Science.gov

Sample records for nuclear-associated nucleosome assembly

  1. Histone chaperone-mediated nucleosome assembly process.

    PubMed

    Fan, Hsiu-Fang; Liu, Zi-Ning; Chow, Sih-Yao; Lu, Yi-Han; Li, Hsin

    2015-01-01

    A huge amount of information is stored in genomic DNA and this stored information resides inside the nucleus with the aid of chromosomal condensation factors. It has been reported that the repeat nucleosome core particle (NCP) consists of 147-bp of DNA and two copies of H2A, H2B, H3 and H4. Regulation of chromosomal structure is important to many processes inside the cell. In vivo, a group of histone chaperones facilitate and regulate nucleosome assembly. How NCPs are constructed with the aid of histone chaperones remains unclear. In this study, the histone chaperone-mediated nucleosome assembly process was investigated using single-molecule tethered particle motion (TPM) experiments. It was found that Asf1 is able to exert more influence than Nap1 and poly glutamate acid (PGA) on the nucleosome formation process, which highlights Asf1's specific role in tetrasome formation. Thermodynamic parameters supported a model whereby energetically favored nucleosomal complexes compete with non-nucleosomal complexes. In addition, our kinetic findings propose the model that histone chaperones mediate nucleosome assembly along a path that leads to enthalpy-favored products with free histones as reaction substrates. PMID:25611318

  2. Histone Chaperone-Mediated Nucleosome Assembly Process

    PubMed Central

    Fan, Hsiu-Fang; Liu, Zi-Ning; Chow, Sih-Yao; Lu, Yi-Han; Li, Hsin

    2015-01-01

    A huge amount of information is stored in genomic DNA and this stored information resides inside the nucleus with the aid of chromosomal condensation factors. It has been reported that the repeat nucleosome core particle (NCP) consists of 147-bp of DNA and two copies of H2A, H2B, H3 and H4. Regulation of chromosomal structure is important to many processes inside the cell. In vivo, a group of histone chaperones facilitate and regulate nucleosome assembly. How NCPs are constructed with the aid of histone chaperones remains unclear. In this study, the histone chaperone-mediated nucleosome assembly process was investigated using single-molecule tethered particle motion (TPM) experiments. It was found that Asf1 is able to exert more influence than Nap1 and poly glutamate acid (PGA) on the nucleosome formation process, which highlights Asf1’s specific role in tetrasome formation. Thermodynamic parameters supported a model whereby energetically favored nucleosomal complexes compete with non-nucleosomal complexes. In addition, our kinetic findings propose the model that histone chaperones mediate nucleosome assembly along a path that leads to enthalpy-favored products with free histones as reaction substrates. PMID:25611318

  3. Histone chaperone-mediated nucleosome assembly process.

    PubMed

    Fan, Hsiu-Fang; Liu, Zi-Ning; Chow, Sih-Yao; Lu, Yi-Han; Li, Hsin

    2015-01-01

    A huge amount of information is stored in genomic DNA and this stored information resides inside the nucleus with the aid of chromosomal condensation factors. It has been reported that the repeat nucleosome core particle (NCP) consists of 147-bp of DNA and two copies of H2A, H2B, H3 and H4. Regulation of chromosomal structure is important to many processes inside the cell. In vivo, a group of histone chaperones facilitate and regulate nucleosome assembly. How NCPs are constructed with the aid of histone chaperones remains unclear. In this study, the histone chaperone-mediated nucleosome assembly process was investigated using single-molecule tethered particle motion (TPM) experiments. It was found that Asf1 is able to exert more influence than Nap1 and poly glutamate acid (PGA) on the nucleosome formation process, which highlights Asf1's specific role in tetrasome formation. Thermodynamic parameters supported a model whereby energetically favored nucleosomal complexes compete with non-nucleosomal complexes. In addition, our kinetic findings propose the model that histone chaperones mediate nucleosome assembly along a path that leads to enthalpy-favored products with free histones as reaction substrates.

  4. Stability of the conservative mode of nucleosome assembly.

    PubMed Central

    Leffak, I M

    1983-01-01

    The conservative assembly of nucleosome histone octamer cores has been confirmed by electrophoretic analysis of density labeled histones following equilibrium buoyant density centrifugation. After normal replication, crosslinked octamers are shown not to contain a mixture of new and old core histones. Moreover, when DNA synthesis is inhibited by ara-C nucleosome cores are still assembled exclusively from nascent histone. Similarly, after release from cycloheximide inhibition newly synthesized core histone is conservatively deposited. Thus, a conservative mechanism of histone octamer assembly occurs when nascent histone is present in the normal stoichiometry to nascent DNA and when chromatin is assembled in nascent histone or nascent DNA excess. Images PMID:6856473

  5. Dynamics of nucleosome assembly and effects of DNA methylation.

    PubMed

    Lee, Ju Yeon; Lee, Jaehyoun; Yue, Hongjun; Lee, Tae-Hee

    2015-02-13

    The nucleosome is the fundamental packing unit of the eukaryotic genome, and CpG methylation is an epigenetic modification associated with gene repression and silencing. We investigated nucleosome assembly mediated by histone chaperone Nap1 and the effects of CpG methylation based on three-color single molecule FRET measurements, which enabled direct monitoring of histone binding in the context of DNA wrapping. According to our observation, (H3-H4)2 tetramer incorporation must precede H2A-H2B dimer binding, which is independent of DNA termini wrapping. Upon CpG methylation, (H3-H4)2 tetramer incorporation and DNA termini wrapping are facilitated, whereas proper incorporation of H2A-H2B dimers is inhibited. We suggest that these changes are due to rigidified DNA and increased random binding of histones to DNA. According to the results, CpG methylation expedites nucleosome assembly in the presence of abundant DNA and histones, which may help facilitate gene packaging in chromatin. The results also indicate that the slowest steps in nucleosome assembly are DNA termini wrapping and tetramer positioning, both of which are affected heavily by changes in the physical properties of DNA. PMID:25550164

  6. Dynamics of nucleosome assembly and effects of DNA methylation.

    PubMed

    Lee, Ju Yeon; Lee, Jaehyoun; Yue, Hongjun; Lee, Tae-Hee

    2015-02-13

    The nucleosome is the fundamental packing unit of the eukaryotic genome, and CpG methylation is an epigenetic modification associated with gene repression and silencing. We investigated nucleosome assembly mediated by histone chaperone Nap1 and the effects of CpG methylation based on three-color single molecule FRET measurements, which enabled direct monitoring of histone binding in the context of DNA wrapping. According to our observation, (H3-H4)2 tetramer incorporation must precede H2A-H2B dimer binding, which is independent of DNA termini wrapping. Upon CpG methylation, (H3-H4)2 tetramer incorporation and DNA termini wrapping are facilitated, whereas proper incorporation of H2A-H2B dimers is inhibited. We suggest that these changes are due to rigidified DNA and increased random binding of histones to DNA. According to the results, CpG methylation expedites nucleosome assembly in the presence of abundant DNA and histones, which may help facilitate gene packaging in chromatin. The results also indicate that the slowest steps in nucleosome assembly are DNA termini wrapping and tetramer positioning, both of which are affected heavily by changes in the physical properties of DNA.

  7. Nucleosomal regulation of chromatin composition and nuclear assembly revealed by histone depletion

    PubMed Central

    Zierhut, Christian; Jenness, Christopher; Kimura, Hiroshi; Funabiki, Hironori

    2014-01-01

    Nucleosomes are the fundamental unit of chromatin, but the analysis of transcription-independent nucleosome functions has been thwarted by the confounding gene expression changes resultant of histone manipulation. Here we solve this dilemma by developing Xenopus laevis egg extracts deficient for nucleosome formation, and analyze the proteomic landscape and behavior of nucleosomal chromatin and nucleosome-free DNA. We show that while nucleosome-free DNA can recruit nuclear envelope membranes, nucleosomes are required for spindle assembly, lamina and nuclear pore complex (NPC) formation. In addition to RCC1, we reveal that ELYS, the initiator of NPC formation, fails to associate with naked DNA, but directly binds histones H2A–H2B and nucleosomes. Tethering ELYS and RCC1 to DNA bypassed the requirement for nucleosomes in NPC formation in a synergistic manner. Thus, the minimal essential function of nucleosomes in NPC formation is to recruit RCC1 and ELYS. PMID:24952593

  8. Nucleosome assembly proteins and their interacting proteins in neuronal differentiation.

    PubMed

    Attia, Mikaël; Rachez, Christophe; Avner, Philip; Rogner, Ute Christine

    2013-06-01

    Neuronal differentiation from neural stem cells into mature neurons is guided by the concerted action of specific transcription factors that stepwise exercise their role in the context of defined chromatin states. Amongst the classes of proteins that influence chromatin compaction and modification are nucleosome assembly proteins (NAPs). Mammals possess several nucleosome assembly protein 1 like proteins (NAP1L) that show either ubiquitous or neuron-restricted expression. The latter group is presumably involved in the process of neuronal differentiation. Mammalian NAP1Ls can potentially form both homo- and hetero-dimers and octamers, in theory allowing thousands of different combinations to be formed. Detailed studies have been performed on several of the NAP1Ls that point to a range of molecular roles, including transcriptional regulation, nuclear import, and control of cell division. This article aims at summarizing current knowledge of the mammalian NAP1L family and its interactions.

  9. Replicating nucleosomes

    PubMed Central

    Ramachandran, Srinivas; Henikoff, Steven

    2015-01-01

    Eukaryotic replication disrupts each nucleosome as the fork passes, followed by reassembly of disrupted nucleosomes and incorporation of newly synthesized histones into nucleosomes in the daughter genomes. In this review, we examine this process of replication-coupled nucleosome assembly to understand how characteristic steady-state nucleosome landscapes are attained. Recent studies have begun to elucidate mechanisms involved in histone transfer during replication and maturation of the nucleosome landscape after disruption by replication. A fuller understanding of replication-coupled nucleosome assembly will be needed to explain how epigenetic information is replicated at every cell division. PMID:26269799

  10. Nucleosome assembly depends on the torsion in the DNA molecule: a magnetic tweezers study.

    PubMed

    Gupta, Pooja; Zlatanova, Jordanka; Tomschik, Miroslav

    2009-12-16

    We have used magnetic tweezers to study nucleosome assembly on topologically constrained DNA molecules. Assembly was achieved using chicken erythrocyte core histones and histone chaperone protein Nap1 under constant low force. We have observed only partial assembly when the DNA was topologically constrained and much more complete assembly on unconstrained (nicked) DNA tethers. To verify our hypothesis that the lack of full nucleosome assembly on topologically constrained tethers was due to compensatory accumulation of positive supercoiling in the rest of the template, we carried out experiments in which we mechanically relieved the positive supercoiling by rotating the external magnetic field at certain time points of the assembly process. Indeed, such rotation did lead to the same nucleosome saturation level as in the case of nicked tethers. We conclude that levels of positive supercoiling in the range of 0.025-0.051 (most probably in the form of twist) stall the nucleosome assembly process.

  11. Nucleosomal regulation of chromatin composition and nuclear assembly revealed by histone depletion.

    PubMed

    Zierhut, Christian; Jenness, Christopher; Kimura, Hiroshi; Funabiki, Hironori

    2014-07-01

    Nucleosomes are the fundamental unit of chromatin, but analysis of transcription-independent nucleosome functions has been complicated by the gene-expression changes resulting from histone manipulation. Here we solve this dilemma by developing Xenopus laevis egg extracts deficient for nucleosome formation and by analyzing the proteomic landscape and behavior of nucleosomal chromatin and nucleosome-free DNA. We show that although nucleosome-free DNA can recruit nuclear-envelope membranes, nucleosomes are required for spindle assembly and for formation of the lamina and of nuclear pore complexes (NPCs). We show that, in addition to the Ran G-nucleotide exchange factor RCC1, ELYS, the initiator of NPC formation, fails to associate with naked DNA but directly binds histone H2A-H2B dimers and nucleosomes. Tethering ELYS and RCC1 to DNA bypasses the requirement for nucleosomes in NPC formation in a synergistic manner. Thus, the minimal essential function of nucleosomes in NPC formation is to recruit RCC1 and ELYS. PMID:24952593

  12. Chromatin assembled in the presence of cytosine arabinoside has a short nucleosome repeat.

    PubMed Central

    Leffak, I M

    1983-01-01

    Incubation of MSB cells with cytosine arabinoside (1-beta-D-arabinofuranosylcytosine, ara-C) inhibits 3H-thymidine incorporation into nascent DNA while nucleosome core histone synthesis proceeds in molar stoichiometry at about 20% of control rates. The excess nascent histone is incorporated into chromatin and nucleosome cores are assembled normally on the small amount of DNA which is synthesized at submaximal levels of ara-C. This DNA becomes packaged into a shortened nucleosome repeat, however. These results indicate that the nucleosome core is a strongly conserved unit of chromatin replication and suggest that the stoichiometry of nascent histone to DNA may be one factor influencing the establishment of the nucleosome repeat length. It cannot be the only factor, however, since the closely packed nucleosomes made in the presence of ara-C begin to return to their normal spacing within six hours after reversal. Images PMID:6889133

  13. NAP1-assisted nucleosome assembly on DNA measured in real time by single-molecule magnetic tweezers.

    PubMed

    Vlijm, Rifka; Smitshuijzen, Jeremy S J; Lusser, Alexandra; Dekker, Cees

    2012-01-01

    While many proteins are involved in the assembly and (re)positioning of nucleosomes, the dynamics of protein-assisted nucleosome formation are not well understood. We study NAP1 (nucleosome assembly protein 1) assisted nucleosome formation at the single-molecule level using magnetic tweezers. This method allows to apply a well-defined stretching force and supercoiling density to a single DNA molecule, and to study in real time the change in linking number, stiffness and length of the DNA during nucleosome formation. We observe a decrease in end-to-end length when NAP1 and core histones (CH) are added to the dsDNA. We characterize the formation of complete nucleosomes by measuring the change in linking number of DNA, which is induced by the NAP1-assisted nucleosome assembly, and which does not occur for non-nucleosomal bound histones H3 and H4. By rotating the magnets, the supercoils formed upon nucleosome assembly are removed and the number of assembled nucleosomes can be counted. We find that the compaction of DNA at low force is about 56 nm per assembled nucleosome. The number of compaction steps and associated change in linking number indicate that NAP1-assisted nucleosome assembly is a two-step process. PMID:23050009

  14. Nucleosome Assembly Alters the Accessibility of the Antitumor Agent Duocarmycin B2 to Duplex DNA.

    PubMed

    Zou, Tingting; Kizaki, Seiichiro; Pandian, Ganesh N; Sugiyama, Hiroshi

    2016-06-20

    To evaluate the reactivity of antitumor agents in a nucleosome architecture, we conducted in vitro studies to assess the alkylation level of duocarmycin B2 on nucleosomes with core and linker DNA using sequencing gel electrophoresis. Our results suggested that the alkylating efficiencies of duocarmycin B2 were significantly decreased in core DNA and increased at the histone-free linker DNA sites when compared with naked DNA conditions. Our finding that nucleosome assembly alters the accessibility of duocarmycin B2 to duplex DNA could advance its design as an antitumor agent.

  15. Acetylation of Histone H3 Lysine 56 Regulates Replication-Coupled Nucleosome Assembly

    PubMed Central

    Li, Qing; Zhou, Hui; Wurtele, Hugo; Davies, Brian; Horazdovsky, Bruce; Verreault, Alain; Zhang, Zhiguo

    2008-01-01

    SUMMARY Chromatin assembly factor 1 (CAF-1) and Rtt106 participate in the deposition of newly synthesized histones onto replicating DNA to form nucleosomes. This process is critical for the maintenance of genome stability and inheritance of functionally specialized chromatin structures in proliferating cells. However, the molecular functions of the acetylation of newly synthesized histones in this DNA replication-coupled nucleosome assembly pathway remain enigmatic. Here we show that histone H3 acetylated at lysine 56 (H3K56Ac) is incorporated onto replicating DNA and, by increasing the binding affinity of CAF-1 and Rtt106 for histone H3, H3K56Ac enhances the ability of these histone chaperones to assemble DNA into nucleosomes. Genetic analysis indicates that H3K56Ac acts in a nonredundant manner with the acetylation of the N-terminal residues of H3 and H4 in nucleosome assembly. These results reveal a mechanism by which H3K56Ac regulates replication-coupled nucleosome assembly mediated by CAF-1 and Rtt106. PMID:18662540

  16. Nucleosome assembly in mammalian cell extracts before and after DNA replication.

    PubMed Central

    Gruss, C; Gutierrez, C; Burhans, W C; DePamphilis, M L; Koller, T; Sogo, J M

    1990-01-01

    Protein-free DNA in a cytosolic extract supplemented with SV40 large T-antigen (T-Ag), is assembled into chromatin structure when nuclear extract is added. This assembly was monitored by topoisomer formation, micrococcal nuclease digestion and psoralen crosslinking of the DNA. Plasmids containing SV40 sequences (ori- and ori+) were assembled into chromatin with similar efficiencies whether T-Ag was present or not. Approximately 50-80% of the number of nucleosomes in vivo could be assembled in vitro; however, the kinetics of assembly differed on replicated and unreplicated molecules. In replicative intermediates, nucleosomes were observed on both the pre-replicated and post-replicated portions. We conclude that the extent of nucleosome assembly in mammalian cell extracts is not dependent upon DNA replication, in contrast to previous suggestions. However, the highly sensitive psoralen assay revealed that DNA replication appears to facilitate precise folding of DNA in the nucleosome. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. PMID:2167837

  17. Nucleotide excision repair of the 5 S ribosomal RNA gene assembled into a nucleosome.

    PubMed

    Liu, X; Smerdon, M J

    2000-08-01

    A-175-base pair fragment containing the Xenopus borealis somatic 5 S ribosomal RNA gene was used as a model system to determine the effect of nucleosome assembly on nucleotide excision repair (NER) of the major UV photoproduct (cyclobutane pyrimidine dimer (CPD)) in DNA. Xenopus oocyte nuclear extracts were used to carry out repair in vitro on reconstituted, positioned 5 S rDNA nucleosomes. Nucleosome structure strongly inhibits NER at many CPD sites in the 5 S rDNA fragment while having little effect at a few sites. The time course of CPD removal at 35 different sites indicates that >85% of the CPDs in the naked DNA fragment have t(12) values <2 h, whereas <26% of the t(12) values in nucleosomes are <2 h, and 15% are >8 h. Moreover, removal of histone tails from these mononucleosomes has little effect on the repair rates. Finally, nucleosome inhibition of repair shows no correlation with the rotational setting of a 14-nucleotide-long pyrimidine tract located 30 base pairs from the nucleosome dyad. These results suggest that inhibition of NER by mononucleosomes is not significantly influenced by the rotational orientation of CPDs on the histone surface, and histone tails play little (or no) role in this inhibition. PMID:10821833

  18. Human tNASP promotes in vitro nucleosome assembly with histone H3.3.

    PubMed

    Kato, Daiki; Osakabe, Akihisa; Tachiwana, Hiroaki; Tanaka, Hiroki; Kurumizaka, Hitoshi

    2015-02-10

    Nuclear autoantigenic sperm proteins (NASPs) are members of the acidic histone chaperones, which promote nucleosome assembly. In humans, two splicing variants proposed for the somatic and testicular isoforms, sNASP and tNASP, respectively, have been found, and the shorter form, sNASP, reportedly promotes nucleosome assembly with the histone H3 isoforms, H3.1, H3.2, and H3.3. However, the biochemical properties of the longer form, tNASP, have not been reported. tNASP is considered to exist specifically in the testis. Our present results revealed that the tNASP protein is ubiquitously produced in various human tissues, in addition to testis. Unexpectedly, we found that the nucleosome assembly activity of purified tNASP was extremely low with the canonical histone H3.1 or H3.2, but was substantially detected with the replacement histone H3.3 variant. A mutational analysis revealed that the H3.3 Ile89 residue, corresponding to the H3.1 Val89 residue, is responsible for the tNASP-mediated nucleosome assembly with H3.3. A histone deposition assay showed that the H3.3-H4 complex is more efficiently deposited onto DNA by tNASP than the H3.1-H4 complex. These results provide evidence that tNASP is ubiquitously produced in various types of human tissues and promotes in vitro nucleosome assembly with H3 variant specificity.

  19. Nucleosome assembly dynamics involve spontaneous fluctuations in the handedness of tetrasomes.

    PubMed

    Vlijm, Rifka; Lee, Mina; Lipfert, Jan; Lusser, Alexandra; Dekker, Cees; Dekker, Nynke H

    2015-01-13

    DNA wrapping around histone octamers generates nucleosomes, the basic compaction unit of eukaryotic chromatin. Nucleosome stability is carefully tuned to maintain DNA accessibility in transcription, replication, and repair. Using freely orbiting magnetic tweezers, which measure the twist and length of single DNA molecules, we monitor the real-time loading of tetramers or complete histone octamers onto DNA by Nucleosome Assembly Protein-1 (NAP1). Remarkably, we find that tetrasomes exhibit spontaneous flipping between a preferentially occupied left-handed state (ΔLk = -0.73) and a right-handed state (ΔLk = +1.0), separated by a free energy difference of 2.3 kBT (1.5 kcal/mol). This flipping occurs without concomitant changes in DNA end-to-end length. The application of weak positive torque converts left-handed tetrasomes into right-handed tetrasomes, whereas nucleosomes display more gradual conformational changes. Our findings reveal unexpected dynamical rearrangements of the nucleosomal structure, suggesting that chromatin can serve as a "twist reservoir," offering a mechanistic explanation for the regulation of DNA supercoiling in chromatin. PMID:25578730

  20. Nucleosome assembly dynamics involve spontaneous fluctuations in the handedness of tetrasomes.

    PubMed

    Vlijm, Rifka; Lee, Mina; Lipfert, Jan; Lusser, Alexandra; Dekker, Cees; Dekker, Nynke H

    2015-01-13

    DNA wrapping around histone octamers generates nucleosomes, the basic compaction unit of eukaryotic chromatin. Nucleosome stability is carefully tuned to maintain DNA accessibility in transcription, replication, and repair. Using freely orbiting magnetic tweezers, which measure the twist and length of single DNA molecules, we monitor the real-time loading of tetramers or complete histone octamers onto DNA by Nucleosome Assembly Protein-1 (NAP1). Remarkably, we find that tetrasomes exhibit spontaneous flipping between a preferentially occupied left-handed state (ΔLk = -0.73) and a right-handed state (ΔLk = +1.0), separated by a free energy difference of 2.3 kBT (1.5 kcal/mol). This flipping occurs without concomitant changes in DNA end-to-end length. The application of weak positive torque converts left-handed tetrasomes into right-handed tetrasomes, whereas nucleosomes display more gradual conformational changes. Our findings reveal unexpected dynamical rearrangements of the nucleosomal structure, suggesting that chromatin can serve as a "twist reservoir," offering a mechanistic explanation for the regulation of DNA supercoiling in chromatin.

  1. Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases.

    PubMed

    Dahlin, Jayme L; Chen, Xiaoyue; Walters, Michael A; Zhang, Zhiguo

    2015-01-01

    During DNA replication, nucleosomes ahead of replication forks are disassembled to accommodate replication machinery. Following DNA replication, nucleosomes are then reassembled onto replicated DNA using both parental and newly synthesized histones. This process, termed DNA replication-coupled nucleosome assembly (RCNA), is critical for maintaining genome integrity and for the propagation of epigenetic information, dysfunctions of which have been implicated in cancers and aging. In recent years, it has been shown that RCNA is carefully orchestrated by a series of histone modifications, histone chaperones and histone-modifying enzymes. Interestingly, many features of RCNA are also found in processes involving DNA replication-independent nucleosome assembly like histone exchange and gene transcription. In yeast, histone H3 lysine K56 acetylation (H3K56ac) is found in newly synthesized histone H3 and is critical for proper nucleosome assembly and for maintaining genomic stability. The histone acetyltransferase (HAT) regulator of Ty1 transposition 109 (Rtt109) is the sole enzyme responsible for H3K56ac in yeast. Much research has centered on this particular histone modification and histone-modifying enzyme. This Critical Review summarizes much of our current understanding of nucleosome assembly and highlights many important insights learned from studying Rtt109 HATs in fungi. We highlight some seminal features in nucleosome assembly conserved in mammalian systems and describe some of the lingering questions in the field. Further studying fungal and mammalian chromatin assembly may have important public health implications, including deeper understandings of human cancers and aging as well as the pursuit of novel anti-fungal therapies.

  2. KSHV encoded LANA recruits Nucleosome Assembly Protein NAP1L1 for regulating viral DNA replication and transcription

    NASA Astrophysics Data System (ADS)

    Gupta, Namrata; Thakker, Suhani; Verma, Subhash C.

    2016-09-01

    The establishment of latency is an essential for lifelong persistence and pathogenesis of Kaposi’s sarcoma-associated herpesvirus (KSHV). Latency-associated nuclear antigen (LANA) is the most abundantly expressed protein during latency and is important for viral genome replication and transcription. Replication-coupled nucleosome assembly is a major step in packaging the newly synthesized DNA into chromatin, but the mechanism of KSHV genome chromatinization post-replication is not understood. Here, we show that nucleosome assembly protein 1-like protein 1 (NAP1L1) associates with LANA. Our binding assays revealed an association of LANA with NAP1L1 in KSHV-infected cells, which binds through its amino terminal domain. Association of these proteins confirmed their localization in specific nuclear compartments of the infected cells. Chromatin immunoprecipitation assays from NAP1L1-depleted cells showed LANA-mediated recruitment of NAP1L1 at the terminal repeat (TR) region of the viral genome. Presence of NAP1L1 stimulated LANA-mediated DNA replication and persistence of a TR-containing plasmid. Depletion of NAP1L1 led to a reduced nucleosome positioning on the viral genome. Furthermore, depletion of NAP1L1 increased the transcription of viral lytic genes and overexpression decreased the promoter activities of LANA-regulated genes. These results confirmed that LANA recruitment of NAP1L1 helps in assembling nucleosome for the chromatinization of newly synthesized viral DNA.

  3. KSHV encoded LANA recruits Nucleosome Assembly Protein NAP1L1 for regulating viral DNA replication and transcription

    PubMed Central

    Gupta, Namrata; Thakker, Suhani; Verma, Subhash C.

    2016-01-01

    The establishment of latency is an essential for lifelong persistence and pathogenesis of Kaposi’s sarcoma-associated herpesvirus (KSHV). Latency-associated nuclear antigen (LANA) is the most abundantly expressed protein during latency and is important for viral genome replication and transcription. Replication-coupled nucleosome assembly is a major step in packaging the newly synthesized DNA into chromatin, but the mechanism of KSHV genome chromatinization post-replication is not understood. Here, we show that nucleosome assembly protein 1-like protein 1 (NAP1L1) associates with LANA. Our binding assays revealed an association of LANA with NAP1L1 in KSHV-infected cells, which binds through its amino terminal domain. Association of these proteins confirmed their localization in specific nuclear compartments of the infected cells. Chromatin immunoprecipitation assays from NAP1L1-depleted cells showed LANA-mediated recruitment of NAP1L1 at the terminal repeat (TR) region of the viral genome. Presence of NAP1L1 stimulated LANA-mediated DNA replication and persistence of a TR-containing plasmid. Depletion of NAP1L1 led to a reduced nucleosome positioning on the viral genome. Furthermore, depletion of NAP1L1 increased the transcription of viral lytic genes and overexpression decreased the promoter activities of LANA-regulated genes. These results confirmed that LANA recruitment of NAP1L1 helps in assembling nucleosome for the chromatinization of newly synthesized viral DNA. PMID:27599637

  4. KSHV encoded LANA recruits Nucleosome Assembly Protein NAP1L1 for regulating viral DNA replication and transcription.

    PubMed

    Gupta, Namrata; Thakker, Suhani; Verma, Subhash C

    2016-01-01

    The establishment of latency is an essential for lifelong persistence and pathogenesis of Kaposi's sarcoma-associated herpesvirus (KSHV). Latency-associated nuclear antigen (LANA) is the most abundantly expressed protein during latency and is important for viral genome replication and transcription. Replication-coupled nucleosome assembly is a major step in packaging the newly synthesized DNA into chromatin, but the mechanism of KSHV genome chromatinization post-replication is not understood. Here, we show that nucleosome assembly protein 1-like protein 1 (NAP1L1) associates with LANA. Our binding assays revealed an association of LANA with NAP1L1 in KSHV-infected cells, which binds through its amino terminal domain. Association of these proteins confirmed their localization in specific nuclear compartments of the infected cells. Chromatin immunoprecipitation assays from NAP1L1-depleted cells showed LANA-mediated recruitment of NAP1L1 at the terminal repeat (TR) region of the viral genome. Presence of NAP1L1 stimulated LANA-mediated DNA replication and persistence of a TR-containing plasmid. Depletion of NAP1L1 led to a reduced nucleosome positioning on the viral genome. Furthermore, depletion of NAP1L1 increased the transcription of viral lytic genes and overexpression decreased the promoter activities of LANA-regulated genes. These results confirmed that LANA recruitment of NAP1L1 helps in assembling nucleosome for the chromatinization of newly synthesized viral DNA. PMID:27599637

  5. Stable complex formation between HIV Rev and the nucleosome assembly protein, NAP1, affects Rev function

    SciTech Connect

    Cochrane, Alan; Murley, Laura Lea; Gao Mian; Wong, Raymond; Clayton, Kiera; Brufatto, Nicole; Canadien, Veronica; Mamelak, Daniel; Chen, Tricia; Richards, Dawn; Zeghouf, Mahel; Greenblatt, Jack; Burks, Christian; Frappier, Lori

    2009-05-25

    The Rev protein of HIV-1 is essential for HIV-1 proliferation due to its role in exporting viral RNA from the nucleus. We used a modified version of tandem affinity purification (TAP) tagging to identify proteins interacting with HIV-1 Rev in human cells and discovered a prominent interaction between Rev and nucleosome assembly protein 1 (Nap1). This interaction was also observed by specific retention of Nap1 from human cell lysates on a Rev affinity column. Nap1 was found to bind Rev through the Rev arginine-rich domain and altered the oligomerization state of Rev in vitro. Overexpression of Nap1 stimulated the ability of Rev to export RNA, reduced the nucleolar localization of Rev, and affected Rev nuclear import rates. The results suggest that Nap-1 may influence Rev function by increasing the availability of Rev.

  6. In Vivo Study of the Nucleosome Assembly Functions of ASF1 Histone Chaperones in Human Cells▿ †

    PubMed Central

    Galvani, Angélique; Courbeyrette, Régis; Agez, Morgane; Ochsenbein, Françoise; Mann, Carl; Thuret, Jean-Yves

    2008-01-01

    Histone chaperones have been implicated in nucleosome assembly and disassembly as well as histone modification. ASF1 is a highly conserved histone H3/H4 chaperone that synergizes in vitro with two other histone chaperones, chromatin assembly factor 1 (CAF-1) and histone repression A factor (HIRA), in DNA synthesis-coupled and DNA synthesis-independent nucleosome assembly. Here, we identify mutants of histones H3.1 and H3.3 that are unable to interact with human ASF1A and ASF1B isoforms but that are still competent to bind CAF-1 and HIRA, respectively. We show that these mutant histones are inefficiently deposited into chromatin in vivo. Furthermore, we found that both ASF1A and ASF1B participate in the DNA synthesis-independent deposition of H3.3 in HeLa cells, thus highlighting an unexpected role for ASF1B in this pathway. This pathway does not require interaction of ASF1 with HIRA. We provide the first direct determination that ASF1A and ASF1B play a role in the efficiency of nucleosome assembly in vivo in human cells. PMID:18378699

  7. NAP-1, Nucleosome assembly protein 1, a histone chaperone involved in Drosophila telomeres.

    PubMed

    López-Panadès, Elisenda; Casacuberta, Elena

    2016-03-01

    Telomere elongation is a function that all eukaryote cells must accomplish in order to guarantee, first, the stability of the end of the chromosomes and second, to protect the genetic information from the inevitable terminal erosion. The targeted transposition of the telomere transposons HeT-A, TART and TAHRE perform this function in Drosophila, while the telomerase mechanism elongates the telomeres in most eukaryotes. In order to integrate telomere maintenance together with cell cycle and metabolism, different components of the cell interact, regulate, and control the proteins involved in telomere elongation. Different partners of the telomerase mechanism have already been described, but in contrast, very few proteins have been related with assisting the telomere transposons of Drosophila. Here, we describe for the first time, the implication of NAP-1 (Nucleosome assembly protein 1), a histone chaperone that has been involved in nuclear transport, transcription regulation, and chromatin remodeling, in telomere biology. We find that Nap-1 and HeT-A Gag, one of the major components of the Drosophila telomeres, are part of the same protein complex. We also demonstrate that their close interaction is necessary to guarantee telomere stability in dividing cells. We further show that NAP-1 regulates the transcription of the HeT-A retrotransposon, pointing to a positive regulatory role of NAP-1 in telomere expression. All these results facilitate the understanding of the transposon telomere maintenance mechanism, as well as the integration of telomere biology with the rest of the cell metabolism.

  8. Drosophila Yemanuclein and HIRA Cooperate for De Novo Assembly of H3.3-Containing Nucleosomes in the Male Pronucleus

    PubMed Central

    Orsi, Guillermo A.; Algazeery, Ahmed; Meyer, Régis E.; Capri, Michèle; Sapey-Triomphe, Laure M.; Horard, Béatrice; Gruffat, Henri; Couble, Pierre; Aït-Ahmed, Ounissa; Loppin, Benjamin

    2013-01-01

    The differentiation of post-meiotic spermatids in animals is characterized by a unique reorganization of their nuclear architecture and chromatin composition. In many species, the formation of sperm nuclei involves the massive replacement of nucleosomes with protamines, followed by a phase of extreme nuclear compaction. At fertilization, the reconstitution of a nucleosome-based paternal chromatin after the removal of protamines requires the deposition of maternally provided histones before the first round of DNA replication. This process exclusively uses the histone H3 variant H3.3 and constitutes a unique case of genome-wide replication-independent (RI) de novo chromatin assembly. We had previously shown that the histone H3.3 chaperone HIRA plays a central role for paternal chromatin assembly in Drosophila. Although several conserved HIRA-interacting proteins have been identified from yeast to human, their conservation in Drosophila, as well as their actual implication in this highly peculiar RI nucleosome assembly process, is an open question. Here, we show that Yemanuclein (YEM), the Drosophila member of the Hpc2/Ubinuclein family, is essential for histone deposition in the male pronucleus. yem loss of function alleles affect male pronucleus formation in a way remarkably similar to Hira mutants and abolish RI paternal chromatin assembly. In addition, we demonstrate that HIRA and YEM proteins interact and are mutually dependent for their targeting to the decondensing male pronucleus. Finally, we show that the alternative ATRX/XNP-dependent H3.3 deposition pathway is not involved in paternal chromatin assembly, thus underlining the specific implication of the HIRA/YEM complex for this essential step of zygote formation. PMID:23408912

  9. Nucleosome Remodeling and Epigenetics

    PubMed Central

    Becker, Peter B.; Workman, Jerry L.

    2013-01-01

    Eukaryotic chromatin is kept flexible and dynamic to respond to environmental, metabolic, and developmental cues through the action of a family of so-called “nucleosome remodeling” ATPases. Consistent with their helicase ancestry, these enzymes experience conformation changes as they bind and hydrolyze ATP. At the same time they interact with DNA and histones, which alters histone–DNA interactions in target nucleosomes. Their action may lead to complete or partial disassembly of nucleosomes, the exchange of histones for variants, the assembly of nucleosomes, or the movement of histone octamers on DNA. “Remodeling” may render DNA sequences accessible to interacting proteins or, conversely, promote packing into tightly folded structures. Remodeling processes participate in every aspect of genome function. Remodeling activities are commonly integrated with other mechanisms such as histone modifications or RNA metabolism to assemble stable, epigenetic states. PMID:24003213

  10. Large multimeric assemblies of nucleosome assembly protein and histones revealed by small-angle X-ray scattering and electron microscopy.

    PubMed

    Newman, Emily R; Kneale, G Geoff; Ravelli, Raimond B G; Karuppasamy, Manikandan; Karimi Nejadasl, Fatemeh; Taylor, Ian A; McGeehan, John E

    2012-08-01

    The nucleosome assembly protein (NAP) family represents a key group of histone chaperones that are essential for cell viability. Several x-ray structures of NAP1 dimers are available; however, there are currently no structures of this ubiquitous chaperone in complex with histones. We have characterized NAP1 from Xenopus laevis and reveal that it forms discrete multimers with histones H2A/H2B and H3/H4 at a stoichiometry of one NAP dimer to one histone fold dimer. These complexes have been characterized by size exclusion chromatography, analytical ultracentrifugation, multiangle laser light scattering, and small-angle x-ray scattering to reveal their oligomeric assembly states in solution. By employing single-particle cryo-electron microscopy, we visualized these complexes for the first time and show that they form heterogeneous ring-like structures, potentially acting as large scaffolds for histone assembly and exchange. PMID:22707715

  11. In vitro chromatin assembly of the HIV-1 promoter. ATP-dependent polar repositioning of nucleosomes by Sp1 and NFkappaB.

    PubMed

    Widlak, P; Gaynor, R B; Garrard, W T

    1997-07-11

    Nuclease hypersensitive sites exist in vivo in the chromatin of the integrated human immunodeficiency virus (HIV)-1 proviral genome, in the 5'-long terminal repeat (LTR) within the promoter/enhancer region near Sp1 and NFkappaB binding sites. Previous studies from the Kadonaga and Jones laboratories have shown that Sp1 and NFkappaB can establish hypersensitive sites in a truncated form of this LTR when added before in vitro chromatin assembly with Drosophila extracts, thus facilitating subsequent transcriptional activation of a linked reporter gene upon the association of additional factors (Pazin, M. J., Sheridan, P. L., Cannon, K., Cao, Z., Keck, J. G., Kadanaga, J. T., and Jones, K. A. (1996) Genes & Dev. 10, 37-49). Here we assess the role of a full-length LTR and 1 kilobase pair of downstream flanking HIV sequences in chromatin remodeling when these transcription factors are added after chromatin assembly. Using Xenopus laevis oocyte extracts to assemble chromatin in vitro, we have confirmed that Sp1 and NFkappaB can indeed induce sites hypersensitive to DNase I, micrococcal nuclease, or restriction enzymes on either side of factor binding sites in chromatin but not naked DNA. We extend these earlier studies by demonstrating that the process is ATP-dependent when the factors are added after chromatin assembly and that histone H1, AP1, TBP, or Tat had no effect on hypersensitive site formation. Furthermore, we have found that nucleosomes upstream of NFkappaB sites are rotationally positioned prior to factor binding and that their translational frame is registered after binding NFkappaB. On the other hand, binding of Sp1 positions adjacent downstream nucleosome(s). We term this polar repositioning because each factor aligns nucleosomes only on one side of its binding sites. Mutational analysis and oligonucleotide competition each demonstrated that this remodeling required Sp1 and NFkappaB binding sites. PMID:9211915

  12. The Ddc1-Mec3-Rad17 Sliding Clamp Regulates Histone-Histone Chaperone Interactions and DNA Replication-coupled Nucleosome Assembly in Budding Yeast*

    PubMed Central

    Burgess, Rebecca J.; Han, Junhong; Zhang, Zhiguo

    2014-01-01

    The maintenance of genome integrity is regulated in part by chromatin structure and factors involved in the DNA damage response pathway. Nucleosome assembly is a highly regulated process that restores chromatin structure after DNA replication, DNA repair, and gene transcription. During S phase the histone chaperones Asf1, CAF-1, and Rtt106 coordinate to deposit newly synthesized histones H3-H4 onto replicated DNA in budding yeast. Here we describe synthetic genetic interactions between RTT106 and the DDC1-MEC3-RAD17 (9-1-1) complex, a sliding clamp functioning in the S phase DNA damage and replication checkpoint response, upon treatment with DNA damaging agents. The DNA damage sensitivity of rad17Δ rtt106Δ cells depends on the function of Rtt106 in nucleosome assembly. Epistasis analysis reveals that 9-1-1 complex components interact with multiple DNA replication-coupled nucleosome assembly factors, including Rtt106, CAF-1, and lysine residues of H3-H4. Furthermore, rad17Δ cells exhibit defects in the deposition of newly synthesized H3-H4 onto replicated DNA. Finally, deletion of RAD17 results in increased association of Asf1 with checkpoint kinase Rad53, which may lead to the observed reduction in Asf1-H3 interaction in rad17Δ mutant cells. In addition, we observed that the interaction between histone H3-H4 with histone chaperone CAF-1 or Rtt106 increases in cells lacking Rad17. These results support the idea that the 9-1-1 checkpoint protein regulates DNA replication-coupled nucleosome assembly in part through regulating histone-histone chaperone interactions. PMID:24573675

  13. The histone chaperone protein Nucleosome Assembly Protein-1 (hNAP-1) binds HIV-1 Tat and promotes viral transcription

    PubMed Central

    Vardabasso, Chiara; Manganaro, Lara; Lusic, Marina; Marcello, Alessandro; Giacca, Mauro

    2008-01-01

    Background Despite the large amount of data available on the molecular mechanisms that regulate HIV-1 transcription, crucial information is still lacking about the interplay between chromatin conformation and the events that regulate initiation and elongation of viral transcription. During transcriptional activation, histone acetyltransferases and ATP-dependent chromatin remodeling complexes cooperate with histone chaperones in altering chromatin structure. In particular, human Nucleosome Assembly Protein-1 (hNAP-1) is known to act as a histone chaperone that shuttles histones H2A/H2B into the nucleus, assembles nucleosomes and promotes chromatin fluidity, thereby affecting transcription of several cellular genes. Results Using a proteomic screening, we identified hNAP-1 as a novel cellular protein interacting with HIV-1 Tat. We observed that Tat specifically binds hNAP1, but not other members of the same family of factors. Binding between the two proteins required the integrity of the basic domain of Tat and of two separable domains of hNAP-1 (aa 162–290 and 290–391). Overexpression of hNAP-1 significantly enhanced Tat-mediated activation of the LTR. Conversely, silencing of the protein decreased viral promoter activity. To explore the effects of hNAP-1 on viral infection, a reporter HIV-1 virus was used to infect cells in which hNAP-1 had been either overexpressed or knocked-down. Consistent with the gene expression results, these two treatments were found to increase and inhibit viral infection, respectively. Finally, we also observed that the overexpression of p300, a known co-activator of both Tat and hNAP-1, enhanced hNAP-1-mediated transcriptional activation as well as its interaction with Tat. Conclusion Our study reveals that HIV-1 Tat binds the histone chaperone hNAP-1 both in vitro and in vivo and shows that this interaction participates in the regulation of Tat-mediated activation of viral gene expression. PMID:18226242

  14. Nucleosome Core Particle Disassembly and Assembly Kinetics Studied Using Single-Molecule Fluorescence.

    PubMed

    Hazan, Noa Plavner; Tomov, Toma E; Tsukanov, Roman; Liber, Miran; Berger, Yaron; Masoud, Rula; Toth, Katalin; Langowski, Joerg; Nir, Eyal

    2015-10-20

    The stability of the nucleosome core particle (NCP) is believed to play a major role in regulation of gene expression. To understand the mechanisms that influence NCP stability, we studied stability and dissociation and association kinetics under different histone protein (NCP) and NaCl concentrations using single-pair Förster resonance energy transfer and alternating laser excitation techniques. The method enables distinction between folded, unfolded, and intermediate NCP states and enables measurements at picomolar to nanomolar NCP concentrations where dissociation and association reactions can be directly observed. We reproduced the previously observed nonmonotonic dependence of NCP stability on NaCl concentration, and we suggest that this rather unexpected behavior is a result of interplay between repulsive and attractive forces within positively charged histones and between the histones and the negatively charged DNA. Higher NaCl concentrations decrease the attractive force between the histone proteins and the DNA but also stabilize H2A/H2B histone dimers, and possibly (H3/H4)2 tetramers. An intermediate state in which one DNA arm is unwrapped, previously observed at high NaCl concentrations, is also explained by this salt-induced stabilization. The strong dependence of NCP stability on ion and histone concentrations, and possibly on other charged macromolecules, may play a role in chromosomal morphology.

  15. Interaction of nucleosome assembly proteins abolishes nuclear localization of DGK{zeta} by attenuating its association with importins

    SciTech Connect

    Okada, Masashi; Hozumi, Yasukazu; Ichimura, Tohru; Tanaka, Toshiaki; Hasegawa, Hiroshi; Yamamoto, Masakazu; Takahashi, Nobuya; Iseki, Ken; Yagisawa, Hitoshi; Shinkawa, Takashi; Isobe, Toshiaki; Goto, Kaoru

    2011-12-10

    Diacylglycerol kinase (DGK) is involved in the regulation of lipid-mediated signal transduction through the metabolism of a second messenger diacylglycerol. Of the DGK family, DGK{zeta}, which contains a nuclear localization signal, localizes mainly to the nucleus but translocates to the cytoplasm under pathological conditions. However, the detailed mechanism of translocation and its functional significance remain unclear. To elucidate these issues, we used a proteomic approach to search for protein targets that interact with DGK{zeta}. Results show that nucleosome assembly protein (NAP) 1-like 1 (NAP1L1) and NAP1-like 4 (NAP1L4) are identified as novel DGK{zeta} binding partners. NAP1Ls constitutively shuttle between the nucleus and the cytoplasm in transfected HEK293 cells. The molecular interaction of DGK{zeta} and NAP1Ls prohibits nuclear import of DGK{zeta} because binding of NAP1Ls to DGK{zeta} blocks import carrier proteins, Qip1 and NPI1, to interact with DGK{zeta}, leading to cytoplasmic tethering of DGK{zeta}. In addition, overexpression of NAP1Ls exerts a protective effect against doxorubicin-induced cytotoxicity. These findings suggest that NAP1Ls are involved in a novel molecular basis for the regulation of nucleocytoplasmic shuttling of DGK{zeta} and provide a clue to examine functional significance of its translocation under pathological conditions.

  16. Characterization of Two Distinct Nucleosome Remodeling and Deacetylase (NuRD) Complex Assemblies in Embryonic Stem Cells*

    PubMed Central

    Bode, Daniel; Yu, Lu; Tate, Peri

    2016-01-01

    Pluripotency and self-renewal, the defining properties of embryonic stem cells, are brought about by transcriptional programs involving an intricate network of transcription factors and chromatin remodeling complexes. The Nucleosome Remodeling and Deacetylase (NuRD) complex plays a crucial and dynamic role in the regulation of stemness and differentiation. Several NuRD-associated factors have been reported but how they are organized has not been investigated in detail. Here, we have combined affinity purification and blue native polyacrylamide gel electrophoresis followed by protein identification by mass spectrometry and protein correlation profiling to characterize the topology of the NuRD complex. Our data show that in mouse embryonic stem cells the NuRD complex is present as two distinct assemblies of differing topology with different binding partners. Cell cycle regulator Cdk2ap1 and transcription factor Sall4 associate only with the higher mass NuRD assembly. We further establish that only isoform Sall4a, and not Sall4b, associates with NuRD. By contrast, Suz12, a component of the PRC2 Polycomb repressor complex, associates with the lower mass entity. In addition, we identify and validate a novel NuRD-associated protein, Wdr5, a regulatory subunit of the MLL histone methyltransferase complex, which associates with both NuRD entities. Bioinformatic analyses of published target gene sets of these chromatin binding proteins are in agreement with these structural observations. In summary, this study provides an interesting insight into mechanistic aspects of NuRD function in stem cell biology. The relevance of our work has broader implications because of the ubiquitous nature of the NuRD complex. The strategy described here can be more broadly applicable to investigate the topology of the multiple complexes an individual protein can participate in. PMID:26714524

  17. The Chp1 chromodomain binds the H3K9me tail and the nucleosome core to assemble heterochromatin

    PubMed Central

    Zocco, Manuel; Marasovic, Mirela; Pisacane, Paola; Bilokapic, Silvija; Halic, Mario

    2016-01-01

    To maintain genome stability, cells pack large portions of their genome into silent chromatin or heterochromatin. Histone H3 lysine 9 methylation, a hallmark of heterochromatin, is recognized by conserved readers called chromodomains. But how chromodomains interact with their actual binding partner, the H3K9 methylated nucleosome, remains elusive. We have determined the structure of a nucleosome trimethylated at lysine 9 of histone H3 (H3K9me3 Nucleosome) in a complex with the chromodomain of Chp1, a protein required for RNA interference-dependent heterochromatin formation in fission yeast. The cryo-electron microscopy structure reveals that the chromodomain of Chp1 binds the histone H3 lysine 9 methylated tail and the core of the nucleosome, primarily histones H3 and H2B. Mutations in chromodomain of Chp1 loops, which interact with the nucleosome core, abolished this interaction in vitro. Moreover, fission yeast cells with Chp1 loop mutations have a defect in Chp1 recruitment and heterochromatin formation. This study reveals the structural basis for heterochromatic silencing and suggests that chromodomains could read histone code in the H3 tail and the nucleosome core, which would provide an additional layer of regulation. PMID:27462451

  18. Visible periodicity of strong nucleosome DNA sequences.

    PubMed

    Salih, Bilal; Tripathi, Vijay; Trifonov, Edward N

    2015-01-01

    Fifteen years ago, Lowary and Widom assembled nucleosomes on synthetic random sequence DNA molecules, selected the strongest nucleosomes and discovered that the TA dinucleotides in these strong nucleosome sequences often appear at 10-11 bases from one another or at distances which are multiples of this period. We repeated this experiment computationally, on large ensembles of natural genomic sequences, by selecting the strongest nucleosomes--i.e. those with such distances between like-named dinucleotides, multiples of 10.4 bases, the structural and sequence period of nucleosome DNA. The analysis confirmed the periodicity of TA dinucleotides in the strong nucleosomes, and revealed as well other periodic sequence elements, notably classical AA and TT dinucleotides. The matrices of DNA bendability and their simple linear forms--nucleosome positioning motifs--are calculated from the strong nucleosome DNA sequences. The motifs are in full accord with nucleosome positioning sequences derived earlier, thus confirming that the new technique, indeed, detects strong nucleosomes. Species- and isochore-specific variations of the matrices and of the positioning motifs are demonstrated. The strong nucleosome DNA sequences manifest the highest hitherto nucleosome positioning sequence signals, showing the dinucleotide periodicities in directly observable rather than in hidden form.

  19. Multiscale modeling of nucleosome dynamics.

    PubMed

    Sharma, Shantanu; Ding, Feng; Dokholyan, Nikolay V

    2007-03-01

    Nucleosomes form the fundamental building blocks of chromatin. Subtle modifications of the constituent histone tails mediate chromatin stability and regulate gene expression. For this reason, it is important to understand structural dynamics of nucleosomes at atomic levels. We report a novel multiscale model of the fundamental chromatin unit, a nucleosome, using a simplified model for rapid discrete molecular dynamics simulations and an all-atom model for detailed structural investigation. Using a simplified structural model, we perform equilibrium simulations of a single nucleosome at various temperatures. We further reconstruct all-atom nucleosome structures from simulation trajectories. We find that histone tails bind to nucleosomal DNA via strong salt-bridge interactions over a wide range of temperatures, suggesting a mechanism of chromatin structural organization whereby histone tails regulate inter- and intranucleosomal assemblies via binding with nucleosomal DNA. We identify specific regions of the histone core H2A/H2B-H4/H3-H3/H4-H2B/H2A, termed "cold sites", which retain a significant fraction of contacts with adjoining residues throughout the simulation, indicating their functional role in nucleosome organization. Cold sites are clustered around H3-H3, H2A-H4 and H4-H2A interhistone interfaces, indicating the necessity of these contacts for nucleosome stability. Essential dynamics analysis of simulation trajectories shows that bending across the H3-H3 is a prominent mode of intranucleosomal dynamics. We postulate that effects of salts on mononucleosomes can be modeled in discrete molecular dynamics by modulating histone-DNA interaction potentials. Local fluctuations in nucleosomal DNA vary significantly along the DNA sequence, suggesting that only a fraction of histone-DNA contacts make strong interactions dominating mononucleosomal dynamics. Our findings suggest that histone tails have a direct functional role in stabilizing higher-order chromatin

  20. Nucleosome positioning determinants.

    PubMed

    Fernandez, Alfonso G; Anderson, John N

    2007-08-17

    A previous report demonstrated that one site in a nucleosome assembled onto a synthetic positioning sequence known as Fragment 67 is hypersensitive to permanganate. The site is required for positioning activity and is located 1.5 turns from the dyad, which is a region of high DNA curvature in the nucleosome. Here, the permanganate sensitivity of the nucleosome positioning Fragment 601 was examined in order to expand the dataset of nucleosome sequences containing KMnO(4) hypersensitive sites. The hyperreactive T residue in the six sites detected as well as the one in Fragment 67 and three in the 5 S rDNA positioning sequence were contained within a TA step. Seven of the ten sequences were of the form CTAGPuG or the related sequence TTAAPu. These motifs were also found in the binding sites of several transcriptional regulatory proteins that kink DNA. In order to assess the significance of these sites, the 10 bp positioning determinant in Fragment 67 was removed and replaced by the nine sequences from the 5 S rDNA and Fragment 601. The results demonstrated that these derivative fragments promoted high nucleosome stability and positioning as compared to a control sequence that contained an AT step in place of the TA step. The importance of the TA step was further tested by making single base-pair substitutions in Fragment 67 and the results revealed that stability and positioning activity followed the order: TA>TG>TT>/=TC approximately GG approximately GA approximately AT. Sequences flanking the TA step were also shown to be critical for nucleosome stability and positioning. Nucleosome positioning was restored to near wild-type levels with (CTG)(3), which can form slipped stranded structures and with one base bulges that kink DNA. The results of this study suggest that local DNA structures are important for positioning and that single base-pair changes at these sites could have profound effects on those genomic functions that depend on ordered nucleosomes. PMID

  1. The Modifier of Transcription 1 (Mot1) ATPase and Spt16 Histone Chaperone Co-regulate Transcription through Preinitiation Complex Assembly and Nucleosome Organization.

    PubMed

    True, Jason D; Muldoon, Joseph J; Carver, Melissa N; Poorey, Kunal; Shetty, Savera J; Bekiranov, Stefan; Auble, David T

    2016-07-15

    Modifier of transcription 1 (Mot1) is a conserved and essential Swi2/Snf2 ATPase that can remove TATA-binding protein (TBP) from DNA using ATP hydrolysis and in so doing exerts global effects on transcription. Spt16 is also essential and functions globally in transcriptional regulation as a component of the facilitates chromatin transcription (FACT) histone chaperone complex. Here we demonstrate that Mot1 and Spt16 regulate a largely overlapping set of genes in Saccharomyces cerevisiae. As expected, Mot1 was found to control TBP levels at co-regulated promoters. In contrast, Spt16 did not affect TBP recruitment. On a global scale, Spt16 was required for Mot1 promoter localization, and Mot1 also affected Spt16 localization to genes. Interestingly, we found that Mot1 has an unanticipated role in establishing or maintaining the occupancy and positioning of nucleosomes at the 5' ends of genes. Spt16 has a broad role in regulating chromatin organization in gene bodies, including those nucleosomes affected by Mot1. These results suggest that the large scale overlap in Mot1 and Spt16 function arises from a combination of both their unique and shared functions in transcription complex assembly and chromatin structure regulation. PMID:27226635

  2. A brief review of nucleosome structure.

    PubMed

    Cutter, Amber R; Hayes, Jeffrey J

    2015-10-01

    The nucleosomal subunit organization of chromatin provides a multitude of functions. Nucleosomes elicit an initial ∼7-fold linear compaction of genomic DNA. They provide a critical mechanism for stable repression of genes and other DNA-dependent activities by restricting binding of trans-acting factors to cognate DNA sequences. Conversely they are engineered to be nearly meta-stable and disassembled (and reassembled) in a facile manner to allow rapid access to the underlying DNA during processes such as transcription, replication and DNA repair. Nucleosomes protect the genome from DNA damaging agents and provide a lattice onto which a myriad of epigenetic signals are deposited. Moreover, vast strings of nucleosomes provide a framework for assembly of the chromatin fiber and higher-order chromatin structures. Thus, in order to provide a foundation for understanding these functions, we present a review of the basic elements of nucleosome structure and stability, including the association of linker histones.

  3. A role for the nucleosome assembly proteins TAF-Iβ and NAP1 in the activation of BZLF1 expression and Epstein-Barr virus reactivation.

    PubMed

    Mansouri, Sheila; Wang, Shan; Frappier, Lori

    2013-01-01

    The reactivation of Epstein-Barr virus (EBV) from latent to lytic infection begins with the expression of the viral BZLF1 gene, leading to a subsequent cascade of viral gene expression and amplification of the EBV genome. Using RNA interference, we show that nucleosome assembly proteins NAP1 and TAF-I positively contribute to EBV reactivation in epithelial cells through the induction of BZLF1 expression. In addition, overexpression of NAP1 or the β isoform of TAF-I (TAF-Iβ) in AGS cells latently infected with EBV was sufficient to induce BZLF1 expression. Chromatin immunoprecipitation experiments performed in AGS-EBV cells showed that TAF-I associated with the BZLF1 promoter upon lytic induction and affected local histone modifications by increasing H3K4 dimethylation and H4K8 acetylation. MLL1, the host protein known to dimethylate H3K4, was found to associate with the BZLF1 promoter upon lytic induction in a TAF-I-dependent manner, and MLL1 depletion decreased BZLF1 expression, confirming its contribution to lytic reactivation. The results indicate that TAF-Iβ promotes BZLF1 expression and subsequent lytic infection by affecting chromatin at the BZLF1 promoter. PMID:23691099

  4. Structural basis for retroviral integration into nucleosomes.

    PubMed

    Maskell, Daniel P; Renault, Ludovic; Serrao, Erik; Lesbats, Paul; Matadeen, Rishi; Hare, Stephen; Lindemann, Dirk; Engelman, Alan N; Costa, Alessandro; Cherepanov, Peter

    2015-07-16

    Retroviral integration is catalysed by a tetramer of integrase (IN) assembled on viral DNA ends in a stable complex, known as the intasome. How the intasome interfaces with chromosomal DNA, which exists in the form of nucleosomal arrays, is currently unknown. Here we show that the prototype foamy virus (PFV) intasome is proficient at stable capture of nucleosomes as targets for integration. Single-particle cryo-electron microscopy reveals a multivalent intasome-nucleosome interface involving both gyres of nucleosomal DNA and one H2A-H2B heterodimer. While the histone octamer remains intact, the DNA is lifted from the surface of the H2A-H2B heterodimer to allow integration at strongly preferred superhelix location ±3.5 positions. Amino acid substitutions disrupting these contacts impinge on the ability of the intasome to engage nucleosomes in vitro and redistribute viral integration sites on the genomic scale. Our findings elucidate the molecular basis for nucleosome capture by the viral DNA recombination machinery and the underlying nucleosome plasticity that allows integration.

  5. Structural basis for retroviral integration into nucleosomes

    PubMed Central

    Maskell, Daniel P.; Renault, Ludovic; Serrao, Erik; Lesbats, Paul; Matadeen, Rishi; Hare, Stephen; Lindemann, Dirk; Engelman, Alan N.; Costa, Alessandro; Cherepanov, Peter

    2015-01-01

    Retroviral integration is catalyzed by a tetramer of integrase (IN) assembled on viral DNA ends in a stable complex, known as the intasome1,2. How the intasome interfaces with chromosomal DNA, which exists in the form of nucleosomal arrays, is currently unknown. Here we show that the prototype foamy virus (PFV) intasome is proficient at stable capture of nucleosomes as targets for integration. Single-particle cryo-electron microscopy (EM) reveals a multivalent intasome-nucleosome interface involving both gyres of nucleosomal DNA and one H2A-H2B heterodimer. While the histone octamer remains intact, the DNA is lifted from the surface of the H2A-H2B heterodimer to allow integration at strongly preferred superhelix location (SHL) ±3.5 positions. Amino acid substitutions disrupting these contacts impinge on the ability of the intasome to engage nucleosomes in vitro and redistribute viral integration sites on the genomic scale. Our findings elucidate the molecular basis for nucleosome capture by the viral DNA recombination machinery and the underlying nucleosome plasticity that allows integration. PMID:26061770

  6. DPNuc: Identifying Nucleosome Positions Based on the Dirichlet Process Mixture Model.

    PubMed

    Chen, Huidong; Guan, Jihong; Zhou, Shuigeng

    2015-01-01

    Nucleosomes and the free linker DNA between them assemble the chromatin. Nucleosome positioning plays an important role in gene transcription regulation, DNA replication and repair, alternative splicing, and so on. With the rapid development of ChIP-seq, it is possible to computationally detect the positions of nucleosomes on chromosomes. However, existing methods cannot provide accurate and detailed information about the detected nucleosomes, especially for the nucleosomes with complex configurations where overlaps and noise exist. Meanwhile, they usually require some prior knowledge of nucleosomes as input, such as the size or the number of the unknown nucleosomes, which may significantly influence the detection results. In this paper, we propose a novel approach DPNuc for identifying nucleosome positions based on the Dirichlet process mixture model. In our method, Markov chain Monte Carlo (MCMC) simulations are employed to determine the mixture model with no need of prior knowledge about nucleosomes. Compared with three existing methods, our approach can provide more detailed information of the detected nucleosomes and can more reasonably reveal the real configurations of the chromosomes; especially, our approach performs better in the complex overlapping situations. By mapping the detected nucleosomes to a synthetic benchmark nucleosome map and two existing benchmark nucleosome maps, it is shown that our approach achieves a better performance in identifying nucleosome positions and gets a higher F-score. Finally, we show that our approach can more reliably detect the size distribution of nucleosomes.

  7. DPNuc: Identifying Nucleosome Positions Based on the Dirichlet Process Mixture Model.

    PubMed

    Chen, Huidong; Guan, Jihong; Zhou, Shuigeng

    2015-01-01

    Nucleosomes and the free linker DNA between them assemble the chromatin. Nucleosome positioning plays an important role in gene transcription regulation, DNA replication and repair, alternative splicing, and so on. With the rapid development of ChIP-seq, it is possible to computationally detect the positions of nucleosomes on chromosomes. However, existing methods cannot provide accurate and detailed information about the detected nucleosomes, especially for the nucleosomes with complex configurations where overlaps and noise exist. Meanwhile, they usually require some prior knowledge of nucleosomes as input, such as the size or the number of the unknown nucleosomes, which may significantly influence the detection results. In this paper, we propose a novel approach DPNuc for identifying nucleosome positions based on the Dirichlet process mixture model. In our method, Markov chain Monte Carlo (MCMC) simulations are employed to determine the mixture model with no need of prior knowledge about nucleosomes. Compared with three existing methods, our approach can provide more detailed information of the detected nucleosomes and can more reasonably reveal the real configurations of the chromosomes; especially, our approach performs better in the complex overlapping situations. By mapping the detected nucleosomes to a synthetic benchmark nucleosome map and two existing benchmark nucleosome maps, it is shown that our approach achieves a better performance in identifying nucleosome positions and gets a higher F-score. Finally, we show that our approach can more reliably detect the size distribution of nucleosomes. PMID:26671796

  8. Nucleosome positioning and composition modulate in silico chromatin flexibility.

    PubMed

    Clauvelin, N; Lo, P; Kulaeva, O I; Nizovtseva, E V; Diaz-Montes, J; Zola, J; Parashar, M; Studitsky, V M; Olson, W K

    2015-02-18

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes-the familiar assemblies of ∼150 DNA base pairs and eight histone proteins-found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the 'local' inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome positioning, and

  9. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function.

    PubMed

    Isaac, R Stefan; Jiang, Fuguo; Doudna, Jennifer A; Lim, Wendell A; Narlikar, Geeta J; Almeida, Ricardo

    2016-04-28

    The CRISPR-Cas9 bacterial surveillance system has become a versatile tool for genome editing and gene regulation in eukaryotic cells, yet how CRISPR-Cas9 contends with the barriers presented by eukaryotic chromatin is poorly understood. Here we investigate how the smallest unit of chromatin, a nucleosome, constrains the activity of the CRISPR-Cas9 system. We find that nucleosomes assembled on native DNA sequences are permissive to Cas9 action. However, the accessibility of nucleosomal DNA to Cas9 is variable over several orders of magnitude depending on dynamic properties of the DNA sequence and the distance of the PAM site from the nucleosome dyad. We further find that chromatin remodeling enzymes stimulate Cas9 activity on nucleosomal templates. Our findings imply that the spontaneous breathing of nucleosomal DNA together with the action of chromatin remodelers allow Cas9 to effectively act on chromatin in vivo.

  10. Nucleosome positioning and composition modulate in silico chromatin flexibility

    NASA Astrophysics Data System (ADS)

    Clauvelin, N.; Lo, P.; Kulaeva, O. I.; Nizovtseva, E. V.; Diaz-Montes, J.; Zola, J.; Parashar, M.; Studitsky, V. M.; Olson, W. K.

    2015-02-01

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes—the familiar assemblies of ˜150 DNA base pairs and eight histone proteins—found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the ‘local’ inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome

  11. Nucleosome positioning and composition modulate in silico chromatin flexibility

    PubMed Central

    Clauvelin, N.; Lo, P.; Kulaeva, O. I.; Nizovtseva, E. V.; Diaz-Montes, J.; Zola, J.; Parashar, M.; Studitsky, V. M.; Olson, W. K.

    2015-01-01

    The dynamic organization of chromatin plays an essential role in the regulation of gene expression and in other fundamental cellular processes. The underlying physical basis of these activities lies in the sequential positioning, chemical composition, and intermolecular interactions of the nucleosomes—the familiar assemblies of ~ 150 DNA base pairs and eight histone proteins—found on chromatin fibers. Here we introduce a mesoscale model of short nucleosomal arrays and a computational framework that make it possible to incorporate detailed structural features of DNA and histones in simulations of short chromatin constructs. We explore the effects of nucleosome positioning and the presence or absence of cationic N-terminal histone tails on the ‘local’ inter-nucleosomal interactions and the global deformations of the simulated chains. The correspondence between the predicted and observed effects of nucleosome composition and numbers on the long-range communication between the ends of designed nucleosome arrays lends credence to the model and to the molecular insights gleaned from the simulated structures. We also extract effective nucleosome-nucleosome potentials from the simulations and implement the potentials in a larger-scale computational treatment of regularly repeating chromatin fibers. Our results reveal a remarkable effect of nucleosome spacing on chromatin flexibility, with small changes in DNA linker length significantly altering the interactions of nucleosomes and the dimensions of the fiber as a whole. In addition, we find that these changes in nucleosome positioning influence the statistical properties of long chromatin constructs. That is, simulated chromatin fibers with the same number of nucleosomes exhibit polymeric behaviors ranging from Gaussian to worm-like, depending upon nucleosome spacing. These findings suggest that the physical and mechanical properties of chromatin can span a wide range of behaviors, depending on nucleosome

  12. The prenucleosome, a stable conformational isomer of the nucleosome

    PubMed Central

    Fei, Jia; Torigoe, Sharon E.; Brown, Christopher R.; Khuong, Mai T.; Kassavetis, George A.; Boeger, Hinrich; Kadonaga, James T.

    2015-01-01

    Chromatin comprises nucleosomes as well as nonnucleosomal histone–DNA particles. Prenucleosomes are rapidly formed histone–DNA particles that can be converted into canonical nucleosomes by a motor protein such as ACF. Here we show that the prenucleosome is a stable conformational isomer of the nucleosome. It consists of a histone octamer associated with ∼80 base pair (bp) of DNA, which is located at a position that corresponds to the central 80 bp of a nucleosome core particle. Monomeric prenucleosomes with free flanking DNA do not spontaneously fold into nucleosomes but can be converted into canonical nucleosomes by an ATP-driven motor protein such as ACF or Chd1. In addition, histone H3K56, which is located at the DNA entry and exit points of a canonical nucleosome, is specifically acetylated by p300 in prenucleosomes relative to nucleosomes. Prenucleosomes assembled in vitro exhibit properties that are strikingly similar to those of nonnucleosomal histone–DNA particles in the upstream region of active promoters in vivo. These findings suggest that the prenucleosome, the only known stable conformational isomer of the nucleosome, is related to nonnucleosomal histone–DNA species in the cell. PMID:26680301

  13. The prenucleosome, a stable conformational isomer of the nucleosome.

    PubMed

    Fei, Jia; Torigoe, Sharon E; Brown, Christopher R; Khuong, Mai T; Kassavetis, George A; Boeger, Hinrich; Kadonaga, James T

    2015-12-15

    Chromatin comprises nucleosomes as well as nonnucleosomal histone-DNA particles. Prenucleosomes are rapidly formed histone-DNA particles that can be converted into canonical nucleosomes by a motor protein such as ACF. Here we show that the prenucleosome is a stable conformational isomer of the nucleosome. It consists of a histone octamer associated with ∼ 80 base pair (bp) of DNA, which is located at a position that corresponds to the central 80 bp of a nucleosome core particle. Monomeric prenucleosomes with free flanking DNA do not spontaneously fold into nucleosomes but can be converted into canonical nucleosomes by an ATP-driven motor protein such as ACF or Chd1. In addition, histone H3K56, which is located at the DNA entry and exit points of a canonical nucleosome, is specifically acetylated by p300 in prenucleosomes relative to nucleosomes. Prenucleosomes assembled in vitro exhibit properties that are strikingly similar to those of nonnucleosomal histone-DNA particles in the upstream region of active promoters in vivo. These findings suggest that the prenucleosome, the only known stable conformational isomer of the nucleosome, is related to nonnucleosomal histone-DNA species in the cell.

  14. Chromatin fibers are formed by heterogeneous groups of nucleosomes in vivo.

    PubMed

    Ricci, Maria Aurelia; Manzo, Carlo; García-Parajo, María Filomena; Lakadamyali, Melike; Cosma, Maria Pia

    2015-03-12

    Nucleosomes help structure chromosomes by compacting DNA into fibers. To gain insight into how nucleosomes are arranged in vivo, we combined quantitative super-resolution nanoscopy with computer simulations to visualize and count nucleosomes along the chromatin fiber in single nuclei. Nucleosomes assembled in heterogeneous groups of varying sizes, here termed "clutches," and these were interspersed with nucleosome-depleted regions. The median number of nucleosomes inside clutches and their compaction defined as nucleosome density were cell-type-specific. Ground-state pluripotent stem cells had, on average, less dense clutches containing fewer nucleosomes and clutch size strongly correlated with the pluripotency potential of induced pluripotent stem cells. RNA polymerase II preferentially associated with the smallest clutches while linker histone H1 and heterochromatin were enriched in the largest ones. Our results reveal how the chromatin fiber is formed at nanoscale level and link chromatin fiber architecture to stem cell state.

  15. Nucleosome phasing - new insights

    NASA Astrophysics Data System (ADS)

    Chereji, Razvan

    2014-03-01

    Eukaryotic genomes are organized into arrays of nucleosomes, in which stretches of 147 base-pairs of DNA are wrapped around octameric histones. Recently, a new method of mapping nucleosome positions was developed, which gives a much higher accuracy than the typical MNase-seq method. I present a statistical mechanics model which is able to reproduce the high-resolution nucleosome positioning data. I show that the DNA sequence is not the main cause of the nucleosome phasing which is observed genome-wide, and I present the major nucleosome phasing elements. The statistical mechanics framework is general enough to be useful in explaining different experimental observations, and I present a few results of this model.

  16. Modeling the dynamics of the nucleosome at various levels.

    NASA Astrophysics Data System (ADS)

    Onufriev, Alexey; Fenley, Andrew; Zmuda-Ruscio, Jory; Adams, David

    2007-03-01

    The primary level of DNA compaction in eukaryotic organisms is the nucleosome, yet details of its dynamics are not fully understood. While the whole nucleosome must be highly stable, protective of its genetic material, at the same time its tightly wrapped DNA should be highly accessible, easily revealing its information content. A combination of atom-level classical molecular dynamics and a course-grained continuum description provide insights into the functioning of the system. In particular, the nucleosomal DNA appears to be considerably more flexible than what can be expected based on its canonical persistence length. A coarse-grained electrostatic model of the nucleosome explains how its stability can be modulated with small environmental changes as well as post-translational modifications. Implications for the nucleosome assembly process in vivo are discussed.

  17. Statistical mechanics of nucleosomes

    NASA Astrophysics Data System (ADS)

    Chereji, Razvan V.

    Eukaryotic cells contain long DNA molecules (about two meters for a human cell) which are tightly packed inside the micrometric nuclei. Nucleosomes are the basic packaging unit of the DNA which allows this millionfold compactification. A longstanding puzzle is to understand the principles which allow cells to both organize their genomes into chromatin fibers in the crowded space of their nuclei, and also to keep the DNA accessible to many factors and enzymes. With the nucleosomes covering about three quarters of the DNA, their positions are essential because these influence which genes can be regulated by the transcription factors and which cannot. We study physical models which predict the genome-wide organization of the nucleosomes and also the relevant energies which dictate this organization. In the last five years, the study of chromatin knew many important advances. In particular, in the field of nucleosome positioning, new techniques of identifying nucleosomes and the competing DNA-binding factors appeared, as chemical mapping with hydroxyl radicals, ChIP-exo, among others, the resolution of the nucleosome maps increased by using paired-end sequencing, and the price of sequencing an entire genome decreased. We present a rigorous statistical mechanics model which is able to explain the recent experimental results by taking into account nucleosome unwrapping, competition between different DNA-binding proteins, and both the interaction between histones and DNA, and between neighboring histones. We show a series of predictions of our new model, all in agreement with the experimental observations.

  18. Nucleosome Positioning and Epigenetics

    NASA Astrophysics Data System (ADS)

    Schwab, David; Bruinsma, Robijn

    2008-03-01

    The role of chromatin structure in gene regulation has recently taken center stage in the field of epigenetics, phenomena that change the phenotype without changing the DNA sequence. Recent work has also shown that nucleosomes, a complex of DNA wrapped around a histone octamer, experience a sequence dependent energy landscape due to the variation in DNA bend stiffness with sequence composition. In this talk, we consider the role nucleosome positioning might play in the formation of heterochromatin, a compact form of DNA generically responsible for gene silencing. In particular, we discuss how different patterns of nucleosome positions, periodic or random, could either facilitate or suppress heterochromatin stability and formation.

  19. Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in Drosophila melanogaster.

    PubMed

    Chereji, Răzvan V; Kan, Tsung-Wai; Grudniewska, Magda K; Romashchenko, Alexander V; Berezikov, Eugene; Zhimulev, Igor F; Guryev, Victor; Morozov, Alexandre V; Moshkin, Yuri M

    2016-02-18

    Nucleosomal DNA is thought to be generally inaccessible to DNA-binding factors, such as micrococcal nuclease (MNase). Here, we digest Drosophila chromatin with high and low concentrations of MNase to reveal two distinct nucleosome types: MNase-sensitive and MNase-resistant. MNase-resistant nucleosomes assemble on sequences depleted of A/T and enriched in G/C-containing dinucleotides, whereas MNase-sensitive nucleosomes form on A/T-rich sequences found at transcription start and termination sites, enhancers and DNase I hypersensitive sites. Estimates of nucleosome formation energies indicate that MNase-sensitive nucleosomes tend to be less stable than MNase-resistant ones. Strikingly, a decrease in cell growth temperature of about 10°C makes MNase-sensitive nucleosomes less accessible, suggesting that observed variations in MNase sensitivity are related to either thermal fluctuations of chromatin fibers or the activity of enzymatic machinery. In the vicinity of active genes and DNase I hypersensitive sites nucleosomes are organized into periodic arrays, likely due to 'phasing' off potential barriers formed by DNA-bound factors or by nucleosomes anchored to their positions through external interactions. The latter idea is substantiated by our biophysical model of nucleosome positioning and energetics, which predicts that nucleosomes immediately downstream of transcription start sites are anchored and recapitulates nucleosome phasing at active genes significantly better than sequence-dependent models.

  20. Baculoviruses and nucleosome management.

    PubMed

    Volkman, Loy E

    2015-02-01

    Negatively-supercoiled-ds DNA molecules, including the genomes of baculoviruses, spontaneously wrap around cores of histones to form nucleosomes when present within eukaryotic nuclei. Hence, nucleosome management should be essential for baculovirus genome replication and temporal regulation of transcription, but this has not been documented. Nucleosome mobilization is the dominion of ATP-dependent chromatin-remodeling complexes. SWI/SNF and INO80, two of the best-studied complexes, as well as chromatin modifier TIP60, all contain actin as a subunit. Retrospective analysis of results of AcMNPV time course experiments wherein actin polymerization was blocked by cytochalasin D drug treatment implicate actin-containing chromatin modifying complexes in decatenating baculovirus genomes, shutting down host transcription, and regulating late and very late phases of viral transcription. Moreover, virus-mediated nuclear localization of actin early during infection may contribute to nucleosome management.

  1. Baculoviruses and nucleosome management

    SciTech Connect

    Volkman, Loy E.

    2015-02-15

    Negatively-supercoiled-ds DNA molecules, including the genomes of baculoviruses, spontaneously wrap around cores of histones to form nucleosomes when present within eukaryotic nuclei. Hence, nucleosome management should be essential for baculovirus genome replication and temporal regulation of transcription, but this has not been documented. Nucleosome mobilization is the dominion of ATP-dependent chromatin-remodeling complexes. SWI/SNF and INO80, two of the best-studied complexes, as well as chromatin modifier TIP60, all contain actin as a subunit. Retrospective analysis of results of AcMNPV time course experiments wherein actin polymerization was blocked by cytochalasin D drug treatment implicate actin-containing chromatin modifying complexes in decatenating baculovirus genomes, shutting down host transcription, and regulating late and very late phases of viral transcription. Moreover, virus-mediated nuclear localization of actin early during infection may contribute to nucleosome management. - Highlights: • Baculoviruses have negatively-supercoiled, circular ds DNA. • Negatively-supercoiled DNA spontaneously forms nucleosomes in the nucleus. • Nucleosomes must be mobilized for replication and transcription to proceed. • Actin-containing chromatin modifiers participate in baculovirus replication.

  2. Structural dynamics of nucleosomes at single molecule resolution

    PubMed Central

    Choy, John S.; Lee, Tae-Hee

    2013-01-01

    The detailed mechanisms of how DNA that is assembled around a histone core can be accessed by DNA-binding proteins for transcription, replication, or repair, remain elusive nearly 40 years after Kornberg's nucleosome model was proposed. Uncovering the structural dynamics of nucleosomes is a crucial step in elucidating the mechanisms regulating genome accessibility. This requires the deconvolultion of multiple structural states within an ensemble. Recent advances in single molecule methods enable unprecedented efficiency in examining subpopulation dynamics. In this review, we summarize studies of nucleosome structure and dynamics from single molecule approaches and how they advance our understanding of the mechanisms that govern DNA transactions. PMID:22831768

  3. Statistical physics of nucleosome positioning and chromatin structure

    NASA Astrophysics Data System (ADS)

    Morozov, Alexandre

    2012-02-01

    Genomic DNA is packaged into chromatin in eukaryotic cells. The fundamental building block of chromatin is the nucleosome, a 147 bp-long DNA molecule wrapped around the surface of a histone octamer. Arrays of nucleosomes are positioned along DNA according to their sequence preferences and folded into higher-order chromatin fibers whose structure is poorly understood. We have developed a framework for predicting sequence-specific histone-DNA interactions and the effective two-body potential responsible for ordering nucleosomes into regular higher-order structures. Our approach is based on the analogy between nucleosomal arrays and a one-dimensional fluid of finite-size particles with nearest-neighbor interactions. We derive simple rules which allow us to predict nucleosome occupancy solely from the dinucleotide content of the underlying DNA sequences.Dinucleotide content determines the degree of stiffness of the DNA polymer and thus defines its ability to bend into the nucleosomal superhelix. As expected, the nucleosome positioning rules are universal for chromatin assembled in vitro on genomic DNA from baker's yeast and from the nematode worm C.elegans, where nucleosome placement follows intrinsic sequence preferences and steric exclusion. However, the positioning rules inferred from in vivo C.elegans chromatin are affected by global nucleosome depletion from chromosome arms relative to central domains, likely caused by the attachment of the chromosome arms to the nuclear membrane. Furthermore, intrinsic nucleosome positioning rules are overwritten in transcribed regions, indicating that chromatin organization is actively managed by the transcriptional and splicing machinery.

  4. Identification of nucleosome assembly protein 1 (NAP1) as an interacting partner of plant ribosomal protein S6 (RPS6) and a positive regulator of rDNA transcription

    SciTech Connect

    Son, Ora; Kim, Sunghan; Shin, Yun-jeong; Kim, Woo-Young; Koh, Hee-Jong; Cheon, Choong-Ill

    2015-09-18

    The ribosomal protein S6 (RPS6) is a downstream component of the signaling mediated by the target of rapamycin (TOR) kinase that acts as a central regulator of the key metabolic processes, such as protein translation and ribosome biogenesis, in response to various environmental cues. In our previous study, we identified a novel role of plant RPS6, which negatively regulates rDNA transcription, forming a complex with a plant-specific histone deacetylase, AtHD2B. Here we report that the Arabidopsis RPS6 interacts additionally with a histone chaperone, nucleosome assembly protein 1(AtNAP1;1). The interaction does not appear to preclude the association of RPS6 with AtHD2B, as the AtNAP1 was also able to interact with AtHD2B as well as with an RPS6-AtHD2B fusion protein in the BiFC assay and pulldown experiment. Similar to a positive effect of the ribosomal S6 kinase 1 (AtS6K1) on rDNA transcription observed in this study, overexpression or down regulation of the AtNAP1;1 resulted in concomitant increase and decrease, respectively, in rDNA transcription suggesting a positive regulatory role played by AtNAP1 in plant rDNA transcription, possibly through derepression of the negative effect of the RPS6-AtHD2B complex. - Highlights: • Nucleosome assembly protein 1 (AtNAP1) interacts with RPS6 as well as with AtHD2B. • rDNA transcription is regulated S6K1. • Overexpression or down regulation of AtNAP1 results in concomitant increase or decrease in rDNA transcription.

  5. Nucleosome positioning by genomic excluding-energy barriers

    PubMed Central

    Milani, Pascale; Chevereau, Guillaume; Vaillant, Cédric; Audit, Benjamin; Haftek-Terreau, Zofia; Marilley, Monique; Bouvet, Philippe; Argoul, Françoise; Arneodo, Alain

    2009-01-01

    Recent genome-wide nucleosome mappings along with bioinformatics studies have confirmed that the DNA sequence plays a more important role in the collective organization of nucleosomes in vivo than previously thought. Yet in living cells, this organization also results from the action of various external factors like DNA-binding proteins and chromatin remodelers. To decipher the code for intrinsic chromatin organization, there is thus a need for in vitro experiments to bridge the gap between computational models of nucleosome sequence preferences and in vivo nucleosome occupancy data. Here we combine atomic force microscopy in liquid and theoretical modeling to demonstrate that a major sequence signaling in vivo are high-energy barriers that locally inhibit nucleosome formation rather than favorable positioning motifs. We show that these genomic excluding-energy barriers condition the collective assembly of neighboring nucleosomes consistently with equilibrium statistical ordering principles. The analysis of two gene promoter regions in Saccharomyces cerevisiae and the human genome indicates that these genomic barriers direct the intrinsic nucleosome occupancy of regulatory sites, thereby contributing to gene expression regulation. PMID:20018700

  6. New insights into nucleosome unwrapping

    NASA Astrophysics Data System (ADS)

    Chereji, Razvan; Morozov, Alexandre

    2013-03-01

    Eukaryotic genomes are organized into arrays of nucleosomes, in which stretches of 147 base-pairs (bp) of DNA are wrapped around octameric histones. Recently, a new approach for direct mapping of nucleosome centers at bp resolution was developed [Brogaard et al., Nature 486, 496-501 (2012)] and some intriguing results appeared. About 40% of the inter-dyad distances are smaller than 147 bp, which imply massive nucleosome unwrapping, genome-wide, in vivo. The histogram of the inter-dyad distances presents small oscillations which indicate a step-wise unwrapping of the nucleosomal DNA from the histone. We present a statistical mechanics model for the nucleosome unwrapping, which is able to take into account sequence-dependent binding energies, sequence-independent potential barriers and wells, effective two-body interactions between the nucleosomes, competition between different species, cooperative-binding, and other important factors which dictate the nucleosome distribution along the DNA. We are able to reproduce the distribution of the inter-dyad distances, which cannot be obtained if there is no nucleosome unwrapping. The nucleosome unwrapping model can explain also the variable DNA accessibility and the nucleosome-induced cooperativity, which were observed experimentally.

  7. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function

    PubMed Central

    Isaac, R Stefan; Jiang, Fuguo; Doudna, Jennifer A; Lim, Wendell A; Narlikar, Geeta J; Almeida, Ricardo

    2016-01-01

    The CRISPR-Cas9 bacterial surveillance system has become a versatile tool for genome editing and gene regulation in eukaryotic cells, yet how CRISPR-Cas9 contends with the barriers presented by eukaryotic chromatin is poorly understood. Here we investigate how the smallest unit of chromatin, a nucleosome, constrains the activity of the CRISPR-Cas9 system. We find that nucleosomes assembled on native DNA sequences are permissive to Cas9 action. However, the accessibility of nucleosomal DNA to Cas9 is variable over several orders of magnitude depending on dynamic properties of the DNA sequence and the distance of the PAM site from the nucleosome dyad. We further find that chromatin remodeling enzymes stimulate Cas9 activity on nucleosomal templates. Our findings imply that the spontaneous breathing of nucleosomal DNA together with the action of chromatin remodelers allow Cas9 to effectively act on chromatin in vivo. DOI: http://dx.doi.org/10.7554/eLife.13450.001 PMID:27130520

  8. Nucleosomes undergo slow spontaneous gaping.

    PubMed

    Ngo, Thuy T M; Ha, Taekjip

    2015-04-30

    In eukaryotes, DNA is packaged into a basic unit, the nucleosome which consists of 147 bp of DNA wrapped around a histone octamer composed of two copies each of the histones H2A, H2B, H3 and H4. Nucleosome structures are diverse not only by histone variants, histone modifications, histone composition but also through accommodating different conformational states such as DNA breathing and dimer splitting. Variation in nucleosome structures allows it to perform a variety of cellular functions. Here, we identified a novel spontaneous conformational switching of nucleosomes under physiological conditions using single-molecule FRET. Using FRET probes placed at various positions on the nucleosomal DNA to monitor conformation of the nucleosome over a long period of time (30-60 min) at various ionic conditions, we identified conformational changes we refer to as nucleosome gaping. Gaping transitions are distinct from nucleosome breathing, sliding or tightening. Gaping modes switch along the direction normal to the DNA plane through about 5-10 angstroms and at minutes (1-10 min) time scale. This conformational transition, which has not been observed previously, may be potentially important for enzymatic reactions/transactions on nucleosomal substrate and the formation of multiple compression forms of chromatin fibers.

  9. Identification of nucleosome assembly protein 1 (NAP1) as an interacting partner of plant ribosomal protein S6 (RPS6) and a positive regulator of rDNA transcription.

    PubMed

    Son, Ora; Kim, Sunghan; Shin, Yun-Jeong; Kim, Woo-Young; Koh, Hee-Jong; Cheon, Choong-Ill

    2015-09-18

    The ribosomal protein S6 (RPS6) is a downstream component of the signaling mediated by the target of rapamycin (TOR) kinase that acts as a central regulator of the key metabolic processes, such as protein translation and ribosome biogenesis, in response to various environmental cues. In our previous study, we identified a novel role of plant RPS6, which negatively regulates rDNA transcription, forming a complex with a plant-specific histone deacetylase, AtHD2B. Here we report that the Arabidopsis RPS6 interacts additionally with a histone chaperone, nucleosome assembly protein 1(AtNAP1;1). The interaction does not appear to preclude the association of RPS6 with AtHD2B, as the AtNAP1 was also able to interact with AtHD2B as well as with an RPS6-AtHD2B fusion protein in the BiFC assay and pulldown experiment. Similar to a positive effect of the ribosomal S6 kinase 1 (AtS6K1) on rDNA transcription observed in this study, overexpression or down regulation of the AtNAP1;1 resulted in concomitant increase and decrease, respectively, in rDNA transcription suggesting a positive regulatory role played by AtNAP1 in plant rDNA transcription, possibly through derepression of the negative effect of the RPS6-AtHD2B complex. PMID:26241676

  10. The up-regulation of elongation factors in the barley leaf and the down-regulation of nucleosome assembly genes in the crown are both associated with the expression of frost tolerance.

    PubMed

    Janská, Anna; Aprile, Alessio; Cattivelli, Luigi; Zámečník, Jiří; de Bellis, Luigi; Ovesná, Jaroslava

    2014-09-01

    We report a series of microarray-based leaf and crown transcriptome comparisons involving three barley cultivars (cvs. Luxor, Igri and Atlas 68) which express differing degrees of frost tolerance. The transcripts were obtained following the exposure of seedlings to low (above and below zero) temperatures, aiming to identify those genes and signalling/metabolic pathways which are associated with frost tolerance. Both the leaves and the crowns responded to low temperature by the up-regulation of a suite of abscisic acid (ABA)-responsive genes, most of which have already been recognized as components of the plant low temperature response. The inter-cultivar comparison indicated that genes involved in maintaining the leaf's capacity to synthesize protein and to retain chloroplast activity were important for the expression of frost tolerance. In the crown, the repression of genes associated with nucleosome assembly and transposon regulation were the most relevant transcriptional changes associated with frost tolerance, highlighting the role of gene repression in the cold acclimation response.

  11. Nap1 regulates proper CENP-B binding to nucleosomes.

    PubMed

    Tachiwana, Hiroaki; Miya, Yuta; Shono, Nobuaki; Ohzeki, Jun-ichirou; Osakabe, Akihisa; Otake, Koichiro; Larionov, Vladimir; Earnshaw, William C; Kimura, Hiroshi; Masumoto, Hiroshi; Kurumizaka, Hitoshi

    2013-03-01

    CENP-B is a widely conserved centromeric satellite DNA-binding protein, which specifically binds to a 17-bp DNA sequence known as the CENP-B box. CENP-B functions positively in the de novo assembly of centromeric nucleosomes, containing the centromere-specific histone H3 variant, CENP-A. At the same time, CENP-B also prevents undesired assembly of the CENP-A nucleosome through heterochromatin formation on satellite DNA integrated into ectopic sites. Therefore, improper CENP-B binding to chromosomes could be harmful. However, no CENP-B eviction mechanism has yet been reported. In the present study, we found that human Nap1, an acidic histone chaperone, inhibited the non-specific binding of CENP-B to nucleosomes and apparently stimulated CENP-B binding to its cognate CENP-B box DNA in nucleosomes. In human cells, the CENP-B eviction activity of Nap1 was confirmed in model experiments, in which the CENP-B binding to a human artificial chromosome or an ectopic chromosome locus bearing CENP-B boxes was significantly decreased when Nap1 was tethered near the CENP-B box sequence. In contrast, another acidic histone chaperone, sNASP, did not promote CENP-B eviction in vitro and in vivo and did not stimulate specific CENP-B binding to CENP-A nucleosomes in vitro. We therefore propose a novel mechanism of CENP-B regulation by Nap1. PMID:23325853

  12. DNA Architecture, Deformability, and Nucleosome Positioning†

    PubMed Central

    Xu, Fei; Olson, Wilma K.

    2010-01-01

    The positioning of DNA on nucleosomes is critical to both the organization and expression of the genetic message. Here we focus on DNA conformational signals found in the growing library of known high-resolution core-particle structures and the ways in which these features may contribute to the positioning of nucleosomes on specific DNA sequences. We survey the chemical composition of the protein-DNA assemblies and extract features along the DNA superhelical pathway — the minor-groove width and the deformations of successive base pairs — determined with reasonable accuracy in the structures. We also examine the extent to which the various nucleosome core-particle structures accommodate the observed settings of the crystallized sequences and the known positioning of the high-affinity synthetic ‘601’ sequence on DNA. We ‘thread’ these sequences on the different structural templates and estimate the cost of each setting with knowledge-based potentials that reflects the conformational properties of the DNA base-pair steps in other high-resolution protein-bound complexes. PMID:20232929

  13. Chromatin assembly using Drosophila systems.

    PubMed

    Fyodorov, Dmitry V; Levenstein, Mark E

    2002-05-01

    To successfully study chromatin structure and activity in vitro, it is essential to have a chromatin assembly system that will prepare extended nucleosome arrays with highly defined protein content that resemble bulk chromatin isolated from living cell nuclei in terms of periodicity and nucleosome positioning. The Drosophila ATP-dependent chromatin assembly system described in this unit meets these requirements. The end product of the reaction described here has highly periodic extended arrays with physiologic spacing and positioning of the nucleosomes.

  14. DNA sequence templates adjacent nucleosome and ORC sites at gene amplification origins in Drosophila.

    PubMed

    Liu, Jun; Zimmer, Kurt; Rusch, Douglas B; Paranjape, Neha; Podicheti, Ram; Tang, Haixu; Calvi, Brian R

    2015-10-15

    Eukaryotic origins of DNA replication are bound by the origin recognition complex (ORC), which scaffolds assembly of a pre-replicative complex (pre-RC) that is then activated to initiate replication. Both pre-RC assembly and activation are strongly influenced by developmental changes to the epigenome, but molecular mechanisms remain incompletely defined. We have been examining the activation of origins responsible for developmental gene amplification in Drosophila. At a specific time in oogenesis, somatic follicle cells transition from genomic replication to a locus-specific replication from six amplicon origins. Previous evidence indicated that these amplicon origins are activated by nucleosome acetylation, but how this affects origin chromatin is unknown. Here, we examine nucleosome position in follicle cells using micrococcal nuclease digestion with Ilumina sequencing. The results indicate that ORC binding sites and other essential origin sequences are nucleosome-depleted regions (NDRs). Nucleosome position at the amplicons was highly similar among developmental stages during which ORC is or is not bound, indicating that being an NDR is not sufficient to specify ORC binding. Importantly, the data suggest that nucleosomes and ORC have opposite preferences for DNA sequence and structure. We propose that nucleosome hyperacetylation promotes pre-RC assembly onto adjacent DNA sequences that are disfavored by nucleosomes but favored by ORC.

  15. Chromosomes. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere.

    PubMed

    Falk, Samantha J; Guo, Lucie Y; Sekulic, Nikolina; Smoak, Evan M; Mani, Tomoyasu; Logsdon, Glennis A; Gupta, Kushol; Jansen, Lars E T; Van Duyne, Gregory D; Vinogradov, Sergei A; Lampson, Michael A; Black, Ben E

    2015-05-01

    Inheritance of each chromosome depends upon its centromere. A histone H3 variant, centromere protein A (CENP-A), is essential for epigenetically marking centromere location. We find that CENP-A is quantitatively retained at the centromere upon which it is initially assembled. CENP-C binds to CENP-A nucleosomes and is a prime candidate to stabilize centromeric chromatin. Using purified components, we find that CENP-C reshapes the octameric histone core of CENP-A nucleosomes, rigidifies both surface and internal nucleosome structure, and modulates terminal DNA to match the loose wrap that is found on native CENP-A nucleosomes at functional human centromeres. Thus, CENP-C affects nucleosome shape and dynamics in a manner analogous to allosteric regulation of enzymes. CENP-C depletion leads to rapid removal of CENP-A from centromeres, indicating their collaboration in maintaining centromere identity.

  16. The impact of the HIRA histone chaperone upon global nucleosome architecture.

    PubMed

    Gal, Csenge; Moore, Karen M; Paszkiewicz, Konrad; Kent, Nicholas A; Whitehall, Simon K

    2015-01-01

    HIRA is an evolutionarily conserved histone chaperone that mediates replication-independent nucleosome assembly and is important for a variety of processes such as cell cycle progression, development, and senescence. Here we have used a chromatin sequencing approach to determine the genome-wide contribution of HIRA to nucleosome organization in Schizosaccharomyces pombe. Cells lacking HIRA experience a global reduction in nucleosome occupancy at gene sequences, consistent with the proposed role for HIRA in chromatin reassembly behind elongating RNA polymerase II. In addition, we find that at its target promoters, HIRA commonly maintains the full occupancy of the -1 nucleosome. HIRA does not affect global chromatin structure at replication origins or in rDNA repeats but is required for nucleosome occupancy in silent regions of the genome. Nucleosome organization associated with the heterochromatic (dg-dh) repeats located at the centromere is perturbed by loss of HIRA function and furthermore HIRA is required for normal nucleosome occupancy at Tf2 LTR retrotransposons. Overall, our data indicate that HIRA plays an important role in maintaining nucleosome architecture at both euchromatic and heterochromatic loci.

  17. Strategies for crystallizing a chromatin protein in complex with the nucleosome core particle.

    PubMed

    Makde, Ravindra D; Tan, Song

    2013-11-15

    The molecular details of how chromatin factors and enzymes interact with the nucleosome are critical to understanding fundamental genetic processes including cell division and gene regulation. A structural understanding of such processes has been hindered by the difficulty in producing diffraction-quality crystals of chromatin proteins in complex with the nucleosome. We describe here the steps used to grow crystals of the 300-kDa RCC1 chromatin factor/nucleosome core particle complex that diffract to 2.9-Å resolution. These steps include both pre- and postcrystallization strategies potentially useful to other complexes. We screened multiple variant RCC1/nucleosome core particle complexes assembled using different RCC1 homologs and deletion variants, and nucleosomes containing nucleosomal DNA with different sequences and lengths, as well as histone deletion variants. We found that using RCC1 from different species produced different crystal forms of the RCC1/nucleosome complex consistent with key crystal packing interactions mediated by RCC1. Optimization of postcrystallization soaks to dehydrate the crystals dramatically improved the diffraction quality of the RCC1/nucleosome crystal from 5.0- to 2.9-Å resolution.

  18. Novel nucleosomal particles containing core histones and linker DNA but no histone H1.

    PubMed

    Cole, Hope A; Cui, Feng; Ocampo, Josefina; Burke, Tara L; Nikitina, Tatiana; Nagarajavel, V; Kotomura, Naoe; Zhurkin, Victor B; Clark, David J

    2016-01-29

    Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ∼147 bp of DNA wrapped ∼1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ∼160 bp, and then converts it to a core particle, containing ∼147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these 'proto-chromatosomes' are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1.

  19. Nucleosome dynamics during chromatin remodeling in vivo

    PubMed Central

    Ramachandran, Srinivas; Henikoff, Steven

    2016-01-01

    ABSTRACT Precise positioning of nucleosomes around regulatory sites is achieved by the action of chromatin remodelers, which use the energy of ATP to slide, evict or change the composition of nucleosomes. Chromatin remodelers act to bind nucleosomes, disrupt histone-DNA interactions and translocate the DNA around the histone core to reposition nucleosomes. Hence, remodeling is expected to involve nucleosomal intermediates with a structural organization that is distinct from intact nucleosomes. We describe the identification of a partially unwrapped nucleosome structure using methods that map histone-DNA contacts genome-wide. This alternative nucleosome structure is likely formed as an intermediate or by-product during nucleosome remodeling by the RSC complex. Identification of the loss of histone-DNA contacts during chromatin remodeling by RSC in vivo has implications for the regulation of transcriptional initiation. PMID:26933790

  20. Nucleosome organization in the Drosophila genome.

    PubMed

    Mavrich, Travis N; Jiang, Cizhong; Ioshikhes, Ilya P; Li, Xiaoyong; Venters, Bryan J; Zanton, Sara J; Tomsho, Lynn P; Qi, Ji; Glaser, Robert L; Schuster, Stephan C; Gilmour, David S; Albert, Istvan; Pugh, B Franklin

    2008-05-15

    Comparative genomics of nucleosome positions provides a powerful means for understanding how the organization of chromatin and the transcription machinery co-evolve. Here we produce a high-resolution reference map of H2A.Z and bulk nucleosome locations across the genome of the fly Drosophila melanogaster and compare it to that from the yeast Saccharomyces cerevisiae. Like Saccharomyces, Drosophila nucleosomes are organized around active transcription start sites in a canonical -1, nucleosome-free region, +1 arrangement. However, Drosophila does not incorporate H2A.Z into the -1 nucleosome and does not bury its transcriptional start site in the +1 nucleosome. At thousands of genes, RNA polymerase II engages the +1 nucleosome and pauses. How the transcription initiation machinery contends with the +1 nucleosome seems to be fundamentally different across major eukaryotic lines.

  1. Conditions for positioning of nucleosomes on DNA.

    PubMed

    Sheinman, Michael; Chung, Ho-Ryun

    2015-08-01

    Positioning of nucleosomes along a eukaryotic genome plays an important role in its organization and regulation. There are many different factors affecting the location of nucleosomes. Some can be viewed as preferential binding of a single nucleosome to different locations along the DNA and some as interactions between neighboring nucleosomes. In this study, we analyze positioning of nucleosomes and derive conditions for their good positioning. Using analytic and numerical approaches we find that, if the binding preferences are very weak, an interplay between the interactions and the binding preferences is essential for a good positioning of nucleosomes, especially on correlated energy landscapes. Analyzing the empirical energy landscape, we conclude that good positioning of nucleosomes in vivo is possible only if they strongly interact. In this case, our model, predicting long-length-scale fluctuations of nucleosomes' occupancy along the DNA, accounts well for the empirical observations.

  2. CENPT bridges adjacent CENPA nucleosomes on young human α-satellite dimers

    PubMed Central

    Thakur, Jitendra; Henikoff, Steven

    2016-01-01

    Nucleosomes containing the CenH3 (CENPA or CENP-A) histone variant replace H3 nucleosomes at centromeres to provide a foundation for kinetochore assembly. CENPA nucleosomes are part of the constitutive centromere associated network (CCAN) that forms the inner kinetochore on which outer kinetochore proteins assemble. Two components of the CCAN, CENPC and the histone-fold protein CENPT, provide independent connections from the ∼171-bp centromeric α-satellite repeat units to the outer kinetochore. However, the spatial relationship between CENPA nucleosomes and these two branches remains unclear. To address this issue, we use a base-pair resolution genomic readout of protein–protein interactions, comparative chromatin immunoprecipitation (ChIP) with sequencing, together with sequential ChIP, to infer the in vivo molecular architecture of the human CCAN. In contrast to the currently accepted model in which CENPT associates with H3 nucleosomes, we find that CENPT is centered over the CENPB box between two well-positioned CENPA nucleosomes on the most abundant centromeric young α-satellite dimers and interacts with the CENPB/CENPC complex. Upon cross-linking, the entire CENPA/CENPB/CENPC/CENPT complex is nuclease-protected over an α-satellite dimer that comprises the fundamental unit of centromeric chromatin. We conclude that CENPA/CENPC and CENPT pathways for kinetochore assembly are physically integrated over young α-satellite dimers. PMID:27384170

  3. Folding of Nucleosome Arrays

    NASA Astrophysics Data System (ADS)

    Howell, Steven; Jimenez-Useche, Isabel; Andresen, Kurt; Yuan, Chongli; Qiu, Xiangyun

    2014-03-01

    Chromatin conformation and dynamics is central to gene functions including packaging, regulation, and repair. At the molecular level, the basic building block of chromatin is a nucleosome core particle (NCP) made of 147 base pairs (bp) of dsDNA wrapped around an octamer of histone proteins. These NCPs are connected by short 10-90 bps of linker DNA as beads on a string. Key factors determining the packaging of NCP arrays to form chromatin include ionic condition, linker DNA length, and epigenetic modifications, especially of the histone tails. We have investigated how the conformations of model tetra-NCP arrays are modulated by these factors using small angle x-ray scattering (SAXS). Here we present recent studies of the effects of ion (KCl and MgCl2), linker length, and histone modification (tail deletions) on NCP arrays. Our SAXS measurement makes it possible to learn about both the global compaction of NCP arrays and local inter-NCP spatial correlations within the same array.

  4. Nucleosome Organization in Human Embryonic Stem Cells.

    PubMed

    Yazdi, Puya G; Pedersen, Brian A; Taylor, Jared F; Khattab, Omar S; Chen, Yu-Han; Chen, Yumay; Jacobsen, Steven E; Wang, Ping H

    2015-01-01

    The fundamental repeating unit of eukaryotic chromatin is the nucleosome. Besides being involved in packaging DNA, nucleosome organization plays an important role in transcriptional regulation and cellular identity. Currently, there is much debate about the major determinants of the nucleosome architecture of a genome and its significance with little being known about its role in stem cells. To address these questions, we performed ultra-deep sequencing of nucleosomal DNA in two human embryonic stem cell lines and integrated our data with numerous epigenomic maps. Our analyses have revealed that the genome is a determinant of nucleosome organization with transcriptionally inactive regions characterized by a "ground state" of nucleosome profiles driven by underlying DNA sequences. DNA sequence preferences are associated with heterogeneous chromatin organization around transcription start sites. Transcription, histone modifications, and DNA methylation alter this "ground state" by having distinct effects on both nucleosome positioning and occupancy. As the transcriptional rate increases, nucleosomes become better positioned. Exons transcribed and included in the final spliced mRNA have distinct nucleosome profiles in comparison to exons not included at exon-exon junctions. Genes marked by the active modification H3K4m3 are characterized by lower nucleosome occupancy before the transcription start site compared to genes marked by the inactive modification H3K27m3, while bivalent domains, genes associated with both marks, lie exactly in the middle. Combinatorial patterns of epigenetic marks (chromatin states) are associated with unique nucleosome profiles. Nucleosome organization varies around transcription factor binding in enhancers versus promoters. DNA methylation is associated with increasing nucleosome occupancy and different types of methylations have distinct location preferences within the nucleosome core particle. Finally, computational analysis of nucleosome

  5. Multivalent Engagement of TFIID to Nucleosomes

    PubMed Central

    van Schaik, Frederik M. A.; Jansen, Pascal W. T. C.; Vermeulen, Michiel; Marc Timmers, H. T.

    2013-01-01

    The process of eukaryotic transcription initiation involves the assembly of basal transcription factor complexes on the gene promoter. The recruitment of TFIID is an early and important step in this process. Gene promoters contain distinct DNA sequence elements and are marked by the presence of post-translationally modified nucleosomes. The contributions of these individual features for TFIID recruitment remain to be elucidated. Here, we use immobilized reconstituted promoter nucleosomes, conventional biochemistry and quantitative mass spectrometry to investigate the influence of distinct histone modifications and functional DNA-elements on the binding of TFIID. Our data reveal synergistic effects of H3K4me3, H3K14ac and a TATA box sequence on TFIID binding in vitro. Stoichiometry analyses of affinity purified human TFIID identified the presence of a stable dimeric core. Several peripheral TAFs, including those interacting with distinct promoter features, are substoichiometric yet present in substantial amounts. Finally, we find that the TAF3 subunit of TFIID binds to poised promoters in an H3K4me3-dependent manner. Moreover, the PHD-finger of TAF3 is important for rapid induction of target genes. Thus, fine-tuning of TFIID engagement on promoters is driven by synergistic contacts with both DNA-elements and histone modifications, eventually resulting in a high affinity interaction and activation of transcription. PMID:24039962

  6. Multiscale modelling of nucleosome core particle aggregation

    NASA Astrophysics Data System (ADS)

    Lyubartsev, Alexander P.; Korolev, Nikolay; Fan, Yanping; Nordenskiöld, Lars

    2015-02-01

    The nucleosome core particle (NCP) is the basic building block of chromatin. Under the influence of multivalent cations, isolated mononucleosomes exhibit a rich phase behaviour forming various columnar phases with characteristic NCP-NCP stacking. NCP stacking is also a regular element of chromatin structure in vivo. Understanding the mechanism of nucleosome stacking and the conditions leading to self-assembly of NCPs is still incomplete. Due to the complexity of the system and the need to describe electrostatics properly by including the explicit mobile ions, novel modelling approaches based on coarse-grained (CG) methods at the multiscale level becomes a necessity. In this work we present a multiscale CG computer simulation approach to modelling interactions and self-assembly of solutions of NCPs induced by the presence of multivalent cations. Starting from continuum simulations including explicit three-valent cobalt(III)hexammine (CoHex3+) counterions and 20 NCPs, based on a previously developed advanced CG NCP model with one bead per amino acid and five beads per two DNA base pair unit (Fan et al 2013 PLoS One 8 e54228), we use the inverse Monte Carlo method to calculate effective interaction potentials for a ‘super-CG’ NCP model consisting of seven beads for each NCP. These interaction potentials are used in large-scale simulations of up to 5000 NCPs, modelling self-assembly induced by CoHex3+. The systems of ‘super-CG’ NCPs form a single large cluster of stacked NCPs without long-range order in agreement with experimental data for NCPs precipitated by the three-valent polyamine, spermidine3+.

  7. Multiscale modelling of nucleosome core particle aggregation.

    PubMed

    Lyubartsev, Alexander P; Korolev, Nikolay; Fan, Yanping; Nordenskiöld, Lars

    2015-02-18

    The nucleosome core particle (NCP) is the basic building block of chromatin. Under the influence of multivalent cations, isolated mononucleosomes exhibit a rich phase behaviour forming various columnar phases with characteristic NCP-NCP stacking. NCP stacking is also a regular element of chromatin structure in vivo. Understanding the mechanism of nucleosome stacking and the conditions leading to self-assembly of NCPs is still incomplete. Due to the complexity of the system and the need to describe electrostatics properly by including the explicit mobile ions, novel modelling approaches based on coarse-grained (CG) methods at the multiscale level becomes a necessity. In this work we present a multiscale CG computer simulation approach to modelling interactions and self-assembly of solutions of NCPs induced by the presence of multivalent cations. Starting from continuum simulations including explicit three-valent cobalt(III)hexammine (CoHex(3+)) counterions and 20 NCPs, based on a previously developed advanced CG NCP model with one bead per amino acid and five beads per two DNA base pair unit (Fan et al 2013 PLoS One 8 e54228), we use the inverse Monte Carlo method to calculate effective interaction potentials for a 'super-CG' NCP model consisting of seven beads for each NCP. These interaction potentials are used in large-scale simulations of up to 5000 NCPs, modelling self-assembly induced by CoHex(3+). The systems of 'super-CG' NCPs form a single large cluster of stacked NCPs without long-range order in agreement with experimental data for NCPs precipitated by the three-valent polyamine, spermidine(3+).

  8. Nucleosome repositioning underlies dynamic gene expression

    PubMed Central

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-01-01

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions. PMID:26966245

  9. Nucleosome repositioning underlies dynamic gene expression.

    PubMed

    Nocetti, Nicolas; Whitehouse, Iestyn

    2016-03-15

    Nucleosome repositioning at gene promoters is a fundamental aspect of the regulation of gene expression. However, the extent to which nucleosome repositioning is used within eukaryotic genomes is poorly understood. Here we report a comprehensive analysis of nucleosome positions as budding yeast transit through an ultradian cycle in which expression of >50% of all genes is highly synchronized. We present evidence of extensive nucleosome repositioning at thousands of gene promoters as genes are activated and repressed. During activation, nucleosomes are relocated to allow sites of general transcription factor binding and transcription initiation to become accessible. The extent of nucleosome shifting is closely related to the dynamic range of gene transcription and generally related to DNA sequence properties and use of the coactivators TFIID or SAGA. However, dynamic gene expression is not limited to SAGA-regulated promoters and is an inherent feature of most genes. While nucleosome repositioning occurs pervasively, we found that a class of genes required for growth experience acute nucleosome shifting as cells enter the cell cycle. Significantly, our data identify that the ATP-dependent chromatin-remodeling enzyme Snf2 plays a fundamental role in nucleosome repositioning and the expression of growth genes. We also reveal that nucleosome organization changes extensively in concert with phases of the cell cycle, with large, regularly spaced nucleosome arrays being established in mitosis. Collectively, our data and analysis provide a framework for understanding nucleosome dynamics in relation to fundamental DNA-dependent transactions.

  10. DNA repair of a single UV photoproduct in a designed nucleosome

    SciTech Connect

    Kosmoskil, Joseph V.; Ackerman, Eric J. ); Smerdon, Michael J.

    2001-08-28

    Eukaryotic DNA repair enzymes must interact with the architectural hierarchy of chromatin. The challenge of finding damaged DNA complexed with histone proteins in nucleosomes is complicated by the need to maintain local chromatin structures involved in regulating other DNA processing events. The heterogeneity of lesions induced by DNA-damaging agents has led us to design homogeneously damaged substrates to directly compare repair of naked DNA with that of nucleosomes. Here we report that nucleotide excision repair in Xenopus nuclear extracts can effectively repair a single UV radiation photoproduct located 5 bases from the dyad center of a positioned nucleosome, although the nucleosome is repaired at about half the rate at which the naked DNA fragment is. Extract repair within the nucleosome is > 50-fold more rapid than either enzymatic photoreversal or endonuclease cleavage of the lesion in vitro. Furthermore, nucleosome formation occurs (after repair) only on damaged naked DNA ( 165-bp fragments) during a 1-h incubation in these extracts, even in the presence of a large excess of undamaged DNA. This is an example of selective nucleosome assembly by Xenopus nuclear extracts on a short linear DNA fragment containing a DNA lesion.

  11. Review fifteen years of search for strong nucleosomes.

    PubMed

    Trifonov, Edward N; Nibhani, Reshma

    2015-08-01

    Don Crothers, Mikael Kubista, Jon Widom, and their teams have been first to look for strong nucleosomes, in a bid to reveal the nucleosome positioning pattern(s) carried by the nucleosome DNA sequences. They were first to demonstrate that the nucleosome stability correlates with 10-11 base sequence periodicity, and that the strong nucleosomes localize preferentially in centromeres. This review describes these findings and their connection to recent discovery of the strong nucleosomes (SNs) with visibly periodic nucleosome DNA sequences.

  12. Conformational selection and dynamic adaptation upon linker histone binding to the nucleosome.

    PubMed

    Öztürk, Mehmet Ali; Pachov, Georgi V; Wade, Rebecca C; Cojocaru, Vlad

    2016-08-19

    Linker histones are essential for DNA compaction in chromatin. They bind to nucleosomes in a 1:1 ratio forming chromatosomes. Alternative configurations have been proposed in which the globular domain of the linker histone H5 (gH5) is positioned either on- or off-dyad between the nucleosomal and linker DNAs. However, the dynamic pathways of chromatosome assembly remain elusive. Here, we studied the conformational plasticity of gH5 in unbound and off-dyad nucleosome-bound forms with classical and accelerated molecular dynamics simulations. We find that the unbound gH5 converts between open and closed conformations, preferring the closed form. However, the open gH5 contributes to a more rigid chromatosome and restricts the motion of the nearby linker DNA through hydrophobic interactions with thymidines. Moreover, the closed gH5 opens and reorients in accelerated simulations of the chromatosome. Brownian dynamics simulations of chromatosome assembly, accounting for a range of amplitudes of nucleosome opening and different nucleosome DNA sequences, support the existence of both on- and off-dyad binding modes of gH5 and reveal alternative, sequence and conformation-dependent chromatosome configurations. Taken together, these findings suggest that the conformational dynamics of linker histones and nucleosomes facilitate alternative chromatosome configurations through an interplay between induced fit and conformational selection. PMID:27270081

  13. spFRET reveals changes in nucleosome breathing by neighboring nucleosomes.

    PubMed

    Buning, Ruth; Kropff, Wietske; Martens, Kirsten; van Noort, John

    2015-02-18

    Chromatin, the structure in which DNA is compacted in eukaryotic cells, plays a key role in regulating DNA accessibility. FRET experiments on single nucleosomes, the basic units in chromatin, have revealed a dynamic nucleosome where spontaneous DNA unwrapping from the ends provides access to the nucleosomal DNA. Here we investigated how this DNA breathing is affected by extension of the linker DNA and by the presence of a neighboring nucleosome. We found that both electrostatic interactions between the entering and exiting linker DNA and nucleosome-nucleosome interactions increase unwrapping. Interactions between neighboring nucleosomes are more likely in dinucleosomes spaced by 55 bp of linker DNA than in dinucleosomes spaced by 50 bp of linker DNA. Such increased unwrapping may not only increase the accessibility of nucleosomal DNA in chromatin fibers, it may also be key to folding of nucleosomes into higher order structures.

  14. spFRET reveals changes in nucleosome breathing by neighboring nucleosomes

    NASA Astrophysics Data System (ADS)

    Buning, Ruth; Kropff, Wietske; Martens, Kirsten; van Noort, John

    2015-02-01

    Chromatin, the structure in which DNA is compacted in eukaryotic cells, plays a key role in regulating DNA accessibility. FRET experiments on single nucleosomes, the basic units in chromatin, have revealed a dynamic nucleosome where spontaneous DNA unwrapping from the ends provides access to the nucleosomal DNA. Here we investigated how this DNA breathing is affected by extension of the linker DNA and by the presence of a neighboring nucleosome. We found that both electrostatic interactions between the entering and exiting linker DNA and nucleosome-nucleosome interactions increase unwrapping. Interactions between neighboring nucleosomes are more likely in dinucleosomes spaced by 55 bp of linker DNA than in dinucleosomes spaced by 50 bp of linker DNA. Such increased unwrapping may not only increase the accessibility of nucleosomal DNA in chromatin fibers, it may also be key to folding of nucleosomes into higher order structures.

  15. Functional roles of nucleosome stability and dynamics.

    PubMed

    Chereji, Răzvan V; Morozov, Alexandre V

    2015-01-01

    Nucleosome is a histone-DNA complex known as the fundamental repeating unit of chromatin. Up to 90% of eukaryotic DNA is wrapped around consecutive octamers made of the core histones H2A, H2B, H3 and H4. Nucleosome positioning affects numerous cellular processes that require robust and timely access to genomic DNA, which is packaged into the tight confines of the cell nucleus. In living cells, nucleosome positions are determined by intrinsic histone-DNA sequence preferences, competition between histones and other DNA-binding proteins for genomic sequence, and ATP-dependent chromatin remodelers. We discuss the major energetic contributions to nucleosome formation and remodeling, focusing especially on partial DNA unwrapping off the histone octamer surface. DNA unwrapping enables efficient access to nucleosome-buried binding sites and mediates rapid nucleosome removal through concerted action of two or more DNA-binding factors. High-resolution, genome-scale maps of distances between neighboring nucleosomes have shown that DNA unwrapping and nucleosome crowding (mutual invasion of nucleosome territories) are much more common than previously thought. Ultimately, constraints imposed by nucleosome energetics on the rates of ATP-dependent and spontaneous chromatin remodeling determine nucleosome occupancy genome-wide, and shape pathways of cellular response to environmental stresses.

  16. Lupus nephritis: a nucleosome waste disposal defect?

    PubMed

    Berden, Jo H M; Grootscholten, Cecile; Jürgen, W C Dieker; van der Vlag, Johan

    2002-01-01

    Formation of anti-nuclear autoantibodies is a cardinal characteristic of systemic lupus erythematosus (SLE). In recent years the nucleosome has been identified as the major autoantigen, since nucleosome specific T cells have been identified, which also drive the formation of anti-dsDNA and anti-histone antibodies. Nucleosome specific autoantibodies are present in a large majority of SLE patients and lupus mice. Nucleosomes are formed during apoptosis by organized cleavage of chromatin. These nucleosomes together with other lupus autoantigens cluster in apoptotic bodies at the surface of apoptotic cells. Systemic release of these autoantigens is normally prevented by swift removal of apoptotic cels. However, if the rate of apoptosis overflows the removal capacity and/or the cleaning machinery is reduced, nucleosomes are released. Furthermore, during apoptosis autoantigens can be modified, which makes them more immunogenic. Nucleosomes also play a pivotal role in the evolution of tissue lesions, especially glomerulonephritis. In lupus nephritis nucleosomes, anti-nucleosome autoantibodies and nucleosome/Ig complexes have been identified in the glomerular immune deposits. Via their cationic histone part nucleosomes can bind to heparan sulfate, a strong anionic constituent of the glomerular basement membrane.

  17. HUMAN SWI/SNF DRIVES SEQUENCE-DIRECTED REPOSITIONING OF NUCLEOSOMES ON C-MYC PROMOTER DNA MINICIRCLES†

    PubMed Central

    Sims, Hillel I.; Lane, Jacqueline M.; Ulyanova, Natalia P.; Schnitzler, Gavin R.

    2008-01-01

    The human SWI/SNF (hSWI/SNF) ATP-dependent chromatin remodeling complex is a tumor suppressor and essential transcriptional coregulator. SWI/SNF complexes have been shown to alter nucleosome positions, and this activity is likely to be important for their functions. However, previous studies have largely been unable to determine the extent to which DNA sequence might control nucleosome repositioning by SWI/SNF complexes. Here, we employ a minicircle remodeling approach to provide the first evidence that hSWI/SNF moves nucleosomes in a sequence dependent manner, away from nucleosome positioning sequences favored during nucleosome assembly. This repositioning is unaffected by the presence of DNA nicks, and can occur on closed-circular DNAs in the absence of topoisomerases. We observed directed nucleosome movement on minicircles derived from the human SWI/SNF-regulated c-myc promoter, which may contribute to the previously-observed “disruption” of two promoter nucleosomes during c-myc activation in vivo. Our results suggest a model wherein hSWI/SNF-directed nucleosome movement away from default positioning sequences results in sequence-specific regulatory effects. PMID:17877373

  18. GAA triplet-repeats cause nucleosome depletion in the human genome.

    PubMed

    Zhao, Hongyu; Xing, Yongqiang; Liu, Guoqing; Chen, Ping; Zhao, Xiujuan; Li, Guohong; Cai, Lu

    2015-08-01

    Although there have been many investigations into how trinucleotide repeats affect nucleosome formation and local chromatin structure, the nucleosome positioning of GAA triplet-repeats in the human genome has remained elusive. In this work, the nucleosome occupancy around GAA triplet-repeats across the human genome was computed statistically. The results showed a nucleosome-depleted region in the vicinity of GAA triplet-repeats in activated and resting CD4(+) T cells. Furthermore, the A-tract was frequently adjacent to the upstream region of GAA triplet-repeats and could enhance the depletion surrounding GAA triplet-repeats. In vitro chromatin reconstitution assays with GAA-containing plasmids also demonstrated that the inserted GAA triplet-repeats destabilized the ability of recombinant plasmids to assemble nucleosomes. Our results suggested that GAA triplet-repeats have lower affinity to histones and can change local nucleosome positioning. These findings may be helpful for understanding the mechanism of Friedreich's ataxia, which is associated with GAA triplet-repeats at the chromatin level.

  19. The Saccharomyces cerevisiae Swi/Snf complex can catalyze formation of dimeric nucleosome structures in vitro.

    PubMed

    Krajewski, Wladyslaw A; Vassiliev, Oleg L

    2010-08-10

    The Swi/Snf chromatin-remodeling complexes, human BAF/PBAF and yeast RSC, can catalyze formation of stably altered dimeric forms of nucleosomes. However, the ability to create remodeled dimers has not yet been reported for the Saccharomyces cerevisiae Swi/Snf complex. Despite its similarity with the other Swi/Snf proteins, the yeast Swi/Snf complex features certain structural and functional differences. This raises the question of whether ySwi/Snf can in fact catalyze formation of dimeric nucleosomes. Dimer formation was proposed to have a specific impact on chromatin regulatory effects. Thus, the answer to the above question may be helpful in clarifying the ySwi/Snf functions in vivo and generalizing the notions of the regulatory principles of Swi/Snf family proteins. Here we describe ySwi/Snf-catalyzed formation of nucleosome dimers using mono- and dinucleosome templates assembled from purified histones and DNA of the high-affinity (601) nucleosome positioning sequence. We evaluated effects of nucleosome template geometry on the formation of altered dimers and assayed formation of altered nucleosome pairs on reconstituted dinucleosomes.

  20. Nucleosome spacing generated by ISWI and CHD1 remodelers is constant regardless of nucleosome density.

    PubMed

    Lieleg, Corinna; Ketterer, Philip; Nuebler, Johannes; Ludwigsen, Johanna; Gerland, Ulrich; Dietz, Hendrik; Mueller-Planitz, Felix; Korber, Philipp

    2015-05-01

    Arrays of regularly spaced nucleosomes are a hallmark of chromatin, but it remains unclear how they are generated. Recent genome-wide studies, in vitro and in vivo, showed constant nucleosome spacing even if the histone concentration was experimentally reduced. This counters the long-held assumption that nucleosome density determines spacing and calls for factors keeping spacing constant regardless of nucleosome density. We call this a clamping activity. Here, we show in a purified system that ISWI- and CHD1-type nucleosome remodelers have a clamping activity such that they not only generate regularly spaced nucleosome arrays but also generate constant spacing regardless of nucleosome density. This points to a functionally attractive nucleosome interaction that could be mediated either directly by nucleosome-nucleosome contacts or indirectly through the remodelers. Mutant Drosophila melanogaster ISWI without the Hand-Sant-Slide (HSS) domain had no detectable spacing activity even though it is known to remodel and slide nucleosomes. This suggests that the role of ISWI remodelers in generating constant spacing is not just to mediate nucleosome sliding; they actively contribute to the attractive interaction. Additional factors are necessary to set physiological spacing in absolute terms.

  1. Nucleosome Spacing Generated by ISWI and CHD1 Remodelers Is Constant Regardless of Nucleosome Density

    PubMed Central

    Lieleg, Corinna; Ketterer, Philip; Nuebler, Johannes; Ludwigsen, Johanna; Gerland, Ulrich; Dietz, Hendrik

    2015-01-01

    Arrays of regularly spaced nucleosomes are a hallmark of chromatin, but it remains unclear how they are generated. Recent genome-wide studies, in vitro and in vivo, showed constant nucleosome spacing even if the histone concentration was experimentally reduced. This counters the long-held assumption that nucleosome density determines spacing and calls for factors keeping spacing constant regardless of nucleosome density. We call this a clamping activity. Here, we show in a purified system that ISWI- and CHD1-type nucleosome remodelers have a clamping activity such that they not only generate regularly spaced nucleosome arrays but also generate constant spacing regardless of nucleosome density. This points to a functionally attractive nucleosome interaction that could be mediated either directly by nucleosome-nucleosome contacts or indirectly through the remodelers. Mutant Drosophila melanogaster ISWI without the HAND-SANT-SLIDE (HSS) domain had no detectable spacing activity even though it is known to remodel and slide nucleosomes. This suggests that the role of ISWI remodelers in generating constant spacing is not just to mediate nucleosome sliding; they actively contribute to the attractive interaction. Additional factors are necessary to set physiological spacing in absolute terms. PMID:25733687

  2. Mapping nucleosome positions using DNase-seq.

    PubMed

    Zhong, Jianling; Luo, Kaixuan; Winter, Peter S; Crawford, Gregory E; Iversen, Edwin S; Hartemink, Alexander J

    2016-03-01

    Although deoxyribonuclease I (DNase I) was used to probe the structure of the nucleosome in the 1960s and 1970s, in the current high-throughput sequencing era, DNase I has mainly been used to study genomic regions devoid of nucleosomes. Here, we reveal for the first time that DNase I can be used to precisely map the (translational) positions of in vivo nucleosomes genome-wide. Specifically, exploiting a distinctive DNase I cleavage profile within nucleosome-associated DNA--including a signature 10.3 base pair oscillation that corresponds to accessibility of the minor groove as DNA winds around the nucleosome--we develop a Bayes-factor-based method that can be used to map nucleosome positions along the genome. Compared to methods that require genetically modified histones, our DNase-based approach is easily applied in any organism, which we demonstrate by producing maps in yeast and human. Compared to micrococcal nuclease (MNase)-based methods that map nucleosomes based on cuts in linker regions, we utilize DNase I cuts both outside and within nucleosomal DNA; the oscillatory nature of the DNase I cleavage profile within nucleosomal DNA enables us to identify translational positioning details not apparent in MNase digestion of linker DNA. Because the oscillatory pattern corresponds to nucleosome rotational positioning, it also reveals the rotational context of transcription factor (TF) binding sites. We show that potential binding sites within nucleosome-associated DNA are often centered preferentially on an exposed major or minor groove. This preferential localization may modulate TF interaction with nucleosome-associated DNA as TFs search for binding sites. PMID:26772197

  3. Reading sequence-directed computational nucleosome maps.

    PubMed

    Nibhani, Reshma; Trifonov, Edward N

    2015-01-01

    Recently developed latest version of the sequence-directed single-base resolution nucleosome mapping reveals existence of strong nucleosomes and chromatin columnar structures (columns). Broad application of this simple technique for further studies of chromatin and chromosome structure requires some basic understanding as to how it works and what information it affords. The paper provides such an introduction to the method. The oscillating maps of singular nucleosomes, of short and long oligonucleosome columns, are explained, as well as maps of chromatin on satellite DNA and occurrences of counter-phase (antiparallel) nucleosome neighbors.

  4. Mapping nucleosome positions using DNase-seq

    PubMed Central

    Zhong, Jianling; Luo, Kaixuan; Winter, Peter S.; Crawford, Gregory E.; Iversen, Edwin S.; Hartemink, Alexander J.

    2016-01-01

    Although deoxyribonuclease I (DNase I) was used to probe the structure of the nucleosome in the 1960s and 1970s, in the current high-throughput sequencing era, DNase I has mainly been used to study genomic regions devoid of nucleosomes. Here, we reveal for the first time that DNase I can be used to precisely map the (translational) positions of in vivo nucleosomes genome-wide. Specifically, exploiting a distinctive DNase I cleavage profile within nucleosome-associated DNA—including a signature 10.3 base pair oscillation that corresponds to accessibility of the minor groove as DNA winds around the nucleosome—we develop a Bayes-factor–based method that can be used to map nucleosome positions along the genome. Compared to methods that require genetically modified histones, our DNase-based approach is easily applied in any organism, which we demonstrate by producing maps in yeast and human. Compared to micrococcal nuclease (MNase)-based methods that map nucleosomes based on cuts in linker regions, we utilize DNase I cuts both outside and within nucleosomal DNA; the oscillatory nature of the DNase I cleavage profile within nucleosomal DNA enables us to identify translational positioning details not apparent in MNase digestion of linker DNA. Because the oscillatory pattern corresponds to nucleosome rotational positioning, it also reveals the rotational context of transcription factor (TF) binding sites. We show that potential binding sites within nucleosome-associated DNA are often centered preferentially on an exposed major or minor groove. This preferential localization may modulate TF interaction with nucleosome-associated DNA as TFs search for binding sites. PMID:26772197

  5. Structural analysis of nucleosomal barrier to transcription

    PubMed Central

    Gaykalova, Daria A.; Kulaeva, Olga I.; Volokh, Olesya; Shaytan, Alexey K.; Hsieh, Fu-Kai; Kirpichnikov, Mikhail P.; Sokolova, Olga S.; Studitsky, Vasily M.

    2015-01-01

    Thousands of human and Drosophila genes are regulated at the level of transcript elongation and nucleosomes are likely targets for this regulation. However, the molecular mechanisms of formation of the nucleosomal barrier to transcribing RNA polymerase II (Pol II) and nucleosome survival during/after transcription remain unknown. Here we show that both DNA–histone interactions and Pol II backtracking contribute to formation of the barrier and that nucleosome survival during transcription likely occurs through allosterically stabilized histone–histone interactions. Structural analysis indicates that after Pol II encounters the barrier, the enzyme backtracks and nucleosomal DNA recoils on the octamer, locking Pol II in the arrested state. DNA is displaced from one of the H2A/H2B dimers that remains associated with the octamer. The data reveal the importance of intranucleosomal DNA–protein and protein–protein interactions during conformational changes in the nucleosome structure on transcription. Mechanisms of nucleosomal barrier formation and nucleosome survival during transcription are proposed. PMID:26460019

  6. A physical analysis of nucleosome positioning

    NASA Astrophysics Data System (ADS)

    Gerland, Ulrich

    2015-03-01

    The first level of genome packaging in eukaryotic cells involves the formation of dense nucleosome arrays, with DNA coverage near 90% in yeasts. A high nucleosome coverage is essential for cells, e.g. to prevent cryptic transcription, and the local positions of specific nucleosomes can play an important role in gene regulation. It is known that in vivo nucleosome positions are affected by a complex mix of passive and active mechanisms, including sequence-specific histone-DNA binding, nucleosome-nucleosome interactions, ATP-dependent remodeling enzymes, transcription, and DNA replication. Yet, the statistical distribution of nucleosome positions is extremely well described by simple physical models that treat the chromatin fiber as an interacting one-dimensional gas. I will discuss how can we interpret this surprising observation from a mechanistic perspective. I will also discuss the kinetics of the interacting gas model, which is pertinent to the question of how cells achieve the high nucleosome coverage within a short time, e.g. after DNA replication.

  7. Characterization of Dnmt1 Binding and DNA Methylation on Nucleosomes and Nucleosomal Arrays.

    PubMed

    Schrader, Anna; Gross, Thomas; Thalhammer, Verena; Längst, Gernot

    2015-01-01

    The packaging of DNA into nucleosomes and the organisation into higher order structures of chromatin limits the access of sequence specific DNA binding factors to DNA. In cells, DNA methylation is preferentially occuring in the linker region of nucleosomes, suggesting a structural impact of chromatin on DNA methylation. These observations raise the question whether DNA methyltransferases are capable to recognize the nucleosomal substrates and to modify the packaged DNA. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the maintenance DNA methyltransferase Dnmt1. Our binding studies show that Dnmt1 has a DNA length sensing activity, binding cooperatively to DNA, and requiring a minimal DNA length of 20 bp. Dnmt1 needs linker DNA to bind to nucleosomes and most efficiently recognizes nucleosomes with symmetric DNA linkers. Footprinting experiments reveal that Dnmt1 binds to both DNA linkers exiting the nucleosome core. The binding pattern correlates with the efficient methylation of DNA linkers. However, the enzyme lacks the ability to methylate nucleosomal CpG sites on mononucleosomes and nucleosomal arrays, unless chromatin remodeling enzymes create a dynamic chromatin state. In addition, our results show that Dnmt1 functionally interacts with specific chromatin remodeling enzymes to enable complete methylation of hemi-methylated DNA in chromatin.

  8. Nucleosome transactions on the Hypocrea jecorina (Trichoderma reesei) cellulase promoter cbh2 associated with cellulase induction.

    PubMed

    Zeilinger, S; Schmoll, M; Pail, M; Mach, R L; Kubicek, C P

    2003-10-01

    The 5' regulatory region of the cbh2 gene of Hypocrea jecorina contains the cbh2 activating element (CAE) which is essential for induction of cbh2 gene expression by sophorose and cellulose. The CAE consists of two motifs, a CCAAT box on the template strand and a GTAATA box on the coding strand, which cooperate during induction. Northern analyses of cbh2 gene expression has revealed an absolute dependence on induction, but no direct effect of Cre1-mediated carbon catabolite repression. Investigation of the chromatin structure in the wild-type strain showed that, under repressing conditions, there is a nucleosome free region (nfr) around the CAE, which is flanked by strictly positioned nucleosomes. Induction results in a loss of positioning of nucleosomes -1 and -2 downstream of the CAE, thus making the TATA box accessible. Simultaneous mutation of both motifs of the CAE, or of the CCAAT-box alone, also leads to shifting of nucleosome -1, which normally covers the TATA-box under repressing conditions, whereas mutation of the GTAATA element results in a narrowing of the nfr, indicating that the proteins that bind to both motifs in the CAE interact with chromatin, although in different ways. A cellulase-negative mutant strain, which has previously been shown to be altered in protein binding to the CAE, still displayed the induction-specific changes in nucleosome structure, indicating that none of the proteins that directly interact with CAE are affected, and that nucleosome rearrangement and induction of cbh2 expression are uncoupled. Interestingly, the carbon catabolite repressor Cre1 is essential for strict nucleosome positioning in the 5' regulatory sequences of cbh2 under all of the conditions tested, and induction can occur in a promoter that lacks positioned nucleosomes. These data suggest that Cre1, the Hap2/3/5 complex and the GTAATA-binding protein are all involved in nucleosome assembly on the cbh2 promoter, and that the latter two respond to inducing

  9. Herpes simplex virus 1 DNA is in unstable nucleosomes throughout the lytic infection cycle, and the instability of the nucleosomes is independent of DNA replication.

    PubMed

    Lacasse, Jonathan J; Schang, Luis M

    2012-10-01

    Herpes simplex virus 1 (HSV-1) DNA is chromatinized during latency and consequently regularly digested by micrococcal nuclease (MCN) to nucleosome-size fragments. In contrast, MCN digests HSV-1 DNA in lytically infected cells to mostly heterogeneous sizes. Yet HSV-1 DNA coimmunoprecipitates with histones during lytic infections. We have shown that at 5 h postinfection, most nuclear HSV-1 DNA is in particularly unstable nucleoprotein complexes and consequently is more accessible to MCN than DNA in cellular chromatin. HSV-1 DNA was quantitatively recovered at this time in complexes with the biophysical properties of mono- to polynucleosomes following a modified MCN digestion developed to detect potential unstable intermediates. We proposed that most HSV-1 DNA is in unstable nucleosome-like complexes during lytic infections. Physiologically, nucleosome assembly typically associates with DNA replication, although DNA replication transiently disrupts nucleosomes. It therefore remained unclear whether the instability of the HSV-1 nucleoprotein complexes was related to the ongoing viral DNA replication. Here we tested whether HSV-1 DNA is in unstable nucleosome-like complexes before, during, or after the peak of viral DNA replication or when HSV-1 DNA replication is inhibited. HSV-1 DNA was quantitatively recovered in complexes fractionating as mono- to polynucleosomes from nuclei harvested at 2, 5, 7, or 9 h after infection, even if viral DNA replication was inhibited. Therefore, most HSV-1 DNA is in unstable nucleosome-like complexes throughout the lytic replication cycle, and the instability of these complexes is surprisingly independent of HSV-1 DNA replication. The specific accessibility of nuclear HSV-1 DNA, however, varied at different times after infection.

  10. Strong nucleosomes of A. thaliana concentrate in centromere regions.

    PubMed

    Salih, Bilal; Trifonov, Edward N

    2015-01-01

    Earlier identified strongest nucleosome DNA sequences of A. thaliana, those with visible 10-11 base sequence periodicity, are mapped along chromosomes. Resulting positional distributions reveal distinct maxima, one per chromosome, located in the centromere regions. Sequence-directed nucleosome mapping demonstrates that the strong nucleosomes (SNs) make tight arrays, several 'parallel' nucleosomes each, suggesting a columnar chromatin structure. The SNs represent a new class of centromeric nucleosomes, presumably, participating in synapsis of chromatids and securing the centromere architecture.

  11. Stepwise nucleosome translocation by RSC remodeling complexes

    PubMed Central

    Harada, Bryan T; Hwang, William L; Deindl, Sebastian; Chatterjee, Nilanjana; Bartholomew, Blaine; Zhuang, Xiaowei

    2016-01-01

    The SWI/SNF-family remodelers regulate chromatin structure by coupling the free energy from ATP hydrolysis to the repositioning and restructuring of nucleosomes, but how the ATPase activity of these enzymes drives the motion of DNA across the nucleosome remains unclear. Here, we used single-molecule FRET to monitor the remodeling of mononucleosomes by the yeast SWI/SNF remodeler, RSC. We observed that RSC primarily translocates DNA around the nucleosome without substantial displacement of the H2A-H2B dimer. At the sites where DNA enters and exits the nucleosome, the DNA moves largely along or near its canonical wrapping path. The translocation of DNA occurs in a stepwise manner, and at both sites where DNA enters and exits the nucleosome, the step size distributions exhibit a peak at approximately 1–2 bp. These results suggest that the movement of DNA across the nucleosome is likely coupled directly to DNA translocation by the ATPase at its binding site inside the nucleosome. DOI: http://dx.doi.org/10.7554/eLife.10051.001 PMID:26895087

  12. Stepwise nucleosome translocation by RSC remodeling complexes.

    PubMed

    Harada, Bryan T; Hwang, William L; Deindl, Sebastian; Chatterjee, Nilanjana; Bartholomew, Blaine; Zhuang, Xiaowei

    2016-02-19

    The SWI/SNF-family remodelers regulate chromatin structure by coupling the free energy from ATP hydrolysis to the repositioning and restructuring of nucleosomes, but how the ATPase activity of these enzymes drives the motion of DNA across the nucleosome remains unclear. Here, we used single-molecule FRET to monitor the remodeling of mononucleosomes by the yeast SWI/SNF remodeler, RSC. We observed that RSC primarily translocates DNA around the nucleosome without substantial displacement of the H2A-H2B dimer. At the sites where DNA enters and exits the nucleosome, the DNA moves largely along or near its canonical wrapping path. The translocation of DNA occurs in a stepwise manner, and at both sites where DNA enters and exits the nucleosome, the step size distributions exhibit a peak at approximately 1-2 bp. These results suggest that the movement of DNA across the nucleosome is likely coupled directly to DNA translocation by the ATPase at its binding site inside the nucleosome.

  13. Oligonucleotide Sequence Motifs as Nucleosome Positioning Signals

    PubMed Central

    Collings, Clayton K.; Fernandez, Alfonso G.; Pitschka, Chad G.; Hawkins, Troy B.; Anderson, John N.

    2010-01-01

    To gain a better understanding of the sequence patterns that characterize positioned nucleosomes, we first performed an analysis of the periodicities of the 256 tetranucleotides in a yeast genome-wide library of nucleosomal DNA sequences that was prepared by in vitro reconstitution. The approach entailed the identification and analysis of 24 unique tetranucleotides that were defined by 8 consensus sequences. These consensus sequences were shown to be responsible for most if not all of the tetranucleotide and dinucleotide periodicities displayed by the entire library, demonstrating that the periodicities of dinucleotides that characterize the yeast genome are, in actuality, due primarily to the 8 consensus sequences. A novel combination of experimental and bioinformatic approaches was then used to show that these tetranucleotides are important for preferred formation of nucleosomes at specific sites along DNA in vitro. These results were then compared to tetranucleotide patterns in genome-wide in vivo libraries from yeast and C. elegans in order to assess the contributions of DNA sequence in the control of nucleosome residency in the cell. These comparisons revealed striking similarities in the tetranucleotide occurrence profiles that are likely to be involved in nucleosome positioning in both in vitro and in vivo libraries, suggesting that DNA sequence is an important factor in the control of nucleosome placement in vivo. However, the strengths of the tetranucleotide periodicities were 3–4 fold higher in the in vitro as compared to the in vivo libraries, which implies that DNA sequence plays less of a role in dictating nucleosome positions in vivo. The results of this study have important implications for models of sequence-dependent positioning since they suggest that a defined subset of tetranucleotides is involved in preferred nucleosome occupancy and that these tetranucleotides are the major source of the dinucleotide periodicities that are characteristic of

  14. Working the kinks out of nucleosomal DNA

    PubMed Central

    Olson, Wilma K.; Zhurkin, Victor B.

    2011-01-01

    Condensation of DNA in the nucleosome takes advantage of its double-helical architecture. The DNA deforms at sites where the base pairs face the histone octamer. The largest so-called kink-and-slide deformations occur in the vicinity of arginines that penetrate the minor groove. Nucleosome structures formed from the 601 positioning sequence differ subtly from those incorporating an AT-rich human α-satellite DNA. Restraints imposed by the histone arginines on the displacement of base pairs can modulate the sequence-dependent deformability of DNA and potentially contribute to the unique features of the different nucleosomes. Steric barriers mimicking constraints found in the nucleosome induce the simulated large-scale rearrangement of canonical B-DNA to kink-and-slide states. The pathway to these states shows non-harmonic behavior consistent with bending profiles inferred from AFM measurements. PMID:21482100

  15. Transcription factor access is mediated by accurately positioned nucleosomes on the mouse mammary tumor virus promoter.

    PubMed Central

    Archer, T K; Cordingley, M G; Wolford, R G; Hager, G L

    1991-01-01

    A fragment of the mouse mammary tumor virus (MMTV) promoter was reconstituted from pure histones into a dinucleosome with uniquely positioned octamer cores. Core boundaries for the in vitro-assembled dinucleosome corresponded to the observed in vivo phasing pattern for long terminal repeat nucleosomes A and B. Nuclear factor 1 (NF1), a constituent of the MMTV transcription initiation complex, was excluded from the assembled dinucleosome, whereas the glucocorticoid receptor was able to bind. During transcription of MMTV in vivo, displacement of nucleosome B was necessary to permit assembly of the initiation complex. These results indicate that the nucleoprotein structure of the promoter can provide differential access to sequence-specific DNA-binding proteins and that active chromatin remodeling can occur during transcription activation. Images PMID:1846670

  16. Nucleosome adaptability conferred by sequence and structural variations in histone H2A-H2B dimers.

    PubMed

    Shaytan, Alexey K; Landsman, David; Panchenko, Anna R

    2015-06-01

    Nucleosome variability is essential for their functions in compacting the chromatin structure and regulation of transcription, replication and cell reprogramming. The DNA molecule in nucleosomes is wrapped around an octamer composed of four types of core histones (H3, H4, H2A, H2B). Nucleosomes represent dynamic entities and may change their conformation, stability and binding properties by employing different sets of histone variants or by becoming post-translationally modified. There are many variants of histones H2A and H2B. Specific H2A and H2B variants may preferentially associate with each other resulting in different combinations of variants and leading to the increased combinatorial complexity of nucleosomes. In addition, the H2A-H2B dimer can be recognized and substituted by chaperones/remodelers as a distinct unit, can assemble independently and is stable during nucleosome unwinding. In this review we discuss how sequence and structural variations in H2A-H2B dimers may provide necessary complexity and confer the nucleosome functional variability.

  17. Nucleosome adaptability conferred by sequence and structural variations in histone H2A-H2B dimers

    PubMed Central

    Shaytan, Alexey K.; Landsman, David

    2015-01-01

    Nucleosome variability is essential for their functions in compacting the chromatin structure and regulation of transcription, replication and cell reprogramming. The DNA molecule in nucleosomes is wrapped around an octamer composed of four types of core histones (H3, H4, H2A, H2B). Nucleosomes represent dynamic entities and may change their conformation, stability and binding properties by employing different sets of histone variants or by becoming post-translationally modified. There are many variants of histones H2A and H2B. Specific H2A and H2B variants may preferentially associate with each other resulting in different combinations of variants and leading to the increased combinatorial complexity of nucleosomes. In addition, the H2A-H2B dimer can be recognized and substituted by chaperones/remodelers as a distinct unit, can assemble independently and is stable during nucleosome unwinding. In this review we discuss how sequence and structural variations in H2A-H2B dimers may provide necessary complexity and confer the nucleosome functional variability. PMID:25731851

  18. SWI/SNF- and RSC-catalyzed nucleosome mobilization requires internal DNA loop translocation within nucleosomes.

    PubMed

    Liu, Ning; Peterson, Craig L; Hayes, Jeffrey J

    2011-10-01

    The multisubunit SWI/SNF and RSC complexes utilize energy derived from ATP hydrolysis to mobilize nucleosomes and render the DNA accessible for various nuclear processes. Here we test the idea that remodeling involves intermediates with mobile DNA bulges or loops within the nucleosome by cross-linking the H2A N- or C-terminal tails together to generate protein "loops" that constrict separation of the DNA from the histone surface. Analyses indicate that this intranucleosomal cross-linking causes little or no change in remodeling-dependent exposure of DNA sequences within the nucleosome to restriction enzymes. However, cross-linking inhibits nucleosome mobilization and blocks complete movement of nucleosomes to extreme end positions on the DNA fragments. These results are consistent with evidence that nucleosome remodeling involves intermediates with DNA loops on the nucleosome surface but indicate that such loops do not freely diffuse about the surface of the histone octamer. We propose a threading model for movement of DNA loops around the perimeter of the nucleosome core.

  19. Two arginine residues suppress the flexibility of nucleosomal DNA in the canonical nucleosome core.

    PubMed

    Kono, Hidetoshi; Shirayama, Kazuyoshi; Arimura, Yasuhiro; Tachiwana, Hiroaki; Kurumizaka, Hitoshi

    2015-01-01

    The dynamics of nucleosomes containing either canonical H3 or its centromere-specific variant CENP-A were investigated using molecular dynamics simulations. The simulations showed that the histone cores were structurally stable during simulation periods of 100 ns and 50 ns, while DNA was highly flexible at the entry and exit regions and partially dissociated from the histone core. In particular, approximately 20-25 bp of DNA at the entry and exit regions of the CENP-A nucleosome exhibited larger fluctuations than DNA at the entry and exit regions of the H3 nucleosome. Our detailed analysis clarified that this difference in dynamics was attributable to a difference in two basic amino acids in the αN helix; two arginine (Arg) residues in H3 were substituted by lysine (Lys) residues at the corresponding sites in CENP-A. The difference in the ability to form hydrogen bonds with DNA of these two residues regulated the flexibility of nucleosomal DNA at the entry and exit regions. Our exonuclease III assay consistently revealed that replacement of these two Arg residues in the H3 nucleosome by Lys enhanced endonuclease susceptibility, suggesting that the DNA ends of the CENP-A nucleosome are more flexible than those of the H3 nucleosome. This difference in the dynamics between the two types of nucleosomes may be important for forming higher order structures in different phases.

  20. Trajectories of microsecond molecular dynamics simulations of nucleosomes and nucleosome core particles.

    PubMed

    Shaytan, Alexey K; Armeev, Grigoriy A; Goncearenco, Alexander; Zhurkin, Victor B; Landsman, David; Panchenko, Anna R

    2016-06-01

    We present here raw trajectories of molecular dynamics simulations for nucleosome with linker DNA strands as well as minimalistic nucleosome core particle model. The simulations were done in explicit solvent using CHARMM36 force field. We used this data in the research article Shaytan et al., 2016 [1]. The trajectory files are supplemented by TCL scripts providing advanced visualization capabilities. PMID:27222871

  1. Nucleosome positioning, nucleotide excision repair and photoreactivation in Saccharomyces cerevisiae.

    PubMed

    Guintini, Laetitia; Charton, Romain; Peyresaubes, François; Thoma, Fritz; Conconi, Antonio

    2015-12-01

    The position of nucleosomes on DNA participates in gene regulation and DNA replication. Nucleosomes can be repressors by limiting access of factors to regulatory sequences, or activators by facilitating binding of factors to exposed DNA sequences on the surface of the core histones. The formation of UV induced DNA lesions, like cyclobutane pyrimidine dimers (CPDs), is modulated by DNA bending around the core histones. Since CPDs are removed by nucleotide excision repair (NER) and photolyase repair, it is of paramount importance to understand how DNA damage and repair are tempered by the position of nucleosomes. In vitro, nucleosomes inhibit NER and photolyase repair. In vivo, nucleosomes slow down NER and considerably obstruct photoreactivation of CPDs. However, over-expression of photolyase allows repair of nucleosomal DNA in a second time scale. It is proposed that the intrinsic abilities of nucleosomes to move and transiently unwrap could facilitate damage recognition and repair in nucleosomal DNA.

  2. Featuring the nucleosome surface as a therapeutic target.

    PubMed

    da Silva, Isabel Torres Gomes; de Oliveira, Paulo Sergio Lopes; Santos, Guilherme Martins

    2015-05-01

    Chromatin is the major regulator of gene expression and genome maintenance. Proteins that bind the nucleosome, the repetitive unit of chromatin, and the histone H4 tail are critical to establishing chromatin architecture and phenotypic outcomes. Intriguingly, nucleosome-binding proteins (NBPs) and the H4 tail peptide compete for the same binding site at an acidic region on the nucleosome surface. Although the essential facts about the nucleosome were revealed 17 years ago, new insights into its atomic structure and molecular mechanisms are still emerging. Several complex nucleosome:NBP structures were recently revealed, characterizing the NBP-binding sites on the nucleosome surface. Here we discuss the potential of the nucleosome surface as a therapeutic target and the impact and development of exogenous nucleosome-binding molecules (eNBMs).

  3. Dynamic regulation of transcription factors by nucleosome remodeling.

    PubMed

    Li, Ming; Hada, Arjan; Sen, Payel; Olufemi, Lola; Hall, Michael A; Smith, Benjamin Y; Forth, Scott; McKnight, Jeffrey N; Patel, Ashok; Bowman, Gregory D; Bartholomew, Blaine; Wang, Michelle D

    2015-06-05

    The chromatin landscape and promoter architecture are dominated by the interplay of nucleosome and transcription factor (TF) binding to crucial DNA sequence elements. However, it remains unclear whether nucleosomes mobilized by chromatin remodelers can influence TFs that are already present on the DNA template. In this study, we investigated the interplay between nucleosome remodeling, by either yeast ISW1a or SWI/SNF, and a bound TF. We found that a TF serves as a major barrier to ISW1a remodeling, and acts as a boundary for nucleosome repositioning. In contrast, SWI/SNF was able to slide a nucleosome past a TF, with concurrent eviction of the TF from the DNA, and the TF did not significantly impact the nucleosome positioning. Our results provide direct evidence for a novel mechanism for both nucleosome positioning regulation by bound TFs and TF regulation via dynamic repositioning of nucleosomes.

  4. Nucleosome positioning in yeasts: methods, maps, and mechanisms.

    PubMed

    Lieleg, Corinna; Krietenstein, Nils; Walker, Maria; Korber, Philipp

    2015-06-01

    Eukaryotic nuclear DNA is packaged into nucleosomes. During the past decade, genome-wide nucleosome mapping across species revealed the high degree of order in nucleosome positioning. There is a conserved stereotypical nucleosome organization around transcription start sites (TSSs) with a nucleosome-depleted region (NDR) upstream of the TSS and a TSS-aligned regular array of evenly spaced nucleosomes downstream over the gene body. As nucleosomes largely impede access to DNA and thereby provide an important level of genome regulation, it is of general interest to understand the mechanisms generating nucleosome positioning and especially the stereotypical NDR-array pattern. We focus here on the most advanced models, unicellular yeasts, and review the progress in mapping nucleosomes and which nucleosome positioning mechanisms are discussed. There are four mechanistic aspects: How are NDRs generated? How are individual nucleosomes positioned, especially those flanking the NDRs? How are nucleosomes evenly spaced leading to regular arrays? How are regular arrays aligned at TSSs? The main candidates for nucleosome positioning determinants are intrinsic DNA binding preferences of the histone octamer, specific DNA binding factors, nucleosome remodeling enzymes, transcription, and statistical positioning. We summarize the state of the art in an integrative model where nucleosomes are positioned by a combination of all these candidate determinants. We highlight the predominance of active mechanisms involving nucleosome remodeling enzymes which may be recruited by DNA binding factors and the transcription machinery. While this mechanistic framework emerged clearly during recent years, the involved factors and their mechanisms are still poorly understood and require future efforts combining in vivo and in vitro approaches.

  5. UV damage in DNA promotes nucleosome unwrapping.

    PubMed

    Duan, Ming-Rui; Smerdon, Michael J

    2010-08-20

    The association of DNA with histones in chromatin impedes DNA repair enzymes from accessing DNA lesions. Nucleosomes exist in a dynamic equilibrium in which portions of the DNA molecule spontaneously unwrap, transiently exposing buried DNA sites. Thus, nucleosome dynamics in certain regions of chromatin may provide the exposure time and space needed for efficient repair of buried DNA lesions. We have used FRET and restriction enzyme accessibility to study nucleosome dynamics following DNA damage by UV radiation. We find that FRET efficiency is reduced in a dose-dependent manner, showing that the presence of UV photoproducts enhances spontaneous unwrapping of DNA from histones. Furthermore, this UV-induced shift in unwrapping dynamics is associated with increased restriction enzyme accessibility of histone-bound DNA after UV treatment. Surprisingly, the increased unwrapping dynamics is even observed in nucleosome core particles containing a single UV lesion at a specific site. These results highlight the potential for increased "intrinsic exposure" of nucleosome-associated DNA lesions in chromatin to repair proteins. PMID:20562439

  6. Traceless Synthesis of Asymmetrically Modified Bivalent Nucleosomes.

    PubMed

    Lechner, Carolin C; Agashe, Ninad D; Fierz, Beat

    2016-02-18

    Nucleosomes carry extensive post-translational modifications (PTMs), which results in complex modification patterns that are involved in epigenetic signaling. Although two copies of each histone coexist in a nucleosome, they may not carry the same PTMs and are often differently modified (asymmetric). In bivalent domains, a chromatin signature prevalent in embryonic stem cells (ESCs), namely H3 methylated at lysine 4 (H3K4me3), coexists with H3K27me3 in asymmetric nucleosomes. We report a general, modular, and traceless method for producing asymmetrically modified nucleosomes. We further show that in bivalent nucleosomes, H3K4me3 inhibits the activity of the H3K27-specific lysine methyltransferase (KMT) polycomb repressive complex 2 (PRC2) solely on the same histone tail, whereas H3K27me3 stimulates PRC2 activity across tails, thereby partially overriding the H3K4me3-mediated repressive effect. To maintain bivalent domains in ESCs, PRC2 activity must thus be locally restricted or reversed.

  7. Predicting Nucleosome Positioning Using Multiple Evidence Tracks

    NASA Astrophysics Data System (ADS)

    Reynolds, Sheila M.; Weng, Zhiping; Bilmes, Jeff A.; Noble, William Stafford

    We describe a probabilistic model, implemented as a dynamic Bayesian network, that can be used to predict nucleosome positioning along a chromosome based on one or more genomic input tracks containing position-specific information (evidence). Previous models have either made predictions based on primary DNA sequence alone, or have been used to infer nucleosome positions from experimental data. Our framework permits the combination of these two distinct types of information. We show how this flexible framework can be used to make predictions based on either sequence-model scores or experimental data alone, or by using the two in combination to interpret the experimental data and fill in gaps. The model output represents the posterior probability, at each position along the chromosome, that a nucleosome core overlaps that position, given the evidence. This posterior probability is computed by integrating the information contained in the input evidence tracks along the entire input sequence, and fitting the evidence to a simple grammar of alternating nucleosome cores and linkers. In addition to providing a novel mechanism for the prediction of nucleosome positioning from arbitrary heterogeneous data sources, this framework is also applicable to other genomic segmentation tasks in which local scores are available from models or from data that can be interpreted as defining a probability assignment over labels at that position. The ability to combine sequence-based predictions and data from experimental assays is a significant and novel contribution to the ongoing research regarding the primary structure of chromatin and its effects upon gene regulation.

  8. The Influence of Ionic Environment and Histone Tails on Columnar Order of Nucleosome Core Particles.

    PubMed

    Berezhnoy, Nikolay V; Liu, Ying; Allahverdi, Abdollah; Yang, Renliang; Su, Chun-Jen; Liu, Chuan-Fa; Korolev, Nikolay; Nordenskiöld, Lars

    2016-04-26

    The nucleosome core particle (NCP) is the basic building block of chromatin. Nucleosome-nucleosome interactions are instrumental in chromatin compaction, and understanding NCP self-assembly is important for understanding chromatin structure and dynamics. Recombinant NCPs aggregated by multivalent cations form various ordered phases that can be studied by x-ray diffraction (small-angle x-ray scattering). In this work, the effects on the supramolecular structure of aggregated NCPs due to lysine histone H4 tail acetylations, histone H2A mutations (neutralizing the acidic patch of the histone octamer), and the removal of histone tails were investigated. The formation of ordered mainly hexagonal columnar NCP phases is in agreement with earlier studies; however, the highly homogeneous recombinant NCP systems used in this work display a more compact packing. The long-range order of the NCP columnar phase was found to be abolished or reduced by acetylation of the H4 tails, acidic patch neutralization, and removal of the H3 and H2B tails. Loss of nucleosome stacking upon removal of the H3 tails in combination with other tails was observed. In the absence of the H2A tails, the formation of an unknown highly ordered phase was observed. PMID:27119633

  9. Nucleosomes Inhibit Cas9 Endonuclease Activity in Vitro.

    PubMed

    Hinz, John M; Laughery, Marian F; Wyrick, John J

    2015-12-01

    During Cas9 genome editing in eukaryotic cells, the bacterial Cas9 enzyme cleaves DNA targets within chromatin. To understand how chromatin affects Cas9 targeting, we characterized Cas9 activity on nucleosome substrates in vitro. We find that Cas9 endonuclease activity is strongly inhibited when its target site is located within the nucleosome core. In contrast, the nucleosome structure does not affect Cas9 activity at a target site within the adjacent linker DNA. Analysis of target sites that partially overlap with the nucleosome edge indicates that the accessibility of the protospacer-adjacent motif (PAM) is the critical determinant of Cas9 activity on a nucleosome.

  10. Histone chaperones: assisting histone traffic and nucleosome dynamics.

    PubMed

    Gurard-Levin, Zachary A; Quivy, Jean-Pierre; Almouzni, Geneviève

    2014-01-01

    The functional organization of eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. Histone chaperones, which are proteins that escort histones throughout their cellular life, are key actors in all facets of histone metabolism; they regulate the supply and dynamics of histones at chromatin for its assembly and disassembly. Histone chaperones can also participate in the distribution of histone variants, thereby defining distinct chromatin landscapes of importance for genome function, stability, and cell identity. Here, we discuss our current knowledge of the known histone chaperones and their histone partners, focusing on histone H3 and its variants. We then place them into an escort network that distributes these histones in various deposition pathways. Through their distinct interfaces, we show how they affect dynamics during DNA replication, DNA damage, and transcription, and how they maintain genome integrity. Finally, we discuss the importance of histone chaperones during development and describe how misregulation of the histone flow can link to disease.

  11. Structure and function of human histone H3.Y nucleosome.

    PubMed

    Kujirai, Tomoya; Horikoshi, Naoki; Sato, Koichi; Maehara, Kazumitsu; Machida, Shinichi; Osakabe, Akihisa; Kimura, Hiroshi; Ohkawa, Yasuyuki; Kurumizaka, Hitoshi

    2016-07-27

    Histone H3.Y is a primate-specific, distant H3 variant. It is evolutionarily derived from H3.3, and may function in transcription regulation. However, the mechanism by which H3.Y regulates transcription has not been elucidated. In the present study, we determined the crystal structure of the H3.Y nucleosome, and found that many H3.Y-specific residues are located on the entry/exit sites of the nucleosome. Biochemical analyses revealed that the DNA ends of the H3.Y nucleosome were more flexible than those of the H3.3 nucleosome, although the H3.Y nucleosome was stable in vitro and in vivo Interestingly, the linker histone H1, which compacts nucleosomal DNA, appears to bind to the H3.Y nucleosome less efficiently, as compared to the H3.3 nucleosome. These characteristics of the H3.Y nucleosome are also conserved in the H3.Y/H3.3 heterotypic nucleosome, which may be the predominant form in cells. In human cells, H3.Y preferentially accumulated around transcription start sites (TSSs). Taken together, H3.Y-containing nucleosomes around transcription start sites may form relaxed chromatin that allows transcription factor access, to regulate the transcription status of specific genes.

  12. Categorical spectral analysis of periodicity in nucleosomal DNA

    PubMed Central

    Jin, Hu; Rube, H. Tomas; Song, Jun S.

    2016-01-01

    DNA helical twist imposes geometric constraints on the location of histone–DNA interaction sites along nucleosomal DNA. Certain 10.5-bp periodic nucleotides in phase with these geometric constraints have been suggested to facilitate nucleosome positioning. However, the extent of nucleotide periodicity in nucleosomal DNA and its significance in directing nucleosome positioning still remain unclear. We clarify these issues by applying categorical spectral analysis to high-resolution nucleosome maps in two yeast species. We find that only a small fraction of nucleosomal sequences contain significant 10.5-bp periodicity. We further develop a spectral decomposition method to show that the previously observed periodicity in aligned nucleosomal sequences mainly results from proper phasing among nucleosomal sequences, and not from a preponderant occurrence of periodicity within individual sequences. Importantly, we show that this phasing may arise from the histones’ proclivity for putting preferred nucleotides at some of the evenly spaced histone–DNA contact points with respect to the dyad axis. We demonstrate that 10.5-bp periodicity, when present, significantly facilitates rotational, but not translational, nucleosome positioning. Finally, although periodicity only moderately affects nucleosome occupancy genome wide, reduced periodicity is an evolutionarily conserved signature of nucleosome-depleted regions around transcription start/termination sites. PMID:26893354

  13. Genome-wide nucleosome positioning during embryonic stem cell development.

    PubMed

    Teif, Vladimir B; Vainshtein, Yevhen; Caudron-Herger, Maïwen; Mallm, Jan-Philipp; Marth, Caroline; Höfer, Thomas; Rippe, Karsten

    2012-11-01

    We determined genome-wide nucleosome occupancies in mouse embryonic stem cells and their neural progenitor and embryonic fibroblast counterparts to assess features associated with nucleosome positioning during lineage commitment. Cell-type- and protein-specific binding preferences of transcription factors to sites with either low (Myc, Klf4 and Zfx) or high (Nanog, Oct4 and Sox2) nucleosome occupancy as well as complex patterns for CTCF were identified. Nucleosome-depleted regions around transcription start and transcription termination sites were broad and more pronounced for active genes, with distinct patterns for promoters classified according to CpG content or histone methylation marks. Throughout the genome, nucleosome occupancy was correlated with certain histone methylation or acetylation modifications. In addition, the average nucleosome repeat length increased during differentiation by 5-7 base pairs, with local variations for specific regions. Our results reveal regulatory mechanisms of cell differentiation that involve nucleosome repositioning. PMID:23085715

  14. Synergistic action of RNA polymerases in overcoming the nucleosomal barrier.

    PubMed

    Jin, Jing; Bai, Lu; Johnson, Daniel S; Fulbright, Robert M; Kireeva, Maria L; Kashlev, Mikhail; Wang, Michelle D

    2010-06-01

    During gene expression, RNA polymerase (RNAP) encounters a major barrier at a nucleosome and yet must access the nucleosomal DNA. Previous in vivo evidence has suggested that multiple RNAPs might increase transcription efficiency through nucleosomes. Here we have quantitatively investigated this hypothesis using Escherichia coli RNAP as a model system by directly monitoring its location on the DNA via a single-molecule DNA-unzipping technique. When an RNAP encountered a nucleosome, it paused with a distinctive 10-base pair periodicity and backtracked by approximately 10-15 base pairs. When two RNAPs elongate in close proximity, the trailing RNAP apparently assists in the leading RNAP's elongation, reducing its backtracking and enhancing its transcription through a nucleosome by a factor of 5. Taken together, our data indicate that histone-DNA interactions dictate RNAP pausing behavior, and alleviation of nucleosome-induced backtracking by multiple polymerases may prove to be a mechanism for overcoming the nucleosomal barrier in vivo.

  15. Acetylation Mimics Within a Single Nucleosome Alter Local DNA Accessibility In Compacted Nucleosome Arrays

    PubMed Central

    Mishra, Laxmi N.; Pepenella, Sharon; Rogge, Ryan; Hansen, Jeffrey C.; Hayes, Jeffrey J.

    2016-01-01

    The activation of a silent gene locus is thought to involve pioneering transcription factors that initiate changes in the local chromatin structure to increase promoter accessibility and binding of downstream effectors. To better understand the molecular requirements for the first steps of locus activation, we investigated whether acetylation of a single nucleosome is sufficient to alter DNA accessibility within a condensed 25-nucleosome array. We found that acetylation mimics within the histone H4 tail domain increased accessibility of the surrounding linker DNA, with the increased accessibility localized to the immediate vicinity of the modified nucleosome. In contrast, acetylation mimics within the H3 tail had little effect, but were able to synergize with H4 tail acetylation mimics to further increase accessibility. Moreover, replacement of the central nucleosome with a nucleosome free region also resulted in increased local, but not global DNA accessibility. Our results indicate that modification or disruption of only a single target nucleosome results in significant changes in local chromatin architecture and suggest that very localized chromatin modifications imparted by pioneer transcription factors are sufficient to initiate a cascade of events leading to promoter activation. PMID:27708426

  16. A mitotic beacon reveals its nucleosome anchor.

    PubMed

    Hondele, Maria; Ladurner, Andreas

    2010-09-24

    Mitosis, nuclear envelope formation, and nucleocytoplasmic transport require chromosomes to identify themselves by enriching Ran-GTP around the chromatin fiber. In a recent Nature report, Makde et al. (2010) describe the structure of the Ran activator RCC1 anchored onto nucleosomes.

  17. A cell-free CENP-A assembly system defines the chromatin requirements for centromere maintenance

    PubMed Central

    Westhorpe, Frederick G.; Fuller, Colin J.

    2015-01-01

    Centromeres are defined by the presence of CENP-A nucleosomes in chromatin and are essential for accurate chromosome segregation. Centromeric chromatin epigenetically seeds new CENP-A nucleosome formation, thereby maintaining functional centromeres as cells divide. The features within centromeric chromatin that direct new CENP-A assembly remain unclear. Here, we developed a cell-free CENP-A assembly system that enabled the study of chromatin-bound CENP-A and soluble CENP-A separately. We show that two distinct domains of CENP-A within existing CENP-A nucleosomes are required for new CENP-A assembly and that CENP-A nucleosomes recruit the CENP-A assembly factors CENP-C and M18BP1 independently. Furthermore, we demonstrate that the mechanism of CENP-C recruitment to centromeres is dependent on the density of underlying CENP-A nucleosomes. PMID:26076692

  18. Asymmetric nucleosomes flank promoters in the budding yeast genome.

    PubMed

    Ramachandran, Srinivas; Zentner, Gabriel E; Henikoff, Steven

    2015-03-01

    Nucleosomes in active chromatin are dynamic, but whether they have distinct structural conformations is unknown. To identify nucleosomes with alternative structures genome-wide, we used H4S47C-anchored cleavage mapping, which revealed that 5% of budding yeast (Saccharomyces cerevisiae) nucleosome positions have asymmetric histone-DNA interactions. These asymmetric interactions are enriched at nucleosome positions that flank promoters. Micrococcal nuclease (MNase) sequence-based profiles of asymmetric nucleosome positions revealed a corresponding asymmetry in MNase protection near the dyad axis, suggesting that the loss of DNA contacts around H4S47 is accompanied by protection of the DNA from MNase. Chromatin immunoprecipitation mapping of selected nucleosome remodelers indicated that asymmetric nucleosomes are bound by the RSC chromatin remodeling complex, which is required for maintaining nucleosomes at asymmetric positions. These results imply that the asymmetric nucleosome-RSC complex is a metastable intermediate representing partial unwrapping and protection of nucleosomal DNA on one side of the dyad axis during chromatin remodeling.

  19. DANPOS: dynamic analysis of nucleosome position and occupancy by sequencing.

    PubMed

    Chen, Kaifu; Xi, Yuanxin; Pan, Xuewen; Li, Zhaoyu; Kaestner, Klaus; Tyler, Jessica; Dent, Sharon; He, Xiangwei; Li, Wei

    2013-02-01

    Recent developments in next-generation sequencing have enabled whole-genome profiling of nucleosome organizations. Although several algorithms for inferring nucleosome position from a single experimental condition have been available, it remains a challenge to accurately define dynamic nucleosomes associated with environmental changes. Here, we report a comprehensive bioinformatics pipeline, DANPOS, explicitly designed for dynamic nucleosome analysis at single-nucleotide resolution. Using both simulated and real nucleosome data, we demonstrated that bias correction in preliminary data processing and optimal statistical testing significantly enhances the functional interpretation of dynamic nucleosomes. The single-nucleotide resolution analysis of DANPOS allows us to detect all three categories of nucleosome dynamics, such as position shift, fuzziness change, and occupancy change, using a uniform statistical framework. Pathway analysis indicates that each category is involved in distinct biological functions. We also analyzed the influence of sequencing depth and suggest that even 200-fold coverage is probably not enough to identify all the dynamic nucleosomes. Finally, based on nucleosome data from the human hematopoietic stem cells (HSCs) and mouse embryonic stem cells (ESCs), we demonstrated that DANPOS is also robust in defining functional dynamic nucleosomes, not only in promoters, but also in distal regulatory regions in the mammalian genome. PMID:23193179

  20. DNA bending potentials for loop-mediated nucleosome repositioning

    NASA Astrophysics Data System (ADS)

    Biswas, M.; Wocjan, T.; Langowski, J.; Smith, J. C.

    2012-02-01

    Nucleosome repositioning is a fundamental process in gene function. DNA elasticity is a key element of loop-mediated nucleosome repositioning. Two analytical models for DNA elasticity have been proposed: the linear sub-elastic chain (SEC), which allows DNA kinking, and the worm-like chain (WLC), with a harmonic bending potential. In vitro studies have shown that nucleosomes reposition in a discontiguous manner on a segment of DNA and this has also been found in ground-state calculations with the WLC analytical model. Here we study using Monte Carlo simulation the dynamics of DNA loop-mediated nucleosome repositioning at physiological temperatures using the SEC and WLC potentials. At thermal energies both models predict nearest-neighbor repositioning of nucleosomes on DNA, in contrast to the repositioning in jumps observed in experiments. This suggests a crucial role of DNA sequence in nucleosome repositioning.

  1. Universal full-length nucleosome mapping sequence probe.

    PubMed

    Tripathi, Vijay; Salih, Bilal; Trifonov, Edward N

    2015-01-01

    For the computational sequence-directed mapping of the nucleosomes, the knowledge of the nucleosome positioning motifs - 10-11 base long sequences - and respective matrices of bendability, is not sufficient, since there is no justified way to fuse these motifs in one continuous nucleosome DNA sequence. Discovery of the strong nucleosome (SN) DNA sequences, with visible sequence periodicity allows derivation of the full-length nucleosome DNA bendability pattern as matrix or consensus sequence. The SN sequences of three species (A. thaliana, C. elegans, and H. sapiens) are aligned (512 sequences for each species), and long (115 dinucleotides) matrices of bendability derived for the species. The matrices have strong common property - alternation of runs of purine-purine (RR) and pyrimidine-pyrimidine (YY) dinucleotides, with average period 10.4 bases. On this basis the universal [R,Y] consensus of the nucleosome DNA sequence is derived, with exactly defined positions of respective penta- and hexamers RRRRR, RRRRRR, YYYYY, and YYYYYY.

  2. MNase titration reveals differences between nucleosome occupancy and chromatin accessibility

    PubMed Central

    Mieczkowski, Jakub; Cook, April; Bowman, Sarah K.; Mueller, Britta; Alver, Burak H.; Kundu, Sharmistha; Deaton, Aimee M.; Urban, Jennifer A.; Larschan, Erica; Park, Peter J.; Kingston, Robert E.; Tolstorukov, Michael Y.

    2016-01-01

    Chromatin accessibility plays a fundamental role in gene regulation. Nucleosome placement, usually measured by quantifying protection of DNA from enzymatic digestion, can regulate accessibility. We introduce a metric that uses micrococcal nuclease (MNase) digestion in a novel manner to measure chromatin accessibility by combining information from several digests of increasing depths. This metric, MACC (MNase accessibility), quantifies the inherent heterogeneity of nucleosome accessibility in which some nucleosomes are seen preferentially at high MNase and some at low MNase. MACC interrogates each genomic locus, measuring both nucleosome location and accessibility in the same assay. MACC can be performed either with or without a histone immunoprecipitation step, and thereby compares histone and non-histone protection. We find that changes in accessibility at enhancers, promoters and other regulatory regions do not correlate with changes in nucleosome occupancy. Moreover, high nucleosome occupancy does not necessarily preclude high accessibility, which reveals novel principles of chromatin regulation. PMID:27151365

  3. DNA bending potentials for loop-mediated nucleosome repositioning

    SciTech Connect

    Langowski, Jorg

    2012-01-01

    Nucleosome repositioning is a fundamental process in gene function. DNA elasticity is a key element of loop-mediated nucleosome repositioning. Two analytical models for DNA elasticity have been proposed: the linear sub-elastic chain (SEC), which allows DNA kinking, and the worm-like chain (WLC), with a harmonic bending potential. In vitro studies have shown that nucleosomes reposition in a discontiguous manner on a segment of DNA and this has also been found in ground-state calculations with the WLC analytical model. Here we study using Monte Carlo simulation the dynamics of DNA loop-mediated nucleosome repositioning at physiological temperatures using the SEC and WLC potentials. At thermal energies both models predict nearest-neighbor repositioning of nucleosomes on DNA, in contrast to the repositioning in jumps observed in experiments. This suggests a crucial role of DNA sequence in nucleosome repositioning.

  4. The Saccharomyces cerevisiae Piccolo NuA4 histone acetyltransferase complex requires the Enhancer of Polycomb A domain and chromodomain to acetylate nucleosomes.

    PubMed

    Selleck, William; Fortin, Israël; Sermwittayawong, Decha; Côté, Jacques; Tan, Song

    2005-07-01

    Chromatin modification complexes are key gene regulatory factors which posttranslationally modify the histone component of chromatin with epigenetic marks. To address what features of chromatin modification complexes are responsible for the specific recognition of nucleosomes compared to naked histones, we have performed a functional dissection of the Esa1-containing Saccharomyces cerevisiae Piccolo NuA4 histone acetyltransferase complex. Our studies define the Piccolo determinants sufficient to assemble its three subunits into a complex as well as Piccolo determinants sufficient to specifically acetylate a chromatin template. We find that the conserved Enhancer of Polycomb A (EPcA) homology region of the Epl1 component and the N-terminal 165 amino acids of the Yng2 component of Piccolo are sufficient with Esa1 to specifically act on nucleosomes. We also find that the Esa1 chromodomain plays a critical role in Piccolo's ability to distinguish between histones and nucleosomes. In particular, specific point mutations in the chromodomain putative hydrophobic cage which strongly hinder growth in yeast greatly reduce histone acetyltransferase activity on nucleosome substrates, independent of histone methylation or other modifications. However, the chromodomain is not required for Piccolo to bind to nucleosomes, suggesting a role for the chromodomain in a catalysis step after nucleosome binding.

  5. The Saccharomyces cerevisiae Piccolo NuA4 Histone Acetyltransferase Complex Requires the Enhancer of Polycomb A Domain and Chromodomain To Acetylate Nucleosomes

    PubMed Central

    Selleck, William; Fortin, Israël; Sermwittayawong, Decha; Côté, Jacques; Tan, Song

    2005-01-01

    Chromatin modification complexes are key gene regulatory factors which posttranslationally modify the histone component of chromatin with epigenetic marks. To address what features of chromatin modification complexes are responsible for the specific recognition of nucleosomes compared to naked histones, we have performed a functional dissection of the Esa1-containing Saccharomyces cerevisiae Piccolo NuA4 histone acetyltransferase complex. Our studies define the Piccolo determinants sufficient to assemble its three subunits into a complex as well as Piccolo determinants sufficient to specifically acetylate a chromatin template. We find that the conserved Enhancer of Polycomb A (EPcA) homology region of the Epl1 component and the N-terminal 165 amino acids of the Yng2 component of Piccolo are sufficient with Esa1 to specifically act on nucleosomes. We also find that the Esa1 chromodomain plays a critical role in Piccolo's ability to distinguish between histones and nucleosomes. In particular, specific point mutations in the chromodomain putative hydrophobic cage which strongly hinder growth in yeast greatly reduce histone acetyltransferase activity on nucleosome substrates, independent of histone methylation or other modifications. However, the chromodomain is not required for Piccolo to bind to nucleosomes, suggesting a role for the chromodomain in a catalysis step after nucleosome binding. PMID:15964809

  6. "Anticipated" nucleosome positioning pattern in prokaryotes.

    PubMed

    Rapoport, Alexandra E; Trifonov, Edward N

    2011-11-15

    Linguistic (word count) analysis of prokaryotic genome sequences, by Shannon N-gram extension, reveals that the dominant hidden motifs in A+T rich genomes are T(A)(T)A and G(A)(T)C with uncertain number of repeating A and T. Since prokaryotic sequences are largely protein-coding, the motifs would correspond to amphipathic alpha-helices with alternating lysine and phenylalanine as preferential polar and non-polar residues. The motifs are also known in eukaryotes, as nucleosome positioning patterns. Their existence in prokaryotes as well may serve for binding of histone-like proteins to DNA. In this case the above patterns in prokaryotes may be considered as "anticipated" nucleosome positioning patterns which, quite likely, existed in prokaryotic genomes before the evolutionary separation between eukaryotes and prokaryotes.

  7. Elastic correlations in nucleosomal DNA structure.

    PubMed

    Mohammad-Rafiee, Farshid; Golestanian, Ramin

    2005-06-17

    The structure of DNA in the nucleosome core particle is studied using an elastic model that incorporates anisotropy in the bending energetics and twist-bend coupling. Using the experimentally determined structure of nucleosomal DNA [T. J. Richmond and C. A. Davey, Nature (London) 423, 145 (2003)], it is shown that elastic correlations exist between twist, roll, tilt, and stretching of DNA, as well as the distance between phosphate groups. The twist-bend coupling term is shown to be able to capture these correlations to a large extent, and a fit to the experimental data yields a new estimate of G = 25 nm for the value of the twist-bend coupling constant.

  8. The stability of nucleosomes at the replication fork.

    PubMed

    Gasser, R; Koller, T; Sogo, J M

    1996-05-01

    Purified simian virus (SV40) minichromosomes were photoreacted with psoralen under various conditions that moderately destabilize nucleosomes. This assay allows indirect distinction between stable nucleosomes, partially unravelled nucleosomes and nucleosomes containing (or lacking) histone H1. In replicating molecules the passage of the replication machinery destabilizes the nucleosomal organization of the chromatin fiber over a distance of 650 to 1100 bp. In front of the fork, an average of two nucleosomes are destabilized presumably by the dissociation of histone H1 and the advancing replication machinery. On daughter strands, the first nucleosome is detected at a distance of about 260 nucleotides from the elongation point. This nucleosome is interpreted to contain no histone H1, while no stepwise association of (H3-H4)2 tetramers with H2A/H2B dimers on nascent DNA can be detected in vivo. The second nucleosome after the replication fork appears to contain histone H1. The prolonged nuclease sensitivity of newly replicated chromatin described in the literature therefore may not be due to a slow reassociation of histone H1.

  9. The effect of DNA supercoiling on nucleosome structure and stability.

    PubMed

    Elbel, Tabea; Langowski, Jörg

    2015-02-18

    Nucleosomes have to open to allow access to DNA in transcription, replication, and DNA damage repair. Changes in DNA torsional strain (e.g. during transcription elongation) influence the accessibility of nucleosomal DNA. Here we investigated the effect of DNA supercoiling-induced torsional strain on nucleosome structure and stability by scanning force microscopy (SFM) and fluorescence correlation spectroscopy (FCS). Nucleosomes were reconstituted onto 2.7 kb DNA plasmids with varying superhelical densities. The SFM results show a clear dependence of the amount of DNA wrapped around the nucleosome core on the strength and type of supercoiling. Negative supercoiling led to smaller nucleosome opening angles as compared to relaxed or positively supercoiled DNA. FCS experiments show that nucleosomes reconstituted on negatively superhelical DNA are more resistant to salt-induced destabilization, as seen by reduced H2A-H2B dimer eviction from the nucleosome. Our results show that changes in DNA topology, e.g. during transcription elongation, affect the accessibility of nucleosomal DNA.

  10. A positioned +1 nucleosome enhances promoter-proximal pausing.

    PubMed

    Jimeno-González, Silvia; Ceballos-Chávez, María; Reyes, José C

    2015-03-31

    Chromatin distribution is not uniform along the human genome. In most genes there is a promoter-associated nucleosome free region (NFR) followed by an array of nucleosomes towards the gene body in which the first (+1) nucleosome is strongly positioned. The function of this characteristic chromatin distribution in transcription is not fully understood. Here we show in vivo that the +1 nucleosome plays a role in modulating RNA polymerase II (RNAPII) promoter-proximal pausing. When a +1 nucleosome is strongly positioned, elongating RNAPII has a tendency to stall at the promoter-proximal region, recruits more negative elongation factor (NELF) and produces less mRNA. The nucleosome-induced pause favors pre-mRNA quality control by promoting the addition of the cap to the nascent RNA. Moreover, the uncapped RNAs produced in the absence of a positioned nucleosome are degraded by the 5'-3' exonuclease XRN2. Interestingly, reducing the levels of the chromatin remodeler ISWI factor SNF2H decreases +1 nucleosome positioning and increases RNAPII pause release. This work demonstrates a function for +1 nucleosome in regulation of transcription elongation, pre-mRNA processing and gene expression.

  11. The effect of DNA supercoiling on nucleosome structure and stability

    NASA Astrophysics Data System (ADS)

    Elbel, Tabea; Langowski, Jörg

    2015-02-01

    Nucleosomes have to open to allow access to DNA in transcription, replication, and DNA damage repair. Changes in DNA torsional strain (e.g. during transcription elongation) influence the accessibility of nucleosomal DNA. Here we investigated the effect of DNA supercoiling-induced torsional strain on nucleosome structure and stability by scanning force microscopy (SFM) and fluorescence correlation spectroscopy (FCS). Nucleosomes were reconstituted onto 2.7 kb DNA plasmids with varying superhelical densities. The SFM results show a clear dependence of the amount of DNA wrapped around the nucleosome core on the strength and type of supercoiling. Negative supercoiling led to smaller nucleosome opening angles as compared to relaxed or positively supercoiled DNA. FCS experiments show that nucleosomes reconstituted on negatively superhelical DNA are more resistant to salt-induced destabilization, as seen by reduced H2A-H2B dimer eviction from the nucleosome. Our results show that changes in DNA topology, e.g. during transcription elongation, affect the accessibility of nucleosomal DNA.

  12. A positioned +1 nucleosome enhances promoter-proximal pausing

    PubMed Central

    Jimeno-González, Silvia; Ceballos-Chávez, María; Reyes, José C.

    2015-01-01

    Chromatin distribution is not uniform along the human genome. In most genes there is a promoter-associated nucleosome free region (NFR) followed by an array of nucleosomes towards the gene body in which the first (+1) nucleosome is strongly positioned. The function of this characteristic chromatin distribution in transcription is not fully understood. Here we show in vivo that the +1 nucleosome plays a role in modulating RNA polymerase II (RNAPII) promoter-proximal pausing. When a +1 nucleosome is strongly positioned, elongating RNAPII has a tendency to stall at the promoter-proximal region, recruits more negative elongation factor (NELF) and produces less mRNA. The nucleosome-induced pause favors pre-mRNA quality control by promoting the addition of the cap to the nascent RNA. Moreover, the uncapped RNAs produced in the absence of a positioned nucleosome are degraded by the 5′-3′ exonuclease XRN2. Interestingly, reducing the levels of the chromatin remodeler ISWI factor SNF2H decreases +1 nucleosome positioning and increases RNAPII pause release. This work demonstrates a function for +1 nucleosome in regulation of transcription elongation, pre-mRNA processing and gene expression. PMID:25735750

  13. Nucleosome immobilization strategies for single-pair FRET microscopy.

    PubMed

    Koopmans, Wiepke J A; Schmidt, Thomas; van Noort, John

    2008-10-01

    All genomic transactions in eukaryotes take place in the context of the nucleosome, the basic unit of chromatin, which is responsible for DNA compaction. Overcoming the steric hindrance that nucleosomes present for DNA-processing enzymes requires significant conformational changes. The dynamics of these have been hard to resolve. Single-pair Fluorescence Resonance Energy Transfer (spFRET) microscopy is a powerful technique for observing conformational dynamics of the nucleosome. Nucleosome immobilization allows the extension of observation times to a limit set only by photobleaching, and thus opens the possibility of studying processes occurring on timescales ranging from milliseconds to minutes. It is crucial however, that immobilization itself does not introduce artifacts in the dynamics. Here we report on various nucleosome immobilization strategies, such as single-point attachment to polyethylene glycol (PEG) or surfaces coated with bovine serum albumin (BSA), and confinement in porous agarose or polyacrylamide gels. We compare the immobilization specificity and structural integrity of immobilized nucleosomes. A crosslinked star polyethylene glycol coating performs best with respect to tethering specificity and nucleosome integrity, and enables us to reproduce for the first time bulk nucleosome unwrapping kinetics in single nucleosomes without immobilization artifacts.

  14. Initiation and bidirectional propagation of chromatin assembly from a target site for nucleotide excision repair.

    PubMed Central

    Gaillard, P H; Moggs, J G; Roche, D M; Quivy, J P; Becker, P B; Wood, R D; Almouzni, G

    1997-01-01

    To restore full genomic integrity in a eukaryotic cell, DNA repair processes have to be coordinated with the resetting of nucleosomal organization. We have established a cell-free system using Drosophila embryo extracts to investigate the mechanism linking de novo nucleosome formation to nucleotide excision repair (NER). Closed-circular DNA containing a uniquely placed cisplatin-DNA adduct was used to follow chromatin assembly specifically from a site of NER. Nucleosome formation was initiated from a target site for NER. The assembly of nucleosomes propagated bidirectionally, creating a regular nucleosomal array extending beyond the initiation site. Furthermore, this chromatin assembly was still effective when the repair synthesis step in the NER process was inhibited. PMID:9321407

  15. Genome wide nucleosome mapping for HSV-1 shows nucleosomes are deposited at preferred positions during lytic infection.

    PubMed

    Oh, Jaewook; Sanders, Iryna F; Chen, Eric Z; Li, Hongzhe; Tobias, John W; Isett, R Benjamin; Penubarthi, Sindura; Sun, Hao; Baldwin, Don A; Fraser, Nigel W

    2015-01-01

    HSV is a large double stranded DNA virus, capable of causing a variety of diseases from the common cold sore to devastating encephalitis. Although DNA within the HSV virion does not contain any histone protein, within 1 h of infecting a cell and entering its nucleus the viral genome acquires some histone protein (nucleosomes). During lytic infection, partial micrococcal nuclease (MNase) digestion does not give the classic ladder band pattern, seen on digestion of cell DNA or latent viral DNA. However, complete digestion does give a mono-nucleosome band, strongly suggesting that there are some nucleosomes present on the viral genome during the lytic infection, but that they are not evenly positioned, with a 200 bp repeat pattern, like cell DNA. Where then are the nucleosomes positioned? Here we perform HSV-1 genome wide nucleosome mapping, at a time when viral replication is in full swing (6 hr PI), using a microarray consisting of 50mer oligonucleotides, covering the whole viral genome (152 kb). Arrays were probed with MNase-protected fragments of DNA from infected cells. Cells were not treated with crosslinking agents, thus we are only mapping tightly bound nucleosomes. The data show that nucleosome deposition is not random. The distribution of signal on the arrays suggest that nucleosomes are located at preferred positions on the genome, and that there are some positions that are not occupied (nucleosome free regions -NFR or Nucleosome depleted regions -NDR), or occupied at frequency below our limit of detection in the population of genomes. Occupancy of only a fraction of the possible sites may explain the lack of a typical MNase partial digestion band ladder pattern for HSV DNA during lytic infection. On average, DNA encoding Immediate Early (IE), Early (E) and Late (L) genes appear to have a similar density of nucleosomes.

  16. Genome Wide Nucleosome Mapping for HSV-1 Shows Nucleosomes Are Deposited at Preferred Positions during Lytic Infection

    PubMed Central

    Oh, Jaewook; Sanders, Iryna F.; Chen, Eric Z.; Li, Hongzhe; Tobias, John W.; Isett, R. Benjamin; Penubarthi, Sindura; Sun, Hao; Baldwin, Don A.; Fraser, Nigel W.

    2015-01-01

    HSV is a large double stranded DNA virus, capable of causing a variety of diseases from the common cold sore to devastating encephalitis. Although DNA within the HSV virion does not contain any histone protein, within 1 h of infecting a cell and entering its nucleus the viral genome acquires some histone protein (nucleosomes). During lytic infection, partial micrococcal nuclease (MNase) digestion does not give the classic ladder band pattern, seen on digestion of cell DNA or latent viral DNA. However, complete digestion does give a mono-nucleosome band, strongly suggesting that there are some nucleosomes present on the viral genome during the lytic infection, but that they are not evenly positioned, with a 200bp repeat pattern, like cell DNA. Where then are the nucleosomes positioned? Here we perform HSV-1 genome wide nucleosome mapping, at a time when viral replication is in full swing (6hr PI), using a microarray consisting of 50mer oligonucleotides, covering the whole viral genome (152kb). Arrays were probed with MNase-protected fragments of DNA from infected cells. Cells were not treated with crosslinking agents, thus we are only mapping tightly bound nucleosomes. The data show that nucleosome deposition is not random. The distribution of signal on the arrays suggest that nucleosomes are located at preferred positions on the genome, and that there are some positions that are not occupied (nucleosome free regions -NFR or Nucleosome depleted regions -NDR), or occupied at frequency below our limit of detection in the population of genomes. Occupancy of only a fraction of the possible sites may explain the lack of a typical MNase partial digestion band ladder pattern for HSV DNA during lytic infection. On average, DNA encoding Immediate Early (IE), Early (E) and Late (L) genes appear to have a similar density of nucleosomes. PMID:25710170

  17. Rigid-body molecular dynamics of DNA inside a nucleosome.

    PubMed

    Fathizadeh, Arman; Berdy Besya, Azim; Reza Ejtehadi, Mohammad; Schiessel, Helmut

    2013-03-01

    The majority of eukaryotic DNA, about three quarter, is wrapped around histone proteins forming so-called nucleosomes. To study nucleosomal DNA we introduce a coarse-grained molecular dynamics model based on sequence-dependent harmonic rigid base pair step parameters of DNA and nucleosomal binding sites. Mixed parametrization based on all-atom molecular dynamics and crystallographic data of protein-DNA structures is used for the base pair step parameters. The binding site parameters are adjusted by experimental B-factor values of the nucleosome crystal structure. The model is then used to determine the energy cost for placing a twist defect into the nucleosomal DNA which allows us to use Kramers theory to calculate nucleosome sliding caused by such defects. It is shown that the twist defect scenario together with the sequence-dependent elasticity of DNA can explain the slow time scales observed for nucleosome mobility along DNA. With this method we also show how the twist defect mechanism leads to a higher mobility of DNA in the presence of sin mutations near the dyad axis. Finally, by performing simulations on 5s rDNA, 601, and telomeric base pair sequences, it is demonstrated that the current model is a powerful tool to predict nucleosome positioning. PMID:23475204

  18. Tension-Dependent Free Energies of Nucleosome Unwrapping

    PubMed Central

    2016-01-01

    Nucleosomes form the basic unit of compaction within eukaryotic genomes, and their locations represent an important, yet poorly understood, mechanism of genetic regulation. Quantifying the strength of interactions within the nucleosome is a central problem in biophysics and is critical to understanding how nucleosome positions influence gene expression. By comparing to single-molecule experiments, we demonstrate that a coarse-grained molecular model of the nucleosome can reproduce key aspects of nucleosome unwrapping. Using detailed simulations of DNA and histone proteins, we calculate the tension-dependent free energy surface corresponding to the unwrapping process. The model reproduces quantitatively the forces required to unwrap the nucleosome and reveals the role played by electrostatic interactions during this process. We then demonstrate that histone modifications and DNA sequence can have significant effects on the energies of nucleosome formation. Most notably, we show that histone tails contribute asymmetrically to the stability of the outer and inner turn of nucleosomal DNA and that depending on which histone tails are modified, the tension-dependent response is modulated differently. PMID:27725965

  19. Histone Acetylation near the Nucleosome Dyad Axis Enhances Nucleosome Disassembly by RSC and SWI/SNF.

    PubMed

    Chatterjee, Nilanjana; North, Justin A; Dechassa, Mekonnen Lemma; Manohar, Mridula; Prasad, Rashmi; Luger, Karolin; Ottesen, Jennifer J; Poirier, Michael G; Bartholomew, Blaine

    2015-12-01

    Signaling associated with transcription activation occurs through posttranslational modification of histones and is best exemplified by lysine acetylation. Lysines are acetylated in histone tails and the core domain/lateral surface of histone octamers. While acetylated lysines in histone tails are frequently recognized by other factors referred to as "readers," which promote transcription, the mechanistic role of the modifications in the lateral surface of the histone octamer remains unclear. By using X-ray crystallography, we found that acetylated lysines 115 and 122 in histone H3 are solvent accessible, but in biochemical assays they appear not to interact with the bromodomains of SWI/SNF and RSC to enhance recruitment or nucleosome mobilization, as previously shown for acetylated lysines in H3 histone tails. Instead, we found that acetylation of lysines 115 and 122 increases the predisposition of nucleosomes for disassembly by SWI/SNF and RSC up to 7-fold, independent of bromodomains, and only in conjunction with contiguous nucleosomes. Thus, in combination with SWI/SNF and RSC, acetylation of lateral surface lysines in the histone octamer serves as a crucial regulator of nucleosomal dynamics distinct from the histone code readers and writers.

  20. Choreography for nucleosomes: the conformational freedom of the nucleosomal filament and its limitations

    PubMed Central

    Engelhardt, Mogens

    2007-01-01

    Eukaryotic DNA is organized into nucleosomes by coiling around core particles of histones, forming a nucleosomal filament. The significance for the conformation of the filament of the DNA entry/exit angle (α) at the nucleosome, the angle of rotation (β) of nucleosomes around their interconnecting DNA (linker DNA) and the length of the linker DNA, has been studied by means of wire models with straight linkers. It is shown that variations in α and β endow the filament with an outstanding conformational freedom when α is increased beyond 60–90°, owing to the ability of the filament to change between forward right-handed and backward left-handed coiling. A wealth of different helical and looped conformations are formed in response to repeated β sequences, and helical conformations are shown to be able to contract to a high density and to associate pairwise into different types of double fibers. Filaments with random β sequences are characterized by relatively stable loop clusters connected by segments of higher flexibility. Displacement of core particles along the DNA in such fibers, combined with limited twisting of the linkers, can generate the β sequence necessary for compaction into a regular helix, thus providing a model for heterochromatinization. PMID:17704136

  1. Touch, act and go: landing and operating on nucleosomes.

    PubMed

    Speranzini, Valentina; Pilotto, Simona; Sixma, Titia K; Mattevi, Andrea

    2016-02-15

    Chromatin-associated enzymes are responsible for the installation, removal and reading of precise post-translation modifications on DNA and histone proteins. They are specifically recruited to the target gene by associated factors, and as a result of their activity, they contribute in modulating cell identity and differentiation. Structural and biophysical approaches are broadening our knowledge on these processes, demonstrating that DNA, histone tails and histone surfaces can each function as distinct yet functionally interconnected anchoring points promoting nucleosome binding and modification. The mechanisms underlying nucleosome recognition have been described for many histone modifiers and related readers. Here, we review the recent literature on the structural organization of these nucleosome-associated proteins, the binding properties that drive nucleosome modification and the methodological advances in their analysis. The overarching conclusion is that besides acting on the same substrate (the nucleosome), each system functions through characteristic modes of action, which bring about specific biological functions in gene expression regulation.

  2. Bivalent interaction of the PZP domain of BRPF1 with the nucleosome impacts chromatin dynamics and acetylation.

    PubMed

    Klein, Brianna J; Muthurajan, Uma M; Lalonde, Marie-Eve; Gibson, Matthew D; Andrews, Forest H; Hepler, Maggie; Machida, Shinichi; Yan, Kezhi; Kurumizaka, Hitoshi; Poirier, Michael G; Côté, Jacques; Luger, Karolin; Kutateladze, Tatiana G

    2016-01-01

    BRPF1 (bromodomain PHD finger 1) is a core subunit of the MOZ histone acetyltransferase (HAT) complex, critical for normal developmental programs and implicated in acute leukemias. BRPF1 contains a unique assembly of zinc fingers, termed a PZP domain, the physiological role of which remains unclear. Here, we elucidate the structure-function relationship of this novel epigenetic reader and detail the biological and mechanistic consequences of its interaction with nucleosomes. PZP has a globular architecture and forms a 2:1 stoichiometry complex with the nucleosome, bivalently interacting with histone H3 and DNA. This binding impacts the nucleosome dynamics, shifting the DNA unwrapping/rewrapping equilibrium toward the unwrapped state and increasing DNA accessibility. We demonstrate that the DNA-binding function of the BRPF1 PZP domain is required for the MOZ-BRPF1-ING5-hEaf6 HAT complex to be recruited to chromatin and to acetylate nucleosomal histones. Our findings reveal a novel link between chromatin dynamics and MOZ-mediated acetylation.

  3. Bivalent interaction of the PZP domain of BRPF1 with the nucleosome impacts chromatin dynamics and acetylation

    PubMed Central

    Klein, Brianna J.; Muthurajan, Uma M.; Lalonde, Marie-Eve; Gibson, Matthew D.; Andrews, Forest H.; Hepler, Maggie; Machida, Shinichi; Yan, Kezhi; Kurumizaka, Hitoshi; Poirier, Michael G.; Côté, Jacques; Luger, Karolin; Kutateladze, Tatiana G.

    2016-01-01

    BRPF1 (bromodomain PHD finger 1) is a core subunit of the MOZ histone acetyltransferase (HAT) complex, critical for normal developmental programs and implicated in acute leukemias. BRPF1 contains a unique assembly of zinc fingers, termed a PZP domain, the physiological role of which remains unclear. Here, we elucidate the structure-function relationship of this novel epigenetic reader and detail the biological and mechanistic consequences of its interaction with nucleosomes. PZP has a globular architecture and forms a 2:1 stoichiometry complex with the nucleosome, bivalently interacting with histone H3 and DNA. This binding impacts the nucleosome dynamics, shifting the DNA unwrapping/rewrapping equilibrium toward the unwrapped state and increasing DNA accessibility. We demonstrate that the DNA-binding function of the BRPF1 PZP domain is required for the MOZ-BRPF1-ING5-hEaf6 HAT complex to be recruited to chromatin and to acetylate nucleosomal histones. Our findings reveal a novel link between chromatin dynamics and MOZ-mediated acetylation. PMID:26626149

  4. Bivalent interaction of the PZP domain of BRPF1 with the nucleosome impacts chromatin dynamics and acetylation.

    PubMed

    Klein, Brianna J; Muthurajan, Uma M; Lalonde, Marie-Eve; Gibson, Matthew D; Andrews, Forest H; Hepler, Maggie; Machida, Shinichi; Yan, Kezhi; Kurumizaka, Hitoshi; Poirier, Michael G; Côté, Jacques; Luger, Karolin; Kutateladze, Tatiana G

    2016-01-01

    BRPF1 (bromodomain PHD finger 1) is a core subunit of the MOZ histone acetyltransferase (HAT) complex, critical for normal developmental programs and implicated in acute leukemias. BRPF1 contains a unique assembly of zinc fingers, termed a PZP domain, the physiological role of which remains unclear. Here, we elucidate the structure-function relationship of this novel epigenetic reader and detail the biological and mechanistic consequences of its interaction with nucleosomes. PZP has a globular architecture and forms a 2:1 stoichiometry complex with the nucleosome, bivalently interacting with histone H3 and DNA. This binding impacts the nucleosome dynamics, shifting the DNA unwrapping/rewrapping equilibrium toward the unwrapped state and increasing DNA accessibility. We demonstrate that the DNA-binding function of the BRPF1 PZP domain is required for the MOZ-BRPF1-ING5-hEaf6 HAT complex to be recruited to chromatin and to acetylate nucleosomal histones. Our findings reveal a novel link between chromatin dynamics and MOZ-mediated acetylation. PMID:26626149

  5. Nucleosome Stability Distinguishes Two Different Promoter Types at All Protein-Coding Genes in Yeast.

    PubMed

    Kubik, Slawomir; Bruzzone, Maria Jessica; Jacquet, Philippe; Falcone, Jean-Luc; Rougemont, Jacques; Shore, David

    2015-11-01

    Previous studies indicate that eukaryotic promoters display a stereotypical chromatin landscape characterized by a well-positioned +1 nucleosome near the transcription start site and an upstream -1 nucleosome that together demarcate a nucleosome-free (or -depleted) region. Here we present evidence that there are two distinct types of promoters distinguished by the resistance of the -1 nucleosome to micrococcal nuclease digestion. These different architectures are characterized by two sequence motifs that are broadly deployed at one set of promoters where a nuclease-sensitive ("fragile") nucleosome forms, but concentrated in a narrower, nucleosome-free region at all other promoters. The RSC nucleosome remodeler acts through the motifs to establish stable +1 and -1 nucleosome positions, while binding of a small set of general regulatory (pioneer) factors at fragile nucleosome promoters plays a key role in their destabilization. We propose that the fragile nucleosome promoter architecture is adapted for regulation of highly expressed, growth-related genes.

  6. Z curve theory-based analysis of the dynamic nature of nucleosome positioning in Saccharomyces cerevisiae.

    PubMed

    Wu, Xueting; Liu, Hui; Liu, Hongbo; Su, Jianzhong; Lv, Jie; Cui, Ying; Wang, Fang; Zhang, Yan

    2013-11-01

    Nucleosome is the elementary structural unit of eukaryotic chromatin. Instability of nucleosome positioning plays critical roles in chromatin remodeling in differentiation and disease. In this study, we investigated nucleosome dynamics in the Saccharomyces cerevisiae genome using a geometric model based on Z curve theory. We identified 52,941 stable nucleosomes and 7607 dynamic nucleosomes, compiling them into a genome-wide nucleosome dynamic positioning map and constructing a user-friendly visualization platform (http://bioinfo.hrbmu.edu.cn/nucleosome). Our approach achieved a sensitivity of 90.31% and a specificity of 87.76% for S. cerevisiae. Analysis revealed transcription factor binding sites (TFBSs) were enriched in linkers. And among the sparse nucleosomes around TFBSs, dynamic nucleosomes were slightly preferred. Gene Ontology (GO) enrichment analysis indicated that stable and dynamic nucleosomes were enriched on genes involved in different biological processes and functions. This study provides an approach for comprehending chromatin remodeling and transcriptional regulation of genes.

  7. A one-dimensional model of Nucleosome distribution in DNA

    NASA Astrophysics Data System (ADS)

    Osberg, Brendan; Moebius, Wolfram; Nguyen, Kien; Gerland, Ulrich

    2012-02-01

    Nucleosome positioning along DNA is neither random nor precisely regular. Genome-wide maps of nucleosome positions in various eukaryotes have revealed a common pattern around transcription start sites, involving a nucleosome-free region flanked by a periodic pattern in the average nucleosome density. We take a quantitative mathematical description of the nucleosome pattern, and incorporate specifically bound transcription factors. Our model assumes a dense, one-dimensional gas of particles, however, instead of previous work which assumes fixed-size particles interacting only by exclusion, our model explicitly accounts for transient unwrapping of short segments of nucleosomal DNA. Hence, such particles no longer have a fixed size, but interact by an effective repulsive potential. This model has been succesfully used, by us, to provide a unified description of 12 Hemiascomycota yeast species with a single unified set of model parameters. We incorporate into this model, specifically bound particles, or transcription factors (TF), which serve an important role in gene regulation. Nucleosome distribution patterns have an important influence on TF binding, and can even mediate interactions between transcription factors at a distance. This interaction can account for cooperative or competitive binding between these proteins, and we will discuss the implications this can have on gene regulation.

  8. Dynamics of Nucleosome Positioning Maturation following Genomic Replication.

    PubMed

    Vasseur, Pauline; Tonazzini, Saphia; Ziane, Rahima; Camasses, Alain; Rando, Oliver J; Radman-Livaja, Marta

    2016-09-01

    Chromatin is thought to carry epigenetic information from one generation to the next, although it is unclear how such information survives the disruptions of nucleosomal architecture occurring during genomic replication. Here, we measure a key aspect of chromatin structure dynamics during replication-how rapidly nucleosome positions are established on the newly replicated daughter genomes. By isolating newly synthesized DNA marked with 5-ethynyl-2'-deoxyuridine (EdU), we characterize nucleosome positions on both daughter genomes of S. cerevisiae during chromatin maturation. We find that nucleosomes rapidly adopt their mid-log positions at highly transcribed genes, which is consistent with a role for transcription in positioning nucleosomes in vivo. Additionally, experiments in hir1Δ mutants reveal a role for HIR in nucleosome spacing. We also characterized nucleosome positions on the leading and lagging strands, uncovering differences in chromatin maturation dynamics at hundreds of genes. Our data define the maturation dynamics of newly replicated chromatin and support a role for transcription in sculpting the chromatin template.

  9. Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism.

    PubMed Central

    Kornberg, R D; Stryer, L

    1988-01-01

    Expressions are derived for distributions of nucleosomes in chromatin. Nucleosomes are placed on DNA at the densities found in bulk chromatin, and their locations are allowed to vary at random. No further assumptions are required to simulate the periodic patterns of digestion obtained with various nucleases. The introduction of a boundary constraint, due for example to sequence-specific protein binding, results in an array of regularly spaced nucleosomes at nonrandom locations, similar to the arrays reported for some genes and other chromosomal regions. PMID:3399412

  10. Keeping fingers crossed: heterochromatin spreading through interdigitation of nucleosome arrays.

    PubMed

    Grigoryev, Sergei A

    2004-04-23

    Interphase eukaryotic nuclei contain diffuse euchromatin and condensed heterochromatin. Current textbook models suggest that chromatin condensation occurs via accordion-type compaction of nucleosome zigzag chains. Recent studies have revealed several structural aspects that distinguish the highly compact state of condensed heterochromatin. These include an extensive lateral self-association of chromatin fibers, prominent nucleosome linker 'stems', and special protein factors that promote chromatin self-association. Here I review the molecular and structural determinants of chromatin compaction and discuss how heterochromatin spreading may be mediated by lateral self-association of zigzag nucleosome arrays. PMID:15094034

  11. Mechanical model of the nucleosome and chromatin.

    PubMed

    Bishop, Thomas C; Zhmudsky, Oleksandr O

    2002-04-01

    A theoretical framework for evaluating the approximate energy and dynamic properties associated with the folding of DNA into nucleosomes and chromatin is presented. Experimentally determined elastic constants of linear DNA and a simple fold geometry are assumed in order to derive elastic constants for extended and condensed chromatin. The model predicts the Young s modulus of extended and condensed chromatin to within an order of magnitude of experimentally determined values. Thus we demonstrate that the elastic properties of DNA are a primary determinant of the elastic properties of the higher order folded states. The derived elastic constants are used to predict the speed of propagation of small amplitude waves that excite an extension(sound), twist, bend or shear motion in each folded state. Taken together the results demonstrate that folding creates a hierarchy of time, length and energy scales.

  12. Multiplexing Genetic and Nucleosome Positioning Codes: A Computational Approach

    PubMed Central

    Eslami-Mossallam, Behrouz; Schram, Raoul D.; Tompitak, Marco; van Noort, John; Schiessel, Helmut

    2016-01-01

    Eukaryotic DNA is strongly bent inside fundamental packaging units: the nucleosomes. It is known that their positions are strongly influenced by the mechanical properties of the underlying DNA sequence. Here we discuss the possibility that these mechanical properties and the concomitant nucleosome positions are not just a side product of the given DNA sequence, e.g. that of the genes, but that a mechanical evolution of DNA molecules might have taken place. We first demonstrate the possibility of multiplexing classical and mechanical genetic information using a computational nucleosome model. In a second step we give evidence for genome-wide multiplexing in Saccharomyces cerevisiae and Schizosacharomyces pombe. This suggests that the exact positions of nucleosomes play crucial roles in chromatin function. PMID:27272176

  13. Single-molecule decoding of combinatorially modified nucleosomes.

    PubMed

    Shema, Efrat; Jones, Daniel; Shoresh, Noam; Donohue, Laura; Ram, Oren; Bernstein, Bradley E

    2016-05-01

    Different combinations of histone modifications have been proposed to signal distinct gene regulatory functions, but this area is poorly addressed by existing technologies. We applied high-throughput single-molecule imaging to decode combinatorial modifications on millions of individual nucleosomes from pluripotent stem cells and lineage-committed cells. We identified definitively bivalent nucleosomes with concomitant repressive and activating marks, as well as other combinatorial modification states whose prevalence varies with developmental potency. We showed that genetic and chemical perturbations of chromatin enzymes preferentially affect nucleosomes harboring specific modification states. Last, we combined this proteomic platform with single-molecule DNA sequencing technology to simultaneously determine the modification states and genomic positions of individual nucleosomes. This single-molecule technology has the potential to address fundamental questions in chromatin biology and epigenetic regulation. PMID:27151869

  14. DNA Shape Dominates Sequence Affinity in Nucleosome Formation

    NASA Astrophysics Data System (ADS)

    Freeman, Gordon S.; Lequieu, Joshua P.; Hinckley, Daniel M.; Whitmer, Jonathan K.; de Pablo, Juan J.

    2014-10-01

    Nucleosomes provide the basic unit of compaction in eukaryotic genomes, and the mechanisms that dictate their position at specific locations along a DNA sequence are of central importance to genetics. In this Letter, we employ molecular models of DNA and proteins to elucidate various aspects of nucleosome positioning. In particular, we show how DNA's histone affinity is encoded in its sequence-dependent shape, including subtle deviations from the ideal straight B-DNA form and local variations of minor groove width. By relying on high-precision simulations of the free energy of nucleosome complexes, we also demonstrate that, depending on DNA's intrinsic curvature, histone binding can be dominated by bending interactions or electrostatic interactions. More generally, the results presented here explain how sequence, manifested as the shape of the DNA molecule, dominates molecular recognition in the problem of nucleosome positioning.

  15. Transcriptional Regulators Compete with Nucleosomes Post-replication.

    PubMed

    Ramachandran, Srinivas; Henikoff, Steven

    2016-04-21

    Every nucleosome across the genome must be disrupted and reformed when the replication fork passes, but how chromatin organization is re-established following replication is unknown. To address this problem, we have developed Mapping In vivo Nascent Chromatin with EdU and sequencing (MINCE-seq) to characterize the genome-wide location of nucleosomes and other chromatin proteins behind replication forks at high temporal and spatial resolution. We find that the characteristic chromatin landscape at Drosophila promoters and enhancers is lost upon replication. The most conspicuous changes are at promoters that have high levels of RNA polymerase II (RNAPII) stalling and DNA accessibility and show specific enrichment for the BRM remodeler. Enhancer chromatin is also disrupted during replication, suggesting a role for transcription factor (TF) competition in nucleosome re-establishment. Thus, the characteristic nucleosome landscape emerges from a uniformly packaged genome by the action of TFs, RNAPII, and remodelers minutes after replication fork passage. PMID:27062929

  16. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility.

    PubMed

    Ngo, Thuy T M; Zhang, Qiucen; Zhou, Ruobo; Yodh, Jaya G; Ha, Taekjip

    2015-03-12

    Dynamics of the nucleosome and exposure of nucleosomal DNA play key roles in many nuclear processes, but local dynamics of the nucleosome and its modulation by DNA sequence are poorly understood. Using single-molecule assays, we observed that the nucleosome can unwrap asymmetrically and directionally under force. The relative DNA flexibility of the inner quarters of nucleosomal DNA controls the unwrapping direction such that the nucleosome unwraps from the stiffer side. If the DNA flexibility is similar on two sides, it stochastically unwraps from either side. The two ends of the nucleosome are orchestrated such that the opening of one end helps to stabilize the other end, providing a mechanism to amplify even small differences in flexibility to a large asymmetry in nucleosome stability. Our discovery of DNA flexibility as a critical factor for nucleosome dynamics and mechanical stability suggests a novel mechanism of gene regulation by DNA sequence and modifications.

  17. Nucleosome alterations caused by mutations at modifiable histone residues in Saccharomyces cerevisiae.

    PubMed

    Liu, Hongde; Wang, Pingyan; Liu, Lingjie; Min, Zhu; Luo, Kun; Wan, Yakun

    2015-10-26

    Nucleosome organization exhibits dynamic properties depending on the cell state and environment. Histone proteins, fundamental components of nucleosomes, are subject to chemical modifications on particular residues. We examined the effect of substituting modifiable residues of four core histones with the non-modifiable residue alanine on nucleosome dynamics. We mapped the genome-wide nucleosomes in 22 histone mutants of Saccharomyces cerevisiae and compared the nucleosome alterations relative to the wild-type strain. Our results indicated that different types of histone mutation resulted in different phenotypes and a distinct reorganization of nucleosomes. Nucleosome occupancy was altered at telomeres, but not at centromeres. The first nucleosomes upstream (-1) and downstream (+1) of the transcription start site (TSS) were more dynamic than other nucleosomes. Mutations in histones affected the nucleosome array downstream of the TSS. Highly expressed genes, such as ribosome genes and genes involved in glycolysis, showed increased nucleosome occupancy in many types of histone mutant. In particular, the H3K56A mutant exhibited a high percentage of dynamic genomic regions, decreased nucleosome occupancy at telomeres, increased occupancy at the +1 and -1 nucleosomes, and a slow growth phenotype under stress conditions. Our findings provide insight into the influence of histone mutations on nucleosome dynamics.

  18. Nucleosome alterations caused by mutations at modifiable histone residues in Saccharomyces cerevisiae

    PubMed Central

    Liu, Hongde; Wang, Pingyan; Liu, Lingjie; Min, Zhu; Luo, Kun; Wan, Yakun

    2015-01-01

    Nucleosome organization exhibits dynamic properties depending on the cell state and environment. Histone proteins, fundamental components of nucleosomes, are subject to chemical modifications on particular residues. We examined the effect of substituting modifiable residues of four core histones with the non-modifiable residue alanine on nucleosome dynamics. We mapped the genome-wide nucleosomes in 22 histone mutants of Saccharomyces cerevisiae and compared the nucleosome alterations relative to the wild-type strain. Our results indicated that different types of histone mutation resulted in different phenotypes and a distinct reorganization of nucleosomes. Nucleosome occupancy was altered at telomeres, but not at centromeres. The first nucleosomes upstream (−1) and downstream (+1) of the transcription start site (TSS) were more dynamic than other nucleosomes. Mutations in histones affected the nucleosome array downstream of the TSS. Highly expressed genes, such as ribosome genes and genes involved in glycolysis, showed increased nucleosome occupancy in many types of histone mutant. In particular, the H3K56A mutant exhibited a high percentage of dynamic genomic regions, decreased nucleosome occupancy at telomeres, increased occupancy at the +1 and −1 nucleosomes, and a slow growth phenotype under stress conditions. Our findings provide insight into the influence of histone mutations on nucleosome dynamics. PMID:26498326

  19. DNA damage may drive nucleosomal reorganization to facilitate damage detection

    NASA Astrophysics Data System (ADS)

    LeGresley, Sarah E.; Wilt, Jamie; Antonik, Matthew

    2014-03-01

    One issue in genome maintenance is how DNA repair proteins find lesions at rates that seem to exceed diffusion-limited search rates. We propose a phenomenon where DNA damage induces nucleosomal rearrangements which move lesions to potential rendezvous points in the chromatin structure. These rendezvous points are the dyad and the linker DNA between histones, positions in the chromatin which are more likely to be accessible by repair proteins engaged in a random search. The feasibility of this mechanism is tested by considering the statistical mechanics of DNA containing a single lesion wrapped onto the nucleosome. We consider lesions which make the DNA either more flexible or more rigid by modeling the lesion as either a decrease or an increase in the bending energy. We include this energy in a partition function model of nucleosome breathing. Our results indicate that the steady state for a breathing nucleosome will most likely position the lesion at the dyad or in the linker, depending on the energy of the lesion. A role for DNA binding proteins and chromatin remodelers is suggested based on their ability to alter the mechanical properties of the DNA and DNA-histone binding, respectively. We speculate that these positions around the nucleosome potentially serve as rendezvous points where DNA lesions may be encountered by repair proteins which may be sterically hindered from searching the rest of the nucleosomal DNA. The strength of the repositioning is strongly dependent on the structural details of the DNA lesion and the wrapping and breathing of the nucleosome. A more sophisticated evaluation of this proposed mechanism will require detailed information about breathing dynamics, the structure of partially wrapped nucleosomes, and the structural properties of damaged DNA.

  20. Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes

    PubMed Central

    Clapier, Cedric R.; Cairns, Bradley R.

    2012-01-01

    Chromatin remodeling complexes (CRCs) mobilize nucleosomes to mediate the access of DNA-binding factors to their sites in vivo. These CRCs contain a catalytic subunit that bears an ATPase/DNA translocase domain, and flanking regions that bind nucleosomal epitopes1. A central question is whether and how these flanking regions regulate ATP hydrolysis or the coupling of hydrolysis to DNA translocation, to affect nucleosome sliding efficiency. ISWIfamily CRCs contain ISWI2, which utilizes its ATPase/DNA translocase domain to pump DNA around the histone octamer to enable sliding3-7_ENREF_13. ISWI is positively regulated by two ‘activating’ nucleosomal epitopes: the ‘basic patch’ on the H4 tail, and extranucleosomal (linker) DNA8-13. Previous work defined the HSS domain in the ISWI C-terminus that binds linker DNA, needed for ISWI activity14,15. Here, we define two new, conserved, and separate regulatory regions on Drosophila ISWI, AutoN and NegC, that negatively regulate ATP hydrolysis (AutoN) or the coupling of ATP hydrolysis to productive DNA translocation (NegC). Rather than ‘activating’, the two aforementioned nucleosomal epitopes actually inhibit the negative regulation of AutoN and NegC. Remarkably, mutation/removal of AutoN and NegC enables significant nucleosome sliding without the H4 ‘basic patch’ or extranucleosomal DNA, or the HSS domain – converting ISWI to biochemical attributes of SWI/SNF-family ATPases. Thus, the ISWI ATPase catalytic core is an intrinsically-active DNA translocase which conducts nucleosome sliding, onto which selective ‘inhibition-of-inhibition’ modules are placed, to help ensure that remodeling occurs only in the presence of proper nucleosomal epitopes. This supports a general concept for the specialization of chromatin remodeling ATPases, where specific regulatory modules adapt an ancient active DNA translocase to conduct particular tasks only on the appropriate chromatin landscape. PMID:23143334

  1. Counterion atmosphere and hydration patterns near a nucleosome core particle.

    PubMed

    Materese, Christopher K; Savelyev, Alexey; Papoian, Garegin A

    2009-10-21

    The chromatin folding problem is an exciting and rich field for modern research. On the most basic level, chromatin fiber consists of a collection of protein-nucleic acid complexes, known as nucleosomes, joined together by segments of linker DNA. Understanding how the cell successfully compacts meters of highly charged DNA into a micrometer size nucleus while still enabling rapid access to the genetic code for transcriptional processes is a challenging goal. In this work we shed light on the way mobile ions condense around the nucleosome core particle, as revealed by an extensive all-atom molecular dynamics simulation. On a hundred nanosecond time scale, the nucleosome exhibited only small conformational fluctuations. We found that nucleosomal DNA is better neutralized by the combination of histone charges and mobile ions compared with free DNA. We provide a detailed physical explanation of this effect using ideas from electrostatics in continuous media. We also discovered that sodium condensation around the histone core is dominated by an experimentally characterized acidic patch, which is thought to play a significant role in chromatin compaction by binding with basic histone tails. Finally, we found that the nucleosome is extensively permeated by over a thousand water molecules, which in turn allows mobile ions to penetrate deeply into the complex. Overall, our work sheds light on the way ionic and hydration interactions within a nucleosome may affect internucleosomal interactions in higher order chromatin fibers. PMID:19778017

  2. Nucleosomes determine their own patch size in base excision repair.

    PubMed

    Meas, Rithy; Smerdon, Michael J

    2016-01-01

    Base excision repair (BER) processes non-helix distorting lesions (e.g., uracils and gaps) and is composed of two subpathways that differ in the number of nucleotides (nts) incorporated during the DNA synthesis step: short patch (SP) repair incorporates 1 nt and long patch (LP) repair incorporates 2-12 nts. This choice for either LP or SP repair has not been analyzed in the context of nucleosomes. Initial studies with uracil located in nucleosome core DNA showed a distinct DNA polymerase extension profile in cell-free extracts that specifically limits extension to 1 nt, suggesting a preference for SP BER. Therefore, we developed an assay to differentiate long and short repair patches in 'designed' nucleosomes containing a single-nucleotide gap at specific locations relative to the dyad center. Using cell-free extracts or purified enzymes, we found that DNA lesions in the nucleosome core are preferentially repaired by DNA polymerase β and there is a significant reduction in BER polymerase extension beyond 1 nt, creating a striking bias for incorporation of short patches into nucleosomal DNA. These results show that nucleosomes control the patch size used by BER. PMID:27265863

  3. The universality of nucleosome organization: from yeast to human

    NASA Astrophysics Data System (ADS)

    Chereji, Razvan

    The basic units of DNA packaging are called nucleosomes. Their locations on the chromosomes play an essential role in gene regulation. We study nucleosome positioning in yeast, fly, mouse, and human, and build biophysical models in order to explain the genome-wide nucleosome organization. We show that DNA sequence alone is not able to generate the phased arrays of nucleosomes observed in vivo near the transcription start sites. We discuss simple models which can account for the formation of nucleosome depleted regions and nucleosome phasing at the gene promoters. We show that the same principles apply to different organisms. References: [1] RV Chereji, D Tolkunov, G Locke, AV Morozov - Phys. Rev. E 83, 050903 (2011) [2] RV Chereji, AV Morozov - J. Stat. Phys. 144, 379 (2011) [3] RV Chereji, AV Morozov - Proc. Natl. Acad. Sci. U.S.A. 111, 5236 (2014) [4] RV Chereji, T-W Kan, et al. - Nucleic Acids Res. (2015) doi: 10.1093/nar/gkv978 [5] RV Chereji, AV Morozov - Brief. Funct. Genomics 14, 50 (2015) [6] HA Cole, J Ocampo, JR Iben, RV Chereji, DJ Clark - Nucleic Acids Res. 42, 12512 (2014) [7] D Ganguli, RV Chereji, J Iben, HA Cole, DJ Clark - Genome Res. 24, 1637 (2014)

  4. Comprehensive nucleosome mapping of the human genome in cancer progression.

    PubMed

    Druliner, Brooke R; Vera, Daniel; Johnson, Ruth; Ruan, Xiaoyang; Apone, Lynn M; Dimalanta, Eileen T; Stewart, Fiona J; Boardman, Lisa; Dennis, Jonathan H

    2016-03-22

    Altered chromatin structure is a hallmark of cancer, and inappropriate regulation of chromatin structure may represent the origin of transformation. Important studies have mapped human nucleosome distributions genome wide, but the role of chromatin structure in cancer progression has not been addressed. We developed a MNase-Transcription Start Site Sequence Capture method (mTSS-seq) to map the nucleosome distribution at human transcription start sites genome-wide in primary human lung and colon adenocarcinoma tissue. Here, we confirm that nucleosome redistribution is an early, widespread event in lung (LAC) and colon (CRC) adenocarcinoma. These altered nucleosome architectures are consistent between LAC and CRC patient samples indicating that they may serve as important early adenocarcinoma markers. We demonstrate that the nucleosome alterations are driven by the underlying DNA sequence and potentiate transcription factor binding. We conclude that DNA-directed nucleosome redistributions are widespread early in cancer progression. We have proposed an entirely new hierarchical model for chromatin-mediated genome regulation.

  5. Role of nucleosome remodeling in neurodevelopmental and intellectual disability disorders.

    PubMed

    López, Alberto J; Wood, Marcelo A

    2015-01-01

    It is becoming increasingly important to understand how epigenetic mechanisms control gene expression during neurodevelopment. Two epigenetic mechanisms that have received considerable attention are DNA methylation and histone acetylation. Human exome sequencing and genome-wide association studies have linked several neurobiological disorders to genes whose products actively regulate DNA methylation and histone acetylation. More recently, a third major epigenetic mechanism, nucleosome remodeling, has been implicated in human developmental and intellectual disability (ID) disorders. Nucleosome remodeling is driven primarily through nucleosome remodeling complexes with specialized ATP-dependent enzymes. These enzymes directly interact with DNA or chromatin structure, as well as histone subunits, to restructure the shape and organization of nucleosome positioning to ultimately regulate gene expression. Of particular interest is the neuron-specific Brg1/hBrm Associated Factor (nBAF) complex. Mutations in nBAF subunit genes have so far been linked to Coffin-Siris syndrome (CSS), Nicolaides-Baraitser syndrome (NBS), schizophrenia, and Autism Spectrum Disorder (ASD). Together, these human developmental and ID disorders are powerful examples of the impact of epigenetic modulation on gene expression. This review focuses on the new and emerging role of nucleosome remodeling in neurodevelopmental and ID disorders and whether nucleosome remodeling affects gene expression required for cognition independently of its role in regulating gene expression required for development. PMID:25954173

  6. Comprehensive nucleosome mapping of the human genome in cancer progression

    PubMed Central

    Druliner, Brooke R.; Vera, Daniel; Johnson, Ruth; Ruan, Xiaoyang; Apone, Lynn M.; Dimalanta, Eileen T.; Stewart, Fiona J.; Boardman, Lisa; Dennis, Jonathan H.

    2016-01-01

    Altered chromatin structure is a hallmark of cancer, and inappropriate regulation of chromatin structure may represent the origin of transformation. Important studies have mapped human nucleosome distributions genome wide, but the role of chromatin structure in cancer progression has not been addressed. We developed a MNase-Transcription Start Site Sequence Capture method (mTSS-seq) to map the nucleosome distribution at human transcription start sites genome-wide in primary human lung and colon adenocarcinoma tissue. Here, we confirm that nucleosome redistribution is an early, widespread event in lung (LAC) and colon (CRC) adenocarcinoma. These altered nucleosome architectures are consistent between LAC and CRC patient samples indicating that they may serve as important early adenocarcinoma markers. We demonstrate that the nucleosome alterations are driven by the underlying DNA sequence and potentiate transcription factor binding. We conclude that DNA-directed nucleosome redistributions are widespread early in cancer progression. We have proposed an entirely new hierarchical model for chromatin-mediated genome regulation. PMID:26735342

  7. Single-Nucleosome Mapping of Histone Modifications in S. cerevisiae

    PubMed Central

    2005-01-01

    Covalent modification of histone proteins plays a role in virtually every process on eukaryotic DNA, from transcription to DNA repair. Many different residues can be covalently modified, and it has been suggested that these modifications occur in a great number of independent, meaningful combinations. Published low-resolution microarray studies on the combinatorial complexity of histone modification patterns suffer from confounding effects caused by the averaging of modification levels over multiple nucleosomes. To overcome this problem, we used a high-resolution tiled microarray with single-nucleosome resolution to investigate the occurrence of combinations of 12 histone modifications on thousands of nucleosomes in actively growing S. cerevisiae. We found that histone modifications do not occur independently; there are roughly two groups of co-occurring modifications. One group of lysine acetylations shows a sharply defined domain of two hypo-acetylated nucleosomes, adjacent to the transcriptional start site, whose occurrence does not correlate with transcription levels. The other group consists of modifications occurring in gradients through the coding regions of genes in a pattern associated with transcription. We found no evidence for a deterministic code of many discrete states, but instead we saw blended, continuous patterns that distinguish nucleosomes at one location (e.g., promoter nucleosomes) from those at another location (e.g., over the 3′ ends of coding regions). These results are consistent with the idea of a simple, redundant histone code, in which multiple modifications share the same role. PMID:16122352

  8. Nucleosomes determine their own patch size in base excision repair

    PubMed Central

    Meas, Rithy; Smerdon, Michael J.

    2016-01-01

    Base excision repair (BER) processes non-helix distorting lesions (e.g., uracils and gaps) and is composed of two subpathways that differ in the number of nucleotides (nts) incorporated during the DNA synthesis step: short patch (SP) repair incorporates 1 nt and long patch (LP) repair incorporates 2–12 nts. This choice for either LP or SP repair has not been analyzed in the context of nucleosomes. Initial studies with uracil located in nucleosome core DNA showed a distinct DNA polymerase extension profile in cell-free extracts that specifically limits extension to 1 nt, suggesting a preference for SP BER. Therefore, we developed an assay to differentiate long and short repair patches in ‘designed’ nucleosomes containing a single-nucleotide gap at specific locations relative to the dyad center. Using cell-free extracts or purified enzymes, we found that DNA lesions in the nucleosome core are preferentially repaired by DNA polymerase β and there is a significant reduction in BER polymerase extension beyond 1 nt, creating a striking bias for incorporation of short patches into nucleosomal DNA. These results show that nucleosomes control the patch size used by BER. PMID:27265863

  9. Long-range effects of histone point mutations on DNA remodeling revealed from computational analyses of SIN-mutant nucleosome structures

    PubMed Central

    Xu, Fei; Colasanti, Andrew V.; Li, Yun; Olson, Wilma K.

    2010-01-01

    The packaging of DNA into nucleosomes impedes the binding and access of molecules involved in its processing. The SWI/SNF multi-protein assembly, found in yeast, is one of many regulatory factors that stimulate the remodeling of DNA required for its transcription. Amino-acid point mutations in histones H3 or H4 partially bypass the requirement of the SWI/SNF complex in this system. The mechanisms underlying the observed remodeling, however, are difficult to discern from the crystal structures of nucleosomes bearing these so-called SIN (SWI/SNF INdependent) mutations. Here, we report detailed analyses of the conformations and interactions of the histones and DNA in these assemblies. We find that the loss of direct protein–DNA contacts near point-mutation sites, reported previously, is coupled to unexpected additional long-range effects, i.e. loss of intermolecular contacts and accompanying DNA conformational changes at sequentially and spatially distant sites. The SIN mutations seemingly transmit information relevant to DNA binding across the nucleosome. The energetic cost of deforming the DNA to the states found in the SIN-mutant structures helps to distinguish the mutants that show phenotypes in yeast from those that do not. Models incorporating these deformed dimer steps suggest ways that nucleosomal DNA may be remodeled during its biological processing. PMID:20647418

  10. A method for evaluating nucleosome stability with a protein-binding fluorescent dye.

    PubMed

    Taguchi, Hiroyuki; Horikoshi, Naoki; Arimura, Yasuhiro; Kurumizaka, Hitoshi

    2014-12-01

    Nucleosomes are extremely stable histone-DNA complexes that form the building blocks of chromatin, which accommodates genomic DNA within the nucleus. The dynamic properties of chromatin play essential roles in regulating genomic DNA functions, such as DNA replication, recombination, repair, and transcription. Histones are the protein components of nucleosomes, and their diverse modifications and variants increase the versatility of nucleosome structures and their dynamics in chromatin. Therefore, a technique to evaluate the physical properties of nucleosomes would facilitate functional studies of the various nucleosomes. In this report, we describe a convenient assay for evaluating the thermal stability of nucleosomes in vitro.

  11. Binding of NF-κB to nucleosomes: effect of translational positioning, nucleosome remodeling and linker histone H1.

    PubMed

    Lone, Imtiaz Nisar; Shukla, Manu Shubhdarshan; Charles Richard, John Lalith; Peshev, Zahary Yordanov; Dimitrov, Stefan; Angelov, Dimitar

    2013-01-01

    NF-κB is a key transcription factor regulating the expression of inflammatory responsive genes. How NF-κB binds to naked DNA templates is well documented, but how it interacts with chromatin is far from being clear. Here we used a combination of UV laser footprinting, hydroxyl footprinting and electrophoretic mobility shift assay to investigate the binding of NF-κB to nucleosomal templates. We show that NF-κB p50 homodimer is able to bind to its recognition sequence, when it is localized at the edge of the core particle, but not when the recognition sequence is at the interior of the nucleosome. Remodeling of the nucleosome by the chromatin remodeling machine RSC was not sufficient to allow binding of NF-κB to its recognition sequence located in the vicinity of the nucleosome dyad, but RSC-induced histone octamer sliding allowed clearly detectable binding of NF-κB with the slid particle. Importantly, nucleosome dilution-driven removal of H2A-H2B dimer led to complete accessibility of the site located close to the dyad to NF-κB. Finally, we found that NF-κB was able to displace histone H1 and prevent its binding to nucleosome. These data provide important insight on the role of chromatin structure in the regulation of transcription of NF-κB dependent genes. PMID:24086160

  12. The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes.

    PubMed

    Wippo, Christian J; Israel, Lars; Watanabe, Shinya; Hochheimer, Andreas; Peterson, Craig L; Korber, Philipp

    2011-04-01

    Nucleosomes impede access to DNA. Therefore, nucleosome positioning is fundamental to genome regulation. Nevertheless, the molecular nucleosome positioning mechanisms are poorly understood. This is partly because in vitro reconstitution of in vivo-like nucleosome positions from purified components is mostly lacking, barring biochemical studies. Using a yeast extract in vitro reconstitution system that generates in vivo-like nucleosome patterns at S. cerevisiae loci, we find that the RSC chromatin remodelling enzyme is necessary for nucleosome positioning. This was previously suggested by genome-wide in vivo studies and is confirmed here in vivo for individual loci. Beyond the limitations of conditional mutants, we show biochemically that RSC functions directly, can be sufficient, but mostly relies on other factors to properly position nucleosomes. Strikingly, RSC could not be replaced by either the closely related SWI/SNF or the Isw2 remodelling enzyme. Thus, we pinpoint that nucleosome positioning specifically depends on the unique properties of the RSC complex.

  13. ATP-dependent nucleosome unwrapping catalyzed by human RAD51.

    PubMed

    North, Justin A; Amunugama, Ravindra; Klajner, Marcelina; Bruns, Aaron N; Poirier, Michael G; Fishel, Richard

    2013-08-01

    Double-strand breaks (DSB) occur in chromatin following replication fork collapse and chemical or physical damage [Symington and Gautier (Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 2011;45:247-271.)] and may be repaired by homologous recombination (HR) and non-homologous end-joining. Nucleosomes are the fundamental units of chromatin and must be remodeled during DSB repair by HR [Andrews and Luger (Nucleosome structure(s) and stability: variations on a theme. Annu. Rev. Biophys. 2011;40:99-117.)]. Physical initiation of HR requires RAD51, which forms a nucleoprotein filament (NPF) that catalyzes homologous pairing and strand exchange (recombinase) between DNAs that ultimately bridges the DSB gap [San Filippo, Sung and Klein. (Mechanism of eukaryotic HR. Annu. Rev. Biochem. 2008;77:229-257.)]. RAD51 forms an NPF on single-stranded DNA and double-stranded DNA (dsDNA). Although the single-stranded DNA NPF is essential for recombinase initiation, the role of the dsDNA NPF is less clear. Here, we demonstrate that the human RAD51 (HsRAD51) dsDNA NPF disassembles nucleosomes by unwrapping the DNA from the core histones. HsRAD51 that has been constitutively or biochemically activated for recombinase functions displays significantly reduced nucleosome disassembly activity. These results suggest that HsRAD51 can perform ATP hydrolysis-dependent nucleosome disassembly in addition to its recombinase functions. PMID:23757189

  14. Lysine Acetylation Facilitates Spontaneous DNA Dynamics in the Nucleosome.

    PubMed

    Kim, Jongseong; Lee, Jaehyoun; Lee, Tae-Hee

    2015-12-01

    The nucleosome, comprising a histone protein core wrapped around by DNA, is the fundamental packing unit of DNA in cells. Lysine acetylation at the histone core elevates DNA accessibility in the nucleosome, the mechanism of which remains largely unknown. By employing our recently developed hybrid single molecule approach, here we report how the structural dynamics of DNA in the nucleosome is altered upon acetylation at histone H3 lysine 56 (H3K56) that is critical for elevated DNA accessibility. Our results indicate that H3K56 acetylation facilitates the structural dynamics of the DNA at the nucleosome termini that spontaneously and repeatedly open and close on a ms time scale. The results support a molecular mechanism of histone acetylation in catalyzing DNA unpacking whose efficiency is ultimately limited by the spontaneous DNA dynamics at the nucleosome temini. This study provides the first and unique experimental evidence revealing a role of protein chemical modification in directly regulating the kinetic stability of the DNA packing unit.

  15. Flexible and dynamic nucleosome fiber in living mammalian cells.

    PubMed

    Nozaki, Tadasu; Kaizu, Kazunari; Pack, Chan-Gi; Tamura, Sachiko; Tani, Tomomi; Hihara, Saera; Nagai, Takeharu; Takahashi, Koichi; Maeshima, Kazuhiro

    2013-01-01

    Genomic DNA is organized three dimensionally within cells as chromatin and is searched and read by various proteins by an unknown mechanism; this mediates diverse cell functions. Recently, several pieces of evidence, including our cryomicroscopy and synchrotron X-ray scattering analyses, have demonstrated that chromatin consists of irregularly folded nucleosome fibers without a 30-nm chromatin fiber (i.e., a polymer melt-like structure). This melt-like structure implies a less physically constrained and locally more dynamic state, which may be crucial for protein factors to scan genomic DNA. Using a combined approach of fluorescence correlation spectroscopy, Monte Carlo computer simulations, and single nucleosome imaging, we demonstrated the flexible and dynamic nature of the nucleosome fiber in living mammalian cells. We observed local nucleosome fluctuation (~50 nm movement/30 ms) caused by Brownian motion. Our in vivo/in silico results suggest that local nucleosome dynamics facilitate chromatin accessibility and play a critical role in the scanning of genome information.

  16. Chromatin remodeling facilitates DNA incision in UV-damaged nucleosomes.

    PubMed

    Lee, Kyungeun; Kim, Deok Ryong; Ahn, Byungchan

    2004-08-31

    The DNA repair machinery must locate and repair DNA damage all over the genome. As nucleosomes inhibit DNA repair in vitro, it has been suggested that chromatin remodeling might be required for efficient repair in vivo. To investigate a possible contribution of nucleosome dynamics and chromatin remodeling to the repair of UV-photoproducts in nucleosomes, we examined the effect of a chromatin remodeling complex on the repair of UV-lesions by Micrococcus luteus UV endonuclease (ML-UV endo) and T4-endonuclease V (T4-endoV) in reconstituted mononucleosomes positioned at one end of a 175-bp long DNA fragment. Repair by ML-UV endo and T4-endoV was inefficient in mononucleosomes compared with naked DNA. However, the human nucleosome remodeling complex, hSWI/SNF, promoted more homogeneous repair by ML-UV endo and T4-endo V in reconstituted nucleosomes. This result suggests that recognition of DNA damage could be facilitated by a fluid state of the chromatin resulting from chromatin remodeling activities. PMID:15359130

  17. Integrated molecular mechanism directing nucleosome reorganization by human FACT

    PubMed Central

    Tsunaka, Yasuo; Fujiwara, Yoshie; Oyama, Takuji; Hirose, Susumu; Morikawa, Kosuke

    2016-01-01

    Facilitates chromatin transcription (FACT) plays essential roles in chromatin remodeling during DNA transcription, replication, and repair. Our structural and biochemical studies of human FACT–histone interactions present precise views of nucleosome reorganization, conducted by the FACT-SPT16 (suppressor of Ty 16) Mid domain and its adjacent acidic AID segment. AID accesses the H2B N-terminal basic region exposed by partial unwrapping of the nucleosomal DNA, thereby triggering the invasion of FACT into the nucleosome. The crystal structure of the Mid domain complexed with an H3–H4 tetramer exhibits two separate contact sites; the Mid domain forms a novel intermolecular β structure with H4. At the other site, the Mid–H2A steric collision on the H2A-docking surface of the H3–H4 tetramer within the nucleosome induces H2A–H2B displacement. This integrated mechanism results in disrupting the H3 αN helix, which is essential for retaining the nucleosomal DNA ends, and hence facilitates DNA stripping from histone. PMID:26966247

  18. Compaction Kinetics on Single DNAs: Purified Nucleosome Reconstitution Systems versus Crude Extract

    PubMed Central

    Wagner, Gaudeline; Bancaud, Aurélien; Quivy, Jean-Pierre; Clapier, Cédric; Almouzni, Geneviève; Viovy, Jean-Louis

    2005-01-01

    Kinetics of compaction on single DNA molecules are studied by fluorescence videomicroscopy in the presence of 1), Xenopus egg extracts and 2), purified nucleosome reconstitution systems using a combination of histones with either the histone chaperone Nucleosome Assembly Protein (NAP-1) or negatively charged macromolecules such as polyglutamic acid and RNA. The comparison shows that the compaction rates can differ by a factor of up to 1000 for the same amount of histones, depending on the system used and on the presence of histone tails, which can be subjected to post-translational modifications. Reactions with purified reconstitution systems follow a slow and sequential mechanism, compatible with the deposition of one (H3-H4)2 tetramer followed by two (H2A-H2B) dimers. Addition of the histone chaperone NAP-1 increases both the rate of the reaction and the packing ratio of the final product. These stimulatory effects cannot be obtained with polyglutamic acid or RNA, suggesting that yNAP-1 impact on the reaction cannot simply be explained in terms of charge screening. Faster compaction kinetics and higher packing ratios are reproducibly reached with extracts, indicating a role of additional components present in this system. Data are discussed and models proposed to account for the kinetics obtained in our single-molecule assay. PMID:16100259

  19. RNase P protein subunit Rpp29 represses histone H3.3 nucleosome deposition

    PubMed Central

    Newhart, Alyshia; Powers, Sara Lawrence; Shastrula, Prashanth Krishna; Sierra, Isabel; Joo, Lucy M.; Hayden, James E.; Cohen, Andrew R.; Janicki, Susan M.

    2016-01-01

    In mammals, histone H3.3 is a critical regulator of transcription state change and heritability at both euchromatin and heterochromatin. The H3.3-specific chaperone, DAXX, together with the chromatin-remodeling factor, ATRX, regulates H3.3 deposition and transcriptional silencing at repetitive DNA, including pericentromeres and telomeres. However, the events that precede H3.3 nucleosome incorporation have not been fully elucidated. We previously showed that the DAXX-ATRX-H3.3 pathway regulates a multi-copy array of an inducible transgene that can be visualized in single living cells. When this pathway is impaired, the array can be robustly activated. H3.3 is strongly recruited to the site during activation where it accumulates in a complex with transcribed sense and antisense RNA, which is distinct from the DNA/chromatin. This suggests that transcriptional events regulate H3.3 recruited to its incorporation sites. Here we report that the nucleolar RNA proteins Rpp29, fibrillarin, and RPL23a are also components of this H3.3/RNA complex. Rpp29 is a protein subunit of RNase P. Of the other subunits, POP1 and Rpp21 are similarly recruited suggesting that a variant of RNase P regulates H3.3 chromatin assembly. Rpp29 knockdown increases H3.3 chromatin incorporation, which suggests that Rpp29 represses H3.3 nucleosome deposition, a finding with implications for epigenetic regulation. PMID:26842893

  20. Rapid Histone-Catalyzed DNA Lesion Excision and Accompanying Protein Modification in Nucleosomes and Nucleosome Core Particles.

    PubMed

    Weng, Liwei; Greenberg, Marc M

    2015-09-01

    C5'-Hydrogen atoms are frequently abstracted during DNA oxidation. The oxidized abasic lesion 5'-(2-phosphoryl-1,4-dioxobutane) (DOB) is an electrophilic product of the C5'-radical. DOB is a potent irreversible inhibitor of DNA polymerase β, and forms interstrand cross-links in free DNA. We examined the reactivity of DOB within nucleosomes and nucleosome core particles (NCPs), the monomeric component of chromatin. Depending upon the position at which DOB is generated within a NCP, it is excised from nucleosomal DNA at a rate 275-1500-fold faster than that in free DNA. The half-life of DOB (7.0-16.8 min) in NCPs is shorter than any other abasic lesion. DOB's lifetime in NCPs is also significantly shorter than the estimated lifetime of an abasic site within a cell, suggesting that the observed chemistry would occur intracellularly. Histones also catalyze DOB excision when the lesion is present in the DNA linker region of a nucleosome. Schiff-base formation between DOB and histone proteins is detected in nucleosomes and NCPs, resulting in pyrrolone formation at the lysine residues. The lysines modified by DOB are often post-translationally modified. Consequently, the histone modifications described herein could affect the regulation of gene expression and may provide a chemical basis for the cytotoxicity of the DNA damaging agents that produce this lesion.

  1. Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes.

    PubMed

    Grigoryev, Sergei A; Bascom, Gavin; Buckwalter, Jenna M; Schubert, Michael B; Woodcock, Christopher L; Schlick, Tamar

    2016-02-01

    The architecture of higher-order chromatin in eukaryotic cell nuclei is largely unknown. Here, we use electron microscopy-assisted nucleosome interaction capture (EMANIC) cross-linking experiments in combination with mesoscale chromatin modeling of 96-nucleosome arrays to investigate the internal organization of condensed chromatin in interphase cell nuclei and metaphase chromosomes at nucleosomal resolution. The combined data suggest a novel hierarchical looping model for chromatin higher-order folding, similar to rope flaking used in mountain climbing and rappelling. Not only does such packing help to avoid tangling and self-crossing, it also facilitates rope unraveling. Hierarchical looping is characterized by an increased frequency of higher-order internucleosome contacts for metaphase chromosomes compared with chromatin fibers in vitro and interphase chromatin, with preservation of a dominant two-start zigzag organization associated with the 30-nm fiber. Moreover, the strong dependence of looping on linker histone concentration suggests a hierarchical self-association mechanism of relaxed nucleosome zigzag chains rather than longitudinal compaction as seen in 30-nm fibers. Specifically, concentrations lower than one linker histone per nucleosome promote self-associations and formation of these looped networks of zigzag fibers. The combined experimental and modeling evidence for condensed metaphase chromatin as hierarchical loops and bundles of relaxed zigzag nucleosomal chains rather than randomly coiled threads or straight and stiff helical fibers reconciles aspects of other models for higher-order chromatin structure; it constitutes not only an efficient storage form for the genomic material, consistent with other genome-wide chromosome conformation studies that emphasize looping, but also a convenient organization for local DNA unraveling and genome access. PMID:26787893

  2. Hierarchical looping of zigzag nucleosome chains in metaphase chromosomes

    PubMed Central

    Grigoryev, Sergei A.; Bascom, Gavin; Buckwalter, Jenna M.; Schubert, Michael B.; Woodcock, Christopher L.; Schlick, Tamar

    2016-01-01

    The architecture of higher-order chromatin in eukaryotic cell nuclei is largely unknown. Here, we use electron microscopy-assisted nucleosome interaction capture (EMANIC) cross-linking experiments in combination with mesoscale chromatin modeling of 96-nucleosome arrays to investigate the internal organization of condensed chromatin in interphase cell nuclei and metaphase chromosomes at nucleosomal resolution. The combined data suggest a novel hierarchical looping model for chromatin higher-order folding, similar to rope flaking used in mountain climbing and rappelling. Not only does such packing help to avoid tangling and self-crossing, it also facilitates rope unraveling. Hierarchical looping is characterized by an increased frequency of higher-order internucleosome contacts for metaphase chromosomes compared with chromatin fibers in vitro and interphase chromatin, with preservation of a dominant two-start zigzag organization associated with the 30-nm fiber. Moreover, the strong dependence of looping on linker histone concentration suggests a hierarchical self-association mechanism of relaxed nucleosome zigzag chains rather than longitudinal compaction as seen in 30-nm fibers. Specifically, concentrations lower than one linker histone per nucleosome promote self-associations and formation of these looped networks of zigzag fibers. The combined experimental and modeling evidence for condensed metaphase chromatin as hierarchical loops and bundles of relaxed zigzag nucleosomal chains rather than randomly coiled threads or straight and stiff helical fibers reconciles aspects of other models for higher-order chromatin structure; it constitutes not only an efficient storage form for the genomic material, consistent with other genome-wide chromosome conformation studies that emphasize looping, but also a convenient organization for local DNA unraveling and genome access. PMID:26787893

  3. Coupling between Histone Conformations and DNA Geometry in Nucleosomes on a Microsecond Timescale: Atomistic Insights into Nucleosome Functions.

    PubMed

    Shaytan, Alexey K; Armeev, Grigoriy A; Goncearenco, Alexander; Zhurkin, Victor B; Landsman, David; Panchenko, Anna R

    2016-01-16

    An octamer of histone proteins wraps about 200bp of DNA into two superhelical turns to form nucleosomes found in chromatin. Although the static structure of the nucleosomal core particle has been solved, details of the dynamic interactions between histones and DNA remain elusive. We performed extensively long unconstrained, all-atom microsecond molecular dynamics simulations of nucleosomes including linker DNA segments and full-length histones in explicit solvent. For the first time, we were able to identify and characterize the rearrangements in nucleosomes on a microsecond timescale including the coupling between the conformation of the histone tails and the DNA geometry. We found that certain histone tail conformations promoted DNA bulging near its entry/exit sites, resulting in the formation of twist defects within the DNA. This led to a reorganization of histone-DNA interactions, suggestive of the formation of initial nucleosome sliding intermediates. We characterized the dynamics of the histone tails upon their condensation on the core and linker DNA and showed that tails may adopt conformationally constrained positions due to the insertion of "anchoring" lysines and arginines into the DNA minor grooves. Potentially, these phenomena affect the accessibility of post-translationally modified histone residues that serve as important sites for epigenetic marks (e.g., at H3K9, H3K27, H4K16), suggesting that interactions of the histone tails with the core and linker DNA modulate the processes of histone tail modifications and binding of the effector proteins. We discuss the implications of the observed results on the nucleosome function and compare our results to different experimental studies.

  4. Uniformity of nucleosome preservation pattern in Mammalian sperm and its connection to repetitive DNA elements.

    PubMed

    Samans, Birgit; Yang, Yang; Krebs, Stefan; Sarode, Gaurav Vilas; Blum, Helmut; Reichenbach, Myriam; Wolf, Eckhard; Steger, Klaus; Dansranjavin, Temuujin; Schagdarsurengin, Undraga

    2014-07-14

    Nucleosome-to-protamine exchange during mammalian spermiogenesis is essential for compaction and protection of paternal DNA. It is interesting that, depending on the species, 1% to 15% of nucleosomes are retained, but the generalizability and biological function of this retention are unknown. Here, we show concordantly in human and bovine that nucleosomes remained in sperm chromatin predominantly within distal intergenic regions and introns and associated with centromere repeats and retrotransposons (LINE1 and SINEs). In contrast, nucleosome depletion concerned particularly exons, 5'-UTR, 3'-UTR, TSS, and TTS and was associated with simple and low-complexity repeats. Overlap of human and bovine genes exhibiting nucleosome preservation in the promoter and gene body revealed a significant enrichment of signal transduction and RNA- and protein-processing factors. Our study demonstrates the genome-wide uniformity of the nucleosome preservation pattern in mammalian sperm and its connection to repetitive DNA elements and suggests a function in preimplantation processes for paternally derived nucleosomes.

  5. Nucleosome Presence at AML-1 Binding Sites Inversely Correlates with Ly49 Expression: Revelations from an Informatics Analysis of Nucleosomes and Immune Cell Transcription Factors.

    PubMed

    Wight, Andrew; Yang, Doo; Ioshikhes, Ilya; Makrigiannis, Andrew P

    2016-04-01

    Beyond its role in genomic organization and compaction, the nucleosome is believed to participate in the regulation of gene transcription. Here, we report a computational method to evaluate the nucleosome sensitivity for a transcription factor over a given stretch of the genome. Sensitive factors are predicted to be those with binding sites preferentially contained within nucleosome boundaries and lacking 10 bp periodicity. Based on these criteria, the Acute Myeloid Leukemia-1a (AML-1a) transcription factor, a regulator of immune gene expression, was identified as potentially sensitive to nucleosomal regulation within the mouse Ly49 gene family. This result was confirmed in RMA, a cell line with natural expression of Ly49, using MNase-Seq to generate a nucleosome map of chromosome 6, where the Ly49 gene family is located. Analysis of this map revealed a specific depletion of nucleosomes at AML-1a binding sites in the expressed Ly49A when compared to the other, silent Ly49 genes. Our data suggest that nucleosome-based regulation contributes to the expression of Ly49 genes, and we propose that this method of predicting nucleosome sensitivity could aid in dissecting the regulatory role of nucleosomes in general.

  6. Comparative analysis of methods for genome-wide nucleosome cartography.

    PubMed

    Quintales, Luis; Vázquez, Enrique; Antequera, Francisco

    2015-07-01

    Nucleosomes contribute to compacting the genome into the nucleus and regulate the physical access of regulatory proteins to DNA either directly or through the epigenetic modifications of the histone tails. Precise mapping of nucleosome positioning across the genome is, therefore, essential to understanding the genome regulation. In recent years, several experimental protocols have been developed for this purpose that include the enzymatic digestion, chemical cleavage or immunoprecipitation of chromatin followed by next-generation sequencing of the resulting DNA fragments. Here, we compare the performance and resolution of these methods from the initial biochemical steps through the alignment of the millions of short-sequence reads to a reference genome to the final computational analysis to generate genome-wide maps of nucleosome occupancy. Because of the lack of a unified protocol to process data sets obtained through the different approaches, we have developed a new computational tool (NUCwave), which facilitates their analysis, comparison and assessment and will enable researchers to choose the most suitable method for any particular purpose. NUCwave is freely available at http://nucleosome.usal.es/nucwave along with a step-by-step protocol for its use. PMID:25296770

  7. Comparative analysis of methods for genome-wide nucleosome cartography.

    PubMed

    Quintales, Luis; Vázquez, Enrique; Antequera, Francisco

    2015-07-01

    Nucleosomes contribute to compacting the genome into the nucleus and regulate the physical access of regulatory proteins to DNA either directly or through the epigenetic modifications of the histone tails. Precise mapping of nucleosome positioning across the genome is, therefore, essential to understanding the genome regulation. In recent years, several experimental protocols have been developed for this purpose that include the enzymatic digestion, chemical cleavage or immunoprecipitation of chromatin followed by next-generation sequencing of the resulting DNA fragments. Here, we compare the performance and resolution of these methods from the initial biochemical steps through the alignment of the millions of short-sequence reads to a reference genome to the final computational analysis to generate genome-wide maps of nucleosome occupancy. Because of the lack of a unified protocol to process data sets obtained through the different approaches, we have developed a new computational tool (NUCwave), which facilitates their analysis, comparison and assessment and will enable researchers to choose the most suitable method for any particular purpose. NUCwave is freely available at http://nucleosome.usal.es/nucwave along with a step-by-step protocol for its use.

  8. Perturbations in nucleosome structure from heavy metal association

    PubMed Central

    Mohideen, Kareem; Muhammad, Reyhan; Davey, Curt A.

    2010-01-01

    Heavy metals have the potential to engage in strong bonding interactions and can thus function in essential as well as toxic or therapeutic capacities. We conducted crystallographic analyses of heavy cation binding to the nucleosome core particle and found that Co2+ and Ni2+ preferentially associate with the DNA major groove, in a sequence- and conformation-dependent manner. Conversely, Rb+ and Cs+ are found to bind only opportunistically to minor groove elements of the DNA, in particular at narrow AT dinucleotide sites. Furthermore, relative to Mn2+ the aggressive coordination of Co2+ and Ni2+ to guanine bases is observed to induce a shift in histone–DNA register around the nucleosome center by stabilizing DNA stretching over one region accompanied by expulsion of two bases at an opposing location. These ‘softer’ transition metals also associate with multiple histone protein sites, including inter-nucleosomal cross-linking, and display a proclivity for coordination to histidine. Sustained binding and the ability to induce structural perturbations at specific locations in the nucleosome may contribute to genetic and epigenetic mechanisms of carcinogenesis mediated by Co2+ and Ni2+. PMID:20494975

  9. High mobility group protein 1: A collaborator in nucleosome dynamics and estrogen-responsive gene expression

    PubMed Central

    Scovell, William M

    2016-01-01

    High mobility group protein 1 (HMGB1) is a multifunctional protein that interacts with DNA and chromatin to influence the regulation of transcription, DNA replication and repair and recombination. We show that HMGB1 alters the structure and stability of the canonical nucleosome (N) in a nonenzymatic, adenosine triphosphate-independent manner. As a result, the canonical nucleosome is converted to two stable, physically distinct nucleosome conformers. Although estrogen receptor (ER) does not bind to its consensus estrogen response element within a nucleosome, HMGB1 restructures the nucleosome to facilitate strong ER binding. The isolated HMGB1-restructured nucleosomes (N’ and N’’) remain stable and exhibit a number of characteristics that are distinctly different from the canonical nucleosome. These findings complement previous studies that showed (1) HMGB1 stimulates in vivo transcriptional activation at estrogen response elements and (2) knock down of HMGB1 expression by siRNA precipitously reduced transcriptional activation. The findings indicate that a major facet of the mechanism of HMGB1 action involves a restructuring of aspects of the nucleosome that appear to relax structural constraints within the nucleosome. The findings are extended to reveal the differences between ER and the other steroid hormone receptors. A working proposal outlines mechanisms that highlight the multiple facets that HMGB1 may utilize in restructuring the nucleosome. PMID:27247709

  10. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions.

    PubMed

    Schep, Alicia N; Buenrostro, Jason D; Denny, Sarah K; Schwartz, Katja; Sherlock, Gavin; Greenleaf, William J

    2015-11-01

    Transcription factors canonically bind nucleosome-free DNA, making the positioning of nucleosomes within regulatory regions crucial to the regulation of gene expression. Using the assay of transposase accessible chromatin (ATAC-seq), we observe a highly structured pattern of DNA fragment lengths and positions around nucleosomes in Saccharomyces cerevisiae, and use this distinctive two-dimensional nucleosomal "fingerprint" as the basis for a new nucleosome-positioning algorithm called NucleoATAC. We show that NucleoATAC can identify the rotational and translational positions of nucleosomes with up to base-pair resolution and provide quantitative measures of nucleosome occupancy in S. cerevisiae, Schizosaccharomyces pombe, and human cells. We demonstrate the application of NucleoATAC to a number of outstanding problems in chromatin biology, including analysis of sequence features underlying nucleosome positioning, promoter chromatin architecture across species, identification of transient changes in nucleosome occupancy and positioning during a dynamic cellular response, and integrated analysis of nucleosome occupancy and transcription factor binding.

  11. Flexibility and constraint in the nucleosome core landscape of Caenorhabditis elegans chromatin

    PubMed Central

    Johnson, Steven M.; Tan, Frederick J.; McCullough, Heather L.; Riordan, Daniel P.; Fire, Andrew Z.

    2006-01-01

    Nucleosome positions within the chromatin landscape are known to serve as a major determinant of DNA accessibility to transcription factors and other interacting components. To delineate nucleosomal patterns in a model genetic organism, Caenorhabditis elegans, we have carried out a genome-wide analysis in which DNA fragments corresponding to nucleosome cores were liberated using an enzyme (micrococcal nuclease) with a strong preference for cleavage in non-nucleosomal regions. Sequence analysis of 284,091 putative nucleosome cores obtained in this manner from a mixed-stage population of C. elegans reveals a combined picture of flexibility and constraint in nucleosome positioning. As has previously been observed in studies of individual loci in diverse biological systems, we observe areas in the genome where nucleosomes can adopt a wide variety of positions in a given region, areas with little or no nucleosome coverage, and areas where nucleosomes reproducibly adopt a specific positional pattern. In addition to illuminating numerous aspects of chromatin structure for C. elegans, this analysis provides a reference from which to begin an investigation of relationships between the nucleosomal pattern, chromosomal architecture, and lineage-based gene activity on a genome-wide scale. PMID:17038564

  12. Chaperone Nap1 shields histone surfaces used in a nucleosome and can put H2A-H2B in an unconventional tetrameric form.

    PubMed

    D'Arcy, Sheena; Martin, Kyle W; Panchenko, Tanya; Chen, Xu; Bergeron, Serge; Stargell, Laurie A; Black, Ben E; Luger, Karolin

    2013-09-12

    The histone H2A-H2B heterodimer is an integral component of the nucleosome. The cellular localization and deposition of H2A-H2B into chromatin is regulated by numerous factors, including histone chaperones such as nucleosome assembly protein 1 (Nap1). We use hydrogen-deuterium exchange coupled to mass spectrometry to characterize H2A-H2B and Nap1. Unexpectedly, we find that at low ionic strength, the α helices in H2A-H2B are frequently sampling partially disordered conformations and that binding to Nap1 reduces this conformational sampling. We identify the interaction surface between H2A-H2B and Nap1 and confirm its relevance both in vitro and in vivo. We show that two copies of H2A-H2B bound to a Nap1 homodimer form a tetramer with contacts between H2B chains similar to those in the four-helix bundle structural motif. The organization of the complex reveals that Nap1 competes with histone-DNA and interhistone interactions observed in the nucleosome, thereby regulating the availability of histones for chromatin assembly. PMID:23973327

  13. Chaperone Nap1 shields histone surfaces used in a nucleosome and can put H2A-H2B in an unconventional tetrameric form

    PubMed Central

    D’Arcy, Sheena; Martin, Kyle W.; Panchenko, Tanya; Chen, Xu; Bergeron, Serge; Stargell, Laurie A.; Black, Ben E.; Luger, Karolin

    2013-01-01

    Summary The histone H2A-H2B heterodimer is an integral component of the nucleosome. The cellular localization and deposition of H2A-H2B into chromatin is regulated by numerous factors including histone chaperones such as Nucleosome Assembly Protein 1 (Nap1). We use hydrogen-deuterium exchange coupled to mass spectrometry to characterize H2A-H2B and Nap1. Unexpectedly, we find that at low ionic strength the α-helices in H2A-H2B are frequently sampling partially disordered conformations, and that binding to Nap1 reduces this conformational sampling. We identify the interaction surface between H2A-H2B and Nap1, and confirm its relevance both in vitro and in vivo. We show that two copies of H2A-H2B bound to a Nap1 homodimer form a tetramer with contacts between H2B chains similar to those in the four-helix bundle structural motif. The organization of the complex reveals that Nap1 competes with histone-DNA and inter-histone interactions observed in the nucleosome, thereby regulating the availability of histones for chromatin assembly. PMID:23973327

  14. Genetic interaction mapping reveals a role for the SWI/SNF nucleosome remodeler in spliceosome activation in fission yeast.

    PubMed

    Patrick, Kristin L; Ryan, Colm J; Xu, Jiewei; Lipp, Jesse J; Nissen, Kelly E; Roguev, Assen; Shales, Michael; Krogan, Nevan J; Guthrie, Christine

    2015-03-01

    Although numerous regulatory connections between pre-mRNA splicing and chromatin have been demonstrated, the precise mechanisms by which chromatin factors influence spliceosome assembly and/or catalysis remain unclear. To probe the genetic network of pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, we constructed an epistatic mini-array profile (E-MAP) and discovered many new connections between chromatin and splicing. Notably, the nucleosome remodeler SWI/SNF had strong genetic interactions with components of the U2 snRNP SF3 complex. Overexpression of SF3 components in ΔSWI/SNF cells led to inefficient splicing of many fission yeast introns, predominantly those with non-consensus splice sites. Deletion of SWI/SNF decreased recruitment of the splicing ATPase Prp2, suggesting that SWI/SNF promotes co-transcriptional spliceosome assembly prior to first step catalysis. Importantly, defects in SWI/SNF as well as SF3 overexpression each altered nucleosome occupancy along intron-containing genes, illustrating that the chromatin landscape both affects--and is affected by--co-transcriptional splicing.

  15. Structural mechanics of DNA wrapping in the nucleosome.

    PubMed

    Battistini, Federica; Hunter, Christopher A; Gardiner, Eleanor J; Packer, Martin J

    2010-02-19

    Experimental X-ray crystal structures and a database of calculated structural parameters of DNA octamers were used in combination to analyse the mechanics of DNA bending in the nucleosome core complex. The 1kx5 X-ray crystal structure of the nucleosome core complex was used to determine the relationship between local structure at the base-step level and the global superhelical conformation observed for nucleosome-bound DNA. The superhelix is characterised by a large curvature (597 degrees) in one plane and very little curvature (10 degrees) in the orthogonal plane. Analysis of the curvature at the level of 10-step segments shows that there is a uniform curvature of 30 degrees per helical turn throughout most of the structure but that there are two sharper kinks of 50 degrees at +/-2 helical turns from the central dyad base pair. The curvature is due almost entirely to the base-step parameter roll. There are large periodic variations in roll, which are in phase with the helical twist and account for 500 degrees of the total curvature. Although variations in the other base-step parameters perturb the local path of the DNA, they make minimal contributions to the total curvature. This implies that DNA bending in the nucleosome is achieved using the roll-slide-twist degree of freedom previously identified as the major degree of freedom in naked DNA oligomers. The energetics of bending into a nucleosome-bound conformation were therefore analysed using a database of structural parameters that we have previously developed for naked DNA oligomers. The minimum energy roll, the roll flexibility force constant and the maximum and minimum accessible roll values were obtained for each base step in the relevant octanucleotide context to account for the effects of conformational coupling that vary with sequence context. The distribution of base-step roll values and corresponding strain energy required to bend DNA into the nucleosome-bound conformation defined by the 1kx5 structure

  16. Structure of RCC1 chromatin factor bound to the nucleosome core particle

    SciTech Connect

    Makde, Ravindra D.; England, Joseph R.; Yennawar, Hemant P.; Tan, Song

    2010-11-11

    The small GTPase Ran enzyme regulates critical eukaryotic cellular functions including nuclear transport and mitosis through the creation of a RanGTP gradient around the chromosomes. This concentration gradient is created by the chromatin-bound RCC1 (regulator of chromosome condensation) protein, which recruits Ran to nucleosomes and activates Ran's nucleotide exchange activity. Although RCC1 has been shown to bind directly with the nucleosome, the molecular details of this interaction were not known. Here we determine the crystal structure of a complex of Drosophila RCC1 and the nucleosome core particle at 2.9 {angstrom} resolution, providing an atomic view of how a chromatin protein interacts with the histone and DNA components of the nucleosome. Our structure also suggests that the Widom 601 DNA positioning sequence present in the nucleosomes forms a 145-base-pair nucleosome core particle, not the expected canonical 147-base-pair particle.

  17. Crystal structure of the nucleosome containing ultraviolet light-induced cyclobutane pyrimidine dimer.

    PubMed

    Horikoshi, Naoki; Tachiwana, Hiroaki; Kagawa, Wataru; Osakabe, Akihisa; Matsumoto, Syota; Iwai, Shigenori; Sugasawa, Kaoru; Kurumizaka, Hitoshi

    2016-02-26

    The cyclobutane pyrimidine dimer (CPD) is induced in genomic DNA by ultraviolet (UV) light. In mammals, this photolesion is primarily induced within nucleosomal DNA, and repaired exclusively by the nucleotide excision repair (NER) pathway. However, the mechanism by which the CPD is accommodated within the nucleosome has remained unknown. We now report the crystal structure of a nucleosome containing CPDs. In the nucleosome, the CPD induces only limited local backbone distortion, and the affected bases are accommodated within the duplex. Interestingly, one of the affected thymine bases is located within 3.0 Å from the undamaged complementary adenine base, suggesting the formation of complementary hydrogen bonds in the nucleosome. We also found that UV-DDB, which binds the CPD at the initial stage of the NER pathway, also efficiently binds to the nucleosomal CPD. These results provide important structural and biochemical information for understanding how the CPD is accommodated and recognized in chromatin.

  18. Statistical mechanics of nucleosome ordering by chromatin-structure-induced two-body interactions

    NASA Astrophysics Data System (ADS)

    Chereji, Răzvan V.; Tolkunov, Denis; Locke, George; Morozov, Alexandre V.

    2011-05-01

    One-dimensional arrays of nucleosomes (DNA-bound histone octamers separated by stretches of linker DNA) fold into higher-order chromatin structures which ultimately make up eukaryotic chromosomes. Chromatin structure formation leads to 10-11 base pair (bp) discretization of linker lengths caused by the smaller free energy cost of packaging nucleosomes into regular chromatin fibers if their rotational setting (defined by the DNA helical twist) is conserved. We describe nucleosome positions along the fiber using a thermodynamic model of finite-size particles with both intrinsic histone-DNA interactions and an effective two-body potential. We infer one- and two-body energies directly from high-throughput maps of nucleosome positions. We show that higher-order chromatin structure helps explains in vitro and in vivo nucleosome ordering in transcribed regions, and plays a leading role in establishing well-known 10-11 bp genome-wide periodicity of nucleosome positions.

  19. The structure of nucleosomal core particles within transcribed and repressed gene regions.

    PubMed Central

    Studitsky, V M; Belyavsky, A V; Melnikova, A F; Mirzabekov, A D

    1988-01-01

    The arrangement of histones along DNA in nucleosomal core particles within transcribed heat shock gene (hsp 70) region and repressed insertion within ribosomal genes of Drosophila was analysed by using protein-DNA crosslinking methods combined with hybridization tests. In addition, two-dimensional gel electrophoresis was employed to compare the overall nucleosomal shape and the nucleosomal DNA size. The arrangement of histones along DNA and general compactness of nucleosomes were shown to be rather similar in transcriptionally active and inactive genomic regions. On the other hand, nucleosomes within transcriptionally active chromatin are characterized by a larger size of nucleosomal DNA produced by micrococcal nuclease digestion and some peculiarity in electrophoretic mobility. Images PMID:3144704

  20. Histone acetylation dependent energy landscapes in tri-nucleosome revealed by residue-resolved molecular simulations

    PubMed Central

    Chang, Le; Takada, Shoji

    2016-01-01

    Histone tail acetylation is a key epigenetic marker that tends to open chromatin folding and activate transcription. Despite intensive studies, precise roles of individual lysine acetylation in chromatin folding have only been poorly understood. Here, we revealed structural dynamics of tri-nucleosomes with several histone tail acetylation states and analyzed histone tail interactions with DNA by performing molecular simulations at an unprecedentedly high resolution. We found versatile acetylation-dependent landscapes of tri-nucleosome. The H4 and H2A tail acetylation reduced the contact between the first and third nucleosomes mediated by the histone tails. The H3 tail acetylation reduced its interaction with neighboring linker DNAs resulting in increase of the distance between consecutive nucleosomes. Notably, two copies of the same histone in a single nucleosome have markedly asymmetric interactions with DNAs, suggesting specific pattern of nucleosome docking albeit high inherent flexibility. Estimated transcription factor accessibility was significantly high for the H4 tail acetylated structures. PMID:27698366

  1. An advanced coarse-grained nucleosome core particle model for computer simulations of nucleosome-nucleosome interactions under varying ionic conditions.

    PubMed

    Fan, Yanping; Korolev, Nikolay; Lyubartsev, Alexander P; Nordenskiöld, Lars

    2013-01-01

    In the eukaryotic cell nucleus, DNA exists as chromatin, a compact but dynamic complex with histone proteins. The first level of DNA organization is the linear array of nucleosome core particles (NCPs). The NCP is a well-defined complex of 147 bp DNA with an octamer of histones. Interactions between NCPs are of paramount importance for higher levels of chromatin compaction. The polyelectrolyte nature of the NCP implies that nucleosome-nucleosome interactions must exhibit a great influence from both the ionic environment as well as the positively charged and highly flexible N-terminal histone tails, protruding out from the NCP. The large size of the system precludes a modelling analysis of chromatin at an all-atom level and calls for coarse-grained approximations. Here, a model of the NCP that include the globular histone core and the flexible histone tails described by one particle per each amino acid and taking into account their net charge is proposed. DNA wrapped around the histone core was approximated at the level of two base pairs represented by one bead (bases and sugar) plus four beads of charged phosphate groups. Computer simulations, using a Langevin thermostat, in a dielectric continuum with explicit monovalent (K(+)), divalent (Mg(2+)) or trivalent (Co(NH(3))(6) (3+)) cations were performed for systems with one or ten NCPs. Increase of the counterion charge results in a switch from repulsive NCP-NCP interaction in the presence of K(+), to partial aggregation with Mg(2+) and to strong mutual attraction of all 10 NCPs in the presence of CoHex(3+). The new model reproduced experimental results and the structure of the NCP-NCP contacts is in agreement with available data. Cation screening, ion-ion correlations and tail bridging contribute to the NCP-NCP attraction and the new NCP model accounts for these interactions. PMID:23418426

  2. An advanced coarse-grained nucleosome core particle model for computer simulations of nucleosome-nucleosome interactions under varying ionic conditions.

    PubMed

    Fan, Yanping; Korolev, Nikolay; Lyubartsev, Alexander P; Nordenskiöld, Lars

    2013-01-01

    In the eukaryotic cell nucleus, DNA exists as chromatin, a compact but dynamic complex with histone proteins. The first level of DNA organization is the linear array of nucleosome core particles (NCPs). The NCP is a well-defined complex of 147 bp DNA with an octamer of histones. Interactions between NCPs are of paramount importance for higher levels of chromatin compaction. The polyelectrolyte nature of the NCP implies that nucleosome-nucleosome interactions must exhibit a great influence from both the ionic environment as well as the positively charged and highly flexible N-terminal histone tails, protruding out from the NCP. The large size of the system precludes a modelling analysis of chromatin at an all-atom level and calls for coarse-grained approximations. Here, a model of the NCP that include the globular histone core and the flexible histone tails described by one particle per each amino acid and taking into account their net charge is proposed. DNA wrapped around the histone core was approximated at the level of two base pairs represented by one bead (bases and sugar) plus four beads of charged phosphate groups. Computer simulations, using a Langevin thermostat, in a dielectric continuum with explicit monovalent (K(+)), divalent (Mg(2+)) or trivalent (Co(NH(3))(6) (3+)) cations were performed for systems with one or ten NCPs. Increase of the counterion charge results in a switch from repulsive NCP-NCP interaction in the presence of K(+), to partial aggregation with Mg(2+) and to strong mutual attraction of all 10 NCPs in the presence of CoHex(3+). The new model reproduced experimental results and the structure of the NCP-NCP contacts is in agreement with available data. Cation screening, ion-ion correlations and tail bridging contribute to the NCP-NCP attraction and the new NCP model accounts for these interactions.

  3. The nucleosome landscape of Plasmodium falciparum reveals chromatin architecture and dynamics of regulatory sequences

    PubMed Central

    Kensche, Philip Reiner; Hoeijmakers, Wieteke Anna Maria; Toenhake, Christa Geeke; Bras, Maaike; Chappell, Lia; Berriman, Matthew; Bártfai, Richárd

    2016-01-01

    In eukaryotes, the chromatin architecture has a pivotal role in regulating all DNA-associated processes and it is central to the control of gene expression. For Plasmodium falciparum, a causative agent of human malaria, the nucleosome positioning profile of regulatory regions deserves particular attention because of their extreme AT-content. With the aid of a highly controlled MNase-seq procedure we reveal how positioning of nucleosomes provides a structural and regulatory framework to the transcriptional unit by demarcating landmark sites (transcription/translation start and end sites). In addition, our analysis provides strong indications for the function of positioned nucleosomes in splice site recognition. Transcription start sites (TSSs) are bordered by a small nucleosome-depleted region, but lack the stereotypic downstream nucleosome arrays, highlighting a key difference in chromatin organization compared to model organisms. Furthermore, we observe transcription-coupled eviction of nucleosomes on strong TSSs during intraerythrocytic development and demonstrate that nucleosome positioning and dynamics can be predictive for the functionality of regulatory DNA elements. Collectively, the strong nucleosome positioning over splice sites and surrounding putative transcription factor binding sites highlights the regulatory capacity of the nucleosome landscape in this deadly human pathogen. PMID:26578577

  4. Structure of human nucleosome containing the testis-specific histone variant TSH2B

    SciTech Connect

    Urahama, Takashi; Horikoshi, Naoki; Osakabe, Akihisa; Tachiwana, Hiroaki; Kurumizaka, Hitoshi

    2014-03-25

    The crystal structure of human nucleosome containing the testis-specific TSH2B variant has been determined. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, and induces a local structural difference between TSH2B and H2B in nucleosomes. The human histone H2B variant TSH2B is highly expressed in testis and may function in the chromatin transition during spermatogenesis. In the present study, the crystal structure of the human testis-specific nucleosome containing TSH2B was determined at 2.8 Å resolution. A local structural difference between TSH2B and canonical H2B in nucleosomes was detected around the TSH2B-specific amino-acid residue Ser85. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, but in the canonical nucleosome the H2B Asn84 residue (corresponding to the TSH2B Ser85 residue) forms water-mediated hydrogen bonds with the H4 Arg78 residue. In contrast, the other TSH2B-specific amino-acid residues did not induce any significant local structural changes in the TSH2B nucleosome. These findings may provide important information for understanding how testis-specific histone variants form nucleosomes during spermatogenesis.

  5. The Chd1 chromatin remodeler can sense both entry and exit sides of the nucleosome

    PubMed Central

    Nodelman, Ilana M.; Horvath, Kyle C.; Levendosky, Robert F.; Winger, Jessica; Ren, Ren; Patel, Ashok; Li, Ming; Wang, Michelle D.; Roberts, Elijah; Bowman, Gregory D.

    2016-01-01

    Chromatin remodelers are essential for establishing and maintaining the placement of nucleosomes along genomic DNA. Yet how chromatin remodelers recognize and respond to distinct chromatin environments surrounding nucleosomes is poorly understood. Here, we use Lac repressor as a tool to probe how a DNA-bound factor influences action of the Chd1 remodeler. We show that Chd1 preferentially shifts nucleosomes away from Lac repressor, demonstrating that a DNA-bound factor defines a barrier for nucleosome positioning. Rather than an absolute block in sliding, the barrier effect was achieved by altered rates of nucleosome sliding that biased redistribution of nucleosomes away from the bound Lac repressor site. Remarkably, in addition to slower sliding toward the LacO site, the presence of Lac repressor also stimulated sliding in the opposite direction. These experiments therefore demonstrate that Chd1 responds to the presence of a bound protein on both entry and exit sides of the nucleosome. This sensitivity to both sides of the nucleosome allows for a faster and sharper response than would be possible by responding to only the entry side, and we speculate that dual entry/exit sensitivity is also important for regularly spaced nucleosome arrays generated by Chd1 and the related ISWI remodelers. PMID:27174939

  6. DNA-guided establishment of nucleosome patterns within coding regions of a eukaryotic genome.

    PubMed

    Beh, Leslie Y; Müller, Manuel M; Muir, Tom W; Kaplan, Noam; Landweber, Laura F

    2015-11-01

    A conserved hallmark of eukaryotic chromatin architecture is the distinctive array of well-positioned nucleosomes downstream from transcription start sites (TSS). Recent studies indicate that trans-acting factors establish this stereotypical array. Here, we present the first genome-wide in vitro and in vivo nucleosome maps for the ciliate Tetrahymena thermophila. In contrast with previous studies in yeast, we find that the stereotypical nucleosome array is preserved in the in vitro reconstituted map, which is governed only by the DNA sequence preferences of nucleosomes. Remarkably, this average in vitro pattern arises from the presence of subsets of nucleosomes, rather than the whole array, in individual Tetrahymena genes. Variation in GC content contributes to the positioning of these sequence-directed nucleosomes and affects codon usage and amino acid composition in genes. Given that the AT-rich Tetrahymena genome is intrinsically unfavorable for nucleosome formation, we propose that these "seed" nucleosomes--together with trans-acting factors--may facilitate the establishment of nucleosome arrays within genes in vivo, while minimizing changes to the underlying coding sequences.

  7. The nucleosome landscape of Plasmodium falciparum reveals chromatin architecture and dynamics of regulatory sequences.

    PubMed

    Kensche, Philip Reiner; Hoeijmakers, Wieteke Anna Maria; Toenhake, Christa Geeke; Bras, Maaike; Chappell, Lia; Berriman, Matthew; Bártfai, Richárd

    2016-03-18

    In eukaryotes, the chromatin architecture has a pivotal role in regulating all DNA-associated processes and it is central to the control of gene expression. For Plasmodium falciparum, a causative agent of human malaria, the nucleosome positioning profile of regulatory regions deserves particular attention because of their extreme AT-content. With the aid of a highly controlled MNase-seq procedure we reveal how positioning of nucleosomes provides a structural and regulatory framework to the transcriptional unit by demarcating landmark sites (transcription/translation start and end sites). In addition, our analysis provides strong indications for the function of positioned nucleosomes in splice site recognition. Transcription start sites (TSSs) are bordered by a small nucleosome-depleted region, but lack the stereotypic downstream nucleosome arrays, highlighting a key difference in chromatin organization compared to model organisms. Furthermore, we observe transcription-coupled eviction of nucleosomes on strong TSSs during intraerythrocytic development and demonstrate that nucleosome positioning and dynamics can be predictive for the functionality of regulatory DNA elements. Collectively, the strong nucleosome positioning over splice sites and surrounding putative transcription factor binding sites highlights the regulatory capacity of the nucleosome landscape in this deadly human pathogen.

  8. Dynamics of the Competition Between Nucleosome Unwrapping and DNA Binding Proteins

    NASA Astrophysics Data System (ADS)

    Bundschuh, Ralf

    2015-03-01

    In eukaryotic organisms DNA is tightly wrapped into nucleosomes. This bears the question how this DNA can be accessed in order to be copied, transcribed, or repaired. A process that allows access to the DNA is transient unwrapping of the DNA from the histone proteins. We have developed a quantitative model of this unwrapping process which we calibrate by comparison to nucleosome unzipping experiments by the Wang group. We then apply this model to quantitatively explain the dynamics of transcription factor binding within nucleosomal DNA. In this context, it has been well known that nucleosomes reduce the affinity for transcription factors to binding sites covered by the nucleosome. It has been assumed that this is due to a reduction in on-rate since a transcription factor can only bind when a rare thermal fluctuation of the nucleosome makes the DNA accessible. However, recent experimental data surprisingly shows that the off-rate of transcription factors is also strongly affected in the presence of a nucleosome. The application of our nucleosome unwrapping free energy landscape demonstrates that this increase in off-rate by several orders of magnitude is a consequence of a competition between partial binding events of dimeric transcription factors and the nucleosome. This material is based upon work supported by the National Science Foundation under Grant Nos. 1105458 and 1410172.

  9. Crystal structures of heterotypic nucleosomes containing histones H2A.Z and H2A

    PubMed Central

    Horikoshi, Naoki; Arimura, Yasuhiro; Taguchi, Hiroyuki; Kurumizaka, Hitoshi

    2016-01-01

    H2A.Z is incorporated into nucleosomes located around transcription start sites and functions as an epigenetic regulator for the transcription of certain genes. During transcriptional regulation, the heterotypic H2A.Z/H2A nucleosome containing one each of H2A.Z and H2A is formed. However, previous homotypic H2A.Z nucleosome structures suggested that the L1 loop region of H2A.Z would sterically clash with the corresponding region of canonical H2A in the heterotypic nucleosome. To resolve this issue, we determined the crystal structures of heterotypic H2A.Z/H2A nucleosomes. In the H2A.Z/H2A nucleosome structure, the H2A.Z L1 loop structure was drastically altered without any structural changes of the canonical H2A L1 loop, thus avoiding the steric clash. Unexpectedly, the heterotypic H2A.Z/H2A nucleosome is more stable than the homotypic H2A.Z nucleosome. These data suggested that the flexible character of the H2A.Z L1 loop plays an essential role in forming the stable heterotypic H2A.Z/H2A nucleosome. PMID:27358293

  10. Evidence of association between Nucleosome Occupancy and the Evolution of Transcription Factor Binding Sites in Yeast

    PubMed Central

    2011-01-01

    Background Divergence of transcription factor binding sites is considered to be an important source of regulatory evolution. The associations between transcription factor binding sites and phenotypic diversity have been investigated in many model organisms. However, the understanding of other factors that contribute to it is still limited. Recent studies have elucidated the effect of chromatin structure on molecular evolution of genomic DNA. Though the profound impact of nucleosome positions on gene regulation has been reported, their influence on transcriptional evolution is still less explored. With the availability of genome-wide nucleosome map in yeast species, it is thus desirable to investigate their impact on transcription factor binding site evolution. Here, we present a comprehensive analysis of the role of nucleosome positioning in the evolution of transcription factor binding sites. Results We compared the transcription factor binding site frequency in nucleosome occupied regions and nucleosome depleted regions in promoters of old (orthologs among Saccharomycetaceae) and young (Saccharomyces specific) genes; and in duplicate gene pairs. We demonstrated that nucleosome occupied regions accommodate greater binding site variations than nucleosome depleted regions in young genes and in duplicate genes. This finding was confirmed by measuring the difference in evolutionary rates of binding sites in sensu stricto yeasts at nucleosome occupied regions and nucleosome depleted regions. The binding sites at nucleosome occupied regions exhibited a consistently higher evolution rate than those at nucleosome depleted regions, corroborating the difference in the selection constraints at the two regions. Finally, through site-directed mutagenesis experiment, we found that binding site gain or loss events at nucleosome depleted regions may cause more expression differences than those in nucleosome occupied regions. Conclusions Our study indicates the existence of

  11. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules

    PubMed Central

    Kelly, Theresa K.; Liu, Yaping; Lay, Fides D.; Liang, Gangning; Berman, Benjamin P.; Jones, Peter A.

    2012-01-01

    DNA methylation and nucleosome positioning work together to generate chromatin structures that regulate gene expression. Nucleosomes are typically mapped using nuclease digestion requiring significant amounts of material and varying enzyme concentrations. We have developed a method (NOMe-seq) that uses a GpC methyltransferase (M.CviPI) and next generation sequencing to generate a high resolution footprint of nucleosome positioning genome-wide using less than 1 million cells while retaining endogenous DNA methylation information from the same DNA strand. Using a novel bioinformatics pipeline, we show a striking anti-correlation between nucleosome occupancy and DNA methylation at CTCF regions that is not present at promoters. We further show that the extent of nucleosome depletion at promoters is directly correlated to expression level and can accommodate multiple nucleosomes and provide genome-wide evidence that expressed non-CpG island promoters are nucleosome-depleted. Importantly, NOMe-seq obtains DNA methylation and nucleosome positioning information from the same DNA molecule, giving the first genome-wide DNA methylation and nucleosome positioning correlation at the single molecule, and thus, single cell level, that can be used to monitor disease progression and response to therapy. PMID:22960375

  12. Cracking the chromatin code: Precise rule of nucleosome positioning

    NASA Astrophysics Data System (ADS)

    Trifonov, Edward N.

    2011-03-01

    Various aspects of packaging DNA in eukaryotic cells are outlined in physical rather than biological terms. The informational and physical nature of packaging instructions encoded in DNA sequences is discussed with the emphasis on signal processing difficulties - very low signal-to-noise ratio and high degeneracy of the nucleosome positioning signal. As the author has been contributing to the field from its very onset in 1980, the review is mostly focused at the works of the author and his colleagues. The leading concept of the overview is the role of deformational properties of DNA in the nucleosome positioning. The target of the studies is to derive the DNA bendability matrix describing where along the DNA various dinucleotide elements should be positioned, to facilitate its bending in the nucleosome. Three different approaches are described leading to derivation of the DNA deformability sequence pattern, which is a simplified linear presentation of the bendability matrix. All three approaches converge to the same unique sequence motif CGRAAATTTYCG or, in binary form, YRRRRRYYYYYR, both representing the chromatin code.

  13. Reduced Nuclease Activity of Apurinic/Apyrimidinic Endonuclease (APE1) Variants on Nucleosomes: IDENTIFICATION OF ACCESS RESIDUES.

    PubMed

    Hinz, John M; Mao, Peng; McNeill, Daniel R; Wilson, David M

    2015-08-21

    Non-coding apurinic/apyrimidinic (AP) sites are generated at high frequency in genomic DNA via spontaneous hydrolytic, damage-induced or enzyme-mediated base release. AP endonuclease 1 (APE1) is the predominant mammalian enzyme responsible for initiating removal of mutagenic and cytotoxic abasic lesions as part of the base excision repair (BER) pathway. We have examined here the ability of wild-type (WT) and a collection of variant/mutant APE1 proteins to cleave at an AP site within a nucleosome core particle. Our studies indicate that, in comparison to the WT protein and other variant/mutant enzymes, the incision activity of the tumor-associated variant R237C and the rare population variant G241R are uniquely hypersensitive to nucleosome complexes in the vicinity of the AP site. This defect appears to stem from an abnormal interaction of R237C and G241R with abasic DNA substrates, but is not simply due to a DNA binding defect, as the site-specific APE1 mutant Y128A, which displays markedly reduced AP-DNA complex stability, did not exhibit a similar hypersensitivity to nucleosome structures. Notably, this incision defect of R237C and G241R was observed on a pre-assembled DNA glycosylase·AP-DNA complex as well. Our results suggest that the BER enzyme, APE1, has acquired distinct surface residues that permit efficient processing of AP sites within the context of protein-DNA complexes independent of classic chromatin remodeling mechanisms.

  14. Interplay between mismatch repair and chromatin assembly

    PubMed Central

    Schöpf, Barbara; Bregenhorn, Stephanie; Quivy, Jean-Pierre; Kadyrov, Farid A.; Almouzni, Genevieve; Jiricny, Josef

    2012-01-01

    Single strand nicks and gaps in DNA have been reported to increase the efficiency of nucleosome loading mediated by chromatin assembly factor 1 (CAF-1). However, on mismatch-containing substrates, these strand discontinuities are utilized by the mismatch repair (MMR) system as loading sites for exonuclease 1, at which degradation of the error-containing strand commences. Because packaging of DNA into chromatin might inhibit MMR, we were interested to learn whether chromatin assembly is differentially regulated on heteroduplex and homoduplex substrates. We now show that the presence of a mismatch in a nicked plasmid substrate delays nucleosome loading in human cell extracts. Our data also suggest that, once the mismatch is removed, repair of the single-stranded gap is accompanied by efficient nucleosome loading. We postulated that the balance between MMR and chromatin assembly might be governed by proliferating cell nuclear antigen (PCNA), the processivity factor of replicative DNA polymerases, which is loaded at DNA termini and which interacts with the MSH6 subunit of the mismatch recognition factor MutSα, as well as with CAF-1. We now show that this regulation might be more complex; MutSα and CAF-1 interact not only with PCNA, but also with each other. In vivo this interaction increases during S-phase and may be controlled by the phosphorylation status of the p150 subunit of CAF-1. PMID:22232658

  15. Enzymatic and chemical mapping of nucleosome distribution in purified micro- and macronuclei of the ciliated model organism, Tetrahymena thermophila.

    PubMed

    Chen, Xiao; Gao, Shan; Liu, Yifan; Wang, Yuanyuan; Wang, Yurui; Song, Weibo

    2016-09-01

    Genomic distribution of the nucleosome, the basic unit of chromatin, contains important epigenetic information. To map nucleosome distribution in structurally and functionally differentiated micronucleus (MIC) and macronucleus (MAC) of the ciliate Tetrahymena thermophila, we have purified MIC and MAC and performed micrococcal nuclease (MNase) digestion as well as hydroxyl radical cleavage. Different factors that may affect MNase digestion were examined, to optimize mono-nucleosome production. Mono-nucleosome purity was further improved by ultracentrifugation in a sucrose gradient. As MNase concentration increased, nucleosomal DNA sizes in MIC and MAC converged on 147 bp, as expected for the nucleosome core particle. Both MNase digestion and hydroxyl radical cleavage consistently showed a nucleosome repeat length of ~200 bp in MAC of Tetrahymena, supporting ~50 bp of linker DNA. Our work has systematically tested methods currently available for mapping nucleosome distribution in Tetrahymena, and provided a solid foundation for future epigenetic studies in this ciliated model organism. PMID:27568393

  16. Establishment of a promoter-based chromatin architecture on recently replicated DNA can accommodate variable inter-nucleosome spacing

    PubMed Central

    Fennessy, Ross T.; Owen-Hughes, Tom

    2016-01-01

    Nucleosomes, the fundamental subunits of eukaryotic chromatin, are organized with respect to transcriptional start sites. A major challenge to the persistence of this organization is the disassembly of nucleosomes during DNA replication. Here, we use complimentary approaches to map the locations of nucleosomes on recently replicated DNA. We find that nucleosomes are substantially realigned with promoters during the minutes following DNA replication. As a result, the nucleosomal landscape is largely re-established before newly replicated chromosomes are partitioned into daughter cells and can serve as a platform for the re-establishment of gene expression programmes. When the supply of histones is disrupted through mutation of the chaperone Caf1, a promoter-based architecture is generated, but with increased inter-nucleosomal spacing. This indicates that the chromatin remodelling enzymes responsible for spacing nucleosomes are capable of organizing nucleosomes with a range of different linker DNA lengths. PMID:27106059

  17. Enzymatic and chemical mapping of nucleosome distribution in purified micro- and macronuclei of the ciliated model organism, Tetrahymena thermophila.

    PubMed

    Chen, Xiao; Gao, Shan; Liu, Yifan; Wang, Yuanyuan; Wang, Yurui; Song, Weibo

    2016-09-01

    Genomic distribution of the nucleosome, the basic unit of chromatin, contains important epigenetic information. To map nucleosome distribution in structurally and functionally differentiated micronucleus (MIC) and macronucleus (MAC) of the ciliate Tetrahymena thermophila, we have purified MIC and MAC and performed micrococcal nuclease (MNase) digestion as well as hydroxyl radical cleavage. Different factors that may affect MNase digestion were examined, to optimize mono-nucleosome production. Mono-nucleosome purity was further improved by ultracentrifugation in a sucrose gradient. As MNase concentration increased, nucleosomal DNA sizes in MIC and MAC converged on 147 bp, as expected for the nucleosome core particle. Both MNase digestion and hydroxyl radical cleavage consistently showed a nucleosome repeat length of ~200 bp in MAC of Tetrahymena, supporting ~50 bp of linker DNA. Our work has systematically tested methods currently available for mapping nucleosome distribution in Tetrahymena, and provided a solid foundation for future epigenetic studies in this ciliated model organism.

  18. Single-pair fluorescence resonance energy transfer of nucleosomes in free diffusion: optimizing stability and resolution of subpopulations.

    PubMed

    Gansen, Alexander; Hauger, Florian; Tóth, Katalin; Langowski, Jörg

    2007-09-15

    We applied fluorescence detection methods on the single-molecule level to study structural variations and dynamic processes occurring within nucleosomes. Four fluorescent nucleosome constructs were made by attaching donor and acceptor fluorophores to different positions of two nucleosome positioning sequences and reconstituting nucleosomes by salt dialysis. The photochemical and biochemical stability of nucleosomes under single-molecule conditions was optimized by adding inert protein and free radical capturing additives, allowing us to define the best experimental conditions for single-molecule spectroscopy on highly diluted solutions of nucleosome complexes. We could demonstrate for the first time the resolution of conformational subpopulations of nucleosomes by single-pair fluorescence resonance energy transfer in a freely diffusing system and could show the effect of thermally induced nucleosome repositioning.

  19. Reactivity in ELISA with DNA-loaded nucleosomes in patients with proliferative lupus nephritis.

    PubMed

    Dieker, Jürgen; Schlumberger, Wolfgang; McHugh, Neil; Hamann, Philip; van der Vlag, Johan; Berden, Jo H

    2015-11-01

    Autoantibodies against nucleosomes are considered a hallmark of systemic lupus erythematosus (SLE). We compared in patients with proliferative lupus nephritis the diagnostic usefulness of a dsDNA-loaded nucleosome ELISA (anti-dsDNA-NcX) with ELISAs in which dsDNA or nucleosomes alone were coated. First, we analysed whether DNA loading on nucleosomes led to masking of epitopes by using defined monoclonal anti-DNA, anti-histone and nucleosome-specific autoantibodies to evaluate the accessibility of nucleosomal epitopes in the anti-dsDNA-NcX ELISA. Second, autoantibody levels were measured in these 3 ELISAs in 100 patients with proliferative lupus nephritis (LN) before immunosuppressive treatment and in 128 non-SLE disease controls. In patients with LN inter-assay comparisons and associations with clinical and serological parameters were analysed. The panel of monoclonal antibodies revealed that all epitopes were equally accessible in the anti-dsDNA-NcX ELISA as in the two other ELISAs. Patients with proliferative lupus nephritis were positive with dsDNA-loaded nucleosomes in 86%, with DNA in 66% and with nucleosomes in 85%. In the non-lupus disease control group these frequencies were 1.6% (2 out of 128) for both the anti-dsDNA-NcX and the anti-dsDNA ELISA and 0% in the anti-nucleosome ELISA. The levels in the anti-dsDNA-NcX ELISA were high in a group of patients with LN that showed absent reactivity in the anti-DNA or low levels in the anti-nucleosome ELISA. Anti-dsDNA-NcX positivity was associated with higher SLEDAI scores within this group. Within nucleosome-based ELISAs, we propose the anti-dsDNA-NcX ELISA as the preferred test system. PMID:26597199

  20. Cell Cycle–Specified Fluctuation of Nucleosome Occupancy at Gene Promoters

    PubMed Central

    Hogan, Gregory J; Lee, Cheol-Koo; Lieb, Jason D

    2006-01-01

    The packaging of DNA into nucleosomes influences the accessibility of underlying regulatory information. Nucleosome occupancy and positioning are best characterized in the budding yeast Saccharomyces cerevisiae, albeit in asynchronous cell populations or on individual promoters such as PHO5 and GAL1–10. Using FAIRE (formaldehyde-assisted isolation of regulatory elements) and whole-genome microarrays, we examined changes in nucleosome occupancy throughout the mitotic cell cycle in synchronized populations of S. cerevisiae. Perhaps surprisingly, nucleosome occupancy did not exhibit large, global variation between cell cycle phases. However, nucleosome occupancy at the promoters of cell cycle–regulated genes was reduced specifically at the cell cycle phase in which that gene exhibited peak expression, with the notable exception of S-phase genes. We present data that establish FAIRE as a high-throughput method for assaying nucleosome occupancy. For the first time in any system, nucleosome occupancy was mapped genome-wide throughout the cell cycle. Fluctuation of nucleosome occupancy at promoters of most cell cycle–regulated genes provides independent evidence that periodic expression of these genes is controlled mainly at the level of transcription. The promoters of G2/M genes are distinguished from other cell cycle promoters by an unusually low baseline nucleosome occupancy throughout the cell cycle. This observation, coupled with the maintenance throughout the cell cycle of the stereotypic nucleosome occupancy states between coding and non-coding loci, suggests that the largest component of variation in nucleosome occupancy is “hard wired,” perhaps at the level of DNA sequence. PMID:17002501

  1. Reactivity in ELISA with DNA-loaded nucleosomes in patients with proliferative lupus nephritis.

    PubMed

    Dieker, Jürgen; Schlumberger, Wolfgang; McHugh, Neil; Hamann, Philip; van der Vlag, Johan; Berden, Jo H

    2015-11-01

    Autoantibodies against nucleosomes are considered a hallmark of systemic lupus erythematosus (SLE). We compared in patients with proliferative lupus nephritis the diagnostic usefulness of a dsDNA-loaded nucleosome ELISA (anti-dsDNA-NcX) with ELISAs in which dsDNA or nucleosomes alone were coated. First, we analysed whether DNA loading on nucleosomes led to masking of epitopes by using defined monoclonal anti-DNA, anti-histone and nucleosome-specific autoantibodies to evaluate the accessibility of nucleosomal epitopes in the anti-dsDNA-NcX ELISA. Second, autoantibody levels were measured in these 3 ELISAs in 100 patients with proliferative lupus nephritis (LN) before immunosuppressive treatment and in 128 non-SLE disease controls. In patients with LN inter-assay comparisons and associations with clinical and serological parameters were analysed. The panel of monoclonal antibodies revealed that all epitopes were equally accessible in the anti-dsDNA-NcX ELISA as in the two other ELISAs. Patients with proliferative lupus nephritis were positive with dsDNA-loaded nucleosomes in 86%, with DNA in 66% and with nucleosomes in 85%. In the non-lupus disease control group these frequencies were 1.6% (2 out of 128) for both the anti-dsDNA-NcX and the anti-dsDNA ELISA and 0% in the anti-nucleosome ELISA. The levels in the anti-dsDNA-NcX ELISA were high in a group of patients with LN that showed absent reactivity in the anti-DNA or low levels in the anti-nucleosome ELISA. Anti-dsDNA-NcX positivity was associated with higher SLEDAI scores within this group. Within nucleosome-based ELISAs, we propose the anti-dsDNA-NcX ELISA as the preferred test system.

  2. Determinants of nucleosome positioning and their influence on plant gene expression.

    PubMed

    Liu, Ming-Jung; Seddon, Alexander E; Tsai, Zing Tsung-Yeh; Major, Ian T; Floer, Monique; Howe, Gregg A; Shiu, Shin-Han

    2015-08-01

    Nucleosome positioning influences the access of transcription factors (TFs) to their binding sites and gene expression. Studies in plant, animal, and fungal models demonstrate similar nucleosome positioning patterns along genes and correlations between occupancy and expression. However, the relationships among nucleosome positioning, cis-regulatory element accessibility, and gene expression in plants remain undefined. Here we showed that plant nucleosome depletion occurs on specific 6-mer motifs and this sequence-specific nucleosome depletion is predictive of expression levels. Nucleosome-depleted regions in Arabidopsis thaliana tend to have higher G/C content, unlike yeast, and are centered on specific G/C-rich 6-mers, suggesting that intrinsic sequence properties, such as G/C content, cannot fully explain plant nucleosome positioning. These 6-mer motif sites showed higher DNase I hypersensitivity and are flanked by strongly phased nucleosomes, consistent with known TF binding sites. Intriguingly, this 6-mer-specific nucleosome depletion pattern occurs not only in promoter but also in genic regions and is significantly correlated with higher gene expression level, a phenomenon also found in rice but not in yeast. Among the 6-mer motifs enriched in genes responsive to treatment with the defense hormone jasmonate, there are no significant changes in nucleosome occupancy, suggesting that these sites are potentially preconditioned to enable rapid response without changing chromatin state significantly. Our study provides a global assessment of the joint contribution of nucleosome occupancy and motif sequences that are likely cis-elements to the control of gene expression in plants. Our findings pave the way for further understanding the impact of chromatin state on plant transcriptional regulatory circuits.

  3. Stable complex formation of CENP-B with the CENP-A nucleosome.

    PubMed

    Fujita, Risa; Otake, Koichiro; Arimura, Yasuhiro; Horikoshi, Naoki; Miya, Yuta; Shiga, Tatsuya; Osakabe, Akihisa; Tachiwana, Hiroaki; Ohzeki, Jun-ichirou; Larionov, Vladimir; Masumoto, Hiroshi; Kurumizaka, Hitoshi

    2015-05-26

    CENP-A and CENP-B are major components of centromeric chromatin. CENP-A is the histone H3 variant, which forms the centromere-specific nucleosome. CENP-B specifically binds to the CENP-B box DNA sequence on the centromere-specific repetitive DNA. In the present study, we found that the CENP-A nucleosome more stably retains human CENP-B than the H3.1 nucleosome in vitro. Specifically, CENP-B forms a stable complex with the CENP-A nucleosome, when the CENP-B box sequence is located at the proximal edge of the nucleosome. Surprisingly, the CENP-B binding was weaker when the CENP-B box sequence was located in the distal linker region of the nucleosome. This difference in CENP-B binding, depending on the CENP-B box location, was not observed with the H3.1 nucleosome. Consistently, we found that the DNA-binding domain of CENP-B specifically interacted with the CENP-A-H4 complex, but not with the H3.1-H4 complex, in vitro. These results suggested that CENP-B forms a more stable complex with the CENP-A nucleosome through specific interactions with CENP-A, if the CENP-B box is located proximal to the CENP-A nucleosome. Our in vivo assay also revealed that CENP-B binding in the vicinity of the CENP-A nucleosome substantially stabilizes the CENP-A nucleosome on alphoid DNA in human cells.

  4. Chromatin reconstitution on small DNA rings. IV. DNA supercoiling and nucleosome sequence preference.

    PubMed

    Duband-Goulet, I; Carot, V; Ulyanov, A V; Douc-Rasy, S; Prunell, A

    1992-04-20

    Nucleosome formation on inverted repeats or on some alternations of purines and pyrimidines can be inhibited in vitro by DNA supercoiling through their supercoiling-induced structural transitions to cruciforms or Z-form DNA, respectively. We report here, as a result of study of single nucleosome reconstitutions on a DNA minicircle, that a physiological level of DNA supercoiling can also enhance nucleosome sequence preference. The 357 base-pair minicircle was composed of a promoter of phage SP6 RNA polymerase joined to a 256 base-pair fragment containing a sea urchin 5 S RNA gene. Nucleosome formation on the promoter was found to be enhanced on a topoisomer with in vivo superhelix density when compared to topoisomers of lower or higher superhelical densities, to the nicked circle, or to the linear DNA. In contrast, nucleosomes at other positions appeared to be insensitive to supercoiling. This observation relied on a novel procedure for the investigation of nucleosome positioning. The reconstituted circular chromatin was first linearized using a restriction endonuclease, and the linear chromatin so obtained was electrophoresed as nucleoprotein in a polyacrylamide gel. The gel showed well-fractionated bands whose mobilities were a V-like function of nucleosome positions, with the nucleosome near the middle migrating less. This behavior is similar to that previously observed for complexes of sequence-specific DNA-bending proteins with circularly permuted DNA fragments, and presumably reflects the change in the direction of the DNA axis between the entrance and the exit of the particle. Possible mechanisms for such supercoiling-induced modulation of nucleosome formation are discussed in the light of the supercoiling-dependent susceptibility to cleavage of the naked minicircle with S1 and Bal31 nucleases; and a comparison between DNase I cleavage patterns of the modulated nucleosome and of another, non-modulated, overlapping nucleosome. PMID:1314907

  5. UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation

    PubMed Central

    Brand, Marjorie; Moggs, Jonathan G.; Oulad-Abdelghani, Mustapha; Lejeune, Fabrice; Dilworth, F.Jeffrey; Stevenin, James; Almouzni, Geneviève; Tora, Làszlò

    2001-01-01

    Initiation of transcription of protein-encoding genes by RNA polymerase II (Pol II) was thought to require transcription factor TFIID, a complex comprised of the TATA box-binding protein (TBP) and TBP-associated factors (TAFIIs). In the presence of TBP-free TAFII complex (TFTC), initiation of Pol II transcription can occur in the absence of TFIID. TFTC containing the GCN5 acetyltransferase acetylates histone H3 in a nucleosomal context. We have identified a 130 kDa subunit of TFTC (SAP130) that shares homology with the large subunit of UV-damaged DNA-binding factor. TFTC preferentially binds UV-irradiated DNA, UV-damaged DNA inhibits TFTC-mediated Pol II transcription and TFTC is recruited in parallel with the nucleotide excision repair protein XP-A to UV-damaged DNA. TFTC preferentially acetylates histone H3 in nucleosomes assembled on UV-damaged DNA. In agreement with this, strong histone H3 acetylation occurs in intact cells after UV irradiation. These results suggest that the access of DNA repair machinery to lesions within chromatin may be facilitated by TFTC via covalent modification of chromatin. Thus, our experiments reveal a molecular link between DNA damage recognition and chromatin modification. PMID:11406595

  6. Asf1/HIRA facilitate global histone deacetylation and associate with HP1 to promote nucleosome occupancy at heterochromatic loci

    PubMed Central

    Yamane, Kenichi; Mizuguchi, Takeshi; Cui, Bowen; Zofall, Martin; Noma, Ken-ichi; Grewal, Shiv I. S.

    2010-01-01

    SUMMARY Heterochromatin impacts various nuclear processes by providing a recruiting platform for diverse chromosomal proteins. In fission yeast, HP1 proteins Chp2 and Swi6, which bind to methylated histone H3 lysine 9, associate with SHREC (Snf2/HDAC repressor complex) and Clr6 histone deacetylases (HDACs) involved in heterochromatic silencing. However, heterochromatic silencing machinery is not fully defined. We describe a histone chaperone complex containing Asf1 and HIRA that spreads across silenced domains via its association with Swi6 to enforce transcriptional silencing. Asf1 function in concert with a Clr6 HDAC complex to silence heterochromatic repeats, and it suppresses antisense transcription by promoting histone deacetylation. Furthermore, we demonstrate that Asf1 and SHREC facilitate nucleosome occupancy at heterochromatic regions but TFIIIC transcription factor binding sites within boundary elements are refractory to these factors. These analyses uncover a role for Asf1 in global histone deacetylation and suggest that HP1-associated histone chaperone promote nucleosome occupancy to assemble repressive heterochromatin. PMID:21211723

  7. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells

    PubMed Central

    de Dieuleveult, Maud; Yen, Kuangyu; Hmitou, Isabelle; Depaux, Arnaud; Boussouar, Fayçal; Dargham, Daria Bou; Jounier, Sylvie; Humbertclaude, Hélène; Ribierre, Florence; Baulard, Céline; Farrell, Nina P.; Park, Bongsoo; Keime, Céline; Carrière, Lucie; Berlivet, Soizick; Gut, Marta; Gut, Ivo; Werner, Michel; Deleuze, Jean-François; Olaso, Robert; Aude, Jean-Christophe; Chantalat, Sophie; Pugh, B. Franklin; Gérard, Matthieu

    2015-01-01

    Summary ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers1–3 target specific nucleosomes to regulate transcription is unclear. Here, we present genome-wide remodeller-nucleosome interaction profiles for Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank MNase-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites (TSSs) are nevertheless chromatinized with non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and modifications (H3K4me3 and H3K27ac). RNA polymerase (pol) II therefore navigates hundreds of bp of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3′ end of the NFR. Transcriptome analysis upon remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers play either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs. PMID:26814966

  8. DNA-guided establishment of nucleosome patterns within coding regions of a eukaryotic genome

    PubMed Central

    Beh, Leslie Y.; Müller, Manuel M.; Muir, Tom W.; Kaplan, Noam; Landweber, Laura F.

    2015-01-01

    A conserved hallmark of eukaryotic chromatin architecture is the distinctive array of well-positioned nucleosomes downstream from transcription start sites (TSS). Recent studies indicate that trans-acting factors establish this stereotypical array. Here, we present the first genome-wide in vitro and in vivo nucleosome maps for the ciliate Tetrahymena thermophila. In contrast with previous studies in yeast, we find that the stereotypical nucleosome array is preserved in the in vitro reconstituted map, which is governed only by the DNA sequence preferences of nucleosomes. Remarkably, this average in vitro pattern arises from the presence of subsets of nucleosomes, rather than the whole array, in individual Tetrahymena genes. Variation in GC content contributes to the positioning of these sequence-directed nucleosomes and affects codon usage and amino acid composition in genes. Given that the AT-rich Tetrahymena genome is intrinsically unfavorable for nucleosome formation, we propose that these “seed” nucleosomes—together with trans-acting factors—may facilitate the establishment of nucleosome arrays within genes in vivo, while minimizing changes to the underlying coding sequences. PMID:26330564

  9. Linker histone H1 and H3K56 acetylation are antagonistic regulators of nucleosome dynamics.

    PubMed

    Bernier, Morgan; Luo, Yi; Nwokelo, Kingsley C; Goodwin, Michelle; Dreher, Sarah J; Zhang, Pei; Parthun, Mark R; Fondufe-Mittendorf, Yvonne; Ottesen, Jennifer J; Poirier, Michael G

    2015-12-09

    H1 linker histones are highly abundant proteins that compact nucleosomes and chromatin to regulate DNA accessibility and transcription. However, the mechanisms that target H1 regulation to specific regions of eukaryotic genomes are unknown. Here we report fluorescence measurements of human H1 regulation of nucleosome dynamics and transcription factor (TF) binding within nucleosomes. H1 does not block TF binding, instead it suppresses nucleosome unwrapping to reduce DNA accessibility within H1-bound nucleosomes. We then investigated H1 regulation by H3K56 and H3K122 acetylation, two transcriptional activating histone post translational modifications (PTMs). Only H3K56 acetylation, which increases nucleosome unwrapping, abolishes H1.0 reduction of TF binding. These findings show that nucleosomes remain dynamic, while H1 is bound and H1 dissociation is not required for TF binding within the nucleosome. Furthermore, our H3K56 acetylation measurements suggest that a single-histone PTM can define regions of the genome that are not regulated by H1.

  10. Nanopores suggest a negligible influence of CpG methylation on nucleosome packaging and stability.

    PubMed

    Langecker, Martin; Ivankin, Andrey; Carson, Spencer; Kinney, Shannon R M; Simmel, Friedrich C; Wanunu, Meni

    2015-01-14

    Nucleosomes are the fundamental repeating units of chromatin, and dynamic regulation of their positioning along DNA governs gene accessibility in eukaryotes. Although epigenetic factors have been shown to influence nucleosome structure and dynamics, the impact of DNA methylation on nucleosome packaging remains controversial. Further, all measurements to date have been carried out under zero-force conditions. In this paper, we present the first automated force measurements that probe the impact of CpG DNA methylation on nucleosome stability. In solid-state nanopore force spectroscopy, a nucleosomal DNA tail is captured into a pore and pulled on with a time-varying electrophoretic force until unraveling is detected. This is automatically repeated for hundreds of nucleosomes, yielding statistics of nucleosome lifetime vs electrophoretic force. The force geometry, which is similar to displacement forces exerted by DNA polymerases and helicases, reveals that nucleosome stability is sensitive to DNA sequence yet insensitive to CpG methylation. Our label-free method provides high-throughput data that favorably compares with other force spectroscopy experiments and is suitable for studying a variety of DNA-protein complexes.

  11. Differential Nucleosome Occupancies across Oct4-Sox2 Binding Sites in Murine Embryonic Stem Cells.

    PubMed

    Sebeson, Amy; Xi, Liqun; Zhang, Quanwei; Sigmund, Audrey; Wang, Ji-Ping; Widom, Jonathan; Wang, Xiaozhong

    2015-01-01

    The binding sequence for any transcription factor can be found millions of times within a genome, yet only a small fraction of these sequences encode functional transcription factor binding sites. One of the reasons for this dichotomy is that many other factors, such as nucleosomes, compete for binding. To study how the competition between nucleosomes and transcription factors helps determine a functional transcription factor site from a predicted transcription factor site, we compared experimentally-generated in vitro nucleosome occupancy with in vivo nucleosome occupancy and transcription factor binding in murine embryonic stem cells. Using a solution hybridization enrichment technique, we generated a high-resolution nucleosome map from targeted regions of the genome containing predicted sites and functional sites of Oct4/Sox2 regulation. We found that at Pax6 and Nes, which are bivalently poised in stem cells, functional Oct4 and Sox2 sites show high amounts of in vivo nucleosome displacement compared to in vitro. Oct4 and Sox2, which are active, show no significant displacement of in vivo nucleosomes at functional sites, similar to nonfunctional Oct4/Sox2 binding. This study highlights a complex interplay between Oct4 and Sox2 transcription factors and nucleosomes among different target genes, which may result in distinct patterns of stem cell gene regulation.

  12. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells.

    PubMed

    de Dieuleveult, Maud; Yen, Kuangyu; Hmitou, Isabelle; Depaux, Arnaud; Boussouar, Fayçal; Bou Dargham, Daria; Jounier, Sylvie; Humbertclaude, Hélène; Ribierre, Florence; Baulard, Céline; Farrell, Nina P; Park, Bongsoo; Keime, Céline; Carrière, Lucie; Berlivet, Soizick; Gut, Marta; Gut, Ivo; Werner, Michel; Deleuze, Jean-François; Olaso, Robert; Aude, Jean-Christophe; Chantalat, Sophie; Pugh, B Franklin; Gérard, Matthieu

    2016-02-01

    ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers target specific nucleosomes to regulate transcription is unclear. Here we present genome-wide remodeller-nucleosome interaction profiles for the chromatin remodellers Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank micrococcal nuclease (MNase)-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites are nevertheless bound by non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and marked by H3K4me3 and H3K27ac modifications. RNA polymerase II therefore navigates hundreds of base pairs of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3' end of the NFR. Transcriptome analysis after remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers have either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs.

  13. Multivalent Interactions by the Set8 Histone Methyltransferase With Its Nucleosome Substrate.

    PubMed

    Girish, Taverekere S; McGinty, Robert K; Tan, Song

    2016-04-24

    Set8 is the only mammalian monomethyltransferase responsible for H4K20me1, a methyl mark critical for genomic integrity of eukaryotic cells. We present here a structural model for how Set8 uses multivalent interactions to bind and methylate the nucleosome based on crystallographic and solution studies of the Set8/nucleosome complex. Our studies indicate that Set8 employs its i-SET and c-SET domains to engage nucleosomal DNA 1 to 1.5 turns from the nucleosomal dyad and in doing so, it positions the SET domain for catalysis with H4 Lys20. Surprisingly, we find that a basic N-terminal extension to the SET domain plays an even more prominent role in nucleosome binding, possibly by making an arginine anchor interaction with the nucleosome H2A/H2B acidic patch. We further show that proliferating cell nuclear antigen and the nucleosome compete for binding to Set8 through this basic extension, suggesting a mechanism for how nucleosome binding protects Set8 from proliferating cell nuclear antigen-dependent degradation during the cell cycle.

  14. Affinity, stoichiometry and cooperativity of heterochromatin protein 1 (HP1) binding to nucleosomal arrays

    NASA Astrophysics Data System (ADS)

    Teif, Vladimir B.; Kepper, Nick; Yserentant, Klaus; Wedemann, Gero; Rippe, Karsten

    2015-02-01

    Heterochromatin protein 1 (HP1) participates in establishing and maintaining heterochromatin via its histone-modification-dependent chromatin interactions. In recent papers HP1 binding to nucleosomal arrays was measured in vitro and interpreted in terms of nearest-neighbour cooperative binding. This mode of chromatin interaction could lead to the spreading of HP1 along the nucleosome chain. Here, we reanalysed previous data by representing the nucleosome chain as a 1D binding lattice and showed how the experimental HP1 binding isotherms can be explained by a simpler model without cooperative interactions between neighboring HP1 dimers. Based on these calculations and spatial models of dinucleosomes and nucleosome chains, we propose that binding stoichiometry depends on the nucleosome repeat length (NRL) rather than protein interactions between HP1 dimers. According to our calculations, more open nucleosome arrays with long DNA linkers are characterized by a larger number of binding sites in comparison to chains with a short NRL. Furthermore, we demonstrate by Monte Carlo simulations that the NRL dependent folding of the nucleosome chain can induce allosteric changes of HP1 binding sites. Thus, HP1 chromatin interactions can be modulated by the change of binding stoichiometry and the type of binding to condensed (methylated) and non-condensed (unmethylated) nucleosome arrays in the absence of direct interactions between HP1 dimers.

  15. Dynamic Nucleosome Movement Provides Structural Information of Topological Chromatin Domains in Living Human Cells

    PubMed Central

    Shinkai, Soya; Nozaki, Tadasu; Maeshima, Kazuhiro

    2016-01-01

    The mammalian genome is organized into submegabase-sized chromatin domains (CDs) including topologically associating domains, which have been identified using chromosome conformation capture-based methods. Single-nucleosome imaging in living mammalian cells has revealed subdiffusively dynamic nucleosome movement. It is unclear how single nucleosomes within CDs fluctuate and how the CD structure reflects the nucleosome movement. Here, we present a polymer model wherein CDs are characterized by fractal dimensions and the nucleosome fibers fluctuate in a viscoelastic medium with memory. We analytically show that the mean-squared displacement (MSD) of nucleosome fluctuations within CDs is subdiffusive. The diffusion coefficient and the subdiffusive exponent depend on the structural information of CDs. This analytical result enabled us to extract information from the single-nucleosome imaging data for HeLa cells. Our observation that the MSD is lower at the nuclear periphery region than the interior region indicates that CDs in the heterochromatin-rich nuclear periphery region are more compact than those in the euchromatin-rich interior region with respect to the fractal dimensions as well as the size. Finally, we evaluated that the average size of CDs is in the range of 100–500 nm and that the relaxation time of nucleosome movement within CDs is a few seconds. Our results provide physical and dynamic insights into the genome architecture in living cells. PMID:27764097

  16. Genome-wide mapping of nucleosome positions in Saccharomyces cerevisiae in response to different nitrogen conditions

    PubMed Central

    Zhang, Peng; Du, Guocheng; Zou, Huijun; Xie, Guangfa; Chen, Jian; Shi, Zhongping; Zhou, Jingwen

    2016-01-01

    Well-organized chromatin is involved in a number of various transcriptional regulation and gene expression. We used genome-wide mapping of nucleosomes in response to different nitrogen conditions to determine both nucleosome profiles and gene expression events in Saccharomyces cerevisiae. Nitrogen conditions influence general nucleosome profiles and the expression of nitrogen catabolite repression (NCR) sensitive genes. The nucleosome occupancy of TATA-containing genes was higher compared to TATA-less genes. TATA-less genes in high or low nucleosome occupancy, showed a significant change in gene coding regions when shifting cells from glutamine to proline as the sole nitrogen resource. Furthermore, a correlation between the expression of nucleosome occupancy induced NCR sensitive genes or TATA containing genes in NCR sensitive genes, and nucleosome prediction were found when cells were cultured in proline or shifting from glutamine to proline as the sole nitrogen source compared to glutamine. These results also showed that variation of nucleosome occupancy accompany with chromatin-dependent transcription factor could influence the expression of a series of genes involved in the specific regulation of nitrogen utilization. PMID:27659668

  17. The Arabidopsis Adh gene exhibits diverse nucleosome arrangements within a small DNase I-sensitive domain.

    PubMed Central

    Vega-Palas, M A; Ferl, R J

    1995-01-01

    The alcohol dehydrogenase (Adh) gene from Arabidopsis shows enhanced sensitivity to DNase I in cells that express the gene. This generalized sensitivity to DNase I is demarcated by position -500 on the 5' side and the end of the mRNA on the 3' side. Thus, the gene defined as the promoter and mRNA coding region corresponds very closely in size with the gene defined as a nuclease-sensitive domain. This is a remarkably close correspondence between a sensitive domain and a eukaryotic transcriptional unit, because previously reported DNase I-sensitive domains include large regions of DNA that are not transcribed. Nucleosomes are present in the coding region of the Adh gene when it is expressed, indicating that the transcriptional elongation process causes nucleosome disruption rather than release of nucleosomes from the coding region. In addition, the regulatory region contains a loosely positioned nucleosome that is separated from adjacent nucleosomes by internucleosomic DNA segments longer than the average linker DNA in bulk chromatin. This specific array of nucleosomes coexists with bound transcription factors that could contribute to the organization of the nucleosome arrangement. These results enhance our understanding of the complex interactions among DNA, nucleosomes, and transcription factors during gene expression in plants. PMID:8535143

  18. Electrostatic effect of H1-histone protein binding on nucleosome repeat length

    NASA Astrophysics Data System (ADS)

    Cherstvy, Andrey G.; Teif, Vladimir B.

    2014-08-01

    Within a simple biophysical model we describe the effect of electrostatic binding of H1 histone proteins on the nucleosome repeat length in chromatin. The length of wrapped DNA optimizes its binding energy to the histone core and the elastic energy penalty of DNA wrapping. The magnitude of the effect predicted from our model is in agreement with the systematic experimental data on the linear variation of nucleosome repeat lengths with H1/nucleosome ratio (Woodcock C L et al 2006 Chromos. Res. 14 17-25). We compare our model to the data for different cell types and organisms, with a widely varying ratio of bound H1 histones per nucleosome. We underline the importance of this non-specific histone-DNA charge-balance mechanism in regulating the positioning of nucleosomes and the degree of compaction of chromatin fibers in eukaryotic cells.

  19. Stimulation of the Drosophila immune system alters genome-wide nucleosome occupancy.

    PubMed

    Ren, Yingxue; Vera, Daniel L; Hughes, Kimberly A; Dennis, Jonathan H

    2015-03-01

    In eukaryotes, nucleosomes participate in all DNA-templated events by regulating access to the underlying DNA sequence. However, nucleosome dynamics during a genome response have not been well characterized [1,2]. We stimulated Drosophila S2 cells with heat-killed Gram-negative bacteria Salmonella typhimurium, and mapped genome-wide nucleosome occupancy at high temporal resolution by MNase-seq using Illumina HiSeq 2500. We show widespread nucleosome occupancy change in S2 cells during the immune response, with the significant nucleosomal loss occurring at 4 h after stimulation. Data have been deposited to the Gene Expression Omnibus (GEO) database repository with the dataset identifier GSE64507.

  20. Stimulation of the Drosophila immune system alters genome-wide nucleosome occupancy.

    PubMed

    Ren, Yingxue; Vera, Daniel L; Hughes, Kimberly A; Dennis, Jonathan H

    2015-03-01

    In eukaryotes, nucleosomes participate in all DNA-templated events by regulating access to the underlying DNA sequence. However, nucleosome dynamics during a genome response have not been well characterized [1,2]. We stimulated Drosophila S2 cells with heat-killed Gram-negative bacteria Salmonella typhimurium, and mapped genome-wide nucleosome occupancy at high temporal resolution by MNase-seq using Illumina HiSeq 2500. We show widespread nucleosome occupancy change in S2 cells during the immune response, with the significant nucleosomal loss occurring at 4 h after stimulation. Data have been deposited to the Gene Expression Omnibus (GEO) database repository with the dataset identifier GSE64507. PMID:26484165

  1. Genome-wide Mapping of Nucleosome Positioning and DNA Methylation Within Individual DNA Molecules

    PubMed Central

    Liu, Yaping; Lay, Fides D.; Liang, Gangning; Berman, Benjamin P.; Jones, Peter A.; Kelly, Terry

    2012-01-01

    DNA methylation and nucleosome positioning work together to generate chromatin structures that regulate gene expression. Nucleosomes are typically mapped using nuclease digestion requiring significant amounts of material and varying enzyme concentrations. We have developed a method that uses a GpC methyltransferase (M.CviPI) and next generation sequencing to footprint nucleosome positioning genome-wide using less than 1 million cells, which does not suffer from sequence based biases associated with MNase digestion and retains endogenous DNA methylation information. Using a novel bioinformatics pipeline we identify chromatin configurations associated with a variety of functional genomic loci including distinct promoter types, enhancers, insulators, X-inactivated and imprinted genes. Importantly, DNA methylation and nucleosome positioning information are obtained from the same DNA molecule, giving the first genome-wide DNA methylation and nucleosome positioning correlation at the single molecule level that can be used to monitor disease progression and response to therapy.

  2. Pioneer Transcription Factors Target Partial DNA Motifs on Nucleosomes to Initiate Reprogramming

    PubMed Central

    Soufi, Abdenour; Garcia, Meilin Fernandez; Jaroszewicz, Artur; Osman, Nebiyu; Pellegrini, Matteo; Zaret, Kenneth S.

    2015-01-01

    SUMMARY Pioneer transcription factors (TFs) access silent chromatin and initiate cell fate changes, using diverse types of DNA binding domains (DBDs). FoxA, the paradigm pioneer TF, has a winged helix DBD that resembles linker histone and thereby binds its target sites on nucleosomes and in compacted chromatin. Herein we compare the nucleosome and chromatin targeting activities of Oct4 (POU DBD), Sox2 (HMG box DBD), Klf4 (zinc finger DBD), and c-Myc (bHLH DBD), which together reprogram somatic cells to pluripotency. Purified Oct4, Sox2, and Klf4 proteins can bind nucleosomes in vitro, and in vivo they preferentially target silent sites enriched for nucleosomes. Pioneer activity relates simply to the ability of a given DBD to target partial motifs displayed on the nucleosome surface. Such partial motif recognition can occur by coordinate binding between factors. Our findings provide insight into how pioneer factors can target naïve chromatin sites. PMID:25892221

  3. Structure and dynamics of DNA loops on nucleosomes studied with atomistic, microsecond-scale molecular dynamics

    PubMed Central

    Pasi, Marco; Lavery, Richard

    2016-01-01

    DNA loop formation on nucleosomes is strongly implicated in chromatin remodeling and occurs spontaneously in nucleosomes subjected to superhelical stress. The nature of such loops depends crucially on the balance between DNA deformation and DNA interaction with the nucleosome core. Currently, no high-resolution structural data on these loops exist. Although uniform rod models have been used to study loop size and shape, these models make assumptions concerning DNA mechanics and DNA–core binding. We present here atomic-scale molecular dynamics simulations for two different loop sizes. The results point to the key role of localized DNA kinking within the loops. Kinks enable the relaxation of DNA bending strain to be coupled with improved DNA–core interactions. Kinks lead to small, irregularly shaped loops that are asymmetrically positioned with respect to the nucleosome core. We also find that loop position can influence the dynamics of the DNA segments at the extremities of the nucleosome. PMID:27098037

  4. Structure-based Analysis of DNA Sequence Patterns Guiding Nucleosome Positioning in vitro

    PubMed Central

    Cui, Feng; Zhurkin, Victor B.

    2010-01-01

    Recent studies of genome-wide nucleosomal organization suggest that the DNA sequence is one of the major determinants of nucleosome positioning. Although the search for underlying patterns encoded in nucleosomal DNA has been going on for about 30 years, our knowledge of these patterns still remains limited. Based on our evaluations of DNA deformation energy, we developed new scoring functions to predict nucleosome positioning. There are three principal differences between our approach and earlier studies: (i) we assume that the length of nucleosomal DNA varies from 146 to 147 bp; (ii) we consider the anisotropic flexibility of pyrimidine-purine (YR) dimeric steps in the context of their neighbors (e.g., YYRR versus RYRY); (iii) we postulate that alternating AT-rich and GC-rich motifs reflect sequence-dependent interactions between histone arginines and DNA in the minor groove. Using these functions, we analyzed 20 nucleosome positions mapped in vitro at single nucleotide resolution (including clones 601, 603, 605, the pGUB plasmid, chicken β-globin and three 5S rDNA genes). We predicted 15 of the 20 positions with 1-bp precision, and two positions with 2-bp precision. The predicted position of the ‘601’ nucleosome (i.e., the optimum of the computed score) deviates from the experimentally determined unique position by no more than 1 bp — an accuracy exceeding that of earlier predictions. Our analysis reveals a clear heterogeneity of the nucleosomal sequences which can be divided into two groups based on the positioning ‘rules’ they follow. The sequences of one group are enriched by highly deformable YR/YYRR motifs at the minor-groove bending sites SHL ±3.5 and ±5.5, which is similar to the α-satellite sequence used in most crystallized nucleosomes. Apparently, the positioning of these nucleosomes is determined by the interactions between histones H2A/H2B and the terminal parts of nucleosomal DNA. In the other group (that includes the ‘601’ clone

  5. The Pioneer Transcription Factor FoxA Maintains an Accessible Nucleosome Configuration at Enhancers for Tissue-Specific Gene Activation.

    PubMed

    Iwafuchi-Doi, Makiko; Donahue, Greg; Kakumanu, Akshay; Watts, Jason A; Mahony, Shaun; Pugh, B Franklin; Lee, Dolim; Kaestner, Klaus H; Zaret, Kenneth S

    2016-04-01

    Nuclear DNA wraps around core histones to form nucleosomes, which restricts the binding of transcription factors to gene regulatory sequences. Pioneer transcription factors can bind DNA sites on nucleosomes and initiate gene regulatory events, often leading to the local opening of chromatin. However, the nucleosomal configuration of open chromatin and the basis for its regulation is unclear. We combined low and high levels of micrococcal nuclease (MNase) digestion along with core histone mapping to assess the nucleosomal configuration at enhancers and promoters in mouse liver. We find that MNase-accessible nucleosomes, bound by transcription factors, are retained more at liver-specific enhancers than at promoters and ubiquitous enhancers. The pioneer factor FoxA displaces linker histone H1, thereby keeping enhancer nucleosomes accessible in chromatin and allowing other liver-specific transcription factors to bind and stimulate transcription. Thus, nucleosomes are not exclusively repressive to gene regulation when they are retained with, and exposed by, pioneer factors.

  6. CENP-C directs a structural transition of CENP-A nucleosomes mainly through sliding of DNA gyres.

    PubMed

    Falk, Samantha J; Lee, Jaehyoun; Sekulic, Nikolina; Sennett, Michael A; Lee, Tae-Hee; Black, Ben E

    2016-03-01

    The histone H3 variant CENP-A is incorporated into nucleosomes that mark centromere location. We have recently reported that CENP-A nucleosomes, compared with their H3 counterparts, confer an altered nucleosome shape. Here, using a single-molecule fluorescence resonance energy transfer (FRET) approach with recombinant human histones and centromere DNA, we found that the nucleosome shape change directed by CENP-A is dominated by lateral passing of two DNA gyres (gyre sliding). A nonhistone centromere protein, CENP-C, binds and reshapes the nucleosome, sliding the DNA gyres back to positions similar to those in canonical nucleosomes containing conventional histone H3. The model that we generated to explain the CENP-A-nucleosome transition provides an example of a shape change imposed by external binding proteins and has notable implications for understanding of the epigenetic basis of the faithful inheritance of centromere location on chromosomes.

  7. RSC remodeling of oligo-nucleosomes: an atomic force microscopy study.

    PubMed

    Montel, Fabien; Castelnovo, Martin; Menoni, Hervé; Angelov, Dimitar; Dimitrov, Stefan; Faivre-Moskalenko, Cendrine

    2011-04-01

    The 'remodels structure of chromatin' (RSC) complex is an essential chromatin remodeling factor that is required for the control of several processes including transcription, repair and replication. The ability of RSC to relocate centrally positioned mononucleosomes at the end of nucleosomal DNA is firmly established, but the data on RSC action on oligo-nucleosomal templates remains still scarce. By using atomic force microscopy (AFM) imaging, we have quantitatively studied the RSC-induced mobilization of positioned di- and trinucleosomes as well as the directionality of mobilization on mononucleosomal template labeled at one end with streptavidin. AFM imaging showed only a limited set of distinct configurational states for the remodeling products. No stepwise or preferred directionality of the nucleosome motion was observed. Analysis of the corresponding reaction pathways allows deciphering the mechanistic features of RSC-induced nucleosome relocation. The final outcome of RSC remodeling of oligosome templates is the packing of the nucleosomes at the edge of the template, providing large stretches of DNA depleted of nucleosomes. This feature of RSC may be used by the cell to overcome the barrier imposed by the presence of nucleosomes.

  8. Caspase-dependent cell death-associated release of nucleosome and damage-associated molecular patterns

    PubMed Central

    Yoon, S; Park, S J; Han, J H; Kang, J H; Kim, J-h; Lee, J; Park, S; Shin, H-J; Kim, K; Yun, M; Chwae, Y-J

    2014-01-01

    Apoptosis, which is anti-inflammatory, and necrosis, which is pro-inflammatory, represent the extremes of the cell death spectrum. Cell death is complex and both apoptosis and necrosis can be observed in the same cells or tissues. Here, we introduce a novel combined mode of cellular demise – caspase-dependent regulated necrosis. Most importantly, it is mainly characterized with release of marked amount of oligo- or poly-nucleosomes and their attached damage-associated molecular patterns (DAMPs) and initiated by caspase activation. Caspase-activated DNase has dual roles in nucleosomal release as it can degrade extracellularly released chromatin into poly- or oligo-nucleosomes although it prohibits release of nucleosomes. In addition, osmotically triggered water movement following Cl− influx and subsequent Na+ influx appears to be the major driving force for nucleosomal and DAMPs release. Finally, Ca2+-activated cysteine protease, calpain, is an another essential factor in nucleosomal and DAMPs release because of complete reversion to apoptotic morphology from necrotic one and blockade of nucleosomal and DAMPs release by its inhibition. PMID:25356863

  9. FSAP-mediated nucleosome release from late apoptotic cells is inhibited by autoantibodies present in SLE.

    PubMed

    Marsman, Gerben; Stephan, Femke; de Leeuw, Karina; Bulder, Ingrid; Ruinard, Jessica T; de Jong, Jan; Westra, Johanna; Bultink, Irene E M; Voskuyl, Alexandre E; Aarden, Lucien A; Luken, Brenda M; Kallenberg, Cees G M; Zeerleder, Sacha

    2016-03-01

    Inefficient clearance of apoptotic cells and the subsequent exposure of the immune system to nuclear contents are crucially involved in the pathogenesis of systemic lupus erythematosus (SLE). Factor VII-activating protease (FSAP) is activated in serum upon contact with dead cells, and releases nucleosomes from late apoptotic cells into the extracellular environment. We investigated whether FSAP-mediated nucleosome release from late apoptotic cells is affected in SLE patients. Nucleosome release in sera of 27 SLE patients and 30 healthy controls was investigated by incubating late apoptotic Jurkat cells with serum and analyzing the remaining DNA content by flow cytometry. We found that nucleosome release in sera of SLE patients with high disease activity was significantly decreased when compared with that in SLE sera obtained during low disease activity or from healthy individuals. Upon removal of IgG/IgM antibodies from SLE sera, nucleosome release was restored. Similarly, monoclonal antinuclear antibodies inhibited nucleosome release in healthy donor serum or by plasma-purified FSAP. This inhibition was lost when Fab fragments were used, suggesting that antigen cross-linking is involved. In conclusion, FSAP-mediated nucleosome release from late apoptotic cells is greatly impaired in SLE patient sera, possibly hampering the clearance of these cells and thereby propagating inflammation.

  10. Evaluation of the protective capabilities of nucleosome STRs obtained by large-scale sequencing.

    PubMed

    Dong, Chunnan; Yang, Yadong; Yan, Jiangwei; Fu, Lihong; Zhang, Xiaojing; Cong, Bin; Li, Shujin

    2015-07-01

    Partial DNA profiles are often obtained from degraded forensic samples and are hard to analyze and interpret. With in-depth studies on degraded DNA, an increasing number of forensic scientists have focused on the intrinsic structural properties of DNA. In theory, nucleosomes offer protection to the bound DNA by limiting access to enzymes. In our study, we performed large-scale DNA sequencing on nucleosome core DNA of human leucocytes. Five nucleosome short tandem repeats (STRs) were selected (including three forensic common STRs (i.e. TPOX, TH01, and D10S1248) and two unpublished STRs (i.e. AC012568.7 and AC007160.3)). We performed a population genetic investigation and forensic genetic statistical analysis of these two unpublished loci on 108 healthy unrelated individuals of the HeBei Han population in China. We estimated the protective capabilities of five selected nucleosome loci and MiniFiler™ loci with artificial degraded DNA and case samples. We also analyzed differences between sequencing results and software predicted results. Our findings showed that nucleosome STRs were more likely to be detected than MiniFiler™ loci. They were well protected from degradation by nucleosomes and could be candidates for further nucleosome multiplex construction, which would increase the chances of obtaining a better balanced profile with fewer allelic drop-outs.

  11. Comparative Genomics Reveals Chd1 as a Determinant of Nucleosome Spacing in Vivo.

    PubMed

    Hughes, Amanda L; Rando, Oliver J

    2015-07-14

    Packaging of genomic DNA into nucleosomes is nearly universally conserved in eukaryotes, and many features of the nucleosome landscape are quite conserved. Nonetheless, quantitative aspects of nucleosome packaging differ between species because, for example, the average length of linker DNA between nucleosomes can differ significantly even between closely related species. We recently showed that the difference in nucleosome spacing between two Hemiascomycete species-Saccharomyces cerevisiae and Kluyveromyces lactis-is established by trans-acting factors rather than being encoded in cis in the DNA sequence. Here, we generated several S. cerevisiae strains in which endogenous copies of candidate nucleosome spacing factors are deleted and replaced with the orthologous factors from K. lactis. We find no change in nucleosome spacing in such strains in which H1 or Isw1 complexes are swapped. In contrast, the K. lactis gene encoding the ATP-dependent remodeler Chd1 was found to direct longer internucleosomal spacing in S. cerevisiae, establishing that this remodeler is partially responsible for the relatively long internucleosomal spacing observed in K. lactis. By analyzing several chimeric proteins, we find that sequence differences that contribute to the spacing activity of this remodeler are dispersed throughout the coding sequence, but that the strongest spacing effect is linked to the understudied N-terminal end of Chd1. Taken together, our data find a role for sequence evolution of a chromatin remodeler in establishing quantitative aspects of the chromatin landscape in a species-specific manner.

  12. Shearing of the CENP-A dimerization interface mediates plasticity in the octameric centromeric nucleosome.

    PubMed

    Winogradoff, David; Zhao, Haiqing; Dalal, Yamini; Papoian, Garegin A

    2015-11-25

    The centromeric nucleosome is a key epigenetic determinant of centromere identity and function. Consequently, deciphering how CENP-A containing nucleosomes contribute structurally to centromere function is a fundamental question in chromosome biology. Here, we performed microsecond timescale all-atom molecular dynamics (MD) simulations of CENP-A and H3 nucleosomes, and report that the octameric CENP-A core particles and nucleosomes display different dynamics from their canonical H3-containing counterparts. The most significant motion observed is within key interactions at the heart of the CENP-A octameric core, wherein shearing of contacts within the CENP-A:CENP-A' dimerization interface results in a weaker four helix bundle, and an extrusion of 10-30 bp of DNA near the pseudo-dyad. Coupled to other local and global fluctuations, the CENP-A nucleosome occupies a more rugged free energy landscape than the canonical H3 nucleosome. Taken together, our data suggest that CENP-A encodes enhanced distortability to the octameric nucleosome, which may allow for enhanced flexing of the histone core in vivo.

  13. Shearing of the CENP-A dimerization interface mediates plasticity in the octameric centromeric nucleosome

    NASA Astrophysics Data System (ADS)

    Winogradoff, David; Zhao, Haiqing; Dalal, Yamini; Papoian, Garegin A.

    2015-11-01

    The centromeric nucleosome is a key epigenetic determinant of centromere identity and function. Consequently, deciphering how CENP-A containing nucleosomes contribute structurally to centromere function is a fundamental question in chromosome biology. Here, we performed microsecond timescale all-atom molecular dynamics (MD) simulations of CENP-A and H3 nucleosomes, and report that the octameric CENP-A core particles and nucleosomes display different dynamics from their canonical H3-containing counterparts. The most significant motion observed is within key interactions at the heart of the CENP-A octameric core, wherein shearing of contacts within the CENP-A:CENP-A’ dimerization interface results in a weaker four helix bundle, and an extrusion of 10-30 bp of DNA near the pseudo-dyad. Coupled to other local and global fluctuations, the CENP-A nucleosome occupies a more rugged free energy landscape than the canonical H3 nucleosome. Taken together, our data suggest that CENP-A encodes enhanced distortability to the octameric nucleosome, which may allow for enhanced flexing of the histone core in vivo.

  14. Role of transcription factor-mediated nucleosome disassembly in PHO5 gene expression.

    PubMed

    Kharerin, Hungyo; Bhat, Paike J; Marko, John F; Padinhateeri, Ranjith

    2016-01-01

    Studying nucleosome dynamics in promoter regions is crucial for understanding gene regulation. Nucleosomes regulate gene expression by sterically occluding transcription factors (TFs) and other non-histone proteins accessing genomic DNA. How the binding competition between nucleosomes and TFs leads to transcriptionally compatible promoter states is an open question. Here, we present a computational study of the nucleosome dynamics and organization in the promoter region of PHO5 gene in Saccharomyces cerevisiae. Introducing a model for nucleosome kinetics that takes into account ATP-dependent remodeling activity, DNA sequence effects, and kinetics of TFs (Pho4p), we compute the probability of obtaining different "promoter states" having different nucleosome configurations. Comparing our results with experimental data, we argue that the presence of local remodeling activity (LRA) as opposed to basal remodeling activity (BRA) is crucial in determining transcriptionally active promoter states. By modulating the LRA and Pho4p binding rate, we obtain different mRNA distributions-Poisson, bimodal, and long-tail. Through this work we explain many features of the PHO5 promoter such as sequence-dependent TF accessibility and the role of correlated dynamics between nucleosomes and TFs in opening/coverage of the TATA box. We also obtain possible ranges for TF binding rates and the magnitude of LRA. PMID:26843321

  15. Shearing of the CENP-A dimerization interface mediates plasticity in the octameric centromeric nucleosome

    PubMed Central

    Winogradoff, David; Zhao, Haiqing; Dalal, Yamini; Papoian, Garegin A.

    2015-01-01

    The centromeric nucleosome is a key epigenetic determinant of centromere identity and function. Consequently, deciphering how CENP-A containing nucleosomes contribute structurally to centromere function is a fundamental question in chromosome biology. Here, we performed microsecond timescale all-atom molecular dynamics (MD) simulations of CENP-A and H3 nucleosomes, and report that the octameric CENP-A core particles and nucleosomes display different dynamics from their canonical H3-containing counterparts. The most significant motion observed is within key interactions at the heart of the CENP-A octameric core, wherein shearing of contacts within the CENP-A:CENP-A’ dimerization interface results in a weaker four helix bundle, and an extrusion of 10–30 bp of DNA near the pseudo-dyad. Coupled to other local and global fluctuations, the CENP-A nucleosome occupies a more rugged free energy landscape than the canonical H3 nucleosome. Taken together, our data suggest that CENP-A encodes enhanced distortability to the octameric nucleosome, which may allow for enhanced flexing of the histone core in vivo. PMID:26602160

  16. Nucleosomes inhibit phagocytosis of apoptotic thymocytes by peritoneal macrophages from MRL+/+ lupus-prone mice.

    PubMed

    Laderach, D; Bach, J F; Koutouzov, S

    1998-12-01

    The nucleosome, the basic structure of chromatin and normal product of cell apoptosis, plays a pivotal role both in the induction and the pathogenesis of systemic lupus erythematosus (SLE). Nucleosomes have been found to circulate at high levels in patients with SLE and apoptosis of lymphoid cells is increased during human and murine lupus. In this study, we examined the presence of possible defects in clearance mechanisms of apoptotic cells in murine lupus, and questioned further whether nucleosomes could compromise this phagocytic process. There did not appear to be any intrinsic functional defect of macrophages from young MRL+/+ lupus-prone mice to recognize and phagocytose apoptotic thymocytes. Nucleosomes, as a mimic of increased cell apoptotsis in vivo, induced a strong, dose-dependent, inhibition of phagocytosis of apoptotic thymocytes by young, pre-autoimmune, macrophages of MRL+/+ mice, whereas macrophages of non-autoimmune C3H mice only exhibited a trend to inhibition. The nucleosome-elicited inhibitory effect persisted during the development of the autoimmune response and appeared to be specific for the molecular mechanisms involved in macrophage phagocytosis of apoptotic cells. Our data suggest that nucleosome elicited inhibition of phagocytosis of apoptotic cells by MRL+/+ macrophages before the onset of the autoimmune response contribute, in a positive loop, to sustain and/or augment the levels of circulating (and potentially immunogenic) nucleosomes in lupus.

  17. Role of transcription factor-mediated nucleosome disassembly in PHO5 gene expression

    PubMed Central

    Kharerin, Hungyo; Bhat, Paike J.; Marko, John F.; Padinhateeri, Ranjith

    2016-01-01

    Studying nucleosome dynamics in promoter regions is crucial for understanding gene regulation. Nucleosomes regulate gene expression by sterically occluding transcription factors (TFs) and other non–histone proteins accessing genomic DNA. How the binding competition between nucleosomes and TFs leads to transcriptionally compatible promoter states is an open question. Here, we present a computational study of the nucleosome dynamics and organization in the promoter region of PHO5 gene in Saccharomyces cerevisiae. Introducing a model for nucleosome kinetics that takes into account ATP-dependent remodeling activity, DNA sequence effects, and kinetics of TFs (Pho4p), we compute the probability of obtaining different “promoter states” having different nucleosome configurations. Comparing our results with experimental data, we argue that the presence of local remodeling activity (LRA) as opposed to basal remodeling activity (BRA) is crucial in determining transcriptionally active promoter states. By modulating the LRA and Pho4p binding rate, we obtain different mRNA distributions—Poisson, bimodal, and long-tail. Through this work we explain many features of the PHO5 promoter such as sequence-dependent TF accessibility and the role of correlated dynamics between nucleosomes and TFs in opening/coverage of the TATA box. We also obtain possible ranges for TF binding rates and the magnitude of LRA. PMID:26843321

  18. Selective removal of promoter nucleosomes by the RSC chromatin-remodeling complex.

    PubMed

    Lorch, Yahli; Griesenbeck, Joachim; Boeger, Hinrich; Maier-Davis, Barbara; Kornberg, Roger D

    2011-08-01

    Purified chromatin rings, excised from the PHO5 locus of Saccharomyces cerevisiae in transcriptionally repressed and activated states, were remodeled with RSC and ATP. Nucleosomes were translocated, and those originating on the promoter of repressed rings were removed, whereas those originating on the open reading frame (ORF) were retained. Treatment of the repressed rings with histone deacetylase diminished the removal of promoter nucleosomes. These findings point to a principle of promoter chromatin remodeling for transcription, namely that promoter specificity resides primarily in the nucleosomes rather than in the remodeling complex that acts upon them.

  19. The Nucleosome Remodeling and Deacetylase Complex NuRD Is Built from Preformed Catalytically Active Sub-modules.

    PubMed

    Zhang, W; Aubert, A; Gomez de Segura, J M; Karuppasamy, M; Basu, S; Murthy, A S; Diamante, A; Drury, T A; Balmer, J; Cramard, J; Watson, A A; Lando, D; Lee, S F; Palayret, M; Kloet, S L; Smits, A H; Deery, M J; Vermeulen, M; Hendrich, B; Klenerman, D; Schaffitzel, C; Berger, I; Laue, E D

    2016-07-17

    The nucleosome remodeling deacetylase (NuRD) complex is a highly conserved regulator of chromatin structure and transcription. Structural studies have shed light on this and other chromatin modifying machines, but much less is known about how they assemble and whether stable and functional sub-modules exist that retain enzymatic activity. Purification of the endogenous Drosophila NuRD complex shows that it consists of a stable core of subunits, while others, in particular the chromatin remodeler CHD4, associate transiently. To dissect the assembly and activity of NuRD, we systematically produced all possible combinations of different components using the MultiBac system, and determined their activity and biophysical properties. We carried out single-molecule imaging of CHD4 in live mouse embryonic stem cells, in the presence and absence of one of core components (MBD3), to show how the core deacetylase and chromatin-remodeling sub-modules associate in vivo. Our experiments suggest a pathway for the assembly of NuRD via preformed and active sub-modules. These retain enzymatic activity and are present in both the nucleus and the cytosol, an outcome with important implications for understanding NuRD function. PMID:27117189

  20. Design of synthetic yeast promoters via tuning of nucleosome architecture.

    PubMed

    Curran, Kathleen A; Crook, Nathan C; Karim, Ashty S; Gupta, Akash; Wagman, Allison M; Alper, Hal S

    2014-01-01

    Model-based design of biological parts is a critical goal of synthetic biology, especially for eukaryotes. Here we demonstrate that nucleosome architecture can have a role in defining yeast promoter activity and utilize a computationally-guided approach that can enable both the redesign of endogenous promoter sequences and the de novo design of synthetic promoters. Initially, we use our approach to reprogram native promoters for increased expression and evaluate their performance in various genetic contexts. Increases in expression ranging from 1.5- to nearly 6-fold in a plasmid-based system and up to 16-fold in a genomic context were obtained. Next, we demonstrate that, in a single design cycle, it is possible to create functional, purely synthetic yeast promoters that achieve substantial expression levels (within the top sixth percentile among native yeast promoters). In doing so, this work establishes a unique DNA-level specification of promoter activity and demonstrates predictive design of synthetic parts. PMID:24862902

  1. Exploration of nucleosome positioning patterns in transcription factor function

    PubMed Central

    Maehara, Kazumitsu; Ohkawa, Yasuyuki

    2016-01-01

    The binding of transcription factors (TFs) triggers activation of specific chromatin regions through the recruitment and activation of RNA polymerase. Unique nucleosome positioning (NP) occurs during gene expression and has been suggested to be involved in various other chromatin functions. However, the diversity of NP that can occur for each function has not been clarified. Here we used MNase-Seq data to evaluate NP around 258 cis-regulatory elements in the mouse genome. Principal component analysis of the 258 elements revealed that NP consisted of five major patterns. Furthermore, the five NP patterns had predictive power for the level of gene expression. We also demonstrated that selective NP patterns appeared around TF binding sites. These results suggest that the NP patterns are correlated to specific functions on chromatin. PMID:26790608

  2. Dnmt1-independent CG methylation contributes to nucleosome positioning in diverse eukaryotes.

    PubMed

    Huff, Jason T; Zilberman, Daniel

    2014-03-13

    Dnmt1 epigenetically propagates symmetrical CG methylation in many eukaryotes. Their genomes are typically depleted of CG dinucleotides because of imperfect repair of deaminated methylcytosines. Here, we extensively survey diverse species lacking Dnmt1 and show that, surprisingly, symmetrical CG methylation is nonetheless frequently present and catalyzed by a different DNA methyltransferase family, Dnmt5. Numerous Dnmt5-containing organisms that diverged more than a billion years ago exhibit clustered methylation, specifically in nucleosome linkers. Clustered methylation occurs at unprecedented densities and directly disfavors nucleosomes, contributing to nucleosome positioning between clusters. Dense methylation is enabled by a regime of genomic sequence evolution that enriches CG dinucleotides and drives the highest CG frequencies known. Species with linker methylation have small, transcriptionally active nuclei that approach the physical limits of chromatin compaction. These features constitute a previously unappreciated genome architecture, in which dense methylation influences nucleosome positions, likely facilitating nuclear processes under extreme spatial constraints.

  3. A RSC/nucleosome complex determines chromatin architecture and facilitates activator binding.

    PubMed

    Floer, Monique; Wang, Xin; Prabhu, Vidya; Berrozpe, Georgina; Narayan, Santosh; Spagna, Dan; Alvarez, David; Kendall, Jude; Krasnitz, Alexander; Stepansky, Asya; Hicks, James; Bryant, Gene O; Ptashne, Mark

    2010-04-30

    How is chromatin architecture established and what role does it play in transcription? We show that the yeast regulatory locus UASg bears, in addition to binding sites for the activator Gal4, sites bound by the RSC complex. RSC positions a nucleosome, evidently partially unwound, in a structure that facilitates Gal4 binding to its sites. The complex comprises a barrier that imposes characteristic features of chromatin architecture. In the absence of RSC, ordinary nucleosomes encroach over the UASg and compete with Gal4 for binding. Taken with our previous work, the results show that both prior to and following induction, specific DNA-binding proteins are the predominant determinants of chromatin architecture at the GAL1/10 genes. RSC/nucleosome complexes are also found scattered around the yeast genome. Higher eukaryotic RSC lacks the specific DNA-binding determinants found on yeast RSC, and evidently Gal4 works in those organisms despite whatever obstacle broadly positioned nucleosomes present.

  4. Influence of DNA methylation on positioning and DNA flexibility of nucleosomes with pericentric satellite DNA.

    PubMed

    Osakabe, Akihisa; Adachi, Fumiya; Arimura, Yasuhiro; Maehara, Kazumitsu; Ohkawa, Yasuyuki; Kurumizaka, Hitoshi

    2015-10-01

    DNA methylation occurs on CpG sites and is important to form pericentric heterochromatin domains. The satellite 2 sequence, containing seven CpG sites, is located in the pericentric region of human chromosome 1 and is highly methylated in normal cells. In contrast, the satellite 2 region is reportedly hypomethylated in cancer cells, suggesting that the methylation status may affect the chromatin structure around the pericentric regions in tumours. In this study, we mapped the nucleosome positioning on the satellite 2 sequence in vitro and found that DNA methylation modestly affects the distribution of the nucleosome positioning. The micrococcal nuclease assay revealed that the DNA end flexibility of the nucleosomes changes, depending on the DNA methylation status. However, the structures and thermal stabilities of the nucleosomes are unaffected by DNA methylation. These findings provide new information to understand how DNA methylation functions in regulating pericentric heterochromatin formation and maintenance in normal and malignant cells.

  5. nuMap: a web platform for accurate prediction of nucleosome positioning.

    PubMed

    Alharbi, Bader A; Alshammari, Thamir H; Felton, Nathan L; Zhurkin, Victor B; Cui, Feng

    2014-10-01

    Nucleosome positioning is critical for gene expression and of major biological interest. The high cost of experimentally mapping nucleosomal arrangement signifies the need for computational approaches to predict nucleosome positions at high resolution. Here, we present a web-based application to fulfill this need by implementing two models, YR and W/S schemes, for the translational and rotational positioning of nucleosomes, respectively. Our methods are based on sequence-dependent anisotropic bending that dictates how DNA is wrapped around a histone octamer. This application allows users to specify a number of options such as schemes and parameters for threading calculation and provides multiple layout formats. The nuMap is implemented in Java/Perl/MySQL and is freely available for public use at http://numap.rit.edu. The user manual, implementation notes, description of the methodology and examples are available at the site. PMID:25220945

  6. The CENP-A nucleosome: a battle between Dr Jekyll and Mr Hyde.

    PubMed

    Bui, Minh; Walkiewicz, Marcin P; Dimitriadis, Emilios K; Dalal, Yamini

    2013-01-01

    The structure of the centromere-specific histone centromeric protein A (CENP-A) nucleosome has been a hot topic of debate for the past five years. Structures proposed include octamers, hexamers, homotypic and heterotypic tetramers. This controversy has led to the proposal that CENP-A nucleosomes undergo cell-cycle dependent transitions between the multiple states previously documented to exist in vivo and in vitro. In recent work from our laboratory, we sought to test this hypothesis. We discovered that CENP-A nucleosomes undergo unique oscillations in human cells, a finding mirrored in a parallel study performed in budding yeast. This review provides additional insights into the potential mechanisms for the interconversion of CENP-A nucleosomal species, and speculates on a biological role for oscillations in vivo. PMID:23324462

  7. Novel Gene Discovery in the Human Malaria Parasite using Nucleosome Positioning Data

    PubMed Central

    Pokhriyal, N.; Ponts, N.; Harris, E. Y.; Le Roch, K. G.; Lonardi, S.

    2013-01-01

    Recent genome-wide studies on nucleosome positioning in model organisms have shown strong evidence that nucleosome landscapes in the proximity of protein-coding genes exhibit regular characteristic patterns. Here, we propose a computational framework to discover novel genes in the human malaria parasite genome P. falciparum using nucleosome positioning inferred from MAINE-seq data. We rely on a classifier trained on the nucleosome landscape profiles of experimentally verified genes, and then used to discover new genes (without considering the primary DNA sequence). Cross-validation experiments show that our classifier is very accurate. About two thirds of the locations reported by the classifier match experimentally determined expressed sequence tags in GenBank, for which no gene has been annotated in the human malaria parasite. PMID:25076982

  8. Histone hyperacetylation can induce unfolding of the nucleosome core particle.

    PubMed Central

    Oliva, R; Bazett-Jones, D P; Locklear, L; Dixon, G H

    1990-01-01

    A direct correlation exists between the level of histone H4 hyperacetylation induced by sodium butyrate and the extent to which nucleosomes lose their compact shape and become elongated (62.0% of the particles have a length/width ratio over 1.6; overall mean in the length/width ratio = 1.83 +/- 0.48) when bound to electron microscope specimen grids at low ionic strength (1mM EDTA, 10mM Tris, pH 8.0). A marked proportion of elongated core particles is also observed in the naturally occurring hyperacetylated chicken testis chromatin undergoing spermatogenesis when analyzed at low ionic strength (36.8% of the particles have a length/width ratio over 1.6). Core particles of elongated shape (length/width ratio over 1.6) generated under low ionic strength conditions are absent in the hypoacetylated chicken erythrocyte chromatin and represent only 2.3% of the untreated Hela S3 cell core particles containing a low proportion of hyperacetylated histones. The marked differences between control and hyperacetylated core particles are absent if the particles are bound to the carbon support film in the presence of 0.2 M NaCl, 6mM MgCl2 and 10mM Tris pH 8.0, conditions known to stabilize nucleosomes. A survey of the published work on histone hyperacetylation together with the present results indicate that histone hyperacetylation does not produce any marked disruption of the core particle 'per se', but that it decreases intranucleosomal stabilizing forces as judged by the lowered stability of the hyperacetylated core particle under conditions of shearing stress such as cationic competition by the carbon support film of the EM grid for DNA binding. Images PMID:2339060

  9. Soft skills turned into hard facts: nucleosome remodelling at developmental switches.

    PubMed

    Chioda, M; Becker, P B

    2010-07-01

    Nucleosome remodelling factors are regulators of DNA accessibility in chromatin and lubricators of all major functions of eukaryotic genomes. Their action is transient and reversible, yet can be decisive for irreversible cell-fate decisions during development. In addition to the well-known local actions of nucleosome remodelling factors during transcription initiation, more global and fundamental roles for remodelling complexes in shaping the epigenome during development are emerging.

  10. Soft skills turned into hard facts: nucleosome remodelling at developmental switches.

    PubMed

    Chioda, M; Becker, P B

    2010-07-01

    Nucleosome remodelling factors are regulators of DNA accessibility in chromatin and lubricators of all major functions of eukaryotic genomes. Their action is transient and reversible, yet can be decisive for irreversible cell-fate decisions during development. In addition to the well-known local actions of nucleosome remodelling factors during transcription initiation, more global and fundamental roles for remodelling complexes in shaping the epigenome during development are emerging. PMID:20372184

  11. Circulating nucleosomes are associated with mortality in pediatric acute respiratory distress syndrome.

    PubMed

    Yehya, Nadir; Thomas, Neal J; Margulies, Susan S

    2016-06-01

    Mechanisms underlying pediatric acute respiratory distress syndrome (PARDS) are poorly understood. The recent implication of circulating nucleosomes as pathogenic in sepsis and trauma-associated ARDS in adults led us to investigate the significance of nucleosomes in PARDS. We conducted a prospective, observational study on children with PARDS at the Children's Hospital of Philadelphia between July 2014 and September 2015. Plasma was collected within 48 h of PARDS onset and nucleosomes quantified by enzyme-linked immunosorbent assay. Samples from 76 children with PARDS (11 deaths, 14%) were collected early [median 15 (IQR 7, 21) h] after PARDS onset. Nucleosome levels were higher in nonsurvivors [0.59 AU (IQR 0.46, 0.84)] relative to survivors [0.21 AU (IQR 0.08, 0.33), rank sum P < 0.001]. Nucleosome levels were not associated with either Berlin (P = 0.845) or PALICC (P = 0.886) oxygenation categories, nor with etiology of PARDS (P = 0.527). Nucleosomes were correlated with increasing numbers of nonpulmonary organ failures (P = 0.009 for trend), and were higher in patients whose PaO2 /FiO2 worsened (P = 0.012) over the first 72 h of PARDS. In regression analysis, nucleosome levels were independently associated with mortality after adjusting for either age, severity of illness score, number of nonpulmonary organ failures, vasopressor score, or PaO2 /FiO2 (all P < 0.05). In conclusion, plasma nucleosome levels in early PARDS were associated with increased mortality, correlated with number of nonpulmonary organ failures, and preceded worsening oxygenation. The potential utility of this biomarker for prognostication, risk stratification, and mechanistic insight should be investigated further. PMID:27130528

  12. Nucleosome Repositioning: A Novel Mechanism for Nicotine- and Cocaine-Induced Epigenetic Changes.

    PubMed

    Brown, Amber N; Vied, Cynthia; Dennis, Jonathan H; Bhide, Pradeep G

    2015-01-01

    Drugs of abuse modify behavior by altering gene expression in the brain. Gene expression can be regulated by changes in DNA methylation as well as by histone modifications, which alter chromatin structure, DNA compaction and DNA accessibility. In order to better understand the molecular mechanisms directing drug-induced changes in chromatin structure, we examined DNA-nucleosome interactions within promoter regions of 858 genes in human neuroblastoma cells (SH-SY5Y) exposed to nicotine or cocaine. Widespread, drug- and time-resolved repositioning of nucleosomes was identified at the transcription start site and promoter region of multiple genes. Nicotine and cocaine produced unique and shared changes in terms of the numbers and types of genes affected, as well as repositioning of nucleosomes at sites which could increase or decrease the probability of gene expression based on DNA accessibility. Half of the drug-induced nucleosome positions approximated a theoretical model of nucleosome occupancy based on physical and chemical characteristics of the DNA sequence, whereas the basal or drug naïve positions were generally DNA sequence independent. Thus we suggest that nucleosome repositioning represents an initial dynamic genome-wide alteration of the transcriptional landscape preceding more selective downstream transcriptional reprogramming, which ultimately characterizes the cell- and tissue-specific responses to drugs of abuse. PMID:26414157

  13. Theoretical estimates of exposure timescales of protein binding sites on DNA regulated by nucleosome kinetics.

    PubMed

    Parmar, Jyotsana J; Das, Dibyendu; Padinhateeri, Ranjith

    2016-02-29

    It is being increasingly realized that nucleosome organization on DNA crucially regulates DNA-protein interactions and the resulting gene expression. While the spatial character of the nucleosome positioning on DNA has been experimentally and theoretically studied extensively, the temporal character is poorly understood. Accounting for ATPase activity and DNA-sequence effects on nucleosome kinetics, we develop a theoretical method to estimate the time of continuous exposure of binding sites of non-histone proteins (e.g. transcription factors and TATA binding proteins) along any genome. Applying the method to Saccharomyces cerevisiae, we show that the exposure timescales are determined by cooperative dynamics of multiple nucleosomes, and their behavior is often different from expectations based on static nucleosome occupancy. Examining exposure times in the promoters of GAL1 and PHO5, we show that our theoretical predictions are consistent with known experiments. We apply our method genome-wide and discover huge gene-to-gene variability of mean exposure times of TATA boxes and patches adjacent to TSS (+1 nucleosome region); the resulting timescale distributions have non-exponential tails. PMID:26553807

  14. Single-Molecule Studies of the Linker Histone H1 Binding to DNA and the Nucleosome.

    PubMed

    Yue, Hongjun; Fang, He; Wei, Sijie; Hayes, Jeffrey J; Lee, Tae-Hee

    2016-04-12

    Linker histone H1 regulates chromatin structure and gene expression. Investigating the dynamics and stoichiometry of binding of H1 to DNA and the nucleosome is crucial to elucidating its functions. Because of the abundant positive charges and the strong self-affinity of H1, quantitative in vitro studies of its binding to DNA and the nucleosome have generated results that vary widely and, therefore, should be interpreted in a system specific manner. We sought to overcome this limitation by developing a specially passivated microscope slide surface to monitor binding of H1 to DNA and the nucleosome at a single-molecule level. According to our measurements, the stoichiometry of binding of H1 to DNA and the nucleosome is very heterogeneous with a wide distribution whose averages are in reasonable agreement with previously published values. Our study also revealed that H1 does not dissociate from DNA or the nucleosome on a time scale of tens of minutes. We found that histone chaperone Nap1 readily dissociates H1 from DNA and superstoichiometrically bound H1 from the nucleosome, supporting a hypothesis whereby histone chaperones contribute to the regulation of the H1 profile in chromatin. PMID:27010485

  15. RSC-dependent constructive and destructive interference between opposing arrays of phased nucleosomes in yeast.

    PubMed

    Ganguli, Dwaipayan; Chereji, Răzvan V; Iben, James R; Cole, Hope A; Clark, David J

    2014-10-01

    RSC and SWI/SNF are related ATP-dependent chromatin remodeling machines that move nucleosomes, regulating access to DNA. We addressed their roles in nucleosome phasing relative to transcription start sites in yeast. SWI/SNF has no effect on phasing at the global level. In contrast, RSC depletion results in global nucleosome repositioning: Both upstream and downstream nucleosomal arrays shift toward the nucleosome-depleted region (NDR), with no change in spacing, resulting in a narrower and partly filled NDR. The global picture of RSC-depleted chromatin represents the average of a range of chromatin structures, with most genes showing a shift of the +1 or the -1 nucleosome into the NDR. Using RSC ChIP data reported by others, we show that RSC occupancy is highest on the coding regions of heavily transcribed genes, though not at their NDRs. We propose that RSC has a role in restoring chromatin structure after transcription. Analysis of gene pairs in different orientations demonstrates that phasing patterns reflect competition between phasing signals emanating from neighboring NDRs. These signals may be in phase, resulting in constructive interference and a regular array, or out of phase, resulting in destructive interference and fuzzy positioning. We propose a modified barrier model, in which a stable complex located at the NDR acts as a bidirectional phasing barrier. In RSC-depleted cells, this barrier has a smaller footprint, resulting in narrower NDRs. Thus, RSC plays a critical role in organizing yeast chromatin.

  16. Free-energy landscape of mono- and dinucleosomes: Enhanced rotational flexibility of interconnected nucleosomes

    NASA Astrophysics Data System (ADS)

    Nam, Gi-Moon; Arya, Gaurav

    2016-03-01

    The nucleosome represents the basic unit of eukaryotic genome organization, and its conformational fluctuations play a crucial role in various cellular processes. Here we provide insights into the flipping transition of a nucleosome by computing its free-energy landscape as a function of the linking number and nucleosome orientation using the density-of-states Monte Carlo approach. To investigate how the energy landscape is affected by the presence of neighboring nucleosomes in a chromatin fiber, we also compute the free-energy landscape for a dinucleosome array. We find that the mononucleosome is bistable between conformations with negatively and positively crossed linkers while the conformation with open linkers appears as a transition state. The dinucleosome exhibits a markedly different energy landscape in which the conformation with open linkers populates not only the transition state but also the global minimum. This enhanced stability of the open state is attributed to increased rotational flexibility of nucleosomes arising from their mechanical coupling with neighboring nucleosomes. Our results provide a possible mechanism by which chromatin may enhance the accessibility of its DNA and facilitate the propagation and mitigation of DNA torsional stresses.

  17. The Flexible Ends of CENP-A Nucleosome Are Required for Mitotic Fidelity.

    PubMed

    Roulland, Yohan; Ouararhni, Khalid; Naidenov, Mladen; Ramos, Lorrie; Shuaib, Muhammad; Syed, Sajad Hussain; Lone, Imtiaz Nizar; Boopathi, Ramachandran; Fontaine, Emeline; Papai, Gabor; Tachiwana, Hiroaki; Gautier, Thierry; Skoufias, Dimitrios; Padmanabhan, Kiran; Bednar, Jan; Kurumizaka, Hitoshi; Schultz, Patrick; Angelov, Dimitar; Hamiche, Ali; Dimitrov, Stefan

    2016-08-18

    CENP-A is a histone variant, which replaces histone H3 at centromeres and confers unique properties to centromeric chromatin. The crystal structure of CENP-A nucleosome suggests flexible nucleosomal DNA ends, but their dynamics in solution remains elusive and their implication in centromere function is unknown. Using electron cryo-microscopy, we determined the dynamic solution properties of the CENP-A nucleosome. Our biochemical, proteomic, and genetic data reveal that higher flexibility of DNA ends impairs histone H1 binding to the CENP-A nucleosome. Substituting the 2-turn αN-helix of CENP-A with the 3-turn αN-helix of H3 results in compact particles with rigidified DNA ends, able to bind histone H1. In vivo replacement of CENP-A with H3-CENP-A hybrid nucleosomes leads to H1 recruitment, delocalization of kinetochore proteins, and significant mitotic and cytokinesis defects. Our data reveal that the evolutionarily conserved flexible ends of the CENP-A nucleosomes are essential to ensure the fidelity of the mitotic pathway. PMID:27499292

  18. Nucleosome Repositioning: A Novel Mechanism for Nicotine- and Cocaine-Induced Epigenetic Changes.

    PubMed

    Brown, Amber N; Vied, Cynthia; Dennis, Jonathan H; Bhide, Pradeep G

    2015-01-01

    Drugs of abuse modify behavior by altering gene expression in the brain. Gene expression can be regulated by changes in DNA methylation as well as by histone modifications, which alter chromatin structure, DNA compaction and DNA accessibility. In order to better understand the molecular mechanisms directing drug-induced changes in chromatin structure, we examined DNA-nucleosome interactions within promoter regions of 858 genes in human neuroblastoma cells (SH-SY5Y) exposed to nicotine or cocaine. Widespread, drug- and time-resolved repositioning of nucleosomes was identified at the transcription start site and promoter region of multiple genes. Nicotine and cocaine produced unique and shared changes in terms of the numbers and types of genes affected, as well as repositioning of nucleosomes at sites which could increase or decrease the probability of gene expression based on DNA accessibility. Half of the drug-induced nucleosome positions approximated a theoretical model of nucleosome occupancy based on physical and chemical characteristics of the DNA sequence, whereas the basal or drug naïve positions were generally DNA sequence independent. Thus we suggest that nucleosome repositioning represents an initial dynamic genome-wide alteration of the transcriptional landscape preceding more selective downstream transcriptional reprogramming, which ultimately characterizes the cell- and tissue-specific responses to drugs of abuse.

  19. Relationship between nucleosome positioning and progesterone-induced alternative splicing in breast cancer cells.

    PubMed

    Iannone, Camilla; Pohl, Andy; Papasaikas, Panagiotis; Soronellas, Daniel; Vicent, Guillermo P; Beato, Miguel; ValcáRcel, Juan

    2015-03-01

    Splicing of mRNA precursors can occur cotranscriptionally and it has been proposed that chromatin structure influences splice site recognition and regulation. Here we have systematically explored potential links between nucleosome positioning and alternative splicing regulation upon progesterone stimulation of breast cancer cells. We confirm preferential nucleosome positioning in exons and report four distinct profiles of nucleosome density around alternatively spliced exons, with RNA polymerase II accumulation closely following nucleosome positioning. Hormone stimulation induces switches between profile classes, correlating with a subset of alternative splicing changes. Hormone-induced exon inclusion often correlates with higher nucleosome occupancy at the exon or the preceding intronic region and with higher RNA polymerase II accumulation. In contrast, exons skipped upon hormone stimulation display low nucleosome densities even before hormone treatment, suggesting that chromatin structure primes alternative splicing regulation. Skipped exons frequently harbor binding sites for hnRNP AB, a hormone-induced splicing regulator whose knock down prevents some hormone-induced skipping events. Collectively, our results argue that a variety of chromatin architecture mechanisms can influence alternative splicing decisions.

  20. AFM studies in diverse ionic environments of nucleosomes reconstituted on the 601 positioning sequence.

    PubMed

    Nazarov, Igor; Chekliarova, Iana; Rychkov, Georgy; Ilatovskiy, Andrey V; Crane-Robinson, Colyn; Tomilin, Alexey

    2016-02-01

    Atomic force microscopy (AFM) was used to study mononucleosomes reconstituted from a DNA duplex of 353 bp containing the strong 601 octamer positioning sequence, together with recombinant human core histone octamers. Three parameters were measured: 1) the length of DNA wrapped around the core histones; 2) the number of superhelical turns, calculated from the total angle through which the DNA is bent, and 3) the volume of the DNA-histone core. This approach allowed us to define in detail the structural diversity of nucleosomes caused by disassembly of the octasome to form subnucleosomal structures containing hexasomes, tetrasomes and disomes. At low ionic strength (TE buffer) and in the presence of physiological concentrations of monovalent cations, the majority of the particles were subnucleosomal, but physiological concentrations of bivalent cations resulted in about half of the nucleosomes being canonical octasomes in which the exiting DNA duplexes cross orthogonally. The dominance of this last species explains why bivalent but not monovalent cations can induce the initial step towards compaction and convergence of neighboring nucleosomes in nucleosomal arrays to form the chromatin fiber in the absence of linker histone. The observed nucleosome structural diversity may reflect the functional plasticity of nucleosomes under physiological conditions.

  1. Single-Molecule Studies of the Linker Histone H1 Binding to DNA and the Nucleosome.

    PubMed

    Yue, Hongjun; Fang, He; Wei, Sijie; Hayes, Jeffrey J; Lee, Tae-Hee

    2016-04-12

    Linker histone H1 regulates chromatin structure and gene expression. Investigating the dynamics and stoichiometry of binding of H1 to DNA and the nucleosome is crucial to elucidating its functions. Because of the abundant positive charges and the strong self-affinity of H1, quantitative in vitro studies of its binding to DNA and the nucleosome have generated results that vary widely and, therefore, should be interpreted in a system specific manner. We sought to overcome this limitation by developing a specially passivated microscope slide surface to monitor binding of H1 to DNA and the nucleosome at a single-molecule level. According to our measurements, the stoichiometry of binding of H1 to DNA and the nucleosome is very heterogeneous with a wide distribution whose averages are in reasonable agreement with previously published values. Our study also revealed that H1 does not dissociate from DNA or the nucleosome on a time scale of tens of minutes. We found that histone chaperone Nap1 readily dissociates H1 from DNA and superstoichiometrically bound H1 from the nucleosome, supporting a hypothesis whereby histone chaperones contribute to the regulation of the H1 profile in chromatin.

  2. Theoretical estimates of exposure timescales of protein binding sites on DNA regulated by nucleosome kinetics.

    PubMed

    Parmar, Jyotsana J; Das, Dibyendu; Padinhateeri, Ranjith

    2016-02-29

    It is being increasingly realized that nucleosome organization on DNA crucially regulates DNA-protein interactions and the resulting gene expression. While the spatial character of the nucleosome positioning on DNA has been experimentally and theoretically studied extensively, the temporal character is poorly understood. Accounting for ATPase activity and DNA-sequence effects on nucleosome kinetics, we develop a theoretical method to estimate the time of continuous exposure of binding sites of non-histone proteins (e.g. transcription factors and TATA binding proteins) along any genome. Applying the method to Saccharomyces cerevisiae, we show that the exposure timescales are determined by cooperative dynamics of multiple nucleosomes, and their behavior is often different from expectations based on static nucleosome occupancy. Examining exposure times in the promoters of GAL1 and PHO5, we show that our theoretical predictions are consistent with known experiments. We apply our method genome-wide and discover huge gene-to-gene variability of mean exposure times of TATA boxes and patches adjacent to TSS (+1 nucleosome region); the resulting timescale distributions have non-exponential tails.

  3. Mechanism of nucleosome dissociation produced by transcription elongation in a short chromatin template.

    PubMed

    Gallego, F; Fernandez-Busquets, X; Daban, J R

    1995-05-23

    We have used a linear DNA template (239 bp) containing a nucleosome positioning sequence (NX1) downstream of the T7 RNA polymerase promoter to study the mechanism of transcription elongation through a nucleosome. Under ionic strength approaching physiological conditions we have observed that transcription causes nucleosome dissociation and histone redistribution within the template. We have examined the role of the different elements that, in principle, could induce nucleosome dissociation during transcription. The high affinity of histones for single-stranded DNA observed in titration experiments performed using the purified (+) and (-) strands of the NX1 fragment suggests that nucleosome dissociation is not due to the formation of segments of single-stranded DNA by RNA polymerase in the elongation process. Furthermore, our results show that although RNA can interact with core histones, the synthesized RNA is not bound to the histones dissociated by transcription. Our results indicate that core histones released during transcription can be bound to naked DNA and chromatin (with or without histones H1-H5). From the dynamic properties of excess histones bound to chromatin, we suggest a nucleosome transcription mechanism in which displaced histones are transiently bound to chromatin and finally are reassembled with DNA after the passage of the polymerase.

  4. Nucleosomal occupancy changes locally over key regulatory regions during cell differentiation and reprogramming

    PubMed Central

    West, Jason A.; Cook, April; Alver, Burak H.; Stadtfeld, Matthias; Deaton, Aimee M.; Hochedlinger, Konrad; Park, Peter J.; Tolstorukov, Michael Y.; Kingston, Robert E.

    2014-01-01

    Chromatin structure determines DNA accessibility. We compare nucleosome occupancy in mouse and human embryonic stem cells (ESCs), induced-pluripotent stem cells (iPSCs) and differentiated cell types using MNase-seq. To address variability inherent in this technique, we developed a bioinformatic approach to identify regions of difference (RoD) in nucleosome occupancy between pluripotent and somatic cells. Surprisingly, most chromatin remains unchanged; a majority of rearrangements appear to affect a single nucleosome. RoDs are enriched at genes and regulatory elements, including enhancers associated with pluripotency and differentiation. RoDs co-localize with binding sites of key developmental regulators, including the reprogramming factors Klf4, Oct4/Sox2 and c-Myc. Nucleosomal landscapes in ESC enhancers are extensively altered, exhibiting lower nucleosome occupancy in pluripotent cells than in somatic cells. Most changes are reset during reprogramming. We conclude that changes in nucleosome occupancy are a hallmark of cell differentiation and reprogramming and likely identify regulatory regions essential for these processes. PMID:25158628

  5. Unified physical model for statistical nucleosome positioning in different yeast species

    NASA Astrophysics Data System (ADS)

    Möbius, Wolfram; Osberg, Brendan; Tsankov, Alexander M.; Rando, Oliver J.; Gerland, Ulrich

    2012-02-01

    Recent genome-wide maps of nucleosome positions in different eukaryotes have revealed a common pattern around transcription start sites, involving a nucleosome-free region flanked by a pronounced periodic pattern in the average nucleosome density. For the yeast S. cerevisiae, a gas of hard rods, known as Tonks gas and equivalent to the statistical positioning mechanism of Kornberg and Stryer, can be used to describe the experimentally observed pattern. Here, we consider 12 Hemiascomycota yeast species, each of which displays a distinct nucleosome pattern. Since the mechanisms underlying the formation of the patterns are expected to be related, we undertake a data-driven search for a unified quantitative description. We find that the simple one-dimensional gas model needs to be extended to take into account transient unwrapping of short segments of nucleosomal DNA, such that the particles no longer have a fixed size. Chromatin behavior in all but one species is well described by this generalized gas model, with a single unified set of model parameters where only the average nucleosome density is a species-dependent variable.

  6. AFM studies in diverse ionic environments of nucleosomes reconstituted on the 601 positioning sequence.

    PubMed

    Nazarov, Igor; Chekliarova, Iana; Rychkov, Georgy; Ilatovskiy, Andrey V; Crane-Robinson, Colyn; Tomilin, Alexey

    2016-02-01

    Atomic force microscopy (AFM) was used to study mononucleosomes reconstituted from a DNA duplex of 353 bp containing the strong 601 octamer positioning sequence, together with recombinant human core histone octamers. Three parameters were measured: 1) the length of DNA wrapped around the core histones; 2) the number of superhelical turns, calculated from the total angle through which the DNA is bent, and 3) the volume of the DNA-histone core. This approach allowed us to define in detail the structural diversity of nucleosomes caused by disassembly of the octasome to form subnucleosomal structures containing hexasomes, tetrasomes and disomes. At low ionic strength (TE buffer) and in the presence of physiological concentrations of monovalent cations, the majority of the particles were subnucleosomal, but physiological concentrations of bivalent cations resulted in about half of the nucleosomes being canonical octasomes in which the exiting DNA duplexes cross orthogonally. The dominance of this last species explains why bivalent but not monovalent cations can induce the initial step towards compaction and convergence of neighboring nucleosomes in nucleosomal arrays to form the chromatin fiber in the absence of linker histone. The observed nucleosome structural diversity may reflect the functional plasticity of nucleosomes under physiological conditions. PMID:26586109

  7. A quantitative investigation of linker histone interactions with nucleosomes and chromatin

    PubMed Central

    White, Alison E.; Hieb, Aaron R.; Luger, Karolin

    2016-01-01

    Linker histones such as H1 are abundant basic proteins that bind tightly to nucleosomes, thereby acting as key organizers of chromatin structure. The molecular details of linker histone interactions with the nucleosome, and in particular the contributions of linker DNA and of the basic C-terminal tail of H1, are controversial. Here we combine rigorous solution-state binding assays with native gel electrophoresis and Atomic Force Microscopy, to quantify the interaction of H1 with chromatin. We find that H1 binds nucleosomes and nucleosomal arrays with very tight affinity by recognizing a specific DNA geometry minimally consisting of a solitary nucleosome with a single ~18 base pair DNA linker arm. The association of H1 alters the conformation of trinucleosomes so that only one H1 can bind to the two available linker DNA regions. Neither incorporation of the histone variant H2A.Z, nor the presence of neighboring nucleosomes affects H1 affinity. Our data provide a comprehensive thermodynamic framework for this ubiquitous chromatin architectural protein. PMID:26750377

  8. The SWI/SNF tumor suppressor complex: Regulation of promoter nucleosomes and beyond.

    PubMed

    Lu, Ping; Roberts, Charles W M

    2013-01-01

    Nucleosomes, octamers of histones wrapped in 147 bp of DNA, are the basic unit of chromatin. In eukaryotic cells, the placement of nucleosomes along the genome is highly organized, and modulation of this ordered arrangement contributes to regulation of gene expression. The SWI/SNF complex utilizes the energy of ATP hydrolysis to mobilize nucleosomes and remodel chromatin structure. Recently, the complex has also been implicated in oncogenesis as genes encoding multiple SWI/SNF subunits have been found mutated at high frequency across a wide spectrum of cancers. Given that epigenetic aberrations are now characterized as a hallmark of human cancer, hypotheses have been put forth that the SWI/SNF complex inhibits tumor formation by regulating key chromatin functions. To understand how the SWI/SNF complex contributes to nucleosome organization in vivo we performed a genome-wide study in mammalian cells. We found that inactivation of SWI/SNF subunits leads to disruptions of specific nucleosome patterning and a loss of nucleosome occupancy at a large number of promoters. These findings define a direct relationship between the SWI/SNF complex, chromatin structure, and transcriptional regulation. In this extra view, we discuss our findings, their relevance to gene regulation, and possible links to the tumor suppression activities of the SWI/SNF complex.

  9. Increased Nucleosomes and Neutrophil Activation Link to Disease Progression in Patients with Scrub Typhus but Not Murine Typhus in Laos.

    PubMed

    Paris, Daniel H; Stephan, Femke; Bulder, Ingrid; Wouters, Diana; van der Poll, Tom; Newton, Paul N; Day, Nicholas P J; Zeerleder, Sacha

    2015-01-01

    Cell-mediated immunity is essential in protection against rickettsial illnesses, but the role of neutrophils in these intracellular vasculotropic infections remains unclear. This study analyzed the plasma levels of nucleosomes, FSAP-activation (nucleosome-releasing factor), and neutrophil activation, as evidenced by neutrophil-elastase (ELA) complexes, in sympatric Lao patients with scrub typhus and murine typhus. In acute scrub typhus elevated nucleosome levels correlated with lower GCS scores, raised respiratory rate, jaundice and impaired liver function, whereas neutrophil activation correlated with fibrinolysis and high IL-8 plasma levels, a recently identified predictor of severe disease and mortality. Nucleosome and ELA complex levels were associated with a 4.8-fold and 4-fold increased risk of developing severe scrub typhus, beyond cut off values of 1,040 U/ml for nucleosomes and 275 U/ml for ELA complexes respectively. In murine typhus, nucleosome levels associated with pro-inflammatory cytokines and the duration of illness, while ELA complexes correlated strongly with inflammation markers, jaundice and increased respiratory rates. This study found strong correlations between circulating nucleosomes and neutrophil activation in patients with scrub typhus, but not murine typhus, providing indirect evidence that nucleosomes could originate from neutrophil extracellular trap (NET) degradation. High circulating plasma nucleosomes and ELA complexes represent independent risk factors for developing severe complications in scrub typhus. As nucleosomes and histones exposed on NETs are highly cytotoxic to endothelial cells and are strongly pro-coagulant, neutrophil-derived nucleosomes could contribute to vascular damage, the pro-coagulant state and exacerbation of disease in scrub typhus, thus indicating a detrimental role of neutrophil activation. The data suggest that increased neutrophil activation relates to disease progression and severe complications, and

  10. Increased Nucleosomes and Neutrophil Activation Link to Disease Progression in Patients with Scrub Typhus but Not Murine Typhus in Laos

    PubMed Central

    Paris, Daniel H.; Stephan, Femke; Bulder, Ingrid; Wouters, Diana; van der Poll, Tom; Newton, Paul N.; Day, Nicholas P. J.; Zeerleder, Sacha

    2015-01-01

    Cell-mediated immunity is essential in protection against rickettsial illnesses, but the role of neutrophils in these intracellular vasculotropic infections remains unclear. This study analyzed the plasma levels of nucleosomes, FSAP-activation (nucleosome-releasing factor), and neutrophil activation, as evidenced by neutrophil-elastase (ELA) complexes, in sympatric Lao patients with scrub typhus and murine typhus. In acute scrub typhus elevated nucleosome levels correlated with lower GCS scores, raised respiratory rate, jaundice and impaired liver function, whereas neutrophil activation correlated with fibrinolysis and high IL-8 plasma levels, a recently identified predictor of severe disease and mortality. Nucleosome and ELA complex levels were associated with a 4.8-fold and 4-fold increased risk of developing severe scrub typhus, beyond cut off values of 1,040 U/ml for nucleosomes and 275 U/ml for ELA complexes respectively. In murine typhus, nucleosome levels associated with pro-inflammatory cytokines and the duration of illness, while ELA complexes correlated strongly with inflammation markers, jaundice and increased respiratory rates. This study found strong correlations between circulating nucleosomes and neutrophil activation in patients with scrub typhus, but not murine typhus, providing indirect evidence that nucleosomes could originate from neutrophil extracellular trap (NET) degradation. High circulating plasma nucleosomes and ELA complexes represent independent risk factors for developing severe complications in scrub typhus. As nucleosomes and histones exposed on NETs are highly cytotoxic to endothelial cells and are strongly pro-coagulant, neutrophil-derived nucleosomes could contribute to vascular damage, the pro-coagulant state and exacerbation of disease in scrub typhus, thus indicating a detrimental role of neutrophil activation. The data suggest that increased neutrophil activation relates to disease progression and severe complications, and

  11. A Non-Homogeneous Hidden-State Model on First Order Differences for Automatic Detection of Nucleosome Positions

    PubMed Central

    Kuan, Pei Fen; Huebert, Dana; Gasch, Audrey; Keles, Sunduz

    2009-01-01

    The ability to map individual nucleosomes accurately across genomes enables the study of relationships between dynamic changes in nucleosome positioning/occupancy and gene regulation. However, the highly heterogeneous nature of nucleosome densities across genomes and short linker regions pose challenges in mapping nucleosome positions based on high-throughput microarray data of micrococcal nuclease (MNase) digested DNA. Previous works rely on additional detrending and careful visual examination to detect low-signal nucleosomes, which may exist in a subpopulation of cells. We propose a non-homogeneous hidden-state model based on first order differences of experimental data along genomic coordinates that bypasses the need for local detrending and can automatically detect nucleosome positions of various occupancy levels. Our proposed approach is applicable to both low and high resolution MNase-Chip and MNase-Seq (high throughput sequencing) data, and is able to map nucleosome-linker boundaries accurately. This automated algorithm is also computationally efficient and only requires a simple preprocessing step. We provide several examples illustrating the pitfalls of existing methods, the difficulties of detrending the observed hybridization signals and demonstrate the advantages of utilizing first order differences in detecting nucleosome occupancies via simulations and case studies involving MNase-Chip and MNase-Seq data of nucleosome occupancy in yeast S. cerevisiae. PMID:19572828

  12. Genome-Wide Nucleosome Occupancy and Positioning and Their Impact on Gene Expression and Evolution in Plants.

    PubMed

    Zhang, Tao; Zhang, Wenli; Jiang, Jiming

    2015-08-01

    The fundamental unit of chromatin is the nucleosome that consists of a protein octamer composed of the four core histones (Hs; H3, H4, H2A, and H2B) wrapped by 147 bp of DNA. Nucleosome occupancy and positioning have proven to be dynamic and have a critical impact on expression, regulation, and evolution of eukaryotic genes. We developed nucleosome occupancy and positioning data sets using leaf tissue of rice (Oryza sativa) and both leaf and flower tissues of Arabidopsis (Arabidopsis thaliana). We show that model plant and animal species share the fundamental characteristics associated with nucleosome dynamics. Only 12% and 16% of the Arabidopsis and rice genomes, respectively, were occupied by well-positioned nucleosomes. The cores of positioned nucleosomes were enriched with G/C dinucleotides and showed a lower C→T mutation rate than the linker sequences. We discovered that nucleosomes associated with heterochromatic regions were more spaced with longer linkers than those in euchromatic regions in both plant species. Surprisingly, different nucleosome densities were found to be associated with chromatin in leaf and flower tissues in Arabidopsis. We show that deep MNase-seq data sets can be used to map nucleosome occupancy of specific genomic loci and reveal gene expression patterns correlated with chromatin dynamics in plant genomes.

  13. Increasing Nucleosome Occupancy Is Correlated with an Increasing Mutation Rate so Long as DNA Repair Machinery Is Intact.

    PubMed

    Yazdi, Puya G; Pedersen, Brian A; Taylor, Jared F; Khattab, Omar S; Chen, Yu-Han; Chen, Yumay; Jacobsen, Steven E; Wang, Ping H

    2015-01-01

    Deciphering the multitude of epigenomic and genomic factors that influence the mutation rate is an area of great interest in modern biology. Recently, chromatin has been shown to play a part in this process. To elucidate this relationship further, we integrated our own ultra-deep sequenced human nucleosomal DNA data set with a host of published human genomic and cancer genomic data sets. Our results revealed, that differences in nucleosome occupancy are associated with changes in base-specific mutation rates. Increasing nucleosome occupancy is associated with an increasing transition to transversion ratio and an increased germline mutation rate within the human genome. Additionally, cancer single nucleotide variants and microindels are enriched within nucleosomes and both the coding and non-coding cancer mutation rate increases with increasing nucleosome occupancy. There is an enrichment of cancer indels at the theoretical start (74 bp) and end (115 bp) of linker DNA between two nucleosomes. We then hypothesized that increasing nucleosome occupancy decreases access to DNA by DNA repair machinery and could account for the increasing mutation rate. Such a relationship should not exist in DNA repair knockouts, and we thus repeated our analysis in DNA repair machinery knockouts to test our hypothesis. Indeed, our results revealed no correlation between increasing nucleosome occupancy and increasing mutation rate in DNA repair knockouts. Our findings emphasize the linkage of the genome and epigenome through the nucleosome whose properties can affect genome evolution and genetic aberrations such as cancer.

  14. Mutation bias, rather than binding preference, underlies the nucleosome-associated G+C% variation in eukaryotes.

    PubMed

    Xing, Ke; He, Xionglei

    2015-03-18

    The effects of genetic content on epigenetic status have been extensively studied, but how epigenetic status affects genetic content is not well understood. As a key epigenetic factor the nucleosome structure is highly correlated with local G+C% in eukaryotic genomes. The prevailing explanation to the pattern is that nucleosome occupancy favors higher G+C% sequences more than lower G+C% sequences. However, recent observation of a biased mutation spectrum caused by nucleosome occupancy suggests that the higher G+C% of nucleosomal DNA might be the evolutionary consequence of nucleosome occupancy. To distinguish the two explanations, we examined data from an in vitro nucleosome reconstitution experiment in which histones are incubated with yeast Saccharomyces cerevisiae and Escherichia coli genomic DNA, the former has been shaped by nucleosome structure while the latter has not. There is a strong positive correlation between nucleosome density and G+C% for the yeast DNA, an observation consistent with in vivo data, and such a pattern nearly vanishes for E. coli genomic DNA, suggesting that biased mutation, rather than biased occupancy, explains the most nucleosome-associated G+C% variation in eukaryotic genomes.

  15. Cigarette Smoke Component Acrolein Modulates Chromatin Assembly by Inhibiting Histone Acetylation*

    PubMed Central

    Chen, Danqi; Fang, Lei; Li, Hongjie; Tang, Moon-shong; Jin, Chunyuan

    2013-01-01

    Chromatin structure and gene expression are both regulated by nucleosome assembly. How environmental factors influence histone nuclear import and the nucleosome assembly pathway, leading to changes in chromatin organization and transcription, remains unknown. Acrolein (Acr) is an α,β-unsaturated aldehyde, which is abundant in the environment, especially in cigarette smoke. It has recently been implicated as a potential major carcinogen of smoking-related lung cancer. Here we show that Acr forms adducts with histone proteins in vitro and in vivo and preferentially reacts with free histones rather than with nucleosomal histones. Cellular fractionation analyses reveal that Acr exposure specifically inhibits acetylations of N-terminal tails of cytosolic histones H3 and H4, modifications that are important for nuclear import and chromatin assembly. Notably, Acr exposure compromises the delivery of histone H3 into chromatin and increases chromatin accessibility. Moreover, changes in nucleosome occupancy at several genomic loci are correlated with transcriptional responses to Acr exposure. Our data provide new insights into mechanisms whereby environmental factors interact with the genome and influence genome function. PMID:23770671

  16. Cigarette smoke component acrolein modulates chromatin assembly by inhibiting histone acetylation.

    PubMed

    Chen, Danqi; Fang, Lei; Li, Hongjie; Tang, Moon-shong; Jin, Chunyuan

    2013-07-26

    Chromatin structure and gene expression are both regulated by nucleosome assembly. How environmental factors influence histone nuclear import and the nucleosome assembly pathway, leading to changes in chromatin organization and transcription, remains unknown. Acrolein (Acr) is an α,β-unsaturated aldehyde, which is abundant in the environment, especially in cigarette smoke. It has recently been implicated as a potential major carcinogen of smoking-related lung cancer. Here we show that Acr forms adducts with histone proteins in vitro and in vivo and preferentially reacts with free histones rather than with nucleosomal histones. Cellular fractionation analyses reveal that Acr exposure specifically inhibits acetylations of N-terminal tails of cytosolic histones H3 and H4, modifications that are important for nuclear import and chromatin assembly. Notably, Acr exposure compromises the delivery of histone H3 into chromatin and increases chromatin accessibility. Moreover, changes in nucleosome occupancy at several genomic loci are correlated with transcriptional responses to Acr exposure. Our data provide new insights into mechanisms whereby environmental factors interact with the genome and influence genome function.

  17. Dynamics of interaction of RNA polymerase II with nucleosomes. I. Effect of salts.

    PubMed

    Bhargava, P

    1993-12-01

    Mononucleosomes were labeled with the sulfhydryl-specific fluorescence probe 1,5-IAEDANS (5-(2-((iodoacetyl)amino)ethyl)amino-naphthalene-1-sulfonic acid) by attaching the dye to the single cysteine of H3 through a covalent linkage. The enzyme RNA polymerase II (pol II) utilized the native and the reconstituted fluorescent nucleosomes as templates with greatest efficiency when 0.2 M potassium acetate (AcOK) was used as the supporting salt; 0.2 M NaCl was found to be very much inhibitory. Measurement of polarity of the microenvironment of the dye at its binding site in the nucleosome showed the conformation to be more open in the presence of AcOK, compared to that in 0.1 or 0.2 M NaCl. The binding of pol II to the nucleosome resulted in a relatively more compact structure when measured in terms of the polarity of the microenvironment of the dye in various salt-dependent conformations of the nucleosomes. Time-resolved fluorescence spectroscopy showed that the probe molecule at its binding site undergoes certain excited-state processes, and the presence/absence or rate of these excited-state processes depends on the conformation of nucleosomes, which in turn depends on the type and concentration of the ion present in the medium. Time-resolved emission spectra showed that binding of nucleosomes by pol II established some new contacts that resulted in inaccessibility of the dye to the bulk solvent, reflecting a more hydrophobic environment for the dye in the steady-state spectra. Thus, binding or transcription of nucleosomes by pol II did not break open their structure. Rather, some transient internal adjustments within the histone octamer may take place to accommodate the bulky pol II molecule.

  18. The uni chromosome of Chlamydomonas: histone genes and nucleosome structure.

    PubMed

    Walther, Z; Hall, J L

    1995-09-25

    The uni linkage group (ULG) of Chlamydomonas reinhardtii contains many genes involved in the basal body-flagellar system. Recent evidence suggests that the corresponding uni chromosome is located in close proximity to the basal body complex. In the course of studies into its molecular organization, we have found a cluster of four histone genes on the ULG. The genes are arranged as divergently-transcribed pairs: H3-H4 and H2B-H2A. Genomic sequencing reveals that these genes lack introns and contain characteristic 3' palindromes similar to those of animals. The predicted amino acid sequences are highly conserved across species, with greatest similarities to the histone genes of Volvox. Southern analysis shows that each histone gene is present in 15-20 copies in Chlamydomonas and suggests a dispersed genomic organization. Northern analysis of mitotically-synchronized cells shows that, like the replication-dependent histones of higher eukaryotes, Chlamydomonas histone genes are expressed during S-phase. Using a gene-specific probe on Northern blots, we provide evidence that the ULG H4 gene is regulated in the same manner as other Chlamydomonas histone genes. Finally, micrococcal nuclease protection experiments show that the uni chromosome itself associates with histone proteins and displays a conventional nucleosomal banding pattern. PMID:7479007

  19. Accelerated Chromatin Biochemistry Using DNA-Barcoded Nucleosome Libraries

    PubMed Central

    Nguyen, Uyen T. T.; Bittova, Lenka; Müller, Manuel M.; Fierz, Beat; David, Yael; Houck-Loomis, Brian; Feng, Vanessa; Dann, Geoffrey P.; Muir, Tom W.

    2014-01-01

    Elucidating the molecular details of how chromatin-associated factors deposit, remove and recognize histone posttranslational modification (‘PTM’) signatures remains a daunting task in the epigenetics field. Here, we introduce a versatile platform that greatly accelerates biochemical investigations into chromatin recognition and signaling. This technology is based on the streamlined semi-synthesis of DNA-barcoded nucleosome libraries with distinct combinations of PTMs. Chromatin immunoprecipitation of these libraries treated with purified chromatin effectors or the combined chromatin recognizing and modifying activities of the nuclear proteome is followed by multiplexed DNA-barcode sequencing. This ultrasensitive workflow allowed us to collect thousands of biochemical data points revealing the binding preferences of various nuclear factors for PTM patterns and how pre-existing PTMs, alone or synergistically, affect further PTM deposition via crosstalk mechanisms. We anticipate that the high-throughput and -sensitivity of the technology will help accelerate the decryption of the diverse molecular controls that operate at the level of chromatin. PMID:24997861

  20. Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus

    PubMed Central

    1993-01-01

    Only a fraction (12%) of 268 "autoreactive" T cell clones derived from lupus-prone mice can selectively induce the production of pathogenic anti-DNA autoantibodies in vitro and accelerate the development of lupus nephritis when transferred in vivo. The CDR3 loops of T cell receptor beta chains expressed by these pathogenic T helper (Th) clones contain a recurrent motif of anionic residues suggesting that they are selected by autoantigens with cationic residues. Herein, we found that approximately 50% of these pathogenic Th clones were specific for nucleosomal antigens, but none of them responded to cationic idiopeptides shared by variable regions of pathogenic anti-DNA autoantibodies. Nucleosomes did not stimulate the T cells as a nonspecific mitogen or superantigen. Only the pathogenic Th cells of lupus responded to nucleosomal antigens that were processed and presented via the major histocompatibility class II pathway. Although the presentation of purified mononucleosomes to the Th clones could be blocked by inhibitors of endosomal proteases, neither of the two components of the nucleosomes--free DNA or histones by themselves-- could stimulate the Th clones. Thus critical peptide epitopes for the Th cells were probably protected during uptake and processing of the nucleosome particle as a whole. The nucleosome-specific Th clones preferentially augmented the production of IgG autoantibodies to histone-DNA complex in vitro. In vivo, nucleosome-specific, CD4+ T cells were not detectable in normal mice, but they were found in the spleens of lupus-prone mice as early as 1 mo of age, long before other autoimmune manifestations. Immunization of young, preautoimmune lupus mice with nucleosomes augmented the production of autoantibodies and markedly accelerated the development of severe glomerulonephritis. Previously, crude preparations containing nucleosomes were shown by others to have polyclonal mitogenic activity for B cells from normal as well as lupus mice

  1. Distinct Roles of Histone H3 and H2A Tails in Nucleosome Stability

    PubMed Central

    Li, Zhenhai; Kono, Hidetoshi

    2016-01-01

    Nucleosome breathing potentially increases the DNA exposure, which in turn recruits DNA-binding protein and regulates gene transcription. Numerous studies have shown the critical roles of N-terminal tails of histones H3 and H4 in gene expression; however, few studies have focused on the H2A C-terminal tail. Here we present thorough computational studies on a single nucleosome particle showing the linker DNA closing and opening, which is thought to be nucleosome breathing. With our simulation, the H2A C-terminal and H3 N-terminal tails were found to modulate the nucleosome conformation differently. The H2A C-terminal tail regulates nucleosome conformation by binding to linker DNA at different locations, whereas the H3 N-terminal tail regulates linker DNA by binding to it in different patterns. Further MD simulation on tail truncated structures corroborates this analysis. These findings replenish our understanding of the histone tail regulation mechanism on atomic level. PMID:27527579

  2. Cell-cycle-coupled structural oscillation of centromeric nucleosomes in yeast.

    PubMed

    Shivaraju, Manjunatha; Unruh, Jay R; Slaughter, Brian D; Mattingly, Mark; Berman, Judith; Gerton, Jennifer L

    2012-07-20

    The centromere is a specialized chromosomal structure that regulates chromosome segregation. Centromeres are marked by a histone H3 variant. In budding yeast, the histone H3 variant Cse4 is present in a single centromeric nucleosome. Experimental evidence supports several different models for the structure of centromeric nucleosomes. To investigate Cse4 copy number in live yeast, we developed a method coupling fluorescence correlation spectroscopy and calibrated imaging. We find that centromeric nucleosomes have one copy of Cse4 during most of the cell cycle, whereas two copies are detected at anaphase. The proposal of an anaphase-coupled structural change is supported by Cse4-Cse4 interactions, incorporation of Cse4, and the absence of Scm3 in anaphase. Nucleosome reconstitution and ChIP suggests both Cse4 structures contain H2A/H2B. The increase in Cse4 intensity and deposition at anaphase are also observed in Candida albicans. Our experimental evidence supports a cell-cycle-coupled oscillation of centromeric nucleosome structure in yeast. PMID:22817893

  3. A one-dimensional statistical mechanics model for nucleosome positioning on genomic DNA.

    PubMed

    Tesoro, S; Ali, I; Morozov, A N; Sulaiman, N; Marenduzzo, D

    2016-02-01

    The first level of folding of DNA in eukaryotes is provided by the so-called '10 nm chromatin fibre', where DNA wraps around histone proteins (∼10 nm in size) to form nucleosomes, which go on to create a zig-zagging bead-on-a-string structure. In this work we present a one-dimensional statistical mechanics model to study nucleosome positioning within one such 10 nm fibre. We focus on the case of genomic sheep DNA, and we start from effective potentials valid at infinite dilution and determined from high-resolution in vitro salt dialysis experiments. We study positioning within a polynucleosome chain, and compare the results for genomic DNA to that obtained in the simplest case of homogeneous DNA, where the problem can be mapped to a Tonks gas. First, we consider the simple, analytically solvable, case where nucleosomes are assumed to be point-like. Then, we perform numerical simulations to gauge the effect of their finite size on the nucleosomal distribution probabilities. Finally we compare nucleosome distributions and simulated nuclease digestion patterns for the two cases (homogeneous and sheep DNA), thereby providing testable predictions of the effect of sequence on experimentally observable quantities in experiments on polynucleosome chromatin fibres reconstituted in vitro. PMID:26871546

  4. Coordinated Action of Nap1 and RSC in Disassembly of Tandem Nucleosomes.

    PubMed

    Prasad, Rashmi; D'Arcy, Sheena; Hada, Arjan; Luger, Karolin; Bartholomew, Blaine

    2016-09-01

    The SWI/SNF and RSC family of ATP-dependent chromatin remodelers disassembles nucleosomes by moving nucleosomes into the vicinity of adjoining nucleosomes. We found that the histone chaperone Nap1 efficiently promotes disassembly of adjacent nucleosomes with which RSC collides and not the disassembly of nucleosomes mobilized by RSC. Nap1 is specific to RSC, as it does not target SWI/SNF, its paralog in Saccharomyces cerevisiae Extensive mutational analysis of Nap1 has revealed that Nap1 affinity for histones H2A-H2B and H3-H4 and its ability to displace histones from DNA are required for Nap1 to enhance RSC-mediated disassembly. Other histone chaperones, such as Vps75, that also bind histones are not able to enhance RSC-mediated disassembly. Our study suggests a mechanism by which Nap1 is recruited to actively transcribed regions and assists in the passage of the transcription complex through chromatin, and it provides a novel mechanism for the coordinated action of RSC and Nap1.

  5. The role of Nucleosome Positions on Chromatin Structure: A multi-scale approach

    NASA Astrophysics Data System (ADS)

    Lequieu, Joshua; Cordoba, Andres; de Pablo, Juan J.

    Nucleosomes compose the basic unit of chromatin, and their locations are central to the regulation and compaction of eukaryotic genomes. In this work, we examine the coupling between different length scales within chromatin by examining the influence of nucleosome positions on three-dimensional chromatin structure. First, using a detailed molecular model of DNA and proteins, we predict the one-dimensional positioning of nucleosomes and the repositioning mechanisms of nucleosomal DNA. We demonstrate that this mechanism is strongly dependent on DNA sequence and that DNA slides around the histone proteins by either a screw-like or loop-like rearrangement. Next, we couple this detailed model to a coarsened model of chromatin and examine the impact of DNA sequence on chromatin's three-dimensional structure. We show that both the locations of nucleosomes and the mechanisms by which they move have a significant impact on higher-order chromatin structure and that variations in DNA sequence lead to ''open'' or ''closed'' regions of chromatin. This approach represents an efficient tool towards understanding the higher order structure of chromatin and how various aspects of chromatin structure are coupled together.

  6. Abo1, a conserved bromodomain AAA-ATPase, maintains global nucleosome occupancy and organisation.

    PubMed

    Gal, Csenge; Murton, Heather E; Subramanian, Lakxmi; Whale, Alex J; Moore, Karen M; Paszkiewicz, Konrad; Codlin, Sandra; Bähler, Jürg; Creamer, Kevin M; Partridge, Janet F; Allshire, Robin C; Kent, Nicholas A; Whitehall, Simon K

    2016-01-01

    Maintenance of the correct level and organisation of nucleosomes is crucial for genome function. Here, we uncover a role for a conserved bromodomain AAA-ATPase, Abo1, in the maintenance of nucleosome architecture in fission yeast. Cells lacking abo1(+) experience both a reduction and mis-positioning of nucleosomes at transcribed sequences in addition to increased intragenic transcription, phenotypes that are hallmarks of defective chromatin re-establishment behind RNA polymerase II. Abo1 is recruited to gene sequences and associates with histone H3 and the histone chaperone FACT. Furthermore, the distribution of Abo1 on chromatin is disturbed by impaired FACT function. The role of Abo1 extends to some promoters and also to silent heterochromatin. Abo1 is recruited to pericentromeric heterochromatin independently of the HP1 ortholog, Swi6, where it enforces proper nucleosome occupancy. Consequently, loss of Abo1 alleviates silencing and causes elevated chromosome mis-segregation. We suggest that Abo1 provides a histone chaperone function that maintains nucleosome architecture genome-wide.

  7. Zelda overcomes the high intrinsic nucleosome barrier at enhancers during Drosophila zygotic genome activation.

    PubMed

    Sun, Yujia; Nien, Chung-Yi; Chen, Kai; Liu, Hsiao-Yun; Johnston, Jeff; Zeitlinger, Julia; Rushlow, Christine

    2015-11-01

    The Drosophila genome activator Vielfaltig (Vfl), also known as Zelda (Zld), is thought to prime enhancers for activation by patterning transcription factors (TFs). Such priming is accompanied by increased chromatin accessibility, but the mechanisms by which this occurs are poorly understood. Here, we analyze the effect of Zld on genome-wide nucleosome occupancy and binding of the patterning TF Dorsal (Dl). Our results show that early enhancers are characterized by an intrinsically high nucleosome barrier. Zld tackles this nucleosome barrier through local depletion of nucleosomes with the effect being dependent on the number and position of Zld motifs. Without Zld, Dl binding decreases at enhancers and redistributes to open regions devoid of enhancer activity. We propose that Zld primes enhancers by lowering the high nucleosome barrier just enough to assist TFs in accessing their binding motifs and promoting spatially controlled enhancer activation if the right patterning TFs are present. We envision that genome activators in general will utilize this mechanism to activate the zygotic genome in a robust and precise manner.

  8. Coordinated Action of Nap1 and RSC in Disassembly of Tandem Nucleosomes.

    PubMed

    Prasad, Rashmi; D'Arcy, Sheena; Hada, Arjan; Luger, Karolin; Bartholomew, Blaine

    2016-09-01

    The SWI/SNF and RSC family of ATP-dependent chromatin remodelers disassembles nucleosomes by moving nucleosomes into the vicinity of adjoining nucleosomes. We found that the histone chaperone Nap1 efficiently promotes disassembly of adjacent nucleosomes with which RSC collides and not the disassembly of nucleosomes mobilized by RSC. Nap1 is specific to RSC, as it does not target SWI/SNF, its paralog in Saccharomyces cerevisiae Extensive mutational analysis of Nap1 has revealed that Nap1 affinity for histones H2A-H2B and H3-H4 and its ability to displace histones from DNA are required for Nap1 to enhance RSC-mediated disassembly. Other histone chaperones, such as Vps75, that also bind histones are not able to enhance RSC-mediated disassembly. Our study suggests a mechanism by which Nap1 is recruited to actively transcribed regions and assists in the passage of the transcription complex through chromatin, and it provides a novel mechanism for the coordinated action of RSC and Nap1. PMID:27273866

  9. A one-dimensional statistical mechanics model for nucleosome positioning on genomic DNA

    NASA Astrophysics Data System (ADS)

    Tesoro, S.; Ali, I.; Morozov, A. N.; Sulaiman, N.; Marenduzzo, D.

    2016-02-01

    The first level of folding of DNA in eukaryotes is provided by the so-called ‘10 nm chromatin fibre’, where DNA wraps around histone proteins (∼10 nm in size) to form nucleosomes, which go on to create a zig-zagging bead-on-a-string structure. In this work we present a one-dimensional statistical mechanics model to study nucleosome positioning within one such 10 nm fibre. We focus on the case of genomic sheep DNA, and we start from effective potentials valid at infinite dilution and determined from high-resolution in vitro salt dialysis experiments. We study positioning within a polynucleosome chain, and compare the results for genomic DNA to that obtained in the simplest case of homogeneous DNA, where the problem can be mapped to a Tonks gas [1]. First, we consider the simple, analytically solvable, case where nucleosomes are assumed to be point-like. Then, we perform numerical simulations to gauge the effect of their finite size on the nucleosomal distribution probabilities. Finally we compare nucleosome distributions and simulated nuclease digestion patterns for the two cases (homogeneous and sheep DNA), thereby providing testable predictions of the effect of sequence on experimentally observable quantities in experiments on polynucleosome chromatin fibres reconstituted in vitro.

  10. A one-dimensional statistical mechanics model for nucleosome positioning on genomic DNA.

    PubMed

    Tesoro, S; Ali, I; Morozov, A N; Sulaiman, N; Marenduzzo, D

    2016-02-01

    The first level of folding of DNA in eukaryotes is provided by the so-called '10 nm chromatin fibre', where DNA wraps around histone proteins (∼10 nm in size) to form nucleosomes, which go on to create a zig-zagging bead-on-a-string structure. In this work we present a one-dimensional statistical mechanics model to study nucleosome positioning within one such 10 nm fibre. We focus on the case of genomic sheep DNA, and we start from effective potentials valid at infinite dilution and determined from high-resolution in vitro salt dialysis experiments. We study positioning within a polynucleosome chain, and compare the results for genomic DNA to that obtained in the simplest case of homogeneous DNA, where the problem can be mapped to a Tonks gas. First, we consider the simple, analytically solvable, case where nucleosomes are assumed to be point-like. Then, we perform numerical simulations to gauge the effect of their finite size on the nucleosomal distribution probabilities. Finally we compare nucleosome distributions and simulated nuclease digestion patterns for the two cases (homogeneous and sheep DNA), thereby providing testable predictions of the effect of sequence on experimentally observable quantities in experiments on polynucleosome chromatin fibres reconstituted in vitro.

  11. Nucleosome compaction facilitates HP1γ binding to methylated H3K9

    PubMed Central

    Mishima, Yuichi; Jayasinghe, Chanika D.; Lu, Kai; Otani, Junji; Shirakawa, Masahiro; Kawakami, Toru; Kimura, Hironobu; Hojo, Hironobu; Carlton, Peter; Tajima, Shoji; Suetake, Isao

    2015-01-01

    The α, β and γ isoforms of mammalian heterochromatin protein 1 (HP1) selectively bind to methylated lysine 9 of histone H3 via their chromodomains. Although the phenotypes of HP1-knockout mice are distinct for each isoform, the molecular mechanisms underlying HP1 isoform-specific function remain elusive. In the present study, we found that in contrast to HP1α, HP1γ could not bind tri-methylated H3 lysine 9 in a reconstituted tetra-nucleosomes when the nucleosomes were in an uncompacted state. The hinge region connecting HP1's chromodomain and chromoshadow domain contributed to the distinct recognition of the nucleosomes by HP1α and HP1γ. HP1γ, but not HP1α, was strongly enhanced in selective binding to tri-methylated lysine 9 in histone H3 by the addition of Mg2+ or linker histone H1, which are known to induce compaction of nucleosomes. We propose that this novel property of HP1γ recognition of lysine 9 in the histone H3 tail in different nucleosome structures plays a role in reading the histone code. PMID:26319017

  12. Perturbation of nucleosome structure by the erythroid transcription factor GATA-1.

    PubMed

    Boyes, J; Omichinski, J; Clark, D; Pikaart, M; Felsenfeld, G

    1998-06-12

    The ability of transcription factors to gain access to their sites in chromatin requires the disruption or displacement of nucleosomes covering the promoter, signalled by the generation of a nuclease hypersensitive site. We characterise here the alterations in nucleosome structure caused by binding of the erythroid factor GATA-1 to a nucleosome carrying GATA-1 sites. DNase I and micrococcal nuclease probes show that GATA-1 binding causes extensive, cooperative breakage of the histone/DNA contacts to generate a complex very similar to that formed by the factor with free DNA. The only region which differs is confined to about 50 bp surrounding the nucleosome dyad axis which appears to be the domain of residual contact between the DNA and histone octamer. Despite considerable breakage of the histone/DNA contacts, the complex is completely stable in solution, and disruption of the nucleosome is entirely reversible: it is regenerated quantitatively upon removal of the transcription factor. Moreover, the histone 2A/2B component of the octamer does not exchange to external competitor. We suggest that formation of this complex may be a step in the generation of a fully hypersensitive site in vivo over regulatory elements containing GATA family binding sites. PMID:9641976

  13. Phosphorylation of histone H3 Thr 118 converts nucleosomes into a higher-mass complex

    NASA Astrophysics Data System (ADS)

    North, Justin; Poirier, Michael; Ferdinand, Michelle; Ottesen, Jennifer

    2009-03-01

    The nucleosome is the fundamental unit of DNA compaction in eukaryotes by which 147 base pairs of DNA wrap 1.7 times around a protein complex called the histone octamer. Numerous chemical modifications are found in vivo that alter octamer surface charge and shape. One such modification is phosphorylation of histone H3 residue Thr 118 located in the dyad region of the nucleosome. We find that phosphorylated H3 T118 (H3 pT118) octamer, when reconstituted with DNA of about 200bp, suppresses nucleosome formation and promotes formation of a higher-mass DNA-protein complex. Coordinately, dephosphorylation of H3 pT118 octamer by phosphatase results in reconstitution of normal nucleosomes. DNAse I foot printing reveals that while DNA contacting the octamer surface in nucleosomes is less accessible than free DNA, the entire DNA strand is equally accessible in the higher-mass complex and is digested at one-third the rate of free DNA.

  14. Nucleosome structural changes induced by binding of non-histone chromosomal proteins HMGN1 and HMGN2☆

    PubMed Central

    Shimahara, Hideto; Hirano, Takaaki; Ohya, Kouichi; Matsuta, Shun; Seeram, Sailaja S.; Tate, Shin-ichi

    2013-01-01

    Interactions between the nucleosome and the non-histone chromosomal proteins (HMGN1 and HMGN2) were studied by circular dichroism (CD) spectroscopy to elucidate structural changes in the nucleosome induced by HMGN binding. Unlike previous studies that used a nucleosome extracted from living cells, in this study we utilized a nucleosome reconstituted from unmodified recombinant histones synthesized in Escherichia coli and a 189-bp synthetic DNA fragment harboring a nucleosome positioning sequence. This DNA fragment consists of 5′-TATAAACGCC-3′ repeats that has a high affinity to the histone octamer. A nucleosome containing a unique octamer-binding sequence at a specific location on the DNA was produced at sufficiently high yield for spectroscopic analysis. CD data have indicated that both HMGN1 and HMGN2 can increase the winding angle of the nucleosome DNA, but the extent of the structural changes induced by these proteins differs significantly. This suggests HMGN1 and HMGN2 would have different abilities to facilitate nucleosome remodeling. PMID:23772392

  15. Nucleosome free region dominates histone acetylation in targeting SWR1 to yeast promoters for H2A.Z replacement

    PubMed Central

    Ranjan, Anand; Mizuguchi, Gaku; FitzGerald, Peter C.; Wei, Debbie; Wang, Feng; Huang, Yingzi; Luk, Ed; Woodcock, Christopher L; Wu, Carl

    2013-01-01

    Summary The histone variant H2A.Z is a genome-wide signature of nucleosomes proximal to eukaryotic regulatory DNA. While the multi-subunit chromatin remodeler SWR1 is known to catalyze ATP-dependent deposition of H2A.Z, the mechanism of SWR1 recruitment to S. cerevisiae promoters has been unclear. A sensitive assay for competitive binding of di-nucleosome substrates revealed that SWR1 preferentially binds long nucleosome-free DNA and the adjoining nucleosome core particle, allowing discrimination of gene promoters over gene bodies. Analysis of mutants indicates that the conserved Swc2/YL1 subunit and the ATPase domain of Swr1 are mainly responsible for binding to substrate. SWR1 binding is enhanced on nucleosomes acetylated by the NuA4 histone acetyltransferase, but recognition of nucleosome-free and nucleosomal DNA is dominant over interaction with acetylated histones. Such hierarchical cooperation between DNA and histone signals expands the dynamic range of genetic switches, unifying classical gene regulation by DNA-binding factors with ATP-dependent nucleosome remodeling and post-translational histone modifications. PMID:24034247

  16. Structural Basis of Silencing: Sir3 BAH Domain in Complex with a Nucleosome at 3.0 Å Resolution

    SciTech Connect

    Armache, Karim-Jean; Garlick, Joseph D.; Canzio, Daniele; Narlikar, Geeta J.; Kingston, Robert E.

    2011-11-30

    Gene silencing is essential for regulating cell fate in eukaryotes. Altered chromatin architectures contribute to maintaining the silenced state in a variety of species. The silent information regulator (Sir) proteins regulate mating type in Saccharomyces cerevisiae. One of these proteins, Sir3, interacts directly with the nucleosome to help generate silenced domains. We determined the crystal structure of a complex of the yeast Sir3 BAH (bromo-associated homology) domain and the nucleosome core particle at 3.0 angstrom resolution. We see multiple molecular interactions between the protein surfaces of the nucleosome and the BAH domain that explain numerous genetic mutations. These interactions are accompanied by structural rearrangements in both the nucleosome and the BAH domain. The structure explains how covalent modifications on H4K16 and H3K79 regulate formation of a silencing complex that contains the nucleosome as a central component.

  17. Site-specific aflatoxin B sub 1 adduction of sequence-positioned nucleosome core particles

    SciTech Connect

    Moyer, R.A.

    1988-01-01

    The question of how the presence of nucleosomal packing of DNA modifies carcinogen interaction at specific sites cannot be answered by studies on whole chromatin or bulk nucleosomes because of the heterogeneity of DNA sequences in the particles. This problem was circumvented by constructing nucleosomes that are homogenous in DNA-histone contact points. A cloned DNA fragment, containing a sea urchin 5S gene which precisely positions a histone octamer was employed. By using {sup 32}P end-labeled DNA and genotoxins that allow cleavage at sites of attack, the frequency of adduction at every susceptible nucleotide can be determined on sequencing gels. The small methylating agent dimethyl sulfate (DMS) and the bulky alkylating agent afatoxin B{sub 1}-dichloride (AFB{sub 1}-Cl{sub 2}) were used to probe the influence of DNA-histone interactions on DNA alkylation patterns in sequence-positioned core particles.

  18. Nucleosome Binding Alters the Substrate Bonding Environment of Histone H3 Lysine 36 Methyltransferase NSD2.

    PubMed

    Poulin, Myles B; Schneck, Jessica L; Matico, Rosalie E; Hou, Wangfang; McDevitt, Patrick J; Holbert, Marc; Schramm, Vern L

    2016-06-01

    Nuclear receptor-binding SET domain protein 2 (NSD2) is a histone H3 lysine 36 (H3K36)-specific methyltransferase enzyme that is overexpressed in a number of cancers, including multiple myeloma. NSD2 binds to S-adenosyl-l-methionine (SAM) and nucleosome substrates to catalyze the transfer of a methyl group from SAM to the ε-amino group of histone H3K36. Equilibrium binding isotope effects and density functional theory calculations indicate that the SAM methyl group is sterically constrained in complex with NSD2, and that this steric constraint is released upon nucleosome binding. Together, these results show that nucleosome binding to NSD2 induces a significant change in the chemical environment of enzyme-bound SAM. PMID:27183271

  19. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?

    PubMed Central

    Luger, Karolin; Dechassa, Mekonnen L.; Tremethick, David J.

    2012-01-01

    The compaction of genomic DNA into chromatin has profound implications for the regulation of key processes such as transcription, replication and DNA repair. Nucleosomes, the repeating building blocks of chromatin, vary in the composition of their histone protein components. This is the result of the incorporation of variant histones and post-translational modifications of histone amino acid side chains. The resulting changes in nucleosome structure, stability and dynamics affect the compaction of nucleosomal arrays into higher-order structures. It is becoming clear that chromatin structures are not nearly as uniform and regular as previously assumed. This implies that chromatin structure must also be viewed in the context of specific biological functions. PMID:22722606

  20. Ultraviolet damage and nucleosome folding of the 5S ribosomal RNA gene.

    SciTech Connect

    Liu, X; Mann, David B.; Suquet, C; Springer, David L. ); Smerdon, Michael J.

    2000-01-25

    The Xenopus borealis somatic 5S ribosomal RNA gene was used as a model system to determine the mutual effects of nucleosome folding and formation of ultraviolet (UV) photoproducts (primarily cis-syn cyclobutane pyrimidine dimers, or CPDs) in chromatin. We analyzed the preferred rotational and translational settings of 5S rDNA on the histone octamer surface after induction of up to 0.8 CPD/nucleosome core (2.5 kJ/m(2) UV dose). DNase I and hydroxyl radical footprints indicate that UV damage at these levels does not affect the average rotational setting of the 5S rDNA molecules. Moreover, a combination of nuclease trimming and restriction enzyme digestion indicates the preferred translational positions of the histone octamer are not affected by this level of UV damage. We also did not observe differences in the UV damage patterns of irradiated 5S rDNA before or after nucleosome formation, indicating there is little difference in the inhibition of nucleosome folding by specific CPD sites in the 5S rRNA gene. Conversely, nucleosome folding significantly restricts CPD formation at all sites in the three helical turns of the nontranscribed strand located in the dyad axis region of the nucleosome, where DNA is bound exclusively by the histone H3-H4 tetramer. Finally, modulation of the CPD distribution in a 14 nt long pyrimidine tract correlates with its rotational setting on the histone surface, when the strong sequence bias for CPD formation in this tract is minimized by normalization. These results help establish the mutual roles of histone binding and UV photoproducts on their formation in chromatin.

  1. Depletion of histone H4 and nucleosomes activates the PHO5 gene in Saccharomyces cerevisiae.

    PubMed Central

    Han, M; Kim, U J; Kayne, P; Grunstein, M

    1988-01-01

    We have previously constructed a yeast strain (UKY403) whose sole histone H4 gene is under control of the GAL1 promoter. This yeast arrests in G2 upon glucose treatment as a result of histone H4 depletion. The yeast PHO5 gene contains phase nucleosomes covering promoter (UAS) sequences in the PHO5 repressed state and it has been suggested that nucleosomes prevent the binding of positively acting factors to these UAS sequences. Using UKY403 we examined the length of polynucleosomes and nucleosome phasing in the PHO5 upstream region by the use of micrococcal nuclease and indirect end-labeling. It was found that glucose arrest led to a severe disruption in PHO5 chromatin structure and that most nucleosomes had their position altered or were lost from the PHO5 promoter region. Cell undergoing nucleosome depletion synthesized large quantities of accurate PHO5 transcripts even under repressive, high inorganic phosphate conditions. Histone H4 depletion did not appear to affect the repression or activation of another inducible yeast gene, CUP1. Arrest with landmarks in early G1 (in the cell division cycle mutant cdc28) or in various stages of G2 (in cdc15, cdc17 and cdc20) does not activate PHO5; nor does arrest due to chromosome topology changes (in top2 or the top1top2 topoisomerase mutants). cdc14, which has its arrest landmark at a similar point in the cell cycle as cdc15, does derepress PHO5. However, since it also leads to derepression of CUP1 it is probably functioning through an independent mechanism. Therefore, our data suggest that nucleosomes regulate PHO5 transcription. Images PMID:3046934

  2. Nucleosome distortion as a possible mechanism of transcription activation domain function.

    PubMed

    Erkina, Tamara Y; Erkine, Alexandre M

    2016-01-01

    After more than three decades since the discovery of transcription activation domains (ADs) in gene-specific activators, the mechanism of their function remains enigmatic. The widely accepted model of direct recruitment by ADs of co-activators and basal transcriptional machinery components, however, is not always compatible with the short size yet very high degree of sequence randomness and intrinsic structural disorder of natural and synthetic ADs. In this review, we formulate the basis for an alternative and complementary model, whereby sequence randomness and intrinsic structural disorder of ADs are necessary for transient distorting interactions with promoter nucleosomes, triggering promoter nucleosome translocation and subsequently gene activation. PMID:27679670

  3. MeCP2 binds to nucleosome free (linker DNA) regions and to H3K9/H3K27 methylated nucleosomes in the brain

    PubMed Central

    Thambirajah, Anita A.; Ng, Marlee K.; Frehlick, Lindsay J.; Li, Andra; Serpa, Jason J.; Petrotchenko, Evgeniy V.; Silva-Moreno, Begonia; Missiaen, Kristal K.; Borchers, Christoph H.; Adam Hall, J.; Mackie, Ryan; Lutz, Frank; Gowen, Brent E.; Hendzel, Michael; Georgel, Philippe T.; Ausió, Juan

    2012-01-01

    Methyl-CpG-binding protein 2 (MeCP2) is a chromatin-binding protein that mediates transcriptional regulation, and is highly abundant in brain. The nature of its binding to reconstituted templates has been well characterized in vitro. However, its interactions with native chromatin are less understood. Here we show that MeCP2 displays a distinct distribution within fractionated chromatin from various tissues and cell types. Artificially induced global changes in DNA methylation by 3-aminobenzamide or 5-aza-2′-deoxycytidine, do not significantly affect the distribution or amount of MeCP2 in HeLa S3 or 3T3 cells. Most MeCP2 in brain is chromatin-bound and localized within highly nuclease-accessible regions. We also show that, while in most tissues and cell lines, MeCP2 forms stable complexes with nucleosome, in brain, a fraction of it is loosely bound to chromatin, likely to nucleosome-depleted regions. Finally, we provide evidence for novel associations of MeCP2 with mononucleosomes containing histone H2A.X, H3K9me2 and H3K27me3 in different chromatin fractions from brain cortex and in vitro. We postulate that the functional compartmentalization and tissue-specific distribution of MeCP2 within different chromatin types may be directed by its association with nucleosomes containing specific histone variants, and post-translational modifications. PMID:22144686

  4. Intra- and inter-nucleosomal interactions of the histone H4 tail revealed with a human nucleosome core particle with genetically-incorporated H4 tetra-acetylation.

    PubMed

    Wakamori, Masatoshi; Fujii, Yoshifumi; Suka, Noriyuki; Shirouzu, Mikako; Sakamoto, Kensaku; Umehara, Takashi; Yokoyama, Shigeyuki

    2015-11-26

    Post-translational modifications (PTMs) of histones, such as lysine acetylation of the N-terminal tails, play crucial roles in controlling gene expression. Due to the difficulty in reconstituting site-specifically acetylated nucleosomes with crystallization quality, structural analyses of histone acetylation are currently performed using synthesized tail peptides. Through engineering of the genetic code, translation termination, and cell-free protein synthesis, we reconstituted human H4-mono- to tetra-acetylated nucleosome core particles (NCPs), and solved the crystal structures of the H4-K5/K8/K12/K16-tetra-acetylated NCP and unmodified NCP at 2.4 Å and 2.2 Å resolutions, respectively. The structure of the H4-tetra-acetylated NCP resembled that of the unmodified NCP, and the DNA wrapped the histone octamer as precisely as in the unmodified NCP. However, the B-factors were significantly increased for the peripheral DNAs near the N-terminal tail of the intra- or inter-nucleosomal H4. In contrast, the B-factors were negligibly affected by the H4 tetra-acetylation in histone core residues, including those composing the acidic patch, and at H4-R23, which interacts with the acidic patch of the neighboring NCP. The present study revealed that the H4 tetra-acetylation impairs NCP self-association by changing the interactions of the H4 tail with DNA, and is the first demonstration of crystallization quality NCPs reconstituted with genuine PTMs.

  5. Time between onset of apoptosis and release of nucleosomes from apoptotic cells: putative implications for systemic lupus erythematosus

    PubMed Central

    van Nieuwenhuijze, A E M; van Lopik, T; Smeenk, R; Aarden, L

    2003-01-01

    Objective: To investigate the kinetics of nucleosome leakage from apoptotic cells in an in vitro system and extrapolate the results to autoimmune disease, in particular systemic lupus erythematosus. Methods: A sensitive nucleosome enzyme linked immunosorbent assay (ELISA) was developed, using a monoclonal antibody (mAb) against histone 3 and an mAb against nucleosomes. Nucleosome release during apoptotic cell death was studied in Jurkat cells. AnnexinV binding (early apoptosis) and propidium iodide positivity (late apoptosis) of the cells were compared with nucleosome release at different times after apoptosis induction. Results: Nucleosomes appeared in culture supernatant of Jurkat cells 24 to 48 hours after apoptosis induction, when the cells had been late apoptotic for more than 12 hours. Conclusion: Nucleosomes are released from late apoptotic Jurkat cells, with a 12 hour delay from the appearance of AnnexinV binding cells. This result suggests that in vivo scavenger mechanisms have 12 hours to remove apoptotic material from the circulation. PMID:12480662

  6. The docking domain of histone H2A is required for H1 binding and RSC-mediated nucleosome remodeling.

    PubMed

    Shukla, Manu Shubhdarshan; Syed, Sajad Hussain; Goutte-Gattat, Damien; Richard, John Lalith Charles; Montel, Fabien; Hamiche, Ali; Travers, Andrew; Faivre-Moskalenko, Cendrine; Bednar, Jan; Hayes, Jeffrey J; Angelov, Dimitar; Dimitrov, Stefan

    2011-04-01

    Histone variants within the H2A family show high divergences in their C-terminal regions. In this work, we have studied how these divergences and in particular, how a part of the H2A COOH-terminus, the docking domain, is implicated in both structural and functional properties of the nucleosome. Using biochemical methods in combination with Atomic Force Microscopy and Electron Cryo-Microscopy, we show that the H2A-docking domain is a key structural feature within the nucleosome. Deletion of this domain or replacement with the incomplete docking domain from the variant H2A.Bbd results in significant structural alterations in the nucleosome, including an increase in overall accessibility to nucleases, un-wrapping of ∼10 bp of DNA from each end of the nucleosome and associated changes in the entry/exit angle of DNA ends. These structural alterations are associated with a reduced ability of the chromatin remodeler RSC to both remodel and mobilize the nucleosomes. Linker histone H1 binding is also abrogated in nucleosomes containing the incomplete docking domain of H2A.Bbd. Our data illustrate the unique role of the H2A-docking domain in coordinating the structural-functional aspects of the nucleosome properties. Moreover, our data suggest that incorporation of a 'defective' docking domain may be a primary structural role of H2A.Bbd in chromatin.

  7. Robustness of nucleosome patterns in the presence of DNA sequence-specific free energy landscapes and active remodeling

    NASA Astrophysics Data System (ADS)

    Nuebler, Johannes; Obermayer, Benedikt; Möbius, Wolfram; Wolff, Michael; Gerland, Ulrich

    Proper positioning of nucleosomes in eukaryotic cells is important for transcription regulation. When averaged over many genes, nucleosome positions in coding regions follow a simple oscillatory pattern, which is described to a surprising degree of accuracy by a simple one-dimensional gas model for particles interacting via a soft-core repulsion. The quantitative agreement is surprising given that nucleosome positions are known to be determined by a complex interplay of mechanisms including DNA sequence-specific nucleosome stability and active repositioning of nucleosomes by remodeling enzymes. We rationalize the observed robustness of the simple oscillatory pattern by showing that the main effect of several known nucleosome positioning mechanisms is a renormalization of the particle interaction. For example, ``disorder'' from sequence-specific affinities leads to an apparent softening, while active remodeling can result in apparent softening for directional sliding or apparent stiffening for clamping mechanisms. We suggest that such parameter renormalization can explain the apparent difference of nucleosome properties in two yeast species, S. cerevisiae and S. pombe.

  8. Solution scattering and FRET studies on nucleosomes reveal DNA unwrapping effects of H3 and H4 tail removal.

    PubMed

    Andresen, Kurt; Jimenez-Useche, Isabel; Howell, Steven C; Yuan, Chongli; Qiu, Xiangyun

    2013-01-01

    Using a combination of small-angle X-ray scattering (SAXS) and fluorescence resonance energy transfer (FRET) measurements we have determined the role of the H3 and H4 histone tails, independently, in stabilizing the nucleosome DNA terminal ends from unwrapping from the nucleosome core. We have performed solution scattering experiments on recombinant wild-type, H3 and H4 tail-removed mutants and fit all scattering data with predictions from PDB models and compared these experiments to complementary DNA-end FRET experiments. Based on these combined SAXS and FRET studies, we find that while all nucleosomes exhibited DNA unwrapping, the extent of this unwrapping is increased for nucleosomes with the H3 tails removed but, surprisingly, decreased in nucleosomes with the H4 tails removed. Studies of salt concentration effects show a minimum amount of DNA unwrapping for all complexes around 50-100mM of monovalent ions. These data exhibit opposite roles for the positively-charged nucleosome tails, with the ability to decrease access (in the case of the H3 histone) or increase access (in the case of the H4 histone) to the DNA surrounding the nucleosome. In the range of salt concentrations studied (0-200mM KCl), the data point to the H4 tail-removed mutant at physiological (50-100mM) monovalent salt concentration as the mononucleosome with the least amount of DNA unwrapping. PMID:24265699

  9. Solution Scattering and FRET Studies on Nucleosomes Reveal DNA Unwrapping Effects of H3 and H4 Tail Removal

    PubMed Central

    Andresen, Kurt; Jimenez-Useche, Isabel; Howell, Steven C.; Yuan, Chongli; Qiu, Xiangyun

    2013-01-01

    Using a combination of small-angle X-ray scattering (SAXS) and fluorescence resonance energy transfer (FRET) measurements we have determined the role of the H3 and H4 histone tails, independently, in stabilizing the nucleosome DNA terminal ends from unwrapping from the nucleosome core. We have performed solution scattering experiments on recombinant wild-type, H3 and H4 tail-removed mutants and fit all scattering data with predictions from PDB models and compared these experiments to complementary DNA-end FRET experiments. Based on these combined SAXS and FRET studies, we find that while all nucleosomes exhibited DNA unwrapping, the extent of this unwrapping is increased for nucleosomes with the H3 tails removed but, surprisingly, decreased in nucleosomes with the H4 tails removed. Studies of salt concentration effects show a minimum amount of DNA unwrapping for all complexes around 50-100mM of monovalent ions. These data exhibit opposite roles for the positively-charged nucleosome tails, with the ability to decrease access (in the case of the H3 histone) or increase access (in the case of the H4 histone) to the DNA surrounding the nucleosome. In the range of salt concentrations studied (0-200mM KCl), the data point to the H4 tail-removed mutant at physiological (50-100mM) monovalent salt concentration as the mononucleosome with the least amount of DNA unwrapping. PMID:24265699

  10. The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres

    PubMed Central

    Zhang, Tao; Talbert, Paul B.; Zhang, Wenli; Wu, Yufeng; Yang, Zujun; Henikoff, Jorja G.; Henikoff, Steven; Jiang, Jiming

    2013-01-01

    Plant and animal centromeres comprise megabases of highly repeated satellite sequences, yet centromere function can be specified epigenetically on single-copy DNA by the presence of nucleosomes containing a centromere-specific variant of histone H3 (cenH3). We determined the positions of cenH3 nucleosomes in rice (Oryza sativa), which has centromeres composed of both the 155-bp CentO satellite repeat and single-copy non-CentO sequences. We find that cenH3 nucleosomes protect 90–100 bp of DNA from micrococcal nuclease digestion, sufficient for only a single wrap of DNA around the cenH3 nucleosome core. cenH3 nucleosomes are translationally phased with 155-bp periodicity on CentO repeats, but not on non-CentO sequences. CentO repeats have an ∼10-bp periodicity in WW dinucleotides and in micrococcal nuclease cleavage, providing evidence for rotational phasing of cenH3 nucleosomes on CentO and suggesting that satellites evolve for translational and rotational stabilization of centromeric nucleosomes. PMID:24191062

  11. The docking domain of histone H2A is required for H1 binding and RSC-mediated nucleosome remodeling

    PubMed Central

    Shukla, Manu Shubhdarshan; Syed, Sajad Hussain; Goutte-Gattat, Damien; Richard, John Lalith Charles; Montel, Fabien; Hamiche, Ali; Travers, Andrew; Faivre-Moskalenko, Cendrine; Bednar, Jan; Hayes, Jeffrey J.; Angelov, Dimitar; Dimitrov, Stefan

    2011-01-01

    Histone variants within the H2A family show high divergences in their C-terminal regions. In this work, we have studied how these divergences and in particular, how a part of the H2A COOH-terminus, the docking domain, is implicated in both structural and functional properties of the nucleosome. Using biochemical methods in combination with Atomic Force Microscopy and Electron Cryo-Microscopy, we show that the H2A-docking domain is a key structural feature within the nucleosome. Deletion of this domain or replacement with the incomplete docking domain from the variant H2A.Bbd results in significant structural alterations in the nucleosome, including an increase in overall accessibility to nucleases, un-wrapping of ∼10 bp of DNA from each end of the nucleosome and associated changes in the entry/exit angle of DNA ends. These structural alterations are associated with a reduced ability of the chromatin remodeler RSC to both remodel and mobilize the nucleosomes. Linker histone H1 binding is also abrogated in nucleosomes containing the incomplete docking domain of H2A.Bbd. Our data illustrate the unique role of the H2A-docking domain in coordinating the structural-functional aspects of the nucleosome properties. Moreover, our data suggest that incorporation of a ‘defective’ docking domain may be a primary structural role of H2A.Bbd in chromatin. PMID:21131284

  12. Comparative analysis of the nucleosome structure of cell nuclei by small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Isaev-Ivanov, V. V.; Lebedev, D. V.; Lauter, H.; Pantina, R. A.; Kuklin, A. I.; Islamov, A. Kh.; Filatov, M. V.

    2010-05-01

    The nucleosome structure in native nuclei of normal (chicken erythrocyte and rat leukocyte nuclei) and anomalously proliferating (the human cervical adenocarcinoma cell line HeLa and the Chinese hamster fibroblast cell line A238) cells has been investigated using small-angle neutron scattering. The experimental results obtained allow one to make the inference that the parameters of the nucleosome structure for the chicken erythrocyte and rat leukocyte nuclei (on average over the nucleus) are close to the universally accepted values and that the distance distribution function is bimodal. The bimodality of the distance distribution function reflects a narrow distribution of distances between nucleosomes (on average over the nucleus) at the fibril level of the chromatin organization. The histone core of the nucleosome structure in the nuclei of the HeLa and A238 cells (on average over the nucleus) is considerably less compact than that in the chicken erythrocyte and rat leukocyte nuclei, and the distance distribution function does not exhibit indications of the bimodality.

  13. Stereochemical control of nucleosome targeting by platinum-intercalator antitumor agents

    PubMed Central

    Chua, Eugene Y.D.; Davey, Gabriela E.; Chin, Chee Fei; Dröge, Peter; Ang, Wee Han; Davey, Curt A.

    2015-01-01

    Platinum-based anticancer drugs act therapeutically by forming DNA adducts, but suffer from severe toxicity and resistance problems, which have not been overcome in spite of decades of research. And yet defined chromatin targets have generally not been considered in the drug development process. Here we designed novel platinum-intercalator species to target a highly deformed DNA site near the nucleosome center. Between two seemingly similar structural isomers, we find a striking difference in DNA site selectivity in vitro, which comes about from stereochemical constraints that limit the reactivity of the trans isomer to special DNA sequence elements while still allowing the cis isomer to efficiently form adducts at internal sites in the nucleosome core. This gives the potential for controlling nucleosome site targeting in vivo, which would engender sensitivity to epigenetic distinctions and in particular cell type/status-dependent differences in nucleosome positioning. Moreover, while both compounds yield very similar DNA-adduct structures and display antitumor cell activity rivalling that of cisplatin, the cis isomer, relative to the trans, has a much more rapid cytotoxic effect and distinct impact on cell function. The novel stereochemical principles for controlling DNA site selectivity we discovered could aid in the design of improved site discriminating agents. PMID:25916851

  14. DNA methylation and nucleosome occupancy regulate the cancer germline antigen gene MAGEA11

    PubMed Central

    James, Smitha R; Cedeno, Carlos D; Sharma, Ashok; Zhang, Wa; Mohler, James L; Odunsi, Kunle; Wilson, Elizabeth M; Karpf, Adam R

    2013-01-01

    MAGEA11 is a cancer germline (CG) antigen and androgen receptor co-activator. Its expression in cancers other than prostate, and its mechanism of activation, has not been reported. In silico analyses reveal that MAGEA11 is frequently expressed in human cancers, is increased during tumor progression, and correlates with poor prognosis and survival. In prostate and epithelial ovarian cancers (EOC), MAGEA11 expression was associated with promoter and global DNA hypomethylation, and with activation of other CG genes. Pharmacological or genetic inhibition of DNA methyltransferases (DNMTs) and/or histone deacetylases (HDACs) activated MAGEA11 in a cell line specific manner. MAGEA11 promoter activity was directly repressed by DNA methylation, and partially depended on Sp1, as pharmacological or genetic targeting of Sp1 reduced MAGEA11 promoter activity and endogenous gene expression. Importantly, DNA methylation regulated nucleosome occupancy specifically at the -1 positioned nucleosome of MAGEA11. Methylation of a single Ets site near the transcriptional start site (TSS) correlated with -1 nucleosome occupancy and, by itself, strongly repressed MAGEA11 promoter activity. Thus, DNA methylation regulates nucleosome occupancy at MAGEA11, and this appears to function cooperatively with sequence-specific transcription factors to regulate gene expression. MAGEA11 regulation is highly instructive for understanding mechanisms regulating CG antigen genes in human cancer. PMID:23839233

  15. High-resolution biophysical analysis of the dynamics of nucleosome formation

    PubMed Central

    Hatakeyama, Akiko; Hartmann, Brigitte; Travers, Andrew; Nogues, Claude; Buckle, Malcolm

    2016-01-01

    We describe a biophysical approach that enables changes in the structure of DNA to be followed during nucleosome formation in in vitro reconstitution with either the canonical “Widom” sequence or a judiciously mutated sequence. The rapid non-perturbing photochemical analysis presented here provides ‘snapshots’ of the DNA configuration at any given moment in time during nucleosome formation under a very broad range of reaction conditions. Changes in DNA photochemical reactivity upon protein binding are interpreted as being mainly induced by alterations in individual base pair roll angles. The results strengthen the importance of the role of an initial (H3/H4)2 histone tetramer-DNA interaction and highlight the modulation of this early event by the DNA sequence. (H3/H4)2 binding precedes and dictates subsequent H2A/H2B-DNA interactions, which are less affected by the DNA sequence, leading to the final octameric nucleosome. Overall, our results provide a novel, exciting way to investigate those biophysical properties of DNA that constitute a crucial component in nucleosome formation and stabilization. PMID:27263658

  16. In Vitro and in Vivo nucleosome positioning on the ovine beta-lactoglobulin gene are related.

    PubMed

    Gencheva, Marieta; Boa, Simon; Fraser, Ross; Simmen, Martin W; A Whitelaw, C Bruce; Allan, James

    2006-08-11

    Although positioned nucleosomes are known to play a direct, localised role in regulating access to DNA sequence, they also have the potential, through their long-range distribution, to affect the detailed structure of the higher-order chromatin fibre. To investigate this possibility, we firstly mapped, in vitro, the sequence-dependent positions that the core histone octamer adopts when reconstituted onto DNA containing the ovine beta-lactoglobulin gene. These positioning sites are discussed in terms of their relative affinity for the histone octamer, their locations with respect to the gene sequence and their periodic distribution throughout the gene region. Secondly, we mapped, in vivo, the sites that nucleosomes occupy on the same sequence in liver nuclei, where the gene is transcriptionally inactive. Although the sequence is largely packaged into regularly spaced nucleosomes, reflecting a fibre of uniform higher-order structure, this organisation is disrupted by a number of unusual chromatin structures in a region stretching from the second to the third introns of the gene. A comparison of the in vitro and in vivo nucleosome positioning data shows that they are qualitatively and quantitatively related, suggesting that the structure of the higher-order chromatin fibre containing the beta-lactoglobulin gene is determined, in part, by the long-range organisation of the non-coding sequences within which the gene is embedded.

  17. Regulation of Nucleosome Architecture and Factor Binding Revealed by Nuclease Footprinting of the ESC Genome.

    PubMed

    Hainer, Sarah J; Fazzio, Thomas G

    2015-10-01

    Functional interactions between gene regulatory factors and chromatin architecture have been difficult to directly assess. Here, we use micrococcal nuclease (MNase) footprinting to probe the functions of two chromatin-remodeling complexes. By simultaneously quantifying alterations in small MNase footprints over the binding sites of 30 regulatory factors in mouse embryonic stem cells (ESCs), we provide evidence that esBAF and Mbd3/NuRD modulate the binding of several regulatory proteins. In addition, we find that nucleosome occupancy is reduced at specific loci in favor of subnucleosomes upon depletion of esBAF, including sites of histone H2A.Z localization. Consistent with these data, we demonstrate that esBAF is required for normal H2A.Z localization in ESCs, suggesting esBAF either stabilizes H2A.Z-containing nucleosomes or promotes subnucleosome to nucleosome conversion by facilitating H2A.Z deposition. Therefore, integrative examination of MNase footprints reveals insights into nucleosome dynamics and functional interactions between chromatin structure and key gene-regulatory factors.

  18. Dynamics of interaction of RNA polymerase II with nucleosomes. II. During read-through and elongation.

    PubMed Central

    Bhargava, P.

    1993-01-01

    The sulfhydryl-specific fluorescence probe 1,5-IAEDANS (5-(2-((iodoacetyl)amino)ethyl)amino-naphthalene-1-sulfonic acid) was attached to the single cysteine of H3, and reconstituted fluorescent mononucleosomes were used as the template for in vitro transcription by the yeast RNA polymerase II (pol II). DNase I digestion analysis revealed that transcription of nucleosomes by pol II resulted in an overall loosening of the structure. Monitoring the transcription event by steady-state fluorescence analysis showed that nucleosomes only partially open during transcription. This opening is transient in nature, and nucleosomes close back as soon as the pol II falls off the template. Thus, using the technique of fluorescence spectroscopy, partial opening of nucleosome structure could be differentiated from complete dissociation into free DNA and histone octamer, a distinction that may not be possible by techniques like gel electrophoresis. Time-resolved fluorescence emission spectroscopy suggested that during read-through of the template by the pol II, histone octamers do not fall off the DNA. Only minor conformational changes within the histone octamer take place to accommodate the transcribing polymerase. PMID:8298468

  19. TRF1 and TRF2 binding to telomeres is modulated by nucleosomal organization.

    PubMed

    Galati, Alessandra; Micheli, Emanuela; Alicata, Claudia; Ingegnere, Tiziano; Cicconi, Alessandro; Pusch, Miriam Caroline; Giraud-Panis, Marie-Josèphe; Gilson, Eric; Cacchione, Stefano

    2015-07-13

    The ends of eukaryotic chromosomes need to be protected from the activation of a DNA damage response that leads the cell to replicative senescence or apoptosis. In mammals, protection is accomplished by a six-factor complex named shelterin, which organizes the terminal TTAGGG repeats in a still ill-defined structure, the telomere. The stable interaction of shelterin with telomeres mainly depends on the binding of two of its components, TRF1 and TRF2, to double-stranded telomeric repeats. Tethering of TRF proteins to telomeres occurs in a chromatin environment characterized by a very compact nucleosomal organization. In this work we show that binding of TRF1 and TRF2 to telomeric sequences is modulated by the histone octamer. By means of in vitro models, we found that TRF2 binding is strongly hampered by the presence of telomeric nucleosomes, whereas TRF1 binds efficiently to telomeric DNA in a nucleosomal context and is able to remodel telomeric nucleosomal arrays. Our results indicate that the different behavior of TRF proteins partly depends on the interaction with histone tails of their divergent N-terminal domains. We propose that the interplay between the histone octamer and TRF proteins plays a role in the steps leading to telomere deprotection.

  20. Changes in the molecular structure of mouse fetal astrocyte nucleosomes produced in vitro by methylmercuric chloride

    SciTech Connect

    Choi, B.H.; Simpkins, H.

    1986-04-01

    The fluorescent probe N-(3-pyrene)maleimide, which specifically labels the cysteine residues of histone H3 within the nucleosome, was used to monitor changes in the nucleosomal structure of mouse fetal astrocytes exposed to varying concentrations of methylmercuric chloride. Methylmercuric chloride treatment (10 ..mu..m) for 6 hr produced a significant decrease in the degree of fluorescence of the probe. The decrease was much smaller following a 4-hr incubation period. These results correlate with recent observations showing that significant changes in the thymidine labeling index occur following 4-6 hr of exposure to methylmercury (MeHg). It is hypothesized that MeHg enters the cells during the growth phase and attaches to the protein moiety of the nucleosome in or near the cysteine groups of histone H3, thus diminishing the binding capacity of the fluorescent probe. Addition of a detergent (sodium dodecyl sulfate) resulted in only a small increase in the degree of fluorescence of the treated nucleosomes as compared to controls, showing that the interaction of MeHg with the nuclear proteins was not dissociated by detergent. In view of the strong interaction between DNA and the histone dimer H3-H4 and the potential importance of the latter in gene regulation, these results suggest an additional means by which MeHg may exert its toxic effects.

  1. Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes.

    PubMed

    Beard, Brian C; Wilson, Samuel H; Smerdon, Michael J

    2003-06-24

    The majority of DNA in eukaryotic cells exists in the highly condensed structural hierarchy of chromatin, which presents a challenge to DNA repair enzymes in that recognition, incision, and restoration of the original sequence at most sites must take place within these structural constraints. To test base excision repair (BER) activities on chromatin substrates, an in vitro system was developed that uses human uracil DNA glycosylase (UDG), apyrimidinic/apurinic endonuclease (APE), and DNA polymerase beta (pol beta) on homogeneously damaged, rotationally positioned DNA in nucleosomes. We find that UDG and APE carry out their combined catalytic activities with reduced efficiency on nucleosome substrates ( approximately 10% of that on naked DNA). Furthermore, these enzymes distinguish between two different rotational settings of the lesion on the histone surface, showing a 2- to 3-fold difference in activity between uracil facing "toward" and "away from" the histones. However, UDG and APE will digest such substrates to completion in a concentration-dependent manner. Conversely, the synthesis activity of pol beta is inhibited completely by nucleosome substrates and is independent of enzyme concentration. These results suggest that the first two steps of BER, UDG and APE, may occur "unassisted" in chromatin, whereas downstream factors in this pathway (i.e., pol beta) may require nucleosome remodeling for efficient DNA BER in at least some regions of chromatin in eukaryotic cells.

  2. Identification of two independent nucleosome-binding domains in the transcriptional co-activator SPBP.

    PubMed

    Darvekar, Sagar; Johnsen, Sylvia Sagen; Eriksen, Agnete Bratsberg; Johansen, Terje; Sjøttem, Eva

    2012-02-15

    Transcriptional regulation requires co-ordinated action of transcription factors, co-activator complexes and general transcription factors to access specific loci in the dense chromatin structure. In the present study we demonstrate that the transcriptional co-regulator SPBP [stromelysin-1 PDGF (platelet-derived growth factor)-responsive element binding protein] contains two independent chromatin-binding domains, the SPBP-(1551-1666) region and the C-terminal extended PHD [ePHD/ADD (extended plant homeodomain/ATRX-DNMT3-DNMT3L)] domain. The region 1551-1666 is a novel core nucleosome-interaction domain located adjacent to the AT-hook motif in the DNA-binding domain. This novel nucleosome-binding region is critically important for proper localization of SPBP in the cell nucleus. The ePHD/ADD domain associates with nucleosomes in a histone tail-dependent manner, and has significant impact on the dynamic interaction between SPBP and chromatin. Furthermore, SPBP and its homologue RAI1 (retinoic-acid-inducible protein 1), are strongly enriched on chromatin in interphase HeLa cells, and both proteins display low nuclear mobility. RAI1 contains a region with homology to the novel nucleosome-binding region SPBP-(1551-1666) and an ePHD/ADD domain with ability to bind nucleosomes. These results indicate that the transcriptional co-regulator SPBP and its homologue RAI1 implicated in Smith-Magenis syndrome and Potocki-Lupski syndrome both belong to the expanding family of chromatin-binding proteins containing several domains involved in specific chromatin interactions. PMID:22081970

  3. Replication-coupled chromatin assembly of newly synthesized histones: distinct functions for the histone tail domains.

    PubMed

    Ejlassi-Lassallette, Aïda; Thiriet, Christophe

    2012-02-01

    The maintenance of the genome during replication requires the assembly of nucleosomes with newly synthesized histones. Achieving the deposition of newly synthesized histones in chromatin implies their transport from the cytoplasm to the nucleus at the replication sites. Several lines of evidence have revealed critical functions of the histone tail domains in these conserved cellular processes. In this review, we discuss the role of the amino termini of the nucleosome building blocks, H2A/H2B and H3/H4, in different model systems. The experimental data showed that H2A/H2B tails and H3/H4 tails display distinct functions in nuclear import and chromatin assembly. Furthermore, we describe recent studies exploiting the unique properties of the slime mold, Physarum polycephalum , that have advanced understanding of the function of the highly conserved replication-dependent diacetylation of H4.

  4. The NuA4 Core Complex Acetylates Nucleosomal Histone H4 through a Double Recognition Mechanism.

    PubMed

    Xu, Peng; Li, Chengmin; Chen, Zhihong; Jiang, Shuanying; Fan, Shilong; Wang, Jiawei; Dai, Junbiao; Zhu, Ping; Chen, Zhucheng

    2016-09-15

    NuA4 catalyzes the acetylation of nucleosomes at histone H4, which is a well-established epigenetic event, controlling many genomic processes in Saccharomyces cerevisiae. Here we report the crystal structures of the NuA4 core complex and a cryoelectron microscopy structure with the nucleosome. The structures show that the histone-binding pocket of the enzyme is rearranged, suggesting its activation. The enzyme binds the histone tail mainly through the target lysine residue, with a preference for a small residue at the -1 position. The complex engages the nucleosome at the dish face and orients its catalytic pocket close to the H4 tail to achieve selective acetylation. The combined data reveal a space-sequence double recognition mechanism of the histone tails by a modifying enzyme in the context of the nucleosome. PMID:27594449

  5. DNA-protein interactions in nucleosomes and in chromatin. Structural studies of chromatin stabilized by ultraviolet-light induced crosslinking.

    PubMed

    Mandel, R; Kolomijtseva, G; Brahms, J G

    1979-05-15

    Crosslinking induced by ultraviolet light irradiation at 254 nm has been utilized to investigate the structure of chromatin and isolated nucleosomes. The results presented here imply that the four core histones, as well as histone H1, have reactive groups within a bond length of the DNA bases. In nucleosomes depleted of H1, all of the core histones react similarly with the DNA and form crosslinks. In chromatin, the rate of crosslinking of all histones to DNA is essentially similar. Comparison of mononucleosomes, dinucleosomes and whole chromatin shows that the rate of crosslinking increases significantly with increasing number of connected nucleosomes. These differences in the rate of crosslinking are interpreted in terms of interactions between neighbouring nucleosomes on the chromatin fiber, which are absent in an isolated mononucleosome.

  6. Reconfiguration of nucleosome-depleted regions at distal regulatory elements accompanies DNA methylation of enhancers and insulators in cancer

    PubMed Central

    Taberlay, Phillippa C.; Statham, Aaron L.; Kelly, Theresa K.

    2014-01-01

    It is well established that cancer-associated epigenetic repression occurs concomitant with CpG island hypermethylation and loss of nucleosomes at promoters, but the role of nucleosome occupancy and epigenetic reprogramming at distal regulatory elements in cancer is still poorly understood. Here, we evaluate the scope of global epigenetic alterations at enhancers and insulator elements in prostate and breast cancer cells using simultaneous genome-wide mapping of DNA methylation and nucleosome occupancy (NOMe-seq). We find that the genomic location of nucleosome-depleted regions (NDRs) is mostly cell type specific and preferentially found at enhancers in normal cells. In cancer cells, however, we observe a global reconfiguration of NDRs at distal regulatory elements coupled with a substantial reorganization of the cancer methylome. Aberrant acquisition of nucleosomes at enhancer-associated NDRs is associated with hypermethylation and epigenetic silencing marks, and conversely, loss of nucleosomes with demethylation and epigenetic activation. Remarkably, we show that nucleosomes remain strongly organized and phased at many facultative distal regulatory elements, even in the absence of a NDR as an anchor. Finally, we find that key transcription factor (TF) binding sites also show extensive peripheral nucleosome phasing, suggesting the potential for TFs to organize NDRs genome-wide and contribute to deregulation of cancer epigenomes. Together, our findings suggest that “decommissioning” of NDRs and TFs at distal regulatory elements in cancer cells is accompanied by DNA hypermethylation susceptibility of enhancers and insulator elements, which in turn may contribute to an altered genome-wide architecture and epigenetic deregulation in malignancy. PMID:24916973

  7. The male germ cell gene regulator CTCFL is functionally different from CTCF and binds CTCF-like consensus sites in a nucleosome composition-dependent manner

    PubMed Central

    2012-01-01

    Background CTCF is a highly conserved and essential zinc finger protein expressed in virtually all cell types. In conjunction with cohesin, it organizes chromatin into loops, thereby regulating gene expression and epigenetic events. The function of CTCFL or BORIS, the testis-specific paralog of CTCF, is less clear. Results Using immunohistochemistry on testis sections and fluorescence-based microscopy on intact live seminiferous tubules, we show that CTCFL is only transiently present during spermatogenesis, prior to the onset of meiosis, when the protein co-localizes in nuclei with ubiquitously expressed CTCF. CTCFL distribution overlaps completely with that of Stra8, a retinoic acid-inducible protein essential for the propagation of meiosis. We find that absence of CTCFL in mice causes sub-fertility because of a partially penetrant testicular atrophy. CTCFL deficiency affects the expression of a number of testis-specific genes, including Gal3st1 and Prss50. Combined, these data indicate that CTCFL has a unique role in spermatogenesis. Genome-wide RNA expression studies in ES cells expressing a V5- and GFP-tagged form of CTCFL show that genes that are downregulated in CTCFL-deficient testis are upregulated in ES cells. These data indicate that CTCFL is a male germ cell gene regulator. Furthermore, genome-wide DNA-binding analysis shows that CTCFL binds a consensus sequence that is very similar to that of CTCF. However, only ~3,700 out of the ~5,700 CTCFL- and ~31,000 CTCF-binding sites overlap. CTCFL binds promoters with loosely assembled nucleosomes, whereas CTCF favors consensus sites surrounded by phased nucleosomes. Finally, an ES cell-based rescue assay shows that CTCFL is functionally different from CTCF. Conclusions Our data suggest that nucleosome composition specifies the genome-wide binding of CTCFL and CTCF. We propose that the transient expression of CTCFL in spermatogonia and preleptotene spermatocytes serves to occupy a subset of promoters and

  8. The structural basis of modified nucleosome recognition by 53BP1.

    PubMed

    Wilson, Marcus D; Benlekbir, Samir; Fradet-Turcotte, Amélie; Sherker, Alana; Julien, Jean-Philippe; McEwan, Andrea; Noordermeer, Sylvie M; Sicheri, Frank; Rubinstein, John L; Durocher, Daniel

    2016-08-01

    DNA double-strand breaks (DSBs) elicit a histone modification cascade that controls DNA repair. This pathway involves the sequential ubiquitination of histones H1 and H2A by the E3 ubiquitin ligases RNF8 and RNF168, respectively. RNF168 ubiquitinates H2A on lysine 13 and lysine 15 (refs 7, 8) (yielding H2AK13ub and H2AK15ub, respectively), an event that triggers the recruitment of 53BP1 (also known as TP53BP1) to chromatin flanking DSBs. 53BP1 binds specifically to H2AK15ub-containing nucleosomes through a peptide segment termed the ubiquitination-dependent recruitment motif (UDR), which requires the simultaneous engagement of histone H4 lysine 20 dimethylation (H4K20me2) by its tandem Tudor domain. How 53BP1 interacts with these two histone marks in the nucleosomal context, how it recognizes ubiquitin, and how it discriminates between H2AK13ub and H2AK15ub is unknown. Here we present the electron cryomicroscopy (cryo-EM) structure of a dimerized human 53BP1 fragment bound to a H4K20me2-containing and H2AK15ub-containing nucleosome core particle (NCP-ubme) at 4.5 Å resolution. The structure reveals that H4K20me2 and H2AK15ub recognition involves intimate contacts with multiple nucleosomal elements including the acidic patch. Ubiquitin recognition by 53BP1 is unusual and involves the sandwiching of the UDR segment between ubiquitin and the NCP surface. The selectivity for H2AK15ub is imparted by two arginine fingers in the H2A amino-terminal tail, which straddle the nucleosomal DNA and serve to position ubiquitin over the NCP-bound UDR segment. The structure of the complex between NCP-ubme and 53BP1 reveals the basis of 53BP1 recruitment to DSB sites and illuminates how combinations of histone marks and nucleosomal elements cooperate to produce highly specific chromatin responses, such as those elicited following chromosome breaks.

  9. In vitro chromatin assembly promoted by the Xenopus laevis S-150 cell-free extract is enhanced by treatment with RNase A.

    PubMed

    Sekiguchi, J M; Kmiec, E B

    1992-02-25

    Cell-free extracts employed as chromatin assembly systems contain a myriad of proteins, polyanions and nucleic acids. The roles of ATP, MgCl2 and other cofactors in the catalysis of nucleosome formation by the Xenopus laevis oocyte S-150 have yet to be established unequivocally. In this study we examine the influence of RNA in the assembly process. Under reaction conditions that inhibit nucleosome formation (+ EDTA), pretreatment of the extract with RNase A revives the chromatin assembly machinery while the rate of DNA supercoiling is stimulated significantly. Addition of purified RNA blocks DNA supercoiling. Taken together, these data suggest that the parameters surrounding in vitro chromatin assembly are variable and subject to modulation by endogenous factors.

  10. Quantitative determination of binding of ISWI to nucleosomes and DNA shows allosteric regulation of DNA binding by nucleotides.

    PubMed

    Al-Ani, Gada; Briggs, Koan; Malik, Shuja Shafi; Conner, Michael; Azuma, Yoshiaki; Fischer, Christopher J

    2014-07-15

    The regulation of chromatin structure is controlled by a family of molecular motors called chromatin remodelers. The ability of these enzymes to remodel chromatin structure is dependent on their ability to couple ATP binding and hydrolysis into the mechanical work that drives nucleosome repositioning. The necessary first step in determining how these essential enzymes perform this function is to characterize both how they bind nucleosomes and how this interaction is regulated by ATP binding and hydrolysis. With this goal in mind, we monitored the interaction of the chromatin remodeler ISWI with fluorophore-labeled nucleosomes and DNA through associated changes in fluorescence anisotropy of the fluorophore upon binding of ISWI to these substrates. We determined that one ISWI molecule binds to a 20 bp double-stranded DNA substrate with an affinity of 18 ± 2 nM. In contrast, two ISWI molecules can bind to the core nucleosome with short linker DNA with stoichiometric macroscopic equilibrium constants: 1/β1 = 1.3 ± 0.6 nM, and 1/β2 = 13 ± 7 nM(2). Furthermore, to improve our understanding of the mechanism of DNA translocation by ISWI, and hence nucleosome repositioning, we determined the effect of nucleotide analogues on substrate binding by ISWI. While the affinity of ISWI for the nucleosome substrate with short lengths of flanking DNA was not affected by the presence of nucleotides, the affinity of ISWI for the DNA substrate is weakened in the presence of nonhydrolyzable ATP analogues but not by ADP.

  11. Structural basis of pyrimidine-pyrimidone (6-4) photoproduct recognition by UV-DDB in the nucleosome.

    PubMed

    Osakabe, Akihisa; Tachiwana, Hiroaki; Kagawa, Wataru; Horikoshi, Naoki; Matsumoto, Syota; Hasegawa, Mayu; Matsumoto, Naoyuki; Toga, Tatsuya; Yamamoto, Junpei; Hanaoka, Fumio; Thomä, Nicolas H; Sugasawa, Kaoru; Iwai, Shigenori; Kurumizaka, Hitoshi

    2015-01-01

    UV-DDB, an initiation factor for the nucleotide excision repair pathway, recognizes 6-4PP lesions through a base flipping mechanism. As genomic DNA is almost entirely accommodated within nucleosomes, the flipping of the 6-4PP bases is supposed to be extremely difficult if the lesion occurs in a nucleosome, especially on the strand directly contacting the histone surface. Here we report that UV-DDB binds efficiently to nucleosomal 6-4PPs that are rotationally positioned on the solvent accessible or occluded surface. We determined the crystal structures of nucleosomes containing 6-4PPs in these rotational positions, and found that the 6-4PP DNA regions were flexibly disordered, especially in the strand exposed to the solvent. This characteristic of 6-4PP may facilitate UV-DDB binding to the damaged nucleosome. We present the first atomic-resolution pictures of the detrimental DNA cross-links of neighboring pyrimidine bases within the nucleosome, and provide the mechanistic framework for lesion recognition by UV-DDB in chromatin. PMID:26573481

  12. A Novel ‘Roll-and-Slide’ Mechanism of DNA Folding in Chromatin. Implications for Nucleosome Positioning

    PubMed Central

    Tolstorukov, Michael Y.; Colasanti, Andrew V.; McCandlish, David; Olson, Wilma K.; Zhurkin, Victor B.

    2007-01-01

    How eukaryotic genomes encode the folding of DNA into nucleosomes and how this intrinsic organization of chromatin guides biological function are questions of wide interest. The physical basis of nucleosome positioning lies in the sequence-dependent propensity of DNA to adopt the tightly bent configuration imposed by the binding of the histone proteins. Traditionally, only DNA bending and twisting deformations are considered, while the effects of the lateral displacements of adjacent base pairs are neglected. We demonstrate, however, that these displacements play a much more important structural role than ever imagined. Specifically, the lateral Slide deformations observed at sites of local anisotropic bending of DNA define its superhelical trajectory in chromatin. Furthermore, the computed cost of deforming DNA on the nucleosome is sequence specific: in optimally positioned sequences the most easily deformed base-pair steps (CA:TG and TA) occur at sites of large positive Slide and negative Roll (where the DNA bends into the minor groove). These conclusions rest upon a treatment of DNA that goes beyond the conventional ribbon model, incorporating all essential degrees of freedom of ‘real’ duplexes in the estimation of DNA deformation energies. Indeed, only after lateral Slide displacements are considered, are we able to account for the sequence-specific folding of DNA found in nucleosome structures. The close correspondence between the predicted and observed nucleosome locations demonstrates the potential advantage of our 'structural' approach in the computer mapping of nucleosome positioning. PMID:17585938

  13. Nucleosome-specific, time-dependent changes in histone modifications during activation of the early growth response 1 (Egr1) gene.

    PubMed

    Riffo-Campos, Ángela L; Castillo, Josefa; Tur, Gema; González-Figueroa, Paula; Georgieva, Elena I; Rodríguez, José L; López-Rodas, Gerardo; Rodrigo, M Isabel; Franco, Luis

    2015-01-01

    Histone post-translational modifications and nucleosome remodeling are coordinate events involved in eukaryotic transcriptional regulation. There are relatively few data on the time course with which these events occur in individual nucleosomes. As a contribution to fill this gap, we first describe the nature and time course of structural changes in the nucleosomes -2, -1, and +1 of the murine Egr1 gene upon induction. To initiate the transient activation of the gene, we used the stimulation of MLP29 cells with phorbol esters and the in vivo activation after partial hepatectomy. In both models, nucleosomes -1 and +1 are partially evicted, whereas nucleosomes +1 and -2 slide downstream during transcription. The sliding of the latter nucleosome allows the EGR1 protein to bind its site, resulting in the repression of the gene. To decide whether EGR1 is involved in the sliding of nucleosome -2, Egr1 was knocked down. In the absence of detectable EGR1, the nucleosome still slides and remains downstream longer than in control cells, suggesting that the product of the gene may be rather involved in the returning of the nucleosome to the basal position. Moreover, the presence of eight epigenetic histone marks has been determined at a mononucleosomal level in that chromatin region. H3S10phK14ac, H3K4me3, H3K9me3, and H3K27me3 are characteristic of nucleosome +1, and H3K9ac and H4K16ac are mainly found in nucleosome -1, and H3K27ac predominates in nucleosomes -2 and -1. The temporal changes in these marks suggest distinct functions for some of them, although changes in H3K4me3 may result from histone turnover.

  14. Alternative Computational Analysis Shows No Evidence for Nucleosome Enrichment at Repetitive Sequences in Mammalian Spermatozoa.

    PubMed

    Royo, Hélène; Stadler, Michael Beda; Peters, Antoine Hendrik Felix Marie

    2016-04-01

    Samans et al. (2014) reported the enrichment of nucleosomes in human and bovine spermatozoa at centromere repeats and retrotransposon sequences such as LINE-1 and SINE. We demonstrate here that nucleosomal enrichments at repetitive sequences as reported result from bioinformatic analyses that make redundant use of sequencing reads that map to multiple locations in the genome. To illustrate that this computational approach is flawed, we observed comparable artificial enrichments at repetitive sequences when aligning control genomic DNA or simulated reads of uniform genome coverage. These results imply that the main conclusions of the article by Samans et al. (2014) are confounded by an inappropriate computational methodology used to analyze the primary data. PMID:27046835

  15. The H1 linker histones: multifunctional proteins beyond the nucleosomal core particle

    PubMed Central

    Hergeth, Sonja P; Schneider, Robert

    2015-01-01

    The linker histone H1 family members are a key component of chromatin and bind to the nucleosomal core particle around the DNA entry and exit sites. H1 can stabilize both nucleosome structure and higher-order chromatin architecture. In general, H1 molecules consist of a central globular domain with more flexible tail regions at both their N- and C-terminal ends. The existence of multiple H1 subtypes and a large variety of posttranslational modifications brings about a considerable degree of complexity and makes studying this protein family challenging. Here, we review recent progress in understanding the function of linker histones and their subtypes beyond their role as merely structural chromatin components. We summarize current findings on the role of H1 in heterochromatin formation, transcriptional regulation and embryogenesis with a focus on H1 subtypes and their specific modifications. PMID:26474902

  16. Comparing the Assembly and Handedness Dynamics of (H3.3-H4)2 Tetrasomes to Canonical Tetrasomes.

    PubMed

    Vlijm, Rifka; Lee, Mina; Ordu, Orkide; Boltengagen, Anastasiya; Lusser, Alexandra; Dekker, Nynke H; Dekker, Cees

    2015-01-01

    Eukaryotic nucleosomes consists of an (H3-H4)2 tetramer and two H2A-H2B dimers, around which 147 bp of DNA are wrapped in 1.7 left-handed helical turns. During chromatin assembly, the (H3-H4)2 tetramer binds first, forming a tetrasome that likely constitutes an important intermediate during ongoing transcription. We recently showed that (H3-H4)2 tetrasomes spontaneously switch between a left- and right-handed wrapped state of the DNA, a phenomenon that may serve to buffer changes in DNA torque induced by RNA polymerase in transcription. Within nucleosomes of actively transcribed genes, however, canonical H3 is progressively replaced by its variant H3.3. Consequently, one may ask if and how the DNA chirality dynamics of tetrasomes is altered by H3.3. Recent findings that H3.3-containing nucleosomes result in less stable and less condensed chromatin further underline the need to study the microscopic underpinnings of H3.3-containing tetrasomes and nucleosomes. Here we report real-time single-molecule studies of (H3.3-H4)2 tetrasome dynamics using Freely Orbiting Magnetic Tweezers and Electromagnetic Torque Tweezers. We find that the assembly of H3.3-containing tetrasomes and nucleosomes by the histone chaperone Nucleosome Assembly Protein 1 (NAP1) occurs in an identical manner to that of H3-containing tetrasomes and nucleosomes. Likewise, the flipping behavior of DNA handedness in tetrasomes is not impacted by the presence of H3.3. We also examine the effect of free NAP1, H3.3, and H4 in solution on flipping behavior and conclude that the probability for a tetrasome to occupy the left-handed state is only slightly enhanced by the presence of free protein. These data demonstrate that the incorporation of H3.3 does not alter the structural dynamics of tetrasomes, and hence that the preferred incorporation of this histone variant in transcriptionally active regions does not result from its enhanced ability to accommodate torsional stress, but rather may be linked to

  17. Genome-wide analysis reveals positional-nucleosome-oriented binding pattern of pioneer factor FOXA1

    PubMed Central

    Ye, Zhenqing; Chen, Zhong; Sunkel, Benjamin; Frietze, Seth; Huang, Tim H.-M.; Wang, Qianben; Jin, Victor X.

    2016-01-01

    The compaction of nucleosomal structures creates a barrier for DNA-binding transcription factors (TFs) to access their cognate cis-regulatory elements. Pioneer factors (PFs) such as FOXA1 are able to directly access these cis-targets within compact chromatin. However, how these PFs interplay with nucleosomes remains to be elucidated, and is critical for us to understand the underlying mechanism of gene regulation. Here, we have conducted a computational analysis on a strand-specific paired-end ChIP-exo (termed as ChIP-ePENS) data of FOXA1 in LNCaP cells by our novel algorithm ePEST. We find that FOXA1 chromatin binding occurs via four distinct border modes (or footprint boundary patterns), with a preferential footprint boundary patterns relative to FOXA1 motif orientation. In addition, from this analysis three fundamental nucleotide positions (oG, oS and oH) emerged as major determinants for blocking exo-digestion and forming these four distinct border modes. By integrating histone MNase-seq data, we found an astonishingly consistent, ‘well-positioned’ configuration occurs between FOXA1 motifs and dyads of nucleosomes genome-wide. We further performed ChIP-seq of eight chromatin remodelers and found an increased occupancy of these remodelers on FOXA1 motifs for all four border modes (or footprint boundary patterns), indicating the full occupancy of FOXA1 complex on the three blocking sites (oG, oS and oH) likely produces an active regulatory status with well-positioned phasing for protein binding events. Together, our results suggest a positional-nucleosome-oriented accessing model for PFs seeking target motifs, in which FOXA1 can examine each underlying DNA nucleotide and is able to sense all potential motifs regardless of whether they face inward or outward from histone octamers along the DNA helix axis. PMID:27458208

  18. BAF250a Protein Regulates Nucleosome Occupancy and Histone Modifications in Priming Embryonic Stem Cell Differentiation.

    PubMed

    Lei, Ienglam; West, Jason; Yan, Zhijiang; Gao, Xiaolin; Fang, Peng; Dennis, Jonathan H; Gnatovskiy, Leonid; Wang, Weidong; Kingston, Robert E; Wang, Zhong

    2015-07-31

    The unique chromatin signature of ES cells is fundamental to the pluripotency and differentiation of ES cells. One key feature is the poised chromatin state of master developmental genes that are transcriptionally repressed in ES cells but ready to be activated in response to differentiation signals. Poised chromatin in ES cells contains both H3 Lys-4 trimethylation (H3K4me3) and H3 Lys-27 trimethylation (H3K27me3) methylation, indicating activating and repressing potential. However, the contribution of non-covalent chromatin structure to the poised state is not well understood. To address whether remodeling of nucleosomes is important to the poised state, we characterized the function of BAF250a, a key regulatory subunit of the ES cell ATP-dependent Brahma-associated factor (BAF) chromatin remodeling complex (esBAF). Acute deletion of BAF250a disrupted the differentiation potential of ES cells by altering the expression timing of key developmental genes and pluripotent genes. Our genome-wide nucleosome and histone modification analyses indicated that the disruption of gene expression timing was largely due to changes of chromatin structures at poised genes, particularly those key developmental genes mediated by BAF250a. Specifically, BAF250a deletion caused a nucleosome occupancy increase at H3K4me3- and/or H3K27me3-associated promoters. Moreover, H3K27me3 levels and the number of bivalent promoter genes were reduced in BAF250a KO ES cells. We revealed that BAF250a ablation led to elevated Brg1 but reduced Suz12 recruitment at nucleosome occupancy-increased regions, indicating an unexpected and complicated role of BAF250a in regulating esBAF and Polycomb repressive complex (PRC) activities. Together, our studies identified that BAF250a mediates esBAF and PRC functions to establish the poised chromatin configuration in ES cells, which is essential for the proper differentiation of ES cells.

  19. Enzymatic Excision of Uracil Residues in Nucleosomes Depends on Local DNA Structure and Dynamics†

    PubMed Central

    Ye, Yu; Stahley, Mary R.; Xu, Jianqing; Friedman, Joshua I.; Sun, Yan; McKnight, Jeffrey N.; Gray, Jeffrey J.; Bowman, Gregory D.; Stivers, James T.

    2012-01-01

    The excision of uracil bases from DNA is accomplished by the enzyme uracil DNA glycosylase (UNG). Recognition of uracil bases in free DNA is facilitated by uracil base pair dynamics, but it is not known whether this same mechanistic feature is relevant for detection and excision of uracil residues embedded in nucleosomes. Here we investigate this question using nucleosome core particles (NCPs) generated from X. laevis histones and the high-affinity “Widom 601” positioning sequence. The reactivity of uracil residues in NCPs under steady-state multiple turnover conditions was generally decreased as compared to free 601 DNA, mostly due to anticipated steric effects of histones. However, some sites in NCPs had equal or even greater reactivity than free DNA, and the observed reactivities were not readily explained by simple steric considerations, or by global DNA unwrapping models for nucleosome invasion. In particular, some reactive uracils were found in occluded positions, while some unreactive uracils were found in exposed positions. One feature of many exposed reactive sites is a wide DNA minor groove, which allows penetration of a key active site loop of the enzyme. In single-turnover kinetic measurements, multi-phasic reaction kinetics were observed for several uracil sites, where each kinetic transient was independent of the UNG concentration. These kinetic measurements, and supporting structural analyses, support a mechanism where some uracils are transiently exposed to UNG by local, rate-limiting nucleosome conformational dynamics, followed by rapid trapping of the exposed state by the enzyme. We present structural models and plausible reaction mechanisms for the reaction of UNG at three distinct uracil sites in the NCP. PMID:22784353

  20. Binding of the transcription factor Atf1 to promoters serves as a barrier to phase nucleosome arrays and avoid cryptic transcription

    PubMed Central

    García, Patricia; Paulo, Esther; Gao, Jun; Wahls, Wayne P.; Ayté, José; Lowy, Ernesto; Hidalgo, Elena

    2014-01-01

    Schizosaccharomyces pombe displays a large transcriptional response common to several stress conditions, regulated primarily by the transcription factor Atf1. Atf1-dependent promoters contain especially broad nucleosome depleted regions (NDRs) prior to stress imposition. We show here that basal binding of Atf1 to these promoters competes with histones to create wider NDRs at stress genes. Moreover, deletion of atf1 results in nucleosome disorganization specifically at stress coding regions and derepresses antisense transcription. Our data indicate that the transcription factor binding to promoters acts as an effective barrier to fix the +1 nucleosome and phase downstream nucleosome arrays to prevent cryptic transcription. PMID:25122751

  1. Binding of the transcription factor Atf1 to promoters serves as a barrier to phase nucleosome arrays and avoid cryptic transcription.

    PubMed

    García, Patricia; Paulo, Esther; Gao, Jun; Wahls, Wayne P; Ayté, José; Lowy, Ernesto; Hidalgo, Elena

    2014-01-01

    Schizosaccharomyces pombe displays a large transcriptional response common to several stress conditions, regulated primarily by the transcription factor Atf1. Atf1-dependent promoters contain especially broad nucleosome depleted regions (NDRs) prior to stress imposition. We show here that basal binding of Atf1 to these promoters competes with histones to create wider NDRs at stress genes. Moreover, deletion of atf1 results in nucleosome disorganization specifically at stress coding regions and derepresses antisense transcription. Our data indicate that the transcription factor binding to promoters acts as an effective barrier to fix the +1 nucleosome and phase downstream nucleosome arrays to prevent cryptic transcription. PMID:25122751

  2. Binding of the transcription factor Atf1 to promoters serves as a barrier to phase nucleosome arrays and avoid cryptic transcription.

    PubMed

    García, Patricia; Paulo, Esther; Gao, Jun; Wahls, Wayne P; Ayté, José; Lowy, Ernesto; Hidalgo, Elena

    2014-01-01

    Schizosaccharomyces pombe displays a large transcriptional response common to several stress conditions, regulated primarily by the transcription factor Atf1. Atf1-dependent promoters contain especially broad nucleosome depleted regions (NDRs) prior to stress imposition. We show here that basal binding of Atf1 to these promoters competes with histones to create wider NDRs at stress genes. Moreover, deletion of atf1 results in nucleosome disorganization specifically at stress coding regions and derepresses antisense transcription. Our data indicate that the transcription factor binding to promoters acts as an effective barrier to fix the +1 nucleosome and phase downstream nucleosome arrays to prevent cryptic transcription.

  3. Arabidopsis meiotic crossover hotspots overlap with H2A.Z nucleosomes at gene promoters

    PubMed Central

    Choi, Kyuha; Zhao, Xiaohui; Kelly, Krystyna A.; Venn, Oliver; Higgins, James D.; Yelina, Nataliya E.; Hardcastle, Thomas J.; Ziolkowski, Piotr A.; Copenhaver, Gregory P.; Franklin, F. Chris H.; McVean, Gil; Henderson, Ian R.

    2013-01-01

    PRDM9 directs human meiotic crossover hotspots to intergenic sequence motifs, whereas budding yeast hotspots overlap low nucleosome density regions in gene promoters. To investigate hotspots in plants, which lack PRDM9, we used coalescent analysis of Arabidopsis genetic variation. Crossovers increase towards gene promoters and terminators, and hotspots are associated with active chromatin modifications, including H2A.Z, histone H3K4me3, low nucleosome density and low DNA methylation. Hotspot-enriched A-rich and CTT-repeat DNA motifs occur upstream and downstream of transcriptional start respectively. Crossovers are asymmetric around promoters and highest over CTT-motifs and H2A.Z-nucleosomes. Pollen-typing, segregation and cytogenetic analysis show decreased crossovers in the arp6 H2A.Z deposition mutant, at multiple scales. During meiosis H2A.Z and DMC1/RAD51 recombinases form overlapping chromosomal foci. As arp6 reduces DMC1/RAD51 foci, H2A.Z may promote formation or processing of meiotic DNA double-strand breaks. We propose that gene chromatin ancestrally designates hotspots within eukaryotes and PRDM9 is a derived state within vertebrates. PMID:24056716

  4. Influence of Rotational Nucleosome Positioning on Transcription Start Site Selection in Animal Promoters

    PubMed Central

    Ambrosini, Giovanna; Bucher, Philipp

    2016-01-01

    The recruitment of RNA-Pol-II to the transcription start site (TSS) is an important step in gene regulation in all organisms. Core promoter elements (CPE) are conserved sequence motifs that guide Pol-II to the TSS by interacting with specific transcription factors (TFs). However, only a minority of animal promoters contains CPEs. It is still unknown how Pol-II selects the TSS in their absence. Here we present a comparative analysis of promoters’ sequence composition and chromatin architecture in five eukaryotic model organisms, which shows the presence of common and unique DNA-encoded features used to organize chromatin. Analysis of Pol-II initiation patterns uncovers that, in the absence of certain CPEs, there is a strong correlation between the spread of initiation and the intensity of the 10 bp periodic signal in the nearest downstream nucleosome. Moreover, promoters’ primary and secondary initiation sites show a characteristic 10 bp periodicity in the absence of CPEs. We also show that DNA natural variants in the region immediately downstream the TSS are able to affect both the nucleosome-DNA affinity and Pol-II initiation pattern. These findings support the notion that, in addition to CPEs mediated selection, sequence–induced nucleosome positioning could be a common and conserved mechanism of TSS selection in animals. PMID:27716823

  5. Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription

    PubMed Central

    Knight, Britta; Kubik, Slawomir; Ghosh, Bhaswar; Bruzzone, Maria Jessica; Geertz, Marcel; Martin, Victoria; Dénervaud, Nicolas; Jacquet, Philippe; Ozkan, Burak; Rougemont, Jacques; Maerkl, Sebastian J.; Naef, Félix

    2014-01-01

    In yeast, ribosome production is controlled transcriptionally by tight coregulation of the 138 ribosomal protein genes (RPGs). RPG promoters display limited sequence homology, and the molecular basis for their coregulation remains largely unknown. Here we identify two prevalent RPG promoter types, both characterized by upstream binding of the general transcription factor (TF) Rap1 followed by the RPG-specific Fhl1/Ifh1 pair, with one type also binding the HMG-B protein Hmo1. We show that the regulatory properties of the two promoter types are remarkably similar, suggesting that they are determined to a large extent by Rap1 and the Fhl1/Ifh1 pair. Rapid depletion experiments allowed us to define a hierarchy of TF binding in which Rap1 acts as a pioneer factor required for binding of all other TFs. We also uncovered unexpected features underlying recruitment of Fhl1, whose forkhead DNA-binding domain is not required for binding at most promoters, and Hmo1, whose binding is supported by repeated motifs. Finally, we describe unusually micrococcal nuclease (MNase)-sensitive nucleosomes at all RPG promoters, located between the canonical +1 and −1 nucleosomes, which coincide with sites of Fhl1/Ifh1 and Hmo1 binding. We speculate that these “fragile” nucleosomes play an important role in regulating RPG transcriptional output. PMID:25085421

  6. CHD4 Is a Peripheral Component of the Nucleosome Remodeling and Deacetylase Complex.

    PubMed

    Low, Jason K K; Webb, Sarah R; Silva, Ana P G; Saathoff, Hinnerk; Ryan, Daniel P; Torrado, Mario; Brofelth, Mattias; Parker, Benjamin L; Shepherd, Nicholas E; Mackay, Joel P

    2016-07-22

    Chromatin remodeling enzymes act to dynamically regulate gene accessibility. In many cases, these enzymes function as large multicomponent complexes that in general comprise a central ATP-dependent Snf2 family helicase that is decorated with a variable number of regulatory subunits. The nucleosome remodeling and deacetylase (NuRD) complex, which is essential for normal development in higher organisms, is one such macromolecular machine. The NuRD complex comprises ∼10 subunits, including the histone deacetylases 1 and 2 (HDAC1 and HDAC2), and is defined by the presence of a CHD family remodeling enzyme, most commonly CHD4 (chromodomain helicase DNA-binding protein 4). The existing paradigm holds that CHD4 acts as the central hub upon which the complex is built. We show here that this paradigm does not, in fact, hold and that CHD4 is a peripheral component of the NuRD complex. A complex lacking CHD4 that has HDAC activity can exist as a stable species. The addition of recombinant CHD4 to this nucleosome deacetylase complex reconstitutes a NuRD complex with nucleosome remodeling activity. These data contribute to our understanding of the architecture of the NuRD complex. PMID:27235397

  7. CHD4 Is a Peripheral Component of the Nucleosome Remodeling and Deacetylase Complex.

    PubMed

    Low, Jason K K; Webb, Sarah R; Silva, Ana P G; Saathoff, Hinnerk; Ryan, Daniel P; Torrado, Mario; Brofelth, Mattias; Parker, Benjamin L; Shepherd, Nicholas E; Mackay, Joel P

    2016-07-22

    Chromatin remodeling enzymes act to dynamically regulate gene accessibility. In many cases, these enzymes function as large multicomponent complexes that in general comprise a central ATP-dependent Snf2 family helicase that is decorated with a variable number of regulatory subunits. The nucleosome remodeling and deacetylase (NuRD) complex, which is essential for normal development in higher organisms, is one such macromolecular machine. The NuRD complex comprises ∼10 subunits, including the histone deacetylases 1 and 2 (HDAC1 and HDAC2), and is defined by the presence of a CHD family remodeling enzyme, most commonly CHD4 (chromodomain helicase DNA-binding protein 4). The existing paradigm holds that CHD4 acts as the central hub upon which the complex is built. We show here that this paradigm does not, in fact, hold and that CHD4 is a peripheral component of the NuRD complex. A complex lacking CHD4 that has HDAC activity can exist as a stable species. The addition of recombinant CHD4 to this nucleosome deacetylase complex reconstitutes a NuRD complex with nucleosome remodeling activity. These data contribute to our understanding of the architecture of the NuRD complex.

  8. Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription.

    PubMed

    Di Cerbo, Vincenzo; Mohn, Fabio; Ryan, Daniel P; Montellier, Emilie; Kacem, Salim; Tropberger, Philipp; Kallis, Eleni; Holzner, Monika; Hoerner, Leslie; Feldmann, Angelika; Richter, Florian Martin; Bannister, Andrew J; Mittler, Gerhard; Michaelis, Jens; Khochbin, Saadi; Feil, Robert; Schuebeler, Dirk; Owen-Hughes, Tom; Daujat, Sylvain; Schneider, Robert

    2014-03-25

    Post-translational modifications of proteins have emerged as a major mechanism for regulating gene expression. However, our understanding of how histone modifications directly affect chromatin function remains limited. In this study, we investigate acetylation of histone H3 at lysine 64 (H3K64ac), a previously uncharacterized acetylation on the lateral surface of the histone octamer. We show that H3K64ac regulates nucleosome stability and facilitates nucleosome eviction and hence gene expression in vivo. In line with this, we demonstrate that H3K64ac is enriched in vivo at the transcriptional start sites of active genes and it defines transcriptionally active chromatin. Moreover, we find that the p300 co-activator acetylates H3K64, and consistent with a transcriptional activation function, H3K64ac opposes its repressive counterpart H3K64me3. Our findings reveal an important role for a histone modification within the nucleosome core as a regulator of chromatin function and they demonstrate that lateral surface modifications can define functionally opposing chromatin states. DOI: http://dx.doi.org/10.7554/eLife.01632.001.

  9. Dynamic Conformations of Nucleosome Arrays in Solution from Small-Angle X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Howell, Steven C.

    Chromatin conformation and dynamics remains unsolved despite the critical role of the chromatin in fundamental genetic functions such as transcription, replication, and repair. At the molecular level, chromatin can be viewed as a linear array of nucleosomes, each consisting of 147 base pairs (bp) of double-stranded DNA (dsDNA) wrapped around a protein core and connected by 10 to 90 bp of linker dsDNA. Using small-angle X-ray scattering (SAXS), we investigated how the conformations of model nucleosome arrays in solution are modulated by ionic condition as well as the effect of linker histone proteins. To facilitate ensemble modeling of these SAXS measurements, we developed a simulation method that treats coarse-grained DNA as a Markov chain, then explores possible DNA conformations using Metropolis Monte Carlo (MC) sampling. This algorithm extends the functionality of SASSIE, a program used to model intrinsically disordered biological molecules, adding to the previous methods for simulating protein, carbohydrates, and single-stranded DNA. Our SAXS measurements of various nucleosome arrays together with the MC generated models provide valuable solution structure information identifying specific differences from the structure of crystallized arrays.

  10. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome

    PubMed Central

    Pedersen, Jakob Skou; Valen, Eivind; Velazquez, Amhed M. Vargas; Parker, Brian J.; Rasmussen, Morten; Lindgreen, Stinus; Lilje, Berit; Tobin, Desmond J.; Kelly, Theresa K.; Vang, Søren; Andersson, Robin; Jones, Peter A.; Hoover, Cindi A.; Tikhonov, Alexei; Prokhortchouk, Egor; Rubin, Edward M.; Sandelin, Albin; Gilbert, M. Thomas P.; Krogh, Anders; Willerslev, Eske; Orlando, Ludovic

    2014-01-01

    Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery of the expected signals at promoter regions, exon/intron boundaries, and CTCF sites. The top-scoring nucleosome calls revealed distinct DNA positioning biases, attesting to nucleotide-level accuracy. The ancient methylation levels exhibited high conservation over time, clustering closely with modern hair tissues. Using ancient methylation information, we estimated the age at death of the Saqqaq individual and illustrate how epigenetic information can be used to infer ancient gene expression. Similar epigenetic signatures were found in other fossil material, such as 110,000- to 130,000-yr-old bones, supporting the contention that ancient epigenomic information can be reconstructed from a deep past. Our findings lay the foundation for extracting epigenomic information from ancient samples, allowing shifts in epialleles to be tracked through evolutionary time, as well as providing an original window into modern epigenomics. PMID:24299735

  11. Whole genome nucleosome sequencing identifies novel types of forensic markers in degraded DNA samples

    PubMed Central

    Dong, Chun-nan; Yang, Ya-dong; Li, Shu-jin; Yang, Ya-ran; Zhang, Xiao-jing; Fang, Xiang-dong; Yan, Jiang-wei; Cong, Bin

    2016-01-01

    In the case of mass disasters, missing persons and forensic caseworks, highly degraded biological samples are often encountered. It can be a challenge to analyze and interpret the DNA profiles from these samples. Here we provide a new strategy to solve the problem by taking advantage of the intrinsic structural properties of DNA. We have assessed the in vivo positions of more than 35 million putative nucleosome cores in human leukocytes using high-throughput whole genome sequencing, and identified 2,462 single nucleotide variations (SNVs), 128 insertion-deletion polymorphisms (indels). After comparing the sequence reads with 44 STR loci commonly used in forensics, five STRs (TH01, TPOX, D18S51, DYS391, and D10S1248)were matched. We compared these “nucleosome protected STRs” (NPSTRs) with five other non-NPSTRs using mini-STR primer design, real-time PCR, and capillary gel electrophoresis on artificially degraded DNA. Moreover, genotyping performance of the five NPSTRs and five non-NPSTRs was also tested with real casework samples. All results show that loci located in nucleosomes are more likely to be successfully genotyped in degraded samples. In conclusion, after further strict validation, these markers could be incorporated into future forensic and paleontology identification kits, resulting in higher discriminatory power for certain degraded sample types. PMID:27189082

  12. Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription

    PubMed Central

    Di Cerbo, Vincenzo; Mohn, Fabio; Ryan, Daniel P; Montellier, Emilie; Kacem, Salim; Tropberger, Philipp; Kallis, Eleni; Holzner, Monika; Hoerner, Leslie; Feldmann, Angelika; Richter, Florian Martin; Bannister, Andrew J; Mittler, Gerhard; Michaelis, Jens; Khochbin, Saadi; Feil, Robert; Schuebeler, Dirk; Owen-Hughes, Tom; Daujat, Sylvain; Schneider, Robert

    2014-01-01

    Post-translational modifications of proteins have emerged as a major mechanism for regulating gene expression. However, our understanding of how histone modifications directly affect chromatin function remains limited. In this study, we investigate acetylation of histone H3 at lysine 64 (H3K64ac), a previously uncharacterized acetylation on the lateral surface of the histone octamer. We show that H3K64ac regulates nucleosome stability and facilitates nucleosome eviction and hence gene expression in vivo. In line with this, we demonstrate that H3K64ac is enriched in vivo at the transcriptional start sites of active genes and it defines transcriptionally active chromatin. Moreover, we find that the p300 co-activator acetylates H3K64, and consistent with a transcriptional activation function, H3K64ac opposes its repressive counterpart H3K64me3. Our findings reveal an important role for a histone modification within the nucleosome core as a regulator of chromatin function and they demonstrate that lateral surface modifications can define functionally opposing chromatin states. DOI: http://dx.doi.org/10.7554/eLife.01632.001 PMID:24668167

  13. Whole genome nucleosome sequencing identifies novel types of forensic markers in degraded DNA samples.

    PubMed

    Dong, Chun-Nan; Yang, Ya-Dong; Li, Shu-Jin; Yang, Ya-Ran; Zhang, Xiao-Jing; Fang, Xiang-Dong; Yan, Jiang-Wei; Cong, Bin

    2016-01-01

    In the case of mass disasters, missing persons and forensic caseworks, highly degraded biological samples are often encountered. It can be a challenge to analyze and interpret the DNA profiles from these samples. Here we provide a new strategy to solve the problem by taking advantage of the intrinsic structural properties of DNA. We have assessed the in vivo positions of more than 35 million putative nucleosome cores in human leukocytes using high-throughput whole genome sequencing, and identified 2,462 single nucleotide variations (SNVs), 128 insertion-deletion polymorphisms (indels). After comparing the sequence reads with 44 STR loci commonly used in forensics, five STRs (TH01, TPOX, D18S51, DYS391, and D10S1248)were matched. We compared these "nucleosome protected STRs" (NPSTRs) with five other non-NPSTRs using mini-STR primer design, real-time PCR, and capillary gel electrophoresis on artificially degraded DNA. Moreover, genotyping performance of the five NPSTRs and five non-NPSTRs was also tested with real casework samples. All results show that loci located in nucleosomes are more likely to be successfully genotyped in degraded samples. In conclusion, after further strict validation, these markers could be incorporated into future forensic and paleontology identification kits, resulting in higher discriminatory power for certain degraded sample types. PMID:27189082

  14. Promiscuous presentation and recognition of nucleosomal autoepitopes in lupus: role of autoimmune T cell receptor alpha chain.

    PubMed

    Shi, Y; Kaliyaperumal, A; Lu, L; Southwood, S; Sette, A; Michaels, M A; Datta, S K

    1998-02-01

    T cells specific for nucleosomal autoepitopes are selectively expanded in lupus mice and these Th cells drive autoimmune B cells to produce pathogenic antinuclear antibodies. We transfected the TCR-alpha and -beta chain genes of a representative, pathogenic autoantibody-inducing Th clone specific for the nucleosomal core histone peptide H471-94 into TCR-negative recipient cells. Although the autoimmune TCRs were originally derived from SNF1 (I-Ad/q) mice, the transfectants could recognize the nucleosomal autoepitope presented by APC-bearing I-A molecules of all haplotypes tested, as well as human DR molecules. Competition assays indicated that the autoepitopes bound to the MHC class II groove. Most remarkably, MHC-unrestricted recognition of the nucleosomal peptide epitope was conferred by the lupus TCR-alpha chain even when it paired with a TCR-beta chain of irrelevant specificity. Several other disease-relevant Th clones and splenic T cells of lupus mice had similar properties. The TCR-alpha chains of these murine lupus Th clones shared related motifs and charged residues in their CDRs, and similar motifs were apparent even in TCR-alpha chains of human lupus Th clones. The lupus TCR-alpha chains probably contact the nucleosomal peptide complexed with MHC with relatively high affinity/avidity to sustain TCR signaling, because CD4 coreceptor was not required for promiscuous recognition. Indeed, pathogenic autoantibody-inducing, CD4-negative, TCR-alphabeta+ Th cells are expanded in systemic lupus erythematosus. These results have implications regarding thymic selection and peripheral expansion of nucleosome-specific T cells in lupus. They also suggest that universally tolerogenic epitopes could be designed for therapy of lupus patients with diverse HLA alleles. We propose to designate nucleosomes and other antigens bearing universal epitopes "Pantigens" (for promiscuous antigens).

  15. High-resolution analysis of DNA synthesis start sites and nucleosome architecture at efficient mammalian replication origins.

    PubMed

    Lombraña, Rodrigo; Almeida, Ricardo; Revuelta, Isabel; Madeira, Sofia; Herranz, Gonzalo; Saiz, Néstor; Bastolla, Ugo; Gómez, María

    2013-10-01

    DNA replication origins are poorly characterized genomic regions that are essential to recruit and position the initiation complex to start DNA synthesis. Despite the lack of specific replicator sequences, initiation of replication does not occur at random sites in the mammalian genome. This has lead to the view that DNA accessibility could be a major determinant of mammalian origins. Here, we performed a high-resolution analysis of nucleosome architecture and initiation sites along several origins of different genomic location and firing efficiencies. We found that mammalian origins are highly variable in nucleosome conformation and initiation patterns. Strikingly, initiation sites at efficient CpG island-associated origins always occur at positions of high-nucleosome occupancy. Origin recognition complex (ORC) binding sites, however, occur at adjacent but distinct positions marked by labile nucleosomes. We also found that initiation profiles mirror nucleosome architecture, both at endogenous origins and at a transgene in a heterologous system. Our studies provide a unique insight into the relationship between chromatin structure and initiation sites in the mammalian genome that has direct implications for how the replication programme can be accommodated to diverse epigenetic scenarios.

  16. DNA-histone interactions are sufficient to position a single nucleosome juxtaposing Drosophila Adh adult enhancer and distal promoter.

    PubMed Central

    Jackson, J R; Benyajati, C

    1993-01-01

    The alcohol dehydrogenase gene (Adh) of Drosophila melanogaster is transcribed from two tandem promoters in distinct developmental and tissue-specific patterns. Both promoters are regulated by separate upstream enhancer regions. In its wild-type context the adult enhancer specifically stimulates only the distal promoter, approximately 400 bp downstream, and not the proximal promoter, which is approximately 700 bp further downstream. Genomic footprinting and micrococcal nuclease analyses have revealed a specifically positioned nucleosome between the distal promoter and adult enhancer. In vitro reconstitution of this nucleosome demonstrated that DNA-core histone interactions alone are sufficient to position the nucleosome. Based on this observation and sequence periodicities in the underlying DNA, the mechanism of positioning appears to involve specific DNA structural features (ie flexibility or curvature). We have observed this nucleosome positioned early during development, before tissue differentiation, and before non-histone protein-DNA interactions are established at the distal promoter or adult enhancer. This nucleosome positioning element in the Adh regulatory region could be involved in establishing a specific tertiary nucleoprotein structure that facilitates specific cis-element accessibility and/or distal promoter-adult enhancer interactions. Images PMID:8451195

  17. The ISW1 and CHD1 ATP-dependent chromatin remodelers compete to set nucleosome spacing in vivo

    PubMed Central

    Ocampo, Josefina; Chereji, Răzvan V.; Eriksson, Peter R.; Clark, David J.

    2016-01-01

    Adenosine triphosphate-dependent chromatin remodeling machines play a central role in gene regulation by manipulating chromatin structure. Most genes have a nucleosome-depleted region at the promoter and an array of regularly spaced nucleosomes phased relative to the transcription start site. In vitro, the three known yeast nucleosome spacing enzymes (CHD1, ISW1 and ISW2) form arrays with different spacing. We used genome-wide nucleosome sequencing to determine whether these enzymes space nucleosomes differently in vivo. We find that CHD1 and ISW1 compete to set the spacing on most genes, such that CHD1 dominates genes with shorter spacing and ISW1 dominates genes with longer spacing. In contrast, ISW2 plays a minor role, limited to transcriptionally inactive genes. Heavily transcribed genes show weak phasing and extreme spacing, either very short or very long, and are depleted of linker histone (H1). Genes with longer spacing are enriched in H1, which directs chromatin folding. We propose that CHD1 directs short spacing, resulting in eviction of H1 and chromatin unfolding, whereas ISW1 directs longer spacing, allowing H1 to bind and condense the chromatin. Thus, competition between the two remodelers to set the spacing on each gene may result in a highly dynamic chromatin structure. PMID:26861626

  18. Assembly of the Arp5 (Actin-related Protein) Subunit Involved in Distinct INO80 Chromatin Remodeling Activities.

    PubMed

    Yao, Wei; Beckwith, Sean L; Zheng, Tina; Young, Thomas; Dinh, Van T; Ranjan, Anand; Morrison, Ashby J

    2015-10-16

    ATP-dependent chromatin remodeling, which repositions and restructures nucleosomes, is essential to all DNA-templated processes. The INO80 chromatin remodeling complex is an evolutionarily conserved complex involved in diverse cellular processes, including transcription, DNA repair, and replication. The functional diversity of the INO80 complex can, in part, be attributed to specialized activities of distinct subunits that compose the complex. Furthermore, structural analyses have identified biochemically discrete subunit modules that assemble along the Ino80 ATPase scaffold. Of particular interest is the Saccharomyces cerevisiae Arp5-Ies6 module located proximal to the Ino80 ATPase and the Rvb1-Rvb2 helicase module needed for INO80-mediated in vitro activity. In this study we demonstrate that the previously uncharacterized Ies2 subunit is required for Arp5-Ies6 association with the catalytic components of the INO80 complex. In addition, Arp5-Ies6 module assembly with the INO80 complex is dependent on distinct conserved domains within Arp5, Ies6, and Ino80, including the spacer region within the Ino80 ATPase domain. Arp5-Ies6 interacts with chromatin via assembly with the INO80 complex, as IES2 and INO80 deletion results in loss of Arp5-Ies6 chromatin association. Interestingly, ectopic addition of the wild-type Arp5-Ies6 module stimulates INO80-mediated ATP hydrolysis and nucleosome sliding in vitro. However, the addition of mutant Arp5 lacking unique insertion domains facilitates ATP hydrolysis in the absence of nucleosome sliding. Collectively, these results define the requirements of Arp5-Ies6 assembly, which are needed to couple ATP hydrolysis to productive nucleosome movement.

  19. Piccolo NuA4-catalyzed acetylation of nucleosomal histones: critical roles of an Esa1 Tudor/chromo barrel loop and an Epl1 enhancer of polycomb A (EPcA) basic region.

    PubMed

    Huang, Jiehuan; Tan, Song

    2013-01-01

    Piccolo NuA4 is an essential yeast histone acetyltransferase (HAT) complex that targets histones H4 and H2A in nucleosome substrates. While Piccolo NuA4's catalytic subunit Esa1 alone is unable to acetylate nucleosomal histones, its accessory subunits, Yng2 and Epl1, enable Esa1 to bind to and to act on nucleosomes. We previously determined that the Tudor domain of Esa1 and the EPcA homology domain of Epl1 play critical roles in Piccolo NuA4's ability to act on the nucleosome. In this work, we pinpoint a loop within the Esa1 Tudor domain and a short basic region at the N terminus of the Epl1 EPcA domain as necessary for this nucleosomal HAT activity. We also show that this Esa1 Tudor domain loop region is positioned close to nucleosomal DNA and that the Epl1 EPcA basic region is in proximity to the N-terminal histone H2A tail, the globular region of histone H4, and also to nucleosomal DNA when Piccolo NuA4 interacts with the nucleosome. Since neither region identified is required for Piccolo NuA4 to bind to nucleosomes and yet both are needed to acetylate nucleosomes, these regions may function after the enzyme binds nucleosomes to disengage substrate histone tails from nucleosomal DNA.

  20. Piccolo NuA4-Catalyzed Acetylation of Nucleosomal Histones: Critical Roles of an Esa1 Tudor/Chromo Barrel Loop and an Epl1 Enhancer of Polycomb A (EPcA) Basic Region

    PubMed Central

    Huang, Jiehuan

    2013-01-01

    Piccolo NuA4 is an essential yeast histone acetyltransferase (HAT) complex that targets histones H4 and H2A in nucleosome substrates. While Piccolo NuA4's catalytic subunit Esa1 alone is unable to acetylate nucleosomal histones, its accessory subunits, Yng2 and Epl1, enable Esa1 to bind to and to act on nucleosomes. We previously determined that the Tudor domain of Esa1 and the EPcA homology domain of Epl1 play critical roles in Piccolo NuA4's ability to act on the nucleosome. In this work, we pinpoint a loop within the Esa1 Tudor domain and a short basic region at the N terminus of the Epl1 EPcA domain as necessary for this nucleosomal HAT activity. We also show that this Esa1 Tudor domain loop region is positioned close to nucleosomal DNA and that the Epl1 EPcA basic region is in proximity to the N-terminal histone H2A tail, the globular region of histone H4, and also to nucleosomal DNA when Piccolo NuA4 interacts with the nucleosome. Since neither region identified is required for Piccolo NuA4 to bind to nucleosomes and yet both are needed to acetylate nucleosomes, these regions may function after the enzyme binds nucleosomes to disengage substrate histone tails from nucleosomal DNA. PMID:23109429

  1. The three-dimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon

    PubMed Central

    1994-01-01

    The three dimensional (3D) structure of chromatin fibers in sections of nuclei has been determined using electron tomography. Low temperature embedding and nucleic acid-specific staining allowed individual nucleosomes to be clearly seen, and the tomographic data collection parameters provided a reconstruction resolution of 2.5 nm. Chromatin fibers have complex 3D trajectories, with smoothly bending regions interspersed with abrupt changes in direction, and U turns. Nucleosomes are located predominantly at the fiber periphery, and linker DNA tends to project toward the fiber interior. Within the fibers, a unifying structural motif is a two nucleosome-wide ribbon that is variably bent and twisted, and in which there is little face-to-face contact between nucleosomes. It is suggested that this asymmetric 3D zig-zag of nucleosomes and linker DNA represents a basic principle of chromatin folding that is determined by the properties of the nucleosome-linker unit. This concept of chromatin fiber architecture is contrasted with helical models in which specific nucleosome-nucleosome contacts play a major role in generating a symmetrical higher order structure. The transcriptional control implications of a more open and irregular chromatin structure are discussed. PMID:8138564

  2. Joint assembly

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2010-01-01

    A joint assembly is provided which includes a drive assembly and a swivel mechanism. The drive assembly features a motor operatively associated with a plurality of drive shafts for driving auxiliary elements, and a plurality of swivel shafts for pivoting the drive assembly. The swivel mechanism engages the swivel shafts and has a fixable element that may be attached to a foundation. The swivel mechanism is adapted to cooperate with the swivel shafts to pivot the drive assembly with at least two degrees of freedom relative to the foundation. The joint assembly allows for all components to remain encased in a tight, compact, and sealed package, making it ideal for space, exploratory, and commercial applications.

  3. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors

    PubMed Central

    Wiechens, Nicola; Gkikopoulos, Triantaffyllos; Schofield, Pieta; Rocha, Sonia; Owen-Hughes, Tom

    2016-01-01

    Within the genomes of metazoans, nucleosomes are highly organised adjacent to the binding sites for a subset of transcription factors. Here we have sought to investigate which chromatin remodelling enzymes are responsible for this. We find that the ATP-dependent chromatin remodelling enzyme SNF2H plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding. At many other factor binding sites SNF2H and the related enzyme SNF2L contribute to nucleosome organisation. The action of SNF2H at CTCF sites is functionally important as depletion of CTCF or SNF2H affects transcription of a common group of genes. This suggests that chromatin remodelling ATPase’s most closely related to the Drosophila ISWI protein contribute to the function of many human gene regulatory elements. PMID:27019336

  4. The Chromatin Remodelling Enzymes SNF2H and SNF2L Position Nucleosomes adjacent to CTCF and Other Transcription Factors.

    PubMed

    Wiechens, Nicola; Singh, Vijender; Gkikopoulos, Triantaffyllos; Schofield, Pieta; Rocha, Sonia; Owen-Hughes, Tom

    2016-03-01

    Within the genomes of metazoans, nucleosomes are highly organised adjacent to the binding sites for a subset of transcription factors. Here we have sought to investigate which chromatin remodelling enzymes are responsible for this. We find that the ATP-dependent chromatin remodelling enzyme SNF2H plays a major role organising arrays of nucleosomes adjacent to the binding sites for the architectural transcription factor CTCF sites and acts to promote CTCF binding. At many other factor binding sites SNF2H and the related enzyme SNF2L contribute to nucleosome organisation. The action of SNF2H at CTCF sites is functionally important as depletion of CTCF or SNF2H affects transcription of a common group of genes. This suggests that chromatin remodelling ATPase's most closely related to the Drosophila ISWI protein contribute to the function of many human gene regulatory elements.

  5. Migration of a Holliday junction through a nucleosome directed by the E. coli RuvAB motor protein.

    PubMed

    Grigoriev, M; Hsieh, P

    1998-09-01

    Chromatin plays a critical role in regulating access to DNA by proteins that direct recombination and repair. The E. coli RuvAB protein complex promotes branch migration of the Holliday junction recombination intermediate. The ability of RuvAB to negotiate passage of the junction through nucleosomal DNA is examined. The model system involves the formation of a Holliday junction positioned upstream of a nucleosome. Unassisted, the junction is blocked by a histone octamer. In the presence of RuvAB and ATP, rapid branch migration through the nucleosome is observed. It results in disruption of the histone-DNA interactions leading to the removal of the octamer from the junction intermediate. These results suggest that eukaryotic DNA motor proteins analogous to RuvAB could function during recombination to promote branch migration through chromatin.

  6. The Disequilibrium of Nucleosomes Distribution along Chromosomes Plays a Functional and Evolutionarily Role in Regulating Gene Expression

    PubMed Central

    Zhang, Lingfang; Ding, Feng; Xin, Chengqi; Zhang, Daoyong; Sun, Fanglin; Hu, Songnian; Yu, Jun

    2011-01-01

    To further understand the relationship between nucleosome-space occupancy (NO) and global transcriptional activity in mammals, we acquired a set of genome-wide nucleosome distribution and transcriptome data from the mouse cerebrum and testis based on ChIP (H3)-seq and RNA-seq, respectively. We identified a nearly consistent NO patterns among three mouse tissues—cerebrum, testis, and ESCs—and found, through clustering analysis for transcriptional activation, that the NO variations among chromosomes are closely associated with distinct expression levels between house-keeping (HK) genes and tissue-specific (TS) genes. Both TS and HK genes form clusters albeit the obvious majority. This feature implies that NO patterns, i.e. nucleosome binding and clustering, are coupled with gene clustering that may be functionally and evolutionarily conserved in regulating gene expression among different cell types. PMID:21886783

  7. Analysis of the binding of high mobility group protein 17 to the nucleosome core particle by 1H NMR spectroscopy.

    PubMed

    Cook, G R; Minch, M; Schroth, G P; Bradbury, E M

    1989-01-25

    The binding of high mobility group (HMG) protein 17 to the nucleosome core particle has been studied in D2O solution using 1H NMR at 500 MHz. Spectra were obtained for purified HMG 17, purified nucleosome core particles, and the reconstituted HMG 17-nucleosome core particle complex at 0.1, 0.2, 0.3, and 0.4 M NaCl. Subtraction of the core particle spectra from spectra of the core particle reconstituted with HMG 17 demonstrated those regions of HMG 17 which interact with the nucleosome at different ionic strengths; the resonance peaks of interacting groups are broadened due to their restricted mobility. At 0.1 M NaCl, the mobility of all the amino acid side chains of HMG 17 was restricted, indicating complete binding of HMG 17 to the much larger nucleosome core particle. At 0.2 M NaCl most of the amino acids were free with the exception of arginine and proline which are confined to or predominant in the basic central region of HMG 17. These amino acids were completely free only at 0.4 M NaCl. We conclude that the entire HMG 17 molecule interacts with the nucleosome core particle at physiological ionic strength. The acidic COOH-terminal region of HMG 17 is released from interaction with the core histones at an NaCl concentration between 0.1 and 0.2 M and so binds weakly at physiological ionic strength. The basic central region binds more strongly to the core particle DNA, being completely released only at much higher ionic strength, between 0.3 and 0.4 M NaCl.

  8. Inferring coarse-grain histone-DNA interaction potentials from high-resolution structures of the nucleosome

    NASA Astrophysics Data System (ADS)

    Meyer, Sam; Everaers, Ralf

    2015-02-01

    The histone-DNA interaction in the nucleosome is a fundamental mechanism of genomic compaction and regulation, which remains largely unknown despite increasing structural knowledge of the complex. In this paper, we propose a framework for the extraction of a nanoscale histone-DNA force-field from a collection of high-resolution structures, which may be adapted to a larger class of protein-DNA complexes. We applied the procedure to a large crystallographic database extended by snapshots from molecular dynamics simulations. The comparison of the structural models first shows that, at histone-DNA contact sites, the DNA base-pairs are shifted outwards locally, consistent with locally repulsive forces exerted by the histones. The second step shows that the various force profiles of the structures under analysis derive locally from a unique, sequence-independent, quadratic repulsive force-field, while the sequence preferences are entirely due to internal DNA mechanics. We have thus obtained the first knowledge-derived nanoscale interaction potential for histone-DNA in the nucleosome. The conformations obtained by relaxation of nucleosomal DNA with high-affinity sequences in this potential accurately reproduce the experimental values of binding preferences. Finally we address the more generic binding mechanisms relevant to the 80% genomic sequences incorporated in nucleosomes, by computing the conformation of nucleosomal DNA with sequence-averaged properties. This conformation differs from those found in crystals, and the analysis suggests that repulsive histone forces are related to local stretch tension in nucleosomal DNA, mostly between adjacent contact points. This tension could play a role in the stability of the complex.

  9. GAGA Factor Maintains Nucleosome-Free Regions and Has a Role in RNA Polymerase II Recruitment to Promoters

    PubMed Central

    Fuda, Nicholas J.; Guertin, Michael J.; Sharma, Sumeet; Danko, Charles G.; Martins, André L.; Siepel, Adam; Lis, John T.

    2015-01-01

    Previous studies have shown that GAGA Factor (GAF) is enriched on promoters with paused RNA Polymerase II (Pol II), but its genome-wide function and mechanism of action remain largely uncharacterized. We assayed the levels of transcriptionally-engaged polymerase using global run-on sequencing (GRO-seq) in control and GAF-RNAi Drosophila S2 cells and found promoter-proximal polymerase was significantly reduced on a large subset of paused promoters where GAF occupancy was reduced by knock down. These promoters show a dramatic increase in nucleosome occupancy upon GAF depletion. These results, in conjunction with previous studies showing that GAF directly interacts with nucleosome remodelers, strongly support a model where GAF directs nucleosome displacement at the promoter and thereby allows the entry Pol II to the promoter and pause sites. This action of GAF on nucleosomes is at least partially independent of paused Pol II because intergenic GAF binding sites with little or no Pol II also show GAF-dependent nucleosome displacement. In addition, the insulator factor BEAF, the BEAF-interacting protein Chriz, and the transcription factor M1BP are strikingly enriched on those GAF-associated genes where pausing is unaffected by knock down, suggesting insulators or the alternative promoter-associated factor M1BP protect a subset of GAF-bound paused genes from GAF knock-down effects. Thus, GAF binding at promoters can lead to the local displacement of nucleosomes, but this activity can be restricted or compensated for when insulator protein or M1BP complexes also reside at GAF bound promoters. PMID:25815464

  10. A core viral protein binds host nucleosomes to sequester immune danger signals.

    PubMed

    Avgousti, Daphne C; Herrmann, Christin; Kulej, Katarzyna; Pancholi, Neha J; Sekulic, Nikolina; Petrescu, Joana; Molden, Rosalynn C; Blumenthal, Daniel; Paris, Andrew J; Reyes, Emigdio D; Ostapchuk, Philomena; Hearing, Patrick; Seeholzer, Steven H; Worthen, G Scott; Black, Ben E; Garcia, Benjamin A; Weitzman, Matthew D

    2016-07-01

    Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important part in innate immune responses. Viral-encoded core basic proteins compact viral genomes, but their impact on host chromatin structure and function remains unexplored. Adenoviruses encode a highly basic protein called protein VII that resembles cellular histones. Although protein VII binds viral DNA and is incorporated with viral genomes into virus particles, it is unknown whether protein VII affects cellular chromatin. Here we show that protein VII alters cellular chromatin, leading us to hypothesize that this has an impact on antiviral responses during adenovirus infection in human cells. We find that protein VII forms complexes with nucleosomes and limits DNA accessibility. We identified post-translational modifications on protein VII that are responsible for chromatin localization. Furthermore, proteomic analysis demonstrated that protein VII is sufficient to alter the protein composition of host chromatin. We found that protein VII is necessary and sufficient for retention in the chromatin of members of the high-mobility-group protein B family (HMGB1, HMGB2 and HMGB3). HMGB1 is actively released in response to inflammatory stimuli and functions as a danger signal to activate immune responses. We showed that protein VII can directly bind HMGB1 in vitro and further demonstrated that protein VII expression in mouse lungs is sufficient to decrease inflammation-induced HMGB1 content and neutrophil recruitment in the bronchoalveolar lavage fluid. Together, our in vitro and in vivo results show that protein VII sequesters HMGB1 and can prevent its release. This study uncovers a viral strategy in which nucleosome binding is exploited to control extracellular immune signaling.

  11. The Role of Histone Tails in the Nucleosome: A Computational Study

    PubMed Central

    Erler, Jochen; Zhang, Ruihan; Petridis, Loukas; Cheng, Xiaolin; Smith, Jeremy C.; Langowski, Jörg

    2014-01-01

    Histone tails play an important role in gene transcription and expression. We present here a systematic computational study of the role of histone tails in the nucleosome, using replica exchange molecular dynamics simulations with an implicit solvent model and different well-established force fields. We performed simulations for all four histone tails, H4, H3, H2A, and H2B, isolated and with inclusion of the nucleosome. The results confirm predictions of previous theoretical studies for the secondary structure of the isolated tails but show a strong dependence on the force field used. In the presence of the entire nucleosome for all force fields, the secondary structure of the histone tails is destabilized. Specific contacts are found between charged lysine and arginine residues and DNA phosphate groups and other binding sites in the minor and major DNA grooves. Using cluster analysis, we found a single dominant configuration of binding to DNA for the H4 and H2A histone tails, whereas H3 and H2B show multiple binding configurations with an equal probability. The leading stabilizing contribution for those binding configurations is the attractive interaction between the positively charged lysine and arginine residues and the negatively charged phosphate groups, and thus the resulting charge neutralization. Finally, we present results of molecular dynamics simulations in explicit solvent to confirm our conclusions. Results from both implicit and explicit solvent models show that large portions of the histone tails are not bound to DNA, supporting the complex role of these tails in gene transcription and expression and making them possible candidates for binding sites of transcription factors, enzymes, and other proteins. PMID:25517156

  12. A core viral protein binds host nucleosomes to sequester immune danger signals.

    PubMed

    Avgousti, Daphne C; Herrmann, Christin; Kulej, Katarzyna; Pancholi, Neha J; Sekulic, Nikolina; Petrescu, Joana; Molden, Rosalynn C; Blumenthal, Daniel; Paris, Andrew J; Reyes, Emigdio D; Ostapchuk, Philomena; Hearing, Patrick; Seeholzer, Steven H; Worthen, G Scott; Black, Ben E; Garcia, Benjamin A; Weitzman, Matthew D

    2016-07-01

    Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important part in innate immune responses. Viral-encoded core basic proteins compact viral genomes, but their impact on host chromatin structure and function remains unexplored. Adenoviruses encode a highly basic protein called protein VII that resembles cellular histones. Although protein VII binds viral DNA and is incorporated with viral genomes into virus particles, it is unknown whether protein VII affects cellular chromatin. Here we show that protein VII alters cellular chromatin, leading us to hypothesize that this has an impact on antiviral responses during adenovirus infection in human cells. We find that protein VII forms complexes with nucleosomes and limits DNA accessibility. We identified post-translational modifications on protein VII that are responsible for chromatin localization. Furthermore, proteomic analysis demonstrated that protein VII is sufficient to alter the protein composition of host chromatin. We found that protein VII is necessary and sufficient for retention in the chromatin of members of the high-mobility-group protein B family (HMGB1, HMGB2 and HMGB3). HMGB1 is actively released in response to inflammatory stimuli and functions as a danger signal to activate immune responses. We showed that protein VII can directly bind HMGB1 in vitro and further demonstrated that protein VII expression in mouse lungs is sufficient to decrease inflammation-induced HMGB1 content and neutrophil recruitment in the bronchoalveolar lavage fluid. Together, our in vitro and in vivo results show that protein VII sequesters HMGB1 and can prevent its release. This study uncovers a viral strategy in which nucleosome binding is exploited to control extracellular immune signaling. PMID:27362237

  13. Regulation of Budding Yeast CENP-A levels Prevents Misincorporation at Promoter Nucleosomes and Transcriptional Defects

    PubMed Central

    Hildebrand, Erica M.; Biggins, Sue

    2016-01-01

    The exclusive localization of the histone H3 variant CENP-A to centromeres is essential for accurate chromosome segregation. Ubiquitin-mediated proteolysis helps to ensure that CENP-A does not mislocalize to euchromatin, which can lead to genomic instability. Consistent with this, overexpression of the budding yeast CENP-ACse4 is lethal in cells lacking Psh1, the E3 ubiquitin ligase that targets CENP-ACse4 for degradation. To identify additional mechanisms that prevent CENP-ACse4 misincorporation and lethality, we analyzed the genome-wide mislocalization pattern of overexpressed CENP-ACse4 in the presence and absence of Psh1 by chromatin immunoprecipitation followed by high throughput sequencing. We found that ectopic CENP-ACse4 is enriched at promoters that contain histone H2A.ZHtz1 nucleosomes, but that H2A.ZHtz1 is not required for CENP-ACse4 mislocalization. Instead, the INO80 complex, which removes H2A.ZHtz1 from nucleosomes, promotes the ectopic deposition of CENP-ACse4. Transcriptional profiling revealed gene expression changes in the psh1Δ cells overexpressing CENP-ACse4. The down-regulated genes are enriched for CENP-ACse4 mislocalization to promoters, while the up-regulated genes correlate with those that are also transcriptionally up-regulated in an htz1Δ strain. Together, these data show that regulating centromeric nucleosome localization is not only critical for maintaining centromere function, but also for ensuring accurate promoter function and transcriptional regulation. PMID:26982580

  14. Roles of histone chaperone CIA/Asf1 in nascent DNA elongation during nucleosome replication.

    PubMed

    Ishikawa, Katsuyuki; Ohsumi, Tatsuya; Tada, Shusuke; Natsume, Ryo; Kundu, Lena Rani; Nozaki, Naohito; Senda, Toshiya; Enomoto, Takemi; Horikoshi, Masami; Seki, Masayuki

    2011-10-01

    The nucleosome, which is composed of DNA wrapped around a histone octamer, is a fundamental unit of chromatin and is duplicated during the eukaryotic DNA replication process. The evolutionarily conserved histone chaperone cell cycle gene 1 (CCG1) interacting factor A/anti-silencing function 1 (CIA/Asf1) is involved in histone transfer and nucleosome reassembly during DNA replication. CIA/Asf1 has been reported to split the histone (H3-H4)(2) tetramer into histone H3-H4 dimer(s) in vitro, raising a possibility that, in DNA replication, CIA/Asf1 is involved in nucleosome disassembly and the promotion of semi-conservative histone H3-H4 dimer deposition onto each daughter strand in vivo. Despite numerous studies on the functional roles of CIA/Asf1, its mechanistic role(s) remains elusive because of lack of biochemical analyses. The biochemical studies described here show that a V94R CIA/Asf1 mutant, which lacks histone (H3-H4)(2) tetramer splitting activity, does not form efficiently a quaternary complex with histones H3-H4 and the minichromosome maintenance 2 (Mcm2) subunit of the Mcm2-7 replicative DNA helicase. Interestingly, the mutant enhances nascent DNA strand synthesis in a cell-free chromosomal DNA replication system using Xenopus egg extracts. These results suggest that CIA/Asf1 in the CIA/Asf1-H3-H4-Mcm2 complex, which is considered to be an intermediate in histone transfer during DNA replication, negatively regulates the progression of the replication fork.

  15. Histone H1 compacts DNA under force and during chromatin assembly.

    PubMed

    Xiao, Botao; Freedman, Benjamin S; Miller, Kelly E; Heald, Rebecca; Marko, John F

    2012-12-01

    Histone H1 binds to linker DNA between nucleosomes, but the dynamics and biological ramifications of this interaction remain poorly understood. We performed single-molecule experiments using magnetic tweezers to determine the effects of H1 on naked DNA in buffer or during chromatin assembly in Xenopus egg extracts. In buffer, nanomolar concentrations of H1 induce bending and looping of naked DNA at stretching forces below 0.6 pN, effects that can be reversed with 2.7-pN force or in 200 mM monovalent salt concentrations. Consecutive tens-of-nanometer bending events suggest that H1 binds to naked DNA in buffer at high stoichiometries. In egg extracts, single DNA molecules assemble into nucleosomes and undergo rapid compaction. Histone H1 at endogenous physiological concentrations increases the DNA compaction rate during chromatin assembly under 2-pN force and decreases it during disassembly under 5-pN force. In egg cytoplasm, histone H1 protects sperm nuclei undergoing genome-wide decondensation and chromatin assembly from becoming abnormally stretched or fragmented due to astral microtubule pulling forces. These results reveal functional ramifications of H1 binding to DNA at the single-molecule level and suggest an important physiological role for H1 in compacting DNA under force and during chromatin assembly. PMID:23097493

  16. Monitoring Conformational Dynamics with Single-Molecule Fluorescence Energy Transfer: Applications in Nucleosome Remodeling

    PubMed Central

    Deindl, Sebastian; Zhuang, Xiaowei

    2016-01-01

    Due to its ability to track distance changes within individual molecules or molecular complexes on the nanometer scale and in real time, single-molecule fluorescence resonance energy transfer (single-molecule FRET) is a powerful tool to tackle a wide range of important biological questions. Using our recently developed single-molecule FRET assay to monitor nucleosome translocation as an illustrative example, we describe here in detail how to set up, carry out, and analyze single-molecule FRET experiments that provide time-dependent information on biomolecular processes. PMID:22929765

  17. BAF250a Protein Regulates Nucleosome Occupancy and Histone Modifications in Priming Embryonic Stem Cell Differentiation*

    PubMed Central

    Lei, Ienglam; West, Jason; Yan, Zhijiang; Gao, Xiaolin; Fang, Peng; Dennis, Jonathan H.; Gnatovskiy, Leonid; Wang, Weidong; Kingston, Robert E.; Wang, Zhong

    2015-01-01

    The unique chromatin signature of ES cells is fundamental to the pluripotency and differentiation of ES cells. One key feature is the poised chromatin state of master developmental genes that are transcriptionally repressed in ES cells but ready to be activated in response to differentiation signals. Poised chromatin in ES cells contains both H3 Lys-4 trimethylation (H3K4me3) and H3 Lys-27 trimethylation (H3K27me3) methylation, indicating activating and repressing potential. However, the contribution of non-covalent chromatin structure to the poised state is not well understood. To address whether remodeling of nucleosomes is important to the poised state, we characterized the function of BAF250a, a key regulatory subunit of the ES cell ATP-dependent Brahma-associated factor (BAF) chromatin remodeling complex (esBAF). Acute deletion of BAF250a disrupted the differentiation potential of ES cells by altering the expression timing of key developmental genes and pluripotent genes. Our genome-wide nucleosome and histone modification analyses indicated that the disruption of gene expression timing was largely due to changes of chromatin structures at poised genes, particularly those key developmental genes mediated by BAF250a. Specifically, BAF250a deletion caused a nucleosome occupancy increase at H3K4me3- and/or H3K27me3-associated promoters. Moreover, H3K27me3 levels and the number of bivalent promoter genes were reduced in BAF250a KO ES cells. We revealed that BAF250a ablation led to elevated Brg1 but reduced Suz12 recruitment at nucleosome occupancy-increased regions, indicating an unexpected and complicated role of BAF250a in regulating esBAF and Polycomb repressive complex (PRC) activities. Together, our studies identified that BAF250a mediates esBAF and PRC functions to establish the poised chromatin configuration in ES cells, which is essential for the proper differentiation of ES cells. PMID:26070559

  18. The Nucleosome Remodeling and Deacetylase (NuRD) Complex in Development and Disease

    PubMed Central

    Basta, Jeannine; Rauchman, Michael

    2014-01-01

    The Nucleosome Remodeling and Deacetylase (NuRD) complex is one of the major chromatin remodeling complexes found in cells. It plays an important role in regulating gene transcription, genome integrity and cell cycle progression. Through its impact on these basic cellular processes, increasing evidence indicates that alterations in the activity of this macromolecular complex can lead to developmental defects, oncogenesis and accelerated ageing. Recent genetic and biochemical studies have elucidated the mechanisms of NuRD action in modifying the chromatin landscape. These advances have the potential to lead to new therapeutic approaches to birth defects and cancer. PMID:24880148

  19. Nucleosomes impede Cas9 access to DNA in vivo and in vitro

    PubMed Central

    Horlbeck, Max A; Witkowsky, Lea B; Guglielmi, Benjamin; Replogle, Joseph M; Gilbert, Luke A; Villalta, Jacqueline E; Torigoe, Sharon E; Tjian, Robert; Weissman, Jonathan S

    2016-01-01

    The prokaryotic CRISPR (clustered regularly interspaced palindromic repeats)-associated protein, Cas9, has been widely adopted as a tool for editing, imaging, and regulating eukaryotic genomes. However, our understanding of how to select single-guide RNAs (sgRNAs) that mediate efficient Cas9 activity is incomplete, as we lack insight into how chromatin impacts Cas9 targeting. To address this gap, we analyzed large-scale genetic screens performed in human cell lines using either nuclease-active or nuclease-dead Cas9 (dCas9). We observed that highly active sgRNAs for Cas9 and dCas9 were found almost exclusively in regions of low nucleosome occupancy. In vitro experiments demonstrated that nucleosomes in fact directly impede Cas9 binding and cleavage, while chromatin remodeling can restore Cas9 access. Our results reveal a critical role of eukaryotic chromatin in dictating the targeting specificity of this transplanted bacterial enzyme, and provide rules for selecting Cas9 target sites distinct from and complementary to those based on sequence properties. DOI: http://dx.doi.org/10.7554/eLife.12677.001 PMID:26987018

  20. Arginine-phosphate salt bridges between histones and DNA: intermolecular actuators that control nucleosome architecture.

    PubMed

    Yusufaly, Tahir I; Li, Yun; Singh, Gautam; Olson, Wilma K

    2014-10-28

    Structural bioinformatics and van der Waals density functional theory are combined to investigate the mechanochemical impact of a major class of histone-DNA interactions, namely, the formation of salt bridges between arginine residues in histones and phosphate groups on the DNA backbone. Principal component analysis reveals that the configurational fluctuations of the sugar-phosphate backbone display sequence-specific directionality and variability, and clustering of nucleosome crystal structures identifies two major salt-bridge configurations: a monodentate form in which the arginine end-group guanidinium only forms one hydrogen bond with the phosphate, and a bidentate form in which it forms two. Density functional theory calculations highlight that the combination of sequence, denticity, and salt-bridge positioning enables the histones to apply a tunable mechanochemical stress to the DNA via precise and specific activation of backbone deformations. The results suggest that selection for specific placements of van der Waals contacts, with high-precision control of the spatial distribution of intermolecular forces, may serve as an underlying evolutionary design principle for the structure and function of nucleosomes, a conjecture that is corroborated by previous experimental studies.

  1. Polarized light scattering of nucleosomes and polynucleosomes--in situ and in vitro studies.

    PubMed

    Diaspro, A; Bertolotto, M; Vergani, L; Nicolini, C

    1991-07-01

    Nucleosomes, chromatin and nuclei, extracted from rat hepatocytes, are studied by a new "in house" experimental configuration which measures circular intensity differential scattering (CIDS) and other elements of the polarized light scattering matrix. The Mueller matrix elements, S14 and S34, that are related to the geometric parameters of the superhelical arrangement of polynucleosomes point to the existence of a quaternary structure at low ionic strength for chromatin prepared by the cold-water method, which is lost by shearing, and is not found in the soluble chromatin prepared through the nuclease method. Only salt addition to a final concentration of 5 mM MgCl2, 150 mM NaCl and 10 mM Tris HCl (pH 7) yields a sizeable (S14 + S34) signal in the latter chromatin, which is however still different from the corresponding signal of native nuclei and of "cold-water" chromatin. Comfortingly, the (S14 + S34) signal from isolated nucleosomes is consistently very low (nearly zero) as predicted by multiple dipole simulation within the framework of classical electrodynamics. Results are discussed in terms of the topological constraints present in the native long chromatin fiber, which are lost after limited nuclease digestion and after shearing.

  2. A brief histone in time: understanding the combinatorial functions of histone PTMs in the nucleosome context.

    PubMed

    Ng, Marlee K; Cheung, Peter

    2016-02-01

    It has been over 50 years since Allfrey et al. proposed that histone acetylation regulates RNA synthesis, and the study of histone modifications has progressed at an extraordinary pace for the past two decades. In this review, we provide a perspective on some key events and advances in our understanding of histone modifications. We also highlight reagents and tools from past to present that facilitated progress in this research field. Using histone H3 phosphorylation as an underlying thread, we review the rationale that led to the proposal of the histone code hypothesis, as well as examples that illustrate the concepts of combinatorial histone modifications and cross-talk pathways. We further highlight the importance of investigating these mechanisms in the context of nucleosomes rather than just at the histone level and present current and developing approaches for such studies. Overall, research on histone modifications has yielded great mechanistic insights into the regulation of genomic functions, and extending these studies using nucleosomes will further elucidate the complexity of these pathways in a more physiologically relevant context.

  3. Arginine-phosphate salt bridges between histones and DNA: Intermolecular actuators that control nucleosome architecture

    NASA Astrophysics Data System (ADS)

    Yusufaly, Tahir I.; Li, Yun; Singh, Gautam; Olson, Wilma K.

    2014-10-01

    Structural bioinformatics and van der Waals density functional theory are combined to investigate the mechanochemical impact of a major class of histone-DNA interactions, namely, the formation of salt bridges between arginine residues in histones and phosphate groups on the DNA backbone. Principal component analysis reveals that the configurational fluctuations of the sugar-phosphate backbone display sequence-specific directionality and variability, and clustering of nucleosome crystal structures identifies two major salt-bridge configurations: a monodentate form in which the arginine end-group guanidinium only forms one hydrogen bond with the phosphate, and a bidentate form in which it forms two. Density functional theory calculations highlight that the combination of sequence, denticity, and salt-bridge positioning enables the histones to apply a tunable mechanochemical stress to the DNA via precise and specific activation of backbone deformations. The results suggest that selection for specific placements of van der Waals contacts, with high-precision control of the spatial distribution of intermolecular forces, may serve as an underlying evolutionary design principle for the structure and function of nucleosomes, a conjecture that is corroborated by previous experimental studies.

  4. Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling

    PubMed Central

    Brzezinka, Krzysztof; Altmann, Simone; Czesnick, Hjördis; Nicolas, Philippe; Gorka, Michal; Benke, Eileen; Kabelitz, Tina; Jähne, Felix; Graf, Alexander; Kappel, Christian; Bäurle, Isabel

    2016-01-01

    Plants as sessile organisms can adapt to environmental stress to mitigate its adverse effects. As part of such adaptation they maintain an active memory of heat stress for several days that promotes a more efficient response to recurring stress. We show that this heat stress memory requires the activity of the FORGETTER1 (FGT1) locus, with fgt1 mutants displaying reduced maintenance of heat-induced gene expression. FGT1 encodes the Arabidopsis thaliana orthologue of Strawberry notch (Sno), and the protein globally associates with the promoter regions of actively expressed genes in a heat-dependent fashion. FGT1 interacts with chromatin remodelers of the SWI/SNF and ISWI families, which also display reduced heat stress memory. Genomic targets of the BRM remodeler overlap significantly with FGT1 targets. Accordingly, nucleosome dynamics at loci with altered maintenance of heat-induced expression are affected in fgt1. Together, our results suggest that by modulating nucleosome occupancy, FGT1 mediates stress-induced chromatin memory. DOI: http://dx.doi.org/10.7554/eLife.17061.001 PMID:27680998

  5. Nucleolin is a histone chaperone with FACT-like activity and assists remodeling of nucleosomes

    PubMed Central

    Angelov, Dimitar; Bondarenko, Vladimir A; Almagro, Sébastien; Menoni, Hervé; Mongélard, Fabien; Hans, Fabienne; Mietton, Flore; Studitsky, Vasily M; Hamiche, Ali; Dimitrov, Stefan; Bouvet, Philippe

    2006-01-01

    Remodeling machines play an essential role in the control of gene expression, but how their activity is regulated is not known. Here we report that the nuclear protein nucleolin possesses a histone chaperone activity and that this factor greatly enhances the activity of the chromatin remodeling machineries SWI/SNF and ACF. Interestingly, nucleolin is able to induce the remodeling by SWI/SNF of macroH2A, but not of H2ABbd nucleosomes, which are otherwise resistant to remodeling. This new histone chaperone promotes the destabilization of the histone octamer, helping the dissociation of a H2A–H2B dimer, and stimulates the SWI/SNF-mediated transfer of H2A–H2B dimers. Furthermore, nucleolin facilitates transcription through the nucleosome, which is reminiscent of the activity of the FACT complex. This work defines new functions for histone chaperones in chromatin remodeling and regulation of transcription and explains how nucleolin could act on transcription. PMID:16601700

  6. ATP-Independent Cooperative Binding of Yeast Isw1a to Bare and Nucleosomal DNA

    PubMed Central

    Ding, Fangyuan; Singh, Vijender; Lavelle, Christophe; Le Cam, Eric; Croquette, Vincent; Piétrement, Olivier; Bensimon, David

    2012-01-01

    Among chromatin remodeling factors, the ISWI family displays a nucleosome-enhanced ATPase activity coupled to DNA translocation. While these enzymes are known to bind to DNA, their activity has not been fully characterized. Here we use TEM imaging and single molecule manipulation to investigate the interaction between DNA and yeast Isw1a. We show that Isw1a displays a highly cooperative ATP-independent binding to and bridging between DNA segments. Under appropriate tension, rare single nucleation events can sometimes be observed and loop DNA with a regular step. These nucleation events are often followed by binding of successive complexes bridging between nearby DNA segments in a zipper-like fashion, as confirmed by TEM observations. On nucleosomal substrates, we show that the specific ATP-dependent remodeling activity occurs in the context of cooperative Isw1a complexes bridging extranucleosomal DNA. Our results are interpreted in the context of the recently published partial structure of Isw1a and support its acting as a “protein ruler” (with possibly more than one tick). PMID:22359636

  7. Early nucleosome deposition on, and replication of, HSV DNA requires cell factor PCNA

    PubMed Central

    Sanders, Iryna; Boyer, Mark; Fraser, Nigel W.

    2015-01-01

    Herpes Simplex Virus (HSV) is a double stranded DNA virus that can cause lytic infections in epithelial cells of the skin and latent infections in neuronal cells of the peripheral nervous system. After virion attachment to the cell membrane, the capsid enters the cytoplasm and is transported to the nucleus. Following docking at the nuclear pore, the HSV DNA, and contents of the virion, are injected into the nucleus. The viral DNA that enters the nucleus is devoid of histones, but begins to be covered with them soon after entry. The covering of histones, in the form of nucleosomes, reaches a maximum during the early stages of infection and drops off during late infection (after DNA replication). However during latency the genome is saturated with nucleosomes. In this study, we examine the role of cell Proliferating Cell Nuclear Antigen (PCNA) a cellular DNA polymerase accessory protein (processivity factor), and cell DNA polymerases in histone deposition during the early stages of HSV infection. Using SiRNA knockdown, and a cytosine arabinoside (araC) chemical inhibitor, we conclude that PCNA is important for viral replication and histone deposition. However, cell DNA polymerases that bind PCNA do not appear to be required for these processes and PCNA does not appear to bind to the viral DNA polymerase (which has its own viral processivity factor). PMID:25672886

  8. Effects of cytosine modifications on DNA flexibility and nucleosome mechanical stability

    NASA Astrophysics Data System (ADS)

    Ngo, Thuy T. M.; Yoo, Jejoong; Dai, Qing; Zhang, Qiucen; He, Chuan; Aksimentiev, Aleksei; Ha, Taekjip

    2016-02-01

    Cytosine can undergo modifications, forming 5-methylcytosine (5-mC) and its oxidized products 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC). Despite their importance as epigenetic markers and as central players in cellular processes, it is not well understood how these modifications influence physical properties of DNA and chromatin. Here we report a comprehensive survey of the effect of cytosine modifications on DNA flexibility. We find that even a single copy of 5-fC increases DNA flexibility markedly. 5-mC reduces and 5-hmC enhances flexibility, and 5-caC does not have a measurable effect. Molecular dynamics simulations show that these modifications promote or dampen structural fluctuations, likely through competing effects of base polarity and steric hindrance, without changing the average structure. The increase in DNA flexibility increases the mechanical stability of the nucleosome and vice versa, suggesting a gene regulation mechanism where cytosine modifications change the accessibility of nucleosomal DNA through their effects on DNA flexibility.

  9. Quickly evolving histones, nucleosome stability and chromatin folding: all about histone H2A.Bbd.

    PubMed

    González-Romero, Rodrigo; Méndez, Josefina; Ausió, Juan; Eirín-López, José M

    2008-04-30

    Histone H2A.Bbd (Barr body-deficient) is a novel histone variant which is largely excluded from the inactive X chromosome of mammals. Discovered only 6 years ago, H2A.Bbd displays very unusual structural and functional properties, for instance, it is relatively shorter and only 48% identical compared to H2A, lacking both the typical C-terminal tail of the H2A family and the very last sequence of the docking domain, making it the most specialized among all histone variants known to date. Indeed, molecular evolutionary analyses have shown that H2A.Bbd is a highly hypervariable and quickly evolving protein exclusive to mammalian lineages, in striking contrast to all other histones. Different studies have described a deposition pattern of H2A.Bbd in the chromatin that overlaps with regions of histone H4 acetylation suggesting its association with transcriptionally active euchromatic regions of the genome. In this regard, it is believed that this histone variant plays an important role in determining such regions by destabilizing the nucleosome and locally unfolding the chromatin fiber. This review provides a concise, comprehensive and timely summary of the work published on H2A.Bbd structure and function. Special emphasis is placed on its chromatin deposition patterns in relation to gene expression profiles and its evolutionary history, as well as on the dynamics of H2A.Bbd-containing nucleosomes.

  10. Nucleosome-associated proteins and phosphoproteins of differentiating Friend erythroleukemia cells.

    PubMed Central

    Neumann, J; Whittaker, R; Blanchard, B; Ingram, V

    1978-01-01

    Mononucleosomes derived from brief digestion of uninduced Friend cell nuclei with micrococcal nuclease contain a set of non-histone chromosomal proteins which are partly or altogether missing in the oligomeric nucleosomes. On the other hand, the latter contain a protein of Mr 190,000 not seen in the mononucleosomes. Longer digestion removes most of these non-histone proteins, excepting the Mr 190,000 protein. Brief digestion of nuclei from Friend cells induced by DMSO or by n-butyrate removes most of the non-histone proteins from the nucleosomes, as did the prolonged digestion of uninduced nuclei. The Mr 190,000 protein remains, while a protein of Mr 27,000 is increased. The rate of phosphorylation of histone H1 associated with mononucleosomes was 3 to 4-fold greater in cells induced with DMSO. The major phosphoprotein and most of the other phosphorylated non-histones were modified at the same rate in control and induced cells. However, a Mr 95,000 protein was less phosphorylated in the induced cells. Images PMID:566435

  11. A Modular Enhancer Is Differentially Regulated by GATA and NFAT Elements That Direct Different Tissue-Specific Patterns of Nucleosome Positioning and Inducible Chromatin Remodeling▿

    PubMed Central

    Bert, Andrew G.; Johnson, Brett V.; Baxter, Euan W.; Cockerill, Peter N.

    2007-01-01

    We investigated alternate mechanisms employed by enhancers to position and remodel nucleosomes and activate tissue-specific genes in divergent cell types. We demonstrated that the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene enhancer is modular and recruits different sets of transcription factors in T cells and myeloid cells. The enhancer recruited distinct inducible tissue-specific enhanceosome-like complexes and directed nucleosomes to different positions in these cell types. In undifferentiated T cells, the enhancer was activated by inducible binding of two NFAT/AP-1 complexes which disrupted two specifically positioned nucleosomes (N1 and N2). In myeloid cells, the enhancer was remodeled by GATA factors which constitutively displaced an upstream nucleosome (N0) and cooperated with inducible AP-1 elements to activate transcription. In mast cells, which express both GATA-2 and NFAT, these two pathways combined to activate the enhancer and generate high-level gene expression. At least 5 kb of the GM-CSF locus was organized as an array of nucleosomes with fixed positions, but the enhancer adopted different nucleosome positions in T cells and mast cells. Furthermore, nucleosomes located between the enhancer and promoter were mobilized upon activation in an enhancer-dependent manner. These studies reveal that distinct tissue-specific mechanisms can be used either alternately or in combination to activate the same enhancer. PMID:17283044

  12. Proximity of H2A.Z containing nucleosome to the transcription start site influences gene expression levels in the mammalian liver and brain

    PubMed Central

    Bargaje, Rhishikesh; Alam, Mohammad Parwez; Patowary, Ashok; Sarkar, Maharnob; Ali, Tamer; Gupta, Shivani; Garg, Manali; Singh, Meghna; Purkanti, Ramya; Scaria, Vinod; Sivasubbu, Sridhar; Brahmachari, Vani; Pillai, Beena

    2012-01-01

    Nucleosome positioning maps of several organisms have shown that Transcription Start Sites (TSSs) are marked by nucleosome depleted regions flanked by strongly positioned nucleosomes. Using genome-wide nucleosome maps and histone variant occupancy in the mouse liver, we show that the majority of genes were associated with a single prominent H2A.Z containing nucleosome in their promoter region. We classified genes into clusters depending on the proximity of H2A.Z to the TSS. The genes with no detectable H2A.Z showed lowest expression level, whereas H2A.Z was positioned closer to the TSS of genes with higher expression levels. We confirmed this relation between the proximity of H2A.Z and expression level in the brain. The proximity of histone variant H2A.Z, but not H3.3 to the TSS, over seven consecutive nucleosomes, was correlated with expression. Further, a nucleosome was positioned over the TSS of silenced genes while it was displaced to expose the TSS in highly expressed genes. Our results suggest that gene expression levels in vivo are determined by accessibility of the TSS and proximity of H2A.Z. PMID:22821566

  13. Comparative analysis of linker histone H1, MeCP2, and HMGD1 on nucleosome stability and target site accessibility

    PubMed Central

    Riedmann, Caitlyn; Fondufe-Mittendorf, Yvonne N.

    2016-01-01

    Chromatin architectural proteins (CAPs) bind the entry/exit DNA of nucleosomes and linker DNA to form higher order chromatin structures with distinct transcriptional outcomes. How CAPs mediate nucleosome dynamics is not well understood. We hypothesize that CAPs regulate DNA target site accessibility through alteration of the rate of spontaneous dissociation of DNA from nucleosomes. We investigated the effects of histone H1, high mobility group D1 (HMGD1), and methyl CpG binding protein 2 (MeCP2), on the biophysical properties of nucleosomes and chromatin. We show that MeCP2, like the repressive histone H1, traps the nucleosome in a more compact mononucleosome structure. Furthermore, histone H1 and MeCP2 hinder model transcription factor Gal4 from binding to its cognate DNA site within the nucleosomal DNA. These results demonstrate that MeCP2 behaves like a repressor even in the absence of methylation. Additionally, MeCP2 behaves similarly to histone H1 and HMGD1 in creating a higher-order chromatin structure, which is susceptible to chromatin remodeling by ISWI. Overall, we show that CAP binding results in unique changes to nucleosome structure and dynamics. PMID:27624769

  14. Comparative analysis of linker histone H1, MeCP2, and HMGD1 on nucleosome stability and target site accessibility.

    PubMed

    Riedmann, Caitlyn; Fondufe-Mittendorf, Yvonne N

    2016-01-01

    Chromatin architectural proteins (CAPs) bind the entry/exit DNA of nucleosomes and linker DNA to form higher order chromatin structures with distinct transcriptional outcomes. How CAPs mediate nucleosome dynamics is not well understood. We hypothesize that CAPs regulate DNA target site accessibility through alteration of the rate of spontaneous dissociation of DNA from nucleosomes. We investigated the effects of histone H1, high mobility group D1 (HMGD1), and methyl CpG binding protein 2 (MeCP2), on the biophysical properties of nucleosomes and chromatin. We show that MeCP2, like the repressive histone H1, traps the nucleosome in a more compact mononucleosome structure. Furthermore, histone H1 and MeCP2 hinder model transcription factor Gal4 from binding to its cognate DNA site within the nucleosomal DNA. These results demonstrate that MeCP2 behaves like a repressor even in the absence of methylation. Additionally, MeCP2 behaves similarly to histone H1 and HMGD1 in creating a higher-order chromatin structure, which is susceptible to chromatin remodeling by ISWI. Overall, we show that CAP binding results in unique changes to nucleosome structure and dynamics. PMID:27624769

  15. Alignment of (dA).(dT) homopolymer tracts in gene flanking sequences suggests nucleosomal periodicity in D. discoideum DNA.

    PubMed

    Marx, K A; Hess, S T; Blake, R D

    1994-08-01

    It has been shown that the frequency versus size distribution of A and T overlapping and non-overlapping homopolymer tracts of N > 5 in D. discoideum gene flanking and intron regions are significantly greater than in coding regions(1). In the present report, we demonstrate, that a spatial periodicity exists in long A and T tracts (N > 10) in long flanking sequences by scored alignments of those tracts (N > 10) with the nucleosomal repeat. A tract spacing was found at 185-190 bp that corresponds to a maximum alignment score. This is exactly the average spacing of D. discoideum nucleosomes determined experimentally. A majority of A and T tracts in flanking sequences are often spaced by short DNA stretches and the total length of adjacent A and T tracts plus the interrupting short DNA stretch corresponds closely to the average experimentally measured nucleosomal linker DNA size in D. discoideum-42 bp. These data suggest a model which has A and T runs of N > 10 bp in flanking DNA of D. discoideum organized in a regular phase with nonhomopolymer sequences along the DNA. This model has functional implications for A and T tracts, suggesting that they are found in nucleosomal linker DNA regions of chromatin during some necessary portion(s) of the life of the cell.

  16. [THE MODEL OF NUCLEOSOME STRUCTURE BASED ON THE LOCAL ROTATION OF THE NUCLEOHISTONE CHAIN, WHICH INDUCES ITS FOLDING].

    PubMed

    Priyatkina, T N

    2015-01-01

    An alternative model to the "double turn of DNA on the histone core" approach is forwarded based on the biochemical, cytological, and crystallographic data on the structural organization of the chromatin units--nucleosomes. The model assumes that the initial structure is a linear nucleohistone cord with a repeating symmetrical histone sequence. The compact (core) particle (a minimal nucleosome) is forming upon a stepwise rotation of DNA (kinks) at the centre and at two symmetrical sites into each repeating fragment stemming from the electrostatic binding of the lysine ε-NH2-groups with the followed one by one phosphates of the sugar-phosphate chain. As a result, we have a rhomboid structure composed of two counter-symmetrical DNA folds stabilized by histone-histone interactions. Based on disposable data, the histone sequence along nucleosome DNA is deduced. The following characteristics of the sequence are considered: continuity, non-overlapping, versatility, and dyadic symmetry in dispose of two every kind histone molecules and the sequence on the whole. The model is in agreement with a topology of nucleosome DNA, as well as the pattern of DNA-histone and histone-histone interactions in chromatin.

  17. [THE MODEL OF NUCLEOSOME STRUCTURE BASED ON THE LOCAL ROTATION OF THE NUCLEOHISTONE CHAIN, WHICH INDUCES ITS FOLDING].

    PubMed

    Priyatkina, T N

    2015-01-01

    An alternative model to the "double turn of DNA on the histone core" approach is forwarded based on the biochemical, cytological, and crystallographic data on the structural organization of the chromatin units--nucleosomes. The model assumes that the initial structure is a linear nucleohistone cord with a repeating symmetrical histone sequence. The compact (core) particle (a minimal nucleosome) is forming upon a stepwise rotation of DNA (kinks) at the centre and at two symmetrical sites into each repeating fragment stemming from the electrostatic binding of the lysine ε-NH2-groups with the followed one by one phosphates of the sugar-phosphate chain. As a result, we have a rhomboid structure composed of two counter-symmetrical DNA folds stabilized by histone-histone interactions. Based on disposable data, the histone sequence along nucleosome DNA is deduced. The following characteristics of the sequence are considered: continuity, non-overlapping, versatility, and dyadic symmetry in dispose of two every kind histone molecules and the sequence on the whole. The model is in agreement with a topology of nucleosome DNA, as well as the pattern of DNA-histone and histone-histone interactions in chromatin. PMID:26495705

  18. Crew Assembly

    NASA Video Gallery

    Train to improve your dexterity and hand-eye coordination by assembling a puzzle.The Train Like an Astronaut project uses the excitement of exploration to challenge students to set goals, practice ...

  19. A CAF-1–PCNA-Mediated Chromatin Assembly Pathway Triggered by Sensing DNA Damage

    PubMed Central

    Moggs, Jonathan G.; Grandi, Paola; Quivy, Jean-Pierre; Jónsson, Zophonías O.; Hübscher, Ulrich; Becker, Peter B.; Almouzni, Geneviève

    2000-01-01

    Sensing DNA damage is crucial for the maintenance of genomic integrity and cell cycle progression. The participation of chromatin in these events is becoming of increasing interest. We show that the presence of single-strand breaks and gaps, formed either directly or during DNA damage processing, can trigger the propagation of nucleosomal arrays. This nucleosome assembly pathway involves the histone chaperone chromatin assembly factor 1 (CAF-1). The largest subunit (p150) of this factor interacts directly with proliferating cell nuclear antigen (PCNA), and critical regions for this interaction on both proteins have been mapped. To isolate proteins specifically recruited during DNA repair, damaged DNA linked to magnetic beads was used. The binding of both PCNA and CAF-1 to this damaged DNA was dependent on the number of DNA lesions and required ATP. Chromatin assembly linked to the repair of single-strand breaks was disrupted by depletion of PCNA from a cell-free system. This defect was rescued by complementation with recombinant PCNA, arguing for role of PCNA in mediating chromatin assembly linked to DNA repair. We discuss the importance of the PCNA–CAF-1 interaction in the context of DNA damage processing and checkpoint control. PMID:10648606

  20. Seal assembly

    SciTech Connect

    Johnson, Roger Neal; Longfritz, William David

    2001-01-01

    A seal assembly that seals a gap formed by a groove comprises a seal body, a biasing element, and a connection that connects the seal body to the biasing element to form the seal assembly. The seal assembly further comprises a concave-shaped center section and convex-shaped contact portions at each end of the seal body. The biasing element is formed from an elastic material and comprises a convex-shaped center section and concave-shaped biasing zones that are opposed to the convex-shaped contact portions. The biasing element is adapted to be compressed to change a width of the seal assembly from a first width to a second width that is smaller than the first width. In the compressed state, the seal assembly can be disposed in the groove. After release of the compressing force, the seal assembly expands. The contact portions will move toward a surface of the groove and the biasing zones will move into contact with another surface of the groove. The biasing zones will bias the contact portions of the seal body against the surface of the groove.

  1. Intrauterine growth restriction perturbs nucleosome depletion at a growth hormone-responsive element in the mouse IGF-1 gene.

    PubMed

    McKnight, Robert A; Yost, Christian C; Yu, Xing; Wiedmeier, Julia E; Callaway, Christopher W; Brown, Ashley S; Lane, Robert H; Fung, Camille M

    2015-12-01

    Intrauterine growth restriction (IUGR) is a common human pregnancy complication. IUGR offspring carry significant postnatal risk for early-onset metabolic syndrome, which is associated with persistent reduction in IGF-1 protein expression. We have previously shown that preadolescent IUGR male mice have decreased hepatic IGF-1 mRNA and circulating IGF-1 protein at postnatal day 21, the age when growth hormone (GH) normally upregulates hepatic IGF-1 expression. Here we studied nucleosome occupancy and CpG methylation at a putative growth hormone-responsive element in intron 2 (in2GHRE) of the hepatic IGF-1 gene in normal, sham-operated, and IUGR mice. Nucleosome occupancy and CpG methylation were determined in embryonic stem cells (ESCs) and in liver at postnatal days 14, 21, and 42. For CpG methylation, additional time points out to 2 yr were analyzed. We confirmed the putative mouse in2GHRE was GH-responsive, and in normal mice, a single nucleosome was displaced from the hepatic in2GHRE by postnatal day 21, which exposed two STAT5b DNA binding sites. Nucleosome displacement correlated with developmentally programmed CpG demethylation. Finally, IUGR significantly altered the nucleosome-depleted region (NDR) at the in2GHRE of IGF-1 on postnatal day 21, with either complete absence of the NDR or with a shifted NDR exposing only one of two STAT5b DNA binding sites. An NDR shift was also seen in offspring of sham-operated mothers. We conclude that prenatal insult such as IUGR or anesthesia/surgery could perturb the proper formation of a well-positioned NDR at the mouse hepatic IGF-1 in2GHRE necessary for transitioning to an open chromatin state.

  2. Intrauterine growth restriction perturbs nucleosome depletion at a growth hormone-responsive element in the mouse IGF-1 gene.

    PubMed

    McKnight, Robert A; Yost, Christian C; Yu, Xing; Wiedmeier, Julia E; Callaway, Christopher W; Brown, Ashley S; Lane, Robert H; Fung, Camille M

    2015-12-01

    Intrauterine growth restriction (IUGR) is a common human pregnancy complication. IUGR offspring carry significant postnatal risk for early-onset metabolic syndrome, which is associated with persistent reduction in IGF-1 protein expression. We have previously shown that preadolescent IUGR male mice have decreased hepatic IGF-1 mRNA and circulating IGF-1 protein at postnatal day 21, the age when growth hormone (GH) normally upregulates hepatic IGF-1 expression. Here we studied nucleosome occupancy and CpG methylation at a putative growth hormone-responsive element in intron 2 (in2GHRE) of the hepatic IGF-1 gene in normal, sham-operated, and IUGR mice. Nucleosome occupancy and CpG methylation were determined in embryonic stem cells (ESCs) and in liver at postnatal days 14, 21, and 42. For CpG methylation, additional time points out to 2 yr were analyzed. We confirmed the putative mouse in2GHRE was GH-responsive, and in normal mice, a single nucleosome was displaced from the hepatic in2GHRE by postnatal day 21, which exposed two STAT5b DNA binding sites. Nucleosome displacement correlated with developmentally programmed CpG demethylation. Finally, IUGR significantly altered the nucleosome-depleted region (NDR) at the in2GHRE of IGF-1 on postnatal day 21, with either complete absence of the NDR or with a shifted NDR exposing only one of two STAT5b DNA binding sites. An NDR shift was also seen in offspring of sham-operated mothers. We conclude that prenatal insult such as IUGR or anesthesia/surgery could perturb the proper formation of a well-positioned NDR at the mouse hepatic IGF-1 in2GHRE necessary for transitioning to an open chromatin state. PMID:26487705

  3. Genome-wide chromatin footprinting reveals changes in replication origin architecture induced by pre-RC assembly

    PubMed Central

    MacAlpine, Heather K.; Lubelsky, Yoav; Hartemink, Alexander J.

    2015-01-01

    Start sites of DNA replication are marked by the origin recognition complex (ORC), which coordinates Mcm2–7 helicase loading to form the prereplicative complex (pre-RC). Although pre-RC assembly is well characterized in vitro, the process is poorly understood within the local chromatin environment surrounding replication origins. To reveal how the chromatin architecture modulates origin selection and activation, we “footprinted” nucleosomes, transcription factors, and replication proteins at multiple points during the Saccharomyces cerevisiae cell cycle. Our nucleotide-resolution protein occupancy profiles resolved a precise ORC-dependent footprint at 269 origins in G2. A separate class of inefficient origins exhibited protein occupancy only in G1, suggesting that stable ORC chromatin association in G2 is a determinant of origin efficiency. G1 nucleosome remodeling concomitant with pre-RC assembly expanded the origin nucleosome-free region and enhanced activation efficiency. Finally, the local chromatin environment restricts the loading of the Mcm2–7 double hexamer either upstream of or downstream from the ARS consensus sequence (ACS). PMID:25593310

  4. Genome-wide chromatin footprinting reveals changes in replication origin architecture induced by pre-RC assembly.

    PubMed

    Belsky, Jason A; MacAlpine, Heather K; Lubelsky, Yoav; Hartemink, Alexander J; MacAlpine, David M

    2015-01-15

    Start sites of DNA replication are marked by the origin recognition complex (ORC), which coordinates Mcm2-7 helicase loading to form the prereplicative complex (pre-RC). Although pre-RC assembly is well characterized in vitro, the process is poorly understood within the local chromatin environment surrounding replication origins. To reveal how the chromatin architecture modulates origin selection and activation, we "footprinted" nucleosomes, transcription factors, and replication proteins at multiple points during the Saccharomyces cerevisiae cell cycle. Our nucleotide-resolution protein occupancy profiles resolved a precise ORC-dependent footprint at 269 origins in G2. A separate class of inefficient origins exhibited protein occupancy only in G1, suggesting that stable ORC chromatin association in G2 is a determinant of origin efficiency. G1 nucleosome remodeling concomitant with pre-RC assembly expanded the origin nucleosome-free region and enhanced activation efficiency. Finally, the local chromatin environment restricts the loading of the Mcm2-7 double hexamer either upstream of or downstream from the ARS consensus sequence (ACS).

  5. Neutron scatter and diffraction techniques applied to nucleosome and chromatin structure.

    PubMed

    Bradbury, E M; Baldwin, J P

    1986-12-01

    Neutron scatter and diffraction techniques have made substantial contributions to our understanding of the structure of the nucleosome, the structure of the 10-nm filament, the "10-nm----30-nm" filament transition, and the structure of the "34-nm" supercoil or solenoid of nucleosomes. Neutron techniques are unique in their properties, which allows for the separation of the spatial arrangements of histones and DNA in nucleosomes and chromatin. They have equally powerful applications in structural studies of any complex two-component biological system. A major success for the application of neutron techniques was the first clear proof that DNA was located on the outside of the histone octamer in the core particle. A full analysis of the neutron-scatter data gave the parameters of Table 3 and the low-resolution structure of the core particle in solution shown in Fig. 6. Initial low-resolution X-ray diffraction studies of core particle crystals gave a model with a lower DNA pitch of 2.7 nm. Higher-resolution X-ray diffraction studies now give a structure with a DNA pitch of 3.0 nm and a hole of 0.8 nm along the axis of the DNA supercoil. The neutron-scatter solution structure and the X-ray crystal structure of the core particle are thus in full agreement within the resolution of the neutron-scatter techniques. The model for the chromatosome is largely based on the structural parameters of the DNA supercoil in the core particle, nuclease digestion results showing protection of a 168-bp DNA length by histone H1 and H1 peptide, and the conformational properties of H1. The path of the DNA outside the chromatosome is not known, and this information is crucial for our understanding of higher chromatin structure. The interactions of the flexible basic and N- and C-terminal regions of H1 within chromatin and how these interactions are modulated by H1 phosphorylation are not known. The N- and C-terminal regions of H1 represent a new type of protein behavior, i.e., extensive

  6. Intracellular Hmgb1 Inhibits Inflammatory Nucleosome Release and Limits Acute Pancreatitis in Mice

    PubMed Central

    Kang, Rui; Zhang, Qiuhong; Hou, Wen; Yan, Zhenwen; Chen, Ruochan; Bonaroti, Jillian; Bansal, Preeti; Billiar, Timothy R.; Tsung, Allan; Wang, Qingde; Bartlett, David L.; Whitcomb, David C; Chang, Eugene B.; Zhu, Xiaorong; Wang, Haichao; Lu, Ben; Tracey, Kevin J.; Cao, Lizhi; Fan, Xue-Gong; Lotze, Michael T.; Zeh, Herbert J.; Tang, Daolin

    2014-01-01

    BACKGROUND & AIMS: High mobility group box 1 (HMGB1) is an abundant protein that regulates chromosome architecture and also functions as a damage-associated molecular pattern molecule. Little is known about its intracellular roles in response to tissue injury or during subsequent local and systemic inflammatory responses. We investigated the function of Hmgb1 in mice following induction of acute pancreatitis. METHODS: We utilized a Cre/LoxP system to create mice with pancreas-specific disruption in Hmbg1 (Pdx1-Cre; HMGB1flox/flox mice). Acute pancreatitis was induced in these mice (HMGB1flox/flox mice served as controls) following injection of L-arginine or cerulein. Pancreatic tissues and acinar cells were collected and analyzed by histologic, immunoblot, and immunohistochemical analyses. RESULTS: Following injection of L-arginine or cerulein, Pdx1-Cre; HMGB1flox/flox mice developed acute pancreatitis more rapidly than controls, with increased mortality. Pancreatic tissues of these mice also had higher levels of serum amylase, acinar cell death, leukocyte infiltration, and interstitial edema than controls. Pancreatic tissues and acinar cells collected from the Pdx1-Cre; HMGB1flox/flox mice following L-arginine- or cerulein injection demonstrated nuclear catastrophe with greater nucleosome release when compared with controls, along with increased phosphorylation/activation of RELA Nfκb, degradation of Iκb, and phosphorylation of Mapk. Inhibitors of reactive oxygen species (N-acetyl-L-cysteine) blocked L-arginine–induced DNA damage, necrosis, apoptosis, release of nucleosomes, and activation of Nfκb in pancreatic tissues and acinar cells from Pdx1-Cre; HMGB1flox/flox and control mice. Exogenous genomic DNA and recombinant histone H3 proteins significantly induced release of HMGB1 from mouse macrophages; administration of antibodies against H3 to mice reduced serum levels of HMGB1 and increased survival following L-arginine injection. CONCLUSIONS: In 2 mouse

  7. Hinge assembly

    DOEpatents

    Vandergriff, D.H.

    1999-08-31

    A hinge assembly is disclosed having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf. 8 figs.

  8. Hinge assembly

    DOEpatents

    Vandergriff, David Houston

    1999-01-01

    A hinge assembly having a first leaf, a second leaf and linking member. The first leaf has a contact surface. The second leaf has a first contact surface and a second contact surface. The linking member pivotally connects to the first leaf and to the second leaf. The hinge assembly is capable of moving from a closed position to an open position. In the closed position, the contact surface of the first leaf merges with the first contact surface of the second leaf. In the open position, the contact surface of the first leaf merges with the second contact surface of the second leaf. The hinge assembly can include a seal on the contact surface of the first leaf.

  9. The Spectrum of Anti-Chromatin/Nucleosome Autoantibodies: Independent and Interdependent Biomarkers of Disease

    PubMed Central

    Mehra, Sonal; Fritzler, Marvin J.

    2014-01-01

    Autoantibodies directed to chromatin components date back to the discovery of the LE cell and the LE cell phenomenon circa 1950, and subsequent evidence that major components of that reaction were chromatin components and histones in particular. Over time, immunoassays ranging from ELISA and line immunoassays to more modern bead-based assays incorporated histone and DNA mixtures, purified histones, and purified nucleosomes leading to a more thorough understanding of the genesis and pathogenetic relationships of antibodies to chromatin components in systemic lupus erythematosus and other autoimmune conditions. More recently, interest has focussed on other components of chromatin such as high mobility group (HMG) proteins both as targets of B cell responses and pro-inflammatory mediators. This review will focus on immunoassays that utilize chromatin components, their clinical relationships, and newer evidence implicating HMG proteins and DNA neutrophil extracellular traps (NETs) as important players in systemic autoimmune rheumatic diseases. PMID:24804269

  10. The influence of DNA shape fluctuations on fluorescence resonance energy transfer efficiency measurements in nucleosomes

    NASA Astrophysics Data System (ADS)

    Lenz, Lucia; Hoenderdos, Maurice; Prinsen, Peter; Schiessel, Helmut

    2015-02-01

    Fluorescence resonance energy transfer (FRET) measurements allow one to observe site exposure in nucleosomes, i.e. the transient unwrapping of a part of the wrapped DNA from the histone octamer. In such experiments one can typically distinguish between a closed state and an open state but in principle one might hope to detect several states, each corresponding to a certain number of open binding sites. Here we show that even in an ideal FRET setup it would be hard to detect unwrapping states with intermediate levels of FRET efficiencies. As the unwrapped DNA molecule, modelled here as a wormlike chain, has a finite stiffness, shape fluctuations smear out FRET signals completely from such intermediate states.

  11. PARP3 is a sensor of nicked nucleosomes and monoribosylates histone H2BGlu2

    PubMed Central

    Grundy, Gabrielle J.; Polo, Luis M.; Zeng, Zhihong; Rulten, Stuart L.; Hoch, Nicolas C.; Paomephan, Pathompong; Xu, Yingqi; Sweet, Steve M.; Thorne, Alan W.; Oliver, Antony W.; Matthews, Steve J.; Pearl, Laurence H.; Caldecott, Keith W.

    2016-01-01

    PARP3 is a member of the ADP-ribosyl transferase superfamily that we show accelerates the repair of chromosomal DNA single-strand breaks in avian DT40 cells. Two-dimensional nuclear magnetic resonance experiments reveal that PARP3 employs a conserved DNA-binding interface to detect and stably bind DNA breaks and to accumulate at sites of chromosome damage. PARP3 preferentially binds to and is activated by mononucleosomes containing nicked DNA and which target PARP3 trans-ribosylation activity to a single-histone substrate. Although nicks in naked DNA stimulate PARP3 autoribosylation, nicks in mononucleosomes promote the trans-ribosylation of histone H2B specifically at Glu2. These data identify PARP3 as a molecular sensor of nicked nucleosomes and demonstrate, for the first time, the ribosylation of chromatin at a site-specific DNA single-strand break. PMID:27530147

  12. Long-Range Correlations in Genomic DNA: A Signature of the Nucleosomal Structure

    NASA Astrophysics Data System (ADS)

    Audit, B.; Thermes, C.; Vaillant, C.; D'Aubenton-Carafa, Y.; Muzy, J. F.; Arneodo, A.

    2001-03-01

    We use the ``wavelet transform microscope'' to carry out a comparative statistical analysis of DNA bending profiles and of the corresponding DNA texts. In the three kingdoms, one reveals on both signals a characteristic scale of 100-200 bp that separates two different regimes of power-law correlations (PLC). In the small-scale regime, PLC are observed in eukaryotic, in double-strand DNA viral, and in archaeal genomes, which contrasts with their total absence in the genomes of eubacteria and their viruses. This strongly suggests that small-scale PLC are related to the mechanisms underlying the wrapping of DNA in the nucleosomal structure. We further speculate that the large scale PLC are the signature of the higher-order structure and dynamics of chromatin.

  13. The nucleosome remodeling complex, Snf/Swi, is required for the maintenance of transcription in vivo and is partially redundant with the histone acetyltransferase, Gcn5.

    PubMed Central

    Sudarsanam, P; Cao, Y; Wu, L; Laurent, B C; Winston, F

    1999-01-01

    Snf/Swi, a nucleosome remodeling complex, is important for overcoming nucleosome-mediated repression of transcription in Saccharomyces cerevisiae. We have addressed the mechanism by which Snf/Swi controls transcription in vivo of an Snf/Swi-dependent promoter, that of the SUC2 gene. By single-cell analysis, our results show that Snf/Swi is required for activated levels of SUC2 expression in every cell of a population. In addition, Snf/Swi is required for maintenance of SUC2 transcription, suggesting that continuous chromatin remodeling is necessary to maintain an active transcriptional state. Finally, Snf/Swi and Gcn5, a histone acetyltransferase, have partially redundant roles in the control of SUC2 transcription, suggesting a functional overlap between two different mechanisms believed to overcome repression by nucleosomes, nucleosome remodeling and histone acetylation. PMID:10357821

  14. A role for tuned levels of nucleosome remodeler subunit ACF1 during Drosophila oogenesis

    PubMed Central

    Börner, Kenneth; Jain, Dhawal; Vazquez-Pianzola, Paula; Vengadasalam, Sandra; Steffen, Natascha; Fyodorov, Dmitry V.; Tomancak, Pavel; Konev, Alexander; Suter, Beat; Becker, Peter B.

    2016-01-01

    The Chromatin Accessibility Complex (CHRAC) consists of the ATPase ISWI, the large ACF1 subunit and a pair of small histone-like proteins, CHRAC-14/16. CHRAC is a prototypical nucleosome sliding factor that mobilizes nucleosomes to improve the regularity and integrity of the chromatin fiber. This may facilitate the formation of repressive chromatin. Expression of the signature subunit ACF1 is restricted during embryonic development, but remains high in primordial germ cells. Therefore, we explored roles for ACF1 during Drosophila oogenesis. ACF1 is expressed in somatic and germline cells, with notable enrichment in germline stem cells and oocytes. The asymmetrical localization of ACF1 to these cells depends on the transport of the Acf1 mRNA by the Bicaudal-D/Egalitarian complex. Loss of ACF1 function in the novel Acf17 allele leads to defective egg chambers and their elimination through apoptosis. In addition, we find a variety of unusual 16-cell cyst packaging phenotypes in the previously known Acf11 allele, with a striking prevalence of egg chambers with two functional oocytes at opposite poles. Surprisingly, we found that the Acf11 deletion – despite disruption of the Acf1 reading frame – expresses low levels of a PHD-bromodomain module from the C-terminus of ACF1 that becomes enriched in oocytes. Expression of this module from the Acf1 genomic locus leads to packaging defects in the absence of functional ACF1, suggesting competitive interactions with unknown target molecules. Remarkably, a two-fold overexpression of CHRAC (ACF1 and CHRAC-16) leads to increased apoptosis and packaging defects. Evidently, finely tuned CHRAC levels are required for proper oogenesis. PMID:26851213

  15. Latch assembly

    DOEpatents

    Frederickson, James R.; Harper, William H.; Perez, Raymond

    1986-01-01

    A latch assembly for releasably securing an article in the form of a canister within a container housing. The assembly includes a cam pivotally mounted on the housing wall and biased into the housing interior. The cam is urged into a disabled position by the canister as it enters the housing and a latch release plate maintains the cam disabled when the canister is properly seated in the housing. Upon displacement of the release plate, the cam snaps into latching engagement against the canister for securing the same within the housing.

  16. Latch assembly

    DOEpatents

    Frederickson, J.R.; Harper, W.H.; Perez, R.

    1984-08-17

    A latch assembly for releasably securing an article in the form of a canister within a container housing. The assembly includes a cam pivotally mounted on the housing wall and biased into the housing interior. The cam is urged into a disabled position by the canister as it enters the housing and a latch release plate maintains the cam disabled when the canister is properly seated in the housing. Upon displacement of the release plate, the cam snaps into latching engagement against the canister for securing the same within the housing. 2 figs.

  17. Valve assembly

    SciTech Connect

    Marshala, D.L.

    1986-12-16

    This patent describes a subsurface pump actuated by a reciprocatable sucker rod for producing well liquids from a subsurface reservoir involving a piston adapted to reciprocate within a cylinder immersed in the reservoir, the piston being provided with a traveling valve. The improvement described here comprises valve means connected to the sucker tod for lifting a body of fluid during upstrokes of the sucker rod, the valve means comprising: a barrel assembly having an internal bore and comprising: a lower barrel member; and an upper barrel assembly connected to the lower barrel and having a beveled seating surface with at least one fluid port therethrough.

  18. Histone chaperone Anp32e removes H2A.Z from DNA double-strand breaks and promotes nucleosome reorganization and DNA repair.

    PubMed

    Gursoy-Yuzugullu, Ozge; Ayrapetov, Marina K; Price, Brendan D

    2015-06-16

    The repair of DNA double-strand breaks (DSBs) requires open, flexible chromatin domains. The NuA4-Tip60 complex creates these flexible chromatin structures by exchanging histone H2A.Z onto nucleosomes and promoting acetylation of histone H4. Here, we demonstrate that the accumulation of H2A.Z on nucleosomes at DSBs is transient, and that rapid eviction of H2A.Z is required for DSB repair. Anp32e, an H2A.Z chaperone that interacts with the C-terminal docking domain of H2A.Z, is rapidly recruited to DSBs. Anp32e functions to remove H2A.Z from nucleosomes, so that H2A.Z levels return to basal within 10 min of DNA damage. Further, H2A.Z removal by Anp32e disrupts inhibitory interactions between the histone H4 tail and the nucleosome surface, facilitating increased acetylation of histone H4 following DNA damage. When H2A.Z removal by Anp32e is blocked, nucleosomes at DSBs retain elevated levels of H2A.Z, and assume a more stable, hypoacetylated conformation. Further, loss of Anp32e leads to increased CtIP-dependent end resection, accumulation of single-stranded DNA, and an increase in repair by the alternative nonhomologous end joining pathway. Exchange of H2A.Z onto the chromatin and subsequent rapid removal by Anp32e are therefore critical for creating open, acetylated nucleosome structures and for controlling end resection by CtIP. Dynamic modulation of H2A.Z exchange and removal by Anp32e reveals the importance of the nucleosome surface and nucleosome dynamics in processing the damaged chromatin template during DSB repair.

  19. A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin.

    PubMed

    Svensson, J Peter; Shukla, Manu; Menendez-Benito, Victoria; Norman-Axelsson, Ulrika; Audergon, Pauline; Sinha, Indranil; Tanny, Jason C; Allshire, Robin C; Ekwall, Karl

    2015-06-01

    Nucleosome composition actively contributes to chromatin structure and accessibility. Cells have developed mechanisms to remove or recycle histones, generating a landscape of differentially aged nucleosomes. This study aimed to create a high-resolution, genome-wide map of nucleosome turnover in Schizosaccharomyces pombe. The recombination-induced tag exchange (RITE) method was used to study replication-independent nucleosome turnover through the appearance of new histone H3 and the disappearance or preservation of old histone H3. The genome-wide location of histones was determined by chromatin immunoprecipitation-exonuclease methodology (ChIP-exo). The findings were compared with diverse chromatin marks, including histone variant H2A.Z, post-translational histone modifications, and Pol II binding. Finally, genome-wide mapping of the methylation states of H4K20 was performed to determine the relationship between methylation (mono, di, and tri) of this residue and nucleosome turnover. Our analysis showed that histone recycling resulted in low nucleosome turnover in the coding regions of active genes, stably expressed at intermediate levels. High levels of transcription resulted in the incorporation of new histones primarily at the end of transcribed units. H4K20 was methylated in low-turnover nucleosomes in euchromatic regions, notably in the coding regions of long genes that were expressed at low levels. This transcription-dependent accumulation of histone methylation was dependent on the histone chaperone complex FACT. Our data showed that nucleosome turnover is highly dynamic in the genome and that several mechanisms are at play to either maintain or suppress stability. In particular, we found that FACT-associated transcription conserves histones by recycling them and is required for progressive H4K20 methylation.

  20. A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin

    PubMed Central

    Svensson, J. Peter; Shukla, Manu; Menendez-Benito, Victoria; Norman-Axelsson, Ulrika; Audergon, Pauline; Sinha, Indranil; Tanny, Jason C.; Allshire, Robin C.; Ekwall, Karl

    2015-01-01

    Nucleosome composition actively contributes to chromatin structure and accessibility. Cells have developed mechanisms to remove or recycle histones, generating a landscape of differentially aged nucleosomes. This study aimed to create a high-resolution, genome-wide map of nucleosome turnover in Schizosaccharomyces pombe. The recombination-induced tag exchange (RITE) method was used to study replication-independent nucleosome turnover through the appearance of new histone H3 and the disappearance or preservation of old histone H3. The genome-wide location of histones was determined by chromatin immunoprecipitation–exonuclease methodology (ChIP-exo). The findings were compared with diverse chromatin marks, including histone variant H2A.Z, post-translational histone modifications, and Pol II binding. Finally, genome-wide mapping of the methylation states of H4K20 was performed to determine the relationship between methylation (mono, di, and tri) of this residue and nucleosome turnover. Our analysis showed that histone recycling resulted in low nucleosome turnover in the coding regions of active genes, stably expressed at intermediate levels. High levels of transcription resulted in the incorporation of new histones primarily at the end of transcribed units. H4K20 was methylated in low-turnover nucleosomes in euchromatic regions, notably in the coding regions of long genes that were expressed at low levels. This transcription-dependent accumulation of histone methylation was dependent on the histone chaperone complex FACT. Our data showed that nucleosome turnover is highly dynamic in the genome and that several mechanisms are at play to either maintain or suppress stability. In particular, we found that FACT-associated transcription conserves histones by recycling them and is required for progressive H4K20 methylation. PMID:25778913

  1. Furnace assembly

    DOEpatents

    Panayotou, N.F.; Green, D.R.; Price, L.S.

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  2. Furnace assembly

    DOEpatents

    Panayotou, Nicholas F.; Green, Donald R.; Price, Larry S.

    1985-01-01

    A method of and apparatus for heating test specimens to desired elevated temperatures for irradiation by a high energy neutron source. A furnace assembly is provided for heating two separate groups of specimens to substantially different, elevated, isothermal temperatures in a high vacuum environment while positioning the two specimen groups symmetrically at equivalent neutron irradiating positions.

  3. From crystal and NMR structures, footprints and cryo-electron-micrographs to large and soft structures: nanoscale modeling of the nucleosomal stem

    PubMed Central

    Meyer, Sam; Becker, Nils B.; Syed, Sajad Hussain; Goutte-Gattat, Damien; Shukla, Manu Shubhdarshan; Hayes, Jeffrey J.; Angelov, Dimitar; Bednar, Jan; Dimitrov, Stefan; Everaers, Ralf

    2011-01-01

    The interaction of histone H1 with linker DNA results in the formation of the nucleosomal stem structure, with considerable influence on chromatin organization. In a recent paper [Syed,S.H., Goutte-Gattat,D., Becker,N., Meyer,S., Shukla,M.S., Hayes,J.J., Everaers,R., Angelov,D., Bednar,J. and Dimitrov,S. (2010) Single-base resolution mapping of H1-nucleosome interactions and 3D organization of the nucleosome. Proc. Natl Acad. Sci. USA, 107, 9620–9625], we published results of biochemical footprinting and cryo-electron-micrographs of reconstituted mono-, di- and tri-nucleosomes, for H1 variants with different lengths of the cationic C-terminus. Here, we present a detailed account of the analysis of the experimental data and we include thermal fluctuations into our nano-scale model of the stem structure. By combining (i) crystal and NMR structures of the nucleosome core particle and H1, (ii) the known nano-scale structure and elasticity of DNA, (iii) footprinting information on the location of protected sites on the DNA backbone and (iv) cryo-electron micrographs of reconstituted tri-nucleosomes, we arrive at a description of a polymorphic, hierarchically organized stem with a typical length of 20 ± 2 base pairs. A comparison to linker conformations inferred for poly-601 fibers with different linker lengths suggests, that intra-stem interactions stabilize and facilitate the formation of dense chromatin fibers. PMID:21835779

  4. Yeast H2A.Z, FACT complex and RSC regulate transcription of tRNA gene through differential dynamics of flanking nucleosomes.

    PubMed

    Mahapatra, Sahasransu; Dewari, Pooran S; Bhardwaj, Anubhav; Bhargava, Purnima

    2011-05-01

    FACT complex is involved in elongation and ensures fidelity in the initiation step of transcription by RNA polymerase (pol) II. Histone variant H2A.Z is found in nucleosomes at the 5'-end of many genes. We report here H2A.Z-chaperone activity of the yeast FACT complex on the short, nucleosome-free, non-coding, pol III-transcribed yeast tRNA genes. On a prototype gene, yeast SUP4, chromatin remodeler RSC and FACT regulate its transcription through novel mechanisms, wherein the two gene-flanking nucleosomes containing H2A.Z, play different roles. Nhp6, which ensures transcription fidelity and helps load yFACT onto the gene flanking nucleosomes, has inhibitory role. RSC maintains a nucleosome abutting the gene terminator downstream, which results in reduced transcription rate in active state while H2A.Z probably helps RSC in keeping the gene nucleosome-free and serves as stress-sensor. All these factors maintain an epigenetic state which allows the gene to return quickly from repressed to active state and tones down the expression from the active SUP4 gene, required probably to maintain the balance in cellular tRNA pool.

  5. Using informative Multinomial-Dirichlet prior in a t-mixture with reversible jump estimation of nucleosome positions for genome-wide profiling.

    PubMed

    Samb, Rawane; Khadraoui, Khader; Belleau, Pascal; Deschênes, Astrid; Lakhal-Chaieb, Lajmi; Droit, Arnaud

    2015-12-01

    Genome-wide mapping of nucleosomes has revealed a great deal about the relationships between chromatin structure and control of gene expression. Recent next generation CHIP-chip and CHIP-Seq technologies have accelerated our understanding of basic principles of chromatin organization. These technologies have taught us that nucleosomes play a crucial role in gene regulation by allowing physical access to transcription factors. Recent methods and experimental advancements allow the determination of nucleosome positions for a given genome area. However, most of these methods estimate the number of nucleosomes either by an EM algorithm using a BIC criterion or an effective heuristic strategy. Here, we introduce a Bayesian method for identifying nucleosome positions. The proposed model is based on a Multinomial-Dirichlet classification and a hierarchical mixture distributions. The number and the positions of nucleosomes are estimated using a reversible jump Markov chain Monte Carlo simulation technique. We compare the performance of our method on simulated data and MNase-Seq data from Saccharomyces cerevisiae against PING and NOrMAL methods.

  6. Effects of MacroH2A and H2A.Z on Nucleosome Dynamics as Elucidated by Molecular Dynamics Simulations.

    PubMed

    Bowerman, Samuel; Wereszczynski, Jeff

    2016-01-19

    Eukaryotes tune the transcriptional activity of their genome by altering the nucleosome core particle through multiple chemical processes. In particular, replacement of the canonical H2A histone with the variants macroH2A and H2A.Z has been shown to affect DNA accessibility and nucleosome stability; however, the processes by which this occurs remain poorly understood. In this study, we elucidate the molecular mechanisms of these variants with an extensive molecular dynamics study of the canonical nucleosome along with three variant-containing structures: H2A.Z, macroH2A, and an H2A mutant with macroH2A-like L1 loops. Simulation results show that variant L1 loops play a pivotal role in stabilizing DNA binding to the octamer through direct interactions, core structural rearrangements, and altered allosteric networks in the nucleosome. All variants influence dynamics; however, macroH2A-like systems have the largest effect on energetics. In addition, we provide a comprehensive analysis of allosteric networks in the nucleosome and demonstrate that variants take advantage of stronger interactions between L1 loops to propagate dynamics throughout the complex. Furthermore, we show that posttranslational modifications are enriched at key locations in these networks. Taken together, these results provide, to our knowledge, new insights into the relationship between the structure, dynamics, and function of the nucleosome core particle and chromatin fibers, and how they are influenced by chromatin remodeling factors.

  7. Using informative Multinomial-Dirichlet prior in a t-mixture with reversible jump estimation of nucleosome positions for genome-wide profiling.

    PubMed

    Samb, Rawane; Khadraoui, Khader; Belleau, Pascal; Deschênes, Astrid; Lakhal-Chaieb, Lajmi; Droit, Arnaud

    2015-12-01

    Genome-wide mapping of nucleosomes has revealed a great deal about the relationships between chromatin structure and control of gene expression. Recent next generation CHIP-chip and CHIP-Seq technologies have accelerated our understanding of basic principles of chromatin organization. These technologies have taught us that nucleosomes play a crucial role in gene regulation by allowing physical access to transcription factors. Recent methods and experimental advancements allow the determination of nucleosome positions for a given genome area. However, most of these methods estimate the number of nucleosomes either by an EM algorithm using a BIC criterion or an effective heuristic strategy. Here, we introduce a Bayesian method for identifying nucleosome positions. The proposed model is based on a Multinomial-Dirichlet classification and a hierarchical mixture distributions. The number and the positions of nucleosomes are estimated using a reversible jump Markov chain Monte Carlo simulation technique. We compare the performance of our method on simulated data and MNase-Seq data from Saccharomyces cerevisiae against PING and NOrMAL methods. PMID:26656614

  8. Histone H3 lysine 14 (H3K14) acetylation facilitates DNA repair in a positioned nucleosome by stabilizing the binding of the chromatin Remodeler RSC (Remodels Structure of Chromatin).

    PubMed

    Duan, Ming-Rui; Smerdon, Michael J

    2014-03-21

    Histone H3 acetylation is induced by UV damage in yeast and may play an important role in regulating the repair of UV photolesions in nucleosome-loaded genomic loci. However, it remains elusive how H3 acetylation facilitates repair. We generated a strongly positioned nucleosome containing homogeneously acetylated H3 at Lys-14 (H3K14ac) and investigated possible mechanisms by which H3K14 acetylation modulates repair. We show that H3K14ac does not alter nucleosome unfolding dynamics or enhance the repair of UV-induced cyclobutane pyrimidine dimers by UV photolyase. Importantly, however, nucleosomes with H3K14ac have a higher affinity for purified chromatin remodeling complex RSC (Remodels the Structure of Chromatin) and show greater cyclobutane pyrimidine dimer repair compared with unacetylated nucleosomes. Our study indicates that, by anchoring RSC, H3K14 acetylation plays an important role in the unfolding of strongly positioned nucleosomes during repair of UV damage.

  9. A cell free system for functional centromere and kinetochore assembly Authors

    PubMed Central

    Guse, Annika; Fuller, Colin J.; Straight, Aaron F.

    2013-01-01

    Summary This protocol describes a cell free system to study vertebrate centromere and kinetochore formation. We reconstitute tandem arrays of centromere protein A (CENP-A) nucleosomes as a substrate for centromere and kinetochore assembly. These chromatin substrates are immobilized on magnetic beads and then incubated in Xenopus egg extracts that provide a source for centromere and kinetochore proteins and that can be cycled between mitotic and interphase cell cycle states. This cell free system lends itself to protein immunodepletion, complementation and drug inhibition as tools to perturb centromere and kinetochore assembly, cytoskeletal dynamics, DNA modification, and protein post-translational modification. This system provides a distinct advantage over cell-based investigations where perturbing centromere and kinetochore function often results in lethality. Reconstituted CENP-A chromatin specifically assembles centromere and kinetochore proteins after incubation in egg extract that locally stabilize microtubules and, upon microtubule depolymerization with nocodazole, activate the mitotic checkpoint. A typical experiment occupies 3 days. PMID:23018190

  10. Rapid deamination of cyclobutane pyrimidine dimer photoproducts at TCG sites in a translationally and rotationally positioned nucleosome in vivo.

    PubMed

    Cannistraro, Vincent J; Pondugula, Santhi; Song, Qian; Taylor, John-Stephen

    2015-10-30

    Sunlight-induced C to T mutation hot spots in skin cancers occur primarily at methylated CpG sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) formation. The C and 5-methyl-C in CPDs are not stable and deaminate to U and T, respectively, which leads to the insertion of A by the DNA damage bypass polymerase η, thereby defining a probable mechanism for the origin of UV-induced C to T mutations. Deamination rates for T(m)CG CPDs have been found to vary 12-fold with rotational position in a nucleosome in vitro. To determine the influence of nucleosome structure on deamination rates in vivo, we determined the deamination rates of CPDs at TCG sites in a stably positioned nucleosome within the FOS promoter in HeLa cells. A procedure for in vivo hydroxyl radical footprinting with Fe-EDTA was developed, and, together with results from a cytosine methylation protection assay, we determined the translational and rotational positions of the TCG sites. Consistent with the in vitro observations, deamination was slower for one CPD located at an intermediate rotational position compared with two other sites located at outside positions, and all were much faster than for CPDs at non-TCG sites. Photoproduct formation was also highly suppressed at one site, possibly due to its interaction with a histone tail. Thus, it was shown that CPDs of TCG sites deaminate the fastest in vivo and that nucleosomes can modulate both their formation and deamination, which could contribute to the UV mutation hot spots and cold spots. PMID:26354431

  11. Rapid deamination of cyclobutane pyrimidine dimer photoproducts at TCG sites in a translationally and rotationally positioned nucleosome in vivo.

    PubMed

    Cannistraro, Vincent J; Pondugula, Santhi; Song, Qian; Taylor, John-Stephen

    2015-10-30

    Sunlight-induced C to T mutation hot spots in skin cancers occur primarily at methylated CpG sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) formation. The C and 5-methyl-C in CPDs are not stable and deaminate to U and T, respectively, which leads to the insertion of A by the DNA damage bypass polymerase η, thereby defining a probable mechanism for the origin of UV-induced C to T mutations. Deamination rates for T(m)CG CPDs have been found to vary 12-fold with rotational position in a nucleosome in vitro. To determine the influence of nucleosome structure on deamination rates in vivo, we determined the deamination rates of CPDs at TCG sites in a stably positioned nucleosome within the FOS promoter in HeLa cells. A procedure for in vivo hydroxyl radical footprinting with Fe-EDTA was developed, and, together with results from a cytosine methylation protection assay, we determined the translational and rotational positions of the TCG sites. Consistent with the in vitro observations, deamination was slower for one CPD located at an intermediate rotational position compared with two other sites located at outside positions, and all were much faster than for CPDs at non-TCG sites. Photoproduct formation was also highly suppressed at one site, possibly due to its interaction with a histone tail. Thus, it was shown that CPDs of TCG sites deaminate the fastest in vivo and that nucleosomes can modulate both their formation and deamination, which could contribute to the UV mutation hot spots and cold spots.

  12. Sensor assembly

    DOEpatents

    Bennett, Thomas E.; Nelson, Drew V.

    2004-04-13

    A ribbon-like sensor assembly is described wherein a length of an optical fiber embedded within a similar lengths of a prepreg tow. The fiber is ""sandwiched"" by two layers of the prepreg tow which are merged to form a single consolidated ribbon. The consolidated ribbon achieving a generally uniform distribution of composite filaments near the embedded fiber such that excess resin does not ""pool"" around the periphery of the embedded fiber.

  13. Regulation of DNA Translocation Efficiency within the Chromatin Remodeler RSC/Sth1 Potentiates Nucleosome Sliding and Ejection.

    PubMed

    Clapier, Cedric R; Kasten, Margaret M; Parnell, Timothy J; Viswanathan, Ramya; Szerlong, Heather; Sirinakis, George; Zhang, Yongli; Cairns, Bradley R

    2016-05-01

    The RSC chromatin remodeler slides and ejects nucleosomes, utilizing a catalytic subunit (Sth1) with DNA translocation activity, which can pump DNA around the nucleosome. A central question is whether and how DNA translocation is regulated to achieve sliding versus ejection. Here, we report the regulation of DNA translocation efficiency by two domains residing on Sth1 (Post-HSA and Protrusion 1) and by actin-related proteins (ARPs) that bind Sth1. ARPs facilitated sliding and ejection by improving "coupling"-the amount of DNA translocation by Sth1 relative to ATP hydrolysis. We also identified and characterized Protrusion 1 mutations that promote "coupling," and Post-HSA mutations that improve ATP hydrolysis; notably, the strongest mutations conferred efficient nucleosome ejection without ARPs. Taken together, sliding-to-ejection involves a continuum of DNA translocation efficiency, consistent with higher magnitudes of ATPase and coupling activities (involving ARPs and Sth1 domains), enabling the simultaneous rupture of multiple histone-DNA contacts facilitating ejection.

  14. ARGONAUTE2 cooperates with SWI/SNF complex to determine nucleosome occupancy at human Transcription Start Sites.

    PubMed

    Carissimi, Claudia; Laudadio, Ilaria; Cipolletta, Emanuela; Gioiosa, Silvia; Mihailovich, Marija; Bonaldi, Tiziana; Macino, Giuseppe; Fulci, Valerio

    2015-02-18

    Argonaute (AGO) proteins have a well-established role in post-transcriptional regulation of gene expression as key component of the RNA silencing pathways. Recent evidence involves AGO proteins in mammalian nuclear processes such as transcription and splicing, though the mechanistic aspects of AGO nuclear functions remain largely elusive. Here, by SILAC-based interaction proteomics, we identify the chromatin-remodelling complex SWI/SNF as a novel AGO2 interactor in human cells. Moreover, we show that nuclear AGO2 is loaded with a novel class of Dicer-dependent short RNAs (sRNAs), that we called swiRNAs, which map nearby the Transcription Start Sites (TSSs) bound by SWI/SNF. The knock-down of AGO2 decreases nucleosome occupancy at the first nucleosome located downstream of TSSs in a swiRNA-dependent manner. Our findings indicate that in human cells AGO2 binds SWI/SNF and a novel class of sRNAs to establish nucleosome occupancy on target TSSs.

  15. ARGONAUTE2 cooperates with SWI/SNF complex to determine nucleosome occupancy at human Transcription Start Sites

    PubMed Central

    Carissimi, Claudia; Laudadio, Ilaria; Cipolletta, Emanuela; Gioiosa, Silvia; Mihailovich, Marija; Bonaldi, Tiziana; Macino, Giuseppe; Fulci, Valerio

    2015-01-01

    Argonaute (AGO) proteins have a well-established role in post-transcriptional regulation of gene expression as key component of the RNA silencing pathways. Recent evidence involves AGO proteins in mammalian nuclear processes such as transcription and splicing, though the mechanistic aspects of AGO nuclear functions remain largely elusive. Here, by SILAC-based interaction proteomics, we identify the chromatin-remodelling complex SWI/SNF as a novel AGO2 interactor in human cells. Moreover, we show that nuclear AGO2 is loaded with a novel class of Dicer-dependent short RNAs (sRNAs), that we called swiRNAs, which map nearby the Transcription Start Sites (TSSs) bound by SWI/SNF. The knock-down of AGO2 decreases nucleosome occupancy at the first nucleosome located downstream of TSSs in a swiRNA-dependent manner. Our findings indicate that in human cells AGO2 binds SWI/SNF and a novel class of sRNAs to establish nucleosome occupancy on target TSSs. PMID:25605800

  16. 3.9 Å structure of the nucleosome core particle determined by phase-plate cryo-EM.

    PubMed

    Chua, Eugene Y D; Vogirala, Vinod K; Inian, Oviya; Wong, Andrew S W; Nordenskiöld, Lars; Plitzko, Juergen M; Danev, Radostin; Sandin, Sara

    2016-09-30

    The Volta phase plate is a recently developed electron cryo-microscopy (cryo-EM) device that enables contrast enhancement of biological samples. Here we have evaluated the potential of combining phase-plate imaging and single particle analysis to determine the structure of a small protein-DNA complex. To test the method, we made use of a 200 kDa Nucleosome Core Particle (NCP) reconstituted with 601 DNA for which a high-resolution X-ray crystal structure is known. We find that the phase plate provides a significant contrast enhancement that permits individual NCPs and DNA to be clearly identified in amorphous ice. The refined structure from 26,060 particles has an overall resolution of 3.9 Å and the density map exhibits structural features consistent with the estimated resolution, including clear density for amino acid side chains and DNA features such as the phosphate backbone. Our results demonstrate that phase-plate cryo-EM promises to become an important method to determine novel near-atomic resolution structures of small and challenging samples, such as nucleosomes in complex with nucleosome-binding factors.

  17. 3.9 Å structure of the nucleosome core particle determined by phase-plate cryo-EM

    PubMed Central

    Chua, Eugene Y.D.; Vogirala, Vinod K.; Inian, Oviya; Wong, Andrew S.W.; Nordenskiöld, Lars; Plitzko, Juergen M.; Danev, Radostin; Sandin, Sara

    2016-01-01

    The Volta phase plate is a recently developed electron cryo-microscopy (cryo-EM) device that enables contrast enhancement of biological samples. Here we have evaluated the potential of combining phase-plate imaging and single particle analysis to determine the structure of a small protein–DNA complex. To test the method, we made use of a 200 kDa Nucleosome Core Particle (NCP) reconstituted with 601 DNA for which a high-resolution X-ray crystal structure is known. We find that the phase plate provides a significant contrast enhancement that permits individual NCPs and DNA to be clearly identified in amorphous ice. The refined structure from 26,060 particles has an overall resolution of 3.9 Å and the density map exhibits structural features consistent with the estimated resolution, including clear density for amino acid side chains and DNA features such as the phosphate backbone. Our results demonstrate that phase-plate cryo-EM promises to become an important method to determine novel near-atomic resolution structures of small and challenging samples, such as nucleosomes in complex with nucleosome-binding factors. PMID:27563056

  18. HER-2 gene amplification, serum nucleosomes, CEA and CA15.3 tumor markers in breast cancer patients.

    PubMed

    Zeiwar, M M; Zaki, Seham M; Mohammad, Lamiaa A; Zidan, Amal A; El Nagar, Mona Roshdy

    2007-01-01

    Breast cancer is the most frequently diagnosed cancer in women in the world, for which tumor markers are needed for early detection, clinical prognistication and monitoring. The study was designed to assess the usefulness of HER-2 gene amplification, serum nucleosomes, CEA and CA15.3 tumor markers in the diagnosis of invasive ductal carcinoma and analyze whether their levels correlate with the clinicopathological features. The study was carried out on fifty patients with invasive ductal carcinoma and 25 age matched women with benign breast diseases (BBD). Cancer patients were categorised into three subgroups according to absence (-) or presence (+) of axillary lymph nodes (N) or presence of distant metastasis (M+) into: subgroup I (N-) included 15 patients, subgroup II (N+) included 20 patients and subgroup III (M+) included 15 patients. All individuals were subjected to CBC, fasting blood sugar, liver & kidney function tests, CEA and CA15.3 by electrochemiluminescence, serum nucleosomes by cell death detection ELISA and amplification of HER-2 gene by differential PCR. The HER-2 gene PCR results were + ve in 28% of cancer patients; 20% of subgroup I, 25% of subgroup II and 40% of subgroup III, but in none of the BBD patients. HER-2 gene amplification results showed significant positive correlation with tumor grade. Serum nucleosomes showed significant increase in cancer patients as compared to that of BBD group, significant negative correlation with HER-2 gene amplification and significant positive correlation with CA15.3. Serum nucleosomes was the most sensitive marker (76% versus 32% and 50% for CEA & CA15.3 respectively) but the least specific (72% versus 92% and 96% for CEA & CA15.3 respectively). Elevated CEA and CA15.3 levels were detected in 13.3% and 33.3% respectively in node negative patients, these percentage increased in node positive patients to 20% and 40% and in metastatic patients to 66.7% and 80% respectively. In conclusion, serum nucleosomes is

  19. Distinct Cellular Assembly Stoichiometry of Polycomb Complexes on Chromatin Revealed by Single-molecule Chromatin Immunoprecipitation Imaging.

    PubMed

    Tatavosian, Roubina; Zhen, Chao Yu; Duc, Huy Nguyen; Balas, Maggie M; Johnson, Aaron M; Ren, Xiaojun

    2015-11-20

    Epigenetic complexes play an essential role in regulating chromatin structure, but information about their assembly stoichiometry on chromatin within cells is poorly understood. The cellular assembly stoichiometry is critical for appreciating the initiation, propagation, and maintenance of epigenetic inheritance during normal development and in cancer. By combining genetic engineering, chromatin biochemistry, and single-molecule fluorescence imaging, we developed a novel and sensitive approach termed single-molecule chromatin immunoprecipitation imaging (Sm-ChIPi) to enable investigation of the cellular assembly stoichiometry of epigenetic complexes on chromatin. Sm-ChIPi was validated by using chromatin complexes with known stoichiometry. The stoichiometry of subunits within a polycomb complex and the assembly stoichiometry of polycomb complexes on chromatin have been extensively studied but reached divergent views. Moreover, the cellular assembly stoichiometry of polycomb complexes on chromatin remains unexplored. Using Sm-ChIPi, we demonstrated that within mouse embryonic stem cells, one polycomb repressive complex (PRC) 1 associates with multiple nucleosomes, whereas two PRC2s can bind to a single nucleosome. Furthermore, we obtained direct physical evidence that the nucleoplasmic PRC1 is monomeric, whereas PRC2 can dimerize in the nucleoplasm. We showed that ES cell differentiation induces selective alteration of the assembly stoichiometry of Cbx2 on chromatin but not other PRC1 components. We additionally showed that the PRC2-mediated trimethylation of H3K27 is not required for the assembly stoichiometry of PRC1 on chromatin. Thus, these findings uncover that PRC1 and PRC2 employ distinct mechanisms to assemble on chromatin, and the novel Sm-ChIPi technique could provide single-molecule insight into other epigenetic complexes.

  20. Distinct Cellular Assembly Stoichiometry of Polycomb Complexes on Chromatin Revealed by Single-molecule Chromatin Immunoprecipitation Imaging.

    PubMed

    Tatavosian, Roubina; Zhen, Chao Yu; Duc, Huy Nguyen; Balas, Maggie M; Johnson, Aaron M; Ren, Xiaojun

    2015-11-20

    Epigenetic complexes play an essential role in regulating chromatin structure, but information about their assembly stoichiometry on chromatin within cells is poorly understood. The cellular assembly stoichiometry is critical for appreciating the initiation, propagation, and maintenance of epigenetic inheritance during normal development and in cancer. By combining genetic engineering, chromatin biochemistry, and single-molecule fluorescence imaging, we developed a novel and sensitive approach termed single-molecule chromatin immunoprecipitation imaging (Sm-ChIPi) to enable investigation of the cellular assembly stoichiometry of epigenetic complexes on chromatin. Sm-ChIPi was validated by using chromatin complexes with known stoichiometry. The stoichiometry of subunits within a polycomb complex and the assembly stoichiometry of polycomb complexes on chromatin have been extensively studied but reached divergent views. Moreover, the cellular assembly stoichiometry of polycomb complexes on chromatin remains unexplored. Using Sm-ChIPi, we demonstrated that within mouse embryonic stem cells, one polycomb repressive complex (PRC) 1 associates with multiple nucleosomes, whereas two PRC2s can bind to a single nucleosome. Furthermore, we obtained direct physical evidence that the nucleoplasmic PRC1 is monomeric, whereas PRC2 can dimerize in the nucleoplasm. We showed that ES cell differentiation induces selective alteration of the assembly stoichiometry of Cbx2 on chromatin but not other PRC1 components. We additionally showed that the PRC2-mediated trimethylation of H3K27 is not required for the assembly stoichiometry of PRC1 on chromatin. Thus, these findings uncover that PRC1 and PRC2 employ distinct mechanisms to assemble on chromatin, and the novel Sm-ChIPi technique could provide single-molecule insight into other epigenetic complexes. PMID:26381410

  1. Pushrod assembly

    DOEpatents

    Potter, J.D.

    1984-03-30

    A pushrod assembly including a carriage mounted on a shaft for movement therealong and carrying a pushrod engageable with a load to be moved is described. A magnet is mounted on a supporting bracket for movement along such shaft. Means are provided for adjustably spacing magnet away from the carriage to obtain a selected magnetic attractive or coupling force therebetween. Movement of the supporting bracket and the magnet carried thereby pulls the carriage along with it until the selected magnetic force is exceeded by a resistance load acting on the carriage.

  2. Pushrod assembly

    DOEpatents

    Potter, Jerry D.

    1987-01-01

    A pushrod assembly including a carriage mounted on a shaft for movement therealong and carrying a pushrod engageable with a load to be moved. A magnet is mounted on a supporting bracket for movement along such shaft. Means are provided for adjustably spacing said magnet away from said carriage to obtain a selected magnetic attractive or coupling force therebetween. Movement of the supporting bracket and the magnet carried thereby pulls the carriage along with it until the selected magnetic force is exceeded by a resistance load acting on the carriage.

  3. Shingle assembly

    DOEpatents

    Dinwoodie, Thomas L.

    2007-02-20

    A barrier, such as a PV module, is secured to a base by a support to create a shingle assembly with a venting region defined between the barrier and base for temperature regulation. The first edge of one base may be interengageable with the second edge of an adjacent base to be capable of resisting first and second disengaging forces oriented perpendicular to the edges and along planes oriented parallel to and perpendicular to the base. A deflector may be used to help reduce wind uplift forces.

  4. Dump assembly

    DOEpatents

    Goldmann, L.H.

    1984-12-06

    This is a claim for a dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough. 4 figs.

  5. Nucleosome dynamics and maintenance of epigenetic states of CpG islands.

    PubMed

    Sneppen, Kim; Dodd, Ian B

    2016-06-01

    Methylation of mammalian DNA occurs primarily at CG dinucleotides. These CpG sites are located nonrandomly in the genome, tending to occur within high density clusters of CpGs (islands) or within large regions of low CpG density. Cluster methylation tends to be bimodal, being dominantly unmethylated or mostly methylated. For CpG clusters near promoters, low methylation is associated with transcriptional activity, while high methylation is associated with gene silencing. Alternative CpG methylation states are thought to be stable and heritable, conferring localized epigenetic memory that allows transient signals to create long-lived gene expression states. Positive feedback where methylated CpG sites recruit enzymes that methylate nearby CpGs, can produce heritable bistability but does not easily explain that as clusters increase in size or density they change from being primarily methylated to primarily unmethylated. Here, we show that an interaction between the methylation state of a cluster and its occupancy by nucleosomes provides a mechanism to generate these features and explain genome wide systematics of CpG islands.

  6. PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex.

    PubMed

    Todd, Matthew A M; Picketts, David J

    2012-08-01

    Mutations in PHF6 are the cause of Börjeson-Forssman-Lehman syndrome (BFLS), an X-linked intellectual disability (XLID) disorder, and both T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). The PHF6 gene encodes a protein with two plant homeodomain (PHD)-like zinc finger domains. As many PHD-like domains function to target chromatin remodelers to post-translationally modified histones, this suggests a role for PHF6 in chromatin regulation. However, PHD domains are usually found in association with a catalytic domain, a feature that is lacking in PHF6. This distinct domain structure and the minimal information on its cellular function prompted us to perform a proteomic screen to identify PHF6 binding partners. We expressed recombinant Flag-tagged PHF6 in HEK 293T cells for coimmunoprecipitation, and analyzed the purified products by mass spectrometry. We identified proteins involved in ribosome biogenesis, RNA splicing, and chromatin regulation, consistent with PHF6 localization to both the nucleoplasm and nucleolus. Notably, PHF6 copurified with multiple constituents of the nucleosome remodeling and deacetylation (NuRD) complex, including CHD4, HDAC1, and RBBP4. We demonstrate that this PHF6-NuRD complex is not present in the nucleolus but is restricted to the nucleoplasm. The association with NuRD represents the first known interaction for PHF6 and implicates it in chromatin regulation.

  7. Metastasis Associated Protein 1/Nucleosome Remodeling and Histone Deacetylase Complex in Cancer

    PubMed Central

    Li, Da-Qiang; Pakala, Suresh B.; Nair, Sujit S.; Eswaran, Jeyanthy; Kumar, Rakesh

    2011-01-01

    Cancer cells frequently exhibit deregulation of coregulatory molecules to drive the process of growth and metastasis. One such group of ubiquitously expressed coregulators is the metastasis-associated protein (MTA) family, a critical component of nucleosome remodeling and histone deacetylase (NuRD) complex. MTA1 occupies a special place in cancer biology due to its dual corepressor or coactivator nature and widespread overexpression in human cancers. Here, we highlight recent advances in our understanding of the vital roles of MTA1 on transformation, epithelial-mesenchymal transition, and on the functions of key cancer-relevant molecules as a nexus of multiple oncogenes and tumor suppressors. In addition to its paramount role in oncogenesis, we also reveal several new physiological functions of MTA1, related to DNA-damage, inflammatory responses and infection, in which MTA1 functions as a permissive “gatekeeper” for cancer-causing parasites. Further, these discoveries unraveled the versatile multidimensional modes of action of MTA1, which are independent of the NuRD complex and/or transcription. Given the emerging roles of MTA1 in DNA repair, inflammation, and parasitism, we discuss the possibility of MTA1 targeted therapy for use in not only combating cancer but also other inflammation and pathogen-driven pathological conditions. PMID:22253283

  8. Resistance of the nucleosomal organization of eucaryotic chromatin to ionizing radiation. [/sup 60/Co

    SciTech Connect

    Chiu, S.M.; Oleinick, N.L.

    1982-09-01

    The structural organization and radiation sensitivity of Tetrahymena chromatin under several conditions of modified transcriptional activity were investigated using the structure-specific nucleases, micrococcal nuclease and DNase I. Digestion of unirradiated nuclei by those nucleases proceeded with very similar kinetics and to a similar extent irrespective of the stages of growth of the cultures, except for the cultures in stationary phase, which became more resistant to DNase I digestion. Neither for suppression of total cellular RNA synthesis by actinomycin D nor the transient inhibition of only rRNA synthesis by 40 krad of ..gamma.. radiation affected the sensitivity of the chromatin of the nucleases. These results confirm that activity transcribing chromatin remains in an active conformation even when its function is temporarily inhibited, while more permanent repression of some genes during stationary phase appears to alter the chromatin and hence its susceptibility to DNase I. Actively transcribing ribosomal chromatin was found to be very sensitive to DNase I degradation compared to bulk chromatin; its sensitivity to DNase I was also not altered by 40 krad of ..gamma.. radiation, but was reduced in stationary phase. It is concluded that damage to DNA and/or chromatin resulting from ..gamma.. irradiation does not produce alterations in the nucleosome-level organization of chromatin which can be measured by micrococcal nuclease and DNase I.

  9. Binding of ethidium to the nucleosome core particle. 2. Internal and external binding modes

    SciTech Connect

    McMurray, C.T.; Small, E.W.; van Holde, K.E. )

    1991-06-11

    The authors have previously reported that the binding of ethidium bromide to the nucleosome core particle results in a stepwise dissociation of the structure which involves the initial release of one copy each of H2A and H2B. In this report, they have examined the absorbance and fluorescence properties of intercalated and outside bound forms of ethidium bromide. From these properties, they have measured the extent of external, electrostatic binding of the dye versus internal, intercalation binding to the core particle, free from contribution by linker DNA. They have established that dissociation is induced by the intercalation mode of binding to DNA within the core particle DNA, and not by binding to the histones or by nonintercalative binding to DNA. The covalent binding of ({sup 3}H)-8-azidoethidium to the core particle clearly shows that < 1.0 adduct is formed per histone octamer over a wide range of input ratios. Simultaneously, analyses of steady-state fluorescence enhancement and fluorescence lifetime data from bound ethidium complexes demonstrate extensive intercalation binding. Combined analyses from steady-state fluorescence intensity with equilibrium dialysis or fluorescence lifetime data revealed that dissociation began when {approximately}14 ethidium molecules are bound by intercalation to each core particle and < 1.0 nonintercalated ion pair was formed per core particle.

  10. Mapping nucleosome resolution chromosome folding in yeast by Micro-C

    PubMed Central

    Hsieh, Tsung-Han S.; Weiner, Assaf; Lajoie, Bryan; Dekker, Job; Friedman, Nir; Rando, Oliver J.

    2015-01-01

    SUMMARY We describe a Hi-C based method, Micro-C, in which micrococcal nuclease is used instead of restriction enzymes to fragment chromatin, enabling nucleosome resolution chromosome folding maps. Analysis of Micro-C maps for budding yeast reveals abundant self-associating domains similar to those reported in other species, but not previously observed in yeast. These structures, far shorter than topologically-associating domains in mammals, typically encompass one to five genes in yeast. Strong boundaries between self-associating domains occur at promoters of highly transcribed genes and regions of rapid histone turnover that are typically bound by the RSC chromatin-remodeling complex. Investigation of chromosome folding in mutants confirms roles for RSC, “gene looping” factor Ssu72, Mediator, H3K56 acetyltransferase Rtt109, and the N-terminal tail of H4 in folding of the yeast genome. This approach provides detailed structural maps of a eukaryotic genome, and our findings provide insights into the machinery underlying chromosome compaction. PMID:26119342

  11. Nucleosome dynamics and maintenance of epigenetic states of CpG islands

    NASA Astrophysics Data System (ADS)

    Sneppen, Kim; Dodd, Ian B.

    2016-06-01

    Methylation of mammalian DNA occurs primarily at CG dinucleotides. These CpG sites are located nonrandomly in the genome, tending to occur within high density clusters of CpGs (islands) or within large regions of low CpG density. Cluster methylation tends to be bimodal, being dominantly unmethylated or mostly methylated. For CpG clusters near promoters, low methylation is associated with transcriptional activity, while high methylation is associated with gene silencing. Alternative CpG methylation states are thought to be stable and heritable, conferring localized epigenetic memory that allows transient signals to create long-lived gene expression states. Positive feedback where methylated CpG sites recruit enzymes that methylate nearby CpGs, can produce heritable bistability but does not easily explain that as clusters increase in size or density they change from being primarily methylated to primarily unmethylated. Here, we show that an interaction between the methylation state of a cluster and its occupancy by nucleosomes provides a mechanism to generate these features and explain genome wide systematics of CpG islands.

  12. A new way of measuring apoptosis by absolute quantitation of inter-nucleosomally fragmented genomic DNA

    PubMed Central

    Hooker, David J.; Mobarok, Masqura; Anderson, Jenny L.; Rajasuriar, Reena; Gray, Lachlan R.; Ellett, Anne M.; Lewin, Sharon R.; Gorry, Paul R.; Cherry, Catherine L.

    2012-01-01

    Several critical events of apoptosis occur in the cell nucleus, including inter-nucleosomal DNA fragmentation (apoptotic DNA) and eventual chromatin condensation. The generation of apoptotic DNA has become a biochemical hallmark of apoptosis because it is a late ‘point of no return’ step in both the extrinsic (cell-death receptor) and intrinsic (mitochondrial) apoptotic pathways. Despite investigators observing apoptotic DNA and understanding its decisive role as a marker of apoptosis for over 20 years, measuring it has proved elusive. We have integrated ligation-mediated PCR and qPCR to design a new way of measuring apoptosis, termed ApoqPCR, which generates an absolute value for the amount (picogram) of apoptotic DNA per cell population. ApoqPCR’s advances over current methods include a 1000-fold linear dynamic range yet sensitivity to distinguish subtle low-level changes, measurement with a 3- to 4-log improvement in sample economy, and capacity for archival or longitudinal studies combined with high-throughput capability. We demonstrate ApoqPCR’s utility in both in vitro and in vivo contexts. Considering the fundamental role apoptosis has in vertebrate and invertebrate health, growth and disease, the reliable measurement of apoptotic nucleic acid by ApoqPCR will be of value in cell biology studies in basic and applied science. PMID:22544708

  13. Nucleosome dynamics and maintenance of epigenetic states of CpG islands.