Generation of knockout rabbits using transcription activator-like effector nucleases.
Wang, Yu; Fan, Nana; Song, Jun; Zhong, Juan; Guo, Xiaogang; Tian, Weihua; Zhang, Quanjun; Cui, Fenggong; Li, Li; Newsome, Philip N; Frampton, Jon; Esteban, Miguel A; Lai, Liangxue
2014-01-01
Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platforms contributing to redefine the boundaries of modern biological research. They are composed of a non-specific cleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications by inducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases have been employed to produce gene knockouts in mid-size and large animals, such as rabbits and pigs, respectively. This approach is cost effective, relatively quick, and can produce invaluable models for human disease studies, biotechnology or agricultural purposes. Here we describe a protocol for the efficient generation of knockout rabbits using transcription activator-like effector nucleases, and a perspective of the field.
Hendriks, William T; Jiang, Xin; Daheron, Laurence; Cowan, Chad A
2015-08-03
Using custom-engineered nuclease-mediated genome editing, such as Transcription Activator-Like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) RNA-guided Cas9 nucleases, human pluripotent stem cell (hPSC) lines with knockout or mutant alleles can be generated and differentiated into various cell types. This strategy of genome engineering in hPSCs will prove invaluable for studying human biology and disease. Here, we provide a detailed protocol for design and construction of TALEN and CRISPR vectors, testing of their nuclease activity, and delivery of TALEN or CRISPR vectors into hPSCs. In addition, we describe the use of single-stranded oligodeoxynucleotides (ssODNs) to introduce or repair point mutations. Next, we describe the identification of edited hPSC clones without antibiotic selection, including their clonal selection, genotyping, and expansion for downstream applications. Copyright © 2015 John Wiley & Sons, Inc.
Nuclease-mediated genome editing: At the front-line of functional genomics technology.
Sakuma, Tetsushi; Woltjen, Knut
2014-01-01
Genome editing with engineered endonucleases is rapidly becoming a staple method in developmental biology studies. Engineered nucleases permit random or designed genomic modification at precise loci through the stimulation of endogenous double-strand break repair. Homology-directed repair following targeted DNA damage is mediated by co-introduction of a custom repair template, allowing the derivation of knock-out and knock-in alleles in animal models previously refractory to classic gene targeting procedures. Currently there are three main types of customizable site-specific nucleases delineated by the source mechanism of DNA binding that guides nuclease activity to a genomic target: zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR). Among these genome engineering tools, characteristics such as the ease of design and construction, mechanism of inducing DNA damage, and DNA sequence specificity all differ, making their application complementary. By understanding the advantages and disadvantages of each method, one may make the best choice for their particular purpose. © 2014 The Authors Development, Growth & Differentiation © 2014 Japanese Society of Developmental Biologists.
Genome Editing in Rats Using TALE Nucleases.
Tesson, Laurent; Remy, Séverine; Ménoret, Séverine; Usal, Claire; Thinard, Reynald; Savignard, Chloé; De Cian, Anne; Giovannangeli, Carine; Concordet, Jean-Paul; Anegon, Ignacio
2016-01-01
The rat is an important animal model to understand gene function and model human diseases. Since recent years, the development of gene-specific nucleases has become important for generating new rat models of human diseases, to analyze the role of genes and to generate human antibodies. Transcription activator-like (TALE) nucleases efficiently create gene-specific knockout rats and lead to the possibility of gene targeting by homology-directed recombination (HDR) and generating knock-in rats. We describe a detailed protocol for generating knockout and knock-in rats via microinjection of TALE nucleases into fertilized eggs. This technology is an efficient, cost- and time-effective method for creating new rat models.
Zhang, Guo-Chang; Kong, In Iok; Kim, Heejin; Liu, Jing-Jing; Cate, Jamie H D; Jin, Yong-Su
2014-12-01
Industrial polyploid yeast strains harbor numerous beneficial traits but suffer from a lack of available auxotrophic markers for genetic manipulation. Here we demonstrated a quick and efficient strategy to generate auxotrophic markers in industrial polyploid yeast strains with the RNA-guided Cas9 nuclease. We successfully constructed a quadruple auxotrophic mutant of a popular industrial polyploid yeast strain, Saccharomyces cerevisiae ATCC 4124, with ura3, trp1, leu2, and his3 auxotrophies through RNA-guided Cas9 nuclease. Even though multiple alleles of auxotrophic marker genes had to be disrupted simultaneously, we observed knockouts in up to 60% of the positive colonies after targeted gene disruption. In addition, growth-based spotting assays and fermentation experiments showed that the auxotrophic mutants inherited the beneficial traits of the parental strain, such as tolerance of major fermentation inhibitors and high temperature. Moreover, the auxotrophic mutants could be transformed with plasmids containing selection marker genes. These results indicate that precise gene disruptions based on the RNA-guided Cas9 nuclease now enable metabolic engineering of polyploid S. cerevisiae strains that have been widely used in the wine, beer, and fermentation industries. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Karakikes, Ioannis; Termglinchan, Vittavat; Cepeda, Diana A.; Lee, Jaecheol; Diecke, Sebastian; Hendel, Ayal; Itzhaki, Ilanit; Ameen, Mohamed; Shrestha, Rajani; Wu, Haodi; Ma, Ning; Shao, Ning-Yi; Seeger, Timon; Woo, Nicole; Wilson, Kitchener D.; Matsa, Elena; Porteus, Matthew H.; Sebastiano, Vittorio; Wu, Joseph C.
2017-01-01
Rationale Targeted genetic engineering using programmable nucleases such as transcription activator–like effector nucleases (TALENs) is a valuable tool for precise, site-specific genetic modification in the human genome. Objective The emergence of novel technologies such as human induced pluripotent stem cells (iPSCs) and nuclease-mediated genome editing represent a unique opportunity for studying cardiovascular diseases in vitro. Methods and Results By incorporating extensive literature and database searches, we designed a collection of TALEN constructs to knockout (KO) eighty-eight human genes that are associated with cardiomyopathies and congenital heart diseases. The TALEN pairs were designed to induce double-strand DNA break near the starting codon of each gene that either disrupted the start codon or introduced a frameshift mutation in the early coding region, ensuring faithful gene KO. We observed that all the constructs were active and disrupted the target locus at high frequencies. To illustrate the general utility of the TALEN-mediated KO technique, six individual genes (TNNT2, LMNA/C, TBX5, MYH7, ANKRD1, and NKX2.5) were knocked out with high efficiency and specificity in human iPSCs. By selectively targeting a dilated cardiomyopathy (DCM)-causing mutation (TNNT2 p.R173W) in patient-specific iPSC-derived cardiac myocytes (iPSC-CMs), we demonstrated that the KO strategy ameliorates the DCM phenotype in vitro. In addition, we modeled the Holt-Oram syndrome (HOS) in iPSC-CMs in vitro and uncovered novel pathways regulated by TBX5 in human cardiac myocyte development. Conclusion Collectively, our study illustrates the powerful combination of iPSCs and genome editing technology for understanding the biological function of genes and the pathological significance of genetic variants in human cardiovascular diseases. The methods, strategies, constructs and iPSC lines developed in this study provide a validated, readily available resource for cardiovascular research. PMID:28246128
[Construction of EZH2 Knockout Animal Model by CRISPR/Cas9 Technology].
Meng, Fanrong; Zhao, Dan; Zhou, Qinghua; Liu, Zhe
2018-05-20
It has been proven that CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9) system was the modern gene-editing technology through the constitutive expression of nucleases Cas9 in the mammalian, which binds to the specific site in the genome mediated by single-guide RNA (sgRNA) at desired genomic loci. The aim of this study is that the animal model of EZH2 gene knockout was constructed using CRISPR/Cas9 technology. In this study, we designed two single-guide RNAs targeting the Exon3 and Exon4 of EZH2 gene. Then, their gene-targeting efficiency were detected by SURVEYOR assay. The lentivirus was perfused into the lungs of mice by using a bronchial tube and detected by immunohistochemistry and qRT-PCR. The experimental results of NIH-3T3 cells verify that the designed sgEZH2 can efficiently effect the cleavage of target DNA by Cas9 in vitro. The immunohistochemistry and qRT-PCR results showed that the EZH2 expression in experimental group was significantly decreased in the mouse lung tissue. The study successfully designed two sgRNA which can play a knock-out EZH2 function. An EZH2 knockout animal model was successfully constructed by CRISPR/Cas9 system, and it will be an effective animal model for studying the functions and mechanisms of EZH2.
Miyamoto, Kei; Suzuki, Ken-Ichi T; Suzuki, Miyuki; Sakane, Yuto; Sakuma, Tetsushi; Herberg, Sarah; Simeone, Angela; Simpson, David; Jullien, Jerome; Yamamoto, Takashi; Gurdon, J B
2015-01-01
Recent advances in genome editing using programmable nucleases have revolutionized gene targeting in various organisms. Successful gene knock-out has been shown in Xenopus, a widely used model organism, although a system enabling less mosaic knock-out in founder embryos (F0) needs to be explored in order to judge phenotypes in the F0 generation. Here, we injected modified highly active transcription activator-like effector nuclease (TALEN) mRNA to oocytes at the germinal vesicle (GV) stage, followed by in vitro maturation and intracytoplasmic sperm injection, to achieve a full knock-out in F0 embryos. Unlike conventional injection methods to fertilized embryos, the injection of TALEN mRNA into GV oocytes allows expression of nucleases before fertilization, enabling them to work from an earlier stage. Using this procedure, most of developed embryos showed full knock-out phenotypes of the pigmentation gene tyrosinase and/or embryonic lethal gene pax6 in the founder generation. In addition, our method permitted a large 1 kb deletion. Thus, we describe nearly complete gene knock-out phenotypes in Xenopus laevis F0 embryos. The presented method will help to accelerate the production of knock-out frogs since we can bypass an extra generation of about 1 year in Xenopus laevis. Meantime, our method provides a unique opportunity to rapidly test the developmental effects of disrupting those genes that do not permit growth to an adult able to reproduce. In addition, the protocol shown here is considerably less invasive than the previously used host transfer since our protocol does not require surgery. The experimental scheme presented is potentially applicable to other organisms such as mammals and fish to resolve common issues of mosaicism in founders.
Genome Editing in Human Pluripotent Stem Cells.
Carlson-Stevermer, Jared; Saha, Krishanu
2017-01-01
Genome editing in human pluripotent stem cells (hPSCs) enables the generation of reporter lines and knockout cell lines. Zinc finger nucleases, transcription activator-like effector nucleases (TALENs), and CRISPR/Cas9 technology have recently increased the efficiency of proper gene editing by creating double strand breaks (DSB) at defined sequences in the human genome. These systems typically use plasmids to transiently transcribe nucleases within the cell. Here, we describe the process for preparing hPSCs for transient expression of nucleases via electroporation and subsequent analysis to create genetically modified stem cell lines.
Watanabe, Takahito; Noji, Sumihare; Mito, Taro
2016-01-01
Hemimetabolous, or incompletely metamorphosing, insects are phylogenetically basal. These insects include many deleterious species. The cricket, Gryllus bimaculatus, is an emerging model for hemimetabolous insects, based on the success of RNA interference (RNAi)-based gene-functional analyses and transgenic technology. Taking advantage of genome-editing technologies in this species would greatly promote functional genomics studies. Genome editing using transcription activator-like effector nucleases (TALENs) has proven to be an effective method for site-specific genome manipulation in various species. TALENs are artificial nucleases that are capable of inducing DNA double-strand breaks into specified target sequences. Here, we describe a protocol for TALEN-based gene knockout in G. bimaculatus, including a mutant selection scheme via mutation detection assays, for generating homozygous knockout organisms.
Wettstein, Rahel; Bodak, Maxime; Ciaudo, Constance
2016-01-01
CRISPR/Cas9, originally discovered as a bacterial immune system, has recently been engineered into the latest tool to successfully introduce site-specific mutations in a variety of different organisms. Composed only of the Cas9 protein as well as one engineered guide RNA for its functionality, this system is much less complex in its setup and easier to handle than other guided nucleases such as Zinc-finger nucleases or TALENs.Here, we describe the simultaneous transfection of two paired CRISPR sgRNAs-Cas9 plasmids, in mouse embryonic stem cells (mESCs), resulting in the knockout of the selected target gene. Together with a four primer-evaluation system, it poses an efficient way to generate new independent knockout mouse embryonic stem cell lines.
Watanabe, Takahito; Noji, Sumihare; Mito, Taro
2014-08-15
Hemimetabolous, or incompletely metamorphosing, insects are phylogenetically basal. These insects include many deleterious species. The cricket, Gryllus bimaculatus, is an emerging model for hemimetabolous insects, based on the success of RNA interference (RNAi)-based gene-functional analyses and transgenic technology. Taking advantage of genome-editing technologies in this species would greatly promote functional genomics studies. Genome editing using transcription activator-like effector nucleases (TALENs) has proven to be an effective method for site-specific genome manipulation in various species. TALENs are artificial nucleases that are capable of inducing DNA double-strand breaks into specified target sequences. Here, we describe a protocol for TALEN-based gene knockout in G. bimaculatus, including a mutant selection scheme via mutation detection assays, for generating homozygous knockout organisms. Copyright © 2014 Elsevier Inc. All rights reserved.
Mashimo, Tomoji
2014-01-01
The laboratory rat has been widely used as an animal model in biomedical science for more than 150 years. Applying zinc-finger nucleases or transcription activator-like effector nucleases to rat embryos via microinjection is an efficient genome editing tool for generating targeted knockout rats. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonucleases have been used as an effective tool for precise and multiplex genome editing in mice and rats. In this review, the advantages and disadvantages of these site-specific nuclease technologies for genetic analysis and manipulation in rats are discussed. © 2013 The Author Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.
Mutagenesis and phenotyping resources in zebrafish for studying development and human disease
Varshney, Gaurav Kumar
2014-01-01
The zebrafish (Danio rerio) is an important model organism for studying development and human disease. The zebrafish has an excellent reference genome and the functions of hundreds of genes have been tested using both forward and reverse genetic approaches. Recent years have seen an increasing number of large-scale mutagenesis projects and the number of mutants or gene knockouts in zebrafish has increased rapidly, including for the first time conditional knockout technologies. In addition, targeted mutagenesis techniques such as zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short sequences (CRISPR) or CRISPR-associated (Cas), have all been shown to effectively target zebrafish genes as well as the first reported germline homologous recombination, further expanding the utility and power of zebrafish genetics. Given this explosion of mutagenesis resources, it is now possible to perform systematic, high-throughput phenotype analysis of all zebrafish gene knockouts. PMID:24162064
Liu, Zhen; Cai, Yijun; Sun, Qiang
2017-01-01
Gene-modified monkey models would be particularly valuable in biomedical and neuroscience research. Virus-based transgenic and programmable nucleases-based site-specific gene editing methods (TALEN, CRISPR-cas9) enable the generation of gene-modified monkeys with gain or loss of function of specific genes. Here, we describe the generation of transgenic and knock-out (KO) monkeys with high efficiency by lentivirus and programmable nucleases.
[Construction of Rev-erbβ gene knockout HEK293 cell line with CRISPR/Cas9 system].
Chen, Fang; Zhang, Weifeng; Zhao, Junli; Yang, Peiyan; Ma, Rui; Xia, Haibin
2016-11-01
Objective To prepare Rev-erbβ knockout HEK293 cells using clustered regularly interspaced short palindromic repeats/Cas 9 nuclease (CRISPR/Cas9) gene editing technology. Methods The knock-in or knockout of Rev-erbβ gene could be realized by single-guide RNA (sgRNA)-mediated Cas9 cutting of target DNA, and followed by DNA homologous recombination or non-homologous end joining-mediated DNA repair. Firstly, four sgRNAs were designed for Rev-erbβ gene. The sgRNA1 and sgRNA2 with the higher activity were respectively used to construct pCMV-hCas9-U6-Rev-erbβ sgRNA1 and pCMV-hCas9-U6-Rev-erbβ sgRNA2. Then, pCMV-hCas9-U6-Rev-erbβ sgRNA1, pCMV-hCas9-U6-Rev-erbβ sgRNA2 and pAd5-E1/hRev-erbβ donor plasmid vectors were co-transfected into HEK293 cells. Through drug screening, cloning and sequencing, the Rev-erbβ gene-knockout HEK293 (Rev-erbβ -/- ) cell lines were obtained with one chain integrated with exogenous gene fragment and the other chain for deletion mutants. Finally, the HEK293 (Rev-erbβ -/- ) cell lines (C3-6) was detected with real-time quantitative PCR and Western blotting. Results Expression of Rev-erbβ mRNA and protein was undetectable in HEK293 Rev-erbβ -/- cell line. Conclusion Using CRISPR/Cas9 technology, the HEK293 Rev-erbβ -/- cell line has been successfully constructed, which would provide an effective tool for the study on the function of Rev-erbβ.
Engineered Viruses as Genome Editing Devices.
Chen, Xiaoyu; Gonçalves, Manuel A F V
2016-03-01
Genome editing based on sequence-specific designer nucleases, also known as programmable nucleases, seeks to modify in a targeted and precise manner the genetic information content of living cells. Delivering into cells designer nucleases alone or together with donor DNA templates, which serve as surrogate homologous recombination (HR) substrates, can result in gene knockouts or gene knock-ins, respectively. As engineered replication-defective viruses, viral vectors are having an increasingly important role as delivery vehicles for donor DNA templates and designer nucleases, namely, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated Cas9 (CRISPR-Cas9) nucleases, also known as RNA-guided nucleases (RGNs). We review this dual role played by engineered viral particles on genome editing while focusing on their main scaffolds, consisting of lentiviruses, adeno-associated viruses, and adenoviruses. In addition, the coverage of the growing body of research on the repurposing of viral vectors as delivery systems for genome editing tools is complemented with information regarding their main characteristics, pros, and cons. Finally, this information is framed by a concise description of the chief principles, tools, and applications of the genome editing field as a whole.
Engineered Viruses as Genome Editing Devices
Chen, Xiaoyu; Gonçalves, Manuel A F V
2016-01-01
Genome editing based on sequence-specific designer nucleases, also known as programmable nucleases, seeks to modify in a targeted and precise manner the genetic information content of living cells. Delivering into cells designer nucleases alone or together with donor DNA templates, which serve as surrogate homologous recombination (HR) substrates, can result in gene knockouts or gene knock-ins, respectively. As engineered replication-defective viruses, viral vectors are having an increasingly important role as delivery vehicles for donor DNA templates and designer nucleases, namely, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated Cas9 (CRISPR−Cas9) nucleases, also known as RNA-guided nucleases (RGNs). We review this dual role played by engineered viral particles on genome editing while focusing on their main scaffolds, consisting of lentiviruses, adeno-associated viruses, and adenoviruses. In addition, the coverage of the growing body of research on the repurposing of viral vectors as delivery systems for genome editing tools is complemented with information regarding their main characteristics, pros, and cons. Finally, this information is framed by a concise description of the chief principles, tools, and applications of the genome editing field as a whole. PMID:26336974
Salabi, Fatemeh; Nazari, Mahmood; Chen, Qing; Nimal, Jonathan; Tong, Jianming; Cao, Wen G
2014-12-20
Myostatin (MSTN) has previously been shown to negatively regulate the proliferation and differentiation of skeletal muscle cells. Satellite cells are quiescent muscle stem cells that promote muscle growth and repair. Because the mechanism of MSTN in the biology of satellite cells is not well understood, this study was conducted to generate MSTN mono-allelic knockout satellite cells using the zinc-finger nuclease mRNA (MSTN-KO ZFN mRNA) and also to investigate the effect of this disruption on the proliferation and differentiation of sheep primary satellite cells (PSCs). Nineteen biallelic and four mono-allelic knockout cell clones were obtained after sequence analysis. The homologous mono-allelic knockout cells with 5-bp deletion were used to further evaluations. The results demonstrated that mono-allelic knockout of MSTN gene leads to translation inhibition. Real-time quantitative PCR results indicated that knockout of MSTN contributed to an increase in CDK2 and follistatin and a decrease in p21 at the transcript level in proliferation conditions. Moreover, MSTN knockout significantly increased the proliferation of mutant clones (P < 0.01). Consistent with the observed increase in CDK2 and decrease in p21 in cells lacking MSTN, cell cycle analysis showed that MSTN negatively regulated the G1 to S progression. In addition, knockout of myostatin resulted in a remarkable increase in MyoD and MyoG expression under differentiating conditions but had no effect on Myf5 expression. These results expanded our understanding of the regulation mechanism of MSTN. Furthermore, the MSTN-KO ZFN mRNA system in PSCs could be used to generate transgenic sheep in the future.
Wolfs, Jason M; Hamilton, Thomas A; Lant, Jeremy T; Laforet, Marcon; Zhang, Jenny; Salemi, Louisa M; Gloor, Gregory B; Schild-Poulter, Caroline; Edgell, David R
2016-12-27
The CRISPR/Cas9 nuclease is commonly used to make gene knockouts. The blunt DNA ends generated by cleavage can be efficiently ligated by the classical nonhomologous end-joining repair pathway (c-NHEJ), regenerating the target site. This repair creates a cycle of cleavage, ligation, and target site regeneration that persists until sufficient modification of the DNA break by alternative NHEJ prevents further Cas9 cutting, generating a heterogeneous population of insertions and deletions typical of gene knockouts. Here, we develop a strategy to escape this cycle and bias events toward defined length deletions by creating an RNA-guided dual active site nuclease that generates two noncompatible DNA breaks at a target site, effectively deleting the majority of the target site such that it cannot be regenerated. The TevCas9 nuclease, a fusion of the I-TevI nuclease domain to Cas9, functions robustly in HEK293 cells and generates 33- to 36-bp deletions at frequencies up to 40%. Deep sequencing revealed minimal processing of TevCas9 products, consistent with protection of the DNA ends from exonucleolytic degradation and repair by the c-NHEJ pathway. Directed evolution experiments identified I-TevI variants with broadened targeting range, making TevCas9 an easy-to-use reagent. Our results highlight how the sequence-tolerant cleavage properties of the I-TevI homing endonuclease can be harnessed to enhance Cas9 applications, circumventing the cleavage and ligation cycle and biasing genome-editing events toward defined length deletions.
OutKnocker: a web tool for rapid and simple genotyping of designer nuclease edited cell lines.
Schmid-Burgk, Jonathan L; Schmidt, Tobias; Gaidt, Moritz M; Pelka, Karin; Latz, Eicke; Ebert, Thomas S; Hornung, Veit
2014-10-01
The application of designer nucleases allows the induction of DNA double-strand breaks (DSBs) at user-defined genomic loci. Due to imperfect DNA repair mechanisms, DSBs can lead to alterations in the genomic architecture, such as the disruption of the reading frame of a critical exon. This can be exploited to generate somatic knockout cell lines. While high genome editing activities can be achieved in various cellular systems, obtaining cell clones that contain all-allelic frameshift mutations at the target locus of interest remains a laborious task. To this end, we have developed an easy-to-follow deep sequencing workflow and the evaluation tool OutKnocker (www.OutKnocker.org), which allows convenient, reliable, and cost-effective identification of knockout cell lines. © 2014 Schmid-Burgk et al.; Published by Cold Spring Harbor Laboratory Press.
True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells.
Gurushidze, Maia; Hensel, Goetz; Hiekel, Stefan; Schedel, Sindy; Valkov, Vladimir; Kumlehn, Jochen
2014-01-01
Transcription activator-like effector nucleases (TALENs) are customizable fusion proteins able to cleave virtually any genomic DNA sequence of choice, and thereby to generate site-directed genetic modifications in a wide range of cells and organisms. In the present study, we expressed TALENs in pollen-derived, regenerable cells to establish the generation of instantly true-breeding mutant plants. A gfp-specific TALEN pair was expressed via Agrobacterium-mediated transformation in embryogenic pollen of transgenic barley harboring a functional copy of gfp. Thanks to the haploid nature of the target cells, knock-out mutations were readily detected, and homozygous primary mutant plants obtained following genome duplication. In all, 22% of the TALEN transgenics proved knocked out with respect to gfp, and the loss of function could be ascribed to the deletions of between four and 36 nucleotides in length. The altered gfp alleles were transmitted normally through meiosis, and the knock-out phenotype was consistently shown by the offspring of two independent mutants. Thus, here we describe the efficient production of TALEN-mediated gene knock-outs in barley that are instantaneously homozygous and non-chimeric in regard to the site-directed mutations induced. This TALEN approach has broad applicability for both elucidating gene function and tailoring the phenotype of barley and other crop species.
Yamamoto, Takashi
Programmable site-specific nuclease mediated-genome editing is an emerging biotechnology for precise manipulation of target genes. In genome editing, gene-knockout as well as gene-knockin are possible in various organisms and cultured cells. CRISPR-Cas9, which was developed in 2012, is a convenient and efficient programmable site-specific nuclease and the use spreads around the world rapidly. For this, it is important for the progress of life science research to introduce the genome editing technology.
Genome Editing in Mice Using TALE Nucleases.
Wefers, Benedikt; Brandl, Christina; Ortiz, Oskar; Wurst, Wolfgang; Kühn, Ralf
2016-01-01
Gene engineering for generating targeted mouse mutants is a key technology for biomedical research. Using TALENs as sequence-specific nucleases to induce targeted double-strand breaks, the mouse genome can be directly modified in zygotes in a single step without the need for embryonic stem cells. By embryo microinjection of TALEN mRNAs and targeting vectors, knockout and knock-in alleles can be generated fast and efficiently. In this chapter we provide protocols for the application of TALENs in mouse zygotes.
Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Masahito; Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571; Umeyama, Kazuhiro
2010-11-05
Research highlights: {yields} EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. {yields} ZFNs induced targeted mutations in porcine primary cultured cells. {yields} Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor themore » exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.« less
Li, Hong-Wei; Yang, Xiang-Min; Tang, Juan; Wang, Shi-Jie; Chen, Zhi-Nan; Jiang, Jian-Li
2015-03-01
HAb18G/CD147 belongs to the immunoglobulin superfamily and predominantly functions as an inducer of matrix metalloproteinase secretion for tumor invasion and metastasis. This study was designed to investigate the effects of HAb18G/CD147 knockout on hepatocellular carcinoma cells using zinc-finger nuclease (ZFNs)-targeted gene knockout approach. The HCC cell line SMMC-7721 was used for ZFNs-targeted cleavage of the HAb18G/CD147 gene. RT-PCR and Western blot assays were used to detect HAb18G/CD147 expression. HAb18G phenotypic changes following HAb18G/CD147 knockout in SMMC-K7721 cells were assessed using tumor cell adhesion, invasion, migration and colony formation and flow cytometric assays. These data demonstrated that tumor cell adhesion, invasion, migration, and colony formation capabilities of SMMC-K7721 were significantly reduced compared to parental cells or SMMC-7721 with re-expression of HAb18G/CD147 protein transfected with HAb18G/CD147 cDNA. Moreover, knockout of HAb18G/CD147 expression also induced SMMC-K7721 cells to undergo apoptosis compared to SMMC-7721 and SMMC-R7721 (P < 0.01). Molecularly, protein expression of p53 was induced in these cells, but re-expression of HAb18G/CD147 reduced p53 levels in SMMC-R7721 cells, possibly through inhibition of the PI3K-Akt-MDM2 signaling pathway. The findings provide a novel insight into the mechanisms underlying HAb18G/CD147-induced progression of HCC cells.
Rathe, Susan K; Moriarity, Branden S; Stoltenberg, Christopher B; Kurata, Morito; Aumann, Natalie K; Rahrmann, Eric P; Bailey, Natashay J; Melrose, Ellen G; Beckmann, Dominic A; Liska, Chase R; Largaespada, David A
2014-08-13
The evolution from microarrays to transcriptome deep-sequencing (RNA-seq) and from RNA interference to gene knockouts using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and Transcription Activator-Like Effector Nucleases (TALENs) has provided a new experimental partnership for identifying and quantifying the effects of gene changes on drug resistance. Here we describe the results from deep-sequencing of RNA derived from two cytarabine (Ara-C) resistance acute myeloid leukemia (AML) cell lines, and present CRISPR and TALEN based methods for accomplishing complete gene knockout (KO) in AML cells. We found protein modifying loss-of-function mutations in Dck in both Ara-C resistant cell lines. CRISPR and TALEN-based KO of Dck dramatically increased the IC₅₀ of Ara-C and introduction of a DCK overexpression vector into Dck KO clones resulted in a significant increase in Ara-C sensitivity. This effort demonstrates the power of using transcriptome analysis and CRISPR/TALEN-based KOs to identify and verify genes associated with drug resistance.
Production of genome-edited pluripotent stem cells and mice by CRISPR/Cas.
Horii, Takuro; Hatada, Izuho
2016-01-01
Clustered regularly at interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) nucleases, so-called CRISPR/Cas, was recently developed as an epoch-making genome engineering technology. This system only requires Cas9 nuclease and single-guide RNA complementary to a target locus. CRISPR/Cas enables the generation of knockout cells and animals in a single step. This system can also be used to generate multiple mutations and knockin in a single step, which is not possible using other methods. In this review, we provide an overview of genome editing by CRISPR/Cas in pluripotent stem cells and mice.
Characterization of a baculovirus lacking the DBP (DNA-binding protein) gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanarsdall, Adam L.; Mikhailov, Victor S.; N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 117808
2007-08-01
Autographa californica multiple nucleopolyhedrovirus (AcMNPV) encodes two proteins that possess properties typical of single-stranded DNA-binding proteins (SSBs), late expression factor-3 (LEF-3), and a protein referred to as DNA-binding protein (DBP). Whereas LEF-3 is a multi-functional protein essential for viral DNA replication, transporting helicase into the nucleus, and forms a stable complex with the baculovirus alkaline nuclease, the role for DBP in baculovirus replication remains unclear. Therefore, to better understand the functional role of DBP in viral replication, a DBP knockout virus was generated from an AcMNPV bacmid and analyzed. The results of a growth curve analysis indicated that the dbpmore » knockout construct was unable to produce budded virus indicating that dbp is essential. The lack of DBP does not cause a general shutdown of the expression of viral genes, as was revealed by accumulation of early (LEF-3), late (VP39), and very late (P10) proteins in cells transfected with the dbp knockout construct. To investigate the role of DBP in DNA replication, a real-time PCR-based assay was employed and showed that, although viral DNA synthesis occurred in cells transfected with the dbp knockout, the levels were less than that of the control virus suggesting that DBP is required for normal levels of DNA synthesis or for stability of nascent viral DNA. In addition, analysis of the viral DNA replicated by the dbp knockout by using field inversion gel electrophoresis failed to detect the presence of genome-length DNA. Furthermore, analysis of DBP from infected cells indicated that similar to LEF-3, DBP was tightly bound to viral chromatin. Assessment of the cellular localization of DBP relative to replicated viral DNA by immunoelectron microscopy indicated that, at 24 h post-infection, DBP co-localized with nascent DNA at distinct electron-dense regions within the nucleus. Finally, immunoelectron microscopic analysis of cells transfected with the dbp knockout revealed that DBP is required for the production of normal-appearing nucleocapsids and for the generation of the virogenic stroma.« less
Moon, JoonHo; Lee, Choongil; Kim, Su Jin; Choi, Ji-Yei; Lee, Byeong Chun; Kim, Jin-Soo; Jang, Goo
2014-05-27
Although noncancerous immortalized cell lines have been developed by introducing genes into human and murine somatic cells, such cell lines have not been available in large domesticated animals like pigs. For immortalizing porcine cells, primary porcine fetal fibroblasts were isolated and cultured using the human telomerase reverse transcriptase (hTERT) gene. After selecting cells with neomycin for 2 weeks, outgrowing colonized cells were picked up and subcultured for expansion. Immortalized cells were cultured for more than 9 months without changing their doubling time (~24 hours) or their diameter (< 20 µm) while control cells became replicatively senescent during the same period. Even a single cell expanded to confluence in 100 mm dishes. Furthermore, to knockout the CMAH gene, designed plasmids encoding a transcription activator-like effector nuclease (TALENs) pairs were transfected into the immortalized cells. Each single colony was analyzed by the mutation-sensitive T7 endonuclease I assay, fluorescent PCR, and dideoxy sequencing to obtain three independent clonal populations of cells that contained biallelic modifications. One CMAH knockout clone was chosen and used for somatic cell nuclear transfer. Cloned embryos developed to the blastocyst stage. In conclusion, we demonstrated that immortalized porcine fibroblasts were successfully established using the human hTERT gene, and the TALENs enabled biallelic gene disruptions in these immortalized cells.
Moon, JoonHo; Lee, Choongil; Kim, Su Jin; Choi, Ji-Yei; Lee, Byeong Chun; Kim, Jin-Soo; Jang, Goo
2014-01-01
Although noncancerous immortalized cell lines have been developed by introducing genes into human and murine somatic cells, such cell lines have not been available in large domesticated animals like pigs. For immortalizing porcine cells, primary porcine fetal fibroblasts were isolated and cultured using the human telomerase reverse transcriptase (hTERT) gene. After selecting cells with neomycin for 2 weeks, outgrowing colonized cells were picked up and subcultured for expansion. Immortalized cells were cultured for more than 9 months without changing their doubling time (~24 hours) or their diameter (< 20 µm) while control cells became replicatively senescent during the same period. Even a single cell expanded to confluence in 100 mm dishes. Furthermore, to knockout the CMAH gene, designed plasmids encoding a transcription activator-like effector nuclease (TALENs) pairs were transfected into the immortalized cells. Each single colony was analyzed by the mutation-sensitive T7 endonuclease I assay, fluorescent PCR, and dideoxy sequencing to obtain three independent clonal populations of cells that contained biallelic modifications. One CMAH knockout clone was chosen and used for somatic cell nuclear transfer. Cloned embryos developed to the blastocyst stage. In conclusion, we demonstrated that immortalized porcine fibroblasts were successfully established using the human hTERT gene, and the TALENs enabled biallelic gene disruptions in these immortalized cells. PMID:24866481
Richter, Susan; Morrison, Shona; Connor, Tim; Su, Jiechuang; Print, Cristin G.; Ronimus, Ron S.; McGee, Sean L.; Wilson, William R.
2013-01-01
Zinc finger nucleases (ZFN) are powerful tools for editing genes in cells. Here we use ZFNs to interrogate the biological function of ADPGK, which encodes an ADP-dependent glucokinase (ADPGK), in human tumour cell lines. The hypothesis we tested is that ADPGK utilises ADP to phosphorylate glucose under conditions where ATP becomes limiting, such as hypoxia. We characterised two ZFN knockout clones in each of two lines (H460 and HCT116). All four clones had frameshift mutations in all alleles at the target site in exon 1 of ADPGK, and were ADPGK-null by immunoblotting. ADPGK knockout had little or no effect on cell proliferation, but compromised the ability of H460 cells to survive siRNA silencing of hexokinase-2 under oxic conditions, with clonogenic survival falling from 21±3% for the parental line to 6.4±0.8% (p = 0.002) and 4.3±0.8% (p = 0.001) for the two knockouts. A similar increased sensitivity to clonogenic cell killing was observed under anoxia. No such changes were found when ADPGK was knocked out in HCT116 cells, for which the parental line was less sensitive than H460 to anoxia and to hexokinase-2 silencing. While knockout of ADPGK in HCT116 cells caused few changes in global gene expression, knockout of ADPGK in H460 cells caused notable up-regulation of mRNAs encoding cell adhesion proteins. Surprisingly, we could discern no consistent effect on glycolysis as measured by glucose consumption or lactate formation under anoxia, or extracellular acidification rate (Seahorse XF analyser) under oxic conditions in a variety of media. However, oxygen consumption rates were generally lower in the ADPGK knockouts, in some cases markedly so. Collectively, the results demonstrate that ADPGK can contribute to tumour cell survival under conditions of high glycolytic dependence, but the phenotype resulting from knockout of ADPGK is cell line dependent and appears to be unrelated to priming of glycolysis in these lines. PMID:23799003
Rapid Detection of Urinary Tract Infections via Bacterial Nuclease Activity.
Flenker, Katie S; Burghardt, Elliot L; Dutta, Nirmal; Burns, William J; Grover, Julia M; Kenkel, Elizabeth J; Weaver, Tyler M; Mills, James; Kim, Hyeon; Huang, Lingyan; Owczarzy, Richard; Musselman, Catherine A; Behlke, Mark A; Ford, Bradley; McNamara, James O
2017-06-07
Rapid and accurate bacterial detection methods are needed for clinical diagnostic, water, and food testing applications. The wide diversity of bacterial nucleases provides a rich source of enzymes that could be exploited as signal amplifying biomarkers to enable rapid, selective detection of bacterial species. With the exception of the use of micrococcal nuclease activity to detect Staphylococcus aureus, rapid methods that detect bacterial pathogens via their nuclease activities have not been developed. Here, we identify endonuclease I as a robust biomarker for E. coli and develop a rapid ultrasensitive assay that detects its activity. Comparison of nuclease activities of wild-type and nuclease-knockout E. coli clones revealed that endonuclease I is the predominant DNase in E. coli lysates. Endonuclease I is detectable by immunoblot and activity assays in uropathogenic E. coli strains. A rapid assay that detects endonuclease I activity in patient urine with an oligonucleotide probe exhibited substantially higher sensitivity for urinary tract infections than that reported for rapid urinalysis methods. The 3 hr turnaround time is much shorter than that of culture-based methods, thereby providing a means for expedited administration of appropriate antimicrobial therapy. We suggest this approach could address various unmet needs for rapid detection of E. coli. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
[The application of genome editing in identification of plant gene function and crop breeding].
Zhou, Xiang-chun; Xing, Yong-zhong
2016-03-01
Plant genome can be modified via current biotechnology with high specificity and excellent efficiency. Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system are the key engineered nucleases used in the genome editing. Genome editing techniques enable gene targeted mutagenesis, gene knock-out, gene insertion or replacement at the target sites during the endogenous DNA repair process, including non-homologous end joining (NHEJ) and homologous recombination (HR), triggered by the induction of DNA double-strand break (DSB). Genome editing has been successfully applied in the genome modification of diverse plant species, such as Arabidopsis thaliana, Oryza sativa, and Nicotiana tabacum. In this review, we summarize the application of genome editing in identification of plant gene function and crop breeding. Moreover, we also discuss the improving points of genome editing in crop precision genetic improvement for further study.
Cui, Chenchen; Song, Yujie; Liu, Jun; Ge, Hengtao; Li, Qian; Huang, Hui; Hu, Linyong; Zhu, Hongmei; Jin, Yaping; Zhang, Yong
2015-01-01
β-Lactoglobulin (BLG) is a major goat’s milk allergen that is absent in human milk. Engineered endonucleases, including transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases, enable targeted genetic modification in livestock. In this study, TALEN-mediated gene knockout followed by gene knock-in were used to generate BLG knockout goats as mammary gland bioreactors for large-scale production of human lactoferrin (hLF). We introduced precise genetic modifications in the goat genome at frequencies of approximately 13.6% and 6.09% for the first and second sequential targeting, respectively, by using targeting vectors that underwent TALEN-induced homologous recombination (HR). Analysis of milk from the cloned goats revealed large-scale hLF expression or/and decreased BLG levels in milk from heterozygous goats as well as the absence of BLG in milk from homozygous goats. Furthermore, the TALEN-mediated targeting events in somatic cells can be transmitted through the germline after SCNT. Our result suggests that gene targeting via TALEN-induced HR may expedite the production of genetically engineered livestock for agriculture and biomedicine. PMID:25994151
Cui, Chenchen; Song, Yujie; Liu, Jun; Ge, Hengtao; Li, Qian; Huang, Hui; Hu, Linyong; Zhu, Hongmei; Jin, Yaping; Zhang, Yong
2015-05-21
β-Lactoglobulin (BLG) is a major goat's milk allergen that is absent in human milk. Engineered endonucleases, including transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases, enable targeted genetic modification in livestock. In this study, TALEN-mediated gene knockout followed by gene knock-in were used to generate BLG knockout goats as mammary gland bioreactors for large-scale production of human lactoferrin (hLF). We introduced precise genetic modifications in the goat genome at frequencies of approximately 13.6% and 6.09% for the first and second sequential targeting, respectively, by using targeting vectors that underwent TALEN-induced homologous recombination (HR). Analysis of milk from the cloned goats revealed large-scale hLF expression or/and decreased BLG levels in milk from heterozygous goats as well as the absence of BLG in milk from homozygous goats. Furthermore, the TALEN-mediated targeting events in somatic cells can be transmitted through the germline after SCNT. Our result suggests that gene targeting via TALEN-induced HR may expedite the production of genetically engineered livestock for agriculture and biomedicine.
Ran, Yidong; Patron, Nicola; Kay, Pippa; Wong, Debbie; Buchanan, Margaret; Cao, Ying-Ying; Sawbridge, Tim; Davies, John P; Mason, John; Webb, Steven R; Spangenberg, German; Ainley, William M; Walsh, Terence A; Hayden, Matthew J
2018-05-07
Sequence-specific nucleases have been used to engineer targeted genome modifications in various plants. While targeted gene knockouts resulting in loss of function have been reported with relatively high rates of success, targeted gene editing using an exogenously supplied DNA repair template and site-specific transgene integration has been more challenging. Here, we report the first application of zinc finger nuclease (ZFN)-mediated, nonhomologous end-joining (NHEJ)-directed editing of a native gene in allohexaploid bread wheat to introduce, via a supplied DNA repair template, a specific single amino acid change into the coding sequence of acetohydroxyacid synthase (AHAS) to confer resistance to imidazolinone herbicides. We recovered edited wheat plants having the targeted amino acid modification in one or more AHAS homoalleles via direct selection for resistance to imazamox, an AHAS-inhibiting imidazolinone herbicide. Using a cotransformation strategy based on chemical selection for an exogenous marker, we achieved a 1.2% recovery rate of edited plants having the desired amino acid change and a 2.9% recovery of plants with targeted mutations at the AHAS locus resulting in a loss-of-function gene knockout. The latter results demonstrate a broadly applicable approach to introduce targeted modifications into native genes for nonselectable traits. All ZFN-mediated changes were faithfully transmitted to the next generation. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Zotova, Anastasia; Lopatukhina, Elena; Filatov, Alexander; Khaitov, Musa; Mazurov, Dmitriy
2017-11-02
Programmable endonucleases introduce DNA breaks at specific sites, which are repaired by non-homologous end joining (NHEJ) or homology recombination (HDR). Genome editing in human lymphoid cells is challenging as these difficult-to-transfect cells may also inefficiently repair DNA by HDR. Here, we estimated efficiencies and dynamics of knockout (KO) and knockin (KI) generation in human T and B cell lines depending on repair template, target loci and types of genomic endonucleases. Using zinc finger nuclease (ZFN), we have engineered Jurkat and CEM cells with the 8.2 kb human immunodeficiency virus type 1 (HIV-1) ∆Env genome integrated at the adeno-associated virus integration site 1 (AAVS1) locus that stably produce virus particles and mediate infection upon transfection with helper vectors. Knockouts generated by ZFN or clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) double nicking techniques were comparably efficient in lymphoid cells. However, unlike polyclonal sorted cells, gene-edited cells selected by cloning exerted tremendous deviations in functionality as estimated by replication of HIV-1 and human T cell leukemia virus type 1 (HTLV-1) in these cells. Notably, the recently reported high-fidelity eCas9 1.1 when combined to the nickase mutation displayed gene-dependent decrease in on-target activity. Thus, the balance between off-target effects and on-target efficiency of nucleases, as well as choice of the optimal method of edited cell selection should be taken into account for proper gene function validation in lymphoid cells.
Weyman, Philip D.; Beeri, Karen; Lefebvre, Stephane C.; ...
2014-10-10
Diatoms are unicellular photosynthetic algae with promise for green production of fuels and other chemicals. Recent genome-editing techniques have greatly improved the potential of many eukaryotic genetic systems, including diatoms, to enable knowledge-based studies and bioengineering. Using a new technique, transcription activator-like effector nucleases (TALENs), the gene encoding the urease enzyme in the model diatom, Phaeodactylum tricornutum, was targeted for interruption. The knockout cassette was identified within the urease gene by PCR and Southern blot analyses of genomic DNA. The lack of urease protein was confirmed by Western blot analyses in mutant cell lines that were unable to grow onmore » urea as the sole nitrogen source. Untargeted metabolomic analysis revealed a build-up of urea, arginine and ornithine in the urease knockout lines. All three intermediate metabolites are upstream of the urease reaction within the urea cycle, suggesting a disruption of the cycle despite urea production. Numerous high carbon metabolites were enriched in the mutant, implying a breakdown of cellular C and N repartitioning. The presented method improves the molecular toolkit for diatoms and clarifies the role of urease in the urea cycle.« less
Mutagenesis and Genome Engineering of Epstein-Barr Virus in Cultured Human Cells by CRISPR/Cas9.
Yuen, Kit-San; Chan, Chi-Ping; Kok, Kin-Hang; Jin, Dong-Yan
2017-01-01
The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 nuclease (Cas9) system is a powerful genome-editing tool for both chromosomal and extrachromosomal DNA. DNA viruses such as Epstein-Barr virus (EBV), which undergoes episomal replication in human cells, can be effectively edited by CRISPR/Cas9. We have demonstrated targeted editing of the EBV genome by CRISPR/Cas9 in several lines of EBV-infected cells. CRISPR/Cas9-based mutagenesis and genome engineering of EBV provides a new method for genetic analysis, which has some advantages over bacterial artificial chromosome-based recombineering. This approach might also prove useful in the cure of EBV infection. In this chapter, we use the knockout of the BART promoter as an example to detail the experimental procedures for construction of recombinant EBV in human cells.
Schofield, Desmond M; Sirka, Ernestas; Keshavarz-Moore, Eli; Ward, John M; Nesbeth, Darren N
2017-12-01
To reduce unwanted Fab' leakage from an autonucleolytic Escherichia coli strain, which co-expresses OmpA-signalled Staphylococcal nuclease and Fab' fragment in the periplasm, by substituting in Serratial nuclease and the DsbA periplasm translocation signal as alternatives. We attempted to genetically fuse a nuclease from Serratia marcescens to the OmpA signal peptide but plasmid construction failed, possibly due to toxicity of the resultant nuclease. Combining Serratial nuclease to the DsbA signal peptide was successful. The strain co-expressing this nuclease and periplasmic Fab' grew in complex media and exhibited nuclease activity detectable by DNAse agar plate but its growth in defined medium was retarded. Fab' coexpression with Staphylococcal nuclease fused to the DsbA signal peptide resulted in cells exhibiting nuclease activity and growth in defined medium. In cultivation to high cell density in a 5 l bioreactor, DsbA-fused Staphylococcal nuclease co-expression coincided with reduced Fab' leakage relative to the original autonucleolytic Fab' strain with OmpA-fused staphylococcal nuclease. We successfully rescued Fab' leakage back to acceptable levels and established a basis for future investigation of the linkage between periplasmic nuclease expression and leakage of co-expressed periplasmic Fab' fragment to the surrounding growth media.
MIYAGAWA, Shuji; MATSUNARI, Hitomi; WATANABE, Masahito; NAKANO, Kazuaki; UMEYAMA, Kazuhiro; SAKAI, Rieko; TAKAYANAGI, Shuko; TAKEISHI, Toki; FUKUDA, Tooru; YASHIMA, Sayaka; MAEDA, Akira; EGUCHI, Hiroshi; OKUYAMA, Hiroomi; NAGAYA, Masaki; NAGASHIMA, Hiroshi
2015-01-01
Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) are new tools for producing gene knockout (KO) animals. The current study reports produced genetically modified pigs, in which two endogenous genes were knocked out. Porcine fibroblast cell lines were derived from homozygous α1,3-galactosyltransferase (GalT) KO pigs. These cells were subjected to an additional KO for the cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) gene. A pair of ZFN-encoding mRNAs targeting exon 8 of the CMAH gene was used to generate the heterozygous CMAH KO cells, from which cloned pigs were produced by somatic cell nuclear transfer (SCNT). One of the cloned pigs obtained was re-cloned after additional KO of the remaining CMAH allele using the same ZFN-encoding mRNAs to generate GalT/CMAH-double homozygous KO pigs. On the other hand, the use of TALEN-encoding mRNAs targeting exon 7 of the CMAH gene resulted in efficient generation of homozygous CMAH KO cells. These cells were used for SCNT to produce cloned pigs homozygous for a double GalT/CMAH KO. These results demonstrate that the combination of TALEN-encoding mRNA, in vitro selection of the nuclear donor cells and SCNT provides a robust method for generating KO pigs. PMID:26227017
Miyagawa, Shuji; Matsunari, Hitomi; Watanabe, Masahito; Nakano, Kazuaki; Umeyama, Kazuhiro; Sakai, Rieko; Takayanagi, Shuko; Takeishi, Toki; Fukuda, Tooru; Yashima, Sayaka; Maeda, Akira; Eguchi, Hiroshi; Okuyama, Hiroomi; Nagaya, Masaki; Nagashima, Hiroshi
2015-01-01
Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) are new tools for producing gene knockout (KO) animals. The current study reports produced genetically modified pigs, in which two endogenous genes were knocked out. Porcine fibroblast cell lines were derived from homozygous α1,3-galactosyltransferase (GalT) KO pigs. These cells were subjected to an additional KO for the cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) gene. A pair of ZFN-encoding mRNAs targeting exon 8 of the CMAH gene was used to generate the heterozygous CMAH KO cells, from which cloned pigs were produced by somatic cell nuclear transfer (SCNT). One of the cloned pigs obtained was re-cloned after additional KO of the remaining CMAH allele using the same ZFN-encoding mRNAs to generate GalT/CMAH-double homozygous KO pigs. On the other hand, the use of TALEN-encoding mRNAs targeting exon 7 of the CMAH gene resulted in efficient generation of homozygous CMAH KO cells. These cells were used for SCNT to produce cloned pigs homozygous for a double GalT/CMAH KO. These results demonstrate that the combination of TALEN-encoding mRNA, in vitro selection of the nuclear donor cells and SCNT provides a robust method for generating KO pigs.
Weyman, Philip D; Beeri, Karen; Lefebvre, Stephane C; Rivera, Josefa; McCarthy, James K; Heuberger, Adam L; Peers, Graham; Allen, Andrew E; Dupont, Christopher L
2015-05-01
Diatoms are unicellular photosynthetic algae with promise for green production of fuels and other chemicals. Recent genome-editing techniques have greatly improved the potential of many eukaryotic genetic systems, including diatoms, to enable knowledge-based studies and bioengineering. Using a new technique, transcription activator-like effector nucleases (TALENs), the gene encoding the urease enzyme in the model diatom, Phaeodactylum tricornutum, was targeted for interruption. The knockout cassette was identified within the urease gene by PCR and Southern blot analyses of genomic DNA. The lack of urease protein was confirmed by Western blot analyses in mutant cell lines that were unable to grow on urea as the sole nitrogen source. Untargeted metabolomic analysis revealed a build-up of urea, arginine and ornithine in the urease knockout lines. All three intermediate metabolites are upstream of the urease reaction within the urea cycle, suggesting a disruption of the cycle despite urea production. Numerous high carbon metabolites were enriched in the mutant, implying a breakdown of cellular C and N repartitioning. The presented method improves the molecular toolkit for diatoms and clarifies the role of urease in the urea cycle. © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases.
Remy, Séverine; Tesson, Laurent; Menoret, Séverine; Usal, Claire; De Cian, Anne; Thepenier, Virginie; Thinard, Reynald; Baron, Daniel; Charpentier, Marine; Renaud, Jean-Baptiste; Buelow, Roland; Cost, Gregory J; Giovannangeli, Carine; Fraichard, Alexandre; Concordet, Jean-Paul; Anegon, Ignacio
2014-08-01
The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%-5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner. © 2014 Remy et al.; Published by Cold Spring Harbor Laboratory Press.
Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases
Remy, Séverine; Tesson, Laurent; Menoret, Séverine; Usal, Claire; De Cian, Anne; Thepenier, Virginie; Thinard, Reynald; Baron, Daniel; Charpentier, Marine; Renaud, Jean-Baptiste; Buelow, Roland; Cost, Gregory J.; Giovannangeli, Carine; Fraichard, Alexandre; Concordet, Jean-Paul; Anegon, Ignacio
2014-01-01
The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%–5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner. PMID:24989021
Efficient gene knock-out and knock-in with transgenic Cas9 in Drosophila.
Xue, Zhaoyu; Ren, Mengda; Wu, Menghua; Dai, Junbiao; Rong, Yikang S; Gao, Guanjun
2014-03-21
Bacterial Cas9 nuclease induces site-specific DNA breaks using small gRNA as guides. Cas9 has been successfully introduced into Drosophila for genome editing. Here, we improve the versatility of this method by developing a transgenic system that expresses Cas9 in the Drosophila germline. Using this system, we induced inheritable knock-out mutations by injecting only the gRNA into embryos, achieved highly efficient mutagenesis by expressing gRNA from the promoter of a novel non-coding RNA gene, and recovered homologous recombination-based knock-in of a fluorescent marker at a rate of 4.5% by co-injecting gRNA with a circular DNA donor. Copyright © 2014 Xue et al.
Design of a colicin E7 based chimeric zinc-finger nuclease
NASA Astrophysics Data System (ADS)
Németh, Eszter; Schilli, Gabriella K.; Nagy, Gábor; Hasenhindl, Christoph; Gyurcsik, Béla; Oostenbrink, Chris
2014-08-01
Colicin E7 is a natural bacterial toxin. Its nuclease domain (NColE7) enters the target cell and kills it by digesting the nucleic acids. The HNH-motif as the catalytic centre of NColE7 at the C-terminus requires the positively charged N-terminal loop for the nuclease activity—offering opportunities for allosteric control in a NColE7-based artificial nuclease. Accordingly, four novel zinc finger nucleases were designed by computational methods exploiting the special structural features of NColE7. The constructed models were subjected to MD simulations. The comparison of structural stability and functional aspects showed that these models may function as safely controlled artificial nucleases. This study was complemented by random mutagenesis experiments identifying potentially important residues for NColE7 function outside the catalytic region.
SNMIB/Apollo protects leading-strand telomeres against NHEJ-mediated repair.
Lam, Yung C; Akhter, Shamima; Gu, Peili; Ye, Jing; Poulet, Anaïs; Giraud-Panis, Marie-Josèphe; Bailey, Susan M; Gilson, Eric; Legerski, Randy J; Chang, Sandy
2010-07-07
Progressive telomere attrition or deficiency of the protective shelterin complex elicits a DNA damage response as a result of a cell's inability to distinguish dysfunctional telomeric ends from DNA double-strand breaks. SNMIB/Apollo is a shelterin-associated protein and a member of the SMN1/PSO2 nuclease family that localizes to telomeres through its interaction with TRF2. Here, we generated SNMIB/Apollo knockout mouse embryo fibroblasts (MEFs) to probe the function of SNMIB/Apollo at mammalian telomeres. SNMIB/Apollo null MEFs exhibit an increased incidence of G2 chromatid-type fusions involving telomeres created by leading-strand DNA synthesis, reflective of a failure to protect these telomeres after DNA replication. Mutations within SNMIB/Apollo's conserved nuclease domain failed to suppress this phenotype, suggesting that its nuclease activity is required to protect leading-strand telomeres. SNMIB/Apollo(-/-)ATM(-/-) MEFs display robust telomere fusions when Trf2 is depleted, indicating that ATM is dispensable for repair of uncapped telomeres in this setting. Our data implicate the 5'-3' exonuclease function of SNM1B/Apollo in the generation of 3' single-stranded overhangs at newly replicated leading-strand telomeres to protect them from engaging the non-homologous end-joining pathway.
Cho, Hyun-Soo; Kang, Jeong Gu; Lee, Jae-Hye; Lee, Jeong-Ju; Jeon, Seong Kook; Ko, Jeong-Heon; Kim, Dae-Soo; Park, Kun-Hyang; Kim, Yong-Sam; Kim, Nam-Soon
2015-09-15
TALE-nuclease chimeras (TALENs) can bind to and cleave specific genomic loci and, are used to engineer gene knockouts and additions. Recently, instead of using the FokI domain, epigenetically active domains, such as TET1 and LSD1, have been combined with TAL effector domains to regulate targeted gene expression via DNA and histone demethylation. However, studies of histone methylation in the TALE system have not been performed. Therefore, in this study, we established a novel targeted regulation system with a TAL effector domain and a histone methylation domain. To construct a TALE-methylation fusion protein, we combined a TAL effector domain containing an E-Box region to act as a Snail binding site and the SET domain of EHMT 2 to allow for histone methylation. The constructed TALE-SET module (TSET) repressed the expression of E-cadherin via by increasing H3K9 dimethylation. Moreover, the cells that overexpressed TSET showed increased cell migration and invasion. This is the first phenotype-based study of targeted histone methylation by the TALE module, and this new system can be applied in new cancer therapies to reduce side effects.
Musiyenko, Alla; Majumdar, Tanmay; Andrews, Joel; Adams, Brian; Barik, Sailen
2013-01-01
Summary Argonaute (Ago) plays a central role in RNA interference in metazoans, but its status in lower organisms remains ill-defined. We report on the Ago complex of the unicellular protozoan, Toxoplasma gondii (Tg), an obligatory pathogen of mammalian hosts. The PIWI-like domain of TgAgo lacked the canonical DDE/H catalytic triad, explaining its weak target RNA cleavage activity. However, TgAgo associated with a stronger RNA slicer, a Tudor staphylococcal nuclease (TSN), and with a protein Arg methyl transferase, PRMT1. Mutational analysis suggested that the N-terminal RGG-repeat domain of TgAgo was methylated by PRMT1, correlating with the recruitment of TSN. The slicer activity of TgAgo was Mg2+-dependent and required perfect complementarity between the guide RNA and the target. In contrast, the TSN activity was Ca2+-dependent and required an imperfectly paired guide RNA. Ago knockout parasites showed essentially normal growth, but in contrast, the PRMT1 knockouts grew abnormally. Chemical inhibition of Arg-methylation also had an anti-parasitic effect. These results suggest that the parasitic PRMT1 plays multiple roles, and its loss affects the recruitment of a more potent second slicer to the parasitic RNA silencing complex, the exact mechanism of which remains to be determined. PMID:22309152
[Establishment of L-periaxin gene knock-out RSC96 cell line].
Liang, Min; Peng, Tingting; Shi, Yawei
2016-12-25
Periaxin, a protein of noncompact myelin, is specifically expressed in the peripheral nervous system (PNS). There are two protein isoform L-periaxin and S-Periaxin by alternative splicing of periaxin gene, playing an important role in the initiation of myelin formation. So far, 18 different mutation sites in L-periaxin gene have been found to induce the peripheral demyelinating neurological charcot-marie-tooth diseases subtype 4F (CMT4F). The technique of activation of transcription activator-like effector nucleases (TALENS) was used to knock out the L-periaxin gene in RSC 96 cell line of Rattus. According to the design principle, the knock-out site of L-periaxin was assured to NLS domain of L-periaxin, which is target sequence of left and right arms of TALEN. The knock-out vectors of TALEN-L and TALEN-R were established and transfected into RSC96 cell. After puromycin screening, L-periaxin was knocked out successfully in RSC96 cell, which is confirmed by DNA sequence. The mutation efficiency is 21.6%. S-periaxin, not L-periaxin can be detected by Western blotting in L-periaxin gene knock-out RSC96 cell. The cell growth rate was decreased and the number of cells in G1 increased and decreased in S phase in L-periaxin gene knock-out RSC96 cell by flow cytometry and MTT assay.
Rao, Shengbin; Fujimura, Tatsuya; Matsunari, Hitomi; Sakuma, Tetsushi; Nakano, Kazuaki; Watanabe, Masahito; Asano, Yoshinori; Kitagawa, Eri; Yamamoto, Takashi; Nagashima, Hiroshi
2016-01-01
Myostatin (MSTN) is a negative regulator of myogenesis, and disruption of its function causes increased muscle mass in various species. Here, we report the generation of MSTN-knockout (KO) pigs using genome editing technology combined with somatic-cell nuclear transfer (SCNT). Transcription activator-like effector nuclease (TALEN) with non-repeat-variable di-residue variations, called Platinum TALEN, was highly efficient in modifying genes in porcine somatic cells, which were then used for SCNT to create MSTN KO piglets. These piglets exhibited a double-muscled phenotype, possessing a higher body weight and longissimus muscle mass measuring 170% that of wild-type piglets, with double the number of muscle fibers. These results demonstrate that loss of MSTN increases muscle mass in pigs, which may help increase pork production for consumption in the future. © 2015 Wiley Periodicals, Inc.
Gartzke, Dominik; Delzer, Jürgen; Laplanche, Loic; Uchida, Yasuo; Hoshi, Yutaro; Tachikawa, Masanori; Terasaki, Tetsuya; Sydor, Jens; Fricker, Gert
2015-06-01
To investigate whether it is possible to specifically suppress the expression and function of endogenous canine P-glycoprotein (cPgp) in Madin-Darby canine kidney type II cells (MDCKII) transfected with hPGP and breast cancer resistance protein (hBCRP) by zinc finger nuclease (ZFN) producing sequence specific DNA double strand breaks. Wild-type, hPGP-transfected, and hBCRP-transfected MDCKII cells were transfected with ZFN targeting for cPgp. Net efflux ratios (NER) of Pgp and Bcrp substrates were determined by dividing efflux ratios (basal-to-apical / apical-to-basal) in over-expressing cell monolayers by those in wild-type ones. From ZFN-transfected cells, cell populations (ko-cells) showing knockout of cPgp were selected based on genotyping by PCR. qRT-PCR analysis showed the significant knock-downs of cPgp and interestingly also cMrp2 expressions. Specific knock-downs of protein expression for cPgp were shown by western blotting and quantitative targeted absolute proteomics. Endogenous canine Bcrp proteins were not detected. For PGP-transfected cells, NERs of 5 Pgp substrates in ko-cells were significantly greater than those in parental cells not transfected with ZFN. Similar result was obtained for BCRP-transfected cells with a dual Pgp and Bcrp substrate. Specific efflux mediated by hPGP or hBCRP can be determined with MDCKII cells where cPgp has been knocked out by ZFN.
Lee, Choong-il; Kim, Hyongbum; Kim, Jin-Soo
2013-01-01
The ability to enrich cells with targeted mutations greatly facilitates the process of using engineered nucleases, including zinc-finger nucleases and transcription activator-like effector nucleases, to construct such cells. We previously used surrogate reporters to enrich cells containing nuclease-induced mutations via flow cytometry. This method is, however, limited by the availability of flow cytometers. Furthermore, sorted cells occasionally fail to form colonies after exposure to a strong laser and hydrostatic pressure. Here we describe two different types of novel reporters that enable mutant cell enrichment without the use of flow cytometers. We designed reporters that express H-2Kk, a surface antigen, and the hygromycin resistance protein (HygroR), respectively, when insertions or deletions are generated at the target sequences by the activity of engineered nucleases. After cotransfection of these reporters and the engineered nuclease-encoding plasmids, H-2Kk- and HygroR-expressing cells were isolated using magnetic separation and hygromycin treatment, respectively. We found that mutant cells were drastically enriched in the isolated cells, suggesting that these two reporters enable efficient enrichment of mutants. We propose that these two reporters will greatly facilitate the use of engineered nucleases in a wider range of biomedical research. PMID:23441197
Fmr1 and Nlgn3 knockout rats: novel tools for investigating autism spectrum disorders.
Hamilton, Shannon M; Green, Jennie R; Veeraragavan, Surabi; Yuva, Lisa; McCoy, Aaron; Wu, Yumei; Warren, Joe; Little, Lara; Ji, Diana; Cui, Xiaoxia; Weinstein, Edward; Paylor, Richard
2014-04-01
Animal models are critical for gaining insights into autism spectrum disorder (ASD). Despite their apparent advantages to mice for neural studies, rats have not been widely used for disorders of the human CNS, such as ASD, for the lack of convenient genome manipulation tools. Here we describe two of the first transgenic rat models for ASD, developed using zinc-finger nuclease (ZFN) methodologies, and their initial behavioral assessment using a rapid juvenile test battery. A syndromic and nonsyndromic rat model for ASD were created as two separate knockout rat lines with heritable disruptions in the genes encoding Fragile X mental retardation protein (FMRP) and Neuroligin3 (NLGN3). FMRP, a protein with numerous proposed functions including regulation of mRNA and synaptic protein synthesis, and NLGN3, a member of the neuroligin synaptic cell-adhesion protein family, have been implicated in human ASD. Juvenile subjects from both knockout rat lines exhibited abnormalities in ASD-relevant phenotypes including juvenile play, perseverative behaviors, and sensorimotor gating. These data provide important first evidence regarding the utility of rats as genetic models for investigating ASD-relevant genes.
FANCA knockout in human embryonic stem cells causes a severe growth disadvantage.
Vanuytsel, Kim; Cai, Qing; Nair, Nisha; Khurana, Satish; Shetty, Swati; Vermeesch, Joris R; Ordovas, Laura; Verfaillie, Catherine M
2014-09-01
Fanconi anemia (FA) is an autosomal recessive disorder characterized by progressive bone marrow failure (BMF) during childhood, aside from numerous congenital abnormalities. FA mouse models have been generated; however, they do not fully mimic the hematopoietic phenotype. As there is mounting evidence that the hematopoietic impairment starts already in utero, a human pluripotent stem cell model would constitute a more appropriate system to investigate the mechanisms underlying BMF in FA and its developmental basis. Using zinc finger nuclease (ZFN) technology, we have created a knockout of FANCA in human embryonic stem cells (hESC). We introduced a selection cassette into exon 2 thereby disrupting the FANCA coding sequence and found that whereas mono-allelically targeted cells retain an unaltered proliferation potential, disruption of the second allele causes a severe growth disadvantage. As a result, heterogeneous cultures arise due to the presence of cells still carrying an unaffected FANCA allele, quickly outgrowing the knockout cells. When pure cultures of FANCA knockout hESC are pursued either through selection or single cell cloning, this rapidly results in growth arrest and such cultures cannot be maintained. These data highlight the importance of a functional FA pathway at the pluripotent stem cell stage. Copyright © 2014. Published by Elsevier B.V.
Periwal, Vinita
2017-07-01
Genome editing with engineered nucleases (zinc finger nucleases, TAL effector nucleases s and Clustered regularly inter-spaced short palindromic repeats/CRISPR-associated) has recently been shown to have great promise in a variety of therapeutic and biotechnological applications. However, their exploitation in genetic analysis and clinical settings largely depends on their specificity for the intended genomic target. Large and complex genomes often contain highly homologous/repetitive sequences, which limits the specificity of genome editing tools and could result in off-target activity. Over the past few years, various computational approaches have been developed to assist the design process and predict/reduce the off-target activity of these nucleases. These tools could be efficiently used to guide the design of constructs for engineered nucleases and evaluate results after genome editing. This review provides a comprehensive overview of various databases, tools, web servers and resources for genome editing and compares their features and functionalities. Additionally, it also describes tools that have been developed to analyse post-genome editing results. The article also discusses important design parameters that could be considered while designing these nucleases. This review is intended to be a quick reference guide for experimentalists as well as computational biologists working in the field of genome editing with engineered nucleases. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T; Huang, S; Zhao, XF
Recent studies indicate that the DNA recognition domain of transcription activator-like (TAL) effectors can be combined with the nuclease domain of FokI restriction enzyme to produce TAL effector nucleases (TALENs) that, in pairs, bind adjacent DNA target sites and produce double-strand breaks between the target sequences, stimulating non-homologous end-joining and homologous recombination. Here, we exploit the four prevalent TAL repeats and their DNA recognition cipher to develop a 'modular assembly' method for rapid production of designer TALENs (dTALENs) that recognize unique DNA sequence up to 23 bases in any gene. We have used this approach to engineer 10 dTALENs tomore » target specific loci in native yeast chromosomal genes. All dTALENs produced high rates of site-specific gene disruptions and created strains with expected mutant phenotypes. Moreover, dTALENs stimulated high rates (up to 34%) of gene replacement by homologous recombination. Finally, dTALENs caused no detectable cytotoxicity and minimal levels of undesired genetic mutations in the treated yeast strains. These studies expand the realm of verified TALEN activity from cultured human cells to an intact eukaryotic organism and suggest that low-cost, highly dependable dTALENs can assume a significant role for gene modifications of value in human and animal health, agriculture and industry.« less
Progress in Genome Editing Technology and Its Application in Plants
Zhang, Kai; Raboanatahiry, Nadia; Zhu, Bin; Li, Maoteng
2017-01-01
Genome editing technology (GET) is a versatile approach that has progressed rapidly as a mechanism to alter the genotype and phenotype of organisms. However, conventional genome modification using GET cannot satisfy current demand for high-efficiency and site-directed mutagenesis, retrofitting of artificial nucleases has developed into a new avenue within this field. Based on mechanisms to recognize target genes, newly-developed GETs can generally be subdivided into three cleavage systems, protein-dependent DNA cleavage systems (i.e., zinc-finger nucleases, ZFN, and transcription activator-like effector nucleases, TALEN), RNA-dependent DNA cleavage systems (i.e., clustered regularly interspaced short palindromic repeats-CRISPR associated proteins, CRISPR-Cas9, CRISPR-Cpf1, and CRISPR-C2c1), and RNA-dependent RNA cleavage systems (i.e., RNA interference, RNAi, and CRISPR-C2c2). All these techniques can lead to double-stranded (DSB) or single-stranded breaks (SSB), and result in either random mutations via non-homologous end-joining (NHEJ) or targeted mutation via homologous recombination (HR). Thus, site-directed mutagenesis can be induced via targeted gene knock-out, knock-in, or replacement to modify specific characteristics including morphology-modification, resistance-enhancement, and physiological mechanism-improvement along with plant growth and development. In this paper, an non-comprehensive review on the development of different GETs as applied to plants is presented. PMID:28261237
Targeted Mutagenesis in Rice Using TALENs and the CRISPR/Cas9 System.
Endo, Masaki; Nishizawa-Yokoi, Ayako; Toki, Seiichi
2016-01-01
Sequence-specific nucleases (SSNs), such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) system, are powerful tools for understanding gene function and for developing novel traits in plants. In plant species for which transformation and regeneration systems using protoplasts are not yet established, direct delivery to nuclei of SSNs either in the form of RNA or protein is difficult. Thus, Agrobacterium-mediated transformation of SSN expression constructs in cultured cells is a practical means of delivering targeted mutagenesis in some plant species including rice. Because targeted mutagenesis occurs stochastically in transgenic cells and SSN-mediated targeted mutagenesis often leads to no selectable phenotype, identification of highly mutated cell lines is a critical step in obtaining regenerated plants with desired mutations.
Laux, Holger; Romand, Sandrine; Nuciforo, Sandro; Farady, Christopher J; Tapparel, Joel; Buechmann-Moeller, Stine; Sommer, Benjamin; Oakeley, Edward J; Bodendorf, Ursula
2018-05-19
An increasing number of non-antibody format proteins are entering the clinical development. However, one of the major hurdles for the production of non-antibody glycoproteins is host cell-related proteolytic degradation, which can drastically impact developability and timelines of pipeline projects. Chinese hamster ovary (CHO) cells are the preferred production host for recombinant therapeutic proteins. Using protease inhibitors, transcriptomics and genetic knockdowns we have identified, out of the more than 700 known proteases in rodents, Matriptase-1 as the major protease involved in degradation of recombinant proteins expressed in CHO-K1 cells. Subsequently Matriptase-1 was deleted in CHO-K1 cells using "Transcription Activator-Like Effector Nucleases" (TALENs) as well as zinc-finger nucleases (ZFNs). This resulted in a superior CHO-K1 matriptase knockout (KO) cell line with strongly reduced or no proteolytic degradation activity towards a panel of recombinantly-expressed proteins. The matriptase KO cell line was evaluated in spike-in experiments, and showed little or no degradation of proteins incubated in culture supernatant derived from the KO cells. This effect was confirmed when the same proteins were recombinantly expressed in the KO cell line. In summary, the combination of novel cell line engineering tools, next generation sequencing screening methods and the recently published Chinese hamster genome has enabled the development of this novel matriptase KO CHO cell line capable of improving expression yields of intact therapeutic proteins. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Pelascini, Laetitia P L; Maggio, Ignazio; Liu, Jin; Holkers, Maarten; Cathomen, Toni; Gonçalves, Manuel A F V
2013-12-01
Zinc-finger nucleases (ZFNs) work as dimers to induce double-stranded DNA breaks (DSBs) at predefined chromosomal positions. In doing so, they constitute powerful triggers to edit and to interrogate the function of genomic sequences in higher eukaryotes. A preferred route to introduce ZFNs into somatic cells relies on their cotransduction with two integrase-defective lentiviral vectors (IDLVs) each encoding a monomer of a functional heterodimeric pair. The episomal nature of IDLVs diminishes the risk of genotoxicity and ensures the strict transient expression profile necessary to minimize deleterious effects associated with long-term ZFN activity. However, by deploying IDLVs and conventional lentiviral vectors encoding HPRT1- or eGFP-specific ZFNs, we report that DSB formation at target alleles is limited after IDLV-mediated ZFN transfer. This IDLV-specific underperformance stems, to a great extent, from the activity of chromatin-remodeling histone deacetylases (HDACs). Importantly, the prototypic and U.S. Food and Drug Administration-approved inhibitors of metal-dependent HDACs, trichostatin A and vorinostat, respectively, did not hinder illegitimate recombination-mediated repair of targeted chromosomal DSBs. This allowed rescuing IDLV-mediated site-directed mutagenesis to levels approaching those achieved by using their isogenic chromosomally integrating counterparts. Hence, HDAC inhibition constitutes an efficacious expedient to incorporate in genome-editing strategies based on transient IDLV-mediated ZFN expression. Finally, we compared two of the most commonly used readout systems to measure targeted gene knockout activities based on restriction and mismatch-sensitive endonucleases. These experiments indicate that these enzymatic assays display a similar performance.
Fei, Ji-Feng; Schuez, Maritta; Tazaki, Akira; Taniguchi, Yuka; Roensch, Kathleen; Tanaka, Elly M
2014-09-09
The salamander is the only tetrapod that functionally regenerates all cell types of the limb and spinal cord (SC) and thus represents an important regeneration model, but the lack of gene-knockout technology has limited molecular analysis. We compared transcriptional activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPRs) in the knockout of three loci in the axolotl and find that CRISPRs show highly penetrant knockout with less toxic effects compared to TALENs. Deletion of Sox2 in up to 100% of cells yielded viable F0 larvae with normal SC organization and ependymoglial cell marker expression such as GFAP and ZO-1. However, upon tail amputation, neural stem cell proliferation was inhibited, resulting in spinal-cord-specific regeneration failure. In contrast, the mesodermal blastema formed normally. Sox3 expression during development, but not regeneration, most likely allowed embryonic survival and the regeneration-specific phenotype. This analysis represents the first tissue-specific regeneration phenotype from the genomic deletion of a gene in the axolotl. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Baculovirus-based genome editing in primary cells.
Mansouri, Maysam; Ehsaei, Zahra; Taylor, Verdon; Berger, Philipp
2017-03-01
Genome editing in eukaryotes became easier in the last years with the development of nucleases that induce double strand breaks in DNA at user-defined sites. CRISPR/Cas9-based genome editing is currently one of the most powerful strategies. In the easiest case, a nuclease (e.g. Cas9) and a target defining guide RNA (gRNA) are transferred into a target cell. Non-homologous end joining (NHEJ) repair of the DNA break following Cas9 cleavage can lead to inactivation of the target gene. Specific repair or insertion of DNA with Homology Directed Repair (HDR) needs the simultaneous delivery of a repair template. Recombinant Lentivirus or Adenovirus genomes have enough capacity for a nuclease coding sequence and the gRNA but are usually too small to also carry large targeting constructs. We recently showed that a baculovirus-based multigene expression system (MultiPrime) can be used for genome editing in primary cells since it possesses the necessary capacity to carry the nuclease and gRNA expression constructs and the HDR targeting sequences. Here we present new Acceptor plasmids for MultiPrime that allow simplified cloning of baculoviruses for genome editing and we show their functionality in primary cells with limited life span and induced pluripotent stem cells (iPS). Copyright © 2017 Elsevier Inc. All rights reserved.
All-in-One CRISPR-Cas9/FokI-dCas9 Vector-Mediated Multiplex Genome Engineering in Cultured Cells.
Sakuma, Tetsushi; Sakamoto, Takuya; Yamamoto, Takashi
2017-01-01
CRISPR-Cas9 enables highly convenient multiplex genome engineering in cultured cells, because it utilizes generic Cas9 nuclease and an easily customizable single-guide RNA (sgRNA) for site-specific DNA double-strand break induction. We previously established a multiplex CRISPR-Cas9 assembly system for constructing an all-in-one vector simultaneously expressing multiple sgRNAs and Cas9 nuclease or other Cas9 variants including FokI-dCas9, which supersedes the wild-type Cas9 with regard to high specificity. In this chapter, we describe a streamlined protocol to design and construct multiplex CRISPR-Cas9 or FokI-dCas9 vectors, to introduce them into cultured cells by lipofection or electroporation, to enrich the genomically edited cells with a transient puromycin selection, to validate the mutation efficiency by Surveyor nuclease assay, and to perform off-target analyses. We show that our protocol enables highly efficient multiplex genome engineering even in hard-to-transfect HepG2 cells.
Efficient TALEN-mediated gene knockout in livestock
Carlson, Daniel F.; Tan, Wenfang; Lillico, Simon G.; Stverakova, Dana; Proudfoot, Chris; Christian, Michelle; Voytas, Daniel F.; Long, Charles R.; Whitelaw, C. Bruce A.; Fahrenkrug, Scott C.
2012-01-01
Transcription activator-like effector nucleases (TALENs) are programmable nucleases that join FokI endonuclease with the modular DNA-binding domain of TALEs. Although zinc-finger nucleases enable a variety of genome modifications, their application to genetic engineering of livestock has been slowed by technical limitations of embryo-injection, culture of primary cells, and difficulty in producing reliable reagents with a limited budget. In contrast, we found that TALENs could easily be manufactured and that over half (23/36, 64%) demonstrate high activity in primary cells. Cytoplasmic injections of TALEN mRNAs into livestock zygotes were capable of inducing gene KO in up to 75% of embryos analyzed, a portion of which harbored biallelic modification. We also developed a simple transposon coselection strategy for TALEN-mediated gene modification in primary fibroblasts that enabled both enrichment for modified cells and efficient isolation of modified colonies. Coselection after treatment with a single TALEN-pair enabled isolation of colonies with mono- and biallelic modification in up to 54% and 17% of colonies, respectively. Coselection after treatment with two TALEN-pairs directed against the same chromosome enabled the isolation of colonies harboring large chromosomal deletions and inversions (10% and 4% of colonies, respectively). TALEN-modified Ossabaw swine fetal fibroblasts were effective nuclear donors for cloning, resulting in the creation of miniature swine containing mono- and biallelic mutations of the LDL receptor gene as models of familial hypercholesterolemia. TALENs thus appear to represent a highly facile platform for the modification of livestock genomes for both biomedical and agricultural applications. PMID:23027955
Genome-scale CRISPR-Cas9 knockout screening in human cells.
Shalem, Ophir; Sanjana, Neville E; Hartenian, Ella; Shi, Xi; Scott, David A; Mikkelson, Tarjei; Heckl, Dirk; Ebert, Benjamin L; Root, David E; Doench, John G; Zhang, Feng
2014-01-03
The simplicity of programming the CRISPR (clustered regularly interspaced short palindromic repeats)-associated nuclease Cas9 to modify specific genomic loci suggests a new way to interrogate gene function on a genome-wide scale. We show that lentiviral delivery of a genome-scale CRISPR-Cas9 knockout (GeCKO) library targeting 18,080 genes with 64,751 unique guide sequences enables both negative and positive selection screening in human cells. First, we used the GeCKO library to identify genes essential for cell viability in cancer and pluripotent stem cells. Next, in a melanoma model, we screened for genes whose loss is involved in resistance to vemurafenib, a therapeutic RAF inhibitor. Our highest-ranking candidates include previously validated genes NF1 and MED12, as well as novel hits NF2, CUL3, TADA2B, and TADA1. We observe a high level of consistency between independent guide RNAs targeting the same gene and a high rate of hit confirmation, demonstrating the promise of genome-scale screening with Cas9.
Generation of Esr1-Knockout Rats Using Zinc Finger Nuclease-Mediated Genome Editing
Dhakal, Pramod; Kubota, Kaiyu; Chakraborty, Damayanti; Lei, Tianhua; Larson, Melissa A.; Wolfe, Michael W.; Roby, Katherine F.; Vivian, Jay L.
2014-01-01
Estrogens play pivotal roles in development and function of many organ systems, including the reproductive system. We have generated estrogen receptor 1 (Esr1)-knockout rats using zinc finger nuclease (ZFN) genome targeting. mRNAs encoding ZFNs targeted to exon 3 of Esr1 were microinjected into single-cell rat embryos and transferred to pseudopregnant recipients. Of 17 live births, 5 had biallelic and 1 had monoallelic Esr1 mutations. A founder with monoallelic mutations was backcrossed to a wild-type rat. Offspring possessed only wild-type Esr1 alleles or wild-type alleles and Esr1 alleles containing either 482 bp (Δ482) or 223 bp (Δ223) deletions, indicating mosaicism in the founder. These heterozygous mutants were bred for colony expansion, generation of homozygous mutants, and phenotypic characterization. The Δ482 Esr1 allele yielded altered transcript processing, including the absence of exon 3, aberrant splicing of exon 2 and 4, and a frameshift that generated premature stop codons located immediately after the codon for Thr157. ESR1 protein was not detected in homozygous Δ482 mutant uteri. ESR1 disruption affected sexually dimorphic postnatal growth patterns and serum levels of gonadotropins and sex steroid hormones. Both male and female Esr1-null rats were infertile. Esr1-null males had small testes with distended and dysplastic seminiferous tubules, whereas Esr1-null females possessed large polycystic ovaries, thread-like uteri, and poorly developed mammary glands. In addition, uteri of Esr1-null rats did not effectively respond to 17β-estradiol treatment, further demonstrating that the Δ482 Esr1 mutation created a null allele. This rat model provides a new experimental tool for investigating the pathophysiology of estrogen action. PMID:24506075
Generation of Esr1-knockout rats using zinc finger nuclease-mediated genome editing.
Rumi, M A Karim; Dhakal, Pramod; Kubota, Kaiyu; Chakraborty, Damayanti; Lei, Tianhua; Larson, Melissa A; Wolfe, Michael W; Roby, Katherine F; Vivian, Jay L; Soares, Michael J
2014-05-01
Estrogens play pivotal roles in development and function of many organ systems, including the reproductive system. We have generated estrogen receptor 1 (Esr1)-knockout rats using zinc finger nuclease (ZFN) genome targeting. mRNAs encoding ZFNs targeted to exon 3 of Esr1 were microinjected into single-cell rat embryos and transferred to pseudopregnant recipients. Of 17 live births, 5 had biallelic and 1 had monoallelic Esr1 mutations. A founder with monoallelic mutations was backcrossed to a wild-type rat. Offspring possessed only wild-type Esr1 alleles or wild-type alleles and Esr1 alleles containing either 482 bp (Δ482) or 223 bp (Δ223) deletions, indicating mosaicism in the founder. These heterozygous mutants were bred for colony expansion, generation of homozygous mutants, and phenotypic characterization. The Δ482 Esr1 allele yielded altered transcript processing, including the absence of exon 3, aberrant splicing of exon 2 and 4, and a frameshift that generated premature stop codons located immediately after the codon for Thr157. ESR1 protein was not detected in homozygous Δ482 mutant uteri. ESR1 disruption affected sexually dimorphic postnatal growth patterns and serum levels of gonadotropins and sex steroid hormones. Both male and female Esr1-null rats were infertile. Esr1-null males had small testes with distended and dysplastic seminiferous tubules, whereas Esr1-null females possessed large polycystic ovaries, thread-like uteri, and poorly developed mammary glands. In addition, uteri of Esr1-null rats did not effectively respond to 17β-estradiol treatment, further demonstrating that the Δ482 Esr1 mutation created a null allele. This rat model provides a new experimental tool for investigating the pathophysiology of estrogen action.
Phosphodiester models for cleavage of nucleic acids
2018-01-01
Nucleic acids that store and transfer biological information are polymeric diesters of phosphoric acid. Cleavage of the phosphodiester linkages by protein enzymes, nucleases, is one of the underlying biological processes. The remarkable catalytic efficiency of nucleases, together with the ability of ribonucleic acids to serve sometimes as nucleases, has made the cleavage of phosphodiesters a subject of intensive mechanistic studies. In addition to studies of nucleases by pH-rate dependency, X-ray crystallography, amino acid/nucleotide substitution and computational approaches, experimental and theoretical studies with small molecular model compounds still play a role. With small molecules, the importance of various elementary processes, such as proton transfer and metal ion binding, for stabilization of transition states may be elucidated and systematic variation of the basicity of the entering or departing nucleophile enables determination of the position of the transition state on the reaction coordinate. Such data is important on analyzing enzyme mechanisms based on synergistic participation of several catalytic entities. Many nucleases are metalloenzymes and small molecular models offer an excellent tool to construct models for their catalytic centers. The present review tends to be an up to date summary of what has been achieved by mechanistic studies with small molecular phosphodiesters. PMID:29719577
Liao, Chengshui; Wang, Xiaoli; Tian, Wenjing; Zhang, Mengke; Zhang, Chunjie; Li, Yinju; Wu, Tingcai; Cheng, Xiangchao
2017-08-25
Although there are 125 predicted DNase Ⅱ-like family genes in the Trichinella spiralis genome, plancitoxin-1-like (Ts-Pt) contains the HKD motif, a typical conserved region of DNase Ⅱ, in N- and C-terminal. It is generally believed that histidine is the active site in DNase Ⅱ. To study the nuclease activity of recombinant Ts-Pt with mutations in the active site from T. spiralis, different fragments of the mutated Ts-Pt genes were cloned using overlap PCR technique and inserted into the expressing vector pET-28a(+), and transformed into Escherichia coli Rosseta (DE3). The fusion proteins were purified by Ni-NTA affinity chromatography and SDS-PAGE. Nuclease activity of the recombinant proteins was detected by agarose gel electrophoresis and nuclease-zymography. The recombinant plasmids harboring the mutated Ts-Pt genes were constructed and expressed as inclusive body in a prokaryotic expression system. After renaturation in vitro, the recombinant proteins had no nuclease activity according to agarose gel electrophoresis. However, the expressed proteins as inclusive body displayed the ability to degrade DNA after renaturation in gel. And the nuclease activity was not affected after subjected to mutation of active site in N- and C-termini of Ts-Pt. These results provide the basis to study the relationship between DNase Ⅱ-like protein family and infection of T. spiralis.
The CRISPR-Cas system - from bacterial immunity to genome engineering.
Czarnek, Maria; Bereta, Joanna
2016-09-01
Precise and efficient genome modifications present a great value in attempts to comprehend the roles of particular genes and other genetic elements in biological processes as well as in various pathologies. In recent years novel methods of genome modification known as genome editing, which utilize so called "programmable" nucleases, came into use. A true revolution in genome editing has been brought about by the introduction of the CRISP-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) system, in which one of such nucleases, i.e. Cas9, plays a major role. This system is based on the elements of the bacterial and archaeal mechanism responsible for acquired immunity against phage infections and transfer of foreign genetic material. Microorganisms incorporate fragments of foreign DNA into CRISPR loci present in their genomes, which enables fast recognition and elimination of future infections. There are several types of CRISPR-Cas systems among prokaryotes but only elements of CRISPR type II are employed in genome engineering. CRISPR-Cas type II utilizes small RNA molecules (crRNA and tracrRNA) to precisely direct the effector nuclease - Cas9 - to a specific site in the genome, i.e. to the sequence complementary to crRNA. Cas9 may be used to: (i) introduce stable changes into genomes e.g. in the process of generation of knock-out and knock-in animals and cell lines, (ii) activate or silence the expression of a gene of interest, and (iii) visualize specific sites in genomes of living cells. The CRISPR-Cas-based tools have been successfully employed for generation of animal and cell models of a number of diseases, e.g. specific types of cancer. In the future, the genome editing by programmable nucleases may find wide application in medicine e.g. in the therapies of certain diseases of genetic origin and in the therapy of HIV-infected patients.
Reyon, Deepak; Maeder, Morgan L; Khayter, Cyd; Tsai, Shengdar Q; Foley, Jonathan E; Sander, Jeffry D; Joung, J Keith
2013-07-01
Customized DNA-binding domains made using transcription activator-like effector (TALE) repeats are rapidly growing in importance as widely applicable research tools. TALE nucleases (TALENs), composed of an engineered array of TALE repeats fused to the FokI nuclease domain, have been used successfully for directed genome editing in various organisms and cell types. TALE transcription factors (TALE-TFs), consisting of engineered TALE repeat arrays linked to a transcriptional regulatory domain, have been used to up- or downregulate expression of endogenous genes in human cells and plants. This unit describes a detailed protocol for the recently described fast ligation-based automatable solid-phase high-throughput (FLASH) assembly method. FLASH enables automated high-throughput construction of engineered TALE repeats using an automated liquid handling robot or manually using a multichannel pipet. Using the automated approach, a single researcher can construct up to 96 DNA fragments encoding TALE repeat arrays of various lengths in a single day, and then clone these to construct sequence-verified TALEN or TALE-TF expression plasmids in a week or less. Plasmids required for FLASH are available by request from the Joung lab (http://eGenome.org). This unit also describes improvements to the Zinc Finger and TALE Targeter (ZiFiT Targeter) web server (http://ZiFiT.partners.org) that facilitate the design and construction of FLASH TALE repeat arrays in high throughput. © 2013 by John Wiley & Sons, Inc.
Reyon, Deepak; Maeder, Morgan L.; Khayter, Cyd; Tsai, Shengdar Q.; Foley, Jonathan E.; Sander, Jeffry D.; Joung, J. Keith
2013-01-01
Customized DNA-binding domains made using Transcription Activator-Like Effector (TALE) repeats are rapidly growing in importance as widely applicable research tools. TALE nucleases (TALENs), composed of an engineered array of TALE repeats fused to the FokI nuclease domain, have been used successfully for directed genome editing in multiple different organisms and cell types. TALE transcription factors (TALE-TFs), consisting of engineered TALE repeat arrays linked to a transcriptional regulatory domain, have been used to up- or down-regulate expression of endogenous genes in human cells and plants. Here we describe a detailed protocol for practicing the recently described Fast Ligation-based Automatable Solid-phase High-throughput (FLASH) assembly method. FLASH enables automated high-throughput construction of engineered TALE repeats using an automated liquid handling robot or manually using a multi-channel pipet. With the automated version of FLASH, a single researcher can construct up to 96 DNA fragments encoding various length TALE repeat arrays in one day and then clone these to construct sequence-verified TALEN or TALE-TF expression plasmids in one week or less. Plas-mids required to practice FLASH are available by request from the Joung Lab (http://www.jounglab.org/). We also describe here improvements to the Zinc Finger and TALE Targeter (ZiFiT Targeter) webserver (http://ZiFiTBeta.partners.org) that facilitate the design and construction of FLASH TALE repeat arrays in high-throughput. PMID:23821439
Huang, Bi; Bao, Lang; Zhong, Qi; Shang, Zheng-ling; Zhang, Hui-dong; Zhang, Ying
2008-02-01
To construct the eukaryotic experssion vector of LipL32 gene from Leptospira serovar Lai and express the recombinant plasmid in COS-7 cell. The LipL32 gene was amplified from Leptospira strain 017 genomic DNA by PCR and cloned into pcDNA3.1, through restriction nuclease enzyme digestion. Then the recombinant plasmid was transformed into E.coli DH5alpha. After identified by nuclease digestion, PCR and sequencing analysis, the recombinant vector was transfected into COS-7 cell with lipsome. The expression of the target gene was detected by RT-PCR and Western blot. The eukaryotic experssion vector pcDNA3.1-LipL32 was successfully constructed and stably expressed in COS-7 cell. The eukaryotic recombinant vector of outer membrane protein LipL32 gene from Leptospira serovar Lai can be expressed in mammalian cell, which provides an experimental basis for the application of the Leptospira DNA vaccine.
A Transcription Activator-Like Effector (TALE) Toolbox for Genome Engineering
Sanjana, Neville E.; Cong, Le; Zhou, Yang; Cunniff, Margaret M.; Feng, Guoping; Zhang, Feng
2013-01-01
Transcription activator-like effectors (TALEs) are a class of naturally occurring DNA binding proteins found in the plant pathogen Xanthomonas sp. The DNA binding domain of each TALE consists of tandem 34-amino acid repeat modules that can be rearranged according to a simple cipher to target new DNA sequences. Customized TALEs can be used for a wide variety of genome engineering applications, including transcriptional modulation and genome editing. Here we describe a toolbox for rapid construction of custom TALE transcription factors (TALE-TFs) and nucleases (TALENs) using a hierarchical ligation procedure. This toolbox facilitates affordable and rapid construction of custom TALE-TFs and TALENs within one week and can be easily scaled up to construct TALEs for multiple targets in parallel. We also provide details for testing the activity in mammalian cells of custom TALE-TFs and TALENs using, respectively, qRT-PCR and Surveyor nuclease. The TALE toolbox described here will enable a broad range of biological applications. PMID:22222791
Developmental history and application of CRISPR in human disease.
Liang, Puping; Zhang, Xiya; Chen, Yuxi; Huang, Junjiu
2017-06-01
Genome-editing tools are programmable artificial nucleases, mainly including zinc-finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeat (CRISPR). By recognizing and cleaving specific DNA sequences, genome-editing tools make it possible to generate site-specific DNA double-strand breaks (DSBs) in the genome. DSBs will then be repaired by either error-prone nonhomologous end joining or high-fidelity homologous recombination mechanisms. Through these two different mechanisms, endogenous genes can be knocked out or precisely repaired/modified. Rapid developments in genome-editing tools, especially CRISPR, have revolutionized human disease models generation, for example, various zebrafish, mouse, rat, pig, monkey and human cell lines have been constructed. Here, we review the developmental history of CRISPR and its application in studies of human diseases. In addition, we also briefly discussed the therapeutic application of CRISPR in the near future. Copyright © 2017 John Wiley & Sons, Ltd.
Genome editing in sea urchin embryos by using a CRISPR/Cas9 system.
Lin, Che-Yi; Su, Yi-Hsien
2016-01-15
Sea urchin embryos are a useful model system for investigating early developmental processes and the underlying gene regulatory networks. Most functional studies using sea urchin embryos rely on antisense morpholino oligonucleotides to knockdown gene functions. However, major concerns related to this technique include off-target effects, variations in morpholino efficiency, and potential morpholino toxicity; furthermore, such problems are difficult to discern. Recent advances in genome editing technologies have introduced the prospect of not only generating sequence-specific knockouts, but also providing genome-engineering applications. Two genome editing tools, zinc-finger nuclease (ZFN) and transcription activator-like effector nucleases (TALENs), have been utilized in sea urchin embryos, but the resulting efficiencies are far from satisfactory. The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) system serves as an easy and efficient method with which to edit the genomes of several established and emerging model organisms in the field of developmental biology. Here, we apply the CRISPR/Cas9 system to the sea urchin embryo. We designed six guide RNAs (gRNAs) against the well-studied nodal gene and discovered that five of the gRNAs induced the expected phenotype in 60-80% of the injected embryos. In addition, we developed a simple method for isolating genomic DNA from individual embryos, enabling phenotype to be precisely linked to genotype, and revealed that the mutation rates were 67-100% among the sequenced clones. Of the two potential off-target sites we examined, no off-target effects were observed. The detailed procedures described herein promise to accelerate the usage of CRISPR/Cas9 system for genome editing in sea urchin embryos. Copyright © 2015 Elsevier Inc. All rights reserved.
Efficient PRNP deletion in bovine genome using gene-editing technologies in bovine cells
Choi, WooJae; Kim, Eunji; Yum, Soo-Young; Lee, ChoongIl; Lee, JiHyun; Moon, JoonHo; Ramachandra, Sisitha; Malaweera, Buddika Oshadi; Cho, JongKi; Kim, Jin-Soo; Kim, SeokJoong; Jang, Goo
2015-01-01
abstract Even though prion (encoded by the PRNP gene) diseases like bovine spongiform encephalopathy (BSE) are fatal neurodegenerative diseases in cattle, their study via gene deletion has been limited due to the absence of cell lines or mutant models. In this study, we aim to develop an immortalized fibroblast cell line in which genome-engineering technology can be readily applied to create gene-modified clones for studies. To this end, this study is designed to 1) investigate the induction of primary fibroblasts to immortalization by introducing Bmi-1 and hTert genes; 2) investigate the disruption of the PRNP in those cells; and 3) evaluate the gene expression and embryonic development using knockout (KO) cell lines. Primary cells from a male neonate were immortalized with Bmi-1and hTert. Immortalized cells were cultured for more than 180 days without any changes in their doubling time and morphology. Furthermore, to knockout the PRNP gene, plasmids that encode transcription activator-like effector nuclease (TALEN) pairs were transfected into the cells, and transfected single cells were propagated. Mutated clonal cell lines were confirmed by T7 endonuclease I assay and sequencing. Four knockout cell lines were used for somatic cell nuclear transfer (SCNT), and the resulting embryos were developed to the blastocyst stage. The genes (CSNK2A1, FAM64A, MPG and PRND) were affected after PRNP disruption in immortalized cells. In conclusion, we established immortalized cattle fibroblasts using Bmi-1 and hTert genes, and used TALENs to knockout the PRNP gene in these immortalized cells. The efficient PRNP KO is expected to be a useful technology to develop our understanding of in vitro prion protein functions in cattle. PMID:26217959
Chen, Yuting; Lu, Wenqing; Gao, Na; Long, Yi; Shao, Yanjiao; Liu, Meizhen; Chen, Huaqing; Ye, Shixin; Ma, Xueyun; Liu, Mingyao; Li, Dali
2017-02-01
The laboratory rat is a valuable mammalian model organism for basic research and drug discovery. Here we demonstrate an efficient methodology by applying transcription activator-like effector nucleases (TALENs) technology to generate Leptin receptor (Lepr) knockout rats on the Sprague Dawley (SD) genetic background. Through direct injection of in vitro transcribed mRNA of TALEN pairs into SD rat zygotes, somatic mutations were induced in two of three resulting pups. One of the founders carrying bi-allelic mutation exhibited early onset of obesity and infertility. The other founder carried a chimeric mutation which was efficiently transmitted to the progenies. Through phenotyping of the resulting three lines of rats bearing distinct mutations in the Lepr locus, we found that the strains with a frame-shifted or premature stop codon mutation led to obesity and metabolic disorders. However, no obvious defect was observed in a strain with an in-frame 57 bp deletion in the extracellular domain of Lepr. This suggests the deleted amino acids do not significantly affect Lepr structure and function. This is the first report of generating the Lepr mutant obese rat model in SD strain through a reverse genetic approach. This suggests that TALEN is an efficient and powerful gene editing technology for the generation of disease models.
Cui, Miao; Lin, Che-Yi; Su, Yi-Hsien
2017-09-01
Studies on the gene regulatory networks (GRNs) of sea urchin embryos have provided a basic understanding of the molecular mechanisms controlling animal development. The causal links in GRNs have been verified experimentally through perturbation of gene functions. Microinjection of antisense morpholino oligonucleotides (MOs) into the egg is the most widely used approach for gene knockdown in sea urchin embryos. The modification of MOs into a membrane-permeable form (vivo-MOs) has allowed gene knockdown at later developmental stages. Recent advances in genome editing tools, such as zinc-finger nucleases, transcription activator-like effector-based nucleases and the clustered regularly interspaced short palindromic repeat/clustered regularly interspaced short palindromic repeat-associated protein 9 (CRISPR/Cas9) system, have provided methods for gene knockout in sea urchins. Here, we review the use of vivo-MOs and genome editing tools in sea urchin studies since the publication of its genome in 2006. Various applications of the CRISPR/Cas9 system and their potential in studying sea urchin development are also discussed. These new tools will provide more sophisticated experimental methods for studying sea urchin development. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Multipronged regulatory functions of a novel endonuclease (TieA) from Helicobacter pylori
Devi, Savita; Ansari, Suhail A.; Tenguria, Shivendra; Kumar, Naveen; Ahmed, Niyaz
2016-01-01
Helicobacter pylori portrays a classical paradigm of persistent bacterial infections. A well balanced homeostasis of bacterial effector functions and host responses is purported to be the key in achieving long term colonization in specific hosts. H. pylori nucleases have been shown to assist in natural transformation, but their role in virulence and colonization remains elusive. Therefore, it is imperative to understand the involvement of these nucleases in the pathogenesis of H. pylori. Here, we report the multifaceted role of a TNFR-1 interacting endonuclease A (TieA) from H. pylori. tieA expression is differentially regulated in response to environmental stress and post adherence to gastric epithelial cells. Studies with isogenic knockouts of tieA revealed it to be a secretory protein which translocates into the host gastric epithelial cells independent of a type IV secretion system, gets phosphorylated by DNA-PK kinase and auto-phosphorylates as serine kinase. Furthermore, TieA binds to and cleaves DNA in a non-specific manner and promotes Fas mediated apoptosis in AGS cells. Additionally, TieA induced pro-inflammatory cytokine secretion via activation of transcription factor AP-1 and signaled through MAP kinase pathway. Collectively, TieA with its multipronged and moonlighting functions could facilitate H. pylori in maintaining a balance of bacterial adaptation, and elimination by the host responses. PMID:27550181
Reprogramming MHC specificity by CRISPR-Cas9-assisted cassette exchange
Kelton, William; Waindok, Ann Cathrin; Pesch, Theresa; Pogson, Mark; Ford, Kyle; Parola, Cristina; Reddy, Sai T.
2017-01-01
The development of programmable nucleases has enabled the application of new genome engineering strategies for cellular immunotherapy. While targeted nucleases have mostly been used to knock-out or knock-in genes in immune cells, the scarless exchange of entire immunogenomic alleles would be of great interest. In particular, reprogramming the polymorphic MHC locus could enable the creation of matched donors for allogeneic cellular transplantation. Here we show a proof-of-concept for reprogramming MHC-specificity by performing CRISPR-Cas9-assisted cassette exchange. Using murine antigen presenting cell lines (RAW264.7 macrophages), we demonstrate that the generation of Cas9-induced double-stranded breaks flanking the native MHC-I H2-Kd locus led to exchange of an orthogonal H2-Kb allele. MHC surface expression allowed for easy selection of reprogrammed cells by flow cytometry, thus obviating the need for additional selection markers. MHC-reprogrammed cells were fully functional as they could present H2-Kd-restricted peptide and activate cognate T cells. Finally, we investigated the role of various donor template formats on exchange efficiency, discovering that templates that underwent in situ linearization resulted in the highest MHC-reprogramming efficiency. These findings highlight a potential new approach for the correcting of MHC mismatches in cellular transplantation. PMID:28374766
Next-generation mammalian genetics toward organism-level systems biology.
Susaki, Etsuo A; Ukai, Hideki; Ueda, Hiroki R
2017-01-01
Organism-level systems biology in mammals aims to identify, analyze, control, and design molecular and cellular networks executing various biological functions in mammals. In particular, system-level identification and analysis of molecular and cellular networks can be accelerated by next-generation mammalian genetics. Mammalian genetics without crossing, where all production and phenotyping studies of genome-edited animals are completed within a single generation drastically reduce the time, space, and effort of conducting the systems research. Next-generation mammalian genetics is based on recent technological advancements in genome editing and developmental engineering. The process begins with introduction of double-strand breaks into genomic DNA by using site-specific endonucleases, which results in highly efficient genome editing in mammalian zygotes or embryonic stem cells. By using nuclease-mediated genome editing in zygotes, or ~100% embryonic stem cell-derived mouse technology, whole-body knock-out and knock-in mice can be produced within a single generation. These emerging technologies allow us to produce multiple knock-out or knock-in strains in high-throughput manner. In this review, we discuss the basic concepts and related technologies as well as current challenges and future opportunities for next-generation mammalian genetics in organism-level systems biology.
Baym, Michael; Shaket, Lev; Anzai, Isao A; Adesina, Oluwakemi; Barstow, Buz
2016-11-10
Whole-genome knockout collections are invaluable for connecting gene sequence to function, yet traditionally, their construction has required an extraordinary technical effort. Here we report a method for the construction and purification of a curated whole-genome collection of single-gene transposon disruption mutants termed Knockout Sudoku. Using simple combinatorial pooling, a highly oversampled collection of mutants is condensed into a next-generation sequencing library in a single day, a 30- to 100-fold improvement over prior methods. The identities of the mutants in the collection are then solved by a probabilistic algorithm that uses internal self-consistency within the sequencing data set, followed by rapid algorithmically guided condensation to a minimal representative set of mutants, validation, and curation. Starting from a progenitor collection of 39,918 mutants, we compile a quality-controlled knockout collection of the electroactive microbe Shewanella oneidensis MR-1 containing representatives for 3,667 genes that is functionally validated by high-throughput kinetic measurements of quinone reduction.
Identification of essential genes and synthetic lethal gene combinations in Escherichia coli K-12.
Mori, Hirotada; Baba, Tomoya; Yokoyama, Katsushi; Takeuchi, Rikiya; Nomura, Wataru; Makishi, Kazuichi; Otsuka, Yuta; Dose, Hitomi; Wanner, Barry L
2015-01-01
Here we describe the systematic identification of single genes and gene pairs, whose knockout causes lethality in Escherichia coli K-12. During construction of precise single-gene knockout library of E. coli K-12, we identified 328 essential gene candidates for growth in complex (LB) medium. Upon establishment of the Keio single-gene deletion library, we undertook the development of the ASKA single-gene deletion library carrying a different antibiotic resistance. In addition, we developed tools for identification of synthetic lethal gene combinations by systematic construction of double-gene knockout mutants. We introduce these methods herein.
Ilardi, Vincenza; Tavazza, Mario
2015-01-01
Plum pox virus (PPV) is the etiological agent of sharka, the most devastating and economically important viral disease affecting Prunus species. It is widespread in most stone fruits producing countries even though eradication and quarantine programs are in place. The development of resistant cultivars and rootstocks remains the most ecologically and economically suitable approach to achieve long-term control of sharka disease. However, the few PPV resistance genetic resources found in Prunus germplasm along with some intrinsic biological features of stone fruit trees pose limits for efficient and fast breeding programs. This review focuses on an array of biotechnological strategies and tools, which have been used, or may be exploited to confer PPV resistance. A considerable number of scientific studies clearly indicate that robust and predictable resistance can be achieved by transforming plant species with constructs encoding intron-spliced hairpin RNAs homologous to conserved regions of the PPV genome. In addition, we discuss how recent advances in our understanding of PPV biology can be profitably exploited to develop viral interference strategies. In particular, genetic manipulation of host genes by which PPV accomplishes its infection cycle already permits the creation of intragenic resistant plants. Finally, we review the emerging genome editing technologies based on ZFN, TALEN and CRISPR/Cas9 engineered nucleases and how the knockout of host susceptibility genes will open up next generation of PPV resistant plants. PMID:26106397
Landau, Dustin J; Brooks, Elizabeth Drake; Perez-Pinera, Pablo; Amarasekara, Hiruni; Mefferd, Adam; Li, Songtao; Bird, Andrew; Gersbach, Charles A; Koeberl, Dwight D
2016-01-01
Glycogen storage disease type Ia (GSD Ia) is caused by glucose-6-phosphatase (G6Pase) deficiency in association with severe, life-threatening hypoglycemia that necessitates lifelong dietary therapy. Here we show that use of a zinc-finger nuclease (ZFN) targeted to the ROSA26 safe harbor locus and a ROSA26-targeting vector containing a G6PC donor transgene, both delivered with adeno-associated virus (AAV) vectors, markedly improved survival of G6Pase knockout (G6Pase-KO) mice compared with mice receiving the donor vector alone (P < 0.04). Furthermore, transgene integration has been confirmed by sequencing in the majority of the mice treated with both vectors. Targeted alleles were 4.6-fold more common in livers of mice with GSD Ia, as compared with normal littermates, at 8 months following vector administration (P < 0.02). This suggests a selective advantage for vector-transduced hepatocytes following ZFN-mediated integration of the G6Pase vector. A short-term experiment also showed that 3-month-old mice receiving the ZFN had significantly-improved biochemical correction, in comparison with mice that received the donor vector alone. These data suggest that the use of ZFNs to drive integration of G6Pase at a safe harbor locus might improve vector persistence and efficacy, and lower mortality in GSD Ia. PMID:26865405
Multipronged regulatory functions of a novel endonuclease (TieA) from Helicobacter pylori.
Devi, Savita; Ansari, Suhail A; Tenguria, Shivendra; Kumar, Naveen; Ahmed, Niyaz
2016-11-02
Helicobacter pylori portrays a classical paradigm of persistent bacterial infections. A well balanced homeostasis of bacterial effector functions and host responses is purported to be the key in achieving long term colonization in specific hosts. H. pylori nucleases have been shown to assist in natural transformation, but their role in virulence and colonization remains elusive. Therefore, it is imperative to understand the involvement of these nucleases in the pathogenesis of H. pylori Here, we report the multifaceted role of a TNFR-1 interacting endonuclease A (TieA) from H. pylori. tieA expression is differentially regulated in response to environmental stress and post adherence to gastric epithelial cells. Studies with isogenic knockouts of tieA revealed it to be a secretory protein which translocates into the host gastric epithelial cells independent of a type IV secretion system, gets phosphorylated by DNA-PK kinase and auto-phosphorylates as serine kinase. Furthermore, TieA binds to and cleaves DNA in a non-specific manner and promotes Fas mediated apoptosis in AGS cells. Additionally, TieA induced pro-inflammatory cytokine secretion via activation of transcription factor AP-1 and signaled through MAP kinase pathway. Collectively, TieA with its multipronged and moonlighting functions could facilitate H. pylori in maintaining a balance of bacterial adaptation, and elimination by the host responses. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
In vivo and in vitro disease modeling with CRISPR/Cas9.
Kato, Tomoko; Takada, Shuji
2017-01-01
In the past few years, extensive progress has been made in the development of genome-editing technology. Among several genome-editing tools, the clustered regularly interspaced short palindrome repeat-associated Cas9 nuclease (CRISPR/Cas9) system is particularly widely used owing to the ease of sequence-specific nuclease construction and the highly efficient introduction of mutations. The CRISPR/Cas9 system was originally constructed to induce small insertion and deletion mutations, but various methods have been developed to introduce point mutations, deletions, insertions, chromosomal translocations and so on. These methods should be useful for the reconstruction of disease-causing mutations in cultured cell lines and living organisms to elucidate disease pathogenesis and for disease prevention, treatment and drug discovery. This review summarizes the current technical aspects of the CRISPR/Cas9 system for disease modeling in cultured cells and living organisms, mainly mice. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells.
Fan, Lianchun; Kadura, Ibrahim; Krebs, Lara E; Hatfield, Christopher C; Shaw, Margaret M; Frye, Christopher C
2012-04-01
Although Chinese hamster ovary (CHO) cells, with their unique characteristics, have become a major workhorse for the manufacture of therapeutic recombinant proteins, one of the major challenges in CHO cell line generation (CLG) is how to efficiently identify those rare, high-producing clones among a large population of low- and non-productive clones. It is not unusual that several hundred individual clones need to be screened for the identification of a commercial clonal cell line with acceptable productivity and growth profile making the cell line appropriate for commercial application. This inefficiency makes the process of CLG both time consuming and laborious. Currently, there are two main CHO expression systems, dihydrofolate reductase (DHFR)-based methotrexate (MTX) selection and glutamine synthetase (GS)-based methionine sulfoximine (MSX) selection, that have been in wide industrial use. Since selection of recombinant cell lines in the GS-CHO system is based on the balance between the expression of the GS gene introduced by the expression plasmid and the addition of the GS inhibitor, L-MSX, the expression of GS from the endogenous GS gene in parental CHOK1SV cells will likely interfere with the selection process. To study endogenous GS expression's potential impact on selection efficiency, GS-knockout CHOK1SV cell lines were generated using the zinc finger nuclease (ZFN) technology designed to specifically target the endogenous CHO GS gene. The high efficiency (∼2%) of bi-allelic modification on the CHO GS gene supports the unique advantages of the ZFN technology, especially in CHO cells. GS enzyme function disruption was confirmed by the observation of glutamine-dependent growth of all GS-knockout cell lines. Full evaluation of the GS-knockout cell lines in a standard industrial cell culture process was performed. Bulk culture productivity improved two- to three-fold through the use of GS-knockout cells as parent cells. The selection stringency was significantly increased, as indicated by the large reduction of non-producing and low-producing cells after 25 µM L-MSX selection, and resulted in a six-fold efficiency improvement in identifying similar numbers of high-productive cell lines for a given recombinant monoclonal antibody. The potential impact of GS-knockout cells on recombinant protein quality is also discussed. Copyright © 2011 Wiley Periodicals, Inc.
Liu, Tao; Hu, Rong; Lv, Yi-Fan; Wu, Yuan; Liang, Hao; Huan, Shuang-Yan; Zhang, Xiao-Bing; Tan, Weihong; Yu, Ru-Qin
2014-08-15
Fluorescent sensing systems based on the quenching of fluorophores have found wide applications in bioassays. An efficient quencher will endow the sensing system a high sensitivity. The frequently used quenchers are based on organic molecules or nanomaterials, which usually need tedious synthesizing and modifying steps, and exhibit different quenching efficiencies to different fluorophores. In this work, we for the first time report that aggregated perylene derivative can serve as a broad-spectrum and label-free quencher that is able to efficiently quench a variety of fluorophores, such as green, red and far red dyes labeled on DNA. By choosing nucleases as model biomolecules, such a broad-spectrum quencher was then employed to construct a multiplexed bioassay platform through a label-free manner. Due to the high quenching efficiency of the aggregated perylene, the proposed platform could detect nuclease with high sensitivity, with a detection limit of 0.03U/mL for EcoRV, and 0.05U/mL for EcoRI. The perylene quencher does not affect the activity of nuclease, which makes it possible to design post-addition type bioassay platform. Moreover, the proposed platform allows simultaneous and multicolor analysis of nucleases in homogeneous solution, demonstrating its value of potential application in rapid screening of multiple bio-targets. Copyright © 2014 Elsevier B.V. All rights reserved.
Yang, Maozhou; Zhang, Liang; Stevens, Jeff; Gibson, Gary
2014-12-01
The Swarm rat chondrosarcoma (RCS) cell lines derived from a spontaneous neoplasm in a rat spine several decades ago have provided excellent models of chondrosarcoma tumor development. In addition the robust chondrocyte phenotype (expression of a large panel of genes identical to that seen in normal rat cartilage) and the ability to generate cell clones have facilitated their extensive use in the identification of chondrocyte proteins and genes. The clustered regularly interspersed short palindromic repeat (CRISPR) technology employing the RNA-guided nuclease Cas9 has rapidly dominated the genome engineering field as a unique and powerful gene editing tool. We have generated a stable RCS cell line (RCS Cas9) expressing the nuclease Cas9 that enables the editing of any target gene or non-coding RNA by simple transfection with a guide RNA. As proof of principle, stable cell lines with targeted ablation of aggrecan expression (Acan KO) were generated and characterized. The studies show that stable chondrocyte cell lines with targeted genome editing can be quickly generated from RCS Cas9 cells using this system. The Acan KO cell lines also provided a tool for characterizing the response of chondrocytes to aggrecan loss and the role of aggrecan in chondrosarcoma development. Loss of aggrecan expression while not affecting the chondrocyte phenotype resulted in a much firmer attachment of cells to their substrate in culture. Large changes in the expression of several genes were observed in response to the absence of the proteoglycan matrix, including those for several small leucine rich proteoglycans (SLRPs), transcription factors and membrane transporters. Acan KO cells failed to form a substantial chondrosarcoma when injected subcutaneously in nude mice consistent with previous suggestions that the glycosaminoglycan-rich matrix surrounding the chondrosarcoma protects it from destruction by the host immune system. The studies provide new understanding of aggrecan function and the RCS Cas9 cell line is expected to provide a very valuable tool for the study gene function in chondrocytes. Copyright © 2014 Elsevier Inc. All rights reserved.
Li, Ting; Liu, Bo; Chen, Chih Ying; Yang, Bing
2016-05-20
Over the last decades, much endeavor has been made to advance genome editing technology due to its promising role in both basic and synthetic biology. The breakthrough has been made in recent years with the advent of sequence-specific endonucleases, especially zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPRs) guided nucleases (e.g., Cas9). In higher eukaryotic organisms, site-directed mutagenesis usually can be achieved through non-homologous end-joining (NHEJ) repair to the DNA double-strand breaks (DSBs) caused by the exogenously applied nucleases. However, site-specific gene replacement or genuine genome editing through homologous recombination (HR) repair to DSBs remains a challenge. As a proof of concept gene replacement through TALEN-based HR in rice (Oryza sativa), we successfully produced double point mutations in rice acetolactate synthase gene (OsALS) and generated herbicide resistant rice lines by using TALENs and donor DNA carrying the desired mutations. After ballistic delivery into rice calli of TALEN construct and donor DNA, nine HR events with different genotypes of OsALS were obtained in T0 generation at the efficiency of 1.4%-6.3% from three experiments. The HR-mediated gene edits were heritable to the progeny of T1 generation. The edited T1 plants were as morphologically normal as the control plants while displayed strong herbicide resistance. The results demonstrate the feasibility of TALEN-mediated genome editing in rice and provide useful information for further genome editing by other nuclease-based genome editing platforms. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
Nerys-Junior, Arildo; Braga-Dias, Luciene P; Pezzuto, Paula; Cotta-de-Almeida, Vinícius; Tanuri, Amilcar
2018-01-01
The human C-C chemokine receptor type-5 (CCR5) is the major transmembrane co-receptor that mediates HIV-1 entry into target CD4+ cells. Gene therapy to knock-out the CCR5 gene has shown encouraging results in providing a functional cure for HIV-1 infection. In gene therapy strategies, the initial region of the CCR5 gene is a hotspot for producing functional gene knock-out. Such target gene editing can be done using programmable endonucleases such as transcription activator-like effector nucleases (TALEN) or clustered regularly interspaced short palindromic repeats (CRISPR-Cas9). These two gene editing approaches are the most modern and effective tools for precise gene modification. However, little is known of potential differences in the efficiencies of TALEN and CRISPR-Cas9 for editing the beginning of the CCR5 gene. To examine which of these two methods is best for gene therapy, we compared the patterns and amount of editing at the beginning of the CCR5 gene using TALEN and CRISPR-Cas9 followed by DNA sequencing. This comparison revealed that CRISPR-Cas9 mediated the sorting of cells that contained 4.8 times more gene editing than TALEN+ transfected cells.
Yamamoto, Daisuke S; Sumitani, Megumi; Hatakeyama, Masatsugu; Matsuoka, Hiroyuki
2018-02-01
Anopheline mosquitoes are major vectors of malaria parasites. When the gametocytes of the malaria parasite are transferred from a vertebrate to mosquitoes, they differentiate into gametes, and are fertilized in the midguts of mosquitoes. Xanthurenic acid (XA), a waste product of the ommochrome synthesis pathway, has been shown to induce exflagellation during microgametogenesis in vitro; however, it currently remains unclear whether endogenous XA affects the infectivity of anopheline mosquitoes to malaria parasites in vivo due to the lack of appropriate experimental systems such as a XA-deficient line. In the present study, we produced a XA-deficient line in Anopheles stephensi using transcription activator-like effector nuclease (TALEN)-mediated gene targeting (knockout) of the kynurenine 3-monooxygenase (kmo) gene, which encodes an enzyme that participates in the ommochrome synthesis pathway. The knockout of kmo resulted in the absence of XA, and oocyst formation was inhibited in the midguts of these XA-deficient mosquitoes, which, in turn, reduced sporozoite numbers in their salivary glands. These results suggest that endogenous XA stimulates exflagellation, and enhances the infectivity of anopheline mosquitoes to malaria parasites in vivo. The XA-deficient line of the anopheline mosquito provides a useful system for analyzing and understanding the associated factors of malaria gametogenesis in the mosquito midgut.
Nerys-Junior, Arildo; Braga-Dias, Luciene P.; Pezzuto, Paula; Cotta-de-Almeida, Vinícius; Tanuri, Amilcar
2018-01-01
Abstract The human C-C chemokine receptor type-5 (CCR5) is the major transmembrane co-receptor that mediates HIV-1 entry into target CD4+ cells. Gene therapy to knock-out the CCR5 gene has shown encouraging results in providing a functional cure for HIV-1 infection. In gene therapy strategies, the initial region of the CCR5 gene is a hotspot for producing functional gene knock-out. Such target gene editing can be done using programmable endonucleases such as transcription activator-like effector nucleases (TALEN) or clustered regularly interspaced short palindromic repeats (CRISPR-Cas9). These two gene editing approaches are the most modern and effective tools for precise gene modification. However, little is known of potential differences in the efficiencies of TALEN and CRISPR-Cas9 for editing the beginning of the CCR5 gene. To examine which of these two methods is best for gene therapy, we compared the patterns and amount of editing at the beginning of the CCR5 gene using TALEN and CRISPR-Cas9 followed by DNA sequencing. This comparison revealed that CRISPR-Cas9 mediated the sorting of cells that contained 4.8 times more gene editing than TALEN+ transfected cells. PMID:29583154
The potential application and challenge of powerful CRISPR/Cas9 system in cardiovascular research.
Li, Yangxin; Song, Yao-Hua; Liu, Bin; Yu, Xi-Yong
2017-01-15
CRISPR/Cas9 is a precision-guided munition found in bacteria to fight against invading viruses. This technology has enormous potential applications, including altering genes in both somatic and germ cells, as well as generating knockout animals. Compared to other gene editing techniques such as zinc finger nucleases and TALENS, CRISPR/Cas9 is much easier to use and highly efficient. Importantly, the multiplex capacity of this technology allows multiple genes to be edited simultaneously. CRISPR/Cas9 also has the potential to prevent and cure human diseases. In this review, we wish to highlight some key points regarding the future prospect of using CRISPR/Cas9 as a powerful tool for cardiovascular research, and as a novel therapeutic strategy to treat cardiovascular diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Non-viral delivery of genome-editing nucleases for gene therapy.
Wang, M; Glass, Z A; Xu, Q
2017-03-01
Manipulating the genetic makeup of mammalian cells using programmable nuclease-based genome-editing technology has recently evolved into a powerful avenue that holds great potential for treating genetic disorders. There are four types of genome-editing nucleases, including meganucleases, zinc finger nucleases, transcription activator-like effector nucleases and clustered, regularly interspaced, short palindromic repeat-associated nucleases such as Cas9. These nucleases have been harnessed to introduce precise and specific changes of the genome sequence at virtually any genome locus of interest. The therapeutic relevance of these genome-editing technologies, however, is challenged by the safe and efficient delivery of nuclease into targeted cells. Herein, we summarize recent advances that have been made on non-viral delivery of genome-editing nucleases. In particular, we focus on non-viral delivery of Cas9/sgRNA ribonucleoproteins for genome editing. In addition, the future direction for developing non-viral delivery of programmable nucleases for genome editing is discussed.
Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases.
Ishida, Kentaro; Gee, Peter; Hotta, Akitsu
2015-10-16
Programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs), and clustered regularly interspersed short palindromic repeats associated protein-9 (CRISPR-Cas9), hold tremendous potential for applications in the clinical setting to treat genetic diseases or prevent infectious diseases. However, because the accuracy of DNA recognition by these nucleases is not always perfect, off-target mutagenesis may result in undesirable adverse events in treated patients such as cellular toxicity or tumorigenesis. Therefore, designing nucleases and analyzing their activity must be carefully evaluated to minimize off-target mutagenesis. Furthermore, rigorous genomic testing will be important to ensure the integrity of nuclease modified cells. In this review, we provide an overview of available nuclease designing platforms, nuclease engineering approaches to minimize off-target activity, and methods to evaluate both on- and off-target cleavage of CRISPR-Cas9.
NCKX3 was compensated by calcium transporting genes and bone resorption in a NCKX3 KO mouse model.
Yang, Hyun; Ahn, Changhwan; Shin, Eun-Kyeong; Lee, Ji-Sun; An, Beum-Soo; Jeung, Eui-Bae
2017-10-15
Gene knockout is the most powerful tool for determination of gene function or permanent modification of the phenotypic characteristics of an animal. Existing methods for gene disruption are limited by their efficiency, time required for completion and potential for confounding off-target effects. In this study, a rapid single-step approach to knockout of a targeted gene in mice using zinc-finger nucleases (ZFNs) was demonstrated for generation of mutant (knockout; KO) alleles. Specifically, ZFNs to target the sodium/calcium/potassium exchanger3 (NCKX3) gene in C57bl/6j were designed using the concept of this approach. NCKX3 KO mice were generated and the phenotypic characterization and molecular regulation of active calcium transporting genes was assessed when mice were fed different calcium diets during growth. General phenotypes such as body weight and plasma ion level showed no distinct abnormalities. Thus, the potassium/sodium/calcium exchanger of NCKX3 KO mice proceeded normally in this study. As a result, the compensatory molecular regulation of this mechanism was elucidated. Renal TRPV5 mRNA of NCKX3 KO mice increased in both male and female mice. Expression of TRPV6 mRNA was only down-regulated in the duodenum of male KO mice. Renal- and duodenal expression of PTHR and VDR were not changed; however, GR mRNA expression was increased in the kidney of NCKX3 KO mice. Depletion of the NCKX3 gene in a KO mouse model showed loss of bone mineral contents and increased plasma parathyroid hormone, suggesting that NCKX3 may play a role in regulating calcium homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.
Factor XII full and partial null in rat confers robust antithrombotic efficacy with no bleeding.
Cai, Tian-Quan; Wu, Weizhen; Shin, Myung K; Xu, Yiming; Jochnowitz, Nina; Zhou, Yuchen; Hoos, Lizbeth; Bentley, Ross; Strapps, Walter; Thankappan, Anil; Metzger, Joseph M; Ogletree, Martin L; Tadin-Strapps, Marija; Seiffert, Dietmar A; Chen, Zhu
2015-12-01
This report aims at exploring quantitatively the relationship between FXII inhibition and thromboprotection. FXII full and partial null in rats were established via zinc finger nuclease-mediated knockout and siRNA-mediated knockdown, respectively. The rats were subsequently characterized in thrombosis and hemostasis models. Knockout rats exhibited complete thromboprotection in both the arteriovenous shunt model (∼100% clot weight reduction) and the FeCl3-induced arterial thrombosis model (no reduction in blood flow), without any increase in cuticle bleeding time compared with wild-type control rats. Ex-vivo aPTT and the ellagic acid-triggered thrombin generation assay (TGA) exhibited anticoagulant changes. In contrast, ex-vivo PT or high tissue factor-triggered TGA was indistinguishable from control. Rats receiving single doses (0, 0.01, 0.03, 0.1, 0.3, 1 mg/kg) of FXII siRNA exhibited dose-dependent knockdown in liver FXII mRNA and plasma FXII protein (95 and 99%, respectively, at 1 mg/kg) at day 7 post dosing. FXII knockdown was associated with dose-dependent thromboprotection (maximal efficacy achieved with 1 mg/kg in both models) and negligible change in cuticle bleeding times. Ex-vivo TGA triggered with low-level (0.5 μmol/l) ellagic acid tracked best with the knockdown levels and efficacy. Our findings confirm and extend literature reports of an attractive benefit-to-risk profile of targeting FXII for antithrombotic therapies. Titrating of FXII is instructive for its pharmacological inhibition. The knockout rat is valuable for evaluating both mechanism-based safety concerns and off-target effects of FXII(a) inhibitors. Detailed TGA analyses will inform on optimal trigger conditions in studying pharmacodynamic effects of FXII(a) inhibition.
Lu, Huijie; Cui, Yong; Jiang, Liwen; Ge, Wei
2017-07-01
Estrogens signal through both nuclear and membrane receptors with most reported effects being mediated via the nuclear estrogen receptors (nERs). Although much work has been reported on nERs in the zebrafish, there is a lack of direct genetic evidence for their functional roles and importance in reproduction. To address this issue, we undertook this study to disrupt all three nERs in the zebrafish, namely esr1 (ERα), esr2a (ERβII), and esr2b (ERβI), by the genome-editing technology clustered regularly interspaced short palindromic repeats and its associated nuclease (CRISPR/Cas9). Using this loss-of-function genetic approach, we successfully created three mutant zebrafish lines with each nER knocked out. In addition, we also generated all possible double and triple knockouts of the three nERs. The phenotypes of these mutants in reproduction were analyzed in all single, double, and triple nER knockouts in both females and males. Surprisingly, all three single nER mutant fish lines display normal reproductive development and function in both females and males, suggesting functional redundancy among these nERs. Further analysis of double and triple knockouts showed that nERs, especially Esr2a and Esr2b, were essential for female reproduction, and loss of these two nERs led to an arrest of folliculogenesis at previtellogenic stage II followed by sex reversal from female to male. In addition, the current study also revealed a unique role for Esr2a in follicle cell proliferation and transdifferentiation, follicle growth, and chorion formation. Taken together, this study provides the most comprehensive genetic analysis for differential functions of esr1, esr2a, and esr2b in fish reproduction. Copyright © 2017 Endocrine Society.
Gene editing for cell engineering: trends and applications.
Gupta, Sanjeev K; Shukla, Pratyoosh
2017-08-01
Gene editing with all its own advantages in molecular biology applications has made easy manipulation of various production hosts with the discovery and implementation of modern gene editing tools such as Crispr (Clustered regularly interspaced short palindromic repeats), TALENs (Transcription activator-like effector nucleases) and ZFNs (Zinc finger nucleases). With the advent of these modern tools, it is now possible to manipulate the genome of industrial production hosts such as yeast and mammalian cells which allows developing a potential and cost effective recombinant therapeutic protein. These tools also allow single editing to multiple genes for knocking-in or knocking-out of a host genome quickly in an efficient manner. A recent study on "multiplexed" gene editing revolutionized the knock-out and knock-in events of yeast and CHO, mammalian cells genome for metabolic engineering as well as high, stable, and consistent expression of a transgene encoding complex therapeutic protein such as monoclonal antibody. The gene of interest can either be integrated or deleted at single or multiple loci depending on the strategy and production requirement. This review will give a gist of all the modern tools with a brief description and advances in genetic manipulation using three major tools being implemented for the modification of such hosts with the emphasis on the use of Crispr-Cas9 for the "multiplexing gene-editing approach" for genetic manipulation of yeast and CHO mammalian hosts that ultimately leads to a fast track product development with consistent, improved product yield, quality, and thus affordability for a population at large.
Functional genetics for all: engineered nucleases, CRISPR and the gene editing revolution.
Gilles, Anna F; Averof, Michalis
2014-01-01
Developmental biology, as all experimental science, is empowered by technological advances. The availability of genetic tools in some species - designated as model organisms - has driven their use as major platforms for understanding development, physiology and behavior. Extending these tools to a wider range of species determines whether (and how) we can experimentally approach developmental diversity and evolution. During the last two decades, comparative developmental biology (evo-devo) was marked by the introduction of gene knockdown and deep sequencing technologies that are applicable to a wide range of species. These approaches allowed us to test the developmental role of specific genes in diverse species, to study biological processes that are not accessible in established models and, in some cases, to conduct genome-wide screens that overcome the limitations of the candidate gene approach. The recent discovery of CRISPR/Cas as a means of precise alterations into the genome promises to revolutionize developmental genetics. In this review we describe the development of gene editing tools, from zinc-finger nucleases to TALENs and CRISPR, and examine their application in gene targeting, their limitations and the opportunities they present for evo-devo. We outline their use in gene knock-out and knock-in approaches, and in manipulating gene functions by directing molecular effectors to specific sites in the genome. The ease-of-use and efficiency of CRISPR in diverse species provide an opportunity to close the technology gap that exists between established model organisms and emerging genetically-tractable species.
A Multipurpose Toolkit to Enable Advanced Genome Engineering in Plants[OPEN
Gil-Humanes, Javier; Čegan, Radim; Kono, Thomas J.Y.; Konečná, Eva; Belanto, Joseph J.; Starker, Colby G.
2017-01-01
We report a comprehensive toolkit that enables targeted, specific modification of monocot and dicot genomes using a variety of genome engineering approaches. Our reagents, based on transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, are systematized for fast, modular cloning and accommodate diverse regulatory sequences to drive reagent expression. Vectors are optimized to create either single or multiple gene knockouts and large chromosomal deletions. Moreover, integration of geminivirus-based vectors enables precise gene editing through homologous recombination. Regulation of transcription is also possible. A Web-based tool streamlines vector selection and construction. One advantage of our platform is the use of the Csy-type (CRISPR system yersinia) ribonuclease 4 (Csy4) and tRNA processing enzymes to simultaneously express multiple guide RNAs (gRNAs). For example, we demonstrate targeted deletions in up to six genes by expressing 12 gRNAs from a single transcript. Csy4 and tRNA expression systems are almost twice as effective in inducing mutations as gRNAs expressed from individual RNA polymerase III promoters. Mutagenesis can be further enhanced 2.5-fold by incorporating the Trex2 exonuclease. Finally, we demonstrate that Cas9 nickases induce gene targeting at frequencies comparable to native Cas9 when they are delivered on geminivirus replicons. The reagents have been successfully validated in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), Medicago truncatula, wheat (Triticum aestivum), and barley (Hordeum vulgare). PMID:28522548
A multi-purpose toolkit to enable advanced genome engineering in plants
Cermak, Tomas; Curtin, Shaun J.; Gil-Humanes, Javier; ...
2017-05-18
Here, we report a comprehensive toolkit that enables targeted, specific modification of monocot and dicot genomes using a variety of genome engineering approaches. Our reagents, based on Transcription Activator-Like Effector Nucleases TALENs and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system, are systematized for fast, modular cloning and accommodate diverse regulatory sequences to drive reagent expression. Vectors are optimized to create either single or multiple gene knockouts and large chromosomal deletions. Moreover, integration of geminivirus-based vectors enables precise gene editing through homologous recombination. Regulation of transcription is also possible. A web-based tool streamlines vector selection and construction. One advantagemore » of our platform is the use of the Csy-type (CRISPR system yersinia) ribonuclease 4 Csy4 and tRNA processing enzymes to simultaneously express multiple guide RNAs (gRNAs). For example, we demonstrate targeted deletions in up to six genes by expressing twelve gRNAs from a single transcript. Csy4 and tRNA expression systems are almost twice as effective in inducing mutations as gRNAs expressed from individual RNA polymerase III promoters. Mutagenesis can be further enhanced 2.5-fold by incorporating the Trex2 exonuclease. Finally, we demonstrate that Cas9 nickases induce gene targeting at frequencies comparable to native Cas9 when they are delivered on geminivirus replicons. The reagents have been successfully validated in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), Medicago truncatula, wheat (Triticum aestivum), and barley (Hordeum vulgare).« less
A multi-purpose toolkit to enable advanced genome engineering in plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cermak, Tomas; Curtin, Shaun J.; Gil-Humanes, Javier
Here, we report a comprehensive toolkit that enables targeted, specific modification of monocot and dicot genomes using a variety of genome engineering approaches. Our reagents, based on Transcription Activator-Like Effector Nucleases TALENs and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system, are systematized for fast, modular cloning and accommodate diverse regulatory sequences to drive reagent expression. Vectors are optimized to create either single or multiple gene knockouts and large chromosomal deletions. Moreover, integration of geminivirus-based vectors enables precise gene editing through homologous recombination. Regulation of transcription is also possible. A web-based tool streamlines vector selection and construction. One advantagemore » of our platform is the use of the Csy-type (CRISPR system yersinia) ribonuclease 4 Csy4 and tRNA processing enzymes to simultaneously express multiple guide RNAs (gRNAs). For example, we demonstrate targeted deletions in up to six genes by expressing twelve gRNAs from a single transcript. Csy4 and tRNA expression systems are almost twice as effective in inducing mutations as gRNAs expressed from individual RNA polymerase III promoters. Mutagenesis can be further enhanced 2.5-fold by incorporating the Trex2 exonuclease. Finally, we demonstrate that Cas9 nickases induce gene targeting at frequencies comparable to native Cas9 when they are delivered on geminivirus replicons. The reagents have been successfully validated in tomato (Solanum lycopersicum), tobacco (Nicotiana tabacum), Medicago truncatula, wheat (Triticum aestivum), and barley (Hordeum vulgare).« less
Ochiai, Hiroshi; Sakamoto, Naoaki; Fujita, Kazumasa; Nishikawa, Masatoshi; Suzuki, Ken-ichi; Matsuura, Shinya; Miyamoto, Tatsuo; Sakuma, Tetsushi; Shibata, Tatsuo; Yamamoto, Takashi
2012-01-01
To understand complex biological systems, such as the development of multicellular organisms, it is important to characterize the gene expression dynamics. However, there is currently no universal technique for targeted insertion of reporter genes and quantitative imaging in multicellular model systems. Recently, genome editing using zinc-finger nucleases (ZFNs) has been reported in several models. ZFNs consist of a zinc-finger DNA-binding array with the nuclease domain of the restriction enzyme FokI and facilitate targeted transgene insertion. In this study, we successfully inserted a GFP reporter cassette into the HpEts1 gene locus of the sea urchin, Hemicentrotus pulcherrimus. We achieved this insertion by injecting eggs with a pair of ZFNs for HpEts1 with a targeting donor construct that contained ∼1-kb homology arms and a 2A-histone H2B–GFP cassette. We increased the efficiency of the ZFN-mediated targeted transgene insertion by in situ linearization of the targeting donor construct and cointroduction of an mRNA for a dominant-negative form of HpLig4, which encodes the H. pulcherrimus homolog of DNA ligase IV required for error-prone nonhomologous end joining. We measured the fluorescence intensity of GFP at the single-cell level in living embryos during development and found that there was variation in HpEts1 expression among the primary mesenchyme cells. These findings demonstrate the feasibility of ZFN-mediated targeted transgene insertion to enable quantification of the expression levels of endogenous genes during development in living sea urchin embryos. PMID:22711830
Li, Lixin; Piatek, Marek J; Atef, Ahmed; Piatek, Agnieszka; Wibowo, Anjar; Fang, Xiaoyun; Sabir, J S M; Zhu, Jian-Kang; Mahfouz, Magdy M
2012-03-01
Transcription activator-like effectors (TALEs) can be used as DNA-targeting modules by engineering their repeat domains to dictate user-selected sequence specificity. TALEs have been shown to function as site-specific transcriptional activators in a variety of cell types and organisms. TALE nucleases (TALENs), generated by fusing the FokI cleavage domain to TALE, have been used to create genomic double-strand breaks. The identity of the TALE repeat variable di-residues, their number, and their order dictate the DNA sequence specificity. Because TALE repeats are nearly identical, their assembly by cloning or even by synthesis is challenging and time consuming. Here, we report the development and use of a rapid and straightforward approach for the construction of designer TALE (dTALE) activators and nucleases with user-selected DNA target specificity. Using our plasmid set of 100 repeat modules, researchers can assemble repeat domains for any 14-nucleotide target sequence in one sequential restriction-ligation cloning step and in only 24 h. We generated several custom dTALEs and dTALENs with new target sequence specificities and validated their function by transient expression in tobacco leaves and in vitro DNA cleavage assays, respectively. Moreover, we developed a web tool, called idTALE, to facilitate the design of dTALENs and the identification of their genomic targets and potential off-targets in the genomes of several model species. Our dTALE repeat assembly approach along with the web tool idTALE will expedite genome-engineering applications in a variety of cell types and organisms including plants.
Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases
Ishida, Kentaro; Gee, Peter; Hotta, Akitsu
2015-01-01
Programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs), and clustered regularly interspersed short palindromic repeats associated protein-9 (CRISPR-Cas9), hold tremendous potential for applications in the clinical setting to treat genetic diseases or prevent infectious diseases. However, because the accuracy of DNA recognition by these nucleases is not always perfect, off-target mutagenesis may result in undesirable adverse events in treated patients such as cellular toxicity or tumorigenesis. Therefore, designing nucleases and analyzing their activity must be carefully evaluated to minimize off-target mutagenesis. Furthermore, rigorous genomic testing will be important to ensure the integrity of nuclease modified cells. In this review, we provide an overview of available nuclease designing platforms, nuclease engineering approaches to minimize off-target activity, and methods to evaluate both on- and off-target cleavage of CRISPR-Cas9. PMID:26501275
CRISPR/Cas9-Based Multiplex Genome Editing in Monocot and Dicot Plants.
Ma, Xingliang; Liu, Yao-Guang
2016-07-01
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome targeting system has been applied to a variety of organisms, including plants. Compared to other genome-targeting technologies such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), the CRISPR/Cas9 system is easier to use and has much higher editing efficiency. In addition, multiple "single guide RNAs" (sgRNAs) with different target sequences can be designed to direct the Cas9 protein to multiple genomic sites for simultaneous multiplex editing. Here, we present a procedure for highly efficient multiplex genome targeting in monocot and dicot plants using a versatile and robust CRISPR/Cas9 vector system, emphasizing the construction of binary constructs with multiple sgRNA expression cassettes in one round of cloning using Golden Gate ligation. We also describe the genotyping of targeted mutations in transgenic plants by direct Sanger sequencing followed by decoding of superimposed sequencing chromatograms containing biallelic or heterozygous mutations using the Web-based tool DSDecode. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Huang, Bi; Bao, Lang; Zhong, Qi; Zhang, Huidong; Zhang, Ying
2009-04-01
This study was conducted to construct eukaryotic recombinant vector of LipL32-HlyX fusion gene from Leptospira serovar Lai and express it in mammalian cell. Both of LipL32 gene and HlyX gene were amplified from Leptospira strain O17 genomic DNA by PCR. Then with the two genes as template, LipL32-HlyX fusion gene was obtained by SOE PCR (gene splicing by overlap extension PCR). The fusion gene was then cloned into pcDNA3.1 by restriction nuclease digestion. Having been transformed into E. coli DH5alpha, the recombiant plasmid was identified by restriction nuclease digestion, PCR analysis and sequencing. The recombinant plasmid was then transfected into COS7 cell whose expression was detected by RT-PCR and Western blotting analysis. RT-PCR amplified a fragment about 2000 bp and Western blotting analysis found a specific band about 75 KD which was consistent with the expected fusion protein size. In conclusion, the successful construction of eukaryotic recombinant vector containing LipL32-HlyX fusion gene and the effective expression in mammalian have laid a foundation for the application of Leptospira DNA vaccine.
Zhang, Zhonghui; Wu, Wen-Shu
2018-01-01
MicroRNAs are small 18-24 nt single-stranded noncoding RNA molecules involved in many biological processes, including stemness maintenance and cellular reprogramming. Current methods used in loss-of-function studies of microRNAs have several limitations. Here, we describe a new approach for dissecting miR-302/367 functions by transcription activator-like effectors (TALEs), which are natural effector proteins secreted by Xanthomonas and Ralstonia bacteria. Knockdown of the miR-302/367 cluster uses the Kruppel-associated box repressor domain fused with specific TALEs designed to bind the miR-302/367 cluster promoter. Knockout of the miR-302/367 cluster uses two pairs of TALE nucleases (TALENs) to delete the miR-302/367 cluster in human primary cells. Together, both TALE-based transcriptional repressor and TALENs are two promising approaches for loss-of-function studies of microRNA cluster in human primary cells.
Chromothripsis and kataegis induced by telomere crisis
Maciejowski, John; Li, Yilong; Bosco, Nazario; Campbell, Peter J.; de Lange, Titia
2015-01-01
Telomere crisis occurs during tumorigenesis when depletion of the telomere reserve leads to frequent telomere fusions. The resulting dicentric chromosomes have been proposed to drive genome instability. Here we examine the fate of dicentric human chromosomes in telomere crisis. We observed that dicentric chromosomes invariably persisted through mitosis and developed into 50-200 μm chromatin bridges connecting the daughter cells. Before their resolution at 3-20 h after anaphase, the chromatin bridges induced nuclear envelope rupture in interphase, accumulated the cytoplasmic 3' nuclease TREX1, and developed RPA-coated single stranded (ss) DNA. CRISPR knockouts showed that TREX1 contributed to the generation of the ssDNA and the resolution of the chromatin bridges. Post-crisis clones showed chromothripsis and kataegis, presumably resulting from DNA repair and APOBEC editing of the fragmented chromatin bridge DNA. We propose that chromothripsis in human cancer may arise through TREX1-mediated fragmentation of dicentric chromosomes formed in telomere crisis. PMID:26687355
Shen, Youfeng; Xu, Kaixiang; Yuan, Zaimei; Guo, Jianxiong; Zhao, Heng; Zhang, Xuezeng; Zhao, Lu; Qing, Yubo; Li, Honghui; Pan, Weirong; Jia, Baoyu; Zhao, Hong-Ye; Wei, Hong-Jiang
2017-11-03
Pigs have many features that make them attractive as biomedical models for various diseases, including cancer. P53 is an important tumor suppressor gene that exerts a central role in protecting cells from oncogenic transformation and is mutated in a large number of human cancers. P53 mutations occur in almost every type of tumor and in over 50% of all tumors. In a recent publication, pigs with a mutated P53 gene were generated that resulted in lymphoma and renal and osteogenic tumors. However, approximately 80% of human tumors have dysfunctional P53. A P53-deficient pig model is still required to elucidate. Transcription activator-like effector nucleases (TALENs) were designed to target porcine P53 exon 4. The targeting activity was evaluated using a luciferase SSA recombination assay. P53 biallelic knockout (KO) cell lines were established from single-cell colonies of fetal fibroblasts derived from Diannan miniature pigs followed by electroporation with TALENs plasmids. One cell line was selected as the donor cell line for somatic cell nuclear transfer (SCNT) for the generation of P53 KO pigs. P53 KO stillborn fetuses and living piglets were obtained. Gene typing of the collected cloned individuals was performed by T7EI assay and sequencing. Fibroblast cells from Diannan miniature piglets with a P53 biallelic knockout or wild type were analyzed for the P53 response to doxorubicin treatment by confocal microscopy and western blotting. The luciferase SSA recombination assay revealed that the targeting activities of the designed TALENs were 55.35-fold higher than those of the control. Eight cell lines (8/19) were mutated for P53, and five of them were biallelic knockouts. One of the biallelic knockout cell lines was selected as nuclear donor cells for SCNT. The cloned embryos were transferred into five recipient gilts, three of them becoming pregnant. Five live fetuses were obtained from one surrogate by caesarean section after 38 days of gestation for genotyping. Finally, six live piglets and one stillborn piglet were collected from two recipients by caesarean section. Sequencing analyses of the target site confirmed the P53 biallelic knockout in all fetuses and piglets, consistent with the genotype of the donor cells. The qPCR analysis showed that the expression of the P53 mRNA had significant reduction in various tissues of the knockout piglets. Furthermore, confocal microscopy and western blotting analyses demonstrated that the fibroblast cells of Diannan miniature piglets with a P53 biallelic knockout were defective in mediating DNA damage when incubated with doxorubicin. TALENs combined with SCNT was successfully used to generate P53 KO Diannan miniature pigs. Although these genetically engineered Diannan miniature pigs had no tumorigenic signs, the P53 gene was dysfunctional. We believe that these pigs will provide powerful new resources for preclinical oncology and basic cancer research.
Genome engineering in human cells.
Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum
2014-01-01
Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.
Measuring and Reducing Off-Target Activities of Programmable Nucleases Including CRISPR-Cas9
Koo, Taeyoung; Lee, Jungjoon; Kim, Jin-Soo
2015-01-01
Programmable nucleases, which include zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and RNA-guided engineered nucleases (RGENs) repurposed from the type II clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system are now widely used for genome editing in higher eukaryotic cells and whole organisms, revolutionising almost every discipline in biological research, medicine, and biotechnology. All of these nucleases, however, induce off-target mutations at sites homologous in sequence with on-target sites, limiting their utility in many applications including gene or cell therapy. In this review, we compare methods for detecting nuclease off-target mutations. We also review methods for profiling genome-wide off-target effects and discuss how to reduce or avoid off-target mutations. PMID:25985872
Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN.
Ul Ain, Qurrat; Chung, Jee Young; Kim, Yong-Hee
2015-05-10
Gene therapy by engineered nucleases is a genetic intervention being investigated for curing the hereditary disorders by targeting selected genes with specific nucleotides for establishment, suppression, abolishment of a function or correction of mutation. Here, we review the fast developing technology of targeted genome engineering using site specific programmable nucleases zinc finger nucleases (ZFNs), transcription activator like nucleases (TALENs) and cluster regulatory interspaced short palindromic repeat/CRISPR associated proteins (CRISPR/Cas) based RNA-guided DNA endonucleases (RGENs) and their different characteristics including pros and cons of genome modifications by these nucleases. We have further discussed different types of delivery methods to induce gene editing, novel development in genetic engineering other than nucleases and future prospects. Copyright © 2014 Elsevier B.V. All rights reserved.
Current status of genome editing in vector mosquitoes: A review.
Reegan, Appadurai Daniel; Ceasar, Stanislaus Antony; Paulraj, Michael Gabriel; Ignacimuthu, Savarimuthu; Al-Dhabi, Naif Abdullah
2017-01-16
Mosquitoes pose a major threat to human health as they spread many deadly diseases like malaria, dengue, chikungunya, filariasis, Japanese encephalitis and Zika. Identification and use of novel molecular tools are essential to combat the spread of vector borne diseases. Genome editing tools have been used for the precise alterations of the gene of interest for producing the desirable trait in mosquitoes. Deletion of functional genes or insertion of toxic genes in vector mosquitoes will produce either knock-out or knock-in mutants that will check the spread of vector-borne diseases. Presently, three types of genome editing tools viz., zinc finger nuclease (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regulatory interspaced short palindromic repeats (CRISPR) and CRISPR associated protein 9 (Cas9) are widely used for the editing of the genomes of diverse organisms. These tools are also applied in vector mosquitoes to control the spread of vector-borne diseases. A few studies have been carried out on genome editing to control the diseases spread by vector mosquitoes and more studies need to be performed with the utilization of more recently invented tools like CRISPR/Cas9 to combat the spread of deadly diseases by vector mosquitoes. The high specificity and flexibility of CRISPR/Cas9 system may offer possibilities for novel genome editing for the control of important diseases spread by vector mosquitoes. In this review, we present the current status of genome editing research on vector mosquitoes and also discuss the future applications of vector mosquito genome editing to control the spread of vectorborne diseases.
Histone methyltransferase Dot1L plays a role in postembryonic development in Xenopus tropicalis
Wen, Luan; Fu, Liezhen; Guo, Xiaogang; Chen, Yonglong; Shi, Yun-Bo
2015-01-01
Histone methylations have been implicated to play important roles in diverse cellular processes. Of particular interest is the methylation of histone H3K79, which is catalyzed by an evolutionarily conserved methyltransferase, disruptor of telomeric silencing (Dot1)-like (Dot1L). To investigate the role of Dot1L during vertebrate development, we have generated a Dot1L-specific transcription activator-like effector nuclease (TALEN) nuclease to knockdown endogenous Dot1L in Xenopus tropicalis, a diploid species highly related to the well-known developmental model Xenopus laevis, a pseudotetraploid amphibian. We show that the TALEN was extremely efficient in mutating Dot1L when expressed in fertilized eggs, creating essentially Dot1L knockout embryos with little H3K79 methylation. Importantly, we observed that Dot1L knockdown had no apparent effect on embryogenesis because normally feeding tadpoles were formed, consistent with the lack of maternal Dot1L expression. On the other hand, Dot1L knockdown severely retarded the growth of the tadpoles and led to tadpole lethality prior to metamorphosis. These findings suggest that Dot1L and H3K79 methylation play an important role for tadpole growth and development prior to metamorphosis into a frog. Our findings further reveal interesting similarities and differences between Xenopus and mouse development and suggest the existence of 2 separate phases of vertebrate development with distinct requirements for epigenetic modifications.—Wen, L., Fu, L., Guo, X., Chen, Y., Shi, Y.-B. Histone methyltransferase Dot1L plays a role in postembryonic development in Xenopus tropicalis. PMID:25366346
Salvi, Sergio; D'Orso, Fabio; Morelli, Giorgio
2008-06-25
Many countries have introduced mandatory labeling requirements on foods derived from genetically modified organisms (GMOs). Real-time quantitative polymerase chain reaction (PCR) based upon the TaqMan probe chemistry has become the method mostly used to support these regulations; moreover, event-specific PCR is the preferred method in GMO detection because of its high specificity based on the flanking sequence of the exogenous integrant. The aim of this study was to evaluate the use of very short (eight-nucleotide long), locked nucleic acid (LNA) TaqMan probes in 5'-nuclease PCR assays for the detection and quantification of GMOs. Classic TaqMan and LNA TaqMan probes were compared for the analysis of the maize MON810 transgene. The performance of the two types of probes was tested on the maize endogenous reference gene hmga, the CaMV 35S promoter, and the hsp70/cryIA(b) construct as well as for the event-specific 5'-integration junction of MON810, using plasmids as standard reference molecules. The results of our study demonstrate that the LNA 5'-nuclease PCR assays represent a valid and reliable analytical system for the detection and quantification of transgenes. Application of very short LNA TaqMan probes to GMO quantification can simplify the design of 5'-nuclease assays.
Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis.
Almeida Garcia, Rayssa; Lima Pepino Macedo, Leonardo; Cabral do Nascimento, Danila; Gillet, François-Xavier; Moreira-Pinto, Clidia Eduarda; Faheem, Muhammad; Moreschi Basso, Angelina Maria; Mattar Silva, Maria Cristina; Grossi-de-Sa, Maria Fatima
2017-01-01
RNA interference (RNAi) approaches have been applied as a biotechnological tool for controlling plant insect pests via selective gene down regulation. However, the inefficiency of RNAi mechanism in insects is associated with several barriers, including dsRNA delivery and uptake by the cell, dsRNA interaction with the cellular membrane receptor and dsRNA exposure to insect gut nucleases during feeding. The cotton boll weevil (Anthonomus grandis) is a coleopteran in which RNAi-mediated gene silencing does not function efficiently through dsRNA feeding, and the factors involved in the mechanism remain unknown. Herein, we identified three nucleases in the cotton boll weevil transcriptome denoted AgraNuc1, AgraNuc2, and AgraNuc3, and the influences of these nucleases on the gene silencing of A. grandis chitin synthase II (AgraChSII) were evaluated through oral dsRNA feeding trials. A phylogenetic analysis showed that all three nucleases share high similarity with the DNA/RNA non-specific endonuclease family of other insects. These nucleases were found to be mainly expressed in the posterior midgut region of the insect. Two days after nuclease RNAi-mediated gene silencing, dsRNA degradation by the gut juice was substantially reduced. Notably, after nucleases gene silencing, the orally delivered dsRNA against the AgraChSII gene resulted in improved gene silencing efficiency when compared to the control (non-silenced nucleases). The data presented here demonstrates that A. grandis midgut nucleases are effectively one of the main barriers to dsRNA delivery and emphasize the need to develop novel RNAi delivery strategies focusing on protecting the dsRNA from gut nucleases and enhancing its oral delivery and uptake to crop insect pests.
Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis
Almeida Garcia, Rayssa; Lima Pepino Macedo, Leonardo; Cabral do Nascimento, Danila; Gillet, François-Xavier; Moreira-Pinto, Clidia Eduarda; Faheem, Muhammad; Moreschi Basso, Angelina Maria; Mattar Silva, Maria Cristina
2017-01-01
RNA interference (RNAi) approaches have been applied as a biotechnological tool for controlling plant insect pests via selective gene down regulation. However, the inefficiency of RNAi mechanism in insects is associated with several barriers, including dsRNA delivery and uptake by the cell, dsRNA interaction with the cellular membrane receptor and dsRNA exposure to insect gut nucleases during feeding. The cotton boll weevil (Anthonomus grandis) is a coleopteran in which RNAi-mediated gene silencing does not function efficiently through dsRNA feeding, and the factors involved in the mechanism remain unknown. Herein, we identified three nucleases in the cotton boll weevil transcriptome denoted AgraNuc1, AgraNuc2, and AgraNuc3, and the influences of these nucleases on the gene silencing of A. grandis chitin synthase II (AgraChSII) were evaluated through oral dsRNA feeding trials. A phylogenetic analysis showed that all three nucleases share high similarity with the DNA/RNA non-specific endonuclease family of other insects. These nucleases were found to be mainly expressed in the posterior midgut region of the insect. Two days after nuclease RNAi-mediated gene silencing, dsRNA degradation by the gut juice was substantially reduced. Notably, after nucleases gene silencing, the orally delivered dsRNA against the AgraChSII gene resulted in improved gene silencing efficiency when compared to the control (non-silenced nucleases). The data presented here demonstrates that A. grandis midgut nucleases are effectively one of the main barriers to dsRNA delivery and emphasize the need to develop novel RNAi delivery strategies focusing on protecting the dsRNA from gut nucleases and enhancing its oral delivery and uptake to crop insect pests. PMID:29261729
Sharma, Shukriti; Tivendale, Kelly A.; Markham, Philip F.
2015-01-01
ABSTRACT Although the complete genome sequences of three strains of Mycoplasma bovis are available, few studies have examined gene function in this important pathogen. Mycoplasmas lack the biosynthetic machinery for the de novo synthesis of nucleic acid precursors, so nucleases are likely to be essential for them to acquire nucleotide precursors. Three putative membrane nucleases have been annotated in the genome of M. bovis strain PG45, MBOVPG45_0089 and MBOVPG45_0310, both of which have the thermonuclease (TNASE_3) functional domain, and MBOVPG45_0215 (mnuA), which has an exonuclease/endonuclease/phosphatase domain. While previous studies have demonstrated the function of TNASE_3 domain nucleases in several mycoplasmas, quantitative comparisons of the contributions of different nucleases to cellular nuclease activity have been lacking. Mapping of a library of 319 transposon mutants of M. bovis PG45 by direct genome sequencing identified mutants with insertions in MBOVPG45_0310 (the Δ0310 mutant) and MBOVPG45_0215 (the Δ0215 mutant). In this study, the detection of the product of MBOVPG45_0215 in the Triton X-114 fraction of M. bovis cell lysates, its cell surface exposure, and its predicted signal peptide suggested that it is a surface-exposed lipoprotein nuclease. Comparison of a ΔmnuA mutant with wild-type M. bovis on native and denatured DNA gels and in digestion assays using double-stranded phage λ DNA and closed circular plasmid DNA demonstrated that inactivation of this gene abolishes most of the cellular exonuclease and endonuclease activity of M. bovis. This activity could be fully restored by complementation with the wild-type mnuA gene, demonstrating that MnuA is the major cellular nuclease of M. bovis. IMPORTANCE Nucleases are thought to be important contributors to virulence and crucial for the maintenance of a nutritional supply of nucleotides in mycoplasmas that are pathogenic in animals. This study demonstrates for the first time that of the three annotated cell surface nuclease genes in an important pathogenic mycoplasma, the homologue of the thermostable nuclease identified in Gram-positive bacteria is responsible for the majority of the nuclease activity detectable in vitro. PMID:25691526
Genome Editing in Stem Cells for Disease Therapeutics.
Song, Minjung; Ramakrishna, Suresh
2018-04-01
Programmable nucleases including zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindrome repeats (CRISPR)/CRISPR-associated protein have tremendous potential biological and therapeutic applications as novel genome editing tools. These nucleases enable precise modification of the gene of interest by disruption, insertion, or correction. The application of genome editing technology to pluripotent stem cells or hematopoietic stem cells has the potential to remarkably advance the contribution of this technology to life sciences. Specifically, disease models can be generated and effective therapeutics can be developed with great efficiency and speed. Here we review the characteristics and mechanisms of each programmable nuclease. In addition, we review the applications of these nucleases to stem cells for disease therapies and summarize key studies of interest.
Yang, Yang; Wu, Dan; Liu, Dewu; Shi, Junsong; Zhou, Rong; He, Xiaoyan; Quan, Jianping; Cai, Gengyuan; Zheng, Enqin; Wu, Zhenfang; Li, Zicong
2017-06-01
XIST is an X-linked, non-coding gene responsible for the cis induction of X-chromosome inactivation (XCI). Knockout of the XIST allele on an active X chromosome abolishes erroneous XCI and enhances the in vivo development of cloned mouse embryos by more than 10-fold. This study aimed to investigate whether a similar manipulation would improve cloning efficiency in pigs. A male, porcine kidney cell line containing an EGFP insert in exon 1 of the XIST gene, resulting in a knockout allele (XIST-KO), was generated by homologous recombination using transcription activator-like effector nucleases (TALENs). The expression of X-linked genes in embryos cloned from the XIST-KO kidney cells was significantly higher than in male embryos cloned from wild-type (WT) kidney cells, but remained lower than that of in vivo fertilization-produced counterparts. The XIST-KO cloned embryos also had a significantly lower blastocyst rate and a reduced full-term development rate compared to cloned WT embryos. These data suggested that while mutation of a XIST gene can partially rescue abnormal XCI, it cannot improve the developmental efficiency of cloned male porcine embryos-a deficiency that may be caused by incomplete rescue of abnormal XCI and/or by long-term drug selection of the XIST-KO nuclear donor cells, which might adversely affect the developmental efficiency of embryos created from them. © 2017 Wiley Periodicals, Inc.
Peng, Lan; Fan, Jialong; Tong, Chunyi; Xie, Zhenhua; Zhao, Chuan; Liu, Xuanming; Zhu, Yonghua; Liu, Bin
2016-09-15
Mung bean nuclease is a single stranded specific DNA and RNA endonuclease purified from mung bean sprouts. It yields 5'-phosphate terminated mono- and oligonucleotides. The activity level of this nuclease can act as a marker to monitor the developmental process of mung bean sprouts. In order to facilitate the activity and physiological analysis of this nuclease, we have developed a biosensing assay system based on the mung bean nuclease-induced single-stranded DNA scission and the affinity difference of graphene oxide for single-stranded DNA containing different numbers of bases. This end-point measurement method can detect mung bean nuclease in a range of 2×10(-4) to 4×10(-2) with a detection limit of 1×10(-4) unit/mL. In addition, we demonstrate the utility of the assay for screening chemical antibiotics and metal ions, resulting in the identification of several inhibitors of this enzyme in vitro. Furthermore, we firstly report that inhibiting mung bean nuclease by gentamycin sulfate and kanamycin in vivo can suppress mung bean sprouts growth. In summary, this method provides an alternative tool for the biochemical analysis for mung bean nuclease and indicates the feasibility of high-throughput screening specific inhibitors of this nuclease in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.
Nerys-Junior, Arildo; Costa, Lendel C; Braga-Dias, Luciene P; Oliveira, Márcia; Rossi, Atila D; da Cunha, Rodrigo Delvecchio; Gonçalves, Gabriel S; Tanuri, Amilcar
2014-03-01
Engineered nucleases such as zinc finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN) are one of the most promising tools for modifying genomes. These site-specific enzymes cause double-strand breaks that allow gene disruption or gene insertion, thereby facilitating genetic manipulation. The major problem associated with this approach is the labor-intensive procedures required to screen and confirm the cellular modification by nucleases. In this work, we produced a TALEN that targets the human CCR5 gene and developed a heteroduplex mobility assay for HEK 293T cells to select positive colonies for sequencing. This approach provides a useful tool for the quick detection and easy assessment of nuclease activity.
Naert, Thomas; Van Nieuwenhuysen, Tom; Vleminckx, Kris
2017-01-01
The targeted nuclease revolution (TALENs, CRISPR/Cas9) now allows Xenopus researchers to rapidly generate custom on-demand genetic knockout models. These novel methods to perform reverse genetics are unprecedented and are fueling a wide array of human disease models within the aquatic diploid model organism Xenopus tropicalis (X. tropicalis). This emerging technology review focuses on the tools to rapidly generate genetically engineered X. tropicalis models (GEXM), with a focus on establishment of genuine genetic and clinically relevant cancer models. We believe that due to particular advantageous characteristics, outlined within this review, GEXM will become a valuable alternative animal model for modeling human cancer. Furthermore, we provide perspectives of how GEXM will be used as a platform for elucidation of novel therapeutic targets and for preclinical drug validation. Finally, we also discuss some future prospects on how the recent expansions and adaptations of the CRISPR/Cas9 toolbox might influence and push forward X. tropicalis cancer research. © 2017 Wiley Periodicals, Inc.
Park, Jeongbin; Bae, Sangsu
2018-03-15
Following the type II CRISPR-Cas9 system, type V CRISPR-Cpf1 endonucleases have been found to be applicable for genome editing in various organisms in vivo. However, there are as yet no web-based tools capable of optimally selecting guide RNAs (gRNAs) among all possible genome-wide target sites. Here, we present Cpf1-Database, a genome-wide gRNA library design tool for LbCpf1 and AsCpf1, which have DNA recognition sequences of 5'-TTTN-3' at the 5' ends of target sites. Cpf1-Database provides a sophisticated but simple way to design gRNAs for AsCpf1 nucleases on the genome scale. One can easily access the data using a straightforward web interface, and using the powerful collections feature one can easily design gRNAs for thousands of genes in short time. Free access at http://www.rgenome.net/cpf1-database/. sangsubae@hanyang.ac.kr.
Nerys-Junior, Arildo; Costa, Lendel C.; Braga-Dias, Luciene P.; Oliveira, Márcia; Rossi, Átila D.; da Cunha, Rodrigo Delvecchio; Gonçalves, Gabriel S.; Tanuri, Amilcar
2014-01-01
Engineered nucleases such as zinc finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN) are one of the most promising tools for modifying genomes. These site-specific enzymes cause double-strand breaks that allow gene disruption or gene insertion, thereby facilitating genetic manipulation. The major problem associated with this approach is the labor-intensive procedures required to screen and confirm the cellular modification by nucleases. In this work, we produced a TALEN that targets the human CCR5 gene and developed a heteroduplex mobility assay for HEK 293T cells to select positive colonies for sequencing. This approach provides a useful tool for the quick detection and easy assessment of nuclease activity. PMID:24688299
CRISPR/Cas9-Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development.
Okoli, Arinze; Okeke, Malachy I; Tryland, Morten; Moens, Ugo
2018-01-22
The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) technology is revolutionizing genome editing approaches. Its high efficiency, specificity, versatility, flexibility, simplicity and low cost have made the CRISPR/Cas9 system preferable to other guided site-specific nuclease-based systems such as TALENs (Transcription Activator-like Effector Nucleases) and ZFNs (Zinc Finger Nucleases) in genome editing of viruses. CRISPR/Cas9 is presently being applied in constructing viral mutants, preventing virus infections, eradicating proviral DNA, and inhibiting viral replication in infected cells. The successful adaptation of CRISPR/Cas9 to editing the genome of Vaccinia virus paves the way for its application in editing other vaccine/vector-relevant orthopoxvirus (OPXV) strains. Thus, CRISPR/Cas9 can be used to resolve some of the major hindrances to the development of OPXV-based recombinant vaccines and vectors, including sub-optimal immunogenicity; transgene and genome instability; reversion of attenuation; potential of spread of transgenes to wildtype strains and close contacts, which are important biosafety and risk assessment considerations. In this article, we review the published literature on the application of CRISPR/Cas9 in virus genome editing and discuss the potentials of CRISPR/Cas9 in advancing OPXV-based recombinant vaccines and vectors. We also discuss the application of CRISPR/Cas9 in combating viruses of clinical relevance, the limitations of CRISPR/Cas9 and the current strategies to overcome them.
Smith, A M; Benjamin, D C
1991-02-15
Previous studies in our laboratory on the production and isolation of a panel of mAb to staphylococcal nuclease allowed us to define a series of eight overlapping epitopes. Using site-directed mutagenesis of the nuclease coding sequences we were able to map the nonoverlapping epitopes recognized by two members of this panel. In the study reported here, we report the generation and analysis of a number of single amino acid substitutions for seven surface residues predicted to lie within one of these two epitopes. Immunochemical analysis showed that one or more substitutions at each of these seven positions had a major effect on mAb binding, whereas other substitutions had none. Based on the nature of these substitutions and the chemical and physical properties of the variant molecules, we believe that any structural effects induced by these substitutions are local and do not result in long-range structural alterations that indirectly influence antibody reactivity. Therefore, we conclude that disruption of mAb binding can be directly attributed to changes in amino acid side chains and that not only are all seven of the residues studied part of the epitope but all seven make contact with the antibody combining site. These studies demonstrate the advantages of using site-directed mutagenesis to study antigen structure and emphasize the importance of constructing the examining multiple substitutions for any given amino acid.
Shuai, Hong-Lei; Huang, Ke-Jing; Chen, Ying-Xu; Fang, Lin-Xia; Jia, Meng-Pei
2017-03-15
An ultrasensitive electrochemical biosensor for detecting microRNAs is fabricated based on hollow molybdenum disulfide (MoS 2 ) microcubes. Duplex-specific nuclease, enzyme and electrochemical-chemical-chemical redox cycling are used for signal amplification. Hollow MoS 2 microcubes constructed by ultrathin nanosheets are synthesized by a facile template-assisted strategy and used as supporting substrate. For biosensor assembling, biotinylated ssDNA capture probes are first immobilized on Au nanoparticles (AuNPs)/MoS 2 modified electrode in order to combine with streptavidin-conjugated alkaline phosphatase (SA-ALP). When capture probes hybridize with miRNAs, duplex-specific nuclease cleaves the formative duplexes. At the moment, the biotin group strips from the electrode surface and SA-ALP is incapacitated to attach onto electrode. Then, ascorbic acids induce the electrochemical-chemical-chemical redox cycling to produce electrochemical response in the presence of ferrocene methanol and tris (2-carboxyethyl) phosphine. Under optimum conditions, the proposed biosensor shows a good linear relationship between the current variation and logarithm of the microRNAs concentration ranging from 0.1fM to 0.1pM with a detection limit of 0.086fM (S/N=3). Furthermore, the biosensor is successfully applied to detect target miRNA-21 in human serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Pérez-Amador, M A; Abler, M L; De Rocher, E J; Thompson, D M; van Hoof, A; LeBrasseur, N D; Lers, A; Green, P J
2000-01-01
Nuclease I enzymes are responsible for the degradation of RNA and single-stranded DNA during several plant growth and developmental processes, including senescence. However, in the case of senescence the corresponding genes have not been reported. We describe the identification and characterization of BFN1 of Arabidopsis, and demonstrate that it is a senescence-associated nuclease I gene. BFN1 nuclease shows high similarity to the sequence of a barley nuclease induced during germination and a zinnia (Zinnia elegans) nuclease induced during xylogenesis. In transgenic plants overexpressing the BFN1 cDNA, a nuclease activity of about 38 kD was detected on both RNase and DNase activity gels. Levels of BFN1 mRNA were extremely low or undetectable in roots, leaves, and stems. In contrast, relatively high BFN1 mRNA levels were detected in flowers and during leaf and stem senescence. BFN1 nuclease activity was also induced during leaf and stem senescence. The strong response of the BFN1 gene to senescence indicated that it would be an excellent tool with which to study the mechanisms of senescence induction, as well as the role of the BFN1 enzyme in senescence using reverse genetic approaches in Arabidopsis.
Targeted mutagenesis using zinc-finger nucleases in perennial fruit trees.
Peer, Reut; Rivlin, Gil; Golobovitch, Sara; Lapidot, Moshe; Gal-On, Amit; Vainstein, Alexander; Tzfira, Tzvi; Flaishman, Moshe A
2015-04-01
Targeting a gene in apple or fig with ZFN, introduced by transient or stable transformation, should allow genome editing with high precision to advance basic science and breeding programs. Genome editing is a powerful tool for precise gene manipulation in any organism; it has recently been shown to be of great value for annual plants. Classical breeding strategies using conventional cross-breeding and induced mutations have played an important role in the development of new cultivars in fruit trees. However, fruit-tree breeding is a lengthy process with many limitations. Efficient and widely applied methods for targeted modification of fruit-tree genomes are not yet available. In this study, transgenic apple and fig lines carrying a zinc-finger nuclease (ZFNs) under the control of a heat-shock promoter were developed. Editing of a mutated uidA gene, following expression of the ZFN genes by heat shock, was confirmed by GUS staining and PCR product sequencing. Finally, whole plants with a repaired uidA gene due to deletion of a stop codon were regenerated. The ZFN-mediated gene modifications were stable and passed onto regenerants from ZFN-treated tissue cultures. This is the first demonstration of efficient and precise genome editing, using ZFN at a specific genomic locus, in two different perennial fruit trees-apple and fig. We conclude that targeting a gene in apple or fig with a ZFN introduced by transient or stable transformation should allow knockout of a gene of interest. Using this technology for genome editing allows for marker gene-independent and antibiotic selection-free genome engineering with high precision in fruit trees to advance basic science as well as nontransgenic breeding programs.
Proven and novel strategies for efficient editing of the human genome.
Mussolino, Claudio; Mlambo, Tafadzwa; Cathomen, Toni
2015-10-01
Targeted gene editing with designer nucleases has become increasingly popular. The most commonly used designer nuclease platforms are engineered meganucleases, zinc-finger nucleases, transcription activator-like effector nucleases and the clustered regularly interspaced short palindromic repeat/Cas9 system. These powerful tools have greatly facilitated the generation of plant and animal models for basic research, and harbor an enormous potential for applications in biotechnology and gene therapy. This review recapitulates proven concepts of targeted genome engineering in primary human cells and elaborates on novel concepts that became possible with the dawn of RNA-guided nucleases and RNA-guided transcription factors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Genome editing with CompoZr custom zinc finger nucleases (ZFNs).
Hansen, Keith; Coussens, Matthew J; Sago, Jack; Subramanian, Shilpi; Gjoka, Monika; Briner, Dave
2012-06-14
Genome editing is a powerful technique that can be used to elucidate gene function and the genetic basis of disease. Traditional gene editing methods such as chemical-based mutagenesis or random integration of DNA sequences confer indiscriminate genetic changes in an overall inefficient manner and require incorporation of undesirable synthetic sequences or use of aberrant culture conditions, potentially confusing biological study. By contrast, transient ZFN expression in a cell can facilitate precise, heritable gene editing in a highly efficient manner without the need for administration of chemicals or integration of synthetic transgenes. Zinc finger nucleases (ZFNs) are enzymes which bind and cut distinct sequences of double-stranded DNA (dsDNA). A functional CompoZr ZFN unit consists of two individual monomeric proteins that bind a DNA "half-site" of approximately 15-18 nucleotides (see Figure 1). When two ZFN monomers "home" to their adjacent target sites the DNA-cleavage domains dimerize and create a double-strand break (DSB) in the DNA. Introduction of ZFN-mediated DSBs in the genome lays a foundation for highly efficient genome editing. Imperfect repair of DSBs in a cell via the non-homologous end-joining (NHEJ) DNA repair pathway can result in small insertions and deletions (indels). Creation of indels within the gene coding sequence of a cell can result in frameshift and subsequent functional knockout of a gene locus at high efficiency. While this protocol describes the use of ZFNs to create a gene knockout, integration of transgenes may also be conducted via homology-directed repair at the ZFN cut site. The CompoZr Custom ZFN Service represents a systematic, comprehensive, and well-characterized approach to targeted gene editing for the scientific community with ZFN technology. Sigma scientists work closely with investigators to 1) perform due diligence analysis including analysis of relevant gene structure, biology, and model system pursuant to the project goals, 2) apply this knowledge to develop a sound targeting strategy, 3) then design, build, and functionally validate ZFNs for activity in a relevant cell line. The investigator receives positive control genomic DNA and primers, and ready-to-use ZFN reagents supplied in both plasmid DNA and in-vitro transcribed mRNA format. These reagents may then be delivered for transient expression in the investigator's cell line or cell type of choice. Samples are then tested for gene editing at the locus of interest by standard molecular biology techniques including PCR amplification, enzymatic digest, and electrophoresis. After positive signal for gene editing is detected in the initial population, cells are single-cell cloned and genotyped for identification of mutant clones/alleles.
Hilbert, Brendan J.; Hayes, Janelle A.; Stone, Nicholas P.; Xu, Rui-Gang
2017-01-01
Abstract Many viruses use a powerful terminase motor to pump their genome inside an empty procapsid shell during virus maturation. The large terminase (TerL) protein contains both enzymatic activities necessary for packaging in such viruses: the adenosine triphosphatase (ATPase) that powers DNA translocation and an endonuclease that cleaves the concatemeric genome at both initiation and completion of genome packaging. However, how TerL binds DNA during translocation and cleavage remains mysterious. Here we investigate DNA binding and cleavage using TerL from the thermophilic phage P74-26. We report the structure of the P74-26 TerL nuclease domain, which allows us to model DNA binding in the nuclease active site. We screened a large panel of TerL variants for defects in binding and DNA cleavage, revealing that the ATPase domain is the primary site for DNA binding, and is required for nuclease activity. The nuclease domain is dispensable for DNA binding but residues lining the active site guide DNA for cleavage. Kinetic analysis of DNA cleavage suggests flexible tethering of the nuclease domains during DNA cleavage. We propose that interactions with the procapsid during DNA translocation conformationally restrict the nuclease domain, inhibiting cleavage; TerL release from the capsid upon completion of packaging unlocks the nuclease domains to cleave DNA. PMID:28082398
Koo, Ok Jae; Park, Sol Ji; Lee, Choongil; Kang, Jung Taek; Kim, Sujin; Moon, Joon Ho; Choi, Ji Yei; Kim, Hyojin; Jang, Goo; Kim, Jin-Soo; Kim, Seokjoong; Lee, Byeong-Chun
2014-03-01
To facilitate the construction of genetically-modified pigs, we produced cloned embryos derived from porcine fibroblasts transfected with a pair of engineered zinc finger nuclease (ZFN) plasmids to create targeted mutations and enriched using a reporter plasmid system. The reporter expresses RFP and eGFP simultaneously when ZFN-mediated site-specific mutations occur. Thus, double positive cells (RFP(+)/eGFP(+)) were selected and used for somatic cell nuclear transfer. Two types of reporter based enrichment systems were used in this study; the cloned embryos derived from cells enriched using a magnetic sorting-based system showed better developmental competence than did those derived from cells enriched by flow cytometry. Mutated sequences, such as insertions, deletions, or substitutions, together with the wild-type sequence, were found in the cloned porcine blastocysts. Therefore, genetic mutations can be achieved in cloned porcine embryos reconstructed with ZFN-treated cells that were enriched by a reporter-based system.
Primary Airway Epithelial Cell Gene Editing Using CRISPR-Cas9.
Everman, Jamie L; Rios, Cydney; Seibold, Max A
2018-01-01
The adaptation of the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated endonuclease 9 (CRISPR-Cas9) machinery from prokaryotic organisms has resulted in a gene editing system that is highly versatile, easily constructed, and can be leveraged to generate human cells knocked out (KO) for a specific gene. While standard transfection techniques can be used for the introduction of CRISPR-Cas9 expression cassettes to many cell types, delivery by this method is not efficient in many primary cell types, including primary human airway epithelial cells (AECs). More efficient delivery in AECs can be achieved through lentiviral-mediated transduction, allowing the CRISPR-Cas9 system to be integrated into the genome of the cell, resulting in stable expression of the nuclease machinery and increasing editing rates. In parallel, advancements have been made in the culture, expansion, selection, and differentiation of AECs, which allow the robust generation of a bulk edited AEC population from transduced cells. Applying these methods, we detail here our latest protocol to generate mucociliary epithelial cultures knocked out for a specific gene from donor-isolated primary human basal airway epithelial cells. This protocol includes methods to: (1) design and generate lentivirus which targets a specific gene for KO with CRISPR-Cas9 machinery, (2) efficiently transduce AECs, (3) culture and select for a bulk edited AEC population, (4) molecularly screen AECs for Cas9 cutting and specific sequence edits, and (5) further expand and differentiate edited cells to a mucociliary airway epithelial culture. The AEC knockouts generated using this protocol provide an excellent primary cell model system with which to characterize the function of genes involved in airway dysfunction and disease.
Kim, Jin-Soo
2016-09-01
Genome editing harnesses programmable nucleases to cut and paste genetic information in a targeted manner in living cells and organisms. Here, I review the development of programmable nucleases, including zinc finger nucleases (ZFNs), TAL (transcription-activator-like) effector nucleases (TALENs) and CRISPR (cluster of regularly interspaced palindromic repeats)-Cas9 (CRISPR-associated protein 9) RNA-guided endonucleases (RGENs). I specifically highlight the key advances that set the foundation for the rapid and widespread implementation of CRISPR-Cas9 genome editing approaches that has revolutionized the field.
Ding, Jiawang; Qin, Wei
2013-09-15
A simple, general and label-free potentiometric method to measure nuclease activities and oxidative DNA damage in a homogeneous solution using a polycation-sensitive membrane electrode is reported. Protamine, a linear polyionic species, is used as an indicator to report the cleavage of DNA by nucleases such as restriction and nonspecific nucleases, and the damage of DNA induced by hydroxyl radicals. Measurements can be done with a titration mode or a direct detection mode. For the potentiometric titration mode, the enzymatic cleavage dramatically affects the electrostatical interaction between DNA and protamine and thus shifts the response curve for the potentiometric titration of the DNA with protamine. Under the optimized conditions, the enzyme activities can be sensed potentiometrically with detection limits of 2.7×10(-4)U/µL for S1 nuclease, and of 3.9×10(-4)U/µL for DNase I. For the direct detection mode, a biocomplex between protamine and DNA is used as a substrate. The nuclease of interest cleaves the DNA from the protamine/DNA complex into smaller fragments, so that free protamine is generated and can be detected potentiometrically via the polycation-sensitive membrane electrode. Using a direct measurement, the nuclease activities could be rapidly detected with detection limits of 3.2×10(-4)U/µL for S1 nuclease, and of 4.5×10(-4)U/µL for DNase I. Moreover, the proposed potentiometric assays demonstrate the potential applications in the detection of hydroxyl radicals. It is anticipated that the present potentiometric strategy will provide a promising platform for high-throughput screening of nucleases, reactive oxygen species and the drugs with potential inhibition abilities. Copyright © 2013 Elsevier B.V. All rights reserved.
Basics of genome editing technology and its application in livestock species.
Petersen, Bjoern
2017-08-01
In the last decade, the research community has witnessed a blooming of targeted genome editing tools and applications. Novel programmable DNA nucleases such as zinc finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs) and the clustered regularly interspaced short palindromic repeats/Cas9 system (CRISPR/Cas9) possess long recognition sites and are capable of cutting DNA in a very specific manner. These DNA nucleases mediate targeted genetic alterations by enhancing the DNA mutation rate via induction of double-strand breaks at a predetermined genomic site. Compared to conventional homologous recombination-based gene targeting, DNA nucleases, also referred to as Genome Editors (GEs), can increase the targeting rate around 10,000- to 100,000-fold. The successful application of different GEs has been shown in a myriad of different organisms, including insects, amphibians, plants, nematodes and several mammalian species, including human cells and embryos. In contrast to all other DNA nucleases, that rely on protein-DNA binding, CRISPR/Cas9 uses RNA to establish a specific binding of its DNA nuclease. Besides its capability to facilitate multiplexed genomic modifications in one shot, the CRISPR/Cas is much easier to design compared to all other DNA nucleases. Current results indicate that any DNA nuclease can be successfully employed in a broad range of organisms which renders them useful for improving the understanding of complex physiological systems such as reproduction, producing transgenic animals, including creating large animal models for human diseases, creating specific cell lines, and plants, and even for treating human genetic diseases. This review provides an update on DNA nucleases, their underlying mechanism and focuses on their application to edit the genome of livestock species. © 2017 Blackwell Verlag GmbH.
Lee, Ciaran M; Cradick, Thomas J; Fine, Eli J; Bao, Gang
2016-01-01
The rapid advancement in targeted genome editing using engineered nucleases such as ZFNs, TALENs, and CRISPR/Cas9 systems has resulted in a suite of powerful methods that allows researchers to target any genomic locus of interest. A complementary set of design tools has been developed to aid researchers with nuclease design, target site selection, and experimental validation. Here, we review the various tools available for target selection in designing engineered nucleases, and for quantifying nuclease activity and specificity, including web-based search tools and experimental methods. We also elucidate challenges in target selection, especially in predicting off-target effects, and discuss future directions in precision genome editing and its applications. PMID:26750397
Generating gene knockout rats by homologous recombination in embryonic stem cells
Tong, Chang; Huang, Guanyi; Ashton, Charles; Li, Ping; Ying, Qi-Long
2013-01-01
We describe here a detailed protocol for generating gene knockout rats by homologous recombination in embryonic stem (ES) cells. This protocol comprises the following procedures: derivation and expansion of rat ES cells, construction of gene-targeting vectors, generation of gene-targeted rat ES cells and, finally, production of gene-targeted rats. The major differences between this protocol and the classical mouse gene-targeting protocol include ES cell culture methods, drug selection scheme, colony picking and screening strategies. This ES cell–based gene-targeting technique allows sophisticated genetic modifications to be performed in the rat, as many laboratories have been doing in the mouse for the past two decades. Recently we used this protocol to generate Tp53 (also known as p53) gene knockout rats. The entire process requires ~1 year to complete, from derivation of ES cells to generation of knockout rats. PMID:21637202
Cerberus-Nodal-Lefty-Pitx signaling cascade controls left-right asymmetry in amphioxus.
Li, Guang; Liu, Xian; Xing, Chaofan; Zhang, Huayang; Shimeld, Sebastian M; Wang, Yiquan
2017-04-04
Many bilaterally symmetrical animals develop genetically programmed left-right asymmetries. In vertebrates, this process is under the control of Nodal signaling, which is restricted to the left side by Nodal antagonists Cerberus and Lefty. Amphioxus, the earliest diverging chordate lineage, has profound left-right asymmetry as a larva. We show that Cerberus , Nodal , Lefty , and their target transcription factor Pitx are sequentially activated in amphioxus embryos. We then address their function by transcription activator-like effector nucleases (TALEN)-based knockout and heat-shock promoter (HSP)-driven overexpression. Knockout of Cerberus leads to ectopic right-sided expression of Nodal , Lefty , and Pitx , whereas overexpression of Cerberus represses their left-sided expression. Overexpression of Nodal in turn represses Cerberus and activates Lefty and Pitx ectopically on the right side. We also show Lefty represses Nodal , whereas Pitx activates Nodal These data combine in a model in which Cerberus determines whether the left-sided gene expression cassette is activated or repressed. These regulatory steps are essential for normal left-right asymmetry to develop, as when they are disrupted embryos may instead form two phenotypic left sides or two phenotypic right sides. Our study shows the regulatory cassette controlling left-right asymmetry was in place in the ancestor of amphioxus and vertebrates. This includes the Nodal inhibitors Cerberus and Lefty, both of which operate in feedback loops with Nodal and combine to establish asymmetric Pitx expression. Cerberus and Lefty are missing from most invertebrate lineages, marking this mechanism as an innovation in the lineage leading to modern chordates.
The iCRISPR platform for rapid genome editing in human pluripotent stem cells.
Zhu, Zengrong; González, Federico; Huangfu, Danwei
2014-01-01
Human pluripotent stem cells (hPSCs) have the potential to generate all adult cell types, including rare or inaccessible human cell populations, thus providing a unique platform for disease studies. To realize this promise, it is essential to develop methods for efficient genetic manipulations in hPSCs. Established using TALEN (transcription activator-like effector nuclease) and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) systems, the iCRISPR platform supports a variety of genome-engineering approaches with high efficiencies. Here, we first describe the establishment of the iCRISPR platform through TALEN-mediated targeting of inducible Cas9 expression cassettes into the AAVS1 locus. Next, we provide a series of technical procedures for using iCRISPR to achieve one-step knockout of one or multiple gene(s), "scarless" introduction of precise nucleotide alterations, as well as inducible knockout during hPSC differentiation. We present an optimized workflow, as well as guidelines for the selection of CRISPR targeting sequences and the design of single-stranded DNA (ssDNA) homology-directed DNA repair templates for the introduction of specific nucleotide alterations. We have successfully used these protocols in four different hPSC lines, including human embryonic stem cells and induced pluripotent stem cells. Once the iCRISPR platform is established, clonal lines with desired genetic modifications can be established in as little as 1 month. The methods described here enable a wide range of genome-engineering applications in hPSCs, thus providing a valuable resource for the creation of diverse hPSC-based disease models with superior speed and ease.
CRISPR/Cas9—Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development
Okoli, Arinze; Okeke, Malachy I.; Tryland, Morten; Moens, Ugo
2018-01-01
The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) technology is revolutionizing genome editing approaches. Its high efficiency, specificity, versatility, flexibility, simplicity and low cost have made the CRISPR/Cas9 system preferable to other guided site-specific nuclease-based systems such as TALENs (Transcription Activator-like Effector Nucleases) and ZFNs (Zinc Finger Nucleases) in genome editing of viruses. CRISPR/Cas9 is presently being applied in constructing viral mutants, preventing virus infections, eradicating proviral DNA, and inhibiting viral replication in infected cells. The successful adaptation of CRISPR/Cas9 to editing the genome of Vaccinia virus paves the way for its application in editing other vaccine/vector-relevant orthopoxvirus (OPXV) strains. Thus, CRISPR/Cas9 can be used to resolve some of the major hindrances to the development of OPXV-based recombinant vaccines and vectors, including sub-optimal immunogenicity; transgene and genome instability; reversion of attenuation; potential of spread of transgenes to wildtype strains and close contacts, which are important biosafety and risk assessment considerations. In this article, we review the published literature on the application of CRISPR/Cas9 in virus genome editing and discuss the potentials of CRISPR/Cas9 in advancing OPXV-based recombinant vaccines and vectors. We also discuss the application of CRISPR/Cas9 in combating viruses of clinical relevance, the limitations of CRISPR/Cas9 and the current strategies to overcome them. PMID:29361752
Liu, Jia; Shui, Sai-Lan
2016-12-28
The advent of site-specific nucleases, particularly CRISPR/Cas9, provides researchers with the unprecedented ability to manipulate genomic sequences. These nucleases are used to create model cell lines, engineer metabolic pathways, produce transgenic animals and plants, perform genome-wide functional screen and, most importantly, treat human diseases that are difficult to tackle by traditional medications. Considerable efforts have been devoted to improving the efficiency and specificity of nucleases for clinical applications. However, safe and efficient delivery methods remain the major obstacle for therapeutic gene editing. In this review, we summarize the recent progress on nuclease delivery methods, highlight their impact on the outcomes of gene editing and discuss the potential of different delivery approaches for therapeutic gene editing. Copyright © 2016 Elsevier B.V. All rights reserved.
Enhanced gene disruption by programmable nucleases delivered by a minicircle vector.
Dad, A-B K; Ramakrishna, S; Song, M; Kim, H
2014-11-01
Targeted genetic modification using programmable nucleases such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) is of great value in biomedical research, medicine and biotechnology. Minicircle vectors, which lack extraneous bacterial sequences, have several advantages over conventional plasmids for transgene delivery. Here, for the first time, we delivered programmable nucleases into human cells using transient transfection of a minicircle vector and compared the results with those obtained using a conventional plasmid. Surrogate reporter assays and T7 endonuclease analyses revealed that cells in the minicircle vector group displayed significantly higher mutation frequencies at the target sites than those in the conventional plasmid group. Quantitative PCR and reverse transcription-PCR showed higher vector copy number and programmable nuclease transcript levels, respectively, in 293T cells after minicircle versus conventional plasmid vector transfection. In addition, tryphan blue staining and flow cytometry after annexin V and propidium iodide staining showed that cell viability was also significantly higher in the minicircle group than in the conventional plasmid group. Taken together, our results show that gene disruption using minicircle vector-mediated delivery of ZFNs and TALENs is a more efficient, safer and less toxic method than using a conventional plasmid, and indicate that the minicircle vector could serve as an advanced delivery method for programmable nucleases.
Bevacqua, R J; Fernandez-Martín, R; Savy, V; Canel, N G; Gismondi, M I; Kues, W A; Carlson, D F; Fahrenkrug, S C; Niemann, H; Taboga, O A; Ferraris, S; Salamone, D F
2016-11-01
The recently developed engineered nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease (Cas) 9, provide new opportunities for gene editing in a straightforward manner. However, few reports are available regarding CRISPR application and efficiency in cattle. Here, the CRISPR/Cas9 system was used with the aim of inducing knockout and knock-in alleles of the bovine PRNP gene, responsible for mad cow disease, both in bovine fetal fibroblasts and in IVF embryos. Five single-guide RNAs were designed to target 875 bp of PRNP exon 3, and all five were codelivered with Cas9. The feasibility of inducing homologous recombination (HR) was evaluated with a reporter vector carrying EGFP flanked by 1 kbp PRNP regions (pHRegfp). For somatic cells, plasmids coding for Cas9 and for each of the five single-guide RNAs (pCMVCas9 and pSPgRNAs) were transfected under two different conditions (1X and 2X). For IVF zygotes, cytoplasmic injection was conducted with either plasmids or mRNA. For plasmid injection groups, 1 pg pCMVCas9 + 0.1 pg of each pSPgRNA (DNA2X) was used per zygote. In the case of RNA, two amounts (RNA1X and RNA2X) were compared. To assess the occurrence of HR, a group additionally cotransfected or coinjected with pHRegfp plasmid was included. Somatic cell lysates were analyzed by polymerase chain reaction and surveyor assay. In the case of embryos, the in vitro development and the genotype of blastocysts were evaluated by polymerase chain reaction and sequencing. In somatic cells, 2X transfection resulted in indels and large deletions of the targeted PRNP region. Regarding embryo injection, higher blastocyst rates were obtained for RNA injected groups (46/103 [44.6%] and 55/116 [47.4%] for RNA1X and RNA2X) than for the DNA2X group (26/140 [18.6%], P < 0.05). In 46% (26/56) of the total sequenced blastocysts, specific gene editing was detected. The total number of genetic modifications (29) was higher than the total number of gene-edited embryos, as three blastocysts from the group RNA2X reported more than one type of modification. The modifications included indels (10/56; 17.9%) and large deletions (19/56; 33.9%). Moreover, it was possible to detect HR in 1/8 (12.5%) embryos treated with RNA2X. These results report that the CRISPR/Cas9 system can be applied for site-specific edition of the bovine genome, which could have a great impact on the development of large animals resistant to important zoonotic diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
DNA aptamers against FokI nuclease domain for genome editing applications.
Nishio, Maui; Matsumoto, Daisuke; Kato, Yoshio; Abe, Koichi; Lee, Jinhee; Tsukakoshi, Kaori; Yamagishi, Ayana; Nakamura, Chikashi; Ikebukuro, Kazunori
2017-07-15
Genome editing with site-specific nucleases (SSNs) can modify only the target gene and may be effective for gene therapy. The main limitation of genome editing for clinical use is off-target effects; excess SSNs in the cells and their longevity can contribute to off-target effects. Therefore, a controlled delivery system for SSNs is necessary. FokI nuclease domain (FokI) is a common DNA cleavage domain in zinc finger nuclease (ZFN) and transcription activator-like effector nuclease. Previously, we reported a zinc finger protein delivery system that combined aptamer-fused, double-strand oligonucleotides and nanoneedles. Here, we report the development of DNA aptamers that bind to the target molecules, with high affinity and specificity to the FokI. DNA aptamers were selected in six rounds of systematic evolution of ligands by exponential enrichment. Aptamers F6#8 and #71, which showed high binding affinity to FokI (K d =82nM, 74nM each), showed resistance to nuclease activity itself and did not inhibit nuclease activity. We immobilized the ZFN-fused GFP to nanoneedles through these aptamers and inserted the nanoneedles into HEK293 cells. We observed the release of ZFN-fused GFP from the nanoneedles in the presence of cells. Therefore, these aptamers are useful for genome editing applications such as controlled delivery of SSNs. Copyright © 2016 Elsevier B.V. All rights reserved.
MicroRNA-focused CRISPR-Cas9 Library Screen Reveals Fitness-Associated miRNAs.
Kurata, Jessica S; Lin, Ren-Jang
2018-05-02
MicroRNAs (miRNAs) are posttranscriptional gene regulators that play important roles in the control of cell fitness, differentiation, and development. The CRISPR-Cas9 gene-editing system is composed of the Cas9 nuclease in complex with a single guide RNA (sgRNA) and directs DNA cleavage at a predetermined site. Several CRISPR-Cas9 libraries have been constructed for genome-scale knockout screens of protein function; however few libraries have included miRNA genes. Here we constructed a miRNA-focused CRISPR-Cas9 library that targets 1,594 (85%) annotated human miRNA stem-loops. The sgRNAs in our LX-miR library are designed to have high on-target and low off-target activity, and each miRNA is targeted by 4-5 sgRNAs. We used this sgRNA library to screen for miRNAs that affect cell fitness of HeLa or NCI-N87 cells by monitoring the change in frequency of each sgRNA over time. By considering the expression in the tested cells and the dysregulation of the miRNAs in cancer specimens, we identified five HeLa pro-fitness and cervical cancer up-regulated miRNAs (miR-31-5p, miR-92b-3p, miR-146b-5p, miR-151a-3p, and miR-194-5p). Similarly, we identified six NCI-N87 pro-fitness and gastric cancer up-regulated miRNAs (miR-95-3p, miR-181a-5p, miR-188-5p, miR-196b-5p, miR-584-5p, and miR-1304-3p), as well as three anti-fitness and down-regulated miRNAs (let-7a-3p, miR-100-5p, and miR-149-5p). Some of those miRNAs are known to be oncogenic or tumor-suppressive, but others are novel. Taken together, the LX-miR library is useful for genome-wide unbiased screening to identify miRNAs important for cellular fitness and likely to be useful for other functional screens. Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Targeting of a Nuclease to Murine Leukemia Virus Capsids Inhibits Viral Multiplication
NASA Astrophysics Data System (ADS)
Natsoulis, Georges; Seshaiah, Partha; Federspiel, Mark J.; Rein, Alan; Hughes, Stephen H.; Boeke, Jef D.
1995-01-01
Capsid-targeted viral inactivation is an antiviral strategy in which toxic fusion proteins are targeted to virions, where they inhibit viral multiplication by destroying viral components. These fusion proteins consist of a virion structural protein moiety and an enzymatic moiety such as a nuclease. Such fusion proteins can severely inhibit transposition of yeast retrotransposon Ty1, an element whose transposition mechanistically resembles retroviral multiplication. We demonstrate that expression of a murine retrovirus capsid-staphylococcal nuclease fusion protein inhibits multiplication of the corresponding murine leukemia virus by 30- to 100-fold. Staphylococcal nuclease is apparently inactive intracellularly and hence nontoxic to the host cell, but it is active extracellularly because of its requirement for high concentrations of Ca2+ ions. Virions assembled in and shed from cells expressing the fusion protein contain very small amounts of intact viral RNA, as would be predicted for nuclease-mediated inhibition of viral multiplication.
RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency.
Song, Jun; Yang, Dongshan; Xu, Jie; Zhu, Tianqing; Chen, Y Eugene; Zhang, Jifeng
2016-01-28
Zinc-finger nuclease, transcription activator-like effector nuclease and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) are becoming major tools for genome editing. Importantly, knock-in in several non-rodent species has been finally achieved thanks to these customizable nucleases; yet the rates remain to be further improved. We hypothesize that inhibiting non-homologous end joining (NHEJ) or enhancing homology-directed repair (HDR) will improve the nuclease-mediated knock-in efficiency. Here we show that the in vitro application of an HDR enhancer, RS-1, increases the knock-in efficiency by two- to five-fold at different loci, whereas NHEJ inhibitor SCR7 has minimal effects. We then apply RS-1 for animal production and have achieved multifold improvement on the knock-in rates as well. Our work presents tools to nuclease-mediated knock-in animal production, and sheds light on improving gene-targeting efficiencies on pluripotent stem cells.
Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis.
Wu, Jianfeng; Huang, Zhe; Ren, Junming; Zhang, Zhirong; He, Peng; Li, Yangxin; Ma, Jianhui; Chen, Wanze; Zhang, Yingying; Zhou, Xiaojuan; Yang, Zhentao; Wu, Su-Qin; Chen, Lanfen; Han, Jiahuai
2013-08-01
Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell development. Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their ability to activate NF-κB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consistently, Mlkl-deficient macrophages and mice exhibited normal interleukin-1β (IL-1β), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis.
Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis
Wu, Jianfeng; Huang, Zhe; Ren, Junming; Zhang, Zhirong; He, Peng; Li, Yangxin; Ma, Jianhui; Chen, Wanze; Zhang, Yingying; Zhou, Xiaojuan; Yang, Zhentao; Wu, Su-Qin; Chen, Lanfen; Han, Jiahuai
2013-01-01
Mixed lineage kinase domain-like protein (Mlkl) was recently found to interact with receptor interacting protein 3 (Rip3) and to be essential for tumor necrosis factor (TNF)-induced programmed necrosis (necroptosis) in cultured cell lines. We have generated Mlkl-deficient mice by transcription activator-like effector nucleases (TALENs)-mediated gene disruption and found Mlkl to be dispensable for normal mouse development as well as immune cell development. Mlkl-deficient mouse embryonic fibroblasts (MEFs) and macrophages both showed resistance to necrotic but not apoptotic stimuli. Mlkl-deficient MEFs and macrophages were indistinguishable from wild-type cells in their ability to activate NF-κB, ERK, JNK, and p38 in response to TNF and lipopolysaccharides (LPS), respectively. Consistently, Mlkl-deficient macrophages and mice exhibited normal interleukin-1β (IL-1β), IL-6, and TNF production after LPS treatment. Mlkl deficiency protects mice from cerulean-induced acute pancreatitis, a necrosis-related disease, but has no effect on polymicrobial septic shock-induced animal death. Our results provide genetic evidence for the role of Mlkl in necroptosis. PMID:23835476
Tang, Haipei; Liu, Yun; Luo, Daji; Ogawa, Satoshi; Yin, Yike; Li, Shuisheng; Zhang, Yong; Hu, Wei; Parhar, Ishwar S.; Lin, Haoran
2015-01-01
The kiss1/gpr54 signaling system is considered to be a critical regulator of reproduction in most vertebrates. However, this presumption has not been tested vigorously in nonmammalian vertebrates. Distinct from mammals, multiple kiss1/gpr54 paralogous genes (kiss/kissr) have been identified in nonmammalian vertebrates, raising the possibility of functional redundancy among these genes. In this study, we have systematically generated the zebrafish kiss1−/−, kiss2−/−, and kiss1−/−;kiss2−/− mutant lines as well as the kissr1−/−, kissr2−/−, and kissr1−/−;kissr2−/− mutant lines using transcription activator-like effector nucleases. We have demonstrated that spermatogenesis and folliculogenesis as well as reproductive capability are not impaired in all of these 6 mutant lines. Collectively, our results indicate that kiss/kissr signaling is not absolutely required for zebrafish reproduction, suggesting that the kiss/kissr systems play nonessential roles for reproduction in certain nonmammalian vertebrates. These findings also demonstrated that fish and mammals have evolved different strategies for neuroendocrine control of reproduction. PMID:25406015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrill, Joshua A.; Hukkanen, Renee R.; Lawson, Marie
2013-10-15
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague–Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expressionmore » of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ∼ 30–45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species. - Highlights: • An AHR knockout rat was generated on a Sprague–Dawley outbred background. • AHR-KO rats lack expression of AHR protein. • AHR-KO rats are insensitive to TCDD-mediated effects. • Data suggests difference in the role of AHR in tissue development of rats and mice. • Abnormalities in vascular development are observed in AHR-KO mouse, but not rat. • Renal pathology is observed in AHR-KO rat, but not mouse.« less
2013-06-01
number of ways to generate either random mutations or specific alterations to the genome sequence . Unlike previous approaches however, both TALENs and...made to the donor construct will be incorporated into the endogenous genomic sequence (examples in Liu et al., 2012; Zu et al., 2013). One challenge... Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics. 2013. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. Efficient genome
Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro.
Termglinchan, Vittavat; Seeger, Timon; Chen, Caressa; Wu, Joseph C; Karakikes, Ioannis
2017-01-01
Precision genome engineering is rapidly advancing the application of the induced pluripotent stem cells (iPSCs) technology for in vitro disease modeling of cardiovascular diseases. Targeted genome editing using engineered nucleases is a powerful tool that allows for reverse genetics, genome engineering, and targeted transgene integration experiments to be performed in a precise and predictable manner. However, nuclease-mediated homologous recombination is an inefficient process. Herein, we describe the development of an optimized method combining site-specific nucleases and the piggyBac transposon system for "seamless" genome editing in pluripotent stem cells with high efficiency and fidelity in vitro.
Therapeutic gene editing: delivery and regulatory perspectives.
Shim, Gayong; Kim, Dongyoon; Park, Gyu Thae; Jin, Hyerim; Suh, Soo-Kyung; Oh, Yu-Kyoung
2017-06-01
Gene-editing technology is an emerging therapeutic modality for manipulating the eukaryotic genome by using target-sequence-specific engineered nucleases. Because of the exceptional advantages that gene-editing technology offers in facilitating the accurate correction of sequences in a genome, gene editing-based therapy is being aggressively developed as a next-generation therapeutic approach to treat a wide range of diseases. However, strategies for precise engineering and delivery of gene-editing nucleases, including zinc finger nucleases, transcription activator-like effector nuclease, and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated nuclease Cas9), present major obstacles to the development of gene-editing therapies, as with other gene-targeting therapeutics. Currently, viral and non-viral vectors are being studied for the delivery of these nucleases into cells in the form of DNA, mRNA, or proteins. Clinical trials are already ongoing, and in vivo studies are actively investigating the applicability of CRISPR/Cas9 techniques. However, the concept of correcting the genome poses major concerns from a regulatory perspective, especially in terms of safety. This review addresses current research trends and delivery strategies for gene editing-based therapeutics in non-clinical and clinical settings and considers the associated regulatory issues.
Therapeutic gene editing: delivery and regulatory perspectives
Shim, Gayong; Kim, Dongyoon; Park, Gyu Thae; Jin, Hyerim; Suh, Soo-Kyung; Oh, Yu-Kyoung
2017-01-01
Gene-editing technology is an emerging therapeutic modality for manipulating the eukaryotic genome by using target-sequence-specific engineered nucleases. Because of the exceptional advantages that gene-editing technology offers in facilitating the accurate correction of sequences in a genome, gene editing-based therapy is being aggressively developed as a next-generation therapeutic approach to treat a wide range of diseases. However, strategies for precise engineering and delivery of gene-editing nucleases, including zinc finger nucleases, transcription activator-like effector nuclease, and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated nuclease Cas9), present major obstacles to the development of gene-editing therapies, as with other gene-targeting therapeutics. Currently, viral and non-viral vectors are being studied for the delivery of these nucleases into cells in the form of DNA, mRNA, or proteins. Clinical trials are already ongoing, and in vivo studies are actively investigating the applicability of CRISPR/Cas9 techniques. However, the concept of correcting the genome poses major concerns from a regulatory perspective, especially in terms of safety. This review addresses current research trends and delivery strategies for gene editing-based therapeutics in non-clinical and clinical settings and considers the associated regulatory issues. PMID:28392568
Purification and identification of a nuclease activity in embryo axes from French bean.
Lambert, Rocío; Quiles, Francisco Antonio; Cabello-Díaz, Juan Miguel; Piedras, Pedro
2014-07-01
Plant nucleases are involved in nucleic acid degradation associated to programmed cell death processes as well as in DNA restriction, repair and recombination processes. However, the knowledge about the function of plant nucleases is limited. A major nuclease activity was detected by in-gel assay with whole embryonic axes of common bean by using ssDNA or RNA as substrate, whereas this activity was minimal in cotyledons. The enzyme has been purified to electrophoretic homogeneity from embryonic axes. The main biochemical properties of the purified enzyme indicate that it belongs to the S1/P1 family of nucleases. This was corroborated when this protein, after SDS-electrophoresis, was excised from the gel and further analysis by MALDI TOF/TOF allowed identification of the gene (PVN1) that codes this protein. The gene that codes the purified protein was identified. The expression of PVN1 gene was induced at the specific moment of radicle protrusion. The inclusion of inorganic phosphate to the imbibition media reduced the level of expression of this gene and the nuclease activity suggesting a relationship with the phosphorous status in French bean seedlings. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Manifestation of α clustering in 10Be via α -knockout reaction
NASA Astrophysics Data System (ADS)
Lyu, Mengjiao; Yoshida, Kazuki; Kanada-En'yo, Yoshiko; Ogata, Kazuyuki
2018-04-01
Background: Proton-induced α -knockout reactions may allow direct experimental observation of α clustering in nuclei. This is obtained by relating the theoretical descriptions of clustering states to the experimental reaction observables. It is desired to introduce microscopic structure models into the theoretical frameworks for α -knockout reactions. Purpose: Our goal is to probe the α clustering in the 10Be nucleus by proton-induced α -knockout reaction observables. Method: We adopt an extended version of the Tohsaki-Horiuchi-Schuck-Röpke wave function of 10Be and integrate it with the distorted-wave impulse approximation framework for the calculation of (p ,p α ) -knockout reactions. Results: We make the first calculation for the 10Be(p ,p α )6He reaction at 250 MeV by implementing a microscopic α -cluster wave function, and we predict the triple-differential cross section (TDX). Furthermore, by constructing artificial states of the target nucleus 10Be with compact or dilute spatial distributions, the TDX is found to be highly sensitive to the extent of clustering in the target nuclei. Conclusions: These results provide reliable manifestation of α clustering in 10Be.
Contribution of chloride channel permease to fluoride resistance in Streptococcus mutans.
Murata, Takatoshi; Hanada, Nobuhiro
2016-06-01
Genes encoding fluoride transporters have been identified in bacterial and archaeal species. The genome sequence of the cariogenic Streptococcus mutans bacteria suggests the presence of a putative fluoride transporter, which is referred to as a chloride channel permease. Two homologues of this gene (GenBank locus tags SMU_1290c and SMU_1289c) reside in tandem in the genome of S. mutans The aim of this study was to determine whether the chloride channel permeases contribute to fluoride resistance. We constructed SMU_1290c- and SMU_1289c-knockout S. mutans UA159 strains. We also constructed a double-knockout strain lacking both genes. SMU_1290c or SMU_1289c was transformed into a fluoride transporter- disrupted Escherichia coli strain. All bacterial strains were cultured under appropriate conditions with or without sodium fluoride, and fluoride resistance was evaluated. All three gene-knockout S. mutans strains showed lower resistance to sodium fluoride than did the wild-type strain. No significant changes in resistance to other sodium halides were recognized between the wild-type and double-knockout strains. Both SMU_1290c and SMU_1289c transformation rescued fluoride transporter-disrupted E. coli cell from fluoride toxicity. We conclude that the chloride channel permeases contribute to fluoride resistance in S. mutans. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ortega, Marcos E.; Gaussier, Helene; Catalano, Carlos E.
2007-01-01
Summary Terminase enzymes are common to double-stranded DNA (dsDNA) viruses and are responsible for packaging viral DNA into the confines of an empty capsid shell. In bacteriophage lambda the catalytic terminase subunit is gpA, which is responsible for maturation of the genome end prior to packaging and subsequent translocation of the matured DNA into the capsid. DNA packaging requires an ATPase catalytic site situated in the N-terminus of the protein. A second ATPase catalytic site associated with the DNA maturation activities of the protein has been proposed; however, direct demonstration of this putative second site is lacking. Here we describe biochemical studies that define protease-resistant peptides of gpA and expression of these putative domains in E. coli. Biochemical characterization of gpA-ΔN179, a construct in which the N-terminal 179 residues of gpA have been deleted, indicates that this protein encompasses the DNA maturation domain of gpA. The construct is folded, soluble and possesses an ATP-dependent nuclease activity. Moreover, the construct binds and hydrolyzes ATP despite the fact that the DNA packaging ATPase site in the N-terminus of gpA has been deleted. Mutation of lysine 497, which alters the conserved lysine in a predicted Walker A “P-loop” sequence, does not affect ATP binding but severely impairs ATP hydrolysis. Further, this mutation abrogates the ATP-dependent nuclease activity of the protein. These studies provide direct evidence for the elusive nucleotide-binding site in gpA that is directly associated with the DNA maturation activity of the protein. The implications of these results with respect to the two roles of the terminase holoenzyme – DNA maturation and DNA packaging – are discussed. PMID:17870092
High-efficiency targeted editing of large viral genomes by RNA-guided nucleases.
Bi, Yanwei; Sun, Le; Gao, Dandan; Ding, Chen; Li, Zhihua; Li, Yadong; Cun, Wei; Li, Qihan
2014-05-01
A facile and efficient method for the precise editing of large viral genomes is required for the selection of attenuated vaccine strains and the construction of gene therapy vectors. The type II prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)) RNA-guided nuclease system can be introduced into host cells during viral replication. The CRISPR-Cas9 system robustly stimulates targeted double-stranded breaks in the genomes of DNA viruses, where the non-homologous end joining (NHEJ) and homology-directed repair (HDR) pathways can be exploited to introduce site-specific indels or insert heterologous genes with high frequency. Furthermore, CRISPR-Cas9 can specifically inhibit the replication of the original virus, thereby significantly increasing the abundance of the recombinant virus among progeny virus. As a result, purified recombinant virus can be obtained with only a single round of selection. In this study, we used recombinant adenovirus and type I herpes simplex virus as examples to demonstrate that the CRISPR-Cas9 system is a valuable tool for editing the genomes of large DNA viruses.
High-Efficiency Targeted Editing of Large Viral Genomes by RNA-Guided Nucleases
Gao, Dandan; Ding, Chen; Li, Zhihua; Li, Yadong; Cun, Wei; Li, Qihan
2014-01-01
A facile and efficient method for the precise editing of large viral genomes is required for the selection of attenuated vaccine strains and the construction of gene therapy vectors. The type II prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)) RNA-guided nuclease system can be introduced into host cells during viral replication. The CRISPR-Cas9 system robustly stimulates targeted double-stranded breaks in the genomes of DNA viruses, where the non-homologous end joining (NHEJ) and homology-directed repair (HDR) pathways can be exploited to introduce site-specific indels or insert heterologous genes with high frequency. Furthermore, CRISPR-Cas9 can specifically inhibit the replication of the original virus, thereby significantly increasing the abundance of the recombinant virus among progeny virus. As a result, purified recombinant virus can be obtained with only a single round of selection. In this study, we used recombinant adenovirus and type I herpes simplex virus as examples to demonstrate that the CRISPR-Cas9 system is a valuable tool for editing the genomes of large DNA viruses. PMID:24788700
GUIDEseq: a bioconductor package to analyze GUIDE-Seq datasets for CRISPR-Cas nucleases.
Zhu, Lihua Julie; Lawrence, Michael; Gupta, Ankit; Pagès, Hervé; Kucukural, Alper; Garber, Manuel; Wolfe, Scot A
2017-05-15
Genome editing technologies developed around the CRISPR-Cas9 nuclease system have facilitated the investigation of a broad range of biological questions. These nucleases also hold tremendous promise for treating a variety of genetic disorders. In the context of their therapeutic application, it is important to identify the spectrum of genomic sequences that are cleaved by a candidate nuclease when programmed with a particular guide RNA, as well as the cleavage efficiency of these sites. Powerful new experimental approaches, such as GUIDE-seq, facilitate the sensitive, unbiased genome-wide detection of nuclease cleavage sites within the genome. Flexible bioinformatics analysis tools for processing GUIDE-seq data are needed. Here, we describe an open source, open development software suite, GUIDEseq, for GUIDE-seq data analysis and annotation as a Bioconductor package in R. The GUIDEseq package provides a flexible platform with more than 60 adjustable parameters for the analysis of datasets associated with custom nuclease applications. These parameters allow data analysis to be tailored to different nuclease platforms with different length and complexity in their guide and PAM recognition sequences or their DNA cleavage position. They also enable users to customize sequence aggregation criteria, and vary peak calling thresholds that can influence the number of potential off-target sites recovered. GUIDEseq also annotates potential off-target sites that overlap with genes based on genome annotation information, as these may be the most important off-target sites for further characterization. In addition, GUIDEseq enables the comparison and visualization of off-target site overlap between different datasets for a rapid comparison of different nuclease configurations or experimental conditions. For each identified off-target, the GUIDEseq package outputs mapped GUIDE-Seq read count as well as cleavage score from a user specified off-target cleavage score prediction algorithm permitting the identification of genomic sequences with unexpected cleavage activity. The GUIDEseq package enables analysis of GUIDE-data from various nuclease platforms for any species with a defined genomic sequence. This software package has been used successfully to analyze several GUIDE-seq datasets. The software, source code and documentation are freely available at http://www.bioconductor.org/packages/release/bioc/html/GUIDEseq.html .
Okada, Morihiro; Miller, Thomas C; Wen, Luan; Shi, Yun-Bo
2017-05-11
The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc-Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad-Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development.
Okada, Morihiro; Miller, Thomas C; Wen, Luan; Shi, Yun-Bo
2017-01-01
The Myc/Mad/Max network has long been shown to be an important factor in regulating cell proliferation, death and differentiation in diverse cell types. In general, Myc–Max heterodimers activate target gene expression to promote cell proliferation, although excess of c-Myc can also induce apoptosis. In contrast, Mad competes against Myc to form Mad–Max heterodimers that bind to the same target genes to repress their expression and promote differentiation. The role of the Myc/Mad/Max network during vertebrate development, especially, the so-called postembryonic development, a period around birth in mammals, is unclear. Using thyroid hormone (T3)-dependent Xenopus metamorphosis as a model, we show here that Mad1 is induced by T3 in the intestine during metamorphosis when larval epithelial cell death and adult epithelial stem cell development take place. More importantly, we demonstrate that Mad1 is expressed in the larval cells undergoing apoptosis, whereas c-Myc is expressed in the proliferating adult stem cells during intestinal metamorphosis, suggesting that Mad1 may have a role in cell death during development. By using transcription activator-like effector nuclease-mediated gene-editing technology, we have generated Mad1 knockout Xenopus animals. This has revealed that Mad1 is not essential for embryogenesis or metamorphosis. On the other hand, consistent with its spatiotemporal expression profile, Mad1 knockout leads to reduced larval epithelial apoptosis but surprisingly also results in increased adult stem cell proliferation. These findings not only reveal a novel role of Mad1 in regulating developmental cell death but also suggest that a balance of Mad and Myc controls cell fate determination during adult organ development. PMID:28492553
Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs.
Xin, Jige; Yang, Huaqiang; Fan, Nana; Zhao, Bentian; Ouyang, Zhen; Liu, Zhaoming; Zhao, Yu; Li, Xiaoping; Song, Jun; Yang, Yi; Zou, Qingjian; Yan, Quanmei; Zeng, Yangzhi; Lai, Liangxue
2013-01-01
Inbred mini-pigs are ideal organ donors for future human xenotransplantations because of their clear genetic background, high homozygosity, and high inbreeding endurance. In this study, we chose fibroblast cells from a highly inbred pig line called Banna mini-pig inbred line (BMI) as donor nuclei for nuclear transfer, combining with transcription activator-like effector nucleases (TALENs) and successfully generated α-1,3-galactosyltransferase (GGTA1) gene biallelic knockout (KO) pigs. To validate the efficiency of TALEN vectors, in vitro-transcribed TALEN mRNAs were microinjected into one-cell stage parthenogenetically activated porcine embryos. The efficiency of indel mutations at the GGTA1-targeting loci was as high as 73.1% (19/26) among the parthenogenetic blastocysts. TALENs were co-transfected into porcine fetal fibroblasts of BMI with a plasmid containing neomycin gene. The targeting efficiency reached 89.5% (187/209) among the survived cell clones after a 10 d selection. More remarkably 27.8% (58/209) of colonies were biallelic KO. Five fibroblast cell lines with biallelic KO were chosen as nuclear donors for somatic cell nuclear transfer (SCNT). Three miniature piglets with biallelic mutations of the GGTA1 gene were achieved. Gal epitopes on the surface of cells from all the three biallelic KO piglets were completely absent. The fibroblasts from the GGTA1 null piglets were more resistant to lysis by pooled complement-preserved normal human serum than those from wild-type pigs. These results indicate that a combination of TALENs technology with SCNT can generate biallelic KO pigs directly with high efficiency. The GGTA1 null piglets with inbred features created in this study can provide a new organ source for xenotransplantation research.
Ahrens, Hellen E; Petersen, Björn; Ramackers, Wolf; Petkov, Stoyan; Herrmann, Doris; Hauschild-Quintern, Janet; Lucas-Hahn, Andrea; Hassel, Petra; Ziegler, Maren; Baars, Wiebke; Bergmann, Sabine; Schwinzer, Reinhard; Winkler, Michael; Niemann, Heiner
2015-07-01
Multiple modifications of the porcine genome are required to prevent rejection after pig-to-primate xenotransplantation. Here, we produced pigs with a knockout of the α1,3-galactosyltransferase gene (GGTA1-KO) combined with transgenic expression of the human anti-apoptotic/anti-inflammatory molecules heme oxygenase-1 and A20, and investigated their xenoprotective properties. The GGTA1-KO/human heme oxygenase-1 (hHO-1)/human A20 (hA20) transgenic pigs were produced in a stepwise approach using zinc finger nuclease vectors targeting the GGTA1 gene and a Sleeping Beauty vector coding for hA20. Two piglets were analyzed by quantitative reverse-transcription polymerase chain reaction, flow cytometry, and sequencing. The biological function of the genetic modifications was tested in a (51)Chromium release assay and by ex vivo kidney perfusions with human blood. Disruption of the GGTA1 gene by deletion of few basepairs was demonstrated in GGTA1-KO/hHO-1/hA20 transgenic pigs. The hHO-1 and hA20 mRNA expression was confirmed by quantitative reverse-transcription polymerase chain reaction. Ex vivo perfusion of 2 transgenic kidneys was feasible for the maximum experimental time of 240 minutes without symptoms of rejection. Results indicate that GGTA1-KO/hHO-1/hA20 transgenic pigs are a promising model to alleviate rejection and ischemia-reperfusion damage in porcine xenografts and could serve as a background for further genetic modifications toward the production of a donor pig that is clinically relevant for xenotransplantation.
Ahrens, Hellen E.; Petersen, Björn; Ramackers, Wolf; Petkov, Stoyan; Herrmann, Doris; Hauschild-Quintern, Janet; Lucas-Hahn, Andrea; Hassel, Petra; Ziegler, Maren; Baars, Wiebke; Bergmann, Sabine; Schwinzer, Reinhard; Winkler, Michael; Niemann, Heiner
2015-01-01
Background Multiple modifications of the porcine genome are required to prevent rejection after pig-to-primate xenotransplantation. Here, we produced pigs with a knockout of the α1,3-galactosyltransferase gene (GGTA1-KO) combined with transgenic expression of the human anti-apoptotic/anti-inflammatory molecules heme oxygenase-1 and A20, and investigated their xenoprotective properties. Methods The GGTA1-KO/human heme oxygenase-1 (hHO-1)/human A20 (hA20) transgenic pigs were produced in a stepwise approach using zinc finger nuclease vectors targeting the GGTA1 gene and a Sleeping Beauty vector coding for hA20. Two piglets were analyzed by quantitative reverse-transcription polymerase chain reaction, flow cytometry, and sequencing. The biological function of the genetic modifications was tested in a 51Chromium release assay and by ex vivo kidney perfusions with human blood. Results Disruption of the GGTA1 gene by deletion of few basepairs was demonstrated in GGTA1-KO/hHO-1/hA20 transgenic pigs. The hHO-1 and hA20 mRNA expression was confirmed by quantitative reverse-transcription polymerase chain reaction. Ex vivo perfusion of 2 transgenic kidneys was feasible for the maximum experimental time of 240 minutes without symptoms of rejection. Conclusions Results indicate that GGTA1-KO/hHO-1/hA20 transgenic pigs are a promising model to alleviate rejection and ischemia-reperfusion damage in porcine xenografts and could serve as a background for further genetic modifications toward the production of a donor pig that is clinically relevant for xenotransplantation. PMID:27500225
Fukuhara, Takasuke; Wada, Masami; Nakamura, Shota; Ono, Chikako; Shiokawa, Mai; Yamamoto, Satomi; Motomura, Takashi; Okamoto, Toru; Okuzaki, Daisuke; Yamamoto, Masahiro; Saito, Izumu; Wakita, Takaji; Koike, Kazuhiko; Matsuura, Yoshiharu
2014-12-01
Apolipoprotein B (ApoB) and ApoE have been shown to participate in the particle formation and the tissue tropism of hepatitis C virus (HCV), but their precise roles remain uncertain. Here we show that amphipathic α-helices in the apolipoproteins participate in the HCV particle formation by using zinc finger nucleases-mediated apolipoprotein B (ApoB) and/or ApoE gene knockout Huh7 cells. Although Huh7 cells deficient in either ApoB or ApoE gene exhibited slight reduction of particles formation, knockout of both ApoB and ApoE genes in Huh7 (DKO) cells severely impaired the formation of infectious HCV particles, suggesting that ApoB and ApoE have redundant roles in the formation of infectious HCV particles. cDNA microarray analyses revealed that ApoB and ApoE are dominantly expressed in Huh7 cells, in contrast to the high level expression of all of the exchangeable apolipoproteins, including ApoA1, ApoA2, ApoC1, ApoC2 and ApoC3 in human liver tissues. The exogenous expression of not only ApoE, but also other exchangeable apolipoproteins rescued the infectious particle formation of HCV in DKO cells. In addition, expression of these apolipoproteins facilitated the formation of infectious particles of genotype 1b and 3a chimeric viruses. Furthermore, expression of amphipathic α-helices in the exchangeable apolipoproteins facilitated the particle formation in DKO cells through an interaction with viral particles. These results suggest that amphipathic α-helices in the exchangeable apolipoproteins play crucial roles in the infectious particle formation of HCV and provide clues to the understanding of life cycle of HCV and the development of novel anti-HCV therapeutics targeting for viral assembly.
Nakamura, Shota; Ono, Chikako; Shiokawa, Mai; Yamamoto, Satomi; Motomura, Takashi; Okamoto, Toru; Okuzaki, Daisuke; Yamamoto, Masahiro; Saito, Izumu; Wakita, Takaji; Koike, Kazuhiko; Matsuura, Yoshiharu
2014-01-01
Apolipoprotein B (ApoB) and ApoE have been shown to participate in the particle formation and the tissue tropism of hepatitis C virus (HCV), but their precise roles remain uncertain. Here we show that amphipathic α-helices in the apolipoproteins participate in the HCV particle formation by using zinc finger nucleases-mediated apolipoprotein B (ApoB) and/or ApoE gene knockout Huh7 cells. Although Huh7 cells deficient in either ApoB or ApoE gene exhibited slight reduction of particles formation, knockout of both ApoB and ApoE genes in Huh7 (DKO) cells severely impaired the formation of infectious HCV particles, suggesting that ApoB and ApoE have redundant roles in the formation of infectious HCV particles. cDNA microarray analyses revealed that ApoB and ApoE are dominantly expressed in Huh7 cells, in contrast to the high level expression of all of the exchangeable apolipoproteins, including ApoA1, ApoA2, ApoC1, ApoC2 and ApoC3 in human liver tissues. The exogenous expression of not only ApoE, but also other exchangeable apolipoproteins rescued the infectious particle formation of HCV in DKO cells. In addition, expression of these apolipoproteins facilitated the formation of infectious particles of genotype 1b and 3a chimeric viruses. Furthermore, expression of amphipathic α-helices in the exchangeable apolipoproteins facilitated the particle formation in DKO cells through an interaction with viral particles. These results suggest that amphipathic α-helices in the exchangeable apolipoproteins play crucial roles in the infectious particle formation of HCV and provide clues to the understanding of life cycle of HCV and the development of novel anti-HCV therapeutics targeting for viral assembly. PMID:25502789
Sphingosine-1-Phosphate Lyase Deficient Cells as a Tool to Study Protein Lipid Interactions
Gerl, Mathias J.; Bittl, Verena; Kirchner, Susanne; Sachsenheimer, Timo; Brunner, Hanna L.; Lüchtenborg, Christian; Özbalci, Cagakan; Wiedemann, Hannah; Wegehingel, Sabine; Nickel, Walter; Haberkant, Per; Schultz, Carsten; Krüger, Marcus; Brügger, Britta
2016-01-01
Cell membranes contain hundreds to thousands of individual lipid species that are of structural importance but also specifically interact with proteins. Due to their highly controlled synthesis and role in signaling events sphingolipids are an intensely studied class of lipids. In order to investigate their metabolism and to study proteins interacting with sphingolipids, metabolic labeling based on photoactivatable sphingoid bases is the most straightforward approach. In order to monitor protein-lipid-crosslink products, sphingosine derivatives containing a reporter moiety, such as a radiolabel or a clickable group, are used. In normal cells, degradation of sphingoid bases via action of the checkpoint enzyme sphingosine-1-phosphate lyase occurs at position C2-C3 of the sphingoid base and channels the resulting hexadecenal into the glycerolipid biosynthesis pathway. In case the functionalized sphingosine looses the reporter moiety during its degradation, specificity towards sphingolipid labeling is maintained. In case degradation of a sphingosine derivative does not remove either the photoactivatable or reporter group from the resulting hexadecenal, specificity towards sphingolipid labeling can be achieved by blocking sphingosine-1-phosphate lyase activity and thus preventing sphingosine derivatives to be channeled into the sphingolipid-to-glycerolipid metabolic pathway. Here we report an approach using clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated nuclease Cas9 to create a sphingosine-1-phosphate lyase (SGPL1) HeLa knockout cell line to disrupt the sphingolipid-to-glycerolipid metabolic pathway. We found that the lipid and protein compositions as well as sphingolipid metabolism of SGPL1 knock-out HeLa cells only show little adaptations, which validates these cells as model systems to study transient protein-sphingolipid interactions. PMID:27100999
Genetic correction using engineered nucleases for gene therapy applications.
Li, Hongmei Lisa; Nakano, Takao; Hotta, Akitsu
2014-01-01
Genetic mutations in humans are associated with congenital disorders and phenotypic traits. Gene therapy holds the promise to cure such genetic disorders, although it has suffered from several technical limitations for decades. Recent progress in gene editing technology using tailor-made nucleases, such as meganucleases (MNs), zinc finger nucleases (ZFNs), TAL effector nucleases (TALENs) and, more recently, CRISPR/Cas9, has significantly broadened our ability to precisely modify target sites in the human genome. In this review, we summarize recent progress in gene correction approaches of the human genome, with a particular emphasis on the clinical applications of gene therapy. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.
Generation of Stable Knockout Mammalian Cells by TALEN-Mediated Locus-Specific Gene Editing.
Mahata, Barun; Biswas, Kaushik
2017-01-01
Precise and targeted genome editing using Transcription Activator-Like Effector Endonucleases (TALENs) has been widely used and proven to be an extremely effective and specific knockout strategy in both cultured cells and animal models. The current chapter describes a protocol for the construction and generation of TALENs using serial and hierarchical digestion and ligation steps, and using the synthesized TALEN pairs to achieve locus-specific targeted gene editing in mammalian cell lines using a modified clonal selection strategy in an easy and cost-efficient manner.
RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency
Song, Jun; Yang, Dongshan; Xu, Jie; Zhu, Tianqing; Chen, Y. Eugene; Zhang, Jifeng
2016-01-01
Zinc-finger nuclease, transcription activator-like effector nuclease and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) are becoming major tools for genome editing. Importantly, knock-in in several non-rodent species has been finally achieved thanks to these customizable nucleases; yet the rates remain to be further improved. We hypothesize that inhibiting non-homologous end joining (NHEJ) or enhancing homology-directed repair (HDR) will improve the nuclease-mediated knock-in efficiency. Here we show that the in vitro application of an HDR enhancer, RS-1, increases the knock-in efficiency by two- to five-fold at different loci, whereas NHEJ inhibitor SCR7 has minimal effects. We then apply RS-1 for animal production and have achieved multifold improvement on the knock-in rates as well. Our work presents tools to nuclease-mediated knock-in animal production, and sheds light on improving gene-targeting efficiencies on pluripotent stem cells. PMID:26817820
RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?
Gasiunas, Giedrius; Siksnys, Virginijus
2013-11-01
Tailor-made nucleases for precise genome modification, such as zinc finger or TALE nucleases, currently represent the state-of-the-art for genome editing. These nucleases combine a programmable protein module which guides the enzyme to the target site with a nuclease domain which cuts DNA at the addressed site. Reprogramming of these nucleases to cut genomes at specific locations requires major protein engineering efforts. RNA-guided DNA endonuclease Cas9 of the type II (clustered regularly interspaced short palindromic repeat) CRISPR-Cas system uses CRISPR RNA (crRNA) as a guide to locate the DNA target and the Cas9 protein to cut DNA. Easy programmability of the Cas9 endonuclease using customizable RNAs brings unprecedented flexibility and versatility for targeted genome modification. We highlight the potential of the Cas9 RNA-guided DNA endonuclease as a novel tool for genome surgery, and discuss possible constraints and future prospects. Copyright © 2013 Elsevier Ltd. All rights reserved.
Demanèche, Sandrine; Jocteur-Monrozier, Lucile; Quiquampoix, Hervé; Simonet, Pascal
2001-01-01
In order to determine the mechanisms involved in the persistence of extracellular DNA in soils and to monitor whether bacterial transformation could occur in such an environment, we developed artificial models composed of plasmid DNA adsorbed on clay particles. We determined that clay-bound DNA submitted to an increasing range of nuclease concentrations was physically protected. The protection mechanism was mainly related to the adsorption of the nuclease on the clay mineral. The biological potential of the resulting DNA was monitored by transforming the naturally competent proteobacterium Acinetobacter sp. strain BD413, allowing us to demonstrate that adsorbed DNA was only partially available for transformation. This part of the clay-bound DNA which was available for bacteria, was also accessible to nucleases, while the remaining fraction escaped both transformation and degradation. Finally, transformation efficiency was related to the perpetuation mechanism, with homologous recombination being less sensitive to nucleases than autonomous replication, which requires intact molecules. PMID:11133458
2014-04-01
the Fanconi Anemia Pathway- Regulated Nucleases in Genome Maintenance for Preventing Bone Marrow Failure and Cancer PRINCIPAL INVESTIGATOR...GRANT NUMBER 4. TITLE AND SUBTITLE A Biochemical Approach to Understanding the Fanconi Anemia Pathway-Regulated Nucleases in Genome Maintenance for...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Fanconi anemia is the most prevalent inherited BMF syndromes, caused by mutations in
Vafina, Gulnaz; Zainutdinova, Elmira; Bulatov, Emil; Filimonova, Maria N.
2018-01-01
One of the approaches to effective airway cleansing is the degradation of DNA into smaller fragments. For this purpose Pulmozyme® is used with high efficacy because it contains recombinant DNase I as its active component. The aim of the study was to comparatively analyze DNase activity of Pulmozyme® and the nuclease from gram-negative bacteria Serratia marcescens, because at optimal conditions the catalytic efficiency of the nuclease is much higher than the efficiency of DNase I. Highly polymerized DNA and purulent-mucous sputum were used as substrates. The examination showed that both S. marcescens nuclease and Pulmozyme® hydrolyzed DNA in sputum. Also S. marcescens nuclease was found capable of hydrolyzing DNA in conditions that are standard for Pulmozyme® and suitable for its therapeutic application. For manifesting the similar hydrolytic activity the nuclease amount in the assay mixture containing highly polymerized DNA or the sonicated sputum and NaCl together with calcium- or magnesium- cations can be about 10- time lower than that of the recombinant DNase I. In the presence of magnesium cations the DNase activity of both S. marcescens nuclease and Pulmozyme® was higher than in the presence of calcium cations. PMID:29503617
Demorest, Zachary L; Coffman, Andrew; Baltes, Nicholas J; Stoddard, Thomas J; Clasen, Benjamin M; Luo, Song; Retterath, Adam; Yabandith, Ann; Gamo, Maria Elena; Bissen, Jeff; Mathis, Luc; Voytas, Daniel F; Zhang, Feng
2016-10-13
The ability to modulate levels of individual fatty acids within soybean oil has potential to increase shelf-life and frying stability and to improve nutritional characteristics. Commodity soybean oil contains high levels of polyunsaturated linoleic and linolenic acid, which contribute to oxidative instability - a problem that has been addressed through partial hydrogenation. However, partial hydrogenation increases levels of trans-fatty acids, which have been associated with cardiovascular disease. Previously, we generated soybean lines with knockout mutations within fatty acid desaturase 2-1A (FAD2-1A) and FAD2-1B genes, resulting in oil with increased levels of monounsaturated oleic acid (18:1) and decreased levels of linoleic (18:2) and linolenic acid (18:3). Here, we stack mutations within FAD2-1A and FAD2-1B with mutations in fatty acid desaturase 3A (FAD3A) to further decrease levels of linolenic acid. Mutations were introduced into FAD3A by directly delivering TALENs into fad2-1a fad2-1b soybean plants. Oil from fad2-1a fad2-1b fad3a plants had significantly lower levels of linolenic acid (2.5 %), as compared to fad2-1a fad2-1b plants (4.7 %). Furthermore, oil had significantly lower levels of linoleic acid (2.7 % compared to 5.1 %) and significantly higher levels of oleic acid (82.2 % compared to 77.5 %). Transgene-free fad2-1a fad2-1b fad3a soybean lines were identified. The methods presented here provide an efficient means for using sequence-specific nucleases to stack quality traits in soybean. The resulting product comprised oleic acid levels above 80 % and linoleic and linolenic acid levels below 3 %.
Nucleases activities during French bean leaf aging and dark-induced senescence.
Lambert, Rocío; Quiles, Francisco Antonio; Gálvez-Valdivieso, Gregorio; Piedras, Pedro
2017-11-01
During leaf senescence resources are managed, with nutrients mobilized from older leaves to new sink tissues. The latter implies a dilemma in terms of resource utilization, the leaf senescence should increase seed quality whereas delay in senescence should improve the seed yield. Increased knowledge about nutrient recycling during leaf senescence could lead to advances in agriculture and improved seed quality. Macromolecules mobilized during leaf senescence include proteins and nucleic acids. Although nucleic acids have been less well studied than protein degradation, they are possible reservoirs of nitrogen and phosphorous. The present study investigated nuclease activities and gene expression patterns of five members of the S1/P1 family in French bean (Phaseolus vulgaris L. cv.)Page: 2 during leaf senescence. An in-gel assay was used to detect nuclease activity during natural and dark-induced senescence, with single-stranded DNA (ssDNA) used as a substrate. The results revealed two nucleases (glycoproteins), with molecular masses of 34 and 39kDa in the senescent leaves. The nuclease activities were higher at a neutral than at an acidic pH. EDTA treatment inhibited the activities of the nucleases, and the addition of zinc resulted in the recovery of these activities. Both the 34 and 39kDa nucleases were able to use RNA and double-stranded DNA (dsDNA) as substrates, although their activities were low when dsDNA was used as a substrate. In addition, two ribonucleases with molecular masses of 14 and 16kDa, both of which could only utilize RNA as a substrate, were detected in the senescent leaves. Two members of the S1/P1 family, PVN2 and PVN5, were expressed under the experimental conditions, suggesting that these two genes were involved in senescence. The nuclease activity of the glycoproteins and gene expression were similar under both natural senescence and dark-induced senescence conditions. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.
Chen, Lichan; Zeng, Xiaoting; Dandapat, Anirban; Chi, Yuwu; Kim, Donghwan
2015-09-01
Proteases and nucleases are enzymes heavily involved in many important biological processes, such as cancer initiation, progression, and metastasis; hence, they are indicative of potential diagnostic biomarkers. Here, we demonstrate a new label free and sensitive electrochemiluminescent (ECL) sensing strategy for protease and nuclease assays that utilize target-triggered desorption of programmable polyelectrolyte films assembled on graphite-like carbon nitride (g-C3N4) film to regulate the diffusion flux of a coreactant. Furthermore, we have built Boolean logic gates OR and AND into the polyelectrolyte films, capable of simultaneously sensing proteases and nucleases in a complicated system by breaking it into simple functions. The developed intelligent permeability controlled enzyme sensor may prove valuable in future medical diagnostics.
Hybrid nanosensor for colorimetric and ultrasensitive detection of nuclease contaminations
NASA Astrophysics Data System (ADS)
Cecere, Paola; Valentini, Paola; Pompa, Pier Paolo
2016-04-01
Nucleases are ubiquitous enzymes that degrade DNA or RNA, thus they can prejudice the good outcome of molecular biology experiments involving nucleic acids. We propose a colorimetric test for the naked-eye detection of nuclease contaminations. The system uses an hybrid nanosensor, based on gold nanoparticles functionalized with DNA probes. Our assay is rapid, instrument-free, simple and low-cost. Moreover, it reaches sensitivity equal or better than those of commercial kits, and presents a lot of advantageous aspects. Therefore, it is very competitive, with a real market potential. This test will be relevant in routine process monitoring in scientific laboratories, and in quality control in clinical laboratories and industrial processes, allowing the simultaneous detection of nucleases with different substrate specificities and large-scale screening.
CRISPR-Cas9 Mediated NOX4 Knockout Inhibits Cell Proliferation and Invasion in HeLa Cells.
Jafari, Naser; Kim, Hyunju; Park, Rackhyun; Li, Liqing; Jang, Minsu; Morris, Andrew J; Park, Junsoo; Huang, Cai
2017-01-01
Increased expression of NOX4 protein is associated with cancer progression and metastasis but the role of NOX4 in cell proliferation and invasion is not fully understood. We generated NOX4 knockout HeLa cell lines using the CRISPR-Cas9 gene editing system to explore the cellular functions of NOX4. After transfection of CRISPR-Cas9 construct, we performed T7 endonuclease 1 assays and DNA sequencing to generate and identify insertion and deletion of the NOX4 locus. We confirmed the knockout of NOX4 by Western blotting. NOX4 knockout cell lines showed reduced cell proliferation with an increase of sub-G1 cell population and the decrease of S/G2/M population. Moreover, NOX4 deficiency resulted in a dramatic decrease in invadopodium formation and the invasive activity. In addition, NOX4 deficiency also caused a decrease in focal adhesions and cell migration in HeLa cells. These results suggest that NOX4 is required for both efficient proliferation and invasion of HeLa cells.
Tailoring the Immune Response via Customization of Pathogen Gene Expression.
Runco, Lisa M; Stauft, Charles B; Coleman, J Robert
2014-01-01
The majority of studies focused on the construction and reengineering of bacterial pathogens have mainly relied on the knocking out of virulence factors or deletion/mutation of amino acid residues to then observe the microbe's phenotype and the resulting effect on the host immune response. These knockout bacterial strains have also been proposed as vaccines to combat bacterial disease. Theoretically, knockout strains would be unable to cause disease since their virulence factors have been removed, yet they could induce a protective memory response. While knockout strains have been valuable tools to discern the role of virulence factors in host immunity and bacterial pathogenesis, they have been unable to yield clinically relevant vaccines. The advent of synthetic biology and enhanced user-directed gene customization has altered this binary process of knockout, followed by observation. Recent studies have shown that a researcher can now tailor and customize a given microbe's gene expression to produce a desired immune response. In this commentary, we highlight these studies as a new avenue for controlling the inflammatory response as well as vaccine development.
Tailoring the Immune Response via Customization of Pathogen Gene Expression
Runco, Lisa M.; Stauft, Charles B.
2014-01-01
The majority of studies focused on the construction and reengineering of bacterial pathogens have mainly relied on the knocking out of virulence factors or deletion/mutation of amino acid residues to then observe the microbe's phenotype and the resulting effect on the host immune response. These knockout bacterial strains have also been proposed as vaccines to combat bacterial disease. Theoretically, knockout strains would be unable to cause disease since their virulence factors have been removed, yet they could induce a protective memory response. While knockout strains have been valuable tools to discern the role of virulence factors in host immunity and bacterial pathogenesis, they have been unable to yield clinically relevant vaccines. The advent of synthetic biology and enhanced user-directed gene customization has altered this binary process of knockout, followed by observation. Recent studies have shown that a researcher can now tailor and customize a given microbe's gene expression to produce a desired immune response. In this commentary, we highlight these studies as a new avenue for controlling the inflammatory response as well as vaccine development. PMID:24719769
Characterization of a periplasmic S1-like nuclease coded by the Mesorhizobium loti symbiosis island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pimkin, Maxim; Miller, C. Glenn; Blakesley, Lauryn
DNA sequences encoding hypothetical proteins homologous to S1 nuclease from Aspergillus oryzae are found in many organisms including fungi, plants, pathogenic bacteria, and eukaryotic parasites. One of these is the M1 nuclease of Mesorhizobium loti which we demonstrate herein to be an enzymatically active, soluble, and stable S1 homolog that lacks the extensive mannosyl-glycosylation found in eukaryotic S1 nuclease homologs. We have expressed the cloned M1 protein in M. loti and purified recombinant native M1 to near homogeneity and have also isolated a homogeneous M1 carboxy-terminal hexahistidine tag fusion protein. Mass spectrometry and N-terminal Edman degradation sequencing confirmed the proteinmore » identity. The enzymatic properties of the purified M1 nuclease are similar to those of S1. At acidic pH M1 is 25 times more active on single-stranded DNA than on double-stranded DNA and 3 times more active on single-stranded DNA than on single-stranded RNA. At neutral pH the RNase activity of M1 exceeds the DNase activity. M1 nicks supercoiled RF-I plasmid DNA and rapidly cuts the phosphodiester bond across from the nick in the resultant relaxed RF-II plasmid DNA. Therefore, M1 represents an active bacterial S1 homolog in spite of great sequence divergence. The biochemical characterization of M1 nuclease supports our sequence alignment that reveals the minimal 21 amino acid residues that are necessarily conserved for the structure and functions of this enzyme family. The ability of M1 to degrade RNA at neutral pH implies previously unappreciated roles of these nucleases in biological systems.« less
Determinants of the cytotoxicity of PrrC anticodon nuclease and its amelioration by tRNA repair
Meineke, Birthe; Shuman, Stewart
2012-01-01
Breakage of tRNALys(UUU) by the Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies a host antiviral response to phage T4 infection that is ultimately thwarted by a virus-encoded RNA repair system. PrrC homologs are prevalent in other bacteria, but their activities and substrates are not defined. We find that induced expression of EcoPrrC is toxic in Saccharomyces cerevisiae and E. coli, whereas the Neisseria meningitidis PrrC (NmePrrC) is not. PrrCs consist of an N-terminal NTPase module and a C-terminal nuclease module. Domain swaps identified the EcoPrrC nuclease domain as decisive for toxicity when linked to either the Eco or Nme NTPase. Indeed, a single arginine-to-tryptophan change in the NmePrrC nuclease domain (R316W) educed a gain-of-function and rendered NmePrrC toxic to yeast, with genetic evidence for tRNALys(UUU) being the relevant target. The reciprocal Trp-to-Arg change in EcoPrrC (W335R) abolished its toxicity. Further mutagenesis of the EcoPrrC nuclease domain highlighted an ensemble of 15 essential residues and distinguished between hypomorphic alleles and potential nuclease-nulls. We report that the RNA repair phase of the bacterial virus-host dynamic is also portable to yeast, where coexpression of the T4 enzymes Pnkp and Rnl1 ameliorated the toxicity of NmePrrC-R316W. Plant tRNA ligase AtRNL also countered NmePrrC-R316W toxicity, in a manner that depended on AtRNL's 5′-kinase and ligase functions. PMID:22101242
Determinants of the cytotoxicity of PrrC anticodon nuclease and its amelioration by tRNA repair.
Meineke, Birthe; Shuman, Stewart
2012-01-01
Breakage of tRNA(Lys(UUU)) by the Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies a host antiviral response to phage T4 infection that is ultimately thwarted by a virus-encoded RNA repair system. PrrC homologs are prevalent in other bacteria, but their activities and substrates are not defined. We find that induced expression of EcoPrrC is toxic in Saccharomyces cerevisiae and E. coli, whereas the Neisseria meningitidis PrrC (NmePrrC) is not. PrrCs consist of an N-terminal NTPase module and a C-terminal nuclease module. Domain swaps identified the EcoPrrC nuclease domain as decisive for toxicity when linked to either the Eco or Nme NTPase. Indeed, a single arginine-to-tryptophan change in the NmePrrC nuclease domain (R316W) educed a gain-of-function and rendered NmePrrC toxic to yeast, with genetic evidence for tRNA(Lys(UUU)) being the relevant target. The reciprocal Trp-to-Arg change in EcoPrrC (W335R) abolished its toxicity. Further mutagenesis of the EcoPrrC nuclease domain highlighted an ensemble of 15 essential residues and distinguished between hypomorphic alleles and potential nuclease-nulls. We report that the RNA repair phase of the bacterial virus-host dynamic is also portable to yeast, where coexpression of the T4 enzymes Pnkp and Rnl1 ameliorated the toxicity of NmePrrC-R316W. Plant tRNA ligase AtRNL also countered NmePrrC-R316W toxicity, in a manner that depended on AtRNL's 5'-kinase and ligase functions.
Targeting Sirna Missiles to Her2+ Breast Cancer
2008-06-01
intact and appears to be protected from serum nucleases (Fig. 1) . T7 -transcribed siRNA induces higher breast cancer cell cytotoxicity than synthetic...cytotoxicity of T7 transcribed vs s y n t h e t i c anti-HER2 siRNA on HER2+ cells. We acquired a 21 nucleotide (nt) s y n t h e t i c anti-HER2...ErbB2) siRNA and also produced a T7 -transcribed molecule (Silencer Principal Investigator: Medina-Kauwe, Lali K. 2 siRNA construction kit; Ambion) using
Gopalappa, Ramu; Suresh, Bharathi; Ramakrishna, Suresh; Kim, Hyongbum Henry
2018-03-23
The use of paired Cas9 nickases instead of Cas9 nuclease drastically reduces off-target effects. Because both nickases must function for a nickase pair to make a double-strand break, the efficiency of paired nickases can intuitively be expected to be lower than that of either corresponding nuclease alone. Here, we carefully compared the gene-disrupting efficiency of Cas9 paired nickases with that of nucleases. Interestingly, the T7E1 assay and deep sequencing showed that on-target efficiency of paired D10A Cas9 nickases was frequently comparable, but sometimes higher than that of either corresponding nucleases in mammalian cells. As the underlying mechanism, we found that the HNH domain, which is preserved in the D10A Cas9 nickase, has higher activity than the RuvC domain in mammalian cells. In this study, we showed: (i) the in vivo cleavage efficiency of the HNH domain of Cas9 in mammalian cells is higher than that of the RuvC domain, (ii) paired Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption. We envision that our findings which were overlooked in previous reports will serve as a new potential guideline for tool selection for CRISPR-Cas9-mediated gene disruption, facilitating efficient and precise genome editing.
Spit, Jornt; Philips, Annelies; Wynant, Niels; Santos, Dulce; Plaetinck, Geert; Vanden Broeck, Jozef
2017-02-01
The responsiveness towards orally delivered dsRNA and the potency of a subsequent environmental RNA interference (RNAi) response strongly differs between different insect species. While some species are very sensitive to dsRNA delivery through the diet, others are not. The underlying reasons for this may vary, but degradation of dsRNA by nucleases in the gut lumen is believed to play a crucial role. The Colorado potato beetle, Leptinotarsa decemlineata, is a voracious defoliator of potato crops worldwide, and is currently under investigation for novel control methods based on dsRNA treatments. Here we describe the identification and characterization of two nuclease genes exclusively expressed in the gut of this pest species. Removal of nuclease activity in adults increased the sensitivity towards dsRNA and resulted in improved protection of potato plants. A similar strategy in the desert locust, Schistocerca gregaria, for which we show a far more potent nuclease activity in the gut juice, did however not lead to an improvement of the RNAi response. Possible reasons for this are discussed. Taken together, the present data confirm a negative effect of nucleases in the gut on the environmental RNAi response, and further suggest that interfering with this activity is a strategy worth pursuing for improving RNAi efficacy in insect pest control applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sabzehei, Faezeh; Kouhpayeh, Shirin; Dastjerdeh, Mansoureh Shahbazi; Khanahmad, Hossein; Salehi, Rasoul; Naderi, Shamsi; Taghizadeh, Razieh; Rabiei, Parisa; Hejazi, Zahra; Shariati, Laleh
2017-01-01
Gene editing technology has created a revolution in the field of genome editing. The three of the most famous tools in gene editing technology are zinc finger nucleases (ZFNs), transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated systems. As their predictable nature, it is necessary to assess their efficiency. There are some methods for this purpose, but most of them are time labor and complicated. Here, we introduce a new prokaryotic reporter system, which makes it possible to evaluate the efficiency of gene editing tools faster, cheaper, and simpler than previous methods. At first, the target sites of a custom ZFN, which is designed against a segment of ampicillin resistance gene, were cloned on both sides of green fluorescent protein (GFP) gene to construct pPRO-GFP. Then pPRO-GFP was transformed into Escherichia coli TOP10F' that contains pZFN (contains expression cassette of a ZFN against ampicillin resistant gene), or p15A-KanaR as a negative control. The transformed bacteria were cultured on three separate media that contained ampicillin, kanamycin, and ampicillin + kanamycin; then the resulted colonies were assessed by flow cytometry. The results of flow cytometry showed a significant difference between the case (bacteria contain pZFN) and control (bacteria contain p15A, KanaR) in MFI (Mean Fluorescence Intensity) ( P < 0.0001). According to ZFN efficiency, it can bind and cut the target sites, the bilateral cutting can affect the intensity of GFP fluorescence. Our flow cytometry results showed that this ZFN could reduce the intensity of GFP color and colony count of bacteria in media containing amp + kana versus control sample.
Sabzehei, Faezeh; Kouhpayeh, Shirin; Dastjerdeh, Mansoureh Shahbazi; Khanahmad, Hossein; Salehi, Rasoul; Naderi, Shamsi; Taghizadeh, Razieh; Rabiei, Parisa; Hejazi, Zahra; Shariati, Laleh
2017-01-01
Background: Gene editing technology has created a revolution in the field of genome editing. The three of the most famous tools in gene editing technology are zinc finger nucleases (ZFNs), transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated systems. As their predictable nature, it is necessary to assess their efficiency. There are some methods for this purpose, but most of them are time labor and complicated. Here, we introduce a new prokaryotic reporter system, which makes it possible to evaluate the efficiency of gene editing tools faster, cheaper, and simpler than previous methods. Materials and Methods: At first, the target sites of a custom ZFN, which is designed against a segment of ampicillin resistance gene, were cloned on both sides of green fluorescent protein (GFP) gene to construct pPRO-GFP. Then pPRO-GFP was transformed into Escherichia coli TOP10F’ that contains pZFN (contains expression cassette of a ZFN against ampicillin resistant gene), or p15A-KanaR as a negative control. The transformed bacteria were cultured on three separate media that contained ampicillin, kanamycin, and ampicillin + kanamycin; then the resulted colonies were assessed by flow cytometry. Results: The results of flow cytometry showed a significant difference between the case (bacteria contain pZFN) and control (bacteria contain p15A, KanaR) in MFI (Mean Fluorescence Intensity) (P < 0.0001). Conclusion: According to ZFN efficiency, it can bind and cut the target sites, the bilateral cutting can affect the intensity of GFP fluorescence. Our flow cytometry results showed that this ZFN could reduce the intensity of GFP color and colony count of bacteria in media containing amp + kana versus control sample. PMID:29285485
Koprowski, P; Fikus, M U; Dzierzbicki, P; Mieczkowski, P; Lazowska, J; Ciesla, Z
2003-08-01
We reported previously that the product of DIN7, a DNA damage-inducible gene of Saccharomyces cerevisiae, belongs to the XPG family of proteins, which are involved in DNA repair and replication. This family includes the S. cerevisiae protein Rad2p and its human homolog XPGC, Rad27p and its mammalian homolog FEN-1, and Exonuclease I (Exo I). Interestingly, Din7p is the only member of the XPG family which specifically functions in mitochondria. We reported previously that overexpression of DIN7 results in a mitochondrial mutator phenotype. In the present study we wished to test the hypothesis that this phenotype is dependent on the nuclease activity of Din7p. For this purpose, we constructed two alleles, din7-D78A and din7-D173A, which encode proteins in which highly conserved aspartates important for the nuclease activity of the XPG proteins have been replaced by alanines. Here, we report that overexpression of the mutant alleles, in contrast to DIN7, fails to increase the frequency of mitochondrial petite mutants or erythromycin-resistant (Er) mutants. Also, overproduction of din7-D78Ap does not result in destabilization of poly GT tracts in mitochondrial DNA (mtDNA), the phenotype observed in cells that overexpress Din7p. We also show that petite mutants induced by enhanced synthesis of wild-type Din7p exhibit gross rearrangements of mtDNA, and that this correlates with enhanced recombination within the mitochondrial cyt b gene. These results suggest that the stability of the mitochondrial genome of S. cerevisiae is modulated by the level of the nuclease Din7p.
Genome editing technologies to fight infectious diseases.
Trevisan, Marta; Palù, Giorgio; Barzon, Luisa
2017-11-01
Genome editing by programmable nucleases represents a promising tool that could be exploited to develop new therapeutic strategies to fight infectious diseases. These nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) and homing endonucleases, are molecular scissors that can be targeted at predetermined loci in order to modify the genome sequence of an organism. Areas covered: By perturbing genomic DNA at predetermined loci, programmable nucleases can be used as antiviral and antimicrobial treatment. This approach includes targeting of essential viral genes or viral sequences able, once mutated, to inhibit viral replication; repurposing of CRISPR-Cas9 system for lethal self-targeting of bacteria; targeting antibiotic-resistance and virulence genes in bacteria, fungi, and parasites; engineering arthropod vectors to prevent vector-borne infections. Expert commentary: While progress has been done in demonstrating the feasibility of using genome editing as antimicrobial strategy, there are still many hurdles to overcome, such as the risk of off-target mutations, the raising of escape mutants, and the inefficiency of delivery methods, before translating results from preclinical studies into clinical applications.
Hu, Yidan; Yang, Yun; Katz, Evgeny; Song, Hao
2015-03-11
An AND logic gate based on a synthetic quorum-sensing (QS) module was constructed in a Shewanella oneidensis MR-1 mtrA knockout mutant. The presence of two input signals activated the expression of a periplasmic decaheme cytochrome MtrA to regenerate the extracellular electron transfer conduit, enabling the construction of AND-gated microbial fuel cells.
The nuclear matrix prepared by amine modification
Wan, Katherine M.; Nickerson, Jeffrey A.; Krockmalnic, Gabriela; Penman, Sheldon
1999-01-01
The nucleus is spatially ordered by attachments to a nonchromatin nuclear structure, the nuclear matrix. The nuclear matrix and chromatin are intimately connected and integrated structures, and so a major technical challenge in nuclear matrix research has been to remove chromatin while retaining a native nuclear matrix. Most methods for removing chromatin require first a nuclease digestion and then a salt extraction to remove cut chromatin. We have hypothesized that cut chromatin is held in place by charge interactions involving nucleosomal amino groups. We have tested this hypothesis by chemically modifying amino groups after nuclease digestion. By using this protocol, chromatin could be effectively removed at physiological ionic strength. We compared the ultrastructure and composition of this nuclear matrix preparation with the traditional high-salt nuclear matrix and with the third nuclear matrix preparation that we have developed from which chromatin is removed after extensive crosslinking. All three matrix preparations reveal internal nuclear matrix structures that are built on a network of branched filaments of about 10 nm diameter. That such different chromatin-removal protocols reveal similar principles of nuclear matrix construction increases our confidence that we are observing important architectural elements of the native structure in the living cell. PMID:9927671
Hadwiger, Lee A; Polashock, James
2013-01-01
Previous reports on the model nonhost resistance interaction between Fusarium solani f. sp. phaseoli and pea endocarp tissue have described the disease resistance-signaling role of a fungal DNase1-like protein. The response resulted in no further growth beyond spore germination. This F. solani f. sp. phaseoli DNase gene, constructed with a pathogenesis-related (PR) gene promoter, when transferred to tobacco, generated resistance against Pseudomonas syringe pv. tabaci. The current analytical/theoretical article proposes similar roles for the additional nuclear and mitochondrial nucleases, the coding regions for which are identified in newly available fungal genome sequences. The amino acid sequence homologies within functional domains are conserved within a wide array of fungi. The potato pathogen Verticillium dahliae nuclease was divergent from that of the saprophyte, yeast; however, the purified DNase from yeast also elicited nonhost defense responses in pea, including pisatin accumulation, PR gene induction, and resistance against a true pea pathogen. The yeast mitochondrial DNase gene (open reading frame) predictably codes for a signal peptide providing the mechanism for secretion. Mitochondrial DNase genes appear to provide an unlimited source of components for developing transgenic resistance in all transformable plants.
Genome editing: a robust technology for human stem cells.
Chandrasekaran, Arun Pandian; Song, Minjung; Ramakrishna, Suresh
2017-09-01
Human pluripotent stem cells comprise induced pluripotent and embryonic stem cells, which have tremendous potential for biological and therapeutic applications. The development of efficient technologies for the targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. Genome editing of stem cells is possible with the help of synthetic nucleases that facilitate site-specific modification of a gene of interest. Recent advances in genome editing techniques have improved the efficiency and speed of the development of stem cells for human disease models. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system are powerful tools for editing DNA at specific loci. Here, we discuss recent technological advances in genome editing with site-specific nucleases in human stem cells.
Global Nav1.7 Knockout Mice Recapitulate the Phenotype of Human Congenital Indifference to Pain
Gingras, Jacinthe; Smith, Sarah; Matson, David J.; Johnson, Danielle; Nye, Kim; Couture, Lauren; Feric, Elma; Yin, Ruoyuan; Moyer, Bryan D.; Peterson, Matthew L.; Rottman, James B.; Beiler, Rudolph J.; Malmberg, Annika B.; McDonough, Stefan I.
2014-01-01
Clinical genetic studies have shown that loss of Nav1.7 function leads to the complete loss of acute pain perception. The global deletion is reported lethal in mice, however, and studies of mice with promoter-specific deletions of Nav1.7 have suggested that the role of Nav1.7 in pain transduction depends on the precise form of pain. We developed genetic and animal husbandry strategies that overcame the neonatal-lethal phenotype and enabled construction of a global Nav1.7 knockout mouse. Knockouts were anatomically normal, reached adulthood, and had phenotype wholly analogous to human congenital indifference to pain (CIP): compared to littermates, knockouts showed no defects in mechanical sensitivity or overall movement yet were completely insensitive to painful tactile, thermal, and chemical stimuli and were anosmic. Knockouts also showed no painful behaviors resulting from peripheral injection of nonselective sodium channel activators, did not develop complete Freund’s adjuvant-induced thermal hyperalgesia, and were insensitive to intra-dermal histamine injection. Tetrodotoxin-sensitive sodium current recorded from cell bodies of isolated sensory neurons and the mechanically-evoked spiking of C-fibers in a skin-nerve preparation each were reduced but not eliminated in tissue from knockouts compared to littermates. Results support a role for Nav1.7 that is conserved between rodents and humans and suggest several possibly translatable biomarkers for the study of Nav1.7-targeted therapeutics. Results further suggest that Nav1.7 may retain its key role in persistent as well as acute forms of pain. PMID:25188265
Structural specificity of Rn nuclease I as probed on yeast tRNA(Phe) and tRNA(Asp).
Przykorska, A; el Adlouni, C; Keith, G; Szarkowski, J W; Dirheimer, G
1992-01-01
A single-strand-specific nuclease from rye germ (Rn nuclease I) was characterized as a tool for secondary and tertiary structure investigation of RNAs. To test the procedure, yeast tRNA(Phe) and tRNA(Asp) for which the tertiary structures are known, as well as the 3'-half of tRNA(Asp) were used as substrates. In tRNA(Phe) the nuclease introduced main primary cuts at positions U33 and A35 of the anticodon loop and G18 and G19 of the D loop. No primary cuts were observed within the double stranded stems. In tRNA(Asp) the main cuts occurred at positions U33, G34, U35, C36 of the anticodon loop and G18 and C20:1 positions in the D loop. No cuts were observed in the T loop in intact tRNA(Asp) but strong primary cleavages occurred at positions psi 55, C56, A57 within that loop in the absence of the tertiary interactions between T and D loops (use of 3'-half tRNA(Asp)). These results show that Rn nuclease I is specific for exposed single-stranded regions. Images PMID:1542562
Mismatch cleavage by single-strand specific nucleases
Till, Bradley J.; Burtner, Chris; Comai, Luca; Henikoff, Steven
2004-01-01
We have investigated the ability of single-strand specific (sss) nucleases from different sources to cleave single base pair mismatches in heteroduplex DNA templates used for mutation and single-nucleotide polymorphism analysis. The TILLING (Targeting Induced Local Lesions IN Genomes) mismatch cleavage protocol was used with the LI-COR gel detection system to assay cleavage of amplified heteroduplexes derived from a variety of induced mutations and naturally occurring polymorphisms. We found that purified nucleases derived from celery (CEL I), mung bean sprouts and Aspergillus (S1) were able to specifically cleave nearly all single base pair mismatches tested. Optimal nicking of heteroduplexes for mismatch detection was achieved using higher pH, temperature and divalent cation conditions than are routinely used for digestion of single-stranded DNA. Surprisingly, crude plant extracts performed as well as the highly purified preparations for this application. These observations suggest that diverse members of the S1 family of sss nucleases act similarly in cleaving non-specifically at bulges in heteroduplexes, and single-base mismatches are the least accessible because they present the smallest single-stranded region for enzyme binding. We conclude that a variety of sss nucleases and extracts can be effectively used for high-throughput mutation and polymorphism discovery. PMID:15141034
Watanabe, Satoshi; Sakurai, Takayuki; Nakamura, Shingo; Miyoshi, Kazuchika; Sato, Masahiro
2018-04-04
Recent advances in genome editing systems such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9) have facilitated genomic modification in mammalian cells. However, most systems employ transient treatment with selective drugs such as puromycin to obtain the desired genome-edited cells, which often allows some untransfected cells to survive and decreases the efficiency of generating genome-edited cells. Here, we developed a novel targeted toxin-based drug-free selection system for the enrichment of genome-edited cells. Cells were transfected with three expression vectors, each of which carries a guide RNA (gRNA), humanized Cas9 ( hCas9 ) gene, or Clostridium perfringens -derived endo-β-galactosidase C ( EndoGalC ) gene. Once EndoGalC is expressed in a cell, it digests the cell-surface α-Gal epitope, which is specifically recognized by BS-I-B₄ lectin (IB4). Three days after transfection, these cells were treated with cytotoxin saporin-conjugated IB4 (IB4SAP) for 30 min at 37 °C prior to cultivation in a normal medium. Untransfected cells and those weakly expressing EndoGalC will die due to the internalization of saporin. Cells transiently expressing EndoGalC strongly survive, and some of these surviving clones are expected to be genome-edited bi-allelic knockout (KO) clones due to their strong co-expression of gRNA and hCas9. When porcine α-1,3-galactosyltransferase gene, which can synthesize the α-Gal epitope, was attempted to be knocked out, 16.7% and 36.7% of the surviving clones were bi-allelic and mono-allelic knockout (KO) cells, respectively, which was in contrast to the isolation of clones in the absence of IB4SAP treatment. Namely, 0% and 13.3% of the resulting clones were bi-allelic and mono-allelic KO cells, respectively. A similar tendency was seen when other target genes such as DiGeorge syndrome critical region gene 2 and transforming growth factor-β receptor type 1 gene were targeted to be knocked out. Our results indicate that a combination of the CRISPR/Cas9 system and targeted toxin technology using IB4SAP allows efficient enrichment of genome-edited clones, particularly bi-allelic KO clones.
McMillen, Lyle; Fordyce, Geoffry; Doogan, Vivienne J; Lew, Ala E
2006-03-01
A Campylobacter fetus subsp. venerealis-specific 5' Taq nuclease PCR assay using a 3' minor groove binder-DNA probe (TaqMan MGB) was developed based on a subspecies-specific fragment of unknown identity (S. Hum, K. Quinn, J. Brunner, and S. L. On, Aust. Vet. J. 75:827-831, 1997). The assay specifically detected four C. fetus subsp. venerealis strains with no observed cross-reaction with C. fetus subsp. fetus-related Campylobacter species or other bovine venereal microflora. The 5' Taq nuclease assay detected approximately one single cell compared to 100 and 10 cells in the conventional PCR assay and 2,500 and 25,000 cells from selective culture from inoculated smegma and mucus, respectively. The respective detection limits following the enrichments from smegma and mucus were 5,000 and 50 cells/inoculum for the conventional PCR compared to 500 and 50 cells/inoculum for the 5' Taq nuclease assay. Field sampling confirmed the sensitivity and the specificity of the 5' Taq nuclease assay by detecting an additional 40 bulls that were not detected by culture. Urine-inoculated samples demonstrated comparable detection of C. fetus subsp. venerealis by both culture and the 5' Taq nuclease assay; however, urine was found to be less effective than smegma for bull sampling. Three infected bulls were tested repetitively to compare sampling tools, and the bull rasper proved to be the most suitable, as evidenced by the improved ease of specimen collection and the consistent detection of higher levels of C. fetus subsp. venerealis. The 5' Taq nuclease assay demonstrates a statistically significant association with culture (chi2 = 29.8; P < 0.001) and significant improvements for the detection of C. fetus subsp. venerealis-infected animals from crude clinical extracts following prolonged transport.
Recent Progress in Genome Editing Approaches for Inherited Cardiovascular Diseases.
Kaur, Balpreet; Perea-Gil, Isaac; Karakikes, Ioannis
2018-06-02
This review describes the recent progress in nuclease-based therapeutic applications for inherited heart diseases in vitro, highlights the development of the most recent genome editing technologies and discusses the associated challenges for clinical translation. Inherited cardiovascular disorders are passed from generation to generation. Over the past decade, considerable progress has been made in understanding the genetic basis of inherited heart diseases. The timely emergence of genome editing technologies using engineered programmable nucleases has revolutionized the basic research of inherited cardiovascular diseases and holds great promise for the development of targeted therapies. The genome editing toolbox is rapidly expanding, and new tools have been recently added that significantly expand the capabilities of engineered nucleases. Newer classes of versatile engineered nucleases, such as the "base editors," have been recently developed, offering the potential for efficient and precise therapeutic manipulation of the human genome.
[Isolation and purification of nonspecific nuclease of cyanobacterium Plectonema boryanum CALU 465].
Tsymbal, N V; Samoĭlenko, V A; Syrchin, S A; Mendzhul, M I
2004-01-01
Nonspecific nuclease has been isolated from the cells of cyanobacterium Plectonema boryanum and purified to homogenic state. It has been established that the method of centrifugation of cell-free culture extract in the sucrose density gradient is efficient for the separation of pigment proteins and enzyme concentration. Under the successive use of two ion-exchangers the nuclease activity was determined in the concentration range of NaCl 0.065-0.085 M after separation of the cell-free cyanobacterium extract on the column with phosphocellulose in the range of 0.2-0.25 M, on the column with DEAE--Toyopearl respectively. The molecular mass of nuclease which is 40 kDa, has been determined by electrophoresis in polyacrylamide gel under denaturating conditions and gel-filtration on Sephadex G-100. It has been also established that the given enzyme is monosubunitary as to its structure.
Design principles for nuclease-deficient CRISPR-based transcriptional regulators.
Jensen, Michael K
2018-06-01
The engineering of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated proteins continues to expand the toolkit available for genome editing, reprogramming gene regulation, genome visualisation and epigenetic studies of living organisms. In this review, the emerging design principles on the use of nuclease-deficient CRISPR-based reprogramming of gene expression will be presented. The review will focus on the designs implemented in yeast both at the level of CRISPR proteins and guide RNA (gRNA), but will lend due credits to the seminal studies performed in other species where relevant. In addition to design principles, this review also highlights applications benefitting from the use of CRISPR-mediated transcriptional regulation and discusses the future directions to further expand the toolkit for nuclease-deficient reprogramming of genomes. As such, this review should be of general interest for experimentalists to get familiarised with the parameters underlying the power of reprogramming genomic functions by use of nuclease-deficient CRISPR technologies.
Universal statistics of the knockout tournament
NASA Astrophysics Data System (ADS)
Baek, Seung Ki; Yi, Il Gu; Park, Hye Jin; Kim, Beom Jun
2013-11-01
We study statistics of the knockout tournament, where only the winner of a fixture progresses to the next. We assign a real number called competitiveness to each contestant and find that the resulting distribution of prize money follows a power law with an exponent close to unity if the competitiveness is a stable quantity and a decisive factor to win a match. Otherwise, the distribution is found narrow. The existing observation of power law distributions in various kinds of real sports tournaments therefore suggests that the rules of those games are constructed in such a way that it is possible to understand the games in terms of the contestants' inherent characteristics of competitiveness.
Osada, Eriko; Akematsu, Takahiko; Asano, Tomoya; Endoh, Hiroshi
2014-03-01
Programmed nuclear death (PND) in the ciliate Tetrahymena is an apoptosis-like phenomenon that occurs in a restricted space of cytoplasm during conjugation. In the process, only the parental macronucleus is selectively eliminated from the progeny cytoplasm, in conjunction with differentiation of new macronuclei for the next generation. For the last decade, mitochondria have been elucidated to be a crucial executioner like apoptosis: apoptosis-inducing factor and yet-unidentified nucleases localised in mitochondria are major factors for PND. To identify such nucleases, we performed a DNase assay in a PAGE (SDS-DNA-PAGE) using total mitochondrial proteins. Some proteins showed DNase activity, but particularly a 17 kDa protein exhibited the highest and predominant activity. Mass spectrometric analysis revealed a novel mitochondrial nuclease, named TMN1, whose homologue has been discovered only in the ciliate Paramecium tetraurelia, but not in other eukaryotes. Gene disruption of TMN1 led to a drastic reduction of mitochondrial nuclease activity and blocked nuclear degradation during conjugation, but did not affect accumulation of autophagic and lysosomal machinery around the parental macronucleus. These observations strongly suggest that the mitochondrial nuclease-associated protein plays a key role in PND as a major executor. Taking the novel protein specific to ciliates in consideration, Tetrahymena would have diverted a different protein from common apoptotic factors shared in eukaryotes to PND in the course of ciliate evolution. © 2014 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.
The extracellular nuclease Dns and its role in natural transformation of Vibrio cholerae.
Blokesch, Melanie; Schoolnik, Gary K
2008-11-01
Free extracellular DNA is abundant in many aquatic environments. While much of this DNA will be degraded by nucleases secreted by the surrounding microbial community, some is available as transforming material that can be taken up by naturally competent bacteria. One such species is Vibrio cholerae, an autochthonous member of estuarine, riverine, and marine habitats and the causative agent of cholera, whose competence program is induced after colonization of chitin surfaces. In this study, we investigate how Vibrio cholerae's two extracellular nucleases, Xds and Dns, influence its natural transformability. We show that in the absence of Dns, transformation frequencies are significantly higher than in its presence. During growth on a chitin surface, an increase in transformation efficiency was found to correspond in time with increasing cell density and the repression of dns expression by the quorum-sensing regulator HapR. In contrast, at low cell density, the absence of HapR relieves dns repression, leading to the degradation of free DNA and to the abrogation of the transformation phenotype. Thus, as cell density increases, Vibrio cholerae undergoes a switch from nuclease-mediated degradation of extracellular DNA to the uptake of DNA by bacteria induced to a state of competence by chitin. Taken together, these results suggest the following model: nuclease production by low-density populations of V. cholerae might foster rapid growth by providing a source of nucleotides for the repletion of nucleotide pools. In contrast, the termination of nuclease production by static, high-density populations allows the uptake of intact DNA and coincides with a phase of potential genome diversification.
The Extracellular Nuclease Dns and Its Role in Natural Transformation of Vibrio cholerae▿
Blokesch, Melanie; Schoolnik, Gary K.
2008-01-01
Free extracellular DNA is abundant in many aquatic environments. While much of this DNA will be degraded by nucleases secreted by the surrounding microbial community, some is available as transforming material that can be taken up by naturally competent bacteria. One such species is Vibrio cholerae, an autochthonous member of estuarine, riverine, and marine habitats and the causative agent of cholera, whose competence program is induced after colonization of chitin surfaces. In this study, we investigate how Vibrio cholerae's two extracellular nucleases, Xds and Dns, influence its natural transformability. We show that in the absence of Dns, transformation frequencies are significantly higher than in its presence. During growth on a chitin surface, an increase in transformation efficiency was found to correspond in time with increasing cell density and the repression of dns expression by the quorum-sensing regulator HapR. In contrast, at low cell density, the absence of HapR relieves dns repression, leading to the degradation of free DNA and to the abrogation of the transformation phenotype. Thus, as cell density increases, Vibrio cholerae undergoes a switch from nuclease-mediated degradation of extracellular DNA to the uptake of DNA by bacteria induced to a state of competence by chitin. Taken together, these results suggest the following model: nuclease production by low-density populations of V. cholerae might foster rapid growth by providing a source of nucleotides for the repletion of nucleotide pools. In contrast, the termination of nuclease production by static, high-density populations allows the uptake of intact DNA and coincides with a phase of potential genome diversification. PMID:18757542
2014-01-01
Background The past decade has seen the emergence of several molecular tools that render possible modification of cellular functions through accurate and easy addition, removal, or exchange of genomic DNA sequences. Among these technologies, transcription activator-like effectors (TALE) has turned out to be one of the most versatile and incredibly robust platform for generating targeted molecular tools as demonstrated by fusion to various domains such as transcription activator, repressor and nucleases. Results In this study, we generated a novel nuclease architecture based on the transcription activator-like effector scaffold. In contrast to the existing Tail to Tail (TtT) and head to Head (HtH) nuclease architectures based on the symmetrical association of two TALE DNA binding domains fused to the C-terminal (TtT) or N-terminal (HtH) end of FokI, this novel architecture consists of the asymmetrical association of two different engineered TALE DNA binding domains fused to the N- and C-terminal ends of FokI (TALE::FokI and FokI::TALE scaffolds respectively). The characterization of this novel Tail to Head (TtH) architecture in yeast enabled us to demonstrate its nuclease activity and define its optimal target configuration. We further showed that this architecture was able to promote substantial level of targeted mutagenesis at three endogenous loci present in two different mammalian cell lines. Conclusion Our results demonstrated that this novel functional TtH architecture which requires binding to only one DNA strand of a given endogenous locus has the potential to extend the targeting possibility of FokI-based TALE nucleases. PMID:24997498
Functional characterization of Autographa californica multiple nucleopolyhedrovirus gp16 (ac130)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ming; Huang, Cui; Qian, Duo-Duo
2014-09-15
To investigate the function of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) gp16, multiple gp16-knockout and repair mutants were constructed and characterized. No obvious difference in productivity of budded virus, DNA synthesis, late gene expression and morphogenesis was observed between gp16-knockout and repair viruses, but gp16 deletion resulted in six hours of lengthening in ST{sub 50} to the third instar Spodoptera exigua larvae in bioassays. GP16 was fractionated mainly in the light membrane fraction, by subcellular fractionation. A GP16-EGFP fusion protein was predominantly localized close around the nuclear membrane in infected cells, being coincident with formation of the vesicles associated with themore » nuclear membrane, which hosted nucleocapsids released from the nucleus. These data suggest that gp16 is not required for viral replication, but may be involved in membrane trafficking associated with the envelopment/de-envelopment of budded viruses when they cross over the nuclear membrane and pass through cytoplasm. - Highlights: • gp16 knockout and repair mutants of AcMNPV were constructed and characterized. • AcMNPV gp16 is not essential to virus replication. • Deletion of gp16 resulted in time lengthening to kill S. exigua larvae. • GP16 was localized close around the nuclear membrane of infected cells. • GP16 was fractionated in the light membrane fraction in subcellular fractionation.« less
Recent advances in the use of ZFN-mediated gene editing for human gene therapy.
Chandrasegaran, Srinivasan
2017-01-01
Targeted genome editing with programmable nucleases has revolutionized biomedical research. The ability to make site-specific modifications to the human genome, has invoked a paradigm shift in gene therapy. Using gene editing technologies, the sequence in the human genome can now be precisely engineered to achieve a therapeutic effect. Zinc finger nucleases (ZFNs) were the first programmable nucleases designed to target and cleave custom sites. This article summarizes the advances in the use of ZFN-mediated gene editing for human gene therapy and discusses the challenges associated with translating this gene editing technology into clinical use.
Halophilic Nuclease from a Moderately Halophilic Micrococcus varians
Kamekura, Masahiro; Onishi, Hiroshi
1974-01-01
The moderately halophilic bacterium Micrococcus varians, isolated from soy sauce mash, produced extracellular nuclease when cultivated aerobically in media containing 1 to 4 M NaCl or KCl. The enzyme, purified to an electrophoretically homogeneous state, had both ribonuclease and deoxyribonuclease activities. The nuclease had maximal activity in the presence of 2.9 M NaCl or 2.1 M KCl at 40 C. The enzymatic activity was lost by dialysis against low-salt buffer, whereas when the inactivated enzyme was dialyzed against 3.4 M NaCl buffer as much as 77% of the initial activity could be restored. Images PMID:4852218
Smith, Rachel M.; Marshall, Jacqueline J. T.; Jacklin, Alistair J.; Retter, Susan E.; Halford, Stephen E.; Sobott, Frank
2013-01-01
Type IIB restriction-modification systems, such as BcgI, feature a single protein with both endonuclease and methyltransferase activities. Type IIB nucleases require two recognition sites and cut both strands on both sides of their unmodified sites. BcgI cuts all eight target phosphodiester bonds before dissociation. The BcgI protein contains A and B polypeptides in a 2:1 ratio: A has one catalytic centre for each activity; B recognizes the DNA. We show here that BcgI is organized as A2B protomers, with B at its centre, but that these protomers self-associate to assemblies containing several A2B units. Moreover, like the well known FokI nuclease, BcgI bound to its site has to recruit additional protomers before it can cut DNA. DNA-bound BcgI can alternatively be activated by excess A subunits, much like the activation of FokI by its catalytic domain. Eight A subunits, each with one centre for nuclease activity, are presumably needed to cut the eight bonds cleaved by BcgI. Its nuclease reaction may thus involve two A2B units, each bound to a recognition site, with two more A2B units bridging the complexes by protein–protein interactions between the nuclease domains. PMID:23147005
Romano Ibarra, Guillermo S; Paul, Biswajit; Sather, Blythe D; Younan, Patrick M; Sommer, Karen; Kowalski, John P; Hale, Malika; Stoddard, Barry; Jarjour, Jordan; Astrakhan, Alexander; Kiem, Hans-Peter; Rawlings, David J
2016-01-01
A naturally occurring 32-base pair deletion of the HIV-1 co-receptor CCR5 has demonstrated protection against HIV infection of human CD4+ T cells. Recent genetic engineering approaches using engineered nucleases to disrupt the gene and mimic this mutation show promise for HIV therapy. We developed a megaTAL nuclease targeting the third extracellular loop of CCR5 that we delivered to primary human T cells by mRNA transfection. The CCR5 megaTAL nuclease established resistance to HIV in cell lines and disrupted the expression of CCR5 on primary human CD4+ T cells with a high efficiency, achieving up to 80% modification of the locus in primary cells as measured by molecular analysis. Gene-modified cells engrafted at levels equivalent to unmodified cells when transplanted into immunodeficient mice. Furthermore, genetically modified CD4+ cells were preferentially expanded during HIV-1 infection in vivo in an immunodeficient mouse model. Our results demonstrate the feasibility of targeting CCR5 in primary T cells using an engineered megaTAL nuclease, and the potential to use gene-modified cells to reconstitute a patient's immune system and provide protection from HIV infection. PMID:27741222
Li, Junting; Zhao, Qi; Tang, Yanli
2016-06-13
We developed a new method for detecting S1 nuclease and hydroxyl radicals based on the use of water-soluble conjugated poly[9,9-bis(6,6-(N,N,N-trimethylammonium)-fluorene)-2,7-ylenevinylene-co-alt-2,5-dicyano-1,4-phenylene)] (PFVCN) and tungsten disulfide (WS₂) nanosheets. Cationic PFVCN is used as a signal reporter, and single-layer WS₂ is used as a quencher with a negatively charged surface. The ssDNA forms complexes with PFVCN due to much stronger electrostatic interactions between cationic PFVCN and anionic ssDNA, whereas PFVCN emits yellow fluorescence. When ssDNA is hydrolyzed by S1 nuclease or hydroxyl radicals into small fragments, the interactions between the fragmented DNA and PFVCN become weaker, resulting in PFVCN being adsorbed on the surface of WS₂ and the fluorescence being quenched through fluorescence resonance energy transfer. The new method based on PFVCN and WS₂ can sense S1 nuclease with a low detection limit of 5 × 10(-6) U/mL. Additionally, this method is cost-effective by using affordable WS₂ as an energy acceptor without the need for dye-labeled ssDNA. Furthermore, the method provides a new platform for the nuclease assay and reactive oxygen species, and provides promising applications for drug screening.
Early zygote-specific nuclease in mitochondria of the true slime mold Physarum polycephalum.
Moriyama, Yohsuke; Yamazaki, Tomokazu; Nomura, Hideo; Sasaki, Narie; Kawano, Shigeyuki
2005-11-01
The active, selective digestion of mtDNA from one parent is a possible molecular mechanism for the uniparental inheritance of mtDNA. In Physarum polycephalum, mtDNA is packed by DNA-binding protein Glom, which packs mtDNA into rod-shaped mt-nucleoids. After the mating, mtDNA from one parent is selectively digested, and the Glom began to disperse. Dispersed Glom was retained for at least 6 h after mtDNA digestion, but disappeared completely by about 12 h after mixing two strains. We identified two novel nucleases using DNA zymography with native-PAGE and SDS-PAGE. One is a Ca2+-dependent, high-molecular-weight nuclease complex (about 670 kDa), and the other is a Mn2+-dependent, high-molecular-weight nuclease complex (440-670 kDa); the activity of the latter was detected as a Mn2+-dependent, 13-kDa DNase band on SDS-PAGE. All mitochondria isolated from myxamoebae had mt-nucleoids, whereas half of the mitochondria isolated from the zygotes at 12 h after mixing had lost the mt-nucleoids. The activity of the Mn2+-dependent nuclease in the isolated mitochondria was detected at least 8 h after mixing of two strains. The timing and localization of the Mn2+-dependent DNase activity matched the selective digestion of mtDNA.
Chen, Xuelan; Tang, Li; Jiao, Haitao; Xu, Feng; Xiong, Yonghua
2013-01-04
ArgR, coded by the argR gene from Corynebacterium crenatum AS 1.542, acts as a negative regulator in arginine biosynthetic pathway. However, the effect of argR on transcriptional levels of the related biosynthetic genes has not been reported. Here, we constructed a deletion mutant of argR gene: C. crenatum AS 1.542 Delta argR using marker-less knockout technology, and compared the changes of transcriptional levels of the arginine biosynthetic genes between the mutant strain and the wild-type strain. We used marker-less knockout technology to construct C. crenatum AS 1.542 Delta argR and analyzed the changes of the relate genes at the transcriptional level using real-time fluorescence quantitative PCR. C. crenatum AS 1.542 Delta argR was successfully obtained and the transcriptional level of arginine biosynthetic genes in this mutant increased significantly with an average of about 162.1 folds. The arginine biosynthetic genes in C. crenatum are clearly controlled by the negative regulator ArgR. However, the deletion of this regulator does not result in a clear change in arginine production in the bacteria.
A simple Gateway-assisted construction system of TALEN genes for plant genome editing.
Kusano, Hiroaki; Onodera, Hitomi; Kihira, Miho; Aoki, Hiromi; Matsuzaki, Hikaru; Shimada, Hiroaki
2016-07-25
TALEN is an artificial nuclease being applied for sequence-specific genome editing. For the plant genome editing, a pair of TALEN genes is expressed in the cells, and a binary plasmid for Agrobacterium-mediated transformation should be assembled. We developed a novel procedure using the Gateway-assisted plasmids, named Emerald-Gateway TALEN system. We constructed entry vectors, pPlat plasmids, for construction of a desired TALEN gene using Platinum Gate TALEN kit. We also created destination plasmid, pDual35SGw1301, which allowed two TALEN genes to both DNA strands to recruit using Gateway technology. Resultant TALEN genes were evaluated by the single-strand annealing (SSA) assay in E. coli cells. By this assay, the TALENs recognized the corresponding targets in the divided luciferase gene, and induced a specific recombination to generate an active luciferase gene. Using the TALEN genes constructed, we created a transformant potato cells in which a site-specific mutation occurred at the target site of the GBSS gene. This suggested that our system worked effectively and was applicable as a convenient tool for the plant genome editing.
Boaz, Segal M.; Dominguez, Kenneth; Shaman, Jeffrey A.; Ward, W. Steven
2009-01-01
We demonstrated that mouse spermatozoa cleave their DNA into ~50 kb loop-sized fragments with topoisomerase IIB when treated with MnCl2 and CaCl2 in a process we term sperm chromatin fragmentation (SCF). SCF can be reversed by EDTA. A nuclease then further degrades the DNA in a process we term sperm DNA degradation (SDD). MnCl2 alone could elicit this activity, but CaCl2 had no effect. Here, we demonstrate the existence of a nuclease in the vas deferens that can be activated by EGTA to digest the sperm DNA by SDD. Spermatozoa were extracted with salt and dithiothreitol to remove protamines and then incubated with EGTA. Next, the EGTA was removed and divalent cations were added. We found that Mn+2, Ca+2, or Zn+2 could each activate SDD in spermatozoa but Mg+2 could not. When the reaction was slowed by incubation on ice, EGTA pretreatment followed by incubation in Ca+2 elicited the reversible fragmentation of sperm DNA evident in SCF. When the reactions were then incubated at 37°C they progressed to the more complete degradation of DNA by SDD. EDTA could also be used to activate the nuclease, but required a higher concentration than EGTA. This EGTA-activatable nuclease activity was found in each fraction of the vas deferens plasma: in the spermatozoa, in the surrounding fluid, and in the insoluble components in the fluid. These results suggest that this sperm nuclease is regulated by a mechanism that is sensitive to EGTA, possibly by removing inhibition of a calcium binding protein. PMID:17879959
Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back
Makarova, Kira S.
2017-01-01
Abstract The Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-CRISPR-associated proteins (Cas) systems of bacterial and archaeal adaptive immunity show multifaceted evolutionary relationships with at least five classes of mobile genetic elements (MGE). First, the adaptation module of CRISPR-Cas that is responsible for the formation of the immune memory apparently evolved from a Casposon, a self-synthesizing transposon that employs the Cas1 protein as the integrase and might have brought additional cas genes to the emerging immunity loci. Second, a large subset of type III CRISPR-Cas systems recruited a reverse transcriptase from a Group II intron, providing for spacer acquisition from RNA. Third, effector nucleases of Class 2 CRISPR-Cas systems that are responsible for the recognition and cleavage of the target DNA were derived from transposon-encoded TnpB nucleases, most likely, on several independent occasions. Fourth, accessory nucleases in some variants of types I and III toxin and type VI effectors RNases appear to be ultimately derived from toxin nucleases of microbial toxin–antitoxin modules. Fifth, the opposite direction of evolution is manifested in the recruitment of CRISPR-Cas systems by a distinct family of Tn7-like transposons that probably exploit the capacity of CRISPR-Cas to recognize unique DNA sites to facilitate transposition as well as by bacteriophages that employ them to cope with host defense. Additionally, individual Cas proteins, such as the Cas4 nuclease, were recruited by bacteriophages and transposons. The two-sided evolutionary connection between CRISPR-Cas and MGE fits the “guns for hire” paradigm whereby homologous enzymatic machineries, in particular nucleases, are shuttled between MGE and defense systems and are used alternately as means of offense or defense. PMID:28985291
DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease.
Dupuy, Aurélie; Sarasin, Alain
2015-06-01
Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhu, Jing; Wang, Lei; Xu, Xiaowen; Wei, Haiping; Jiang, Wei
2016-04-05
Here, we explored a modular strategy for rational design of nuclease-responsive three-way junctions (TWJs) and fabricated a dynamic DNA device in a "plug-and-play" fashion. First, inactivated TWJs were designed, which contained three functional domains: the inaccessible toehold and branch migration domains, the specific sites of nucleases, and the auxiliary complementary sequence. The actions of different nucleases on their specific sites in TWJs caused the close proximity of the same toehold and branch migration domains, resulting in the activation of the TWJs and the formation of a universal trigger for the subsequent dynamic assembly. Second, two hairpins (H1 and H2) were introduced, which could coexist in a metastable state, initially to act as the components for the dynamic assembly. Once the trigger initiated the opening of H1 via TWJs-driven strand displacement, the cascade hybridization of hairpins immediately switched on, resulting in the formation of the concatemers of H1/H2 complex appending numerous integrated G-quadruplexes, which were used to obtain label-free signal readout. The inherent modularity of this design allowed us to fabricate a flexible DNA dynamic device and detect multiple nucleases through altering the recognition pattern slightly. Taking uracil-DNA glycosylase and CpG methyltransferase M.SssI as models, we successfully realized the butt joint between the uracil-DNA glycosylase and M.SssI recognition events and the dynamic assembly process. Furthermore, we achieved ultrasensitive assay of nuclease activity and the inhibitor screening. The DNA device proposed here will offer an adaptive and flexible tool for clinical diagnosis and anticancer drug discovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mori, Tomoaki; Nakamura, Kento; Masaoka, Keisuke
Various viruses infect animals and humans and cause a variety of diseases, including cancer. However, effective methodologies to prevent virus infection have not yet been established. Therefore, development of technologies to inactivate viruses is highly desired. We have already demonstrated that cleavage of a DNA virus genome was effective to prevent its replication. Here, we expanded this methodology to RNA viruses. In the present study, we used staphylococcal nuclease (SNase) instead of the PIN domain (PilT N-terminus) of human SMG6 as an RNA-cleavage domain and fused the SNase to a human Pumilio/fem-3 binding factor (PUF)-based artificial RNA-binding protein to constructmore » an artificial RNA restriction enzyme with enhanced RNA-cleavage rates for influenzavirus. The resulting SNase-fusion nuclease cleaved influenza RNA at rates 120-fold greater than the corresponding PIN-fusion nuclease. The cleaving ability of the PIN-fusion nuclease was not improved even though the linker moiety between the PUF and RNA-cleavage domain was changed. Gel shift assays revealed that the RNA-binding properties of the PUF derivative used was not as good as wild type PUF. Improvement of the binding properties or the design method will allow the SNase-fusion nuclease to cleave an RNA target in mammalian animal cells and/or organisms. - Highlights: • A novel RNA restriction enzyme using SNase was developed tor cleave viral RNA. • Our enzyme cleaved influenza RNA with rates >120-fold higher rates a PIN-fusion one. • Our artificial enzyme with the L5 linker showed the highest RNA cleavage rate. • Our artificial enzyme site-selectively cleaved influenza RNA in vitro.« less
Myxoma virus M130R is a novel virulence factor required for lethal myxomatosis in rabbits.
Barrett, John W; Werden, Steven J; Wang, Fuan; McKillop, William M; Jimenez, June; Villeneuve, Danielle; McFadden, Grant; Dekaban, Gregory A
2009-09-01
Myxoma virus (MV) is a highly lethal, rabbit-specific poxvirus that induces a disease called myxomatosis in European rabbits. In an effort to understand the function of predicted immunomodulatory genes we have deleted various viral genes from MV and tested the ability of these knockout viruses to induce lethal myxomatosis. MV encodes a unique 15 kD cytoplasmic protein (M130R) that is expressed late (12h post infection) during infection. M130R is a non-essential gene for MV replication in rabbit, monkey or human cell lines. Construction of a targeted gene knockout virus (vMyx130KO) and infection of susceptible rabbits demonstrate that the M130R knockout virus is attenuated and that loss of M130R expression allows the rabbit host immune system to effectively respond to and control the lethal effects of MV. M130R expression is a bona fide poxviral virulence factor necessary for full and lethal development of myxomatosis.
A single-chain TALEN architecture for genome engineering.
Sun, Ning; Zhao, Huimin
2014-03-04
Transcription-activator like effector nucleases (TALENs) are tailor-made DNA endonucleases and serve as a powerful tool for genome engineering. Site-specific DNA cleavage can be made by the dimerization of FokI nuclease domains at custom-targeted genomic loci, where a pair of TALENs must be positioned in close proximity with an appropriate orientation. However, the simultaneous delivery and coordinated expression of two bulky TALEN monomers (>100 kDa) in cells may be problematic to implement for certain applications. Here, we report the development of a single-chain TALEN (scTALEN) architecture, in which two FokI nuclease domains are fused on a single polypeptide. The scTALEN was created by connecting two FokI nuclease domains with a 95 amino acid polypeptide linker, which was isolated from a linker library by high-throughput screening. We demonstrated that scTALENs were catalytically active as monomers in yeast and human cells. The use of this novel scTALEN architecture should reduce protein payload, simplify design and decrease production cost.
Translocation-coupled DNA cleavage by the Type ISP restriction-modification enzymes
Chand, Mahesh Kumar; Nirwan, Neha; Diffin, Fiona M.; van Aelst, Kara; Kulkarni, Manasi; Pernstich, Christian; Szczelkun, Mark D.; Saikrishnan, Kayarat
2015-01-01
Endonucleolytic double-strand DNA break production requires separate strand cleavage events. Although catalytic mechanisms for simple dimeric endonucleases are available, there are many complex nuclease machines which are poorly understood in comparison. Here we studied the single polypeptide Type ISP restriction-modification (RM) enzymes, which cleave random DNA between distant target sites when two enzymes collide following convergent ATP-driven translocation. We report the 2.7 Angstroms resolution X-ray crystal structure of a Type ISP enzyme-DNA complex, revealing that both the helicase-like ATPase and nuclease are unexpectedly located upstream of the direction of translocation, inconsistent with simple nuclease domain-dimerization. Using single-molecule and biochemical techniques, we demonstrate that each ATPase remodels its DNA-protein complex and translocates along DNA without looping it, leading to a collision complex where the nuclease domains are distal. Sequencing of single cleavage events suggests a previously undescribed endonuclease model, where multiple, stochastic strand nicking events combine to produce DNA scission. PMID:26389736
Synthetic CRISPR RNA-Cas9-guided genome editing in human cells.
Rahdar, Meghdad; McMahon, Moira A; Prakash, Thazha P; Swayze, Eric E; Bennett, C Frank; Cleveland, Don W
2015-12-22
Genome editing with the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 nuclease system is a powerful technology for manipulating genomes, including introduction of gene disruptions or corrections. Here we develop a chemically modified, 29-nucleotide synthetic CRISPR RNA (scrRNA), which in combination with unmodified transactivating crRNA (tracrRNA) is shown to functionally replace the natural guide RNA in the CRISPR-Cas9 nuclease system and to mediate efficient genome editing in human cells. Incorporation of rational chemical modifications known to protect against nuclease digestion and stabilize RNA-RNA interactions in the tracrRNA hybridization region of CRISPR RNA (crRNA) yields a scrRNA with enhanced activity compared with the unmodified crRNA and comparable gene disruption activity to the previously published single guide RNA. Taken together, these findings provide a platform for therapeutic applications, especially for nervous system disease, using successive application of cell-permeable, synthetic CRISPR RNAs to activate and then silence Cas9 nuclease activity.
Design principles for nuclease-deficient CRISPR-based transcriptional regulators
Jensen, Michael K
2018-01-01
Abstract The engineering of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated proteins continues to expand the toolkit available for genome editing, reprogramming gene regulation, genome visualisation and epigenetic studies of living organisms. In this review, the emerging design principles on the use of nuclease-deficient CRISPR-based reprogramming of gene expression will be presented. The review will focus on the designs implemented in yeast both at the level of CRISPR proteins and guide RNA (gRNA), but will lend due credits to the seminal studies performed in other species where relevant. In addition to design principles, this review also highlights applications benefitting from the use of CRISPR-mediated transcriptional regulation and discusses the future directions to further expand the toolkit for nuclease-deficient reprogramming of genomes. As such, this review should be of general interest for experimentalists to get familiarised with the parameters underlying the power of reprogramming genomic functions by use of nuclease-deficient CRISPR technologies. PMID:29726937
Noninvasive imaging of Staphylococcus aureus infections with a nuclease-activated probe.
Hernandez, Frank J; Huang, Lingyan; Olson, Michael E; Powers, Kristy M; Hernandez, Luiza I; Meyerholz, David K; Thedens, Daniel R; Behlke, Mark A; Horswill, Alexander R; McNamara, James O
2014-03-01
Technologies that enable the rapid detection and localization of bacterial infections in living animals could address an unmet need for infectious disease diagnostics. We describe a molecular imaging approach for the specific, noninvasive detection of S. aureus based on the activity of the S. aureus secreted nuclease, micrococcal nuclease (MN). Several short synthetic oligonucleotides, rendered resistant to mammalian serum nucleases by various chemical modifications and flanked with a fluorophore and quencher, were activated upon degradation by purified MN and in S. aureus culture supernatants. A probe consisting of a pair of deoxythymidines flanked by several 2'-O-methyl-modified nucleotides was activated in culture supernatants of S. aureus but not in culture supernatants of several other pathogenic bacteria. Systemic administration of this probe to mice bearing S. aureus muscle infections resulted in probe activation at the infection sites in an MN-dependent manner. This new bacterial imaging approach has potential clinical applicability for infections with S. aureus and several other medically important pathogens.
Dna2 nuclease-helicase structure, mechanism and regulation by Rpa.
Zhou, Chun; Pourmal, Sergei; Pavletich, Nikola P
2015-11-02
The Dna2 nuclease-helicase maintains genomic integrity by processing DNA double-strand breaks, Okazaki fragments and stalled replication forks. Dna2 requires ssDNA ends, and is dependent on the ssDNA-binding protein Rpa, which controls cleavage polarity. Here we present the 2.3 Å structure of intact mouse Dna2 bound to a 15-nucleotide ssDNA. The nuclease active site is embedded in a long, narrow tunnel through which the DNA has to thread. The helicase domain is required for DNA binding but not threading. We also present the structure of a flexibly-tethered Dna2-Rpa interaction that recruits Dna2 to Rpa-coated DNA. We establish that a second Dna2-Rpa interaction is mutually exclusive with Rpa-DNA interactions and mediates the displacement of Rpa from ssDNA. This interaction occurs at the nuclease tunnel entrance and the 5' end of the Rpa-DNA complex. Hence, it only displaces Rpa from the 5' but not 3' end, explaining how Rpa regulates cleavage polarity.
Shen, Hua; McHale, Cliona M.; Smith, Martyn T; Zhang, Luoping
2015-01-01
Characterizing variability in the extent and nature of responses to environmental exposures is a critical aspect of human health risk assessment. Chemical toxicants act by many different mechanisms, however, and the genes involved in adverse outcome pathways (AOPs) and AOP networks are not yet characterized. Functional genomic approaches can reveal both toxicity pathways and susceptibility genes, through knockdown or knockout of all non-essential genes in a cell of interest, and identification of genes associated with a toxicity phenotype following toxicant exposure. Screening approaches in yeast and human near-haploid leukemic KBM7 cells, have identified roles for genes and pathways involved in response to many toxicants but are limited by partial homology among yeast and human genes and limited relevance to normal diploid cells. RNA interference (RNAi) suppresses mRNA expression level but is limited by off-target effects (OTEs) and incomplete knockdown. The recently developed gene editing approach called clustered regularly interspaced short palindrome repeats-associated nuclease (CRISPR)-Cas9, can precisely knock-out most regions of the genome at the DNA level with fewer OTEs than RNAi, in multiple human cell types, thus overcoming the limitations of the other approaches. It has been used to identify genes involved in the response to chemical and microbial toxicants in several human cell types and could readily be extended to the systematic screening of large numbers of environmental chemicals. CRISPR-Cas9 can also repress and activate gene expression, including that of non-coding RNA, with near-saturation, thus offering the potential to more fully characterize AOPs and AOP networks. Finally, CRISPR-Cas9 can generate complex animal models in which to conduct preclinical toxicity testing at the level of individual genotypes or haplotypes. Therefore, CRISPR-Cas9 is a powerful and flexible functional genomic screening approach that can be harnessed to provide unprecedented mechanistic insight in the field of modern toxicology. PMID:26041264
Rational Design of Mini-Cas9 for Transcriptional Activation.
Ma, Dacheng; Peng, Shuguang; Huang, Weiren; Cai, Zhiming; Xie, Zhen
2018-04-20
Nuclease dead Cas9 (dCas9) has been widely used for modulating gene expression by fusing with different activation or repression domains. However, delivery of the CRISPR/Cas system fused with various effector domains in a single adeno-associated virus (AAV) remains challenging due to the payload limit. Here, we engineered a set of downsized variants of Cas9 including Staphylococcus aureus Cas9 (SaCas9) that retained DNA binding activity by deleting conserved functional domains. We demonstrated that fusing FokI nuclease domain to the N-terminal of the minimal SaCas9 (mini-SaCas9) or to the middle of the split mini-SaCas9 can trigger efficient DNA cleavage. In addition, we constructed a set of compact transactivation domains based on the tripartite VPR activation domain and self-assembled arrays of split SpyTag:SpyCatch peptides, which are suitable for fusing to the mini-SaCas9. Lastly, we produced a single AAV containing the mini-SaCas9 fused with a downsized transactivation domain along with an optimized gRNA expression cassette, which showed efficient transactivation activity. Our results highlighted a practical approach to generate down-sized CRISPR/Cas9 and gene activation systems for in vivo applications.
Myostatin gene mutated mice induced with tale nucleases.
Zhou, Fangfang; Sun, Ruilin; Chen, Hongyan; Fei, Jian; Lu, Daru
2015-01-01
Myostain gene (MSTN) is expressed primarily in skeletal muscle, and negatively regulates skeletal muscle mass; it has been suggested that mice with MSTN inhibition have reduced adiposity and improved insulin sensitivity. Therefore, it is important to establish a fast and effective gene editing method. In this report, we established the myostatin mutated-mouse model by microinjection of Transcription Activator-Like Effector Nucleases (TALENs) mRNA within the mouse fertilized oocytes and achieved high rates of mutagenesis of the mouse MSTN in C57BL/6J. Six of 45 born mice carried target mutations and we appointed one as the parental mating with wild mouse to produce the F1 and backcross to produce the F2 generation. All the mutations of the mice were examined quickly and efficiently by high-resolution melting curve analysis (HRMA) and then verified by direct sequencing. We obtained the homozygous of the F2 generation which transmitted the mutant alleles to the progeny with 100% efficiency. Mutant mice exhibited increases in muscle mass comparable to those observed in wild-type mice. Therefore, combining TALEN-mediated gene targeting with HRMA technology is a superior method of constructing genetically modified mice through microinjection in the mouse fertilized oocytes with high efficiency and short time of selection.
High-Throughput Genome Editing and Phenotyping Facilitated by High Resolution Melting Curve Analysis
Thomas, Holly R.; Percival, Stefanie M.; Yoder, Bradley K.; Parant, John M.
2014-01-01
With the goal to generate and characterize the phenotypes of null alleles in all genes within an organism and the recent advances in custom nucleases, genome editing limitations have moved from mutation generation to mutation detection. We previously demonstrated that High Resolution Melting (HRM) analysis is a rapid and efficient means of genotyping known zebrafish mutants. Here we establish optimized conditions for HRM based detection of novel mutant alleles. Using these conditions, we demonstrate that HRM is highly efficient at mutation detection across multiple genome editing platforms (ZFNs, TALENs, and CRISPRs); we observed nuclease generated HRM positive targeting in 1 of 6 (16%) open pool derived ZFNs, 14 of 23 (60%) TALENs, and 58 of 77 (75%) CRISPR nucleases. Successful targeting, based on HRM of G0 embryos correlates well with successful germline transmission (46 of 47 nucleases); yet, surprisingly mutations in the somatic tail DNA weakly correlate with mutations in the germline F1 progeny DNA. This suggests that analysis of G0 tail DNA is a good indicator of the efficiency of the nuclease, but not necessarily a good indicator of germline alleles that will be present in the F1s. However, we demonstrate that small amplicon HRM curve profiles of F1 progeny DNA can be used to differentiate between specific mutant alleles, facilitating rare allele identification and isolation; and that HRM is a powerful technique for screening possible off-target mutations that may be generated by the nucleases. Our data suggest that micro-homology based alternative NHEJ repair is primarily utilized in the generation of CRISPR mutant alleles and allows us to predict likelihood of generating a null allele. Lastly, we demonstrate that HRM can be used to quickly distinguish genotype-phenotype correlations within F1 embryos derived from G0 intercrosses. Together these data indicate that custom nucleases, in conjunction with the ease and speed of HRM, will facilitate future high-throughput mutation generation and analysis needed to establish mutants in all genes of an organism. PMID:25503746
Engineering nucleases for gene targeting: safety and regulatory considerations.
Pauwels, Katia; Podevin, Nancy; Breyer, Didier; Carroll, Dana; Herman, Philippe
2014-01-25
Nuclease-based gene targeting (NBGT) represents a significant breakthrough in targeted genome editing since it is applicable from single-celled protozoa to human, including several species of economic importance. Along with the fast progress in NBGT and the increasing availability of customized nucleases, more data are available about off-target effects associated with the use of this approach. We discuss how NBGT may offer a new perspective for genetic modification, we address some aspects crucial for a safety improvement of the corresponding techniques and we also briefly relate the use of NBGT applications and products to the regulatory oversight. Copyright © 2013 Elsevier B.V. All rights reserved.
Genome editing and the next generation of antiviral therapy
Stone, Daniel; Niyonzima, Nixon
2016-01-01
Engineered endonucleases such as homing endonucleases (HEs), zinc finger nucleases (ZFNs), Tal-effector nucleases (TALENS) and the RNA-guided engineered nucleases (RGENs or CRISPR/Cas9) can target specific DNA sequences for cleavage, and are proving to be valuable tools for gene editing. Recently engineered endonucleases have shown great promise as therapeutics for the treatment of genetic disease and infectious pathogens. In this review, we discuss recent efforts to use the HE, ZFN, TALEN and CRISPR/Cas9 gene-editing platforms as antiviral therapeutics. We also discuss the obstacles facing gene-editing antiviral therapeutics as they are tested in animal models of disease and transition towards human application. PMID:27272125
Therapeutic Genome Editing: Prospects and Challenges
Cox, David Benjamin Turitz; Platt, Randall Jeffrey; Zhang, Feng
2015-01-01
Recent advances in the development of genome editing technologies based on programmable nucleases have significantly improved our ability to make precise changes in the genomes of eukaryotic cells. Genome editing is already broadening our ability to elucidate the contribution of genetics to disease by facilitating the creation of more accurate cellular and animal models of pathological processes. A particularly tantalizing application of programmable nucleases is the potential to directly correct genetic mutations in affected tissues and cells to treat diseases that are refractory to traditional therapies. Here we discuss current progress towards developing programmable nuclease-based therapies as well as future prospects and challenges. PMID:25654603
Current Progress in Therapeutic Gene Editing for Monogenic Diseases
Prakash, Versha; Moore, Marc; Yáñez-Muñoz, Rafael J
2016-01-01
Programmable nucleases allow defined alterations in the genome with ease-of-use, efficiency, and specificity. Their availability has led to accurate and widespread genome engineering, with multiple applications in basic research, biotechnology, and therapy. With regard to human gene therapy, nuclease-based gene editing has facilitated development of a broad range of therapeutic strategies based on both nonhomologous end joining and homology-dependent repair. This review discusses current progress in nuclease-based therapeutic applications for a subset of inherited monogenic diseases including cystic fibrosis, Duchenne muscular dystrophy, diseases of the bone marrow, and hemophilia and highlights associated challenges and future prospects. PMID:26765770
Universal statistics of the knockout tournament
Baek, Seung Ki; Yi, Il Gu; Park, Hye Jin; Kim, Beom Jun
2013-01-01
We study statistics of the knockout tournament, where only the winner of a fixture progresses to the next. We assign a real number called competitiveness to each contestant and find that the resulting distribution of prize money follows a power law with an exponent close to unity if the competitiveness is a stable quantity and a decisive factor to win a match. Otherwise, the distribution is found narrow. The existing observation of power law distributions in various kinds of real sports tournaments therefore suggests that the rules of those games are constructed in such a way that it is possible to understand the games in terms of the contestants' inherent characteristics of competitiveness. PMID:24217406
Begic, Sanela; Worobec, Elizabeth A
2008-05-01
Serratia marcescens is an important nosocomial agent having high antibiotic resistance. A major mechanism for S. marcescens antibiotic resistance is active efflux. To ascertain the substrate specificity of the S. marcescens SdeCDE efflux pump, we constructed pump gene deletion mutants. sdeCDE knockout strains showed no change in antibiotic susceptibility in comparison with the parental strains for any of the substrates, with the exception of novobiocin. In addition, novobiocin was the only antibiotic to be accumulated by sdeCDE-deficient strains. Based on the substrates used in our study, we conclude that SdeCDE is a Resistance-Nodulation-Cell Division family pump with limited substrate specificity.
Pang, Xiao-Yang; Cui, Wen-Ming; Liu, Lu; Zhang, Shu-Wen; Lv, Jia-Ping
2014-01-01
Autolysis of lactic acid bacteria (LAB) plays a vital role in dairy processing. During cheese making, autolysis of LAB affects cheese flavor development through release of intracellular enzymes and restricts the proliferation of cells in yogurt fermentation and probiotics production. In order to explore the mechanism of autolysis, the gene for the autolytic enzymes of L. bulgaricus, N-acetylmuramidase (mur), was cloned and sequenced (GenBank accession number: KF157911). Mur gene overexpression and gene knockout vectors were constructed based on pMG76e and pUC19 vectors. Recombinant plasmids were transformed into L. bulgaricus ljj-6 by electroporation, then three engineered strains with pMG76e-mur vector and fifteen engineered strains with pUC19-mur::EryBII were screened. The autolysis of the mur knockout strain was significantly lower and autolysis of the mur overexpressed strain was significantly higher compared with that of the wild type strain ljj-6. This result suggested that the mur gene played an important role in autolysis of L. bulgaricus. On the other hand, autolytic activity in a low degree was still observed in the mur knockout strain, which implied that other enzymes but autolysin encoded by mur were also involved in autolysis of L. bulgaricus.
Zhao, Haiyan; Lin, Zihan; Lynn, Anna Y.; Varnado, Brittany; Beutler, John A.; Murelli, Ryan P.; Le Grice, Stuart F. J.; Tang, Liang
2015-01-01
Many dsDNA viruses encode DNA-packaging terminases, each containing a nuclease domain that resolves concatemeric DNA into genome-length units. Terminase nucleases resemble the RNase H-superfamily nucleotidyltransferases in folds, and share a two-metal-ion catalytic mechanism. Here we show that residue K428 of a bacteriophage terminase gp2 nuclease domain mediates binding of the metal cofactor Mg2+. A K428A mutation allows visualization, at high resolution, of a metal ion binding mode with a coupled-octahedral configuration at the active site, exhibiting an unusually short metal-metal distance of 2.42 Å. Such proximity of the two metal ions may play an essential role in catalysis by generating a highly positive electrostatic niche to enable formation of the negatively charged pentacovalent phosphate transition state, and provides the structural basis for distinguishing Mg2+ from Ca2+. Using a metal ion chelator β-thujaplicinol as a molecular probe, we observed a second mode of metal ion binding at the active site, mimicking the DNA binding state. Arrangement of the active site residues differs drastically from those in RNase H-like nucleases, suggesting a drifting of the active site configuration during evolution. The two distinct metal ion binding modes unveiled mechanistic details of the two-metal-ion catalysis at atomic resolution. PMID:26450964
Symington, L S; Kang, L E; Moreau, S
2000-12-01
A plasmid gap repair assay was used to assess the role of three known nucleases, Exo1, Mre11 and Rad1, in the processing of DNA ends and resolution of recombination intermediates during double-strand gap repair. In this assay, alterations in end processing or branch migration are reflected by the frequency of co-conversion of a chromosomal marker 200 bp from the gap. Gap repair associated with crossing over results in integration at the homologous chromosomal locus, whereas the plasmid remains episomal for non-crossover repair events. In mre11 strains, the frequency of gap repair was reduced 3- to 10-fold and conversion tracts were shorter than in the wild-type strain, consistent with a role for this nuclease in processing double-strand breaks. However, conversion tracts were longer in a strain containing the nuclease deficient allele, mre11-H125N, suggesting increased end processing by redundant nucleases. The frequency of gap repair was reduced 2-fold in rad1 mutants and crossing over was reduced, consistent with a role for Rad1 in cleaving recombination intermediates. The frequency of gap repair was increased in exo1 mutants with a significant increase in crossing over. In exo1 mre11 double mutants gap repair was reduced to below the mre11 single mutant level.
This describes fluorogenic 5' nuclease PCR assays suitable for rapid, sensitive, quantitative, high-throughput detection of the human-pathogenic microsporidial species Encephalitozoon hellem, E. cunicli and E. intestinalis. The assays utilize species-specific primer sets and a g...
Ramírez-Carvajal, Lisbeth; Singh, Neetu; de los Santos, Teresa; Rodríguez, Luis L; Long, Charles R
2016-01-01
Type I interferons (IFNs) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF-7), the "master regulator" of IFN transcription. Previous studies have suggested that mouse cells depleted of 4E-BPs are more sensitive to IFNβ treatment and had lower viral loads as compared to wild type (WT) cells. However, such approach has not been tested as an antiviral strategy in livestock species. In this study, we tested the antiviral activity of porcine cells depleted of 4E-BP1 by a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) genome engineering system. We found that 4E-BP1 knockout (KO) porcine cells had increased expression of IFNα and β, IFN stimulated genes, and significant reduction in vesicular stomatitis virus titer as compare to WT cells. No phenotypical changes associated with CRISPR/Cas9 manipulation were observed in 4E-BP1 KO cells. This work highlights the use of the CRISPR/Cas9 system to enhance the antiviral response in porcine cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Collonnier, Cécile; Guyon-Debast, Anouchka; Maclot, François; Mara, Kostlend; Charlot, Florence; Nogué, Fabien
2017-05-15
Beyond its predominant role in human and animal therapy, the CRISPR-Cas9 system has also become an essential tool for plant research and plant breeding. Agronomic applications rely on the mastery of gene inactivation and gene modification. However, if the knock-out of genes by non-homologous end-joining (NHEJ)-mediated repair of the targeted double-strand breaks (DSBs) induced by the CRISPR-Cas9 system is rather well mastered, the knock-in of genes by homology-driven repair or end-joining remains difficult to perform efficiently in higher plants. In this review, we describe the different approaches that can be tested to improve the efficiency of CRISPR-induced gene modification in plants, which include the use of optimal transformation and regeneration protocols, the design of appropriate guide RNAs and donor templates and the choice of nucleases and means of delivery. We also present what can be done to orient DNA repair pathways in the target cells, and we show how the moss Physcomitrella patens can be used as a model plant to better understand what DNA repair mechanisms are involved, and how this knowledge could eventually be used to define more performant strategies of CRISPR-induced gene knock-in. Copyright © 2017 Elsevier Inc. All rights reserved.
Williams, Ruth M; Senanayake, Upeka; Artibani, Mara; Taylor, Gunes; Wells, Daniel; Ahmed, Ahmed Ashour; Sauka-Spengler, Tatjana
2018-02-23
CRISPR/Cas9 genome engineering has revolutionised all aspects of biological research, with epigenome engineering transforming gene regulation studies. Here, we present an optimised, adaptable toolkit enabling genome and epigenome engineering in the chicken embryo, and demonstrate its utility by probing gene regulatory interactions mediated by neural crest enhancers. First, we optimise novel efficient guide-RNA mini expression vectors utilising chick U6 promoters, provide a strategy for rapid somatic gene knockout and establish a protocol for evaluation of mutational penetrance by targeted next-generation sequencing. We show that CRISPR/Cas9-mediated disruption of transcription factors causes a reduction in their cognate enhancer-driven reporter activity. Next, we assess endogenous enhancer function using both enhancer deletion and nuclease-deficient Cas9 (dCas9) effector fusions to modulate enhancer chromatin landscape, thus providing the first report of epigenome engineering in a developing embryo. Finally, we use the synergistic activation mediator (SAM) system to activate an endogenous target promoter. The novel genome and epigenome engineering toolkit developed here enables manipulation of endogenous gene expression and enhancer activity in chicken embryos, facilitating high-resolution analysis of gene regulatory interactions in vivo . © 2018. Published by The Company of Biologists Ltd.
Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9.
Li, Jun; Meng, Xiangbing; Zong, Yuan; Chen, Kunling; Zhang, Huawei; Liu, Jinxing; Li, Jiayang; Gao, Caixia
2016-09-12
Sequence-specific nucleases have been exploited to create targeted gene knockouts in various plants(1), but replacing a fragment and even obtaining gene insertions at specific loci in plant genomes remain a serious challenge. Here, we report efficient intron-mediated site-specific gene replacement and insertion approaches that generate mutations using the non-homologous end joining (NHEJ) pathway using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system. Using a pair of single guide RNAs (sgRNAs) targeting adjacent introns and a donor DNA template including the same pair of sgRNA sites, we achieved gene replacements in the rice endogenous gene 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) at a frequency of 2.0%. We also obtained targeted gene insertions at a frequency of 2.2% using a sgRNA targeting one intron and a donor DNA template including the same sgRNA site. Rice plants harbouring the OsEPSPS gene with the intended substitutions were glyphosate-resistant. Furthermore, the site-specific gene replacements and insertions were faithfully transmitted to the next generation. These newly developed approaches can be generally used to replace targeted gene fragments and to insert exogenous DNA sequences into specific genomic sites in rice and other plants.
CRISPR-Cas9 for medical genetic screens: applications and future perspectives.
Xue, Hui-Ying; Ji, Li-Juan; Gao, Ai-Mei; Liu, Ping; He, Jing-Dong; Lu, Xiao-Jie
2016-02-01
CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR associated nuclease 9) systems have emerged as versatile and convenient (epi)genome editing tools and have become an important player in medical genetic research. CRISPR-Cas9 and its variants such as catalytically inactivated Cas9 (dead Cas9, dCas9) and scaffold-incorporating single guide sgRNA (scRNA) have been applied in various genomic screen studies. CRISPR screens enable high-throughput interrogation of gene functions in health and diseases. Compared with conventional RNAi screens, CRISPR screens incur less off-target effects and are more versatile in that they can be used in multiple formats such as knockout, knockdown and activation screens, and can target coding and non-coding regions throughout the genome. This powerful screen platform holds the potential of revolutionising functional genomic studies in the near future. Herein, we introduce the mechanisms of (epi)genome editing mediated by CRISPR-Cas9 and its variants, introduce the procedures and applications of CRISPR screen in functional genomics, compare it with conventional screen tools and at last discuss current challenges and opportunities and propose future directions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Akhter, Shamima; Lam, Yung C.; Chang, Sandy; Legerski, Randy J.
2013-01-01
Summary Conserved metallo β-Lactamase and β-CASP (CPSF-Artemis-Snm1-Pso2) domain nuclease family member SNM1B/Apollo is a shelterin-associated protein that localizes to telomeres through its interaction with TRF2. To study its in vivo role, we generated a knockout of SNM1B/Apollo in a mouse model. Snm1B/Apollo homozygous null mice die at birth with developmental delay and defects in multiple organ systems. Cell proliferation defects were observed in Snm1B/Apollo mutant mouse embryonic fibroblasts (MEFs) owing to high levels of telomeric end-to-end fusions. Deficiency of the nonhomologous end-joining (NHEJ) factor Ku70, but not p53, rescued the developmental defects and lethality observed in Snm1B/Apollo mutant mice as well as the impaired proliferation of Snm1B/Apollo-deficient MEFs. These findings demonstrate that SNM1B/Apollo is required to protect telomeres against NHEJ-mediated repair, which results in genomic instability and the consequent multi-organ developmental failure. Although Snm1B/Apollo-deficient MEFs exhibited high levels of apoptosis, abrogation of p53-dependent programmed cell death did not rescue the multi-organ developmental failure in the mice. PMID:20854421
Li, Guangming; Montgomery, Stephanie A.; Montgomery, Nathan D.; Su, Lishan; Pagano, Joseph S.
2015-01-01
ABSTRACT BPLF1 of Epstein-Barr virus (EBV) is classified as a late lytic cycle protein but is also found in the viral tegument, suggesting its potential involvement at both initial and late stages of viral infection. BPLF1 possesses both deubiquitinating and deneddylating activity located in its N-terminal domain and is involved in processes that affect viral infectivity, viral DNA replication, DNA repair, and immune evasion. A recently constructed EBV BPLF1-knockout (KO) virus was used in conjunction with a humanized mouse model that can be infected with EBV, enabling the first characterization of BPLF1 function in vivo. Results demonstrate that the BPLF1-knockout virus is approximately 90% less infectious than wild-type (WT) virus. Transformation of human B cells, a hallmark of EBV infection, was delayed and reduced with BPLF1-knockout virus. Humanized mice infected with EBV BPLF1-knockout virus showed less weight loss and survived longer than mice infected with equivalent infectious units of WT virus. Additionally, splenic tumors formed in 100% of mice infected with WT EBV but in only 25% of mice infected with BPLF1-KO virus. Morphological features of spleens containing tumors were similar to those in EBV-induced posttransplant lymphoproliferative disease (PTLD) and were almost identical to cases seen in human diffuse large B-cell lymphoma. The presence of EBV genomes was detected in all mice that developed tumors. The results implicate BPLF1 in human B-cell transformation and tumor formation in humanized mice. PMID:26489865
Selective Enhancement of Nucleases by Polyvalent DNA-Functionalized Gold Nanoparticles
Prigodich, Andrew E.; Alhasan, Ali H.
2011-01-01
We demonstrate that polyvalent DNA-functionalized gold nanoparticles (DNA-Au NPs) selectively enhance Ribonuclease H (RNase H) activity, while inhibiting most biologically relevant nucleases. This combination of properties is particularly interesting in the context of gene regulation, since high RNase H activity results in rapid mRNA degradation and general nuclease inhibition results in high biological stability. We investigate the mechanism of selective RNase H activation and find that the high DNA density of DNA-Au NPs is responsible for this unusual behavior. This work adds to our understanding of polyvalent DNA-Au NPs as gene regulation agents, and suggests a new model for selectively controlling protein-nanoparticle interactions. PMID:21268581
Fan, Xiang-yu; Lin, Yan-ping; Liao, Guo-jian; Xie, Jian-ping
2015-12-01
Zinc finger nuclease, transcription activator-like effector nuclease, and clustered regularly interspaced short palindromic repeats/Cas9 nuclease are important targeted genome editing technologies. They have great significance in scientific research and applications on aspects of functional genomics research, species improvement, disease prevention and gene therapy. There are past or ongoing disputes over ownership of the intellectual property behind every technology. In this review, we summarize the patents on these three targeted genome editing technologies in order to provide some reference for developing genome editing technologies with self-owned intellectual property rights and some implications for current innovation and entrepreneurship education in universities.
el Amrani, F. Ben-Allal; Perelló, L.; Torres, L.
2000-01-01
Copper(II) complexes of several hydroxyflavones were prepared and characterised through their physico-chemical properties. The nuclease activity of three synthesised complexes is reported. These copper(II) complexes present more nuclease activity than the ligands and the copper(II) ion. PMID:18475969
Investigation of a redox-sensitive predictive model of mouse embryonic stem cell differentiation via quantitative nuclease protection assays and glutathione redox status Chandler KJ,Hansen JM, Knudsen T,and Hunter ES 1. U.S. Environmental Protection Agency, Research Triangl...
Breaking-Cas—interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes
Oliveros, Juan C.; Franch, Mònica; Tabas-Madrid, Daniel; San-León, David; Montoliu, Lluis; Cubas, Pilar; Pazos, Florencio
2016-01-01
The CRISPR/Cas technology is enabling targeted genome editing in multiple organisms with unprecedented accuracy and specificity by using RNA-guided nucleases. A critical point when planning a CRISPR/Cas experiment is the design of the guide RNA (gRNA), which directs the nuclease and associated machinery to the desired genomic location. This gRNA has to fulfil the requirements of the nuclease and lack homology with other genome sites that could lead to off-target effects. Here we introduce the Breaking-Cas system for the design of gRNAs for CRISPR/Cas experiments, including those based in the Cas9 nuclease as well as others recently introduced. The server has unique features not available in other tools, including the possibility of using all eukaryotic genomes available in ENSEMBL (currently around 700), placing variable PAM sequences at 5′ or 3′ and setting the guide RNA length and the scores per nucleotides. It can be freely accessed at: http://bioinfogp.cnb.csic.es/tools/breakingcas, and the code is available upon request. PMID:27166368
GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
Nguyen, Nhu T.; Liebers, Matthew; Topkar, Ved V.; Thapar, Vishal; Wyvekens, Nicolas; Khayter, Cyd; Iafrate, A. John; Le, Long P.; Aryee, Martin J.; Joung, J. Keith
2014-01-01
CRISPR RNA-guided nucleases (RGNs) are widely used genome-editing reagents, but methods to delineate their genome-wide off-target cleavage activities have been lacking. Here we describe an approach for global detection of DNA double-stranded breaks (DSBs) introduced by RGNs and potentially other nucleases. This method, called Genome-wide Unbiased Identification of DSBs Enabled by Sequencing (GUIDE-Seq), relies on capture of double-stranded oligodeoxynucleotides into breaks Application of GUIDE-Seq to thirteen RGNs in two human cell lines revealed wide variability in RGN off-target activities and unappreciated characteristics of off-target sequences. The majority of identified sites were not detected by existing computational methods or ChIP-Seq. GUIDE-Seq also identified RGN-independent genomic breakpoint ‘hotspots’. Finally, GUIDE-Seq revealed that truncated guide RNAs exhibit substantially reduced RGN-induced off-target DSBs. Our experiments define the most rigorous framework for genome-wide identification of RGN off-target effects to date and provide a method for evaluating the safety of these nucleases prior to clinical use. PMID:25513782
CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells.
Heo, Young Tae; Quan, Xiaoyuan; Xu, Yong Nan; Baek, Soonbong; Choi, Hwan; Kim, Nam-Hyung; Kim, Jongpil
2015-02-01
Efficient and precise genetic engineering in livestock such as cattle holds great promise in agriculture and biomedicine. However, techniques that generate pluripotent stem cells, as well as reliable tools for gene targeting in livestock, are still inefficient, and thus not routinely used. Here, we report highly efficient gene targeting in the bovine genome using bovine pluripotent cells and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 nuclease. First, we generate induced pluripotent stem cells (iPSCs) from bovine somatic fibroblasts by the ectopic expression of yamanaka factors and GSK3β and MEK inhibitor (2i) treatment. We observed that these bovine iPSCs are highly similar to naïve pluripotent stem cells with regard to gene expression and developmental potential in teratomas. Moreover, CRISPR/Cas9 nuclease, which was specific for the bovine NANOG locus, showed highly efficient editing of the bovine genome in bovine iPSCs and embryos. To conclude, CRISPR/Cas9 nuclease-mediated homologous recombination targeting in bovine pluripotent cells is an efficient gene editing method that can be used to generate transgenic livestock in the future.
Repair of DNA-polypeptide crosslinks by human excision nuclease
NASA Astrophysics Data System (ADS)
Reardon, Joyce T.; Sancar, Aziz
2006-03-01
DNA-protein crosslinks are relatively common DNA lesions that form during the physiological processing of DNA by replication and recombination proteins, by side reactions of base excision repair enzymes, and by cellular exposure to bifunctional DNA-damaging agents such as platinum compounds. The mechanism by which pathological DNA-protein crosslinks are repaired in humans is not known. In this study, we investigated the mechanism of recognition and repair of protein-DNA and oligopeptide-DNA crosslinks by the human excision nuclease. Under our assay conditions, the human nucleotide excision repair system did not remove a 16-kDa protein crosslinked to DNA at a detectable level. However, 4- and 12-aa-long oligopeptides crosslinked to the DNA backbone were recognized by some of the damage recognition factors of the human excision nuclease with moderate selectivity and were excised from DNA at relatively efficient rates. Our data suggest that, if coupled with proteolytic degradation of the crosslinked protein, the human excision nuclease may be the major enzyme system for eliminating protein-DNA crosslinks from the genome. damage recognition | nucleotide excision repair
Dna2 nuclease-helicase structure, mechanism and regulation by Rpa
Zhou, Chun; Pourmal, Sergei; Pavletich, Nikola P
2015-01-01
The Dna2 nuclease-helicase maintains genomic integrity by processing DNA double-strand breaks, Okazaki fragments and stalled replication forks. Dna2 requires ssDNA ends, and is dependent on the ssDNA-binding protein Rpa, which controls cleavage polarity. Here we present the 2.3 Å structure of intact mouse Dna2 bound to a 15-nucleotide ssDNA. The nuclease active site is embedded in a long, narrow tunnel through which the DNA has to thread. The helicase domain is required for DNA binding but not threading. We also present the structure of a flexibly-tethered Dna2-Rpa interaction that recruits Dna2 to Rpa-coated DNA. We establish that a second Dna2-Rpa interaction is mutually exclusive with Rpa-DNA interactions and mediates the displacement of Rpa from ssDNA. This interaction occurs at the nuclease tunnel entrance and the 5’ end of the Rpa-DNA complex. Hence, it only displaces Rpa from the 5’ but not 3’ end, explaining how Rpa regulates cleavage polarity. DOI: http://dx.doi.org/10.7554/eLife.09832.001 PMID:26491943
Pinto, Cosimo; Kasaciunaite, Kristina; Seidel, Ralf; Cejka, Petr
2016-01-01
Human DNA2 (hDNA2) contains both a helicase and a nuclease domain within the same polypeptide. The nuclease of hDNA2 is involved in a variety of DNA metabolic processes. Little is known about the role of the hDNA2 helicase. Using bulk and single-molecule approaches, we show that hDNA2 is a processive helicase capable of unwinding kilobases of dsDNA in length. The nuclease activity prevents the engagement of the helicase by competing for the same substrate, hence prominent DNA unwinding by hDNA2 alone can only be observed using the nuclease-deficient variant. We show that the helicase of hDNA2 functionally integrates with BLM or WRN helicases to promote dsDNA degradation by forming a heterodimeric molecular machine. This collectively suggests that the hDNA2 motor promotes the enzyme's capacity to degrade dsDNA in conjunction with BLM or WRN and thus promote the repair of broken DNA. DOI: http://dx.doi.org/10.7554/eLife.18574.001 PMID:27612385
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruenig, Marielle C.; Lu, Duo; Won, Sang Joon
2012-03-16
The bacteriophage P1-encoded Ref protein enhances RecA-dependent recombination in vivo by an unknown mechanism. We demonstrate that Ref is a new type of enzyme; that is, a RecA-dependent nuclease. Ref binds to ss- and dsDNA but does not cleave any DNA substrate until RecA protein and ATP are added to form RecA nucleoprotein filaments. Ref cleaves only where RecA protein is bound. RecA functions as a co-nuclease in the Ref/RecA system. Ref nuclease activity can be limited to the targeted strands of short RecA-containing D-loops. The result is a uniquely programmable endonuclease activity, producing targeted double-strand breaks at any chosenmore » DNA sequence in an oligonucleotide-directed fashion. We present evidence indicating that cleavage occurs in the RecA filament groove. The structure of the Ref protein has been determined to 1.4 {angstrom} resolution. The core structure, consisting of residues 77-186, consists of a central 2-stranded {beta}-hairpin that is sandwiched between several {alpha}-helical and extended loop elements. The N-terminal 76 amino acid residues are disordered; this flexible region is required for optimal activity. The overall structure of Ref, including several putative active site histidine residues, defines a new subclass of HNH-family nucleases. We propose that enhancement of recombination by Ref reflects the introduction of directed, recombinogenic double-strand breaks.« less
A 'new lease of life': FnCpf1 possesses DNA cleavage activity for genome editing in human cells.
Tu, Mengjun; Lin, Li; Cheng, Yilu; He, Xiubin; Sun, Huihui; Xie, Haihua; Fu, Junhao; Liu, Changbao; Li, Jin; Chen, Ding; Xi, Haitao; Xue, Dongyu; Liu, Qi; Zhao, Junzhao; Gao, Caixia; Song, Zongming; Qu, Jia; Gu, Feng
2017-11-02
Cpf1 nucleases were recently reported to be highly specific and programmable nucleases with efficiencies comparable to those of SpCas9. AsCpf1 and LbCpf1 require a single crRNA and recognize a 5'-TTTN-3' protospacer adjacent motif (PAM) at the 5' end of the protospacer for genome editing. For widespread application in precision site-specific human genome editing, the range of sequences that AsCpf1 and LbCpf1 can recognize is limited due to the size of this PAM. To address this limitation, we sought to identify a novel Cpf1 nuclease with simpler PAM requirements. Specifically, here we sought to test and engineer FnCpf1, one reported Cpf1 nuclease (FnCpf1) only requires 5'-TTN-3' as a PAM but does not exhibit detectable levels of nuclease-induced indels at certain locus in human cells. Surprisingly, we found that FnCpf1 possesses DNA cleavage activity in human cells at multiple loci. We also comprehensively and quantitatively examined various FnCpf1 parameters in human cells, including spacer sequence, direct repeat sequence and the PAM sequence. Our study identifies FnCpf1 as a new member of the Cpf1 family for human genome editing with distinctive characteristics, which shows promise as a genome editing tool with the potential for both research and therapeutic applications. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
A ‘new lease of life’: FnCpf1 possesses DNA cleavage activity for genome editing in human cells
Tu, Mengjun; Lin, Li; Cheng, Yilu; He, Xiubin; Sun, Huihui; Xie, Haihua; Fu, Junhao; Liu, Changbao; Li, Jin; Chen, Ding; Xi, Haitao; Xue, Dongyu; Liu, Qi; Zhao, Junzhao; Gao, Caixia; Song, Zongming; Qu, Jia
2017-01-01
Abstract Cpf1 nucleases were recently reported to be highly specific and programmable nucleases with efficiencies comparable to those of SpCas9. AsCpf1 and LbCpf1 require a single crRNA and recognize a 5′-TTTN-3′ protospacer adjacent motif (PAM) at the 5′ end of the protospacer for genome editing. For widespread application in precision site-specific human genome editing, the range of sequences that AsCpf1 and LbCpf1 can recognize is limited due to the size of this PAM. To address this limitation, we sought to identify a novel Cpf1 nuclease with simpler PAM requirements. Specifically, here we sought to test and engineer FnCpf1, one reported Cpf1 nuclease (FnCpf1) only requires 5′-TTN-3′ as a PAM but does not exhibit detectable levels of nuclease-induced indels at certain locus in human cells. Surprisingly, we found that FnCpf1 possesses DNA cleavage activity in human cells at multiple loci. We also comprehensively and quantitatively examined various FnCpf1 parameters in human cells, including spacer sequence, direct repeat sequence and the PAM sequence. Our study identifies FnCpf1 as a new member of the Cpf1 family for human genome editing with distinctive characteristics, which shows promise as a genome editing tool with the potential for both research and therapeutic applications. PMID:28977650
Tam, R C; Li, Y; Noonberg, S; Hwang, D G; Lui, G; Hunt, C A; Garovoy, M R
1994-01-01
Augmented biological activity in vitro has been demonstrated in oligonucleotides (oligos) modified to provide nuclease resistance, to enhance cellular uptake or to increase target affinity. How chemical modification affects the duration of effect of an oligo with potent activity has not been investigated directly. We postulated that modification with internucleotide phosphorothioates and 3' alkylamine provided additional nuclease protection which could significantly extend the biological activity of a 26 mer, (T2). We showed this analog, sT2a, could maximally inhibit interferon gamma-induced HLA-DR mRNA synthesis and surface expression in both HeLa and retinal pigmented epithelial cells and could continue to be effective, in the absence of oligo, 15 days following initial oligo treatment; an effect not observed with its 3'amine counterpart, T2a. In vitro stability studies confirmed that sT2a conferred the greatest stability to nucleases and that cellular accumulation of 32P-sT2a in both cell types was also greater than other T2 oligos. Using confocal microscopy, we revealed that the intracellular distribution of sT2a favored greater nuclear accumulation and release of oligo from cytoplasmic vesicles; a pattern not observed with T2a. These results suggest that phosphorothioate-3'amine modification could increase the duration of effect of T2 oligo by altering nuclease resistance as well as intracellular accumulation and distribution; factors known to affect biological availability. Images PMID:8152930
Kieper, Jana; Lauber, Christiane; Gimadutdinow, Oleg; Urbańska, Anna; Cymerman, Iwona; Ghosh, Mahua; Szczesny, Bartosz; Meiss, Gregor
2010-09-01
Nuc1p, CPS-6, EndoG and EXOG are evolutionary conserved mitochondrial nucleases from yeast, Caenorhabditis elegans and humans, respectively. These enzymes play an important role in programmed cell death as well as mitochondrial DNA-repair and recombination. Whereas a significant interest has been given to the cell biology of these proteins, in particular their recruitment during caspase-independent apoptosis, determination of their biochemical properties has lagged behind. In part, biochemical as well as structural analysis of mitochondrial nucleases has been hampered by the fact that upon cloning and overexpression in Escherichia coli these enzymes can exert considerable toxicity and tend to aggregate and form inclusion bodies. We have, therefore, established a uniform E. coli expression system allowing us to obtain these four evolutionary related nucleases in active form from the soluble as well as insoluble fractions of E. coli cell lysates. Using preparations of recombinant Nuc1p, CPS-6, EndoG and EXOG we have compared biochemical properties and the substrate specificities of these related nucleases on selected substrates in parallel. Whereas Nuc1p and EXOG in addition to their endonuclease activity exert 5'-3'-exonuclease activity, CPS-6 and EndoG predominantly are endonucleases. These findings allow speculating that the mechanisms of action of these related nucleases in cell death as well as DNA-repair and recombination differ according to their enzyme activities and substrate specificities. Copyright 2010 Elsevier Inc. All rights reserved.
Nucleases from Prevotella intermedia can degrade neutrophil extracellular traps.
Doke, M; Fukamachi, H; Morisaki, H; Arimoto, T; Kataoka, H; Kuwata, H
2017-08-01
Periodontitis is an inflammatory disease caused by periodontal bacteria in subgingival plaque. These bacteria are able to colonize the periodontal region by evading the host immune response. Neutrophils, the host's first line of defense against infection, use various strategies to kill invading pathogens, including neutrophil extracellular traps (NETs). These are extracellular net-like fibers comprising DNA and antimicrobial components such as histones, LL-37, defensins, myeloperoxidase, and neutrophil elastase from neutrophils that disarm and kill bacteria extracellularly. Bacterial nuclease degrades the NETs to escape NET killing. It has now been shown that extracellular nucleases enable bacteria to evade this host antimicrobial mechanism, leading to increased pathogenicity. Here, we compared the DNA degradation activity of major Gram-negative periodontopathogenic bacteria, Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans. We found that Pr. intermedia showed the highest DNA degradation activity. A genome search of Pr. intermedia revealed the presence of two genes, nucA and nucD, putatively encoding secreted nucleases, although their enzymatic and biological activities are unknown. We cloned nucA- and nucD-encoding nucleases from Pr. intermedia ATCC 25611 and characterized their gene products. Recombinant NucA and NucD digested DNA and RNA, which required both Mg 2+ and Ca 2+ for optimal activity. In addition, NucA and NucD were able to degrade the DNA matrix comprising NETs. © 2016 The Authors Molecular Oral Microbiology Published by John Wiley & Sons Ltd.
Morita, Chisato; Sumioka, Ryuichi; Nakata, Masanobu; Okahashi, Nobuo; Wada, Satoshi; Yamashiro, Takashi; Hayashi, Mikako; Hamada, Shigeyuki; Sumitomo, Tomoko; Kawabata, Shigetada
2014-01-01
Streptococcus sanguinis, a member of the commensal mitis group of streptococci, is a primary colonizer of the tooth surface, and has been implicated in infectious complications including bacteremia and infective endocarditis. During disease progression, S. sanguinis may utilize various cell surface molecules to evade the host immune system to survive in blood. In the present study, we discovered a novel cell surface nuclease with a cell-wall anchor domain, termed SWAN (streptococcal wall-anchored nuclease), and investigated its contribution to bacterial resistance against the bacteriocidal activity of neutrophil extracellular traps (NETs). Recombinant SWAN protein (rSWAN) digested multiple forms of DNA including NET DNA and human RNA, which required both Mg(2+) and Ca(2+) for optimum activity. Furthermore, DNase activity of S. sanguinis was detected around growing colonies on agar plates containing DNA. In-frame deletion of the swan gene mostly reduced that activity. These findings indicated that SWAN is a major nuclease displayed on the surface, which was further confirmed by immuno-detection of SWAN in the cell wall fraction. The sensitivity of S. sanguinis to NET killing was reduced by swan gene deletion. Moreover, heterologous expression of the swan gene rendered a Lactococcus lactis strain more resistant to NET killing. Our results suggest that the SWAN nuclease on the bacterial surface contributes to survival in the potential situation of S. sanguinis encountering NETs during the course of disease progression.
Nakata, Masanobu; Okahashi, Nobuo; Wada, Satoshi; Yamashiro, Takashi; Hayashi, Mikako; Hamada, Shigeyuki; Sumitomo, Tomoko; Kawabata, Shigetada
2014-01-01
Streptococcus sanguinis, a member of the commensal mitis group of streptococci, is a primary colonizer of the tooth surface, and has been implicated in infectious complications including bacteremia and infective endocarditis. During disease progression, S. sanguinis may utilize various cell surface molecules to evade the host immune system to survive in blood. In the present study, we discovered a novel cell surface nuclease with a cell-wall anchor domain, termed SWAN (streptococcal wall-anchored nuclease), and investigated its contribution to bacterial resistance against the bacteriocidal activity of neutrophil extracellular traps (NETs). Recombinant SWAN protein (rSWAN) digested multiple forms of DNA including NET DNA and human RNA, which required both Mg2+ and Ca2+ for optimum activity. Furthermore, DNase activity of S. sanguinis was detected around growing colonies on agar plates containing DNA. In-frame deletion of the swan gene mostly reduced that activity. These findings indicated that SWAN is a major nuclease displayed on the surface, which was further confirmed by immuno-detection of SWAN in the cell wall fraction. The sensitivity of S. sanguinis to NET killing was reduced by swan gene deletion. Moreover, heterologous expression of the swan gene rendered a Lactococcus lactis strain more resistant to NET killing. Our results suggest that the SWAN nuclease on the bacterial surface contributes to survival in the potential situation of S. sanguinis encountering NETs during the course of disease progression. PMID:25084357
Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back.
Koonin, Eugene V; Makarova, Kira S
2017-10-01
The Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-CRISPR-associated proteins (Cas) systems of bacterial and archaeal adaptive immunity show multifaceted evolutionary relationships with at least five classes of mobile genetic elements (MGE). First, the adaptation module of CRISPR-Cas that is responsible for the formation of the immune memory apparently evolved from a Casposon, a self-synthesizing transposon that employs the Cas1 protein as the integrase and might have brought additional cas genes to the emerging immunity loci. Second, a large subset of type III CRISPR-Cas systems recruited a reverse transcriptase from a Group II intron, providing for spacer acquisition from RNA. Third, effector nucleases of Class 2 CRISPR-Cas systems that are responsible for the recognition and cleavage of the target DNA were derived from transposon-encoded TnpB nucleases, most likely, on several independent occasions. Fourth, accessory nucleases in some variants of types I and III toxin and type VI effectors RNases appear to be ultimately derived from toxin nucleases of microbial toxin-antitoxin modules. Fifth, the opposite direction of evolution is manifested in the recruitment of CRISPR-Cas systems by a distinct family of Tn7-like transposons that probably exploit the capacity of CRISPR-Cas to recognize unique DNA sites to facilitate transposition as well as by bacteriophages that employ them to cope with host defense. Additionally, individual Cas proteins, such as the Cas4 nuclease, were recruited by bacteriophages and transposons. The two-sided evolutionary connection between CRISPR-Cas and MGE fits the "guns for hire" paradigm whereby homologous enzymatic machineries, in particular nucleases, are shuttled between MGE and defense systems and are used alternately as means of offense or defense. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2017. This work is written by US Government employees and is in the public domain in the US.
Badugu, Sugith Babu; Nabi, Shaik Abdul; Vaidyam, Pratap; Laskar, Shyamasree; Bhattacharyya, Sunanda; Bhattacharyya, Mrinal Kanti
2015-01-01
The eukaryotic Meiotic Recombination protein 11 (Mre11) plays pivotal roles in the DNA damage response (DDR). Specifically, Mre11 senses and signals DNA double strand breaks (DSB) and facilitates their repair through effector proteins belonging to either homologous recombination (HR) or non-homologous end joining (NHEJ) repair mechanisms. In the human malaria parasite Plasmodium falciparum, HR and alternative-NHEJ have been identified; however, little is known about the upstream factors involved in the DDR of this organism. In this report, we identify a putative ortholog of Mre11 in P. falciparum (PfalMre11) that shares 22% sequence similarity to human Mre11. Homology modeling reveals striking structural resemblance of the predicted PfalMre11 nuclease domain to the nuclease domain of Saccharomyces cerevisiae Mre11 (ScMre11). Complementation analyses reveal functional conservation of PfalMre11 nuclease activity as demonstrated by the ability of the PfalMre11 nuclease domain, in conjunction with the C-terminal domain of ScMre11, to functionally complement an mre11 deficient yeast strain. Functional complementation was virtually abrogated by an amino acid substitution in the PfalMre11 nuclease domain (D398N). PfalMre11 is abundant in the mitotically active trophozoite and schizont stages of P. falciparum and is up-regulated in response to DNA damage, suggesting a role in the DDR. PfalMre11 exhibits physical interaction with PfalRad50. In addition, yeast 2-hybrid studies show that PfalMre11 interacts with ScRad50 and ScXrs2, two important components of the well characterized Mre11-Rad50-Xrs2 complex which is involved in DDR signaling and repair in S. cerevisiae, further supporting a role for PfalMre11 in the DDR. Taken together, these findings provide evidence that PfalMre11 is an evolutionarily conserved component of the DDR in Plasmodium. PMID:25938776
Characterization of Bombyx mori nucleopolyhedrovirus with a knockout of Bm17.
Shen, Hongxing; Zhou, Yang; Zhang, Wen; Nin, Bin; Wang, Hua; Wang, Xiaochun; Shao, Shihe; Chen, Huiqing; Guo, Zhongjian; Liu, Xiaoyong; Yao, Qin; Chen, Keping
2012-12-01
Open reading frame 17 (Bm17) gene of Bombyx mori nucleopolyhedrovirus is a highly conserved gene in lepidopteran nucleopolyhedroviruses, but its function remains unknown. In this report, transient-expression and superinfection assays indicated that BM17 localized in the nucleus and cytoplasm of infected BmN cells. To determine the role of Bm17 in baculovirus life cycle, we constructed a Bm17 knockout virus and characterized its properties in cells. Analysis of the production and infection of budded virions, the level of viral DNA replication revealed showed that there was no significant difference among the mutant, the control, and the Bm17 repaired virus strains. These results suggest that BM17 is not essential for virus replication in cultured cells.
Condori, Sandra; Atkinson, Steve; Leys, Natalie; Wattiez, Ruddy; Mastroleo, Felice
2016-06-01
Many bacterial species communicate using a complex system known as quorum sensing (QS) in which gene expression is controlled in response to cell density. In this study an N-acylhomoserine lactone (AHL) synthase (Rru_A3396) knockout mutant (M68) of Rhodospirillum rubrum S1H (WT) was constructed and characterized phenotypically under light anaerobic conditions. Results showed that R. rubrum WT produces unsubstituted, 3-OH and 3-oxo-substituted AHLs with acyl chains ranging from 4 to 14 carbons, with 3-OH-C8 being the most abundant. Growth, pigment content and swimming motility were found to be under the control of this LuxI-type QS system. In addition, cultivation in a low shear environment put forward the aggregative phenotype of M68 and linked biofilm formation to QS in R. rubrum S1H. Interestingly, QS-mutant M68 continued to produce decreased levels of 3-OH-C8-HSL, probably due to the presence of an extra HdtS-type AHL synthase. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Sun, Hongchao; Zhuo, Xunhui; Zhao, Xianfeng; Yang, Yi; Chen, Xueqiu; Yao, Chaoqun; Du, Aifang
2017-01-01
Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects almost all warm-blooded vertebrates. Heat shock proteins (HSP) regulate key signal transduction events in many organisms, and heat shock protein 90 (Hsp90) plays an important role in growth, development, and virulence in several parasitic protozoa. Here, we discovered increased transcription of the Hsp90 gene under conditions for bradyzoite differentiation, i.e. alkaline and heat shock conditions in vitro, suggesting that Hsp90 may be connected with bradyzoite development in T. gondii. A knockout of the TgHsp90 strain (ΔHsp90) and a complementation strain were constructed. The TgHsp90 knockout cells were found to be defective in host-cell invasion, were not able to proliferate in vitro in Vero cells, and did not show long-time survival in mice in vivo. These inabilities of the knockout parasites were restored upon complementation of TgHsp90. These data unequivocally show that TgHsp90 contributes to bradyzoite development, and to invasion and replication of T. gondii in host cells. PMID:28627357
Effect of Radiofrequency Radiation on DNA Duplex Stability and Replication.
1983-08-01
Ando, T. A nuclease specific for heat-denatured DNA isolated from a product of Aspergillus oryzae . Biochim Biophys Acta 114:158-168 (1966). Blakeley...metabolic acti- vation. Mutation Res 64:315-328 (1979). Vogt,. V.M. Purification and further properties of single-strand-specific nuclease from Aspergillus oryzae . Eur J Biochem 33:192-200 (1973). 42
Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials.
Bikard, David; Euler, Chad W; Jiang, Wenyan; Nussenzweig, Philip M; Goldberg, Gregory W; Duportet, Xavier; Fischetti, Vincent A; Marraffini, Luciano A
2014-11-01
Antibiotics target conserved bacterial cellular pathways or growth functions and therefore cannot selectively kill specific members of a complex microbial population. Here, we develop programmable, sequence-specific antimicrobials using the RNA-guided nuclease Cas9 (refs.1,2) delivered by a bacteriophage. We show that Cas9, reprogrammed to target virulence genes, kills virulent, but not avirulent, Staphylococcus aureus. Reprogramming the nuclease to target antibiotic resistance genes destroys staphylococcal plasmids that harbor antibiotic resistance genes and immunizes avirulent staphylococci to prevent the spread of plasmid-borne resistance genes. We also show that CRISPR-Cas9 antimicrobials function in vivo to kill S. aureus in a mouse skin colonization model. This technology creates opportunities to manipulate complex bacterial populations in a sequence-specific manner.
Kozlowska, Anna Karolina; Florczak, Anna; Smialek, Maciej; Dondajewska, Ewelina; Mackiewicz, Andrzej; Kortylewski, Marcin; Dams-Kozlowska, Hanna
2017-09-01
Cell-selective delivery and sensitivity to serum nucleases remain major hurdles to the clinical application of RNA-based oligonucleotide therapeutics, such as siRNA. Spider silk shows great potential as a biomaterial due to its biocompatibility and biodegradability. Self-assembling properties of silk proteins allow for processing into several different morphologies such as fibers, scaffolds, films, hydrogels, capsules and spheres. Moreover, bioengineering of spider silk protein sequences can functionalize silk by adding peptide moieties with specific features including binding or cell recognition domains. We demonstrated that modification of silk protein by adding the nucleic acid binding domain enabled the development of a novel oligonucleotide delivery system that can be utilized to improve pharmacokinetics of RNA-based therapeutics, such as CpG-siRNA. The MS2 bioengineered silk was functionalized with poly-lysine domain (KN) to generate hybrid silk MS2KN. CpG-siRNA efficiently bound to MS2KN in contrary to control MS2. Both MS2KN complexes and spheres protected CpG-siRNA from degradation by serum nucleases. CpG-siRNA molecules encapsulated into MS2KN spheres were efficiently internalized and processed by TLR9-positive macrophages. Importantly, CpG-STAT3siRNA loaded in silk spheres showed delayed and extended target gene silencing compared to naked oligonucleotides. The prolonged Stat3 silencing resulted in the more pronounced downregulation of interleukin 6 (IL-6), a proinflammatory cytokine and upstream activator of STAT3, which limits the efficacy of TLR9 immunostimulation. Our results demonstrate the feasibility of using spider silk spheres as a carrier of therapeutic nucleic acids. Moreover, the modified kinetic and activity of the CpG-STAT3siRNA embedded into silk spheres is likely to improve immunotherapeutic effects in vivo. We demonstrated that modification of silk protein by adding the nucleic acid binding domain enabled the development of a novel oligonucleotide delivery system that can be utilized to improve pharmacokinetics of RNA-based therapeutics. Although, the siRNA constructs have already given very promising results in the cancer therapy, the in vivo application of RNA-based oligonucleotide therapeutics still is limited due to their sensitivity to serum nucleases and some toxicity. We propose a carrier for RNA-based therapeutics that is made of bioengineered spider silk. We showed that functionalized bioengineered spider silk spheres not only protected RNA-based therapeutics from degradation by serum nucleases, but what is more important the embedding of siRNA into silk spheres delayed and extended target gene silencing compared with naked oligonucleotides. Moreover, we showed that plain silk spheres did not have unspecific effect on target gene levels proving not only to be non-cytotoxic but also very neutral vehicles in terms of TLR9/STAT3 activation in macrophages. We demonstrated advantages of novel delivery technology in safety and efficacy comparing with delivery of naked CpG-STAT3siRNA therapeutics. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Fu, Lixia; Lu, Chengping
2013-06-01
Bacterial ghost is a novel vaccine platform, and its safe and efficient production depends largely upon a suitable and functional vector. In this study, a series of temperature-inducible plasmids, carrying Phix174 lysis gene E and/or staphylococcal nuclease A (SNA) gene, were constructed and evaluated in Escherichia coli. The results showed that the direct product of SNA (pBV220-SNA) could degrade the plasmid and genomic DNA of E. coli while the fusion product of gene E and partial Cro gene (pKF396M-2) lost the ability to lyse the host strain. The insertion of enhancer T7g10 elements and Shine-Dalgarno box (ESD) between them (pKF396M-3) could resume the function of gene E. Using plasmid pKF396M-4 with gene E and SNA, respectively, under the immediate control of promoter pR and pL, the remnant plasmids and genomic DNA of E. coli were eliminated, and the rates of inactivation increased by two orders of magnitude over that obtained with the exclusive use of E-mediated lysis plasmid. By substituting these two genes with customized multiple cloning sites sequences, the plasmid could be modified to a dual expression vector (pKF396M-5).
Pukáncsik, Mária; Orbán, Ágnes; Nagy, Kinga; Matsuo, Koichi; Gekko, Kunihiko; Maurin, Damien; Hart, Darren; Kézsmárki, István; Vertessy, Beata G.
2016-01-01
A novel uracil-DNA degrading protein factor (termed UDE) was identified in Drosophila melanogaster with no significant structural and functional homology to other uracil-DNA binding or processing factors. Determination of the 3D structure of UDE is excepted to provide key information on the description of the molecular mechanism of action of UDE catalysis, as well as in general uracil-recognition and nuclease action. Towards this long-term aim, the random library ESPRIT technology was applied to the novel protein UDE to overcome problems in identifying soluble expressing constructs given the absence of precise information on domain content and arrangement. Nine constructs of UDE were chosen to decipher structural and functional relationships. Vacuum ultraviolet circular dichroism (VUVCD) spectroscopy was performed to define the secondary structure content and location within UDE and its truncated variants. The quantitative analysis demonstrated exclusive α-helical content for the full-length protein, which is preserved in the truncated constructs. Arrangement of α-helical bundles within the truncated protein segments suggested new domain boundaries which differ from the conserved motifs determined by sequence-based alignment of UDE homologues. Here we demonstrate that the combination of ESPRIT and VUVCD spectroscopy provides a new structural description of UDE and confirms that the truncated constructs are useful for further detailed functional studies. PMID:27273007
MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems.
Sakuma, Tetsushi; Nakade, Shota; Sakane, Yuto; Suzuki, Ken-Ichi T; Yamamoto, Takashi
2016-01-01
Programmable nucleases enable engineering of the genome by utilizing endogenous DNA double-strand break (DSB) repair pathways. Although homologous recombination (HR)-mediated gene knock-in is well established, it cannot necessarily be applied in every cell type and organism because of variable HR frequencies. We recently reported an alternative method of gene knock-in, named the PITCh (Precise Integration into Target Chromosome) system, assisted by microhomology-mediated end-joining (MMEJ). MMEJ harnesses independent machinery from HR, and it requires an extremely short homologous sequence (5-25 bp) for DSB repair, resulting in precise gene knock-in with a more easily constructed donor vector. Here we describe a streamlined protocol for PITCh knock-in, including the design and construction of the PITCh vectors, and their delivery to either human cell lines by transfection or to frog embryos by microinjection. The construction of the PITCh vectors requires only a few days, and the entire process takes ∼ 1.5 months to establish knocked-in cells or ∼ 1 week from injection to early genotyping in frog embryos.
A Novel Nuclease Activity that is Activated by Ca2+ Chelated to EGTA
Dominguez, Kenneth; Ward, W. Steven
2010-01-01
Most nucleases require a divalent cation as a cofactor, usually Mg2+ or Ca2+, and are inhibited by the chelators EDTA and EGTA. We report the existence of a novel nuclease activity, initially identified in the luminal fluids of the mouse male reproductive tract but subsequently found in other tissues, that requires EGTA chelated to calcium to digest DNA. We refer to this unique enzyme as CEAN (Chelated EGTA Activated Nuclease). Using a fraction of vas deferens luminal fluid, plasmid DNA was degraded in the presence of excess Ca2+ (Ca2+:EGTA = 16) or excess EGTA (Ca2+:EGTA = 0.25), but required the presence of both. Higher levels of EGTA (Ca2+:EGTA = 0.10) prevented activity, suggesting that unchelated EGTA may be a competitive inhibitor. The EGTA-Ca2+ activation of CEAN is reversible as removing EGTA-Ca2+ stops ongoing DNA degradation, but adding EGTA-Ca2+ again reactivates the enzyme. This suggests the possibility that CEAN binds directly to EGTA-Ca2+. CEAN has a greater specificity for the chelator than for the divalent cation. Two other chelators, BAPTA and sodium citrate, do not activate CEAN in the presence of cation, but chelated EDTA does. EGTA chelated to other divalent cations such as Mn2+, Zn2+, and Cu2+ activate CEAN, but not Mg2+. The activity is lost upon boiling suggesting that it is a protein. These data suggest that EGTA and EDTA may not always prevent DNA from nuclease damage. PMID:19938954
CHAPARIAN, Shahram; ABDULAHNEJAD, Ahad; RASHIDI, Farzad; TOGHYANI, Majid; GHEISARI, Abbasali; EGHBALSAIED, Shahin
2016-01-01
DNA uptake in the post-acrosomal region of the spermatozoa takes place exclusively in immotile spermatozoa that are naturally unable to fertilize eggs. The present study aimed to assess whether passive transmission of non-viral vectors to the surrounding areas of chicken embryos could be an alternate mechanism in chicken sperm-mediated gene transfer. First, the presence of nucleases in rooster seminal plasma was evaluated. Semen ejaculates from five roosters were centrifuged and the supernatant was incubated with pBL2 for 1 h. A robust nuclease cocktail was detected in the rooster semen. To overcome these nucleases, plasmid-TransIT combinations were incubated with semen for 1 h. Incubation of exogenous DNA in the lipoplex structure could considerably bypass the semen nuclease effect. Then, intravaginal insemination of 1 × 109 sperm mixed with lipoplexes (40 µg pBL2:40 µl TransIT) was carried out in 15 virgin hens. Neither the epithelial tissue from the inseminated female reproductive tracts nor the produced embryos following artificial insemination showed the transgene. To remove any bias in the transgene transmission possibility, the plasmid-TransIT admixture was directly injected in close vicinity of the embryos in newly laid eggs. Nonetheless, none of the produced fetuses or chicks carried the transgene. In conclusion, the results of the present study revealed a nuclease admixture in rooster seminal plasma, and passive/active transmission of the non-viral vector into close vicinity of the chicken embryo was inefficient for producing transgenic chicks. PMID:26935324
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gwon, Gwang Hyeon; Kim, Youngran; Liu, Yaqi
2014-10-15
Fanconi anemia (FA) is an autosomal recessive genetic disorder caused by defects in any of 15 FA genes responsible for processing DNA interstrand cross-links (ICLs). The ultimate outcome of the FA pathway is resolution of cross-links, which requires structure-selective nucleases. FA-associated nuclease 1 (FAN1) is believed to be recruited to lesions by a monoubiquitinated FANCI–FANCD2 (ID) complex and participates in ICL repair. Here, we determined the crystal structure of Pseudomonas aeruginosa FAN1 (PaFAN1) lacking the UBZ (ubiquitin-binding zinc) domain in complex with 5' flap DNA. All four domains of the right-hand-shaped PaFAN1 are involved in DNA recognition, with each domainmore » playing a specific role in bending DNA at the nick. The six-helix bundle that binds the junction connects to the catalytic viral replication and repair (VRR) nuclease (VRR nuc) domain, enabling FAN1 to incise the scissile phosphate a few bases distant from the junction. The six-helix bundle also inhibits the cleavage of intact Holliday junctions. PaFAN1 shares several conserved features with other flap structure-selective nucleases despite structural differences. A clamping motion of the domains around the wedge helix, which acts as a pivot, facilitates nucleolytic cleavage. The PaFAN1 structure provides insights into how archaeal Holliday junction resolvases evolved to incise 5' flap substrates and how FAN1 integrates with the FA complex to participate in ICL repair.« less
Breaking-Cas-interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes.
Oliveros, Juan C; Franch, Mònica; Tabas-Madrid, Daniel; San-León, David; Montoliu, Lluis; Cubas, Pilar; Pazos, Florencio
2016-07-08
The CRISPR/Cas technology is enabling targeted genome editing in multiple organisms with unprecedented accuracy and specificity by using RNA-guided nucleases. A critical point when planning a CRISPR/Cas experiment is the design of the guide RNA (gRNA), which directs the nuclease and associated machinery to the desired genomic location. This gRNA has to fulfil the requirements of the nuclease and lack homology with other genome sites that could lead to off-target effects. Here we introduce the Breaking-Cas system for the design of gRNAs for CRISPR/Cas experiments, including those based in the Cas9 nuclease as well as others recently introduced. The server has unique features not available in other tools, including the possibility of using all eukaryotic genomes available in ENSEMBL (currently around 700), placing variable PAM sequences at 5' or 3' and setting the guide RNA length and the scores per nucleotides. It can be freely accessed at: http://bioinfogp.cnb.csic.es/tools/breakingcas, and the code is available upon request. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Gene editing tools: state-of-the-art and the road ahead for the model and non-model fishes.
Barman, Hirak Kumar; Rasal, Kiran Dashrath; Chakrapani, Vemulawada; Ninawe, A S; Vengayil, Doyil T; Asrafuzzaman, Syed; Sundaray, Jitendra K; Jayasankar, Pallipuram
2017-10-01
Advancements in the DNA sequencing technologies and computational biology have revolutionized genome/transcriptome sequencing of non-model fishes at an affordable cost. This has led to a paradigm shift with regard to our heightened understandings of structure-functional relationships of genes at a global level, from model animals/fishes to non-model large animals/fishes. Whole genome/transcriptome sequencing technologies were supplemented with the series of discoveries in gene editing tools, which are being used to modify genes at pre-determined positions using programmable nucleases to explore their respective in vivo functions. For a long time, targeted gene disruption experiments were mostly restricted to embryonic stem cells, advances in gene editing technologies such as zinc finger nuclease, transcriptional activator-like effector nucleases and CRISPR (clustered regulatory interspaced short palindromic repeats)/CRISPR-associated nucleases have facilitated targeted genetic modifications beyond stem cells to a wide range of somatic cell lines across species from laboratory animals to farmed animals/fishes. In this review, we discuss use of different gene editing tools and the strategic implications in fish species for basic and applied biology research.
Cold denaturation and 2H2O stabilization of a staphylococcal nuclease mutant.
Antonino, L C; Kautz, R A; Nakano, T; Fox, R O; Fink, A L
1991-01-01
Cold denaturation is now recognized as a general property of proteins but has been observed only under destabilizing conditions, such as moderate denaturant concentration or low pH. By destabilizing the protein using site-directed mutagenesis, we have observed cold denaturation at pH 7.0 in the absence of denaturants in a mutant of staphylococcal nuclease, which we call NCA S28G for a hybrid protein between staphylococcal nuclease and concanavalin A in which there is the point mutation Ser-28----Gly. The temperature of maximum stability (tmax) as determined by circular dichroism (CD) was 18.1 degrees C, and the midpoints of the thermal unfolding transitions (tm) were 0.6 degrees C and 30.0 degrees C. These values may be compared with the tm of 52.5 degrees C for wild-type staphylococcal nuclease, for which no cold denaturation was observed under these conditions. When the stability of the mutant was examined in 2H2O by NMR, CD, or fluorescence, a substantial increase in the amount of folded protein at the tmax was noted as well as a decrease in tmax, reflecting increased stability. PMID:1652762
Chen, Yen-Ting; Hsu, Chiao-Ling; Hou, Shao-Yi
2008-04-15
The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly.
Advances in targeted genome editing.
Perez-Pinera, Pablo; Ousterout, David G; Gersbach, Charles A
2012-08-01
New technologies have recently emerged that enable targeted editing of genomes in diverse systems. This includes precise manipulation of gene sequences in their natural chromosomal context and addition of transgenes to specific genomic loci. This progress has been facilitated by advances in engineering targeted nucleases with programmable, site-specific DNA-binding domains, including zinc finger proteins and transcription activator-like effectors (TALEs). Recent improvements have enhanced nuclease performance, accelerated nuclease assembly, and lowered the cost of genome editing. These advances are driving new approaches to many areas of biotechnology, including biopharmaceutical production, agriculture, creation of transgenic organisms and cell lines, and studies of genome structure, regulation, and function. Genome editing is also being investigated in preclinical and clinical gene therapies for many diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.
Targeted mutagenesis in sea urchin embryos using TALENs.
Hosoi, Sayaka; Sakuma, Tetsushi; Sakamoto, Naoaki; Yamamoto, Takashi
2014-01-01
Genome editing with engineered nucleases such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) has been reported in various animals. We previously described ZFN-mediated targeted mutagenesis and insertion of reporter genes in sea urchin embryos. In this study, we demonstrate that TALENs can induce mutagenesis at specific genomic loci of sea urchin embryos. Injection of TALEN mRNAs targeting the HpEts transcription factor into fertilized eggs resulted in the impairment of skeletogenesis. Sequence analyses of the mutations showed that deletions and/or insertions occurred at the HpEts target site in the TALEN mRNAs-injected embryos. The results suggest that targeted gene disruption using TALENs is feasible in sea urchin embryos. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.
From hacking the human genome to editing organs.
Tobita, Takamasa; Guzman-Lepe, Jorge; Collin de l'Hortet, Alexandra
2015-01-01
In the recent decades, human genome engineering has been one of the major interesting research subjects, essentially because it raises new possibilities for personalized medicine and biotechnologies. With the development of engineered nucleases such as the Zinc Finger Nucleases (ZFNs), the Transcription activator-like effector nucleases (TALENs) and more recently the Clustered Regularly Interspaced short Palindromic Repeats (CRISPR), the field of human genome edition has evolved very rapidly. Every new genetic tool is broadening the scope of applications on human tissues, even before we can completely master each of these tools. In this review, we will present the recent advances regarding human genome edition tools, we will discuss the numerous implications they have in research and medicine, and we will mention the limits and concerns about such technologies.
Development of sequence-specific antimicrobials based on programmable CRISPR-Cas nucleases
Bikard, David; Euler, Chad; Jiang, Wenyan; Nussenzweig, Philip M.; Goldberg, Gregory W.; Duportet, Xavier; Fischetti, Vincent A.; Marraffini, Luciano A.
2014-01-01
Antibiotics target conserved bacterial cellular pathways or growth functions and therefore cannot selectively kill specific members of a complex microbial population. Here, we develop programmable, sequence-specific antimicrobials using the RNA-guided nuclease Cas91, 2 delivered by a bacteriophage. We show that Cas9 re-programmed to target virulence genes kills virulent, but not avirulent, Staphylococcus aureus. Re-programming the nuclease to target antibiotic resistance genes destroys staphylococcal plasmids that harbor antibiotic resistance genes3, 4 and immunizes avirulent staphylococci to prevent the spread of plasmid-borne resistance genes. We also demonstrate the approach in vivo, showing its efficacy against S. aureus in a mouse skin colonization model. This new technology creates opportunities to manipulate complex bacterial populations in a sequence-specific manner. PMID:25282355
[CRISPR/Cas system for genome editing in pluripotent stem cells].
Vasil'eva, E A; Melino, D; Barlev, N A
2015-01-01
Genome editing systems based on site-specific nucleases became very popular for genome editing in modern bioengineering. Human pluripotent stem cells provide a unique platform for genes function study, disease modeling, and drugs testing. Consequently, technology for fast, accurate and well controlled genome manipulation is required. CRISPR/Cas (clustered regularly interspaced short palindromic repeat/CRISPR-associated) system could be employed for these purposes. This system is based on site-specific programmable nuclease Cas9. Numerous advantages of the CRISPR/Cas system and its successful application to human stem cells provide wide opportunities for genome therapy and regeneration medicine. In this publication, we describe and compare the main genome editing systems based on site-specific programmable nucleases and discuss opportunities and perspectives of the CRISPR/Cas system for application to pluripotent stem cells.
To CRISPR and beyond: the evolution of genome editing in stem cells
Chen, Kuang-Yui; Knoepfler, Paul S
2016-01-01
The goal of editing the genomes of stem cells to generate model organisms and cell lines for genetic and biological studies has been pursued for decades. There is also exciting potential for future clinical impact in humans. While recent, rapid advances in targeted nuclease technologies have led to unprecedented accessibility and ease of gene editing, biology has benefited from past directed gene modification via homologous recombination, gene traps and other transgenic methodologies. Here we review the history of genome editing in stem cells (including via zinc finger nucleases, transcription activator-like effector nucleases and CRISPR–Cas9), discuss recent developments leading to the implementation of stem cell gene therapies in clinical trials and consider the prospects for future advances in this rapidly evolving field. PMID:27905217
Customizing the genome as therapy for the β-hemoglobinopathies
Canver, Matthew C.
2016-01-01
Despite nearly complete understanding of the genetics of the β-hemoglobinopathies for several decades, definitive treatment options have lagged behind. Recent developments in technologies for facile manipulation of the genome (zinc finger nucleases, transcription activator-like effector nucleases, or clustered regularly interspaced short palindromic repeats–based nucleases) raise prospects for their clinical application. The use of genome-editing technologies in autologous CD34+ hematopoietic stem and progenitor cells represents a promising therapeutic avenue for the β-globin disorders. Genetic correction strategies relying on the homology-directed repair pathway may repair genetic defects, whereas genetic disruption strategies relying on the nonhomologous end joining pathway may induce compensatory fetal hemoglobin expression. Harnessing the power of genome editing may usher in a second-generation form of gene therapy for the β-globin disorders. PMID:27053533
To CRISPR and beyond: the evolution of genome editing in stem cells.
Chen, Kuang-Yui; Knoepfler, Paul S
2016-12-01
The goal of editing the genomes of stem cells to generate model organisms and cell lines for genetic and biological studies has been pursued for decades. There is also exciting potential for future clinical impact in humans. While recent, rapid advances in targeted nuclease technologies have led to unprecedented accessibility and ease of gene editing, biology has benefited from past directed gene modification via homologous recombination, gene traps and other transgenic methodologies. Here we review the history of genome editing in stem cells (including via zinc finger nucleases, transcription activator-like effector nucleases and CRISPR-Cas9), discuss recent developments leading to the implementation of stem cell gene therapies in clinical trials and consider the prospects for future advances in this rapidly evolving field.
From hacking the human genome to editing organs
Tobita, Takamasa; Guzman-Lepe, Jorge; Collin de l'Hortet, Alexandra
2015-01-01
ABSTRACT In the recent decades, human genome engineering has been one of the major interesting research subjects, essentially because it raises new possibilities for personalized medicine and biotechnologies. With the development of engineered nucleases such as the Zinc Finger Nucleases (ZFNs), the Transcription activator-like effector nucleases (TALENs) and more recently the Clustered Regularly Interspaced short Palindromic Repeats (CRISPR), the field of human genome edition has evolved very rapidly. Every new genetic tool is broadening the scope of applications on human tissues, even before we can completely master each of these tools. In this review, we will present the recent advances regarding human genome edition tools, we will discuss the numerous implications they have in research and medicine, and we will mention the limits and concerns about such technologies PMID:26588350
Ferreira, José G L; Grein-Iankovski, Aline; Oliveira, Marco A S; Simas-Tosin, Fernanda F; Riegel-Vidotti, Izabel C; Orth, Elisa S
2015-04-11
Foreseeing the development of artificial enzymes by sustainable materials engineering, we rationally anchored reactive imidazole groups on gum arabic, a natural biocompatible polymer. The tailored biocatalyst GAIMZ demonstrated catalytic activity (>10(5)-fold) in dephosphorylation reactions with recyclable features and was effective in cleaving plasmid DNA, comprising a potential artificial nuclease.
The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis
Ipsaro, Jonathan J.; Haase, Astrid D.; Knott, Simon R.; Joshua-Tor, Leemor; Hannon, Gregory J.
2012-01-01
PIWI-family proteins and their associated small RNAs (piRNAs) act in an evolutionarily conserved innate immune mechanism that provides an essential protection for germ cell genomes against the activity of mobile genetic elements1. piRNA populations comprise a molecular definition of transposons that permits them to be distinguished from host genes and selectively silenced. piRNAs can be generated in two distinct ways. Primary piRNAs emanate from discrete genomic loci, termed piRNA clusters, and appear to be derived from long, single-stranded precursors2. The biogenesis of primary piRNAs involves at least two nucleolytic steps. An unknown enzyme cleaves piRNA cluster transcripts to generate monophosphorylated piRNA 5' ends. piRNA 3' ends are likely formed by exonucleolytic trimming, after a piRNA precursor is loaded into its PIWI partner1,3. Secondary piRNAs arise during the adaptive ping-pong cycle, with their 5' termini being formed by the activity of PIWIs themselves2,4. A number of proteins have been implicated genetically in primary piRNA biogenesis. One of these, Zucchini, is a member of the phospholipase D family of phosphodiesterases, which includes both phospholipases and nucleases5–7. We have produced a dimeric, soluble fragment of the mouse Zucchini homolog (mZuc/PLD6) and have shown that it possesses single strand-specific nuclease activity. A crystal structure of mZuc at 1.75 Å resolution indicates greater architectural similarity to PLD-family nucleases than to phospholipases. Considered together, our data suggest that the Zucchini proteins act in primary piRNA biogenesis as nucleases, perhaps generating the 5' ends of primary piRNAs. PMID:23064227
van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D.
2015-01-01
The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1–2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand breaks are introduced at random wherever two translocating enzymes form a so-called collision complex following long-range communication between a pair of target sites in inverted (head-to-head) repeat. Paradoxically, structural models for collision suggest that the nuclease domains are too far apart (>30 bp) to dimerise and produce a double-strand DNA break using just two strand-cleavage events. Here, we examined the organisation of different collision complexes and how these lead to nuclease activation. We mapped DNA cleavage when a translocating enzyme collides with a static enzyme bound to its site. By following communication between sites in both head-to-head and head-to-tail orientations, we could show that motor activity leads to activation of the nuclease domains via distant interactions of the helicase or MTase-TRD. Direct nuclease dimerization is not required. To help explain the observed cleavage patterns, we also used exonuclease footprinting to demonstrate that individual Type ISP domains can swing off the DNA. This study lends further support to a model where DNA breaks are generated by multiple random nicks due to mobility of a collision complex with an overall DNA-binding footprint of ∼30 bp. PMID:26507855
Lo, Te-Wen; Pickle, Catherine S; Lin, Steven; Ralston, Edward J; Gurling, Mark; Schartner, Caitlin M; Bian, Qian; Doudna, Jennifer A; Meyer, Barbara J
2013-10-01
Exploitation of custom-designed nucleases to induce DNA double-strand breaks (DSBs) at genomic locations of choice has transformed our ability to edit genomes, regardless of their complexity. DSBs can trigger either error-prone repair pathways that induce random mutations at the break sites or precise homology-directed repair pathways that generate specific insertions or deletions guided by exogenously supplied DNA. Prior editing strategies using site-specific nucleases to modify the Caenorhabditis elegans genome achieved only the heritable disruption of endogenous loci through random mutagenesis by error-prone repair. Here we report highly effective strategies using TALE nucleases and RNA-guided CRISPR/Cas9 nucleases to induce error-prone repair and homology-directed repair to create heritable, precise insertion, deletion, or substitution of specific DNA sequences at targeted endogenous loci. Our robust strategies are effective across nematode species diverged by 300 million years, including necromenic nematodes (Pristionchus pacificus), male/female species (Caenorhabditis species 9), and hermaphroditic species (C. elegans). Thus, genome-editing tools now exist to transform nonmodel nematode species into genetically tractable model organisms. We demonstrate the utility of our broadly applicable genome-editing strategies by creating reagents generally useful to the nematode community and reagents specifically designed to explore the mechanism and evolution of X chromosome dosage compensation. By developing an efficient pipeline involving germline injection of nuclease mRNAs and single-stranded DNA templates, we engineered precise, heritable nucleotide changes both close to and far from DSBs to gain or lose genetic function, to tag proteins made from endogenous genes, and to excise entire loci through targeted FLP-FRT recombination.
Sovová, Tereza; Kerins, Gerard; Demnerová, Kateřina; Ovesná, Jaroslava
2017-01-01
After induced mutagenesis and transgenesis, genome editing is the next step in the development of breeding techniques. Genome editing using site-directed nucleases - including meganucleases, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the CRISPR/Cas9 system - is based on the mechanism of double strand breaks. The nuclease is directed to cleave the DNA at a specific place of the genome which is then repaired by natural repair mechanisms. Changes are introduced during the repair that are either accidental or can be targeted if a DNA template with the desirable sequence is provided. These techniques allow making virtually any change to the genome including specific DNA sequence changes, gene insertion, replacements or deletions with unprecedented precision and specificity while being less laborious and more straightforward compared to traditional breeding techniques or transgenesis. Therefore, the research in this field is developing quickly and, apart from model species, multiple studies have focused on economically important species and agronomically important traits that were the key subjects of this review. In plants, studies have been undertaken on disease resistance, herbicide tolerance, nutrient metabolism and nutritional value. In animals, the studies have mainly focused on disease resistance, meat production and allergenicity of milk. However, none of the promising studies has led to commercialization despite several patent applications. The uncertain legal status of genome-editing methods is one of the reasons for poor commercial development, as it is not clear whether the products would fall under the GMO regulation. We believe this issue should be clarified soon in order to allow promising methods to reach their full potential.
Garate, Zita; Davis, Brian R; Quintana-Bustamante, Oscar; Segovia, Jose C
2013-06-01
Advances in cell and gene therapy are opening up new avenues for regenerative medicine. Because of their acquired pluripotency, human induced pluripotent stem cells (hiPSCs) are a promising source of autologous cells for regenerative medicine. They show unlimited self-renewal while retaining the ability, in principle, to differentiate into any cell type of the human body. Since Yamanaka and colleagues first reported the generation of hiPSCs in 2007, significant efforts have been made to understand the reprogramming process and to generate hiPSCs with potential for clinical use. On the other hand, the development of gene-editing platforms to increase homologous recombination efficiency, namely DNA nucleases (zinc finger nucleases, TAL effector nucleases, and meganucleases), is making the application of locus-specific gene therapy in human cells an achievable goal. The generation of patient-specific hiPSC, together with gene correction by homologous recombination, will potentially allow for their clinical application in the near future. In fact, reports have shown targeted gene correction through DNA-Nucleases in patient-specific hiPSCs. Various technologies have been described to reprogram patient cells and to correct these patient hiPSCs. However, no approach has been clearly more efficient and safer than the others. In addition, there are still significant challenges for the clinical application of these technologies, such as inefficient differentiation protocols, genetic instability resulting from the reprogramming process and hiPSC culture itself, the efficacy and specificity of the engineered DNA nucleases, and the overall homologous recombination efficiency. To summarize advances in the generation of gene corrected patient-specific hiPSCs, this review focuses on the available technological platforms, including their strengths and limitations regarding future therapeutic use of gene-corrected hiPSCs.
Epanchintseva, Anna; Dolodoev, Anton; Grigor'eva, Alina; Chelobanov, Boris; Pyshnyi, Dmitrii; Ryabchikova, Elena; Pyshnaya, Inna
2018-08-31
The ability of gold nanoparticles to bind different substances has resulted in the high interest of researchers determining their usage as a promising carrier of various biological substances including nucleic acids (NAs) for therapeutic applications. Most publications report covalent binding (conjugation) of an NA to spherical AuNPs via the Au-S bond. In this work, we obtained non-covalent associates of different ssDNA, ssRNA and siRNAs with spherical gold nanoparticles (AuNPs) and examined their physico-chemical properties and stability in media mimicking intracellular space (bacterial 'cytosol') and cell culture media (10% FBS in DMEM). The 'cytosol' was obtained from E. coli and possessed nuclease activity. For the first time, we used the phosphoryl guanidine (dimethylimidazolidin-2-imine, Dmi) group for modification of 3'-ends to enhance the stability of ssRNAs and siRNAs against nuclease destruction. Trying to evaluate the material balance, we analyzed the whole nucleotide species obtained after incubation of NA-AuNPs associates in 'cytosol' and FBS and evaluated the degree of NAs destruction, a share of full-size NAs remained on the surface of the AuNPs and in the solution. Native ss- and siRNAs, both free and in composition of non-covalent associates with AuNPs, were less resistant to degrading factors than ssDNA. The introduction of two Dmi-groups into the ssDNA increased its stability in 'cytosol' three times within 2.5 h. Dmi-modified siRNAs in non-covalent associates with AuNPs were two times more stable than unmodified siRNA within 4 h. We showed that non-covalent siRNA-AuNPs associates serve as a kind of storage for full-size NAs and thereby prolong their presence in nuclease-active media. Our study showed that non-covalent binding of siRNAs with a surface of AuNPs provides desorption of both strands, which is necessary for siRNA functioning in living cells, and could be considered as an important way to construct siRNA and ssDNA delivery systems based on AuNPs.
Small Molecule Targeted Recruitment of a Nuclease to RNA.
Costales, Matthew G; Matsumoto, Yasumasa; Velagapudi, Sai Pradeep; Disney, Matthew D
2018-06-06
The choreography between RNA synthesis and degradation is a key determinant in biology. Engineered systems such as CRISPR have been developed to rid a cell of RNAs. Here, we show that a small molecule can recruit a nuclease to a specific transcript, triggering its destruction. A small molecule that selectively binds the oncogenic microRNA(miR)-96 hairpin precursor was appended with a short 2'-5' poly(A) oligonucleotide. The conjugate locally activated endogenous, latent ribonuclease (RNase L), which selectively cleaved the miR-96 precursor in cancer cells in a catalytic and sub-stoichiometric fashion. Silencing miR-96 derepressed pro-apoptotic FOXO1 transcription factor, triggering apoptosis in breast cancer, but not healthy breast, cells. These results demonstrate that small molecules can be programmed to selectively cleave RNA via nuclease recruitment and has broad implications.
Customizing the genome as therapy for the β-hemoglobinopathies.
Canver, Matthew C; Orkin, Stuart H
2016-05-26
Despite nearly complete understanding of the genetics of the β-hemoglobinopathies for several decades, definitive treatment options have lagged behind. Recent developments in technologies for facile manipulation of the genome (zinc finger nucleases, transcription activator-like effector nucleases, or clustered regularly interspaced short palindromic repeats-based nucleases) raise prospects for their clinical application. The use of genome-editing technologies in autologous CD34(+) hematopoietic stem and progenitor cells represents a promising therapeutic avenue for the β-globin disorders. Genetic correction strategies relying on the homology-directed repair pathway may repair genetic defects, whereas genetic disruption strategies relying on the nonhomologous end joining pathway may induce compensatory fetal hemoglobin expression. Harnessing the power of genome editing may usher in a second-generation form of gene therapy for the β-globin disorders. © 2016 by The American Society of Hematology.
RNA-guided transcriptional regulation
Church, George M.; Mali, Prashant G.; Esvelt, Kevin M.
2016-02-23
Methods of modulating expression of a target nucleic acid in a cell are provided including introducing into the cell a first foreign nucleic acid encoding one or more RNAs complementary to DNA, wherein the DNA includes the target nucleic acid, introducing into the cell a second foreign nucleic acid encoding a nuclease-null Cas9 protein that binds to the DNA and is guided by the one or more RNAs, introducing into the cell a third foreign nucleic acid encoding a transcriptional regulator protein or domain, wherein the one or more RNAs, the nuclease-null Cas9 protein, and the transcriptional regulator protein or domain are expressed, wherein the one or more RNAs, the nuclease-null Cas9 protein and the transcriptional regulator protein or domain co-localize to the DNA and wherein the transcriptional regulator protein or domain regulates expression of the target nucleic acid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niyogi, S.K.; Mitra, S.
With precise conditions of digestion with single-strand-specific nucleases, namely, endonuclease S1 of Aspergillus oryzae and exonuclease I of Escherichia coli, nuclease-resistant DNA cores can be obtained reproducibly from single-stranded M13 DNA. The DNA cores are composed almost exclusively of two sizes (60 and 44 nucleotides long). These have high (G + C)-contents relative to that of intact M13 DNA, and arise from restricted regions of the M13 genome. The resistance of these fragments to single-strand-specific nucleases and their nondenaturability strongly suggest the presence of double-stranded segments in these core pieces. That the core pieces are only partially double-stranded is shownmore » by their lack of complete base complementarity and their pattern of elution from hydroxyapatite.« less
Structural characterization of the virulence factor nuclease A from Streptococcus agalactiae
Moon, Andrea F.; Gaudu, Philippe; Pedersen, Lars C.
2014-11-01
The group B pathogen Streptococcus agalactiae commonly populates the human gut and urogenital tract, and is a major cause of infection-based mortality in neonatal infants and in elderly or immunocompromised adults. Nuclease A (GBS_NucA), a secreted DNA/RNA nuclease, serves as a virulence factor for S. agalactiae , facilitating bacterial evasion of the human innate immune response. GBS_NucA efficiently degrades the DNA matrix component of neutrophil extracellular traps (NETs), which attempt to kill and clear invading bacteria during the early stages of infection. In order to better understand the mechanisms of DNA substrate binding and catalysis of GBS_NucA, the high-resolution structuremore » of a catalytically inactive mutant (H148G) was solved by X-ray crystallography. Several mutants on the surface of GBS_NucA which might influence DNA substrate binding and catalysis were generated and evaluated using an imidazole chemical rescue technique. While several of these mutants severely inhibited nuclease activity, two mutants (K146R and Q183A) exhibited significantly increased activity. Lastly, these structural and biochemical studies have greatly increased our understanding of the mechanism of action of GBS_NucA in bacterial virulence and may serve as a foundation for the structure-based drug design of antibacterial compounds targeted to S. agalactiae.« less
Yin, Yufang; Wang, Qian; Xiao, Li; Wang, Fengjiao; Song, Zhuo; Zhou, Cuilan; Liu, Xuan; Xing, Chungen; He, Nongyue; Li, Kai; Feng, Yan; Zhang, Jia
2018-03-01
In the past decades, significant progresses have been achieved in genetic engineering of nucleases. Among the genetically engineered nucleases, zinc finger nucleases, transcription activator-like (TAL) effector nucleases, and CRIPSPR/Cas9 system form a new field of gene editing. The gene editing efficiency or targeting effect and the off-target effect are the two major determinant factors in evaluating the usefulness of a new enzyme. Engineering strategies in improving these gene editing enzymes, particularly in minimizing their off-target effects, are the focus of this paper. Examples of using these genetically engineered enzymes in genome modification are discussed in order to better understand the requirement of engineering efforts in obtaining more powerful and useful gene editing enzymes. In addition, the identification of naturally existed anti-Cas proteins has been employed in minimizing off-target effects. Considering the future application in human gene therapy, optimization of these well recognized gene editing enzymes and exploration of more novel enzymes are both required. Before people find an ideal gene editing system having virtually no off-target effect, technologies used to screen and identify off-target effects are of importance in clinical trials employing gene therapy.
Application of micro-PIV to the study of staphylococci bacteria biofilm dynamics
NASA Astrophysics Data System (ADS)
Sherman, Erica; Moormeier, Derek; Bayles, Kenneth; Wei, Timothy
2014-11-01
Staphylococci bacteria are recognized as the most frequent cause of biofilm-associated infections. A localized staph infection has the potential to enter the bloodstream and lead to serious infections such as endocarditis, pneumonia, or toxic shock syndrome. Changes in flow conditions, such as shear stress, can lead to stable biofilm growth or the dispersion of portions of the biofilm downstream. Exploration of biofilm physiology indicates a link between production of a specific enzyme called nuclease and biofilm architecture -; however the physical impact of this enzyme in directing the location and behavior of biofilm growth remains unclear. This talk investigates the link between sites of nuclease production and the development of biofilm tower structures using the application of micro-PIV and fluorescently labeled bacterial cells producing nuclease. Staphylococcus aureus bacteria were cultured in a BioFlux1000 square microchannel of a 65 by 65 um cross section, and subjected to a steady shear rate of 0.6 dynes. Micro-PIV and nuclease production measurements were taken to quantify the flow over a biofilm tower structure prior and during development. Data were recorded around the structure at a series of two dimensional planes, which when stacked vertically show a two dimensional flow field as a function of tower height.
Nucleosome exclusion from the interspecies-conserved central AT-rich region of the Ars insulator.
Takagi, Haruna; Inai, Yuta; Watanabe, Shun-ichiro; Tatemoto, Sayuri; Yajima, Mamiko; Akasaka, Koji; Yamamoto, Takashi; Sakamoto, Naoaki
2012-01-01
The Ars insulator is a boundary element identified in the upstream region of the arylsulfatase (HpArs) gene in the sea urchin, Hemicentrotus pulcherrimus, and possesses the ability to both block enhancer-promoter communications and protect transgenes from silent chromatin. To understand the molecular mechanism of the Ars insulator, we investigated the correlation between chromatin structure, DNA structure and insulator activity. Nuclease digestion of nuclei isolated from sea urchin embryos revealed the presence of a nuclease-hypersensitive site within the Ars insulator. Analysis of micrococcal nuclease-sensitive sites in the Ars insulator, reconstituted with nucleosomes, showed the exclusion of nucleosomes from the central AT-rich region. Furthermore, the central AT-rich region in naked DNA was sensitive to nucleotide base modification by diethylpyrocarbonate (DEPC). These observations suggest that non-B-DNA structures in the central AT-rich region may inhibit nucleosomal formation, which leads to nuclease hypersensitivity. Furthermore, comparison of nucleotide sequences between the HpArs gene and its ortholog in Strongylocentrotus purpuratus revealed that the central AT-rich region of the Ars insulator is conserved, and this conserved region showed significant enhancer blocking activity. These results suggest that the central AT-rich nucleosome-free region plays an important role in the function of the Ars insulator.
Butler, Nathaniel M.; Baltes, Nicholas J.; Voytas, Daniel F.; Douches, David S.
2016-01-01
Genome editing using sequence-specific nucleases (SSNs) is rapidly being developed for genetic engineering in crop species. The utilization of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated systems (CRISPR/Cas) for inducing double-strand breaks facilitates targeting of virtually any sequence for modification. Targeted mutagenesis via non-homologous end-joining (NHEJ) has been demonstrated extensively as being the preferred DNA repair pathway in plants. However, gene targeting via homologous recombination (HR) remains more elusive but could be a powerful tool for directed DNA repair. To overcome barriers associated with gene targeting, a geminivirus replicon (GVR) was used to deliver SSNs targeting the potato ACETOLACTATE SYNTHASE1 (ALS1) gene and repair templates designed to incorporate herbicide-inhibiting point mutations within the ALS1 locus. Transformed events modified with GVRs held point mutations that were capable of supporting a reduced herbicide susceptibility phenotype, while events transformed with conventional T-DNAs held no detectable mutations and were similar to wild-type. Regeneration of transformed events improved detection of point mutations that supported a stronger reduced herbicide susceptibility phenotype. These results demonstrate the use of geminiviruses for delivering genome editing reagents in plant species, and a novel approach to gene targeting in a vegetatively propagated species. PMID:27493650
Lomate, Purushottam R.; Bonning, Bryony C.
2016-01-01
Stink bugs negatively impact numerous plant species of agricultural and horticultural importance. While efforts to develop effective control measures are underway, the unique digestive physiology of these pests presents a significant hurdle for either protein- or nucleotide-based management options. Here we report the comparative biochemical and proteomic characterization of proteases and nucleases from the gut, salivary gland and saliva of the southern green stink bug, Nezara viridula. The pH optimum for protease activity was acidic (5 to 6) in the gut with the primary proteases being cysteine proteases, and alkaline (8 to 9) in the saliva and salivary gland with the primary proteases being serine proteases. The serine proteases in saliva differ biochemically from trypsin and chymotrypsin, and the cathepsins in the gut and saliva showed distinct properties in inhibitor assays. Nuclease activity (DNase, RNase, dsRNase) was concentrated in the salivary gland and saliva with negligible activity in the gut. The most abundant proteins of the gut (530) and salivary gland (631) identified by proteomic analysis included four gut proteases along with eight proteases and one nuclease from the salivary gland. Understanding of N. viridula digestive physiology will facilitate the design of new strategies for management of this significant pest. PMID:27282882
Structural characterization of the virulence factor nuclease A from Streptococcus agalactiae.
Moon, Andrea F; Gaudu, Philippe; Pedersen, Lars C
2014-11-01
The group B pathogen Streptococcus agalactiae commonly populates the human gut and urogenital tract, and is a major cause of infection-based mortality in neonatal infants and in elderly or immunocompromised adults. Nuclease A (GBS_NucA), a secreted DNA/RNA nuclease, serves as a virulence factor for S. agalactiae, facilitating bacterial evasion of the human innate immune response. GBS_NucA efficiently degrades the DNA matrix component of neutrophil extracellular traps (NETs), which attempt to kill and clear invading bacteria during the early stages of infection. In order to better understand the mechanisms of DNA substrate binding and catalysis of GBS_NucA, the high-resolution structure of a catalytically inactive mutant (H148G) was solved by X-ray crystallography. Several mutants on the surface of GBS_NucA which might influence DNA substrate binding and catalysis were generated and evaluated using an imidazole chemical rescue technique. While several of these mutants severely inhibited nuclease activity, two mutants (K146R and Q183A) exhibited significantly increased activity. These structural and biochemical studies have greatly increased our understanding of the mechanism of action of GBS_NucA in bacterial virulence and may serve as a foundation for the structure-based drug design of antibacterial compounds targeted to S. agalactiae.
Use of Genome Editing Tools to Treat Sickle Cell Disease
Tasan, Ipek; Jain, Surbhi; Zhao, Huimin
2016-01-01
Recent advances in genome editing techniques have made it possible to modify any desired DNA sequence by employing programmable nucleases. These next generation genome-modifying tools are the ideal candidates for therapeutic applications, especially for the treatment of genetic disorders like sickle cell disease (SCD). SCD is an inheritable monogenic disorder which is caused by a point mutation in the β-globin gene. Substantial success has been achieved in the development of supportive therapeutic strategies for SCD but unfortunately there is still a lack of long-term universal cure. The only existing curative treatment is based on allogeneic stem cell transplantation from healthy donors; however, this treatment is applicable to a limited number of patients only. Hence, a universally applicable therapy is highly desirable. In this review we will discuss the three programmable nucleases that are commonly used for genome editing purposes: zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9). We will continue by exemplifying uses of these methods to correct the sickle cell mutation. Additionally, we will present induction of fetal globin expression as an alternative approach to cure sickle cell disease. We will conclude by comparing the three methods and explaining the concerns about their use in therapy. PMID:27250347
Bloom, Kristie; Ely, Abdullah; Mussolino, Claudio; Cathomen, Toni; Arbuthnot, Patrick
2013-01-01
Chronic hepatitis B virus (HBV) infection remains an important global health problem. Stability of the episomal covalently closed circular HBV DNA (cccDNA) is largely responsible for the modest curative efficacy of available therapy. Since licensed anti-HBV drugs have a post-transcriptional mechanism of action, disabling cccDNA is potentially of therapeutic benefit. To develop this approach, we engineered mutagenic transcription activator-like effector nucleases (TALENs) that target four HBV-specific sites within the viral genome. TALENs with cognate sequences in the S or C open-reading frames (ORFs) efficiently disrupted sequences at the intended sites and suppressed markers of viral replication. Following triple transfection of cultured HepG2.2.15 cells under mildly hypothermic conditions, the S TALEN caused targeted mutation in ~35% of cccDNA molecules. Markers of viral replication were also inhibited in vivo in a murine hydrodynamic injection model of HBV replication. HBV target sites within S and C ORFs of the injected HBV DNA were mutated without evidence of toxicity. These findings are the first to demonstrate a targeted nuclease-mediated disruption of HBV cccDNA. Efficacy in vivo also indicates that these engineered nucleases have potential for use in treatment of chronic HBV infection. PMID:23883864
E-TALEN: a web tool to design TALENs for genome engineering.
Heigwer, Florian; Kerr, Grainne; Walther, Nike; Glaeser, Kathrin; Pelz, Oliver; Breinig, Marco; Boutros, Michael
2013-11-01
Use of transcription activator-like effector nucleases (TALENs) is a promising new technique in the field of targeted genome engineering, editing and reverse genetics. Its applications span from introducing knockout mutations to endogenous tagging of proteins and targeted excision repair. Owing to this wide range of possible applications, there is a need for fast and user-friendly TALEN design tools. We developed E-TALEN (http://www.e-talen.org), a web-based tool to design TALENs for experiments of varying scale. E-TALEN enables the design of TALENs against a single target or a large number of target genes. We significantly extended previously published design concepts to consider genomic context and different applications. E-TALEN guides the user through an end-to-end design process of de novo TALEN pairs, which are specific to a certain sequence or genomic locus. Furthermore, E-TALEN offers a functionality to predict targeting and specificity for existing TALENs. Owing to the computational complexity of many of the steps in the design of TALENs, particular emphasis has been put on the implementation of fast yet accurate algorithms. We implemented a user-friendly interface, from the input parameters to the presentation of results. An additional feature of E-TALEN is the in-built sequence and annotation database available for many organisms, including human, mouse, zebrafish, Drosophila and Arabidopsis, which can be extended in the future.
An Efficient Method for Generation of Knockout Human Embryonic Stem Cells Using CRISPR/Cas9 System.
Bohaciakova, Dasa; Renzova, Tereza; Fedorova, Veronika; Barak, Martin; Kunova Bosakova, Michaela; Hampl, Ales; Cajanek, Lukas
2017-11-01
Human embryonic stem cells (hESCs) represent a promising tool to study functions of genes during development, to model diseases, and to even develop therapies when combined with gene editing techniques such as CRISPR/CRISPR-associated protein-9 nuclease (Cas9) system. However, the process of disruption of gene expression by generation of null alleles is often inefficient and tedious. To circumvent these limitations, we developed a simple and efficient protocol to permanently downregulate expression of a gene of interest in hESCs using CRISPR/Cas9. We selected p53 for our proof of concept experiments. The methodology is based on series of hESC transfection, which leads to efficient downregulation of p53 expression even in polyclonal population (p53 Low cells), here proven by a loss of regulation of the expression of p53 target gene, microRNA miR-34a. We demonstrate that our approach achieves over 80% efficiency in generating hESC clonal sublines that do not express p53 protein. Importantly, we document by a set of functional experiments that such genetically modified hESCs do retain typical stem cells characteristics. In summary, we provide a simple and robust protocol to efficiently target expression of gene of interest in hESCs that can be useful for laboratories aiming to employ gene editing in their hESC applications/protocols.
Deficiency of Cholesteryl Ester Transfer Protein Protects Against Atherosclerosis in Rabbits.
Zhang, Jifeng; Niimi, Manabu; Yang, Dongshan; Liang, Jingyan; Xu, Jie; Kimura, Tokuhide; Mathew, Anna V; Guo, Yanhong; Fan, Yanbo; Zhu, Tianqing; Song, Jun; Ackermann, Rose; Koike, Yui; Schwendeman, Anna; Lai, Liangxue; Pennathur, Subramaniam; Garcia-Barrio, Minerva; Fan, Jianglin; Chen, Y Eugene
2017-06-01
CETP (cholesteryl ester transfer protein) plays an important role in lipoprotein metabolism; however, whether inhibition of CETP activity can prevent cardiovascular disease remains controversial. We generated CETP knockout (KO) rabbits by zinc finger nuclease gene editing and compared their susceptibility to cholesterol diet-induced atherosclerosis to that of wild-type (WT) rabbits. On a chow diet, KO rabbits showed higher plasma levels of high-density lipoprotein (HDL) cholesterol than WT controls, and HDL particles of KO rabbits were essentially rich in apolipoprotein AI and apolipoprotein E contents. When challenged with a cholesterol-rich diet for 18 weeks, KO rabbits not only had higher HDL cholesterol levels but also lower total cholesterol levels than WT rabbits. Analysis of plasma lipoproteins revealed that reduced plasma total cholesterol in KO rabbits was attributable to decreased apolipoprotein B-containing particles, while HDLs remained higher than that in WT rabbits. Both aortic and coronary atherosclerosis was significantly reduced in KO rabbits compared with WT rabbits. Apolipoprotein B-depleted plasma isolated from CETP KO rabbits showed significantly higher capacity for cholesterol efflux from macrophages than that from WT rabbits. Furthermore, HDLs isolated from CETP KO rabbits suppressed tumor necrosis factor-α-induced vascular cell adhesion molecule 1 and E-selectin expression in cultured endothelial cells. These results provide evidence that genetic ablation of CETP activity protects against cholesterol diet-induced atherosclerosis in rabbits. © 2017 American Heart Association, Inc.
Highly Efficient Targeted Mutagenesis in Mice Using TALENs
Panda, Sudeepta Kumar; Wefers, Benedikt; Ortiz, Oskar; Floss, Thomas; Schmid, Bettina; Haass, Christian; Wurst, Wolfgang; Kühn, Ralf
2013-01-01
Targeted mouse mutants are instrumental for the analysis of gene function in health and disease. We recently provided proof-of-principle for the fast-track mutagenesis of the mouse genome, using transcription activator-like effector nucleases (TALENs) in one-cell embryos. Here we report a routine procedure for the efficient production of disease-related knockin and knockout mutants, using improved TALEN mRNAs that include a plasmid-coded poly(A) tail (TALEN-95A), circumventing the problematic in vitro polyadenylation step. To knock out the C9orf72 gene as a model of frontotemporal lobar degeneration, TALEN-95A mutagenesis induced sequence deletions in 41% of pups derived from microinjected embryos. Using TALENs together with mutagenic oligodeoxynucleotides, we introduced amyotrophic lateral sclerosis patient-derived missense mutations in the fused in sarcoma (Fus) gene at a rate of 6.8%. For the simple identification of TALEN-induced mutants and their progeny we validate high-resolution melt analysis (HRMA) of PCR products as a sensitive and universal genotyping tool. Furthermore, HRMA of off-target sites in mutant founder mice revealed no evidence for undesired TALEN-mediated processing of related genomic sequences. The combination of TALEN-95A mRNAs for enhanced mutagenesis and of HRMA for simplified genotyping enables the accelerated, routine production of new mouse models for the study of genetic disease mechanisms. PMID:23979585
Endonuclease G promotes mitochondrial genome cleavage and replication
Wiehe, Rahel Stefanie; Gole, Boris; Chatre, Laurent; Walther, Paul; Calzia, Enrico; Ricchetti, Miria; Wiesmüller, Lisa
2018-01-01
Endonuclease G (EndoG) is a nuclear-encoded endonuclease, mostly localised in mitochondria. In the nucleus EndoG participates in site-specific cleavage during replication stress and genome-wide DNA degradation during apoptosis. However, the impact of EndoG on mitochondrial DNA (mtDNA) metabolism is poorly understood. Here, we investigated whether EndoG is involved in the regulation of mtDNA replication and removal of aberrant copies. We applied the single-cell mitochondrial Transcription and Replication Imaging Protocol (mTRIP) and PCR-based strategies on human cells after knockdown/knockout and re-expression of EndoG. Our analysis revealed that EndoG stimulates both mtDNA replication initiation and mtDNA depletion, the two events being interlinked and dependent on EndoG's nuclease activity. Stimulation of mtDNA replication by EndoG was independent of 7S DNA processing at the replication origin. Importantly, both mtDNA-directed activities of EndoG were promoted by oxidative stress. Inhibition of base excision repair (BER) that repairs oxidative stress-induced DNA damage unveiled a pronounced effect of EndoG on mtDNA removal, reminiscent of recently discovered links between EndoG and BER in the nucleus. Altogether with the downstream effects on mitochondrial transcription, protein expression, redox status and morphology, this study demonstrates that removal of damaged mtDNA by EndoG and compensatory replication play a critical role in mitochondria homeostasis. PMID:29719607
Poppe, Daniel; Doerr, Jonas; Schneider, Marion; Wilkens, Ruven; Steinbeck, Julius A; Ladewig, Julia; Tam, Allison; Paschon, David E; Gregory, Philip D; Reik, Andreas; Müller, Christa E; Koch, Philipp; Brüstle, Oliver
2018-06-01
As a powerful regulator of cellular homeostasis and metabolism, adenosine is involved in diverse neurological processes including pain, cognition, and memory. Altered adenosine homeostasis has also been associated with several diseases such as depression, schizophrenia, or epilepsy. Based on its protective properties, adenosine has been considered as a potential therapeutic agent for various brain disorders. Since systemic application of adenosine is hampered by serious side effects such as vasodilatation and cardiac suppression, recent studies aim at improving local delivery by depots, pumps, or cell-based applications. Here, we report on the characterization of adenosine-releasing human embryonic stem cell-derived neuroepithelial stem cells (long-term self-renewing neuroepithelial stem [lt-NES] cells) generated by zinc finger nuclease (ZFN)-mediated knockout of the adenosine kinase (ADK) gene. ADK-deficient lt-NES cells and their differentiated neuronal and astroglial progeny exhibit substantially elevated release of adenosine compared to control cells. Importantly, extensive adenosine release could be triggered by excitation of differentiated neuronal cultures, suggesting a potential activity-dependent regulation of adenosine supply. Thus, ZFN-modified neural stem cells might serve as a useful vehicle for the activity-dependent local therapeutic delivery of adenosine into the central nervous system. Stem Cells Translational Medicine 2018;7:477-486. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Akhter, Shamima; Lam, Yung C; Chang, Sandy; Legerski, Randy J
2010-12-01
Conserved metallo β-Lactamase and β-CASP (CPSF-Artemis-Snm1-Pso2) domain nuclease family member SNM1B/Apollo is a shelterin-associated protein that localizes to telomeres through its interaction with TRF2. To study its in vivo role, we generated a knockout of SNM1B/Apollo in a mouse model. Snm1B/Apollo homozygous null mice die at birth with developmental delay and defects in multiple organ systems. Cell proliferation defects were observed in Snm1B/Apollo mutant mouse embryonic fibroblasts (MEFs) owing to high levels of telomeric end-to-end fusions. Deficiency of the nonhomologous end-joining (NHEJ) factor Ku70, but not p53, rescued the developmental defects and lethality observed in Snm1B/Apollo mutant mice as well as the impaired proliferation of Snm1B/Apollo-deficient MEFs. These findings demonstrate that SNM1B/Apollo is required to protect telomeres against NHEJ-mediated repair, which results in genomic instability and the consequent multi-organ developmental failure. Although Snm1B/Apollo-deficient MEFs exhibited high levels of apoptosis, abrogation of p53-dependent programmed cell death did not rescue the multi-organ developmental failure in the mice. © 2010 The Authors. Aging Cell © 2010 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.
Zebrafish knockout of Down syndrome gene, DYRK1A, shows social impairments relevant to autism.
Kim, Oc-Hee; Cho, Hyun-Ju; Han, Enna; Hong, Ted Inpyo; Ariyasiri, Krishan; Choi, Jung-Hwa; Hwang, Kyu-Seok; Jeong, Yun-Mi; Yang, Se-Yeol; Yu, Kweon; Park, Doo-Sang; Oh, Hyun-Woo; Davis, Erica E; Schwartz, Charles E; Lee, Jeong-Soo; Kim, Hyung-Goo; Kim, Cheol-Hee
2017-01-01
DYRK1A maps to the Down syndrome critical region at 21q22. Mutations in this kinase-encoding gene have been reported to cause microcephaly associated with either intellectual disability or autism in humans. Intellectual disability accompanied by microcephaly was recapitulated in a murine model by overexpressing Dyrk1a which mimicked Down syndrome phenotypes. However, given embryonic lethality in homozygous knockout (KO) mice, no murine model studies could present sufficient evidence to link Dyrk1a dysfunction with autism. To understand the molecular mechanisms underlying microcephaly and autism spectrum disorders (ASD), we established an in vivo dyrk1aa KO model using zebrafish. We identified a patient with a mutation in the DYRK1A gene using microarray analysis. Circumventing the barrier of murine model studies, we generated a dyrk1aa KO zebrafish using transcription activator-like effector nuclease (TALEN)-mediated genome editing. For social behavioral tests, we have established a social interaction test, shoaling assay, and group behavior assay. For molecular analysis, we examined the neuronal activity in specific brain regions of dyrk1aa KO zebrafish through in situ hybridization with various probes including c-fos and crh which are the molecular markers for stress response. Microarray detected an intragenic microdeletion of DYRK1A in an individual with microcephaly and autism. From behavioral tests of social interaction and group behavior, dyrk1aa KO zebrafish exhibited social impairments that reproduce human phenotypes of autism in a vertebrate animal model. Social impairment in dyrk1aa KO zebrafish was further confirmed by molecular analysis of c-fos and crh expression. Transcriptional expression of c-fos and crh was lower than that of wild type fish in specific hypothalamic regions, suggesting that KO fish brains are less activated by social context. In this study, we established a zebrafish model to validate a candidate gene for autism in a vertebrate animal. These results illustrate the functional deficiency of DYRK1A as an underlying disease mechanism for autism. We also propose simple social behavioral assays as a tool for the broader study of autism candidate genes.
Liu, Jingjing; Zhang, Di; Kimata, Jason T.; Zhou, Paul
2014-01-01
CCR5, a coreceptor for HIV-1 entry, is a major target for drug and genetic intervention against HIV-1. Genetic intervention strategies have knocked down CCR5 expression levels by shRNA or disrupted the CCR5 gene using zinc finger nucleases (ZFN) or Transcription activator-like effector nuclease (TALEN). In the present study, we silenced CCR5 via CRISPR associated protein 9 (Cas9) and single guided RNAs (sgRNAs). We constructed lentiviral vectors expressing Cas9 and CCR5 sgRNAs. We show that a single round transduction of lentiviral vectors expressing Cas9 and CCR5 sgRNAs into HIV-1 susceptible human CD4+ cells yields high frequencies of CCR5 gene disruption. CCR5 gene-disrupted cells are not only resistant to R5-tropic HIV-1, including transmitted/founder (T/F) HIV-1 isolates, but also have selective advantage over CCR5 gene-undisrupted cells during R5-tropic HIV-1 infection. Importantly, using T7 endonuclease I assay we did not detect genome mutations at potential off-target sites that are highly homologous to these CCR5 sgRNAs in stably transduced cells even at 84 days post transduction. Thus we conclude that silencing of CCR5 via Cas9 and CCR5-specific sgRNAs could be a viable alternative strategy for engineering resistance against HIV-1. PMID:25541967
Xue, Haipeng; Wu, Jianbo; Li, Shenglan; Rao, Mahendra S; Liu, Ying
2016-01-01
Genetic modification is an indispensable tool to study gene function in normal development and disease. The recent breakthrough of creating human induced pluripotent stem cells (iPSCs) by defined factors (Takahashi et al., Cell 131:861-872, 2007) provides a renewable source of patient autologous cells that not only retain identical genetic information but also give rise to many cell types of the body including neurons and glia. Meanwhile, the rapid advancement of genome modification tools such as gene targeting by homologous recombination (Capecchi, Nat Rev Genet 6:507-512, 2005) and genome editing tools such as CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas (CRISPR-associated) system, TALENs (Transcription activator-like effector nucleases), and ZFNs (Zinc finger nucleases) (Wang et al., Cell 153:910-918, 2013; Mali et al., Science 339:823-826, 2013; Hwang et al., Nat Biotechnol 31:227-229, 2013; Friedland et al., Nat Methods 10(8):741-743, 2013; DiCarlo et al., Nucleic Acids Res 41:4336-4343, 2013; Cong et al., Science 339:819-823, 2013) has greatly accelerated the development of human genome manipulation at the molecular level. This chapter describes the protocols for making neural lineage reporter lines using homologous recombination and the CRISPR/Cas system-mediated genome editing, including construction of targeting vectors, guide RNAs, transfection into hPSCs, and selection and verification of successfully targeted clones. This method can be applied to various needs of hPSC genetic engineering at high efficiency and high reliability.
Kamekura, M; Hamakawa, T; Onishi, H
1982-01-01
RNA was degraded at 60 degrees C for 24 h by halophilic nuclease H in supernatants from broth cultures of Micrococcus varians subsp. halophilus containing 12% NaCl. Since contaminating 5'-nucleotidase exhibited almost no activity under these conditions, the 5'-GMP formed could be recovered from the reaction mixture, and the yield was 805 mg from 5 g of RNA. PMID:6184020
Mung bean nuclease: mode of action and specificity vs synthetic esters of 3′-nucleotides
Kole, R.; Sierakowska, Halina; Szemplińska, Halina; Shugar, D.
1974-01-01
Mung bean nuclease hydrolyzes synthetic esters of 3′-nucleotides to nucleosides and phosphate esters; esters of 2′-nucleotides, and 2′→ 5′ internucleotide linkages, are resistant. Esters of ribonucleotides are cleaved at 100-fold the rate for deoxyribonucleotides, the increased rate being due to presence of the 2′-hydroxyl and not to differences in conformation. Introduction of a 5′-substituent leads to a 3-fold increase in rate. The rates of hydrolysis vary up to 10-fold with the nature of the base, in the order adenine > hypoxanthine > uracil; and up to 6-fold with the nature of the ester radical. This form of cleavage of esters of 3′-nucleotides is also characteristic for nuclease-3′-nucleotidase activities from potato tubers and wheat, suggesting that one type of enzyme is responsible for all these activities. PMID:10793750
megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering.
Boissel, Sandrine; Jarjour, Jordan; Astrakhan, Alexander; Adey, Andrew; Gouble, Agnès; Duchateau, Philippe; Shendure, Jay; Stoddard, Barry L; Certo, Michael T; Baker, David; Scharenberg, Andrew M
2014-02-01
Rare-cleaving endonucleases have emerged as important tools for making targeted genome modifications. While multiple platforms are now available to generate reagents for research applications, each existing platform has significant limitations in one or more of three key properties necessary for therapeutic application: efficiency of cleavage at the desired target site, specificity of cleavage (i.e. rate of cleavage at 'off-target' sites), and efficient/facile means for delivery to desired target cells. Here, we describe the development of a single-chain rare-cleaving nuclease architecture, which we designate 'megaTAL', in which the DNA binding region of a transcription activator-like (TAL) effector is used to 'address' a site-specific meganuclease adjacent to a single desired genomic target site. This architecture allows the generation of extremely active and hyper-specific compact nucleases that are compatible with all current viral and nonviral cell delivery methods.
An antiviral RISC isolated from Tobacco rattle virus-infected plants
Ciomperlik, Jessica J.; Omarov, Rustem T.; Scholthof, Herman B.
2011-01-01
The RNAi model predicts that during antiviral defense a RNA-induced silencing complex (RISC) is programmed with viral short-interfering RNAs (siRNAs) to target the cognate viral RNA for degradation. We show that infection of Nicotiana benthamiana with Tobacco rattle virus (TRV) activates an antiviral nuclease that specifically cleaves TRV RNA in vitro. In agreement with known RISC properties, the nuclease activity was inhibited by NaCl and EDTA and stimulated by divalent metal cations; a novel property was its preferential targeting of elongated RNA molecules. Intriguingly, the specificity of the TRV RISC could be re-programmed by exogenous addition of RNA (containing siRNAs) from plants infected with an unrelated virus, resulting in a newly acquired ability of RISC to target this heterologous genome in vitro. Evidently the virus-specific nuclease complex from N. benthamiana represents a genuine RISC that functions as a readily employable and reprogrammable antiviral defense unit. PMID:21272908
Genome Editing for the Study of Cardiovascular Diseases.
Chadwick, Alexandra C; Musunuru, Kiran
2017-03-01
The opportunities afforded through the recent advent of genome-editing technologies have allowed investigators to more easily study a number of diseases. The advantages and limitations of the most prominent genome-editing technologies are described in this review, along with potential applications specifically focused on cardiovascular diseases. The recent genome-editing tools using programmable nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), have rapidly been adapted to manipulate genes in a variety of cellular and animal models. A number of recent cardiovascular disease-related publications report cases in which specific mutations are introduced into disease models for functional characterization and for testing of therapeutic strategies. Recent advances in genome-editing technologies offer new approaches to understand and treat diseases. Here, we discuss genome editing strategies to easily characterize naturally occurring mutations and offer strategies with potential clinical relevance.
Recombineering: A Homologous Recombination-Based Method of Genetic Engineering
Sharan, Shyam K.; Thomason, Lynn C.; Kuznetsov, Sergey G.; Court, Donald L.
2009-01-01
Recombineering is an efficient method of in vivo genetic engineering applicable to chromosomal as well as episomal replicons in E. coli. This method circumvents the need for most standard in vitro cloning techniques. Recombineering allows construction of DNA molecules with precise junctions without constraints being imposed by restriction enzyme site location. Bacteriophage homologous recombination proteins catalyze these recombineering reactions using double- and single-strand linear DNA substrates, so-called targeting constructs, introduced by electroporation. Gene knockouts, deletions and point mutations are readily made, gene tags can be inserted, and regions of bacterial artificial chromosomes (BACs) or the E. coli genome can be subcloned by gene retrieval using recombineering. Most of these constructs can be made within about a week's time. PMID:19180090
Li, Wen-Jing; Xu, Chang; Wang, Kun; Li, Teng-Yan; Wang, Xiao-Nan; Yang, Hui; Xing, Tiaosi; Li, Wen-Xia; Chen, Yan-Hua; Gao, Hong; Ding, Lei
2018-05-01
As a potential tumor suppressor gene, Claudin-7 (Cldn7), which is a component of tight junctions, may play an important role in colorectal cancer occurrence and development. To generate a knockout mouse model of inducible conditional Cldn7 in the intestine and analyze the phenotype of the mice after induction with tamoxifen. We constructed Cldn7-flox transgenic mice and crossed them with Villin-CreERT2 mice. The Cldn7 inducible conditional knockout mice appeared normal and were well developed at birth. We induced Cldn7 gene deletion by injecting different dosages of tamoxifen into the mice and then conducted a further phenotypic analysis. After induction for 5 days in succession at a dose of 200 µl tamoxifen in sunflower oil at 10 mg/ml per mouse every time, the mice appeared dehydrated, had a lower temperature, and displayed inactivity or death. The results of hematoxylin-eosin staining showed that the intestines of the Cldn7 inducible conditional knockout mice had severe intestinal defects that included epithelial cell sloughing, necrosis, inflammation and hyperplasia. Owing to the death of ICKO mice, we adjusted the dose of tamoxifen to a dose of 100 µl in sunflower oil at 10 mg/ml per mouse (aged more than 8 weeks old) every 4 days. And we could induce atypical hyperplasia and adenoma in the intestine. Immunofluorescent staining indicated that the intestinal epithelial structure was destroyed. Electron microscopy experimental analysis indicated that the intercellular gap along the basolateral membrane of Cldn7 inducible conditional knockout mice in the intestine was increased and that contact between the cells and matrix was loosened. We generated a model of intestinal Cldn7 inducible conditional knockout mice. Intestinal Cldn7 deletion induced by tamoxifen initiated inflammation and hyperplasia in mice.
2013-09-01
further expanded with the exciting 7 development of Tal-effector and CRISPR guided nucleases. Transcription activator-like effector nucleases...also be achieved by the recently developed CRISPR -Cas9 system. CRISPR (Clustered Regulatory Interspaced Short Palindromic Repeats) is widely believed...to be the most efficient method to engineer mammalian genomes. CRISPR RNAs (crRNA) that hybridize to a specific target DNA can be utilized to guide a
Highly efficient Cas9-mediated transcriptional programming
Chavez, Alejandro; Scheiman, Jonathan; Vora, Suhani; ...
2015-03-02
The RNA-guided nuclease Cas9 can be reengineered as a programmable transcription factor. However, modest levels of gene activation have limited potential applications. Here we describe an improved transcriptional regulator through the rational design of a tripartite activator, VP64-p65-Rta (VPR), fused to nuclease-null Cas9. Here, we demonstrate its utility in activating endogenous coding and non-coding genes, targeting several genes simultaneously and stimulating neuronal differentiation of human induced pluripotent stem cells (iPSCs).
[Genome-editing: focus on the off-target effects].
He, Xiubin; Gu, Feng
2017-10-25
Breakthroughs of genome-editing in recent years have paved the way to develop new therapeutic strategies. These genome-editing tools mainly include Zinc-finger nucleases (ZFNs), Transcription activator-like effector nucleases (TALENs), and clustered regulatory interspaced short palindromic repeat (CRISPR)/Cas-based RNA-guided DNA endonucleases. However, off-target effects are still the major issue in genome editing, and limit the application in gene therapy. Here, we summarized the cause and compared different detection methods of off-targets.
Hayashi, Junsuke; Samezawa, Yusuke; Ochi, Yosuke; Wada, Shun-Ichi; Urata, Hidehito
2017-07-15
We synthesized prodrug-type phosphotriester (PTE) oligonucleotides containing the six-membered cyclic disulfide moiety by using phosphoramidite chemistry. Prodrug-type oligonucleotides named "Reducing-Environment-Dependent Uncatalyzed Chemical Transforming (REDUCT) PTE oligonucleotides" were converted into natural oligonucleotides under cytosol-mimetic reductive condition. Furthermore, the REDUCT PTE oligonucleotides were robust to nuclease digestion and exhibited good cell membrane permeability. Copyright © 2017 Elsevier Ltd. All rights reserved.
Linker DNA accessibility in chromatin fibers of different conformations: a reevaluation.
Zlatanova, J; Leuba, S H; Yang, G; Bustamante, C; van Holde, K
1994-01-01
New studies on chromatin fiber morphology, using the technique of scanning force microscopy (SFM), have caused us to reexamine recent analysis of nuclease digestion of chromatin. Chicken erythrocyte chromatin fibers, glutaraldehyde-fixed at 0, 10, and 80 mM NaCl, were imaged with the help of SFM. The chromatin fibers possessed a loose three-dimensional 30-nm structure even in the absence of added salt. This structure slightly condensed upon addition of 10 mM NaCl, and highly compacted, irregularly segmented fibers were observed at 80 mM NaCl. This sheds new light upon our previously reported analysis of the kinetics of digestion by soluble and membrane-immobilized micrococcal nuclease [Leuba, S. H., Zlatanova, J. & van Holde, K. (1994) J. Mol. Biol. 235, 871-880]. While the low-ionic-strength fibers were readily digested, the highly compacted structure formed at 80 mM NaCl was refractory to nuclease attack, implying that the linkers were fully accessible in the low-ionic-strength conformation but not in the condensed fibers. We now find that cleavage of the linker DNA by a small molecule, methidiumpropyl-EDTA-Fe(II), proceeds for all types of conformations at similar rates. Thus, steric hindrance is responsible for the lack of accessibility to micrococcal nuclease in the condensed fiber. Taken in total the data suggest that reexamination of existing models of chromatin conformation is warranted. Images PMID:8202481
Gopalappa, Ramu; Song, Myungjae; Chandrasekaran, Arun Pandian; Das, Soumyadip; Haq, Saba; Koh, Hyun Chul; Ramakrishna, Suresh
2018-05-31
Targeted genome editing by clustered regularly interspaced short palindromic repeats (CRISPR-Cas9) raised concerns over off-target effects. The use of double-nicking strategy using paired Cas9 nickase has been developed to minimize off-target effects. However, it was reported that the efficiency of paired nickases were comparable or lower than that of either corresponding nuclease alone. Recently, we conducted a systematic comparison of the efficiencies of several paired Cas9 with their corresponding Cas9 nucleases and showed that paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption. However, sometimes the designed paired Cas9 nickases exhibited significantly lower mutation frequencies than nucleases, hampering the generation of cells containing paired Cas9 nickase-induced mutations. Here we implemented IRES peptide-conjugation of fluorescent protein to Cas9 nickase and subjected for fluorescence-activated cell sorting. The sorted cell populations are highly enriched with cells containing paired Cas9 nickase-induced mutations, by a factor of up to 40-fold as compared with the unsorted population. Furthermore, gene-disrupted single cell clones using paired nickases followed by FACS sorting strategy were generated highly efficiently, without compromising with its low off-target effects. We envision that our fluorescent protein coupled paired nickase-mediated gene disruption, facilitating efficient and highly specific genome editing in medical research.
Ramírez-Sánchez, Maricruz; Huber, Donald J; Vallejos, Carlos E
2018-03-08
In fleshy fruits, induced programmed cell death (PCD) has been observed in heat-treated tomato, and in ethylene-treated and low-temperature exposure in immature cucumber. No other fleshy fruit has been evaluated for chilling-injury-induced PCD, especially mature fruit with full ripening capacity. The purpose of this research was to identify and evaluate the presence of PCD processes during the development of low-temperature-induced physiopathy of banana fruit. Exposure of fruit to 5 °C for 4 days induced degradative processes similar to those occurring during ripening and overripening of non-chilled fruit. Nuclease from banana peel showed activity in both DNA substrates and RNA substrates. No exclusive low-temperature-induced proteases and nucleases were observed. DNA of chilled peel showed earlier signs of degradation and higher levels of DNA tailing during overripening. This study shows that exposure to low temperatures did not induce a pattern of degradative processes that differed from that occurring during ripening and overripening of non-chilled fruit. DNA showed earlier signs of degradation and higher levels of DNA tailing. Nuclease activity analysis showed bifunctionality in both chilled and non-chilled tissue and no chilling-exclusive protease and nuclease. Fleshy fruit might use their available resources on degradative processes and adjust them depending on environmental conditions. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
CRISPR/Cas9 Mediated Genome Engineering for Improvement of Horticultural Crops
Karkute, Suhas G.; Singh, Achuit K.; Gupta, Om P.; Singh, Prabhakar M.; Singh, Bijendra
2017-01-01
Horticultural crops are an important part of agriculture for food as well as nutritional security. However, several pests and diseases along with adverse abiotic environmental factors pose a severe threat to these crops by affecting their quality and productivity. This warrants the effective and accelerated breeding programs by utilizing innovative biotechnological tools that can tackle aforementioned issues. The recent technique of genome editing by Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated 9 (CRISPR/Cas9) has greatly advanced the breeding for crop improvement due to its simplicity and high efficiency over other nucleases such as Zinc Finger Nucleases and Transcription Activator Like Effector Nucleases. CRISPR/Cas9 tool contains a non-specific Cas9 nuclease and a single guide RNA that directs Cas9 to the specific genomic location creating double-strand breaks and subsequent repair process creates insertion or deletion mutations. This is currently the widely adopted tool for reverse genetics, and crop improvement in large number of agricultural crops. The use of CRISPR/Cas9 in horticultural crops is limited to few crops due to lack of availability of regeneration protocols and sufficient sequence information in many horticultural crops. In this review, the present status of applicability of CRISPR/Cas9 in horticultural crops was discussed along with the challenges and future potential for possible improvement of these crops for their yield, quality, and resistance to biotic and abiotic stress. PMID:28970844
Miyaoka, Yuichiro; Berman, Jennifer R; Cooper, Samantha B; Mayerl, Steven J; Chan, Amanda H; Zhang, Bin; Karlin-Neumann, George A; Conklin, Bruce R
2016-03-31
Precise genome-editing relies on the repair of sequence-specific nuclease-induced DNA nicking or double-strand breaks (DSBs) by homology-directed repair (HDR). However, nonhomologous end-joining (NHEJ), an error-prone repair, acts concurrently, reducing the rate of high-fidelity edits. The identification of genome-editing conditions that favor HDR over NHEJ has been hindered by the lack of a simple method to measure HDR and NHEJ directly and simultaneously at endogenous loci. To overcome this challenge, we developed a novel, rapid, digital PCR-based assay that can simultaneously detect one HDR or NHEJ event out of 1,000 copies of the genome. Using this assay, we systematically monitored genome-editing outcomes of CRISPR-associated protein 9 (Cas9), Cas9 nickases, catalytically dead Cas9 fused to FokI, and transcription activator-like effector nuclease at three disease-associated endogenous gene loci in HEK293T cells, HeLa cells, and human induced pluripotent stem cells. Although it is widely thought that NHEJ generally occurs more often than HDR, we found that more HDR than NHEJ was induced under multiple conditions. Surprisingly, the HDR/NHEJ ratios were highly dependent on gene locus, nuclease platform, and cell type. The new assay system, and our findings based on it, will enable mechanistic studies of genome-editing and help improve genome-editing technology.
Chang, Ann; Khemlani, Adrina; Kang, HaeJoo; Proft, Thomas
2011-03-01
Streptococcus pyogenes nuclease A (SpnA) is a recently discovered DNase that plays a role in virulence as shown in a mouse infection model. SpnA is the only cell wall-anchored DNase found in S. pyogenes thus far and shows a unique protein architecture. The C-terminal nuclease domain contains highly conserved catalytic site and Mg(2+) binding site residues. However, expression of the SpnA nuclease domain alone resulted in a soluble, but enzymatically inactive protein. We found that at least two out of three oligonucleotide/oligosaccharide-binding fold motifs found in the N-terminal domain are required for SpnA activity, probably contributing to substrate binding. Using a combination of a spnA deletion mutant and a Lactococcus lactis'gain-of-function' mutant, we have shown that SpnA promotes survival in whole human blood and in neutrophil killing assays and this is, at least in part, achieved by the destruction of neutrophil extracellular traps (NETs). We observed higher frequencies for anti-SpnA antibodies in streptococcal disease patient sera (79%, n = 19) compared with sera from healthy donors (33%, n = 9) suggesting that SpnA is expressed during infection. Detection of anti-SpnA antibodies in patient serum might be useful for the diagnostic of post-streptococcal diseases, such as acute rheumatic fever or glomerulonephritis. © 2011 Blackwell Publishing Ltd.
Functional Specificity of Extracellular Nucleases of Shewanella oneidensis MR-1
Heun, Magnus; Binnenkade, Lucas; Kreienbaum, Maximilian
2012-01-01
Bacterial species such as Shewanella oneidensis MR-1 require extracellular nucleolytic activity for the utilization of extracellular DNA (eDNA) as a source of nutrients and for the turnover of eDNA as a structural matrix component during biofilm formation. We have previously characterized two extracellular nucleases of S. oneidensis MR-1, ExeM and ExeS. Although both are involved in biofilm formation, they are not specifically required for the utilization of eDNA as a nutrient. Here we identified and characterized EndA, a third extracellular nuclease of Shewanella. The heterologously overproduced and purified protein was highly active and rapidly degraded linear and supercoiled DNAs of various origins. Divalent metal ions (Mg2+ or Mn2+) were required for function. endA is cotranscribed with phoA, an extracellular phosphatase, and is not upregulated upon phosphostarvation. Deletion of endA abolished both extracellular degradation of DNA by S. oneidensis MR-1 and the ability to use eDNA as a sole source of phosphorus. PhoA is not strictly required for the exploitation of eDNA as a nutrient. The activity of EndA prevents the formation of large cell aggregates during planktonic growth. However, in contrast to the findings for ExeM, endA deletion had only minor effects on biofilm formation. The findings strongly suggest that the extracellular nucleases of S. oneidensis exert specific functions required under different conditions. PMID:22492434
CRISPR/Cas9 Mediated Genome Engineering for Improvement of Horticultural Crops.
Karkute, Suhas G; Singh, Achuit K; Gupta, Om P; Singh, Prabhakar M; Singh, Bijendra
2017-01-01
Horticultural crops are an important part of agriculture for food as well as nutritional security. However, several pests and diseases along with adverse abiotic environmental factors pose a severe threat to these crops by affecting their quality and productivity. This warrants the effective and accelerated breeding programs by utilizing innovative biotechnological tools that can tackle aforementioned issues. The recent technique of genome editing by Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated 9 (CRISPR/Cas9) has greatly advanced the breeding for crop improvement due to its simplicity and high efficiency over other nucleases such as Zinc Finger Nucleases and Transcription Activator Like Effector Nucleases. CRISPR/Cas9 tool contains a non-specific Cas9 nuclease and a single guide RNA that directs Cas9 to the specific genomic location creating double-strand breaks and subsequent repair process creates insertion or deletion mutations. This is currently the widely adopted tool for reverse genetics, and crop improvement in large number of agricultural crops. The use of CRISPR/Cas9 in horticultural crops is limited to few crops due to lack of availability of regeneration protocols and sufficient sequence information in many horticultural crops. In this review, the present status of applicability of CRISPR/Cas9 in horticultural crops was discussed along with the challenges and future potential for possible improvement of these crops for their yield, quality, and resistance to biotic and abiotic stress.
Shen, Hongxing; Chen, Keping
2012-04-05
All lepidopteran baculovirus genomes sequenced encode a homolog of the Bombyx mori nucleopolyhedrovirus orf61 gene (Bm61). To determine the role of Bm61 in the baculoviral life cycle, we constructed a Bm61 knockout virus and characterized it in cells. We observed that the Bm61 deletion bacmid led to a defect in production of infectious budded virus (BV). Quantitative PCR analysis of BV in the media culturing the transfected cell indicated that BV was not produced due to Bm61 deletion. Electron microscope analysis showed that in the knockout of Bm61, nucleocapsids were not transported from the nucleus to the cytoplasm. From these results we concluded that BM61 is required in the BV pathway for the egress of nucleocapsids from the nucleus to the cytoplasm. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Gene trap and gene inversion methods for conditional gene inactivation in the mouse
Xin, Hong-Bo; Deng, Ke-Yu; Shui, Bo; Qu, Shimian; Sun, Qi; Lee, Jane; Greene, Kai Su; Wilson, Jason; Yu, Ying; Feldman, Morris; Kotlikoff, Michael I.
2005-01-01
Conditional inactivation of individual genes in mice using site-specific recombinases is an extremely powerful method for determining the complex roles of mammalian genes in developmental and tissue-specific contexts, a major goal of post-genomic research. However, the process of generating mice with recombinase recognition sequences placed at specific locations within a gene, while maintaining a functional allele, is time consuming, expensive and technically challenging. We describe a system that combines gene trap and site-specific DNA inversion to generate mouse embryonic stem (ES) cell clones for the rapid production of conditional knockout mice, and the use of this system in an initial gene trap screen. Gene trapping should allow the selection of thousands of ES cell clones with defined insertions that can be used to generate conditional knockout mice, thereby providing extensive parallelism that eliminates the time-consuming steps of targeting vector construction and homologous recombination for each gene. PMID:15659575
Liu, Meiying; Yuan, Min; Lou, Xinhui; Mao, Hongju; Zheng, Dongmei; Zou, Ruxing; Zou, Nengli; Tang, Xiangrong; Zhao, Jianlong
2011-07-15
We report here an optical approach that enables highly selective and colorimetric single-base mismatch detection without the need of target modification, precise temperature control or stringent washes. The method is based on the finding that nucleoside monophosphates (dNMPs), which are digested elements of DNA, can better stabilize unmodified gold nanoparticles (AuNPs) than single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) with the same base-composition and concentration. The method combines the exceptional mismatch discrimination capability of the structure-selective nucleases with the attractive optical property of AuNPs. Taking S1 nuclease as one example, the perfectly matched 16-base synthetic DNA target was distinctively differentiated from those with single-base mutation located at any position of the 16-base synthetic target. Single-base mutations present in targets with varied length up to 80-base, located either in the middle or near to the end of the targets, were all effectively detected. In order to prove that the method can be potentially used for real clinic samples, the single-base mismatch detections with two HBV genomic DNA samples were conducted. To further prove the generality of this method and potentially overcome the limitation on the detectable lengths of the targets of the S1 nuclease-based method, we also demonstrated the use of a duplex-specific nuclease (DSN) for color reversed single-base mismatch detection. The main limitation of the demonstrated methods is that it is limited to detect mutations in purified ssDNA targets. However, the method coupled with various convenient ssDNA generation and purification techniques, has the potential to be used for the future development of detector-free testing kits in single nucleotide polymorphism screenings for disease diagnostics and treatments. Copyright © 2011 Elsevier B.V. All rights reserved.
Analysis of BmNPV orf101 disruption: orf101 is essential for mediating budded virus production.
Chen, Huiqing; Li, Mei; Mai, Weijun; Tang, Qi; Li, Guohui; Chen, Keping; Zhou, Yajing
2014-12-01
In our previous study, Orf101 (Bm101) of Bombyx mori nucleopolyhedrovirus (BmNPV) was identified as a component of the budded virions important for viral late gene expression. In this study we demonstrate that Bm101 is actually a previously unrecognized core gene and that it is essential for mediating budded virus production. To determine the role of Bm101 in the baculovirus life cycle, a Bm101 knockout bacmid containing the BmNPV genome was generated through homologous recombination in Escherichia coli. Furthermore, a Bm101 repair bacmid was constructed by transposing the Bm101 open reading frame with its native promoter region into the polyhedrin locus of the Bm101 knockout bacmid. Bacmid DNA transfection assay revealed that the Bm101 knockout bacmid was unable to produce the infectious budded virus, while the Bm101 repair bacmid rescued this defect, allowing budded-virus titers to reach wild-type levels. Real time PCR analysis indicated that the viral DNA genome in the absence of Bm101 was unaffected in the first 24 h p.t. Thus, studies of a Bm101-null BACmid indicate that Bm101 is required for viral DNA replication during the infection cycle.
Nanoplasmonic molecular ruler for nuclease activity and DNA footprinting
Chen, Fanqing Frank; Liu, Gang L; Lee, Luke P
2013-10-29
This invention provides a nanoplasmonic molecular ruler, which can perform label-free and real-time monitoring of nucleic acid (e.g., DNA) length changes and perform nucleic acid footprinting. In various embodiments the ruler comprises a nucleic acid attached to a nanoparticle, such that changes in the nucleic acid length are detectable using surface plasmon resonance. The nanoplasmonic ruler provides a fast and convenient platform for mapping nucleic acid-protein interactions, for nuclease activity monitoring, and for other footprinting related methods.
Targeting siRNA Missiles to Her2+ Breast Cancer
2009-06-01
that HerPBK10 protects siRNA from serum nuclease-mediated degradation, T7 transcribed siRNA is more cytotoxic than synthetic siRNA when delivered to...nuclease-mediated degradation, T7 transcribed siRNA is more cytotoxic than synthetic siRNA when delivered to HER2+ breast cancer cells by HerPBK10...produced either synthetically by a commercial vendor (Dharmacon), or from a T7 transcription kit (Ambion), and shRNA, which is reportedly a more effective
Batzir, Nurit Assia; Tovin, Adi; Hendel, Ayal
2017-06-01
Genome editing with engineered nucleases is a rapidly growing field thanks to transformative technologies that allow researchers to precisely alter genomes for numerous applications including basic research, biotechnology, and human gene therapy. The genome editing process relies on creating a site-specific DNA double-strand break (DSB) by engineered nucleases and then allowing the cell's repair machinery to repair the break such that precise changes are made to the DNA sequence. The recent development of CRISPR-Cas systems as easily accessible and programmable tools for genome editing accelerates the progress towards using genome editing as a new approach to human therapeutics. Here we review how genome editing using engineered nucleases works and how using different genome editing outcomes can be used as a tool set for treating human diseases. We then review the major challenges of therapeutic genome editing and we discuss how its potential enhancement through CRISPR guide RNA and Cas9 protein modifications could resolve some of these challenges. Copyright© of YS Medical Media ltd.
Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease
Flowers, G. Parker; Timberlake, Andrew T.; Mclean, Kaitlin C.; Monaghan, James R.; Crews, Craig M.
2014-01-01
Among tetrapods, only urodele salamanders, such as the axolotl Ambystoma mexicanum, can completely regenerate limbs as adults. The mystery of why salamanders, but not other animals, possess this ability has for generations captivated scientists seeking to induce this phenomenon in other vertebrates. Although many recent advances in molecular biology have allowed limb regeneration and tissue repair in the axolotl to be investigated in increasing detail, the molecular toolkit for the study of this process has been limited. Here, we report that the CRISPR-Cas9 RNA-guided nuclease system can efficiently create mutations at targeted sites within the axolotl genome. We identify individual animals treated with RNA-guided nucleases that have mutation frequencies close to 100% at targeted sites. We employ this technique to completely functionally ablate EGFP expression in transgenic animals and recapitulate developmental phenotypes produced by loss of the conserved gene brachyury. Thus, this advance allows a reverse genetic approach in the axolotl and will undoubtedly provide invaluable insight into the mechanisms of salamanders' unique regenerative ability. PMID:24764077
A TALEN genome editing system to generate human stem cell-based disease models
Ding, Qiurong; Lee, Youn-Kyoung; Schaefer, Esperance A. K.; Peters, Derek T.; Veres, Adrian; Kim, Kevin; Kuperwasser, Nicolas; Motola, Daniel L.; Meissner, Torsten B.; Hendriks, William T.; Trevisan, Marta; Gupta, Rajat M.; Moisan, Annie; Banks, Eric; Friesen, Max; Schinzel, Robert T.; Xia, Fang; Tang, Alexander; Xia, Yulei; Figueroa, Emmanuel; Wann, Amy; Ahfeldt, Tim; Daheron, Laurence; Zhang, Feng; Rubin, Lee L.; Peng, Lee F.; Chung, Raymond T.; Musunuru, Kiran; Cowan, Chad A.
2012-01-01
SUMMARY Transcription activator-like effector nucleases (TALENs) are a new class of engineered nucleases that are easier to design to cleave at desired sites in a genome than previous types of nucleases. We report the use of TALENs to rapidly and efficiently generate mutant alleles of 15 genes in cultured somatic cells or human pluripotent stem cells, the latter of which we differentiated both the targeted lines and isogenic control lines into various metabolic cell types. We demonstrate cell-autonomous phenotypes directly linked to disease—dyslipidemia, insulin resistance, hypoglycemia, lipodystrophy, motor neuron death, and hepatitis C infection. We find little evidence of TALEN off-target effects, but each clonal line nevertheless harbors a significant number of unique mutations. Given the speed and ease with which we were able to derive and characterize these cell lines, we anticipate TALEN-mediated genome editing of human cells becoming a mainstay for the investigation of human biology and disease. PMID:23246482
Fanconi anemia gene editing by the CRISPR/Cas9 system.
Osborn, Mark J; Gabriel, Richard; Webber, Beau R; DeFeo, Anthony P; McElroy, Amber N; Jarjour, Jordan; Starker, Colby G; Wagner, John E; Joung, J Keith; Voytas, Daniel F; von Kalle, Christof; Schmidt, Manfred; Blazar, Bruce R; Tolar, Jakub
2015-02-01
Genome engineering with designer nucleases is a rapidly progressing field, and the ability to correct human gene mutations in situ is highly desirable. We employed fibroblasts derived from a patient with Fanconi anemia as a model to test the ability of the clustered regularly interspaced short palindromic repeats/Cas9 nuclease system to mediate gene correction. We show that the Cas9 nuclease and nickase each resulted in gene correction, but the nickase, because of its ability to preferentially mediate homology-directed repair, resulted in a higher frequency of corrected clonal isolates. To assess the off-target effects, we used both a predictive software platform to identify intragenic sequences of homology as well as a genome-wide screen utilizing linear amplification-mediated PCR. We observed no off-target activity and show RNA-guided endonuclease candidate sites that do not possess low sequence complexity function in a highly specific manner. Collectively, we provide proof of principle for precision genome editing in Fanconi anemia, a DNA repair-deficient human disorder.
Dual-reporter surrogate systems for efficient enrichment of genetically modified cells.
Ren, Chonghua; Xu, Kun; Liu, Zhongtian; Shen, Juncen; Han, Furong; Chen, Zhilong; Zhang, Zhiying
2015-07-01
Isolation of genetically modified cells generated by designed nucleases are challenging, since they are often phenotypically indistinguishable from their parental cells. To efficiently enrich genetically modified cells, we developed two dual-reporter surrogate systems, namely NHEJ-RPG and SSA-RPG based on NHEJ and SSA repair mechanisms, respectively. Repair and enrichment efficiencies of these two systems were compared using different nucleases. In both CRISPR-Cas9- and ZFNs-induced DSB repair studies, we found that the efficiency and sensitivity of the SSA-RPG reporter with direct repeat length more than 200 bp were much higher than the NHEJ-RPG reporter. By utilizing the SSA-RPG reporter, we achieved the enrichment for indels in several endogenous loci with 6.3- to 34.8-fold of non-selected cells. Thus, the highly sensitive SSA-RPG reporter can be used for activity validation of designed nucleases and efficient enrichment of genetically modified cells. Besides, our systems offer alternative enrichment choices either by puromycin selection or FACS.
De Sanctis, Veronica; La Terra, Sabrina; Bianchi, Alessandro; Shore, David; Burderi, Luciano; Di Mauro, Ernesto; Negri, Rodolfo
2002-04-26
We have analyzed in detail the structure of RAP1-UAS(RPG) complexes in Saccharomyces cerevisiae cells using multi-hit KMnO(4), UV and micrococcal nuclease high-resolution footprinting. Three copies of the Rap1 protein are bound to the promoter simultaneously in exponentially growing cells, as shown by KMnO(4) multi-hit footprinting analysis, causing extended and diagnostic changes in the DNA structure of the region containing the UAS(RPG). Amino acid starvation does not cause loss of Rap1p from the complex; however, in vivo UV-footprinting reveals the occurrence of structural modifications of the complex. Moreover, low-resolution micrococcal nuclease digestion shows that the chromatin of the entire region is devoid of positioned nucleosomes but is susceptible to changes in accessibility to the nuclease upon amino acid starvation. The implications of these results for the mechanism of Rap1p action are discussed. (c) 2002 Elsevier Science Ltd.
Genome-editing Technologies for Gene and Cell Therapy.
Maeder, Morgan L; Gersbach, Charles A
2016-03-01
Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed.
Genome-editing Technologies for Gene and Cell Therapy
Maeder, Morgan L; Gersbach, Charles A
2016-01-01
Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed. PMID:26755333
Structural insights into 5‧ flap DNA unwinding and incision by the human FAN1 dimer
NASA Astrophysics Data System (ADS)
Zhao, Qi; Xue, Xiaoyu; Longerich, Simonne; Sung, Patrick; Xiong, Yong
2014-12-01
Human FANCD2-associated nuclease 1 (FAN1) is a DNA structure-specific nuclease involved in the processing of DNA interstrand crosslinks (ICLs). FAN1 maintains genomic stability and prevents tissue decline in multiple organs, yet it confers ICL-induced anti-cancer drug resistance in several cancer subtypes. Here we report three crystal structures of human FAN1 in complex with a 5‧ flap DNA substrate, showing that two FAN1 molecules form a head-to-tail dimer to locate the lesion, orient the DNA and unwind a 5‧ flap for subsequent incision. Biochemical experiments further validate our model for FAN1 action, as structure-informed mutations that disrupt protein dimerization, substrate orientation or flap unwinding impair the structure-specific nuclease activity. Our work elucidates essential aspects of FAN1-DNA lesion recognition and a unique mechanism of incision. These structural insights shed light on the cellular mechanisms underlying organ degeneration protection and cancer drug resistance mediated by FAN1.
Therapeutic applications of CRISPR RNA-guided genome editing.
Koo, Taeyoung; Kim, Jin-Soo
2017-01-01
The rapid development of programmable nuclease-based genome editing technologies has enabled targeted gene disruption and correction both in vitro and in vivo This revolution opens up the possibility of precise genome editing at target genomic sites to modulate gene function in animals and plants. Among several programmable nucleases, the type II clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated nuclease 9 (Cas9) system has progressed remarkably in recent years, leading to its widespread use in research, medicine and biotechnology. In particular, CRISPR-Cas9 shows highly efficient gene editing activity for therapeutic purposes in systems ranging from patient stem cells to animal models. However, the development of therapeutic approaches and delivery methods remains a great challenge for biomedical applications. Herein, we review therapeutic applications that use the CRISPR-Cas9 system and discuss the possibilities and challenges ahead. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Nucleic Acid Detection Methods
Smith, Cassandra L.; Yaar, Ron; Szafranski, Przemyslaw; Cantor, Charles R.
1998-05-19
The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3'-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated.
An antiviral RISC isolated from Tobacco rattle virus-infected plants.
Ciomperlik, Jessica J; Omarov, Rustem T; Scholthof, Herman B
2011-03-30
The RNAi model predicts that during antiviral defense a RNA-induced silencing complex (RISC) is programmed with viral short-interfering RNAs (siRNAs) to target the cognate viral RNA for degradation. We show that infection of Nicotiana benthamiana with Tobacco rattle virus (TRV) activates an antiviral nuclease that specifically cleaves TRV RNA in vitro. In agreement with known RISC properties, the nuclease activity was inhibited by NaCl and EDTA and stimulated by divalent metal cations; a novel property was its preferential targeting of elongated RNA molecules. Intriguingly, the specificity of the TRV RISC could be reprogrammed by exogenous addition of RNA (containing siRNAs) from plants infected with an unrelated virus, resulting in a newly acquired ability of RISC to target this heterologous genome in vitro. Evidently the virus-specific nuclease complex from N. benthamiana represents a genuine RISC that functions as a readily employable and reprogrammable antiviral defense unit. Copyright © 2011 Elsevier Inc. All rights reserved.
Applications of Gene Editing Technologies to Cellular Therapies.
Rein, Lindsay A M; Yang, Haeyoon; Chao, Nelson J
2018-03-27
Hematologic malignancies are characterized by genetic heterogeneity, making classic gene therapy with a goal of correcting 1 genetic defect ineffective in many of these diseases. Despite initial tribulations, gene therapy, as a field, has grown by leaps and bounds with the recent development of gene editing techniques including zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat (CRISPR) sequences and CRISPR-associated protein-9 (Cas9) nuclease or CRISPR/Cas9. These novel technologies have been applied to efficiently and specifically modify genetic information in target and effector cells. In particular, CRISPR/Cas9 technology has been applied to various hematologic malignancies and has also been used to modify and improve chimeric antigen receptor-modified T cells for the purpose of providing effective cellular therapies. Although gene editing is in its infancy in malignant hematologic diseases, there is much room for growth and application in the future. Copyright © 2018 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ponnuswamy, Nandhini; Bastings, Maartje M. C.; Nathwani, Bhavik; Ryu, Ju Hee; Chou, Leo Y. T.; Vinther, Mathias; Li, Weiwei Aileen; Anastassacos, Frances M.; Mooney, David J.; Shih, William M.
2017-05-01
DNA nanostructures have evoked great interest as potential therapeutics and diagnostics due to ease and robustness of programming their shapes, site-specific functionalizations and responsive behaviours. However, their utility in biological fluids can be compromised through denaturation induced by physiological salt concentrations and degradation mediated by nucleases. Here we demonstrate that DNA nanostructures coated by oligolysines to 0.5:1 N:P (ratio of nitrogen in lysine to phosphorus in DNA), are stable in low salt and up to tenfold more resistant to DNase I digestion than when uncoated. Higher N:P ratios can lead to aggregation, but this can be circumvented by coating instead with an oligolysine-PEG copolymer, enabling up to a 1,000-fold protection against digestion by serum nucleases. Oligolysine-PEG-stabilized DNA nanostructures survive uptake into endosomal compartments and, in a mouse model, exhibit a modest increase in pharmacokinetic bioavailability. Thus, oligolysine-PEG is a one-step, structure-independent approach that provides low-cost and effective protection of DNA nanostructures for in vivo applications.
Recent Advances in Preclinical Developments Using Adenovirus Hybrid Vectors.
Ehrke-Schulz, Eric; Zhang, Wenli; Gao, Jian; Ehrhardt, Anja
2017-10-01
Adenovirus (Ad)-based vectors are efficient gene-transfer vehicles to deliver foreign DNA into living organisms, offering large cargo capacity and low immunogenicity and genotoxicity. As Ad shows low integration rates of their genomes into host chromosomes, vector-derived gene expression decreases due to continuous cell cycling in regenerating tissues and dividing cell populations. To overcome this hurdle, adenoviral delivery can be combined with mechanisms leading to maintenance of therapeutic DNA and long-term effects of the desired treatment. Several hybrid Ad vectors (AdV) exploiting various strategies for long-term treatment have been developed and characterized. This review summarizes recent developments of preclinical approaches using hybrid AdVs utilizing either the Sleeping Beauty transposase system for somatic integration into host chromosomes or designer nucleases, including transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease for permanent gene editing. Further options on how to optimize these vectors further are discussed, which may lead to future clinical applications of these versatile gene-therapy tools.
Genome Editing for the Study of Cardiovascular Diseases
Chadwick, Alexandra C.
2018-01-01
Purpose of Review The opportunities afforded through the recent advent of genome-editing technologies have allowed investigators to more easily study a number of diseases. The advantages and limitations of the most prominent genome-editing technologies are described in this review, along with potential applications specifically focused on cardiovascular diseases. Recent Findings The recent genome-editing tools using programmable nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), have rapidly been adapted to manipulate genes in a variety of cellular and animal models. A number of recent cardiovascular disease-related publications report cases in which specific mutations are introduced into disease models for functional characterization and for testing of therapeutic strategies. Summary Recent advances in genome-editing technologies offer new approaches to understand and treat diseases. Here, we discuss genome editing strategies to easily characterize naturally occurring mutations and offer strategies with potential clinical relevance. PMID:28220462
Nonenzymatic Role for WRN in Preserving Nascent DNA Strands after Replication Stress
Su, Fengtao; Mukherjee, Shibani; Yang, Yanyong; ...
2014-11-20
WRN, the protein defective in Werner syndrome (WS), is a multifunctional nuclease involved in DNA damage repair, replication, and genome stability maintenance. It was assumed that the nuclease activities of WRN were critical for these functions. Here, we report a nonenzymatic role for WRN in preserving nascent DNA strands following replication stress. We found that lack of WRN led to shortening of nascent DNA strands after replication stress. Furthermore, we discovered that the exonuclease activity of MRE11 was responsible for the shortening of newly replicated DNA in the absence of WRN. Mechanistically, the N-terminal FHA domain of NBS1 recruits WRNmore » to replication-associated DNA double-stranded breaks to stabilize Rad51 and to limit the nuclease activity of its C-terminal binding partner MRE11. Thus, this previously unrecognized nonenzymatic function of WRN in the stabilization of nascent DNA strands sheds light on the molecular reason for the origin of genome instability in WS individuals.« less
Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks
NASA Astrophysics Data System (ADS)
Singleton, Martin R.; Dillingham, Mark S.; Gaudier, Martin; Kowalczykowski, Stephen C.; Wigley, Dale B.
2004-11-01
RecBCD is a multi-functional enzyme complex that processes DNA ends resulting from a double-strand break. RecBCD is a bipolar helicase that splits the duplex into its component strands and digests them until encountering a recombinational hotspot (Chi site). The nuclease activity is then attenuated and RecBCD loads RecA onto the 3' tail of the DNA. Here we present the crystal structure of RecBCD bound to a DNA substrate. In this initiation complex, the DNA duplex has been split across the RecC subunit to create a fork with the separated strands each heading towards different helicase motor subunits. The strands pass along tunnels within the complex, both emerging adjacent to the nuclease domain of RecB. Passage of the 3' tail through one of these tunnels provides a mechanism for the recognition of a Chi sequence by RecC within the context of double-stranded DNA. Gating of this tunnel suggests how nuclease activity might be regulated.
Genome Editing in Mouse Spermatogonial Stem/Progenitor Cells Using Engineered Nucleases
Fanslow, Danielle A.; Wirt, Stacey E.; Barker, Jenny C.; Connelly, Jon P.; Porteus, Matthew H.; Dann, Christina Tenenhaus
2014-01-01
Editing the genome to create specific sequence modifications is a powerful way to study gene function and promises future applicability to gene therapy. Creation of precise modifications requires homologous recombination, a very rare event in most cell types that can be stimulated by introducing a double strand break near the target sequence. One method to create a double strand break in a particular sequence is with a custom designed nuclease. We used engineered nucleases to stimulate homologous recombination to correct a mutant gene in mouse “GS” (germline stem) cells, testicular derived cell cultures containing spermatogonial stem cells and progenitor cells. We demonstrated that gene-corrected cells maintained several properties of spermatogonial stem/progenitor cells including the ability to colonize following testicular transplantation. This proof of concept for genome editing in GS cells impacts both cell therapy and basic research given the potential for GS cells to be propagated in vitro, contribute to the germline in vivo following testicular transplantation or become reprogrammed to pluripotency in vitro. PMID:25409432
Apollo contributes to G overhang maintenance and protects leading-end telomeres.
Wu, Peng; van Overbeek, Megan; Rooney, Sean; de Lange, Titia
2010-08-27
Mammalian telomeres contain a single-stranded 3' overhang that is thought to mediate telomere protection. Here we identify the TRF2-interacting factor Apollo as a nuclease that contributes to the generation/maintenance of this overhang. The function of mouse Apollo was determined using Cre-mediated gene deletion, complementation with Apollo mutants, and the TRF2-F120A mutant that cannot bind Apollo. Cells lacking Apollo activated the ATM kinase at their telomeres in S phase and showed leading-end telomere fusions. These telomere dysfunction phenotypes were accompanied by a reduction in the telomeric overhang signal. The telomeric functions of Apollo required its TRF2-interaction and nuclease motifs. Thus, TRF2 recruits the Apollo nuclease to process telomere ends synthesized by leading-strand DNA synthesis, thereby creating a terminal structure that avoids ATM activation and resists end-joining. These data establish that the telomeric overhang is required for the protection of telomeres from the DNA damage response. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Canver, Matthew C; Lessard, Samuel; Pinello, Luca; Wu, Yuxuan; Ilboudo, Yann; Stern, Emily N; Needleman, Austen J; Galactéros, Frédéric; Brugnara, Carlo; Kutlar, Abdullah; McKenzie, Colin; Reid, Marvin; Chen, Diane D; Das, Partha Pratim; A Cole, Mitchel; Zeng, Jing; Kurita, Ryo; Nakamura, Yukio; Yuan, Guo-Cheng; Lettre, Guillaume; Bauer, Daniel E; Orkin, Stuart H
2017-04-01
Cas9-mediated, high-throughput, saturating in situ mutagenesis permits fine-mapping of function across genomic segments. Disease- and trait-associated variants identified in genome-wide association studies largely cluster at regulatory loci. Here we demonstrate the use of multiple designer nucleases and variant-aware library design to interrogate trait-associated regulatory DNA at high resolution. We developed a computational tool for the creation of saturating-mutagenesis libraries with single or multiple nucleases with incorporation of variants. We applied this methodology to the HBS1L-MYB intergenic region, which is associated with red-blood-cell traits, including fetal hemoglobin levels. This approach identified putative regulatory elements that control MYB expression. Analysis of genomic copy number highlighted potential false-positive regions, thus emphasizing the importance of off-target analysis in the design of saturating-mutagenesis experiments. Together, these data establish a widely applicable high-throughput and high-resolution methodology to identify minimal functional sequences within large disease- and trait-associated regions.
Three-dimensional organization of block copolymers on "DNA-minimal" scaffolds.
McLaughlin, Christopher K; Hamblin, Graham D; Hänni, Kevin D; Conway, Justin W; Nayak, Manoj K; Carneiro, Karina M M; Bazzi, Hassan S; Sleiman, Hanadi F
2012-03-07
Here, we introduce a 3D-DNA construction method that assembles a minimum number of DNA strands in quantitative yield, to give a scaffold with a large number of single-stranded arms. This DNA frame is used as a core structure to organize other functional materials in 3D as the shell. We use the ring-opening metathesis polymerization (ROMP) to generate block copolymers that are covalently attached to DNA strands. Site-specific hybridization of these DNA-polymer chains on the single-stranded arms of the 3D-DNA scaffold gives efficient access to DNA-block copolymer cages. These biohybrid cages possess polymer chains that are programmably positioned in three dimensions on a DNA core and display increased nuclease resistance as compared to unfunctionalized DNA cages. © 2012 American Chemical Society
Miller, G W; Wang, Y M; Gainetdinov, R R; Caron, M G
2001-01-01
One of the most valuable methods for understanding the function of a particular protein is the generation of animals that have had the gene encoding for the protein of interest disrupted, commonly known as a "quo;knockout"quo; or null mutant. By incorporating a sequence of DNA (typically encoding antibiotic resistance to aid in the selection of the mutant gene) into embryonic stem cells by homologous recombination, the normal transcription of the gene is effectively blocked (Fig. 1). Since a particular protein is encoded by two copies of a gene, it is necessary to have the gene on both alleles "quo;knocked out."quo; This is performed by cross-breeding animals with one affected allele (heterozygote) to generate offspring that have inherited two mutant alleles (homozygote). This procedure has been used to generate animals lacking either the plasma membrane dopamine transporter (DAT; Fig. 2) or the vesicular monoamine transporter (VMAT2; Fig. 3). Both DAT and VMAT2 are essential for dopamine homeostasis and are thought to participate in the pathogenesis of Parkinson's disease (1-5). Fig. 1. Maps of the targeting vector and the mock construct. The mouse genomic fragment (clone 11) was isolated from a Stratagene 129 SvJ library by standard colony hybridization using a PCR probe from the 5' end of rat cDNA. The restriction site abbreviations are as follows: H, HindIII; N, NotI; Sc, SacI; Sn, SnaI; X, XbaI; and Xh, XhoI. The region between HindIII and SnaI on clone 11 containing the coding sequence from transmembrane domains 3 and 4 of VMAT2 was deleted and replaced with PGK-neo. The 3' fragment of clone 11 was reserved as an external probe for Southern analysis. To facilitate PCR screening of embryonic stem cell clones, a mock construct containing the SnaI/XbaI fragment and part of the Neo cassette was generated as a positive control. pPNT and pGEM4Z were used to construct knockout and mock vectors, respectively. (Reproduced with permission from ref. 1). Fig. 2. DAT and VMAT2 expression in wild-type and DAT knockout midbrain. DAT immunoreactivity in wild-type (A) and DAT knockout midbrain (B). VMAT2 immunoreactivity in wild-type (C) and DAT knockout midbrain (D). Robust immunoreactivity was observed in the ventral tegmental area and substantia nigra pars compacta and reticulata in the wild-type brain. Note absence of DAT immunoreactivity and modest reduction of VMAT2 immunoreactivity in the DAT knockout. Fig. 3. Characterization of VMAT2 gene disruption. (A) Southern blot analysis of mouse genomic DNA. The Southern blot was prepared with 15 μg of genomic DNA per lane and probed with a 1.4-kb 3' external genomic fragment. +/+, wild type littermates; +/-, heterozygote; -/-, homozygote. (B) RT-PCR analysis of mouse brain poly(A)+ RNA. For each reverse transcription assay, 0.5 μg of poly(A)+ RNA was used. Equal volumes of cDNA templates were used for each PCR assay. The PCR primers used flank the neomycin cassette for the purpose of detecting potential readthrough of the neomycin DNA. The heterozygote has a reduced amount of transcripts compared with the wild-type littermate; the homozygote is devoid of VMAT2 transcripts. G3PDH was used as internal control. (C) Western blot analysis of wholebrain synaptic vesicles. Samples (25 μg) of vesicles were solubilized and separated by SDS-PAGE, transferred to nitrocellulose, subjected to Western blot analysis with anti-VMAT2-Ct (top) or anti-a-tubulin (bottom) antibodies, and developed with chemiluminescence. Molecular mass markers (kDa) are shown to the left. To confirm equal loading and transfer of proteins, the blots were stripped and reprobed with an antibody to α-tubulin. (Reproduced with permission from ref. 1). The importance of DAT in neuronal function is highlighted in animals in which DAT has been genetically deleted (DAT KO) (3). In the homozygote DAT KO mice, released dopamine remains in the extracellular space up to 300 times longer than normal. As expected, these animals display behaviors consistent with persistent activation of dopamine receptors, such as hyperlocomotion. Genetic deletion of VMAT2 reveals the essential role of vesicular storage and release of monoamines. Homozygote VMAT2 knockout mice survive for only a few days, whereas heterozygotes appear normal. Studies performed in homozygote pups and heterozygote adults clearly show that the level of VMAT2 expression calibrates the level of vesicular filling (1,2,bi4). With only 50% of normal VMAT2, heterozygote animals have reduced vesicular filling and release. These alterations in presynaptic monoamine function in the heterozygotes are thought to be responsible for the observed sensitization to the psychostimulants cocaine and amphetamine and to ethanol (1). Knockout animals also appear to parallel the changes that occur in reserpinized animals, suggesting that the adverse actions of this drug are mediated by VMAT2.
Cancer translocations in human cells induced by zinc finger and TALE nucleases
Piganeau, Marion; Ghezraoui, Hind; De Cian, Anne; Guittat, Lionel; Tomishima, Mark; Perrouault, Loic; René, Oliver; Katibah, George E.; Zhang, Lei; Holmes, Michael C.; Doyon, Yannick; Concordet, Jean-Paul; Giovannangeli, Carine; Jasin, Maria; Brunet, Erika
2013-01-01
Chromosomal translocations are signatures of numerous cancers and lead to expression of fusion genes that act as oncogenes. The wealth of genomic aberrations found in cancer, however, makes it challenging to assign a specific phenotypic change to a specific aberration. In this study, we set out to use genome editing with zinc finger (ZFN) and transcription activator-like effector (TALEN) nucleases to engineer, de novo, translocation-associated oncogenes at cognate endogenous loci in human cells. Using ZFNs and TALENs designed to cut precisely at relevant translocation breakpoints, we induced cancer-relevant t(11;22)(q24;q12) and t(2;5)(p23;q35) translocations found in Ewing sarcoma and anaplastic large cell lymphoma (ALCL), respectively. We recovered both translocations with high efficiency, resulting in the expression of the EWSR1–FLI1 and NPM1–ALK fusions. Breakpoint junctions recovered after ZFN cleavage in human embryonic stem (ES) cell–derived mesenchymal precursor cells fully recapitulated the genomic characteristics found in tumor cells from Ewing sarcoma patients. This approach with tailored nucleases demonstrates that expression of fusion genes found in cancer cells can be induced from the native promoter, allowing interrogation of both the underlying mechanisms and oncogenic consequences of tumor-related translocations in human cells. With an analogous strategy, the ALCL translocation was reverted in a patient cell line to restore the integrity of the two participating chromosomes, further expanding the repertoire of genomic rearrangements that can be engineered by tailored nucleases. PMID:23568838
Nagata, Mariko; Yamagami, Takeshi; Ogino, Hiromi; Simons, Jan-Robert; Kanai, Tamotsu; Atomi, Haruyuki
2017-01-01
Abstract The archaeal minichromosome maintenance (MCM) has DNA helicase activity, which is stimulated by GINS in several archaea. In the eukaryotic replicative helicase complex, Cdc45 forms a complex with MCM and GINS, named as CMG (Cdc45-MCM-GINS). Cdc45 shares sequence similarity with bacterial RecJ. A Cdc45/RecJ-like protein from Thermococcus kodakarensis shows a bacterial RecJ-like exonuclease activity, which is stimulated by GINS in vitro. Therefore, this archaeal Cdc45/RecJ is designated as GAN, from GINS-associated nuclease. In this study, we identified the CMG-like complex in T. kodakarensis cells. The GAN·GINS complex stimulated the MCM helicase, but MCM did not affect the nuclease activity of GAN in vitro. The gene disruption analysis showed that GAN was non-essential for its viability but the Δgan mutant did not grow at 93°C. Furthermore, the Δgan mutant showed a clear retardation in growth as compared with the parent cells under optimal conditions at 85°C. These deficiencies were recovered by introducing the gan gene encoding the nuclease deficient GAN protein back to the genome. These results suggest that the replicative helicase complex without GAN may become unstable and ineffective in replication fork progression. The nuclease activity of GAN is not related to the growth defects of the Δgan mutant cells. PMID:28977567
Begic, Sanela; Worobec, Elizabeth A
2008-02-01
Serratia marcescens is a prominent opportunistic nosocomial pathogen resistant to several classes of antibiotics. The major mechanism for fluoroquinolone resistance in various Gram-negative pathogens is active efflux. Our group previously identified SdeAB, a resistance-nodulation-cell division (RND) efflux pump complex, and a TolC-like outer-membrane protein (HasF), which together mediate energy-dependent fluoroquinolone efflux. In addition, a regulatory protein-encoding gene in the upstream region of sdeAB was identified (sdeR) and found to be 40 % homologous to MarA, an Escherichia coli transcriptional regulator. To provide conclusive evidence as to the role of these components in S. marcescens, sdeB, hasF and sdeR deletion mutants were constructed. Suicide vectors were created and introduced via triparental mating into S. marcescens UOC-67 (wild-type) and, for sdeB and hasF, T-861 (clinical isolate). We have analysed these genetically altered strains using minimal inhibitory concentration (MIC) assays for a wide range of compounds (fluoroquinolones, SDS, novobiocin, ethidium bromide and chloramphenicol). Intracellular accumulation of a variety of fluoroquinolones was measured fluorospectroscopically. The sdeB, hasF and sdeR knockout strains were consistently more susceptible to antibiotics than the parent strains, with the sdeB/hasF double knockout strain showing the highest susceptibility. A marked increase in fluoroquinolone (ciprofloxacin) accumulation was observed for strains deficient in either the sdeB or hasF genes when compared to the parental strains, with the highest ciprofloxacin accumulation observed for the sdeB/hasF double knockout. Antibiotic accumulation assays for the sdeB knockout mutant strains performed in the presence of carbonyl cyanide m-chlorophenylhydrazone (CCCP), a proton-motive-force inhibitor, demonstrated that SdeAB-mediated efflux is proton-motive-force dependent. Due to the comparable susceptibility of the sdeB and the hasF individual knockouts, we conclude that S. marcescens HasF is the sole outer-membrane component of the SdeAB pump. In addition, MIC data for sdeR-deficient and overexpressing strains confirm that SdeR is an activator of sdeAB and acts to enhance the overall multidrug resistance of S. marcescens.
[Tale nucleases--new tool for genome editing].
Glazkova, D V; Shipulin, G A
2014-01-01
The ability to introduce targeted changes in the genome of living cells or entire organisms enables researchers to meet the challenges of basic life sciences, biotechnology and medicine. Knockdown of target genes in the zygotes gives the opportunity to investigate the functions of these genes in different organisms. Replacement of single nucleotide in the DNA sequence allows to correct mutations in genes and thus to cure hereditary diseases. Adding transgene to specific genomic.loci can be used in biotechnology for generation of organisms with certain properties or cell lines for biopharmaceutical production. Such manipulations of gene sequences in their natural chromosomal context became possible after the emergence of the technology called "genome editing". This technology is based on the induction of a double-strand break in a specific genomic target DNA using endonucleases that recognize the unique sequences in the genome and on subsequent recovery of DNA integrity through the use of cellular repair mechanisms. A necessary tool for the genome editing is a custom-designed endonuclease which is able to recognize selected sequences. The emergence of a new type of programmable endonucleases, which were constructed on the basis of bacterial proteins--TAL-effectors (Transcription activators like effector), has become an important stage in the development of technology and promoted wide spread of the genome editing. This article reviews the history of the discovery of TAL effectors and creation of TALE nucleases, and describes their advantages over zinc finger endonucleases that appeared earlier. A large section is devoted to description of genetic modifications that can be performed using the genome editing.
Wu, Yong; Gao, Tieli; Wang, Xiaolin; Hu, Youjin; Hu, Xuyun; Hu, Zhiqing; Pang, Jialun; Li, Zhuo; Xue, Jinfeng; Feng, Mai; Wu, Lingqian; Liang, Desheng
2014-03-28
Although targeted gene addition could be stimulated strikingly by a DNA double strand break (DSB) created by either zinc finger nucleases (ZFNs) or TALE nucleases (TALENs), the DSBs are really mutagenic and toxic to human cells. As a compromised solution, DNA single-strand break (SSB) or nick has been reported to mediate high efficient gene addition but with marked reduction of random mutagenesis. We previously demonstrated effective targeted gene addition at the human multicopy ribosomal DNA (rDNA) locus, a genomic safe harbor for the transgene with therapeutic potential. To improve the transgene integration efficiency by using TALENs while lowering the cytotoxicity of DSBs, we created both TALENs and TALE nickases (TALENickases) targeting this multicopy locus. A targeting vector which could integrate a GFP cassette at the rDNA locus was constructed and co-transfected with TALENs or TALENickases. Although the fraction of GFP positive cells using TALENs was greater than that using TALENickases during the first few days after transfection, it reduced to a level less than that using TALENickases after continuous culture. Our findings showed that the TALENickases were more effective than their TALEN counterparts at the multi-copy rDNA locus, though earlier studies using ZFNs and ZFNickases targeting the single-copy loci showed the reverse. Besides, TALENickases mediated the targeted integration of a 5.4 kb fragment at a frequency of up to 0.62% in HT1080 cells after drug selection, suggesting their potential application in targeted gene modification not being limited at the rDNA locus. Copyright © 2014 Elsevier Inc. All rights reserved.
Park, Jin Hwan; Lee, Kwang Ho; Kim, Tae Yong; Lee, Sang Yup
2007-01-01
The l-valine production strain of Escherichia coli was constructed by rational metabolic engineering and stepwise improvement based on transcriptome analysis and gene knockout simulation of the in silico genome-scale metabolic network. Feedback inhibition of acetohydroxy acid synthase isoenzyme III by l-valine was removed by site-directed mutagenesis, and the native promoter containing the transcriptional attenuator leader regions of the ilvGMEDA and ilvBN operon was replaced with the tac promoter. The ilvA, leuA, and panB genes were deleted to make more precursors available for l-valine biosynthesis. This engineered Val strain harboring a plasmid overexpressing the ilvBN genes produced 1.31 g/liter l-valine. Comparative transcriptome profiling was performed during batch fermentation of the engineered and control strains. Among the down-regulated genes, the lrp and ygaZH genes, which encode a global regulator Lrp and l-valine exporter, respectively, were overexpressed. Amplification of the lrp, ygaZH, and lrp-ygaZH genes led to the enhanced production of l-valine by 21.6%, 47.1%, and 113%, respectively. Further improvement was achieved by using in silico gene knockout simulation, which identified the aceF, mdh, and pfkA genes as knockout targets. The VAMF strain (Val ΔaceF Δmdh ΔpfkA) overexpressing the ilvBN, ilvCED, ygaZH, and lrp genes was able to produce 7.55 g/liter l-valine from 20 g/liter glucose in batch culture, resulting in a high yield of 0.378 g of l-valine per gram of glucose. These results suggest that an industrially competitive strain can be efficiently developed by metabolic engineering based on combined rational modification, transcriptome profiling, and systems-level in silico analysis. PMID:17463081
Recent Advances in Genome Editing Using CRISPR/Cas9.
Ding, Yuduan; Li, Hong; Chen, Ling-Ling; Xie, Kabin
2016-01-01
The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) system is a versatile tool for genome engineering that uses a guide RNA (gRNA) to target Cas9 to a specific sequence. This simple RNA-guided genome-editing technology has become a revolutionary tool in biology and has many innovative applications in different fields. In this review, we briefly introduce the Cas9-mediated genome-editing method, summarize the recent advances in CRISPR/Cas9 technology, and discuss their implications for plant research. To date, targeted gene knockout using the Cas9/gRNA system has been established in many plant species, and the targeting efficiency and capacity of Cas9 has been improved by optimizing its expression and that of its gRNA. The CRISPR/Cas9 system can also be used for sequence-specific mutagenesis/integration and transcriptional control of target genes. We also discuss off-target effects and the constraint that the protospacer-adjacent motif (PAM) puts on CRISPR/Cas9 genome engineering. To address these problems, a number of bioinformatic tools are available to help design specific gRNAs, and new Cas9 variants and orthologs with high fidelity and alternative PAM specificities have been engineered. Owing to these recent efforts, the CRISPR/Cas9 system is becoming a revolutionary and flexible tool for genome engineering. Adoption of the CRISPR/Cas9 technology in plant research would enable the investigation of plant biology at an unprecedented depth and create innovative applications in precise crop breeding.
Abbotts, Rachel; Jewell, Rosalyn; Nsengimana, Jérémie; Maloney, David J; Simeonov, Anton; Seedhouse, Claire; Elliott, Faye; Laye, Jon; Walker, Christy; Jadhav, Ajit; Grabowska, Anna; Ball, Graham; Patel, Poulam M; Newton-Bishop, Julia; Wilson, David M; Madhusudan, Srinivasan
2014-05-30
Phosphatase and tensin homolog (PTEN) loss is associated with genomic instability. APE1 is a key player in DNA base excision repair (BER) and an emerging drug target in cancer. We have developed small molecule inhibitors against APE1 repair nuclease activity. In the current study we explored a synthetic lethal relationship between PTEN and APE1 in melanoma. Clinicopathological significance of PTEN mRNA and APE1 mRNA expression was investigated in 191 human melanomas. Preclinically, PTEN-deficient BRAF-mutated (UACC62, HT144, and SKMel28), PTEN-proficient BRAF-wildtype (MeWo), and doxycycline-inducible PTEN-knockout BRAF-wildtype MeWo melanoma cells were DNA repair expression profiled and investigated for synthetic lethality using a panel of four prototypical APE1 inhibitors. In human tumours, low PTEN mRNA and high APE1 mRNA was significantly associated with reduced relapse free and overall survival. Pre-clinically, compared to PTEN-proficient cells, PTEN-deficient cells displayed impaired expression of genes involved in DNA double strand break (DSB) repair. Synthetic lethality in PTEN-deficient cells was evidenced by increased sensitivity, accumulation of DSBs and induction of apoptosis following treatment with APE1 inhibitors. We conclude that PTEN deficiency is not only a promising biomarker in melanoma, but can also be targeted by a synthetic lethality strategy using inhibitors of BER, such as those targeting APE1.
Rapid Assembly of Customized TALENs into Multiple Delivery Systems
Zhang, Zhengxing; Zhang, Siliang; Huang, Xin; Orwig, Kyle E.; Sheng, Yi
2013-01-01
Transcriptional activator-like effector nucleases (TALENs) have become a powerful tool for genome editing. Here we present an efficient TALEN assembly approach in which TALENs are assembled by direct Golden Gate ligation into Gateway® Entry vectors from a repeat variable di-residue (RVD) plasmid array. We constructed TALEN pairs targeted to mouse Ddx3 subfamily genes, and demonstrated that our modified TALEN assembly approach efficiently generates accurate TALEN moieties that effectively introduce mutations into target genes. We generated “user friendly” TALEN Entry vectors containing TALEN expression cassettes with fluorescent reporter genes that can be efficiently transferred via Gateway (LR) recombination into different delivery systems. We demonstrated that the TALEN Entry vectors can be easily transferred to an adenoviral delivery system to expand application to cells that are difficult to transfect. Since TALENs work in pairs, we also generated a TALEN Entry vector set that combines a TALEN pair into one PiggyBac transposon-based destination vector. The approach described here can also be modified for construction of TALE transcriptional activators, repressors or other functional domains. PMID:24244669
A magic bullet to specifically eliminate mutated mitochondrial genomes from patients' cells
Moraes, Carlos T
2014-01-01
When mitochondrial diseases result from mutations found in the mitochondrial DNA, engineered mitochondrial-targeted nucleases such as mitochondrial-targeted zinc finger nucleases are shown to specifically eliminate the mutated molecules, leaving the wild-type mitochondrial DNA intact to replicate and restore normal copy number. In this issue, Gammage and colleagues successfully apply this improved technology on patients' cells with two types of genetic alterations responsible for neuropathy ataxia and retinitis pigmentosa (NARP) syndrome and Kearns Sayre syndrome and progressive external ophthalmoplegia (PEO). PMID:24623377
Nowrousian, Minou; Cebula, Patricia
2005-11-03
The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies called perithecia that protect the developing ascospores and ensure their proper discharge. In previous microarray analyses, several genes have been identified that are downregulated in sterile mutants compared to the wild type. Among these genes was tap1 (transcript associated with perithecial development), a gene encoding a putative lectin homolog. Analysis of tap1 transcript levels in the wild type under conditions allowing only vegetative growth compared to conditions that lead to fruiting body development showed that tap1 is not only downregulated in developmental mutants but is also upregulated in the wild type during fruiting body development. We have cloned and sequenced a 3.2 kb fragment of genomic DNA containing the tap1 open reading frame and adjoining sequences. The genomic region comprising tap1 is syntenic to its homologous region in the closely related filamentous fungus Neurospora crassa. To determine whether tap1 is involved in fruiting body development in S. macrospora, a knockout construct was generated in which the tap1 open reading frame was replaced by the hygromycin B resistance gene hph under the control of fungal regulatory regions. Transformation of the S. macrospora wild type with this construct resulted in a tap1 deletion strain where tap1 had been replaced by the hph cassette. The knockout strain displayed no phenotypic differences under conditions of vegetative growth and sexual development when compared to the wild type. Double mutants carrying the Deltatap1 allele in several developmental mutant backgrounds were phenotypically similar to the corresponding developmental mutant strains. The tap1 transcript is strongly upregulated during sexual development in S. macrospora; however, analysis of a tap1 knockout strain shows that tap1 is not essential for fruiting body formation in S. macrospora.
Nowrousian, Minou; Cebula, Patricia
2005-01-01
Background The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies called perithecia that protect the developing ascospores and ensure their proper discharge. In previous microarray analyses, several genes have been identified that are downregulated in sterile mutants compared to the wild type. Among these genes was tap1 (transcript associated with perithecial development), a gene encoding a putative lectin homolog. Results Analysis of tap1 transcript levels in the wild type under conditions allowing only vegetative growth compared to conditions that lead to fruiting body development showed that tap1 is not only downregulated in developmental mutants but is also upregulated in the wild type during fruiting body development. We have cloned and sequenced a 3.2 kb fragment of genomic DNA containing the tap1 open reading frame and adjoining sequences. The genomic region comprising tap1 is syntenic to its homologous region in the closely related filamentous fungus Neurospora crassa. To determine whether tap1 is involved in fruiting body development in S. macrospora, a knockout construct was generated in which the tap1 open reading frame was replaced by the hygromycin B resistance gene hph under the control of fungal regulatory regions. Transformation of the S. macrospora wild type with this construct resulted in a tap1 deletion strain where tap1 had been replaced by the hph cassette. The knockout strain displayed no phenotypic differences under conditions of vegetative growth and sexual development when compared to the wild type. Double mutants carrying the Δtap1 allele in several developmental mutant backgrounds were phenotypically similar to the corresponding developmental mutant strains. Conclusion The tap1 transcript is strongly upregulated during sexual development in S. macrospora; however, analysis of a tap1 knockout strain shows that tap1 is not essential for fruiting body formation in S. macrospora. PMID:16266439
Eliyahu, Efrat; Shtraizent, Nataly; Shalgi, Ruth; Schuchman, Edward H
2012-01-01
The number of resting follicles in the ovary and their successful maturation during development define the fertile female lifespan. Oocytes, enclosed within follicles, are subject to natural selection, and the majority will undergo apoptosis during prenatal life through adulthood. Our previous studies revealed high levels of the lipid hydrolase, acid ceramidase (AC), in human and mouse oocytes, follicular fluid and cumulus cells. In addition, supplementation of in vitro fertilization media with recombinant AC enhanced the survival of oocytes and preimplantation embryos. Herein we constructed and used a conditional knockout mouse model of AC deficiency (cACKO) to further investigate the role of this enzyme in oocyte survival in vivo. Immunohistochemical staining, activity assays, and western blot analysis revealed that AC expression was high in the ovaries of normal mice, particularly in the theca cells. After induction of the AC gene knockout with tamoxifen (TM), AC levels decreased in ovaries, and ceramide was correspondingly elevated. A novel immunostaining method was developed to visualize follicles at various stages, and together with light microscopic examination, the transition of the follicle from the secondary to antral stage was found to be defective in the absence of AC. Western blot analysis showed elevated BAX and PARP expression in TM-treated cACKO mouse ovaries compared to control animals. In parallel, the levels of BCL-2 and anti-Mullerian hormone, a marker of ovarian reserve, were decreased. In addition to the above, there was a significant decrease in fertility observed in the TM-treated cACKO mice. Together, these data suggest that AC plays an important role in the preservation of fertility by maintaining low ceramide levels and preventing apoptosis of theca cells, thereby promoting survival of the follicle during the transition from the secondary to antral stage. Copyright © 2012 S. Karger AG, Basel.
Zinc Finger Nuclease: A New Approach to Overcome Beta-Lactam Antibiotic Resistance
Shahbazi Dastjerdeh, Mansoureh; Kouhpayeh, Shirin; Sabzehei, Faezeh; Khanahmad, Hossein; Salehi, Mansour; Mohammadi, Zahra; Shariati, Laleh; Hejazi, Zahra; Rabiei, Parisa; Manian, Mostafa
2016-01-01
Background: The evolution of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) has been accelerated recently by the indiscriminate application of antibiotics. Antibiotic resistance has challenged the success of medical interventions and therefore is considered a hazardous threat to human health. Objectives: The present study aimed to describe the use of zinc finger nuclease (ZFN) technology to target and disrupt a plasmid-encoded β-lactamase, which prevents horizontal gene transfer-mediated evolution of ARBs. Materials and Methods: An engineered ZFN was designed to target a specific sequence in the ampicillin resistance gene (ampR) of the pTZ57R plasmid. The Escherichia coli bacteria already contained the pZFN kanamycin-resistant (kanaR) plasmid as the case or the pP15A, kanaR empty vector as the control, were transformed with the pTZ57R; the ability of the designed ZFN to disrupt the β-lactamase gene was evaluated with the subsequent disturbed ability of the bacteria to grow on ampicillin (amp) and ampicillin-kanamycin (amp-kana)-containing media. The effect of mild hypothermia on the ZFN gene targeting efficiency was also evaluated. Results: The growth of bacteria in the case group on the amp and amp-kana-containing media was significantly lower compared with the control group at 37°C (P < 0.001). Despite being more efficient in hypothermic conditions at 30°C (P < 0.001), there were no significant associations between the incubation temperature and the ZFN gene targeting efficiency. Conclusions: Our findings revealed that the ZFN technology could be employed to overcome ampicillin resistance by the targeted disruption of the ampicillin resistance gene, which leads to inactivation of β-lactam synthesis. Therefore, ZFN technology could be engaged to decrease the antibiotic resistance issue with the construction of a ZFN archive against different ARGs. To tackle the resistance issue at the environmental level, recombinant phages expressing ZFNs against different ARGs could be constructed and released into both hospital and urban wastewater systems. PMID:27099691
Mojo Hand, a TALEN design tool for genome editing applications.
Neff, Kevin L; Argue, David P; Ma, Alvin C; Lee, Han B; Clark, Karl J; Ekker, Stephen C
2013-01-16
Recent studies of transcription activator-like (TAL) effector domains fused to nucleases (TALENs) demonstrate enormous potential for genome editing. Effective design of TALENs requires a combination of selecting appropriate genetic features, finding pairs of binding sites based on a consensus sequence, and, in some cases, identifying endogenous restriction sites for downstream molecular genetic applications. We present the web-based program Mojo Hand for designing TAL and TALEN constructs for genome editing applications (http://www.talendesign.org). We describe the algorithm and its implementation. The features of Mojo Hand include (1) automatic download of genomic data from the National Center for Biotechnology Information, (2) analysis of any DNA sequence to reveal pairs of binding sites based on a user-defined template, (3) selection of restriction-enzyme recognition sites in the spacer between the TAL monomer binding sites including options for the selection of restriction enzyme suppliers, and (4) output files designed for subsequent TALEN construction using the Golden Gate assembly method. Mojo Hand enables the rapid identification of TAL binding sites for use in TALEN design. The assembly of TALEN constructs, is also simplified by using the TAL-site prediction program in conjunction with a spreadsheet management aid of reagent concentrations and TALEN formulation. Mojo Hand enables scientists to more rapidly deploy TALENs for genome editing applications.
Construction of CRISPR Libraries for Functional Screening.
Carstens, Carsten P; Felts, Katherine A; Johns, Sarah E
2018-01-01
Identification of gene function has been aided by the ability to generate targeted gene knockouts or transcriptional repression using the CRISPR/CAS9 system. Using pooled libraries of guide RNA expression vectors that direct CAS9 to a specific genomic site allows identification of genes that are either enriched or depleted in response to a selection scheme, thus linking the affected gene to the chosen phenotype. The quality of the data generated by the screening is dependent on the quality of the guide RNA delivery library with regards to error rates and especially evenness of distribution of the guides. Here, we describe a method for constructing complex plasmid libraries based on pooled designed oligomers with high representation and tight distributions. The procedure allows construction of plasmid libraries of >60,000 members with a 95th/5th percentile ratio of less than 3.5.
Conditional knockout of retinal determination genes in differentiating cells in Drosophila.
Jin, Meng; Eblimit, Aiden; Pulikkathara, Merlyn; Corr, Stuart; Chen, Rui; Mardon, Graeme
2016-08-01
Conditional gene knockout in postmitotic cells is a valuable technique which allows the study of gene function with spatiotemporal control. Surprisingly, in contrast to its long-term and extensive use in mouse studies, this technology is lacking in Drosophila. Here, we use a novel method for generating complete loss of eyes absent (eya) or sine oculis (so) function in postmitotic cells posterior to the morphogenetic furrow (MF). Specifically, genomic rescue constructs with flippase recognition target (FRT) sequences flanking essential exons are used to generate conditional null alleles. By removing gene function in differentiating cells, we show that eya and so are dispensable for larval photoreceptor differentiation, but are required for differentiation during pupal development. Both eya and so are necessary for photoreceptor survival and the apoptosis caused by loss of eya or so function is likely a secondary consequence of inappropriate differentiation. We also confirm their requirement for cone cell development and reveal a novel role in interommatidial bristle (IOB) formation. In addition, so is required for normal eye disc morphology. This is the first report of a knockout method to study eya and so function in postmitotic cells. This technology will open the door to a large array of new functional studies in virtually any tissue and at any stage of development or in adults. © 2016 Federation of European Biochemical Societies.
Mahata, Barun; Banerjee, Avisek; Kundu, Manjari; Bandyopadhyay, Uday; Biswas, Kaushik
2015-01-01
Complex ganglioside expression is highly deregulated in several tumors which is further dependent on specific ganglioside synthase genes. Here, we designed and constructed a pair of highly specific transcription-activator like effector endonuclease (TALENs) to disrupt a particular genomic locus of mouse GM2-synthase, a region conserved in coding sequence of all four transcript variants of mouse GM2-synthase. Our designed TALENs effectively work in different mouse cell lines and TALEN induced mutation rate is over 45%. Clonal selection strategy is undertaken to generate stable GM2-synthase knockout cell line. We have also demonstrated non-homologous end joining (NHEJ) mediated integration of neomycin cassette into the TALEN targeted GM2-synthase locus. Functionally, clonally selected GM2-synthase knockout clones show reduced anchorage-independent growth (AIG), reduction in tumor growth and higher cellular adhesion as compared to wild type Renca-v cells. Insight into the mechanism shows that, reduced AIG is due to loss in anoikis resistance, as both knockout clones show increased sensitivity to detachment induced apoptosis. Therefore, TALEN mediated precise genome editing at GM2-synthase locus not only helps us in understanding the function of GM2-synthase gene and complex gangliosides in tumorigenicity but also holds tremendous potential to use TALENs in translational cancer research and therapeutics. PMID:25762467
Mahata, Barun; Banerjee, Avisek; Kundu, Manjari; Bandyopadhyay, Uday; Biswas, Kaushik
2015-03-12
Complex ganglioside expression is highly deregulated in several tumors which is further dependent on specific ganglioside synthase genes. Here, we designed and constructed a pair of highly specific transcription-activator like effector endonuclease (TALENs) to disrupt a particular genomic locus of mouse GM2-synthase, a region conserved in coding sequence of all four transcript variants of mouse GM2-synthase. Our designed TALENs effectively work in different mouse cell lines and TALEN induced mutation rate is over 45%. Clonal selection strategy is undertaken to generate stable GM2-synthase knockout cell line. We have also demonstrated non-homologous end joining (NHEJ) mediated integration of neomycin cassette into the TALEN targeted GM2-synthase locus. Functionally, clonally selected GM2-synthase knockout clones show reduced anchorage-independent growth (AIG), reduction in tumor growth and higher cellular adhesion as compared to wild type Renca-v cells. Insight into the mechanism shows that, reduced AIG is due to loss in anoikis resistance, as both knockout clones show increased sensitivity to detachment induced apoptosis. Therefore, TALEN mediated precise genome editing at GM2-synthase locus not only helps us in understanding the function of GM2-synthase gene and complex gangliosides in tumorigenicity but also holds tremendous potential to use TALENs in translational cancer research and therapeutics.
Chen, Jiang; Du, Yinan; He, Xueyan; Huang, Xingxu; Shi, Yun S
2017-03-31
The most powerful way to probe protein function is to characterize the consequence of its deletion. Compared to conventional gene knockout (KO), conditional knockout (cKO) provides an advanced gene targeting strategy with which gene deletion can be performed in a spatially and temporally restricted manner. However, for most species that are amphiploid, the widely used Cre-flox conditional KO (cKO) system would need targeting loci in both alleles to be loxP flanked, which in practice, requires time and labor consuming breeding. This is considerably significant when one is dealing with multiple genes. CRISPR/Cas9 genome modulation system is advantaged in its capability in targeting multiple sites simultaneously. Here we propose a strategy that could achieve conditional KO of multiple genes in mouse with Cre recombinase dependent Cas9 expression. By transgenic construction of loxP-stop-loxP (LSL) controlled Cas9 (LSL-Cas9) together with sgRNAs targeting EGFP, we showed that the fluorescence molecule could be eliminated in a Cre-dependent manner. We further verified the efficacy of this novel strategy to target multiple sites by deleting c-Maf and MafB simultaneously in macrophages specifically. Compared to the traditional Cre-flox cKO strategy, this sgRNAs-LSL-Cas9 cKO system is simpler and faster, and would make conditional manipulation of multiple genes feasible.
Probing chromatin structure with nuclease sensitivity assays.
Gregory, R I; Khosla, S; Feil, R
2001-01-01
To further our understanding of genomic imprinting it will be essential to identify key control elements, and to investigate their regulation by both epigenetic modifications (such as DNA methylation) and trans-acting factors. So far, sequence elements that regulate parental allele-specific gene expression have been identified in a number of imprinted loci, either because of their differential DNA methylation or through functional studies in transgenic mice (1,2). A systematic search for allele-specific chromatin features constitutes an alternative strategy to identify elements that regulate imprinting. The validity of such an in vivo chromatin approach derives from the fact that in several known imprinting control-elements, a specialized organization of chromatin characterized by nuclease hypersensitivity is present on only one of the two parental chromosome (3). For example, the differentially methylated 5 -portion of the human SNRPN gene-a sequence element that controls imprinting in the Prader-Willi and Angelman syndromes' domain on chromosome 15q11- q13-has strong DNase-I hypersensitive sites on the unmethylated paternal chromosome (4). A differentially methylated region that regulates the imprinting of H19 and that of the neighboring insulin-like growth factor-2 gene on mouse chromosome 7 was also found to have parental chromosome-specific hypersensitive sites (5,6). The precise nature of the allelic nuclease hypersensitivity in these and other imprinted loci remains to be determined in more detail, for example, by applying complementary chromatin methodologies (7,8). However, it is commonly observed that a nuclease hypersensitive site corresponds to a small region where nucleosomes are absent or partially disrupted.
Hodel, A.; Rice, L. M.; Simonson, T.; Fox, R. O.; Brünger, A. T.
1995-01-01
Staphylococcal nuclease A exists in two folded forms that differ in the isomerization state of the Lys 116-Pro 117 peptide bond. The dominant form (90% occupancy) adopts a cis peptide bond, which is observed in the crystal structure. NMR studies show that the relatively small difference in free energy between the cis and trans forms (delta Gcis-->trans approximately 1.2 kcal/mol) results from large and nearly compensating differences in enthalpy and entropy (delta Hcis-->trans approximately delta TScis-->trans approximately 10 kcal/mol). There is evidence from X-ray crystal structures that the structural differences between the cis and the trans forms of nuclease are confined to the conformation of residues 112-117, a solvated protein loop. Here, we obtain a thermodynamic and structural description of the conformational equilibrium of this protein loop through an exhaustive conformational search that identified several substates followed by free energy simulations between the substrates. By partitioning the search into conformational substates, we overcame the multiple minima problem in this particular case and obtained precise and reproducible free energy values. The protein and water environment was implicitly modeled by appropriately chosen nonbonded terms between the explicitly treated loop and the rest of the protein. These simulations correctly predicted a small free energy difference between the cis and trans forms composed of larger, compensating differences in enthalpy and entropy. The structural predictions of these simulations were qualitatively consistent with known X-ray structures of nuclease variants and yield a model of the unknown minor trans conformation. PMID:7613463
Nagata, Mariko; Ishino, Sonoko; Yamagami, Takeshi; Ogino, Hiromi; Simons, Jan-Robert; Kanai, Tamotsu; Atomi, Haruyuki; Ishino, Yoshizumi
2017-10-13
The archaeal minichromosome maintenance (MCM) has DNA helicase activity, which is stimulated by GINS in several archaea. In the eukaryotic replicative helicase complex, Cdc45 forms a complex with MCM and GINS, named as CMG (Cdc45-MCM-GINS). Cdc45 shares sequence similarity with bacterial RecJ. A Cdc45/RecJ-like protein from Thermococcus kodakarensis shows a bacterial RecJ-like exonuclease activity, which is stimulated by GINS in vitro. Therefore, this archaeal Cdc45/RecJ is designated as GAN, from GINS-associated nuclease. In this study, we identified the CMG-like complex in T. kodakarensis cells. The GAN·GINS complex stimulated the MCM helicase, but MCM did not affect the nuclease activity of GAN in vitro. The gene disruption analysis showed that GAN was non-essential for its viability but the Δgan mutant did not grow at 93°C. Furthermore, the Δgan mutant showed a clear retardation in growth as compared with the parent cells under optimal conditions at 85°C. These deficiencies were recovered by introducing the gan gene encoding the nuclease deficient GAN protein back to the genome. These results suggest that the replicative helicase complex without GAN may become unstable and ineffective in replication fork progression. The nuclease activity of GAN is not related to the growth defects of the Δgan mutant cells. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Gardner, Andrew F; Prangishvili, David; Jack, William E
2011-09-01
The hyperthermophilic Sulfolobus islandicus rod-shaped virus 2 (SIRV2) encodes a 25-kDa protein (SIRV2gp19) annotated as a hypothetical protein with sequence homology to the RecB nuclease superfamily. Even though SIRV2gp19 homologs are conserved throughout the rudivirus family and presumably play a role in the viral life cycle, SIRV2gp19 has not been functionally characterized. To define the minimal requirements for activity, SIRV2gp19 was purified and tested under varying conditions. SIRV2gp19 is a single-strand specific endonuclease that requires Mg(2+) for activity and is inactive on double-stranded DNA. A conserved aspartic acid in RecB nuclease superfamily Motif II (D89) is also essential for SIRV2gp19 activity and mutation to alanine (D89A) abolishes activity. Therefore, the SIRV2gp19 cleavage mechanism is similar to previously described RecB nucleases. Finally, SIRV2gp19 single-stranded DNA endonuclease activity could play a role in host chromosome degradation during SIRV2 lytic infection.
Marshall, Ryan; Maxwell, Colin S; Collins, Scott P; Jacobsen, Thomas; Luo, Michelle L; Begemann, Matthew B; Gray, Benjamin N; January, Emma; Singer, Anna; He, Yonghua; Beisel, Chase L; Noireaux, Vincent
2018-01-04
CRISPR-Cas systems offer versatile technologies for genome engineering, yet their implementation has been outpaced by ongoing discoveries of new Cas nucleases and anti-CRISPR proteins. Here, we present the use of E. coli cell-free transcription-translation (TXTL) systems to vastly improve the speed and scalability of CRISPR characterization and validation. TXTL can express active CRISPR machinery from added plasmids and linear DNA, and TXTL can output quantitative dynamics of DNA cleavage and gene repression-all without protein purification or live cells. We used TXTL to measure the dynamics of DNA cleavage and gene repression for single- and multi-effector CRISPR nucleases, predict gene repression strength in E. coli, determine the specificities of 24 diverse anti-CRISPR proteins, and develop a fast and scalable screen for protospacer-adjacent motifs that was successfully applied to five uncharacterized Cpf1 nucleases. These examples underscore how TXTL can facilitate the characterization and application of CRISPR technologies across their many uses. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhao, Junhua; Wang, Guliang; Del Mundo, Imee M; McKinney, Jennifer A; Lu, Xiuli; Bacolla, Albino; Boulware, Stephen B; Zhang, Changsheng; Zhang, Haihua; Ren, Pengyu; Freudenreich, Catherine H; Vasquez, Karen M
2018-01-30
Sequences with the capacity to adopt alternative DNA structures have been implicated in cancer etiology; however, the mechanisms are unclear. For example, H-DNA-forming sequences within oncogenes have been shown to stimulate genetic instability in mammals. Here, we report that H-DNA-forming sequences are enriched at translocation breakpoints in human cancer genomes, further implicating them in cancer etiology. H-DNA-induced mutations were suppressed in human cells deficient in the nucleotide excision repair nucleases, ERCC1-XPF and XPG, but were stimulated in cells deficient in FEN1, a replication-related endonuclease. Further, we found that these nucleases cleaved H-DNA conformations, and the interactions of modeled H-DNA with ERCC1-XPF, XPG, and FEN1 proteins were explored at the sub-molecular level. The results suggest mechanisms of genetic instability triggered by H-DNA through distinct structure-specific, cleavage-based replication-independent and replication-dependent pathways, providing critical evidence for a role of the DNA structure itself in the etiology of cancer and other human diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Single-molecule FRET unveils induced-fit mechanism for substrate selectivity in flap endonuclease 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashid, Fahad; Harris, Paul D.; Zaher, Manal S.
Human flap endonuclease 1 (FEN1) and related structure-specific 5’nucleases precisely identify and incise aberrant DNA structures during replication, repair and recombination to avoid genomic instability. Yet, it is unclear how the 5’nuclease mechanisms of DNA distortion and protein ordering robustly mediate efficient and accurate substrate recognition and catalytic selectivity. Here, single-molecule sub-millisecond and millisecond analyses of FEN1 reveal a protein-DNA induced-fit mechanism that efficiently verifies substrate and suppresses off-target cleavage. FEN1 sculpts DNA with diffusion-limited kinetics to test DNA substrate. This DNA distortion mutually ‘locks’ protein and DNA conformation and enables substrate verification with extreme precision. Strikingly, FEN1 never missesmore » cleavage of its cognate substrate while blocking probable formation of catalytically competent interactions with noncognate substrates and fostering their pre-incision dissociation. These findings establish FEN1 has practically perfect precision and that separate control of induced-fit substrate recognition sets up the catalytic selectivity of the nuclease active site for genome stability.« less
Single-molecule FRET unveils induced-fit mechanism for substrate selectivity in flap endonuclease 1
Rashid, Fahad; Harris, Paul D.; Zaher, Manal S.; ...
2017-02-23
Human flap endonuclease 1 (FEN1) and related structure-specific 5’nucleases precisely identify and incise aberrant DNA structures during replication, repair and recombination to avoid genomic instability. Yet, it is unclear how the 5’nuclease mechanisms of DNA distortion and protein ordering robustly mediate efficient and accurate substrate recognition and catalytic selectivity. Here, single-molecule sub-millisecond and millisecond analyses of FEN1 reveal a protein-DNA induced-fit mechanism that efficiently verifies substrate and suppresses off-target cleavage. FEN1 sculpts DNA with diffusion-limited kinetics to test DNA substrate. This DNA distortion mutually ‘locks’ protein and DNA conformation and enables substrate verification with extreme precision. Strikingly, FEN1 never missesmore » cleavage of its cognate substrate while blocking probable formation of catalytically competent interactions with noncognate substrates and fostering their pre-incision dissociation. These findings establish FEN1 has practically perfect precision and that separate control of induced-fit substrate recognition sets up the catalytic selectivity of the nuclease active site for genome stability.« less
Nucleic acid detection methods
Smith, C.L.; Yaar, R.; Szafranski, P.; Cantor, C.R.
1998-05-19
The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3{prime}-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated. 18 figs.
Gloor, Jason W; Balakrishnan, Lata; Campbell, Judith L; Bambara, Robert A
2012-08-01
In eukaryotic Okazaki fragment processing, the RNA primer is displaced into a single-stranded flap prior to removal. Evidence suggests that some flaps become long before they are cleaved, and that this cleavage involves the sequential action of two nucleases. Strand displacement characteristics of the polymerase show that a short gap precedes the flap during synthesis. Using biochemical techniques, binding and cleavage assays presented here indicate that when the flap is ∼ 30 nt long the nuclease Dna2 can bind with high affinity to the flap and downstream double strand and begin cleavage. When the polymerase idles or dissociates the Dna2 can reorient for additional contacts with the upstream primer region, allowing the nuclease to remain stably bound as the flap is further shortened. The DNA can then equilibrate to a double flap that can bind Dna2 and flap endonuclease (FEN1) simultaneously. When Dna2 shortens the flap even more, FEN1 can displace the Dna2 and cleave at the flap base to make a nick for ligation.
Ponnuswamy, Nandhini; Bastings, Maartje M. C.; Nathwani, Bhavik; Ryu, Ju Hee; Chou, Leo Y. T.; Vinther, Mathias; Li, Weiwei Aileen; Anastassacos, Frances M.; Mooney, David J.; Shih, William M.
2017-01-01
DNA nanostructures have evoked great interest as potential therapeutics and diagnostics due to ease and robustness of programming their shapes, site-specific functionalizations and responsive behaviours. However, their utility in biological fluids can be compromised through denaturation induced by physiological salt concentrations and degradation mediated by nucleases. Here we demonstrate that DNA nanostructures coated by oligolysines to 0.5:1 N:P (ratio of nitrogen in lysine to phosphorus in DNA), are stable in low salt and up to tenfold more resistant to DNase I digestion than when uncoated. Higher N:P ratios can lead to aggregation, but this can be circumvented by coating instead with an oligolysine-PEG copolymer, enabling up to a 1,000-fold protection against digestion by serum nucleases. Oligolysine-PEG-stabilized DNA nanostructures survive uptake into endosomal compartments and, in a mouse model, exhibit a modest increase in pharmacokinetic bioavailability. Thus, oligolysine-PEG is a one-step, structure-independent approach that provides low-cost and effective protection of DNA nanostructures for in vivo applications. PMID:28561045
Seper, Andrea; Fengler, Vera H I; Roier, Sandro; Wolinski, Heimo; Kohlwein, Sepp D; Bishop, Anne L; Camilli, Andrew; Reidl, Joachim; Schild, Stefan
2011-01-01
Biofilms are a preferred mode of survival for many microorganisms including Vibrio cholerae, the causative agent of the severe secretory diarrhoeal disease cholera. The ability of the facultative human pathogen V. cholerae to form biofilms is a key factor for persistence in aquatic ecosystems and biofilms act as a source for new outbreaks. Thus, a better understanding of biofilm formation and transmission of V. cholerae is an important target to control the disease. So far the Vibrio exopolysaccharide was the only known constituent of the biofilm matrix. In this study we identify and characterize extracellular DNA as a component of the Vibrio biofilm matrix. Furthermore, we show that extracellular DNA is modulated and controlled by the two extracellular nucleases Dns and Xds. Our results indicate that extracellular DNA and the extracellular nucleases are involved in diverse processes including the development of a typical biofilm architecture, nutrient acquisition, detachment from biofilms and the colonization fitness of biofilm clumps after ingestion by the host. This study provides new insights into biofilm development and transmission of biofilm-derived V. cholerae. PMID:22032623
Single-molecule FRET unveils induced-fit mechanism for substrate selectivity in flap endonuclease 1
Rashid, Fahad; Harris, Paul D; Zaher, Manal S; Sobhy, Mohamed A; Joudeh, Luay I; Yan, Chunli; Piwonski, Hubert; Tsutakawa, Susan E; Ivanov, Ivaylo; Tainer, John A; Habuchi, Satoshi; Hamdan, Samir M
2017-01-01
Human flap endonuclease 1 (FEN1) and related structure-specific 5’nucleases precisely identify and incise aberrant DNA structures during replication, repair and recombination to avoid genomic instability. Yet, it is unclear how the 5’nuclease mechanisms of DNA distortion and protein ordering robustly mediate efficient and accurate substrate recognition and catalytic selectivity. Here, single-molecule sub-millisecond and millisecond analyses of FEN1 reveal a protein-DNA induced-fit mechanism that efficiently verifies substrate and suppresses off-target cleavage. FEN1 sculpts DNA with diffusion-limited kinetics to test DNA substrate. This DNA distortion mutually ‘locks’ protein and DNA conformation and enables substrate verification with extreme precision. Strikingly, FEN1 never misses cleavage of its cognate substrate while blocking probable formation of catalytically competent interactions with noncognate substrates and fostering their pre-incision dissociation. These findings establish FEN1 has practically perfect precision and that separate control of induced-fit substrate recognition sets up the catalytic selectivity of the nuclease active site for genome stability. DOI: http://dx.doi.org/10.7554/eLife.21884.001 PMID:28230529
Genome-scale CRISPR-Cas9 Knockout and Transcriptional Activation Screening
Joung, Julia; Konermann, Silvana; Gootenberg, Jonathan S.; Abudayyeh, Omar O.; Platt, Randall J.; Brigham, Mark D.; Sanjana, Neville E.; Zhang, Feng
2017-01-01
Forward genetic screens are powerful tools for the unbiased discovery and functional characterization of specific genetic elements associated with a phenotype of interest. Recently, the RNA-guided endonuclease Cas9 from the microbial CRISPR (clustered regularly interspaced short palindromic repeats) immune system has been adapted for genome-scale screening by combining Cas9 with pooled guide RNA libraries. Here we describe a protocol for genome-scale knockout and transcriptional activation screening using the CRISPR-Cas9 system. Custom- or ready-made guide RNA libraries are constructed and packaged into lentiviral vectors for delivery into cells for screening. As each screen is unique, we provide guidelines for determining screening parameters and maintaining sufficient coverage. To validate candidate genes identified from the screen, we further describe strategies for confirming the screening phenotype as well as genetic perturbation through analysis of indel rate and transcriptional activation. Beginning with library design, a genome-scale screen can be completed in 9–15 weeks followed by 4–5 weeks of validation. PMID:28333914
Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening.
Joung, Julia; Konermann, Silvana; Gootenberg, Jonathan S; Abudayyeh, Omar O; Platt, Randall J; Brigham, Mark D; Sanjana, Neville E; Zhang, Feng
2017-04-01
Forward genetic screens are powerful tools for the unbiased discovery and functional characterization of specific genetic elements associated with a phenotype of interest. Recently, the RNA-guided endonuclease Cas9 from the microbial CRISPR (clustered regularly interspaced short palindromic repeats) immune system has been adapted for genome-scale screening by combining Cas9 with pooled guide RNA libraries. Here we describe a protocol for genome-scale knockout and transcriptional activation screening using the CRISPR-Cas9 system. Custom- or ready-made guide RNA libraries are constructed and packaged into lentiviral vectors for delivery into cells for screening. As each screen is unique, we provide guidelines for determining screening parameters and maintaining sufficient coverage. To validate candidate genes identified by the screen, we further describe strategies for confirming the screening phenotype, as well as genetic perturbation, through analysis of indel rate and transcriptional activation. Beginning with library design, a genome-scale screen can be completed in 9-15 weeks, followed by 4-5 weeks of validation.
Bm65 is essential for the propagation of Bombyx mori nucleopolyhedrovirus.
Tang, Qi; Li, Guohui; Yao, Qin; Chen, Liang; Feng, Fan; Yuan, Yi; Chen, Keping
2013-01-01
Orf65 (Bm65) of Bombyx mori nucleopolyhedrovirus (BmNPV) is a highly conserved gene that encodes an unknown 104-amino acid protein. In the present study, we have shown the role of Bm65 in the baculovirus life cycle. 5'-RACE analysis showed that the transcription start site of Bm65 was 14 nucleotides upstream of the start codon ATG. The transcription profile of Bm65 was detected from 6 to 72 h postinfection (p. i.) by RT-PCR. A Bm65-knockout bacmid was constructed by homologous recombination to characterize the role of Bm65 in viral life cycle. Fluorescence microscopy showed that Bm65-knockout virus was unable to generate infectious budded virus in BmN cells. Furthermore, quantitative real-time PCR analysis demonstrated that Bm65 deletion did not affect the viral DNA replication. To conclude, Bm65 is essential for the propagation of BmNPV, but is unnecessary for the replication of viral DNA.
Genetic engineering of CHO cells for viral resistance to minute virus of mice.
Mascarenhas, Joaquina X; Korokhov, Nikolay; Burger, Lisa; Kassim, Ademola; Tuter, Jason; Miller, Daniel; Borgschulte, Trissa; George, Henry J; Chang, Audrey; Pintel, David J; Onions, David; Kayser, Kevin J
2017-03-01
Contamination by the parvovirus minute virus of mice (MVM) remains a challenge in Chinese hamster ovary (CHO) biopharmaceutical production processes. Although infrequent, infection of a bioreactor can be catastrophic for a manufacturer, can impact patient drug supply and safety, and can have regulatory implications. We evaluated engineering a CHO parental cell line (CHOZN ® GS -/- ) to create a new host cell line that is resistant to MVM infection by modifying the major receptors used by the virus to enter cells. Attachment to a cell surface receptor is a key first step in the infection cycle for many viruses. While the exact functional receptor for MVM binding to CHO cell surface is unknown, sialic acid on the cell surface has been implicated. In this work, we used the zinc finger nuclease gene editing technology to validate the role of sialic acid on the cell surface in the binding and internalization of the MVM virus. Our approach was to systematically mutate genes involved in cell surface sialylation and then challenge each cell line for their ability to resist viral entry and propagation. To test the importance of sialylation, the following genes were knocked out: the CMP-sialic acid transporter, solute carrier family 35A1 (Slc35a1), the core 1-β-1,3-galactosyltransferase-1 specific chaperone (Cosmc), and mannosyl (α-1,3-)-glycoprotein β-1,2-N-acetylglucosaminyltransferase (Mgat1) as well as members of the sialyltransferase family. Slc35a1 is responsible for transporting sialic acid into the Golgi. Knocking out function of this gene in a cell results in asialylated glycan structures, thus eliminating the ability of MVM to bind to and enter the cell. The complete absence of sialic acid on the Slc35a1 knockout cell line led to complete resistance to MVM infection. The Cosmc and Mgat1 knockouts also show significant inhibition of infection likely due to their effect on decreasing cell surface sialic acid. Previously in vitro glycan analysis has been used to elucidate the precise sialic acid structures required for MVM binding and internalization. In this work, we performed the sequential knockout of various sialyltransferases that add terminal sialic acid to glycans with different linkage specificities. Cell lines with modifications of the various genes included in this study resulted in varying effects on MVM infection expanding on the knowledge of MVM receptors. MVM resistant host cell lines were also tested for the production of model recombinant proteins. Our data demonstrate that resistance against the MVM virus can be incorporated into CHO production cell lines, adding another level of defense against the devastating financial consequences of MVM infection without compromising recombinant protein yield or quality. Biotechnol. Bioeng. 2017;114: 576-588. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
McCutchen-Maloney, Sandra L.
2002-01-01
Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.
A Simple and Efficient Method for Assembling TALE Protein Based on Plasmid Library
Xu, Huarong; Xin, Ying; Zhang, Tingting; Ma, Lixia; Wang, Xin; Chen, Zhilong; Zhang, Zhiying
2013-01-01
DNA binding domain of the transcription activator-like effectors (TALEs) from Xanthomonas sp. consists of tandem repeats that can be rearranged according to a simple cipher to target new DNA sequences with high DNA-binding specificity. This technology has been successfully applied in varieties of species for genome engineering. However, assembling long TALE tandem repeats remains a big challenge precluding wide use of this technology. Although several new methodologies for efficiently assembling TALE repeats have been recently reported, all of them require either sophisticated facilities or skilled technicians to carry them out. Here, we described a simple and efficient method for generating customized TALE nucleases (TALENs) and TALE transcription factors (TALE-TFs) based on TALE repeat tetramer library. A tetramer library consisting of 256 tetramers covers all possible combinations of 4 base pairs. A set of unique primers was designed for amplification of these tetramers. PCR products were assembled by one step of digestion/ligation reaction. 12 TALE constructs including 4 TALEN pairs targeted to mouse Gt(ROSA)26Sor gene and mouse Mstn gene sequences as well as 4 TALE-TF constructs targeted to mouse Oct4, c-Myc, Klf4 and Sox2 gene promoter sequences were generated by using our method. The construction routines took 3 days and parallel constructions were available. The rate of positive clones during colony PCR verification was 64% on average. Sequencing results suggested that all TALE constructs were performed with high successful rate. This is a rapid and cost-efficient method using the most common enzymes and facilities with a high success rate. PMID:23840477
A simple and efficient method for assembling TALE protein based on plasmid library.
Zhang, Zhiqiang; Li, Duo; Xu, Huarong; Xin, Ying; Zhang, Tingting; Ma, Lixia; Wang, Xin; Chen, Zhilong; Zhang, Zhiying
2013-01-01
DNA binding domain of the transcription activator-like effectors (TALEs) from Xanthomonas sp. consists of tandem repeats that can be rearranged according to a simple cipher to target new DNA sequences with high DNA-binding specificity. This technology has been successfully applied in varieties of species for genome engineering. However, assembling long TALE tandem repeats remains a big challenge precluding wide use of this technology. Although several new methodologies for efficiently assembling TALE repeats have been recently reported, all of them require either sophisticated facilities or skilled technicians to carry them out. Here, we described a simple and efficient method for generating customized TALE nucleases (TALENs) and TALE transcription factors (TALE-TFs) based on TALE repeat tetramer library. A tetramer library consisting of 256 tetramers covers all possible combinations of 4 base pairs. A set of unique primers was designed for amplification of these tetramers. PCR products were assembled by one step of digestion/ligation reaction. 12 TALE constructs including 4 TALEN pairs targeted to mouse Gt(ROSA)26Sor gene and mouse Mstn gene sequences as well as 4 TALE-TF constructs targeted to mouse Oct4, c-Myc, Klf4 and Sox2 gene promoter sequences were generated by using our method. The construction routines took 3 days and parallel constructions were available. The rate of positive clones during colony PCR verification was 64% on average. Sequencing results suggested that all TALE constructs were performed with high successful rate. This is a rapid and cost-efficient method using the most common enzymes and facilities with a high success rate.
Rowe, Aaron A.; Miller, Erin A.; Plaxco, Kevin W.
2011-01-01
Biosensors built using ribonucleic acid (RNA) aptamers show promise as tools for point-of-care medical diagnostics, but they remain vulnerable to nuclease degradation when deployed in clinical samples. To explore methods for protecting RNA-based biosensors from such degradation we have constructed and characterized an electrochemical, aptamer-based sensor for the detection of aminoglycosidic antibiotics. We find that while this sensor achieves low micromolar detection limits and subminute equilibration times when challenged in buffer, it deteriorates rapidly when immersed directly in blood serum. In order to circumvent this problem, we have developed and tested sensors employing modified versions of the same aptamer. Our first effort to this end entailed the methylation of all of the 2′-hydroxyl groups outside of the aptamer’s antibiotic binding pocket. However, while devices employing this modified aptamer are as sensitive as those employing an unmodified parent, the modification fails to confer greater stability when the sensor is challenged directly in blood serum. As a second potentially naive alternative, we replaced the RNA bases in the aptamer with their more degradation-resistant deoxyribonucleic acid (DNA) equivalents. Surprisingly and unlike control DNA-stem loops employing other sequences, this DNA aptamer retains the ability to bind aminoglycosides, albeit with poorer affinity than the parent RNA aptamer. Unfortunately, however, while sensors fabricated using this DNA aptamer are stable in blood serum, its lower affinity pushes their detection limits above the therapeutically relevant range. Finally, we find that ultrafiltration through a low-molecular-weight-cutoff spin column rapidly and efficiently removes the relevant nucleases from serum samples spiked with gentamicin, allowing the convenient detection of this aminoglycoside at clinically relevant concentrations using the original RNA-based sensor. PMID:20687587
Hiruta, Chizue; Ogino, Yukiko; Sakuma, Tetsushi; Toyota, Kenji; Miyagawa, Shinichi; Yamamoto, Takashi; Iguchi, Taisen
2014-11-18
The cosmopolitan microcrustacean Daphnia pulex provides a model system for both human health research and monitoring ecosystem integrity. It is the first crustacean to have its complete genome sequenced, an unprecedented ca. 36% of which has no known homologs with any other species. Moreover, D. pulex is ideally suited for experimental manipulation because of its short reproductive cycle, large numbers of offspring, synchronization of oocyte maturation, and other life history characteristics. However, existing gene manipulation techniques are insufficient to accurately define gene functions. Although our previous investigations developed an RNA interference (RNAi) system in D. pulex, the possible time period of functional analysis was limited because the effectiveness of RNAi is transient. Thus, in this study, we developed a genome editing system for D. pulex by first microinjecting transcription activator-like effector nuclease (TALEN) mRNAs into early embryos and then evaluating TALEN activity and mutation phenotypes. We assembled a TALEN construct specific to the Distal-less gene (Dll), which is a homeobox transcription factor essential for distal limb development in invertebrates and vertebrates, and evaluated its activity in vitro by single-strand annealing assay. Then, we injected TALEN mRNAs into eggs within 1 hour post-ovulation. Injected embryos presented with defects in the second antenna and altered appendage development, and indel mutations were detected in Dll loci, indicating that this technique successfully knocked out the target gene. We succeeded, for the first time in D. pulex, in targeted mutagenesis by use of Platinum TALENs. This genome editing technique makes it possible to conduct reverse genetic analysis in D. pulex, making this species an even more appropriate model organism for environmental, evolutionary, and developmental genomics.
Banasiak, Anna; Cassidy, John; Colleran, John
2018-06-01
To date, DNA cleavage, caused by cleavage agents, has been monitored mainly by gel and capillary electrophoresis. However, these techniques are time-consuming, non-quantitative and require gel stains. In this work, a novel, simple and, importantly, a quantitative method for monitoring the DNA nuclease activity of potential anti-cancer drugs, at a DNA electrochemical sensor, is presented. The DNA sensors were prepared using thiol-modified oligonucleotides that self-assembled to create a DNA monolayer at gold electrode surfaces. The quantification of DNA double-strand breaks is based on calculating the DNA surface coverage, before and after exposure to a DNA cleavage agent. The nuclease properties of a model DNA cleavage agent, copper bis-phenanthroline ([Cu II (phen) 2 ] 2+ ), that can cleave DNA in a Fenton-type reaction, were quantified electrochemically. The DNA surface coverage decreased on average by 21% after subjecting the DNA sensor to a nuclease assay containing [Cu II (phen) 2 ] 2+ , a reductant and an oxidant. This percentage indicates that 6 base pairs were cleaved in the nuclease assay from the immobilised 30 base pair strands. The DNA cleavage can be also induced electrochemically in the absence of a chemical reductant. [Cu II (phen) 2 ] 2+ intercalates between DNA base pairs and, on application of a suitable potential, can be reduced to [Cu I (phen) 2 ] + , with dissolved oxygen acting as the required oxidant. This reduction process is facilitated through DNA strands via long-range electron transfer, resulting in DNA cleavage of 23%. The control measurements for both chemically and electrochemically induced cleavage revealed that DNA strand breaks did not occur under experimental conditions in the absence of [Cu II (phen) 2 ] 2+ . Copyright © 2018 Elsevier B.V. All rights reserved.
Ambardekar, Vishakha V.; Han, Huai-Yun; Varney, Michelle L.; Vinogradov, Serguei V.; Singh, Rakesh K.; Vetro, Joseph A.
2010-01-01
Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3′ cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC. PMID:21047680
Ambardekar, Vishakha V; Han, Huai-Yun; Varney, Michelle L; Vinogradov, Serguei V; Singh, Rakesh K; Vetro, Joseph A
2011-02-01
Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3' cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC. Copyright © 2010 Elsevier Ltd. All rights reserved.
Kholod, Natalia; Sivogrivov, Dmitry; Latypov, Oleg; Mayorov, Sergey; Kuznitsyn, Rafail; Kajava, Andrey V; Shlyapnikov, Mikhail; Granovsky, Igor
2015-11-01
The article describes substitutions in bacteriophage T4 RNase H which provide so called das-effect. Phage T4 DNA arrest suppression (das) mutations have been described to be capable of partially suppressing the phage DNA arrest phenotype caused by a dysfunction in genes 46 and/or 47 (also known as Mre11/Rad50 complex). Genetic mapping of das13 (one of the das mutations) has shown it to be in the region of the rnh gene encoding RNase H. Here we report that Das13 mutant of RNase H has substitutions of valine 43 and leucine 242 with isoleucines. To investigate the influence of these mutations on RNase H nuclease properties we have designed a novel in vitro assay that allows us to separate and quantify exo- or endonuclease activities of flap endonuclease. The nuclease assay in vitro showed that V43I substitution increased the ratio between exonuclease/endonuclease activities of RNase H whereas L242I substitution did not affect the nuclease activity of RNase H in vitro. However, both mutations were necessary for the full das effect in vivo. Molecular modelling of the nuclease structure suggests that V43I substitution may lead to disposition of H4 helix, responsible for the interaction with the first base pairs of 5'end of branched DNA. These structural changes may affect unwinding of the first base pairs of gapped or nicked DNA generating a short flap and therefore may stabilize the DNA-enzyme complex. L242I substitution did not affect the structure of RNase H and its role in providing das-effect remains unclear. Copyright © 2015 Elsevier B.V. All rights reserved.
Sather, Blythe D; Romano Ibarra, Guillermo S; Sommer, Karen; Curinga, Gabrielle; Hale, Malika; Khan, Iram F; Singh, Swati; Song, Yumei; Gwiazda, Kamila; Sahni, Jaya; Jarjour, Jordan; Astrakhan, Alexander; Wagner, Thor A; Scharenberg, Andrew M; Rawlings, David J
2015-09-30
Genetic mutations or engineered nucleases that disrupt the HIV co-receptor CCR5 block HIV infection of CD4(+) T cells. These findings have motivated the engineering of CCR5-specific nucleases for application as HIV therapies. The efficacy of this approach relies on efficient biallelic disruption of CCR5, and the ability to efficiently target sequences that confer HIV resistance to the CCR5 locus has the potential to further improve clinical outcomes. We used RNA-based nuclease expression paired with adeno-associated virus (AAV)-mediated delivery of a CCR5-targeting donor template to achieve highly efficient targeted recombination in primary human T cells. This method consistently achieved 8 to 60% rates of homology-directed recombination into the CCR5 locus in T cells, with over 80% of cells modified with an MND-GFP expression cassette exhibiting biallelic modification. MND-GFP-modified T cells maintained a diverse repertoire and engrafted in immune-deficient mice as efficiently as unmodified cells. Using this method, we integrated sequences coding chimeric antigen receptors (CARs) into the CCR5 locus, and the resulting targeted CAR T cells exhibited antitumor or anti-HIV activity. Alternatively, we introduced the C46 HIV fusion inhibitor, generating T cell populations with high rates of biallelic CCR5 disruption paired with potential protection from HIV with CXCR4 co-receptor tropism. Finally, this protocol was applied to adult human mobilized CD34(+) cells, resulting in 15 to 20% homologous gene targeting. Our results demonstrate that high-efficiency targeted integration is feasible in primary human hematopoietic cells and highlight the potential of gene editing to engineer T cell products with myriad functional properties. Copyright © 2015, American Association for the Advancement of Science.
Genome engineering in cattle: recent technological advancements.
Wang, Zhongde
2015-02-01
Great strides in technological advancements have been made in the past decade in cattle genome engineering. First, the success of cloning cattle by somatic cell nuclear transfer (SCNT) or chromatin transfer (CT) is a significant advancement that has made obsolete the need for using embryonic stem (ES) cells to conduct cell-mediated genome engineering, whereby site-specific genetic modifications can be conducted in bovine somatic cells via DNA homologous recombination (HR) and whereby genetically engineered cattle can subsequently be produced by animal cloning from the genetically modified cells. With this approach, a chosen bovine genomic locus can be precisely modified in somatic cells, such as to knock out (KO) or knock in (KI) a gene via HR, a gene-targeting strategy that had almost exclusively been used in mouse ES cells. Furthermore, by the creative application of embryonic cloning to rejuvenate somatic cells, cattle genome can be sequentially modified in the same line of somatic cells and complex genetic modifications have been achieved in cattle. Very recently, the development of designer nucleases-such as zinc finger nucleases (ZFNs) and transcription activator-like effector nuclease (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-has enabled highly efficient and more facile genome engineering in cattle. Most notably, by employing such designer nucleases, genomes can be engineered at single-nucleotide precision; this process is now often referred to as genome or gene editing. The above achievements are a drastic departure from the traditional methods of creating genetically modified cattle, where foreign DNAs are randomly integrated into the animal genome, most often along with the integrations of bacterial or viral DNAs. Here, I review the most recent technological developments in cattle genome engineering by highlighting some of the major achievements in creating genetically engineered cattle for agricultural and biomedical applications.
Novel assay system for acidic Peptide:N-glycanase (aPNGase) activity in crude plant extract.
Uemura, Ryota; Ogura, Mikako; Matsumaru, Chihiro; Akiyama, Tsuyoshi; Maeda, Megumi; Kimura, Yoshinobu
2018-04-15
Acidic peptide:N-glycanase (aPNGase) plays a pivotal role in plant glycoprotein turnover. For the construction of aPNGase-knockout or -overexpressing plants, a new method to detect the activity in crude plant extracts is required because endogenous peptidases present in the extract hamper enzyme assays using fluorescence-labeled N-glycopeptides as a substrate. In this study, we developed a new method for measuring aPNGase activity in crude extracts from plant materials.
Morphological observation of the stria vascularis in midkine and pleiotrophin knockout mice.
Sone, Michihiko; Muramatsu, Hisako; Muramatsu, Takashi; Nakashima, Tsutomu
2011-02-01
Midkine and Pleiotrophin are low molecular weight basic proteins with closely related structures and serve as growth/differentiation factors. They have been reported to be expressed in the cochlea during the embryonic and perinatal periods. In the present study, we focused on the roles of midkine and pleiotrophin in the stria vascularis and investigated morphological changes using mice deficient in these genes. Midkine knockout, pleiotrophin knockout, and double knockout mice were used and compared to wild-type mice. Auditory brain stem responses (ABRs) and cochlear blood flows were measured in each type of mice. Pathological changes in the stria vascularis were examined by light microscopy, including immunohistochemical staining with anti-Kir4.1 antibody, and electron microscopy. Hearing thresholds examined by ABRs were significantly higher in midkine knockout and pleiotrophin knockout mice than in wild-type mice. Double knockout mice showed higher thresholds compared to midkine knockout and pleiotrophin knockout mice. Blood flow in the lateral walls did not significantly differ and light microscopy examination showed an almost normal appearance of the stria vascularis in these knockout mice. However, the expression of Kir4.1 was weak in the knockout mice and severe vacuolar degeneration was observed by electron microscopy in the intermediate cells of the double knockout mice. The present study demonstrates that midkine and pleiotrophin play some roles for the morphological maintenance of intermediate cell in the stria vascularis. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Flexible CRISPR library construction using parallel oligonucleotide retrieval
Read, Abigail; Gao, Shaojian; Batchelor, Eric
2017-01-01
Abstract CRISPR/Cas9-based gene knockout libraries have emerged as a powerful tool for functional screens. We present here a set of pre-designed human and mouse sgRNA sequences that are optimized for both high on-target potency and low off-target effect. To maximize the chance of target gene inactivation, sgRNAs were curated to target both 5΄ constitutive exons and exons that encode conserved protein domains. We describe here a robust and cost-effective method to construct multiple small sized CRISPR library from a single oligo pool generated by array synthesis using parallel oligonucleotide retrieval. Together, these resources provide a convenient means for individual labs to generate customized CRISPR libraries of variable size and coverage depth for functional genomics application. PMID:28334828
Recent Advances in Genome Editing Using CRISPR/Cas9
Ding, Yuduan; Li, Hong; Chen, Ling-Ling; Xie, Kabin
2016-01-01
The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) system is a versatile tool for genome engineering that uses a guide RNA (gRNA) to target Cas9 to a specific sequence. This simple RNA-guided genome-editing technology has become a revolutionary tool in biology and has many innovative applications in different fields. In this review, we briefly introduce the Cas9-mediated genome-editing method, summarize the recent advances in CRISPR/Cas9 technology, and discuss their implications for plant research. To date, targeted gene knockout using the Cas9/gRNA system has been established in many plant species, and the targeting efficiency and capacity of Cas9 has been improved by optimizing its expression and that of its gRNA. The CRISPR/Cas9 system can also be used for sequence-specific mutagenesis/integration and transcriptional control of target genes. We also discuss off-target effects and the constraint that the protospacer-adjacent motif (PAM) puts on CRISPR/Cas9 genome engineering. To address these problems, a number of bioinformatic tools are available to help design specific gRNAs, and new Cas9 variants and orthologs with high fidelity and alternative PAM specificities have been engineered. Owing to these recent efforts, the CRISPR/Cas9 system is becoming a revolutionary and flexible tool for genome engineering. Adoption of the CRISPR/Cas9 technology in plant research would enable the investigation of plant biology at an unprecedented depth and create innovative applications in precise crop breeding. PMID:27252719
Surveyor assay to diagnose persistent Müllerian duct syndrome in Miniature Schnauzers.
Kim, Young June; Kwon, Hyuk Jin; Byun, Hyuk Soo; Yeom, Donguk; Choi, Jea-Hong; Kim, Joong-Hyun; Shim, Hosup
2017-12-31
Persistent Müllerian duct syndrome (PMDS) is a pseudohermaphroditism in males characterized by the presence of Müllerian duct derivatives. As PMDS dogs often lack clinical symptoms, a molecular diagnosis is essential to identify the syndrome in these animals. In this study, a new molecular method using DNA mismatch-specific Surveyor nuclease was developed. The Surveyor nuclease assay identified the AMHR2 mutation that produced PMDS in a Miniature Schnauzer as accurately as that obtained by using the conventional method based on restriction digestion. As an alternative to the current molecular diagnostic method, the new method may result in increased accuracy when detecting PMDS.
Surveyor assay to diagnose persistent Müllerian duct syndrome in Miniature Schnauzers
Kim, Young June; Kwon, Hyuk Jin; Byun, Hyuk Soo; Yeom, Donguk; Choi, Jea-Hong; Kim, Joong-Hyun
2017-01-01
Persistent Müllerian duct syndrome (PMDS) is a pseudohermaphroditism in males characterized by the presence of Müllerian duct derivatives. As PMDS dogs often lack clinical symptoms, a molecular diagnosis is essential to identify the syndrome in these animals. In this study, a new molecular method using DNA mismatch-specific Surveyor nuclease was developed. The Surveyor nuclease assay identified the AMHR2 mutation that produced PMDS in a Miniature Schnauzer as accurately as that obtained by using the conventional method based on restriction digestion. As an alternative to the current molecular diagnostic method, the new method may result in increased accuracy when detecting PMDS. PMID:27515263
Harrison, Melissa M.; Jenkins, Brian V.; O’Connor-Giles, Kate M.
2014-01-01
The CRISPR (clustered regularly interspaced short palindromic repeat)–Cas9 (CRISPR-associated nuclease 9) system is poised to transform developmental biology by providing a simple, efficient method to precisely manipulate the genome of virtually any developing organism. This RNA-guided nuclease (RGN)-based approach already has been effectively used to induce targeted mutations in multiple genes simultaneously, create conditional alleles, and generate endogenously tagged proteins. Illustrating the adaptability of RGNs, the genomes of >20 different plant and animal species as well as multiple cell lines and primary cells have been successfully modified. Here we review the current and potential uses of RGNs to investigate genome function during development. PMID:25184674
(NZ)CH...O contacts assist crystallization of a ParB-like nuclease.
Shaw, Neil; Cheng, Chongyun; Tempel, Wolfram; Chang, Jessie; Ng, Joseph; Wang, Xin-Yu; Perrett, Sarah; Rose, John; Rao, Zihe; Wang, Bi-Cheng; Liu, Zhi-Jie
2007-07-07
The major bottleneck for determination of 3 D structures of proteins using X-rays is the production of diffraction quality crystals. Often proteins are subjected to chemical modification to improve the chances of crystallization Here, we report the successful crystallization of a nuclease employing a reductive methylation protocol. The key to crystallization was the successful introduction of 44 new cohesive (NZ) CH...O contacts (3.2-3.7 A) by the addition of 2 methyl groups to the side chain amine nitrogen (NZ) of 9 lysine residues of the nuclease. The new contacts dramatically altered the crystallization properties of the protein, resulting in crystals that diffracted to 1.2 A resolution. Analytical ultracentrifugation analysis and thermodynamics results revealed a more compact protein structure with better solvent exclusion of buried Trp residues in the folded state of the methylated protein, assisting crystallization. In this study, introduction of novel cohesive (NZ)CH...O contacts by reductive methylation resulted in the crystallization of a protein that had previously resisted crystallization in spite of extensive purification and crystallization space screening. Introduction of (NZ)CH...O contacts could provide a solution to crystallization problems for a broad range of protein targets.
Structural insights into the functions of the FANCM-FAAP24 complex in DNA repair
Yang, Hui; Zhang, Tianlong; Tao, Ye; Wang, Fang; Tong, Liang; Ding, Jianping
2013-01-01
Fanconi anemia (FA) is a genetically heterogeneous disorder associated with deficiencies in the FA complementation group network. FA complementation group M (FANCM) and FA-associated protein 24 kDa (FAAP24) form a stable complex to anchor the FA core complex to chromatin in repairing DNA interstrand crosslinks. Here, we report the first crystal structure of the C-terminal segment of FANCM in complex with FAAP24. The C-terminal segment of FANCM and FAAP24 both consist of a nuclease domain at the N-terminus and a tandem helix-hairpin-helix (HhH)2 domain at the C-terminus. The FANCM-FAAP24 complex exhibits a similar architecture as that of ApXPF. However, the variations of several key residues and the electrostatic property at the active-site region render a catalytically inactive nuclease domain of FANCM, accounting for the lack of nuclease activity. We also show that the first HhH motif of FAAP24 is a potential binding site for DNA, which plays a critical role in targeting FANCM-FAAP24 to chromatin. These results reveal the mechanistic insights into the functions of FANCM-FAAP24 in DNA repair. PMID:24003026
Enhancing Targeted Genomic DNA Editing in Chicken Cells Using the CRISPR/Cas9 System
Wang, Ling; Yang, Likai; Guo, Yijie; Du, Weili; Yin, Yajun; Zhang, Tao; Lu, Hongzhao
2017-01-01
The CRISPR/Cas9 system has enabled highly efficient genome targeted editing for various organisms. However, few studies have focused on CRISPR/Cas9 nuclease-mediated chicken genome editing compared with mammalian genomes. The current study combined CRISPR with yeast Rad52 (yRad52) to enhance targeted genomic DNA editing in chicken DF-1 cells. The efficiency of CRISPR/Cas9 nuclease-induced targeted mutations in the chicken genome was increased to 41.9% via the enrichment of the dual-reporter surrogate system. In addition, the combined effect of CRISPR nuclease and yRad52 dramatically increased the efficiency of the targeted substitution in the myostatin gene using 50-mer oligodeoxynucleotides (ssODN) as the donor DNA, resulting in a 36.7% editing efficiency after puromycin selection. Furthermore, based on the effect of yRad52, the frequency of exogenous gene integration in the chicken genome was more than 3-fold higher than that without yRad52. Collectively, these results suggest that ssODN is an ideal donor DNA for targeted substitution and that CRISPR/Cas9 combined with yRad52 significantly enhances chicken genome editing. These findings could be extensively applied in other organisms. PMID:28068387
Design and Characterization of DNA Strand-Displacement Circuits in Serum-Supplemented Cell Medium.
Fern, Joshua; Schulman, Rebecca
2017-09-15
The functional stability and lifetimes of synthetic molecular circuits in biological environments are important for long-term, stable sensors or controllers of cell or tissue behavior. DNA-based molecular circuits, in particular DNA strand-displacement circuits, provide simple and effective biocompatible control mechanisms and sensors, but are vulnerable to digestion by nucleases present in living tissues and serum-supplemented cell culture. The stability of double-stranded and single-stranded DNA circuit components in serum-supplemented cell medium and the corresponding effect of nuclease-mediated degradation on circuit performance were characterized to determine the major routes of degradation and DNA strand-displacement circuit failure. Simple circuit design choices, such as the use of 5' toeholds within the DNA complexes used as reactants in the strand-displacement reactions and the termination of single-stranded components with DNA hairpin domains at the 3' termini, significantly increase the functional lifetime of the circuit components in the presence of nucleases. Simulations of multireaction circuits, guided by the experimentally measured operation of single-reaction circuits, enable predictive realization of multilayer and competitive-reaction circuit behavior. Together, these results provide a basic route to increased DNA circuit stability in cell culture environments.
Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster
Simoni, Alekos; Siniscalchi, Carla; Chan, Yuk-Sang; Huen, David S.; Russell, Steven; Windbichler, Nikolai; Crisanti, Andrea
2014-01-01
Selfish genes are DNA elements that increase their rate of genetic transmission at the expense of other genes in the genome and can therefore quickly spread within a population. It has been suggested that selfish elements could be exploited to modify the genome of entire populations for medical and ecological applications. Here we report that transcription activator-like effector nuclease (TALEN) and zinc finger nuclease (ZFN) can be engineered into site-specific synthetic selfish elements (SSEs) and demonstrate their transmission of up to 70% in the Drosophila germline. We show here that SSEs can spread via DNA break-induced homologous recombination, a process known as ‘homing’ similar to that observed for homing endonuclease genes (HEGs), despite their fundamentally different modes of DNA binding and cleavage. We observed that TALEN and ZFN have a reduced capability of secondary homing compared to HEG as their repetitive structure had a negative effect on their genetic stability. The modular architecture of ZFNs and TALENs allows for the rapid design of novel SSEs against specific genomic sequences making them potentially suitable for the genetic engineering of wild-type populations of animals and plants, in applications such as gene replacement or population suppression of pest species. PMID:24803674
Gillet, François-Xavier; Garcia, Rayssa A.; Macedo, Leonardo L. P.; Albuquerque, Erika V. S.; Silva, Maria C. M.; Grossi-de-Sa, Maria F.
2017-01-01
Genetically modified (GM) crops producing double-stranded RNAs (dsRNAs) are being investigated largely as an RNA interference (RNAi)-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil (Anthonomus grandis), we showed that the chimeric protein PTD-DRBD (peptide transduction domain—dsRNA binding domain) combined with dsRNA forms a ribonucleoprotein particle (RNP) that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests. PMID:28503153
Gillet, François-Xavier; Garcia, Rayssa A; Macedo, Leonardo L P; Albuquerque, Erika V S; Silva, Maria C M; Grossi-de-Sa, Maria F
2017-01-01
Genetically modified (GM) crops producing double-stranded RNAs (dsRNAs) are being investigated largely as an RNA interference (RNAi)-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil ( Anthonomus grandis ), we showed that the chimeric protein PTD-DRBD (peptide transduction domain-dsRNA binding domain) combined with dsRNA forms a ribonucleoprotein particle (RNP) that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests.
Design and Characterization of DNA Strand-Displacement Circuits in Serum-Supplemented Cell Medium
Fern, Joshua; Schulman, Rebecca
2017-05-30
The functional stability and lifetimes of synthetic molecular circuits in biological environments are important for long-term, stable sensors or controllers of cell or tissue behavior. DNA-based molecular circuits, particularly DNA strand-displacement circuits, provide simple and effective biocompatible control mechanisms and sensors, but are vulnerable to digestion by nucleases present in living tissues and serum-supplemented cell culture. The stability of double-stranded and single-stranded DNA circuit components in serum-supplemented cell medium and the corresponding effect of nuclease-mediated degradation on circuit performance were characterized to determine the major routes of degradation and DNA strand-displacement circuit failure. Simple circuit design choices, such as themore » use of 5' toeholds within the DNA complexes used as reactants in the strand-displacement reactions and the termination of single-stranded components with DNA hairpin domains at the 3' termini, significantly increase the functional lifetime of the circuit components in the presence of nucleases. Furthermore, simulations of multireaction circuits, guided by the experimentally measured operation of single-reaction circuits, enable predictive realization of multilayer and competitive-reaction circuit behavior. Altogether, these results provide a basic route to increased DNA circuit stability in cell culture environments.« less
Design and Characterization of DNA Strand-Displacement Circuits in Serum-Supplemented Cell Medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fern, Joshua; Schulman, Rebecca
The functional stability and lifetimes of synthetic molecular circuits in biological environments are important for long-term, stable sensors or controllers of cell or tissue behavior. DNA-based molecular circuits, particularly DNA strand-displacement circuits, provide simple and effective biocompatible control mechanisms and sensors, but are vulnerable to digestion by nucleases present in living tissues and serum-supplemented cell culture. The stability of double-stranded and single-stranded DNA circuit components in serum-supplemented cell medium and the corresponding effect of nuclease-mediated degradation on circuit performance were characterized to determine the major routes of degradation and DNA strand-displacement circuit failure. Simple circuit design choices, such as themore » use of 5' toeholds within the DNA complexes used as reactants in the strand-displacement reactions and the termination of single-stranded components with DNA hairpin domains at the 3' termini, significantly increase the functional lifetime of the circuit components in the presence of nucleases. Furthermore, simulations of multireaction circuits, guided by the experimentally measured operation of single-reaction circuits, enable predictive realization of multilayer and competitive-reaction circuit behavior. Altogether, these results provide a basic route to increased DNA circuit stability in cell culture environments.« less
Rapid screening for nuclear genes mutations in isolated respiratory chain complex I defects.
Pagniez-Mammeri, Hélène; Lombes, Anne; Brivet, Michèle; Ogier-de Baulny, Hélène; Landrieu, Pierre; Legrand, Alain; Slama, Abdelhamid
2009-04-01
Complex I or reduced nicotinamide adenine dinucleotide (NADH): ubiquinone oxydoreductase deficiency is the most common cause of respiratory chain defects. Molecular bases of complex I deficiencies are rarely identified because of the dual genetic origin of this multi-enzymatic complex (nuclear DNA and mitochondrial DNA) and the lack of phenotype-genotype correlation. We used a rapid method to screen patients with isolated complex I deficiencies for nuclear genes mutations by Surveyor nuclease digestion of cDNAs. Eight complex I nuclear genes, among the most frequently mutated (NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS7, NDUFS8, NDUFV1 and NDUFV2), were studied in 22 cDNA fragments spanning their coding sequences in 8 patients with a biochemically proved complex I deficiency. Single nucleotide polymorphisms and missense mutations were detected in 18.7% of the cDNA fragments by Surveyor nuclease treatment. Molecular defects were detected in 3 patients. Surveyor nuclease screening is a reliable method for genotyping nuclear complex I deficiencies, easy to interpret, and limits the number of sequence reactions. Its use will enhance the possibility of prenatal diagnosis and help us for a better understanding of complex I molecular defects.
CRISPR/Cas9-Mediated Mutagenesis of Human Pluripotent Stem Cells in Defined Xeno-Free E8 Medium.
Soh, Chew-Li; Huangfu, Danwei
2017-01-01
The recent advent of engineered nucleases including the CRISPR/Cas9 system has greatly facilitated genome manipulation in human pluripotent stem cells (hPSCs). In addition to facilitating hPSC-based disease studies, the application of genome engineering in hPSCs has also opened up new avenues for cell replacement therapy. To improve consistency and reproducibility of hPSC-based studies, and to meet the safety and regulatory requirements for clinical translation, it is necessary to use a defined, xeno-free cell culture system. This chapter describes protocols for CRISPR/Cas9 genome editing in an inducible Cas9 hPSC-based system, using cells cultured in chemically defined, xeno-free E8 Medium on a recombinant human vitronectin substrate. We detail procedures for the design and transfection of CRISPR guide RNAs, colony selection, and the expansion and validation of clonal mutant lines, all within this fully defined culture condition. These methods may be applied to a wide range of genome-engineering applications in hPSCs, including those that utilize different types of site-specific nucleases such as zinc finger nucleases (ZFNs) and TALENs, and form a closer step towards clinical utility of these cells.
CRISPR Genome Engineering for Human Pluripotent Stem Cell Research
Chaterji, Somali; Ahn, Eun Hyun; Kim, Deok-Ho
2017-01-01
The emergence of targeted and efficient genome editing technologies, such as repurposed bacterial programmable nucleases (e.g., CRISPR-Cas systems), has abetted the development of cell engineering approaches. Lessons learned from the development of RNA-interference (RNA-i) therapies can spur the translation of genome editing, such as those enabling the translation of human pluripotent stem cell engineering. In this review, we discuss the opportunities and the challenges of repurposing bacterial nucleases for genome editing, while appreciating their roles, primarily at the epigenomic granularity. First, we discuss the evolution of high-precision, genome editing technologies, highlighting CRISPR-Cas9. They exist in the form of programmable nucleases, engineered with sequence-specific localizing domains, and with the ability to revolutionize human stem cell technologies through precision targeting with greater on-target activities. Next, we highlight the major challenges that need to be met prior to bench-to-bedside translation, often learning from the path-to-clinic of complementary technologies, such as RNA-i. Finally, we suggest potential bioinformatics developments and CRISPR delivery vehicles that can be deployed to circumvent some of the challenges confronting genome editing technologies en route to the clinic. PMID:29158838
Design of nuclease-based target recycling signal amplification in aptasensors.
Yan, Mengmeng; Bai, Wenhui; Zhu, Chao; Huang, Yafei; Yan, Jiao; Chen, Ailiang
2016-03-15
Compared with conventional antibody-based immunoassay methods, aptasensors based on nucleic acid aptamer have made at least two significant breakthroughs. One is that aptamers are more easily used for developing various simple and rapid homogeneous detection methods by "sample in signal out" without multi-step washing. The other is that aptamers are more easily employed for developing highly sensitive detection methods by using various nucleic acid-based signal amplification approaches. As many substances playing regulatory roles in physiology or pathology exist at an extremely low concentration and many chemical contaminants occur in trace amounts in food or environment, aptasensors for signal amplification contribute greatly to detection of such targets. Among the signal amplification approaches in highly sensitive aptasensors, the nuclease-based target recycling signal amplification has recently become a research focus because it shows easy design, simple operation, and rapid reaction and can be easily developed for homogenous assay. In this review, we summarized recent advances in the development of various nuclease-based target recycling signal amplification with the aim to provide a general guide for the design of aptamer-based ultrasensitive biosensing assays. Copyright © 2015 Elsevier B.V. All rights reserved.
Apollo, an Artemis-related nuclease, interacts with TRF2 and protects human telomeres in S phase.
van Overbeek, Megan; de Lange, Titia
2006-07-11
Human chromosome ends are protected by shelterin, an abundant six-subunit protein complex that binds specifically to the telomeric-repeat sequences, regulates telomere length, and ensures that chromosome ends do not elicit a DNA-damage response (reviewed in). Using mass spectrometry of proteins associated with the shelterin component Rap1, we identified an SMN1/PSO2 nuclease family member that is closely related to Artemis. We refer to this protein as Apollo and report that Apollo has the ability to localize to telomeres through an interaction with the shelterin component TRF2. Although its low abundance at telomeres indicates that Apollo is not a core component of shelterin, Apollo knockdown with RNAi resulted in senescence and the activation of a DNA-damage signal at telomeres as evidenced by telomere-dysfunction-induced foci (TIFs). The TIFs occurred primarily in S phase, suggesting that Apollo contributes to a processing step associated with the replication of chromosome ends. Furthermore, some of the metaphase chromosomes showed two telomeric signals at single-chromatid ends, suggesting an aberrant telomere structure. We propose that the Artemis-like nuclease Apollo is a shelterin accessory factor required for the protection of telomeres during or after their replication.
The adnAB Locus, Encoding a Putative Helicase-Nuclease Activity, Is Essential in Streptomyces
Zhang, Lingli; Nguyen, Hoang Chuong; Chipot, Ludovic; Piotrowski, Emilie; Bertrand, Claire
2014-01-01
Homologous recombination is a crucial mechanism that repairs a wide range of DNA lesions, including the most deleterious ones, double-strand breaks (DSBs). This multistep process is initiated by the resection of the broken DNA ends by a multisubunit helicase-nuclease complex exemplified by Escherichia coli RecBCD, Bacillus subtilis AddAB, and newly discovered Mycobacterium tuberculosis AdnAB. Here we show that in Streptomyces, neither recBCD nor addAB homologues could be detected. The only putative helicase-nuclease-encoding genes identified were homologous to M. tuberculosis adnAB genes. These genes are conserved as a single copy in all sequenced genomes of Streptomyces. The disruption of adnAB in Streptomyces ambofaciens and Streptomyces coelicolor could not be achieved unless an ectopic copy was provided, indicating that adnAB is essential for growth. Both adnA and adnB genes were shown to be inducible in response to DNA damage (mitomycin C) and to be independently transcribed. Introduction of S. ambofaciens adnAB genes in an E. coli recB mutant restored viability and resistance to UV light, suggesting that Streptomyces AdnAB could be a functional homologue of RecBCD and be involved in DNA damage resistance. PMID:24837284
Cellular and molecular aspects of quinoa leaf senescence.
López-Fernández, María Paula; Burrieza, Hernán Pablo; Rizzo, Axel Joel; Martínez-Tosar, Leandro Julián; Maldonado, Sara
2015-09-01
During leaf senescence, degradation of chloroplasts precede to changes in nuclei and other cytoplasmic organelles, RuBisCO stability is progressively lost, grana lose their structure, plastidial DNA becomes distorted and degraded, the number of plastoglobuli increases and abundant senescence-associated vesicles containing electronically dense particles emerge from chloroplasts pouring their content into the central vacuole. This study examines quinoa leaf tissues during development and senescence using a range of well-established markers of programmed cell death (PCD), including: morphological changes in nuclei and chloroplasts, degradation of RuBisCO, changes in chlorophyll content, DNA degradation, variations in ploidy levels, and changes in nuclease profiles. TUNEL reaction and DNA electrophoresis demonstrated that DNA fragmentation in nuclei occurs at early senescence, which correlates with induction of specific nucleases. During senescence, metabolic activity is high and nuclei endoreduplicate, peaking at 4C. At this time, TEM images showed some healthy nuclei with condensed chromatin and nucleoli. We have found that DNA fragmentation, induction of senescence-associated nucleases and endoreduplication take place during leaf senescence. This provides a starting point for further research aiming to identify key genes involved in the senescence of quinoa leaves. Published by Elsevier Ireland Ltd.
Zhang, Qian; Zeng, Lei-Ping; Zhou, Peng; Irving, Aaron T; Li, Shang; Shi, Zheng-Li; Wang, Lin-Fa
2017-01-01
Bats are important reservoirs of many viruses, which are capable of infecting the host without inducing obvious clinical diseases. Interferon and the downstream interferon regulated genes (IRGs) are known to act as the first line of defense against viral infections. Little is known about the transcriptional profile of genes being induced by interferon in bats and their role in controlling virus infection. In this study, we constructed IFNAR2 knockout bat cell lines using CRISPR technology and further characterized gene expression profiles induced by the most abundant IFN-α (IFN-α3). Firstly, we demonstrated that the CRISPR/Cas9 system is applicable for bat cells as this represents the first CRIPSR knockout cell line for bats. Our results showed the pleiotropic effect of IFN-α3 on the bat kidney cell line, PaKiT03. As expected, we confirmed that IFNAR2 is indispensable for IFN-a signaling pathway and plays an important role in antiviral immunity. Unexpectedly, we also identified novel IFNAR2-dependent IRGs which are enriched in pathways related to cancer. To our knowledge, this seems to be bat-specific as no such observation has been reported for other mammalian species. This study expands our knowledge about bat immunology and the cell line established can provide a powerful tool for future study into virus-bat interaction and cancer biology.
Mouse Model for Human Arginase Deficiency
Iyer, Ramaswamy K.; Yoo, Paul K.; Kern, Rita M.; Rozengurt, Nora; Tsoa, Rosemarie; O'Brien, William E.; Yu, Hong; Grody, Wayne W.; Cederbaum, Stephen D.
2002-01-01
Deficiency of liver arginase (AI) causes hyperargininemia (OMIM 207800), a disorder characterized by progressive mental impairment, growth retardation, and spasticity and punctuated by sometimes fatal episodes of hyperammonemia. We constructed a knockout mouse strain carrying a nonfunctional AI gene by homologous recombination. Arginase AI knockout mice completely lacked liver arginase (AI) activity, exhibited severe symptoms of hyperammonemia, and died between postnatal days 10 and 14. During hyperammonemic crisis, plasma ammonia levels of these mice increased >10-fold compared to those for normal animals. Livers of AI-deficient animals showed hepatocyte abnormalities, including cell swelling and inclusions. Plasma amino acid analysis showed the mean arginine level in knockouts to be approximately fourfold greater than that for the wild type and threefold greater than that for heterozygotes; the mean proline level was approximately one-third and the ornithine level was one-half of the proline and ornithine levels, respectively, for wild-type or heterozygote mice—understandable biochemical consequences of arginase deficiency. Glutamic acid, citrulline, and histidine levels were about 1.5-fold higher than those seen in the phenotypically normal animals. Concentrations of the branched-chain amino acids valine, isoleucine, and leucine were 0.4 to 0.5 times the concentrations seen in phenotypically normal animals. In summary, the AI-deficient mouse duplicates several pathobiological aspects of the human condition and should prove to be a useful model for further study of the disease mechanism(s) and to explore treatment options, such as pharmaceutical administration of sodium phenylbutyrate and/or ornithine and development of gene therapy protocols. PMID:12052859
Iwanaga, Akiko; Sasaki, Akira
2004-04-01
A striking linear dominance relationship for uniparental mitochondrial transmission is known between many mating types of plasmodial slime mold Physarum polycephalum. We herein examine how such hierarchical cytoplasmic inheritance evolves in isogamous organisms with many self-incompatible mating types. We assume that a nuclear locus determines the mating type of gametes and that another nuclear locus controls the digestion of mitochondria DNAs (mtDNAs) of the recipient gamete after fusion. We then examine the coupled genetic dynamics for the evolution of self-incompatible mating types and biased mitochondrial transmission between them. In Physarum, a multiallelic nuclear locus matA controls both the mating type of the gametes and the selective elimination of the mtDNA in the zygotes. We theoretically examine two potential mechanisms that might be responsible for the preferential digestion of mitochondria in the zygote. In the first model, the preferential digestion of mitochondria is assumed to be the outcome of differential expression levels of a suppressor gene carried by each gamete (suppression-power model). In the second model (site-specific nuclease model), the digestion of mtDNAs is assumed to be due to their cleavage by a site-specific nuclease that cuts the mtDNA at unmethylated recognition sites. Also assumed is that the mtDNAs are methylated at the same recognition site prior to the fusion, thereby being protected against the nuclease of the same gamete, and that the suppressor alleles convey information for the recognition sequences of nuclease and methylase. In both models, we found that a linear dominance hierarchy evolves as a consequence of the buildup of a strong linkage disequilibrium between the mating-type locus and the suppressor locus, though it fails to evolve if the recombination rate between the two loci is larger than a threshold. This threshold recombination rate depends on the number of mating types and the degree of fitness reduction in the heteroplasmic zygotes. If the recombination rate is above the threshold, suppressor alleles are equally distributed in each mating type at evolutionary equilibrium. Based on the theoretical results of the site-specific nuclease model, we propose that a nested subsequence structure in the recognition sequence should underlie the linear dominance hierarchy of mitochondrial transmission.
Hatcher, James F; Swaminathan, Santhanam
2002-01-01
DNA adducts formed in human uroepithelial cells (HUC) following exposure to N-hydroxy-4-aminobiphenyl (N-OH-ABP), the proximate metabolite of the human bladder carcinogen 4-aminobiphenyl (ABP), were analyzed by the (32)P-postlabeling method. Two adducts detected by (32)P-postlabeling were previously identified as the 3',5'-bisphospho derivatives of N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP) and N-(deoxyadenosin-8-yl)-4-aminobiphenyl (dA-C8-ABP) (Frederickson S et al. [1992] Carcinogenesis 13: 955-961; Hatcher and Swaminathan [1995b] Carcinogenesis 16: 295-301). In contrast to the dG-C8-ABP adduct, which was 3'-dephosphorylated by nuclease P1, dA-C8-ABP was resistant to nuclease P1, thus providing an enrichment step before postlabeling. Autoradiography of the two-dimensional thin-layer chromatogram of the postlabeled products obtained following nuclease P1 digestion revealed several minor adducts, one of which has been identified in the present study. Postlabeling analyses following nuclease P1 digestion of the products obtained from the reaction of N-acetoxy-4-aminobiphenyl with deoxyguanosine-3'-monophosphate (dGp) demonstrated the presence of this minor adduct. The 3'-monophosphate derivative of the adduct was subsequently chromatographically purified and subjected to spectroscopic analyses. Based on proton NMR and mass spectroscopic analyses of the synthetic product, the chemical structure of the adduct has been identified as N-(deoxyguanosin-N(2)-yl)-4-azobiphenyl (dG-N==N-ABP). (32)P-Postlabeling analysis of the nuclease P1-enriched DNA hydrolysate of HUCs treated with N-OH-ABP or N-hydroxy-4-acetylaminobiphenyl (N-OH-AABP) showed the presence of the dG-N==N-ABP adduct. It was also detected in calf thymus DNA incubated with HUC cytosol and N-OH-ABP in the presence of acetyl-CoA, or incubated with HUC microsomes and N-OH-AABP. These results demonstrate that in the target cells for ABP carcinogenesis in vivo, N-OH-ABP and N-OH-AABP are bioactivated by acyltransferases to reactive arylnitrenium ions that covalently interact at the N2 position of deoxyguanosine in DNA. Copyright 2002 Wiley-Liss, Inc.
Saito, Shinta; Ura, Kiyoe; Kodama, Miho; Adachi, Noritaka
2015-06-30
Targeted gene modification by homologous recombination provides a powerful tool for studying gene function in cells and animals. In higher eukaryotes, non-homologous integration of targeting vectors occurs several orders of magnitude more frequently than does targeted integration, making the gene-targeting technology highly inefficient. For this reason, negative-selection strategies have been employed to reduce the number of drug-resistant clones associated with non-homologous vector integration, particularly when artificial nucleases to introduce a DNA break at the target site are unavailable or undesirable. As such, an exon-trap strategy using a promoterless drug-resistance marker gene provides an effective way to counterselect non-homologous integrants. However, constructing exon-trapping targeting vectors has been a time-consuming and complicated process. By virtue of highly efficient att-mediated recombination, we successfully developed a simple and rapid method to construct plasmid-based vectors that allow for exon-trapping gene targeting. These exon-trap vectors were useful in obtaining correctly targeted clones in mouse embryonic stem cells and human HT1080 cells. Most importantly, with the use of a conditionally cytotoxic gene, we further developed a novel strategy for negative selection, thereby enhancing the efficiency of counterselection for non-homologous integration of exon-trap vectors. Our methods will greatly facilitate exon-trapping gene-targeting technologies in mammalian cells, particularly when combined with the novel negative selection strategy.
Qi, Li; Tang, Yong-Gang; Wang, Lin; He, Wei; Pan, Hong-Hua; Nie, Rong-Rong; Can, Yan
2016-11-15
The present study aims to elucidate the role of Rho-mediated ROCK-Semaphorin3A signaling pathway in the pathogenesis of Parkinson's disease (PD) in a mouse model. One-hundred twelve eight-week male C57BL/6 mice were selected. The mouse model of PD was constructed by intraperitoneal injection of MPTP. All mice were divided into four groups (28 mice in each group): Blank group, Model group, Rho knockout (Rho+/-) group and ROCK knockout (ROCK+/-) group. Changes of behavior of the mice were studied through automatic moving test and rotarod test. Immunohistochemistry (IHC) was used to detect the expressions of TH, CD11b and GFAP. High performance liquid chromatograph (HPLC) was performed for detection of dopamine and its metabolic product. The mRNA and protein expressions of Rho, ROCK, Sema3A, PlexinA and NRP-1 were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Rho and ROCK knockout improved the damage caused by MPTP on the behavior of mice and protected dopaminergic neurons from injury, along with the increases of dopamine and its metabolic product. The mRNA and protein expressions of Rho, ROCK, Sema3A, PlexinA and NRP-1 were increased in PD mice in the Model group compared with those in the Blank group. Compared to the Model group, the mRNA and protein expressions of Rho, ROCK, Sema3A, PlexinA and NRP-1 were reduced in the Rho+/- and ROCK+/- groups. These findings indicate that Rho and ROCK knockout may improve the behavior of mice and prevent MPTP-induced dopaminergic neurons damage by regulating Sema3A, PlexinA and NRP-1 in a mouse model of PD. Copyright © 2016 Elsevier B.V. All rights reserved.
Saranathan, Rajagopalan; Pagal, Sudhakar; Sawant, Ajit R; Tomar, Archana; Madhangi, M; Sah, Suresh; Satti, Annapurna; Arunkumar, K P; Prashanth, K
2017-10-03
Acinetobacter baumannii is an important human pathogen and considered as a major threat due to its extreme drug resistance. In this study, the genome of a hyper-virulent MDR strain PKAB07 of A. baumannii isolated from an Indian patient was sequenced and analyzed to understand its mechanisms of virulence, resistance and evolution. Comparative genome analysis of PKAB07 revealed virulence and resistance related genes scattered throughout the genome, instead of being organized as an island, indicating the highly mosaic nature of the genome. Many intermittent horizontal gene transfer events, insertion sequence (IS) element insertions identified were augmenting resistance machinery and elevating the SNP densities in A. baumannii eventually aiding in their swift evolution. ISAba1, the most widely distributed insertion sequence in A. baumannii was found in multiple sites in PKAB07. Out of many ISAba1 insertions, we identified novel insertions in 9 different genes wherein insertional inactivation of adeN (tetR type regulator) was significant. To assess the significance of this disruption in A. baumannii, adeN mutant and complement strains were constructed in A. baumannii ATCC 17978 strain and studied. Biofilm levels were abrogated in the adeN knockout when compared with the wild type and complemented strain of adeN knockout. Virulence of the adeN knockout mutant strain was observed to be high, which was validated by in vitro experiments and Galleria mellonella infection model. The overexpression of adeJ, a major component of AdeIJK efflux pump observed in adeN knockout strain could be the possible reason for the elevated virulence in adeN mutant and PKB07 strain. Knocking out of adeN in ATCC strain led to increased resistance and virulence at par with the PKAB07. Disruption of tetR type regulator adeN by ISAba1 consequently has led to elevated virulence in this pathogen.
Katayama, Takuya; Tanaka, Yuki; Okabe, Tomoya; Nakamura, Hidetoshi; Fujii, Wataru; Kitamoto, Katsuhiko; Maruyama, Jun-Ichi
2016-04-01
To develop a genome editing method using the CRISPR/Cas9 system in Aspergillus oryzae, the industrial filamentous fungus used in Japanese traditional fermentation and for the production of enzymes and heterologous proteins. To develop the CRISPR/Cas9 system as a genome editing technique for A. oryzae, we constructed plasmids expressing the gene encoding Cas9 nuclease and single guide RNAs for the mutagenesis of target genes. We introduced these into an A. oryzae strain and obtained transformants containing mutations within each target gene that exhibited expected phenotypes. The mutational rates ranged from 10 to 20 %, and 1 bp deletions or insertions were the most commonly induced mutations. We developed a functional and versatile genome editing method using the CRISPR/Cas9 system in A. oryzae. This technique will contribute to the use of efficient targeted mutagenesis in many A. oryzae industrial strains.
Park, Jong-Jin; Yoo, Chang Geun; Flanagan, Amy; Pu, Yunqiao; Debnath, Smriti; Ge, Yaxin; Ragauskas, Arthur J; Wang, Zeng-Yu
2017-01-01
The development of genome editing technologies offers new prospects in improving bioenergy crops like switchgrass ( Panicum virgatum ). Switchgrass is an outcrossing species with an allotetraploid genome (2 n = 4 x = 36), a complexity which forms an impediment to generating homozygous knock-out plants. Lignin, a major component of the plant cell wall and a contributor to cellulosic feedstock's recalcitrance to decomposition, stands as a barrier to efficient biofuel production by limiting enzyme access to cell wall polymers during the fermentation process. We developed a CRISPR/Cas9 genome editing system in switchgrass to target a key enzyme involved in the early steps of monolignol biosynthesis, 4-Coumarate:coenzyme A ligase (4CL). Three 4CL genes, Pv4CL1 , Pv4CL2, and Pv4CL3 , were identified in switchgrass. Expression analysis revealed that Pv4CL1 transcripts were more abundant in the stem than in the leaf, while Pv4CL2 transcripts were barely detectable and Pv4CL3 was mainly expressed in the leaf. Pv4CL1 was selected as the target for CRISPR/Cas9 editing because of its preferential expression in highly lignified stem tissues. Specific guide RNA was constructed to target Pv4CL1 . After introducing the construct into switchgrass calli, 39 transgenic plants were regenerated. Using two rounds of PCR screening and sequencing, four plants were confirmed to have tetra-allelic mutations simultaneously. The Pv4CL1 knock-out plants had reduced cell wall thickness, an 8-30% reduction in total lignin content, a 7-11% increase in glucose release, and a 23-32% increase in xylose release. This study established a successful CRISPR/Cas9 system in switchgrass with mutation efficiency reaching 10%. The system allows the precise targeting of the selected Pv4CL1 gene to create switchgrass knock-out mutant plants with decreased lignin content and reduced recalcitrance.
Klein, Janet D; Wang, Yanhua; Mistry, Abinash; LaRocque, Lauren M; Molina, Patrick A; Rogers, Richard T; Blount, Mitsi A; Sands, Jeff M
2016-05-01
Urea has a critical role in urinary concentration. Mice lacking the inner medullary collecting duct (IMCD) urea transporter A1 (UT-A1) and urea transporter A3 (UT-A3) have very low levels of urea permeability and are unable to concentrate urine. To investigate the role of UT-A1 in the concentration of urine, we transgenically expressed UT-A1 in knockout mice lacking UT-A1 and UT-A3 using a construct with a UT-A1 gene that cannot be spliced to produce UT-A3. This construct was inserted behind the original UT-A promoter to yield a mouse expressing only UT-A1 (UT-A1(+/+)/UT-A3(-/-)). Western blot analysis demonstrated UT-A1 in the inner medulla of UT-A1(+/+)/UT-A3(-/-) and wild-type mice, but not in UT-A1/UT-A3 knockout mice, and an absence of UT-A3 in UT-A1(+/+)/UT-A3(-/-) and UT-A1/UT-A3 knockout mice. Immunohistochemistry in UT-A1(+/+)/UT-A3(-/-) mice also showed negative UT-A3 staining in kidney and other tissues and positive UT-A1 staining only in the IMCD. Urea permeability in isolated perfused IMCDs showed basal permeability in the UT-A1(+/+)/UT-A3(-/-) mice was similar to levels in wild-type mice, but vasopressin stimulation of urea permeability in wild-type mice was significantly greater (100% increase) than in UT-A1(+/+)/UT-A3(-/-) mice (8% increase). Notably, basal urine osmolalities in both wild-type and UT-A1(+/+)/UT-A3(-/-) mice increased upon overnight water restriction. We conclude that transgenic expression of UT-A1 restores basal urea permeability to the level in wild-type mice but does not restore vasopressin-stimulated levels of urea permeability. This information suggests that transgenic expression of UT-A1 alone in mice lacking UT-A1 and UT-A3 is sufficient to restore urine-concentrating ability. Copyright © 2016 by the American Society of Nephrology.
Wang, Yanhua; Mistry, Abinash; LaRocque, Lauren M.; Molina, Patrick A.; Rogers, Richard T.; Blount, Mitsi A.; Sands, Jeff M.
2016-01-01
Urea has a critical role in urinary concentration. Mice lacking the inner medullary collecting duct (IMCD) urea transporter A1 (UT-A1) and urea transporter A3 (UT-A3) have very low levels of urea permeability and are unable to concentrate urine. To investigate the role of UT-A1 in the concentration of urine, we transgenically expressed UT-A1 in knockout mice lacking UT-A1 and UT-A3 using a construct with a UT-A1 gene that cannot be spliced to produce UT-A3. This construct was inserted behind the original UT-A promoter to yield a mouse expressing only UT-A1 (UT-A1+/+/UT-A3−/−). Western blot analysis demonstrated UT-A1 in the inner medulla of UT-A1+/+/UT-A3−/− and wild-type mice, but not in UT-A1/UT-A3 knockout mice, and an absence of UT-A3 in UT-A1+/+/UT-A3−/− and UT-A1/UT-A3 knockout mice. Immunohistochemistry in UT-A1+/+/UT-A3−/− mice also showed negative UT-A3 staining in kidney and other tissues and positive UT-A1 staining only in the IMCD. Urea permeability in isolated perfused IMCDs showed basal permeability in the UT-A1+/+/UT-A3−/− mice was similar to levels in wild-type mice, but vasopressin stimulation of urea permeability in wild-type mice was significantly greater (100% increase) than in UT-A1+/+/UT-A3−/− mice (8% increase). Notably, basal urine osmolalities in both wild-type and UT-A1+/+/UT-A3−/− mice increased upon overnight water restriction. We conclude that transgenic expression of UT-A1 restores basal urea permeability to the level in wild-type mice but does not restore vasopressin-stimulated levels of urea permeability. This information suggests that transgenic expression of UT-A1 alone in mice lacking UT-A1 and UT-A3 is sufficient to restore urine-concentrating ability. PMID:26407594
Rhodes, M E; Rubin, R T; McKlveen, J M; Karwoski, T E; Fulton, B A; Czambel, R K
2008-05-01
Both within the brain and in the periphery, M(1) muscarinic receptors function primarily as postsynaptic receptors and M(2) muscarinic receptors function primarily as presynaptic autoreceptors. In addition to classical parasympathetic effectors, cholinergic stimulation of central muscarinic receptors influences the release of adrenocorticotrophic hormone (ACTH) and corticosterone. We previously reported that oxotremorine administration to male and female M(2) receptor knockout and wild-type mice increased ACTH to a significantly greater degree in knockout males compared to all other groups, and that M(2) knockout mice of both sexes were significantly more responsive to the mild stress of saline injection than were wild-type mice. These results accord with the primary function of M(2) receptors as presynaptic autoreceptors. In the present study, we explored the role of the M(1) receptor in pituitary-adrenal responses to oxotremorine and saline in male and female M(1) knockout and wild-type mice. Because these mice responded differently to the mild stress of saline injection than did the M(2) knockout and wild-type mice, we also determined hormone responses to restraint stress in both M(1) and M(2) knockout and wild-type mice. Male and female M(1) knockout and wild-type mice were equally unresponsive to the stress of saline injection. Oxotremorine increased both ACTH and corticosterone in M(1) wild-type mice to a significantly greater degree than in knockout mice. In both M(1) knockout and wild-type animals, ACTH responses were greater in males compared to females, and corticosterone responses were greater in females compared to males. Hormone responses to restraint stress were increased in M(2) knockout mice and decreased in M(1) knockout mice compared to their wild-type counterparts. These findings suggest that M(1) and M(2) muscarinic receptor subtypes differentially influence male and female pituitary-adrenal responses to cholinergic stimulation and stress. The decreased pituitary-adrenal sensitivity to oxotremorine and restraint stress noted in M(1) knockout mice is consistent with M(1) being primarily a postsynaptic receptor. Conversely, the increased pituitary-adrenal sensitivity to these challenges noted in M(2) knockout mice is consistent with M(2) being primarily a presynaptic autoreceptor.
2000-01-01
various organs and to sites of inflammation. They may have additional functions. For example analysis of CXCR4 knockout mice show that CXCR4, which...SDF-1 knockout mice had similar phenotypes (195). Homozygous knockout of CXCR4 or SDF-1 results in embyonic lethality. Though CCR5 appears to be...dispensable, other chemokine receptors have vital functions. CXCR5 knockout mice have B-cell homing defects (118), and CXCR2 knockout mice
Disruption or Excision of Provirus as an Approach to HIV Cure.
Jerome, Keith R
2016-12-01
An effective approach to HIV cure will almost certainly require a combination of strategies, including some means of reducing the latent HIV reservoir. Because the integrated HIV provirus represents the major source of viral persistence and reactivation, one attractive approach is the direct targeting of provirus for disruption or excision using targeted endonucleases, such as CRISPR/Cas9, zinc finger nucleases, TAL effector nucleases, or meganucleases (homing endonucleases). This article highlights some of the challenges for successful endonuclease therapy for HIV, including optimization of enzyme activity and specificity, the possible emergence of viral resistance, and most importantly, efficient in vivo delivery of the enzymes to a sufficient portion of the latent reservoir.
Zinc finger nuclease technology: advances and obstacles in modelling and treating genetic disorders.
Jabalameli, Hamid Reza; Zahednasab, Hamid; Karimi-Moghaddam, Amin; Jabalameli, Mohammad Reza
2015-03-01
Zinc finger nucleases (ZFNs) are engineered restriction enzymes designed to target specific DNA sequences within the genome. Assembly of zinc finger DNA-binding domain to a DNA-cleavage domain enables the enzyme machinery to target unique locus in the genome and invoke endogenous DNA repair mechanisms. This machinery offers a versatile approach in allele editing and gene therapy. Here we discuss the architecture of ZFNs and strategies for generating targeted modifications within the genome. We review advances in gene therapy and modelling of the disease using these enzymes and finally, discuss the practical obstacles in using this technology. Copyright © 2014 Elsevier B.V. All rights reserved.
FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair.
Liu, Ting; Ghosal, Gargi; Yuan, Jingsong; Chen, Junjie; Huang, Jun
2010-08-06
Fanconi anemia (FA) is caused by mutations in 13 Fanc genes and renders cells hypersensitive to DNA interstrand cross-linking (ICL) agents. A central event in the FA pathway is mono-ubiquitylation of the FANCI-FANCD2 (ID) protein complex. Here, we characterize a previously unrecognized nuclease, Fanconi anemia-associated nuclease 1 (FAN1), that promotes ICL repair in a manner strictly dependent on its ability to accumulate at or near sites of DNA damage and that relies on mono-ubiquitylation of the ID complex. Thus, the mono-ubiquitylated ID complex recruits the downstream repair protein FAN1 and facilitates the repair of DNA interstrand cross-links.
Musharova, Olga; Klimuk, Evgeny; Datsenko, Kirill A; Metlitskaya, Anastasia; Logacheva, Maria; Semenova, Ekaterina; Severinov, Konstantin; Savitskaya, Ekaterina
2017-04-07
During primed CRISPR adaptation spacers are preferentially selected from DNA recognized by CRISPR interference machinery, which in the case of Type I CRISPR-Cas systems consists of CRISPR RNA (crRNA) bound effector Cascade complex that locates complementary targets, and Cas3 executor nuclease/helicase. A complex of Cas1 and Cas2 proteins is capable of inserting new spacers in the CRISPR array. Here, we show that in Escherichia coli cells undergoing primed adaptation, spacer-sized fragments of foreign DNA are associated with Cas1. Based on sensitivity to digestion with nucleases, the associated DNA is not in a standard double-stranded state. Spacer-sized fragments are cut from one strand of foreign DNA in Cas1- and Cas3-dependent manner. These fragments are generated from much longer S1-nuclease sensitive fragments of foreign DNA that require Cas3 for their production. We propose that in the course of CRISPR interference Cas3 generates fragments of foreign DNA that are recognized by the Cas1-Cas2 adaptation complex, which excises spacer-sized fragments and channels them for insertion into CRISPR array. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
New traits in crops produced by genome editing techniques based on deletions.
van de Wiel, C C M; Schaart, J G; Lotz, L A P; Smulders, M J M
2017-01-01
One of the most promising New Plant Breeding Techniques is genome editing (also called gene editing) with the help of a programmable site-directed nuclease (SDN). In this review, we focus on SDN-1, which is the generation of small deletions or insertions (indels) at a precisely defined location in the genome with zinc finger nucleases (ZFN), TALENs, or CRISPR-Cas9. The programmable nuclease is used to induce a double-strand break in the DNA, while the repair is left to the plant cell itself, and mistakes are introduced, while the cell is repairing the double-strand break using the relatively error-prone NHEJ pathway. From a biological point of view, it could be considered as a form of targeted mutagenesis. We first discuss improvements and new technical variants for SDN-1, in particular employing CRISPR-Cas, and subsequently explore the effectiveness of targeted deletions that eliminate the function of a gene, as an approach to generate novel traits useful for improving agricultural sustainability, including disease resistances. We compare them with examples of deletions that resulted in novel functionality as known from crop domestication and classical mutation breeding (both using radiation and chemical mutagens). Finally, we touch upon regulatory and access and benefit sharing issues regarding the plants produced.
Use of a fluorogenic probe in a PCR-based assay for the detection of Listeria monocytogenes.
Bassler, H A; Flood, S J; Livak, K J; Marmaro, J; Knorr, R; Batt, C A
1995-10-01
A PCR-based assay for Listeria monocytogenes that uses the hydrolysis of an internal fluorogenic probe to monitor the amplification of the target has been formatted. The fluorogenic 5' nuclease PCR assay takes advantage of the endogenous 5' --> 3' nuclease activity of Taq DNA polymerase to digest a probe which is labelled with two fluorescent dyes and hybridizes to the amplicon during PCR. When the probe is intact, the two fluorophores interact such that the emission of the reporter dye is quenched. During amplification, the probe is hydrolyzed, relieving the quenching of the reporter and resulting in an increase in its fluorescence intensity. This change in reporter dye fluorescence is quantitative for the amount of PCR product and, under appropriate conditions, for the amount of template. We have applied the fluorogenic 5' nuclease PCR assay to detect L. monocytogenes, using an 858-bp amplicon of hemolysin (hlyA) as the target. Maximum sensitivity was achieved by evaluating various fluorogenic probes and then optimizing the assay components and cycling parameters. With crude cell lysates, the total assay could be completed in 3 h with a detection limit of approximately 50 CFU. Quantification was linear over a range of 5 x 10(1) to 5 x 10(5) CFU.
Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster.
Simoni, Alekos; Siniscalchi, Carla; Chan, Yuk-Sang; Huen, David S; Russell, Steven; Windbichler, Nikolai; Crisanti, Andrea
2014-06-01
Selfish genes are DNA elements that increase their rate of genetic transmission at the expense of other genes in the genome and can therefore quickly spread within a population. It has been suggested that selfish elements could be exploited to modify the genome of entire populations for medical and ecological applications. Here we report that transcription activator-like effector nuclease (TALEN) and zinc finger nuclease (ZFN) can be engineered into site-specific synthetic selfish elements (SSEs) and demonstrate their transmission of up to 70% in the Drosophila germline. We show here that SSEs can spread via DNA break-induced homologous recombination, a process known as 'homing' similar to that observed for homing endonuclease genes (HEGs), despite their fundamentally different modes of DNA binding and cleavage. We observed that TALEN and ZFN have a reduced capability of secondary homing compared to HEG as their repetitive structure had a negative effect on their genetic stability. The modular architecture of ZFNs and TALENs allows for the rapid design of novel SSEs against specific genomic sequences making them potentially suitable for the genetic engineering of wild-type populations of animals and plants, in applications such as gene replacement or population suppression of pest species. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Precision Genome Editing for Treating Single-gene Disorders
NASA Astrophysics Data System (ADS)
Bao, Gang
There are an estimated 6,000 human single-gene disorders, most of them have no cure. This imposes a significant burden on human health worldwide. The recent advent in developing engineered nucleases, especially CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeats and CRISPR-associated protein 9) systems provides a powerful tool for precisely modifying the human genome, thus revolutionizing the treatment of single-gene disorders. In this talk, I will present recent work in my lab on developing new tools and methods for the design and optimization of CRISPR/Cas9 systems, and the efforts in developing a clinically applicable gene correction strategy for treating sickle cell disease (SCD), which is the first single-gene disorder with molecular understanding. We optimized CRISPR/Cas9 systems targeting the beta-globin gene, and systematically evaluated their on- and off-target cleavage in different cells. We also quantified the nuclease-induced gene modification rates in CD34+ cells from SCD patients, and demonstrated that CRISPR/Cas9 based genome editing is effective in generating normal hemoglobin (HbA) and reducing sickling hemoglobin (HbS). These studies significantly facilitated our pre-clinical investigation of SCD treatment using CRISPR/Cas9 and donor templates. The opportunities and challenges in developing nuclease-based genome editing strategies for treating single-gene disorders are discussed.
Detection of Yersinia pestis using real-time PCR in patients with suspected bubonic plague.
Riehm, Julia M; Rahalison, Lila; Scholz, Holger C; Thoma, Bryan; Pfeffer, Martin; Razanakoto, Léa Mamiharisoa; Al Dahouk, Sascha; Neubauer, Heinrich; Tomaso, Herbert
2011-02-01
Yersinia (Y.) pestis, the causative agent of plague, is endemic in natural foci of Asia, Africa, and America. Real-time PCR assays have been described as rapid diagnostic tools, but so far none has been validated for its clinical use. In a retrospective clinical study we evaluated three real-time PCR assays in two different assay formats, 5'-nuclease and hybridization probes assays. Lymph node aspirates from 149 patients from Madagascar with the clinical diagnosis of bubonic plague were investigated for the detection of Y. pestis DNA. Results of real-time PCR assays targeting the virulence plasmids pPCP1 (pla gene), and pMT1 (caf1, Ymt genes) were compared with an F1-antigen immunochromatographic test (ICT) and cultivation of the organism. Out of the 149 samples an infection with Y. pestis was confirmed by culture in 47 patients while ICT was positive in 88 including all culture proven cases. The best real-time PCR assay was the 5'-nuclease assay targeting pla which was positive in 120 cases. In conclusion, the 5'-nuclease assay targeting pla can be recommended as diagnostic tool for establishing a presumptive diagnosis when bubonic plague is clinically suspected. Copyright © 2010 Elsevier Ltd. All rights reserved.
Secondary structure prediction and structure-specific sequence analysis of single-stranded DNA.
Dong, F; Allawi, H T; Anderson, T; Neri, B P; Lyamichev, V I
2001-08-01
DNA sequence analysis by oligonucleotide binding is often affected by interference with the secondary structure of the target DNA. Here we describe an approach that improves DNA secondary structure prediction by combining enzymatic probing of DNA by structure-specific 5'-nucleases with an energy minimization algorithm that utilizes the 5'-nuclease cleavage sites as constraints. The method can identify structural differences between two DNA molecules caused by minor sequence variations such as a single nucleotide mutation. It also demonstrates the existence of long-range interactions between DNA regions separated by >300 nt and the formation of multiple alternative structures by a 244 nt DNA molecule. The differences in the secondary structure of DNA molecules revealed by 5'-nuclease probing were used to design structure-specific probes for mutation discrimination that target the regions of structural, rather than sequence, differences. We also demonstrate the performance of structure-specific 'bridge' probes complementary to non-contiguous regions of the target molecule. The structure-specific probes do not require the high stringency binding conditions necessary for methods based on mismatch formation and permit mutation detection at temperatures from 4 to 37 degrees C. Structure-specific sequence analysis is applied for mutation detection in the Mycobacterium tuberculosis katG gene and for genotyping of the hepatitis C virus.
[The research advances and applications of genome editing in hereditary eye diseases].
Cai, S W; Zhang, Y; Hou, M Z; Liu, Y; Li, X R
2017-05-11
Genome editing is a cutting-edge technology that generates DNA double strand breaks at the specific genomic DNA sequence through nuclease recognition and cleavage, and then achieves insertion, replacement, or deletion of the target gene via endogenous DNA repair mechanisms, such as non-homologous end joining, homology directed repair, and homologous recombination. So far, more than 600 human hereditary eye diseases and systemic hereditary diseases with ocular phenotypes have been found. However, most of these diseases are of incompletely elucidated pathogenesis and without effective therapies. Genome editing technology can precisely target and alter the genomes of animals, establish animal models of the hereditary diseases, and elucidate the relationship between the target gene and the disease phenotype, thereby providing a powerful approach to studying the pathogenic mechanisms underlying the hereditary eye diseases. In addition, correction of gene mutations by the genome editing brings a new hope to gene therapy for the hereditary eye diseases. This review introduces the molecular characteristics of 4 major enzymes used in the genome editing, including homing endonucleases, zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated protein 9 (Cas9), and summarizes the current applications of this technology in investigating the pathogenic mechanisms underlying the hereditary eye diseases. (Chin J Ophthalmol, 2017, 53: 386-371 ) .
Generation of TALE-Based Designer Epigenome Modifiers.
Nitsch, Sandra; Mussolino, Claudio
2018-01-01
Manipulation of gene expression can be facilitated by editing the genome or the epigenome. Precise genome editing is traditionally achieved by using designer nucleases which are generally exploited to eliminate a specific gene product. Upon the introduction of a site-specific DNA double-strand break (DSB) by the nuclease, endogenous DSB repair mechanisms are in turn harnessed to induce DNA sequence changes that can result in target gene inactivation. Minimal off-target effects can be obtained by endowing designer nucleases with the highly specific DNA-binding domain (DBD) derived from transcription activator-like effectors (TALEs). In contrast, epigenome editing allows gene expression control without inducing changes in the DNA sequence by specifically altering epigenetic marks, as histone tails modifications or DNA methylation patterns within promoter or enhancer regions. Importantly, this approach allows both up- and downregulation of the target gene expression, and the effect is generally reversible. TALE-based designer epigenome modifiers combine the high specificity of TALE-derived DBDs with the power of epigenetic modifier domains to induce fast and long-lasting changes in the epigenetic landscape of a target gene and control its expression. Here we provide a detailed description for the generation of TALE-based designer epigenome modifiers and of a suitable reporter cell line to easily monitor their activity.
TALE-PvuII fusion proteins--novel tools for gene targeting.
Yanik, Mert; Alzubi, Jamal; Lahaye, Thomas; Cathomen, Toni; Pingoud, Alfred; Wende, Wolfgang
2013-01-01
Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity.
Big Data and Genome Editing Technology: A New Paradigm of Cardiovascular Genomics.
Krittanawong, Chayakrit; Sun, Tao; Herzog, Eyal
2017-01-01
Opinion Statements: Cardiovascular diseases (CVDs) encompass a range of conditions extending from congenital heart disease to acute coronary syndrome most of which are heterogenous in nature and some of them are multiple genetic loci. However, the pathogenesis of most CVDs remains incompletely understood. The advance in genome-editing technologies, an engineering process of DNA sequences at precise genomic locations, has enabled a new paradigm that human genome can be precisely modified to achieve a therapeutic effect. Genome-editing includes the correction of genetic variants that cause disease, the addition of therapeutic genes to specific sites in the genomic locations, and the removal of deleterious genes or genome sequences. Site-specific genome engineering can be used as nucleases (known as molecular scissors) including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) systems to provide remarkable opportunities for developing novel therapies in cardiovascular clinical care. Here we discuss genetic polymorphisms and mechanistic insights in CVDs with an emphasis on the impact of genome-editing technologies. The current challenges and future prospects for genomeediting technologies in cardiovascular medicine are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Surveyor nuclease detection of mutations and polymorphisms of mtDNA in children.
Pilch, Jacek; Asman, Marek; Jamroz, Ewa; Kajor, Maciej; Kotrys-Puchalska, Elżbieta; Goss, Małgorzata; Krzak, Maria; Witecka, Joanna; Gmiński, Jan; Sieroń, Aleksander L
2010-11-01
Mitochondrial encephalomyopathies are complex disorders with wide range of clinical manifestations. Particularly time-consuming is the identification of mutations in mitochondrial DNA. A group of 20 children with clinical manifestations of mitochondrial encephalomyopathies was selected for molecular studies. The aims were (a) to identify mutations in mtDNA isolated from muscle and (b) to verify detected mutations in DNA isolated from blood, in order to assess the utility of a Surveyor nuclease assay kit for patient screening. The most common changes found were polymorphisms, including a few missense mutations altering the amino acid sequence of mitochondrial proteins. In two boys with MELAS (i.e., mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes), a mutation A→G3243 was detected in the tRNALeu gene of mtDNA isolated from muscle and blood. In one boy, the carrier status of his mother was confirmed, based on molecular analysis of DNA isolated from blood. A method using Surveyor nuclease allows systematic screening for small mutations in mtDNA, using as its source blood of the patients and asymptomatic carriers. The method still requires confirmation studying a larger group. In some patients, the use of this method should precede and might limit indications for traumatic muscle and skin biopsy. Copyright © 2010 Elsevier Inc. All rights reserved.
Germline modification of domestic animals
Tang, L.; González, R.; Dobrinski, I.
2016-01-01
Genetically-modified domestic animal models are of increasing significance in biomedical research and agriculture. As authentic ES cells derived from domestic animals are not yet available, the prevailing approaches for engineering genetic modifications in those animals are pronuclear microinjection and somatic cell nuclear transfer (SCNT, also known as cloning). Both pronuclear microinjection and SCNT are inefficient, costly, and time-consuming. In animals produced by pronuclear microinjection, the exogenous transgene is usually inserted randomly into the genome, which results in highly variable expression patterns and levels in different founders. Therefore, significant efforts are required to generate and screen multiple founders to obtain animals with optimal transgene expression. For SCNT, specific genetic modifications (both gain-of-function and loss-of-function) can be engineered and carefully selected in the somatic cell nucleus before nuclear transfer. SCNT has been used to generate a variety of genetically modified animals such as goats, pigs, sheep and cattle; however, animals resulting from SCNT frequently suffer from developmental abnormalities associated with incomplete nuclear reprogramming. Other strategies to generate genetically-modified animals rely on the use of the spermatozoon as a natural vector to introduce genetic material into the female gamete. This sperm mediated DNA transfer (SMGT) combined with intracytoplasmatic sperm injection (ICSI) has relatively high efficiency and allows the insertion of large DNA fragments, which, in turn, enhance proper gene expression. An approach currently being developed to complement SCNT for producing genetically modified animals is germ cell transplantation using genetically modified male germline stem cells (GSCs). This approach relies on the ability of GSCs that are genetically modified in vitro to colonize the recipient testis and produce donor derived sperm upon transplantation. As the genetic change is introduced into the male germ line just before the onset of spermatogenesis, the time required for the production of genetically modified sperm is significantly shorter using germ cell transplantation compared to cloning or embryonic stem (ES) cell based technology. Moreover, the GSC-mediated germline modification circumvents problems associated with embryo manipulation and nuclear reprogramming. Currently, engineering targeted mutations in domestic animals using GSCs remains a challenge as GSCs from those animals are difficult to maintain in vitro for an extended period of time. Recent advances in genome editing techniques such as Zinc-Finger Nucleases (ZFNs), Transcription Activator-like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) greatly enhance the efficiency of engineering targeted genetic change in domestic animals as demonstrated by the generation of several gene knock-out pig and cattle models using those techniques. The potential of GSC-mediated germline modification in making targeted genetic modifications in domestic animal models will be maximized if those genome editing techniques can be applied in GSCs. PMID:27390591
Klug, Aaron
2010-02-01
A long-standing goal of molecular biologists has been to construct DNA-binding proteins for the control of gene expression. The classical Cys2His2 (C2H2) zinc finger design is ideally suited for such purposes. Discriminating between closely related DNA sequences both in vitro and in vivo, this naturally occurring design was adopted for engineering zinc finger proteins (ZFPs) to target genes specifically. Zinc fingers were discovered in 1985, arising from the interpretation of our biochemical studies on the interaction of the Xenopus protein transcription factor IIIA (TFIIIA) with 5S RNA. Subsequent structural studies revealed its three-dimensional structure and its interaction with DNA. Each finger constitutes a self-contained domain stabilized by a zinc (Zn) ion ligated to a pair of cysteines and a pair of histidines and also by an inner structural hydrophobic core. This discovery showed not only a new protein fold but also a novel principle of DNA recognition. Whereas other DNA-binding proteins generally make use of the 2-fold symmetry of the double helix, functioning as homo- or heterodimers, zinc fingers can be linked linearly in tandem to recognize nucleic acid sequences of varying lengths. This modular design offers a large number of combinatorial possibilities for the specific recognition of DNA (or RNA). It is therefore not surprising that the zinc finger is found widespread in nature, including 3% of the genes of the human genome. The zinc finger design can be used to construct DNA-binding proteins for specific intervention in gene expression. By fusing selected zinc finger peptides to repression or activation domains, genes can be selectively switched off or on by targeting the peptide to the desired gene target. It was also suggested that by combining an appropriate zinc finger peptide with other effector or functional domains, e.g. from nucleases or integrases to form chimaeric proteins, genomes could be modified or manipulated. The first example of the power of the method was published in 1994 when a three-finger protein was constructed to block the expression of a human oncogene transformed into a mouse cell line. The same paper also described how a reporter gene was activated by targeting an inserted 9-base pair (bp) sequence, which acts as the promoter. Thus, by fusing zinc finger peptides to repression or activation domains, genes can be selectively switched off or on. It was also suggested that, by combining zinc fingers with other effector or functional domains, e.g. from nucleases or integrases, to form chimaeric proteins, genomes could be manipulated or modified. Several applications of such engineered ZFPs are described here, including some of therapeutic importance, and also their adaptation for breeding improved crop plants.
Drosten, C.; Seifried, E.; Roth, W. K.
2001-01-01
Screening of blood donors for human immunodeficiency virus type 1 (HIV-1) infection by PCR permits the earlier diagnosis of HIV-1 infection compared with that by serologic assays. We have established a high-throughput reverse transcription (RT)-PCR assay based on 5′-nuclease PCR. By in-tube detection of HIV-1 RNA with a fluorogenic probe, the 5′-nuclease PCR technology (TaqMan PCR) eliminates the risk of carryover contamination, a major problem in PCR testing. We outline the development and evaluation of the PCR assay from a technical point of view. A one-step RT-PCR that targets the gag genes of all known HIV-1 group M isolates was developed. An internal control RNA detectable with a heterologous 5′-nuclease probe was derived from the viral target cDNA and was packaged into MS2 coliphages (Armored RNA). Because the RNA was protected against digestion with RNase, it could be spiked into patient plasma to control the complete sample preparation and amplification process. The assay detected 831 HIV-1 type B genome equivalents per ml of native plasma (95% confidence interval [CI], 759 to 936 HIV-1 B genome equivalents per ml) with a ≥95% probability of a positive result, as determined by probit regression analysis. A detection limit of 1,195 genome equivalents per ml of (individual) donor plasma (95% CI, 1,014 to 1,470 genome equivalents per ml of plasma pooled from individuals) was achieved when 96 samples were pooled and enriched by centrifugation. Up to 4,000 plasma samples per PCR run were tested in a 3-month trial period. Although data from the present pilot feasibility study will have to be complemented by a large clinical validation study, the assay is a promising approach to the high-throughput screening of blood donors and is the first noncommercial test for high-throughput screening for HIV-1. PMID:11724836
Liu, Yi; Xu, Jianfeng; Karimiahmadabadi, Mansoureh; Zhou, Chuanzheng; Chattopadhyaya, Jyoti
2010-11-05
2',4'-Propylene-bridged thymidine (carba-ENA-T) and five 8'-Me/NH(2)/OH modified carba-ENA-T analogues have been prepared through intramolecular radical addition to C═N of the tethered oxime-ether. These carba-ENA nucleosides have been subsequently incorporated into 15mer oligodeoxynucleotides (AON), and their affinity toward cDNA and RNA, nuclease resistance, and RNase H recruitment capability have been investigated in comparison with those of the native and ENA counterparts. These carba-ENAs modified AONs are highly RNA-selective since all of them led to slight thermal stabilization effect for the AON:RNA duplex, but quite large destabilization effect for the AON:DNA duplex. It was found that different C8' substituents (at the bottom of the minor groove) on carba-ENA-T only led to rather small variation of thermal stability of the AON:RNA duplexes. We, however, observed that the parent carba-ENA-T modified AONs exhibited higher nucleolytic stability than those of the ENA-T modified counterparts. The nucleolytic stability of carba-ENA-T modified AONs can be further modulated by C8' substituent to variable extents depending on not only the chemical nature but also the stereochemical orientation of the C8' substituents: Thus, (1) 8'S-Me on carba-ENA increases the nucleolytic stability but 8'R-Me leads to a decreased effect; (2) 8'R-OH on carba-ENA had little, if any, effect on nuclease resistance but 8'S-OH resulted in significantly decreased nucleolytic stability; and (3) 8'-NH(2) substituted carba-ENA leads to obvious loss in the nuclease resistance. The RNA strand in all of the carba-ENA derivatives modified AON:RNA hybrid duplexes can be digested by RNase H1 with high efficiency, even at twice the rate of those of the native and ENA modified counterpart.
Patel, Sunita; Sasidhar, Yellamraju U
2007-10-01
Recently we performed molecular dynamics (MD) simulations on the folding of the hairpin peptide DTVKLMYKGQPMTFR from staphylococcal nuclease in explicit water. We found that the peptide folds into a hairpin conformation with native and nonnative hydrogen-bonding patterns. In all the folding events observed in the folding of the hairpin peptide, loop formation involving the region YKGQP was an important event. In order to trace the origins of the loop propensity of the sequence YKGQP, we performed MD simulations on the sequence starting from extended, polyproline II and native type I' turn conformations for a total simulation length of 300 ns, using the GROMOS96 force field under constant volume and temperature (NVT) conditions. The free-energy landscape of the peptide YKGQP shows minima corresponding to loop conformation with Tyr and Pro side-chain association, turn and extended conformational forms, with modest free-energy barriers separating the minima. To elucidate the role of Gly in facilitating loop formation, we also performed MD simulations of the mutated peptide YKAQP (Gly --> Ala mutation) under similar conditions starting from polyproline II conformation for 100 ns. Two minima corresponding to bend/turn and extended conformations were observed in the free-energy landscape for the peptide YKAQP. The free-energy barrier between the minima in the free-energy landscape of the peptide YKAQP was also modest. Loop conformation is largely sampled by the YKGQP peptide, while extended conformation is largely sampled by the YKAQP peptide. We also explain why the YKGQP sequence samples type II turn conformation in these simulations, whereas the sequence as part of the hairpin peptide DTVKLMYKGQPMTFR samples type I' turn conformation both in the X-ray crystal structure and in our earlier simulations on the folding of the hairpin peptide. We discuss the implications of our results to the folding of the staphylococcal nuclease. Copyright (c) 2007 European Peptide Society and John Wiley & Sons, Ltd.
Mittag, Jennifer; Šola, Ivana; Rusak, Gordana; Ludwig-Müller, Jutta
2015-07-01
Auxin homeostasis is involved in many different plant developmental and stress responses. The auxin amino acid conjugate synthetases belonging to the GH3 family play major roles in the regulation of free indole-3-acetic acid (IAA) levels and the moss Physcomitrella patens has two GH3 genes in its genome. A role for IAA in several angiosperm--pathogen interactions was reported, however, in a moss--oomycete pathosystem it had not been published so far. Using GH3 double knockout lines we have investigated the role of auxin homeostasis during the infection of P. patens with the two oomycete species, Pythium debaryanum and Pythium irregulare. We show that infection with P. debaryanum caused stronger disease symptoms than with P. irregulare. Also, P. patens lines harboring fusion constructs of an auxin-inducible promoter from soybean (GmGH3) with a reporter (ß-glucuronidase) showed higher promoter induction after P. debaryanum infection than after P. irregulare, indicating a differential induction of the auxin response. Free IAA was induced upon P. debaryanum infection in wild type by 1.6-fold and in two GH3 double knockout (GH3-doKO) mutants by 4- to 5-fold. All GH3-doKO lines showed a reduced disease symptom progression compared to wild type. Since P. debaryanum can be inhibited in growth on medium containing IAA, these data might indicate that endogenous high auxin levels in P. patens GH3-doKO mutants lead to higher resistance against the oomycete. Copyright © 2015 Elsevier GmbH. All rights reserved.
Stamm, Hauke; Klingler, Felix; Grossjohann, Eva-Maria; Muschhammer, Jana; Vettorazzi, Eik; Heuser, Michael; Mock, Ulrike; Thol, Felicitas; Vohwinkel, Gabi; Latuske, Emily; Bokemeyer, Carsten; Kischel, Roman; Dos Santos, Cedric; Stienen, Sabine; Friedrich, Matthias; Lutteropp, Michael; Nagorsen, Dirk; Wellbrock, Jasmin; Fiedler, Walter
2018-05-31
Immune checkpoints are promising targets in cancer therapy. Recently, poliovirus receptor (PVR) and poliovirus receptor-related 2 (PVRL2) have been identified as novel immune checkpoints. In this investigation we show that acute myeloid leukemia (AML) cell lines and AML patient samples highly express the T-cell immunoreceptor with Ig and ITIM domains (TIGIT) ligands PVR and PVRL2. Using two independent patient cohorts, we could demonstrate that high PVR and PVRL2 expression correlates with poor outcome in AML. We show for the first time that antibody blockade of PVR or PVRL2 on AML cell lines or primary AML cells or TIGIT blockade on immune cells increases the anti-leukemic effects mediated by PBMCs or purified CD3 + cells in vitro. The cytolytic activity of the BiTE® antibody construct AMG 330 against leukemic cells could be further enhanced by blockade of the TIGIT-PVR/PVRL2 axis. This increased immune reactivity is paralleled by augmented secretion of Granzyme B by immune cells. Employing CRISPR/Cas9-mediated knockout of PVR and PVRL2 in MV4-11 cells, the cytotoxic effects of antibody blockade could be recapitulated in vitro. In NSG mice reconstituted with human T cells and transplanted with either MV4-11 PVR/PVRL2 knockout or wildtype cells, prolonged survival was observed for the knockout cells. This survival benefit could be further extended by treating the mice with AMG 330. Therefore, targeting the TIGIT-PVR/PVRL2 axis with blocking antibodies might represent a promising future therapeutic option in AML.
Ohnishi, Mutsuko; Nakatani, Teruyo; Lanske, Beate; Razzaque, M. Shawkat
2011-01-01
Changes in the expression of klotho, a β-glucuronidase, contribute to the development of features that resemble those of premature aging, as well as chronic renal failure. Klotho knockout mice have increased expression of the sodium/phosphate cotransporter (NaPi2a) and 1α-hydroxylase in their kidneys, along with increased serum levels of phosphate and 1,25-dihydroxyvitamin D. These changes are associated with widespread soft-tissue calcifications, generalized tissue atrophy, and a shorter lifespan in the knockout mice. To determine the role of the increased vitamin D activities in klotho knockout animals, we generated klotho and 1α-hydroxylase double-knockout mice. These double mutants regained body weight and developed hypophosphatemia with a complete elimination of the soft-tissue and vascular calcifications that were routinely found in klotho knockout mice. The markedly increased serum fibroblast growth factor 23 and the abnormally low serum parathyroid hormone levels, typical of klotho knockout mice, were significantly reversed in the double-knockout animals. These in vivo studies suggest that vitamin D has a pathologic role in regulating abnormal mineral ion metabolism and soft-tissue anomalies of klotho-deficient mice. PMID:19225558
Zinc-finger nucleases-based genome engineering to generate isogenic human cell lines.
Dreyer, Anne-Kathrin; Cathomen, Toni
2012-01-01
Customized zinc-finger nucleases (ZFNs) have developed into a promising technology to precisely alter mammalian genomes for biomedical research, biotechnology, or human gene therapy. In the context of synthetic biology, the targeted integration of a transgene or reporter cassette into a "neutral site" of the human genome, such as the AAVS1 locus, permits the generation of isogenic human cell lines with two major advantages over standard genetic manipulation techniques: minimal integration site-dependent effects on the transgene and, vice versa, no functional perturbation of the host-cell transcriptome. Here we describe in detail how ZFNs can be employed to target integration of a transgene cassette into the AAVS1 locus and how to characterize the targeted cells by PCR-based genotyping.
Genetic and epigenetic control of gene expression by CRISPR–Cas systems
Lo, Albert; Qi, Lei
2017-01-01
The discovery and adaption of bacterial clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas) systems has revolutionized the way researchers edit genomes. Engineering of catalytically inactivated Cas variants (nuclease-deficient or nuclease-deactivated [dCas]) combined with transcriptional repressors, activators, or epigenetic modifiers enable sequence-specific regulation of gene expression and chromatin state. These CRISPR–Cas-based technologies have contributed to the rapid development of disease models and functional genomics screening approaches, which can facilitate genetic target identification and drug discovery. In this short review, we will cover recent advances of CRISPR–dCas9 systems and their use for transcriptional repression and activation, epigenome editing, and engineered synthetic circuits for complex control of the mammalian genome. PMID:28649363
Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding.
Podevin, Nancy; Davies, Howard V; Hartung, Frank; Nogué, Fabien; Casacuberta, Josep M
2013-06-01
Conventional plant breeding exploits existing genetic variability and introduces new variability by mutagenesis. This has proven highly successful in securing food supplies for an ever-growing human population. The use of genetically modified plants is a complementary approach but all plant breeding techniques have limitations. Here, we discuss how the recent evolution of targeted mutagenesis and DNA insertion techniques based on tailor-made site-directed nucleases (SDNs) provides opportunities to overcome such limitations. Plant breeding companies are exploiting SDNs to develop a new generation of crops with new and improved traits. Nevertheless, some technical limitations as well as significant uncertainties on the regulatory status of SDNs may challenge their use for commercial plant breeding. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lenden Hasse, Hélène; Lescale, Chloé; Bianchi, Joy J; Yu, Wei; Bedora-Faure, Marie; Deriano, Ludovic
2017-12-01
Antigen receptor gene assembly is accomplished in developing lymphocytes by the V(D)J recombination reaction, which can be separated into two steps: DNA cleavage by the recombination-activating gene (RAG) nuclease and joining of DNA double strand breaks (DSBs) by components of the nonhomologous end joining (NHEJ) pathway. Deficiencies for NHEJ factors can result in immunodeficiency and a propensity to accumulate genomic instability, thus highlighting the importance of identifying all players in this process and deciphering their functions. Bcl2 transgenic v-Abl kinase-transformed pro-B cells provide a pseudo-physiological cellular system to study V(D)J recombination. Treatment of v-Abl/Bcl2 pro-B cells with the Abl kinase inhibitor Imatinib leads to G1 cell cycle arrest, the rapid induction of Rag1/2 gene expression and V(D)J recombination. In this system, the Bcl2 transgene alleviates Imatinib-induced apoptosis enabling the analysis of induced V(D)J recombination. Although powerful, the use of mouse models carrying the Bcl2 transgene for the generation of v-Abl pro-B cell lines is time and money consuming. Here, we describe a method for generating v-Abl/Bcl2 pro-B cell lines from wild type mice and for performing gene knock-out using episomal CRISPR/Cas9 targeting vectors. Using this approach, we generated distinct NHEJ-deficient pro-B cell lines and quantified V(D)J recombination levels in these cells. Furthermore, this methodology can be adapted to generate pro-B cell lines deficient for any gene suspected to play a role in V(D)J recombination, and more generally DSB repair. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii.
Jiang, Wenzhi; Brueggeman, Andrew J; Horken, Kempton M; Plucinak, Thomas M; Weeks, Donald P
2014-11-01
The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system has become a powerful and precise tool for targeted gene modification (e.g., gene knockout and gene replacement) in numerous eukaryotic organisms. Initial attempts to apply this technology to a model, the single-cell alga, Chlamydomonas reinhardtii, failed to yield cells containing edited genes. To determine if the Cas9 and single guide RNA (sgRNA) genes were functional in C. reinhardtii, we tested the ability of a codon-optimized Cas9 gene along with one of four different sgRNAs to cause targeted gene disruption during a 24-h period immediately following transformation. All three exogenously supplied gene targets as well as the endogenous FKB12 (rapamycin sensitivity) gene of C. reinhardtii displayed distinct Cas9/sgRNA-mediated target site modifications as determined by DNA sequencing of cloned PCR amplicons of the target site region. Success in transient expression of Cas9 and sgRNA genes contrasted with the recovery of only a single rapamycin-resistant colony bearing an appropriately modified FKB12 target site in 16 independent transformation experiments involving >10(9) cells. Failure to recover transformants with intact or expressed Cas9 genes following transformation with the Cas9 gene alone (or even with a gene encoding a Cas9 lacking nuclease activity) provided strong suggestive evidence for Cas9 toxicity when Cas9 is produced constitutively in C. reinhardtii. The present results provide compelling evidence that Cas9 and sgRNA genes function properly in C. reinhardtii to cause targeted gene modifications and point to the need for a focus on development of methods to properly stem Cas9 production and/or activity following gene editing. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Myosin IIA-related Actomyosin Contractility Mediates Oxidative Stress-induced Neuronal Apoptosis
Wang, Yan; Xu, Yingqiong; Liu, Qian; Zhang, Yuanyuan; Gao, Zhen; Yin, Mingzhu; Jiang, Nan; Cao, Guosheng; Yu, Boyang; Cao, Zhengyu; Kou, Junping
2017-01-01
Oxidative stress-induced neuronal apoptosis plays an important role in the progression of central nervous system (CNS) diseases. In our study, when neuronal cells were exposed to hydrogen peroxide (H2O2), an exogenous oxidant, cell apoptosis was observed with typical morphological changes including membrane blebbing, neurite retraction and cell contraction. The actomyosin system is considered to be responsible for the morphological changes, but how exactly it regulates oxidative stress-induced neuronal apoptosis and the distinctive functions of different myosin II isoforms remain unclear. We demonstrate that myosin IIA was required for neuronal contraction, while myosin IIB was required for neuronal outgrowth in normal conditions. During H2O2-induced neuronal apoptosis, myosin IIA, rather than IIB, interacted with actin filaments to generate contractile forces that lead to morphological changes. Moreover, myosin IIA knockout using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9) reduced H2O2-induced neuronal apoptosis and the associated morphological changes. We further demonstrate that caspase-3/Rho-associated kinase 1 (ROCK1) dependent phosphorylation of myosin light chain (MLC) was required for the formation of the myosin IIA-actin complex. Meanwhile, either inhibition of myosin II ATPase with blebbistatin or knockdown of myosin IIA with siRNA reversely attenuated caspase-3 activation, suggesting a positive feedback loop during oxidative stress-induced apoptosis. Based on our observation, myosin IIA-actin complex contributes to actomyosin contractility and is associated with the positive feedback loop of caspase-3/ROCK1/MLC pathway. This study unravels the biochemical and mechanistic mechanisms during oxidative stress-induced neuronal apoptosis and may be applicable for the development of therapies for CNS diseases. PMID:28352215