fold complexes in chromatin assembly.

  5. KSHV encoded LANA recruits Nucleosome Assembly Protein NAP1L1 for regulating viral DNA replication and transcription

    PubMed Central

    Gupta, Namrata; Thakker, Suhani; Verma, Subhash C.

    2016-01-01

    The establishment of latency is an essential for lifelong persistence and pathogenesis of Kaposi’s sarcoma-associated herpesvirus (KSHV). Latency-associated nuclear antigen (LANA) is the most abundantly expressed protein during latency and is important for viral genome replication and transcription. Replication-coupled nucleosome assembly is a major step in packaging the newly synthesized DNA into chromatin, but the mechanism of KSHV genome chromatinization post-replication is not understood. Here, we show that nucleosome assembly protein 1-like protein 1 (NAP1L1) associates with LANA. Our binding assays revealed an association of LANA with NAP1L1 in KSHV-infected cells, which binds through its amino terminal domain. Association of these proteins confirmed their localization in specific nuclear compartments of the infected cells. Chromatin immunoprecipitation assays from NAP1L1-depleted cells showed LANA-mediated recruitment of NAP1L1 at the terminal repeat (TR) region of the viral genome. Presence of NAP1L1 stimulated LANA-mediated DNA replication and persistence of a TR-containing plasmid. Depletion of NAP1L1 led to a reduced nucleosome positioning on the viral genome. Furthermore, depletion of NAP1L1 increased the transcription of viral lytic genes and overexpression decreased the promoter activities of LANA-regulated genes. These results confirmed that LANA recruitment of NAP1L1 helps in assembling nucleosome for the chromatinization of newly synthesized viral DNA. PMID:27599637

  6. Stable complex formation between HIV Rev and the nucleosome assembly protein, NAP1, affects Rev function

    SciTech Connect

    Cochrane, Alan; Murley, Laura Lea; Gao Mian; Wong, Raymond; Clayton, Kiera; Brufatto, Nicole; Canadien, Veronica; Mamelak, Daniel; Chen, Tricia; Richards, Dawn; Zeghouf, Mahel; Greenblatt, Jack; Burks, Christian; Frappier, Lori

    2009-05-25

    The Rev protein of HIV-1 is essential for HIV-1 proliferation due to its role in exporting viral RNA from the nucleus. We used a modified version of tandem affinity purification (TAP) tagging to identify proteins interacting with HIV-1 Rev in human cells and discovered a prominent interaction between Rev and nucleosome assembly protein 1 (Nap1). This interaction was also observed by specific retention of Nap1 from human cell lysates on a Rev affinity column. Nap1 was found to bind Rev through the Rev arginine-rich domain and altered the oligomerization state of Rev in vitro. Overexpression of Nap1 stimulated the ability of Rev to export RNA, reduced the nucleolar localization of Rev, and affected Rev nuclear import rates. The results suggest that Nap-1 may influence Rev function by increasing the availability of Rev.

  7. NAP-1, Nucleosome assembly protein 1, a histone chaperone involved in Drosophila telomeres.

    PubMed

    López-Panadès, Elisenda; Casacuberta, Elena

    2016-03-01

    Telomere elongation is a function that all eukaryote cells must accomplish in order to guarantee, first, the stability of the end of the chromosomes and second, to protect the genetic information from the inevitable terminal erosion. The targeted transposition of the telomere transposons HeT-A, TART and TAHRE perform this function in Drosophila, while the telomerase mechanism elongates the telomeres in most eukaryotes. In order to integrate telomere maintenance together with cell cycle and metabolism, different components of the cell interact, regulate, and control the proteins involved in telomere elongation. Different partners of the telomerase mechanism have already been described, but in contrast, very few proteins have been related with assisting the telomere transposons of Drosophila. Here, we describe for the first time, the implication of NAP-1 (Nucleosome assembly protein 1), a histone chaperone that has been involved in nuclear transport, transcription regulation, and chromatin remodeling, in telomere biology. We find that Nap-1 and HeT-A Gag, one of the major components of the Drosophila telomeres, are part of the same protein complex. We also demonstrate that their close interaction is necessary to guarantee telomere stability in dividing cells. We further show that NAP-1 regulates the transcription of the HeT-A retrotransposon, pointing to a positive regulatory role of NAP-1 in telomere expression. All these results facilitate the understanding of the transposon telomere maintenance mechanism, as well as the integration of telomere biology with the rest of the cell metabolism.

  8. Nucleosome Switches

    NASA Astrophysics Data System (ADS)

    Schwab, David J.; Bruinsma, Robijn F.; Rudnick, Joseph; Widom, Jonathan

    2008-06-01

    We present a statistical-mechanical model for the positioning of nucleosomes along genomic DNA molecules as a function of the strength of the binding potential and the chemical potential of the nucleosomes. We show that a significant section of the DNA is composed of two-level nucleosome switching regions where the nucleosome distribution undergoes a localized, first-order transition. The location of the nucleosome switches shows a strong correlation with the location of gene-regulation regions.

  9. Nucleosome switches.

    PubMed

    Schwab, David J; Bruinsma, Robijn F; Rudnick, Joseph; Widom, Jonathan

    2008-06-06

    We present a statistical-mechanical model for the positioning of nucleosomes along genomic DNA molecules as a function of the strength of the binding potential and the chemical potential of the nucleosomes. We show that a significant section of the DNA is composed of two-level nucleosome switching regions where the nucleosome distribution undergoes a localized, first-order transition. The location of the nucleosome switches shows a strong correlation with the location of gene-regulation regions.

  10. O-linked N-acetylglucosamine transferase (OGT) interacts with the histone chaperone HIRA complex and regulates nucleosome assembly and cellular senescence

    PubMed Central

    Lee, Jong-Sun; Zhang, Zhiguo

    2016-01-01

    The histone chaperone HIRA complex, consisting of histone cell cycle regulator (HIRA), Ubinuclein1 (UBN1), and calcineurin binding protein 1 (CABIN1), deposits histone variant H3.3 to genic regions and regulates gene expression in various cellular processes, including cellular senescence. How HIRA-mediated nucleosome assembly of H3.3–H4 is regulated remains not well understood. Here, we show that O-linked N-acetylglucosamine (GlcNAc) transferase (OGT), an enzyme that catalyzes O-GlcNAcylation of serine or threonine residues, interacts with UBN1, modifies HIRA, and promotes nucleosome assembly of H3.3. Depletion of OGT or expression of the HIRA S231A O-GlcNAcylation–deficient mutant compromises formation of the HIRA–H3.3 complex and H3.3 nucleosome assembly. Importantly, OGT depletion or expression of the HIRA S231A mutant delays premature cellular senescence in primary human fibroblasts, whereas overexpression of OGT accelerates senescence. Taken together, these results support a model in which OGT modifies HIRA to regulate HIRA–H3.3 complex formation and H3.3 nucleosome assembly and reveal the mechanism by which OGT functions in cellular senescence. PMID:27217568

  11. Nucleosome Remodeling and Epigenetics

    PubMed Central

    Becker, Peter B.; Workman, Jerry L.

    2013-01-01

    Eukaryotic chromatin is kept flexible and dynamic to respond to environmental, metabolic, and developmental cues through the action of a family of so-called “nucleosome remodeling” ATPases. Consistent with their helicase ancestry, these enzymes experience conformation changes as they bind and hydrolyze ATP. At the same time they interact with DNA and histones, which alters histone–DNA interactions in target nucleosomes. Their action may lead to complete or partial disassembly of nucleosomes, the exchange of histones for variants, the assembly of nucleosomes, or the movement of histone octamers on DNA. “Remodeling” may render DNA sequences accessible to interacting proteins or, conversely, promote packing into tightly folded structures. Remodeling processes participate in every aspect of genome function. Remodeling activities are commonly integrated with other mechanisms such as histone modifications or RNA metabolism to assemble stable, epigenetic states. PMID:24003213

  12. Histone H3K56 Acetylation, CAF1, and Rtt106 Coordinate Nucleosome Assembly and Stability of Advancing Replication Forks

    PubMed Central

    Clemente-Ruiz, Marta; González-Prieto, Román; Prado, Félix

    2011-01-01

    Chromatin assembly mutants accumulate recombinogenic DNA damage and are sensitive to genotoxic agents. Here we have analyzed why impairment of the H3K56 acetylation-dependent CAF1 and Rtt106 chromatin assembly pathways, which have redundant roles in H3/H4 deposition during DNA replication, leads to genetic instability. We show that the absence of H3K56 acetylation or the simultaneous knock out of CAF1 and Rtt106 increases homologous recombination by affecting the integrity of advancing replication forks, while they have a minor effect on stalled replication fork stability in response to the replication inhibitor hydroxyurea. This defect in replication fork integrity is not due to defective checkpoints. In contrast, H3K56 acetylation protects against replicative DNA damaging agents by DNA repair/tolerance mechanisms that do not require CAF1/Rtt106 and are likely subsequent to the process of replication-coupled nucleosome deposition. We propose that the tight connection between DNA synthesis and histone deposition during DNA replication mediated by H3K56ac/CAF1/Rtt106 provides a mechanism for the stabilization of advancing replication forks and the maintenance of genome integrity, while H3K56 acetylation has an additional, CAF1/Rtt106-independent function in the response to replicative DNA damage. PMID:22102830

  13. Interaction of nucleosome assembly proteins abolishes nuclear localization of DGK{zeta} by attenuating its association with importins

    SciTech Connect

    Okada, Masashi; Hozumi, Yasukazu; Ichimura, Tohru; Tanaka, Toshiaki; Hasegawa, Hiroshi; Yamamoto, Masakazu; Takahashi, Nobuya; Iseki, Ken; Yagisawa, Hitoshi; Shinkawa, Takashi; Isobe, Toshiaki; Goto, Kaoru

    2011-12-10

    Diacylglycerol kinase (DGK) is involved in the regulation of lipid-mediated signal transduction through the metabolism of a second messenger diacylglycerol. Of the DGK family, DGK{zeta}, which contains a nuclear localization signal, localizes mainly to the nucleus but translocates to the cytoplasm under pathological conditions. However, the detailed mechanism of translocation and its functional significance remain unclear. To elucidate these issues, we used a proteomic approach to search for protein targets that interact with DGK{zeta}. Results show that nucleosome assembly protein (NAP) 1-like 1 (NAP1L1) and NAP1-like 4 (NAP1L4) are identified as novel DGK{zeta} binding partners. NAP1Ls constitutively shuttle between the nucleus and the cytoplasm in transfected HEK293 cells. The molecular interaction of DGK{zeta} and NAP1Ls prohibits nuclear import of DGK{zeta} because binding of NAP1Ls to DGK{zeta} blocks import carrier proteins, Qip1 and NPI1, to interact with DGK{zeta}, leading to cytoplasmic tethering of DGK{zeta}. In addition, overexpression of NAP1Ls exerts a protective effect against doxorubicin-induced cytotoxicity. These findings suggest that NAP1Ls are involved in a novel molecular basis for the regulation of nucleocytoplasmic shuttling of DGK{zeta} and provide a clue to examine functional significance of its translocation under pathological conditions.

  14. The Chp1 chromodomain binds the H3K9me tail and the nucleosome core to assemble heterochromatin

    PubMed Central

    Zocco, Manuel; Marasovic, Mirela; Pisacane, Paola; Bilokapic, Silvija; Halic, Mario

    2016-01-01

    To maintain genome stability, cells pack large portions of their genome into silent chromatin or heterochromatin. Histone H3 lysine 9 methylation, a hallmark of heterochromatin, is recognized by conserved readers called chromodomains. But how chromodomains interact with their actual binding partner, the H3K9 methylated nucleosome, remains elusive. We have determined the structure of a nucleosome trimethylated at lysine 9 of histone H3 (H3K9me3 Nucleosome) in a complex with the chromodomain of Chp1, a protein required for RNA interference-dependent heterochromatin formation in fission yeast. The cryo-electron microscopy structure reveals that the chromodomain of Chp1 binds the histone H3 lysine 9 methylated tail and the core of the nucleosome, primarily histones H3 and H2B. Mutations in chromodomain of Chp1 loops, which interact with the nucleosome core, abolished this interaction in vitro. Moreover, fission yeast cells with Chp1 loop mutations have a defect in Chp1 recruitment and heterochromatin formation. This study reveals the structural basis for heterochromatic silencing and suggests that chromodomains could read histone code in the H3 tail and the nucleosome core, which would provide an additional layer of regulation. PMID:27462451

  15. Functional characterization of human nucleosome assembly protein-2 (NAP1L4) suggests a role as a histone chaperone

    SciTech Connect

    Rodriguez, P.; Chu, Lee Lee; Kim, Jungho; Pelletier, J.

    1997-09-15

    Histones are thought to play a key role in regulating gene expression at the level of DNA packaging. Recent evidence suggests that transcriptional activation requires competition of transcription factors with histones for binding to regulatory regions and that there may be several mechanisms by which this is achieved. We have characterized a human nucleosome assembly protein, NAP-2, previously identified by positional cloning at 11p15.5, a region implicated in several disease processes including Wilms tumor (WT) etiology. The deduced amino acid sequence of NAP-2 indicates that it encodes a protein with a potential nuclear localization motif and two clusters of highly acidic residues. Functional analysis of recombinant NAP-2 protein purified from Escherichia coli demonstrates that this protein can interact with both core and linker histones. We demonstrate that recombinant NAP-2 can transfer histones onto naked DNA templates. Deletion mutagenesis of NAP-2 demonstrates that both NH3- and COOH-terminal domains are required for histone transfer activity. Subcellular localization studies of NAP-2 indicate that it can shuttle between the cytoplasm and the nucleus, suggesting a role as a histone chaperone. Given the potential role of the human NAP-2 gene (HGMW-approved symbol NAP1L4) in WT etiology, we have elucidated the exon/intron structure of this gene and have analyzed the mutational status of NAP-2 in sporadic WTs. Our results, coupled with tumor suppression assays in G401 WT cells, do not support a role for NAP-2 in the etiology of WT. A putative role for NAP-2 in regulating cellular differentiation is discussed. 59 refs., 7 figs., 1 tab.

  16. Visible periodicity of strong nucleosome DNA sequences.

    PubMed

    Salih, Bilal; Tripathi, Vijay; Trifonov, Edward N

    2015-01-01

    Fifteen years ago, Lowary and Widom assembled nucleosomes on synthetic random sequence DNA molecules, selected the strongest nucleosomes and discovered that the TA dinucleotides in these strong nucleosome sequences often appear at 10-11 bases from one another or at distances which are multiples of this period. We repeated this experiment computationally, on large ensembles of natural genomic sequences, by selecting the strongest nucleosomes--i.e. those with such distances between like-named dinucleotides, multiples of 10.4 bases, the structural and sequence period of nucleosome DNA. The analysis confirmed the periodicity of TA dinucleotides in the strong nucleosomes, and revealed as well other periodic sequence elements, notably classical AA and TT dinucleotides. The matrices of DNA bendability and their simple linear forms--nucleosome positioning motifs--are calculated from the strong nucleosome DNA sequences. The motifs are in full accord with nucleosome positioning sequences derived earlier, thus confirming that the new technique, indeed, detects strong nucleosomes. Species- and isochore-specific variations of the matrices and of the positioning motifs are demonstrated. The strong nucleosome DNA sequences manifest the highest hitherto nucleosome positioning sequence signals, showing the dinucleotide periodicities in directly observable rather than in hidden form.

  17. The Nucleosome Assembly Protein TSPYL2 Regulates the Expression of NMDA Receptor Subunits GluN2A and GluN2B

    PubMed Central

    Tsang, Ka Hing; Lai, Suk King; Li, Qi; Yung, Wing Ho; Liu, Hang; Mak, Priscilla Hoi Shan; Ng, Cypress Chun Pong; McAlonan, Grainne; Chan, Ying Shing; Chan, Siu Yuen

    2014-01-01

    TSPYL2 is an X-linked gene encoding a nucleosome assembly protein. TSPYL2 interacts with calmodulin-associated serine/threonine kinase, which is implicated in X-linked mental retardation. As nucleosome assembly and chromatin remodeling are important in transcriptional regulation and neuronal function, we addressed the importance of TSPYL2 through analyzing Tspyl2 loss-of-function mice. We detected down-regulation of N-methyl-D-aspartate receptor subunits 2A and 2B (GluN2A and GluN2B) in the mutant hippocampus. Evidence from luciferase reporter assays and chromatin immunoprecipitation supported that TSPYL2 regulated the expression of Grin2a and Grin2b, the genes encoding GluN2A and GluN2B. We also detected an interaction between TSPYL2 and CBP, indicating that TSPYL2 may activate gene expression through binding CBP. In terms of functional outcome, Tspyl2 loss-of-function impaired long-term potentiation at hippocampal Schaffer collateral-CA1 synapses. Moreover, mutant mice showed a deficit in fear learning and memory. We conclude that TSPYL2 contributes to cognitive variability through regulating the expression of Grin2a and Grin2b. PMID:24413569

  18. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo.

    PubMed

    Zhang, Yong; Moqtaderi, Zarmik; Rattner, Barbara P; Euskirchen, Ghia; Snyder, Michael; Kadonaga, James T; Liu, X Shirley; Struhl, Kevin

    2009-08-01

    We assess the role of intrinsic histone-DNA interactions by mapping nucleosomes assembled in vitro on genomic DNA. Nucleosomes strongly prefer yeast DNA over Escherichia coli DNA, indicating that the yeast genome evolved to favor nucleosome formation. Many yeast promoter and terminator regions intrinsically disfavor nucleosome formation, and nucleosomes assembled in vitro show strong rotational positioning. Nucleosome arrays generated by the ACF assembly factor have fewer nucleosome-free regions, reduced rotational positioning and less translational positioning than obtained by intrinsic histone-DNA interactions. Notably, nucleosomes assembled in vitro have only a limited preference for specific translational positions and do not show the pattern observed in vivo. Our results argue against a genomic code for nucleosome positioning, and they suggest that the nucleosomal pattern in coding regions arises primarily from statistical positioning from a barrier near the promoter that involves some aspect of transcriptional initiation by RNA polymerase II.

  19. DNA looping mediates nucleosome transfer

    PubMed Central

    Brennan, Lucy D.; Forties, Robert A.; Patel, Smita S.; Wang, Michelle D.

    2016-01-01

    Proper cell function requires preservation of the spatial organization of chromatin modifications. Maintenance of this epigenetic landscape necessitates the transfer of parental nucleosomes to newly replicated DNA, a process that is stringently regulated and intrinsically linked to replication fork dynamics. This creates a formidable setting from which to isolate the central mechanism of transfer. Here we utilized a minimal experimental system to track the fate of a single nucleosome following its displacement, and examined whether DNA mechanics itself, in the absence of any chaperones or assembly factors, may serve as a platform for the transfer process. We found that the nucleosome is passively transferred to available dsDNA as predicted by a simple physical model of DNA loop formation. These results demonstrate a fundamental role for DNA mechanics in mediating nucleosome transfer and preserving epigenetic integrity during replication. PMID:27808093

  20. Electrophoresis of Positioned Nucleosomes

    PubMed Central

    Castelnovo, Martin; Grauwin, Sébastian

    2007-01-01

    We present in this article an original approach to compute the electrophoretic mobility of rigid nucleo-protein complexes like nucleosomes. This model allows us to address theoretically the influence of complex position along DNA, as well as wrapped length of DNA on the electrophoretic mobility of the complex. The predictions of the model are in qualitative agreement with experimental results on mononucleosomes assembled on short DNA fragments (<400 bp). Influences of additional experimental parameters like gel concentration, ionic strength, and effective charges are also discussed in the framework of the model, and are found to be qualitatively consistent with experiments when available. Based on the present model, we propose a simple semi-empirical formula describing positioning of nucleosomes as seen through electrophoresis. PMID:17277181

  1. Exploring Nucleosome Unwrapping Using DNA Origami.

    PubMed

    Funke, Jonas J; Ketterer, Philip; Lieleg, Corinna; Korber, Philipp; Dietz, Hendrik

    2016-12-14

    We establish a DNA origami based tool for quantifying conformational equilibria of biomolecular assemblies as a function of environmental conditions. As first application, we employed the tool to study the salt-induced disassembly of nucleosome core particles. To extract binding constants and energetic penalties, we integrated nucleosomes in the spectrometer such that unwrapping of the nucleosomal template DNA, leading from bent to more extended states was directly coupled to the conformation of the spectrometer. Nucleosome unwrapping was induced by increasing the ionic strength. The corresponding shifts in conformation equilibrium of the spectrometer were followed by direct conformation imaging using negative staining TEM and by FRET read out after gel electrophoretic separation of conformations. We find nucleosome dissociation constants in the picomolar range at low ionic strength (11 mM MgCl2), in the nanomolar range at intermediate ionic strength (11 mM MgCl2 with 0.5-1 M NaCl) and in the micromolar range at larger ionic strength (11 mM MgCl2 with ≥1.5 M NaCl). Integration of up to four nucleosomes stacked side-by-side, as it might occur within chromatin fibers, did not appear to affect the salt-induced unwrapping of nucleosomes. Presumably, such stacking interactions are already effectively screened at the nucleosome unwrapping conditions. Our spectrometer provides a modular platform with a direct read out to study conformational equilibria for targets from small biomolecules up to large macromolecular assemblies.

  2. Replication-guided nucleosome packing and nucleosome breathing expedite the formation of dense arrays.

    PubMed

    Osberg, Brendan; Nuebler, Johannes; Korber, Philipp; Gerland, Ulrich

    2014-12-16

    The first level of genome packaging in eukaryotic cells involves the formation of dense nucleosome arrays, with DNA coverage near 90% in yeasts. How cells achieve such high coverage within a short time, e.g. after DNA replication, remains poorly understood. It is known that random sequential adsorption of impenetrable particles on a line reaches high density extremely slowly, due to a jamming phenomenon. The nucleosome-shifting action of remodeling enzymes has been proposed as a mechanism to resolve such jams. Here, we suggest two biophysical mechanisms which assist rapid filling of DNA with nucleosomes, and we quantitatively characterize these mechanisms within mathematical models. First, we show that the 'softness' of nucleosomes, due to nucleosome breathing and stepwise nucleosome assembly, significantly alters the filling behavior, speeding up the process relative to 'hard' particles with fixed, mutually exclusive DNA footprints. Second, we explore model scenarios in which the progression of the replication fork could eliminate nucleosome jamming, either by rapid filling in its wake or via memory of the parental nucleosome positions. Taken together, our results suggest that biophysical effects promote rapid nucleosome filling, making the reassembly of densely packed nucleosomes after DNA replication a simpler task for cells than was previously thought.

  3. A brief review of nucleosome structure.

    PubMed

    Cutter, Amber R; Hayes, Jeffrey J

    2015-10-07

    The nucleosomal subunit organization of chromatin provides a multitude of functions. Nucleosomes elicit an initial ∼7-fold linear compaction of genomic DNA. They provide a critical mechanism for stable repression of genes and other DNA-dependent activities by restricting binding of trans-acting factors to cognate DNA sequences. Conversely they are engineered to be nearly meta-stable and disassembled (and reassembled) in a facile manner to allow rapid access to the underlying DNA during processes such as transcription, replication and DNA repair. Nucleosomes protect the genome from DNA damaging agents and provide a lattice onto which a myriad of epigenetic signals are deposited. Moreover, vast strings of nucleosomes provide a framework for assembly of the chromatin fiber and higher-order chromatin structures. Thus, in order to provide a foundation for understanding these functions, we present a review of the basic elements of nucleosome structure and stability, including the association of linker histones.

  4. The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix.

    PubMed Central

    Arents, G; Burlingame, R W; Wang, B C; Love, W E; Moudrianakis, E N

    1991-01-01

    The structure of the octameric histone core of the nucleosome has been determined by x-ray crystallography to a resolution of 3.1 A. The histone octamer is a tripartite assembly in which a centrally located (H3-H4)2 tetramer is flanked by two H2A-H2B dimers. It has a complex outer surface; depending on the perspective, the structure appears as a wedge or as a flat disk. The disk represents the planar projection of a left-handed proteinaceous superhelix with approximately 28 A pitch. The diameter of the particle is 65 A and the length is 60 A at its maximum and approximately 10 A at its minimum extension; these dimensions are in agreement with those reported earlier by Klug et al. [Klug, A., Rhodes, D., Smith, J., Finch, J. T. & Thomas, J. O. (1980) Nature (London) 287, 509-516]. The folded histone chains are elongated rather than globular and are assembled in a characteristic "handshake" motif. The individual polypeptides share a common central structural element of the helix-loop-helix type, which we name the histone fold. Images PMID:1946434

  5. Ubiquitous nucleosome crowding in the yeast genome.

    PubMed

    Chereji, Răzvan V; Morozov, Alexandre V

    2014-04-08

    Nucleosomes may undergo a conformational change in which a stretch of DNA peels off the histone octamer surface as a result of thermal fluctuations or interactions with chromatin remodelers. Thus, neighboring nucleosomes may invade each other's territories by DNA unwrapping and translocation, or through initial assembly in partially wrapped states. A recent high-resolution map of distances between dyads of neighboring nucleosomes in Saccharomyces cerevisiae reveals that nucleosomes frequently overlap DNA territories of their neighbors. This conclusion is supported by lower-resolution maps of S. cerevisiae nucleosome lengths based on micrococcal nuclease digestion and paired-end sequencing. The average length of wrapped DNA follows a stereotypical pattern in genes and promoters, correlated with the well-known distribution of nucleosome occupancy: nucleosomal DNA tends to be shorter in promoters and longer in coding regions. To explain these observations, we have developed a biophysical model that uses a 10-11-bp periodic histone-DNA binding energy profile. The profile is based on the pattern of histone-DNA contacts in nucleosome crystal structures, as well as the idea of linker length discretization caused by higher-order chromatin structure. Our model is in agreement with the observed genome-wide distributions of interdyad distances, wrapped DNA lengths, and nucleosome occupancies. Furthermore, our approach explains in vitro measurements of the accessibility of nucleosome-covered target sites and nucleosome-induced cooperativity between DNA-binding factors. We rule out several alternative scenarios of histone-DNA interactions as inconsistent with the genomic data.

  6. NELF-mediated stalling of Pol II can enhance gene expression by blocking promoter-proximal nucleosome assembly

    PubMed Central

    Gilchrist, Daniel A.; Nechaev, Sergei; Lee, Chanhyo; Ghosh, Saikat Kumar B.; Collins, Jennifer B.; Li, Leping; Gilmour, David S.; Adelman, Karen

    2008-01-01

    The Negative Elongation Factor (NELF) is a transcription regulatory complex that induces stalling of RNA polymerase II (Pol II) during early transcription elongation and represses expression of several genes studied to date, including Drosophila Hsp70, mammalian proto-oncogene junB, and HIV RNA. To determine the full spectrum of NELF target genes in Drosophila, we performed a microarray analysis of S2 cells depleted of NELF and discovered that NELF RNAi affects many rapidly inducible genes involved in cellular responses to stimuli. Surprisingly, only one-third of NELF target genes were, like Hsp70, up-regulated by NELF-depletion, whereas the majority of target genes showed decreased expression levels upon NELF RNAi. Our data reveal that the presence of stalled Pol II at this latter group of genes enhances gene expression by maintaining a permissive chromatin architecture around the promoter-proximal region, and that loss of Pol II stalling at these promoters is accompanied by a significant increase in nucleosome occupancy and a decrease in histone H3 Lys 4 trimethylation. These findings identify a novel, positive role for stalled Pol II in regulating gene expression and suggest that there is a dynamic interplay between stalled Pol II and chromatin structure. PMID:18628398

  7. Nucleosome structure(s) and stability: variations on a theme.

    PubMed

    Andrews, Andrew J; Luger, Karolin

    2011-01-01

    Chromatin is a highly regulated, modular nucleoprotein complex that is central to many processes in eukaryotes. The organization of DNA into nucleosomes and higher-order structures has profound implications for DNA accessibility. Alternative structural states of the nucleosome, and the thermodynamic parameters governing its assembly and disassembly, need to be considered in order to understand how access to nucleosomal DNA is regulated. In this review, we provide a brief historical account of how the overriding perception regarding aspects of nucleosome structure has changed over the past thirty years. We discuss recent technical advances regarding nucleosome structure and its physical characterization and review the evidence for alternative nucleosome conformations and their implications for nucleosome and chromatin dynamics.

  8. The Human Immunodeficiency Virus 1 ASP RNA promotes viral latency by recruiting the Polycomb Repressor Complex 2 and promoting nucleosome assembly.

    PubMed

    Zapata, Juan C; Campilongo, Federica; Barclay, Robert A; DeMarino, Catherine; Iglesias-Ussel, Maria D; Kashanchi, Fatah; Romerio, Fabio

    2017-03-21

    Various epigenetic marks at the HIV-1 5'LTR suppress proviral expression and promote latency. Cellular antisense transcripts known as long noncoding RNAs (lncRNAs) recruit the polycomb repressor complex 2 (PRC2) to gene promoters, which catalyzes trimethylation of lysine 27 on histone H3 (H3K27me3), thus promoting nucleosome assembly and suppressing gene expression. We found that an HIV-1 antisense transcript expressed from the 3'LTR and encoding the antisense protein ASP promotes proviral latency. Expression of ASP RNA reduced HIV-1 replication in Jurkat cells. Moreover, ASP RNA expression promoted the establishment and maintenance of HIV-1 latency in Jurkat E4 cells. We show that this transcript interacts with and recruits PRC2 to the HIV-1 5'LTR, increasing accumulation of the suppressive epigenetic mark H3K27me3, while reducing RNA Polymerase II and thus proviral transcription. Altogether, our results suggest that the HIV-1 ASP transcript promotes epigenetic silencing of the HIV-1 5'LTR and proviral latency through the PRC2 pathway.

  9. Structural basis for retroviral integration into nucleosomes.

    PubMed

    Maskell, Daniel P; Renault, Ludovic; Serrao, Erik; Lesbats, Paul; Matadeen, Rishi; Hare, Stephen; Lindemann, Dirk; Engelman, Alan N; Costa, Alessandro; Cherepanov, Peter

    2015-07-16

    Retroviral integration is catalysed by a tetramer of integrase (IN) assembled on viral DNA ends in a stable complex, known as the intasome. How the intasome interfaces with chromosomal DNA, which exists in the form of nucleosomal arrays, is currently unknown. Here we show that the prototype foamy virus (PFV) intasome is proficient at stable capture of nucleosomes as targets for integration. Single-particle cryo-electron microscopy reveals a multivalent intasome-nucleosome interface involving both gyres of nucleosomal DNA and one H2A-H2B heterodimer. While the histone octamer remains intact, the DNA is lifted from the surface of the H2A-H2B heterodimer to allow integration at strongly preferred superhelix location ±3.5 positions. Amino acid substitutions disrupting these contacts impinge on the ability of the intasome to engage nucleosomes in vitro and redistribute viral integration sites on the genomic scale. Our findings elucidate the molecular basis for nucleosome capture by the viral DNA recombination machinery and the underlying nucleosome plasticity that allows integration.

  10. DPNuc: Identifying Nucleosome Positions Based on the Dirichlet Process Mixture Model.

    PubMed

    Chen, Huidong; Guan, Jihong; Zhou, Shuigeng

    2015-01-01

    Nucleosomes and the free linker DNA between them assemble the chromatin. Nucleosome positioning plays an important role in gene transcription regulation, DNA replication and repair, alternative splicing, and so on. With the rapid development of ChIP-seq, it is possible to computationally detect the positions of nucleosomes on chromosomes. However, existing methods cannot provide accurate and detailed information about the detected nucleosomes, especially for the nucleosomes with complex configurations where overlaps and noise exist. Meanwhile, they usually require some prior knowledge of nucleosomes as input, such as the size or the number of the unknown nucleosomes, which may significantly influence the detection results. In this paper, we propose a novel approach DPNuc for identifying nucleosome positions based on the Dirichlet process mixture model. In our method, Markov chain Monte Carlo (MCMC) simulations are employed to determine the mixture model with no need of prior knowledge about nucleosomes. Compared with three existing methods, our approach can provide more detailed information of the detected nucleosomes and can more reasonably reveal the real configurations of the chromosomes; especially, our approach performs better in the complex overlapping situations. By mapping the detected nucleosomes to a synthetic benchmark nucleosome map and two existing benchmark nucleosome maps, it is shown that our approach achieves a better performance in identifying nucleosome positions and gets a higher F-score. Finally, we show that our approach can more reliably detect the size distribution of nucleosomes.

  11. Nucleosome positioning and composition modulate in silico chromatin flexibility.

    PubMed

    Clauvelin, N; Lo, P; Kulaeva, O I; Nizovtseva, E V; Diaz-Montes, J; Zola, J; Parashar, M; Studitsky, V M; Olson, W K

    2015-02-18

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes-the familiar assemblies of ∼150 DNA base pairs and eight histone proteins-found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the 'local' inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome positioning, and

  12. Nucleosome positioning and composition modulate in silico chromatin flexibility

    NASA Astrophysics Data System (ADS)

    Clauvelin, N.; Lo, P.; Kulaeva, O. I.; Nizovtseva, E. V.; Diaz-Montes, J.; Zola, J.; Parashar, M.; Studitsky, V. M.; Olson, W. K.

    2015-02-01

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes—the familiar assemblies of ˜150 DNA base pairs and eight histone proteins—found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the ‘local’ inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome

  13. The same amount of DNA is organized in in vitro-assembled nucleosomes irrespective of the origin of the histones.

    PubMed Central

    Spadafora, C; Oudet, P; Chambon, P

    1978-01-01

    The four histones H2A, H2B, H3 and H4 from calf thymus, CHO and sea urchin gastrula cells were associated by stepwise dialysis from 2 M NaCl with SV40 DNA Form I. The in vitro-assembled chromatins were visualized by electron microscopy and the size of the DNA fragments generated by digestion with DNase II was determined. Irrespective of the origin of the histones, the size of the smallest DNA band generated at early times of digestion was about 190 base pairs, whereas oligomeric DNA bands were multiples of 140 bp. These results support our previous proposal that the four histones H2A, H2B, H3 and H4 are able to organize more than 140 bp of DNA, but do not provide any evidence that the variability of histones H2A and H2B plays a role in the variability of the DNA repeat length of native chromatins. Images PMID:214759

  14. What controls nucleosome positions?

    PubMed

    Segal, Eran; Widom, Jonathan

    2009-08-01

    The DNA of eukaryotic genomes is wrapped in nucleosomes, which strongly distort and occlude the DNA from access to most DNA-binding proteins. An understanding of the mechanisms that control nucleosome positioning along the DNA is thus essential to understanding the binding and action of proteins that carry out essential genetic functions. New genome-wide data on in vivo and in vitro nucleosome positioning greatly advance our understanding of several factors that can influence nucleosome positioning, including DNA sequence preferences, DNA methylation, histone variants and post-translational modifications, higher order chromatin structure, and the actions of transcription factors, chromatin remodelers and other DNA-binding proteins. We discuss how these factors function and ways in which they might be integrated into a unified framework that accounts for both the preservation of nucleosome positioning and the dynamic nucleosome repositioning that occur across biological conditions, cell types, developmental processes and disease.

  15. The prenucleosome, a stable conformational isomer of the nucleosome.

    PubMed

    Fei, Jia; Torigoe, Sharon E; Brown, Christopher R; Khuong, Mai T; Kassavetis, George A; Boeger, Hinrich; Kadonaga, James T

    2015-12-15

    Chromatin comprises nucleosomes as well as nonnucleosomal histone-DNA particles. Prenucleosomes are rapidly formed histone-DNA particles that can be converted into canonical nucleosomes by a motor protein such as ACF. Here we show that the prenucleosome is a stable conformational isomer of the nucleosome. It consists of a histone octamer associated with ∼ 80 base pair (bp) of DNA, which is located at a position that corresponds to the central 80 bp of a nucleosome core particle. Monomeric prenucleosomes with free flanking DNA do not spontaneously fold into nucleosomes but can be converted into canonical nucleosomes by an ATP-driven motor protein such as ACF or Chd1. In addition, histone H3K56, which is located at the DNA entry and exit points of a canonical nucleosome, is specifically acetylated by p300 in prenucleosomes relative to nucleosomes. Prenucleosomes assembled in vitro exhibit properties that are strikingly similar to those of nonnucleosomal histone-DNA particles in the upstream region of active promoters in vivo. These findings suggest that the prenucleosome, the only known stable conformational isomer of the nucleosome, is related to nonnucleosomal histone-DNA species in the cell.

  16. Structure of the CENP-A nucleosome and its implications for centromeric chromatin architecture.

    PubMed

    Tachiwana, Hiroaki; Kurumizaka, Hitoshi

    2011-01-01

    Centromeres are dictated by the epigenetic inheritance of the centromeric nucleosome containing the centromere-specific histone H3 variant, CENP-A. The structure of the CENP-A nucleosome has been considered to be the fundamental architecture of the centromeric chromatin. Controversy exists in the literature regarding the CENP-A nucleosome structures, with octasome, hemisome, compact octasome, hexasome, and tetrasome models being reported. Some of these CENP-A nucleosome models may correspond to transient intermediates for the assembly of the mature CENP-A nucleosome; however, their significances are still unclear. Therefore, the structure of the mature CENP-A nucleosome has been eagerly awaited. We reconstituted the human CENP-A nucleosome with its cognate centromeric DNA fragment, and determined its crystal structure. In this review, we describe the structure and the physical properties of the CENP-A nucleosome, and discuss their implications for centromeric chromatin architecture.

  17. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo.

    PubMed

    Ricci, Maria Aurelia; Manzo, Carlo; García-Parajo, María Filomena; Lakadamyali, Melike; Cosma, Maria Pia

    2015-03-12

    Nucleosomes help structure chromosomes by compacting DNA into fibers. To gain insight into how nucleosomes are arranged in vivo, we combined quantitative super-resolution nanoscopy with computer simulations to visualize and count nucleosomes along the chromatin fiber in single nuclei. Nucleosomes assembled in heterogeneous groups of varying sizes, here termed "clutches," and these were interspersed with nucleosome-depleted regions. The median number of nucleosomes inside clutches and their compaction defined as nucleosome density were cell-type-specific. Ground-state pluripotent stem cells had, on average, less dense clutches containing fewer nucleosomes and clutch size strongly correlated with the pluripotency potential of induced pluripotent stem cells. RNA polymerase II preferentially associated with the smallest clutches while linker histone H1 and heterochromatin were enriched in the largest ones. Our results reveal how the chromatin fiber is formed at nanoscale level and link chromatin fiber architecture to stem cell state.

  18. Nucleosome phasing - new insights

    NASA Astrophysics Data System (ADS)

    Chereji, Razvan

    2014-03-01

    Eukaryotic genomes are organized into arrays of nucleosomes, in which stretches of 147 base-pairs of DNA are wrapped around octameric histones. Recently, a new method of mapping nucleosome positions was developed, which gives a much higher accuracy than the typical MNase-seq method. I present a statistical mechanics model which is able to reproduce the high-resolution nucleosome positioning data. I show that the DNA sequence is not the main cause of the nucleosome phasing which is observed genome-wide, and I present the major nucleosome phasing elements. The statistical mechanics framework is general enough to be useful in explaining different experimental observations, and I present a few results of this model.

  19. Modeling the dynamics of the nucleosome at various levels.

    NASA Astrophysics Data System (ADS)

    Onufriev, Alexey; Fenley, Andrew; Zmuda-Ruscio, Jory; Adams, David

    2007-03-01

    The primary level of DNA compaction in eukaryotic organisms is the nucleosome, yet details of its dynamics are not fully understood. While the whole nucleosome must be highly stable, protective of its genetic material, at the same time its tightly wrapped DNA should be highly accessible, easily revealing its information content. A combination of atom-level classical molecular dynamics and a course-grained continuum description provide insights into the functioning of the system. In particular, the nucleosomal DNA appears to be considerably more flexible than what can be expected based on its canonical persistence length. A coarse-grained electrostatic model of the nucleosome explains how its stability can be modulated with small environmental changes as well as post-translational modifications. Implications for the nucleosome assembly process in vivo are discussed.

  20. Specific glucocorticoid receptor binding to DNA reconstituted in a nucleosome.

    PubMed Central

    Perlmann, T; Wrange, O

    1988-01-01

    We have reconstituted a nucleosome with core histones from rat liver using a restriction fragment containing a sequence from the mouse mammary tumour virus (MTV) long terminal repeat (LTR). This sequence harbours glucocorticoid responsive elements (GREs) which mediate glucocorticoid hormone induction of transcription from the MTV promoter via glucocorticoid receptor (GR) binding. Exonuclease III and DNase I footprinting demonstrated that the reconstituted nucleosome was specifically located between positions -219 and -76. A nucleosome was previously shown to be located at a similar or identical position in the MTV promoter in situ and to be structurally altered upon glucocorticoid hormone induction. We demonstrated, by DNase I footprinting, that GR is able to bind sequence specifically to the DNA in the in vitro assembled nucleosome. No evidence for unfolding of the nucleosome was obtained, but the DNase I footprinting pattern demonstrated GR induced local alterations in the DNA. Images PMID:2846275

  1. Statistical mechanics of nucleosomes

    NASA Astrophysics Data System (ADS)

    Chereji, Razvan V.

    Eukaryotic cells contain long DNA molecules (about two meters for a human cell) which are tightly packed inside the micrometric nuclei. Nucleosomes are the basic packaging unit of the DNA which allows this millionfold compactification. A longstanding puzzle is to understand the principles which allow cells to both organize their genomes into chromatin fibers in the crowded space of their nuclei, and also to keep the DNA accessible to many factors and enzymes. With the nucleosomes covering about three quarters of the DNA, their positions are essential because these influence which genes can be regulated by the transcription factors and which cannot. We study physical models which predict the genome-wide organization of the nucleosomes and also the relevant energies which dictate this organization. In the last five years, the study of chromatin knew many important advances. In particular, in the field of nucleosome positioning, new techniques of identifying nucleosomes and the competing DNA-binding factors appeared, as chemical mapping with hydroxyl radicals, ChIP-exo, among others, the resolution of the nucleosome maps increased by using paired-end sequencing, and the price of sequencing an entire genome decreased. We present a rigorous statistical mechanics model which is able to explain the recent experimental results by taking into account nucleosome unwrapping, competition between different DNA-binding proteins, and both the interaction between histones and DNA, and between neighboring histones. We show a series of predictions of our new model, all in agreement with the experimental observations.

  2. Widespread signatures of recent selection linked to nucleosome positioning in the human lineage.

    PubMed

    Prendergast, James G D; Semple, Colin A M

    2011-11-01

    In this study we investigated the strengths and modes of selection associated with nucleosome positioning in the human lineage through the comparison of interspecies and intraspecies rates of divergence. We identify significant evidence for both positive and negative selection linked to human nucleosome positioning for the first time, implicating a widespread and important role for DNA sequence in the location of well-positioned nucleosomes. Selection appears to be acting on particular base substitutions to maintain optimum GC compositions in core and linker regions, with, e.g., unexpectedly elevated rates of C→T substitutions during recent human evolution at linker regions 60-90 bp from the nucleosome dyad but significant depletion of the same substitutions within nucleosome core regions. These patterns are strikingly consistent with the known relationships between genomic sequence composition and nucleosome assembly. By stratifying nucleosomes according to the GC content of their genomic neighborhood, we also show that the strength and direction of selection detected is dictated by local GC content. Intriguingly these signatures of selection are not restricted to nucleosomes in close proximity to exons, suggesting the correct positioning of nucleosomes is not only important in and around coding regions. This analysis provides strong evidence that the genomic sequences associated with nucleosomes are not evolving neutrally, and suggests that underlying DNA sequence is an important factor in nucleosome positioning. Recent signatures of selection linked to genomic features as ubiquitous as the nucleosome have important implications for human genome evolution and disease.

  3. Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in Drosophila melanogaster.

    PubMed

    Chereji, Răzvan V; Kan, Tsung-Wai; Grudniewska, Magda K; Romashchenko, Alexander V; Berezikov, Eugene; Zhimulev, Igor F; Guryev, Victor; Morozov, Alexandre V; Moshkin, Yuri M

    2016-02-18

    Nucleosomal DNA is thought to be generally inaccessible to DNA-binding factors, such as micrococcal nuclease (MNase). Here, we digest Drosophila chromatin with high and low concentrations of MNase to reveal two distinct nucleosome types: MNase-sensitive and MNase-resistant. MNase-resistant nucleosomes assemble on sequences depleted of A/T and enriched in G/C-containing dinucleotides, whereas MNase-sensitive nucleosomes form on A/T-rich sequences found at transcription start and termination sites, enhancers and DNase I hypersensitive sites. Estimates of nucleosome formation energies indicate that MNase-sensitive nucleosomes tend to be less stable than MNase-resistant ones. Strikingly, a decrease in cell growth temperature of about 10°C makes MNase-sensitive nucleosomes less accessible, suggesting that observed variations in MNase sensitivity are related to either thermal fluctuations of chromatin fibers or the activity of enzymatic machinery. In the vicinity of active genes and DNase I hypersensitive sites nucleosomes are organized into periodic arrays, likely due to 'phasing' off potential barriers formed by DNA-bound factors or by nucleosomes anchored to their positions through external interactions. The latter idea is substantiated by our biophysical model of nucleosome positioning and energetics, which predicts that nucleosomes immediately downstream of transcription start sites are anchored and recapitulates nucleosome phasing at active genes significantly better than sequence-dependent models.

  4. Uncovering the forces between nucleosomes using DNA origami.

    PubMed

    Funke, Jonas J; Ketterer, Philip; Lieleg, Corinna; Schunter, Sarah; Korber, Philipp; Dietz, Hendrik

    2016-11-01

    Revealing the energy landscape for nucleosome association may contribute to the understanding of higher-order chromatin structures and their impact on genome regulation. We accomplish this in a direct measurement by integrating two nucleosomes into a DNA origami-based force spectrometer, which enabled subnanometer-resolution measurements of nucleosome-nucleosome distance frequencies via single-particle electron microscopy imaging. From the data, we derived the Boltzmann-weighted distance-dependent energy landscape for nucleosome pair interactions. We find a shallow but long-range (~6 nm) attractive nucleosome pair potential with a minimum of -1.6 kcal/mol close to direct contact distances. The relative nucleosome orientation had little influence, but histone H4 acetylation or removal of histone tails drastically decreased the interaction strength. Because of the weak and shallow pair potential, higher-order nucleosome assemblies will be compliant and experience dynamic shape fluctuations in the absence of additional cofactors. Our results contribute to a more accurate description of chromatin and our force spectrometer provides a powerful tool for the direct and high-resolution study of molecular interactions using imaging techniques.

  5. Uncovering the forces between nucleosomes using DNA origami

    PubMed Central

    Funke, Jonas J.; Ketterer, Philip; Lieleg, Corinna; Schunter, Sarah; Korber, Philipp; Dietz, Hendrik

    2016-01-01

    Revealing the energy landscape for nucleosome association may contribute to the understanding of higher-order chromatin structures and their impact on genome regulation. We accomplish this in a direct measurement by integrating two nucleosomes into a DNA origami–based force spectrometer, which enabled subnanometer-resolution measurements of nucleosome-nucleosome distance frequencies via single-particle electron microscopy imaging. From the data, we derived the Boltzmann-weighted distance-dependent energy landscape for nucleosome pair interactions. We find a shallow but long-range (~6 nm) attractive nucleosome pair potential with a minimum of −1.6 kcal/mol close to direct contact distances. The relative nucleosome orientation had little influence, but histone H4 acetylation or removal of histone tails drastically decreased the interaction strength. Because of the weak and shallow pair potential, higher-order nucleosome assemblies will be compliant and experience dynamic shape fluctuations in the absence of additional cofactors. Our results contribute to a more accurate description of chromatin and our force spectrometer provides a powerful tool for the direct and high-resolution study of molecular interactions using imaging techniques. PMID:28138524

  6. Nucleosome Positioning and Epigenetics

    NASA Astrophysics Data System (ADS)

    Schwab, David; Bruinsma, Robijn

    2008-03-01

    The role of chromatin structure in gene regulation has recently taken center stage in the field of epigenetics, phenomena that change the phenotype without changing the DNA sequence. Recent work has also shown that nucleosomes, a complex of DNA wrapped around a histone octamer, experience a sequence dependent energy landscape due to the variation in DNA bend stiffness with sequence composition. In this talk, we consider the role nucleosome positioning might play in the formation of heterochromatin, a compact form of DNA generically responsible for gene silencing. In particular, we discuss how different patterns of nucleosome positions, periodic or random, could either facilitate or suppress heterochromatin stability and formation.

  7. Identification of nucleosome assembly protein 1 (NAP1) as an interacting partner of plant ribosomal protein S6 (RPS6) and a positive regulator of rDNA transcription

    SciTech Connect

    Son, Ora; Kim, Sunghan; Shin, Yun-jeong; Kim, Woo-Young; Koh, Hee-Jong; Cheon, Choong-Ill

    2015-09-18

    The ribosomal protein S6 (RPS6) is a downstream component of the signaling mediated by the target of rapamycin (TOR) kinase that acts as a central regulator of the key metabolic processes, such as protein translation and ribosome biogenesis, in response to various environmental cues. In our previous study, we identified a novel role of plant RPS6, which negatively regulates rDNA transcription, forming a complex with a plant-specific histone deacetylase, AtHD2B. Here we report that the Arabidopsis RPS6 interacts additionally with a histone chaperone, nucleosome assembly protein 1(AtNAP1;1). The interaction does not appear to preclude the association of RPS6 with AtHD2B, as the AtNAP1 was also able to interact with AtHD2B as well as with an RPS6-AtHD2B fusion protein in the BiFC assay and pulldown experiment. Similar to a positive effect of the ribosomal S6 kinase 1 (AtS6K1) on rDNA transcription observed in this study, overexpression or down regulation of the AtNAP1;1 resulted in concomitant increase and decrease, respectively, in rDNA transcription suggesting a positive regulatory role played by AtNAP1 in plant rDNA transcription, possibly through derepression of the negative effect of the RPS6-AtHD2B complex. - Highlights: • Nucleosome assembly protein 1 (AtNAP1) interacts with RPS6 as well as with AtHD2B. • rDNA transcription is regulated S6K1. • Overexpression or down regulation of AtNAP1 results in concomitant increase or decrease in rDNA transcription.

  8. Baculoviruses and nucleosome management

    SciTech Connect

    Volkman, Loy E.

    2015-02-15

    Negatively-supercoiled-ds DNA molecules, including the genomes of baculoviruses, spontaneously wrap around cores of histones to form nucleosomes when present within eukaryotic nuclei. Hence, nucleosome management should be essential for baculovirus genome replication and temporal regulation of transcription, but this has not been documented. Nucleosome mobilization is the dominion of ATP-dependent chromatin-remodeling complexes. SWI/SNF and INO80, two of the best-studied complexes, as well as chromatin modifier TIP60, all contain actin as a subunit. Retrospective analysis of results of AcMNPV time course experiments wherein actin polymerization was blocked by cytochalasin D drug treatment implicate actin-containing chromatin modifying complexes in decatenating baculovirus genomes, shutting down host transcription, and regulating late and very late phases of viral transcription. Moreover, virus-mediated nuclear localization of actin early during infection may contribute to nucleosome management. - Highlights: • Baculoviruses have negatively-supercoiled, circular ds DNA. • Negatively-supercoiled DNA spontaneously forms nucleosomes in the nucleus. • Nucleosomes must be mobilized for replication and transcription to proceed. • Actin-containing chromatin modifiers participate in baculovirus replication.

  9. Statistical physics of nucleosome positioning and chromatin structure

    NASA Astrophysics Data System (ADS)

    Morozov, Alexandre

    2012-02-01

    Genomic DNA is packaged into chromatin in eukaryotic cells. The fundamental building block of chromatin is the nucleosome, a 147 bp-long DNA molecule wrapped around the surface of a histone octamer. Arrays of nucleosomes are positioned along DNA according to their sequence preferences and folded into higher-order chromatin fibers whose structure is poorly understood. We have developed a framework for predicting sequence-specific histone-DNA interactions and the effective two-body potential responsible for ordering nucleosomes into regular higher-order structures. Our approach is based on the analogy between nucleosomal arrays and a one-dimensional fluid of finite-size particles with nearest-neighbor interactions. We derive simple rules which allow us to predict nucleosome occupancy solely from the dinucleotide content of the underlying DNA sequences.Dinucleotide content determines the degree of stiffness of the DNA polymer and thus defines its ability to bend into the nucleosomal superhelix. As expected, the nucleosome positioning rules are universal for chromatin assembled in vitro on genomic DNA from baker's yeast and from the nematode worm C.elegans, where nucleosome placement follows intrinsic sequence preferences and steric exclusion. However, the positioning rules inferred from in vivo C.elegans chromatin are affected by global nucleosome depletion from chromosome arms relative to central domains, likely caused by the attachment of the chromosome arms to the nuclear membrane. Furthermore, intrinsic nucleosome positioning rules are overwritten in transcribed regions, indicating that chromatin organization is actively managed by the transcriptional and splicing machinery.

  10. Probing Nucleosome Remodeling by Unzipping Single DNA Molecules

    NASA Astrophysics Data System (ADS)

    Wang, Michelle

    2006-03-01

    At the core of eukaryotic chromatin is the nucleosome, which consists of 147 bp of DNA wrapped 1.65 turns around an octamer of histone proteins. Even this lowest level of genomic compaction presents a strong barrier to DNA-binding cellular factors that are required for essential processes such as transcription, DNA replication, recombination and repair. Chromatin remodeling enzymes use the energy of ATP hydrolysis to regulate accessibility of the genetic code by altering chromatin structure. While remodeling enzymes have been the subject of extensive research in recent years, their precise mechanism remains unclear. In order to probe the structure of individual nucleosomes and their remodeling, we assembled a histone octamer onto a DNA segment containing a strong nucleosome positioning sequence. As the DNA double helix was unzipped through the nucleosome using a feedback-enhanced optical trap, the presence of the nucleosome was detected as a series of dramatic increases in the tension in the DNA, followed by sudden tension reductions. Analysis of the unzipping force throughout the disruption accurately revealed the spatial location and fine structure of the nucleosome to near base pair precision. Using this approach, we investigate how remodeling enzymes may alter the location and structure of a nucleosome.

  11. Dynamics of Nucleosome Arrays

    NASA Astrophysics Data System (ADS)

    Poirier, Michael

    2007-03-01

    DNA sites wrapped into chromatin are sterically occluded from proteins that must bind for processes such as RNA transcription and DNA repair. However, the role of chromatin compaction in biological function is poorly understood. To understand the biological functions of chromatin compaction, we constructed nucleosome arrays that are built with a tandem repeat of high affinity nucleosome positioning sequences, which contain probes for DNA accessibility and chromatin structure. I will describe our results that use restriction enzyme digestion and fluorescence resonance energy transfer to determine the probability for DNA site exposure within compacted nucleosome arrays and the time scale for changes in chromatin compaction. I will then discuss how these results help explain how proteins gain access to DNA sites buried within chromatin.

  12. Epigenetic nucleosomes: Alu sequences and CG as nucleosome positioning element.

    PubMed

    Salih, F; Salih, B; Kogan, S; Trifonov, E N

    2008-08-01

    Alu sequences carry periodical pattern with CG dinucleotides (CpG) repeating every 31-32 bases. Similar distances are observed in distribution of DNA curvature in crystallized nucleosomes, at positions +/-1.5 and +/-4.5 periods of DNA from nucleosome DNA dyad. Since CG elements are also found to impart to nucleosomes higher stability when positioned at +/-1.5 sites, it suggests that CG dinucleotides may play a role in modulation of the nucleosome strength when the CG elements are methylated. Thus, Alu sequences may harbor special epigenetic nucleosomes with methylation-dependent regulatory functions. Nucleosome DNA sequence probe is suggested to detect locations of such regulatory nucleosomes in the sequences.

  13. Nucleosome Core Particle

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Nucleosome Core Particle grown on STS-81. The fundamental structural unit of chromatin and is the basis for organization within the genome by compaction of DNA within the nucleus of the cell and by making selected regions of chromosomes available for transcription and replication. Principal Investigator's are Dr. Dan Carter and Dr. Gerard Bunick of New Century Pharmaceuticals.

  14. New insights into nucleosome unwrapping

    NASA Astrophysics Data System (ADS)

    Chereji, Razvan; Morozov, Alexandre

    2013-03-01

    Eukaryotic genomes are organized into arrays of nucleosomes, in which stretches of 147 base-pairs (bp) of DNA are wrapped around octameric histones. Recently, a new approach for direct mapping of nucleosome centers at bp resolution was developed [Brogaard et al., Nature 486, 496-501 (2012)] and some intriguing results appeared. About 40% of the inter-dyad distances are smaller than 147 bp, which imply massive nucleosome unwrapping, genome-wide, in vivo. The histogram of the inter-dyad distances presents small oscillations which indicate a step-wise unwrapping of the nucleosomal DNA from the histone. We present a statistical mechanics model for the nucleosome unwrapping, which is able to take into account sequence-dependent binding energies, sequence-independent potential barriers and wells, effective two-body interactions between the nucleosomes, competition between different species, cooperative-binding, and other important factors which dictate the nucleosome distribution along the DNA. We are able to reproduce the distribution of the inter-dyad distances, which cannot be obtained if there is no nucleosome unwrapping. The nucleosome unwrapping model can explain also the variable DNA accessibility and the nucleosome-induced cooperativity, which were observed experimentally.

  15. Sequence-dependent nucleosome positioning.

    PubMed

    Chung, Ho-Ryun; Vingron, Martin

    2009-03-13

    Eukaryotic DNA is organized into a macromolecular structure called chromatin. The basic repeating unit of chromatin is the nucleosome, which consists of two copies of each of the four core histones and DNA. The nucleosomal organization and the positions of nucleosomes have profound effects on all DNA-dependent processes. Understanding the factors that influence nucleosome positioning is therefore of general interest. Among the many determinants of nucleosome positioning, the DNA sequence has been proposed to have a major role. Here, we analyzed more than 860,000 nucleosomal DNA sequences to identify sequence features that guide the formation of nucleosomes in vivo. We found that both a periodic enrichment of AT base pairs and an out-of-phase oscillating enrichment of GC base pairs as well as the overall preference for GC base pairs are determinants of nucleosome positioning. The preference for GC pairs can be related to a lower energetic cost required for deformation of the DNA to wrap around the histones. In line with this idea, we found that only incorporation of both signal components into a sequence model for nucleosome formation results in maximal predictive performance on a genome-wide scale. In this manner, one achieves greater predictive power than published approaches. Our results confirm the hypothesis that the DNA sequence has a major role in nucleosome positioning in vivo.

  16. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function

    PubMed Central

    Isaac, R Stefan; Jiang, Fuguo; Doudna, Jennifer A; Lim, Wendell A; Narlikar, Geeta J; Almeida, Ricardo

    2016-01-01

    The CRISPR-Cas9 bacterial surveillance system has become a versatile tool for genome editing and gene regulation in eukaryotic cells, yet how CRISPR-Cas9 contends with the barriers presented by eukaryotic chromatin is poorly understood. Here we investigate how the smallest unit of chromatin, a nucleosome, constrains the activity of the CRISPR-Cas9 system. We find that nucleosomes assembled on native DNA sequences are permissive to Cas9 action. However, the accessibility of nucleosomal DNA to Cas9 is variable over several orders of magnitude depending on dynamic properties of the DNA sequence and the distance of the PAM site from the nucleosome dyad. We further find that chromatin remodeling enzymes stimulate Cas9 activity on nucleosomal templates. Our findings imply that the spontaneous breathing of nucleosomal DNA together with the action of chromatin remodelers allow Cas9 to effectively act on chromatin in vivo. DOI: http://dx.doi.org/10.7554/eLife.13450.001 PMID:27130520

  17. Nucleosome positioning patterns derived from human apoptotic nucleosomes.

    PubMed

    Frenkel, Zakharia M; Trifonov, Edward N; Volkovich, Zeev; Bettecken, Thomas

    2011-12-01

    This communication reports on the nucleosome positioning patterns (bendability matrices) for the human genome, derived from over 8_million nucleosome DNA sequences obtained from apoptotically digested lymphocytes. This digestion procedure is used here for the first time for the purpose of extraction and sequencing of the nucleosome DNA fragments. The dominant motifs suggested by the matrices of DNA bendability calculated for light and heavy isochores are significantly different. Both, however, are in full agreement with the linear description YRRRRRYYYYYR, and with earlier derivations by N-gram extensions. Thus, the choice of the nucleosome positioning patterns crucially depends on the G + C composition of the analyzed sequences.

  18. Nucleosome signalling; an evolving concept.

    PubMed

    Turner, Bryan M

    2014-08-01

    The nucleosome core particle is the first stage of DNA packaging in virtually all eukaryotes. It both organises nuclear DNA and protects it from adventitious binding of transcription factors and the consequent deregulation of gene expression. Both properties are essential to allow the genome expansion characteristic of complex eukaryotes. The nucleosome is a flexible structure in vivo, allowing selective relaxation of its intrinsically inhibitory effects in response to external signals. Structural changes are brought about by dedicated remodelling enzymes and by posttranslational modifications of the core histones. Histone modifications occasionally alter nucleosome structure directly, but their more usual roles are to act as receptors on the nucleosome surface that are recognised by specific protein domains. The bound proteins, in turn, affect nucleosome structure and function. This strategy enormously expands the signalling capacity of the nucleosome and its ability to influence both the initiation and elongation stages of transcription. The enzymes responsible for placing and removing histone modifications, and the modification-binding proteins themselves, are ubiquitous, numerous and conserved amongst eukaryotes. Like the nucleosome, they date back to the earliest eukaryotes and may have played integral and essential roles in eukaryotic evolution. The present properties and epigenetic functions of the nucleosome reflect its evolutionary past and the selective pressures to which it has responded and can be better understood in this context. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.

  19. A split personality for nucleosomes.

    PubMed

    McKay, Daniel J; Lieb, Jason D

    2014-12-04

    A high-resolution look at where histones touch DNA reveals a surprisingly intricate, dynamic, and modular nucleosome. Three advances in the study by Rhee et al. include unexpected interactions between the H3 tail and linker DNA, new evidence for existence of subnucleosomal particles, and asymmetric patterns of histone modification within a single nucleosome that correspond to the direction of transcription.

  20. Nucleosome Positioning in Saccharomyces cerevisiae

    PubMed Central

    Jansen, An; Verstrepen, Kevin J.

    2011-01-01

    Summary: The DNA of eukaryotic cells is spooled around large histone protein complexes, forming nucleosomes that make up the basis for a high-order packaging structure called chromatin. Compared to naked DNA, nucleosomal DNA is less accessible to regulatory proteins and regulatory processes. The exact positions of nucleosomes therefore influence several cellular processes, including gene expression, chromosome segregation, recombination, replication, and DNA repair. Here, we review recent technological advances enabling the genome-wide mapping of nucleosome positions in the model eukaryote Saccharomyces cerevisiae. We discuss the various parameters that determine nucleosome positioning in vivo, including cis factors like AT content, variable tandem repeats, and poly(dA:dT) tracts that function as chromatin barriers and trans factors such as chromatin remodeling complexes, transcription factors, histone-modifying enzymes, and RNA polymerases. In the last section, we review the biological role of chromatin in gene transcription, the evolution of gene regulation, and epigenetic phenomena. PMID:21646431

  1. Thermodynamics of Intragenic Nucleosome Ordering

    NASA Astrophysics Data System (ADS)

    Chevereau, G.; Palmeira, L.; Thermes, C.; Arneodo, A.; Vaillant, C.

    2009-10-01

    The nucleosome ordering observed in vivo along yeast genes is described by a thermodynamical model of nonuniform fluid of 1D hard rods confined by two excluding energy barriers at gene extremities. For interbarrier distances L≲1.5kbp, nucleosomes equilibrate into a crystal-like configuration with a nucleosome repeat length (NRL) L/ñ165bp, where n is the number of regularly positioned nucleosomes. We also observe “bistable” genes with a fuzzy chromatin resulting from a statistical mixing of two crystal states, one with an expanded chromatin (NRL ˜L/n) and the other with a compact one (NRL ˜L/(n+1)). By means of single nucleosome switching, bistable genes may drastically alter their expression level as suggested by their higher transcriptional plasticity. These results enlighten the role of the intragenic chromatin on gene expression regulation.

  2. DNA sequence templates adjacent nucleosome and ORC sites at gene amplification origins in Drosophila.

    PubMed

    Liu, Jun; Zimmer, Kurt; Rusch, Douglas B; Paranjape, Neha; Podicheti, Ram; Tang, Haixu; Calvi, Brian R

    2015-10-15

    Eukaryotic origins of DNA replication are bound by the origin recognition complex (ORC), which scaffolds assembly of a pre-replicative complex (pre-RC) that is then activated to initiate replication. Both pre-RC assembly and activation are strongly influenced by developmental changes to the epigenome, but molecular mechanisms remain incompletely defined. We have been examining the activation of origins responsible for developmental gene amplification in Drosophila. At a specific time in oogenesis, somatic follicle cells transition from genomic replication to a locus-specific replication from six amplicon origins. Previous evidence indicated that these amplicon origins are activated by nucleosome acetylation, but how this affects origin chromatin is unknown. Here, we examine nucleosome position in follicle cells using micrococcal nuclease digestion with Ilumina sequencing. The results indicate that ORC binding sites and other essential origin sequences are nucleosome-depleted regions (NDRs). Nucleosome position at the amplicons was highly similar among developmental stages during which ORC is or is not bound, indicating that being an NDR is not sufficient to specify ORC binding. Importantly, the data suggest that nucleosomes and ORC have opposite preferences for DNA sequence and structure. We propose that nucleosome hyperacetylation promotes pre-RC assembly onto adjacent DNA sequences that are disfavored by nucleosomes but favored by ORC.

  3. DNA sequence templates adjacent nucleosome and ORC sites at gene amplification origins in Drosophila

    PubMed Central

    Liu, Jun; Zimmer, Kurt; Rusch, Douglas B.; Paranjape, Neha; Podicheti, Ram; Tang, Haixu; Calvi, Brian R.

    2015-01-01

    Eukaryotic origins of DNA replication are bound by the origin recognition complex (ORC), which scaffolds assembly of a pre-replicative complex (pre-RC) that is then activated to initiate replication. Both pre-RC assembly and activation are strongly influenced by developmental changes to the epigenome, but molecular mechanisms remain incompletely defined. We have been examining the activation of origins responsible for developmental gene amplification in Drosophila. At a specific time in oogenesis, somatic follicle cells transition from genomic replication to a locus-specific replication from six amplicon origins. Previous evidence indicated that these amplicon origins are activated by nucleosome acetylation, but how this affects origin chromatin is unknown. Here, we examine nucleosome position in follicle cells using micrococcal nuclease digestion with Ilumina sequencing. The results indicate that ORC binding sites and other essential origin sequences are nucleosome-depleted regions (NDRs). Nucleosome position at the amplicons was highly similar among developmental stages during which ORC is or is not bound, indicating that being an NDR is not sufficient to specify ORC binding. Importantly, the data suggest that nucleosomes and ORC have opposite preferences for DNA sequence and structure. We propose that nucleosome hyperacetylation promotes pre-RC assembly onto adjacent DNA sequences that are disfavored by nucleosomes but favored by ORC. PMID:26227968

  4. Chromosomes. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere.

    PubMed

    Falk, Samantha J; Guo, Lucie Y; Sekulic, Nikolina; Smoak, Evan M; Mani, Tomoyasu; Logsdon, Glennis A; Gupta, Kushol; Jansen, Lars E T; Van Duyne, Gregory D; Vinogradov, Sergei A; Lampson, Michael A; Black, Ben E

    2015-05-08

    Inheritance of each chromosome depends upon its centromere. A histone H3 variant, centromere protein A (CENP-A), is essential for epigenetically marking centromere location. We find that CENP-A is quantitatively retained at the centromere upon which it is initially assembled. CENP-C binds to CENP-A nucleosomes and is a prime candidate to stabilize centromeric chromatin. Using purified components, we find that CENP-C reshapes the octameric histone core of CENP-A nucleosomes, rigidifies both surface and internal nucleosome structure, and modulates terminal DNA to match the loose wrap that is found on native CENP-A nucleosomes at functional human centromeres. Thus, CENP-C affects nucleosome shape and dynamics in a manner analogous to allosteric regulation of enzymes. CENP-C depletion leads to rapid removal of CENP-A from centromeres, indicating their collaboration in maintaining centromere identity.

  5. Mechanism(s) of SWI/SNF-induced nucleosome mobilization.

    PubMed

    Liu, Ning; Balliano, Angela; Hayes, Jeffrey J

    2011-01-24

    Impediments to DNA access due to assembly of the eukaryotic genome into chromatin are in part overcome by the activity of ATP-dependent chromatin-remodeling complexes. These complexes employ energy derived from ATP hydrolysis to destabilize histone-DNA interactions and alter nucleosome positions, thereby increasing the accessibility of DNA-binding factors to their targets. However, the mechanism by which theses complexes accomplish this task remains unresolved. We review aspects of nucleosome alteration by the SWI/SNF complex, the archetypal remodeling enzyme. We focus on experiments that provide insights into how SWI/SNF induces nucleosome movement along DNA. Numerous biochemical activities have been characterized for this complex, all likely providing clues as to the molecular mechanism of translocation.

  6. Activity of FEN1 endonuclease on nucleosome substrates is dependent upon DNA sequence but not flap orientation.

    PubMed

    Jagannathan, Indu; Pepenella, Sharon; Hayes, Jeffrey J

    2011-05-20

    We demonstrated previously that human FEN1 endonuclease, an enzyme involved in excising single-stranded DNA flaps that arise during Okazaki fragment processing and base excision repair, cleaves model flap substrates assembled into nucleosomes. Here we explore the effect of flap orientation with respect to the surface of the histone octamer on nucleosome structure and FEN1 activity in vitro. We find that orienting the flap substrate toward the histone octamer does not significantly alter the rotational orientation of two different nucleosome positioning sequences on the surface of the histone octamer but does cause minor perturbation of nucleosome structure. Surprisingly, flaps oriented toward the nucleosome surface are accessible to FEN1 cleavage in nucleosomes containing the Xenopus 5S positioning sequence. In contrast, neither flaps oriented toward nor away from the nucleosome surface are cleaved by the enzyme in nucleosomes containing the high-affinity 601 nucleosome positioning sequence. The data are consistent with a model in which sequence-dependent motility of DNA on the nucleosome is a major determinant of FEN1 activity. The implications of these findings for the activity of FEN1 in vivo are discussed.

  7. The impact of the HIRA histone chaperone upon global nucleosome architecture.

    PubMed

    Gal, Csenge; Moore, Karen M; Paszkiewicz, Konrad; Kent, Nicholas A; Whitehall, Simon K

    2015-01-01

    HIRA is an evolutionarily conserved histone chaperone that mediates replication-independent nucleosome assembly and is important for a variety of processes such as cell cycle progression, development, and senescence. Here we have used a chromatin sequencing approach to determine the genome-wide contribution of HIRA to nucleosome organization in Schizosaccharomyces pombe. Cells lacking HIRA experience a global reduction in nucleosome occupancy at gene sequences, consistent with the proposed role for HIRA in chromatin reassembly behind elongating RNA polymerase II. In addition, we find that at its target promoters, HIRA commonly maintains the full occupancy of the -1 nucleosome. HIRA does not affect global chromatin structure at replication origins or in rDNA repeats but is required for nucleosome occupancy in silent regions of the genome. Nucleosome organization associated with the heterochromatic (dg-dh) repeats located at the centromere is perturbed by loss of HIRA function and furthermore HIRA is required for normal nucleosome occupancy at Tf2 LTR retrotransposons. Overall, our data indicate that HIRA plays an important role in maintaining nucleosome architecture at both euchromatic and heterochromatic loci.

  8. Cse4 is Part of an Octameric Nucleosome in Budding Yeast

    PubMed Central

    Camahort, Raymond; Shivaraju, Manjunatha; Mattingly, Mark; Li, Bing; Nakanishi, Shima; Zhu, Dongxiao; Shilatifard, Ali; Workman, Jerry L.; Gerton, Jennifer L.

    2009-01-01

    The budding yeast CenH3 histone variant Cse4 localizes to centromeric nucleosomes and is required for kinetochore assembly and chromosome segregation. The exact composition of centromeric Cse4–containing nucleosomes is a subject of debate. ChIP-chip experiments and high resolution quantitative PCR confirm that there is a single Cse4 nucleosome at each centromere, and additional regions of the genome contain Cse4 nucleosomes at low levels. Using unbiased biochemical, cell biological, and genetic approaches we have tested the composition of Cse4-containing nucleosomes. Using micrococcal nuclease-treated chromatin, we find that Cse4 is associated with the histones H2A, H2B, and H4, but not H3 or the non-histone protein Scm3. Overexpression of Cse4 rescues the lethality of a scm3 deletion, indicating Scm3 is not essential for the formation of functional centromeric chromatin. Additionally, octameric Cse4 nucleosomes can be reconstituted in vitro. The Cse4-Cse4 interaction domain appears to be essential and interaction occurs in vivo in the centromeric nucleosome. Taken together, our experimental evidence supports the model that the Cse4-nucleosome is an octamer, containing two copies each of Cse4, H2A, H2B, and H4. PMID:19782029

  9. Novel nucleosomal particles containing core histones and linker DNA but no histone H1.

    PubMed

    Cole, Hope A; Cui, Feng; Ocampo, Josefina; Burke, Tara L; Nikitina, Tatiana; Nagarajavel, V; Kotomura, Naoe; Zhurkin, Victor B; Clark, David J

    2016-01-29

    Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ∼147 bp of DNA wrapped ∼1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ∼160 bp, and then converts it to a core particle, containing ∼147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these 'proto-chromatosomes' are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1.

  10. Circulating Nucleosomes and Nucleosome Modifications as Biomarkers in Cancer

    PubMed Central

    McAnena, Peter; Brown, James A. L.; Kerin, Michael J.

    2017-01-01

    Traditionally the stratification of many cancers involves combining tumour and clinicopathological features (e.g., patient age; tumour size, grade, receptor status and location) to inform treatment options and predict recurrence risk and survival. However, current biomarkers often require invasive excision of the tumour for profiling, do not allow monitoring of the response to treatment and stratify patients into broad heterogeneous groups leading to inconsistent treatment responses. Here we explore and describe the benefits of using circulating biomarkers (nucleosomes and/or modifications to nucleosomes) as a non-invasive method for detecting cancer and monitoring response to treatment. Nucleosomes (DNA wound around eight core histone proteins) are responsible for compacting our genome and their composition and post-translational modifications are responsible for regulating gene expression. Here, we focus on breast and colorectal cancer as examples where utilizing circulating nucleosomes as biomarkers hold real potential as liquid biopsies. Utilizing circulating nucleosomes as biomarkers is an exciting new area of research that promises to allow both the early detection of cancer and monitoring of treatment response. Nucleosome-based biomarkers combine with current biomarkers, increasing both specificity and sensitivity of current tests and have the potential to provide individualised precision-medicine based treatments for patients. PMID:28075351

  11. The FACT Histone Chaperone Guides Histone H4 Into Its Nucleosomal Conformation in Saccharomyces cerevisiae

    PubMed Central

    McCullough, Laura; Poe, Bryan; Connell, Zaily; Xin, Hua; Formosa, Tim

    2013-01-01

    The pob3-Q308K mutation alters the small subunit of the Saccharomyces cerevisiae histone/nucleosome chaperone Facilitates Chromatin Transactions (FACT), causing defects in both transcription and DNA replication. We describe histone mutations that suppress some of these defects, providing new insight into the mechanism of FACT activity in vivo. FACT is primarily known for its ability to promote reorganization of nucleosomes into a more open form, but neither the pob3-Q308K mutation nor the compensating histone mutations affect this activity. Instead, purified mutant FACT complexes fail to release from nucleosomes efficiently, and the histone mutations correct this flaw. We confirm that pob3-T252E also suppresses pob3-Q308K and show that combining two suppressor mutations can be detrimental, further demonstrating the importance of balance between association and dissociation for efficient FACT:nucleosome interactions. To explain our results, we propose that histone H4 can adopt multiple conformations, most of which are incompatible with nucleosome assembly. FACT guides H4 to adopt appropriate conformations, and this activity can be enhanced or diminished by mutations in Pob3 or histones. FACT can therefore destabilize nucleosomes by favoring the reorganized state, but it can also promote assembly by tethering histones and DNA together and maintaining them in conformations that promote canonical nucleosome formation. PMID:23833181

  12. Nucleosome dynamics during chromatin remodeling in vivo.

    PubMed

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation.

  13. The HIR corepressor complex binds to nucleosomes generating a distinct protein/DNA complex resistant to remodeling by SWI/SNF

    PubMed Central

    Prochasson, Philippe; Florens, Laurence; Swanson, Selene K.; Washburn, Michael P.; Workman, Jerry L.

    2005-01-01

    The histone regulatory (HIR) and histone promoter control (HPC) repressor proteins regulate three of the four histone gene loci during the Saccharomyces cerevisiae cell cycle. Here, we demonstrate that Hir1, Hir2, Hir3, and Hpc2 proteins form a stable HIR repressor complex. The HIR complex promotes histone deposition onto DNA in vitro and constitutes a novel nucleosome assembly complex. The HIR complex stably binds to DNA and nucleosomes. Furthermore, HIR complex binding to nucleosomes forms a distinct protein/DNA complex resistant to remodeling by SWI/SNF. Thus, the HIR complex is a novel nucleosome assembly complex which functions with SWI/SNF to regulate transcription. PMID:16264190

  14. Nucleosome structure and conformational changes

    SciTech Connect

    McGhee, J.D.; Felsenfeld, G.; Eisenberg, H.

    1980-10-01

    We have used a variety of chemical probes to measure the accessibility of DNA on the surface of the nucleosome. We review these results, and describe new experiments which show that T4 phage DNA can form complexes with the core histones, possessing the properties of normal nucleosomes. Since T4 DNA is largely occupied by glucose residues in the major groove, this suggests that the major groove is not filled with histone amino acid side chains. We also report results of recent measurements which appear to show that only a few strong charge interactions are involved in the attachment of the terminal 20 nucleotide pairs at each end of nucleosome core DNA. We speculate on the possible functional significance of the accessibility of DNA revealed by all of these experiments. We have also examined conformational changes induced in nucleosomes at high ionic strength (0.5 to 0.7M NaCl). The frictional coefficient is found to undergo a small increase in this region, not consistent with models in which the nucleosome is completely unfolded, but possibly reflecting the dissociation of terminal DNA from the nucleosome surface.

  15. CENPT bridges adjacent CENPA nucleosomes on young human α-satellite dimers

    PubMed Central

    Thakur, Jitendra; Henikoff, Steven

    2016-01-01

    Nucleosomes containing the CenH3 (CENPA or CENP-A) histone variant replace H3 nucleosomes at centromeres to provide a foundation for kinetochore assembly. CENPA nucleosomes are part of the constitutive centromere associated network (CCAN) that forms the inner kinetochore on which outer kinetochore proteins assemble. Two components of the CCAN, CENPC and the histone-fold protein CENPT, provide independent connections from the ∼171-bp centromeric α-satellite repeat units to the outer kinetochore. However, the spatial relationship between CENPA nucleosomes and these two branches remains unclear. To address this issue, we use a base-pair resolution genomic readout of protein–protein interactions, comparative chromatin immunoprecipitation (ChIP) with sequencing, together with sequential ChIP, to infer the in vivo molecular architecture of the human CCAN. In contrast to the currently accepted model in which CENPT associates with H3 nucleosomes, we find that CENPT is centered over the CENPB box between two well-positioned CENPA nucleosomes on the most abundant centromeric young α-satellite dimers and interacts with the CENPB/CENPC complex. Upon cross-linking, the entire CENPA/CENPB/CENPC/CENPT complex is nuclease-protected over an α-satellite dimer that comprises the fundamental unit of centromeric chromatin. We conclude that CENPA/CENPC and CENPT pathways for kinetochore assembly are physically integrated over young α-satellite dimers. PMID:27384170

  16. Conditions for positioning of nucleosomes on DNA

    NASA Astrophysics Data System (ADS)

    Sheinman, Michael; Chung, Ho-Ryun

    2015-08-01

    Positioning of nucleosomes along a eukaryotic genome plays an important role in its organization and regulation. There are many different factors affecting the location of nucleosomes. Some can be viewed as preferential binding of a single nucleosome to different locations along the DNA and some as interactions between neighboring nucleosomes. In this study, we analyze positioning of nucleosomes and derive conditions for their good positioning. Using analytic and numerical approaches we find that, if the binding preferences are very weak, an interplay between the interactions and the binding preferences is essential for a good positioning of nucleosomes, especially on correlated energy landscapes. Analyzing the empirical energy landscape, we conclude that good positioning of nucleosomes in vivo is possible only if they strongly interact. In this case, our model, predicting long-length-scale fluctuations of nucleosomes' occupancy along the DNA, accounts well for the empirical observations.

  17. Conditions for positioning of nucleosomes on DNA.

    PubMed

    Sheinman, Michael; Chung, Ho-Ryun

    2015-08-01

    Positioning of nucleosomes along a eukaryotic genome plays an important role in its organization and regulation. There are many different factors affecting the location of nucleosomes. Some can be viewed as preferential binding of a single nucleosome to different locations along the DNA and some as interactions between neighboring nucleosomes. In this study, we analyze positioning of nucleosomes and derive conditions for their good positioning. Using analytic and numerical approaches we find that, if the binding preferences are very weak, an interplay between the interactions and the binding preferences is essential for a good positioning of nucleosomes, especially on correlated energy landscapes. Analyzing the empirical energy landscape, we conclude that good positioning of nucleosomes in vivo is possible only if they strongly interact. In this case, our model, predicting long-length-scale fluctuations of nucleosomes' occupancy along the DNA, accounts well for the empirical observations.

  18. Multiscale modelling of nucleosome core particle aggregation

    NASA Astrophysics Data System (ADS)

    Lyubartsev, Alexander P.; Korolev, Nikolay; Fan, Yanping; Nordenskiöld, Lars

    2015-02-01

    The nucleosome core particle (NCP) is the basic building block of chromatin. Under the influence of multivalent cations, isolated mononucleosomes exhibit a rich phase behaviour forming various columnar phases with characteristic NCP-NCP stacking. NCP stacking is also a regular element of chromatin structure in vivo. Understanding the mechanism of nucleosome stacking and the conditions leading to self-assembly of NCPs is still incomplete. Due to the complexity of the system and the need to describe electrostatics properly by including the explicit mobile ions, novel modelling approaches based on coarse-grained (CG) methods at the multiscale level becomes a necessity. In this work we present a multiscale CG computer simulation approach to modelling interactions and self-assembly of solutions of NCPs induced by the presence of multivalent cations. Starting from continuum simulations including explicit three-valent cobalt(III)hexammine (CoHex3+) counterions and 20 NCPs, based on a previously developed advanced CG NCP model with one bead per amino acid and five beads per two DNA base pair unit (Fan et al 2013 PLoS One 8 e54228), we use the inverse Monte Carlo method to calculate effective interaction potentials for a ‘super-CG’ NCP model consisting of seven beads for each NCP. These interaction potentials are used in large-scale simulations of up to 5000 NCPs, modelling self-assembly induced by CoHex3+. The systems of ‘super-CG’ NCPs form a single large cluster of stacked NCPs without long-range order in agreement with experimental data for NCPs precipitated by the three-valent polyamine, spermidine3+.

  19. Nucleosome Organization in Human Embryonic Stem Cells.

    PubMed

    Yazdi, Puya G; Pedersen, Brian A; Taylor, Jared F; Khattab, Omar S; Chen, Yu-Han; Chen, Yumay; Jacobsen, Steven E; Wang, Ping H

    2015-01-01

    The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA, nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently, there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions, we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a "ground state" of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription, histone modifications, and DNA methylation alter this "ground state" by having distinct effects on both nucleosome positioning and occupancy. As the transcriptional rate increases, nucleosomes become better positioned. Exons transcribed and included in the final spliced mRNA have distinct nucleosome profiles in comparison to exons not included at exon-exon junctions. Genes marked by the active modification H3K4m3 are characterized by lower nucleosome occupancy before the transcription start site compared to genes marked by the inactive modification H3K27m3, while bivalent domains, genes associated with both marks, lie exactly in the middle. Combinatorial patterns of epigenetic marks (chromatin states) are associated with unique nucleosome profiles. Nucleosome organization varies around transcription factor binding in enhancers versus promoters. DNA methylation is associated with increasing nucleosome occupancy and different types of methylations have distinct location preferences within the nucleosome core particle. Finally, computational analysis of nucleosome

  20. Folding of Nucleosome Arrays

    NASA Astrophysics Data System (ADS)

    Howell, Steven; Jimenez-Useche, Isabel; Andresen, Kurt; Yuan, Chongli; Qiu, Xiangyun

    2014-03-01

    Chromatin conformation and dynamics is central to gene functions including packaging, regulation, and repair. At the molecular level, the basic building block of chromatin is a nucleosome core particle (NCP) made of 147 base pairs (bp) of dsDNA wrapped around an octamer of histone proteins. These NCPs are connected by short 10-90 bps of linker DNA as beads on a string. Key factors determining the packaging of NCP arrays to form chromatin include ionic condition, linker DNA length, and epigenetic modifications, especially of the histone tails. We have investigated how the conformations of model tetra-NCP arrays are modulated by these factors using small angle x-ray scattering (SAXS). Here we present recent studies of the effects of ion (KCl and MgCl2), linker length, and histone modification (tail deletions) on NCP arrays. Our SAXS measurement makes it possible to learn about both the global compaction of NCP arrays and local inter-NCP spatial correlations within the same array.

  1. The role of the nucleosome acidic patch in modulating higher order chromatin structure.

    PubMed

    Kalashnikova, Anna A; Porter-Goff, Mary E; Muthurajan, Uma M; Luger, Karolin; Hansen, Jeffrey C

    2013-05-06

    Higher order folding of chromatin fibre is mediated by interactions of the histone H4 N-terminal tail domains with neighbouring nucleosomes. Mechanistically, the H4 tails of one nucleosome bind to the acidic patch region on the surface of adjacent nucleosomes, causing fibre compaction. The functionality of the chromatin fibre can be modified by proteins that interact with the nucleosome. The co-structures of five different proteins with the nucleosome (LANA, IL-33, RCC1, Sir3 and HMGN2) recently have been examined by experimental and computational studies. Interestingly, each of these proteins displays steric, ionic and hydrogen bond complementarity with the acidic patch, and therefore will compete with each other for binding to the nucleosome. We first review the molecular details of each interface, focusing on the key non-covalent interactions that stabilize the protein-acidic patch interactions. We then propose a model in which binding of proteins to the nucleosome disrupts interaction of the H4 tail domains with the acidic patch, preventing the intrinsic chromatin folding pathway and leading to assembly of alternative higher order chromatin structures with unique biological functions.

  2. CENP-A and H3 Nucleosomes Display a Similar Stability to Force-Mediated Disassembly

    PubMed Central

    Kim, Sung Hyun; Vlijm, Rifka; van der Torre, Jaco; Dalal, Yamini; Dekker, Cees

    2016-01-01

    Centromere-specific nucleosomes are a central feature of the kinetochore complex during mitosis, in which microtubules exert pulling and pushing forces upon the centromere. CENP-A nucleosomes have been assumed to be structurally unique, thereby providing resilience under tension relative to their H3 canonical counterparts. Here, we directly test this hypothesis by subjecting CENP-A and H3 octameric nucleosomes, assembled on random or on centromeric DNA sequences, to varying amounts of applied force by using single-molecule magnetic tweezers. We monitor individual disassembly events of CENP-A and H3 nucleosomes. Regardless of the DNA sequence, the force-mediated disassembly experiments for CENP-A and H3 nucleosomes demonstrate similar rupture forces, life time residency and disassembly steps. From these experiments, we conclude that CENP-A does not, by itself, contribute unique structural features to the nucleosome that lead to a significant resistance against force-mediated disruption. The data present insights into the mechanistic basis for how CENP-A nucleosomes might contribute to the structural foundation of the centromere in vivo. PMID:27820823

  3. DNA repair of a single UV photoproduct in a designed nucleosome

    SciTech Connect

    Kosmoskil, Joseph V.; Ackerman, Eric J. ); Smerdon, Michael J.

    2001-08-28

    Eukaryotic DNA repair enzymes must interact with the architectural hierarchy of chromatin. The challenge of finding damaged DNA complexed with histone proteins in nucleosomes is complicated by the need to maintain local chromatin structures involved in regulating other DNA processing events. The heterogeneity of lesions induced by DNA-damaging agents has led us to design homogeneously damaged substrates to directly compare repair of naked DNA with that of nucleosomes. Here we report that nucleotide excision repair in Xenopus nuclear extracts can effectively repair a single UV radiation photoproduct located 5 bases from the dyad center of a positioned nucleosome, although the nucleosome is repaired at about half the rate at which the naked DNA fragment is. Extract repair within the nucleosome is > 50-fold more rapid than either enzymatic photoreversal or endonuclease cleavage of the lesion in vitro. Furthermore, nucleosome formation occurs (after repair) only on damaged naked DNA ( 165-bp fragments) during a 1-h incubation in these extracts, even in the presence of a large excess of undamaged DNA. This is an example of selective nucleosome assembly by Xenopus nuclear extracts on a short linear DNA fragment containing a DNA lesion.

  4. Nucleosome repositioning underlies dynamic gene expression.

    PubMed

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions.

  5. Chromatin modification by PSC occurs at one PSC per nucleosome and does not require the acidic patch of histone H2A.

    PubMed

    Lo, Stanley M; McElroy, Kyle A; Francis, Nicole J

    2012-01-01

    Chromatin architecture is regulated through both enzymatic and non-enzymatic activities. For example, the Polycomb Group (PcG) proteins maintain developmental gene silencing using an array of chromatin-based mechanisms. The essential Drosophila PcG protein, Posterior Sex Combs (PSC), compacts chromatin and inhibits chromatin remodeling and transcription through a non-enzymatic mechanism involving nucleosome bridging. Nucleosome bridging is achieved through a combination of nucleosome binding and self-interaction. Precisely how PSC interacts with chromatin to bridge nucleosomes is not known and is the subject of this work. We determine the stoichiometry of PSC-chromatin interactions in compact chromatin (in which nucleosomes are bridged) using Scanning Transmission Electron Microscopy (STEM). We find that full compaction occurs with one PSC per nucleosome. In addition to compacting chromatin, we show that PSC oligomerizes nucleosome arrays. PSC-mediated oligomerization of chromatin occurs at similar stoichiometry as compaction suggesting it may also involve nucleosome bridging. Interactions between the tail of histone H4 and the acidic patch of histone H2A are important for chromatin folding and oligomerization, and several chromatin proteins bind the histone H2A acidic patch. However, mutation of the acidic patch of histone H2A does not affect PSC's ability to inhibit chromatin remodeling or bridge nucleosomes. In fact, PSC does not require nucleosomes for bridging activity but can bridge naked DNA segments. PSC clusters nucleosomes on sparsely assembled templates, suggesting it interacts preferentially with nucleosomes over bare DNA. This may be due to the ability of PSC to bind free histones. Our data are consistent with a model in which each PSC binds a nucleosome and at least one other PSC to directly bridge nucleosomes and compact chromatin, but also suggest that naked DNA can be included in compacted structures. We discuss how our data highlight the diversity

  6. Review fifteen years of search for strong nucleosomes.

    PubMed

    Trifonov, Edward N; Nibhani, Reshma

    2015-08-01

    Don Crothers, Mikael Kubista, Jon Widom, and their teams have been first to look for strong nucleosomes, in a bid to reveal the nucleosome positioning pattern(s) carried by the nucleosome DNA sequences. They were first to demonstrate that the nucleosome stability correlates with 10-11 base sequence periodicity, and that the strong nucleosomes localize preferentially in centromeres. This review describes these findings and their connection to recent discovery of the strong nucleosomes (SNs) with visibly periodic nucleosome DNA sequences.

  7. spFRET reveals changes in nucleosome breathing by neighboring nucleosomes.

    PubMed

    Buning, Ruth; Kropff, Wietske; Martens, Kirsten; van Noort, John

    2015-02-18

    Chromatin, the structure in which DNA is compacted in eukaryotic cells, plays a key role in regulating DNA accessibility. FRET experiments on single nucleosomes, the basic units in chromatin, have revealed a dynamic nucleosome where spontaneous DNA unwrapping from the ends provides access to the nucleosomal DNA. Here we investigated how this DNA breathing is affected by extension of the linker DNA and by the presence of a neighboring nucleosome. We found that both electrostatic interactions between the entering and exiting linker DNA and nucleosome-nucleosome interactions increase unwrapping. Interactions between neighboring nucleosomes are more likely in dinucleosomes spaced by 55 bp of linker DNA than in dinucleosomes spaced by 50 bp of linker DNA. Such increased unwrapping may not only increase the accessibility of nucleosomal DNA in chromatin fibers, it may also be key to folding of nucleosomes into higher order structures.

  8. spFRET reveals changes in nucleosome breathing by neighboring nucleosomes

    NASA Astrophysics Data System (ADS)

    Buning, Ruth; Kropff, Wietske; Martens, Kirsten; van Noort, John

    2015-02-01

    Chromatin, the structure in which DNA is compacted in eukaryotic cells, plays a key role in regulating DNA accessibility. FRET experiments on single nucleosomes, the basic units in chromatin, have revealed a dynamic nucleosome where spontaneous DNA unwrapping from the ends provides access to the nucleosomal DNA. Here we investigated how this DNA breathing is affected by extension of the linker DNA and by the presence of a neighboring nucleosome. We found that both electrostatic interactions between the entering and exiting linker DNA and nucleosome-nucleosome interactions increase unwrapping. Interactions between neighboring nucleosomes are more likely in dinucleosomes spaced by 55 bp of linker DNA than in dinucleosomes spaced by 50 bp of linker DNA. Such increased unwrapping may not only increase the accessibility of nucleosomal DNA in chromatin fibers, it may also be key to folding of nucleosomes into higher order structures.

  9. Functional roles of nucleosome stability and dynamics.

    PubMed

    Chereji, Răzvan V; Morozov, Alexandre V

    2015-01-01

    Nucleosome is a histone-DNA complex known as the fundamental repeating unit of chromatin. Up to 90% of eukaryotic DNA is wrapped around consecutive octamers made of the core histones H2A, H2B, H3 and H4. Nucleosome positioning affects numerous cellular processes that require robust and timely access to genomic DNA, which is packaged into the tight confines of the cell nucleus. In living cells, nucleosome positions are determined by intrinsic histone-DNA sequence preferences, competition between histones and other DNA-binding proteins for genomic sequence, and ATP-dependent chromatin remodelers. We discuss the major energetic contributions to nucleosome formation and remodeling, focusing especially on partial DNA unwrapping off the histone octamer surface. DNA unwrapping enables efficient access to nucleosome-buried binding sites and mediates rapid nucleosome removal through concerted action of two or more DNA-binding factors. High-resolution, genome-scale maps of distances between neighboring nucleosomes have shown that DNA unwrapping and nucleosome crowding (mutual invasion of nucleosome territories) are much more common than previously thought. Ultimately, constraints imposed by nucleosome energetics on the rates of ATP-dependent and spontaneous chromatin remodeling determine nucleosome occupancy genome-wide, and shape pathways of cellular response to environmental stresses.

  10. Relationship between nucleosome positioning and DNA methylation

    PubMed Central

    Chodavarapu, Ramakrishna K.; Feng, Suhua; Bernatavichute, Yana V.; Chen, Pao-Yang; Stroud, Hume; Yu, Yanchun; Hetzel, Jonathan; Kuo, Frank; Kim, Jin; Cokus, Shawn J.; Casero, David; Bernal, Maria; Huijser, Peter; Clark, Amander T.; Krämer, Ute; Merchant, Sabeeha S.; Zhang, Xiaoyu; Jacobsen, Steven E.; Pellegrini, Matteo

    2010-01-01

    Nucleosomes compact and regulate access to DNA in the nucleus, and are composed of approximately 147 bases of DNA wrapped around a histone octamer1, 2. Here we report a genome-wide nucleosome positioning analysis of Arabidopsis thaliana utilizing massively parallel sequencing of mononucleosomes. By combining this data with profiles of DNA methylation at single base resolution, we identified ten base periodicities in the DNA methylation status of nucleosome-bound DNA and found that nucleosomal DNA was more highly methylated than flanking DNA. These results suggest that nucleosome positioning strongly influences DNA methylation patterning throughout the genome and that DNA methyltransferases preferentially target nucleosome-bound DNA. We also observed similar trends in human nucleosomal DNA suggesting that the relationships between nucleosomes and DNA methyltransferases are conserved. Finally, as has been observed in animals, nucleosomes were highly enriched on exons, and preferentially positioned at intron-exon and exon-intron boundaries. RNA Pol II was also enriched on exons relative to introns, consistent with the hypothesis that nucleosome positioning regulates Pol II processivity. DNA methylation is enriched on exons, consistent with the targeting of DNA methylation to nucleosomes, and suggesting a role for DNA methylation in exon definition. PMID:20512117

  11. Structure of nucleosome-HMG complexes

    SciTech Connect

    Paton, A.E.

    1982-12-01

    This dissertation concentrates on the structure of HMG-nucleosome complexes, and how they differ from nucleosomes alone. The first chapter provides an introduction to chromatin and an overview of the field. The second and third chapters describe what kinds of nucleosome-HMG protein complexes form in solution, and where the HMG proteins may bind on the nucleosome. A model is proposed that locates the HMG binding sites on the nucleosome core particle. The fourth chapter describes the biophysical characterization of the complex. The methods include thermal denaturation, circular dichroism and sedimentation velocity, all done under variety of solvent conditions. These methods reveal a great deal of information on the stability and interactions of the complex. The fifth chapter describes conformational probes of the complex. These results reveal the structural transitions that occur when HMG protein binds to the nucleosome as well as the parts of the nucleosome essential for the binding reaction.

  12. Nucleosome architecture throughout the cell cycle.

    PubMed

    Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto

    2016-01-28

    Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity.

  13. Nucleosome architecture throughout the cell cycle

    PubMed Central

    Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto

    2016-01-01

    Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity. PMID:26818620

  14. Changing chromatin fiber conformation by nucleosome repositioning.

    PubMed

    Müller, Oliver; Kepper, Nick; Schöpflin, Robert; Ettig, Ramona; Rippe, Karsten; Wedemann, Gero

    2014-11-04

    Chromatin conformation is dynamic and heterogeneous with respect to nucleosome positions, which can be changed by chromatin remodeling complexes in the cell. These molecular machines hydrolyze ATP to translocate or evict nucleosomes, and establish loci with regularly and more irregularly spaced nucleosomes as well as nucleosome-depleted regions. The impact of nucleosome repositioning on the three-dimensional chromatin structure is only poorly understood. Here, we address this issue by using a coarse-grained computer model of arrays of 101 nucleosomes considering several chromatin fiber models with and without linker histones, respectively. We investigated the folding of the chain in dependence of the position of the central nucleosome by changing the length of the adjacent linker DNA in basepair steps. We found in our simulations that these translocations had a strong effect on the shape and properties of chromatin fibers: i), Fiber curvature and flexibility at the center were largely increased and long-range contacts between distant nucleosomes on the chain were promoted. ii), The highest destabilization of the fiber conformation occurred for a nucleosome shifted by two basepairs from regular spacing, whereas effects of linker DNA changes of ?10 bp in phase with the helical twist of DNA were minimal. iii), A fiber conformation can stabilize a regular spacing of nucleosomes inasmuch as favorable stacking interactions between nucleosomes are facilitated. This can oppose nucleosome translocations and increase the energetic costs for chromatin remodeling. Our computational modeling framework makes it possible to describe the conformational heterogeneity of chromatin in terms of nucleosome positions, and thus advances theoretical models toward a better understanding of how genome compaction and access are regulated within the cell.

  15. Changing Chromatin Fiber Conformation by Nucleosome Repositioning

    PubMed Central

    Müller, Oliver; Kepper, Nick; Schöpflin, Robert; Ettig, Ramona; Rippe, Karsten; Wedemann, Gero

    2014-01-01

    Chromatin conformation is dynamic and heterogeneous with respect to nucleosome positions, which can be changed by chromatin remodeling complexes in the cell. These molecular machines hydrolyze ATP to translocate or evict nucleosomes, and establish loci with regularly and more irregularly spaced nucleosomes as well as nucleosome-depleted regions. The impact of nucleosome repositioning on the three-dimensional chromatin structure is only poorly understood. Here, we address this issue by using a coarse-grained computer model of arrays of 101 nucleosomes considering several chromatin fiber models with and without linker histones, respectively. We investigated the folding of the chain in dependence of the position of the central nucleosome by changing the length of the adjacent linker DNA in basepair steps. We found in our simulations that these translocations had a strong effect on the shape and properties of chromatin fibers: i), Fiber curvature and flexibility at the center were largely increased and long-range contacts between distant nucleosomes on the chain were promoted. ii), The highest destabilization of the fiber conformation occurred for a nucleosome shifted by two basepairs from regular spacing, whereas effects of linker DNA changes of ∼10 bp in phase with the helical twist of DNA were minimal. iii), A fiber conformation can stabilize a regular spacing of nucleosomes inasmuch as favorable stacking interactions between nucleosomes are facilitated. This can oppose nucleosome translocations and increase the energetic costs for chromatin remodeling. Our computational modeling framework makes it possible to describe the conformational heterogeneity of chromatin in terms of nucleosome positions, and thus advances theoretical models toward a better understanding of how genome compaction and access are regulated within the cell. PMID:25418099

  16. SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes.

    PubMed

    Dechassa, Mekonnen Lemma; Sabri, Abdellah; Pondugula, Santhi; Kassabov, Stefan R; Chatterjee, Nilanjana; Kladde, Michael P; Bartholomew, Blaine

    2010-05-28

    The ATP-dependent chromatin remodeling complex SWI/SNF regulates transcription and has been implicated in promoter nucleosome eviction. Efficient nucleosome disassembly by SWI/SNF alone in biochemical assays, however, has not been directly observed. Employing a model system of dinucleosomes rather than mononucleosomes, we demonstrate that remodeling leads to ordered and efficient disassembly of one of the two nucleosomes. An H2A/H2B dimer is first rapidly displaced, and then, in a slower reaction, an entire histone octamer is lost. Nucleosome disassembly by SWI/SNF did not require additional factors such as chaperones or acceptors of histones. Observations in single molecules as well as bulk measurement suggest that a key intermediate in this process is one in which a nucleosome is moved toward the adjacent nucleosome. SWI/SNF recruited by the transcriptional activator Gal4-VP16 preferentially mobilizes the proximal nucleosome and destabilizes the adjacent nucleosome.

  17. GAA triplet-repeats cause nucleosome depletion in the human genome.

    PubMed

    Zhao, Hongyu; Xing, Yongqiang; Liu, Guoqing; Chen, Ping; Zhao, Xiujuan; Li, Guohong; Cai, Lu

    2015-08-01

    Although there have been many investigations into how trinucleotide repeats affect nucleosome formation and local chromatin structure, the nucleosome positioning of GAA triplet-repeats in the human genome has remained elusive. In this work, the nucleosome occupancy around GAA triplet-repeats across the human genome was computed statistically. The results showed a nucleosome-depleted region in the vicinity of GAA triplet-repeats in activated and resting CD4(+) T cells. Furthermore, the A-tract was frequently adjacent to the upstream region of GAA triplet-repeats and could enhance the depletion surrounding GAA triplet-repeats. In vitro chromatin reconstitution assays with GAA-containing plasmids also demonstrated that the inserted GAA triplet-repeats destabilized the ability of recombinant plasmids to assemble nucleosomes. Our results suggested that GAA triplet-repeats have lower affinity to histones and can change local nucleosome positioning. These findings may be helpful for understanding the mechanism of Friedreich's ataxia, which is associated with GAA triplet-repeats at the chromatin level.

  18. Transcription of nucleosomes from human chromatin.

    PubMed Central

    Shaw, P A; Sahasrabuddhe, C G; Hodo, H G; Saunders, G F

    1978-01-01

    Nucleosomes (chromatin subunits) prepared by micrococcal nuclease digestion of human nuclei are similar in histone content but substantially reduced in non-histone proteins as compared to undigested chromatin. Chromatin transcription experiments indicate that the DNA in the nucleosomes is accessible to DNA-dependent RNA polymerase in vitro. The template capacities of chromatin and nucleosomes are 1.5 and 10%, respectively, relative to high molecular weight DNA, with intermediate values for oligonucleosomes. Three distinct sizes of transcripts, 150, 120 and 95 nucleotides in length, are obtained when nucleosomes are used as templates. However, when nucleosomal DNA is used as a template, the predominant size of transcripts is 150 nucleotides. When oligonucleosomes are used as templates longer transcripts are obtained. This indicates that RNA polymerase can transcribe the DNA contained in the nucleosomes. PMID:693325

  19. Crystal structure of the human centromeric nucleosome containing CENP-A.

    PubMed

    Tachiwana, Hiroaki; Kagawa, Wataru; Shiga, Tatsuya; Osakabe, Akihisa; Miya, Yuta; Saito, Kengo; Hayashi-Takanaka, Yoko; Oda, Takashi; Sato, Mamoru; Park, Sam-Yong; Kimura, Hiroshi; Kurumizaka, Hitoshi

    2011-07-10

    In eukaryotes, accurate chromosome segregation during mitosis and meiosis is coordinated by kinetochores, which are unique chromosomal sites for microtubule attachment. Centromeres specify the kinetochore formation sites on individual chromosomes, and are epigenetically marked by the assembly of nucleosomes containing the centromere-specific histone H3 variant, CENP-A. Although the underlying mechanism is unclear, centromere inheritance is probably dictated by the architecture of the centromeric nucleosome. Here we report the crystal structure of the human centromeric nucleosome containing CENP-A and its cognate α-satellite DNA derivative (147 base pairs). In the human CENP-A nucleosome, the DNA is wrapped around the histone octamer, consisting of two each of histones H2A, H2B, H4 and CENP-A, in a left-handed orientation. However, unlike the canonical H3 nucleosome, only the central 121 base pairs of the DNA are visible. The thirteen base pairs from both ends of the DNA are invisible in the crystal structure, and the αN helix of CENP-A is shorter than that of H3, which is known to be important for the orientation of the DNA ends in the canonical H3 nucleosome. A structural comparison of the CENP-A and H3 nucleosomes revealed that CENP-A contains two extra amino acid residues (Arg 80 and Gly 81) in the loop 1 region, which is completely exposed to the solvent. Mutations of the CENP-A loop 1 residues reduced CENP-A retention at the centromeres in human cells. Therefore, the CENP-A loop 1 may function in stabilizing the centromeric chromatin containing CENP-A, possibly by providing a binding site for trans-acting factors. The structure provides the first atomic-resolution picture of the centromere-specific nucleosome.

  20. Nucleosome spacing generated by ISWI and CHD1 remodelers is constant regardless of nucleosome density.

    PubMed

    Lieleg, Corinna; Ketterer, Philip; Nuebler, Johannes; Ludwigsen, Johanna; Gerland, Ulrich; Dietz, Hendrik; Mueller-Planitz, Felix; Korber, Philipp

    2015-05-01

    Arrays of regularly spaced nucleosomes are a hallmark of chromatin, but it remains unclear how they are generated. Recent genome-wide studies, in vitro and in vivo, showed constant nucleosome spacing even if the histone concentration was experimentally reduced. This counters the long-held assumption that nucleosome density determines spacing and calls for factors keeping spacing constant regardless of nucleosome density. We call this a clamping activity. Here, we show in a purified system that ISWI- and CHD1-type nucleosome remodelers have a clamping activity such that they not only generate regularly spaced nucleosome arrays but also generate constant spacing regardless of nucleosome density. This points to a functionally attractive nucleosome interaction that could be mediated either directly by nucleosome-nucleosome contacts or indirectly through the remodelers. Mutant Drosophila melanogaster ISWI without the Hand-Sant-Slide (HSS) domain had no detectable spacing activity even though it is known to remodel and slide nucleosomes. This suggests that the role of ISWI remodelers in generating constant spacing is not just to mediate nucleosome sliding; they actively contribute to the attractive interaction. Additional factors are necessary to set physiological spacing in absolute terms.

  1. Mapping nucleosome positions using DNase-seq.

    PubMed

    Zhong, Jianling; Luo, Kaixuan; Winter, Peter S; Crawford, Gregory E; Iversen, Edwin S; Hartemink, Alexander J

    2016-03-01

    Although deoxyribonuclease I (DNase I) was used to probe the structure of the nucleosome in the 1960s and 1970s, in the current high-throughput sequencing era, DNase I has mainly been used to study genomic regions devoid of nucleosomes. Here, we reveal for the first time that DNase I can be used to precisely map the (translational) positions of in vivo nucleosomes genome-wide. Specifically, exploiting a distinctive DNase I cleavage profile within nucleosome-associated DNA--including a signature 10.3 base pair oscillation that corresponds to accessibility of the minor groove as DNA winds around the nucleosome--we develop a Bayes-factor-based method that can be used to map nucleosome positions along the genome. Compared to methods that require genetically modified histones, our DNase-based approach is easily applied in any organism, which we demonstrate by producing maps in yeast and human. Compared to micrococcal nuclease (MNase)-based methods that map nucleosomes based on cuts in linker regions, we utilize DNase I cuts both outside and within nucleosomal DNA; the oscillatory nature of the DNase I cleavage profile within nucleosomal DNA enables us to identify translational positioning details not apparent in MNase digestion of linker DNA. Because the oscillatory pattern corresponds to nucleosome rotational positioning, it also reveals the rotational context of transcription factor (TF) binding sites. We show that potential binding sites within nucleosome-associated DNA are often centered preferentially on an exposed major or minor groove. This preferential localization may modulate TF interaction with nucleosome-associated DNA as TFs search for binding sites.

  2. The Genomic Code for Nucleosome Positioning

    NASA Astrophysics Data System (ADS)

    Widom, Jonathan

    2008-03-01

    Eukaryotic genomes encode an additional layer of genetic information, superimposed on top of the regulatory and coding information, that controls the organization of the genomic DNA into arrays of nucleosomes. We have developed a partial ability to read this nucleosome positioning code and predict the in vivo locations of nucleosomes. Our results suggest that genomes utilize the nucleosome positioning code to facilitate specific chromosome functions including to delineate functional versus nonfunctional binding sites for key gene regulatory proteins, and to define the next higher level of chromosome structure itself.

  3. Reading sequence-directed computational nucleosome maps.

    PubMed

    Nibhani, Reshma; Trifonov, Edward N

    2015-01-01

    Recently developed latest version of the sequence-directed single-base resolution nucleosome mapping reveals existence of strong nucleosomes and chromatin columnar structures (columns). Broad application of this simple technique for further studies of chromatin and chromosome structure requires some basic understanding as to how it works and what information it affords. The paper provides such an introduction to the method. The oscillating maps of singular nucleosomes, of short and long oligonucleosome columns, are explained, as well as maps of chromatin on satellite DNA and occurrences of counter-phase (antiparallel) nucleosome neighbors.

  4. Effects of DNA methylation on nucleosome stability.

    PubMed

    Collings, Clayton K; Waddell, Peter J; Anderson, John N

    2013-03-01

    Methylation of DNA at CpG dinucleotides represents one of the most important epigenetic mechanisms involved in the control of gene expression in vertebrate cells. In this report, we conducted nucleosome reconstitution experiments in conjunction with high-throughput sequencing on 572 KB of human DNA and 668 KB of mouse DNA that was unmethylated or methylated in order to investigate the effects of this epigenetic modification on the positioning and stability of nucleosomes. The results demonstrated that a subset of nucleosomes positioned by nucleotide sequence was sensitive to methylation where the modification increased the affinity of these sequences for the histone octamer. The features that distinguished these nucleosomes from the bulk of the methylation-insensitive nucleosomes were an increase in the frequency of CpG dinucleotides and a unique rotational orientation of CpGs such that their minor grooves tended to face toward the histones in the nucleosome rather than away. These methylation-sensitive nucleosomes were preferentially associated with exons as compared to introns while unmethylated CpG islands near transcription start sites became enriched in nucleosomes upon methylation. The results of this study suggest that the effects of DNA methylation on nucleosome stability in vitro can recapitulate what has been observed in the cell and provide a direct link between DNA methylation and the structure and function of chromatin.

  5. Histone H4 tail mediates allosteric regulation of nucleosome remodelling by linker DNA.

    PubMed

    Hwang, William L; Deindl, Sebastian; Harada, Bryan T; Zhuang, Xiaowei

    2014-08-14

    Imitation switch (ISWI)-family remodelling enzymes regulate access to genomic DNA by mobilizing nucleosomes. These ATP-dependent chromatin remodellers promote heterochromatin formation and transcriptional silencing by generating regularly spaced nucleosome arrays. The nucleosome-spacing activity arises from the dependence of nucleosome translocation on the length of extranucleosomal linker DNA, but the underlying mechanism remains unclear. Here we study nucleosome remodelling by human ATP-dependent chromatin assembly and remodelling factor (ACF), an ISWI enzyme comprising a catalytic subunit, Snf2h, and an accessory subunit, Acf1 (refs 2, 11 - 13). We find that ACF senses linker DNA length through an interplay between its accessory and catalytic subunits mediated by the histone H4 tail of the nucleosome. Mutation of AutoN, an auto-inhibitory domain within Snf2h that bears sequence homology to the H4 tail, abolishes the linker-length sensitivity in remodelling. Addition of exogenous H4-tail peptide or deletion of the nucleosomal H4 tail also diminishes the linker-length sensitivity. Moreover, Acf1 binds both the H4-tail peptide and DNA in an amino (N)-terminal domain dependent manner, and in the ACF-bound nucleosome, lengthening the linker DNA reduces the Acf1-H4 tail proximity. Deletion of the N-terminal portion of Acf1 (or its homologue in yeast) abolishes linker-length sensitivity in remodelling and leads to severe growth defects in vivo. Taken together, our results suggest a mechanism for nucleosome spacing where linker DNA sensing by Acf1 is allosterically transmitted to Snf2h through the H4 tail of the nucleosome. For nucleosomes with short linker DNA, Acf1 preferentially binds to the H4 tail, allowing AutoN to inhibit the ATPase activity of Snf2h. As the linker DNA lengthens, Acf1 shifts its binding preference to the linker DNA, freeing the H4 tail to compete AutoN off the ATPase and thereby activating ACF.

  6. Canonical nucleosome organization at promoters forms during genome activation.

    PubMed

    Zhang, Yong; Vastenhouw, Nadine L; Feng, Jianxing; Fu, Kai; Wang, Chenfei; Ge, Ying; Pauli, Andrea; van Hummelen, Paul; Schier, Alexander F; Liu, X Shirley

    2014-02-01

    The organization of nucleosomes influences transcriptional activity by controlling accessibility of DNA binding proteins to the genome. Genome-wide nucleosome binding profiles have identified a canonical nucleosome organization at gene promoters, where arrays of well-positioned nucleosomes emanate from nucleosome-depleted regions. The mechanisms of formation and the function of canonical promoter nucleosome organization remain unclear. Here we analyze the genome-wide location of nucleosomes during zebrafish embryogenesis and show that well-positioned nucleosome arrays appear on thousands of promoters during the activation of the zygotic genome. The formation of canonical promoter nucleosome organization is independent of DNA sequence preference, transcriptional elongation, and robust RNA polymerase II (Pol II) binding. Instead, canonical promoter nucleosome organization correlates with the presence of histone H3 lysine 4 trimethylation (H3K4me3) and affects future transcriptional activation. These findings reveal that genome activation is central to the organization of nucleosome arrays during early embryogenesis.

  7. Chromatin remodelers clear nucleosomes from intrinsically unfavorable sites to establish nucleosome-depleted regions at promoters.

    PubMed

    Tolkunov, Denis; Zawadzki, Karl A; Singer, Cara; Elfving, Nils; Morozov, Alexandre V; Broach, James R

    2011-06-15

    Most promoters in yeast contain a nucleosome-depleted region (NDR), but the mechanisms by which NDRs are established and maintained in vivo are currently unclear. We have examined how genome-wide nucleosome placement is altered in the absence of two distinct types of nucleosome remodeling activity. In mutants of both SNF2, which encodes the ATPase component of the Swi/Snf remodeling complex, and ASF1, which encodes a histone chaperone, distinct sets of gene promoters carry excess nucleosomes in their NDRs relative to wild-type. In snf2 mutants, excess promoter nucleosomes correlate with reduced gene expression. In both mutants, the excess nucleosomes occupy DNA sequences that are energetically less favorable for nucleosome formation, indicating that intrinsic histone-DNA interactions are not sufficient for nucleosome positioning in vivo, and that Snf2 and Asf1 promote thermodynamic equilibration of nucleosomal arrays. Cells lacking SNF2 or ASF1 still accomplish the changes in promoter nucleosome structure associated with large-scale transcriptional reprogramming. However, chromatin reorganization in the mutants is reduced in extent compared to wild-type cells, even though transcriptional changes proceed normally. In summary, active remodeling is required for distributing nucleosomes to energetically favorable positions in vivo and for reorganizing chromatin in response to changes in transcriptional activity.

  8. Nucleosome dynamics: HMGB1 relaxes canonical nucleosome structure to facilitate estrogen receptor binding.

    PubMed

    Joshi, Sachindra R; Sarpong, Yaw C; Peterson, Ronald C; Scovell, William M

    2012-11-01

    High mobility group protein 1 (HMGB1) interacts with DNA and chromatin to influence the regulation of transcription, DNA repair and recombination. We show that HMGB1 alters the structure and stability of the canonical nucleosome (N) in a nonenzymatic, ATP-independent manner. Although estrogen receptor (ER) does not bind to its consensus estrogen response element within a nucleosome, HMGB1 restructures the nucleosome to facilitate strong ER binding. The isolated HMGB1-restructured nucleosomes (N' and N″) remain stable and exhibit characteristics distinctly different from the canonical nucleosome. These findings complement previous studies that showed (i) HMGB1 stimulates in vivo transcriptional activation at estrogen response elements and (ii) knock down of HMGB1 expression by siRNA precipitously reduced transcriptional activation. The findings indicate that one aspect of the mechanism of HMGB1 action involves a restructuring of the nucleosome that appears to relax structural constraints within the nucleosome.

  9. A physical analysis of nucleosome positioning

    NASA Astrophysics Data System (ADS)

    Gerland, Ulrich

    2015-03-01

    The first level of genome packaging in eukaryotic cells involves the formation of dense nucleosome arrays, with DNA coverage near 90% in yeasts. A high nucleosome coverage is essential for cells, e.g. to prevent cryptic transcription, and the local positions of specific nucleosomes can play an important role in gene regulation. It is known that in vivo nucleosome positions are affected by a complex mix of passive and active mechanisms, including sequence-specific histone-DNA binding, nucleosome-nucleosome interactions, ATP-dependent remodeling enzymes, transcription, and DNA replication. Yet, the statistical distribution of nucleosome positions is extremely well described by simple physical models that treat the chromatin fiber as an interacting one-dimensional gas. I will discuss how can we interpret this surprising observation from a mechanistic perspective. I will also discuss the kinetics of the interacting gas model, which is pertinent to the question of how cells achieve the high nucleosome coverage within a short time, e.g. after DNA replication.

  10. Acetylated histone H3 increases nucleosome dissociation

    NASA Astrophysics Data System (ADS)

    Simon, Marek; Manohar, Mridula; Ottesen, Jennifer; Poirier, Michael

    2009-03-01

    Chromatin's basic unit structure is the nucleosome, i.e. genomic DNA wrapped around a particular class of proteins -- histones -- which due to their physical hindrance, block vital biological processes, such as DNA repair, DNA replication, and RNA transcription. Histone post-translational modifications, which are known to exist in vivo, are hypothesized to regulate these biological processes by directly altering DNA-histone interactions and thus nucleosome structure and stability. Using magnetic tweezers technique we studied the acetylation of histone H3 in the dyad region, i.e. at K115 and K122, on reconstituted arrays of nucleosomes under constant external force. Based on the measured increase in the probability of dissociation of modified nucleosomes, we infer that this double modification could facilitate histone chaperone mediated nucleosome disassembly in vivo.

  11. A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome.

    PubMed

    Mavrich, Travis N; Ioshikhes, Ilya P; Venters, Bryan J; Jiang, Cizhong; Tomsho, Lynn P; Qi, Ji; Schuster, Stephan C; Albert, Istvan; Pugh, B Franklin

    2008-07-01

    Most nucleosomes are well-organized at the 5' ends of S. cerevisiae genes where "-1" and "+1" nucleosomes bracket a nucleosome-free promoter region (NFR). How nucleosomal organization is specified by the genome is less clear. Here we establish and inter-relate rules governing genomic nucleosome organization by sequencing DNA from more than one million immunopurified S. cerevisiae nucleosomes (displayed at http://atlas.bx.psu.edu/). Evidence is presented that the organization of nucleosomes throughout genes is largely a consequence of statistical packing principles. The genomic sequence specifies the location of the -1 and +1 nucleosomes. The +1 nucleosome forms a barrier against which nucleosomes are packed, resulting in uniform positioning, which decays at farther distances from the barrier. We present evidence for a novel 3' NFR that is present at >95% of all genes. 3' NFRs may be important for transcription termination and anti-sense initiation. We present a high-resolution genome-wide map of TFIIB locations that implicates 3' NFRs in gene looping.

  12. Stability of nucleosome placement in newly repaired regions of DNA

    SciTech Connect

    Nissen, K.A.; Lan, S.Y.; Smerdon, M.J.

    1986-07-05

    Rearrangements of chromatin structure during excision repair of UV-damaged DNA appear to involve unfolding of nucleosomal DNA while repair is taking place, followed by refolding of this DNA into a native nucleosome structure. Recently, we found that repair patches are not distributed uniformly along the DNA in nucleosome core particles immediately following their refolding into nucleosomes. Therefore, the distribution of repair patches in nucleosome core DNA was used to monitor the stability of nucleosome placement in these regions. Our results indicate that in nondividing human cells undergoing excision repair there is a slow change in the positioning of nucleosomes in newly repaired regions of chromatin, resulting in the eventual randomization of repair patches in nucleosome core DNA. Furthermore, the nonrandom placement of nucleosomes observed just after the refolding event is not re-established during DNA replication. Possible mechanisms for this change in nucleosome placement along the DNA are discussed.

  13. Regulation of the nucleosome unwrapping rate controls DNA accessibility

    PubMed Central

    North, Justin A.; Shimko, John C.; Javaid, Sarah; Mooney, Alex M.; Shoffner, Matthew A.; Rose, Sean D.; Bundschuh, Ralf; Fishel, Richard; Ottesen, Jennifer J.; Poirier, Michael G.

    2012-01-01

    Eukaryotic genomes are repetitively wrapped into nucleosomes that then regulate access of transcription and DNA repair complexes to DNA. The mechanisms that regulate extrinsic protein interactions within nucleosomes are unresolved. We demonstrate that modulation of the nucleosome unwrapping rate regulates protein binding within nucleosomes. Histone H3 acetyl-lysine 56 [H3(K56ac)] and DNA sequence within the nucleosome entry-exit region additively influence nucleosomal DNA accessibility by increasing the unwrapping rate without impacting rewrapping. These combined epigenetic and genetic factors influence transcription factor (TF) occupancy within the nucleosome by at least one order of magnitude and enhance nucleosome disassembly by the DNA mismatch repair complex, hMSH2–hMSH6. Our results combined with the observation that ∼30% of Saccharomyces cerevisiae TF-binding sites reside in the nucleosome entry–exit region suggest that modulation of nucleosome unwrapping is a mechanism for regulating transcription and DNA repair. PMID:22965129

  14. Herpes simplex virus 1 DNA is in unstable nucleosomes throughout the lytic infection cycle, and the instability of the nucleosomes is independent of DNA replication.

    PubMed

    Lacasse, Jonathan J; Schang, Luis M

    2012-10-01

    Herpes simplex virus 1 (HSV-1) DNA is chromatinized during latency and consequently regularly digested by micrococcal nuclease (MCN) to nucleosome-size fragments. In contrast, MCN digests HSV-1 DNA in lytically infected cells to mostly heterogeneous sizes. Yet HSV-1 DNA coimmunoprecipitates with histones during lytic infections. We have shown that at 5 h postinfection, most nuclear HSV-1 DNA is in particularly unstable nucleoprotein complexes and consequently is more accessible to MCN than DNA in cellular chromatin. HSV-1 DNA was quantitatively recovered at this time in complexes with the biophysical properties of mono- to polynucleosomes following a modified MCN digestion developed to detect potential unstable intermediates. We proposed that most HSV-1 DNA is in unstable nucleosome-like complexes during lytic infections. Physiologically, nucleosome assembly typically associates with DNA replication, although DNA replication transiently disrupts nucleosomes. It therefore remained unclear whether the instability of the HSV-1 nucleoprotein complexes was related to the ongoing viral DNA replication. Here we tested whether HSV-1 DNA is in unstable nucleosome-like complexes before, during, or after the peak of viral DNA replication or when HSV-1 DNA replication is inhibited. HSV-1 DNA was quantitatively recovered in complexes fractionating as mono- to polynucleosomes from nuclei harvested at 2, 5, 7, or 9 h after infection, even if viral DNA replication was inhibited. Therefore, most HSV-1 DNA is in unstable nucleosome-like complexes throughout the lytic replication cycle, and the instability of these complexes is surprisingly independent of HSV-1 DNA replication. The specific accessibility of nuclear HSV-1 DNA, however, varied at different times after infection.

  15. Antipolar and Anticlinic Mesophase Order in Chromatin Induced by Nucleosome Polarity and Chirality Correlations

    NASA Astrophysics Data System (ADS)

    Garcés, R.; Podgornik, R.; Lorman, V.

    2015-06-01

    Contrary to the usual "rigid supermolecular assembly" paradigm of chromatin structure, we propose to analyze its eventual ordered state in terms of symmetry properties of individual nucleosomes that give rise to mesophase order parameters, like in many other soft-matter systems. Basing our approach on the Landau-de Gennes phenomenology, we describe the mesoscale order in chromatin by antipolar and anticlinic correlations of chiral individual nucleosomes. This approach leads to a unifying physical picture of a whole series of soft locally ordered states with different apparent structures, including the recently observed heteromorphic chromatin, stemming from the antipolar arrangement of nucleosomes complemented by their chiral twisting. Properties of these states under an external force field can reconcile apparently contradictory results of single-molecule experiments.

  16. Strong nucleosomes of A. thaliana concentrate in centromere regions.

    PubMed

    Salih, Bilal; Trifonov, Edward N

    2015-01-01

    Earlier identified strongest nucleosome DNA sequences of A. thaliana, those with visible 10-11 base sequence periodicity, are mapped along chromosomes. Resulting positional distributions reveal distinct maxima, one per chromosome, located in the centromere regions. Sequence-directed nucleosome mapping demonstrates that the strong nucleosomes (SNs) make tight arrays, several 'parallel' nucleosomes each, suggesting a columnar chromatin structure. The SNs represent a new class of centromeric nucleosomes, presumably, participating in synapsis of chromatids and securing the centromere architecture.

  17. Fokker-Planck description of single nucleosome repositioning by dimeric chromatin remodelers

    NASA Astrophysics Data System (ADS)

    Vandecan, Yves; Blossey, Ralf

    2013-07-01

    Recent experiments have demonstrated that the ATP-utilizing chromatin assembly and remodeling factor (ACF) is a dimeric, processive motor complex which can move a nucleosome more efficiently towards longer flanking DNA than towards shorter flanking DNA strands, thereby centering an initially ill-positioned nucleosome on DNA substrates. We give a Fokker-Planck description for the repositioning process driven by transitions between internal chemical states of the remodelers. In the chemical states of ATP hydrolysis during which the repositioning takes place a power stroke is considered. The slope of the effective driving potential is directly related to ATP hydrolysis and leads to the unidirectional motion of the nucleosome-remodeler complex along the DNA strand. The Einstein force relation allows us to deduce the ATP-concentration dependence of the diffusion constant of the nucleosome-remodeler complex. We have employed our model to study the efficiency of positioning of nucleosomes as a function of the ATP sampling rate between the two motors which shows that the synchronization between the motors is crucial for the remodeling mechanism to work.

  18. Stepwise nucleosome translocation by RSC remodeling complexes.

    PubMed

    Harada, Bryan T; Hwang, William L; Deindl, Sebastian; Chatterjee, Nilanjana; Bartholomew, Blaine; Zhuang, Xiaowei

    2016-02-19

    The SWI/SNF-family remodelers regulate chromatin structure by coupling the free energy from ATP hydrolysis to the repositioning and restructuring of nucleosomes, but how the ATPase activity of these enzymes drives the motion of DNA across the nucleosome remains unclear. Here, we used single-molecule FRET to monitor the remodeling of mononucleosomes by the yeast SWI/SNF remodeler, RSC. We observed that RSC primarily translocates DNA around the nucleosome without substantial displacement of the H2A-H2B dimer. At the sites where DNA enters and exits the nucleosome, the DNA moves largely along or near its canonical wrapping path. The translocation of DNA occurs in a stepwise manner, and at both sites where DNA enters and exits the nucleosome, the step size distributions exhibit a peak at approximately 1-2 bp. These results suggest that the movement of DNA across the nucleosome is likely coupled directly to DNA translocation by the ATPase at its binding site inside the nucleosome.

  19. Overcoming a nucleosomal barrier to replication

    PubMed Central

    Chang, Han-Wen; Pandey, Manjula; Kulaeva, Olga I.; Patel, Smita S.; Studitsky, Vasily M.

    2016-01-01

    Efficient overcoming and accurate maintenance of chromatin structure and associated histone marks during DNA replication are essential for normal functioning of the daughter cells. However, the molecular mechanisms of replication through chromatin are unknown. We have studied traversal of uniquely positioned mononucleosomes by T7 replisome in vitro. Nucleosomes present a strong, sequence-dependent barrier for replication, with particularly strong pausing of DNA polymerase at the +(31–40) and +(41–65) regions of the nucleosomal DNA. The exonuclease activity of T7 DNA polymerase increases the overall rate of progression of the replisome through a nucleosome, likely by resolving nonproductive complexes. The presence of nucleosome-free DNA upstream of the replication fork facilitates the progression of DNA polymerase through the nucleosome. After replication, at least 50% of the nucleosomes assume an alternative conformation, maintaining their original positions on the DNA. Our data suggest a previously unpublished mechanism for nucleosome maintenance during replication, likely involving transient formation of an intranucleosomal DNA loop. PMID:27847876

  20. Improved nucleosome-positioning algorithm iNPS for accurate nucleosome positioning from sequencing data.

    PubMed

    Chen, Weizhong; Liu, Yi; Zhu, Shanshan; Green, Christopher D; Wei, Gang; Han, Jing-Dong Jackie

    2014-09-18

    Accurate determination of genome-wide nucleosome positioning can provide important insights into global gene regulation. Here, we describe the development of an improved nucleosome-positioning algorithm-iNPS-which achieves significantly better performance than the widely used NPS package. By determining nucleosome boundaries more precisely and merging or separating shoulder peaks based on local MNase-seq signals, iNPS can unambiguously detect 60% more nucleosomes. The detected nucleosomes display better nucleosome 'widths' and neighbouring centre-centre distance distributions, giving rise to sharper patterns and better phasing of average nucleosome profiles and higher consistency between independent data subsets. In addition to its unique advantage in classifying nucleosomes by shape to reveal their different biological properties, iNPS also achieves higher significance and lower false positive rates than previously published methods. The application of iNPS to T-cell activation data demonstrates a greater ability to facilitate detection of nucleosome repositioning, uncovering additional biological features underlying the activation process.

  1. Nucleosomal signatures impose nucleosome positioning in coding and noncoding sequences in the genome

    PubMed Central

    González, Sara; García, Alicia; Vázquez, Enrique; Serrano, Rebeca; Sánchez, Mar; Quintales, Luis; Antequera, Francisco

    2016-01-01

    In the yeast genome, a large proportion of nucleosomes occupy well-defined and stable positions. While the contribution of chromatin remodelers and DNA binding proteins to maintain this organization is well established, the relevance of the DNA sequence to nucleosome positioning in the genome remains controversial. Through quantitative analysis of nucleosome positioning, we show that sequence changes distort the nucleosomal pattern at the level of individual nucleosomes in three species of Schizosaccharomyces and in Saccharomyces cerevisiae. This effect is equally detected in transcribed and nontranscribed regions, suggesting the existence of sequence elements that contribute to positioning. To identify such elements, we incorporated information from nucleosomal signatures into artificial synthetic DNA molecules and found that they generated regular nucleosomal arrays indistinguishable from those of endogenous sequences. Strikingly, this information is species-specific and can be combined with coding information through the use of synonymous codons such that genes from one species can be engineered to adopt the nucleosomal organization of another. These findings open the possibility of designing coding and noncoding DNA molecules capable of directing their own nucleosomal organization. PMID:27662899

  2. Dynamics of nucleosome invasion by DNA binding proteins.

    PubMed

    Tims, Hannah S; Gurunathan, Kaushik; Levitus, Marcia; Widom, Jonathan

    2011-08-12

    Nucleosomes sterically occlude their wrapped DNA from interacting with many large protein complexes. How proteins gain access to nucleosomal DNA target sites in vivo is not known. Outer stretches of nucleosomal DNA spontaneously unwrap and rewrap with high frequency, providing rapid and efficient access to regulatory DNA target sites located there; however, rates for access to the nucleosome interior have not been measured. Here we show that for a selected high-affinity nucleosome positioning sequence, the spontaneous DNA unwrapping rate decreases dramatically with distance inside the nucleosome. The rewrapping rate also decreases, but only slightly. Our results explain the previously known strong position dependence on the equilibrium accessibility of nucleosomal DNA, which is characteristic of both selected and natural sequences. Our results point to slow nucleosome conformational fluctuations as a potential source of cell-cell variability in gene activation dynamics, and they reveal the dominant kinetic path by which multiple DNA binding proteins cooperatively invade a nucleosome.

  3. Nucleosome

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The fundamental structural unit of chromatin and is the basis for organization within the genome by compaction of DNA within the nucleus of the cell and by making selected regions of chromosomes available for transcription and replication.

  4. Nucleosome repeat lengths and columnar chromatin structure.

    PubMed

    Trifonov, Edward N

    2016-06-01

    Thorough quantitative study of nucleosome repeat length (NRL) distributions, conducted in 1992 by J. Widom, resulted in a striking observation that the linker lengths between the nucleosomes are quantized. Comparison of the NRL average values with the MNase cut distances predicted from the hypothetical columnar structure of chromatin (this work) shows a close correspondence between the two. This strongly suggests that the NRL distribution, actually, reflects the dominant role of columnar chromatin structure common for all eukaryotes.

  5. Nucleosome adaptability conferred by sequence and structural variations in histone H2A-H2B dimers.

    PubMed

    Shaytan, Alexey K; Landsman, David; Panchenko, Anna R

    2015-06-01

    Nucleosome variability is essential for their functions in compacting the chromatin structure and regulation of transcription, replication and cell reprogramming. The DNA molecule in nucleosomes is wrapped around an octamer composed of four types of core histones (H3, H4, H2A, H2B). Nucleosomes represent dynamic entities and may change their conformation, stability and binding properties by employing different sets of histone variants or by becoming post-translationally modified. There are many variants of histones H2A and H2B. Specific H2A and H2B variants may preferentially associate with each other resulting in different combinations of variants and leading to the increased combinatorial complexity of nucleosomes. In addition, the H2A-H2B dimer can be recognized and substituted by chaperones/remodelers as a distinct unit, can assemble independently and is stable during nucleosome unwinding. In this review we discuss how sequence and structural variations in H2A-H2B dimers may provide necessary complexity and confer the nucleosome functional variability.

  6. Genomic Nucleosome Organization Reconstituted with Pure Proteins.

    PubMed

    Krietenstein, Nils; Wal, Megha; Watanabe, Shinya; Park, Bongsoo; Peterson, Craig L; Pugh, B Franklin; Korber, Philipp

    2016-10-20

    Chromatin remodelers regulate genes by organizing nucleosomes around promoters, but their individual contributions are obfuscated by the complex in vivo milieu of factor redundancy and indirect effects. Genome-wide reconstitution of promoter nucleosome organization with purified proteins resolves this problem and is therefore a critical goal. Here, we reconstitute four stages of nucleosome architecture using purified components: yeast genomic DNA, histones, sequence-specific Abf1/Reb1, and remodelers RSC, ISW2, INO80, and ISW1a. We identify direct, specific, and sufficient contributions that in vivo observations validate. First, RSC clears promoters by translating poly(dA:dT) into directional nucleosome removal. Second, partial redundancy is recapitulated where INO80 alone, or ISW2 at Abf1/Reb1sites, positions +1 nucleosomes. Third, INO80 and ISW2 each align downstream nucleosomal arrays. Fourth, ISW1a tightens the spacing to canonical repeat lengths. Such a minimal set of rules and proteins establishes core mechanisms by which promoter chromatin architecture arises through a blend of redundancy and specialization.

  7. A comparison of in vitro nucleosome positioning mapped with chicken, frog and a variety of yeast core histones.

    PubMed

    Allan, James; Fraser, Ross M; Owen-Hughes, Tom; Docherty, Kevin; Singh, Vijender

    2013-11-15

    Using high-throughput sequencing, we have mapped sequence-directed nucleosome positioning in vitro on four plasmid DNAs containing DNA fragments derived from the genomes of sheep, drosophila, human and yeast. Chromatins were prepared by reconstitution using chicken, frog and yeast core histones. We also assembled yeast chromatin in which histone H3 was replaced by the centromere-specific histone variant, Cse4. The positions occupied by recombinant frog and native chicken histones were found to be very similar. In contrast, nucleosomes containing the canonical yeast octamer or, in particular, the Cse4 octamer were assembled at distinct populations of locations, a property that was more apparent on particular genomic DNA fragments. The factors that may contribute to this variation in nucleosome positioning and the implications of the behavior are discussed.

  8. SWI/SNF- and RSC-catalyzed nucleosome mobilization requires internal DNA loop translocation within nucleosomes.

    PubMed

    Liu, Ning; Peterson, Craig L; Hayes, Jeffrey J

    2011-10-01

    The multisubunit SWI/SNF and RSC complexes utilize energy derived from ATP hydrolysis to mobilize nucleosomes and render the DNA accessible for various nuclear processes. Here we test the idea that remodeling involves intermediates with mobile DNA bulges or loops within the nucleosome by cross-linking the H2A N- or C-terminal tails together to generate protein "loops" that constrict separation of the DNA from the histone surface. Analyses indicate that this intranucleosomal cross-linking causes little or no change in remodeling-dependent exposure of DNA sequences within the nucleosome to restriction enzymes. However, cross-linking inhibits nucleosome mobilization and blocks complete movement of nucleosomes to extreme end positions on the DNA fragments. These results are consistent with evidence that nucleosome remodeling involves intermediates with DNA loops on the nucleosome surface but indicate that such loops do not freely diffuse about the surface of the histone octamer. We propose a threading model for movement of DNA loops around the perimeter of the nucleosome core.

  9. Two arginine residues suppress the flexibility of nucleosomal DNA in the canonical nucleosome core.

    PubMed

    Kono, Hidetoshi; Shirayama, Kazuyoshi; Arimura, Yasuhiro; Tachiwana, Hiroaki; Kurumizaka, Hitoshi

    2015-01-01

    The dynamics of nucleosomes containing either canonical H3 or its centromere-specific variant CENP-A were investigated using molecular dynamics simulations. The simulations showed that the histone cores were structurally stable during simulation periods of 100 ns and 50 ns, while DNA was highly flexible at the entry and exit regions and partially dissociated from the histone core. In particular, approximately 20-25 bp of DNA at the entry and exit regions of the CENP-A nucleosome exhibited larger fluctuations than DNA at the entry and exit regions of the H3 nucleosome. Our detailed analysis clarified that this difference in dynamics was attributable to a difference in two basic amino acids in the αN helix; two arginine (Arg) residues in H3 were substituted by lysine (Lys) residues at the corresponding sites in CENP-A. The difference in the ability to form hydrogen bonds with DNA of these two residues regulated the flexibility of nucleosomal DNA at the entry and exit regions. Our exonuclease III assay consistently revealed that replacement of these two Arg residues in the H3 nucleosome by Lys enhanced endonuclease susceptibility, suggesting that the DNA ends of the CENP-A nucleosome are more flexible than those of the H3 nucleosome. This difference in the dynamics between the two types of nucleosomes may be important for forming higher order structures in different phases.

  10. A role for Snf2 related nucleosome spacing enzymes in genome-wide nucleosome organization

    PubMed Central

    Gkikopoulos, Triantaffyllos; Schofield, Pieta; Singh, Vijender; Pinskaya, Marina; Mellor, Jane; Smolle, Michaela; Workman, Jerry L.; Barton, Geoffrey; Owen-Hughes, Tom

    2012-01-01

    The positioning of nucleosomes within the coding regions of eukaryotic genes is aligned with respect to transcriptional start sites. This organization is likely to influence many genetic processes, requiring access to the underlying DNA. Here we show that the combined action of Isw1 and Chd1 nucleosome spacing enzymes is required to maintain this organization. In the absence of these enzymes regular positioning of the majority of nucleosomes is lost. Exceptions include the region upstream of the promoter, the +1 nucleosome and a subset of locations distributed throughout coding regions where other factors are likely to be involved. These observations indicated that ATP-dependent remodeling enzymes are responsible for directing the positioning of the majority of nucleosomes within the Saccharomyces cerevisiae genome. PMID:21940898

  11. Intra- and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure.

    PubMed

    Pepenella, Sharon; Murphy, Kevin J; Hayes, Jeffrey J

    2014-03-01

    Eukaryotic chromatin is a hierarchical collection of nucleoprotein structures that package DNA to form chromosomes. The initial levels of packaging include folding of long strings of nucleosomes into secondary structures and array-array association into higher-order tertiary chromatin structures. The core histone tail domains are required for the assembly of higher-order structures and mediate short- and long-range intra- and inter-nucleosome interactions with both DNA and protein targets to direct their assembly. However, important details of these interactions remain unclear and are a subject of much interest and recent investigations. Here, we review work defining the interactions of the histone N-terminal tails with DNA and protein targets relevant to chromatin higher-order structures, with a specific emphasis on the contributions of H3 and H4 tails to oligonucleosome folding and stabilization. We evaluate both classic and recent experiments determining tail structures, effect of tail cleavage/loss, and posttranslational modifications of the tails on nucleosomes and nucleosome arrays, as well as inter-nucleosomal and inter-array interactions of the H3 and H4 N-terminal tails.

  12. Featuring the nucleosome surface as a therapeutic target.

    PubMed

    da Silva, Isabel Torres Gomes; de Oliveira, Paulo Sergio Lopes; Santos, Guilherme Martins

    2015-05-01

    Chromatin is the major regulator of gene expression and genome maintenance. Proteins that bind the nucleosome, the repetitive unit of chromatin, and the histone H4 tail are critical to establishing chromatin architecture and phenotypic outcomes. Intriguingly, nucleosome-binding proteins (NBPs) and the H4 tail peptide compete for the same binding site at an acidic region on the nucleosome surface. Although the essential facts about the nucleosome were revealed 17 years ago, new insights into its atomic structure and molecular mechanisms are still emerging. Several complex nucleosome:NBP structures were recently revealed, characterizing the NBP-binding sites on the nucleosome surface. Here we discuss the potential of the nucleosome surface as a therapeutic target and the impact and development of exogenous nucleosome-binding molecules (eNBMs).

  13. Dynamic regulation of transcription factors by nucleosome remodeling.

    PubMed

    Li, Ming; Hada, Arjan; Sen, Payel; Olufemi, Lola; Hall, Michael A; Smith, Benjamin Y; Forth, Scott; McKnight, Jeffrey N; Patel, Ashok; Bowman, Gregory D; Bartholomew, Blaine; Wang, Michelle D

    2015-06-05

    The chromatin landscape and promoter architecture are dominated by the interplay of nucleosome and transcription factor (TF) binding to crucial DNA sequence elements. However, it remains unclear whether nucleosomes mobilized by chromatin remodelers can influence TFs that are already present on the DNA template. In this study, we investigated the interplay between nucleosome remodeling, by either yeast ISW1a or SWI/SNF, and a bound TF. We found that a TF serves as a major barrier to ISW1a remodeling, and acts as a boundary for nucleosome repositioning. In contrast, SWI/SNF was able to slide a nucleosome past a TF, with concurrent eviction of the TF from the DNA, and the TF did not significantly impact the nucleosome positioning. Our results provide direct evidence for a novel mechanism for both nucleosome positioning regulation by bound TFs and TF regulation via dynamic repositioning of nucleosomes.

  14. Visualization and analysis of unfolded nucleosomes associated with transcribing chromatin.

    PubMed Central

    Bazett-Jones, D P; Mendez, E; Czarnota, G J; Ottensmeyer, F P; Allfrey, V G

    1996-01-01

    We have characterized the structure of transcriptionally active nucleosome subunits using electron spectroscopic imaging. Individual nucleosomes were analyzed in terms of total mass, DNA and protein content, while the ensemble of images of active nucleosomes was used to calculate a three-dimensional reconstruction. Transcriptionally active nucleosomes were separated from inactive nucleosomes by mercury-affinity chromatography thus making it possible to compare their structures. The chromatographic results combined with electron spectroscopic imaging confirm that active nucleosomes unfold to form extended U-shaped particles. Phosphorus mapping indicated that the nucleosomal DNA also underwent a conformational change consistent with particle unfolding. The three-dimensional structure of the Hg-affinity purified nucleosomes determined using quaternion-assisted angular reconstitution methods unites and resolves the different electron microscopic views of the particle and is concordant with a sulphydryl-exposing disruption of the H3-H4 tetramer. PMID:8628657

  15. Nucleosome positioning in yeasts: methods, maps, and mechanisms.

    PubMed

    Lieleg, Corinna; Krietenstein, Nils; Walker, Maria; Korber, Philipp

    2015-06-01

    Eukaryotic nuclear DNA is packaged into nucleosomes. During the past decade, genome-wide nucleosome mapping across species revealed the high degree of order in nucleosome positioning. There is a conserved stereotypical nucleosome organization around transcription start sites (TSSs) with a nucleosome-depleted region (NDR) upstream of the TSS and a TSS-aligned regular array of evenly spaced nucleosomes downstream over the gene body. As nucleosomes largely impede access to DNA and thereby provide an important level of genome regulation, it is of general interest to understand the mechanisms generating nucleosome positioning and especially the stereotypical NDR-array pattern. We focus here on the most advanced models, unicellular yeasts, and review the progress in mapping nucleosomes and which nucleosome positioning mechanisms are discussed. There are four mechanistic aspects: How are NDRs generated? How are individual nucleosomes positioned, especially those flanking the NDRs? How are nucleosomes evenly spaced leading to regular arrays? How are regular arrays aligned at TSSs? The main candidates for nucleosome positioning determinants are intrinsic DNA binding preferences of the histone octamer, specific DNA binding factors, nucleosome remodeling enzymes, transcription, and statistical positioning. We summarize the state of the art in an integrative model where nucleosomes are positioned by a combination of all these candidate determinants. We highlight the predominance of active mechanisms involving nucleosome remodeling enzymes which may be recruited by DNA binding factors and the transcription machinery. While this mechanistic framework emerged clearly during recent years, the involved factors and their mechanisms are still poorly understood and require future efforts combining in vivo and in vitro approaches.

  16. Predicting Nucleosome Positioning Using Multiple Evidence Tracks

    NASA Astrophysics Data System (ADS)

    Reynolds, Sheila M.; Weng, Zhiping; Bilmes, Jeff A.; Noble, William Stafford

    We describe a probabilistic model, implemented as a dynamic Bayesian network, that can be used to predict nucleosome positioning along a chromosome based on one or more genomic input tracks containing position-specific information (evidence). Previous models have either made predictions based on primary DNA sequence alone, or have been used to infer nucleosome positions from experimental data. Our framework permits the combination of these two distinct types of information. We show how this flexible framework can be used to make predictions based on either sequence-model scores or experimental data alone, or by using the two in combination to interpret the experimental data and fill in gaps. The model output represents the posterior probability, at each position along the chromosome, that a nucleosome core overlaps that position, given the evidence. This posterior probability is computed by integrating the information contained in the input evidence tracks along the entire input sequence, and fitting the evidence to a simple grammar of alternating nucleosome cores and linkers. In addition to providing a novel mechanism for the prediction of nucleosome positioning from arbitrary heterogeneous data sources, this framework is also applicable to other genomic segmentation tasks in which local scores are available from models or from data that can be interpreted as defining a probability assignment over labels at that position. The ability to combine sequence-based predictions and data from experimental assays is a significant and novel contribution to the ongoing research regarding the primary structure of chromatin and its effects upon gene regulation.

  17. Distal chromatin structure influences local nucleosome positions and gene expression.

    PubMed

    Jansen, An; van der Zande, Elisa; Meert, Wim; Fink, Gerald R; Verstrepen, Kevin J

    2012-05-01

    The positions of nucleosomes across the genome influence several cellular processes, including gene transcription. However, our understanding of the factors dictating where nucleosomes are located and how this affects gene regulation is still limited. Here, we perform an extensive in vivo study to investigate the influence of the neighboring chromatin structure on local nucleosome positioning and gene expression. Using truncated versions of the Saccharomyces cerevisiae URA3 gene, we show that nucleosome positions in the URA3 promoter are at least partly determined by the local DNA sequence, with so-called 'anti-nucleosomal elements' like poly(dA:dT) tracts being key determinants of nucleosome positions. In addition, we show that changes in the nucleosome positions in the URA3 promoter strongly affect the promoter activity. Most interestingly, in addition to demonstrating the effect of the local DNA sequence, our study provides novel in vivo evidence that nucleosome positions are also affected by the position of neighboring nucleosomes. Nucleosome structure may therefore be an important selective force for conservation of gene order on a chromosome, because relocating a gene to another genomic position (where the positions of neighboring nucleosomes are different from the original locus) can have dramatic consequences for the gene's nucleosome structure and thus its expression.

  18. Global nucleosome distribution and the regulation of transcription in yeast

    PubMed Central

    Ercan, Sevinc; Carrozza, Michael J; Workman, Jerry L

    2004-01-01

    Recent studies show that active regulatory regions of the yeast genome have a lower density of nucleosomes than other regions, and that there is an inverse correlation between nucleosome density and the transcription rate of a gene. This may be the result of transcription factors displacing nucleosomes. PMID:15461807

  19. Variations on a nucleosome theme: The structural basis of centromere function.

    PubMed

    Moreno-Moreno, Olga; Torras-Llort, Mònica; Azorín, Fernando

    2017-04-01

    The centromere is a specialized chromosomal structure that dictates kinetochore assembly and, thus, is essential for accurate chromosome segregation. Centromere identity is determined epigenetically by the presence of a centromere-specific histone H3 variant, CENP-A, that replaces canonical H3 in centromeric chromatin. Here, we discuss recent work by Roulland et al. that identifies structural elements of the nucleosome as essential determinants of centromere function. In particular, CENP-A nucleosomes have flexible DNA ends due to the short αN helix of CENP-A. The higher flexibility of the DNA ends of centromeric nucleosomes impairs binding of linker histones H1, while it facilitates binding of other essential centromeric proteins, such as CENP-C, and is required for mitotic fidelity. This work extends previous observations indicating that the differential structural properties of CENP-A nucleosomes are on the basis of its contribution to centromere identity and function. Here, we discuss the implications of this work and the questions arising from it.

  20. Structure-based identification of new high-affinity nucleosome binding sequences.

    PubMed

    Battistini, Federica; Hunter, Christopher A; Moore, Irene K; Widom, Jonathan

    2012-06-29

    The substrate for the proteins that express genetic information in the cell is not naked DNA but an assembly of nucleosomes, where the DNA is wrapped around histone proteins. The organization of these nucleosomes on genomic DNA is influenced by the DNA sequence. Here, we present a structure-based computational approach that translates sequence information into the energy required to bend DNA into a nucleosome-bound conformation. The calculations establish the relationship between DNA sequence and histone octamer binding affinity. In silico selection using this model identified several new DNA sequences, which were experimentally found to have histone octamer affinities comparable to the highest-affinity sequences known. The results provide insights into the molecular mechanism through which DNA sequence information encodes its organization. A quantitative appreciation of the thermodynamics of nucleosome positioning and rearrangement will be one of the key factors in understanding the regulation of transcription and in the design of new promoter architectures for the purposes of tuning gene expression dynamics.

  1. A Simple Model of Nucleosome Localization

    NASA Astrophysics Data System (ADS)

    Schwab, David; Bruinsma, Robijn

    2007-03-01

    It has recently been shown that nucleosomes localize to preferred locations along DNA. This localization is a result of the sequence dependent bending stiffness of dsDNA, which must be wrapped around a histone protein to form a nucleosome. As a simple model of nucleosome localization, we study a one-dimensional hard-core gas in a random potential. We numerically solve for the density profile and other thermodynamic quantities using as input both randomly generated potential profiles and experimental energy landscapes. We compare with the annealed average, inspired by the Random Energy Model, and find that the quenched and annealed averages differ significantly above the localization temperature, implying sequence induced structural organization long before the system has frozen. Although information about the ground state is preserved at higher temperatures, there exist massive structural reorganizations at fixed temperature when the chemical potential is lowered. This offers another perspective on why different cells, with different chemical potentials, have different gene expression.

  2. Dynamics and function of compact nucleosome arrays.

    PubMed

    Poirier, Michael G; Oh, Eugene; Tims, Hannah S; Widom, Jonathan

    2009-09-01

    The packaging of eukaryotic DNA into chromatin sterically occludes polymerases, recombinases and repair enzymes. How chromatin structure changes to allow their actions is unknown. We constructed defined fluorescently labeled trinucleosome arrays, allowing analysis of chromatin conformational dynamics via fluorescence resonance energy transfer (FRET). The arrays undergo reversible Mg2+-dependent folding similar to that of longer arrays studied previously. We define two intermediate conformational states in the reversible folding of the nucleosome arrays and characterize the microscopic rate constants. Nucleosome arrays are highly dynamic even when compact, undergoing conformational fluctuations on timescales in the second to microsecond range. Compact states of the arrays allow binding to DNA within the central nucleosome via site exposure. Protein binding can also drive decompaction of the arrays. Thus, our results reveal multiple modes by which spontaneous chromatin fiber dynamics allow for the invasion and action of DNA-processing protein complexes.

  3. Histone variants and chromatin assembly in plant abiotic stress responses.

    PubMed

    Zhu, Yan; Dong, Aiwu; Shen, Wen-Hui

    2013-01-01

    Genome organization into nucleosomes and higher-order chromatin structures has profound implications for the regulation of gene expression, DNA replication and repair. The structure of chromatin can be remodeled by several mechanisms; among others, nucleosome assembly/disassembly and replacement of canonical histones with histone variants constitute important ones. In this review, we provide a brief description on the current knowledge about histone chaperones involved in nucleosome assembly/disassembly and histone variants in Arabidopsis thaliana. We discuss recent advances in revealing crucial functions of histone chaperones, nucleosome assembly/disassembly and histone variants in plant response to abiotic stresses. It appears that chromatin structure remodeling may provide a flexible, global and stable means for the regulation of gene transcription to help plants more effectively cope with environmental stresses. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.

  4. Nucleosome structure in chromatin from heated cells

    SciTech Connect

    Warters, R.L.; Roti Roti, J.L.; Winward, R.T.

    1980-12-01

    The effect of hyperthermia (40 to 80/sup 0/C) on the nucleosome structure of mammalian chromatin was determined using the enzyme micrococcal nuclease. At equivalent fractional DNA digestion it was found that neither the size of DNA nor the total fraction of cellular DNA associated with nucleosome structure is altered by heat exposure up to 48/sup 0/C for 30 min. It is proposed that this heat-induced reduction in the accessibility to nuclease attack of DNA in chromatin from heated cells is due to the increased protein mass associated with chromatin.

  5. Histone chaperones: assisting histone traffic and nucleosome dynamics.

    PubMed

    Gurard-Levin, Zachary A; Quivy, Jean-Pierre; Almouzni, Geneviève

    2014-01-01

    The functional organization of eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. Histone chaperones, which are proteins that escort histones throughout their cellular life, are key actors in all facets of histone metabolism; they regulate the supply and dynamics of histones at chromatin for its assembly and disassembly. Histone chaperones can also participate in the distribution of histone variants, thereby defining distinct chromatin landscapes of importance for genome function, stability, and cell identity. Here, we discuss our current knowledge of the known histone chaperones and their histone partners, focusing on histone H3 and its variants. We then place them into an escort network that distributes these histones in various deposition pathways. Through their distinct interfaces, we show how they affect dynamics during DNA replication, DNA damage, and transcription, and how they maintain genome integrity. Finally, we discuss the importance of histone chaperones during development and describe how misregulation of the histone flow can link to disease.

  6. Nucleosomes Inhibit Cas9 Endonuclease Activity in Vitro.

    PubMed

    Hinz, John M; Laughery, Marian F; Wyrick, John J

    2015-12-08

    During Cas9 genome editing in eukaryotic cells, the bacterial Cas9 enzyme cleaves DNA targets within chromatin. To understand how chromatin affects Cas9 targeting, we characterized Cas9 activity on nucleosome substrates in vitro. We find that Cas9 endonuclease activity is strongly inhibited when its target site is located within the nucleosome core. In contrast, the nucleosome structure does not affect Cas9 activity at a target site within the adjacent linker DNA. Analysis of target sites that partially overlap with the nucleosome edge indicates that the accessibility of the protospacer-adjacent motif (PAM) is the critical determinant of Cas9 activity on a nucleosome.

  7. Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites.

    PubMed

    Möbius, Wolfram; Gerland, Ulrich

    2010-08-19

    The positions of nucleosomes in eukaryotic genomes determine which parts of the DNA sequence are readily accessible for regulatory proteins and which are not. Genome-wide maps of nucleosome positions have revealed a salient pattern around transcription start sites, involving a nucleosome-free region (NFR) flanked by a pronounced periodic pattern in the average nucleosome density. While the periodic pattern clearly reflects well-positioned nucleosomes, the positioning mechanism is less clear. A recent experimental study by Mavrich et al. argued that the pattern observed in Saccharomyces cerevisiae is qualitatively consistent with a "barrier nucleosome model," in which the oscillatory pattern is created by the statistical positioning mechanism of Kornberg and Stryer. On the other hand, there is clear evidence for intrinsic sequence preferences of nucleosomes, and it is unclear to what extent these sequence preferences affect the observed pattern. To test the barrier nucleosome model, we quantitatively analyze yeast nucleosome positioning data both up- and downstream from NFRs. Our analysis is based on the Tonks model of statistical physics which quantifies the interplay between the excluded-volume interaction of nucleosomes and their positional entropy. We find that although the typical patterns on the two sides of the NFR are different, they are both quantitatively described by the same physical model with the same parameters, but different boundary conditions. The inferred boundary conditions suggest that the first nucleosome downstream from the NFR (the +1 nucleosome) is typically directly positioned while the first nucleosome upstream is statistically positioned via a nucleosome-repelling DNA region. These boundary conditions, which can be locally encoded into the genome sequence, significantly shape the statistical distribution of nucleosomes over a range of up to approximately 1,000 bp to each side.

  8. Nucleosome acetylation sequencing to study the establishment of chromatin acetylation.

    PubMed

    Mittal, Chitvan; Blacketer, Melissa J; Shogren-Knaak, Michael A

    2014-07-15

    The establishment of posttranslational chromatin modifications is a major mechanism for regulating how genomic DNA is utilized. However, current in vitro chromatin assays do not monitor histone modifications at individual nucleosomes. Here we describe a strategy, nucleosome acetylation sequencing, that allows us to read the amount of modification at each nucleosome. In this approach, a bead-bound trinucleosome substrate is enzymatically acetylated with radiolabeled acetyl CoA by the SAGA complex from Saccharomyces cerevisae. The product is digested by restriction enzymes that cut at unique sites between the nucleosomes and then counted to quantify the extent of acetylation at each nucleosomal site. We find that we can sensitively, specifically, and reproducibly follow enzyme-mediated nucleosome acetylation. Applying this strategy, when acetylation proceeds extensively, its distribution across nucleosomes is relatively uniform. However, when substrates are used that contain nucleosomes mutated at the major sites of SAGA-mediated acetylation, or that are studied under initial rate conditions, changes in the acetylation distribution can be observed. Nucleosome acetylation sequencing should be applicable to analyzing a wide range of modifications. Additionally, because our trinucleosomes synthesis strategy is highly modular and efficient, it can be used to generate nucleosomal systems in which nucleosome composition differs across the array.

  9. Probing Nucleosome Stability with a DNA Origami Nanocaliper.

    PubMed

    Le, Jenny V; Luo, Yi; Darcy, Michael A; Lucas, Christopher R; Goodwin, Michelle F; Poirier, Michael G; Castro, Carlos E

    2016-07-26

    The organization of eukaryotic DNA into nucleosomes and chromatin undergoes dynamic structural changes to regulate genome processing, including transcription and DNA repair. Critical chromatin rearrangements occur over a wide range of distances, including the mesoscopic length scale of tens of nanometers. However, there is a lack of methodologies that probe changes over this mesoscopic length scale within chromatin. We have designed, constructed, and implemented a DNA-based nanocaliper that probes this mesoscopic length scale. We developed an approach of integrating nucleosomes into our nanocaliper at two attachment points with over 50% efficiency. Here, we focused on attaching the two DNA ends of the nucleosome to the ends of the two nanocaliper arms, so the hinge angle is a readout of the nucleosome end-to-end distance. We demonstrate that nucleosomes integrated with 6, 26, and 51 bp linker DNA are partially unwrapped by the nanocaliper by an amount consistent with previously observed structural transitions. In contrast, the nucleosomes integrated with the longer 75 bp linker DNA remain fully wrapped. We found that the nanocaliper angle is a sensitive measure of nucleosome disassembly and can read out transcription factor (TF) binding to its target site within the nucleosome. Interestingly, the nanocaliper not only detects TF binding but also significantly increases the probability of TF occupancy at its site by partially unwrapping the nucleosome. These studies demonstrate the feasibility of using DNA nanotechnology to both detect and manipulate nucleosome structure, which provides a foundation of future mesoscale studies of nucleosome and chromatin structural dynamics.

  10. Structure and function of human histone H3.Y nucleosome

    PubMed Central

    Kujirai, Tomoya; Horikoshi, Naoki; Sato, Koichi; Maehara, Kazumitsu; Machida, Shinichi; Osakabe, Akihisa; Kimura, Hiroshi; Ohkawa, Yasuyuki; Kurumizaka, Hitoshi

    2016-01-01

    Histone H3.Y is a primate-specific, distant H3 variant. It is evolutionarily derived from H3.3, and may function in transcription regulation. However, the mechanism by which H3.Y regulates transcription has not been elucidated. In the present study, we determined the crystal structure of the H3.Y nucleosome, and found that many H3.Y-specific residues are located on the entry/exit sites of the nucleosome. Biochemical analyses revealed that the DNA ends of the H3.Y nucleosome were more flexible than those of the H3.3 nucleosome, although the H3.Y nucleosome was stable in vitro and in vivo. Interestingly, the linker histone H1, which compacts nucleosomal DNA, appears to bind to the H3.Y nucleosome less efficiently, as compared to the H3.3 nucleosome. These characteristics of the H3.Y nucleosome are also conserved in the H3.Y/H3.3 heterotypic nucleosome, which may be the predominant form in cells. In human cells, H3.Y preferentially accumulated around transcription start sites (TSSs). Taken together, H3.Y-containing nucleosomes around transcription start sites may form relaxed chromatin that allows transcription factor access, to regulate the transcription status of specific genes. PMID:27016736

  11. The effect of micrococcal nuclease digestion on nucleosome positioning data.

    PubMed

    Chung, Ho-Ryun; Dunkel, Ilona; Heise, Franziska; Linke, Christian; Krobitsch, Sylvia; Ehrenhofer-Murray, Ann E; Sperling, Silke R; Vingron, Martin

    2010-12-29

    Eukaryotic genomes are packed into chromatin, whose basic repeating unit is the nucleosome. Nucleosome positioning is a widely researched area. A common experimental procedure to determine nucleosome positions involves the use of micrococcal nuclease (MNase). Here, we show that the cutting preference of MNase in combination with size selection generates a sequence-dependent bias in the resulting fragments. This strongly affects nucleosome positioning data and especially sequence-dependent models for nucleosome positioning. As a consequence we see a need to re-evaluate whether the DNA sequence is a major determinant of nucleosome positioning in vivo. More generally, our results show that data generated after MNase digestion of chromatin requires a matched control experiment in order to determine nucleosome positions.

  12. Plasmodium falciparum Nucleosomes Exhibit Reduced Stability and Lost Sequence Dependent Nucleosome Positioning.

    PubMed

    Silberhorn, Elisabeth; Schwartz, Uwe; Löffler, Patrick; Schmitz, Samuel; Symelka, Anne; de Koning-Ward, Tania; Merkl, Rainer; Längst, Gernot

    2016-12-01

    The packaging and organization of genomic DNA into chromatin represents an additional regulatory layer of gene expression, with specific nucleosome positions that restrict the accessibility of regulatory DNA elements. The mechanisms that position nucleosomes in vivo are thought to depend on the biophysical properties of the histones, sequence patterns, like phased di-nucleotide repeats and the architecture of the histone octamer that folds DNA in 1.65 tight turns. Comparative studies of human and P. falciparum histones reveal that the latter have a strongly reduced ability to recognize internal sequence dependent nucleosome positioning signals. In contrast, the nucleosomes are positioned by AT-repeat sequences flanking nucleosomes in vivo and in vitro. Further, the strong sequence variations in the plasmodium histones, compared to other mammalian histones, do not present adaptations to its AT-rich genome. Human and parasite histones bind with higher affinity to GC-rich DNA and with lower affinity to AT-rich DNA. However, the plasmodium nucleosomes are overall less stable, with increased temperature induced mobility, decreased salt stability of the histones H2A and H2B and considerable reduced binding affinity to GC-rich DNA, as compared with the human nucleosomes. In addition, we show that plasmodium histone octamers form the shortest known nucleosome repeat length (155bp) in vitro and in vivo. Our data suggest that the biochemical properties of the parasite histones are distinct from the typical characteristics of other eukaryotic histones and these properties reflect the increased accessibility of the P. falciparum genome.

  13. Plasmodium falciparum Nucleosomes Exhibit Reduced Stability and Lost Sequence Dependent Nucleosome Positioning

    PubMed Central

    Silberhorn, Elisabeth; Schwartz, Uwe; Symelka, Anne; de Koning-Ward, Tania; Längst, Gernot

    2016-01-01

    The packaging and organization of genomic DNA into chromatin represents an additional regulatory layer of gene expression, with specific nucleosome positions that restrict the accessibility of regulatory DNA elements. The mechanisms that position nucleosomes in vivo are thought to depend on the biophysical properties of the histones, sequence patterns, like phased di-nucleotide repeats and the architecture of the histone octamer that folds DNA in 1.65 tight turns. Comparative studies of human and P. falciparum histones reveal that the latter have a strongly reduced ability to recognize internal sequence dependent nucleosome positioning signals. In contrast, the nucleosomes are positioned by AT-repeat sequences flanking nucleosomes in vivo and in vitro. Further, the strong sequence variations in the plasmodium histones, compared to other mammalian histones, do not present adaptations to its AT-rich genome. Human and parasite histones bind with higher affinity to GC-rich DNA and with lower affinity to AT-rich DNA. However, the plasmodium nucleosomes are overall less stable, with increased temperature induced mobility, decreased salt stability of the histones H2A and H2B and considerable reduced binding affinity to GC-rich DNA, as compared with the human nucleosomes. In addition, we show that plasmodium histone octamers form the shortest known nucleosome repeat length (155bp) in vitro and in vivo. Our data suggest that the biochemical properties of the parasite histones are distinct from the typical characteristics of other eukaryotic histones and these properties reflect the increased accessibility of the P. falciparum genome. PMID:28033404

  14. Dynamic nucleosome organization at hox promoters during zebrafish embryogenesis.

    PubMed

    Weicksel, Steven E; Xu, Jia; Sagerström, Charles G

    2013-01-01

    Nucleosome organization at promoter regions plays an important role in regulating gene activity. Genome-wide studies in yeast, flies, worms, mammalian embryonic stem cells and transformed cell lines have found well-positioned nucleosomes flanking a nucleosome depleted region (NDR) at transcription start sites. This nucleosome arrangement depends on DNA sequence (cis-elements) as well as DNA binding factors and ATP-dependent chromatin modifiers (trans-factors). However, little is understood about how the nascent embryonic genome positions nucleosomes during development. This is particularly intriguing since the embryonic genome must undergo a broad reprogramming event upon fusion of sperm and oocyte. Using four stages of early embryonic zebrafish development, we map nucleosome positions at the promoter region of 37 zebrafish hox genes. We find that nucleosome arrangement at the hox promoters is a progressive process that takes place over several stages. At stages immediately after fertilization, nucleosomes appear to be largely disordered at hox promoter regions. At stages after activation of the embryonic genome, nucleosomes are detectable at hox promoters, with positions becoming more uniform and more highly occupied. Since the genomic sequence is invariant during embryogenesis, this progressive change in nucleosome arrangement suggests that trans-factors play an important role in organizing nucleosomes during embryogenesis. Separating hox genes into expressed and non-expressed groups shows that expressed promoters have better positioned and occupied nucleosomes, as well as distinct NDRs, than non-expressed promoters. Finally, by blocking the retinoic acid-signaling pathway, we disrupt early hox gene transcription, but observe no effect on nucleosome positions, suggesting that active hox transcription is not a driving force behind the arrangement of nucleosomes at the promoters of hox genes during early development.

  15. Stabilization of the promoter nucleosomes in nucleosome-free regions by the yeast Cyc8-Tup1 corepressor.

    PubMed

    Chen, Kaifu; Wilson, Marenda A; Hirsch, Calley; Watson, Anjanette; Liang, Shoudan; Lu, Yue; Li, Wei; Dent, Sharon Y R

    2013-02-01

    The yeast Cyc8 (also known as Ssn6)-Tup1 complex regulates gene expression through a variety of mechanisms, including positioning of nucleosomes over promoters of some target genes to limit accessibility to the transcription machinery. To further define the functions of Cyc8-Tup1 in gene regulation and chromatin remodeling, we performed genome-wide profiling of changes in nucleosome organization and gene expression that occur upon loss of CYC8 or TUP1 and observed extensive nucleosome alterations in both promoters and gene bodies of derepressed genes. Our improved nucleosome profiling and analysis approaches revealed low-occupancy promoter nucleosomes (P nucleosomes) at locations previously defined as nucleosome-free regions. In the absence of CYC8 or TUP1, this P nucleosome is frequently lost, whereas nucleosomes are gained at -1 and +1 positions, accompanying up-regulation of downstream genes. Our analysis of public ChIP-seq data revealed that Cyc8 and Tup1 preferentially bind TATA-containing promoters, which are also enriched in genes derepressed upon loss of CYC8 or TUP1. These results suggest that stabilization of the P nucleosome on TATA-containing promoters may be a central feature of the repressive chromatin architecture created by the Cyc8-Tup1 corepressor, and that releasing the P nucleosome contributes to gene activation.

  16. Chromatin remodeling: nucleosomes bulging at the seams.

    PubMed

    Peterson, Craig L

    2002-04-02

    ATP-dependent chromatin remodeling enzymes, such as SWI/SNF, hydrolyze thousands of ATPs to regulate gene expression on chromatin fibers. Recent mechanistic studies suggest that these enzymes generate localized changes in DNA topology that drive formation of multiple, remodeled nucleosomal states.

  17. Prediction of nucleosome DNA formation potential and nucleosome positioning using increment of diversity combined with quadratic discriminant analysis.

    PubMed

    Zhao, Xiujuan; Pei, Zhiyong; Liu, Jia; Qin, Sheng; Cai, Lu

    2010-11-01

    In this work, a novel method was developed to distinguish nucleosome DNA and linker DNA based on increment of diversity combined with quadratic discriminant analysis (IDQD), using k-mer frequency of nucleotides in genome. When used to predict DNA potential for forming nucleosomes, the model achieved a high accuracy of 94.94%, 77.60%, and 86.81%, respectively, for Saccharomyces cerevisiae, Homo sapiens, and Drosophila melanogaster. The area under the receiver operator characteristics curve of our classifier was 0.982 for S. cerevisiae. Our results indicate that DNA sequence preference is critical for nucleosome formation potential and is likely conserved across eukaryotes. The model successfully identified nucleosome-enriched or nucleosome-depleted regions in S. cerevisiae genome, suggesting nucleosome positioning depends on DNA sequence preference. Thus, IDQD classifier is useful for predicting nucleosome positioning.

  18. Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information.

    PubMed

    Corpet, Armelle; Almouzni, Geneviève

    2009-01-01

    Understanding the basic mechanisms underlying chromatin dynamics during DNA replication in eukaryotic cells is of fundamental importance. Beyond DNA compaction, chromatin organization represents a means to regulate genome function. Thus, the inheritance and maintenance of the DNA sequence, along with its organization into chromatin, is central for eukaryotic life. To orchestrate DNA replication in the context of chromatin is a challenge, both in terms of accessibility to the compact structures and maintenance of chromatin organization. To meet the challenge of maintenance, cells have evolved efficient nucleosome dynamics involving assembly pathways and chromatin maturation mechanisms that restore chromatin organization in the wake of DNA replication. In this review, we describe our current knowledge concerning how these pathways operate at the nucleosomal level and highlight the key players, such as histone chaperones, chromatin remodelers or modifiers, involved in the process of chromatin duplication. Major advances have been made recently concerning de novo nucleosome assembly and our understanding of its coordination with recycling of parental histones is progressing. Insights into the transmission of chromatin-based information during replication have important implications in the field of epigenetics to fully comprehend how the epigenetic landscape might, or at times might not, be stably maintained in the face of dramatic changes in chromatin structure.

  19. Asymmetric nucleosomes flank promoters in the budding yeast genome.

    PubMed

    Ramachandran, Srinivas; Zentner, Gabriel E; Henikoff, Steven

    2015-03-01

    Nucleosomes in active chromatin are dynamic, but whether they have distinct structural conformations is unknown. To identify nucleosomes with alternative structures genome-wide, we used H4S47C-anchored cleavage mapping, which revealed that 5% of budding yeast (Saccharomyces cerevisiae) nucleosome positions have asymmetric histone-DNA interactions. These asymmetric interactions are enriched at nucleosome positions that flank promoters. Micrococcal nuclease (MNase) sequence-based profiles of asymmetric nucleosome positions revealed a corresponding asymmetry in MNase protection near the dyad axis, suggesting that the loss of DNA contacts around H4S47 is accompanied by protection of the DNA from MNase. Chromatin immunoprecipitation mapping of selected nucleosome remodelers indicated that asymmetric nucleosomes are bound by the RSC chromatin remodeling complex, which is required for maintaining nucleosomes at asymmetric positions. These results imply that the asymmetric nucleosome-RSC complex is a metastable intermediate representing partial unwrapping and protection of nucleosomal DNA on one side of the dyad axis during chromatin remodeling.

  20. Quantifying the role of steric constraints in nucleosome positioning.

    PubMed

    Rube, H Tomas; Song, Jun S

    2014-02-01

    Statistical positioning, the localization of nucleosomes packed against a fixed barrier, is conjectured to explain the array of well-positioned nucleosomes at the 5' end of genes, but the extent and precise implications of statistical positioning in vivo are unclear. We examine this hypothesis quantitatively and generalize the idea to include moving barriers as well as nucleosomes actively packed against a barrier. Early experiments noted a similarity between the nucleosome profile aligned and averaged across genes and that predicted by statistical positioning; however, we demonstrate that aligning random nucleosomes also generates the same profile, calling the previous interpretation into question. New rigorous results reformulate statistical positioning as predictions on the variance structure of nucleosome locations in individual genes. In particular, a quantity termed the variance gradient, describing the change in variance between adjacent nucleosomes, is tested against recent high-throughput nucleosome sequencing data. Constant variance gradients provide support for generalized statistical positioning in ∼ 50% of long genes. Genes that deviate from predictions have high nucleosome turnover and cell-to-cell gene expression variability. The observed variance gradient suggests an effective nucleosome size of 158 bp, instead of the commonly perceived 147 bp. Our analyses thus clarify the role of statistical positioning in vivo.

  1. Nanoscale Nucleosome Dynamics Assessed with Time-lapse AFM

    PubMed Central

    Lyubchenko, Yuri L.

    2013-01-01

    A fundamental challenge associated with chromosomal gene regulation is accessibility of DNA within nucleosomes. Recent studies performed by various techniques, including single-molecule approaches, led to the realization that nucleosomes are dynamic structures rather than static systems, as it was once believed. Direct data is required in order to understand the dynamics of nucleosomes more clearly and answer fundamental questions, including: What is the range of nucleosome dynamics? Does a non-ATP dependent unwrapping process of nucleosomes exist? What are the factors facilitating the large scale opening and unwrapping of nucleosomes? This review summarizes the results of nucleosome dynamics obtained with time-lapse AFM, including a high-speed version (HS-AFM) capable of visualizing molecular dynamics on the millisecond time scale. With HS-AFM, the dynamics of nucleosomes at a sub-second time scale was observed allowing one to visualize various pathways of nucleosome dynamics, such as sliding and unwrapping, including complete dissociation. Overall, these findings reveal new insights into the dynamics of nucleosomes and the novel mechanisms controlling spontaneous chromatin dynamics. PMID:24839467

  2. DNA bending potentials for loop-mediated nucleosome repositioning

    SciTech Connect

    Langowski, Jorg

    2012-01-01

    Nucleosome repositioning is a fundamental process in gene function. DNA elasticity is a key element of loop-mediated nucleosome repositioning. Two analytical models for DNA elasticity have been proposed: the linear sub-elastic chain (SEC), which allows DNA kinking, and the worm-like chain (WLC), with a harmonic bending potential. In vitro studies have shown that nucleosomes reposition in a discontiguous manner on a segment of DNA and this has also been found in ground-state calculations with the WLC analytical model. Here we study using Monte Carlo simulation the dynamics of DNA loop-mediated nucleosome repositioning at physiological temperatures using the SEC and WLC potentials. At thermal energies both models predict nearest-neighbor repositioning of nucleosomes on DNA, in contrast to the repositioning in jumps observed in experiments. This suggests a crucial role of DNA sequence in nucleosome repositioning.

  3. Universal full-length nucleosome mapping sequence probe.

    PubMed

    Tripathi, Vijay; Salih, Bilal; Trifonov, Edward N

    2015-01-01

    For the computational sequence-directed mapping of the nucleosomes, the knowledge of the nucleosome positioning motifs - 10-11 base long sequences - and respective matrices of bendability, is not sufficient, since there is no justified way to fuse these motifs in one continuous nucleosome DNA sequence. Discovery of the strong nucleosome (SN) DNA sequences, with visible sequence periodicity allows derivation of the full-length nucleosome DNA bendability pattern as matrix or consensus sequence. The SN sequences of three species (A. thaliana, C. elegans, and H. sapiens) are aligned (512 sequences for each species), and long (115 dinucleotides) matrices of bendability derived for the species. The matrices have strong common property - alternation of runs of purine-purine (RR) and pyrimidine-pyrimidine (YY) dinucleotides, with average period 10.4 bases. On this basis the universal [R,Y] consensus of the nucleosome DNA sequence is derived, with exactly defined positions of respective penta- and hexamers RRRRR, RRRRRR, YYYYY, and YYYYYY.

  4. Nucleosomes suppress spontaneous mutations base-specifically in eukaryotes.

    PubMed

    Chen, Xiaoshu; Chen, Zhidong; Chen, Han; Su, Zhijian; Yang, Jianfeng; Lin, Fangqin; Shi, Suhua; He, Xionglei

    2012-03-09

    It is unknown how the composition and structure of DNA within the cell affect spontaneous mutations. Theory suggests that in eukaryotic genomes, nucleosomal DNA undergoes fewer C→T mutations because of suppressed cytosine hydrolytic deamination relative to nucleosome-depleted DNA. Comparative genomic analyses and a mutation accumulation experiment showed that nucleosome occupancy nearly eliminated cytosine deamination, resulting in an ~50% decrease of the C→T mutation rate in nucleosomal DNA. Furthermore, the rates of G→T and A→T mutations were also about twofold suppressed by nucleosomes. On the basis of these results, we conclude that nucleosome-dependent mutation spectra affect eukaryotic genome structure and evolution and may have implications for understanding the origin of mutations in cancers and in induced pluripotent stem cells.

  5. Scanning force microscopy reveals ellipsoid shape of chicken erythrocyte nucleosomes.

    PubMed Central

    Fritzsche, W; Henderson, E

    1996-01-01

    Scanning force microscopy was used to investigate the conformation of hypotonic spread chicken erythrocyte nucleosomes. Nucleosomal chains were prepared in low-salt conditions and fixed before centrifugation onto glass coverslips and air drying. The images of single nucleosomes were isolated by image processing, and the height and geometry of the resulting three-dimensional structures were investigated. An average nucleosome height of 4.2 +/- 1.1 nm was determined. A virtual cross section at half-maximum height of the nucleosome structure was used for a characterization of the nucleosome geometry. The shape of this cross section was best described by an ellipse with an aspect ratio (major/minor axis) of approximately 1.30. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:8889198

  6. MNase titration reveals differences between nucleosome occupancy and chromatin accessibility

    PubMed Central

    Mieczkowski, Jakub; Cook, April; Bowman, Sarah K.; Mueller, Britta; Alver, Burak H.; Kundu, Sharmistha; Deaton, Aimee M.; Urban, Jennifer A.; Larschan, Erica; Park, Peter J.; Kingston, Robert E.; Tolstorukov, Michael Y.

    2016-01-01

    Chromatin accessibility plays a fundamental role in gene regulation. Nucleosome placement, usually measured by quantifying protection of DNA from enzymatic digestion, can regulate accessibility. We introduce a metric that uses micrococcal nuclease (MNase) digestion in a novel manner to measure chromatin accessibility by combining information from several digests of increasing depths. This metric, MACC (MNase accessibility), quantifies the inherent heterogeneity of nucleosome accessibility in which some nucleosomes are seen preferentially at high MNase and some at low MNase. MACC interrogates each genomic locus, measuring both nucleosome location and accessibility in the same assay. MACC can be performed either with or without a histone immunoprecipitation step, and thereby compares histone and non-histone protection. We find that changes in accessibility at enhancers, promoters and other regulatory regions do not correlate with changes in nucleosome occupancy. Moreover, high nucleosome occupancy does not necessarily preclude high accessibility, which reveals novel principles of chromatin regulation. PMID:27151365

  7. SWR-C and INO80 chromatin remodelers recognize nucleosome-free regions near +1 nucleosomes.

    PubMed

    Yen, Kuangyu; Vinayachandran, Vinesh; Pugh, B Franklin

    2013-09-12

    SWR-C/SWR1 and INO80 are multisubunit complexes that catalyze the deposition and removal, respectively, of histone variant H2A.Z from the first nucleosome at the start of genes. How they target and engage these +1 nucleosomes is unclear. Using ChIP-exo, we identified the subnucleosomal placement of 20 of their subunits across the yeast genome. The Swc2 subunit of SWR-C bound a narrowly defined region in the adjacent nucleosome-free region (NFR), where it positioned the Swr1 subunit over one of two sites of H2A.Z deposition at +1. The genomic binding maps suggest that many subunits have a rather plastic organization that allows subunits to exchange between the two complexes. One outcome of promoting H2A/H2A.Z exchange was an enhanced turnover of entire nucleosomes, thereby creating dynamic chromatin at the start of genes. Our findings provide unifying concepts on how these two opposing chromatin remodeling complexes function selectively at the +1 nucleosome of nearly all genes.

  8. Elastic Correlations in Nucleosomal DNA Structure

    NASA Astrophysics Data System (ADS)

    Mohammad-Rafiee, Farshid; Golestanian, Ramin

    2005-06-01

    The structure of DNA in the nucleosome core particle is studied using an elastic model that incorporates anisotropy in the bending energetics and twist-bend coupling. Using the experimentally determined structure of nucleosomal DNA [T. J. Richmond and C. A. Davey, Nature (London), NATUAS, 0028-0836 423, 145 (2003), 10.1038/nature01595], it is shown that elastic correlations exist between twist, roll, tilt, and stretching of DNA, as well as the distance between phosphate groups. The twist-bend coupling term is shown to be able to capture these correlations to a large extent, and a fit to the experimental data yields a new estimate of G=25 nm for the value of the twist-bend coupling constant.

  9. Interaction of influenza virus proteins with nucleosomes

    SciTech Connect

    Garcia-Robles, Inmaculada; Akarsu, Hatice; Mueller, Christoph W.; Ruigrok, Rob W.H.; Baudin, Florence . E-mail: baudin@embl-grenoble.fr

    2005-02-05

    During influenza virus infection, transcription and replication of the viral RNA take place in the cell nucleus. Directly after entry in the nucleus the viral ribonucleoproteins (RNPs, the viral subunits containing vRNA, nucleoprotein and the viral polymerase) are tightly associated with the nuclear matrix. Here, we have analysed the binding of RNPs, M1 and NS2/NEP proteins to purified nucleosomes, reconstituted histone octamers and purified single histones. RNPs and M1 both bind to the chromatin components but at two different sites, RNP to the histone tails and M1 to the globular domain of the histone octamer. NS2/NEP did not bind to nucleosomes at all. The possible consequences of these findings for nuclear release of newly made RNPs and for other processes during the infection cycle are discussed.

  10. "Anticipated" nucleosome positioning pattern in prokaryotes.

    PubMed

    Rapoport, Alexandra E; Trifonov, Edward N

    2011-11-15

    Linguistic (word count) analysis of prokaryotic genome sequences, by Shannon N-gram extension, reveals that the dominant hidden motifs in A+T rich genomes are T(A)(T)A and G(A)(T)C with uncertain number of repeating A and T. Since prokaryotic sequences are largely protein-coding, the motifs would correspond to amphipathic alpha-helices with alternating lysine and phenylalanine as preferential polar and non-polar residues. The motifs are also known in eukaryotes, as nucleosome positioning patterns. Their existence in prokaryotes as well may serve for binding of histone-like proteins to DNA. In this case the above patterns in prokaryotes may be considered as "anticipated" nucleosome positioning patterns which, quite likely, existed in prokaryotic genomes before the evolutionary separation between eukaryotes and prokaryotes.

  11. A positioned +1 nucleosome enhances promoter-proximal pausing.

    PubMed

    Jimeno-González, Silvia; Ceballos-Chávez, María; Reyes, José C

    2015-03-31

    Chromatin distribution is not uniform along the human genome. In most genes there is a promoter-associated nucleosome free region (NFR) followed by an array of nucleosomes towards the gene body in which the first (+1) nucleosome is strongly positioned. The function of this characteristic chromatin distribution in transcription is not fully understood. Here we show in vivo that the +1 nucleosome plays a role in modulating RNA polymerase II (RNAPII) promoter-proximal pausing. When a +1 nucleosome is strongly positioned, elongating RNAPII has a tendency to stall at the promoter-proximal region, recruits more negative elongation factor (NELF) and produces less mRNA. The nucleosome-induced pause favors pre-mRNA quality control by promoting the addition of the cap to the nascent RNA. Moreover, the uncapped RNAs produced in the absence of a positioned nucleosome are degraded by the 5'-3' exonuclease XRN2. Interestingly, reducing the levels of the chromatin remodeler ISWI factor SNF2H decreases +1 nucleosome positioning and increases RNAPII pause release. This work demonstrates a function for +1 nucleosome in regulation of transcription elongation, pre-mRNA processing and gene expression.

  12. The effect of DNA supercoiling on nucleosome structure and stability.

    PubMed

    Elbel, Tabea; Langowski, Jörg

    2015-02-18

    Nucleosomes have to open to allow access to DNA in transcription, replication, and DNA damage repair. Changes in DNA torsional strain (e.g. during transcription elongation) influence the accessibility of nucleosomal DNA. Here we investigated the effect of DNA supercoiling-induced torsional strain on nucleosome structure and stability by scanning force microscopy (SFM) and fluorescence correlation spectroscopy (FCS). Nucleosomes were reconstituted onto 2.7 kb DNA plasmids with varying superhelical densities. The SFM results show a clear dependence of the amount of DNA wrapped around the nucleosome core on the strength and type of supercoiling. Negative supercoiling led to smaller nucleosome opening angles as compared to relaxed or positively supercoiled DNA. FCS experiments show that nucleosomes reconstituted on negatively superhelical DNA are more resistant to salt-induced destabilization, as seen by reduced H2A-H2B dimer eviction from the nucleosome. Our results show that changes in DNA topology, e.g. during transcription elongation, affect the accessibility of nucleosomal DNA.

  13. Unwrapping of Nucleosomal DNA Ends: A Multiscale Molecular Dynamics Study

    PubMed Central

    Voltz, Karine; Trylska, Joanna; Calimet, Nicolas; Smith, Jeremy C.; Langowski, Jörg

    2012-01-01

    To permit access to DNA-binding proteins involved in the control and expression of the genome, the nucleosome undergoes structural remodeling including unwrapping of nucleosomal DNA segments from the nucleosome core. Here we examine the mechanism of DNA dissociation from the nucleosome using microsecond timescale coarse-grained molecular dynamics simulations. The simulations exhibit short-lived, reversible DNA detachments from the nucleosome and long-lived DNA detachments not reversible on the timescale of the simulation. During the short-lived DNA detachments, 9 bp dissociate at one extremity of the nucleosome core and the H3 tail occupies the space freed by the detached DNA. The long-lived DNA detachments are characterized by structural rearrangements of the H3 tail including the formation of a turn-like structure at the base of the tail that sterically impedes the rewrapping of DNA on the nucleosome surface. Removal of the H3 tails causes the long-lived detachments to disappear. The physical consistency of the CG long-lived open state was verified by mapping a CG structure representative of this state back to atomic resolution and performing molecular dynamics as well as by comparing conformation-dependent free energies. Our results suggest that the H3 tail may stabilize the nucleosome in the open state during the initial stages of the nucleosome remodeling process. PMID:22385856

  14. A positioned +1 nucleosome enhances promoter-proximal pausing

    PubMed Central

    Jimeno-González, Silvia; Ceballos-Chávez, María; Reyes, José C.

    2015-01-01

    Chromatin distribution is not uniform along the human genome. In most genes there is a promoter-associated nucleosome free region (NFR) followed by an array of nucleosomes towards the gene body in which the first (+1) nucleosome is strongly positioned. The function of this characteristic chromatin distribution in transcription is not fully understood. Here we show in vivo that the +1 nucleosome plays a role in modulating RNA polymerase II (RNAPII) promoter-proximal pausing. When a +1 nucleosome is strongly positioned, elongating RNAPII has a tendency to stall at the promoter-proximal region, recruits more negative elongation factor (NELF) and produces less mRNA. The nucleosome-induced pause favors pre-mRNA quality control by promoting the addition of the cap to the nascent RNA. Moreover, the uncapped RNAs produced in the absence of a positioned nucleosome are degraded by the 5′-3′ exonuclease XRN2. Interestingly, reducing the levels of the chromatin remodeler ISWI factor SNF2H decreases +1 nucleosome positioning and increases RNAPII pause release. This work demonstrates a function for +1 nucleosome in regulation of transcription elongation, pre-mRNA processing and gene expression. PMID:25735750

  15. The effect of DNA supercoiling on nucleosome structure and stability

    NASA Astrophysics Data System (ADS)

    Elbel, Tabea; Langowski, Jörg

    2015-02-01

    Nucleosomes have to open to allow access to DNA in transcription, replication, and DNA damage repair. Changes in DNA torsional strain (e.g. during transcription elongation) influence the accessibility of nucleosomal DNA. Here we investigated the effect of DNA supercoiling-induced torsional strain on nucleosome structure and stability by scanning force microscopy (SFM) and fluorescence correlation spectroscopy (FCS). Nucleosomes were reconstituted onto 2.7 kb DNA plasmids with varying superhelical densities. The SFM results show a clear dependence of the amount of DNA wrapped around the nucleosome core on the strength and type of supercoiling. Negative supercoiling led to smaller nucleosome opening angles as compared to relaxed or positively supercoiled DNA. FCS experiments show that nucleosomes reconstituted on negatively superhelical DNA are more resistant to salt-induced destabilization, as seen by reduced H2A-H2B dimer eviction from the nucleosome. Our results show that changes in DNA topology, e.g. during transcription elongation, affect the accessibility of nucleosomal DNA.

  16. Nucleosomes Selectively Inhibit Cas9 Off-target Activity at a Site Located at the Nucleosome Edge.

    PubMed

    Hinz, John M; Laughery, Marian F; Wyrick, John J

    2016-11-25

    Nucleosomes affect Cas9 binding and activity at on-target sites, but their impact at off-target sites is unknown. To investigate how nucleosomes affect Cas9 cleavage at off-target sites in vitro, we used a single guide RNA (sgRNA) that has been previously shown to efficiently direct Cas9 cleavage at the edge of the strongly positioned 601 nucleosome. Our data indicate that single mismatches between the sgRNA and DNA target have relatively little effect on Cas9 cleavage of naked DNA substrates, but strongly inhibit cleavage of nucleosome substrates, particularly when the mismatch is in the sgRNA "seed" region. These findings indicate that nucleosomes may enhance Cas9 specificity by inhibiting cleavage of off-target sites at the nucleosome edge.

  17. Control of nucleosome movement: to space or not to space nucleosomes?

    PubMed

    Prasad, Punit; Bartholomew, Blaine

    2010-05-16

    A key feature of ATP-dependent chromatin remodeling complexes is how they control the ability of the complex to translocate along DNA within the context of a nucleosome. Although these complexes generally initiate DNA translocation near the dyad axis of the nucleosome, the progression and eventual termination is regulated in quite distinct ways. The best studied examples of these are the ISWI type which has strong extranucleosomal DNA dependent activity or the SWI/SNF type which has no linker DNA requirement. Recent data provide insights into the mechanism of regulation of DNA translocation by the ISWI type complexes and how the structure of the ISWI-nucleosome complex changes during chromatin remodeling.

  18. Global analysis of core histones reveals nucleosomal surfaces required for chromosome bi-orientation

    PubMed Central

    Kawashima, Satoshi; Nakabayashi, Yu; Matsubara, Kazuko; Sano, Norihiko; Enomoto, Takemi; Tanaka, Kozo; Seki, Masayuki; Horikoshi, Masami

    2011-01-01

    The attachment of sister kinetochores to microtubules from opposite spindle poles is essential for faithful chromosome segregation. Kinetochore assembly requires centromere-specific nucleosomes containing the histone H3 variant CenH3. However, the functional roles of the canonical histones (H2A, H2B, H3, and H4) in chromosome segregation remain elusive. Using a library of histone point mutants in Saccharomyces cerevisiae, 24 histone residues that conferred sensitivity to the microtubule-depolymerizing drugs thiabendazole (TBZ) and benomyl were identified. Twenty-three of these mutations were clustered at three spatially separated nucleosomal regions designated TBS-I, -II, and -III (TBZ/benomyl-sensitive regions I–III). Elevation of mono-polar attachment induced by prior nocodazole treatment was observed in H2A-I112A (TBS-I), H2A-E57A (TBS-II), and H4-L97A (TBS-III) cells. Severe impairment of the centromere localization of Sgo1, a key modulator of chromosome bi-orientation, occurred in H2A-I112A and H2A-E57A cells. In addition, the pericentromeric localization of Htz1, the histone H2A variant, was impaired in H4-L97A cells. These results suggest that the spatially separated nucleosomal regions, TBS-I and -II, are necessary for Sgo1-mediated chromosome bi-orientation and that TBS-III is required for Htz1 function. PMID:21772248

  19. Chromatin associated mechanisms in base excision repair - nucleosome remodeling and DNA transcription, two key players.

    PubMed

    Menoni, Hervé; Di Mascio, Paolo; Cadet, Jean; Dimitrov, Stefan; Angelov, Dimitar

    2016-12-20

    Genomic DNA is prone to a large number of insults by a myriad of endogenous and exogenous agents. The base excision repair (BER) is the major mechanism used by cells for the removal of various DNA lesions spontaneously or environmentally induced and the maintenance of genome integrity. The presence of persistent DNA damage is not compatible with life, since abrogation of BER leads to early embryonic lethality in mice. There are several lines of evidences showing existence of a link between deficient BER, cancer proneness and ageing, thus illustrating the importance of this DNA repair pathway in human health. Although the enzymology of BER mechanisms has been largely elucidated using chemically defined DNA damage substrates and purified proteins, the complex interplay of BER with another vital process like transcription or when DNA is in its natural state (i.e. wrapped in nucleosome and assembled in chromatin fiber is largely unexplored. Cells use chromatin remodeling factors to overcome the general repression associated with the nucleosomal organization. It is broadly accepted that energy-dependent nucleosome remodeling factors disrupt histones-DNA interactions at the expense of ATP hydrolysis to favor transcription as well as DNA repair. Importantly, unlike transcription, BER is not part of a regulated developmental process but represents a maintenance system that should be efficient anytime and anywhere in the genome. In this review we will discuss how BER can deal with chromatin organization to maintain genetic information. Emphasis will be placed on the following challenging question: how BER is initiated within chromatin?

  20. Chromatin Assembly in a Yeast Whole-Cell Extract

    NASA Astrophysics Data System (ADS)

    Schultz, Michael C.; Hockman, Darren J.; Harkness, Troy A. A.; Garinther, Wendy I.; Altheim, Brent A.

    1997-08-01

    A simple in vitro system that supports chromatin assembly was developed for Saccharomyces cerevisiae. The assembly reaction is ATP-dependent, uses soluble histones and assembly factors, and generates physiologically spaced nucleosomes. We analyze the pathway of histone recruitment into nucleosomes, using this system in combination with genetic methods for the manipulation of yeast. This analysis supports the model of sequential recruitment of H3/H4 tetramers and H2A/H2B dimers into nucleosomes. Using a similar approach, we show that DNA ligase I can play an important role in template repair during assembly. These studies demonstrate the utility of this system for the combined biochemical and genetic analysis of chromatin assembly in yeast.

  1. Genome wide nucleosome mapping for HSV-1 shows nucleosomes are deposited at preferred positions during lytic infection.

    PubMed

    Oh, Jaewook; Sanders, Iryna F; Chen, Eric Z; Li, Hongzhe; Tobias, John W; Isett, R Benjamin; Penubarthi, Sindura; Sun, Hao; Baldwin, Don A; Fraser, Nigel W

    2015-01-01

    HSV is a large double stranded DNA virus, capable of causing a variety of diseases from the common cold sore to devastating encephalitis. Although DNA within the HSV virion does not contain any histone protein, within 1 h of infecting a cell and entering its nucleus the viral genome acquires some histone protein (nucleosomes). During lytic infection, partial micrococcal nuclease (MNase) digestion does not give the classic ladder band pattern, seen on digestion of cell DNA or latent viral DNA. However, complete digestion does give a mono-nucleosome band, strongly suggesting that there are some nucleosomes present on the viral genome during the lytic infection, but that they are not evenly positioned, with a 200 bp repeat pattern, like cell DNA. Where then are the nucleosomes positioned? Here we perform HSV-1 genome wide nucleosome mapping, at a time when viral replication is in full swing (6 hr PI), using a microarray consisting of 50mer oligonucleotides, covering the whole viral genome (152 kb). Arrays were probed with MNase-protected fragments of DNA from infected cells. Cells were not treated with crosslinking agents, thus we are only mapping tightly bound nucleosomes. The data show that nucleosome deposition is not random. The distribution of signal on the arrays suggest that nucleosomes are located at preferred positions on the genome, and that there are some positions that are not occupied (nucleosome free regions -NFR or Nucleosome depleted regions -NDR), or occupied at frequency below our limit of detection in the population of genomes. Occupancy of only a fraction of the possible sites may explain the lack of a typical MNase partial digestion band ladder pattern for HSV DNA during lytic infection. On average, DNA encoding Immediate Early (IE), Early (E) and Late (L) genes appear to have a similar density of nucleosomes.

  2. Using deformation energy to analyze nucleosome positioning in genomes.

    PubMed

    Chen, Wei; Feng, Pengmian; Ding, Hui; Lin, Hao; Chou, Kuo-Chen

    2016-03-01

    By modulating the accessibility of genomic regions to regulatory proteins, nucleosome positioning plays important roles in cellular processes. Although intensive efforts have been made, the rules for determining nucleosome positioning are far from satisfaction yet. In this study, we developed a biophysical model to predict nucleosomal sequences based on the deformation energy of DNA sequences, and validated it against the experimentally determined nucleosome positions in the Saccharomyces cerevisiae genome, achieving very high success rates. Furthermore, using the deformation energy model, we analyzed the distribution of nucleosomes around the following three types of DNA functional sites: (1) double strand break (DSB), (2) single nucleotide polymorphism (SNP), and (3) origin of replication (ORI). We have found from the analyzed energy spectra that a remarkable "trough" or "valley" occurs around each of these functional sites, implying a depletion of nucleosome density, fully in accordance with experimental observations. These findings indicate that the deformation energy may play a key role for accurately predicting nucleosome positions, and that it can also provide a quantitative physical approach for in-depth understanding the mechanism of nucleosome positioning.

  3. Nucleosomal arrangement affects single-molecule transcription dynamics

    PubMed Central

    Fitz, Veronika; Shin, Jaeoh; Ehrlich, Christoph; Farnung, Lucas; Cramer, Patrick; Zaburdaev, Vasily; Grill, Stephan W.

    2016-01-01

    In eukaryotes, gene expression depends on chromatin organization. However, how chromatin affects the transcription dynamics of individual RNA polymerases has remained elusive. Here, we use dual trap optical tweezers to study single yeast RNA polymerase II (Pol II) molecules transcribing along a DNA template with two nucleosomes. The slowdown and the changes in pausing behavior within the nucleosomal region allow us to determine a drift coefficient, χ, which characterizes the ability of the enzyme to recover from a nucleosomal backtrack. Notably, χ can be used to predict the probability to pass the first nucleosome. Importantly, the presence of a second nucleosome changes χ in a manner that depends on the spacing between the two nucleosomes, as well as on their rotational arrangement on the helical DNA molecule. Our results indicate that the ability of Pol II to pass the first nucleosome is increased when the next nucleosome is turned away from the first one to face the opposite side of the DNA template. These findings help to rationalize how chromatin arrangement affects Pol II transcription dynamics. PMID:27791062

  4. Drosophila Brahma complex remodels nucleosome organizations in multiple aspects.

    PubMed

    Shi, Jiejun; Zheng, Meizhu; Ye, Youqiong; Li, Min; Chen, Xiaolong; Hu, Xinjie; Sun, Jin; Zhang, Xiaobai; Jiang, Cizhong

    2014-09-01

    ATP-dependent chromatin remodeling complexes regulate nucleosome organizations. In Drosophila, gene Brm encodes the core Brahma complex, the ATPase subunit of SWI/SNF class of chromatin remodelers. Its role in modulating the nucleosome landscape in vivo is unclear. In this study, we knocked down Brm in Drosophila third instar larvae to explore the changes in nucleosome profiles and global gene transcription. The results show that Brm knockdown leads to nucleosome occupancy changes throughout the entire genome with a bias in occupancy decrease. In contrast, the knockdown has limited impacts on nucleosome position shift. The knockdown also alters another important physical property of nucleosome positioning, fuzziness. Nucleosome position shift, gain or loss and fuzziness changes are all enriched in promoter regions. Nucleosome arrays around the 5' ends of genes are reorganized in five patterns as a result of Brm knockdown. Intriguingly, the concomitant changes in the genes adjacent to the Brahma-dependent remodeling regions have important roles in development and morphogenesis. Further analyses reveal abundance of AT-rich motifs for transcription factors in the remodeling regions.

  5. Nucleosome geometry and internucleosomal interactions control the chromatin fiber conformation.

    PubMed

    Kepper, Nick; Foethke, Dietrich; Stehr, Rene; Wedemann, Gero; Rippe, Karsten

    2008-10-01

    Based on model structures with atomic resolution, a coarse-grained model for the nucleosome geometry was implemented. The dependence of the chromatin fiber conformation on the spatial orientation of nucleosomes and the path and length of the linker DNA was systematically explored by Monte Carlo simulations. Two fiber types were analyzed in detail that represent nucleosome chains without and with linker histones, respectively: two-start helices with crossed-linker DNA (CL conformation) and interdigitated one-start helices (ID conformation) with different nucleosome tilt angles. The CL conformation was derived from a tetranucleosome crystal structure that was extended into a fiber. At thermal equilibrium, the fiber shape persisted but relaxed into a structure with a somewhat lower linear mass density of 3.1 +/- 0.1 nucleosomes/11 nm fiber. Stable ID fibers required local nucleosome tilt angles between 40 degrees and 60 degrees. For these configurations, much higher mass densities of up to 7.9 +/- 0.2 nucleosomes/11 nm fiber were obtained. A model is proposed, in which the transition between a CL and ID fiber is mediated by relatively small changes of the local nucleosome geometry. These were found to be in very good agreement with changes induced by linker histone H1 binding as predicted from the high resolution model structures.

  6. Tension-dependent free energies of nucleosome unwrapping

    SciTech Connect

    Lequieu, Joshua; Cordoba, Andres; Schwartz, David C.; de Pablo, Juan J.

    2016-08-23

    Here, nucleosomes form the basic unit of compaction within eukaryotic genomes, and their locations represent an important, yet poorly understood, mechanism of genetic regulation. Quantifying the strength of interactions within the nucleosome is a central problem in biophysics and is critical to understanding how nucleosome positions influence gene expression. By comparing to single-molecule experiments, we demonstrate that a coarse-grained molecular model of the nucleosome can reproduce key aspects of nucleosome unwrapping. Using detailed simulations of DNA and histone proteins, we calculate the tension-dependent free energy surface corresponding to the unwrapping process. The model reproduces quantitatively the forces required to unwrap the nucleosome and reveals the role played by electrostatic interactions during this process. We then demonstrate that histone modifications and DNA sequence can have significant effects on the energies of nucleosome formation. Most notably, we show that histone tails contribute asymmetrically to the stability of the outer and inner turn of nucleosomal DNA and that depending on which histone tails are modified, the tension-dependent response is modulated differently.

  7. Tension-dependent free energies of nucleosome unwrapping

    DOE PAGES

    Lequieu, Joshua; Cordoba, Andres; Schwartz, David C.; ...

    2016-08-23

    Here, nucleosomes form the basic unit of compaction within eukaryotic genomes, and their locations represent an important, yet poorly understood, mechanism of genetic regulation. Quantifying the strength of interactions within the nucleosome is a central problem in biophysics and is critical to understanding how nucleosome positions influence gene expression. By comparing to single-molecule experiments, we demonstrate that a coarse-grained molecular model of the nucleosome can reproduce key aspects of nucleosome unwrapping. Using detailed simulations of DNA and histone proteins, we calculate the tension-dependent free energy surface corresponding to the unwrapping process. The model reproduces quantitatively the forces required to unwrapmore » the nucleosome and reveals the role played by electrostatic interactions during this process. We then demonstrate that histone modifications and DNA sequence can have significant effects on the energies of nucleosome formation. Most notably, we show that histone tails contribute asymmetrically to the stability of the outer and inner turn of nucleosomal DNA and that depending on which histone tails are modified, the tension-dependent response is modulated differently.« less

  8. The split personality of CENP-A nucleosomes.

    PubMed

    Westhorpe, Frederick G; Straight, Aaron F

    2012-07-20

    The composition and structure of centromeric nucleosomes, which contain the histone H3 variant CENP-A, is intensely debated. Two independent studies in this issue, in yeast and human cells, now suggest that CENP-A nucleosomes adopt different structures depending on the stage of the cell cycle.

  9. SWI/SNF Displaces SAGA-Acetylated Nucleosomes

    PubMed Central

    Chandy, Mark; Gutiérrez, José L.; Prochasson, Philippe; Workman, Jerry L.

    2006-01-01

    SWI/SNF is a well-characterized chromatin remodeling complex that remodels chromatin by sliding nucleosomes in cis and/or displacing nucleosomes in trans. The latter mechanism has the potential to remove promoter nucleosomes, allowing access to transcription factors and RNA polymerase. In vivo, histone acetylation often precedes apparent nucleosome loss; therefore, we sought to determine whether nucleosomes containing acetylated histones could be displaced by the SWI/SNF chromatin remodeling complex. We found that SAGA-acetylated histones were lost from an immobilized nucleosome array when treated with the SWI/SNF complex. When the nucleosome array was acetylated by SAGA in the presence of bound transcription activators, it generated a peak of acetylation surrounding the activator binding sites. Subsequent SWI/SNF treatment suppressed this acetylation peak. Immunoblots indicated that SWI/SNF preferentially displaced acetylated histones from the array relative to total histones. Moreover, the Swi2/Snf2 bromodomain, an acetyl-lysine binding domain, played a role in the displacement of acetylated histones. These data indicate that targeted histone acetylation by the SAGA complex predisposes promoter nucleosomes for displacement by the SWI/SNF complex. PMID:17030999

  10. Training-free atomistic prediction of nucleosome occupancy.

    PubMed

    Minary, Peter; Levitt, Michael

    2014-04-29

    Nucleosomes alter gene expression by preventing transcription factors from occupying binding sites along DNA. DNA methylation can affect nucleosome positioning and so alter gene expression epigenetically (without changing DNA sequence). Conventional methods to predict nucleosome occupancy are trained on observed DNA sequence patterns or known DNA oligonucleotide structures. They are statistical and lack the physics needed to predict subtle epigenetic changes due to DNA methylation. The training-free method presented here uses physical principles and state-of-the-art all-atom force fields to predict both nucleosome occupancy along genomic sequences as well as binding to known positioning sequences. Our method calculates the energy of both nucleosomal and linear DNA of the given sequence. Based on the DNA deformation energy, we accurately predict the in vitro occupancy profile observed experimentally for a 20,000-bp genomic region as well as the experimental locations of nucleosomes along 13 well-established positioning sequence elements. DNA with all C bases methylated at the 5 position shows less variation of nucleosome binding: Strong binding is weakened and weak binding is strengthened compared with normal DNA. Methylation also alters the preference of nucleosomes for some positioning sequences but not others.

  11. Tension-Dependent Free Energies of Nucleosome Unwrapping

    PubMed Central

    2016-01-01

    Nucleosomes form the basic unit of compaction within eukaryotic genomes, and their locations represent an important, yet poorly understood, mechanism of genetic regulation. Quantifying the strength of interactions within the nucleosome is a central problem in biophysics and is critical to understanding how nucleosome positions influence gene expression. By comparing to single-molecule experiments, we demonstrate that a coarse-grained molecular model of the nucleosome can reproduce key aspects of nucleosome unwrapping. Using detailed simulations of DNA and histone proteins, we calculate the tension-dependent free energy surface corresponding to the unwrapping process. The model reproduces quantitatively the forces required to unwrap the nucleosome and reveals the role played by electrostatic interactions during this process. We then demonstrate that histone modifications and DNA sequence can have significant effects on the energies of nucleosome formation. Most notably, we show that histone tails contribute asymmetrically to the stability of the outer and inner turn of nucleosomal DNA and that depending on which histone tails are modified, the tension-dependent response is modulated differently. PMID:27725965

  12. Choreography for nucleosomes: the conformational freedom of the nucleosomal filament and its limitations.

    PubMed

    Engelhardt, Mogens

    2007-01-01

    Eukaryotic DNA is organized into nucleosomes by coiling around core particles of histones, forming a nucleosomal filament. The significance for the conformation of the filament of the DNA entry/exit angle (alpha) at the nucleosome, the angle of rotation (beta) of nucleosomes around their interconnecting DNA (linker DNA) and the length of the linker DNA, has been studied by means of wire models with straight linkers. It is shown that variations in alpha and beta endow the filament with an outstanding conformational freedom when alpha is increased beyond 60-90 degrees, owing to the ability of the filament to change between forward right-handed and backward left-handed coiling. A wealth of different helical and looped conformations are formed in response to repeated beta sequences, and helical conformations are shown to be able to contract to a high density and to associate pairwise into different types of double fibers. Filaments with random beta sequences are characterized by relatively stable loop clusters connected by segments of higher flexibility. Displacement of core particles along the DNA in such fibers, combined with limited twisting of the linkers, can generate the beta sequence necessary for compaction into a regular helix, thus providing a model for heterochromatinization.

  13. Histone Acetylation near the Nucleosome Dyad Axis Enhances Nucleosome Disassembly by RSC and SWI/SNF

    PubMed Central

    Chatterjee, Nilanjana; North, Justin A.; Dechassa, Mekonnen Lemma; Manohar, Mridula; Prasad, Rashmi; Luger, Karolin; Ottesen, Jennifer J.; Poirier, Michael G.

    2015-01-01

    Signaling associated with transcription activation occurs through posttranslational modification of histones and is best exemplified by lysine acetylation. Lysines are acetylated in histone tails and the core domain/lateral surface of histone octamers. While acetylated lysines in histone tails are frequently recognized by other factors referred to as “readers,” which promote transcription, the mechanistic role of the modifications in the lateral surface of the histone octamer remains unclear. By using X-ray crystallography, we found that acetylated lysines 115 and 122 in histone H3 are solvent accessible, but in biochemical assays they appear not to interact with the bromodomains of SWI/SNF and RSC to enhance recruitment or nucleosome mobilization, as previously shown for acetylated lysines in H3 histone tails. Instead, we found that acetylation of lysines 115 and 122 increases the predisposition of nucleosomes for disassembly by SWI/SNF and RSC up to 7-fold, independent of bromodomains, and only in conjunction with contiguous nucleosomes. Thus, in combination with SWI/SNF and RSC, acetylation of lateral surface lysines in the histone octamer serves as a crucial regulator of nucleosomal dynamics distinct from the histone code readers and writers. PMID:26416878

  14. Bivalent interaction of the PZP domain of BRPF1 with the nucleosome impacts chromatin dynamics and acetylation

    PubMed Central

    Klein, Brianna J.; Muthurajan, Uma M.; Lalonde, Marie-Eve; Gibson, Matthew D.; Andrews, Forest H.; Hepler, Maggie; Machida, Shinichi; Yan, Kezhi; Kurumizaka, Hitoshi; Poirier, Michael G.; Côté, Jacques; Luger, Karolin; Kutateladze, Tatiana G.

    2016-01-01

    BRPF1 (bromodomain PHD finger 1) is a core subunit of the MOZ histone acetyltransferase (HAT) complex, critical for normal developmental programs and implicated in acute leukemias. BRPF1 contains a unique assembly of zinc fingers, termed a PZP domain, the physiological role of which remains unclear. Here, we elucidate the structure-function relationship of this novel epigenetic reader and detail the biological and mechanistic consequences of its interaction with nucleosomes. PZP has a globular architecture and forms a 2:1 stoichiometry complex with the nucleosome, bivalently interacting with histone H3 and DNA. This binding impacts the nucleosome dynamics, shifting the DNA unwrapping/rewrapping equilibrium toward the unwrapped state and increasing DNA accessibility. We demonstrate that the DNA-binding function of the BRPF1 PZP domain is required for the MOZ-BRPF1-ING5-hEaf6 HAT complex to be recruited to chromatin and to acetylate nucleosomal histones. Our findings reveal a novel link between chromatin dynamics and MOZ-mediated acetylation. PMID:26626149

  15. RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis.

    PubMed

    Lu, Lin-Yu; Wu, Jiaxue; Ye, Lin; Gavrilina, Galina B; Saunders, Thomas L; Yu, Xiaochun

    2010-03-16

    During spermatogenesis, global nucleosome removal occurs where histones are initially replaced by transition proteins and subsequently by protamines. This chromatin reorganization is thought to facilitate the compaction of the paternal genome into the sperm head and to protect the DNA from damaging agents. Histone ubiquitination has been suggested to be important for sex chromosome inactivation during meiotic prophase and nucleosome removal at postmeiotic stages. However, the mechanisms regulating these ubiquitin-mediated processes are unknown. In this study, we investigate the role of the ubiquitin ligase RNF8 during spermatogenesis and find that RNF8-deficient mice are proficient in meiotic sex chromosome inactivation (MSCI) but deficient in global nucleosome removal. Moreover, we show that RNF8-dependent histone ubiquitination induces H4K16 acetylation, which may be an initial step in nucleosome removal. Thus, our results show that RNF8 plays an important role during spermatogenesis through histone ubiquitination, resulting in trans-histone acetylation and global nucleosome removal.

  16. Structural insight into the sequence dependence of nucleosome positioning.

    PubMed

    Wu, Bin; Mohideen, Kareem; Vasudevan, Dileep; Davey, Curt A

    2010-03-14

    Nucleosome positioning displays sequence dependency and contributes to genomic regulation in a site-specific manner. We solved the structures of nucleosome core particle composed of strong positioning TTTAA elements flanking the nucleosome center. The positioning strength of the super flexible TA dinucleotide is consistent with its observed central location within minor groove inward regions, where it can contribute maximally to energetically challenging minor groove bending, kinking and compression. The marked preference for TTTAA and positioning power of the site 1.5 double helix turns from the nucleosome center relates to a unique histone protein motif at this location, which enforces a sustained, extremely narrow minor groove via a hydrophobic "sugar clamp." Our analysis sheds light on the basis of nucleosome positioning and indicates that the histone octamer has evolved not to fully minimize sequence discrimination in DNA binding.

  17. p53 binding to nucleosomes within the p21 promoter in vivo leads to nucleosome loss and transcriptional activation.

    PubMed

    Laptenko, Oleg; Beckerman, Rachel; Freulich, Ella; Prives, Carol

    2011-06-28

    It is well established that p53 contacts DNA in a sequence-dependent manner in order to transactivate its myriad target genes. Yet little is known about how p53 interacts with its binding site/response element (RE) within such genes in vivo in the context of nucleosomal DNA. In this study we demonstrate that both distal (5') and proximal (3') p53 REs within the promoter of the p21 gene in unstressed HCT116 colon carcinoma cells are localized within a region of relatively high nucleosome occupancy. In the absence of cellular stress, p53 is prebound to both p21 REs within nucleosomal DNA in these cells. Treatment of cells with the DNA-damaging drug doxorubicin or the p53 stabilizing agent Nutlin-3, however, is accompanied by p53-dependent subsequent loss of nucleosomes associated with such p53 REs. We show that in vitro p53 can bind to mononucleosomal DNA containing the distal p21 RE, provided the binding site is not close to the diad center of the nucleosome. In line with this, our data indicate that the p53 distal RE within the p21 gene is located close to the end of the nucleosome. Thus, low- and high-resolution mapping of nucleosome boundaries around p53 REs within the p21 promoter have provided insight into the mechanism of p53 binding to its sites in cells and the consequent changes in nucleosome occupancy at such sites.

  18. Single-cell nucleosome mapping reveals the molecular basis of gene expression heterogeneity.

    PubMed

    Small, Eliza C; Xi, Liqun; Wang, Ji-Ping; Widom, Jonathan; Licht, Jonathan D

    2014-06-17

    Nucleosomes, the basic unit of chromatin, have a critical role in the control of gene expression. Nucleosome positions have generally been determined by examining bulk populations of cells and then correlated with overall gene expression. Here, we describe a technique to determine nucleosome positioning in single cells by virtue of the ability of the nucleosome to protect DNA from GpC methylation. In the acid phosphatase inducible PHO5 gene, we find that there is significant cell-to-cell variation in nucleosome positions and shifts in nucleosome positioning correlate with changes in gene expression. However, nucleosome positioning is not absolute, and even with major shifts in gene expression, some cells fail to change nucleosome configuration. Mutations of the PHO5 promoter that introduce a poly(dA:dT) tract-stimulated gene expression under nonpermissive conditions led to shifts of positioned nucleosomes similar to induction of PHO5. By contrast, mutations that altered AA/TT/AT periodicity reduced gene expression upon PHO5 induction and stabilized nucleosomes in most cells, suggesting that enhanced nucleosome affinity for DNA antagonizes chromatin remodelers. Finally, we determined nucleosome positioning in two regions described as "fuzzy" or nucleosome-free when examined in a bulk assay. These regions consisted of distinct nucleosomes with a larger footprint for potential location and an increase population of cells lacking a nucleosome altogether. These data indicate an underlying complexity of nucleosome positioning that may contribute to the flexibility and heterogeneity of gene expression.

  19. Z curve theory-based analysis of the dynamic nature of nucleosome positioning in Saccharomyces cerevisiae.

    PubMed

    Wu, Xueting; Liu, Hui; Liu, Hongbo; Su, Jianzhong; Lv, Jie; Cui, Ying; Wang, Fang; Zhang, Yan

    2013-11-01

    Nucleosome is the elementary structural unit of eukaryotic chromatin. Instability of nucleosome positioning plays critical roles in chromatin remodeling in differentiation and disease. In this study, we investigated nucleosome dynamics in the Saccharomyces cerevisiae genome using a geometric model based on Z curve theory. We identified 52,941 stable nucleosomes and 7607 dynamic nucleosomes, compiling them into a genome-wide nucleosome dynamic positioning map and constructing a user-friendly visualization platform (http://bioinfo.hrbmu.edu.cn/nucleosome). Our approach achieved a sensitivity of 90.31% and a specificity of 87.76% for S. cerevisiae. Analysis revealed transcription factor binding sites (TFBSs) were enriched in linkers. And among the sparse nucleosomes around TFBSs, dynamic nucleosomes were slightly preferred. Gene Ontology (GO) enrichment analysis indicated that stable and dynamic nucleosomes were enriched on genes involved in different biological processes and functions. This study provides an approach for comprehending chromatin remodeling and transcriptional regulation of genes.

  20. Structure of a RSC-nucleosome complex and insights into chromatin remodeling.

    PubMed

    Chaban, Yuriy; Ezeokonkwo, Chukwudi; Chung, Wen-Hsiang; Zhang, Fan; Kornberg, Roger D; Maier-Davis, Barbara; Lorch, Yahli; Asturias, Francisco J

    2008-12-01

    ATP-dependent chromatin-remodeling complexes, such as RSC, can reposition, evict or restructure nucleosomes. A structure of a RSC-nucleosome complex with a nucleosome determined by cryo-EM shows the nucleosome bound in a central RSC cavity. Extensive interaction of RSC with histones and DNA seems to destabilize the nucleosome and lead to an overall ATP-independent rearrangement of its structure. Nucleosomal DNA appears disordered and largely free to bulge out into solution as required for remodeling, but the structure of the RSC-nucleosome complex indicates that RSC is unlikely to displace the octamer from the nucleosome to which it is bound. Consideration of the RSC-nucleosome structure and published biochemical information suggests that ATP-dependent DNA translocation by RSC may result in the eviction of histone octamers from adjacent nucleosomes.

  1. A chemical approach to mapping nucleosomes at base pair resolution in yeast.

    PubMed

    Brogaard, Kristin R; Xi, Liqun; Wang, Ji-Ping; Widom, Jonathan

    2012-01-01

    Most eukaryotic DNA exists in DNA-protein complexes known as nucleosomes. The exact locations of nucleosomes along the genome play a critical role in chromosome functions and gene regulation. However, the current methods for nucleosome mapping do not provide the necessary accuracy to identify the precise nucleosome locations. Here we describe a new experimental approach that directly maps nucleosome center locations in vivo genome-wide at single base pair resolution.

  2. DNA-histone interactions in nucleosomes

    SciTech Connect

    Van Holde, K.E.; Allen, J.R.; Tatchell, K.; Weischet, W.O.; Lohr, D.

    1980-10-01

    We have utilized micrococcal nuclease digestion and thermal denaturation studies to investigate the binding of DNA to the histone core of the nucleosome. We conclude that a total of approx. 168 base pairs (bp) of DNA can interact with the histone core under appropriate solution conditions, even in the absence of lysine-rich histones. The interactions in this total length of DNA can be divided into three classes: (a) approx. 22 bp at the ends is bound only at moderate ionic strength. It is easily displaced, and its removal yields the 146 bp core particle; (b) approx. 46 bp near the ends of the core DNA are quite weakly bound to the core, and are displaced at quite moderate temperatures; (c) the remaining central 100 bp are strongly bound, and interact with all of the sites on the histones which strongly protect DNA against DNAse I digestion. A theoretical analysis of the cleavage of nucleosomal DNA by DNAse I has been used to develop evidence that the pattern of protection offered by the histone core is very similar in nuclei to that in isolated core particles.

  3. Aggregation of nucleosomes by divalent cations.

    PubMed Central

    de Frutos, M; Raspaud, E; Leforestier, A; Livolant, F

    2001-01-01

    Conditions of precipitation of nucleosome core particles (NCP) by divalent cations (Ca(2+) and Mg(2+)) have been explored over a large range of nucleosome and cation concentrations. Precipitation of NCP occurs for a threshold of divalent cation concentration, and redissolution is observed for further addition of salt. The phase diagram looks similar to those obtained with DNA and synthetic polyelectrolytes in the presence of multivalent cations, which supports the idea that NCP/NCP interactions are driven by cation condensation. In the phase separation domain the effective charge of the aggregates was determined by measurements of their electrophoretic mobility. Aggregates formed in the presence of divalent cations (Mg(2+)) remain negatively charged over the whole concentration range. They turn positively charged when aggregation is induced by trivalent (spermidine) or tetravalent (spermine) cations. The higher the valency of the counterions, the more significant is the reversal of the effective charge of the aggregates. The sign of the effective charge has no influence on the aspect of the phase diagram. We discuss the possible reasons for this charge reversal in the light of actual theoretical approaches. PMID:11463653

  4. Sequence structure of Lowary/Widom clones forming strong nucleosomes.

    PubMed

    Trifonov, Edward N

    2016-01-01

    Lowary and Widom selected from random sequences those which form exceptionally stable nucleosomes, including clone 601, the current champion of strong nucleosome (SN) sequences. This unique sequence database (LW sequences) carries sequence elements which confer stability on the nucleosomes formed on the sequences, and, thus, may serve as source of information on the structure of "ideal" or close to ideal nucleosome DNA sequence. An important clue is also provided by crystallographic study of Vasudevan and coauthors on clone 601 nucleosomes. It demonstrated that YR·YR dinucleotide stacks (primarily TA·TA) follow one another at distances 10 or 11 bases or multiples thereof, such that they all are located on the interface between DNA and histone octamer. Combining this important information with alignment of the YR-containing 10-mers and 11-mers from LW sequences, the bendability matrices of the stable nucleosome DNA are derived. The matrices suggest that the periodically repeated TA (YR), RR, and YY dinucleotides are the main sequence features of the SNs. This consensus coincides with the one for recently discovered SNs with visibly periodic DNA sequences. Thus, the experimentally observed stable LW nucleosomes and SNs derived computationally appear to represent the same entity - exceptionally stable SNs.

  5. Predicting nucleosome positioning based on geometrically transformed Tsallis entropy.

    PubMed

    Wu, Jing; Zhang, Yusen; Mu, Zengchao

    2014-01-01

    As the fundamental unit of eukaryotic chromatin structure, nucleosome plays critical roles in gene expression and regulation by controlling physical access to transcription factors. In this paper, based on the geometrically transformed Tsallis entropy and two index-vectors, a valid nucleosome positioning information model is developed to describe the distribution of A/T-riched and G/C-riched dimeric and trimeric motifs along the DNA duplex. When applied to train the support vector machine, the model achieves high AUCs across five organisms, which have significantly outperformed the previous studies. Besides, we adopt the concept of relative distance to describe the probability of arbitrary DNA sequence covered by nucleosome. Thus, the average nucleosome occupancy profile over the S.cerevisiae genome is calculated. With our peak detection model, the isolated nucleosomes along genome sequence are located. When compared with some published results, it shows that our model is effective for nucleosome positioning. The index-vector component [Formula in text] is identified to be an important influencing factor of nucleosome organizations.

  6. Mechanisms for enhanced protein dissociation driven by nucleosomes

    NASA Astrophysics Data System (ADS)

    Bundschuh, Ralf; Chen, Cai

    2013-03-01

    When a transcription factor binding site is located within a nucleosome, the DNA in the nucleosome has to unwrap in order for the transcription factor to bind. Thus, it is not surprising that the rate of transcription factor binding is slowed significantly in the presence of a nucleosome. The resulting change in transcription factor binding site occupancy has been known for quite a while as a mechanism for regulation of gene expression via chromatin structure. More surprisingly, recent single molecule experiments have pointed out that not only is the on-rate of transcription factors reduced by the presence of a nucleosome but also is the off-rate increased. There are two possible explanations short of an active role of the nucleosome in pushing the transcription factor off the DNA: (i) the nucleosome can change the equilibrium between binding at the specific binding site and nonspecific binding to the surrounding DNA or (ii) for dimeric transcription factors the nucleosome can change the equilibrium between monomeric and dimeric binding. We explicitly model both scenarios and find that the first mechanism cannot be reconciled with experimental findings. However, we show that the second mechanism can indeed explain increases in off-rate by a factor as high as 100. This material is based upon work supported by the National Science Foundation under Grant No. 1105458.

  7. Preferential Nucleosome Occupancy at High Values of DNA Helical Rise

    PubMed Central

    Pedone, Francesco; Santoni, Daniele

    2012-01-01

    Nucleosomes are the basic structural units of eukaryotic chromatin and play a key role in the regulation of gene expression. Nucleosome formation depends on several factors, including properties of the sequence itself, but also physical constraints and epigenetic factors such as chromatin-remodelling enzymes. In this view, a sequence-dependent approach is able to capture a general tendency of a region to bind a histone octamer. A reference data set of positioned nucleosomes of Saccharomyces cerevisiae was used to study the role of DNA helical rise in histone–DNA interaction. Genomic sequences were transformed into arrays of helical rise values by a tetranucleotide code and then turned into profiles of mean helical rise values. These profiles resemble maps of nucleosome occupancy, suggesting that intrinsic histone–DNA interactions are linked to helical rise. The obtained results show that preferential nucleosome occupancy occurs where the mean helical rise reaches its largest values. Mean helical rise profiles obtained by using maps of positioned nucleosomes of the Drosophila melanogaster and Plasmodium falciparum genomes, as well as Homo sapiens chromosome 20 confirm that nucleosomes are mainly located where the mean helical rise reaches its largest values. PMID:22233711

  8. Kinetics and thermodynamics of phenotype: unwinding and rewinding the nucleosome.

    PubMed

    Mack, Andrew H; Schlingman, Daniel J; Ilagan, Robielyn P; Regan, Lynne; Mochrie, Simon G J

    2012-11-09

    Chromatin "remodeling" is widely accepted as the mechanism that permits access to DNA by the transcription machinery. To date, however, there has been no experimental measurement of the changes in the kinetics and thermodynamics of the DNA-histone octamer association that are required to remodel chromatin so that transcription may occur. Here, we present the results of optical tweezer measurements that compare the kinetic and thermodynamic properties of nucleosomes composed of unmodified histones with those of nucleosomes that contain a mutant histone H4 (H4-R45H), which has been shown to allow SWI/SNF remodeling factor-independent transcription from the yeast HO promoter in vivo. Our measurements, carried out in a force-clamp mode, determine the force-dependent unwinding and rewinding rates of the nucleosome inner turn. At each force studied, nucleosomes containing H4-R45H unwind more rapidly and rewind more slowly than nucleosomes containing unmodified H4, indicating that the latter are the more stable. Extrapolation to forces at which the winding and unwinding rates are equal determines the absolute free energy of the nucleosome inner turn to be -32k(B)T for nucleosomes containing unmodified H4 and -27k(B)T for nucleosomes containing H4-R45H. Thus, the "loosening" or "remodeling" caused by this point mutation, which is demonstrated to be sufficient to allow transcriptional machinery access to the HO promoter (in the absence of other remodeling factors), is 5k(B)T. The correlation between the free energy of the nucleosome inner turn and the sin (SWI/SNF-independent) transcription suggests that, beyond partial unwinding, complete histone unwinding may play a role in transcriptional activation.

  9. SIR-nucleosome interactions: structure-function relationships in yeast silent chromatin.

    PubMed

    Oppikofer, Mariano; Kueng, Stephanie; Gasser, Susan M

    2013-09-15

    Discrete regions of the eukaryotic genome assume a heritable chromatin structure that is refractory to gene expression, referred to as heterochromatin or "silent" chromatin. Constitutively silent chromatin is found in subtelomeric domains in a number of species, ranging from yeast to man. In addition, chromatin-dependent repression of mating type loci occurs in both budding and fission yeasts, to enable sexual reproduction. The silencing of chromatin in budding yeast is characterized by an assembly of Silent Information Regulatory (SIR) proteins-Sir2, Sir3 and Sir4-with unmodified nucleosomes. Silencing requires the lysine deacetylase activity of Sir2, extensive contacts between Sir3 and the nucleosome, as well as interactions among the SIR proteins, to generate the Sir2-3-4 or SIR complex. Results from recent structural and reconstitution studies suggest an updated model for the ordered assembly and organization of SIR-dependent silent chromatin in yeast. Moreover, studies of subtelomeric gene expression reveal the importance of subtelomeric silent chromatin in the regulation of genes other than the silent mating type loci. This review covers recent advances in this field.

  10. Altered promoter nucleosome positioning is an early event in gene silencing.

    PubMed

    Hesson, Luke B; Sloane, Mathew A; Wong, Jason Wh; Nunez, Andrea C; Srivastava, Sameer; Ng, Benedict; Hawkins, Nicholas J; Bourke, Michael J; Ward, Robyn L

    2014-10-01

    Gene silencing in cancer frequently involves hypermethylation and dense nucleosome occupancy across promoter regions. How a promoter transitions to this silent state is unclear. Using colorectal adenomas, we investigated nucleosome positioning, DNA methylation, and gene expression in the early stages of gene silencing. Genome-wide gene expression correlated with highly positioned nucleosomes upstream and downstream of a nucleosome-depleted transcription start site (TSS). Hypermethylated promoters displayed increased nucleosome occupancy, specifically at the TSS. We investigated 2 genes, CDH1 and CDKN2B, which were silenced in adenomas but lacked promoter hypermethylation. Instead, silencing correlated with loss of nucleosomes from the -2 position upstream of the TSS relative to normal mucosa. In contrast, permanent CDH1 silencing in carcinoma cells was characterized by promoter hypermethylation and dense nucleosome occupancy. Our findings suggest that silenced genes transition through an intermediary stage involving altered promoter nucleosome positioning, before permanent silencing by hypermethylation and dense nucleosome occupancy.

  11. Multiplexing Genetic and Nucleosome Positioning Codes: A Computational Approach

    PubMed Central

    Eslami-Mossallam, Behrouz; Schram, Raoul D.; Tompitak, Marco; van Noort, John; Schiessel, Helmut

    2016-01-01

    Eukaryotic DNA is strongly bent inside fundamental packaging units: the nucleosomes. It is known that their positions are strongly influenced by the mechanical properties of the underlying DNA sequence. Here we discuss the possibility that these mechanical properties and the concomitant nucleosome positions are not just a side product of the given DNA sequence, e.g. that of the genes, but that a mechanical evolution of DNA molecules might have taken place. We first demonstrate the possibility of multiplexing classical and mechanical genetic information using a computational nucleosome model. In a second step we give evidence for genome-wide multiplexing in Saccharomyces cerevisiae and Schizosacharomyces pombe. This suggests that the exact positions of nucleosomes play crucial roles in chromatin function. PMID:27272176

  12. DNA Shape Dominates Sequence Affinity in Nucleosome Formation

    NASA Astrophysics Data System (ADS)

    Freeman, Gordon S.; Lequieu, Joshua P.; Hinckley, Daniel M.; Whitmer, Jonathan K.; de Pablo, Juan J.

    2014-10-01

    Nucleosomes provide the basic unit of compaction in eukaryotic genomes, and the mechanisms that dictate their position at specific locations along a DNA sequence are of central importance to genetics. In this Letter, we employ molecular models of DNA and proteins to elucidate various aspects of nucleosome positioning. In particular, we show how DNA's histone affinity is encoded in its sequence-dependent shape, including subtle deviations from the ideal straight B-DNA form and local variations of minor groove width. By relying on high-precision simulations of the free energy of nucleosome complexes, we also demonstrate that, depending on DNA's intrinsic curvature, histone binding can be dominated by bending interactions or electrostatic interactions. More generally, the results presented here explain how sequence, manifested as the shape of the DNA molecule, dominates molecular recognition in the problem of nucleosome positioning.

  13. Nucleosome alterations caused by mutations at modifiable histone residues in Saccharomyces cerevisiae.

    PubMed

    Liu, Hongde; Wang, Pingyan; Liu, Lingjie; Min, Zhu; Luo, Kun; Wan, Yakun

    2015-10-26

    Nucleosome organization exhibits dynamic properties depending on the cell state and environment. Histone proteins, fundamental components of nucleosomes, are subject to chemical modifications on particular residues. We examined the effect of substituting modifiable residues of four core histones with the non-modifiable residue alanine on nucleosome dynamics. We mapped the genome-wide nucleosomes in 22 histone mutants of Saccharomyces cerevisiae and compared the nucleosome alterations relative to the wild-type strain. Our results indicated that different types of histone mutation resulted in different phenotypes and a distinct reorganization of nucleosomes. Nucleosome occupancy was altered at telomeres, but not at centromeres. The first nucleosomes upstream (-1) and downstream (+1) of the transcription start site (TSS) were more dynamic than other nucleosomes. Mutations in histones affected the nucleosome array downstream of the TSS. Highly expressed genes, such as ribosome genes and genes involved in glycolysis, showed increased nucleosome occupancy in many types of histone mutant. In particular, the H3K56A mutant exhibited a high percentage of dynamic genomic regions, decreased nucleosome occupancy at telomeres, increased occupancy at the +1 and -1 nucleosomes, and a slow growth phenotype under stress conditions. Our findings provide insight into the influence of histone mutations on nucleosome dynamics.

  14. Nucleosome alterations caused by mutations at modifiable histone residues in Saccharomyces cerevisiae

    PubMed Central

    Liu, Hongde; Wang, Pingyan; Liu, Lingjie; Min, Zhu; Luo, Kun; Wan, Yakun

    2015-01-01

    Nucleosome organization exhibits dynamic properties depending on the cell state and environment. Histone proteins, fundamental components of nucleosomes, are subject to chemical modifications on particular residues. We examined the effect of substituting modifiable residues of four core histones with the non-modifiable residue alanine on nucleosome dynamics. We mapped the genome-wide nucleosomes in 22 histone mutants of Saccharomyces cerevisiae and compared the nucleosome alterations relative to the wild-type strain. Our results indicated that different types of histone mutation resulted in different phenotypes and a distinct reorganization of nucleosomes. Nucleosome occupancy was altered at telomeres, but not at centromeres. The first nucleosomes upstream (−1) and downstream (+1) of the transcription start site (TSS) were more dynamic than other nucleosomes. Mutations in histones affected the nucleosome array downstream of the TSS. Highly expressed genes, such as ribosome genes and genes involved in glycolysis, showed increased nucleosome occupancy in many types of histone mutant. In particular, the H3K56A mutant exhibited a high percentage of dynamic genomic regions, decreased nucleosome occupancy at telomeres, increased occupancy at the +1 and −1 nucleosomes, and a slow growth phenotype under stress conditions. Our findings provide insight into the influence of histone mutations on nucleosome dynamics. PMID:26498326

  15. Hormone activation induces nucleosome positioning in vivo

    PubMed Central

    Belikov, Sergey; Gelius, Birgitta; Almouzni, Geneviève; Wrange, Örjan

    2000-01-01

    The mouse mammary tumor virus (MMTV) promoter is induced by glucocorticoid hormone. A robust hormone- and receptor-dependent activation could be reproduced in Xenopus laevis oocytes. The homogeneous response in this system allowed a detailed analysis of the transition in chromatin structure following hormone activation. This revealed two novel findings: hormone activation led to the establishment of specific translational positioning of nucleosomes despite the lack of significant positioning in the inactive state; and, in the active promoter, a subnucleosomal particle encompassing the glucocorticoid receptor (GR)-binding region was detected. The presence of only a single GR-binding site was sufficient for the structural transition to occur. Both basal promoter elements and ongoing transcription were dispensable. These data reveal a stepwise process in the transcriptional activation by glucocorticoid hormone. PMID:10698943

  16. Repertoires of the nucleosome-positioning dinucleotides.

    PubMed

    Bettecken, Thomas; Trifonov, Edward N

    2009-11-02

    It is generally accepted that the organization of eukaryotic DNA into chromatin is strongly governed by a code inherent in the genomic DNA sequence. This code, as well as other codes, is superposed on the triplets coding for amino acids. The history of the chromatin code started three decades ago with the discovery of the periodic appearance of certain dinucleotides, with AA/TT and RR/YY giving the strongest signals, all with a period of 10.4 bases. Every base-pair stack in the DNA duplex has specific deformation properties, thus favoring DNA bending in a specific direction. The appearance of the corresponding dinucleotide at the distance 10.4 xn bases will facilitate DNA bending in that direction, which corresponds to the minimum energy of DNA folding in the nucleosome. We have analyzed the periodic appearances of all 16 dinucleotides in the genomes of thirteen different eukaryotic organisms. Our data show that a large variety of dinucleotides (if not all) are, apparently, contributing to the nucleosome positioning code. The choice of the periodical dinucleotides differs considerably from one organism to another. Among other 10.4 base periodicities, a strong and very regular 10.4 base signal was observed for CG dinucleotides in the genome of the honey bee A. mellifera. Also, the dinucleotide CG appears as the only periodical component in the human genome. This observation seems especially relevant since CpG methylation is well known to modulate chromatin packing and regularity. Thus, the selection of the dinucleotides contributing to the chromatin code is species specific, and may differ from region to region, depending on the sequence context.

  17. Nucleotide excision repair and photolyase repair of UV photoproducts in nucleosomes: assessing the existence of nucleosome and non-nucleosome rDNA chromatin in vivo.

    PubMed

    Tremblay, Maxime; Toussaint, Martin; D'Amours, Annie; Conconi, Antonio

    2009-02-01

    The genome is organized into nuclear domains, which create microenvironments that favor distinct chromatin structures and functions (e.g., highly repetitive sequences, centromeres, telomeres, noncoding sequences, inactive genes, RNA polymerase II and III transcribed genes, and the nucleolus). Correlations have been drawn between gene silencing and proximity to a heterochromatic compartment. At the other end of the scale are ribosomal genes, which are transcribed at a very high rate by RNA polymerase I (~60% of total transcription), have a loose chromatin structure, and are clustered in the nucleolus. The rDNA sequences have 2 distinct structures: active rRNA genes, which have no nucleosomes; and inactive rRNA genes, which have nucleosomes. Like DNA transcription and replication, DNA repair is modulated by the structure of chromatin, and the kinetics of DNA repair vary among the nuclear domains. Although research on DNA repair in all chromosomal contexts is important to understand the mechanisms of genome maintenance, this review focuses on nucleotide excision repair and photolyase repair of UV photoproducts in the first-order packing of DNA in chromatin: the nucleosome. In addition, it summarizes the studies that have demonstrated the existence of the 2 rDNA chromatins, and the way this feature of the rDNA locus allows for direct comparison of DNA repair in 2 very different structures: nucleosome and non-nucleosome DNA.

  18. DNA damage may drive nucleosomal reorganization to facilitate damage detection

    NASA Astrophysics Data System (ADS)

    LeGresley, Sarah E.; Wilt, Jamie; Antonik, Matthew

    2014-03-01

    One issue in genome maintenance is how DNA repair proteins find lesions at rates that seem to exceed diffusion-limited search rates. We propose a phenomenon where DNA damage induces nucleosomal rearrangements which move lesions to potential rendezvous points in the chromatin structure. These rendezvous points are the dyad and the linker DNA between histones, positions in the chromatin which are more likely to be accessible by repair proteins engaged in a random search. The feasibility of this mechanism is tested by considering the statistical mechanics of DNA containing a single lesion wrapped onto the nucleosome. We consider lesions which make the DNA either more flexible or more rigid by modeling the lesion as either a decrease or an increase in the bending energy. We include this energy in a partition function model of nucleosome breathing. Our results indicate that the steady state for a breathing nucleosome will most likely position the lesion at the dyad or in the linker, depending on the energy of the lesion. A role for DNA binding proteins and chromatin remodelers is suggested based on their ability to alter the mechanical properties of the DNA and DNA-histone binding, respectively. We speculate that these positions around the nucleosome potentially serve as rendezvous points where DNA lesions may be encountered by repair proteins which may be sterically hindered from searching the rest of the nucleosomal DNA. The strength of the repositioning is strongly dependent on the structural details of the DNA lesion and the wrapping and breathing of the nucleosome. A more sophisticated evaluation of this proposed mechanism will require detailed information about breathing dynamics, the structure of partially wrapped nucleosomes, and the structural properties of damaged DNA.

  19. Nucleosome Positioning and NDR Structure at RNA Polymerase III Promoters

    PubMed Central

    Helbo, Alexandra Søgaard; Lay, Fides D.; Jones, Peter A.; Liang, Gangning; Grønbæk, Kirsten

    2017-01-01

    Chromatin is structurally involved in the transcriptional regulation of all genes. While the nucleosome positioning at RNA polymerase II (pol II) promoters has been extensively studied, less is known about the chromatin structure at pol III promoters in human cells. We use a high-resolution analysis to show substantial differences in chromatin structure of pol II and pol III promoters, and between subtypes of pol III genes. Notably, the nucleosome depleted region at the transcription start site of pol III genes extends past the termination sequences, resulting in nucleosome free gene bodies. The +1 nucleosome is located further downstream than at pol II genes and furthermore displays weak positioning. The variable position of the +1 location is seen not only within individual cell populations and between cell types, but also between different pol III promoter subtypes, suggesting that the +1 nucleosome may be involved in the transcriptional regulation of pol III genes. We find that expression and DNA methylation patterns correlate with distinct accessibility patterns, where DNA methylation associates with the silencing and inaccessibility at promoters. Taken together, this study provides the first high-resolution map of nucleosome positioning and occupancy at human pol III promoters at specific loci and genome wide. PMID:28176797

  20. Nucleosomes determine their own patch size in base excision repair

    PubMed Central

    Meas, Rithy; Smerdon, Michael J.

    2016-01-01

    Base excision repair (BER) processes non-helix distorting lesions (e.g., uracils and gaps) and is composed of two subpathways that differ in the number of nucleotides (nts) incorporated during the DNA synthesis step: short patch (SP) repair incorporates 1 nt and long patch (LP) repair incorporates 2–12 nts. This choice for either LP or SP repair has not been analyzed in the context of nucleosomes. Initial studies with uracil located in nucleosome core DNA showed a distinct DNA polymerase extension profile in cell-free extracts that specifically limits extension to 1 nt, suggesting a preference for SP BER. Therefore, we developed an assay to differentiate long and short repair patches in ‘designed’ nucleosomes containing a single-nucleotide gap at specific locations relative to the dyad center. Using cell-free extracts or purified enzymes, we found that DNA lesions in the nucleosome core are preferentially repaired by DNA polymerase β and there is a significant reduction in BER polymerase extension beyond 1 nt, creating a striking bias for incorporation of short patches into nucleosomal DNA. These results show that nucleosomes control the patch size used by BER. PMID:27265863

  1. Identification of autoreactive B cells with labeled nucleosomes.

    PubMed

    Gies, Vincent; Wagner, Alain; Seifert, Cécile; Guffroy, Aurélien; Fauny, Jean-D; Knapp, Anne-M; Pasquali, Jean-L; Martin, Thierry; Dumortier, Hélène; Korganow, Anne-S; Soulas-Sprauel, Pauline

    2017-04-04

    The pathogenesis of autoimmune diseases has not been completely elucidated yet, and only a few specific treatments have been developed so far. In autoimmune diseases mediated by pathogenic autoantibodies, such as systemic lupus erythematosus, the specific detection and analysis of autoreactive B cells is crucial for a better understanding of the physiopathology. Biological characterization of these cells may help to define new therapeutic targets. Very few techniques allowing the precise detection of autoreactive B cells have been described so far. Herein we propose a new flow cytometry technique for specific detection of anti-nucleosome B cells, which secrete autoantibodies in systemic lupus erythematosus, using labeled nucleosomes. We produced different fluorochrome-labeled nucleosomes, characterized them, and finally tested them in flow cytometry. Nucleosomes labeled via the cysteines present in H3 histone specifically bind to autoreactive B cells in the anti-DNA transgenic B6.56R mice model. The present work validates the use of fluorochrome-labeled nucleosomes via cysteines to identify anti-nucleosome B cells and offers new opportunities for the description of autoreactive B cell phenotype.

  2. Nucleosome Positioning and NDR Structure at RNA Polymerase III Promoters

    NASA Astrophysics Data System (ADS)

    Helbo, Alexandra Søgaard; Lay, Fides D.; Jones, Peter A.; Liang, Gangning; Grønbæk, Kirsten

    2017-02-01

    Chromatin is structurally involved in the transcriptional regulation of all genes. While the nucleosome positioning at RNA polymerase II (pol II) promoters has been extensively studied, less is known about the chromatin structure at pol III promoters in human cells. We use a high-resolution analysis to show substantial differences in chromatin structure of pol II and pol III promoters, and between subtypes of pol III genes. Notably, the nucleosome depleted region at the transcription start site of pol III genes extends past the termination sequences, resulting in nucleosome free gene bodies. The +1 nucleosome is located further downstream than at pol II genes and furthermore displays weak positioning. The variable position of the +1 location is seen not only within individual cell populations and between cell types, but also between different pol III promoter subtypes, suggesting that the +1 nucleosome may be involved in the transcriptional regulation of pol III genes. We find that expression and DNA methylation patterns correlate with distinct accessibility patterns, where DNA methylation associates with the silencing and inaccessibility at promoters. Taken together, this study provides the first high-resolution map of nucleosome positioning and occupancy at human pol III promoters at specific loci and genome wide.

  3. The universality of nucleosome organization: from yeast to human

    NASA Astrophysics Data System (ADS)

    Chereji, Razvan

    The basic units of DNA packaging are called nucleosomes. Their locations on the chromosomes play an essential role in gene regulation. We study nucleosome positioning in yeast, fly, mouse, and human, and build biophysical models in order to explain the genome-wide nucleosome organization. We show that DNA sequence alone is not able to generate the phased arrays of nucleosomes observed in vivo near the transcription start sites. We discuss simple models which can account for the formation of nucleosome depleted regions and nucleosome phasing at the gene promoters. We show that the same principles apply to different organisms. References: [1] RV Chereji, D Tolkunov, G Locke, AV Morozov - Phys. Rev. E 83, 050903 (2011) [2] RV Chereji, AV Morozov - J. Stat. Phys. 144, 379 (2011) [3] RV Chereji, AV Morozov - Proc. Natl. Acad. Sci. U.S.A. 111, 5236 (2014) [4] RV Chereji, T-W Kan, et al. - Nucleic Acids Res. (2015) doi: 10.1093/nar/gkv978 [5] RV Chereji, AV Morozov - Brief. Funct. Genomics 14, 50 (2015) [6] HA Cole, J Ocampo, JR Iben, RV Chereji, DJ Clark - Nucleic Acids Res. 42, 12512 (2014) [7] D Ganguli, RV Chereji, J Iben, HA Cole, DJ Clark - Genome Res. 24, 1637 (2014)

  4. Relationship between periodic dinucleotides and the nucleosome structure revealed by alpha shape modeling

    NASA Astrophysics Data System (ADS)

    Zhou, Weiqiang; Yan, Hong

    2010-04-01

    As the fundamental repeating units in eukaryotic chromatin, nucleosomes play an important role in many biological processes. For this reason, the study of the structure of nucleosomes may help to reveal some of the crucial principals of these processes. In our research, we have used alpha shapes to model nucleosome structure and discovered that the periodic DNA dinucleotides AA, TT and GC occupy special positions in nucleosome structure with one nucleotide inside and the other outside the nucleosome surface. This structural feature and other dinucleotide characteristics can provide useful information for the study of nucleosome positioning.

  5. Binding of NF-κB to nucleosomes: effect of translational positioning, nucleosome remodeling and linker histone H1.

    PubMed

    Lone, Imtiaz Nisar; Shukla, Manu Shubhdarshan; Charles Richard, John Lalith; Peshev, Zahary Yordanov; Dimitrov, Stefan; Angelov, Dimitar

    2013-01-01

    NF-κB is a key transcription factor regulating the expression of inflammatory responsive genes. How NF-κB binds to naked DNA templates is well documented, but how it interacts with chromatin is far from being clear. Here we used a combination of UV laser footprinting, hydroxyl footprinting and electrophoretic mobility shift assay to investigate the binding of NF-κB to nucleosomal templates. We show that NF-κB p50 homodimer is able to bind to its recognition sequence, when it is localized at the edge of the core particle, but not when the recognition sequence is at the interior of the nucleosome. Remodeling of the nucleosome by the chromatin remodeling machine RSC was not sufficient to allow binding of NF-κB to its recognition sequence located in the vicinity of the nucleosome dyad, but RSC-induced histone octamer sliding allowed clearly detectable binding of NF-κB with the slid particle. Importantly, nucleosome dilution-driven removal of H2A-H2B dimer led to complete accessibility of the site located close to the dyad to NF-κB. Finally, we found that NF-κB was able to displace histone H1 and prevent its binding to nucleosome. These data provide important insight on the role of chromatin structure in the regulation of transcription of NF-κB dependent genes.

  6. Binding of NF-κB to Nucleosomes: Effect of Translational Positioning, Nucleosome Remodeling and Linker Histone H1

    PubMed Central

    Lone, Imtiaz Nisar; Shukla, Manu Shubhdarshan; Charles Richard, John Lalith; Peshev, Zahary Yordanov; Dimitrov, Stefan; Angelov, Dimitar

    2013-01-01

    NF-κB is a key transcription factor regulating the expression of inflammatory responsive genes. How NF-κB binds to naked DNA templates is well documented, but how it interacts with chromatin is far from being clear. Here we used a combination of UV laser footprinting, hydroxyl footprinting and electrophoretic mobility shift assay to investigate the binding of NF-κB to nucleosomal templates. We show that NF-κB p50 homodimer is able to bind to its recognition sequence, when it is localized at the edge of the core particle, but not when the recognition sequence is at the interior of the nucleosome. Remodeling of the nucleosome by the chromatin remodeling machine RSC was not sufficient to allow binding of NF-κB to its recognition sequence located in the vicinity of the nucleosome dyad, but RSC-induced histone octamer sliding allowed clearly detectable binding of NF-κB with the slid particle. Importantly, nucleosome dilution-driven removal of H2A–H2B dimer led to complete accessibility of the site located close to the dyad to NF-κB. Finally, we found that NF-κB was able to displace histone H1 and prevent its binding to nucleosome. These data provide important insight on the role of chromatin structure in the regulation of transcription of NF-κB dependent genes. PMID:24086160

  7. Transcriptional and genomic mayhem due to aging-induced nucleosome loss in budding yeast

    PubMed Central

    Hu, Zheng; Chen, Kaifu; Li, Wei; Tyler, Jessica K.

    2014-01-01

    All eukaryotic genomes are assembled into a nucleoprotein structure termed chromatin, which is comprised of regular arrays of nucleosomes. Each nucleosome consists of eight core histone protein molecules around which the DNA is wrapped 1.75 times. The ultimate consequence of packaging the genome into chromatin is that the DNA sequences are relatively inaccessible. This allows the cell to use a comprehensive toolbox of chromatin-altering machineries to reveal access to the DNA sequence at the right time and right place in order to allow genomic processes, such as DNA repair, transcription and replication, to occur in a tightly-regulated manner. In other words, chromatin provides the framework that allows the regulation of all genomic processes, because the machineries that mediate transcription, repair and DNA replication themselves are relatively non-sequence specific and if the genome were naked, they would presumably perform their tasks in a random and unregulated manner. We recently provided support for this prediction in Zheng et al., [Genes and Development (2014) 28: 396-408] by investigating a physiologically relevant scenario in which we had found that cells lose half of the core histone proteins, that is, during the mitotic aging (also called replicative aging) of budding yeast. Using new spike-in normalization techniques, we found that the occupancy of nucleosomes at most DNA sequences is reduced by 50%, leading to transcriptional induction of every single gene. This loss of histones during aging was also accompanied by a significantly-increased frequency of genomic instability including DNA breaks, chromosomal translocations, retrotransposition, and transfer of mitochondrial DNA into the nuclear genome (Figure 1).

  8. RNase P protein subunit Rpp29 represses histone H3.3 nucleosome deposition

    PubMed Central

    Newhart, Alyshia; Powers, Sara Lawrence; Shastrula, Prashanth Krishna; Sierra, Isabel; Joo, Lucy M.; Hayden, James E.; Cohen, Andrew R.; Janicki, Susan M.

    2016-01-01

    In mammals, histone H3.3 is a critical regulator of transcription state change and heritability at both euchromatin and heterochromatin. The H3.3-specific chaperone, DAXX, together with the chromatin-remodeling factor, ATRX, regulates H3.3 deposition and transcriptional silencing at repetitive DNA, including pericentromeres and telomeres. However, the events that precede H3.3 nucleosome incorporation have not been fully elucidated. We previously showed that the DAXX-ATRX-H3.3 pathway regulates a multi-copy array of an inducible transgene that can be visualized in single living cells. When this pathway is impaired, the array can be robustly activated. H3.3 is strongly recruited to the site during activation where it accumulates in a complex with transcribed sense and antisense RNA, which is distinct from the DNA/chromatin. This suggests that transcriptional events regulate H3.3 recruited to its incorporation sites. Here we report that the nucleolar RNA proteins Rpp29, fibrillarin, and RPL23a are also components of this H3.3/RNA complex. Rpp29 is a protein subunit of RNase P. Of the other subunits, POP1 and Rpp21 are similarly recruited suggesting that a variant of RNase P regulates H3.3 chromatin assembly. Rpp29 knockdown increases H3.3 chromatin incorporation, which suggests that Rpp29 represses H3.3 nucleosome deposition, a finding with implications for epigenetic regulation. PMID:26842893

  9. Chemical map of Schizosaccharomyces pombe reveals species-specific features in nucleosome positioning.

    PubMed

    Moyle-Heyrman, Georgette; Zaichuk, Tetiana; Xi, Liqun; Zhang, Quanwei; Uhlenbeck, Olke C; Holmgren, Robert; Widom, Jonathan; Wang, Ji-Ping

    2013-12-10

    Using a recently developed chemical approach, we have generated a genome-wide map of nucleosomes in vivo in Schizosaccharomyces pombe (S. pombe) at base pair resolution. The shorter linker length previously identified in S. pombe is due to a preponderance of nucleosomes separated by ∼4/5 bp, placing nucleosomes on opposite faces of the DNA. The periodic dinucleotide feature thought to position nucleosomes is equally strong in exons as in introns, demonstrating that nucleosome positioning information can be superimposed on coding information. Unlike the case in Saccharomyces cerevisiae, A/T-rich sequences are enriched in S. pombe nucleosomes, particularly at ±20 bp around the dyad. This difference in nucleosome binding preference gives rise to a major distinction downstream of the transcription start site, where nucleosome phasing is highly predictable by A/T frequency in S. pombe but not in S. cerevisiae, suggesting that the genomes and DNA binding preferences of nucleosomes have coevolved in different species. The poly (dA-dT) tracts affect but do not deplete nucleosomes in S. pombe, and they prefer special rotational positions within the nucleosome, with longer tracts enriched in the 10- to 30-bp region from the dyad. S. pombe does not have a well-defined nucleosome-depleted region immediately upstream of most transcription start sites; instead, the -1 nucleosome is positioned with the expected spacing relative to the +1 nucleosome, and its occupancy is negatively correlated with gene expression. Although there is generally very good agreement between nucleosome maps generated by chemical cleavage and micrococcal nuclease digestion, the chemical map shows consistently higher nucleosome occupancy on DNA with high A/T content.

  10. Chemical physics of DNA packaging in a nucleosome core particle

    NASA Astrophysics Data System (ADS)

    Spakowitz, Andrew; Sudhanshu, Bariz

    2008-03-01

    The fundamental unit of packaged DNA, the nucleosome core particle, contains 146 base pairs of DNA wrapped 1.7 times around a cationic protein complex called the histone octamer. A string of nucleosomes is organized into higher-order structures at several hierarchical levels to form chromatin, a remarkable complex that is compact yet maintains accessibility for gene expression. We develop a theoretical model of the nucleosome core particle in order to extract detailed quantitative information from single-molecule measurements of a single nucleosome under tension. We employ the wormlike chain model to describe the DNA strand as a thermally fluctuating polymer chain. The chain adsorbs on a spool that represents the histone octamer. This model is directly compared to single-molecule experiments conducted in Carlos Bustamante's lab; we find good agreement between our theory and the experimental data. Our model reveals the mechanism that underlies structural transitions that are apparent in the experimental measurements and predicts the conditions where these transitions occur. We proceed to construct a free energy surface to predict the dynamic response in a single-molecule experiment with a time-dependent rate of unwinding the nucleosome. The combination of single-molecule experiments and our theoretical modeling gives detailed information about the specific interactions between DNA and histone proteins.

  11. Effects of DNA methylation on the structure of nucleosomes.

    PubMed

    Lee, Ju Yeon; Lee, Tae-Hee

    2012-01-11

    Nucleosomes are the fundamental packing units of the eukaryotic genome. Understanding the dynamic structure of a nucleosome is a key to the elucidation of genome packaging in eukaryotes, which is tied to the mechanisms of gene regulation. CpG methylation of DNA is an epigenetic modification associated with the inactivation of transcription and the formation of a repressive chromatin structure. Unraveling the changes in the structure of nucleosomes upon CpG methylation is an essential step toward the understanding of the mechanisms of gene repression and silencing by CpG methylation. Here we report single-molecule and ensemble fluorescence studies showing how the structure of a nucleosome is affected by CpG methylation. The results indicate that CpG methylation induces tighter wrapping of DNA around the histone core accompanied by a topology change. These findings suggest that changes in the physical properties of nucleosomes induced upon CpG methylation may contribute directly to the formation of a repressive chromatin structure.

  12. Flexible and dynamic nucleosome fiber in living mammalian cells.

    PubMed

    Nozaki, Tadasu; Kaizu, Kazunari; Pack, Chan-Gi; Tamura, Sachiko; Tani, Tomomi; Hihara, Saera; Nagai, Takeharu; Takahashi, Koichi; Maeshima, Kazuhiro

    2013-01-01

    Genomic DNA is organized three dimensionally within cells as chromatin and is searched and read by various proteins by an unknown mechanism; this mediates diverse cell functions. Recently, several pieces of evidence, including our cryomicroscopy and synchrotron X-ray scattering analyses, have demonstrated that chromatin consists of irregularly folded nucleosome fibers without a 30-nm chromatin fiber (i.e., a polymer melt-like structure). This melt-like structure implies a less physically constrained and locally more dynamic state, which may be crucial for protein factors to scan genomic DNA. Using a combined approach of fluorescence correlation spectroscopy, Monte Carlo computer simulations, and single nucleosome imaging, we demonstrated the flexible and dynamic nature of the nucleosome fiber in living mammalian cells. We observed local nucleosome fluctuation (~50 nm movement/30 ms) caused by Brownian motion. Our in vivo/in silico results suggest that local nucleosome dynamics facilitate chromatin accessibility and play a critical role in the scanning of genome information.

  13. Integrated molecular mechanism directing nucleosome reorganization by human FACT.

    PubMed

    Tsunaka, Yasuo; Fujiwara, Yoshie; Oyama, Takuji; Hirose, Susumu; Morikawa, Kosuke

    2016-03-15

    Facilitates chromatin transcription (FACT) plays essential roles in chromatin remodeling during DNA transcription, replication, and repair. Our structural and biochemical studies of human FACT-histone interactions present precise views of nucleosome reorganization, conducted by the FACT-SPT16 (suppressor of Ty 16) Mid domain and its adjacent acidic AID segment. AID accesses the H2B N-terminal basic region exposed by partial unwrapping of the nucleosomal DNA, thereby triggering the invasion of FACT into the nucleosome. The crystal structure of the Mid domain complexed with an H3-H4 tetramer exhibits two separate contact sites; the Mid domain forms a novel intermolecular β structure with H4. At the other site, the Mid-H2A steric collision on the H2A-docking surface of the H3-H4 tetramer within the nucleosome induces H2A-H2B displacement. This integrated mechanism results in disrupting the H3 αN helix, which is essential for retaining the nucleosomal DNA ends, and hence facilitates DNA stripping from histone.

  14. Integrated molecular mechanism directing nucleosome reorganization by human FACT

    PubMed Central

    Tsunaka, Yasuo; Fujiwara, Yoshie; Oyama, Takuji; Hirose, Susumu; Morikawa, Kosuke

    2016-01-01

    Facilitates chromatin transcription (FACT) plays essential roles in chromatin remodeling during DNA transcription, replication, and repair. Our structural and biochemical studies of human FACT–histone interactions present precise views of nucleosome reorganization, conducted by the FACT-SPT16 (suppressor of Ty 16) Mid domain and its adjacent acidic AID segment. AID accesses the H2B N-terminal basic region exposed by partial unwrapping of the nucleosomal DNA, thereby triggering the invasion of FACT into the nucleosome. The crystal structure of the Mid domain complexed with an H3–H4 tetramer exhibits two separate contact sites; the Mid domain forms a novel intermolecular β structure with H4. At the other site, the Mid–H2A steric collision on the H2A-docking surface of the H3–H4 tetramer within the nucleosome induces H2A–H2B displacement. This integrated mechanism results in disrupting the H3 αN helix, which is essential for retaining the nucleosomal DNA ends, and hence facilitates DNA stripping from histone. PMID:26966247

  15. Electrostatic mechanism of nucleosomal array folding revealed by computer simulation

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Zhang, Qing; Schlick, Tamar

    2005-06-01

    Although numerous experiments indicate that the chromatin fiber displays salt-dependent conformations, the associated molecular mechanism remains unclear. Here, we apply an irregular Discrete Surface Charge Optimization (DiSCO) model of the nucleosome with all histone tails incorporated to describe by Monte Carlo simulations salt-dependent rearrangements of a nucleosomal array with 12 nucleosomes. The ensemble of nucleosomal array conformations display salt-dependent condensation in good agreement with hydrodynamic measurements and suggest that the array adopts highly irregular 3D zig-zag conformations at high (physiological) salt concentrations and transitions into the extended "beads-on-a-string" conformation at low salt. Energy analyses indicate that the repulsion among linker DNA leads to this extended form, whereas internucleosome attraction drives the folding at high salt. The balance between these two contributions determines the salt-dependent condensation. Importantly, the internucleosome and linker DNA-nucleosome attractions require histone tails; we find that the H3 tails, in particular, are crucial for stabilizing the moderately folded fiber at physiological monovalent salt. chromatin modeling | irregular 3D zig-zag | Discrete Surface Charge Optimization model

  16. Structural Mechanisms of Nucleosome Recognition by Linker Histones.

    PubMed

    Zhou, Bing-Rui; Jiang, Jiansheng; Feng, Hanqiao; Ghirlando, Rodolfo; Xiao, T Sam; Bai, Yawen

    2015-08-20

    Linker histones bind to the nucleosome and regulate the structure of chromatin and gene expression. Despite more than three decades of effort, the structural basis of nucleosome recognition by linker histones remains elusive. Here, we report the crystal structure of the globular domain of chicken linker histone H5 in complex with the nucleosome at 3.5 Å resolution, which is validated using nuclear magnetic resonance spectroscopy. The globular domain sits on the dyad of the nucleosome and interacts with both DNA linkers. Our structure integrates results from mutation analyses and previous cross-linking and fluorescence recovery after photobleach experiments, and it helps resolve the long debate on structural mechanisms of nucleosome recognition by linker histones. The on-dyad binding mode of the H5 globular domain is different from the recently reported off-dyad binding mode of Drosophila linker histone H1. We demonstrate that linker histones with different binding modes could fold chromatin to form distinct higher-order structures.

  17. Electrostatic mechanism of nucleosomal array folding revealed by computer simulation

    PubMed Central

    Sun, Jian; Zhang, Qing; Schlick, Tamar

    2005-01-01

    Although numerous experiments indicate that the chromatin fiber displays salt-dependent conformations, the associated molecular mechanism remains unclear. Here, we apply an irregular Discrete Surface Charge Optimization (DiSCO) model of the nucleosome with all histone tails incorporated to describe by Monte Carlo simulations salt-dependent rearrangements of a nucleosomal array with 12 nucleosomes. The ensemble of nucleosomal array conformations display salt-dependent condensation in good agreement with hydrodynamic measurements and suggest that the array adopts highly irregular 3D zig-zag conformations at high (physiological) salt concentrations and transitions into the extended “beads-on-a-string” conformation at low salt. Energy analyses indicate that the repulsion among linker DNA leads to this extended form, whereas internucleosome attraction drives the folding at high salt. The balance between these two contributions determines the salt-dependent condensation. Importantly, the internucleosome and linker DNA–nucleosome attractions require histone tails; we find that the H3 tails, in particular, are crucial for stabilizing the moderately folded fiber at physiological monovalent salt. PMID:15919827

  18. The nucleosome: orchestrating DNA damage signaling and repair within chromatin.

    PubMed

    Agarwal, Poonam; Miller, Kyle M

    2016-10-01

    DNA damage occurs within the chromatin environment, which ultimately participates in regulating DNA damage response (DDR) pathways and repair of the lesion. DNA damage activates a cascade of signaling events that extensively modulates chromatin structure and organization to coordinate DDR factor recruitment to the break and repair, whilst also promoting the maintenance of normal chromatin functions within the damaged region. For example, DDR pathways must avoid conflicts between other DNA-based processes that function within the context of chromatin, including transcription and replication. The molecular mechanisms governing the recognition, target specificity, and recruitment of DDR factors and enzymes to the fundamental repeating unit of chromatin, i.e., the nucleosome, are poorly understood. Here we present our current view of how chromatin recognition by DDR factors is achieved at the level of the nucleosome. Emerging evidence suggests that the nucleosome surface, including the nucleosome acidic patch, promotes the binding and activity of several DNA damage factors on chromatin. Thus, in addition to interactions with damaged DNA and histone modifications, nucleosome recognition by DDR factors plays a key role in orchestrating the requisite chromatin response to maintain both genome and epigenome integrity.

  19. Acetylation curtails nucleosome binding, not stable nucleosome remodeling, by FoxO1

    SciTech Connect

    Hatta, M.; Liu, F.; Cirillo, L.A.

    2009-02-20

    Transcriptional activity of FoxO factors is controlled through the actions of multiple growth factors signaling through protein kinase B, whereby phosphorylation of FoxO factors inhibits FoxO-mediated transactivation by promoting nuclear export. Phosphorylation of FoxO factors is enhanced by p300-mediated acetylation, which decreases their affinity for DNA. The negative effect of acetylation on FoxO DNA binding, together with nuclear FoxO mobility, is eliminated by over-expression of the de-acetylase Sirt1, suggesting that acetylation mobilizes FoxO factors in chromatin for inducible gene expression. Here, we show that acetylation significantly curtails the affinity of FoxO1 for its binding sites in nucleosomal DNA but has no effect on either stable nucleosome binding or remodeling by this factor. We suggest that, while acetylation provides a first, essential step toward mobilizing FoxO factors for inducible gene repression, additional mechanisms exist for overcoming their inherent capacity to stably bind and remodel nuclear chromatin.

  20. Hierarchical regulation of the genome: global changes in nucleosome organization potentiate genome response.

    PubMed

    Sexton, Brittany S; Druliner, Brooke R; Vera, Daniel L; Avey, Denis; Zhu, Fanxiu; Dennis, Jonathan H

    2016-02-09

    Nucleosome occupancy is critically important in regulating access to the eukaryotic genome. Few studies in human cells have measured genome-wide nucleosome distributions at high temporal resolution during a response to a common stimulus. We measured nucleosome distributions at high temporal resolution following Kaposi's-sarcoma-associated herpesvirus (KSHV) reactivation using our newly developed mTSS-seq technology, which maps nucleosome distribution at the transcription start sites (TSS) of all human genes. Nucleosomes underwent widespread changes in organization 24 hours after KSHV reactivation and returned to their basal nucleosomal architecture 48 hours after KSHV reactivation. The widespread changes consisted of an indiscriminate remodeling event resulting in the loss of nucleosome rotational phasing signals. Additionally, one in six TSSs in the human genome possessed nucleosomes that are translationally remodeled. 72% of the loci with translationally remodeled nucleosomes have nucleosomes that moved to positions encoded by the underlying DNA sequence. Finally we demonstrated that these widespread alterations in nucleosomal architecture potentiated regulatory factor binding. These descriptions of nucleosomal architecture changes provide a new framework for understanding the role of chromatin in the genomic response, and have allowed us to propose a hierarchical model for chromatin-based regulation of genome response.

  1. A Novel Wavelet-Based Approach for Predicting Nucleosome Positions Using DNA Structural Information.

    PubMed

    Gan, Yanglan; Zou, Guobing; Guan, Jihong; Xu, Guangwei

    2014-01-01

    Nucleosomes are basic elements of chromatin structure. The positioning of nucleosomes along a genome is very important to dictate eukaryotic DNA compaction and access. Current computational methods have focused on the analysis of nucleosome occupancy and the positioning of well-positioned nucleosomes. However, fuzzy nucleosomes require more complex configurations and are more difficult to predict their positions. We analyzed the positioning of well-positioned and fuzzy nucleosomes from a novel structural perspective, and proposed WaveNuc, a computational approach for inferring their positions based on continuous wavelet transformation. The comparative analysis demonstrates that these two kinds of nucleosomes exhibit different propeller twist structural characteristics. Well-positioned nucleosomes tend to locate at sharp peaks of the propeller twist profile, whereas fuzzy nucleosomes correspond to broader peaks. The sharpness of these peaks shows that the propeller twist profile may contain nucleosome positioning information. Exploiting this knowledge, we applied WaveNuc to detect the two different kinds of peaks of the propeller twist profile along the genome. We compared the performance of our method with existing methods on real data sets. The results show that the proposed method can accurately resolve complex configurations of fuzzy nucleosomes, which leads to better performance of nucleosome positioning prediction on the whole genome.

  2. Rapid Histone-Catalyzed DNA Lesion Excision and Accompanying Protein Modification in Nucleosomes and Nucleosome Core Particles.

    PubMed

    Weng, Liwei; Greenberg, Marc M

    2015-09-02

    C5'-Hydrogen atoms are frequently abstracted during DNA oxidation. The oxidized abasic lesion 5'-(2-phosphoryl-1,4-dioxobutane) (DOB) is an electrophilic product of the C5'-radical. DOB is a potent irreversible inhibitor of DNA polymerase β, and forms interstrand cross-links in free DNA. We examined the reactivity of DOB within nucleosomes and nucleosome core particles (NCPs), the monomeric component of chromatin. Depending upon the position at which DOB is generated within a NCP, it is excised from nucleosomal DNA at a rate 275-1500-fold faster than that in free DNA. The half-life of DOB (7.0-16.8 min) in NCPs is shorter than any other abasic lesion. DOB's lifetime in NCPs is also significantly shorter than the estimated lifetime of an abasic site within a cell, suggesting that the observed chemistry would occur intracellularly. Histones also catalyze DOB excision when the lesion is present in the DNA linker region of a nucleosome. Schiff-base formation between DOB and histone proteins is detected in nucleosomes and NCPs, resulting in pyrrolone formation at the lysine residues. The lysines modified by DOB are often post-translationally modified. Consequently, the histone modifications described herein could affect the regulation of gene expression and may provide a chemical basis for the cytotoxicity of the DNA damaging agents that produce this lesion.

  3. Twist Neutrality and the Diameter of the Nucleosome Core Particle

    NASA Astrophysics Data System (ADS)

    Bohr, Jakob; Olsen, Kasper

    2012-03-01

    The diameter of the nucleosome core particle is the same for all the eukaryotes. Here we discuss the possibility that this selectiveness is consistent with a propensity for twist neutrality, in particular, for the double helical DNA to stay rotationally neutral when strained. Reorganization of DNA cannot be done without some level of temporal tensile stress, and as a consequence chiral molecules, such as helices, will twist under strain. The requirement that the nucleosome, constituting the nucleosome core particle and linker DNA, has a vanishing strain-twist coupling leads to a requirement for the amount of bending. For the diameter of the coiled DNA we obtain the relatively accurate numerical estimate of 2R=82Å.

  4. Nonuniform distribution of excision repair synthesis in nucleosome core DNA

    SciTech Connect

    Lan, S.Y.; Smerdon, M.J.

    1985-12-17

    We have studied the distribution in nucleosome core DNA of nucleotides incorporated by excision repair synthesis occurring immediately after UV irradiation in human cells. The differences previously observed for whole nuclei between the DNase I digestion profiles of repaired DNA (following its refolding into a nucleosome structure) and bulk DNA are obtained for isolated nucleosome core particles. Analysis of the differences obtained indicates that they could reflect a significant difference in the level of repair-incorporated nucleotides at different sites within the core DNA region. To test this possibility directly, we have used exonuclease III digestion of very homogeneous sized core particle DNA to map the distribution of repair synthesis in these regions. Results indicate that in a significant fraction of the nucleosomes the 5' and 3' ends of the core DNA are markedly enhanced in repair-incorporated nucleotides relative to the central region of the core particle. A best fit analysis indicates that a good approximation of the data is obtained for a distribution where the core DNA is uniformly labeled from the 5' end to position 62 and from position 114 to the 3' end, with the 52-base central region being devoid of repair-incorporated nucleotides. This distribution accounts for all of the quantitative differences observed previously between repaired DNA and bulk DNA following the rapid phase of nucleosome rearrangement when it is assumed that linker DNA and the core DNA ends are repaired with equal efficiency and the nucleosome structure of newly repaired DNA is identical with that of bulk chromatin. The 52-base central region that is devoid of repair synthesis contains the lowest frequency cutting sites for DNase I in vitro, as well as the only internal locations where two (rather than one) histones interact with a 10-base segment of each DNA strand.

  5. Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes.

    PubMed

    Grigoryev, Sergei A; Bascom, Gavin; Buckwalter, Jenna M; Schubert, Michael B; Woodcock, Christopher L; Schlick, Tamar

    2016-02-02

    The architecture of higher-order chromatin in eukaryotic cell nuclei is largely unknown. Here, we use electron microscopy-assisted nucleosome interaction capture (EMANIC) cross-linking experiments in combination with mesoscale chromatin modeling of 96-nucleosome arrays to investigate the internal organization of condensed chromatin in interphase cell nuclei and metaphase chromosomes at nucleosomal resolution. The combined data suggest a novel hierarchical looping model for chromatin higher-order folding, similar to rope flaking used in mountain climbing and rappelling. Not only does such packing help to avoid tangling and self-crossing, it also facilitates rope unraveling. Hierarchical looping is characterized by an increased frequency of higher-order internucleosome contacts for metaphase chromosomes compared with chromatin fibers in vitro and interphase chromatin, with preservation of a dominant two-start zigzag organization associated with the 30-nm fiber. Moreover, the strong dependence of looping on linker histone concentration suggests a hierarchical self-association mechanism of relaxed nucleosome zigzag chains rather than longitudinal compaction as seen in 30-nm fibers. Specifically, concentrations lower than one linker histone per nucleosome promote self-associations and formation of these looped networks of zigzag fibers. The combined experimental and modeling evidence for condensed metaphase chromatin as hierarchical loops and bundles of relaxed zigzag nucleosomal chains rather than randomly coiled threads or straight and stiff helical fibers reconciles aspects of other models for higher-order chromatin structure; it constitutes not only an efficient storage form for the genomic material, consistent with other genome-wide chromosome conformation studies that emphasize looping, but also a convenient organization for local DNA unraveling and genome access.

  6. Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes

    PubMed Central

    Grigoryev, Sergei A.; Bascom, Gavin; Buckwalter, Jenna M.; Schubert, Michael B.; Woodcock, Christopher L.; Schlick, Tamar

    2016-01-01

    The architecture of higher-order chromatin in eukaryotic cell nuclei is largely unknown. Here, we use electron microscopy-assisted nucleosome interaction capture (EMANIC) cross-linking experiments in combination with mesoscale chromatin modeling of 96-nucleosome arrays to investigate the internal organization of condensed chromatin in interphase cell nuclei and metaphase chromosomes at nucleosomal resolution. The combined data suggest a novel hierarchical looping model for chromatin higher-order folding, similar to rope flaking used in mountain climbing and rappelling. Not only does such packing help to avoid tangling and self-crossing, it also facilitates rope unraveling. Hierarchical looping is characterized by an increased frequency of higher-order internucleosome contacts for metaphase chromosomes compared with chromatin fibers in vitro and interphase chromatin, with preservation of a dominant two-start zigzag organization associated with the 30-nm fiber. Moreover, the strong dependence of looping on linker histone concentration suggests a hierarchical self-association mechanism of relaxed nucleosome zigzag chains rather than longitudinal compaction as seen in 30-nm fibers. Specifically, concentrations lower than one linker histone per nucleosome promote self-associations and formation of these looped networks of zigzag fibers. The combined experimental and modeling evidence for condensed metaphase chromatin as hierarchical loops and bundles of relaxed zigzag nucleosomal chains rather than randomly coiled threads or straight and stiff helical fibers reconciles aspects of other models for higher-order chromatin structure; it constitutes not only an efficient storage form for the genomic material, consistent with other genome-wide chromosome conformation studies that emphasize looping, but also a convenient organization for local DNA unraveling and genome access. PMID:26787893

  7. Nucleosomes and neutrophil activation in sickle cell disease painful crisis.

    PubMed

    Schimmel, Marein; Nur, Erfan; Biemond, Bart J; van Mierlo, Gerard J; Solati, Shabnam; Brandjes, Dees P; Otten, Hans-Martin; Schnog, John-John; Zeerleder, Sacha

    2013-11-01

    Activated polymorphonuclear neutrophils play an important role in the pathogenesis of vaso-occlusive painful sickle cell crisis. Upon activation, polymorphonuclear neutrophils can form neutrophil extracellular traps. Neutrophil extracellular traps consist of a meshwork of extracellular DNA, nucleosomes, histones and neutrophil proteases. Neutrophil extracellular traps have been demonstrated to be toxic to endothelial and parenchymal cells. This prospective cohort study was conducted to determine neutrophil extracellular trap formation in sickle cell patients during steady state and painful crisis. As a measure of neutrophil extracellular traps, plasma nucleosomes levels were determined and polymorphonuclear neutrophil activation was assessed measuring plasma levels of elastase-α1-antitrypsin complexes in 74 patients in steady state, 70 patients during painful crisis, and 24 race-matched controls using Enzyme Linked Immunosorbent Assay. Nucleosome levels in steady state sickle cell patients were significantly higher than levels in controls. During painful crisis levels of both nucleosomes and elastase-α1-antitrypsin complexes increased significantly. Levels of nucleosomes correlated significantly to elastase-α1-antitrypsin complex levels during painful crisis, (Sr = 0.654, P<0.001). This was seen in both HbSS/HbSβ(0)-thalassemia (Sr=0.55, P<0.001) and HbSC/HbSβ(+-)thalassemia patients (Sr=0.90, P<0.001) during painful crisis. Levels of nucleosomes showed a correlation with length of hospital stay and were highest in patients with acute chest syndrome. These data support the concept that neutrophil extracellular trap formation and neutrophil activation may play a role in the pathogenesis of painful sickle cell crisis and acute chest syndrome.

  8. Nucleosome remodelers in double-strand break repair.

    PubMed

    Seeber, Andrew; Hauer, Michael; Gasser, Susan M

    2013-04-01

    ATP-dependent nucleosome remodelers use ATP hydrolysis to shift, evict and exchange histone dimers or octamers and have well-established roles in transcription. Earlier work has suggested a role for nucleosome remodelers such as INO80 in double-strand break (DSB) repair. This review will begin with an update on recent studies that explore how remodelers are recruited to DSBs. We then examine their impact on various steps of repair, focusing on resection and the formation of the Rad51-ssDNA nucleofilament. Finally, we will explore new studies that implicate remodelers in the physical movement of chromatin in response to damage.

  9. Genome-Wide Analysis of Nucleosome Positions, Occupancy, and Accessibility in Yeast: Nucleosome Mapping, High-Resolution Histone ChIP, and NCAM.

    PubMed

    Rodriguez, Jairo; McKnight, Jeffrey N; Tsukiyama, Toshio

    2014-10-01

    Because histones bind DNA very tightly, the location on DNA and the level of occupancy of a given DNA sequence by nucleosomes can profoundly affect accessibility of non-histone proteins to chromatin, affecting virtually all DNA-dependent processes, such as transcription, DNA repair, DNA replication and recombination. Therefore, it is often necessary to determine positions and occupancy of nucleosomes to understand how DNA-dependent processes are regulated. Recent technological advances made such analyses feasible on a genome-wide scale at high resolution. In addition, we have recently developed a method to measure nuclease accessibility of nucleosomes on a global scale. This unit describes methods to map nucleosome positions, to determine nucleosome density, and to determine nuclease accessibility of nucleosomes using deep sequencing.

  10. The relationship between periodic dinucleotides and the nucleosomal DNA deformation revealed by normal mode analysis

    NASA Astrophysics Data System (ADS)

    Wang, Debby D.; Yan, Hong

    2011-12-01

    Nucleosomes, which contain DNA and proteins, are the basic unit of eukaryotic chromatins. Polymers such as DNA and proteins are dynamic, and their conformational changes can lead to functional changes. Periodic dinucleotide patterns exist in nucleosomal DNA chains and play an important role in the nucleosome structure. In this paper, we use normal mode analysis to detect significant structural deformations of nucleosomal DNA and investigate the relationship between periodic dinucleotides and DNA motions. We have found that periodic dinucleotides are usually located at the peaks or valleys of DNA and protein motions, revealing that they dominate the nucleosome dynamics. Also, a specific dinucleotide pattern CA/TG appears most frequently.

  11. A map of nucleosome positions in yeast at base-pair resolution.

    PubMed

    Brogaard, Kristin; Xi, Liqun; Wang, Ji-Ping; Widom, Jonathan

    2012-06-28

    The exact positions of nucleosomes along genomic DNA can influence many aspects of chromosome function. However, existing methods for mapping nucleosomes do not provide the necessary single-base-pair accuracy to determine these positions. Here we develop and apply a new approach for direct mapping of nucleosome centres on the basis of chemical modification of engineered histones. The resulting map locates nucleosome positions genome-wide in unprecedented detail and accuracy. It shows new aspects of the in vivo nucleosome organization that are linked to transcription factor binding, RNA polymerase pausing and the higher-order structure of the chromatin fibre.

  12. Coupling between Histone Conformations and DNA Geometry in Nucleosomes on a Microsecond Timescale: Atomistic Insights into Nucleosome Functions.

    PubMed

    Shaytan, Alexey K; Armeev, Grigoriy A; Goncearenco, Alexander; Zhurkin, Victor B; Landsman, David; Panchenko, Anna R

    2016-01-16

    An octamer of histone proteins wraps about 200bp of DNA into two superhelical turns to form nucleosomes found in chromatin. Although the static structure of the nucleosomal core particle has been solved, details of the dynamic interactions between histones and DNA remain elusive. We performed extensively long unconstrained, all-atom microsecond molecular dynamics simulations of nucleosomes including linker DNA segments and full-length histones in explicit solvent. For the first time, we were able to identify and characterize the rearrangements in nucleosomes on a microsecond timescale including the coupling between the conformation of the histone tails and the DNA geometry. We found that certain histone tail conformations promoted DNA bulging near its entry/exit sites, resulting in the formation of twist defects within the DNA. This led to a reorganization of histone-DNA interactions, suggestive of the formation of initial nucleosome sliding intermediates. We characterized the dynamics of the histone tails upon their condensation on the core and linker DNA and showed that tails may adopt conformationally constrained positions due to the insertion of "anchoring" lysines and arginines into the DNA minor grooves. Potentially, these phenomena affect the accessibility of post-translationally modified histone residues that serve as important sites for epigenetic marks (e.g., at H3K9, H3K27, H4K16), suggesting that interactions of the histone tails with the core and linker DNA modulate the processes of histone tail modifications and binding of the effector proteins. We discuss the implications of the observed results on the nucleosome function and compare our results to different experimental studies.

  13. Nucleosome distribution and linker DNA: connecting nuclear function to dynamic chromatin structure.

    PubMed

    Szerlong, Heather J; Hansen, Jeffrey C

    2011-02-01

    Genetic information in eukaryotes is managed by strategic hierarchical organization of chromatin structure. Primary chromatin structure describes an unfolded nucleosomal array, often referred to as "beads on a string". Chromatin is compacted by the nonlinear rearrangement of nucleosomes to form stable secondary chromatin structures. Chromatin conformational transitions between primary and secondary structures are mediated by both nucleosome-stacking interactions and the intervening linker DNA. Chromatin model system studies find that the topography of secondary structures is sensitive to the spacing of nucleosomes within an array. Understanding the relationship between nucleosome spacing and higher order chromatin structure will likely yield important insights into the dynamic nature of secondary chromatin structure as it occurs in vivo. Genome-wide nucleosome mapping studies find the distance between nucleosomes varies, and regions of uniformly spaced nucleosomes are often interrupted by regions of nonuniform spacing. This type of organization is found at a subset of actively transcribed genes in which a nucleosome-depleted region near the transcription start site is directly adjacent to uniformly spaced nucleosomes in the coding region. Here, we evaluate secondary chromatin structure and discuss the structural and functional implications of variable nucleosome distributions in different organisms and at gene regulatory junctions.

  14. A computational approach to map nucleosome positions and alternative chromatin states with base pair resolution

    PubMed Central

    Zhou, Xu; Blocker, Alexander W; Airoldi, Edoardo M; O'Shea, Erin K

    2016-01-01

    Understanding chromatin function requires knowing the precise location of nucleosomes. MNase-seq methods have been widely applied to characterize nucleosome organization in vivo, but generally lack the accuracy to determine the precise nucleosome positions. Here we develop a computational approach leveraging digestion variability to determine nucleosome positions at a base-pair resolution from MNase-seq data. We generate a variability template as a simple error model for how MNase digestion affects the mapping of individual nucleosomes. Applied to both yeast and human cells, this analysis reveals that alternatively positioned nucleosomes are prevalent and create significant heterogeneity in a cell population. We show that the periodic occurrences of dinucleotide sequences relative to nucleosome dyads can be directly determined from genome-wide nucleosome positions from MNase-seq. Alternatively positioned nucleosomes near transcription start sites likely represent different states of promoter nucleosomes during transcription initiation. Our method can be applied to map nucleosome positions in diverse organisms at base-pair resolution. DOI: http://dx.doi.org/10.7554/eLife.16970.001 PMID:27623011

  15. Nucleosome Presence at AML-1 Binding Sites Inversely Correlates with Ly49 Expression: Revelations from an Informatics Analysis of Nucleosomes and Immune Cell Transcription Factors.

    PubMed

    Wight, Andrew; Yang, Doo; Ioshikhes, Ilya; Makrigiannis, Andrew P

    2016-04-01

    Beyond its role in genomic organization and compaction, the nucleosome is believed to participate in the regulation of gene transcription. Here, we report a computational method to evaluate the nucleosome sensitivity for a transcription factor over a given stretch of the genome. Sensitive factors are predicted to be those with binding sites preferentially contained within nucleosome boundaries and lacking 10 bp periodicity. Based on these criteria, the Acute Myeloid Leukemia-1a (AML-1a) transcription factor, a regulator of immune gene expression, was identified as potentially sensitive to nucleosomal regulation within the mouse Ly49 gene family. This result was confirmed in RMA, a cell line with natural expression of Ly49, using MNase-Seq to generate a nucleosome map of chromosome 6, where the Ly49 gene family is located. Analysis of this map revealed a specific depletion of nucleosomes at AML-1a binding sites in the expressed Ly49A when compared to the other, silent Ly49 genes. Our data suggest that nucleosome-based regulation contributes to the expression of Ly49 genes, and we propose that this method of predicting nucleosome sensitivity could aid in dissecting the regulatory role of nucleosomes in general.

  16. Effects of histone acetylation by Piccolo NuA4 on the structure of a nucleosome and the interactions between two nucleosomes.

    PubMed

    Lee, Ju Yeon; Wei, Sijie; Lee, Tae-Hee

    2011-04-01

    We characterized the effect of histone acetylation on the structure of a nucleosome and the interactions between two nucleosomes. In this study, nucleosomes reconstituted with the Selex "Widom 601" sequence were acetylated with the Piccolo NuA4 complex, which acetylates mainly H4 N-terminal tail lysine residues and some H2A/H3 N-terminal tail lysine residues. Upon the acetylation, we observed directional unwrapping of nucleosomal DNA that accompanies topology change of the DNA. Interactions between two nucleosomes in solution were also monitored to discover multiple transient dinucleosomal states that can be categorized to short-lived and long-lived (∼1 s) states. The formation of dinucleosomes is strongly Mg(2+)-dependent, and unacetylated nucleosomes favor the formation of long-lived dinucleosomes 4-fold as much as the acetylated ones. These results suggest that the acetylation of histones by Piccolo NuA4 disturbs not only the structure of a nucleosome but also the interactions between two nucleosomes. Lastly, we suggest a structural model for a stable dinucleosomal state where the two nucleosomes are separated by ∼2 nm face-to-face and rotated by 34° with respect to each other.

  17. DNA sequence-dependent variation in nucleosome structure, stability, and dynamics detected by a FRET-based analysis.

    PubMed

    Kelbauskas, L; Woodbury, N; Lohr, D

    2009-02-01

    Förster resonance energy transfer (FRET) techniques provide powerful and sensitive methods for the study of conformational features in biomolecules. Here, we review FRET-based studies of nucleosomes, focusing particularly on our work comparing the widely used nucleosome standard, 5S rDNA, and 2 promoter-derived regulatory element-containing nucleosomes, mouse mammary tumor virus (MMTV)-B and GAL10. Using several FRET approaches, we detected significant DNA sequence-dependent structure, stability, and dynamics differences among the three. In particular, 5S nucleosomes and 5S H2A/H2B-depleted nucleosomal particles have enhanced stability and diminished DNA dynamics, compared with MMTV-B and GAL10 nucleosomes and particles. H2A/H2B-depleted nucleosomes are of interest because they are produced by the activities of many transcription-associated complexes. Significant location-dependent (intranucleosomal) stability and dynamics variations were also observed. These also vary among nucleosome types. Nucleosomes restrict regulatory factor access to DNA, thereby impeding genetic processes. Eukaryotic cells possess mechanisms to alter nucleosome structure, to generate DNA access, but alterations often must be targeted to specific nucleosomes on critical regulatory DNA elements. By endowing specific nucleosomes with intrinsically higher DNA accessibility and (or) enhanced facility for conformational transitions, DNA sequence-dependent nucleosome dynamics and stability variations have the potential to facilitate nucleosome recognition and, thus, aid in the crucial targeting process. This and other nucleosome structure and function conclusions from FRET analyses are discussed.

  18. Interrogating Nucleosome Positioning Through Coarse-Grain Molecular Simulation

    NASA Astrophysics Data System (ADS)

    Freeman, Gordon S.; Hinckley, Daniel M.; Ortiz, Vanessa; de Pablo, Juan J.

    2012-02-01

    Nucleosome positioning plays a crucial role in biology. As the fundamental unit in chromosome structure, the nucleosome core particle (NCP) binds to approximately 147 DNA base pairs. The location of bound NCPs in the genome, therefore, affects gene expression. The specific positioning of NCPs has been experimentally probed and competing viewpoints have been presented in the literature. Models for nucleosome positioning based on sequence-dependent flexibility (a genomic ``code" for nucleosome positioning) have been demonstrated to explain available experimental data. However, so do statistical models with no built-in sequence preference; the driving force for NCP positioning therefore remains an open question. We use a coarse-grain model for the NCP in combination with advanced sampling techniques to probe the sequence preference of NCPs. We present a method for determining the relative affinity of two DNA sequences for the NCP and use this method to compare high- and low-affinity sequences. We discuss several coarse-grain protein models with varying level of detail to examine the impact of model resolution on the agreement of our results with experimental evidence. We also investigate the dynamics of the NCP-DNA complex and their dependence on system characteristics.

  19. Chromosomal protein poly(ADP-ribosyl)ation in pancreatic nucleosomes.

    PubMed

    Aubin, R J; Dam, V T; Miclette, J; Brousseau, Y; Poirier, G G

    1982-03-01

    When pancreatic chromatin fragments were prepared and resolved in the presence of 80 mM NaCl, endogenous poly(ADP-ribose) polymerase activity was found to be maximal in nucleosome periodicities of four to five units and did not respond to any further increases in nucleosomal architecture. Furthermore, in nucleosome complexities spanning 1 through 14 and over unit lengths, polyacrylamide gel electrophoresis on acid-urea and acid-urea-Triton gels has shown pancreatic histone H1 to be the only actively ADP-ribosylated histone species. The extent of ADP-ribosylation of histone H1 was also demonstrated to retard the protein's mobility in acid-urea, acid-urea-Triton, and lithium dodecyl sulfate polyacrylamide gels and to consist of at least 12 distinct ADP-ribosylated species extractable in all nucleosome complexities studied. Finally, extraction and subsequent electrophoresis of total chromosomal proteins in the presence of lithium dodecyl sulfate also evidenced heavy ADP-ribosylation at the level of nonhistone chromosomal proteins of the high mobility group comigrating in the core histone region, as well as in the topmost region of the gels where poly(ADP-ribose) polymerase was found to form a poly(ADP-ribosyl)ated aggregate.

  20. Routes to DNA accessibility: alternative pathways for nucleosome unwinding.

    PubMed

    Schlingman, Daniel J; Mack, Andrew H; Kamenetska, Masha; Mochrie, Simon G J; Regan, Lynne

    2014-07-15

    The dynamic packaging of DNA into chromatin is a key determinant of eukaryotic gene regulation and epigenetic inheritance. Nucleosomes are the basic unit of chromatin, and therefore the accessible states of the nucleosome must be the starting point for mechanistic models regarding these essential processes. Although the existence of different unwound nucleosome states has been hypothesized, there have been few studies of these states. The consequences of multiple states are far reaching. These states will behave differently in all aspects, including their interactions with chromatin remodelers, histone variant exchange, and kinetic properties. Here, we demonstrate the existence of two distinct states of the unwound nucleosome, which are accessible at physiological forces and ionic strengths. Using optical tweezers, we measure the rates of unwinding and rewinding for these two states and show that the rewinding rates from each state are different. In addition, we show that the probability of unwinding into each state is dependent on the applied force and ionic strength. Our results demonstrate not only that multiple unwound states exist but that their accessibility can be differentially perturbed, suggesting possible roles for these states in gene regulation. For example, different histone variants or modifications may facilitate or suppress access to DNA by promoting unwinding into one state or the other. We anticipate that the two unwound states reported here will be the basis for future models of eukaryotic transcriptional control.

  1. Comparative analysis of methods for genome-wide nucleosome cartography.

    PubMed

    Quintales, Luis; Vázquez, Enrique; Antequera, Francisco

    2015-07-01

    Nucleosomes contribute to compacting the genome into the nucleus and regulate the physical access of regulatory proteins to DNA either directly or through the epigenetic modifications of the histone tails. Precise mapping of nucleosome positioning across the genome is, therefore, essential to understanding the genome regulation. In recent years, several experimental protocols have been developed for this purpose that include the enzymatic digestion, chemical cleavage or immunoprecipitation of chromatin followed by next-generation sequencing of the resulting DNA fragments. Here, we compare the performance and resolution of these methods from the initial biochemical steps through the alignment of the millions of short-sequence reads to a reference genome to the final computational analysis to generate genome-wide maps of nucleosome occupancy. Because of the lack of a unified protocol to process data sets obtained through the different approaches, we have developed a new computational tool (NUCwave), which facilitates their analysis, comparison and assessment and will enable researchers to choose the most suitable method for any particular purpose. NUCwave is freely available at http://nucleosome.usal.es/nucwave along with a step-by-step protocol for its use.

  2. Propagation of thrombosis by neutrophils and extracellular nucleosome networks

    PubMed Central

    Pfeiler, Susanne; Stark, Konstantin; Massberg, Steffen; Engelmann, Bernd

    2017-01-01

    Neutrophils, early mediators of the innate immune defense, are recruited to developing thrombi in different types of thrombosis. They amplify intravascular coagulation by stimulating the tissue factor-dependent extrinsic pathway via inactivation of endogenous anticoagulants, enhancing factor XII activation or decreasing plasmin generation. Neutrophil-dependent prothrombotic mechanisms are supported by the externalization of decondensed nucleosomes and granule proteins that together form neutrophil extracellular traps. These traps, either in intact or fragmented form, are causally involved in various forms of experimental thrombosis as first indicated by their role in the enhancement of both microvascular thrombosis during bacterial infection and carotid artery thrombosis. Neutrophil extracellular traps can be induced by interactions of neutrophils with activated platelets; vice versa, these traps enhance adhesion of platelets via von Willebrand factor. Neutrophil-induced microvascular thrombus formation can restrict the dissemination and survival of blood-borne bacteria and thereby sustain intravascular immunity. Dysregulation of this innate immune pathway may support sepsis-associated coagulopathies. Notably, neutrophils and extracellular nucleosomes, together with platelets, critically promote fibrin formation during flow restriction-induced deep vein thrombosis. Neutrophil extracellular traps/extracellular nucleosomes are increased in thrombi and in the blood of patients with different vaso-occlusive pathologies and could be therapeutically targeted for the prevention of thrombosis. Thus, during infections and in response to blood vessel damage, neutrophils and externalized nucleosomes are major promoters of intravascular blood coagulation and thrombosis. PMID:27927771

  3. BRCA 1-Mediated Histone Monoubiquitylation: Effect on Nucleosome Dynamics

    DTIC Science & Technology

    2008-02-01

    nucleosome positioning sequence from sea urchin 5s rRNA gene; perform and analyze the ubiquitylation reaction (month 4). Done Task 2: Use single... sea urchin 5S rDNA, and oligonucleosomes were reconstituted on the same sequence repeated in tandem (208-12) (Simpson et al., 1985). Isolation of

  4. Nucleosome interactions in chromatin: Fiber stiffening and hairpin formation

    NASA Astrophysics Data System (ADS)

    Mergell, Boris; Everaers, Ralf; Schiessel, Helmut

    2004-07-01

    We use Monte Carlo simulations to study attractive and excluded volume interactions between nucleosome core particles in 30-nm chromatin fibers. The nucleosomes are treated as disklike objects having an excluded volume and short-range attraction modeled by a variant of the Gay-Berne potential. The nucleosomes are connected via bendable and twistable linker DNA in the crossed linker fashion. We investigate the influence of the nucleosomal excluded volume on the stiffness of the fiber. For parameter values that correspond to chicken erythrocyte chromatin, we find that the persistence length is governed to a large extent by that excluded volume whereas the soft linker backbone elasticity plays only a minor role. We further find that internucleosomal attraction can induce the formation of hairpin configurations. Tension-induced opening of such configurations into straight fibers manifests itself in a quasiplateau in the force-extension curve that resembles results from recent micromanipulation experiments. Such hairpins may play a role in the formation of higher-order structures in chromosomes like chromonema fibers.

  5. Promoter nucleosome dynamics regulated by signalling through the CTD code

    PubMed Central

    Materne, Philippe; Anandhakumar, Jayamani; Migeot, Valerie; Soriano, Ignacio; Yague-Sanz, Carlo; Hidalgo, Elena; Mignion, Carole; Quintales, Luis; Antequera, Francisco; Hermand, Damien

    2015-01-01

    The phosphorylation of the RNA polymerase II C-terminal domain (CTD) plays a key role in delineating transcribed regions within chromatin by recruiting histone methylases and deacetylases. Using genome-wide nucleosome mapping, we show that CTD S2 phosphorylation controls nucleosome dynamics in the promoter of a subset of 324 genes, including the regulators of cell differentiation ste11 and metabolic adaptation inv1. Mechanistic studies on these genes indicate that during gene activation a local increase of phospho-S2 CTD nearby the promoter impairs the phospho-S5 CTD-dependent recruitment of Set1 and the subsequent recruitment of specific HDACs, which leads to nucleosome depletion and efficient transcription. The early increase of phospho-S2 results from the phosphorylation of the CTD S2 kinase Lsk1 by MAP kinase in response to cellular signalling. The artificial tethering of the Lsk1 kinase at the ste11 promoter is sufficient to activate transcription. Therefore, signalling through the CTD code regulates promoter nucleosomes dynamics. DOI: http://dx.doi.org/10.7554/eLife.09008.001 PMID:26098123

  6. Activation domains drive nucleosome eviction by SWI/SNF

    PubMed Central

    Gutiérrez, José L; Chandy, Mark; Carrozza, Michael J; Workman, Jerry L

    2007-01-01

    ATP-dependent chromatin remodeling complexes play a critical role in chromatin dynamics. A large number of in vitro studies have pointed towards nucleosome sliding as the principal remodeling outcome of SWI/SNF action, whereas few have described histone octamer transfer as the principal outcome. In contrast, recent in vivo studies have linked the activity of SWI/SNF to histone eviction in trans from gene promoters. In this study, we have found that the chimeric transcription factor Gal4-VP16 can enhance SWI/SNF histone octamer transfer activity, resulting in targeted histone eviction from a nucleosome probe. This effect is dependent on the presence of the activation domain. We observed that under conditions mimicking the in vivo relative abundance of SWI/SNF with respect to the total number of nucleosomes in a cell nucleus, the accessibility of the transcription factor binding site is the first determinant in the sequence of events leading to nucleosome remodeling. We propose a model mechanism for this transcription factor-mediated enhancement of SWI/SNF octamer transfer activity. PMID:17235287

  7. Genetic Interaction Mapping Reveals a Role for the SWI/SNF Nucleosome Remodeler in Spliceosome Activation in Fission Yeast

    PubMed Central

    Patrick, Kristin L.; Ryan, Colm J.; Xu, Jiewei; Lipp, Jesse J.; Nissen, Kelly E.; Roguev, Assen; Shales, Michael; Krogan, Nevan J.; Guthrie, Christine

    2015-01-01

    Although numerous regulatory connections between pre-mRNA splicing and chromatin have been demonstrated, the precise mechanisms by which chromatin factors influence spliceosome assembly and/or catalysis remain unclear. To probe the genetic network of pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, we constructed an epistatic mini-array profile (E-MAP) and discovered many new connections between chromatin and splicing. Notably, the nucleosome remodeler SWI/SNF had strong genetic interactions with components of the U2 snRNP SF3 complex. Overexpression of SF3 components in ΔSWI/SNF cells led to inefficient splicing of many fission yeast introns, predominantly those with non-consensus splice sites. Deletion of SWI/SNF decreased recruitment of the splicing ATPase Prp2, suggesting that SWI/SNF promotes co-transcriptional spliceosome assembly prior to first step catalysis. Importantly, defects in SWI/SNF as well as SF3 overexpression each altered nucleosome occupancy along intron-containing genes, illustrating that the chromatin landscape both affects—and is affected by—co-transcriptional splicing. PMID:25825871

  8. Genetic interaction mapping reveals a role for the SWI/SNF nucleosome remodeler in spliceosome activation in fission yeast.

    PubMed

    Patrick, Kristin L; Ryan, Colm J; Xu, Jiewei; Lipp, Jesse J; Nissen, Kelly E; Roguev, Assen; Shales, Michael; Krogan, Nevan J; Guthrie, Christine

    2015-03-01

    Although numerous regulatory connections between pre-mRNA splicing and chromatin have been demonstrated, the precise mechanisms by which chromatin factors influence spliceosome assembly and/or catalysis remain unclear. To probe the genetic network of pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, we constructed an epistatic mini-array profile (E-MAP) and discovered many new connections between chromatin and splicing. Notably, the nucleosome remodeler SWI/SNF had strong genetic interactions with components of the U2 snRNP SF3 complex. Overexpression of SF3 components in ΔSWI/SNF cells led to inefficient splicing of many fission yeast introns, predominantly those with non-consensus splice sites. Deletion of SWI/SNF decreased recruitment of the splicing ATPase Prp2, suggesting that SWI/SNF promotes co-transcriptional spliceosome assembly prior to first step catalysis. Importantly, defects in SWI/SNF as well as SF3 overexpression each altered nucleosome occupancy along intron-containing genes, illustrating that the chromatin landscape both affects--and is affected by--co-transcriptional splicing.

  9. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions.

    PubMed

    Schep, Alicia N; Buenrostro, Jason D; Denny, Sarah K; Schwartz, Katja; Sherlock, Gavin; Greenleaf, William J

    2015-11-01

    Transcription factors canonically bind nucleosome-free DNA, making the positioning of nucleosomes within regulatory regions crucial to the regulation of gene expression. Using the assay of transposase accessible chromatin (ATAC-seq), we observe a highly structured pattern of DNA fragment lengths and positions around nucleosomes in Saccharomyces cerevisiae, and use this distinctive two-dimensional nucleosomal "fingerprint" as the basis for a new nucleosome-positioning algorithm called NucleoATAC. We show that NucleoATAC can identify the rotational and translational positions of nucleosomes with up to base-pair resolution and provide quantitative measures of nucleosome occupancy in S. cerevisiae, Schizosaccharomyces pombe, and human cells. We demonstrate the application of NucleoATAC to a number of outstanding problems in chromatin biology, including analysis of sequence features underlying nucleosome positioning, promoter chromatin architecture across species, identification of transient changes in nucleosome occupancy and positioning during a dynamic cellular response, and integrated analysis of nucleosome occupancy and transcription factor binding.

  10. High mobility group protein 1: A collaborator in nucleosome dynamics and estrogen-responsive gene expression

    PubMed Central

    Scovell, William M

    2016-01-01

    High mobility group protein 1 (HMGB1) is a multifunctional protein that interacts with DNA and chromatin to influence the regulation of transcription, DNA replication and repair and recombination. We show that HMGB1 alters the structure and stability of the canonical nucleosome (N) in a nonenzymatic, adenosine triphosphate-independent manner. As a result, the canonical nucleosome is converted to two stable, physically distinct nucleosome conformers. Although estrogen receptor (ER) does not bind to its consensus estrogen response element within a nucleosome, HMGB1 restructures the nucleosome to facilitate strong ER binding. The isolated HMGB1-restructured nucleosomes (N’ and N’’) remain stable and exhibit a number of characteristics that are distinctly different from the canonical nucleosome. These findings complement previous studies that showed (1) HMGB1 stimulates in vivo transcriptional activation at estrogen response elements and (2) knock down of HMGB1 expression by siRNA precipitously reduced transcriptional activation. The findings indicate that a major facet of the mechanism of HMGB1 action involves a restructuring of aspects of the nucleosome that appear to relax structural constraints within the nucleosome. The findings are extended to reveal the differences between ER and the other steroid hormone receptors. A working proposal outlines mechanisms that highlight the multiple facets that HMGB1 may utilize in restructuring the nucleosome. PMID:27247709

  11. Genome-scale identification of nucleosome organization by using 1000 porcine oocytes at different developmental stages

    PubMed Central

    Tao, Chenyu; Li, Juan; Chen, Baobao; Chi, Daming; Zeng, Yaqiong

    2017-01-01

    The nucleosome is the basic structural unit of chromosomes, and its occupancy and distribution in promoters are crucial for the regulation of gene expression. During the growth process of porcine oocytes, the “growing” oocytes (SF) have a much higher transcriptional activity than the “fully grown” oocytes (BF). However, the chromosome status of the two kinds of oocytes remains poorly understood. In this study, we profiled the nucleosome distributions of SF and BF with as few as 1000 oocytes. By comparing the altered regions, we found that SF tended toward nucleosome loss and more open chromosome architecture than BF did. BF had decreased nucleosome occupancy in the coding region and increased nucleosome occupancy in the promoter compared to SF. The nucleosome occupancy of SF was higher than that of BF in the GC-poor regions, but lower than that of BF in the GC-rich regions. The nucleosome distribution around the transcriptional start site (TSS) of all the genes of the two samples was basically the same, but the nucleosome occupancy around the TSS of SF was lower than that of BF. GO functional annotation of genes with different nucleosome occupancy in promoter showed the genes were mainly involved in cell, cellular process, and metabolic process biological process. The results of this study revealed the dynamic reorganization of porcine oocytes in different developmental stages and the critical role of nucleosome arrangement during the oocyte growth process. PMID:28333987

  12. Using DNA mechanics to predict intrinsic and extrinsic nucleosome positioning signals

    NASA Astrophysics Data System (ADS)

    Morozov, Alexandre

    2008-03-01

    In eukaryotic genomes, nucleosomes function to compact DNA and to regulate access to it both by simple physical occlusion and by providing the substrate for numerous covalent epigenetic tags. While nucleosome positions in vitro are determined by sequence alone, in vivo competition with other DNA-binding factors and action of chromatin remodeling enzymes play a role that needs to be quantified. We developed a biophysical, DNA mechanics-based model for the sequence dependence of DNA bending energies, and validated it against a collection of in vitro free energies of nucleosome formation and a nucleosome crystal structure; we also successfully designed both strong and poor histone binding sequences ab initio. For in vivo data from S.cerevisiae, the strongest positioning signal came from the competition with other factors rather than intrinsic nucleosome sequence preferences. Based on sequence alone, our model predicts that functional transcription factor binding sites tend to be covered by nucleosomes, yet are uncovered in vivo because functional sites cluster within a single nucleosome footprint and thus make transcription factors bind cooperatively. Similarly a weak enhancement of nucleosome binding in the TATA region becomes a strong depletion when the TATA-binding protein is included, in quantitative agreement with experiment. Our model distinguishes multiple ways in which genomic sequence influences nucleosome positions, and thus provides alternative explanations for several genome-wide experimental findings. In the future our approach will be used to rationally alter gene expression levels in model systems through redesign of nucleosome occupancy profiles.

  13. Active nucleosome positioning beyond intrinsic biophysics is revealed by in vitro reconstitution.

    PubMed

    Korber, Philipp

    2012-04-01

    Genome-wide nucleosome maps revealed well-positioned nucleosomes as a major theme in eukaryotic genome organization. Promoter regions often show a conserved pattern with an NDR (nucleosome-depleted region) from which regular nucleosomal arrays emanate. Three mechanistic contributions to such NDR-array-organization and nucleosome positioning in general are discussed: DNA sequence, DNA binders and DNA-templated processes. Especially, intrinsic biophysics of DNA sequence preferences for nucleosome formation was prominently suggested to explain the majority of nucleosome positions ('genomic code for nucleosome positioning'). Nonetheless, non-histone factors that bind DNA with high or low specificity, such as transcription factors or remodelling enzymes respectively and processes such as replication, transcription and the so-called 'statistical positioning' may be involved too. Recently, these models were tested for yeast by genome-wide reconstitution. DNA sequence preferences as probed by SGD (salt gradient dialysis) reconstitution generated many NDRs, but only few individual nucleosomes, at their proper positions, and no arrays. Addition of a yeast extract and ATP led to dramatically more in vivo-like nucleosome positioning, including regular arrays for the first time. This improvement depended essentially on the extract and ATP but not on transcription or replication. Nucleosome occupancy and close spacing were maintained around promoters, even at lower histone density, arguing for active packing of nucleosomes against the 5' ends of genes rather than statistical positioning. A first extract fractionation identified a direct, specific, necessary, but not sufficient role for the RSC (remodels the structure of chromatin) remodelling enzyme. Collectively, nucleosome positioning in yeast is actively determined by factors beyond intrinsic biophysics, and in steady-state rather than at equilibrium.

  14. Differential cofactor requirements for histone eviction from two nucleosomes at the yeast PHO84 promoter are determined by intrinsic nucleosome stability.

    PubMed

    Wippo, Christian J; Krstulovic, Bojana Silic; Ertel, Franziska; Musladin, Sanja; Blaschke, Dorothea; Stürzl, Sabrina; Yuan, Guo-Cheng; Hörz, Wolfram; Korber, Philipp; Barbaric, Slobodan

    2009-06-01

    We showed previously that the strong PHO5 promoter is less dependent on chromatin cofactors than the weaker coregulated PHO8 promoter. In this study we asked if chromatin remodeling at the even stronger PHO84 promoter was correspondingly less cofactor dependent. The repressed PHO84 promoter showed a short hypersensitive region that was flanked upstream and downstream by a positioned nucleosome and contained two transactivator Pho4 sites. Promoter induction generated an extensive hypersensitive and histone-depleted region, yielding two more Pho4 sites accessible. This remodeling was strictly Pho4 dependent, strongly dependent on the remodelers Snf2 and Ino80 and on the histone acetyltransferase Gcn5, and more weakly on the acetyltransferase Rtt109. Importantly, remodeling of each of the two positioned nucleosomes required Snf2 and Ino80 to different degrees. Only remodeling of the upstream nucleosome was strictly dependent on Snf2. Further, remodeling of the upstream nucleosome was more dependent on Ino80 than remodeling of the downstream nucleosome. Both nucleosomes differed in their intrinsic stabilities as predicted in silico and measured in vitro. The causal relationship between the different nucleosome stabilities and the different cofactor requirements was shown by introducing destabilizing mutations in vivo. Therefore, chromatin cofactor requirements were determined by intrinsic nucleosome stabilities rather than correlated to promoter strength.

  15. Lupus nephritis: the central role of nucleosomes revealed.

    PubMed

    Mortensen, Elin S; Fenton, Kristin A; Rekvig, Ole P

    2008-02-01

    Systemic lupus erythematosus (SLE) is an autoimmune syndrome characterized by autoantibodies to nuclear constituents. Some of these antibodies are diagnostically important, whereas others act as disease-modifying factors. One clinically important factor is autoantibodies against dsDNA and nucleosomes, which have overlapping diagnostic and nephritogenic impact in SLE. Although a scientific focus for 5 decades, the molecular and cellular origin of these antibodies, and why they are associated with lupus nephritis, is still not fully understood. A consensus has, however, evolved that antibodies to dsDNA and nucleosomes are central pathogenic factors in the development of lupus nephritis. In contrast, no agreement has been reached as to which glomerular structures are bound by nephritogenic anti-nucleosome antibodies in vivo. Mutually contradictory paradigms and models have evolved simply because we still lack precise and conclusive data to provide definitive insight into how autoantibodies induce lupus nephritis and which specificity is critical in the nephritic process(es). In this review, data demonstrating the central role of nucleosomes in inducing and binding potentially nephritogenic antibodies to DNA and nucleosomes are presented and discussed. These autoimmune-inducing processes are discussed in the context of Matzinger's danger model (Matzinger P: Friendly and dangerous signals: is the tissue in control? Nat Immunol 2007, 8:11-13; Matzinger P: The danger model: a renewed sense of self. Science 2002, 296:301-305; Matzinger P: Tolerance, danger, and the extended family. Annu Rev Immunol 1994, 12:991-1045) and Medzhitov's and Janeway's (Medzhitov R, Janeway CA Jr: Decoding the patterns of self and nonself by the innate immune system. Science 2002, 296:298-300; Medzhitov R, Janeway CA Jr: How does the immune system distinguish self from nonself? Semin Immunol 2000, 12:185-188; Janeway CA Jr, Medzhitov R: Innate immune recognition. Annu Rev Immunol 2002, 20

  16. Histone acetylation dependent energy landscapes in tri-nucleosome revealed by residue-resolved molecular simulations

    PubMed Central

    Chang, Le; Takada, Shoji

    2016-01-01

    Histone tail acetylation is a key epigenetic marker that tends to open chromatin folding and activate transcription. Despite intensive studies, precise roles of individual lysine acetylation in chromatin folding have only been poorly understood. Here, we revealed structural dynamics of tri-nucleosomes with several histone tail acetylation states and analyzed histone tail interactions with DNA by performing molecular simulations at an unprecedentedly high resolution. We found versatile acetylation-dependent landscapes of tri-nucleosome. The H4 and H2A tail acetylation reduced the contact between the first and third nucleosomes mediated by the histone tails. The H3 tail acetylation reduced its interaction with neighboring linker DNAs resulting in increase of the distance between consecutive nucleosomes. Notably, two copies of the same histone in a single nucleosome have markedly asymmetric interactions with DNAs, suggesting specific pattern of nucleosome docking albeit high inherent flexibility. Estimated transcription factor accessibility was significantly high for the H4 tail acetylated structures. PMID:27698366

  17. The structure of nucleosomal core particles within transcribed and repressed gene regions.

    PubMed Central

    Studitsky, V M; Belyavsky, A V; Melnikova, A F; Mirzabekov, A D

    1988-01-01

    The arrangement of histones along DNA in nucleosomal core particles within transcribed heat shock gene (hsp 70) region and repressed insertion within ribosomal genes of Drosophila was analysed by using protein-DNA crosslinking methods combined with hybridization tests. In addition, two-dimensional gel electrophoresis was employed to compare the overall nucleosomal shape and the nucleosomal DNA size. The arrangement of histones along DNA and general compactness of nucleosomes were shown to be rather similar in transcriptionally active and inactive genomic regions. On the other hand, nucleosomes within transcriptionally active chromatin are characterized by a larger size of nucleosomal DNA produced by micrococcal nuclease digestion and some peculiarity in electrophoretic mobility. Images PMID:3144704

  18. Site-specific DNA repair at the nucleosome level in a yeast minichromosome

    SciTech Connect

    Smerdon, M.J.; Thoma, F. )

    1990-05-18

    The rate of excision repair of UV-induced pyrimidine dimers (PDs) was measured at specific sites in each strand of a yeast minichromosome containing an active gene (URA3), a replication origin (ARS1), and positioned nucleosomes. All six PD sites analyzed in the transcribed URA3 strand were repaired more rapidly (greater than 5-fold on average) than any of the nine PD sites analyzed in the nontranscribed strand. Efficient repair also occurred in both strands of a disrupted TRP1 gene (ten PD sites), containing four unstable nucleosomes, and in a nucleosome gap at the 5' end of URA3 (two PD sites). Conversely, slow repair occurred in both strands immediately downstream of the URA3 gene (12 of 14 PD sites). This region contains the ARS1 consensus sequence, a nucleosome gap, and two stable nucleosomes. Thus, modulation of DNA repair occurs in a simple yeast minichromosome and correlates with gene expression, nucleosome stability, and (possibly) control of replication.

  19. Crystal structure of the nucleosome containing ultraviolet light-induced cyclobutane pyrimidine dimer.

    PubMed

    Horikoshi, Naoki; Tachiwana, Hiroaki; Kagawa, Wataru; Osakabe, Akihisa; Matsumoto, Syota; Iwai, Shigenori; Sugasawa, Kaoru; Kurumizaka, Hitoshi

    2016-02-26

    The cyclobutane pyrimidine dimer (CPD) is induced in genomic DNA by ultraviolet (UV) light. In mammals, this photolesion is primarily induced within nucleosomal DNA, and repaired exclusively by the nucleotide excision repair (NER) pathway. However, the mechanism by which the CPD is accommodated within the nucleosome has remained unknown. We now report the crystal structure of a nucleosome containing CPDs. In the nucleosome, the CPD induces only limited local backbone distortion, and the affected bases are accommodated within the duplex. Interestingly, one of the affected thymine bases is located within 3.0 Å from the undamaged complementary adenine base, suggesting the formation of complementary hydrogen bonds in the nucleosome. We also found that UV-DDB, which binds the CPD at the initial stage of the NER pathway, also efficiently binds to the nucleosomal CPD. These results provide important structural and biochemical information for understanding how the CPD is accommodated and recognized in chromatin.

  20. Statistical mechanics of nucleosome ordering by chromatin-structure-induced two-body interactions.

    PubMed

    Chereji, Răzvan V; Tolkunov, Denis; Locke, George; Morozov, Alexandre V

    2011-05-01

    One-dimensional arrays of nucleosomes (DNA-bound histone octamers separated by stretches of linker DNA) fold into higher-order chromatin structures which ultimately make up eukaryotic chromosomes. Chromatin structure formation leads to 10-11 base pair (bp) discretization of linker lengths caused by the smaller free energy cost of packaging nucleosomes into regular chromatin fibers if their rotational setting (defined by the DNA helical twist) is conserved. We describe nucleosome positions along the fiber using a thermodynamic model of finite-size particles with both intrinsic histone-DNA interactions and an effective two-body potential. We infer one- and two-body energies directly from high-throughput maps of nucleosome positions. We show that higher-order chromatin structure helps explains in vitro and in vivo nucleosome ordering in transcribed regions, and plays a leading role in establishing well-known 10-11 bp genome-wide periodicity of nucleosome positions.

  1. Statistical mechanics of nucleosome ordering by chromatin-structure-induced two-body interactions

    NASA Astrophysics Data System (ADS)

    Chereji, Răzvan V.; Tolkunov, Denis; Locke, George; Morozov, Alexandre V.

    2011-05-01

    One-dimensional arrays of nucleosomes (DNA-bound histone octamers separated by stretches of linker DNA) fold into higher-order chromatin structures which ultimately make up eukaryotic chromosomes. Chromatin structure formation leads to 10-11 base pair (bp) discretization of linker lengths caused by the smaller free energy cost of packaging nucleosomes into regular chromatin fibers if their rotational setting (defined by the DNA helical twist) is conserved. We describe nucleosome positions along the fiber using a thermodynamic model of finite-size particles with both intrinsic histone-DNA interactions and an effective two-body potential. We infer one- and two-body energies directly from high-throughput maps of nucleosome positions. We show that higher-order chromatin structure helps explains in vitro and in vivo nucleosome ordering in transcribed regions, and plays a leading role in establishing well-known 10-11 bp genome-wide periodicity of nucleosome positions.

  2. Structure of RCC1 chromatin factor bound to the nucleosome core particle

    SciTech Connect

    Makde, Ravindra D.; England, Joseph R.; Yennawar, Hemant P.; Tan, Song

    2010-11-11

    The small GTPase Ran enzyme regulates critical eukaryotic cellular functions including nuclear transport and mitosis through the creation of a RanGTP gradient around the chromosomes. This concentration gradient is created by the chromatin-bound RCC1 (regulator of chromosome condensation) protein, which recruits Ran to nucleosomes and activates Ran's nucleotide exchange activity. Although RCC1 has been shown to bind directly with the nucleosome, the molecular details of this interaction were not known. Here we determine the crystal structure of a complex of Drosophila RCC1 and the nucleosome core particle at 2.9 {angstrom} resolution, providing an atomic view of how a chromatin protein interacts with the histone and DNA components of the nucleosome. Our structure also suggests that the Widom 601 DNA positioning sequence present in the nucleosomes forms a 145-base-pair nucleosome core particle, not the expected canonical 147-base-pair particle.

  3. Thermal fluctuation spectroscopy in histone and nucleosomes during denaturation

    NASA Astrophysics Data System (ADS)

    Raychaudhuri, Arup; Nagapriya, K. S.

    2007-03-01

    Thermal stability of biomolecules is an important issue. We have studied thermal denaturation of histone and nucleosome using precision thermal fluctuation spectroscopy (TFS) . - a problem that we believe has not been studied experimentally before. TFS uses a very sensitive noise calorimeter which can detect thermal fluctuations of micro Kelvin at around room temperature. We find that the thermal denaturation of histones (in particular H1) as well as that of the nucleosome are associated with large fluctuations, which are few orders higher than those away from the denaturation temperature. It involves large energy exchange which can be few tens of kBT0 (T0=300K). It appears that the denaturation occurs in three distinct steps 1. breaking of bonds leading to the cooling jumps, 2. the change in its secondary, tertiary structure leading to slow dynamics and 3. formation of bonds as it is unfolding and in the newly folded high temperature phase which accounts for the heating jumps.

  4. Anisotropic flexibility of DNA and the nucleosomal structure.

    PubMed Central

    Zhurkin, V B; Lysov, Y P; Ivanov, V I

    1979-01-01

    Potential energy calculations of the DNA duplex dimeric subunit show that the double helix may be bent in the direction of minor and major grooves much more easily than in other directions. It is found that the total winding angle of DNA decreases upon such bending. A new model for DNA folding in the nucleosome is proposed on the basis of these findings according to which the DNA molecule is kinked each fifth base pair to the side of the minor and major grooves alternatively. The model explains the known contradiction between a C-like circular dichroism for the nucleosomal DNA and the nuclease digestion data, which testify to the B-form of DNA. PMID:440969

  5. Tail-induced attraction between nucleosome core particles.

    PubMed

    Mühlbacher, F; Schiessel, H; Holm, C

    2006-09-01

    We study a possible electrostatic mechanism underlying the compaction of DNA inside the nuclei of eucaryotes: the tail-bridging effect between nucleosomes, the fundamental DNA packaging units of the chromatin complex. As a simple model of the nucleosome we introduce the eight-tail colloid, a charged sphere with eight oppositely charged, flexible, grafted chains that represent the terminal histone tails. We show that our complexes attract each other via the formation of chain bridges and contrast this to the effect of attraction via charge patches. We demonstrate that the attraction between eight-tail colloids can be tuned by changing the fraction of charged monomers on the tails. This suggests a physical mechanism of chromatin compaction where the degree of DNA condensation is controlled via biochemical means, namely the acetylation and deacetylation of lysines in the histone tails.

  6. Histone H3 phosphorylation near the nucleosome dyad alters chromatin structure.

    PubMed

    North, Justin A; Šimon, Marek; Ferdinand, Michelle B; Shoffner, Matthew A; Picking, Jonathan W; Howard, Cecil J; Mooney, Alex M; van Noort, John; Poirier, Michael G; Ottesen, Jennifer J

    2014-04-01

    Nucleosomes contain ∼146 bp of DNA wrapped around a histone protein octamer that controls DNA accessibility to transcription and repair complexes. Posttranslational modification (PTM) of histone proteins regulates nucleosome function. To date, only modest changes in nucleosome structure have been directly attributed to histone PTMs. Histone residue H3(T118) is located near the nucleosome dyad and can be phosphorylated. This PTM destabilizes nucleosomes and is implicated in the regulation of transcription and repair. Here, we report gel electrophoretic mobility, sucrose gradient sedimentation, thermal disassembly, micrococcal nuclease digestion and atomic force microscopy measurements of two DNA-histone complexes that are structurally distinct from nucleosomes. We find that H3(T118ph) facilitates the formation of a nucleosome duplex with two DNA molecules wrapped around two histone octamers, and an altosome complex that contains one DNA molecule wrapped around two histone octamers. The nucleosome duplex complex forms within short ∼150 bp DNA molecules, whereas altosomes require at least ∼250 bp of DNA and form repeatedly along 3000 bp DNA molecules. These results are the first report of a histone PTM significantly altering the nucleosome structure.

  7. The nucleosome landscape of Plasmodium falciparum reveals chromatin architecture and dynamics of regulatory sequences.

    PubMed

    Kensche, Philip Reiner; Hoeijmakers, Wieteke Anna Maria; Toenhake, Christa Geeke; Bras, Maaike; Chappell, Lia; Berriman, Matthew; Bártfai, Richárd

    2016-03-18

    In eukaryotes, the chromatin architecture has a pivotal role in regulating all DNA-associated processes and it is central to the control of gene expression. For Plasmodium falciparum, a causative agent of human malaria, the nucleosome positioning profile of regulatory regions deserves particular attention because of their extreme AT-content. With the aid of a highly controlled MNase-seq procedure we reveal how positioning of nucleosomes provides a structural and regulatory framework to the transcriptional unit by demarcating landmark sites (transcription/translation start and end sites). In addition, our analysis provides strong indications for the function of positioned nucleosomes in splice site recognition. Transcription start sites (TSSs) are bordered by a small nucleosome-depleted region, but lack the stereotypic downstream nucleosome arrays, highlighting a key difference in chromatin organization compared to model organisms. Furthermore, we observe transcription-coupled eviction of nucleosomes on strong TSSs during intraerythrocytic development and demonstrate that nucleosome positioning and dynamics can be predictive for the functionality of regulatory DNA elements. Collectively, the strong nucleosome positioning over splice sites and surrounding putative transcription factor binding sites highlights the regulatory capacity of the nucleosome landscape in this deadly human pathogen.

  8. DNA-guided establishment of nucleosome patterns within coding regions of a eukaryotic genome.

    PubMed

    Beh, Leslie Y; Müller, Manuel M; Muir, Tom W; Kaplan, Noam; Landweber, Laura F

    2015-11-01

    A conserved hallmark of eukaryotic chromatin architecture is the distinctive array of well-positioned nucleosomes downstream from transcription start sites (TSS). Recent studies indicate that trans-acting factors establish this stereotypical array. Here, we present the first genome-wide in vitro and in vivo nucleosome maps for the ciliate Tetrahymena thermophila. In contrast with previous studies in yeast, we find that the stereotypical nucleosome array is preserved in the in vitro reconstituted map, which is governed only by the DNA sequence preferences of nucleosomes. Remarkably, this average in vitro pattern arises from the presence of subsets of nucleosomes, rather than the whole array, in individual Tetrahymena genes. Variation in GC content contributes to the positioning of these sequence-directed nucleosomes and affects codon usage and amino acid composition in genes. Given that the AT-rich Tetrahymena genome is intrinsically unfavorable for nucleosome formation, we propose that these "seed" nucleosomes--together with trans-acting factors--may facilitate the establishment of nucleosome arrays within genes in vivo, while minimizing changes to the underlying coding sequences.

  9. DNA methylation determines nucleosome occupancy in the 5'-CpG islands of tumor suppressor genes.

    PubMed

    Portela, A; Liz, J; Nogales, V; Setién, F; Villanueva, A; Esteller, M

    2013-11-21

    Promoter CpG island hypermethylation of tumor suppressor genes is an epigenetic hallmark of human cancer commonly associated with nucleosome occupancy and the transcriptional silencing of the neighboring gene. Nucleosomes can determine the underlying DNA methylation status. Herein, we show that the opposite is also true: DNA methylation can determine nucleosome positioning. Using a cancer model and digital nucleosome positioning techniques, we demonstrate that the induction of DNA hypomethylation events by genetic (DNMT1/DNMT3B deficient cells) or drug (a DNA demethylating agent) approaches is associated with the eviction of nucleosomes from previously hypermethylated CpG islands of tumor suppressor genes. Most importantly, the establishment of a stable cell line that restores DNMT1/DNMT3B deficiency shows that nucleosomes reoccupy their positions in de novo methylated CpG islands. Finally, we extend these results to the genomic level, combining a DNA methylation microarray and the nucleosome positioning technique. Using this global approach, we observe the dependency of nucleosome occupancy upon the DNA methylation status. Thus, our results suggest that there is a close association between hypermethylated CpG islands and the presence of nucleosomes, such that each of these epigenetic mechanisms can determine the recruitment of the other.

  10. ISWI proteins participate in the genome-wide nucleosome distribution in Arabidopsis.

    PubMed

    Li, Guang; Liu, Shujing; Wang, Jiawei; He, Jianfeng; Huang, Hai; Zhang, Yijing; Xu, Lin

    2014-05-01

    Chromatin is a highly organized structure with repetitive nucleosome subunits. Nucleosome distribution patterns, which contain information on epigenetic controls, are dynamically affected by ATP-dependent chromatin remodeling factors (remodelers). However, whether plants have specific nucleosome distribution patterns and how plant remodelers contribute to the pattern formation are not clear. In this study we used the micrococcal nuclease digestion followed by deep sequencing (MNase-seq) assay to show the genome-wide nucleosome pattern in Arabidopsis thaliana. We demonstrated that the nucleosome distribution patterns of Arabidopsis are associated with the gene expression level, and have several specific characteristics that are different from those of animals and yeast. In addition, we found that remodelers in the A. thaliana imitation switch (AtISWI) subfamily are important for the formation of the nucleosome distribution pattern. Double mutations in the AtISWI genes, CHROMATIN REMODELING 11 (CHR11) and CHR17, resulted in the loss of the evenly spaced nucleosome pattern in gene bodies, but did not affect nucleosome density, supporting a previous idea that the primary role of ISWI is to slide nucleosomes in gene bodies for pattern formation.

  11. Nonhistone nuclear high mobility group proteins 14 and 17 stabilize nucleosome core particles

    SciTech Connect

    Paton, A.E.; Wilkinson-Singley, E.; Olins, D.W.

    1983-11-10

    Nucleosome core particles form well defined complexes with the nuclear nonhistone proteins HMG 14 or 17. The binding of HMG 14 or 17 to nucleosomes results in greater stability of the nucleosomal DNA as shown by circular dichroism and thermal denaturation. Under appropriate conditions the binding is cooperative, and cooperativity is ionic strength dependent. The specificity and cooperative transitions of high mobility group (HMG) binding are preserved in 1 M urea. Specificity is lost in 4 M urea. Thermal denaturation and circular dichroism show a dramatic reversal of the effects of urea on nucleosomes when HMG 14 or 17 is bound, indicating stabilization of the nucleosome by HMG proteins. Complexes formed between reconstructed nucleosomes containing purified inner histones plus poly (dA-dT) and HMG 14 or 17 demonstrate that the HMG binding site requires only DNA and histones. Electron microscopy reveals no major structural alterations in the nucleosome upon binding of HMG 14 or 17. Cross-linking the nucleosome extensively with formaldehyde under cooperative HMG binding conditions does not prevent the ionic strength-dependent shift to noncooperative binding. This suggests mechanisms other than internal nucleosome conformational changes may be involved in cooperative HMG binding.

  12. Kinetic Control of Nucleosome Displacement by ISWI/ACF Chromatin Remodelers

    NASA Astrophysics Data System (ADS)

    Florescu, Ana-Maria; Schiessel, Helmut; Blossey, Ralf

    2012-09-01

    Chromatin structure is dynamically organized by chromatin remodelers, motor protein complexes which move and remove nucleosomes. The regulation of remodeler action has recently been proposed to underlie a kinetic proofreading scheme which combines the recognition of histone-tail states and the ATP-dependent loosening of DNA around nucleosomes. Members of the ISWI-family of remodelers additionally recognize linker length between nucleosomes. Here, we show that the additional proofreading step involving linker length alone is sufficient to promote the formation of regular arrays of nucleosomes. ATP-dependent remodeling by bidirectional motors is shown to reinforce positioning as compared to statistical positioning.

  13. Activator control of nucleosome occupancy in activation and repression of transcription.

    PubMed

    Bryant, Gene O; Prabhu, Vidya; Floer, Monique; Wang, Xin; Spagna, Dan; Schreiber, David; Ptashne, Mark

    2008-12-23

    The relationship between chromatin structure and gene expression is a subject of intense study. The universal transcriptional activator Gal4 removes promoter nucleosomes as it triggers transcription, but how it does so has remained obscure. The reverse process, repression of transcription, has often been correlated with the presence of nucleosomes. But it is not known whether nucleosomes are required for that effect. A new quantitative assay describes, for any given location, the fraction of DNA molecules in the population that bears a nucleosome at any given instant. This allows us to follow the time courses of nucleosome removal and reformation, in wild-type and mutant cells, upon activation (by galactose) and repression (by glucose) of the GAL genes of yeast. We show that upon being freed of its inhibitor Gal80 by the action of galactose, Gal4 quickly recruits SWI/SNF to the genes, and that nucleosome "remodeler" rapidly removes promoter nucleosomes. In the absence of SWI/SNF, Gal4's action also results in nucleosome removal and the activation of transcription, but both processes are significantly delayed. Addition of glucose to cells growing in galactose represses transcription. But if galactose remains present, Gal4 continues to work, recruiting SWI/SNF and maintaining the promoter nucleosome-free despite it being repressed. This requirement for galactose is obviated in a mutant in which Gal4 works constitutively. These results show how an activator's recruiting function can control chromatin structure both during gene activation and repression. Thus, both under activating and repressing conditions, the activator can recruit an enzymatic machine that removes promoter nucleosomes. Our results show that whereas promoter nucleosome removal invariably accompanies activation, reformation of nucleosomes is not required for repression. The finding that there are two routes to nucleosome removal and activation of transcription-one that requires the action of SWI

  14. Dynamics of the Competition Between Nucleosome Unwrapping and DNA Binding Proteins

    NASA Astrophysics Data System (ADS)

    Bundschuh, Ralf

    2015-03-01

    In eukaryotic organisms DNA is tightly wrapped into nucleosomes. This bears the question how this DNA can be accessed in order to be copied, transcribed, or repaired. A process that allows access to the DNA is transient unwrapping of the DNA from the histone proteins. We have developed a quantitative model of this unwrapping process which we calibrate by comparison to nucleosome unzipping experiments by the Wang group. We then apply this model to quantitatively explain the dynamics of transcription factor binding within nucleosomal DNA. In this context, it has been well known that nucleosomes reduce the affinity for transcription factors to binding sites covered by the nucleosome. It has been assumed that this is due to a reduction in on-rate since a transcription factor can only bind when a rare thermal fluctuation of the nucleosome makes the DNA accessible. However, recent experimental data surprisingly shows that the off-rate of transcription factors is also strongly affected in the presence of a nucleosome. The application of our nucleosome unwrapping free energy landscape demonstrates that this increase in off-rate by several orders of magnitude is a consequence of a competition between partial binding events of dimeric transcription factors and the nucleosome. This material is based upon work supported by the National Science Foundation under Grant Nos. 1105458 and 1410172.

  15. Structure of human nucleosome containing the testis-specific histone variant TSH2B

    SciTech Connect

    Urahama, Takashi; Horikoshi, Naoki; Osakabe, Akihisa; Tachiwana, Hiroaki; Kurumizaka, Hitoshi

    2014-03-25

    The crystal structure of human nucleosome containing the testis-specific TSH2B variant has been determined. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, and induces a local structural difference between TSH2B and H2B in nucleosomes. The human histone H2B variant TSH2B is highly expressed in testis and may function in the chromatin transition during spermatogenesis. In the present study, the crystal structure of the human testis-specific nucleosome containing TSH2B was determined at 2.8 Å resolution. A local structural difference between TSH2B and canonical H2B in nucleosomes was detected around the TSH2B-specific amino-acid residue Ser85. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, but in the canonical nucleosome the H2B Asn84 residue (corresponding to the TSH2B Ser85 residue) forms water-mediated hydrogen bonds with the H4 Arg78 residue. In contrast, the other TSH2B-specific amino-acid residues did not induce any significant local structural changes in the TSH2B nucleosome. These findings may provide important information for understanding how testis-specific histone variants form nucleosomes during spermatogenesis.

  16. Identification of the amino acid residues responsible for stable nucleosome formation by histone H3.Y.

    PubMed

    Kujirai, Tomoya; Horikoshi, Naoki; Xie, Yan; Taguchi, Hiroyuki; Kurumizaka, Hitoshi

    2017-01-24

    Histone H3.Y is conserved among primates. We previously reported that exogenously produced H3.Y accumulates around transcription start sites, suggesting that it may play a role in transcription regulation. The H3.Y nucleosome forms a relaxed chromatin conformation with flexible DNA ends. The H3.Y-specific Lys42 residue is partly responsible for enhancing the flexibility of the nucleosomal DNA. To our surprise, we found that H3.Y stably associates with chromatin and nucleosomes in vivo and in vitro. However, the H3.Y residues responsible for its stable nucleosome incorporation have not been identified yet. In the present study, we performed comprehensive mutational analyses of H3.Y, and determined that the H3.Y C-terminal region including amino acid residues 124-135 is responsible for its stable association with DNA. Among the H3.Y C-terminal residues, the H3.Y Met124 residue significantly contributed to the stable DNA association with the H3.Y-H4 tetramer. The H3.Y M124I mutation substantially reduced the H3.Y-H4 association in the nucleosome. In contrast, the H3.Y K42R mutation affected the nucleosome stability less, although it contributes to the flexible DNA ends of the nucleosome. Therefore, these H3.Y-specific residues, Lys42 and Met124, play different and specific roles in nucleosomal DNA relaxation and stable nucleosome formation, respectively, in chromatin.

  17. Stabilization of Nucleosomes by Histone Tails and by FACT Revealed by spFRET Microscopy

    PubMed Central

    Valieva, Maria E.; Gerasimova, Nadezhda S.; Kudryashova, Kseniya S.; Kozlova, Anastasia L.; Kirpichnikov, Mikhail P.; Hu, Qi; Botuyan, Maria Victoria; Mer, Georges; Feofanov, Alexey V.; Studitsky, Vasily M.

    2017-01-01

    A correct chromatin structure is important for cell viability and is tightly regulated by numerous factors. Human protein complex FACT (facilitates chromatin transcription) is an essential factor involved in chromatin transcription and cancer development. Here FACT-dependent changes in the structure of single nucleosomes were studied with single-particle Förster resonance energy transfer (spFRET) microscopy using nucleosomes labeled with a donor-acceptor pair of fluorophores, which were attached to the adjacent gyres of DNA near the contact between H2A-H2B dimers. Human FACT and its version without the C-terminal domain (CTD) and the high mobility group (HMG) domain of the structure-specific recognition protein 1 (SSRP1) subunit did not change the structure of the nucleosomes, while FACT without the acidic C-terminal domains of the suppressor of Ty 16 (Spt16) and the SSRP1 subunits caused nucleosome aggregation. Proteolytic removal of histone tails significantly disturbed the nucleosome structure, inducing partial unwrapping of nucleosomal DNA. Human FACT reduced DNA unwrapping and stabilized the structure of tailless nucleosomes. CTD and/or HMG domains of SSRP1 are required for this FACT activity. In contrast, previously it has been shown that yeast FACT unfolds (reorganizes) nucleosomes using the CTD domain of SSRP1-like Pol I-binding protein 3 subunit (Pob3). Thus, yeast and human FACT complexes likely utilize the same domains for nucleosome reorganization and stabilization, respectively, and these processes are mechanistically similar. PMID:28067802

  18. Multiple functions of nucleosomes and regulatory factors in transcription.

    PubMed

    Workman, J L; Buchman, A R

    1993-03-01

    The in vivo packaging of DNA with histone proteins to form chromatin makes its transcription a difficult process. Biochemical and genetic studies are beginning to reveal mechanistic details of how transcriptional regulatory factors confront at least two hurdles created by nucleosomes, the primary structural unit of chromatin. Regulatory factors must gain access to their respective binding sites and activate the formation of transcription complexes at core promoter elements. Distinct regulatory factors may be specialized to perform these functions.

  19. Cracking the chromatin code: precise rule of nucleosome positioning.

    PubMed

    Trifonov, Edward N

    2011-03-01

    Various aspects of packaging DNA in eukaryotic cells are outlined in physical rather than biological terms. The informational and physical nature of packaging instructions encoded in DNA sequences is discussed with the emphasis on signal processing difficulties--very low signal-to-noise ratio and high degeneracy of the nucleosome positioning signal. As the author has been contributing to the field from its very onset in 1980, the review is mostly focused at the works of the author and his colleagues. The leading concept of the overview is the role of deformational properties of DNA in the nucleosome positioning. The target of the studies is to derive the DNA bendability matrix describing where along the DNA various dinucleotide elements should be positioned, to facilitate its bending in the nucleosome. Three different approaches are described leading to derivation of the DNA deformability sequence pattern, which is a simplified linear presentation of the bendability matrix. All three approaches converge to the same unique sequence motif CGRAAATTTYCG or, in binary form, YRRRRRYYYYYR, both representing the chromatin code.

  20. Naturally occurring nucleosome positioning signals in human exons and introns.

    PubMed

    Baldi, P; Brunak, S; Chauvin, Y; Krogh, A

    1996-11-08

    We describe the structural implications of a periodic pattern found in human exons and introns by hidden Markov models. We show that exons (besides the reading frame) have a specific sequential structure in the form of a pattern with triplet consensus non-T(A/T)G, and a minimal periodicity of roughly ten nucleotides. The periodic pattern is also present in intron sequences, although the strength per nucleotide is weaker. Using two independent profile methods based on triplet bendability parameters from DNase I experiments and nucleosome positioning data, we show that the pattern in multiple alignments of internal exon and intron sequences corresponds to a periodic "in phase" bending potential towards the major groove of the DNA. The nucleosome positioning data show that the consensus triplets (and their complements) have a preference for locations on a bent double helix where the major groove faces inward and is compressed. The in-phase triplets are located adjacent to GCC/GGC triplets known to have the strongest bias in their positioning on the nuclesome. Analysis of mRNA sequences encoding proteins with known tertiary structure exclude the possibility that the pattern is a consequence of the previously well-known periodicity caused by the encoding of alpha-helices in proteins. Finally, we discuss the relation between the bending potential of coding and non-coding regions and its impact on the translational positioning of nucleosomes and the recognition of genes by the transcriptional machinery.

  1. Nucleosome positioning and kinetics near transcription-start-site barriers are controlled by interplay between active remodeling and DNA sequence.

    PubMed

    Parmar, Jyotsana J; Marko, John F; Padinhateeri, Ranjith

    2014-01-01

    We investigate how DNA sequence, ATP-dependent chromatin remodeling and nucleosome-depleted 'barriers' co-operate to determine the kinetics of nucleosome organization, in a stochastic model of nucleosome positioning and dynamics. We find that 'statistical' positioning of nucleosomes against 'barriers', hypothesized to control chromatin structure near transcription start sites, requires active remodeling and therefore cannot be described using equilibrium statistical mechanics. We show that, unlike steady-state occupancy, DNA site exposure kinetics near a barrier is dominated by DNA sequence rather than by proximity to the barrier itself. The timescale for formation of positioning patterns near barriers is proportional to the timescale for active nucleosome eviction. We also show that there are strong gene-to-gene variations in nucleosome positioning near barriers, which are eliminated by averaging over many genes. Our results suggest that measurement of nucleosome kinetics can reveal information about sequence-dependent regulation that is not apparent in steady-state nucleosome occupancy.

  2. Establishment of a promoter-based chromatin architecture on recently replicated DNA can accommodate variable inter-nucleosome spacing

    PubMed Central

    Fennessy, Ross T.; Owen-Hughes, Tom

    2016-01-01

    Nucleosomes, the fundamental subunits of eukaryotic chromatin, are organized with respect to transcriptional start sites. A major challenge to the persistence of this organization is the disassembly of nucleosomes during DNA replication. Here, we use complimentary approaches to map the locations of nucleosomes on recently replicated DNA. We find that nucleosomes are substantially realigned with promoters during the minutes following DNA replication. As a result, the nucleosomal landscape is largely re-established before newly replicated chromosomes are partitioned into daughter cells and can serve as a platform for the re-establishment of gene expression programmes. When the supply of histones is disrupted through mutation of the chaperone Caf1, a promoter-based architecture is generated, but with increased inter-nucleosomal spacing. This indicates that the chromatin remodelling enzymes responsible for spacing nucleosomes are capable of organizing nucleosomes with a range of different linker DNA lengths. PMID:27106059

  3. Enzymatic and chemical mapping of nucleosome distribution in purified micro- and macronuclei of the ciliated model organism, Tetrahymena thermophila.

    PubMed

    Chen, Xiao; Gao, Shan; Liu, Yifan; Wang, Yuanyuan; Wang, Yurui; Song, Weibo

    2016-09-01

    Genomic distribution of the nucleosome, the basic unit of chromatin, contains important epigenetic information. To map nucleosome distribution in structurally and functionally differentiated micronucleus (MIC) and macronucleus (MAC) of the ciliate Tetrahymena thermophila, we have purified MIC and MAC and performed micrococcal nuclease (MNase) digestion as well as hydroxyl radical cleavage. Different factors that may affect MNase digestion were examined, to optimize mono-nucleosome production. Mono-nucleosome purity was further improved by ultracentrifugation in a sucrose gradient. As MNase concentration increased, nucleosomal DNA sizes in MIC and MAC converged on 147 bp, as expected for the nucleosome core particle. Both MNase digestion and hydroxyl radical cleavage consistently showed a nucleosome repeat length of ~200 bp in MAC of Tetrahymena, supporting ~50 bp of linker DNA. Our work has systematically tested methods currently available for mapping nucleosome distribution in Tetrahymena, and provided a solid foundation for future epigenetic studies in this ciliated model organism.

  4. DNase-seq predicts regions of rotational nucleosome stability across diverse human cell types.

    PubMed

    Winter, Deborah R; Song, Lingyun; Mukherjee, Sayan; Furey, Terrence S; Crawford, Gregory E

    2013-07-01

    DNase-seq is primarily used to identify nucleosome-depleted DNase I hypersensitive (DHS) sites genome-wide that correspond to active regulatory elements. However, ≈ 40 yr ago it was demonstrated that DNase I also digests with a ≈ 10-bp periodicity around nucleosomes matching the exposure of the DNA minor groove as it wraps around histones. Here, we use DNase-seq data from 49 samples representing diverse cell types to reveal this digestion pattern at individual loci and predict genomic locations where nucleosome rotational positioning, the orientation of DNA with respect to the histone surface, is stably maintained. We call these regions DNase I annotated regions of nucleosome stability (DARNS). Compared to MNase-seq experiments, we show DARNS correspond well to annotated nucleosomes. Interestingly, many DARNS are positioned over only one side of annotated nucleosomes, suggesting that the periodic digestion pattern attenuates over the nucleosome dyad. DARNS reproduce the arrangement of nucleosomes around transcription start sites and are depleted at ubiquitous DHS sites. We also generated DARNS from multiple lymphoblast cell line (LCL) samples. We found that LCL DARNS were enriched at DHS sites present in most of the original 49 samples but absent in LCLs, while multi-cell-type DARNS were enriched at LCL-specific DHS sites. This indicates that variably open DHS sites are often occupied by rotationally stable nucleosomes in cell types where the DHS site is closed. DARNS provide additional information about precise DNA orientation within individual nucleosomes not available from other nucleosome positioning assays and contribute to understanding the role of chromatin in gene regulation.

  5. Determinants of nucleosome positioning and their influence on plant gene expression.

    PubMed

    Liu, Ming-Jung; Seddon, Alexander E; Tsai, Zing Tsung-Yeh; Major, Ian T; Floer, Monique; Howe, Gregg A; Shiu, Shin-Han

    2015-08-01

    Nucleosome positioning influences the access of transcription factors (TFs) to their binding sites and gene expression. Studies in plant, animal, and fungal models demonstrate similar nucleosome positioning patterns along genes and correlations between occupancy and expression. However, the relationships among nucleosome positioning, cis-regulatory element accessibility, and gene expression in plants remain undefined. Here we showed that plant nucleosome depletion occurs on specific 6-mer motifs and this sequence-specific nucleosome depletion is predictive of expression levels. Nucleosome-depleted regions in Arabidopsis thaliana tend to have higher G/C content, unlike yeast, and are centered on specific G/C-rich 6-mers, suggesting that intrinsic sequence properties, such as G/C content, cannot fully explain plant nucleosome positioning. These 6-mer motif sites showed higher DNase I hypersensitivity and are flanked by strongly phased nucleosomes, consistent with known TF binding sites. Intriguingly, this 6-mer-specific nucleosome depletion pattern occurs not only in promoter but also in genic regions and is significantly correlated with higher gene expression level, a phenomenon also found in rice but not in yeast. Among the 6-mer motifs enriched in genes responsive to treatment with the defense hormone jasmonate, there are no significant changes in nucleosome occupancy, suggesting that these sites are potentially preconditioned to enable rapid response without changing chromatin state significantly. Our study provides a global assessment of the joint contribution of nucleosome occupancy and motif sequences that are likely cis-elements to the control of gene expression in plants. Our findings pave the way for further understanding the impact of chromatin state on plant transcriptional regulatory circuits.

  6. The roles of the monomer length and nucleotide context of plant tandem repeats in nucleosome positioning.

    PubMed

    Levitsky, Victor G; Babenko, Vladimir N; Vershinin, Alexander V

    2014-01-01

    Similar to regularly spaced nucleosomes in chromatin, long tandem DNA arrays are composed of regularly alternating monomers that have almost identical primary DNA structures. Such a similarity in the structural organization makes these arrays especially interesting for studying the role of intrinsic DNA preferences in nucleosome positioning. We have studied the nucleosome formation potential of DNA tandem repeat families with different monomer lengths (ML). In total, 165 plant tandem repeat families from the PlantSat database (http://w3lamc.umbr.cas.cz/PlantSat/) were divided into two classes based on the number of nucleosome repeats in one DNA monomer. For predicting nucleosome formation potential, we developed the Phase method, which combines the advantages of multiple bioinformatics models. The Phase method was able to distinguish interfamily differences and intrafamily monomer variation and identify the influence of nucleotide context on nucleosome formation potential. Three main types of nucleosome arrangement in DNA tandem repeat arrays--regular, partially regular (partial), and flexible--were distinguished among a great variety of Phase profiles. The regular type, in which all nucleosomes of the monomer array are positioned in a context-dependent manner, is the most representative type of the class 1 families, with ML equal to or a multiple of the nucleosome repeat length (NRL). In the partially regular type, nucleotide context influences the positioning of only a subset of nucleosomes. The influence of the nucleotide context on nucleosome positioning has the least effect in the flexible type, which contains the greatest number of families (65). The majority of these families belong to class 2 and have nonmultiple ML to NRL ratios.

  7. Reactivity in ELISA with DNA-loaded nucleosomes in patients with proliferative lupus nephritis.

    PubMed

    Dieker, Jürgen; Schlumberger, Wolfgang; McHugh, Neil; Hamann, Philip; van der Vlag, Johan; Berden, Jo H

    2015-11-01

    Autoantibodies against nucleosomes are considered a hallmark of systemic lupus erythematosus (SLE). We compared in patients with proliferative lupus nephritis the diagnostic usefulness of a dsDNA-loaded nucleosome ELISA (anti-dsDNA-NcX) with ELISAs in which dsDNA or nucleosomes alone were coated. First, we analysed whether DNA loading on nucleosomes led to masking of epitopes by using defined monoclonal anti-DNA, anti-histone and nucleosome-specific autoantibodies to evaluate the accessibility of nucleosomal epitopes in the anti-dsDNA-NcX ELISA. Second, autoantibody levels were measured in these 3 ELISAs in 100 patients with proliferative lupus nephritis (LN) before immunosuppressive treatment and in 128 non-SLE disease controls. In patients with LN inter-assay comparisons and associations with clinical and serological parameters were analysed. The panel of monoclonal antibodies revealed that all epitopes were equally accessible in the anti-dsDNA-NcX ELISA as in the two other ELISAs. Patients with proliferative lupus nephritis were positive with dsDNA-loaded nucleosomes in 86%, with DNA in 66% and with nucleosomes in 85%. In the non-lupus disease control group these frequencies were 1.6% (2 out of 128) for both the anti-dsDNA-NcX and the anti-dsDNA ELISA and 0% in the anti-nucleosome ELISA. The levels in the anti-dsDNA-NcX ELISA were high in a group of patients with LN that showed absent reactivity in the anti-DNA or low levels in the anti-nucleosome ELISA. Anti-dsDNA-NcX positivity was associated with higher SLEDAI scores within this group. Within nucleosome-based ELISAs, we propose the anti-dsDNA-NcX ELISA as the preferred test system.

  8. Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative.

    PubMed Central

    Adams, C C; Workman, J L

    1995-01-01

    To investigate mechanisms by which multiple transcription factors access complex promoters and enhancers within cellular chromatin, we have analyzed the binding of disparate factors to nucleosome cores. We used a purified in vitro system to analyze binding of four activator proteins, two GAL4 derivatives, USF, and NF-kappa B (KBF1), to reconstituted nucleosome cores containing different combinations of binding sites. Here we show that binding of any two or all three of these factors to nucleosomal DNA is inherently cooperative. Thus, the binuclear Zn clusters of GAL4, the helix-loop-helix/basic domains of USF, and the rel domain of NF-kappa B all participated in cooperative nucleosome binding, illustrating that this effect is not restricted to a particular DNA-binding domain. Simultaneous binding by two factors increased the affinity of individual factors for nucleosomal DNA by up to 2 orders of magnitude. Importantly, cooperative binding resulted in efficient nucleosome binding by factors (USF and NF-kappa B) which independently possess little nucleosome-binding ability. The participation of GAL4 derivatives in cooperative nucleosome binding required only DNA-binding and dimerization domains, indicating that disruption of histone-DNA contacts by factor binding was responsible for the increased affinity of additional factors. Cooperative nucleosome binding required sequence-specific binding of all transcription factors, appeared to have spatial constraints, and was independent of the orientation of the binding sites on the nucleosome. These results indicate that cooperative nucleosome binding is a general mechanism that may play a significant role in loading complex enhancer and promoter elements with multiple diverse factors in chromatin and contribute to the generation of threshold responses and transcriptional synergy by multiple activator sites in vivo. PMID:7862134

  9. A positive role for nucleosome mobility in the transcriptional activity of chromatin templates: restriction by linker histones.

    PubMed Central

    Ura, K; Hayes, J J; Wolffe, A P

    1995-01-01

    Nucleosome mobility facilitates the transcription of chromatin templates containing only histone octamers. Inclusion of linker histones in chromatin inhibits nucleosome mobility, directs nucleosome positioning and represses transcription. Transcriptional repression by linker histone occurs preferentially on templates associated with histone octamers relative to naked DNA. Mobile nucleosomes and the restriction of mobility by linker histones might be expected to exert a major influence on the accessibility of chromatin to regulatory molecules. Images PMID:7641694

  10. Genome-wide nucleosome positioning is orchestrated by genomic regions associated with DNase I hypersensitivity in rice.

    PubMed

    Wu, Yufeng; Zhang, Wenli; Jiang, Jiming

    2014-05-01

    Nucleosome positioning dictates the DNA accessibility for regulatory proteins, and thus is critical for gene expression and regulation. It has been well documented that only a subset of nucleosomes are reproducibly positioned in eukaryotic genomes. The most prominent example of phased nucleosomes is the context of genes, where phased nucleosomes flank the transcriptional starts sites (TSSs). It is unclear, however, what factors determine nucleosome positioning in regions that are not close to genes. We mapped both nucleosome positioning and DNase I hypersensitive site (DHS) datasets across the rice genome. We discovered that DHSs located in a variety of contexts, both genic and intergenic, were flanked by strongly phased nucleosome arrays. Phased nucleosomes were also found to flank DHSs in the human genome. Our results suggest the barrier model may represent a general feature of nucleosome organization in eukaryote genomes. Specifically, regions bound with regulatory proteins, including intergenic regions, can serve as barriers that organize phased nucleosome arrays on both sides. Our results also suggest that rice DHSs often span a single, phased nucleosome, similar to the H2A.Z-containing nucleosomes observed in DHSs in the human genome.

  11. Properties of active nucleosomes as revealed by HMG 14 and 17 chromatography.

    PubMed Central

    Weisbrod, S T

    1982-01-01

    Nucleosomes from actively transcribed genes (active nucleosomes) contain nonhistone proteins HMG 14 and 17 and are preferentially sensitive to digestion by DNAse I. Active nucleosomes isolated by chromatography on an HMG 14 and 17 glass bead affinity column were analyzed with respect to overall structure, accessory nonhistone components and modifications to the DNA and histones. The experiments lead to the following conclusions: the DNA in the active nucleosome is undermethylated compared to bulk DNA; topoisomerase I is a non-stoichiometric component of the active nucleosome fraction; the level of histone acetylation is enriched in active nucleosomes, but the extent of enrichment cannot account for HMG binding; and the two histone H3 molecules in the active nucleosome can dimerize more readily and are, therefore, probably closer together than those in the bulk of the nucleosomes. Additionally it is shown that HMG 14 and 17 prefer to bind to single- vs. double-stranded nucleic acids. The role of HMG 14 and 17 in producing a highly DNAse I sensitive structure and correspondingly helping to facilitate transcription is discussed in terms of these properties. Images PMID:6210882

  12. Linker histone H1 and H3K56 acetylation are antagonistic regulators of nucleosome dynamics.

    PubMed

    Bernier, Morgan; Luo, Yi; Nwokelo, Kingsley C; Goodwin, Michelle; Dreher, Sarah J; Zhang, Pei; Parthun, Mark R; Fondufe-Mittendorf, Yvonne; Ottesen, Jennifer J; Poirier, Michael G

    2015-12-09

    H1 linker histones are highly abundant proteins that compact nucleosomes and chromatin to regulate DNA accessibility and transcription. However, the mechanisms that target H1 regulation to specific regions of eukaryotic genomes are unknown. Here we report fluorescence measurements of human H1 regulation of nucleosome dynamics and transcription factor (TF) binding within nucleosomes. H1 does not block TF binding, instead it suppresses nucleosome unwrapping to reduce DNA accessibility within H1-bound nucleosomes. We then investigated H1 regulation by H3K56 and H3K122 acetylation, two transcriptional activating histone post translational modifications (PTMs). Only H3K56 acetylation, which increases nucleosome unwrapping, abolishes H1.0 reduction of TF binding. These findings show that nucleosomes remain dynamic, while H1 is bound and H1 dissociation is not required for TF binding within the nucleosome. Furthermore, our H3K56 acetylation measurements suggest that a single-histone PTM can define regions of the genome that are not regulated by H1.

  13. Comparison of the Isw1a, Isw1b, and Isw2 nucleosome disrupting activities.

    PubMed

    Krajewski, Wladyslaw A

    2013-10-08

    The three Saccharomyces cerevisiae ISWI chromatin remodeling complexes, Isw1a, Isw1b, and Isw2, are implicated in the regularization of arrayed nucleosomes and regulation of gene activity. Although Isw1a and Isw1b are based on the same catalytic unit, in general, their functions in vivo do not overlap. To better understand the structural consequences of these complexes, we compared the putative nucleosome disrupting activities of the purified Isw1a, Isw1b, and Isw2. To account for the putative effects of nucleosomal environment, we employed reconstituted dinucleosomes in which the histone octamers were specifically positioned by the 146 base pair high-affinity nucleosome sequence "601". We have compared the MNase and deoxyribonuclease I protection patterns of remodeled nucleosome templates and evaluated the nucleosome destabilizing abilities of the Isw1a/b and Isw2 using restriction endonucleases. Although the Isw2 showed little evidence of nucleosome disassembly, the Isw1b remodeled dinucleosomes exhibited some common features with the ySwi-Snf remodeling products. The nuclease digestion data suggest that Isw1a can also promote ATP-dependent distortion of nucleosome structure, although less efficiently than the Isw1b complex.

  14. Nanopores suggest a negligible influence of CpG methylation on nucleosome packaging and stability.

    PubMed

    Langecker, Martin; Ivankin, Andrey; Carson, Spencer; Kinney, Shannon R M; Simmel, Friedrich C; Wanunu, Meni

    2015-01-14

    Nucleosomes are the fundamental repeating units of chromatin, and dynamic regulation of their positioning along DNA governs gene accessibility in eukaryotes. Although epigenetic factors have been shown to influence nucleosome structure and dynamics, the impact of DNA methylation on nucleosome packaging remains controversial. Further, all measurements to date have been carried out under zero-force conditions. In this paper, we present the first automated force measurements that probe the impact of CpG DNA methylation on nucleosome stability. In solid-state nanopore force spectroscopy, a nucleosomal DNA tail is captured into a pore and pulled on with a time-varying electrophoretic force until unraveling is detected. This is automatically repeated for hundreds of nucleosomes, yielding statistics of nucleosome lifetime vs electrophoretic force. The force geometry, which is similar to displacement forces exerted by DNA polymerases and helicases, reveals that nucleosome stability is sensitive to DNA sequence yet insensitive to CpG methylation. Our label-free method provides high-throughput data that favorably compares with other force spectroscopy experiments and is suitable for studying a variety of DNA-protein complexes.

  15. Closing the gap between single molecule and bulk FRET analysis of nucleosomes.

    PubMed

    Gansen, Alexander; Hieb, Aaron R; Böhm, Vera; Tóth, Katalin; Langowski, Jörg

    2013-01-01

    Nucleosome structure and stability affect genetic accessibility by altering the local chromatin morphology. Recent FRET experiments on nucleosomes have given valuable insight into the structural transformations they can adopt. Yet, even if performed under seemingly identical conditions, experiments performed in bulk and at the single molecule level have given mixed answers due to the limitations of each technique. To compare such experiments, however, they must be performed under identical conditions. Here we develop an experimental framework that overcomes the conventional limitations of each method: single molecule FRET experiments are carried out at bulk concentrations by adding unlabeled nucleosomes, while bulk FRET experiments are performed in microplates at concentrations near those used for single molecule detection. Additionally, the microplate can probe many conditions simultaneously before expending valuable instrument time for single molecule experiments. We highlight this experimental strategy by exploring the role of selective acetylation of histone H3 on nucleosome structure and stability; in bulk, H3-acetylated nucleosomes were significantly less stable than non-acetylated nucleosomes. Single molecule FRET analysis further revealed that acetylation of histone H3 promoted the formation of an additional conformational state, which is suppressed at higher nucleosome concentrations and which could be an important structural intermediate in nucleosome regulation.

  16. The role of a positioned nucleosome at the Drosophila melanogaster hsp26 promoter.

    PubMed Central

    Lu, Q; Wallrath, L L; Elgin, S C

    1995-01-01

    The regulatory region of Drosophila melanogaster hsp26 includes a positioned nucleosome located between the two DNase I hypersensitive (DH) sites that encompass the critical heat shock elements (HSEs). To test the role of this nucleosome in regulated expression, transgenic flies containing hsp26-lacZ fusion genes with alterations in the nucleosome-associated region have been generated. The positioned nucleosome is associated with a DNA sequence that does not itself contain any critical regulatory elements for heat shock-inducible expression. The nucleosome-associated sequence can be deleted, reversed, duplicated or replaced by a random sequence with no significant effect on DH site formation and gene expression. Analyses of hsp26 and hsp70 transgenes with spacing changes within the promoter region indicate that the location of the (CT)n.(GA)n elements dictates the location of DH site formation. Wrapping the DNA between the regulatory elements around a nucleosome is as effective for gene expression as placing the regulatory elements close to each other. A loss of inducible gene expression was observed when the nucleosome-associated DNA was replaced with sequences which appear to misdirect nucleosome placement. The results indicate considerable flexibility in the spacing between DH regulatory sites. Images PMID:7588603

  17. Genome-wide mapping of nucleosome positions in Saccharomyces cerevisiae in response to different nitrogen conditions

    PubMed Central

    Zhang, Peng; Du, Guocheng; Zou, Huijun; Xie, Guangfa; Chen, Jian; Shi, Zhongping; Zhou, Jingwen

    2016-01-01

    Well-organized chromatin is involved in a number of various transcriptional regulation and gene expression. We used genome-wide mapping of nucleosomes in response to different nitrogen conditions to determine both nucleosome profiles and gene expression events in Saccharomyces cerevisiae. Nitrogen conditions influence general nucleosome profiles and the expression of nitrogen catabolite repression (NCR) sensitive genes. The nucleosome occupancy of TATA-containing genes was higher compared to TATA-less genes. TATA-less genes in high or low nucleosome occupancy, showed a significant change in gene coding regions when shifting cells from glutamine to proline as the sole nitrogen resource. Furthermore, a correlation between the expression of nucleosome occupancy induced NCR sensitive genes or TATA containing genes in NCR sensitive genes, and nucleosome prediction were found when cells were cultured in proline or shifting from glutamine to proline as the sole nitrogen source compared to glutamine. These results also showed that variation of nucleosome occupancy accompany with chromatin-dependent transcription factor could influence the expression of a series of genes involved in the specific regulation of nitrogen utilization. PMID:27659668

  18. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells

    PubMed Central

    de Dieuleveult, Maud; Yen, Kuangyu; Hmitou, Isabelle; Depaux, Arnaud; Boussouar, Fayçal; Dargham, Daria Bou; Jounier, Sylvie; Humbertclaude, Hélène; Ribierre, Florence; Baulard, Céline; Farrell, Nina P.; Park, Bongsoo; Keime, Céline; Carrière, Lucie; Berlivet, Soizick; Gut, Marta; Gut, Ivo; Werner, Michel; Deleuze, Jean-François; Olaso, Robert; Aude, Jean-Christophe; Chantalat, Sophie; Pugh, B. Franklin; Gérard, Matthieu

    2015-01-01

    Summary ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers1–3 target specific nucleosomes to regulate transcription is unclear. Here, we present genome-wide remodeller-nucleosome interaction profiles for Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank MNase-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites (TSSs) are nevertheless chromatinized with non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and modifications (H3K4me3 and H3K27ac). RNA polymerase (pol) II therefore navigates hundreds of bp of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3′ end of the NFR. Transcriptome analysis upon remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers play either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs. PMID:26814966

  19. Singlet-singlet energy transfer studies of the internal organization of nucleosomes.

    PubMed

    Eshaghpour, H; Dieterich, A E; Cantor, C R; Crothers, D M

    1980-04-29

    We report the measurement of two specific protein to DNA distances in several conformational states of core nucleosomes by singlet-singlet energy transfer. A distance of 50-53 A separates each DNA terminus from cysteine-110 of chicken erythrocyte histone H3 in the native nucleosome. This cysteine residue must therefore be located very near the center of the nucleosome. The H3-DNA distance remained nearly constant in several unfolded forms of the core particles, as found in very low salt, in 0.6 M NaCl, and in high urea. Furthermore, it was shown that each DNA end lies within 32 A of cysteine-73 of Arbacia lixula sperm histone H4 in both the compact and the low-salt unfolded forms of the nucleosome. Because of the invariance of the two measured distances in the various conformational states of the nucleosome, we conclude that the cysteine-containing C-terminal segments of histones H3 and H4 maintain a very strong and close association with the terminal positions of the 146 base pair nucleosomal DNA. This binding may provide the primary interactions necessary for the folding of DNA into nucleosomes and for protection of 146 base pair nucleosomes from further nuclease digestion.

  20. Affinity, stoichiometry and cooperativity of heterochromatin protein 1 (HP1) binding to nucleosomal arrays

    NASA Astrophysics Data System (ADS)

    Teif, Vladimir B.; Kepper, Nick; Yserentant, Klaus; Wedemann, Gero; Rippe, Karsten

    2015-02-01

    Heterochromatin protein 1 (HP1) participates in establishing and maintaining heterochromatin via its histone-modification-dependent chromatin interactions. In recent papers HP1 binding to nucleosomal arrays was measured in vitro and interpreted in terms of nearest-neighbour cooperative binding. This mode of chromatin interaction could lead to the spreading of HP1 along the nucleosome chain. Here, we reanalysed previous data by representing the nucleosome chain as a 1D binding lattice and showed how the experimental HP1 binding isotherms can be explained by a simpler model without cooperative interactions between neighboring HP1 dimers. Based on these calculations and spatial models of dinucleosomes and nucleosome chains, we propose that binding stoichiometry depends on the nucleosome repeat length (NRL) rather than protein interactions between HP1 dimers. According to our calculations, more open nucleosome arrays with long DNA linkers are characterized by a larger number of binding sites in comparison to chains with a short NRL. Furthermore, we demonstrate by Monte Carlo simulations that the NRL dependent folding of the nucleosome chain can induce allosteric changes of HP1 binding sites. Thus, HP1 chromatin interactions can be modulated by the change of binding stoichiometry and the type of binding to condensed (methylated) and non-condensed (unmethylated) nucleosome arrays in the absence of direct interactions between HP1 dimers.

  1. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.

    PubMed

    de Dieuleveult, Maud; Yen, Kuangyu; Hmitou, Isabelle; Depaux, Arnaud; Boussouar, Fayçal; Bou Dargham, Daria; Jounier, Sylvie; Humbertclaude, Hélène; Ribierre, Florence; Baulard, Céline; Farrell, Nina P; Park, Bongsoo; Keime, Céline; Carrière, Lucie; Berlivet, Soizick; Gut, Marta; Gut, Ivo; Werner, Michel; Deleuze, Jean-François; Olaso, Robert; Aude, Jean-Christophe; Chantalat, Sophie; Pugh, B Franklin; Gérard, Matthieu

    2016-02-04

    ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers target specific nucleosomes to regulate transcription is unclear. Here we present genome-wide remodeller-nucleosome interaction profiles for the chromatin remodellers Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank micrococcal nuclease (MNase)-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites are nevertheless bound by non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and marked by H3K4me3 and H3K27ac modifications. RNA polymerase II therefore navigates hundreds of base pairs of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3' end of the NFR. Transcriptome analysis after remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers have either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs.

  2. Linker histone H1 and H3K56 acetylation are antagonistic regulators of nucleosome dynamics

    PubMed Central

    Bernier, Morgan; Luo, Yi; Nwokelo, Kingsley C.; Goodwin, Michelle; Dreher, Sarah J.; Zhang, Pei; Parthun, Mark R.; Fondufe-Mittendorf, Yvonne; Ottesen, Jennifer J.; Poirier, Michael G.

    2015-01-01

    H1 linker histones are highly abundant proteins that compact nucleosomes and chromatin to regulate DNA accessibility and transcription. However, the mechanisms that target H1 regulation to specific regions of eukaryotic genomes are unknown. Here we report fluorescence measurements of human H1 regulation of nucleosome dynamics and transcription factor (TF) binding within nucleosomes. H1 does not block TF binding, instead it suppresses nucleosome unwrapping to reduce DNA accessibility within H1-bound nucleosomes. We then investigated H1 regulation by H3K56 and H3K122 acetylation, two transcriptional activating histone post translational modifications (PTMs). Only H3K56 acetylation, which increases nucleosome unwrapping, abolishes H1.0 reduction of TF binding. These findings show that nucleosomes remain dynamic, while H1 is bound and H1 dissociation is not required for TF binding within the nucleosome. Furthermore, our H3K56 acetylation measurements suggest that a single-histone PTM can define regions of the genome that are not regulated by H1. PMID:26648124

  3. Re-establishment of nucleosome occupancy during double-strand break repair in budding yeast.

    PubMed

    Tsabar, Michael; Hicks, Wade M; Tsaponina, Olga; Haber, James E

    2016-11-01

    Homologous recombination (HR) is an evolutionarily conserved pathway in eukaryotes that repairs a double-strand break (DSB) by copying homologous sequences from a sister chromatid, a homologous chromosome or an ectopic location. Recombination is challenged by the packaging of DNA into nucleosomes, which may impair the process at many steps, from resection of the DSB ends to the re-establishement of nucleosomes after repair. However, nucleosome dynamics during DSB repair have not been well described, primarily because of a lack of well-ordered nucleosomes around a DSB. We designed a system in budding yeast Saccharomyces cerevisiae to monitor nucleosome dynamics during repair of an HO endonuclease-induced DSB. Nucleosome occupancy around the break is lost following DSB formation, by 5'-3' resection of the DSB end. Soon after repair is complete, nucleosome occupancy is partially restored in a repair-dependent but cell cycle-independent manner. Full re-establishment of nucleosome protection back to the level prior to DSB induction is achieved when the cell cycle resumes following repair. These findings may have implications to the mechanisms by which cells sense the completion of repair.

  4. The elongation factor Spt4/5 regulates RNA polymerase II transcription through the nucleosome.

    PubMed

    Crickard, John B; Lee, Jaehyoun; Lee, Tae-Hee; Reese, Joseph C

    2017-04-03

    RNA polymerase II (RNAPII) passes through the nucleosome in a coordinated manner, generating several intermediate nucleosomal states as it breaks and then reforms histone-DNA contacts ahead of and behind it, respectively. Several studies have defined transcription-induced nucleosome intermediates using only RNA Polymerase. However, RNAPII is decorated with elongation factors as it transcribes the genome. One such factor, Spt4/5, becomes an integral component of the elongation complex, making direct contact with the 'jaws' of RNAPII and nucleic acids in the transcription scaffold. We have characterized the effect of incorporating Spt4/5 into the elongation complex on transcription through the 601R nucleosome. Spt4/5 suppressed RNAPII pausing at the major H3/H4-induced arrest point, resulting in downstream re-positioning of RNAPII further into the nucleosome. Using a novel single molecule FRET system, we found that Spt4/5 affected the kinetics of DNA re-wrapping and stabilized a nucleosomal intermediate with partially unwrapped DNA behind RNAPII. Comparison of nucleosomes of different sequence polarities suggest that the strength of the DNA-histone interactions behind RNAPII specifies the Spt4/5 requirement. We propose that Spt4/5 may be important to coordinate the mechanical movement of RNAPII through the nucleosome with co-transcriptional chromatin modifications during transcription, which is affected by the strength of histone-DNA interactions.

  5. Dynamic Nucleosome Movement Provides Structural Information of Topological Chromatin Domains in Living Human Cells

    PubMed Central

    Shinkai, Soya; Nozaki, Tadasu; Maeshima, Kazuhiro

    2016-01-01

    The mammalian genome is organized into submegabase-sized chromatin domains (CDs) including topologically associating domains, which have been identified using chromosome conformation capture-based methods. Single-nucleosome imaging in living mammalian cells has revealed subdiffusively dynamic nucleosome movement. It is unclear how single nucleosomes within CDs fluctuate and how the CD structure reflects the nucleosome movement. Here, we present a polymer model wherein CDs are characterized by fractal dimensions and the nucleosome fibers fluctuate in a viscoelastic medium with memory. We analytically show that the mean-squared displacement (MSD) of nucleosome fluctuations within CDs is subdiffusive. The diffusion coefficient and the subdiffusive exponent depend on the structural information of CDs. This analytical result enabled us to extract information from the single-nucleosome imaging data for HeLa cells. Our observation that the MSD is lower at the nuclear periphery region than the interior region indicates that CDs in the heterochromatin-rich nuclear periphery region are more compact than those in the euchromatin-rich interior region with respect to the fractal dimensions as well as the size. Finally, we evaluated that the average size of CDs is in the range of 100–500 nm and that the relaxation time of nucleosome movement within CDs is a few seconds. Our results provide physical and dynamic insights into the genome architecture in living cells. PMID:27764097

  6. The Arabidopsis Adh gene exhibits diverse nucleosome arrangements within a small DNase I-sensitive domain.

    PubMed Central

    Vega-Palas, M A; Ferl, R J

    1995-01-01

    The alcohol dehydrogenase (Adh) gene from Arabidopsis shows enhanced sensitivity to DNase I in cells that express the gene. This generalized sensitivity to DNase I is demarcated by position -500 on the 5' side and the end of the mRNA on the 3' side. Thus, the gene defined as the promoter and mRNA coding region corresponds very closely in size with the gene defined as a nuclease-sensitive domain. This is a remarkably close correspondence between a sensitive domain and a eukaryotic transcriptional unit, because previously reported DNase I-sensitive domains include large regions of DNA that are not transcribed. Nucleosomes are present in the coding region of the Adh gene when it is expressed, indicating that the transcriptional elongation process causes nucleosome disruption rather than release of nucleosomes from the coding region. In addition, the regulatory region contains a loosely positioned nucleosome that is separated from adjacent nucleosomes by internucleosomic DNA segments longer than the average linker DNA in bulk chromatin. This specific array of nucleosomes coexists with bound transcription factors that could contribute to the organization of the nucleosome arrangement. These results enhance our understanding of the complex interactions among DNA, nucleosomes, and transcription factors during gene expression in plants. PMID:8535143

  7. Structural constraints in collaborative competition of transcription factors against the nucleosome.

    PubMed

    Moyle-Heyrman, Georgette; Tims, Hannah S; Widom, Jonathan

    2011-09-30

    Cooperativity in transcription factor (TF) binding is essential in eukaryotic gene regulation and arises through diverse mechanisms. Here, we focus on one mechanism, collaborative competition, which is of interest because it arises both automatically (with no requirement for TF coevolution) and spontaneously (with no requirement for ATP-dependent nucleosome remodeling factors). Previous experimental studies of collaborative competition analyzed cases in which target sites for pairs of cooperating TFs were contained within the same side of the nucleosome. Here, we utilize new assays to measure cooperativity in protein binding to pairs of nucleosomal DNA target sites. We focus on the cases that are of greatest in vivo relevance, in which one binding site is located close to the end of a nucleosome and the other binding site is located at diverse positions throughout the nucleosome. Our results reveal energetically significant positive (favorable) cooperativity for pairs of sites on the same side of the nucleosome but, for the cases examined, energetically insignificant cooperativity between sites on opposite sides of the nucleosome. These findings imply a special significance for TF binding sites that are spaced within one-half nucleosome length (74 bp) or less along the genome and may prove useful for prediction of cooperatively acting TFs genome wide.

  8. Structure and dynamics of DNA loops on nucleosomes studied with atomistic, microsecond-scale molecular dynamics

    PubMed Central

    Pasi, Marco; Lavery, Richard

    2016-01-01

    DNA loop formation on nucleosomes is strongly implicated in chromatin remodeling and occurs spontaneously in nucleosomes subjected to superhelical stress. The nature of such loops depends crucially on the balance between DNA deformation and DNA interaction with the nucleosome core. Currently, no high-resolution structural data on these loops exist. Although uniform rod models have been used to study loop size and shape, these models make assumptions concerning DNA mechanics and DNA–core binding. We present here atomic-scale molecular dynamics simulations for two different loop sizes. The results point to the key role of localized DNA kinking within the loops. Kinks enable the relaxation of DNA bending strain to be coupled with improved DNA–core interactions. Kinks lead to small, irregularly shaped loops that are asymmetrically positioned with respect to the nucleosome core. We also find that loop position can influence the dynamics of the DNA segments at the extremities of the nucleosome. PMID:27098037

  9. Nucleosome recognition and spacing by chromatin remodelling factor ISW1a.

    PubMed

    Richmond, Timothy J

    2012-04-01

    Nucleosomes are actively positioned along DNA by ATP-dependent, chromatin remodelling factors. A structural model for the ISW1a chromatin remodelling factor from Saccharomyces cerevisiae in complex with a dinucleosome substrate was constructed from the X-ray structures of ISW1a (ΔATPase) with and without DNA bound, two different cryo-EM (cryo-electron microscopy) structures of ISW1a (ΔATPase) bound to a nucleosome, and site-directed photo-cross-linking analyses in solution. The X-ray structure of ISW1a (ΔATPase) with DNA bound suggests that DNA sequence may be involved in nucleosome recognition and thereby specificity of promoter interaction. The model suggests how the highly ordered nucleosome arrays observed by mapping nucleosomes in genes and their promoter regions could be generated by a chromatin remodelling factor.

  10. The elongation rate of RNA polymerase determines the fate of transcribed nucleosomes

    PubMed Central

    Bintu, Lacramioara; Kopaczynska, Marta; Hodges, Courtney; Lubkowska, Lucyna; Kashlev, Mikhail; Bustamante, Carlos

    2011-01-01

    Upon transcription, histones can either detach from DNA or transfer behind the polymerase through a process believed to involve template looping. The details governing nucleosomal fate during transcription are not well understood. Our atomic force microscopy images of RNA polymerase II-nucleosome complexes confirm the presence of looped transcriptional intermediates and provide mechanistic insight into the histone-transfer process via the distribution of transcribed nucleosome positions. Significantly, we find that a fraction of the transcribed nucleosomes are remodeled to hexasomes, and that this fraction depends on the transcription elongation rate. A simple model involving the kinetic competition between transcription elongation, histone transfer, and histone-histone dissociation quantitatively rationalizes our observations and unifies results obtained with other polymerases. Factors affecting the relative magnitude of these processes provide the physical basis for nucleosomal fate during transcription and, therefore, for the regulation of gene expression. PMID:22081017

  11. Electrostatic effect of H1-histone protein binding on nucleosome repeat length

    NASA Astrophysics Data System (ADS)

    Cherstvy, Andrey G.; Teif, Vladimir B.

    2014-08-01

    Within a simple biophysical model we describe the effect of electrostatic binding of H1 histone proteins on the nucleosome repeat length in chromatin. The length of wrapped DNA optimizes its binding energy to the histone core and the elastic energy penalty of DNA wrapping. The magnitude of the effect predicted from our model is in agreement with the systematic experimental data on the linear variation of nucleosome repeat lengths with H1/nucleosome ratio (Woodcock C L et al 2006 Chromos. Res. 14 17-25). We compare our model to the data for different cell types and organisms, with a widely varying ratio of bound H1 histones per nucleosome. We underline the importance of this non-specific histone-DNA charge-balance mechanism in regulating the positioning of nucleosomes and the degree of compaction of chromatin fibers in eukaryotic cells.

  12. The effects of transcription on the nucleosome structure of four Dictyostelium genes.

    PubMed Central

    Pavlovic, J; Banz, E; Parish, R W

    1989-01-01

    Micrococcal nuclease digestion of Dictyostelium discoideum nuclei from various developmental stages was used to investigate transcription-related changes in the chromatin structure of the coding region of four genes. Gene activity was determined by Northern blotting and nuclear run on experiments. During strong transcription of the developmentally regulated cysteine proteinase I gene, a smear superimposed on a nucleosomal ladder was observed, indicating perturbation of nucleosomal structure was occurring. However, two other developmentally regulated genes, discoidin I and pSC253, showed only slight nucleosome disruption during high levels of transcription. The chromatin structure of a fourth gene (pCZ22) was disrupted throughout development, even at those stages where transcription was greatly reduced. We suggest that although nucleosome structure can be transiently perturbed by the passage of the transcription complex in vivo, the degree of perturbation and the speed with which nucleosomes reassemble is also influenced by the DNA sequence. Images PMID:2704621

  13. Remodeling sperm chromatin in Xenopus laevis egg extracts: the role of core histone phosphorylation and linker histone B4 in chromatin assembly

    PubMed Central

    1994-01-01

    We find that the remodeling of the condensed Xenopus laevis sperm nucleus into the paternal pronucleus in egg extracts is associated with phosphorylation of the core histones H2A, H2A.X and H4, and uptake of a linker histone B4 and a HMG 2 protein. Histone B4 is required for the assembly of chromatosome structures in the pronucleus. However neither B4 nor core histone phosphorylation are required for the assembly of spaced nucleosomal arrays. We suggest that the spacing of nucleosomal arrays is determined by interaction between adjacent histone octamers under physiological assembly conditions. PMID:8045925

  14. Nuclear magnetic resonance and biochemical studies of histone mobility in nucleosomes

    SciTech Connect

    Smith, R.M. II

    1985-01-01

    /sup 13/C NMR spectra were recorded for nucleosome cores and nucleosome cores with specific segments removed in an effort to identify regions of histone mobility in the nucleosome core. Three types of particles were generated by limited proteolysis of nucleosome cores. Brief ..cap alpha..-chmyotrypsin treatment yielded a particle in which H3 residues 1-20 had been removed. Further ..cap alpha..-chymotrypsin treatment of this particle yielded a particle in which H3 residues 1-20, H2B residues 1-18, and H4 residues 1022 were absent. Very brief digestion of this particle with trypsin produced a particle in which H3 residues 1-20, H2B residues 1-18, H4 residues 1-22, and H2A residues 1-11 and 119-128 were removed. Comparisons of /sup 13/C NMR spectra of proteolysed nucleosome core particles with /sup 13/ C NMR data of native nucleosome cores and the compositions of different peptide regions with potential mobility showed that the random coil regions observed in the core particles were located in H3 residues 1-23 and H2A residues 1-16 and 116-128. Particles with the N-terminal tails removed still retained sedimentation and circular dichroism characteristics similar to intact core particles. Random coil resonances were also seen in preparations of nucleosome oligomers, nucleosome oligomers depleted of H1 and H5, nucleosome oligomers in a condensed form, and in intact nuclei. These resonances appeared to be very similar to those appearing in the nucleosome core spectrum.

  15. A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription.

    PubMed

    van Bakel, Harm; Tsui, Kyle; Gebbia, Marinella; Mnaimneh, Sanie; Hughes, Timothy R; Nislow, Corey

    2013-05-01

    Nucleosomes in all eukaryotes examined to date adopt a characteristic architecture within genes and play fundamental roles in regulating transcription, yet the identity and precise roles of many of the trans-acting factors responsible for the establishment and maintenance of this organization remain to be identified. We profiled a compendium of 50 yeast strains carrying conditional alleles or complete deletions of genes involved in transcriptional regulation, histone biology, and chromatin remodeling, as well as compounds that target transcription and histone deacetylases, to assess their respective roles in nucleosome positioning and transcription. We find that nucleosome patterning in genes is affected by many factors, including the CAF-1 complex, Spt10, and Spt21, in addition to previously reported remodeler ATPases and histone chaperones. Disruption of these factors or reductions in histone levels led genic nucleosomes to assume positions more consistent with their intrinsic sequence preferences, with pronounced and specific shifts of the +1 nucleosome relative to the transcription start site. These shifts of +1 nucleosomes appear to have functional consequences, as several affected genes in Ino80 mutants exhibited altered expression responses. Our parallel expression profiling compendium revealed extensive transcription changes in intergenic and antisense regions, most of which occur in regions with altered nucleosome occupancy and positioning. We show that the nucleosome-excluding transcription factors Reb1, Abf1, Tbf1, and Rsc3 suppress cryptic transcripts at their target promoters, while a combined analysis of nucleosome and expression profiles identified 36 novel transcripts that are normally repressed by Tup1/Cyc8. Our data confirm and extend the roles of chromatin remodelers and chaperones as major determinants of genic nucleosome positioning, and these data provide a valuable resource for future studies.

  16. A Compendium of Nucleosome and Transcript Profiles Reveals Determinants of Chromatin Architecture and Transcription

    PubMed Central

    van Bakel, Harm; Tsui, Kyle; Gebbia, Marinella; Mnaimneh, Sanie; Hughes, Timothy R.; Nislow, Corey

    2013-01-01

    Nucleosomes in all eukaryotes examined to date adopt a characteristic architecture within genes and play fundamental roles in regulating transcription, yet the identity and precise roles of many of the trans-acting factors responsible for the establishment and maintenance of this organization remain to be identified. We profiled a compendium of 50 yeast strains carrying conditional alleles or complete deletions of genes involved in transcriptional regulation, histone biology, and chromatin remodeling, as well as compounds that target transcription and histone deacetylases, to assess their respective roles in nucleosome positioning and transcription. We find that nucleosome patterning in genes is affected by many factors, including the CAF-1 complex, Spt10, and Spt21, in addition to previously reported remodeler ATPases and histone chaperones. Disruption of these factors or reductions in histone levels led genic nucleosomes to assume positions more consistent with their intrinsic sequence preferences, with pronounced and specific shifts of the +1 nucleosome relative to the transcription start site. These shifts of +1 nucleosomes appear to have functional consequences, as several affected genes in Ino80 mutants exhibited altered expression responses. Our parallel expression profiling compendium revealed extensive transcription changes in intergenic and antisense regions, most of which occur in regions with altered nucleosome occupancy and positioning. We show that the nucleosome-excluding transcription factors Reb1, Abf1, Tbf1, and Rsc3 suppress cryptic transcripts at their target promoters, while a combined analysis of nucleosome and expression profiles identified 36 novel transcripts that are normally repressed by Tup1/Cyc8. Our data confirm and extend the roles of chromatin remodelers and chaperones as major determinants of genic nucleosome positioning, and these data provide a valuable resource for future studies. PMID:23658529

  17. Nucleosome competition reveals processive acetylation by the SAGA HAT module

    PubMed Central

    Ringel, Alison E.; Cieniewicz, Anne M.; Taverna, Sean D.; Wolberger, Cynthia

    2015-01-01

    The Spt-Ada-Gcn5 acetyltransferase (SAGA) coactivator complex hyperacetylates histone tails in vivo in a manner that depends upon histone 3 lysine 4 trimethylation (H3K4me3), a histone mark enriched at promoters of actively transcribed genes. SAGA contains a separable subcomplex known as the histone acetyltransferase (HAT) module that contains the HAT, Gcn5, bound to Sgf29, Ada2, and Ada3. Sgf29 contains a tandem Tudor domain that recognizes H3K4me3-containing peptides and is required for histone hyperacetylation in vivo. However, the mechanism by which H3K4me3 recognition leads to lysine hyperacetylation is unknown, as in vitro studies show no effect of the H3K4me3 modification on histone peptide acetylation by Gcn5. To determine how H3K4me3 binding by Sgf29 leads to histone hyperacetylation by Gcn5, we used differential fluorescent labeling of histones to monitor acetylation of individual subpopulations of methylated and unmodified nucleosomes in a mixture. We find that the SAGA HAT module preferentially acetylates H3K4me3 nucleosomes in a mixture containing excess unmodified nucleosomes and that this effect requires the Tudor domain of Sgf29. The H3K4me3 mark promotes processive, multisite acetylation of histone H3 by Gcn5 that can account for the different acetylation patterns established by SAGA at promoters versus coding regions. Our results establish a model for Sgf29 function at gene promoters and define a mechanism governing crosstalk between histone modifications. PMID:26401015

  18. Chiral discotic columnar germs of nucleosome core particles.

    PubMed Central

    Livolant, F; Leforestier, A

    2000-01-01

    In concentrated solution and in the presence of high concentrations of monovalent cations, nucleosome core particles order into a discotic columnar mesophase. This phase is limited to finite-sized hexagonal germs that further divide into six coiled branches, following an iterative process. We show how the structure of the germs comes from the competition between hexagonal packing and chirality with a combination of dendritic facetting and double-twist configurations. Geometrical considerations lead us to suspect that the chirality of the eukaryotic chromosomes may originate from the same competition. PMID:10777768

  19. Structure-based analysis of DNA sequence patterns guiding nucleosome positioning in vitro.

    PubMed

    Cui, Feng; Zhurkin, Victor B

    2010-06-01

    Recent studies of genome-wide nucleosomal organization suggest that the DNA sequence is one of the major determinants of nucleosome positioning. Although the search for underlying patterns encoded in nucleosomal DNA has been going on for about 30 years, our knowledge of these patterns still remains limited. Based on our evaluations of DNA deformation energy, we developed new scoring functions to predict nucleosome positioning. There are three principal differences between our approach and earlier studies: (i) we assume that the length of nucleosomal DNA varies from 146 to 147 bp; (ii) we consider the anisotropic flexibility of pyrimidine-purine (YR) dimeric steps in the context of their neighbors (e.g., YYRR versus RYRY); (iii) we postulate that alternating AT-rich and GC-rich motifs reflect sequence-dependent interactions between histone arginines and DNA in the minor groove. Using these functions, we analyzed 20 nucleosome positions mapped in vitro at single nucleotide resolution (including clones 601, 603, 605, the pGUB plasmid, chicken beta-globin and three 5S rDNA genes). We predicted 15 of the 20 positions with 1-bp precision, and two positions with 2-bp precision. The predicted position of the '601' nucleosome (i.e., the optimum of the computed score) deviates from the experimentally determined unique position by no more than 1 bp - an accuracy exceeding that of earlier predictions. Our analysis reveals a clear heterogeneity of the nucleosomal sequences which can be divided into two groups based on the positioning 'rules' they follow. The sequences of one group are enriched by highly deformable YR/YYRR motifs at the minor-groove bending sites SHL+/- 3.5 and +/- 5.5, which is similar to the alpha-satellite sequence used in most crystallized nucleosomes. Apparently, the positioning of these nucleosomes is determined by the interactions between histones H2A/H2B and the terminal parts of nucleosomal DNA. In the other group (that includes the '601' clone) the

  20. Structure-based Analysis of DNA Sequence Patterns Guiding Nucleosome Positioning in vitro

    PubMed Central

    Cui, Feng; Zhurkin, Victor B.

    2010-01-01

    Recent studies of genome-wide nucleosomal organization suggest that the DNA sequence is one of the major determinants of nucleosome positioning. Although the search for underlying patterns encoded in nucleosomal DNA has been going on for about 30 years, our knowledge of these patterns still remains limited. Based on our evaluations of DNA deformation energy, we developed new scoring functions to predict nucleosome positioning. There are three principal differences between our approach and earlier studies: (i) we assume that the length of nucleosomal DNA varies from 146 to 147 bp; (ii) we consider the anisotropic flexibility of pyrimidine-purine (YR) dimeric steps in the context of their neighbors (e.g., YYRR versus RYRY); (iii) we postulate that alternating AT-rich and GC-rich motifs reflect sequence-dependent interactions between histone arginines and DNA in the minor groove. Using these functions, we analyzed 20 nucleosome positions mapped in vitro at single nucleotide resolution (including clones 601, 603, 605, the pGUB plasmid, chicken β-globin and three 5S rDNA genes). We predicted 15 of the 20 positions with 1-bp precision, and two positions with 2-bp precision. The predicted position of the ‘601’ nucleosome (i.e., the optimum of the computed score) deviates from the experimentally determined unique position by no more than 1 bp — an accuracy exceeding that of earlier predictions. Our analysis reveals a clear heterogeneity of the nucleosomal sequences which can be divided into two groups based on the positioning ‘rules’ they follow. The sequences of one group are enriched by highly deformable YR/YYRR motifs at the minor-groove bending sites SHL ±3.5 and ±5.5, which is similar to the α-satellite sequence used in most crystallized nucleosomes. Apparently, the positioning of these nucleosomes is determined by the interactions between histones H2A/H2B and the terminal parts of nucleosomal DNA. In the other group (that includes the ‘601’ clone

  1. CENP-C directs a structural transition of CENP-A nucleosomes mainly through sliding of DNA gyres.

    PubMed

    Falk, Samantha J; Lee, Jaehyoun; Sekulic, Nikolina; Sennett, Michael A; Lee, Tae-Hee; Black, Ben E

    2016-03-01

    The histone H3 variant CENP-A is incorporated into nucleosomes that mark centromere location. We have recently reported that CENP-A nucleosomes, compared with their H3 counterparts, confer an altered nucleosome shape. Here, using a single-molecule fluorescence resonance energy transfer (FRET) approach with recombinant human histones and centromere DNA, we found that the nucleosome shape change directed by CENP-A is dominated by lateral passing of two DNA gyres (gyre sliding). A nonhistone centromere protein, CENP-C, binds and reshapes the nucleosome, sliding the DNA gyres back to positions similar to those in canonical nucleosomes containing conventional histone H3. The model that we generated to explain the CENP-A-nucleosome transition provides an example of a shape change imposed by external binding proteins and has notable implications for understanding of the epigenetic basis of the faithful inheritance of centromere location on chromosomes.

  2. Dissecting relative contributions of cis- and trans-determinants to nucleosome distribution by comparing Tetrahymena macronuclear and micronuclear chromatin

    PubMed Central

    Xiong, Jie; Gao, Shan; Dui, Wen; Yang, Wentao; Chen, Xiao; Taverna, Sean D.; Pearlman, Ronald E.; Ashlock, Wendy; Miao, Wei; Liu, Yifan

    2016-01-01

    The ciliate protozoan Tetrahymena thermophila contains two types of structurally and functionally differentiated nuclei: the transcriptionally active somatic macronucleus (MAC) and the transcriptionally silent germ-line micronucleus (MIC). Here, we demonstrate that MAC features well-positioned nucleosomes downstream of transcription start sites and flanking splice sites. Transcription-associated trans-determinants promote nucleosome positioning in MAC. By contrast, nucleosomes in MIC are dramatically delocalized. Nucleosome occupancy in MAC and MIC are nonetheless highly correlated with each other, as well as with in vitro reconstitution and predictions based upon DNA sequence features, revealing unexpectedly strong contributions from cis-determinants. In particular, well-positioned nucleosomes are often matched with GC content oscillations. As many nucleosomes are coordinately accommodated by both cis- and trans-determinants, we propose that their distribution is shaped by the impact of these nucleosomes on the mutational and transcriptional landscape, and driven by evolutionary selection. PMID:27488188

  3. Tension-dependent nucleosome remodeling at the pericentromere in yeast.

    PubMed

    Verdaasdonk, Jolien S; Gardner, Ryan; Stephens, Andrew D; Yeh, Elaine; Bloom, Kerry

    2012-07-01

    Nucleosome positioning is important for the structural integrity of chromosomes. During metaphase the mitotic spindle exerts physical force on pericentromeric chromatin. The cell must adjust the pericentromeric chromatin to accommodate the changing tension resulting from microtubule dynamics to maintain a stable metaphase spindle. Here we examine the effects of spindle-based tension on nucleosome dynamics by measuring the histone turnover of the chromosome arm and the pericentromere during metaphase in the budding yeast Saccharomyces cerevisiae. We find that both histones H2B and H4 exhibit greater turnover in the pericentromere during metaphase. Loss of spindle-based tension by treatment with the microtubule-depolymerizing drug nocodazole or compromising kinetochore function results in reduced histone turnover in the pericentromere. Pericentromeric histone dynamics are influenced by the chromatin-remodeling activities of STH1/NPS1 and ISW2. Sth1p is the ATPase component of the Remodels the Structure of Chromatin (RSC) complex, and Isw2p is an ATP-dependent DNA translocase member of the Imitation Switch (ISWI) subfamily of chromatin-remodeling factors. The balance between displacement and insertion of pericentromeric histones provides a mechanism to accommodate spindle-based tension while maintaining proper chromatin packaging during mitosis.

  4. Electrostatic origin of salt-induced nucleosome array compaction.

    PubMed

    Korolev, Nikolay; Allahverdi, Abdollah; Yang, Ye; Fan, Yanping; Lyubartsev, Alexander P; Nordenskiöld, Lars

    2010-09-22

    The physical mechanism of the folding and unfolding of chromatin is fundamentally related to transcription but is incompletely characterized and not fully understood. We experimentally and theoretically studied chromatin compaction by investigating the salt-mediated folding of an array made of 12 positioning nucleosomes with 177 bp repeat length. Sedimentation velocity measurements were performed to monitor the folding provoked by addition of cations Na(+), K(+), Mg(2+), Ca(2+), spermidine(3+), Co(NH(3))(6)(3+), and spermine(4+). We found typical polyelectrolyte behavior, with the critical concentration of cation needed to bring about maximal folding covering a range of almost five orders of magnitude (from 2 μM for spermine(4+) to 100 mM for Na(+)). A coarse-grained model of the nucleosome array based on a continuum dielectric description and including the explicit presence of mobile ions and charged flexible histone tails was used in computer simulations to investigate the cation-mediated compaction. The results of the simulations with explicit ions are in general agreement with the experimental data, whereas simple Debye-Hückel models are intrinsically incapable of describing chromatin array folding by multivalent cations. We conclude that the theoretical description of the salt-induced chromatin folding must incorporate explicit mobile ions that include ion correlation and ion competition effects.

  5. Nucleosome Free Regions in Yeast Promoters Result from Competitive Binding of Transcription Factors That Interact with Chromatin Modifiers

    PubMed Central

    Ozonov, Evgeniy A.; van Nimwegen, Erik

    2013-01-01

    Because DNA packaging in nucleosomes modulates its accessibility to transcription factors (TFs), unraveling the causal determinants of nucleosome positioning is of great importance to understanding gene regulation. Although there is evidence that intrinsic sequence specificity contributes to nucleosome positioning, the extent to which other factors contribute to nucleosome positioning is currently highly debated. Here we obtained both in vivo and in vitro reference maps of positions that are either consistently covered or free of nucleosomes across multiple experimental data-sets in Saccharomyces cerevisiae. We then systematically quantified the contribution of TF binding to nucleosome positiong using a rigorous statistical mechanics model in which TFs compete with nucleosomes for binding DNA. Our results reconcile previous seemingly conflicting results on the determinants of nucleosome positioning and provide a quantitative explanation for the difference between in vivo and in vitro positioning. On a genome-wide scale, nucleosome positioning is dominated by the phasing of nucleosome arrays over gene bodies, and their positioning is mainly determined by the intrinsic sequence preferences of nucleosomes. In contrast, larger nucleosome free regions in promoters, which likely have a much more significant impact on gene expression, are determined mainly by TF binding. Interestingly, of the 158 yeast TFs included in our modeling, we find that only 10–20 significantly contribute to inducing nucleosome-free regions, and these TFs are highly enriched for having direct interations with chromatin remodelers. Together our results imply that nucleosome free regions in yeast promoters results from the binding of a specific class of TFs that recruit chromatin remodelers. PMID:23990766

  6. Nucleosomes Are Essential for Proper Regulation of a Multigated Promoter in Saccharomyces cerevisiae.

    PubMed

    Yarrington, Robert M; Goodrum, Jenna M; Stillman, David J

    2016-02-01

    Nucleosome-depleted regions (NDRs) are present immediately adjacent to the transcription start site in most eukaryotic promoters. Here we show that NDRs in the upstream promoter region can profoundly affect gene regulation. Chromatin at the yeast HO promoter is highly repressive and numerous coactivators are required for expression. We modified the HO promoter with segments from the well-studied CLN2 NDR, creating chimeric promoters differing in nucleosome occupancy but with binding sites for the same activator, SBF. Nucleosome depletion resulted in substantial increases in both factor binding and gene expression and allowed activation from a much longer distance, probably by allowing recruited coactivators to act further downstream. Nucleosome depletion also affected sequential activation of the HO promoter; HO activation typically requires the ordered recruitment of activators first to URS1, second to the left-half of URS2 (URS2-L), and finally to the right-half of URS2 (URS2-R), with each region representing distinct gates that must be unlocked to achieve activation. The absence of nucleosomes at URS2-L resulted in promoters no longer requiring both the URS1 and URS2-L gates, as either gate alone is now sufficient to promote binding of the SBF factor to URS2-R. Furthermore, nucleosome depletion at URS2 altered the timing of HO expression and bypassed the regulation that restricts expression to mother cells. Our results reveal insight into how nucleosomes can create a requirement for ordered recruitment of factors to facilitate complex transcriptional regulation.

  7. Shearing of the CENP-A dimerization interface mediates plasticity in the octameric centromeric nucleosome.

    PubMed

    Winogradoff, David; Zhao, Haiqing; Dalal, Yamini; Papoian, Garegin A

    2015-11-25

    The centromeric nucleosome is a key epigenetic determinant of centromere identity and function. Consequently, deciphering how CENP-A containing nucleosomes contribute structurally to centromere function is a fundamental question in chromosome biology. Here, we performed microsecond timescale all-atom molecular dynamics (MD) simulations of CENP-A and H3 nucleosomes, and report that the octameric CENP-A core particles and nucleosomes display different dynamics from their canonical H3-containing counterparts. The most significant motion observed is within key interactions at the heart of the CENP-A octameric core, wherein shearing of contacts within the CENP-A:CENP-A' dimerization interface results in a weaker four helix bundle, and an extrusion of 10-30 bp of DNA near the pseudo-dyad. Coupled to other local and global fluctuations, the CENP-A nucleosome occupies a more rugged free energy landscape than the canonical H3 nucleosome. Taken together, our data suggest that CENP-A encodes enhanced distortability to the octameric nucleosome, which may allow for enhanced flexing of the histone core in vivo.

  8. Evaluation of the protective capabilities of nucleosome STRs obtained by large-scale sequencing.

    PubMed

    Dong, Chunnan; Yang, Yadong; Yan, Jiangwei; Fu, Lihong; Zhang, Xiaojing; Cong, Bin; Li, Shujin

    2015-07-01

    Partial DNA profiles are often obtained from degraded forensic samples and are hard to analyze and interpret. With in-depth studies on degraded DNA, an increasing number of forensic scientists have focused on the intrinsic structural properties of DNA. In theory, nucleosomes offer protection to the bound DNA by limiting access to enzymes. In our study, we performed large-scale DNA sequencing on nucleosome core DNA of human leucocytes. Five nucleosome short tandem repeats (STRs) were selected (including three forensic common STRs (i.e. TPOX, TH01, and D10S1248) and two unpublished STRs (i.e. AC012568.7 and AC007160.3)). We performed a population genetic investigation and forensic genetic statistical analysis of these two unpublished loci on 108 healthy unrelated individuals of the HeBei Han population in China. We estimated the protective capabilities of five selected nucleosome loci and MiniFiler™ loci with artificial degraded DNA and case samples. We also analyzed differences between sequencing results and software predicted results. Our findings showed that nucleosome STRs were more likely to be detected than MiniFiler™ loci. They were well protected from degradation by nucleosomes and could be candidates for further nucleosome multiplex construction, which would increase the chances of obtaining a better balanced profile with fewer allelic drop-outs.

  9. FSAP-mediated nucleosome release from late apoptotic cells is inhibited by autoantibodies present in SLE.

    PubMed

    Marsman, Gerben; Stephan, Femke; de Leeuw, Karina; Bulder, Ingrid; Ruinard, Jessica T; de Jong, Jan; Westra, Johanna; Bultink, Irene E M; Voskuyl, Alexandre E; Aarden, Lucien A; Luken, Brenda M; Kallenberg, Cees G M; Zeerleder, Sacha

    2016-03-01

    Inefficient clearance of apoptotic cells and the subsequent exposure of the immune system to nuclear contents are crucially involved in the pathogenesis of systemic lupus erythematosus (SLE). Factor VII-activating protease (FSAP) is activated in serum upon contact with dead cells, and releases nucleosomes from late apoptotic cells into the extracellular environment. We investigated whether FSAP-mediated nucleosome release from late apoptotic cells is affected in SLE patients. Nucleosome release in sera of 27 SLE patients and 30 healthy controls was investigated by incubating late apoptotic Jurkat cells with serum and analyzing the remaining DNA content by flow cytometry. We found that nucleosome release in sera of SLE patients with high disease activity was significantly decreased when compared with that in SLE sera obtained during low disease activity or from healthy individuals. Upon removal of IgG/IgM antibodies from SLE sera, nucleosome release was restored. Similarly, monoclonal antinuclear antibodies inhibited nucleosome release in healthy donor serum or by plasma-purified FSAP. This inhibition was lost when Fab fragments were used, suggesting that antigen cross-linking is involved. In conclusion, FSAP-mediated nucleosome release from late apoptotic cells is greatly impaired in SLE patient sera, possibly hampering the clearance of these cells and thereby propagating inflammation.

  10. Role of transcription factor-mediated nucleosome disassembly in PHO5 gene expression.

    PubMed

    Kharerin, Hungyo; Bhat, Paike J; Marko, John F; Padinhateeri, Ranjith

    2016-02-04

    Studying nucleosome dynamics in promoter regions is crucial for understanding gene regulation. Nucleosomes regulate gene expression by sterically occluding transcription factors (TFs) and other non-histone proteins accessing genomic DNA. How the binding competition between nucleosomes and TFs leads to transcriptionally compatible promoter states is an open question. Here, we present a computational study of the nucleosome dynamics and organization in the promoter region of PHO5 gene in Saccharomyces cerevisiae. Introducing a model for nucleosome kinetics that takes into account ATP-dependent remodeling activity, DNA sequence effects, and kinetics of TFs (Pho4p), we compute the probability of obtaining different "promoter states" having different nucleosome configurations. Comparing our results with experimental data, we argue that the presence of local remodeling activity (LRA) as opposed to basal remodeling activity (BRA) is crucial in determining transcriptionally active promoter states. By modulating the LRA and Pho4p binding rate, we obtain different mRNA distributions-Poisson, bimodal, and long-tail. Through this work we explain many features of the PHO5 promoter such as sequence-dependent TF accessibility and the role of correlated dynamics between nucleosomes and TFs in opening/coverage of the TATA box. We also obtain possible ranges for TF binding rates and the magnitude of LRA.

  11. RSC remodeling of oligo-nucleosomes: an atomic force microscopy study

    PubMed Central

    Montel, Fabien; Castelnovo, Martin; Menoni, Hervé; Angelov, Dimitar; Dimitrov, Stefan; Faivre-Moskalenko, Cendrine

    2011-01-01

    The ‘remodels structure of chromatin’ (RSC) complex is an essential chromatin remodeling factor that is required for the control of several processes including transcription, repair and replication. The ability of RSC to relocate centrally positioned mononucleosomes at the end of nucleosomal DNA is firmly established, but the data on RSC action on oligo-nucleosomal templates remains still scarce. By using atomic force microscopy (AFM) imaging, we have quantitatively studied the RSC-induced mobilization of positioned di- and trinucleosomes as well as the directionality of mobilization on mononucleosomal template labeled at one end with streptavidin. AFM imaging showed only a limited set of distinct configurational states for the remodeling products. No stepwise or preferred directionality of the nucleosome motion was observed. Analysis of the corresponding reaction pathways allows deciphering the mechanistic features of RSC-induced nucleosome relocation. The final outcome of RSC remodeling of oligosome templates is the packing of the nucleosomes at the edge of the template, providing large stretches of DNA depleted of nucleosomes. This feature of RSC may be used by the cell to overcome the barrier imposed by the presence of nucleosomes. PMID:21138962

  12. Statistical Mechanics of Nucleosomes Constrained by Higher-Order Chromatin Structure

    NASA Astrophysics Data System (ADS)

    Chereji, Răzvan V.; Morozov, Alexandre V.

    2011-07-01

    Eukaryotic DNA is packaged into chromatin: one-dimensional arrays of nucleosomes separated by stretches of linker DNA are folded into 30-nm chromatin fibers which in turn form higher-order structures (Felsenfeld and Groudine in Nature 421:448, 2003). Each nucleosome, the fundamental unit of chromatin, has 147 base pairs (bp) of DNA wrapped around a histone octamer (Richmond and Davey in Nature 423:145, 2003). In order to describe how chromatin fiber formation affects nucleosome positioning and energetics, we have developed a thermodynamic model of finite-size particles with effective nearest-neighbor interactions and arbitrary DNA-binding energies. We show that both one- and two-body interactions can be extracted from one-particle density profiles based on high-throughput maps of in vitro or in vivo nucleosome positions. Although a simpler approach that neglects two-body interactions (even if they are in fact present in the system) can be used to predict sequence determinants of nucleosome positions, the full theory is required to disentangle one- and two-body effects. Finally, we construct a minimal model in which nucleosomes are positioned primarily by steric exclusion and two-body interactions rather than intrinsic histone-DNA sequence preferences. The model reproduces nucleosome occupancy patterns observed over transcribed regions in living cells.

  13. Shearing of the CENP-A dimerization interface mediates plasticity in the octameric centromeric nucleosome

    NASA Astrophysics Data System (ADS)

    Winogradoff, David; Zhao, Haiqing; Dalal, Yamini; Papoian, Garegin A.

    2015-11-01

    The centromeric nucleosome is a key epigenetic determinant of centromere identity and function. Consequently, deciphering how CENP-A containing nucleosomes contribute structurally to centromere function is a fundamental question in chromosome biology. Here, we performed microsecond timescale all-atom molecular dynamics (MD) simulations of CENP-A and H3 nucleosomes, and report that the octameric CENP-A core particles and nucleosomes display different dynamics from their canonical H3-containing counterparts. The most significant motion observed is within key interactions at the heart of the CENP-A octameric core, wherein shearing of contacts within the CENP-A:CENP-A’ dimerization interface results in a weaker four helix bundle, and an extrusion of 10-30 bp of DNA near the pseudo-dyad. Coupled to other local and global fluctuations, the CENP-A nucleosome occupies a more rugged free energy landscape than the canonical H3 nucleosome. Taken together, our data suggest that CENP-A encodes enhanced distortability to the octameric nucleosome, which may allow for enhanced flexing of the histone core in vivo.

  14. Role of transcription factor-mediated nucleosome disassembly in PHO5 gene expression

    NASA Astrophysics Data System (ADS)

    Kharerin, Hungyo; Bhat, Paike J.; Marko, John F.; Padinhateeri, Ranjith

    2016-02-01

    Studying nucleosome dynamics in promoter regions is crucial for understanding gene regulation. Nucleosomes regulate gene expression by sterically occluding transcription factors (TFs) and other non–histone proteins accessing genomic DNA. How the binding competition between nucleosomes and TFs leads to transcriptionally compatible promoter states is an open question. Here, we present a computational study of the nucleosome dynamics and organization in the promoter region of PHO5 gene in Saccharomyces cerevisiae. Introducing a model for nucleosome kinetics that takes into account ATP-dependent remodeling activity, DNA sequence effects, and kinetics of TFs (Pho4p), we compute the probability of obtaining different “promoter states” having different nucleosome configurations. Comparing our results with experimental data, we argue that the presence of local remodeling activity (LRA) as opposed to basal remodeling activity (BRA) is crucial in determining transcriptionally active promoter states. By modulating the LRA and Pho4p binding rate, we obtain different mRNA distributions—Poisson, bimodal, and long-tail. Through this work we explain many features of the PHO5 promoter such as sequence-dependent TF accessibility and the role of correlated dynamics between nucleosomes and TFs in opening/coverage of the TATA box. We also obtain possible ranges for TF binding rates and the magnitude of LRA.

  15. Investigation of the interaction between berberine and nucleosomes in solution: Spectroscopic and equilibrium dialysis approach

    NASA Astrophysics Data System (ADS)

    Rabbani-Chadegani, Azra; Mollaei, Hossein; Sargolzaei, Javad

    2017-02-01

    Berberine is a natural plant alkaloid with high pharmacological potential. Although its interaction with free DNA has been the subject of several reports, to date there is no work concerning the effect of berberine on nucleoprotein structure of DNA, the nucleosomes. The present study focuses on the binding affinity of berberine to nucleosomes and histone H1 employing various spectroscopic techniques, fluorescence, circular dichroism, thermal denaturation as well as equilibrium dialysis. The results showed that the binding of berberine to nucleosomes is positive cooperative with Ka = 5.57 × 103 M- 1. Berberine quenched with the chromophores of protein moiety of nucleosomes and reduced fluorescence emission intensity at 335 nm with Ksv value of 0.135. Binding of berberine to nucleosomes decreased the absorbance at 210 and 260 nm, produced hypochromicity in thermal denaturation profiles and its affinity to nucleoprotein structure of nucleosomes was much higher than to free DNA. Berberine also exhibited high affinity to histone H1 in solution and the binding was positive cooperative with. Ka = 3.61 × 103 M- 1. Moreover berberine decreased fluorescence emission intensity of H1 by quenching with tyrosine residue in its globular core domain. The circular dichroism profiles demonstrated that the binding of drug induced secondary structural changes in both DNA stacking and histone H1. It is concluded that berberine is genotoxic drug, interacts with nucleosomes and in this process histone H1 is involved to exert its anticancer activity.

  16. Sequence-targeted nucleosome sliding in vivo by a hybrid Chd1 chromatin remodeler

    PubMed Central

    Bowman, Gregory D.

    2016-01-01

    ATP-dependent chromatin remodelers regulate chromatin dynamics by modifying nucleosome positions and occupancy. DNA-dependent processes such as replication and transcription rely on chromatin to faithfully regulate DNA accessibility, yet how chromatin remodelers achieve well-defined nucleosome positioning in vivo is poorly understood. Here, we report a simple method for site-specifically altering nucleosome positions in live cells. By fusing the Chd1 remodeler to the DNA binding domain of the Saccharomyces cerevisiae Ume6 repressor, we have engineered a fusion remodeler that selectively positions nucleosomes on top of adjacent Ume6 binding motifs in a highly predictable and reproducible manner. Positioning of nucleosomes by the fusion remodeler recapitulates closed chromatin structure at Ume6-sensitive genes analogous to the endogenous Isw2 remodeler. Strikingly, highly precise positioning of single founder nucleosomes by either chimeric Chd1-Ume6 or endogenous Isw2 shifts phased chromatin arrays in cooperation with endogenous chromatin remodelers. Our results demonstrate feasibility of engineering precise nucleosome rearrangements through sequence-targeted chromatin remodeling and provide insight into targeted action and cooperation of endogenous chromatin remodelers in vivo. PMID:26993344

  17. Genome-Wide Chromatin Remodeling Identified at GC-Rich Long Nucleosome-Free Regions

    PubMed Central

    Hochreiter, Sepp

    2012-01-01

    To gain deeper insights into principles of cell biology, it is essential to understand how cells reorganize their genomes by chromatin remodeling. We analyzed chromatin remodeling on next generation sequencing data from resting and activated T cells to determine a whole-genome chromatin remodeling landscape. We consider chromatin remodeling in terms of nucleosome repositioning which can be observed most robustly in long nucleosome-free regions (LNFRs) that are occupied by nucleosomes in another cell state. We found that LNFR sequences are either AT-rich or GC-rich, where nucleosome repositioning was observed much more prominently in GC-rich LNFRs — a considerable proportion of them outside promoter regions. Using support vector machines with string kernels, we identified a GC-rich DNA sequence pattern indicating loci of nucleosome repositioning in resting T cells. This pattern appears to be also typical for CpG islands. We found out that nucleosome repositioning in GC-rich LNFRs is indeed associated with CpG islands and with binding sites of the CpG-island-binding ZF-CXXC proteins KDM2A and CFP1. That this association occurs prominently inside and also prominently outside of promoter regions hints at a mechanism governing nucleosome repositioning that acts on a whole-genome scale. PMID:23144837

  18. Shearing of the CENP-A dimerization interface mediates plasticity in the octameric centromeric nucleosome

    PubMed Central

    Winogradoff, David; Zhao, Haiqing; Dalal, Yamini; Papoian, Garegin A.

    2015-01-01

    The centromeric nucleosome is a key epigenetic determinant of centromere identity and function. Consequently, deciphering how CENP-A containing nucleosomes contribute structurally to centromere function is a fundamental question in chromosome biology. Here, we performed microsecond timescale all-atom molecular dynamics (MD) simulations of CENP-A and H3 nucleosomes, and report that the octameric CENP-A core particles and nucleosomes display different dynamics from their canonical H3-containing counterparts. The most significant motion observed is within key interactions at the heart of the CENP-A octameric core, wherein shearing of contacts within the CENP-A:CENP-A’ dimerization interface results in a weaker four helix bundle, and an extrusion of 10–30 bp of DNA near the pseudo-dyad. Coupled to other local and global fluctuations, the CENP-A nucleosome occupies a more rugged free energy landscape than the canonical H3 nucleosome. Taken together, our data suggest that CENP-A encodes enhanced distortability to the octameric nucleosome, which may allow for enhanced flexing of the histone core in vivo. PMID:26602160

  19. High nucleosome occupancy is encoded at X-linked gene promoters in C. elegans

    PubMed Central

    Ercan, Sevinç; Lubling, Yaniv; Segal, Eran; Lieb, Jason D.

    2011-01-01

    We mapped nucleosome occupancy by paired-end Illumina sequencing in C. elegans embryonic cells, adult somatic cells, and a mix of adult somatic and germ cells. In all three samples, the nucleosome occupancy of gene promoters on the X chromosome differed from autosomal promoters. While both X and autosomal promoters exhibit a typical nucleosome-depleted region upstream of transcript start sites and a well-positioned +1 nucleosome, X-linked gene promoters on average exhibit higher nucleosome occupancy relative to autosomal promoters. We show that the difference between X and autosomes does not depend on the somatic dosage compensation machinery. Instead, the chromatin difference at promoters is partly encoded by DNA sequence, because a model trained on nucleosome sequence preferences from S. cerevisiae in vitro data recapitulate nearly completely the experimentally observed difference between X and autosomal promoters. The model predictions also correlate very well with experimentally determined occupancy values genome-wide. The nucleosome occupancy differences observed on X promoters may bear on mechanisms of X chromosome dosage compensation in the soma, and chromosome-wide repression of X in the germline. PMID:21177966

  20. Role of transcription factor-mediated nucleosome disassembly in PHO5 gene expression

    PubMed Central

    Kharerin, Hungyo; Bhat, Paike J.; Marko, John F.; Padinhateeri, Ranjith

    2016-01-01

    Studying nucleosome dynamics in promoter regions is crucial for understanding gene regulation. Nucleosomes regulate gene expression by sterically occluding transcription factors (TFs) and other non–histone proteins accessing genomic DNA. How the binding competition between nucleosomes and TFs leads to transcriptionally compatible promoter states is an open question. Here, we present a computational study of the nucleosome dynamics and organization in the promoter region of PHO5 gene in Saccharomyces cerevisiae. Introducing a model for nucleosome kinetics that takes into account ATP-dependent remodeling activity, DNA sequence effects, and kinetics of TFs (Pho4p), we compute the probability of obtaining different “promoter states” having different nucleosome configurations. Comparing our results with experimental data, we argue that the presence of local remodeling activity (LRA) as opposed to basal remodeling activity (BRA) is crucial in determining transcriptionally active promoter states. By modulating the LRA and Pho4p binding rate, we obtain different mRNA distributions—Poisson, bimodal, and long-tail. Through this work we explain many features of the PHO5 promoter such as sequence-dependent TF accessibility and the role of correlated dynamics between nucleosomes and TFs in opening/coverage of the TATA box. We also obtain possible ranges for TF binding rates and the magnitude of LRA. PMID:26843321

  1. Linker histones H1 and H5 prevent the mobility of positioned nucleosomes

    SciTech Connect

    Pennings, S.; Meersseman, G. ); Bradbury, E.M. Los Alamos National Lab., NM )

    1994-10-25

    We have previously identified a generally occurring short-range mobility of nucleosome cores on DNA in relatively low ionic strength conditions. Here we report that this mobility of histone octamers positioned on constructs of 5S rDNA is suppressed by the binding of histone H1 or H5 to the nucleosome. Histone H5 is the more potent inhibitor of nucleosome mobility, in accordance with its higher affinity for chromatin. We propose that this reversible restraint on chromatin dynamics may play a role in local regulation of processes that require access to the DNA. 42 refs., 2 figs.

  2. DNA stretching in the nucleosome facilitates alkylation by an intercalating antitumour agent

    PubMed Central

    Dong, Yuancai; Surana, Uttam; Davey, Curt A.

    2010-01-01

    DNA stretching in the nucleosome core can cause dramatic structural distortions, which may influence compaction and factor recognition in chromatin. We find that the base pair unstacking arising from stretching-induced extreme minor groove kinking near the nucleosome centre creates a hot spot for intercalation and alkylation by a novel anticancer compound. This may have far reaching implications for how chromatin structure can influence binding of intercalator species and indicates potential for the development of site selective DNA-binding agents that target unique conformational features of the nucleosome. PMID:20026584

  3. Yeast Isw1a and Isw1b exhibit similar nucleosome mobilization capacities for mononucleosomes, but differently mobilize dinucleosome templates.

    PubMed

    Krajewski, Wladyslaw A

    2014-03-15

    Nucleosome remodeling studies in vitro have primarily focused on the use of mononucleosome templates, which, however, can provide only limited information on how nucleosome mobilization occurs in the context of chromatin, in which internucleosome interactions might influence remodeling. We tried to evaluate whether nucleosome mobilization by yeast Isw1a, Isw1b and Isw2 could be affected by neighboring nucleosomes. We compared mono- and dinucleosomes positioned by the '601' sequence, the studied constructs contain variation in linker length between nucleosomes and variation in the length of flanking sequences. The data characterizing the remodeling were based on gel retardation of the mono and dinucleosomes, keeping in mind the observation that the relative position of the nucleosome will change the mobility of the complex in well defined ways. We found that Isw1a, Isw1b and Isw2 process nucleosomes differently whether they exist as mononucleosomes or dinucleosomes, such as, the Isw1a and Isw1b nucleosome repositioning patterns, which were very similar for mononucleosomes, appeared to be profoundly different in case of dinucleosome templates. We also examined the DNase I protection patterns of remodeled mono- and dinucleosomes. The data suggest that nucleosome mobilizing activity of Isw1a, Isw1b and Isw2 complexes could be significantly influenced by neighboring nucleosomes.

  4. Dnmt1-independent CG methylation contributes to nucleosome positioning in diverse eukaryotes.

    PubMed

    Huff, Jason T; Zilberman, Daniel

    2014-03-13

    Dnmt1 epigenetically propagates symmetrical CG methylation in many eukaryotes. Their genomes are typically depleted of CG dinucleotides because of imperfect repair of deaminated methylcytosines. Here, we extensively survey diverse species lacking Dnmt1 and show that, surprisingly, symmetrical CG methylation is nonetheless frequently present and catalyzed by a different DNA methyltransferase family, Dnmt5. Numerous Dnmt5-containing organisms that diverged more than a billion years ago exhibit clustered methylation, specifically in nucleosome linkers. Clustered methylation occurs at unprecedented densities and directly disfavors nucleosomes, contributing to nucleosome positioning between clusters. Dense methylation is enabled by a regime of genomic sequence evolution that enriches CG dinucleotides and drives the highest CG frequencies known. Species with linker methylation have small, transcriptionally active nuclei that approach the physical limits of chromatin compaction. These features constitute a previously unappreciated genome architecture, in which dense methylation influences nucleosome positions, likely facilitating nuclear processes under extreme spatial constraints.

  5. Rearrangement of the histone H2A C-terminal domain in the nucleosome

    SciTech Connect

    Usachenko, S.I.; Bavykin, S.G.; Gavin, I.M.; Bradbury, M. |

    1994-07-19

    Using zero-length covalent protein-DNA crosslinking, the authors have mapped the histone-DNA contacts in nucleosome core particles from which the C- and N-terminal domains of histone H2A were selectively trimmed by trypsin or clostripain. They found that the flexible trypsin-sensitive C-terminal domain of histone H2A contacts the dyad axis, whereas its globular domain contacts the end of DNA in the nucleosome core particle. The appearance of the histone H2A contact at the dyad axis occurs only in the absence of linker DNA and does not depend on the absence of linker histones. The results show the ability of the histone H2A C-terminal domain to rearrange. This rearrangement might play a biological role in nucleosome disassembly and reassembly and the retention of the H2A-H2B dimer (or the whole octamer) during the passing of polymerases through the nucleosome.

  6. Altered nucleosomes of active nucleolar chromatin contain accessible histone H3 in its hyperacetylated forms

    SciTech Connect

    Johnson, E.M.; Sterner, R.; Allfrey, V.G.

    1987-05-25

    Chromatin of the organism Physarum polycephalum contains a class of conformationally altered nucleosomes previously localized to the transcribing regions of ribosomal genes in nucleoli. When nuclei are treated with 2-iodo(2-tritium)acetate, the histone H3 sulfhydryl group of the altered nucleosomes is derivatized while that of folded nucleosomes is not, and the labeled histones can then be identified by autoradiography of gels that separate H3 isoforms. The H3 derivatized is predominantly of tri- and tetraacetylated forms. In contrast, total free histone reacted with iodoacetate shows no preferential labeling of isoforms. Selective reaction of acetylated H3 is prevalent in both nucleolar and non-nucleolar chromatin. The results link specific patterns of H3 acetylation to changes in nucleosome conformation that occur during transcription.

  7. Transcription-dependent and transcription-independent nucleosome disruption induced by dioxin

    SciTech Connect

    Morgan, J.E.; Whitlock, J.P. Jr. )

    1992-12-01

    In mouse hepatoma cells, both the regulatory and the transcribed regions of the cyp1a1 gene assume a nucleosomal configuration when the gene is silent; two nucleosomes occupy specific sites at the transcriptional promoter. Activation of transcription by 2,3,7,8-tetrachlorodibenzo-p-dioxin is accompanied by changes in chromatin structure, which depend upon a functional aromatic hydrocarbon (Ah) receptor. In the transcribed region of the gene, nucleosome disruption occurs as a consequence of RNA elongation. In contrast, at the promoter, loss of positioned nucleosomes is independent of transcription and represents an event in the mechanism by which the liganded Ah receptor enhances transcriptional initiation. 38 refs., 5 figs.

  8. Influence of DNA methylation on positioning and DNA flexibility of nucleosomes with pericentric satellite DNA.

    PubMed

    Osakabe, Akihisa; Adachi, Fumiya; Arimura, Yasuhiro; Maehara, Kazumitsu; Ohkawa, Yasuyuki; Kurumizaka, Hitoshi

    2015-10-01

    DNA methylation occurs on CpG sites and is important to form pericentric heterochromatin domains. The satellite 2 sequence, containing seven CpG sites, is located in the pericentric region of human chromosome 1 and is highly methylated in normal cells. In contrast, the satellite 2 region is reportedly hypomethylated in cancer cells, suggesting that the methylation status may affect the chromatin structure around the pericentric regions in tumours. In this study, we mapped the nucleosome positioning on the satellite 2 sequence in vitro and found that DNA methylation modestly affects the distribution of the nucleosome positioning. The micrococcal nuclease assay revealed that the DNA end flexibility of the nucleosomes changes, depending on the DNA methylation status. However, the structures and thermal stabilities of the nucleosomes are unaffected by DNA methylation. These findings provide new information to understand how DNA methylation functions in regulating pericentric heterochromatin formation and maintenance in normal and malignant cells.

  9. Atomic Force Microscopy Imaging of SWI/SNF Action: Mapping the Nucleosome Remodeling and Sliding

    PubMed Central

    Montel, Fabien; Fontaine, Emeline; St-Jean, Philippe; Castelnovo, Martin; Faivre-Moskalenko, Cendrine

    2007-01-01

    We propose a combined experimental (atomic force microscopy) and theoretical study of the structural and dynamical properties of nucleosomes. In contrast to biochemical approaches, this method allows us to determine simultaneously the DNA-complexed length distribution and nucleosome position in various contexts. First, we show that differences in the nucleoproteic structure observed between conventional H2A and H2A.Bbd variant nucleosomes induce quantitative changes in the length distribution of DNA-complexed with histones. Then, the sliding action of remodeling complex SWI/SNF is characterized through the evolution of the nucleosome position and wrapped DNA length mapping. Using a linear energetic model for the distribution of DNA-complexed length, we extract the net-wrapping energy of DNA onto the histone octamer and compare it to previous studies. PMID:17468167

  10. Synthetic Nucleosomes Reveal that GlcNAcylation Modulates Direct Interaction with the FACT Complex

    PubMed Central

    Raj, Ritu; Lercher, Lukas; Mohammed, Shabaz

    2016-01-01

    Abstract Transcriptional regulation can be established by various post‐translational modifications (PTMs) on histone proteins in the nucleosome and by nucleobase modifications on chromosomal DNA. Functional consequences of histone O‐GlcNAcylation (O‐GlcNAc=O‐linked β‐N‐acetylglucosamine) are largely unexplored. Herein, we generate homogeneously GlcNAcylated histones and nucleosomes by chemical post‐translational modification. Mass‐spectrometry‐based quantitative interaction proteomics reveals a direct interaction between GlcNAcylated nucleosomes and the “facilitates chromatin transcription” (FACT) complex. Preferential binding of FACT to GlcNAcylated nucleosomes may point towards O‐GlcNAcylation as one of the triggers for FACT‐driven transcriptional control. PMID:27272618

  11. Chromatin remodeller Fun30Fft3 induces nucleosome disassembly to facilitate RNA polymerase II elongation

    PubMed Central

    Lee, Junwoo; Shik Choi, Eun; David Seo, Hogyu; Kang, Keunsoo; Gilmore, Joshua M.; Florens, Laurence; Washburn, Michael P.; Choe, Joonho; Workman, Jerry L.; Lee, Daeyoup

    2017-01-01

    Previous studies have revealed that nucleosomes impede elongation of RNA polymerase II (RNAPII). Recent observations suggest a role for ATP-dependent chromatin remodellers in modulating this process, but direct in vivo evidence for this is unknown. Here using fission yeast, we identify Fun30Fft3 as a chromatin remodeller, which localizes at transcribing regions to promote RNAPII transcription. Fun30Fft3 associates with RNAPII and collaborates with the histone chaperone, FACT, which facilitates RNAPII elongation through chromatin, to induce nucleosome disassembly at transcribing regions during RNAPII transcription. Mutants, resulting in reduced nucleosome-barrier, such as deletion mutants of histones H3/H4 themselves and the genes encoding components of histone deacetylase Clr6 complex II suppress the defects in growth and RNAPII occupancy of cells lacking Fun30Fft3. These data suggest that RNAPII utilizes the chromatin remodeller, Fun30Fft3, to overcome the nucleosome barrier to transcription elongation. PMID:28218250

  12. Atomic force microscopy imaging of SWI/SNF action: mapping the nucleosome remodeling and sliding.

    PubMed

    Montel, Fabien; Fontaine, Emeline; St-Jean, Philippe; Castelnovo, Martin; Faivre-Moskalenko, Cendrine

    2007-07-15

    We propose a combined experimental (atomic force microscopy) and theoretical study of the structural and dynamical properties of nucleosomes. In contrast to biochemical approaches, this method allows us to determine simultaneously the DNA-complexed length distribution and nucleosome position in various contexts. First, we show that differences in the nucleoproteic structure observed between conventional H2A and H2A.Bbd variant nucleosomes induce quantitative changes in the length distribution of DNA-complexed with histones. Then, the sliding action of remodeling complex SWI/SNF is characterized through the evolution of the nucleosome position and wrapped DNA length mapping. Using a linear energetic model for the distribution of DNA-complexed length, we extract the net-wrapping energy of DNA onto the histone octamer and compare it to previous studies.

  13. Nucleosome arrangement in alpha-satellite chromatin of African green monkey cells.

    PubMed Central

    Smith, M R; Lieberman, M W

    1984-01-01

    By analyzing the accessibility of restriction endonuclease sites in African green monkey alpha-satellite chromatin, we demonstrate the absence of a unique phase relationship between nucleosomes and alpha-satellite DNA. The data indicate a minimum of three different positions for nucleosome cores relative to the alpha-satellite sequence and suggest a random distribution in at least some regions. In addition, while we confirm published reports that staphylococcal nuclease cuts the alpha-satellite sequence in chromatin at a highly preferred site, two-dimensional gel electrophoresis of nuclear digests demonstrates that this site is preferentially cut by staphylococcal nuclease even when it is within the nucleosome core. These data indicate that staphylococcal nuclease is not useful for determining nucleosome positions on alpha-satellite DNA, and perhaps on other specific DNA sequences as well. Images PMID:6089117

  14. Polymorphism of apyrimidinic DNA structures in the nucleosome

    PubMed Central

    Osakabe, Akihisa; Arimura, Yasuhiro; Matsumoto, Syota; Horikoshi, Naoki; Sugasawa, Kaoru; Kurumizaka, Hitoshi

    2017-01-01

    Huge amounts (>10,000/day) of apurinic/apyrimidinic (AP) sites are produced in genomes, but their structures in chromatin remain undetermined. We determined the crystal structure of the nucleosome containing AP-site analogs at two symmetric sites, which revealed structural polymorphism: one forms an inchworm configuration without an empty space at the AP site, and the other forms a B-form-like structure with an empty space and the orphan base. This unexpected inchworm configuration of the AP site is important to understand the AP DNA repair mechanism, because it may not be recognized by the major AP-binding protein, APE1, during the base excision repair process. PMID:28139742

  15. Reconstitution and electron spin resonance spin labeling studies of nucleosomes

    SciTech Connect

    Chan, D.C.F.; Grover, T.A.; Piette, L.H.

    1980-10-01

    The spin label, N-(2,2,5,5-tetramethyl-3-carbonylpyrrolidine-1-oxyl)-imidazole, was used to study the mode of reconstitution of nucleosome core particles. The histone cores in 2 M NaCl were first reacted with the imidazole spin label. After the removal of unreacted label, the histone cores were mixed with purified core DNA (145 base pairs) in 2 M NaCl. The mixture was then reconstituted by salt step-gradient dialysis according to Tatchell and Van Holde. At each step of the dialysis, an electron spin resonance (ESR) spectrum of the labeled tyrosyls was recorded and the correlation time of the label determined. As the ionic strength was gradually decreased, the correlation time of the spin label increased. This is in contrast to what we observed previously for the histone core alone, in which a decrease in the ionic strength caused the histone core (in the absence of DNA) to dissociate, freeing up the label and decreasing its correlation tie. Judging from the change in rotational correlation times for the spin label, we concluded that the histone core binds progressively to the DNA in the range of 2 M-0.3 M NaCl. When the ionic strength is <0.3 M, full association between the histone core and DNA takes place. These reconstituted spin labelled nucleosome core complexes, purified by isokinetic sucrose gradient, were found to have identical physical properties (histone content, sedimentation coefficient, thermal melting profile, and ciruclar dichroism) as the native particle.

  16. A region of the nucleosome required for multiple types of transcriptional silencing in Saccharomyces cerevisiae.

    PubMed

    Prescott, Eugenia T; Safi, Alexias; Rusche, Laura N

    2011-07-01

    Extended heterochromatin domains, which are repressive to transcription and help define centromeres and telomeres, are formed through specific interactions between silencing proteins and nucleosomes. This study reveals that in Saccharomyces cerevisiae, the same nucleosomal surface is critical for the formation of multiple types of heterochromatin, but not for local repression mediated by a related transcriptional repressor. Thus, this region of the nucleosome may be generally important to long-range silencing. In S. cerevisiae, the Sir proteins perform long-range silencing, whereas the Sum1 complex acts locally to repress specific genes. A mutant form of Sum1p, Sum1-1p, achieves silencing in the absence of Sir proteins. A genetic screen identified mutations in histones H3 and H4 that disrupt Sum1-1 silencing and fall in regions of the nucleosome previously known to disrupt Sir silencing and rDNA silencing. In contrast, no mutations were identified that disrupt wild-type Sum1 repression. Mutations that disrupt silencing fall in two regions of the nucleosome, the tip of the H3 tail and a surface of the nucleosomal core (LRS domain) and the adjacent base of the H4 tail. The LRS/H4 tail region interacts with the Sir3p bromo-adjacent homology (BAH) domain to facilitate Sir silencing. By analogy, this study is consistent with the LRS/H4 tail region interacting with Orc1p, a paralog of Sir3p, to facilitate Sum1-1 silencing. Thus, the LRS/H4 tail region of the nucleosome may be relatively accessible and facilitate interactions between silencing proteins and nucleosomes to stabilize long-range silencing.

  17. H3.3/H2A.Z double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions.

    PubMed

    Jin, Chunyuan; Zang, Chongzhi; Wei, Gang; Cui, Kairong; Peng, Weiqun; Zhao, Keji; Felsenfeld, Gary

    2009-08-01

    To understand how chromatin structure is organized by different histone variants, we have measured the genome-wide distribution of nucleosome core particles (NCPs) containing the histone variants H3.3 and H2A.Z in human cells. We find that a special class of NCPs containing both variants is enriched at 'nucleosome-free regions' of active promoters, enhancers and insulator regions. We show that preparative methods used previously in studying nucleosome structure result in the loss of these unstable double-variant NCPs. It seems likely that this instability facilitates the access of transcription factors to promoters and other regulatory sites in vivo. Other combinations of variants have different distributions, consistent with distinct roles for histone variants in the modulation of gene expression.

  18. Structure of human nucleosome containing the testis-specific histone variant TSH2B.

    PubMed

    Urahama, Takashi; Horikoshi, Naoki; Osakabe, Akihisa; Tachiwana, Hiroaki; Kurumizaka, Hitoshi

    2014-04-01

    The human histone H2B variant TSH2B is highly expressed in testis and may function in the chromatin transition during spermatogenesis. In the present study, the crystal structure of the human testis-specific nucleosome containing TSH2B was determined at 2.8 Å resolution. A local structural difference between TSH2B and canonical H2B in nucleosomes was detected around the TSH2B-specific amino-acid residue Ser85. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, but in the canonical nucleosome the H2B Asn84 residue (corresponding to the TSH2B Ser85 residue) forms water-mediated hydrogen bonds with the H4 Arg78 residue. In contrast, the other TSH2B-specific amino-acid residues did not induce any significant local structural changes in the TSH2B nucleosome. These findings may provide important information for understanding how testis-specific histone variants form nucleosomes during spermatogenesis.

  19. Single-Molecule Studies of the Linker Histone H1 Binding to DNA and the Nucleosome.

    PubMed

    Yue, Hongjun; Fang, He; Wei, Sijie; Hayes, Jeffrey J; Lee, Tae-Hee

    2016-04-12

    Linker histone H1 regulates chromatin structure and gene expression. Investigating the dynamics and stoichiometry of binding of H1 to DNA and the nucleosome is crucial to elucidating its functions. Because of the abundant positive charges and the strong self-affinity of H1, quantitative in vitro studies of its binding to DNA and the nucleosome have generated results that vary widely and, therefore, should be interpreted in a system specific manner. We sought to overcome this limitation by developing a specially passivated microscope slide surface to monitor binding of H1 to DNA and the nucleosome at a single-molecule level. According to our measurements, the stoichiometry of binding of H1 to DNA and the nucleosome is very heterogeneous with a wide distribution whose averages are in reasonable agreement with previously published values. Our study also revealed that H1 does not dissociate from DNA or the nucleosome on a time scale of tens of minutes. We found that histone chaperone Nap1 readily dissociates H1 from DNA and superstoichiometrically bound H1 from the nucleosome, supporting a hypothesis whereby histone chaperones contribute to the regulation of the H1 profile in chromatin.

  20. Relationship between nucleosome positioning and progesterone-induced alternative splicing in breast cancer cells.

    PubMed

    Iannone, Camilla; Pohl, Andy; Papasaikas, Panagiotis; Soronellas, Daniel; Vicent, Guillermo P; Beato, Miguel; ValcáRcel, Juan

    2015-03-01

    Splicing of mRNA precursors can occur cotranscriptionally and it has been proposed that chromatin structure influences splice site recognition and regulation. Here we have systematically explored potential links between nucleosome positioning and alternative splicing regulation upon progesterone stimulation of breast cancer cells. We confirm preferential nucleosome positioning in exons and report four distinct profiles of nucleosome density around alternatively spliced exons, with RNA polymerase II accumulation closely following nucleosome positioning. Hormone stimulation induces switches between profile classes, correlating with a subset of alternative splicing changes. Hormone-induced exon inclusion often correlates with higher nucleosome occupancy at the exon or the preceding intronic region and with higher RNA polymerase II accumulation. In contrast, exons skipped upon hormone stimulation display low nucleosome densities even before hormone treatment, suggesting that chromatin structure primes alternative splicing regulation. Skipped exons frequently harbor binding sites for hnRNP AB, a hormone-induced splicing regulator whose knock down prevents some hormone-induced skipping events. Collectively, our results argue that a variety of chromatin architecture mechanisms can influence alternative splicing decisions.

  1. A quantitative investigation of linker histone interactions with nucleosomes and chromatin.

    PubMed

    White, Alison E; Hieb, Aaron R; Luger, Karolin

    2016-01-11

    Linker histones such as H1 are abundant basic proteins that bind tightly to nucleosomes, thereby acting as key organizers of chromatin structure. The molecular details of linker histone interactions with the nucleosome, and in particular the contributions of linker DNA and of the basic C-terminal tail of H1, are controversial. Here we combine rigorous solution-state binding assays with native gel electrophoresis and Atomic Force Microscopy, to quantify the interaction of H1 with chromatin. We find that H1 binds nucleosomes and nucleosomal arrays with very tight affinity by recognizing a specific DNA geometry minimally consisting of a solitary nucleosome with a single ~18 base pair DNA linker arm. The association of H1 alters the conformation of trinucleosomes so that only one H1 can bind to the two available linker DNA regions. Neither incorporation of the histone variant H2A.Z, nor the presence of neighboring nucleosomes affects H1 affinity. Our data provide a comprehensive thermodynamic framework for this ubiquitous chromatin architectural protein.

  2. Nucleosome Repositioning: A Novel Mechanism for Nicotine- and Cocaine-Induced Epigenetic Changes.

    PubMed

    Brown, Amber N; Vied, Cynthia; Dennis, Jonathan H; Bhide, Pradeep G

    2015-01-01

    Drugs of abuse modify behavior by altering gene expression in the brain. Gene expression can be regulated by changes in DNA methylation as well as by histone modifications, which alter chromatin structure, DNA compaction and DNA accessibility. In order to better understand the molecular mechanisms directing drug-induced changes in chromatin structure, we examined DNA-nucleosome interactions within promoter regions of 858 genes in human neuroblastoma cells (SH-SY5Y) exposed to nicotine or cocaine. Widespread, drug- and time-resolved repositioning of nucleosomes was identified at the transcription start site and promoter region of multiple genes. Nicotine and cocaine produced unique and shared changes in terms of the numbers and types of genes affected, as well as repositioning of nucleosomes at sites which could increase or decrease the probability of gene expression based on DNA accessibility. Half of the drug-induced nucleosome positions approximated a theoretical model of nucleosome occupancy based on physical and chemical characteristics of the DNA sequence, whereas the basal or drug naïve positions were generally DNA sequence independent. Thus we suggest that nucleosome repositioning represents an initial dynamic genome-wide alteration of the transcriptional landscape preceding more selective downstream transcriptional reprogramming, which ultimately characterizes the cell- and tissue-specific responses to drugs of abuse.

  3. Charge State of the Globular Histone Core Controls Stability of the Nucleosome

    PubMed Central

    Fenley, Andrew T.; Adams, David A.; Onufriev, Alexey V.

    2010-01-01

    Presented here is a quantitative model of the wrapping and unwrapping of the DNA around the histone core of the nucleosome that suggests a mechanism by which this transition can be controlled: alteration of the charge state of the globular histone core. The mechanism is relevant to several classes of posttranslational modifications such as histone acetylation and phosphorylation; several specific scenarios consistent with recent in vivo experiments are considered. The model integrates a description based on an idealized geometry with one based on the atomistic structure of the nucleosome, and the model consistently accounts for both the electrostatic and nonelectrostatic contributions to the nucleosome free energy. Under physiological conditions, isolated nucleosomes are predicted to be very stable (38 ± 7 kcal/mol). However, a decrease in the charge of the globular histone core by one unit charge, for example due to acetylation of a single lysine residue, can lead to a significant decrease in the strength of association with its DNA. In contrast to the globular histone core, comparable changes in the charge state of the histone tail regions have relatively little effect on the nucleosome's stability. The combination of high stability and sensitivity explains how the nucleosome is able to satisfy the seemingly contradictory requirements for thermodynamic stability while allowing quick access to its DNA informational content when needed by specific cellular processes such as transcription. PMID:20816070

  4. Single-molecule imaging of DNA curtains reveals intrinsic energy landscapes for nucleosome deposition

    PubMed Central

    Visnapuu, Mari-Liis; Greene, Eric C.

    2009-01-01

    Here we use single-molecule imaging to determine coarse-grained intrinsic energy landscapes for nucleosome deposition on model DNA substrates. Our results reveal distributions that are correlated with recent in silico predictions, reinforcing the hypothesis that DNA contains some intrinsic positioning information. We also show that cis-regulatory sequences in human DNA coincide with peaks in the intrinsic landscape, whereas valleys correspond to non-regulatory regions, and we present evidence arguing that nucleosome deposition in vertebrates is influenced by factors not accounted for by current theory. Finally, we demonstrate that intrinsic landscapes of nucleosomes containing the centromere-specific variant CenH3 are correlated with patterns observed for canonical nucleosomes, arguing that CenH3 does not alter sequence preferences of centromeric nucleosomes. However, the non-histone protein Scm3 alters the intrinsic landscape of CenH3-containing nucleosomes, enabling them to overcome the otherwise exclusionary effects of poly(dA–dT) tracts, which are enriched in centromeric DNA. PMID:19734899

  5. DNA base excision repair of uracil residues in reconstituted nucleosome core particles

    PubMed Central

    Nilsen, Hilde; Lindahl, Tomas; Verreault, Alain

    2002-01-01

    The human base excision repair machinery must locate and repair DNA base damage present in chromatin, of which the nucleosome core particle is the basic repeating unit. Here, we have utilized fragments of the Lytechinus variegatus 5S rRNA gene containing site-specific U:A base pairs to investigate the base excision repair pathway in reconstituted nucleosome core particles in vitro. The human uracil-DNA glycosylases, UNG2 and SMUG1, were able to remove uracil from nucleosomes. Efficiency of uracil excision from nucleosomes was reduced 3- to 9-fold when compared with naked DNA, and was essentially uniform along the length of the DNA substrate irrespective of rotational position on the core particle. Furthermore, we demonstrate that the excision repair pathway of an abasic site can be reconstituted on core particles using the known repair enzymes, AP-endonuclease 1, DNA polymerase β and DNA ligase III. Thus, base excision repair can proceed in nucleosome core particles in vitro, but the repair efficiency is limited by the reduced activity of the uracil-DNA glycosylases and DNA polymerase β on nucleosome cores. PMID:12411511

  6. Free-energy landscape of mono- and dinucleosomes: Enhanced rotational flexibility of interconnected nucleosomes

    NASA Astrophysics Data System (ADS)

    Nam, Gi-Moon; Arya, Gaurav

    2016-03-01

    The nucleosome represents the basic unit of eukaryotic genome organization, and its conformational fluctuations play a crucial role in various cellular processes. Here we provide insights into the flipping transition of a nucleosome by computing its free-energy landscape as a function of the linking number and nucleosome orientation using the density-of-states Monte Carlo approach. To investigate how the energy landscape is affected by the presence of neighboring nucleosomes in a chromatin fiber, we also compute the free-energy landscape for a dinucleosome array. We find that the mononucleosome is bistable between conformations with negatively and positively crossed linkers while the conformation with open linkers appears as a transition state. The dinucleosome exhibits a markedly different energy landscape in which the conformation with open linkers populates not only the transition state but also the global minimum. This enhanced stability of the open state is attributed to increased rotational flexibility of nucleosomes arising from their mechanical coupling with neighboring nucleosomes. Our results provide a possible mechanism by which chromatin may enhance the accessibility of its DNA and facilitate the propagation and mitigation of DNA torsional stresses.

  7. Distinct features of the histone core structure in nucleosomes containing the histone H2A.B variant.

    PubMed

    Sugiyama, Masaaki; Arimura, Yasuhiro; Shirayama, Kazuyoshi; Fujita, Risa; Oba, Yojiro; Sato, Nobuhiro; Inoue, Rintaro; Oda, Takashi; Sato, Mamoru; Heenan, Richard K; Kurumizaka, Hitoshi

    2014-05-20

    Nucleosomes containing a human histone variant, H2A.B, in an aqueous solution were analyzed by small-angle neutron scattering utilizing a contrast variation technique. Comparisons with the canonical H2A nucleosome structure revealed that the DNA termini of the H2A.B nucleosome are detached from the histone core surface, and flexibly expanded toward the solvent. In contrast, the histone tails are compacted in H2A.B nucleosomes compared to those in canonical H2A nucleosomes, suggesting that they bind to the surface of the histone core and/or DNA. Therefore, the histone tail dynamics may function to regulate the flexibility of the DNA termini in the nucleosomes.

  8. A bromodomain–DNA interaction facilitates acetylation-dependent bivalent nucleosome recognition by the BET protein BRDT

    PubMed Central

    Miller, Thomas C. R.; Simon, Bernd; Rybin, Vladimir; Grötsch, Helga; Curtet, Sandrine; Khochbin, Saadi; Carlomagno, Teresa; Müller, Christoph W.

    2016-01-01

    Bromodomains are critical components of many chromatin modifying/remodelling proteins and are emerging therapeutic targets, yet how they interact with nucleosomes, rather than acetylated peptides, remains unclear. Using BRDT as a model, we characterized how the BET family of bromodomains interacts with site-specifically acetylated nucleosomes. Here we report that BRDT interacts with nucleosomes through its first (BD1), but not second (BD2) bromodomain, and that acetylated histone recognition by BD1 is complemented by a bromodomain–DNA interaction. Simultaneous DNA and histone recognition enhances BRDT's nucleosome binding affinity and specificity, and its ability to localize to acetylated chromatin in cells. Conservation of DNA binding in bromodomains of BRD2, BRD3 and BRD4, indicates that bivalent nucleosome recognition is a key feature of these bromodomains and possibly others. Our results elucidate the molecular mechanism of BRDT association with nucleosomes and identify structural features of the BET bromodomains that may be targeted for therapeutic inhibition. PMID:27991587

  9. A Quantitative Proteomic Analysis of In Vitro Assembled Chromatin*

    PubMed Central

    Völker-Albert, Moritz Carl; Pusch, Miriam Caroline; Fedisch, Andreas; Schilcher, Pierre; Schmidt, Andreas; Imhof, Axel

    2016-01-01

    The structure of chromatin is critical for many aspects of cellular physiology and is considered to be the primary medium to store epigenetic information. It is defined by the histone molecules that constitute the nucleosome, the positioning of the nucleosomes along the DNA and the non-histone proteins that associate with it. These factors help to establish and maintain a largely DNA sequence-independent but surprisingly stable structure. Chromatin is extensively disassembled and reassembled during DNA replication, repair, recombination or transcription in order to allow the necessary factors to gain access to their substrate. Despite such constant interference with chromatin structure, the epigenetic information is generally well maintained. Surprisingly, the mechanisms that coordinate chromatin assembly and ensure proper assembly are not particularly well understood. Here, we use label free quantitative mass spectrometry to describe the kinetics of in vitro assembled chromatin supported by an embryo extract prepared from preblastoderm Drosophila melanogaster embryos. The use of a data independent acquisition method for proteome wide quantitation allows a time resolved comparison of in vitro chromatin assembly. A comparison of our in vitro data with proteomic studies of replicative chromatin assembly in vivo reveals an extensive overlap showing that the in vitro system can be used for investigating the kinetics of chromatin assembly in a proteome-wide manner. PMID:26811354

  10. Increased Nucleosomes and Neutrophil Activation Link to Disease Progression in Patients with Scrub Typhus but Not Murine Typhus in Laos.

    PubMed

    Paris, Daniel H; Stephan, Femke; Bulder, Ingrid; Wouters, Diana; van der Poll, Tom; Newton, Paul N; Day, Nicholas P J; Zeerleder, Sacha

    2015-01-01

    Cell-mediated immunity is essential in protection against rickettsial illnesses, but the role of neutrophils in these intracellular vasculotropic infections remains unclear. This study analyzed the plasma levels of nucleosomes, FSAP-activation (nucleosome-releasing factor), and neutrophil activation, as evidenced by neutrophil-elastase (ELA) complexes, in sympatric Lao patients with scrub typhus and murine typhus. In acute scrub typhus elevated nucleosome levels correlated with lower GCS scores, raised respiratory rate, jaundice and impaired liver function, whereas neutrophil activation correlated with fibrinolysis and high IL-8 plasma levels, a recently identified predictor of severe disease and mortality. Nucleosome and ELA complex levels were associated with a 4.8-fold and 4-fold increased risk of developing severe scrub typhus, beyond cut off values of 1,040 U/ml for nucleosomes and 275 U/ml for ELA complexes respectively. In murine typhus, nucleosome levels associated with pro-inflammatory cytokines and the duration of illness, while ELA complexes correlated strongly with inflammation markers, jaundice and increased respiratory rates. This study found strong correlations between circulating nucleosomes and neutrophil activation in patients with scrub typhus, but not murine typhus, providing indirect evidence that nucleosomes could originate from neutrophil extracellular trap (NET) degradation. High circulating plasma nucleosomes and ELA complexes represent independent risk factors for developing severe complications in scrub typhus. As nucleosomes and histones exposed on NETs are highly cytotoxic to endothelial cells and are strongly pro-coagulant, neutrophil-derived nucleosomes could contribute to vascular damage, the pro-coagulant state and exacerbation of disease in scrub typhus, thus indicating a detrimental role of neutrophil activation. The data suggest that increased neutrophil activation relates to disease progression and severe complications, and

  11. Genome-Wide Nucleosome Occupancy and Positioning and Their Impact on Gene Expression and Evolution in Plants.

    PubMed

    Zhang, Tao; Zhang, Wenli; Jiang, Jiming

    2015-08-01

    The fundamental unit of chromatin is the nucleosome that consists of a protein octamer composed of the four core histones (Hs; H3, H4, H2A, and H2B) wrapped by 147 bp of DNA. Nucleosome occupancy and positioning have proven to be dynamic and have a critical impact on expression, regulation, and evolution of eukaryotic genes. We developed nucleosome occupancy and positioning data sets using leaf tissue of rice (Oryza sativa) and both leaf and flower tissues of Arabidopsis (Arabidopsis thaliana). We show that model plant and animal species share the fundamental characteristics associated with nucleosome dynamics. Only 12% and 16% of the Arabidopsis and rice genomes, respectively, were occupied by well-positioned nucleosomes. The cores of positioned nucleosomes were enriched with G/C dinucleotides and showed a lower C→T mutation rate than the linker sequences. We discovered that nucleosomes associated with heterochromatic regions were more spaced with longer linkers than those in euchromatic regions in both plant species. Surprisingly, different nucleosome densities were found to be associated with chromatin in leaf and flower tissues in Arabidopsis. We show that deep MNase-seq data sets can be used to map nucleosome occupancy of specific genomic loci and reveal gene expression patterns correlated with chromatin dynamics in plant genomes.

  12. Mutation bias, rather than binding preference, underlies the nucleosome-associated G+C% variation in eukaryotes.

    PubMed

    Xing, Ke; He, Xionglei

    2015-03-18

    The effects of genetic content on epigenetic status have been extensively studied, but how epigenetic status affects genetic content is not well understood. As a key epigenetic factor the nucleosome structure is highly correlated with local G+C% in eukaryotic genomes. The prevailing explanation to the pattern is that nucleosome occupancy favors higher G+C% sequences more than lower G+C% sequences. However, recent observation of a biased mutation spectrum caused by nucleosome occupancy suggests that the higher G+C% of nucleosomal DNA might be the evolutionary consequence of nucleosome occupancy. To distinguish the two explanations, we examined data from an in vitro nucleosome reconstitution experiment in which histones are incubated with yeast Saccharomyces cerevisiae and Escherichia coli genomic DNA, the former has been shaped by nucleosome structure while the latter has not. There is a strong positive correlation between nucleosome density and G+C% for the yeast DNA, an observation consistent with in vivo data, and such a pattern nearly vanishes for E. coli genomic DNA, suggesting that biased mutation, rather than biased occupancy, explains the most nucleosome-associated G+C% variation in eukaryotic genomes.

  13. Analysis of DNA deformation patterns in nucleosome core particles based on isometric feature mapping and continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Yan, Hong

    2012-09-01

    Based on the anisotropic deformation of DNA structure in nucleosomes, the non-linear dimensionality reduction algorithm Isomap is used to derive a structural signal accounting for most structural variances from the DNA structural data of nucleosome crystals. The analysis of this structural signal by continuous wavelet transform has successfully revealed the common regularity of nucleosome DNA deformation and also the peculiarity of structural configurations in nucleosomes with particular histone or DNA composition, or special ligands. The relationship between the constituent dinucleotides and the signal energy distribution shows that the fluctuation of a structural signal is sensitive to certain dinucleotide types.

  14. Regulation of nucleosome positioning by a CHD Type III chromatin remodeler and its relationship to developmental gene expression in Dictyostelium

    PubMed Central

    Platt, James L.; Kent, Nicholas A.; Kimmel, Alan R.

    2017-01-01

    Nucleosome placement and repositioning can direct transcription of individual genes; however, the precise interactions of these events are complex and largely unresolved at the whole-genome level. The Chromodomain-Helicase-DNA binding (CHD) Type III proteins are a subfamily of SWI2/SNF2 proteins that control nucleosome positioning and are associated with several complex human disorders, including CHARGE syndrome and autism. Type III CHDs are required for multicellular development of animals and Dictyostelium but are absent in plants and yeast. These CHDs can mediate nucleosome translocation in vitro, but their in vivo mechanism is unknown. Here, we use genome-wide analysis of nucleosome positioning and transcription profiling to investigate the in vivo relationship between nucleosome positioning and gene expression during development of wild-type (WT) Dictyostelium and mutant cells lacking ChdC, a Type III CHD protein ortholog. We demonstrate major nucleosome positional changes associated with developmental gene regulation in WT. Loss of chdC caused an increase of intragenic nucleosome spacing and misregulation of gene expression, affecting ∼50% of the genes that are repositioned during WT development. These analyses demonstrate active nucleosome repositioning during Dictyostelium multicellular development, establish an in vivo function of CHD Type III chromatin remodeling proteins in this process, and reveal the detailed relationship between nucleosome positioning and gene regulation, as cells transition between developmental states. PMID:28330902

  15. The NH2 Tail of the Novel Histone Variant H2BFWT Exhibits Properties Distinct from Conventional H2B with Respect to the Assembly of Mitotic Chromosomes

    PubMed Central

    Boulard, Mathieu; Gautier, Thierry; Mbele, Gaelh Ouengue; Gerson, Véronique; Hamiche, Ali; Angelov, Dimitar; Bouvet, Philippe; Dimitrov, Stefan

    2006-01-01

    We have studied the functional and structural properties of nucleosomes reconstituted with H2BFWT, a recently identified putative histone variant of the H2B family with totally unknown function. We show that H2BFWT can replace the conventional histone H2B in the nucleosome. The presence of H2BFWT did not affect the overall structure of the nucleosome, and the H2BFWT nucleosomes exhibited the same stability as conventional nucleosomes. SWI/SNF was able to efficiently remodel and mobilize the H2BFWT nucleosomes. Importantly, H2BFWT, in contrast to conventional H2B, was unable to recruit chromosome condensation factors and to participate in the assembly of mitotic chromosomes. This was determined by the highly divergent (compared to conventional H2B) NH2 tail of H2BFWT. These data, in combination with the observations that H2BFWT was found by others in the sperm nuclei and appeared to be associated with the telomeric chromatin, suggest that H2BFWT could act as a specific epigenetic marker. PMID:16449661

  16. Circular dichroism and thermal denaturation studies of subnucleosomes and their relationships to nucleosome structure

    SciTech Connect

    Mencke, A.J.; Rill, R.L.

    1982-01-01

    Chicken erythrocyte chromatin moderately digested with micrococcal nuclease yields several species of nucleosomes and subnucleosomes that are resolved by electrophoresis in the presence of 3 M urea. This report compares the circulr dichroism spectra, thermal denaturation, and certain other properties of chromatosomes (trimmed nucleosomes cores, and four subnucleosomes. One subnucleosome is a partial core lacking an H2a-H2b pair and 40-50 DNA base pairs(bp) from one end. The stoichiometries of the other subnucleosomes, which contain homotypic histones associated with short DNA fragments, are (H3)(H4)/70-80 bp, (H1)/60-70 bp, and (H2a)(H2b)/50-60 bp. The latter subnucleosomes originate from the ends of nucleosome cores. All properties of partial and whole nucleosome cores were nearly identical, indicating that the terminal H2a-H2b pairs do not make binding contacts with the residual core DNA or histones that are critical to the conformation of the remaining core structure. Analyses of histone contributions of the far-UV circular dichroism of subnucleosomes showed that H2a-H2b pairs and H3-H4 pairs in nucleosomes are both nearly 50% ..cap alpha.. helical and that their helix contents do not depend on the nucleosome integrity. These and other results suggest that homotypic histone pairs and the DNA they tightly bind define quasi-independent conformational subdomains within nucleosomes. H3-H4 pairs stabilized and reduced the 275-nm circular dichroism intensity of short DNA fragments much more effectively than H2a-H2b pairs. In addition, H3-H4 pairs stabilized considerably more DNA than predicted for simple electrostatic interactions. H1 also thermally stabilized less effectively than H3-H4 pairs, and modestly increased the 275-nm CD intensity relative to protein-free DNA.

  17. Functional conservation of nucleosome formation selectively biases presumably neutral molecular variation in yeast genomes.

    PubMed

    Babbitt, Gregory A; Cotter, C R

    2011-01-01

    One prominent pattern of mutational frequency, long appreciated in comparative genomics, is the bias of purine/pyrimidine conserving substitutions (transitions) over purine/pyrimidine altering substitutions (transversions). Traditionally, this transitional bias has been thought to be driven by the underlying rates of DNA mutation and/or repair. However, recent sequencing studies of mutation accumulation lines in model organisms demonstrate that substitutions generally do not accumulate at rates that would indicate a transitional bias. These observations have called into question a very basic assumption of molecular evolution; that naturally occurring patterns of molecular variation in noncoding regions accurately reflect the underlying processes of randomly accumulating neutral mutation in nuclear genomes. Here, in Saccharomyces yeasts, we report a very strong inverse association (r = -0.951, P < 0.004) between the genome-wide frequency of substitutions and their average energetic effect on nucleosome formation, as predicted by a structurally based energy model of DNA deformation around the nucleosome core. We find that transitions occurring at sites positioned nearest the nucleosome surface, which are believed to function most importantly in nucleosome formation, alter the deformation energy of DNA to the nucleosome core by only a fraction of the energy changes typical of most transversions. When we examined the same substitutions set against random background sequences as well as an existing study reporting substitutions arising in mutation accumulation lines of Saccharomyces cerevisiae, we failed to find a similar relationship. These results support the idea that natural selection acting to functionally conserve chromatin organization may contribute significantly to genome-wide transitional bias, even in noncoding regions. Because nucleosome core structure is highly conserved across eukaryotes, our observations may also help to further explain locally elevated

  18. Nucleosomal peptide epitopes for nephritis-inducing T helper cells of murine lupus

    PubMed Central

    1996-01-01

    Nucleosome-specific T helper (Th) cells provide major histocompatibility complex class II-restricted, cognate help to nephritogenic antinuclear autoantibody-producing B cells in lupus. However, the lupus Th cells do not respond when components of the nucleosome, such as free DNA or histones, are individually presented by antigen-presenting cells. Thus critical peptide epitopes for the pathogenic Th cells are probably protected during uptake and processing of the native nucleosome particle as a whole. Therefore, herein we tested 145 overlapping peptides spanning all four core histones in the nucleosome. We localized three regions in core histones, one in H2B at amino acid position 10-33 (H2B(10-33)), and two in H4, at position 16- 39 (H4(16-39)) and position 71-94 (H4(71-94)), that contained the peptide epitopes recognized by the pathogenic autoantibody-inducing Th cells of lupus. The peptide autoepitopes also triggered the pathogenic Th cells of (SWR x NZB)F1 lupus mice in vivo to induce the development of severe lupus nephritis. The nucleosomal autoepitopes stimulated the production of Th1-type cytokines, consistent with immunoglobulin IgG2a, IgG2b, and IgG3 being the isotypes of nephritogenic autoantibodies induced in the lupus mice. Interestingly, the Th cell epitopes overlapped with regions in histones that contain B cell epitopes targeted by autoantibodies, as well as the sites where histones contact with DNA in the nucleosome. Identification of the disease-relevant autoepitopes in nucleosomes will help in understanding how the pathogenic Th cells of spontaneous systemic lupus erythematosus emerge, and potentially lead to the development of peptide-based tolerogenic therapy for this major autoimmune disease. PMID:8676066

  19. Neutron scattering studies and modeling of high mobility group 14 core nucleosome complex

    SciTech Connect

    Uberbacher, E.C.; Mardian, J.K.; Rossi, R.M.; Olins, D.E.; Bunick, G.J.

    1982-09-01

    Considerable evidence relates the nonhistone proteins high mobility group (HMG) 14 and HMG 17 with the structure of active or potentially active chromatin. In this study, bulk nucleosome core particles prepared from chicken erythrocytes and the complex formed by binding two HMG 14 molecules per nucleosome core were studied by use of small-angle neutron scattering techniques. By varying the H/sub 2/O//sup 2/H/sub 2/O ratio, and hence the contrast between the solvent and the particles, it was possible to determine the radius of gyration of the protein and of the DNA independently and as a function of HMG 14 binding. The results show an increase of 0.9 +/- 0.6 angstrom (mean +/- SEM) in the protein radius of gyration and of 2.7 +/- 0.6 angstrom in the DNA radius of gyration upon binding of HMG 14 to the nucleosome. These changes are considered in the light of several postulated modes for the unfolding or perturbation of the nucleosome structure. Modeling calculations demonstrate that the observed changes in radius of gyration for the DNA and for the protein are too small to be consistent with an overall unfolding or opening of the core particle upon HMG 14 binding. However, the observed changes are consistent with several models that involve only minor changes in the structure. It is postulated that the differences observed may be an indication of the type of conformational changes occurring in active nucleosomes.

  20. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome.

    PubMed

    McGinty, Robert K; Henrici, Ryan C; Tan, Song

    2014-10-30

    The Polycomb group of epigenetic enzymes represses expression of developmentally regulated genes in many eukaryotes. This group includes the Polycomb repressive complex 1 (PRC1), which ubiquitylates nucleosomal histone H2A Lys 119 using its E3 ubiquitin ligase subunits, Ring1B and Bmi1, together with an E2 ubiquitin-conjugating enzyme, UbcH5c. However, the molecular mechanism of nucleosome substrate recognition by PRC1 or other chromatin enzymes is unclear. Here we present the crystal structure of the human Ring1B-Bmi1-UbcH5c E3-E2 complex (the PRC1 ubiquitylation module) bound to its nucleosome core particle substrate. The structure shows how a chromatin enzyme achieves substrate specificity by interacting with several nucleosome surfaces spatially distinct from the site of catalysis. Our structure further reveals an unexpected role for the ubiquitin E2 enzyme in substrate recognition, and provides insight into how the related histone H2A E3 ligase, BRCA1, interacts with and ubiquitylates the nucleosome.

  1. Coordinated Action of Nap1 and RSC in Disassembly of Tandem Nucleosomes

    PubMed Central

    Prasad, Rashmi; D'Arcy, Sheena; Hada, Arjan; Luger, Karolin

    2016-01-01

    The SWI/SNF and RSC family of ATP-dependent chromatin remodelers disassembles nucleosomes by moving nucleosomes into the vicinity of adjoining nucleosomes. We found that the histone chaperone Nap1 efficiently promotes disassembly of adjacent nucleosomes with which RSC collides and not the disassembly of nucleosomes mobilized by RSC. Nap1 is specific to RSC, as it does not target SWI/SNF, its paralog in Saccharomyces cerevisiae. Extensive mutational analysis of Nap1 has revealed that Nap1 affinity for histones H2A-H2B and H3-H4 and its ability to displace histones from DNA are required for Nap1 to enhance RSC-mediated disassembly. Other histone chaperones, such as Vps75, that also bind histones are not able to enhance RSC-mediated disassembly. Our study suggests a mechanism by which Nap1 is recruited to actively transcribed regions and assists in the passage of the transcription complex through chromatin, and it provides a novel mechanism for the coordinated action of RSC and Nap1. PMID:27273866

  2. Histone ADP-Ribosylation Facilitates Gene Transcription by Directly Remodeling Nucleosomes

    PubMed Central

    Martinez-Zamudio, Ricardo

    2012-01-01

    The packaging of DNA into nucleosomes imposes obstacles on gene transcription, and histone-modifying and nucleosome-remodeling complexes work in concert to alleviate these obstacles so as to facilitate transcription. Emerging evidence shows that chromatin-associated poly(ADP-ribose) polymerase 1 (PARP-1) and its enzymatic activity facilitate inflammatory gene transcription and modulate the inflammatory response in animal models. However, the molecular mechanisms by which PARP-1 enzymatic activity facilitates transcription are not well understood. Here we show that through an intracellular signaling pathway, lipopolysaccharide (LPS) stimulation induces PARP-1 enzymatic activity and the ADP-ribosylation of histones at transcriptionally active and accessible chromatin regions in macrophages. In vitro DNase I footprinting and restriction endonuclease accessibility assays reveal that histone ADP-ribosylation directly destabilizes histone-DNA interactions in the nucleosome and increases the site accessibility of the nucleosomal DNA to nucleases. Consistent with this, LPS stimulation-induced ADP-ribosylation at the nucleosome-occupied promoters of il-1β, mip-2, and csf2 facilitates NF-κB recruitment and the transcription of these genes in macrophages. Therefore, our data suggest that PARP-1 enzymatic activity facilitates gene transcription through increasing promoter accessibility by histone ADP-ribosylation. PMID:22547677

  3. Irregular orientation of nucleosomes in the well-defined chromatin plates of metaphase chromosomes.

    PubMed

    Castro-Hartmann, Pablo; Milla, Maria; Daban, Joan-Ramon

    2010-05-18

    In previous studies with partially denatured metaphase chromosomes, we detected platelike structures instead of the chromatin fibers currently considered in different structural models for chromosomes. Here we have observed that dilution of compact metaphase chromosomes with hyposmotic solutions can transform whole chromatids into extended plates formed by many layers. Since this treatment is soft and it does not change the ionic conditions, these observations indicate that native chromosomes are formed by stacked plates. This strengthens our hypothesis about the multilayer structure of chromosomes, which was originally based on results obtained using stronger denaturing conditions. We have investigated the structure of plates emanated from chromosomes using electron tomography. Our three-dimensional reconstructions demonstrate conclusively that the surface of the plates is very smooth and do not show repetitive structures supporting any regular organization of nucleosomes; even the nucleosomes in plate edges show irregular orientations. Furthermore, we have used polarizing microscopy for the study of whole chromosomes in metaphase cells in aqueous solution. Our results show that condensed chromosomes are not birefringent under structuring ionic conditions similar to those used with plates. This observation is incompatible with the existence of parallel columns of nucleosomes within chromosomes. In summary, we have not detected any regular orientation of nucleosomes, but at the same time, our results indicate that the bulk of chromatin in native chromosomes is organized forming very well-defined plates, in which the nucleosomes of the successive layers are interdigitated. Presumably, this dense structure is required for safe transfer of DNA to daughter cells.

  4. The role of Nucleosome Positions on Chromatin Structure: A multi-scale approach

    NASA Astrophysics Data System (ADS)

    Lequieu, Joshua; Cordoba, Andres; de Pablo, Juan J.

    Nucleosomes compose the basic unit of chromatin, and their locations are central to the regulation and compaction of eukaryotic genomes. In this work, we examine the coupling between different length scales within chromatin by examining the influence of nucleosome positions on three-dimensional chromatin structure. First, using a detailed molecular model of DNA and proteins, we predict the one-dimensional positioning of nucleosomes and the repositioning mechanisms of nucleosomal DNA. We demonstrate that this mechanism is strongly dependent on DNA sequence and that DNA slides around the histone proteins by either a screw-like or loop-like rearrangement. Next, we couple this detailed model to a coarsened model of chromatin and examine the impact of DNA sequence on chromatin's three-dimensional structure. We show that both the locations of nucleosomes and the mechanisms by which they move have a significant impact on higher-order chromatin structure and that variations in DNA sequence lead to ''open'' or ''closed'' regions of chromatin. This approach represents an efficient tool towards understanding the higher order structure of chromatin and how various aspects of chromatin structure are coupled together.

  5. Zelda overcomes the high intrinsic nucleosome barrier at enhancers during Drosophila zygotic genome activation

    PubMed Central

    Sun, Yujia; Nien, Chung-Yi; Chen, Kai; Liu, Hsiao-Yun; Johnston, Jeff; Zeitlinger, Julia; Rushlow, Christine

    2015-01-01

    The Drosophila genome activator Vielfaltig (Vfl), also known as Zelda (Zld), is thought to prime enhancers for activation by patterning transcription factors (TFs). Such priming is accompanied by increased chromatin accessibility, but the mechanisms by which this occurs are poorly understood. Here, we analyze the effect of Zld on genome-wide nucleosome occupancy and binding of the patterning TF Dorsal (Dl). Our results show that early enhancers are characterized by an intrinsically high nucleosome barrier. Zld tackles this nucleosome barrier through local depletion of nucleosomes with the effect being dependent on the number and position of Zld motifs. Without Zld, Dl binding decreases at enhancers and redistributes to open regions devoid of enhancer activity. We propose that Zld primes enhancers by lowering the high nucleosome barrier just enough to assist TFs in accessing their binding motifs and promoting spatially controlled enhancer activation if the right patterning TFs are present. We envision that genome activators in general will utilize this mechanism to activate the zygotic genome in a robust and precise manner. PMID:26335633

  6. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome

    PubMed Central

    McGinty, Robert K.; Henrici, Ryan C.; Tan, Song

    2014-01-01

    The Polycomb group of epigenetic enzymes represses expression of developmentally regulated genes in higher eukaryotes. This group includes the Polycomb repressive complex 1 (PRC1), which ubiquitylates nucleosomal histone H2A Lys119 using its E3 ubiquitin ligase subunits, Ring1B and Bmi1, together with an E2 ubiquitin-conjugating enzyme, UbcH5c. However, the molecular mechanism of nucleosome substrate recognition by PRC1 or other chromatin enzymes is unclear. Here we present the crystal structure of the Ring1B/Bmi1/UbcH5c E3-E2 complex (the PRC1 ubiquitylation module) bound to its nucleosome core particle substrate. The structure shows how a chromatin enzyme achieves substrate specificity by interacting with multiple nucleosome surfaces spatially distinct from the site of catalysis. Our structure further reveals an unexpected role for the ubiquitin E2 enzyme in substrate recognition, and provides insight into how the related histone H2A E3 ligase, BRCA1, interacts with and ubiquitylates the nucleosome. PMID:25355358

  7. Histone H3 Glutathionylation in Proliferating Mammalian Cells Destabilizes Nucleosomal Structure

    PubMed Central

    Olaso, Gloria; Hake, Sandra B.; Bönisch, Clemens; Wiedemann, Sonja M.; Markovic, Jelena; Dasí, Francisco; Gimeno, Amparo; Pérez-Quilis, Carme; Palacios, Òscar; Capdevila, Mercè; Viña, José

    2013-01-01

    Abstract Aims: Here we report that chromatin, the complex and dynamic eukaryotic DNA packaging structure, is able to sense cellular redox changes. Histone H3, the only nucleosomal protein that possesses cysteine(s), can be modified by glutathione (GSH). Results: Using Biotin labeled glutathione ethyl ester (BioGEE) treatment of nucleosomes in vitro, we show that GSH, the most abundant antioxidant in mammals, binds to histone H3. BioGEE treatment of NIH3T3 cells indicates that glutathionylation of H3 is maximal in fast proliferating cells, correlating well with enhanced levels of H3 glutathionylation in different tumor cell lines. Furthermore, glutathionylation of H3 in vivo decreases in livers from aged SAMP8 and C57BL/6J mice. We demonstrate biochemically and by mass spectrometry that histone variants H3.2/H3.3 are glutathionylated on their cysteine residue 110. Furthermore, circular dichroism, thermal denaturation of reconstituted nucleosomes, and molecular modeling indicate that glutathionylation of histone H3 produces structural changes affecting nucleosomal stability. Innovation: We characterize the implications of histone H3 glutathionylation in cell physiology and the modulation of core histone proteins structure affected by this modification. Conclusion: Histone H3 senses cellular redox changes through glutathionylation of Cys, which increases during cell proliferation and decreases during aging. Glutathionylation of histone H3 affects nucleosome stability structure leading to a more open chromatin structure. Antioxid. Redox Signal. 19, 1305–1320. PMID:23541030

  8. A novel hybrid single molecule approach reveals spontaneous DNA motion in the nucleosome

    PubMed Central

    Wei, Sijie; Falk, Samantha J.; Black, Ben E.; Lee, Tae-Hee

    2015-01-01

    Structural dynamics of nucleic acid and protein is an important physical basis of their functions. These motions are often very difficult to synchronize and too fast to be clearly resolved with the currently available single molecule methods. Here we demonstrate a novel hybrid single molecule approach combining stochastic data analysis with fluorescence correlation that enables investigations of sub-ms unsynchronized structural dynamics of macromolecules. Based on the method, we report the first direct evidence of spontaneous DNA motions at the nucleosome termini. The nucleosome, comprising DNA and a histone core, is the fundamental packing unit of eukaryotic genes that must be accessed during various genome transactions. Spontaneous DNA opening at the nucleosome termini has long been hypothesized to enable gene access in the nucleosome, but has yet to be directly observed. Our approach reveals that DNA termini in the nucleosome open and close repeatedly at 0.1–1 ms−1. The kinetics depends on salt concentration and DNA–histone interactions but not much on DNA sequence, suggesting that this dynamics is universal and imposes the kinetic limit to gene access. These results clearly demonstrate that our method provides an efficient and robust means to investigate unsynchronized structural changes of DNA at a sub-ms time resolution. PMID:26013809

  9. Using Atomic Force Microscopy To Study Chromatin Structure and Nucleosome Remodeling

    PubMed Central

    Lohr, D.; Bash, R.; Wang, H.; Yodh, J.; Lindsay, S.

    2007-01-01

    Atomic Force Microscopy (AFM) is a technique that can directly image single molecules in solution and it therefore provides a powerful tool for obtaining unique insights into the basic properties of biological materials and the functional processes in which they are involved. We have used AFM to analyze basic features of nucleosomes in arrays, such as DNA-histone binding strength, cooperativity in template occupation, nucleosome stabilities, nucleosome locations and the effects of acetylation, to compare these features in different types of arrays and to track the response of array nucleosomes to the action of the human Swi-Snf ATP-dependent nucleosome remodeling complex. These experiments required several specific adaptations of basic AFM methods, such as repetitive imaging of the same fields of molecules in liquid, the ability to change the environmental conditions of the sample being imaged and detection of specific types of molecules within compositionally complex samples. Here we describe the techniques that allowed such analyses to be carried out. PMID:17309844

  10. Measuring inter-nucleosome interactions and the roles of histone tails

    NASA Astrophysics Data System (ADS)

    Howell, Steven; Andresen, Kurt; Jimenez-Useche, Isabel; Yuan, Chongli; Qiu, Xiangyun

    2013-03-01

    Nucleosome is the first level of genome organization and regulation in eukaryotes, where negatively charged DNA is wrapped around positively charged histone proteins. Being a DNA-protein complex of biological origin, nucleosome is also a model multi-phasic nanoparticle with heterogeneous charge distributions and brush-like flexible tails of the histone proteins. In solutions of nucleosomes, electrostatic forces dominate inter-nucleosome interactions at long range while specific contacts, in particular the flexible histone tails, guides short range interactions. We have thus quantified how the ions from salts (KCl, MgCl2) modulate the inter-nucleosome pair potential by modeling the total small angle x-ray scattering profiles. We additionally elucidated the individual role of the charged tails of histones H3 and H4. We found that measured effective changes at low salt concentrations are about 1/5th of theoretically predicted renormalized charges and that H4 tail deletion suppresses the attraction at high salt concentrations to a larger extent than H3 tail deletion.

  11. A one-dimensional statistical mechanics model for nucleosome positioning on genomic DNA

    NASA Astrophysics Data System (ADS)

    Tesoro, S.; Ali, I.; Morozov, A. N.; Sulaiman, N.; Marenduzzo, D.

    2016-02-01

    The first level of folding of DNA in eukaryotes is provided by the so-called ‘10 nm chromatin fibre’, where DNA wraps around histone proteins (∼10 nm in size) to form nucleosomes, which go on to create a zig-zagging bead-on-a-string structure. In this work we present a one-dimensional statistical mechanics model to study nucleosome positioning within one such 10 nm fibre. We focus on the case of genomic sheep DNA, and we start from effective potentials valid at infinite dilution and determined from high-resolution in vitro salt dialysis experiments. We study positioning within a polynucleosome chain, and compare the results for genomic DNA to that obtained in the simplest case of homogeneous DNA, where the problem can be mapped to a Tonks gas [1]. First, we consider the simple, analytically solvable, case where nucleosomes are assumed to be point-like. Then, we perform numerical simulations to gauge the effect of their finite size on the nucleosomal distribution probabilities. Finally we compare nucleosome distributions and simulated nuclease digestion patterns for the two cases (homogeneous and sheep DNA), thereby providing testable predictions of the effect of sequence on experimentally observable quantities in experiments on polynucleosome chromatin fibres reconstituted in vitro.

  12. The ATP-dependent chromatin remodeling enzyme Fun30 represses transcription by sliding promoter-proximal nucleosomes.

    PubMed

    Byeon, Boseon; Wang, Wei; Barski, Artem; Ranallo, Ryan T; Bao, Kan; Schones, Dustin E; Zhao, Keji; Wu, Carl; Wu, Wei-Hua

    2013-08-09

    The evolutionarily conserved ATP-dependent chromatin remodeling enzyme Fun30 has recently been shown to play important roles in heterochromatin silencing and DNA repair. However, how Fun30 remodels nucleosomes is not clear. Here we report a nucleosome sliding activity of Fun30 and its role in transcriptional repression. We observed that Fun30 repressed the expression of genes involved in amino acid and carbohydrate metabolism, the stress response, and meiosis. In addition, Fun30 was localized at the 5' and 3' ends of genes and within the open reading frames of its targets. Consistent with its role in gene repression, we observed that Fun30 target genes lacked histone modifications often associated with gene activation and showed an increased level of ubiquitinated histone H2B. Furthermore, a genome-wide nucleosome mapping analysis revealed that the length of the nucleosome-free region at the 5' end of a subset of genes was changed in Fun30-depleted cells. In addition, the positions of the -1, +2, and +3 nucleosomes at the 5' end of target genes were shifted significantly, whereas the position of the +1 nucleosome remained largely unchanged in the fun30Δ mutant. Finally, we demonstrated that affinity-purified, single-component Fun30 exhibited a nucleosome sliding activity in an ATP-dependent manner. These results define a role for Fun30 in the regulation of transcription and indicate that Fun30 remodels chromatin at the 5' end of genes by sliding promoter-proximal nucleosomes.

  13. A distinct switch in interactions of the histone H4 tail domain upon salt-dependent folding of nucleosome arrays.

    PubMed

    Pepenella, Sharon; Murphy, Kevin J; Hayes, Jeffrey J

    2014-09-26

    The core histone tail domains mediate inter-nucleosomal interactions that direct folding and condensation of nucleosome arrays into higher-order chromatin structures. The histone H4 tail domain facilitates inter-array interactions by contacting both the H2A/H2B acidic patch and DNA of neighboring nucleosomes. Likewise, H4 tail-H2A contacts stabilize array folding. However, whether the H4 tail domains stabilize array folding via inter-nucleosomal interactions with the DNA of neighboring nucleosomes remains unclear. We utilized defined oligonucleosome arrays containing a single specialized nucleosome with a photo-inducible cross-linker in the N terminus of the H4 tail to characterize these interactions. We observed that the H4 tail participates exclusively in intra-array interactions with DNA in unfolded arrays. These interactions are diminished during array folding, yet no inter-nucleosome, intra-array H4 tail-DNA contacts are observed in condensed chromatin. However, we document contacts between the N terminus of the H4 tail and H2A. Installation of acetylation mimics known to disrupt H4-H2A surface interactions did not increase observance of H4-DNA inter-nucleosomal interactions. These results suggest the multiple functions of the H4 tail require targeted distinct interactions within condensed chromatin.

  14. Dynamic Changes in Nucleosome Occupancy Are Not Predictive of Gene Expression Dynamics but Are Linked to Transcription and Chromatin Regulators

    PubMed Central

    Huebert, Dana J.; Kuan, Pei-Fen; Keleş, Sündüz

    2012-01-01

    The response to stressful stimuli requires rapid, precise, and dynamic gene expression changes that must be coordinated across the genome. To gain insight into the temporal ordering of genome reorganization, we investigated dynamic relationships between changing nucleosome occupancy, transcription factor binding, and gene expression in Saccharomyces cerevisiae yeast responding to oxidative stress. We applied deep sequencing to nucleosomal DNA at six time points before and after hydrogen peroxide treatment and revealed many distinct dynamic patterns of nucleosome gain and loss. The timing of nucleosome repositioning was not predictive of the dynamics of downstream gene expression change but instead was linked to nucleosome position relative to transcription start sites and specific cis-regulatory elements. We measured genome-wide binding of the stress-activated transcription factor Msn2p over time and found that Msn2p binds different loci with different dynamics. Nucleosome eviction from Msn2p binding sites was common across the genome; however, we show that, contrary to expectation, nucleosome loss occurred after Msn2p binding and in fact required Msn2p. This negates the prevailing model that nucleosomes obscuring Msn2p sites regulate DNA access and must be lost before Msn2p can bind DNA. Together, these results highlight the complexities of stress-dependent chromatin changes and their effects on gene expression. PMID:22354995

  15. The Dynamics of Individual Nucleosomes Controls the Chromatin Condensation Pathway: Direct Atomic Force Microscopy Visualization of Variant Chromatin

    PubMed Central

    Montel, Fabien; Menoni, Hervé; Castelnovo, Martin; Bednar, Jan; Dimitrov, Stefan; Angelov, Dimitar; Faivre-Moskalenko, Cendrine

    2009-01-01

    Abstract Chromatin organization and dynamics is studied at scales ranging from single nucleosome to nucleosomal array by using a unique combination of biochemical assays, single molecule imaging technique, and numerical modeling. We show that a subtle modification in the nucleosome structure induced by the histone variant H2A.Bbd drastically modifies the higher order organization of the nucleosomal arrays. Importantly, as directly visualized by atomic force microscopy, conventional H2A nucleosomal arrays exhibit specific local organization, in contrast to H2A.Bbd arrays, which show “beads on a string” structure. The combination of systematic image analysis and theoretical modeling allows a quantitative description relating the observed gross structural changes of the arrays to their local organization. Our results suggest strongly that higher-order organization of H1-free nucleosomal arrays is determined mainly by the fluctuation properties of individual nucleosomes. Moreover, numerical simulations suggest the existence of attractive interactions between nucleosomes to provide the degree of compaction observed for conventional chromatin fibers. PMID:19619469

  16. SWI/SNF remodeling and p300-dependent transcription of histone variant H2ABbd nucleosomal arrays

    PubMed Central

    Angelov, Dimitar; Verdel, André; An, Woojin; Bondarenko, Vladimir; Hans, Fabienne; Doyen, Cécile-Marie; Studitsky, Vassily M; Hamiche, Ali; Roeder, Robert G; Bouvet, Philippe; Dimitrov, Stefan

    2004-01-01

    A histone variant H2ABbd was recently identified, but its function is totally unknown. Here we have studied the structural and functional properties of nucleosome and nucleosomal arrays reconstituted with this histone variant. We show that H2ABbd can replace the conventional H2A in the nucleosome, but this replacement results in alterations of the nucleosomal structure. The remodeling complexes SWI/SNF and ACF are unable to mobilize the variant H2ABbd nucleosome. However, SWI/SNF was able to increase restriction enzyme access to the variant nucleosome and assist the transfer of variant H2ABbd–H2B dimer to a tetrameric histone H3–H4 particle. In addition, the p300- and Gal4-VP16-activated transcription appeared to be more efficient for H2ABbd nucleosomal arrays than for conventional H2A arrays. The intriguing mechanisms by which H2ABbd affects both nucleosome remodeling and transcription are discussed. PMID:15372075

  17. Physical properties of naked DNA influence nucleosome positioning and correlate with transcription start and termination sites in yeast

    PubMed Central

    2011-01-01

    Background In eukaryotic organisms, DNA is packaged into chromatin structure, where most of DNA is wrapped into nucleosomes. DNA compaction and nucleosome positioning have clear functional implications, since they modulate the accessibility of genomic regions to regulatory proteins. Despite the intensive research effort focused in this area, the rules defining nucleosome positioning and the location of DNA regulatory regions still remain elusive. Results Naked (histone-free) and nucleosomal DNA from yeast were digested by microccocal nuclease (MNase) and sequenced genome-wide. MNase cutting preferences were determined for both naked and nucleosomal DNAs. Integration of their sequencing profiles with DNA conformational descriptors derived from atomistic molecular dynamic simulations enabled us to extract the physical properties of DNA on a genomic scale and to correlate them with chromatin structure and gene regulation. The local structure of DNA around regulatory regions was found to be unusually flexible and to display a unique pattern of nucleosome positioning. Ab initio physical descriptors derived from molecular dynamics were used to develop a computational method that accurately predicts nucleosome enriched and depleted regions. Conclusions Our experimental and computational analyses jointly demonstrate a clear correlation between sequence-dependent physical properties of naked DNA and regulatory signals in the chromatin structure. These results demonstrate that nucleosome positioning around TSS (Transcription Start Site) and TTS (Transcription Termination Site) (at least in yeast) is strongly dependent on DNA physical properties, which can define a basal regulatory mechanism of gene expression. PMID:21981773

  18. Nucleosomes Suppress the Formation of Double-strand DNA Breaks during Attempted Base Excision Repair of Clustered Oxidative Damages*

    PubMed Central

    Cannan, Wendy J.; Tsang, Betty P.; Wallace, Susan S.; Pederson, David S.

    2014-01-01

    Exposure to ionizing radiation can produce multiple, clustered oxidative lesions in DNA. The near simultaneous excision of nearby lesions in opposing DNA strands by the base excision repair (BER) enzymes can produce double-strand DNA breaks (DSBs). This attempted BER accounts for many of the potentially lethal or mutagenic DSBs that occur in vivo. To assess the impact of nucleosomes on the frequency and pattern of BER-dependent DSB formation, we incubated nucleosomes containing oxidative damages in opposing DNA strands with selected DNA glycosylases and human apurinic/apyrimidinic endonuclease 1. Overall, nucleosomes substantially suppressed DSB formation. However, the degree of suppression varied as a function of (i) the lesion type and DNA glycosylase tested, (ii) local sequence context and the stagger between opposing strand lesions, (iii) the helical orientation of oxidative lesions relative to the underlying histone octamer, and (iv) the distance between the lesion cluster and the nucleosome edge. In some instances the binding of a BER factor to one nucleosomal lesion appeared to facilitate binding to the opposing strand lesion. DSB formation did not invariably lead to nucleosome dissolution, and in some cases, free DNA ends resulting from DSB formation remained associated with the histone octamer. These observations explain how specific structural and dynamic properties of nucleosomes contribute to the suppression of BER-generated DSBs. These studies also suggest that most BER-generated DSBs will occur in linker DNA and in genomic regions associated with elevated rates of nucleosome turnover or remodeling. PMID:24891506

  19. Inhibition of chromatin assembly in Xenopus oocytes correlates with derepression of the mouse mammary tumor virus promoter.

    PubMed Central

    Perlmann, T; Wrange, O

    1991-01-01

    The mouse mammary tumor virus (MMTV) promoter is positively regulated by glucocorticoid hormone via binding of glucocorticoid receptor to a specific response element. Upon addition of hormone, a nucleosome containing the glucocorticoid response element is removed or structurally altered, suggesting that the nucleosome interferes with transcription. Accordingly, inhibition of chromatin assembly should relieve the repression and result in an increased constitutive activity. We have tested this hypothesis by injecting nonspecific competitor DNA into Xenopus laevis oocytes to titrate endogenous histones. The coinjection of competitor DNA altered chromatin structure: nucleosomal ladders produced by micrococcal nuclease were disrupted, and the unique helical setting of the MMTV promoter in a nucleosome was lost, as shown by in situ DNase I footprinting. Basal MMTV transcription was drastically increased by competitor DNA, whereas a coinjected, constitutively active adenovirus 2 major late promoter was not stimulated. These results show that the uninduced MMTV promoter is under negative control and provide direct support for the theory that the nucleosomal organization maintains the repression of this promoter in its uninduced state. Images PMID:1656227

  20. Fast, long-range, reversible conformational fluctuations in nucleosomes revealed by single-pair fluorescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Tomschik, Miroslav; Zheng, Haocheng; van Holde, Ken; Zlatanova, Jordanka; Leuba, Sanford H.

    2005-03-01

    The nucleosome core particle, the basic repeated structure in chromatin fibers, consists of an octamer of eight core histone molecules, organized as dimers (H2A/H2B) and tetramers [(H3/H4)2] around which DNA wraps tightly in almost two left-handed turns. The nucleosome has to undergo certain conformational changes to allow processes that need access to the DNA template to occur. By single-pair fluorescence resonance energy transfer, we demonstrate fast, long-range, reversible conformational fluctuations in nucleosomes between two states: fully folded (closed), with the DNA wrapped around the histone core, or open, with the DNA significantly unraveled from the histone octamer. The brief excursions into an extended open state may create windows of opportunity for protein factors involved in DNA transactions to bind to or translocate along the DNA. conformational transitions | evanescent field fluorescence microscope | nucleosome dynamics | nucleosome opening

  1. Structural Basis of Silencing: Sir3 BAH Domain in Complex with a Nucleosome at 3.0 Å Resolution

    SciTech Connect

    Armache, Karim-Jean; Garlick, Joseph D.; Canzio, Daniele; Narlikar, Geeta J.; Kingston, Robert E.

    2011-11-30

    Gene silencing is essential for regulating cell fate in eukaryotes. Altered chromatin architectures contribute to maintaining the silenced state in a variety of species. The silent information regulator (Sir) proteins regulate mating type in Saccharomyces cerevisiae. One of these proteins, Sir3, interacts directly with the nucleosome to help generate silenced domains. We determined the crystal structure of a complex of the yeast Sir3 BAH (bromo-associated homology) domain and the nucleosome core particle at 3.0 angstrom resolution. We see multiple molecular interactions between the protein surfaces of the nucleosome and the BAH domain that explain numerous genetic mutations. These interactions are accompanied by structural rearrangements in both the nucleosome and the BAH domain. The structure explains how covalent modifications on H4K16 and H3K79 regulate formation of a silencing complex that contains the nucleosome as a central component.

  2. On the formation of nucleosomes within the FMR1 trinucleotide repeat

    SciTech Connect

    Metzenberg, S.

    1996-07-01

    Zhong et al. presented an intriguing analysis both of the AGG trinucleotides interspersed in the CGG/CCG triplet repeats of the FMR1 gene and of the effect that they may have no trinucleotide-repeat expansion. They suggested that pure FMR1 triplet repeats >50 repeats in length might efficiently form nucleosomes, promoting trinucleotide-repeat expansion through strand slippage or a pause during DNA replication. Several recent papers suggest, however, that the free energy of nucleosome formation on DNA consisting of only guanylate and cytidylate nucleotides is extremely unfavorable, because of the inflexibility of the DNA. Expanded CGG/CCG trinucleotide repeats may therefore repress rather than encourage nucleosome formation, and the DNA decondensation and {open_quotes}fragile{close_quotes} chromosome aberration may be a direct consequence of the thermodynamics of DNA bending. 6 refs., 1 fig.

  3. Coarse-Grained Force field for the Nucleosome from Self-Consistent Multiscaling

    SciTech Connect

    Voltz, Karine; Trylska, Joanna; Tozzini, Valentina; Kurkal-Siebert, V; Smith, Jeremy C; Langowski, Jorg

    2008-02-01

    A coarse-grained simulation model for the nucleosome is developed, using a methodology modified from previous work on the ribosome. Protein residues and DNA nucleotides are represented as beads, interacting through harmonic (for neighboring) or Morse (for nonbonded) potentials. Force-field parameters were estimated by Boltzmann inversion of the corresponding radial distribution functions obtained from a 5-ns all-atom molecular dynamics (MD) simulation, and were refined to produce agreement with the all-atom MD simulation. This self-consistent multiscale approach yields a coarse-grained model that is capable of reproducing equilibrium structural properties calculated from a 50-ns all-atom MD simulation. This coarse-grained model speeds up nucleosome simulations by a factor of 10{sup 3} and is expected to be useful in examining biologically relevant dynamical nucleosome phenomena on the microsecond timescale and beyond.

  4. Brownian dynamics simulation of the effect of histone modification on nucleosome structure

    NASA Astrophysics Data System (ADS)

    Li, Wei; Dou, Shuo-Xing; Xie, Ping; Wang, Peng-Ye

    2007-05-01

    Using Brownian dynamics we simulate the effect of histone modification, such as phosphorylation, acetylation, and methylation, on nucleosome structure by varying the interaction force between DNA and the histone octamer. The simulation shows that the structural stability of nucleosome is very sensitive to the interaction force, and the DNA unwrapping from the modified histone octamer usually occurs turn by turn. Furthermore, the effects of temperature and DNA break as well as the competition between modified and normal histone octamers are investigated, with the simulation results being in agreement with the experimental observation that phosphorylated nucleosomes near DNA breaks are more easily depleted. Though the simulation study may only give a coarse grained view of the DNA unwrapping process for the modified histone octamer, it may provide insight into the mechanism of DNA repair.

  5. Crystal structure of the nucleosome containing histone H3 with crotonylated lysine 122.

    PubMed

    Suzuki, Yuya; Horikoshi, Naoki; Kato, Daiki; Kurumizaka, Hitoshi

    2016-01-15

    The crotonylation of histones is an important post-translational modification, and epigenetically functions in the regulation of genomic DNA activity. The histone modifications in the structured "histone-fold" domains are considered to have an especially important impact on the nucleosome structure and dynamics. In the present study, we reconstituted the human nucleosome containing histone H3.2 crotonylated at the Lys122 residue, and determined its crystal structure at 2.56 Å resolution. We found that the crotonylation of the H3 Lys122 residue does not affect the overall nucleosome structure, but locally impedes the formation of the water-mediated hydrogen bond with the DNA backbone. Consistently, thermal stability assays revealed that the H3 Lys122 crotonylation, as well as the H3 Lys122 acetylation, clearly reduced the histone-DNA association.

  6. Roles of pRB in the Regulation of Nucleosome and Chromatin Structures.

    PubMed

    Uchida, Chiharu

    2016-01-01

    Retinoblastoma protein (pRB) interacts with E2F and other protein factors to play a pivotal role in regulating the expression of target genes that induce cell cycle arrest, apoptosis, and differentiation. pRB controls the local promoter activity and has the ability to change the structure of nucleosomes and/or chromosomes via histone modification, epigenetic changes, chromatin remodeling, and chromosome organization. Functional inactivation of pRB perturbs these cellular events and causes dysregulated cell growth and chromosome instability, which are hallmarks of cancer cells. The role of pRB in regulation of nucleosome/chromatin structures has been shown to link to tumor suppression. This review focuses on the ability of pRB to control nucleosome/chromatin structures via physical interactions with histone modifiers and chromatin factors and describes cancer therapies based on targeting these protein factors.

  7. Roles of pRB in the Regulation of Nucleosome and Chromatin Structures

    PubMed Central

    2016-01-01

    Retinoblastoma protein (pRB) interacts with E2F and other protein factors to play a pivotal role in regulating the expression of target genes that induce cell cycle arrest, apoptosis, and differentiation. pRB controls the local promoter activity and has the ability to change the structure of nucleosomes and/or chromosomes via histone modification, epigenetic changes, chromatin remodeling, and chromosome organization. Functional inactivation of pRB perturbs these cellular events and causes dysregulated cell growth and chromosome instability, which are hallmarks of cancer cells. The role of pRB in regulation of nucleosome/chromatin structures has been shown to link to tumor suppression. This review focuses on the ability of pRB to control nucleosome/chromatin structures via physical interactions with histone modifiers and chromatin factors and describes cancer therapies based on targeting these protein factors. PMID:28101510

  8. Site-specific aflatoxin B sub 1 adduction of sequence-positioned nucleosome core particles

    SciTech Connect

    Moyer, R.A.

    1988-01-01

    The question of how the presence of nucleosomal packing of DNA modifies carcinogen interaction at specific sites cannot be answered by studies on whole chromatin or bulk nucleosomes because of the heterogeneity of DNA sequences in the particles. This problem was circumvented by constructing nucleosomes that are homogenous in DNA-histone contact points. A cloned DNA fragment, containing a sea urchin 5S gene which precisely positions a histone octamer was employed. By using {sup 32}P end-labeled DNA and genotoxins that allow cleavage at sites of attack, the frequency of adduction at every susceptible nucleotide can be determined on sequencing gels. The small methylating agent dimethyl sulfate (DMS) and the bulky alkylating agent afatoxin B{sub 1}-dichloride (AFB{sub 1}-Cl{sub 2}) were used to probe the influence of DNA-histone interactions on DNA alkylation patterns in sequence-positioned core particles.

  9. Asymmetric lateral distribution of unshielded phosphate groups in nucleosomal DNA and its role in DNA bending.

    PubMed Central

    Mirzabekov, A D; Rich, A

    1979-01-01

    We suggest that an asymmetric charge neutralization of DNA phosphate groups produces part of the driving force for nucleosome folding. In nucleosome core particle DNA, many of the phosphate groups are neutralized by histones, and a lateral alignment of these histones along the core DNA has been demonstrated [Mirzabekov A. D., Shick, V. V., Belyavsky, A. V. & Bavykin, S. G. (1978) Proc. Natl. Acad. Sci. USA 75, 4184--4189]. Histones appear to shield DNA phosphatases asymmetrically at one side of the surface of the DNA double helix along all its length inside the core. The external side of the DNA helix remains unneutralized. The electrostatic repulsion between negatively charged unneutralized phosphates may fold the nucleosomal DNA towards the side occupied by histones. PMID:286297

  10. Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure

    PubMed Central

    Nishino, Yoshinori; Eltsov, Mikhail; Joti, Yasumasa; Ito, Kazuki; Takata, Hideaki; Takahashi, Yukio; Hihara, Saera; Frangakis, Achilleas S; Imamoto, Naoko; Ishikawa, Tetsuya; Maeshima, Kazuhiro

    2012-01-01

    How a long strand of genomic DNA is compacted into a mitotic chromosome remains one of the basic questions in biology. The nucleosome fibre, in which DNA is wrapped around core histones, has long been assumed to be folded into a 30-nm chromatin fibre and further hierarchical regular structures to form mitotic chromosomes, although the actual existence of these regular structures is controversial. Here, we show that human mitotic HeLa chromosomes are mainly composed of irregularly folded nucleosome fibres rather than 30-nm chromatin fibres. Our comprehensive and quantitative study using cryo-electron microscopy and synchrotron X-ray scattering resolved the long-standing contradictions regarding the existence of 30-nm chromatin structures and detected no regular structure >11 nm. Our finding suggests that the mitotic chromosome consists of irregularly arranged nucleosome fibres, with a fractal nature, which permits a more dynamic and flexible genome organization than would be allowed by static regular structures. PMID:22343941

  11. The RSC Complex Exploits Histone Acetylation to Abrogate the Nucleosomal Barrier to RNA Polymerase II Elongation

    PubMed Central

    Carey, Michael; Li, Bing; Workman, Jerry L.

    2007-01-01

    Summary The coordinated action of histone acetyltransferases (HATs) and ATP-dependent chromatin remodeling enzymes in promoter-dependent transcription initiation represents a paradigm for how epigenetic information regulates gene expression. However, little is known about how such enzymes function during transcription elongation. Here we investigated the role of RSC, a bromodomain-containing ATPase, in nucleosome transcription in vitro. Purified S. cerevisiae RNA polymerase II (pol II) arrests at two primary locations on a positioned mononucleosome. RSC stimulates passage of pol II through these sites. The function of RSC in elongation requires the energy of ATP hydrolysis. Moreover, the SAGA and NuA4 HATs strongly stimulated RSC’s effect on elongation. The stimulation correlates closely with Acetyl-CoA-dependent recruitment of RSC to nucleosomes. Thus, RSC can recognize acetylated nucleosomes and facilitate passage of pol II through them. These data support the view that histone modifications regulate accessibility of the coding region to pol II. PMID:17081996

  12. Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI.

    PubMed

    Grüne, Tim; Brzeski, Jan; Eberharter, Anton; Clapier, Cedric R; Corona, Davide F V; Becker, Peter B; Müller, Christoph W

    2003-08-01

    Energy-dependent nucleosome remodeling emerges as a key process endowing chromatin with dynamic properties. However, the principles by which remodeling ATPases interact with their nucleosome substrate to alter histone-DNA interactions are only poorly understood. We have identified a substrate recognition domain in the C-terminal half of the remodeling ATPase ISWI and determined its structure by X-ray crystallography. The structure comprises three domains, a four-helix domain with a novel fold and two alpha-helical domains related to the modules of c-Myb, SANT and SLIDE, which are linked by a long helix. An integrated structural and functional analysis of these domains provides insight into how ISWI interacts with the nucleosomal substrate.

  13. Two Fundamentally Distinct PCNA Interaction Peptides Contribute to Chromatin Assembly Factor 1 Function▿

    PubMed Central

    Ben-Shahar, Tom Rolef; Castillo, Araceli G.; Osborne, Michael J.; Borden, Katherine L. B.; Kornblatt, Jack; Verreault, Alain

    2009-01-01

    Chromatin assembly factor 1 (CAF-1) deposits histones H3 and H4 rapidly behind replication forks through an interaction with the proliferating cell nuclear antigen (PCNA), a DNA polymerase processivity factor that also binds to a number of replication enzymes and other proteins that act on nascent DNA. The mechanisms that enable CAF-1 and other PCNA-binding proteins to function harmoniously at the replication fork are poorly understood. Here we report that the large subunit of human CAF-1 (p150) contains two distinct PCNA interaction peptides (PIPs). The N-terminal PIP binds strongly to PCNA in vitro but, surprisingly, is dispensable for nucleosome assembly and only makes a modest contribution to targeting p150 to DNA replication foci in vivo. In contrast, the internal PIP (PIP2) lacks one of the highly conserved residues of canonical PIPs and binds weakly to PCNA. Surprisingly, PIP2 is essential for nucleosome assembly during DNA replication in vitro and plays a major role in targeting p150 to sites of DNA replication. Unlike canonical PIPs, such as that of p21, the two p150 PIPs are capable of preferentially inhibiting nucleosome assembly, rather than DNA synthesis, suggesting that intrinsic features of these peptides are part of the mechanism that enables CAF-1 to function behind replication forks without interfering with other PCNA-mediated processes. PMID:19822659

  14. Nucleosome maps of the human cytomegalovirus genome reveal a temporal switch in chromatin organization linked to a major IE protein.

    PubMed

    Zalckvar, Einat; Paulus, Christina; Tillo, Desiree; Asbach-Nitzsche, Alexandra; Lubling, Yaniv; Winterling, Carla; Strieder, Nicholas; Mücke, Katrin; Goodrum, Felicia; Segal, Eran; Nevels, Michael

    2013-08-06

    Human CMV (hCMV) establishes lifelong infections in most of us, causing developmental defects in human embryos and life-threatening disease in immunocompromised individuals. During productive infection, the viral >230,000-bp dsDNA genome is expressed widely and in a temporal cascade. The hCMV genome does not carry histones when encapsidated but has been proposed to form nucleosomes after release into the host cell nucleus. Here, we present hCMV genome-wide nucleosome occupancy and nascent transcript maps during infection of permissive human primary cells. We show that nucleosomes occupy nuclear viral DNA in a nonrandom and highly predictable fashion. At early times of infection, nucleosomes associate with the hCMV genome largely according to their intrinsic DNA sequence preferences, indicating that initial nucleosome formation is genetically encoded in the virus. However, as infection proceeds to the late phase, nucleosomes redistribute extensively to establish patterns mostly determined by nongenetic factors. We propose that these factors include key regulators of viral gene expression encoded at the hCMV major immediate-early (IE) locus. Indeed, mutant virus genomes deficient for IE1 expression exhibit globally increased nucleosome loads and reduced nucleosome dynamics compared with WT genomes. The temporal nucleosome occupancy differences between IE1-deficient and WT viruses correlate inversely with changes in the pattern of viral nascent and total transcript accumulation. These results provide a framework of spatial and temporal nucleosome organization across the genome of a major human pathogen and suggest that an hCMV major IE protein governs overall viral chromatin structure and function.

  15. Ultraviolet damage and nucleosome folding of the 5S ribosomal RNA gene.

    SciTech Connect

    Liu, X; Mann, David B.; Suquet, C; Springer, David L. ); Smerdon, Michael J.

    2000-01-25

    The Xenopus borealis somatic 5S ribosomal RNA gene was used as a model system to determine the mutual effects of nucleosome folding and formation of ultraviolet (UV) photoproducts (primarily cis-syn cyclobutane pyrimidine dimers, or CPDs) in chromatin. We analyzed the preferred rotational and translational settings of 5S rDNA on the histone octamer surface after induction of up to 0.8 CPD/nucleosome core (2.5 kJ/m(2) UV dose). DNase I and hydroxyl radical footprints indicate that UV damage at these levels does not affect the average rotational setting of the 5S rDNA molecules. Moreover, a combination of nuclease trimming and restriction enzyme digestion indicates the preferred translational positions of the histone octamer are not affected by this level of UV damage. We also did not observe differences in the UV damage patterns of irradiated 5S rDNA before or after nucleosome formation, indicating there is little difference in the inhibition of nucleosome folding by specific CPD sites in the 5S rRNA gene. Conversely, nucleosome folding significantly restricts CPD formation at all sites in the three helical turns of the nontranscribed strand located in the dyad axis region of the nucleosome, where DNA is bound exclusively by the histone H3-H4 tetramer. Finally, modulation of the CPD distribution in a 14 nt long pyrimidine tract correlates with its rotational setting on the histone surface, when the strong sequence bias for CPD formation in this tract is minimized by normalization. These results help establish the mutual roles of histone binding and UV photoproducts on their formation in chromatin.

  16. The Role of Nucleosome Positioning in the Evolution of Gene Regulation

    PubMed Central

    Tsankov, Alexander M.; Thompson, Dawn Anne; Socha, Amanda

    2010-01-01

    Chromatin organization plays a major role in gene regulation and can affect the function and evolution of new transcriptional programs. However, it can be difficult to decipher the basis of changes in chromatin organization and their functional effect on gene expression. Here, we present a large-scale comparative genomic analysis of the relationship between chromatin organization and gene expression, by measuring mRNA abundance and nucleosome positions genome-wide in 12 Hemiascomycota yeast species. We found substantial conservation of global and functional chromatin organization in all species, including prominent nucleosome-free regions (NFRs) at gene promoters, and distinct chromatin architecture in growth and stress genes. Chromatin organization has also substantially diverged in both global quantitative features, such as spacing between adjacent nucleosomes, and in functional groups of genes. Expression levels, intrinsic anti-nucleosomal sequences, and trans-acting chromatin modifiers all play important, complementary, and evolvable roles in determining NFRs. We identify five mechanisms that couple chromatin organization to evolution of gene regulation and have contributed to the evolution of respiro-fermentation and other key systems, including (1) compensatory evolution of alternative modifiers associated with conserved chromatin organization, (2) a gradual transition from constitutive to trans-regulated NFRs, (3) a loss of intrinsic anti-nucleosomal sequences accompanying changes in chromatin organization and gene expression, (4) re-positioning of motifs from NFRs to nucleosome-occluded regions, and (5) the expanded use of NFRs by paralogous activator-repressor pairs. Our study sheds light on the molecular basis of chromatin organization, and on the role of chromatin organization in the evolution of gene regulation. PMID:20625544

  17. Nucleosome repositioning links DNA (de)methylation and differential CTCF binding during stem cell development

    PubMed Central

    Teif, Vladimir B.; Beshnova, Daria A.; Vainshtein, Yevhen; Marth, Caroline; Mallm, Jan-Philipp; Höfer, Thomas; Rippe, Karsten

    2014-01-01

    During differentiation of embryonic stem cells, chromatin reorganizes to establish cell type-specific expression programs. Here, we have dissected the linkages between DNA methylation (5mC), hydroxymethylation (5hmC), nucleosome repositioning, and binding of the transcription factor CTCF during this process. By integrating MNase-seq and ChIP-seq experiments in mouse embryonic stem cells (ESC) and their differentiated counterparts with biophysical modeling, we found that the interplay between these factors depends on their genomic context. The mostly unmethylated CpG islands have reduced nucleosome occupancy and are enriched in cell type-independent binding sites for CTCF. The few remaining methylated CpG dinucleotides are preferentially associated with nucleosomes. In contrast, outside of CpG islands most CpGs are methylated, and the average methylation density oscillates so that it is highest in the linker region between nucleosomes. Outside CpG islands, binding of TET1, an enzyme that converts 5mC to 5hmC, is associated with labile, MNase-sensitive nucleosomes. Such nucleosomes are poised for eviction in ESCs and become stably bound in differentiated cells where the TET1 and 5hmC levels go down. This process regulates a class of CTCF binding sites outside CpG islands that are occupied by CTCF in ESCs but lose the protein during differentiation. We rationalize this cell type-dependent targeting of CTCF with a quantitative biophysical model of competitive binding with the histone octamer, depending on the TET1, 5hmC, and 5mC state. PMID:24812327

  18. Nucleosome-mediated disruption of transcription factor-chromatin initiation complexes at the mouse mammary tumor virus long terminal repeat in vivo.

    PubMed Central

    Lee, H L; Archer, T K

    1994-01-01

    Glucocorticoid induction of mouse mammary tumor virus (MMTV) is short lived, returning to base levels within 24 h despite the continued presence of hormone. MMTV DNA sequences assembled as chromatin require hormone for binding by nuclear factor 1 (NF1) and octamer proteins (OCT). However, in the same cells, NF1 and OCT factors are bound to transiently introduced DNA in the absence of hormone. In contrast, recruitment of the TATA-binding protein and a novel DNA-binding protein, which we have designated FDT, for factor downstream of the TATA-binding protein, is hormone dependent for both stable and transient templates. Furthermore, transient DNA templates, but not nucleosomal templates, retain these transcription factors over the course of 24 h. This finding suggests that MMTV chromatin structure contributes to activation and cessation of transcription in vivo. Images PMID:8264599

  19. A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly

    PubMed Central

    Canzio, Daniele; Liao, Maofu; Naber, Nariman; Pate, Ed; Larson, Adam; Wu, Shenping; Marina, Diana B.; Garcia, Jennifer F.; Madhani, Hiten D.; Cooke, Roger; Schuck, Peter; Cheng, Yifan; Narlikar, Geeta J.

    2014-01-01

    A hallmark of histone H3 lysine 9 (H3K9) methylated heterochromatin, conserved from fission yeast,Schizosaccharomyces pombe (S. pombe), to humans, is its ability to spread to adjacent genomic regions1–6. Central to heterochromatin spread is the heterochromatin protein 1 (HP1), which recognizes H3K9 methylated chromatin, oligomerizes, and forms a versatile platform that participates in diverse nuclear functions, ranging from gene silencing to chromosome segregation1–6. How HP1 proteins assemble on methylated nucleosomal templates and how the HP1-nucleosome complex achieves functional versatility remain poorly understood. Here, we show that binding of the major S. pombe HP1 protein, Swi6, to methylated nucleosomes drives a switch from an auto-inhibited state to a spreading competent state. In the auto-inhibited state, a histone mimic sequence in one Swi6 monomer blocks methyl mark recognition by the chromodomain of another monomer. Auto-inhibition is relieved by recognition of two template features, the H3K9 methyl mark and nucleosomal DNA. Cryo-Electron Microscopy (EM) based reconstruction of the Swi6-nucleosome complex provides the overall architecture of the spreading-competent state in which two unbound chromodomain sticky ends appear exposed. Disruption of the switch between the auto-inhibited and spreading competent state disrupts heterochromatin assembly and gene silencing in vivo. These findings are reminiscent of other conditionally activated polymerization processes, such as actin nucleation, and open up a new class of regulatory mechanisms that operate on chromatin in vivo. PMID:23485968

  20. Replication-coupled chromatin assembly of newly synthesized histones: distinct functions for the histone tail domains.

    PubMed

    Ejlassi-Lassallette, Aïda; Thiriet, Christophe

    2012-02-01

    The maintenance of the genome during replication requires the assembly of nucleosomes with newly synthesized histones. Achieving the deposition of newly synthesized histones in chromatin implies their transport from the cytoplasm to the nucleus at the replication sites. Several lines of evidence have revealed critical functions of the histone tail domains in these conserved cellular processes. In this review, we discuss the role of the amino termini of the nucleosome building blocks, H2A/H2B and H3/H4, in different model systems. The experimental data showed that H2A/H2B tails and H3/H4 tails display distinct functions in nuclear import and chromatin assembly. Furthermore, we describe recent studies exploiting the unique properties of the slime mold, Physarum polycephalum , that have advanced understanding of the function of the highly conserved replication-dependent diacetylation of H4.

  1. Targeting of the Fun30 nucleosome remodeller by the Dpb11 scaffold facilitates cell cycle-regulated DNA end resection

    PubMed Central

    Bantele, Susanne CS; Ferreira, Pedro; Gritenaite, Dalia; Boos, Dominik; Pfander, Boris

    2017-01-01

    DNA double strand breaks (DSBs) can be repaired by either recombination-based or direct ligation-based mechanisms. Pathway choice is made at the level of DNA end resection, a nucleolytic processing step, which primes DSBs for repair by recombination. Resection is thus under cell cycle control, but additionally regulated by chromatin and nucleosome remodellers. Here, we show that both layers of control converge in the regulation of resection by the evolutionarily conserved Fun30/SMARCAD1 remodeller. Budding yeast Fun30 and human SMARCAD1 are cell cycle-regulated by interaction with the DSB-localized scaffold protein Dpb11/TOPBP1, respectively. In yeast, this protein assembly additionally comprises the 9-1-1 damage sensor, is involved in localizing Fun30 to damaged chromatin, and thus is required for efficient long-range resection of DSBs. Notably, artificial targeting of Fun30 to DSBs is sufficient to bypass the cell cycle regulation of long-range resection, indicating that chromatin remodelling during resection is underlying DSB repair pathway choice. DOI: http://dx.doi.org/10.7554/eLife.21687.001 PMID:28063255

  2. Magnesium Presence Prevents Removal of Antigenic Nuclear-Associated Proteins from Bovine Pericardium for Heart Valve Engineering.

    PubMed

    Dalgliesh, Ailsa J; Liu, Zhi Zhao; Griffiths, Leigh G

    2017-03-10

    Current heart valve prostheses are associated with significant complications, including aggressive immune response, limited valve life expectancy, and inability to grow in juvenile patients. Animal derived "tissue" valves undergo glutaraldehyde fixation to mask tissue antigenicity; however, chronic immunological responses and associated calcification still commonly occur. A heart valve formed from an unfixed bovine pericardium (BP) extracellular matrix (ECM) scaffold, in which antigenic burden has been eliminated or significantly reduced, has potential to overcome deficiencies of current bioprostheses. Decellularization and antigen removal methods frequently use sequential solutions extrapolated from analytical chemistry approaches to promote solubility and removal of tissue components from resultant ECM scaffolds. However, the extent to which such prefractionation strategies may inhibit removal of antigenic tissue components has not been explored. We hypothesize that presence of magnesium in prefractionation steps causes DNA precipitation and reduces removal of nuclear-associated antigenic proteins. Keeping all variables consistent bar the addition or absence of magnesium (2 mM magnesium chloride hexahydrate), residual BP ECM scaffold antigenicity and removed antigenicity were assessed, along with residual and removed DNA content, ECM morphology, scaffold composition, and recellularization potential. Furthermore, we used proteomic methods to determine the mechanism by which magnesium presence or absence affects scaffold residual antigenicity. This study demonstrates that absence of magnesium from antigen removal solutions enhances solubility and subsequent removal of antigenic nuclear-associated proteins from BP. We therefore conclude that the primary mechanism of action for magnesium removal during antigen removal processes is avoidance of DNA precipitation, facilitating solubilization and removal of nuclear-associated antigenic proteins. Future studies are

  3. MeCP2 binds to nucleosome free (linker DNA) regions and to H3K9/H3K27 methylated nucleosomes in the brain.

    PubMed

    Thambirajah, Anita A; Ng, Marlee K; Frehlick, Lindsay J; Li, Andra; Serpa, Jason J; Petrotchenko, Evgeniy V; Silva-Moreno, Begonia; Missiaen, Kristal K; Borchers, Christoph H; Adam Hall, J; Mackie, Ryan; Lutz, Frank; Gowen, Brent E; Hendzel, Michael; Georgel, Philippe T; Ausió, Juan

    2012-04-01

    Methyl-CpG-binding protein 2 (MeCP2) is a chromatin-binding protein that mediates transcriptional regulation, and is highly abundant in brain. The nature of its binding to reconstituted templates has been well characterized in vitro. However, its interactions with native chromatin are less understood. Here we show that MeCP2 displays a distinct distribution within fractionated chromatin from various tissues and cell types. Artificially induced global changes in DNA methylation by 3-aminobenzamide or 5-aza-2'-deoxycytidine, do not significantly affect the distribution or amount of MeCP2 in HeLa S3 or 3T3 cells. Most MeCP2 in brain is chromatin-bound and localized within highly nuclease-accessible regions. We also show that, while in most tissues and cell lines, MeCP2 forms stable complexes with nucleosome, in brain, a fraction of it is loosely bound to chromatin, likely to nucleosome-depleted regions. Finally, we provide evidence for novel associations of MeCP2 with mononucleosomes containing histone H2A.X, H3K9me(2) and H3K27me(3) in different chromatin fractions from brain cortex and in vitro. We postulate that the functional compartmentalization and tissue-specific distribution of MeCP2 within different chromatin types may be directed by its association with nucleosomes containing specific histone variants, and post-translational modifications.

  4. Opposing roles of H3- and H4-acetylation in the regulation of nucleosome structure––a FRET study.

    PubMed

    Gansen, Alexander; Tóth, Katalin; Schwarz, Nathalie; Langowski, Jörg

    2015-02-18

    Using FRET in bulk and on single molecules, we assessed the structural role of histone acetylation in nucleosomes reconstituted on the 170 bp long Widom 601 sequence. We followed salt-induced nucleosome disassembly, using donor–acceptor pairs on the ends or in the internal part of the nucleosomal DNA, and on H2B histone for measuring H2A/H2B dimer exchange. This allowed us to distinguish the influence of acetylation on salt-induced DNA unwrapping at the entry–exit site from its effect on nucleosome core dissociation. The effect of lysine acetylation is not simply cumulative, but showed distinct histone-specificity. Both H3- and H4-acetylation enhance DNA unwrapping above physiological ionic strength; however, while H3-acetylation renders the nucleosome core more sensitive to salt-induced dissociation and to dimer exchange, H4-acetylation counteracts these effects. Thus, our data suggest, that H3- and H4-acetylation have partially opposing roles in regulating nucleosome architecture and that distinct aspects of nucleosome dynamics might be independently controlled by individual histones.

  5. Robustness of nucleosome patterns in the presence of DNA sequence-specific free energy landscapes and active remodeling

    NASA Astrophysics Data System (ADS)

    Nuebler, Johannes; Obermayer, Benedikt; Möbius, Wolfram; Wolff, Michael; Gerland, Ulrich

    Proper positioning of nucleosomes in eukaryotic cells is important for transcription regulation. When averaged over many genes, nucleosome positions in coding regions follow a simple oscillatory pattern, which is described to a surprising degree of accuracy by a simple one-dimensional gas model for particles interacting via a soft-core repulsion. The quantitative agreement is surprising given that nucleosome positions are known to be determined by a complex interplay of mechanisms including DNA sequence-specific nucleosome stability and active repositioning of nucleosomes by remodeling enzymes. We rationalize the observed robustness of the simple oscillatory pattern by showing that the main effect of several known nucleosome positioning mechanisms is a renormalization of the particle interaction. For example, ``disorder'' from sequence-specific affinities leads to an apparent softening, while active remodeling can result in apparent softening for directional sliding or apparent stiffening for clamping mechanisms. We suggest that such parameter renormalization can explain the apparent difference of nucleosome properties in two yeast species, S. cerevisiae and S. pombe.

  6. The dMi-2 chromodomains are DNA binding modules important for ATP-dependent nucleosome mobilization

    PubMed Central

    Bouazoune, Karim; Mitterweger, Angelika; Längst, Gernot; Imhof, Axel; Akhtar, Asifa; Becker, Peter B.; Brehm, Alexander

    2002-01-01

    Drosophila Mi-2 (dMi-2) is the ATPase subunit of a complex combining ATP-dependent nucleosome remodelling and histone deacetylase activities. dMi-2 contains an HMG box-like region, two PHD fingers, two chromodomains and a SNF2-type ATPase domain. It is not known which of these domains contribute to nucleosome remodelling. We have tested a panel of dMi-2 deletion mutants in ATPase, nucleosome mobilization and nucleosome binding assays. Deletion of the chromodomains impairs all three activities. A dMi-2 mutant lacking the chromodomains is incorporated into a functional histone deacetylase complex in vivo but has lost nucleosome-stimulated ATPase activity. In contrast to dHP1, dMi-2 does not bind methylated histone H3 tails and does not require histone tails for nucleosome binding. Instead, the dMi-2 chromodomains display DNA binding activity that is not shared by other chromodomains. Our results suggest that the chromodomains act at an early step of the remodelling process to bind the nucleosome substrate predominantly via protein–DNA interactions. Furthermore, we identify DNA binding as a novel chromodomain-associated activity. PMID:12006495

  7. Chromatin-dependent transcription factor accessibility rather than nucleosome remodeling predominates during global transcriptional restructuring in Saccharomyces cerevisiae.

    PubMed

    Zawadzki, Karl A; Morozov, Alexandre V; Broach, James R

    2009-08-01

    Several well-studied promoters in yeast lose nucleosomes upon transcriptional activation and gain them upon repression, an observation that has prompted the model that transcriptional activation and repression requires nucleosome remodeling of regulated promoters. We have examined global nucleosome positioning before and after glucose-induced transcriptional reprogramming, a condition under which more than half of all yeast genes significantly change expression. The majority of induced and repressed genes exhibit no change in promoter nucleosome arrangement, although promoters that do undergo nucleosome remodeling tend to contain a TATA box. Rather, we found multiple examples where the pre-existing accessibility of putative transcription factor binding sites before glucose addition determined whether the corresponding gene would change expression in response to glucose addition. These results suggest that selection of appropriate transcription factor binding sites may be dictated to a large extent by nucleosome prepositioning but that regulation of expression through these sites is dictated not by nucleosome repositioning but by changes in transcription factor activity.

  8. H2A.Z and H3.3 histone variants affect nucleosome structure: biochemical and biophysical studies.

    PubMed

    Thakar, Amit; Gupta, Pooja; Ishibashi, Toyotaka; Finn, Ron; Silva-Moreno, Begonia; Uchiyama, Susumu; Fukui, Kiichi; Tomschik, Miroslav; Ausio, Juan; Zlatanova, Jordanka

    2009-11-24

    Histone variants play important roles in regulation of chromatin structure and function. To understand the structural role played by histone variants H2A.Z and H3.3, both of which are implicated in transcription regulation, we conducted extensive biochemical and biophysical analysis on mononucleosomes reconstituted from either random-sequence DNA derived from native nucleosomes or a defined DNA nucleosome positioning sequence and recombinant human histones. Using established electrophoretic and sedimentation analysis methods, we compared the properties of nucleosomes containing canonical histones and histone variants H2A.Z and H3.3 (in isolation or in combination). We find only subtle differences in the compaction and stability of the particles. Interestingly, both H2A.Z and H3.3 affect nucleosome positioning, either creating new positions or altering the relative occupancy of the existing nucleosome position space. On the other hand, only H2A.Z-containing nucleosomes exhibit altered linker histone binding. These properties could be physiologically significant as nucleosome positions and linker histone binding partly determine factor binding accessibility.

  9. Changes in nucleosome position at transcriptional start sites of specific genes in Zea mays mediator of paramutation1 mutants

    PubMed Central

    Labonne, Jonathan D. J.; Dorweiler, Jane E.; McGinnis, Karen M.

    2013-01-01

    Nucleosomes facilitate compaction of DNA within the confines of the eukaryotic nucleus. This packaging of DNA and histone proteins must accommodate cellular processes, such as transcription and DNA replication. The repositioning of nucleosomes to facilitate cellular processes is likely regulated by several factors. In Zea mays, Mediator of paramutation1 (MOP1) has been demonstrated to be an epigenetic regulator of gene expression. Based on sequence orthology and mutant phenotypes, MOP1 is likely to function in an RNA-dependent pathway to mediate changes to chromatin. High-resolution microarrays were used to assay the distribution of nucleosomes across the transcription start sites (TSSs) of ~400 maize genes in wild type and mutant mop1–1 tissues. Analysis of nucleosome distribution in leaf, immature tassel and ear shoot tissues resulted in the identification of three genes showing consistent differences in nucleosome positioning and occupancy between wild type and mutant mop1–1. These specific changes in nucleosome distribution were located upstream as well as downstream of the TSS. No direct relationship between the specific changes in nucleosome distribution and transcription were observed through quantitative expression analysis in these tissues. In silico prediction suggests that nucleosome positioning is not dictated by intrinsic DNA sequence signals in the TSSs of two of the identified genes, suggesting a role for chromatin remodeling proteins in MOP1-mediated pathways. These results also indicate that MOP1 contributions to nucleosome position may be either separate from changes in gene expression, or cooperative with development and other levels of regulation in coordinating gene expression. PMID:23538550

  10. Changes in nucleosome position at transcriptional start sites of specific genes in Zea mays mediator of paramutation1 mutants.

    PubMed

    Labonne, Jonathan D J; Dorweiler, Jane E; McGinnis, Karen M

    2013-04-01

    Nucleosomes facilitate compaction of DNA within the confines of the eukaryotic nucleus. This packaging of DNA and histone proteins must accommodate cellular processes, such as transcription and DNA replication. The repositioning of nucleosomes to facilitate cellular processes is likely regulated by several factors. In Zea mays, Mediator of paramutation1 (MOP1) has been demonstrated to be an epigenetic regulator of gene expression. Based on sequence orthology and mutant phenotypes, MOP1 is likely to function in an RNA-dependent pathway to mediate changes to chromatin. High-resolution microarrays were used to assay the distribution of nucleosomes across the transcription start sites (TSSs) of ~400 maize genes in wild type and mutant mop1-1 tissues. Analysis of nucleosome distribution in leaf, immature tassel and ear shoot tissues resulted in the identification of three genes showing consistent differences in nucleosome positioning and occupancy between wild type and mutant mop1-1. These specific changes in nucleosome distribution were located upstream as well as downstream of the TSS. No direct relationship between the specific changes in nucleosome distribution and transcription were observed through quantitative expression analysis in these tissues. In silico prediction suggests that nucleosome positioning is not dictated by intrinsic DNA sequence signals in the TSSs of two of the identified genes, suggesting a role for chromatin remodeling proteins in MOP1-mediated pathways. These results also indicate that MOP1 contributions to nucleosome position may be either separate from changes in gene expression, or cooperative with development and other levels of regulation in coordinating gene expression.

  11. DNA repair within nucleosome cores of UV-irradiated human cells

    SciTech Connect

    Jensen, K.A.; Smerdon, M.J. )

    1990-05-22

    We have compared the distributions of repair synthesis and pyrimidine dimers (PD) in nucleosome core DNA during the early (fast) repair phase and the late (slow) repair phase of UV-irradiated human fibroblasts. As shown previously, repair synthesis is nonuniform in nucleosome core particles during the fast repair phase, and the distribution curve can be approximated by a model where repair synthesis occurs preferentially in the 5' and 3' end regions. In this report, we show that, during the slow repair phase, (3H)dThd-labeled repair patches are much more uniformly distributed in core DNA, although they appear to be preferentially located in sequences degraded slowly by exonuclease III. This change in distribution cannot be explained by an increase in patch size during slow repair, since the size of these patches actually decreases to about half the size measured during the fast repair phase. Furthermore, PD mapping within core DNA at the single-nucleotide level demonstrated that, at least within the 30-130-base region from the 5' end, there is little (or no) selective removal of PD during the fast repair phase. However, the nonuniform distribution of repair synthesis obtained during fast repair throughout most of the core DNA region (approximately 40-146 bases) is accounted for by the nonuniform distribution of PD in core DNA. The near-uniform distribution of repair synthesis observed during slow repair may result from more extensive nucleosome rearrangement and/or nucleosome modification during this phase.

  12. Comparative analysis of the nucleosome structure of cell nuclei by small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Isaev-Ivanov, V. V.; Lebedev, D. V.; Lauter, H.; Pantina, R. A.; Kuklin, A. I.; Islamov, A. Kh.; Filatov, M. V.

    2010-05-01

    The nucleosome structure in native nuclei of normal (chicken erythrocyte and rat leukocyte nuclei) and anomalously proliferating (the human cervical adenocarcinoma cell line HeLa and the Chinese hamster fibroblast cell line A238) cells has been investigated using small-angle neutron scattering. The experimental results obtained allow one to make the inference that the parameters of the nucleosome structure for the chicken erythrocyte and rat leukocyte nuclei (on average over the nucleus) are close to the universally accepted values and that the distance distribution function is bimodal. The bimodality of the distance distribution function reflects a narrow distribution of distances between nucleosomes (on average over the nucleus) at the fibril level of the chromatin organization. The histone core of the nucleosome structure in the nuclei of the HeLa and A238 cells (on average over the nucleus) is considerably less compact than that in the chicken erythrocyte and rat leukocyte nuclei, and the distance distribution function does not exhibit indications of the bimodality.

  13. Dynamics of interaction of RNA polymerase II with nucleosomes. II. During read-through and elongation.

    PubMed Central

    Bhargava, P.

    1993-01-01

    The sulfhydryl-specific fluorescence probe 1,5-IAEDANS (5-(2-((iodoacetyl)amino)ethyl)amino-naphthalene-1-sulfonic acid) was attached to the single cysteine of H3, and reconstituted fluorescent mononucleosomes were used as the template for in vitro transcription by the yeast RNA polymerase II (pol II). DNase I digestion analysis revealed that transcription of nucleosomes by pol II resulted in an overall loosening of the structure. Monitoring the transcription event by steady-state fluorescence analysis showed that nucleosomes only partially open during transcription. This opening is transient in nature, and nucleosomes close back as soon as the pol II falls off the template. Thus, using the technique of fluorescence spectroscopy, partial opening of nucleosome structure could be differentiated from complete dissociation into free DNA and histone octamer, a distinction that may not be possible by techniques like gel electrophoresis. Time-resolved fluorescence emission spectroscopy suggested that during read-through of the template by the pol II, histone octamers do not fall off the DNA. Only minor conformational changes within the histone octamer take place to accommodate the transcribing polymerase. PMID:8298468

  14. How hormone receptor-DNA binding affects nucleosomal DNA: the role of symmetry.

    PubMed Central

    Bishop, T C; Kosztin, D; Schulten, K

    1997-01-01

    Molecular dynamics simulations have been employed to determine the optimal conformation of an estrogen receptor DNA binding domain dimer bound to a consensus response element, ds(AGGTCACAGTGACCT), and to a nonconsensus response element, ds(AGAACACAGTGACCT). The structures simulated were derived from a crystallographic structure and solvated by a sphere (45-A radius) of explicit water and counterions. Long-range electrostatic interactions were accounted for during 100-ps simulations by means of a fast multipole expansion algorithm combined with a multiple time-step scheme in the molecular dynamics package NAMD. The simulations demonstrate that the dimer induces a bent and underwound (10.7 bp/turn) conformation in the DNA. The bending reflects the dyad symmetry of the receptor dimer and can be described as an S-shaped curve in the helical axis of DNA when projected onto a plane. A similar bent and underwound conformation is observed for nucleosomal DNA near the nucleosome's dyad axis that reflects the symmetry of the histone octamer. We propose that when a receptor dimer binds to a nucleosome, the most favorable dimer-DNA and histone-DNA interactions are achieved if the respective symmetry axes are aligned. Such positioning of a receptor dimer over the dyad of nucleosome B in the mouse mammary tumor virus promoter is in agreement with experiment. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 9 FIGURE 11 PMID:9129808

  15. Dynamic Conformations of Nucleosome Arrays in Solution from Small-Angle X-ray Scattering

    SciTech Connect

    Howell, Steven C.

    2016-01-31

    We set out to determine quantitative information regarding the dynamic conformation of nucleosome arrays in solution using experimental SAXS. Toward this end, we developed a CG simulation algorithm for dsDNA which rapidly generates ensembles of structures through Metropolis MC sampling of a Markov chain.

  16. TRF1 and TRF2 binding to telomeres is modulated by nucleosomal organization

    PubMed Central

    Galati, Alessandra; Micheli, Emanuela; Alicata, Claudia; Ingegnere, Tiziano; Cicconi, Alessandro; Pusch, Miriam Caroline; Giraud-Panis, Marie-Josèphe; Gilson, Eric; Cacchione, Stefano

    2015-01-01

    The ends of eukaryotic chromosomes need to be protected from the activation of a DNA damage response that leads the cell to replicative senescence or apoptosis. In mammals, protection is accomplished by a six-factor complex named shelterin, which organizes the terminal TTAGGG repeats in a still ill-defined structure, the telomere. The stable interaction of shelterin with telomeres mainly depends on the binding of two of its components, TRF1 and TRF2, to double-stranded telomeric repeats. Tethering of TRF proteins to telomeres occurs in a chromatin environment characterized by a very compact nucleosomal organization. In this work we show that binding of TRF1 and TRF2 to telomeric sequences is modulated by the histone octamer. By means of in vitro models, we found that TRF2 binding is strongly hampered by the presence of telomeric nucleosomes, whereas TRF1 binds efficiently to telomeric DNA in a nucleosomal context and is able to remodel telomeric nucleosomal arrays. Our results indicate that the different behavior of TRF proteins partly depends on the interaction with histone tails of their divergent N-terminal domains. We propose that the interplay between the histone octamer and TRF proteins plays a role in the steps leading to telomere deprotection. PMID:25999344

  17. Changes in the molecular structure of mouse fetal astrocyte nucleosomes produced in vitro by methylmercuric chloride

    SciTech Connect

    Choi, B.H.; Simpkins, H.

    1986-04-01

    The fluorescent probe N-(3-pyrene)maleimide, which specifically labels the cysteine residues of histone H3 within the nucleosome, was used to monitor changes in the nucleosomal structure of mouse fetal astrocytes exposed to varying concentrations of methylmercuric chloride. Methylmercuric chloride treatment (10 ..mu..m) for 6 hr produced a significant decrease in the degree of fluorescence of the probe. The decrease was much smaller following a 4-hr incubation period. These results correlate with recent observations showing that significant changes in the thymidine labeling index occur following 4-6 hr of exposure to methylmercury (MeHg). It is hypothesized that MeHg enters the cells during the growth phase and attaches to the protein moiety of the nucleosome in or near the cysteine groups of histone H3, thus diminishing the binding capacity of the fluorescent probe. Addition of a detergent (sodium dodecyl sulfate) resulted in only a small increase in the degree of fluorescence of the treated nucleosomes as compared to controls, showing that the interaction of MeHg with the nuclear proteins was not dissociated by detergent. In view of the strong interaction between DNA and the histone dimer H3-H4 and the potential importance of the latter in gene regulation, these results suggest an additional means by which MeHg may exert its toxic effects.

  18. Orientation of nucleosomes and linker DNA in calf thymus chromatin determined by photochemical dichroism

    NASA Astrophysics Data System (ADS)

    Mitra, Sekhar; Sen, Dipankar; Crothers, Donald M.

    1984-03-01

    The dichroism for photochemical attachment of a psoralen derivative to Mg2+ -stabilized chromatin fibres is used to deduce the orientation of nucleosomal disks and linker DNA in the 30-nm fibre. The new technique of photochemical electric dichroism should have general applicability to problems of nucleic acid organization in cellular subunits and viruses.

  19. Regulation of Nucleosome Architecture and Factor Binding Revealed by Nuclease Footprinting of the ESC Genome.

    PubMed

    Hainer, Sarah J; Fazzio, Thomas G

    2015-10-06

    Functional interactions between gene regulatory factors and chromatin architecture have been difficult to directly assess. Here, we use micrococcal nuclease (MNase) footprinting to probe the functions of two chromatin-remodeling complexes. By simultaneously quantifying alterations in small MNase footprints over the binding sites of 30 regulatory factors in mouse embryonic stem cells (ESCs), we provide evidence that esBAF and Mbd3/NuRD modulate the binding of several regulatory proteins. In addition, we find that nucleosome occupancy is reduced at specific loci in favor of subnucleosomes upon depletion of esBAF, including sites of histone H2A.Z localization. Consistent with these data, we demonstrate that esBAF is required for normal H2A.Z localization in ESCs, suggesting esBAF either stabilizes H2A.Z-containing nucleosomes or promotes subnucleosome to nucleosome conversion by facilitating H2A.Z deposition. Therefore, integrative examination of MNase footprints reveals insights into nucleosome dynamics and functional interactions between chromatin structure and key gene-regulatory factors.

  20. Crystal structure of human nucleosome core particle containing enzymatically introduced CpG methylation.

    PubMed

    Fujii, Yoshifumi; Wakamori, Masatoshi; Umehara, Takashi; Yokoyama, Shigeyuki

    2016-06-01

    Cytosine methylation, predominantly of the CpG sequence in vertebrates, is one of the major epigenetic modifications crucially involved in the control of gene expression. Due to the difficulty of reconstituting site-specifically methylated nucleosomal DNA at crystallization quality, most structural analyses of CpG methylation have been performed using chemically synthesized oligonucleotides, There has been just one recent study of nucleosome core particles (NCPs) reconstituted with nonpalindromic human satellite 2-derived DNAs. Through the preparation of a 146-bp palindromic α-satellite-based nucleosomal DNA containing four CpG dinucleotide sequences and its enzymatic methylation and restriction, we reconstituted a 'symmetric' human CpG-methylated nucleosome core particle (NCP). We solved the crystal structures of the CpG-methylated and unmodified NCPs at 2.6 and 3.0 Å resolution, respectively. We observed the electron densities of two methyl groups, among the eight 5-methylcytosines introduced in the CpG-fully methylated NCP. There were no obvious structural differences between the CpG-methylated 'symmetric NCP' and the unmodified NCP. The preparation of a crystallization-grade CpG-methylated NCP provides a platform for the analysis of CpG-methyl reader and eraser proteins.