Sample records for nucleases

  1. Improving Fab' fragment retention in an autonucleolytic Escherichia coli strain by swapping periplasmic nuclease translocation signal from OmpA to DsbA.

    PubMed

    Schofield, Desmond M; Sirka, Ernestas; Keshavarz-Moore, Eli; Ward, John M; Nesbeth, Darren N

    2017-12-01

    To reduce unwanted Fab' leakage from an autonucleolytic Escherichia coli strain, which co-expresses OmpA-signalled Staphylococcal nuclease and Fab' fragment in the periplasm, by substituting in Serratial nuclease and the DsbA periplasm translocation signal as alternatives. We attempted to genetically fuse a nuclease from Serratia marcescens to the OmpA signal peptide but plasmid construction failed, possibly due to toxicity of the resultant nuclease. Combining Serratial nuclease to the DsbA signal peptide was successful. The strain co-expressing this nuclease and periplasmic Fab' grew in complex media and exhibited nuclease activity detectable by DNAse agar plate but its growth in defined medium was retarded. Fab' coexpression with Staphylococcal nuclease fused to the DsbA signal peptide resulted in cells exhibiting nuclease activity and growth in defined medium. In cultivation to high cell density in a 5 l bioreactor, DsbA-fused Staphylococcal nuclease co-expression coincided with reduced Fab' leakage relative to the original autonucleolytic Fab' strain with OmpA-fused staphylococcal nuclease. We successfully rescued Fab' leakage back to acceptable levels and established a basis for future investigation of the linkage between periplasmic nuclease expression and leakage of co-expressed periplasmic Fab' fragment to the surrounding growth media.

  2. Non-viral delivery of genome-editing nucleases for gene therapy.

    PubMed

    Wang, M; Glass, Z A; Xu, Q

    2017-03-01

    Manipulating the genetic makeup of mammalian cells using programmable nuclease-based genome-editing technology has recently evolved into a powerful avenue that holds great potential for treating genetic disorders. There are four types of genome-editing nucleases, including meganucleases, zinc finger nucleases, transcription activator-like effector nucleases and clustered, regularly interspaced, short palindromic repeat-associated nucleases such as Cas9. These nucleases have been harnessed to introduce precise and specific changes of the genome sequence at virtually any genome locus of interest. The therapeutic relevance of these genome-editing technologies, however, is challenged by the safe and efficient delivery of nuclease into targeted cells. Herein, we summarize recent advances that have been made on non-viral delivery of genome-editing nucleases. In particular, we focus on non-viral delivery of Cas9/sgRNA ribonucleoproteins for genome editing. In addition, the future direction for developing non-viral delivery of programmable nucleases for genome editing is discussed.

  3. Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases.

    PubMed

    Ishida, Kentaro; Gee, Peter; Hotta, Akitsu

    2015-10-16

    Programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs), and clustered regularly interspersed short palindromic repeats associated protein-9 (CRISPR-Cas9), hold tremendous potential for applications in the clinical setting to treat genetic diseases or prevent infectious diseases. However, because the accuracy of DNA recognition by these nucleases is not always perfect, off-target mutagenesis may result in undesirable adverse events in treated patients such as cellular toxicity or tumorigenesis. Therefore, designing nucleases and analyzing their activity must be carefully evaluated to minimize off-target mutagenesis. Furthermore, rigorous genomic testing will be important to ensure the integrity of nuclease modified cells. In this review, we provide an overview of available nuclease designing platforms, nuclease engineering approaches to minimize off-target activity, and methods to evaluate both on- and off-target cleavage of CRISPR-Cas9.

  4. Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases

    PubMed Central

    Ishida, Kentaro; Gee, Peter; Hotta, Akitsu

    2015-01-01

    Programmable nucleases, such as zinc finger nucleases (ZFNs), transcription activator like effector nucleases (TALENs), and clustered regularly interspersed short palindromic repeats associated protein-9 (CRISPR-Cas9), hold tremendous potential for applications in the clinical setting to treat genetic diseases or prevent infectious diseases. However, because the accuracy of DNA recognition by these nucleases is not always perfect, off-target mutagenesis may result in undesirable adverse events in treated patients such as cellular toxicity or tumorigenesis. Therefore, designing nucleases and analyzing their activity must be carefully evaluated to minimize off-target mutagenesis. Furthermore, rigorous genomic testing will be important to ensure the integrity of nuclease modified cells. In this review, we provide an overview of available nuclease designing platforms, nuclease engineering approaches to minimize off-target activity, and methods to evaluate both on- and off-target cleavage of CRISPR-Cas9. PMID:26501275

  5. Genome engineering in human cells.

    PubMed

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  6. Measuring and Reducing Off-Target Activities of Programmable Nucleases Including CRISPR-Cas9

    PubMed Central

    Koo, Taeyoung; Lee, Jungjoon; Kim, Jin-Soo

    2015-01-01

    Programmable nucleases, which include zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and RNA-guided engineered nucleases (RGENs) repurposed from the type II clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system are now widely used for genome editing in higher eukaryotic cells and whole organisms, revolutionising almost every discipline in biological research, medicine, and biotechnology. All of these nucleases, however, induce off-target mutations at sites homologous in sequence with on-target sites, limiting their utility in many applications including gene or cell therapy. In this review, we compare methods for detecting nuclease off-target mutations. We also review methods for profiling genome-wide off-target effects and discuss how to reduce or avoid off-target mutations. PMID:25985872

  7. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN.

    PubMed

    Ul Ain, Qurrat; Chung, Jee Young; Kim, Yong-Hee

    2015-05-10

    Gene therapy by engineered nucleases is a genetic intervention being investigated for curing the hereditary disorders by targeting selected genes with specific nucleotides for establishment, suppression, abolishment of a function or correction of mutation. Here, we review the fast developing technology of targeted genome engineering using site specific programmable nucleases zinc finger nucleases (ZFNs), transcription activator like nucleases (TALENs) and cluster regulatory interspaced short palindromic repeat/CRISPR associated proteins (CRISPR/Cas) based RNA-guided DNA endonucleases (RGENs) and their different characteristics including pros and cons of genome modifications by these nucleases. We have further discussed different types of delivery methods to induce gene editing, novel development in genetic engineering other than nucleases and future prospects. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis.

    PubMed

    Almeida Garcia, Rayssa; Lima Pepino Macedo, Leonardo; Cabral do Nascimento, Danila; Gillet, François-Xavier; Moreira-Pinto, Clidia Eduarda; Faheem, Muhammad; Moreschi Basso, Angelina Maria; Mattar Silva, Maria Cristina; Grossi-de-Sa, Maria Fatima

    2017-01-01

    RNA interference (RNAi) approaches have been applied as a biotechnological tool for controlling plant insect pests via selective gene down regulation. However, the inefficiency of RNAi mechanism in insects is associated with several barriers, including dsRNA delivery and uptake by the cell, dsRNA interaction with the cellular membrane receptor and dsRNA exposure to insect gut nucleases during feeding. The cotton boll weevil (Anthonomus grandis) is a coleopteran in which RNAi-mediated gene silencing does not function efficiently through dsRNA feeding, and the factors involved in the mechanism remain unknown. Herein, we identified three nucleases in the cotton boll weevil transcriptome denoted AgraNuc1, AgraNuc2, and AgraNuc3, and the influences of these nucleases on the gene silencing of A. grandis chitin synthase II (AgraChSII) were evaluated through oral dsRNA feeding trials. A phylogenetic analysis showed that all three nucleases share high similarity with the DNA/RNA non-specific endonuclease family of other insects. These nucleases were found to be mainly expressed in the posterior midgut region of the insect. Two days after nuclease RNAi-mediated gene silencing, dsRNA degradation by the gut juice was substantially reduced. Notably, after nucleases gene silencing, the orally delivered dsRNA against the AgraChSII gene resulted in improved gene silencing efficiency when compared to the control (non-silenced nucleases). The data presented here demonstrates that A. grandis midgut nucleases are effectively one of the main barriers to dsRNA delivery and emphasize the need to develop novel RNAi delivery strategies focusing on protecting the dsRNA from gut nucleases and enhancing its oral delivery and uptake to crop insect pests.

  9. Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis

    PubMed Central

    Almeida Garcia, Rayssa; Lima Pepino Macedo, Leonardo; Cabral do Nascimento, Danila; Gillet, François-Xavier; Moreira-Pinto, Clidia Eduarda; Faheem, Muhammad; Moreschi Basso, Angelina Maria; Mattar Silva, Maria Cristina

    2017-01-01

    RNA interference (RNAi) approaches have been applied as a biotechnological tool for controlling plant insect pests via selective gene down regulation. However, the inefficiency of RNAi mechanism in insects is associated with several barriers, including dsRNA delivery and uptake by the cell, dsRNA interaction with the cellular membrane receptor and dsRNA exposure to insect gut nucleases during feeding. The cotton boll weevil (Anthonomus grandis) is a coleopteran in which RNAi-mediated gene silencing does not function efficiently through dsRNA feeding, and the factors involved in the mechanism remain unknown. Herein, we identified three nucleases in the cotton boll weevil transcriptome denoted AgraNuc1, AgraNuc2, and AgraNuc3, and the influences of these nucleases on the gene silencing of A. grandis chitin synthase II (AgraChSII) were evaluated through oral dsRNA feeding trials. A phylogenetic analysis showed that all three nucleases share high similarity with the DNA/RNA non-specific endonuclease family of other insects. These nucleases were found to be mainly expressed in the posterior midgut region of the insect. Two days after nuclease RNAi-mediated gene silencing, dsRNA degradation by the gut juice was substantially reduced. Notably, after nucleases gene silencing, the orally delivered dsRNA against the AgraChSII gene resulted in improved gene silencing efficiency when compared to the control (non-silenced nucleases). The data presented here demonstrates that A. grandis midgut nucleases are effectively one of the main barriers to dsRNA delivery and emphasize the need to develop novel RNAi delivery strategies focusing on protecting the dsRNA from gut nucleases and enhancing its oral delivery and uptake to crop insect pests. PMID:29261729

  10. Disruption of the Membrane Nuclease Gene (MBOVPG45_0215) of Mycoplasma bovis Greatly Reduces Cellular Nuclease Activity

    PubMed Central

    Sharma, Shukriti; Tivendale, Kelly A.; Markham, Philip F.

    2015-01-01

    ABSTRACT Although the complete genome sequences of three strains of Mycoplasma bovis are available, few studies have examined gene function in this important pathogen. Mycoplasmas lack the biosynthetic machinery for the de novo synthesis of nucleic acid precursors, so nucleases are likely to be essential for them to acquire nucleotide precursors. Three putative membrane nucleases have been annotated in the genome of M. bovis strain PG45, MBOVPG45_0089 and MBOVPG45_0310, both of which have the thermonuclease (TNASE_3) functional domain, and MBOVPG45_0215 (mnuA), which has an exonuclease/endonuclease/phosphatase domain. While previous studies have demonstrated the function of TNASE_3 domain nucleases in several mycoplasmas, quantitative comparisons of the contributions of different nucleases to cellular nuclease activity have been lacking. Mapping of a library of 319 transposon mutants of M. bovis PG45 by direct genome sequencing identified mutants with insertions in MBOVPG45_0310 (the Δ0310 mutant) and MBOVPG45_0215 (the Δ0215 mutant). In this study, the detection of the product of MBOVPG45_0215 in the Triton X-114 fraction of M. bovis cell lysates, its cell surface exposure, and its predicted signal peptide suggested that it is a surface-exposed lipoprotein nuclease. Comparison of a ΔmnuA mutant with wild-type M. bovis on native and denatured DNA gels and in digestion assays using double-stranded phage λ DNA and closed circular plasmid DNA demonstrated that inactivation of this gene abolishes most of the cellular exonuclease and endonuclease activity of M. bovis. This activity could be fully restored by complementation with the wild-type mnuA gene, demonstrating that MnuA is the major cellular nuclease of M. bovis. IMPORTANCE Nucleases are thought to be important contributors to virulence and crucial for the maintenance of a nutritional supply of nucleotides in mycoplasmas that are pathogenic in animals. This study demonstrates for the first time that of the three annotated cell surface nuclease genes in an important pathogenic mycoplasma, the homologue of the thermostable nuclease identified in Gram-positive bacteria is responsible for the majority of the nuclease activity detectable in vitro. PMID:25691526

  11. Genome Editing in Stem Cells for Disease Therapeutics.

    PubMed

    Song, Minjung; Ramakrishna, Suresh

    2018-04-01

    Programmable nucleases including zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindrome repeats (CRISPR)/CRISPR-associated protein have tremendous potential biological and therapeutic applications as novel genome editing tools. These nucleases enable precise modification of the gene of interest by disruption, insertion, or correction. The application of genome editing technology to pluripotent stem cells or hematopoietic stem cells has the potential to remarkably advance the contribution of this technology to life sciences. Specifically, disease models can be generated and effective therapeutics can be developed with great efficiency and speed. Here we review the characteristics and mechanisms of each programmable nuclease. In addition, we review the applications of these nucleases to stem cells for disease therapies and summarize key studies of interest.

  12. An ultrasensitive fluorescence method suitable for quantitative analysis of mung bean nuclease and inhibitor screening in vitro and vivo.

    PubMed

    Peng, Lan; Fan, Jialong; Tong, Chunyi; Xie, Zhenhua; Zhao, Chuan; Liu, Xuanming; Zhu, Yonghua; Liu, Bin

    2016-09-15

    Mung bean nuclease is a single stranded specific DNA and RNA endonuclease purified from mung bean sprouts. It yields 5'-phosphate terminated mono- and oligonucleotides. The activity level of this nuclease can act as a marker to monitor the developmental process of mung bean sprouts. In order to facilitate the activity and physiological analysis of this nuclease, we have developed a biosensing assay system based on the mung bean nuclease-induced single-stranded DNA scission and the affinity difference of graphene oxide for single-stranded DNA containing different numbers of bases. This end-point measurement method can detect mung bean nuclease in a range of 2×10(-4) to 4×10(-2) with a detection limit of 1×10(-4) unit/mL. In addition, we demonstrate the utility of the assay for screening chemical antibiotics and metal ions, resulting in the identification of several inhibitors of this enzyme in vitro. Furthermore, we firstly report that inhibiting mung bean nuclease by gentamycin sulfate and kanamycin in vivo can suppress mung bean sprouts growth. In summary, this method provides an alternative tool for the biochemical analysis for mung bean nuclease and indicates the feasibility of high-throughput screening specific inhibitors of this nuclease in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Engineered Viruses as Genome Editing Devices.

    PubMed

    Chen, Xiaoyu; Gonçalves, Manuel A F V

    2016-03-01

    Genome editing based on sequence-specific designer nucleases, also known as programmable nucleases, seeks to modify in a targeted and precise manner the genetic information content of living cells. Delivering into cells designer nucleases alone or together with donor DNA templates, which serve as surrogate homologous recombination (HR) substrates, can result in gene knockouts or gene knock-ins, respectively. As engineered replication-defective viruses, viral vectors are having an increasingly important role as delivery vehicles for donor DNA templates and designer nucleases, namely, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated Cas9 (CRISPR-Cas9) nucleases, also known as RNA-guided nucleases (RGNs). We review this dual role played by engineered viral particles on genome editing while focusing on their main scaffolds, consisting of lentiviruses, adeno-associated viruses, and adenoviruses. In addition, the coverage of the growing body of research on the repurposing of viral vectors as delivery systems for genome editing tools is complemented with information regarding their main characteristics, pros, and cons. Finally, this information is framed by a concise description of the chief principles, tools, and applications of the genome editing field as a whole.

  14. Engineered Viruses as Genome Editing Devices

    PubMed Central

    Chen, Xiaoyu; Gonçalves, Manuel A F V

    2016-01-01

    Genome editing based on sequence-specific designer nucleases, also known as programmable nucleases, seeks to modify in a targeted and precise manner the genetic information content of living cells. Delivering into cells designer nucleases alone or together with donor DNA templates, which serve as surrogate homologous recombination (HR) substrates, can result in gene knockouts or gene knock-ins, respectively. As engineered replication-defective viruses, viral vectors are having an increasingly important role as delivery vehicles for donor DNA templates and designer nucleases, namely, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated Cas9 (CRISPR−Cas9) nucleases, also known as RNA-guided nucleases (RGNs). We review this dual role played by engineered viral particles on genome editing while focusing on their main scaffolds, consisting of lentiviruses, adeno-associated viruses, and adenoviruses. In addition, the coverage of the growing body of research on the repurposing of viral vectors as delivery systems for genome editing tools is complemented with information regarding their main characteristics, pros, and cons. Finally, this information is framed by a concise description of the chief principles, tools, and applications of the genome editing field as a whole. PMID:26336974

  15. Use of the heteroduplex mobility assay and cell sorting to select genome sequences of the CCR5 gene in HEK 293T cells edited by transcription activator-like effector nucleases.

    PubMed

    Nerys-Junior, Arildo; Costa, Lendel C; Braga-Dias, Luciene P; Oliveira, Márcia; Rossi, Atila D; da Cunha, Rodrigo Delvecchio; Gonçalves, Gabriel S; Tanuri, Amilcar

    2014-03-01

    Engineered nucleases such as zinc finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN) are one of the most promising tools for modifying genomes. These site-specific enzymes cause double-strand breaks that allow gene disruption or gene insertion, thereby facilitating genetic manipulation. The major problem associated with this approach is the labor-intensive procedures required to screen and confirm the cellular modification by nucleases. In this work, we produced a TALEN that targets the human CCR5 gene and developed a heteroduplex mobility assay for HEK 293T cells to select positive colonies for sequencing. This approach provides a useful tool for the quick detection and easy assessment of nuclease activity.

  16. Use of the heteroduplex mobility assay and cell sorting to select genome sequences of the CCR5 gene in HEK 293T cells edited by transcription activator-like effector nucleases

    PubMed Central

    Nerys-Junior, Arildo; Costa, Lendel C.; Braga-Dias, Luciene P.; Oliveira, Márcia; Rossi, Átila D.; da Cunha, Rodrigo Delvecchio; Gonçalves, Gabriel S.; Tanuri, Amilcar

    2014-01-01

    Engineered nucleases such as zinc finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN) are one of the most promising tools for modifying genomes. These site-specific enzymes cause double-strand breaks that allow gene disruption or gene insertion, thereby facilitating genetic manipulation. The major problem associated with this approach is the labor-intensive procedures required to screen and confirm the cellular modification by nucleases. In this work, we produced a TALEN that targets the human CCR5 gene and developed a heteroduplex mobility assay for HEK 293T cells to select positive colonies for sequencing. This approach provides a useful tool for the quick detection and easy assessment of nuclease activity. PMID:24688299

  17. Design of a colicin E7 based chimeric zinc-finger nuclease

    NASA Astrophysics Data System (ADS)

    Németh, Eszter; Schilli, Gabriella K.; Nagy, Gábor; Hasenhindl, Christoph; Gyurcsik, Béla; Oostenbrink, Chris

    2014-08-01

    Colicin E7 is a natural bacterial toxin. Its nuclease domain (NColE7) enters the target cell and kills it by digesting the nucleic acids. The HNH-motif as the catalytic centre of NColE7 at the C-terminus requires the positively charged N-terminal loop for the nuclease activity—offering opportunities for allosteric control in a NColE7-based artificial nuclease. Accordingly, four novel zinc finger nucleases were designed by computational methods exploiting the special structural features of NColE7. The constructed models were subjected to MD simulations. The comparison of structural stability and functional aspects showed that these models may function as safely controlled artificial nucleases. This study was complemented by random mutagenesis experiments identifying potentially important residues for NColE7 function outside the catalytic region.

  18. Identification of BFN1, a bifunctional nuclease induced during leaf and stem senescence in Arabidopsis.

    PubMed

    Pérez-Amador, M A; Abler, M L; De Rocher, E J; Thompson, D M; van Hoof, A; LeBrasseur, N D; Lers, A; Green, P J

    2000-01-01

    Nuclease I enzymes are responsible for the degradation of RNA and single-stranded DNA during several plant growth and developmental processes, including senescence. However, in the case of senescence the corresponding genes have not been reported. We describe the identification and characterization of BFN1 of Arabidopsis, and demonstrate that it is a senescence-associated nuclease I gene. BFN1 nuclease shows high similarity to the sequence of a barley nuclease induced during germination and a zinnia (Zinnia elegans) nuclease induced during xylogenesis. In transgenic plants overexpressing the BFN1 cDNA, a nuclease activity of about 38 kD was detected on both RNase and DNase activity gels. Levels of BFN1 mRNA were extremely low or undetectable in roots, leaves, and stems. In contrast, relatively high BFN1 mRNA levels were detected in flowers and during leaf and stem senescence. BFN1 nuclease activity was also induced during leaf and stem senescence. The strong response of the BFN1 gene to senescence indicated that it would be an excellent tool with which to study the mechanisms of senescence induction, as well as the role of the BFN1 enzyme in senescence using reverse genetic approaches in Arabidopsis.

  19. Proven and novel strategies for efficient editing of the human genome.

    PubMed

    Mussolino, Claudio; Mlambo, Tafadzwa; Cathomen, Toni

    2015-10-01

    Targeted gene editing with designer nucleases has become increasingly popular. The most commonly used designer nuclease platforms are engineered meganucleases, zinc-finger nucleases, transcription activator-like effector nucleases and the clustered regularly interspaced short palindromic repeat/Cas9 system. These powerful tools have greatly facilitated the generation of plant and animal models for basic research, and harbor an enormous potential for applications in biotechnology and gene therapy. This review recapitulates proven concepts of targeted genome engineering in primary human cells and elaborates on novel concepts that became possible with the dawn of RNA-guided nucleases and RNA-guided transcription factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A comprehensive overview of computational resources to aid in precision genome editing with engineered nucleases.

    PubMed

    Periwal, Vinita

    2017-07-01

    Genome editing with engineered nucleases (zinc finger nucleases, TAL effector nucleases s and Clustered regularly inter-spaced short palindromic repeats/CRISPR-associated) has recently been shown to have great promise in a variety of therapeutic and biotechnological applications. However, their exploitation in genetic analysis and clinical settings largely depends on their specificity for the intended genomic target. Large and complex genomes often contain highly homologous/repetitive sequences, which limits the specificity of genome editing tools and could result in off-target activity. Over the past few years, various computational approaches have been developed to assist the design process and predict/reduce the off-target activity of these nucleases. These tools could be efficiently used to guide the design of constructs for engineered nucleases and evaluate results after genome editing. This review provides a comprehensive overview of various databases, tools, web servers and resources for genome editing and compares their features and functionalities. Additionally, it also describes tools that have been developed to analyse post-genome editing results. The article also discusses important design parameters that could be considered while designing these nucleases. This review is intended to be a quick reference guide for experimentalists as well as computational biologists working in the field of genome editing with engineered nucleases. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. The large terminase DNA packaging motor grips DNA with its ATPase domain for cleavage by the flexible nuclease domain

    PubMed Central

    Hilbert, Brendan J.; Hayes, Janelle A.; Stone, Nicholas P.; Xu, Rui-Gang

    2017-01-01

    Abstract Many viruses use a powerful terminase motor to pump their genome inside an empty procapsid shell during virus maturation. The large terminase (TerL) protein contains both enzymatic activities necessary for packaging in such viruses: the adenosine triphosphatase (ATPase) that powers DNA translocation and an endonuclease that cleaves the concatemeric genome at both initiation and completion of genome packaging. However, how TerL binds DNA during translocation and cleavage remains mysterious. Here we investigate DNA binding and cleavage using TerL from the thermophilic phage P74-26. We report the structure of the P74-26 TerL nuclease domain, which allows us to model DNA binding in the nuclease active site. We screened a large panel of TerL variants for defects in binding and DNA cleavage, revealing that the ATPase domain is the primary site for DNA binding, and is required for nuclease activity. The nuclease domain is dispensable for DNA binding but residues lining the active site guide DNA for cleavage. Kinetic analysis of DNA cleavage suggests flexible tethering of the nuclease domains during DNA cleavage. We propose that interactions with the procapsid during DNA translocation conformationally restrict the nuclease domain, inhibiting cleavage; TerL release from the capsid upon completion of packaging unlocks the nuclease domains to cleave DNA. PMID:28082398

  2. Magnetic Separation and Antibiotics Selection Enable Enrichment of Cells with ZFN/TALEN-Induced Mutations

    PubMed Central

    Lee, Choong-il; Kim, Hyongbum; Kim, Jin-Soo

    2013-01-01

    The ability to enrich cells with targeted mutations greatly facilitates the process of using engineered nucleases, including zinc-finger nucleases and transcription activator-like effector nucleases, to construct such cells. We previously used surrogate reporters to enrich cells containing nuclease-induced mutations via flow cytometry. This method is, however, limited by the availability of flow cytometers. Furthermore, sorted cells occasionally fail to form colonies after exposure to a strong laser and hydrostatic pressure. Here we describe two different types of novel reporters that enable mutant cell enrichment without the use of flow cytometers. We designed reporters that express H-2Kk, a surface antigen, and the hygromycin resistance protein (HygroR), respectively, when insertions or deletions are generated at the target sequences by the activity of engineered nucleases. After cotransfection of these reporters and the engineered nuclease-encoding plasmids, H-2Kk- and HygroR-expressing cells were isolated using magnetic separation and hygromycin treatment, respectively. We found that mutant cells were drastically enriched in the isolated cells, suggesting that these two reporters enable efficient enrichment of mutants. We propose that these two reporters will greatly facilitate the use of engineered nucleases in a wider range of biomedical research. PMID:23441197

  3. Genome editing comes of age.

    PubMed

    Kim, Jin-Soo

    2016-09-01

    Genome editing harnesses programmable nucleases to cut and paste genetic information in a targeted manner in living cells and organisms. Here, I review the development of programmable nucleases, including zinc finger nucleases (ZFNs), TAL (transcription-activator-like) effector nucleases (TALENs) and CRISPR (cluster of regularly interspaced palindromic repeats)-Cas9 (CRISPR-associated protein 9) RNA-guided endonucleases (RGENs). I specifically highlight the key advances that set the foundation for the rapid and widespread implementation of CRISPR-Cas9 genome editing approaches that has revolutionized the field.

  4. Potentiometric sensing of nuclease activities and oxidative damage of single-stranded DNA using a polycation-sensitive membrane electrode.

    PubMed

    Ding, Jiawang; Qin, Wei

    2013-09-15

    A simple, general and label-free potentiometric method to measure nuclease activities and oxidative DNA damage in a homogeneous solution using a polycation-sensitive membrane electrode is reported. Protamine, a linear polyionic species, is used as an indicator to report the cleavage of DNA by nucleases such as restriction and nonspecific nucleases, and the damage of DNA induced by hydroxyl radicals. Measurements can be done with a titration mode or a direct detection mode. For the potentiometric titration mode, the enzymatic cleavage dramatically affects the electrostatical interaction between DNA and protamine and thus shifts the response curve for the potentiometric titration of the DNA with protamine. Under the optimized conditions, the enzyme activities can be sensed potentiometrically with detection limits of 2.7×10(-4)U/µL for S1 nuclease, and of 3.9×10(-4)U/µL for DNase I. For the direct detection mode, a biocomplex between protamine and DNA is used as a substrate. The nuclease of interest cleaves the DNA from the protamine/DNA complex into smaller fragments, so that free protamine is generated and can be detected potentiometrically via the polycation-sensitive membrane electrode. Using a direct measurement, the nuclease activities could be rapidly detected with detection limits of 3.2×10(-4)U/µL for S1 nuclease, and of 4.5×10(-4)U/µL for DNase I. Moreover, the proposed potentiometric assays demonstrate the potential applications in the detection of hydroxyl radicals. It is anticipated that the present potentiometric strategy will provide a promising platform for high-throughput screening of nucleases, reactive oxygen species and the drugs with potential inhibition abilities. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Basics of genome editing technology and its application in livestock species.

    PubMed

    Petersen, Bjoern

    2017-08-01

    In the last decade, the research community has witnessed a blooming of targeted genome editing tools and applications. Novel programmable DNA nucleases such as zinc finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs) and the clustered regularly interspaced short palindromic repeats/Cas9 system (CRISPR/Cas9) possess long recognition sites and are capable of cutting DNA in a very specific manner. These DNA nucleases mediate targeted genetic alterations by enhancing the DNA mutation rate via induction of double-strand breaks at a predetermined genomic site. Compared to conventional homologous recombination-based gene targeting, DNA nucleases, also referred to as Genome Editors (GEs), can increase the targeting rate around 10,000- to 100,000-fold. The successful application of different GEs has been shown in a myriad of different organisms, including insects, amphibians, plants, nematodes and several mammalian species, including human cells and embryos. In contrast to all other DNA nucleases, that rely on protein-DNA binding, CRISPR/Cas9 uses RNA to establish a specific binding of its DNA nuclease. Besides its capability to facilitate multiplexed genomic modifications in one shot, the CRISPR/Cas is much easier to design compared to all other DNA nucleases. Current results indicate that any DNA nuclease can be successfully employed in a broad range of organisms which renders them useful for improving the understanding of complex physiological systems such as reproduction, producing transgenic animals, including creating large animal models for human diseases, creating specific cell lines, and plants, and even for treating human genetic diseases. This review provides an update on DNA nucleases, their underlying mechanism and focuses on their application to edit the genome of livestock species. © 2017 Blackwell Verlag GmbH.

  6. Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing

    PubMed Central

    Lee, Ciaran M; Cradick, Thomas J; Fine, Eli J; Bao, Gang

    2016-01-01

    The rapid advancement in targeted genome editing using engineered nucleases such as ZFNs, TALENs, and CRISPR/Cas9 systems has resulted in a suite of powerful methods that allows researchers to target any genomic locus of interest. A complementary set of design tools has been developed to aid researchers with nuclease design, target site selection, and experimental validation. Here, we review the various tools available for target selection in designing engineered nucleases, and for quantifying nuclease activity and specificity, including web-based search tools and experimental methods. We also elucidate challenges in target selection, especially in predicting off-target effects, and discuss future directions in precision genome editing and its applications. PMID:26750397

  7. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats.

    PubMed

    Mashimo, Tomoji

    2014-01-01

    The laboratory rat has been widely used as an animal model in biomedical science for more than 150 years. Applying zinc-finger nucleases or transcription activator-like effector nucleases to rat embryos via microinjection is an efficient genome editing tool for generating targeted knockout rats. Recently, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonucleases have been used as an effective tool for precise and multiplex genome editing in mice and rats. In this review, the advantages and disadvantages of these site-specific nuclease technologies for genetic analysis and manipulation in rats are discussed. © 2013 The Author Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  8. Genome Editing in Human Pluripotent Stem Cells.

    PubMed

    Carlson-Stevermer, Jared; Saha, Krishanu

    2017-01-01

    Genome editing in human pluripotent stem cells (hPSCs) enables the generation of reporter lines and knockout cell lines. Zinc finger nucleases, transcription activator-like effector nucleases (TALENs), and CRISPR/Cas9 technology have recently increased the efficiency of proper gene editing by creating double strand breaks (DSB) at defined sequences in the human genome. These systems typically use plasmids to transiently transcribe nucleases within the cell. Here, we describe the process for preparing hPSCs for transient expression of nucleases via electroporation and subsequent analysis to create genetically modified stem cell lines.

  9. Delivery methods for site-specific nucleases: Achieving the full potential of therapeutic gene editing.

    PubMed

    Liu, Jia; Shui, Sai-Lan

    2016-12-28

    The advent of site-specific nucleases, particularly CRISPR/Cas9, provides researchers with the unprecedented ability to manipulate genomic sequences. These nucleases are used to create model cell lines, engineer metabolic pathways, produce transgenic animals and plants, perform genome-wide functional screen and, most importantly, treat human diseases that are difficult to tackle by traditional medications. Considerable efforts have been devoted to improving the efficiency and specificity of nucleases for clinical applications. However, safe and efficient delivery methods remain the major obstacle for therapeutic gene editing. In this review, we summarize the recent progress on nuclease delivery methods, highlight their impact on the outcomes of gene editing and discuss the potential of different delivery approaches for therapeutic gene editing. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Generation of knockout rabbits using transcription activator-like effector nucleases.

    PubMed

    Wang, Yu; Fan, Nana; Song, Jun; Zhong, Juan; Guo, Xiaogang; Tian, Weihua; Zhang, Quanjun; Cui, Fenggong; Li, Li; Newsome, Philip N; Frampton, Jon; Esteban, Miguel A; Lai, Liangxue

    2014-01-01

    Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platforms contributing to redefine the boundaries of modern biological research. They are composed of a non-specific cleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications by inducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases have been employed to produce gene knockouts in mid-size and large animals, such as rabbits and pigs, respectively. This approach is cost effective, relatively quick, and can produce invaluable models for human disease studies, biotechnology or agricultural purposes. Here we describe a protocol for the efficient generation of knockout rabbits using transcription activator-like effector nucleases, and a perspective of the field.

  11. Enhanced gene disruption by programmable nucleases delivered by a minicircle vector.

    PubMed

    Dad, A-B K; Ramakrishna, S; Song, M; Kim, H

    2014-11-01

    Targeted genetic modification using programmable nucleases such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) is of great value in biomedical research, medicine and biotechnology. Minicircle vectors, which lack extraneous bacterial sequences, have several advantages over conventional plasmids for transgene delivery. Here, for the first time, we delivered programmable nucleases into human cells using transient transfection of a minicircle vector and compared the results with those obtained using a conventional plasmid. Surrogate reporter assays and T7 endonuclease analyses revealed that cells in the minicircle vector group displayed significantly higher mutation frequencies at the target sites than those in the conventional plasmid group. Quantitative PCR and reverse transcription-PCR showed higher vector copy number and programmable nuclease transcript levels, respectively, in 293T cells after minicircle versus conventional plasmid vector transfection. In addition, tryphan blue staining and flow cytometry after annexin V and propidium iodide staining showed that cell viability was also significantly higher in the minicircle group than in the conventional plasmid group. Taken together, our results show that gene disruption using minicircle vector-mediated delivery of ZFNs and TALENs is a more efficient, safer and less toxic method than using a conventional plasmid, and indicate that the minicircle vector could serve as an advanced delivery method for programmable nucleases.

  12. Nuclease-mediated genome editing: At the front-line of functional genomics technology.

    PubMed

    Sakuma, Tetsushi; Woltjen, Knut

    2014-01-01

    Genome editing with engineered endonucleases is rapidly becoming a staple method in developmental biology studies. Engineered nucleases permit random or designed genomic modification at precise loci through the stimulation of endogenous double-strand break repair. Homology-directed repair following targeted DNA damage is mediated by co-introduction of a custom repair template, allowing the derivation of knock-out and knock-in alleles in animal models previously refractory to classic gene targeting procedures. Currently there are three main types of customizable site-specific nucleases delineated by the source mechanism of DNA binding that guides nuclease activity to a genomic target: zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR). Among these genome engineering tools, characteristics such as the ease of design and construction, mechanism of inducing DNA damage, and DNA sequence specificity all differ, making their application complementary. By understanding the advantages and disadvantages of each method, one may make the best choice for their particular purpose. © 2014 The Authors Development, Growth & Differentiation © 2014 Japanese Society of Developmental Biologists.

  13. DNA aptamers against FokI nuclease domain for genome editing applications.

    PubMed

    Nishio, Maui; Matsumoto, Daisuke; Kato, Yoshio; Abe, Koichi; Lee, Jinhee; Tsukakoshi, Kaori; Yamagishi, Ayana; Nakamura, Chikashi; Ikebukuro, Kazunori

    2017-07-15

    Genome editing with site-specific nucleases (SSNs) can modify only the target gene and may be effective for gene therapy. The main limitation of genome editing for clinical use is off-target effects; excess SSNs in the cells and their longevity can contribute to off-target effects. Therefore, a controlled delivery system for SSNs is necessary. FokI nuclease domain (FokI) is a common DNA cleavage domain in zinc finger nuclease (ZFN) and transcription activator-like effector nuclease. Previously, we reported a zinc finger protein delivery system that combined aptamer-fused, double-strand oligonucleotides and nanoneedles. Here, we report the development of DNA aptamers that bind to the target molecules, with high affinity and specificity to the FokI. DNA aptamers were selected in six rounds of systematic evolution of ligands by exponential enrichment. Aptamers F6#8 and #71, which showed high binding affinity to FokI (K d =82nM, 74nM each), showed resistance to nuclease activity itself and did not inhibit nuclease activity. We immobilized the ZFN-fused GFP to nanoneedles through these aptamers and inserted the nanoneedles into HEK293 cells. We observed the release of ZFN-fused GFP from the nanoneedles in the presence of cells. Therefore, these aptamers are useful for genome editing applications such as controlled delivery of SSNs. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Targeting of a Nuclease to Murine Leukemia Virus Capsids Inhibits Viral Multiplication

    NASA Astrophysics Data System (ADS)

    Natsoulis, Georges; Seshaiah, Partha; Federspiel, Mark J.; Rein, Alan; Hughes, Stephen H.; Boeke, Jef D.

    1995-01-01

    Capsid-targeted viral inactivation is an antiviral strategy in which toxic fusion proteins are targeted to virions, where they inhibit viral multiplication by destroying viral components. These fusion proteins consist of a virion structural protein moiety and an enzymatic moiety such as a nuclease. Such fusion proteins can severely inhibit transposition of yeast retrotransposon Ty1, an element whose transposition mechanistically resembles retroviral multiplication. We demonstrate that expression of a murine retrovirus capsid-staphylococcal nuclease fusion protein inhibits multiplication of the corresponding murine leukemia virus by 30- to 100-fold. Staphylococcal nuclease is apparently inactive intracellularly and hence nontoxic to the host cell, but it is active extracellularly because of its requirement for high concentrations of Ca2+ ions. Virions assembled in and shed from cells expressing the fusion protein contain very small amounts of intact viral RNA, as would be predicted for nuclease-mediated inhibition of viral multiplication.

  15. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency.

    PubMed

    Song, Jun; Yang, Dongshan; Xu, Jie; Zhu, Tianqing; Chen, Y Eugene; Zhang, Jifeng

    2016-01-28

    Zinc-finger nuclease, transcription activator-like effector nuclease and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) are becoming major tools for genome editing. Importantly, knock-in in several non-rodent species has been finally achieved thanks to these customizable nucleases; yet the rates remain to be further improved. We hypothesize that inhibiting non-homologous end joining (NHEJ) or enhancing homology-directed repair (HDR) will improve the nuclease-mediated knock-in efficiency. Here we show that the in vitro application of an HDR enhancer, RS-1, increases the knock-in efficiency by two- to five-fold at different loci, whereas NHEJ inhibitor SCR7 has minimal effects. We then apply RS-1 for animal production and have achieved multifold improvement on the knock-in rates as well. Our work presents tools to nuclease-mediated knock-in animal production, and sheds light on improving gene-targeting efficiencies on pluripotent stem cells.

  16. Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro.

    PubMed

    Termglinchan, Vittavat; Seeger, Timon; Chen, Caressa; Wu, Joseph C; Karakikes, Ioannis

    2017-01-01

    Precision genome engineering is rapidly advancing the application of the induced pluripotent stem cells (iPSCs) technology for in vitro disease modeling of cardiovascular diseases. Targeted genome editing using engineered nucleases is a powerful tool that allows for reverse genetics, genome engineering, and targeted transgene integration experiments to be performed in a precise and predictable manner. However, nuclease-mediated homologous recombination is an inefficient process. Herein, we describe the development of an optimized method combining site-specific nucleases and the piggyBac transposon system for "seamless" genome editing in pluripotent stem cells with high efficiency and fidelity in vitro.

  17. Genome Editing in Rats Using TALE Nucleases.

    PubMed

    Tesson, Laurent; Remy, Séverine; Ménoret, Séverine; Usal, Claire; Thinard, Reynald; Savignard, Chloé; De Cian, Anne; Giovannangeli, Carine; Concordet, Jean-Paul; Anegon, Ignacio

    2016-01-01

    The rat is an important animal model to understand gene function and model human diseases. Since recent years, the development of gene-specific nucleases has become important for generating new rat models of human diseases, to analyze the role of genes and to generate human antibodies. Transcription activator-like (TALE) nucleases efficiently create gene-specific knockout rats and lead to the possibility of gene targeting by homology-directed recombination (HDR) and generating knock-in rats. We describe a detailed protocol for generating knockout and knock-in rats via microinjection of TALE nucleases into fertilized eggs. This technology is an efficient, cost- and time-effective method for creating new rat models.

  18. Therapeutic gene editing: delivery and regulatory perspectives.

    PubMed

    Shim, Gayong; Kim, Dongyoon; Park, Gyu Thae; Jin, Hyerim; Suh, Soo-Kyung; Oh, Yu-Kyoung

    2017-06-01

    Gene-editing technology is an emerging therapeutic modality for manipulating the eukaryotic genome by using target-sequence-specific engineered nucleases. Because of the exceptional advantages that gene-editing technology offers in facilitating the accurate correction of sequences in a genome, gene editing-based therapy is being aggressively developed as a next-generation therapeutic approach to treat a wide range of diseases. However, strategies for precise engineering and delivery of gene-editing nucleases, including zinc finger nucleases, transcription activator-like effector nuclease, and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated nuclease Cas9), present major obstacles to the development of gene-editing therapies, as with other gene-targeting therapeutics. Currently, viral and non-viral vectors are being studied for the delivery of these nucleases into cells in the form of DNA, mRNA, or proteins. Clinical trials are already ongoing, and in vivo studies are actively investigating the applicability of CRISPR/Cas9 techniques. However, the concept of correcting the genome poses major concerns from a regulatory perspective, especially in terms of safety. This review addresses current research trends and delivery strategies for gene editing-based therapeutics in non-clinical and clinical settings and considers the associated regulatory issues.

  19. Therapeutic gene editing: delivery and regulatory perspectives

    PubMed Central

    Shim, Gayong; Kim, Dongyoon; Park, Gyu Thae; Jin, Hyerim; Suh, Soo-Kyung; Oh, Yu-Kyoung

    2017-01-01

    Gene-editing technology is an emerging therapeutic modality for manipulating the eukaryotic genome by using target-sequence-specific engineered nucleases. Because of the exceptional advantages that gene-editing technology offers in facilitating the accurate correction of sequences in a genome, gene editing-based therapy is being aggressively developed as a next-generation therapeutic approach to treat a wide range of diseases. However, strategies for precise engineering and delivery of gene-editing nucleases, including zinc finger nucleases, transcription activator-like effector nuclease, and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated nuclease Cas9), present major obstacles to the development of gene-editing therapies, as with other gene-targeting therapeutics. Currently, viral and non-viral vectors are being studied for the delivery of these nucleases into cells in the form of DNA, mRNA, or proteins. Clinical trials are already ongoing, and in vivo studies are actively investigating the applicability of CRISPR/Cas9 techniques. However, the concept of correcting the genome poses major concerns from a regulatory perspective, especially in terms of safety. This review addresses current research trends and delivery strategies for gene editing-based therapeutics in non-clinical and clinical settings and considers the associated regulatory issues. PMID:28392568

  20. Purification and identification of a nuclease activity in embryo axes from French bean.

    PubMed

    Lambert, Rocío; Quiles, Francisco Antonio; Cabello-Díaz, Juan Miguel; Piedras, Pedro

    2014-07-01

    Plant nucleases are involved in nucleic acid degradation associated to programmed cell death processes as well as in DNA restriction, repair and recombination processes. However, the knowledge about the function of plant nucleases is limited. A major nuclease activity was detected by in-gel assay with whole embryonic axes of common bean by using ssDNA or RNA as substrate, whereas this activity was minimal in cotyledons. The enzyme has been purified to electrophoretic homogeneity from embryonic axes. The main biochemical properties of the purified enzyme indicate that it belongs to the S1/P1 family of nucleases. This was corroborated when this protein, after SDS-electrophoresis, was excised from the gel and further analysis by MALDI TOF/TOF allowed identification of the gene (PVN1) that codes this protein. The gene that codes the purified protein was identified. The expression of PVN1 gene was induced at the specific moment of radicle protrusion. The inclusion of inorganic phosphate to the imbibition media reduced the level of expression of this gene and the nuclease activity suggesting a relationship with the phosphorous status in French bean seedlings. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. GUIDEseq: a bioconductor package to analyze GUIDE-Seq datasets for CRISPR-Cas nucleases.

    PubMed

    Zhu, Lihua Julie; Lawrence, Michael; Gupta, Ankit; Pagès, Hervé; Kucukural, Alper; Garber, Manuel; Wolfe, Scot A

    2017-05-15

    Genome editing technologies developed around the CRISPR-Cas9 nuclease system have facilitated the investigation of a broad range of biological questions. These nucleases also hold tremendous promise for treating a variety of genetic disorders. In the context of their therapeutic application, it is important to identify the spectrum of genomic sequences that are cleaved by a candidate nuclease when programmed with a particular guide RNA, as well as the cleavage efficiency of these sites. Powerful new experimental approaches, such as GUIDE-seq, facilitate the sensitive, unbiased genome-wide detection of nuclease cleavage sites within the genome. Flexible bioinformatics analysis tools for processing GUIDE-seq data are needed. Here, we describe an open source, open development software suite, GUIDEseq, for GUIDE-seq data analysis and annotation as a Bioconductor package in R. The GUIDEseq package provides a flexible platform with more than 60 adjustable parameters for the analysis of datasets associated with custom nuclease applications. These parameters allow data analysis to be tailored to different nuclease platforms with different length and complexity in their guide and PAM recognition sequences or their DNA cleavage position. They also enable users to customize sequence aggregation criteria, and vary peak calling thresholds that can influence the number of potential off-target sites recovered. GUIDEseq also annotates potential off-target sites that overlap with genes based on genome annotation information, as these may be the most important off-target sites for further characterization. In addition, GUIDEseq enables the comparison and visualization of off-target site overlap between different datasets for a rapid comparison of different nuclease configurations or experimental conditions. For each identified off-target, the GUIDEseq package outputs mapped GUIDE-Seq read count as well as cleavage score from a user specified off-target cleavage score prediction algorithm permitting the identification of genomic sequences with unexpected cleavage activity. The GUIDEseq package enables analysis of GUIDE-data from various nuclease platforms for any species with a defined genomic sequence. This software package has been used successfully to analyze several GUIDE-seq datasets. The software, source code and documentation are freely available at http://www.bioconductor.org/packages/release/bioc/html/GUIDEseq.html .

  2. Genetic correction using engineered nucleases for gene therapy applications.

    PubMed

    Li, Hongmei Lisa; Nakano, Takao; Hotta, Akitsu

    2014-01-01

    Genetic mutations in humans are associated with congenital disorders and phenotypic traits. Gene therapy holds the promise to cure such genetic disorders, although it has suffered from several technical limitations for decades. Recent progress in gene editing technology using tailor-made nucleases, such as meganucleases (MNs), zinc finger nucleases (ZFNs), TAL effector nucleases (TALENs) and, more recently, CRISPR/Cas9, has significantly broadened our ability to precisely modify target sites in the human genome. In this review, we summarize recent progress in gene correction approaches of the human genome, with a particular emphasis on the clinical applications of gene therapy. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  3. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency

    PubMed Central

    Song, Jun; Yang, Dongshan; Xu, Jie; Zhu, Tianqing; Chen, Y. Eugene; Zhang, Jifeng

    2016-01-01

    Zinc-finger nuclease, transcription activator-like effector nuclease and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) are becoming major tools for genome editing. Importantly, knock-in in several non-rodent species has been finally achieved thanks to these customizable nucleases; yet the rates remain to be further improved. We hypothesize that inhibiting non-homologous end joining (NHEJ) or enhancing homology-directed repair (HDR) will improve the nuclease-mediated knock-in efficiency. Here we show that the in vitro application of an HDR enhancer, RS-1, increases the knock-in efficiency by two- to five-fold at different loci, whereas NHEJ inhibitor SCR7 has minimal effects. We then apply RS-1 for animal production and have achieved multifold improvement on the knock-in rates as well. Our work presents tools to nuclease-mediated knock-in animal production, and sheds light on improving gene-targeting efficiencies on pluripotent stem cells. PMID:26817820

  4. RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?

    PubMed

    Gasiunas, Giedrius; Siksnys, Virginijus

    2013-11-01

    Tailor-made nucleases for precise genome modification, such as zinc finger or TALE nucleases, currently represent the state-of-the-art for genome editing. These nucleases combine a programmable protein module which guides the enzyme to the target site with a nuclease domain which cuts DNA at the addressed site. Reprogramming of these nucleases to cut genomes at specific locations requires major protein engineering efforts. RNA-guided DNA endonuclease Cas9 of the type II (clustered regularly interspaced short palindromic repeat) CRISPR-Cas system uses CRISPR RNA (crRNA) as a guide to locate the DNA target and the Cas9 protein to cut DNA. Easy programmability of the Cas9 endonuclease using customizable RNAs brings unprecedented flexibility and versatility for targeted genome modification. We highlight the potential of the Cas9 RNA-guided DNA endonuclease as a novel tool for genome surgery, and discuss possible constraints and future prospects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Evaluation of Biological and Physical Protection against Nuclease Degradation of Clay-Bound Plasmid DNA

    PubMed Central

    Demanèche, Sandrine; Jocteur-Monrozier, Lucile; Quiquampoix, Hervé; Simonet, Pascal

    2001-01-01

    In order to determine the mechanisms involved in the persistence of extracellular DNA in soils and to monitor whether bacterial transformation could occur in such an environment, we developed artificial models composed of plasmid DNA adsorbed on clay particles. We determined that clay-bound DNA submitted to an increasing range of nuclease concentrations was physically protected. The protection mechanism was mainly related to the adsorption of the nuclease on the clay mineral. The biological potential of the resulting DNA was monitored by transforming the naturally competent proteobacterium Acinetobacter sp. strain BD413, allowing us to demonstrate that adsorbed DNA was only partially available for transformation. This part of the clay-bound DNA which was available for bacteria, was also accessible to nucleases, while the remaining fraction escaped both transformation and degradation. Finally, transformation efficiency was related to the perpetuation mechanism, with homologous recombination being less sensitive to nucleases than autonomous replication, which requires intact molecules. PMID:11133458

  6. A Biochemical Approach to Understanding the Fanconi Anemia Pathway-Regulated Nucleases in Genome Maintenance for Preventing Bone Marrow Failure and Cancer

    DTIC Science & Technology

    2014-04-01

    the Fanconi Anemia Pathway- Regulated Nucleases in Genome Maintenance for Preventing Bone Marrow Failure and Cancer PRINCIPAL INVESTIGATOR...GRANT NUMBER 4. TITLE AND SUBTITLE A Biochemical Approach to Understanding the Fanconi Anemia Pathway-Regulated Nucleases in Genome Maintenance for...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Fanconi anemia is the most prevalent inherited BMF syndromes, caused by mutations in

  7. Endonuclease from Gram-Negative Bacteria Serratia marcescens Is as Effective as Pulmozyme in the Hydrolysis of DNA in Sputum

    PubMed Central

    Vafina, Gulnaz; Zainutdinova, Elmira; Bulatov, Emil; Filimonova, Maria N.

    2018-01-01

    One of the approaches to effective airway cleansing is the degradation of DNA into smaller fragments. For this purpose Pulmozyme® is used with high efficacy because it contains recombinant DNase I as its active component. The aim of the study was to comparatively analyze DNase activity of Pulmozyme® and the nuclease from gram-negative bacteria Serratia marcescens, because at optimal conditions the catalytic efficiency of the nuclease is much higher than the efficiency of DNase I. Highly polymerized DNA and purulent-mucous sputum were used as substrates. The examination showed that both S. marcescens nuclease and Pulmozyme® hydrolyzed DNA in sputum. Also S. marcescens nuclease was found capable of hydrolyzing DNA in conditions that are standard for Pulmozyme® and suitable for its therapeutic application. For manifesting the similar hydrolytic activity the nuclease amount in the assay mixture containing highly polymerized DNA or the sonicated sputum and NaCl together with calcium- or magnesium- cations can be about 10- time lower than that of the recombinant DNase I. In the presence of magnesium cations the DNase activity of both S. marcescens nuclease and Pulmozyme® was higher than in the presence of calcium cations. PMID:29503617

  8. Nucleases activities during French bean leaf aging and dark-induced senescence.

    PubMed

    Lambert, Rocío; Quiles, Francisco Antonio; Gálvez-Valdivieso, Gregorio; Piedras, Pedro

    2017-11-01

    During leaf senescence resources are managed, with nutrients mobilized from older leaves to new sink tissues. The latter implies a dilemma in terms of resource utilization, the leaf senescence should increase seed quality whereas delay in senescence should improve the seed yield. Increased knowledge about nutrient recycling during leaf senescence could lead to advances in agriculture and improved seed quality. Macromolecules mobilized during leaf senescence include proteins and nucleic acids. Although nucleic acids have been less well studied than protein degradation, they are possible reservoirs of nitrogen and phosphorous. The present study investigated nuclease activities and gene expression patterns of five members of the S1/P1 family in French bean (Phaseolus vulgaris L. cv.)Page: 2 during leaf senescence. An in-gel assay was used to detect nuclease activity during natural and dark-induced senescence, with single-stranded DNA (ssDNA) used as a substrate. The results revealed two nucleases (glycoproteins), with molecular masses of 34 and 39kDa in the senescent leaves. The nuclease activities were higher at a neutral than at an acidic pH. EDTA treatment inhibited the activities of the nucleases, and the addition of zinc resulted in the recovery of these activities. Both the 34 and 39kDa nucleases were able to use RNA and double-stranded DNA (dsDNA) as substrates, although their activities were low when dsDNA was used as a substrate. In addition, two ribonucleases with molecular masses of 14 and 16kDa, both of which could only utilize RNA as a substrate, were detected in the senescent leaves. Two members of the S1/P1 family, PVN2 and PVN5, were expressed under the experimental conditions, suggesting that these two genes were involved in senescence. The nuclease activity of the glycoproteins and gene expression were similar under both natural senescence and dark-induced senescence conditions. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  9. Installing logic gates in permeability controllable polyelectrolyte-carbon nitride films for detecting proteases and nucleases.

    PubMed

    Chen, Lichan; Zeng, Xiaoting; Dandapat, Anirban; Chi, Yuwu; Kim, Donghwan

    2015-09-01

    Proteases and nucleases are enzymes heavily involved in many important biological processes, such as cancer initiation, progression, and metastasis; hence, they are indicative of potential diagnostic biomarkers. Here, we demonstrate a new label free and sensitive electrochemiluminescent (ECL) sensing strategy for protease and nuclease assays that utilize target-triggered desorption of programmable polyelectrolyte films assembled on graphite-like carbon nitride (g-C3N4) film to regulate the diffusion flux of a coreactant. Furthermore, we have built Boolean logic gates OR and AND into the polyelectrolyte films, capable of simultaneously sensing proteases and nucleases in a complicated system by breaking it into simple functions. The developed intelligent permeability controlled enzyme sensor may prove valuable in future medical diagnostics.

  10. Hybrid nanosensor for colorimetric and ultrasensitive detection of nuclease contaminations

    NASA Astrophysics Data System (ADS)

    Cecere, Paola; Valentini, Paola; Pompa, Pier Paolo

    2016-04-01

    Nucleases are ubiquitous enzymes that degrade DNA or RNA, thus they can prejudice the good outcome of molecular biology experiments involving nucleic acids. We propose a colorimetric test for the naked-eye detection of nuclease contaminations. The system uses an hybrid nanosensor, based on gold nanoparticles functionalized with DNA probes. Our assay is rapid, instrument-free, simple and low-cost. Moreover, it reaches sensitivity equal or better than those of commercial kits, and presents a lot of advantageous aspects. Therefore, it is very competitive, with a real market potential. This test will be relevant in routine process monitoring in scientific laboratories, and in quality control in clinical laboratories and industrial processes, allowing the simultaneous detection of nucleases with different substrate specificities and large-scale screening.

  11. Characterization of a periplasmic S1-like nuclease coded by the Mesorhizobium loti symbiosis island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pimkin, Maxim; Miller, C. Glenn; Blakesley, Lauryn

    DNA sequences encoding hypothetical proteins homologous to S1 nuclease from Aspergillus oryzae are found in many organisms including fungi, plants, pathogenic bacteria, and eukaryotic parasites. One of these is the M1 nuclease of Mesorhizobium loti which we demonstrate herein to be an enzymatically active, soluble, and stable S1 homolog that lacks the extensive mannosyl-glycosylation found in eukaryotic S1 nuclease homologs. We have expressed the cloned M1 protein in M. loti and purified recombinant native M1 to near homogeneity and have also isolated a homogeneous M1 carboxy-terminal hexahistidine tag fusion protein. Mass spectrometry and N-terminal Edman degradation sequencing confirmed the proteinmore » identity. The enzymatic properties of the purified M1 nuclease are similar to those of S1. At acidic pH M1 is 25 times more active on single-stranded DNA than on double-stranded DNA and 3 times more active on single-stranded DNA than on single-stranded RNA. At neutral pH the RNase activity of M1 exceeds the DNase activity. M1 nicks supercoiled RF-I plasmid DNA and rapidly cuts the phosphodiester bond across from the nick in the resultant relaxed RF-II plasmid DNA. Therefore, M1 represents an active bacterial S1 homolog in spite of great sequence divergence. The biochemical characterization of M1 nuclease supports our sequence alignment that reveals the minimal 21 amino acid residues that are necessarily conserved for the structure and functions of this enzyme family. The ability of M1 to degrade RNA at neutral pH implies previously unappreciated roles of these nucleases in biological systems.« less

  12. Determinants of the cytotoxicity of PrrC anticodon nuclease and its amelioration by tRNA repair

    PubMed Central

    Meineke, Birthe; Shuman, Stewart

    2012-01-01

    Breakage of tRNALys(UUU) by the Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies a host antiviral response to phage T4 infection that is ultimately thwarted by a virus-encoded RNA repair system. PrrC homologs are prevalent in other bacteria, but their activities and substrates are not defined. We find that induced expression of EcoPrrC is toxic in Saccharomyces cerevisiae and E. coli, whereas the Neisseria meningitidis PrrC (NmePrrC) is not. PrrCs consist of an N-terminal NTPase module and a C-terminal nuclease module. Domain swaps identified the EcoPrrC nuclease domain as decisive for toxicity when linked to either the Eco or Nme NTPase. Indeed, a single arginine-to-tryptophan change in the NmePrrC nuclease domain (R316W) educed a gain-of-function and rendered NmePrrC toxic to yeast, with genetic evidence for tRNALys(UUU) being the relevant target. The reciprocal Trp-to-Arg change in EcoPrrC (W335R) abolished its toxicity. Further mutagenesis of the EcoPrrC nuclease domain highlighted an ensemble of 15 essential residues and distinguished between hypomorphic alleles and potential nuclease-nulls. We report that the RNA repair phase of the bacterial virus-host dynamic is also portable to yeast, where coexpression of the T4 enzymes Pnkp and Rnl1 ameliorated the toxicity of NmePrrC-R316W. Plant tRNA ligase AtRNL also countered NmePrrC-R316W toxicity, in a manner that depended on AtRNL's 5′-kinase and ligase functions. PMID:22101242

  13. Determinants of the cytotoxicity of PrrC anticodon nuclease and its amelioration by tRNA repair.

    PubMed

    Meineke, Birthe; Shuman, Stewart

    2012-01-01

    Breakage of tRNA(Lys(UUU)) by the Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies a host antiviral response to phage T4 infection that is ultimately thwarted by a virus-encoded RNA repair system. PrrC homologs are prevalent in other bacteria, but their activities and substrates are not defined. We find that induced expression of EcoPrrC is toxic in Saccharomyces cerevisiae and E. coli, whereas the Neisseria meningitidis PrrC (NmePrrC) is not. PrrCs consist of an N-terminal NTPase module and a C-terminal nuclease module. Domain swaps identified the EcoPrrC nuclease domain as decisive for toxicity when linked to either the Eco or Nme NTPase. Indeed, a single arginine-to-tryptophan change in the NmePrrC nuclease domain (R316W) educed a gain-of-function and rendered NmePrrC toxic to yeast, with genetic evidence for tRNA(Lys(UUU)) being the relevant target. The reciprocal Trp-to-Arg change in EcoPrrC (W335R) abolished its toxicity. Further mutagenesis of the EcoPrrC nuclease domain highlighted an ensemble of 15 essential residues and distinguished between hypomorphic alleles and potential nuclease-nulls. We report that the RNA repair phase of the bacterial virus-host dynamic is also portable to yeast, where coexpression of the T4 enzymes Pnkp and Rnl1 ameliorated the toxicity of NmePrrC-R316W. Plant tRNA ligase AtRNL also countered NmePrrC-R316W toxicity, in a manner that depended on AtRNL's 5'-kinase and ligase functions.

  14. [Nuclease activity of the recombinant plancitoxin-1-like proteins with mutations in the active site from Trichinella spiralis].

    PubMed

    Liao, Chengshui; Wang, Xiaoli; Tian, Wenjing; Zhang, Mengke; Zhang, Chunjie; Li, Yinju; Wu, Tingcai; Cheng, Xiangchao

    2017-08-25

    Although there are 125 predicted DNase Ⅱ-like family genes in the Trichinella spiralis genome, plancitoxin-1-like (Ts-Pt) contains the HKD motif, a typical conserved region of DNase Ⅱ, in N- and C-terminal. It is generally believed that histidine is the active site in DNase Ⅱ. To study the nuclease activity of recombinant Ts-Pt with mutations in the active site from T. spiralis, different fragments of the mutated Ts-Pt genes were cloned using overlap PCR technique and inserted into the expressing vector pET-28a(+), and transformed into Escherichia coli Rosseta (DE3). The fusion proteins were purified by Ni-NTA affinity chromatography and SDS-PAGE. Nuclease activity of the recombinant proteins was detected by agarose gel electrophoresis and nuclease-zymography. The recombinant plasmids harboring the mutated Ts-Pt genes were constructed and expressed as inclusive body in a prokaryotic expression system. After renaturation in vitro, the recombinant proteins had no nuclease activity according to agarose gel electrophoresis. However, the expressed proteins as inclusive body displayed the ability to degrade DNA after renaturation in gel. And the nuclease activity was not affected after subjected to mutation of active site in N- and C-termini of Ts-Pt. These results provide the basis to study the relationship between DNase Ⅱ-like protein family and infection of T. spiralis.

  15. Paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption.

    PubMed

    Gopalappa, Ramu; Suresh, Bharathi; Ramakrishna, Suresh; Kim, Hyongbum Henry

    2018-03-23

    The use of paired Cas9 nickases instead of Cas9 nuclease drastically reduces off-target effects. Because both nickases must function for a nickase pair to make a double-strand break, the efficiency of paired nickases can intuitively be expected to be lower than that of either corresponding nuclease alone. Here, we carefully compared the gene-disrupting efficiency of Cas9 paired nickases with that of nucleases. Interestingly, the T7E1 assay and deep sequencing showed that on-target efficiency of paired D10A Cas9 nickases was frequently comparable, but sometimes higher than that of either corresponding nucleases in mammalian cells. As the underlying mechanism, we found that the HNH domain, which is preserved in the D10A Cas9 nickase, has higher activity than the RuvC domain in mammalian cells. In this study, we showed: (i) the in vivo cleavage efficiency of the HNH domain of Cas9 in mammalian cells is higher than that of the RuvC domain, (ii) paired Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption. We envision that our findings which were overlooked in previous reports will serve as a new potential guideline for tool selection for CRISPR-Cas9-mediated gene disruption, facilitating efficient and precise genome editing.

  16. Knockdown of nuclease activity in the gut enhances RNAi efficiency in the Colorado potato beetle, Leptinotarsa decemlineata, but not in the desert locust, Schistocerca gregaria.

    PubMed

    Spit, Jornt; Philips, Annelies; Wynant, Niels; Santos, Dulce; Plaetinck, Geert; Vanden Broeck, Jozef

    2017-02-01

    The responsiveness towards orally delivered dsRNA and the potency of a subsequent environmental RNA interference (RNAi) response strongly differs between different insect species. While some species are very sensitive to dsRNA delivery through the diet, others are not. The underlying reasons for this may vary, but degradation of dsRNA by nucleases in the gut lumen is believed to play a crucial role. The Colorado potato beetle, Leptinotarsa decemlineata, is a voracious defoliator of potato crops worldwide, and is currently under investigation for novel control methods based on dsRNA treatments. Here we describe the identification and characterization of two nuclease genes exclusively expressed in the gut of this pest species. Removal of nuclease activity in adults increased the sensitivity towards dsRNA and resulted in improved protection of potato plants. A similar strategy in the desert locust, Schistocerca gregaria, for which we show a far more potent nuclease activity in the gut juice, did however not lead to an improvement of the RNAi response. Possible reasons for this are discussed. Taken together, the present data confirm a negative effect of nucleases in the gut on the environmental RNAi response, and further suggest that interfering with this activity is a strategy worth pursuing for improving RNAi efficacy in insect pest control applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Rapid Detection of Urinary Tract Infections via Bacterial Nuclease Activity.

    PubMed

    Flenker, Katie S; Burghardt, Elliot L; Dutta, Nirmal; Burns, William J; Grover, Julia M; Kenkel, Elizabeth J; Weaver, Tyler M; Mills, James; Kim, Hyeon; Huang, Lingyan; Owczarzy, Richard; Musselman, Catherine A; Behlke, Mark A; Ford, Bradley; McNamara, James O

    2017-06-07

    Rapid and accurate bacterial detection methods are needed for clinical diagnostic, water, and food testing applications. The wide diversity of bacterial nucleases provides a rich source of enzymes that could be exploited as signal amplifying biomarkers to enable rapid, selective detection of bacterial species. With the exception of the use of micrococcal nuclease activity to detect Staphylococcus aureus, rapid methods that detect bacterial pathogens via their nuclease activities have not been developed. Here, we identify endonuclease I as a robust biomarker for E. coli and develop a rapid ultrasensitive assay that detects its activity. Comparison of nuclease activities of wild-type and nuclease-knockout E. coli clones revealed that endonuclease I is the predominant DNase in E. coli lysates. Endonuclease I is detectable by immunoblot and activity assays in uropathogenic E. coli strains. A rapid assay that detects endonuclease I activity in patient urine with an oligonucleotide probe exhibited substantially higher sensitivity for urinary tract infections than that reported for rapid urinalysis methods. The 3 hr turnaround time is much shorter than that of culture-based methods, thereby providing a means for expedited administration of appropriate antimicrobial therapy. We suggest this approach could address various unmet needs for rapid detection of E. coli. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  18. Genome editing technologies to fight infectious diseases.

    PubMed

    Trevisan, Marta; Palù, Giorgio; Barzon, Luisa

    2017-11-01

    Genome editing by programmable nucleases represents a promising tool that could be exploited to develop new therapeutic strategies to fight infectious diseases. These nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) and homing endonucleases, are molecular scissors that can be targeted at predetermined loci in order to modify the genome sequence of an organism. Areas covered: By perturbing genomic DNA at predetermined loci, programmable nucleases can be used as antiviral and antimicrobial treatment. This approach includes targeting of essential viral genes or viral sequences able, once mutated, to inhibit viral replication; repurposing of CRISPR-Cas9 system for lethal self-targeting of bacteria; targeting antibiotic-resistance and virulence genes in bacteria, fungi, and parasites; engineering arthropod vectors to prevent vector-borne infections. Expert commentary: While progress has been done in demonstrating the feasibility of using genome editing as antimicrobial strategy, there are still many hurdles to overcome, such as the risk of off-target mutations, the raising of escape mutants, and the inefficiency of delivery methods, before translating results from preclinical studies into clinical applications.

  19. Genome editing: a robust technology for human stem cells.

    PubMed

    Chandrasekaran, Arun Pandian; Song, Minjung; Ramakrishna, Suresh

    2017-09-01

    Human pluripotent stem cells comprise induced pluripotent and embryonic stem cells, which have tremendous potential for biological and therapeutic applications. The development of efficient technologies for the targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. Genome editing of stem cells is possible with the help of synthetic nucleases that facilitate site-specific modification of a gene of interest. Recent advances in genome editing techniques have improved the efficiency and speed of the development of stem cells for human disease models. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system are powerful tools for editing DNA at specific loci. Here, we discuss recent technological advances in genome editing with site-specific nucleases in human stem cells.

  20. Targeted Mutagenesis in Rice Using TALENs and the CRISPR/Cas9 System.

    PubMed

    Endo, Masaki; Nishizawa-Yokoi, Ayako; Toki, Seiichi

    2016-01-01

    Sequence-specific nucleases (SSNs), such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) system, are powerful tools for understanding gene function and for developing novel traits in plants. In plant species for which transformation and regeneration systems using protoplasts are not yet established, direct delivery to nuclei of SSNs either in the form of RNA or protein is difficult. Thus, Agrobacterium-mediated transformation of SSN expression constructs in cultured cells is a practical means of delivering targeted mutagenesis in some plant species including rice. Because targeted mutagenesis occurs stochastically in transgenic cells and SSN-mediated targeted mutagenesis often leads to no selectable phenotype, identification of highly mutated cell lines is a critical step in obtaining regenerated plants with desired mutations.

  1. Structural specificity of Rn nuclease I as probed on yeast tRNA(Phe) and tRNA(Asp).

    PubMed Central

    Przykorska, A; el Adlouni, C; Keith, G; Szarkowski, J W; Dirheimer, G

    1992-01-01

    A single-strand-specific nuclease from rye germ (Rn nuclease I) was characterized as a tool for secondary and tertiary structure investigation of RNAs. To test the procedure, yeast tRNA(Phe) and tRNA(Asp) for which the tertiary structures are known, as well as the 3'-half of tRNA(Asp) were used as substrates. In tRNA(Phe) the nuclease introduced main primary cuts at positions U33 and A35 of the anticodon loop and G18 and G19 of the D loop. No primary cuts were observed within the double stranded stems. In tRNA(Asp) the main cuts occurred at positions U33, G34, U35, C36 of the anticodon loop and G18 and C20:1 positions in the D loop. No cuts were observed in the T loop in intact tRNA(Asp) but strong primary cleavages occurred at positions psi 55, C56, A57 within that loop in the absence of the tertiary interactions between T and D loops (use of 3'-half tRNA(Asp)). These results show that Rn nuclease I is specific for exposed single-stranded regions. Images PMID:1542562

  2. Phosphodiester models for cleavage of nucleic acids

    PubMed Central

    2018-01-01

    Nucleic acids that store and transfer biological information are polymeric diesters of phosphoric acid. Cleavage of the phosphodiester linkages by protein enzymes, nucleases, is one of the underlying biological processes. The remarkable catalytic efficiency of nucleases, together with the ability of ribonucleic acids to serve sometimes as nucleases, has made the cleavage of phosphodiesters a subject of intensive mechanistic studies. In addition to studies of nucleases by pH-rate dependency, X-ray crystallography, amino acid/nucleotide substitution and computational approaches, experimental and theoretical studies with small molecular model compounds still play a role. With small molecules, the importance of various elementary processes, such as proton transfer and metal ion binding, for stabilization of transition states may be elucidated and systematic variation of the basicity of the entering or departing nucleophile enables determination of the position of the transition state on the reaction coordinate. Such data is important on analyzing enzyme mechanisms based on synergistic participation of several catalytic entities. Many nucleases are metalloenzymes and small molecular models offer an excellent tool to construct models for their catalytic centers. The present review tends to be an up to date summary of what has been achieved by mechanistic studies with small molecular phosphodiesters. PMID:29719577

  3. Mismatch cleavage by single-strand specific nucleases

    PubMed Central

    Till, Bradley J.; Burtner, Chris; Comai, Luca; Henikoff, Steven

    2004-01-01

    We have investigated the ability of single-strand specific (sss) nucleases from different sources to cleave single base pair mismatches in heteroduplex DNA templates used for mutation and single-nucleotide polymorphism analysis. The TILLING (Targeting Induced Local Lesions IN Genomes) mismatch cleavage protocol was used with the LI-COR gel detection system to assay cleavage of amplified heteroduplexes derived from a variety of induced mutations and naturally occurring polymorphisms. We found that purified nucleases derived from celery (CEL I), mung bean sprouts and Aspergillus (S1) were able to specifically cleave nearly all single base pair mismatches tested. Optimal nicking of heteroduplexes for mismatch detection was achieved using higher pH, temperature and divalent cation conditions than are routinely used for digestion of single-stranded DNA. Surprisingly, crude plant extracts performed as well as the highly purified preparations for this application. These observations suggest that diverse members of the S1 family of sss nucleases act similarly in cleaving non-specifically at bulges in heteroduplexes, and single-base mismatches are the least accessible because they present the smallest single-stranded region for enzyme binding. We conclude that a variety of sss nucleases and extracts can be effectively used for high-throughput mutation and polymorphism discovery. PMID:15141034

  4. Comparison of culture and a novel 5' Taq nuclease assay for direct detection of Campylobacter fetus subsp. venerealis in clinical specimens from cattle.

    PubMed

    McMillen, Lyle; Fordyce, Geoffry; Doogan, Vivienne J; Lew, Ala E

    2006-03-01

    A Campylobacter fetus subsp. venerealis-specific 5' Taq nuclease PCR assay using a 3' minor groove binder-DNA probe (TaqMan MGB) was developed based on a subspecies-specific fragment of unknown identity (S. Hum, K. Quinn, J. Brunner, and S. L. On, Aust. Vet. J. 75:827-831, 1997). The assay specifically detected four C. fetus subsp. venerealis strains with no observed cross-reaction with C. fetus subsp. fetus-related Campylobacter species or other bovine venereal microflora. The 5' Taq nuclease assay detected approximately one single cell compared to 100 and 10 cells in the conventional PCR assay and 2,500 and 25,000 cells from selective culture from inoculated smegma and mucus, respectively. The respective detection limits following the enrichments from smegma and mucus were 5,000 and 50 cells/inoculum for the conventional PCR compared to 500 and 50 cells/inoculum for the 5' Taq nuclease assay. Field sampling confirmed the sensitivity and the specificity of the 5' Taq nuclease assay by detecting an additional 40 bulls that were not detected by culture. Urine-inoculated samples demonstrated comparable detection of C. fetus subsp. venerealis by both culture and the 5' Taq nuclease assay; however, urine was found to be less effective than smegma for bull sampling. Three infected bulls were tested repetitively to compare sampling tools, and the bull rasper proved to be the most suitable, as evidenced by the improved ease of specimen collection and the consistent detection of higher levels of C. fetus subsp. venerealis. The 5' Taq nuclease assay demonstrates a statistically significant association with culture (chi2 = 29.8; P < 0.001) and significant improvements for the detection of C. fetus subsp. venerealis-infected animals from crude clinical extracts following prolonged transport.

  5. Recent Progress in Genome Editing Approaches for Inherited Cardiovascular Diseases.

    PubMed

    Kaur, Balpreet; Perea-Gil, Isaac; Karakikes, Ioannis

    2018-06-02

    This review describes the recent progress in nuclease-based therapeutic applications for inherited heart diseases in vitro, highlights the development of the most recent genome editing technologies and discusses the associated challenges for clinical translation. Inherited cardiovascular disorders are passed from generation to generation. Over the past decade, considerable progress has been made in understanding the genetic basis of inherited heart diseases. The timely emergence of genome editing technologies using engineered programmable nucleases has revolutionized the basic research of inherited cardiovascular diseases and holds great promise for the development of targeted therapies. The genome editing toolbox is rapidly expanding, and new tools have been recently added that significantly expand the capabilities of engineered nucleases. Newer classes of versatile engineered nucleases, such as the "base editors," have been recently developed, offering the potential for efficient and precise therapeutic manipulation of the human genome.

  6. [Isolation and purification of nonspecific nuclease of cyanobacterium Plectonema boryanum CALU 465].

    PubMed

    Tsymbal, N V; Samoĭlenko, V A; Syrchin, S A; Mendzhul, M I

    2004-01-01

    Nonspecific nuclease has been isolated from the cells of cyanobacterium Plectonema boryanum and purified to homogenic state. It has been established that the method of centrifugation of cell-free culture extract in the sucrose density gradient is efficient for the separation of pigment proteins and enzyme concentration. Under the successive use of two ion-exchangers the nuclease activity was determined in the concentration range of NaCl 0.065-0.085 M after separation of the cell-free cyanobacterium extract on the column with phosphocellulose in the range of 0.2-0.25 M, on the column with DEAE--Toyopearl respectively. The molecular mass of nuclease which is 40 kDa, has been determined by electrophoresis in polyacrylamide gel under denaturating conditions and gel-filtration on Sephadex G-100. It has been also established that the given enzyme is monosubunitary as to its structure.

  7. TALEN- and CRISPR/Cas9-Mediated Gene Editing in Human Pluripotent Stem Cells Using Lipid-Based Transfection.

    PubMed

    Hendriks, William T; Jiang, Xin; Daheron, Laurence; Cowan, Chad A

    2015-08-03

    Using custom-engineered nuclease-mediated genome editing, such as Transcription Activator-Like Effector Nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) RNA-guided Cas9 nucleases, human pluripotent stem cell (hPSC) lines with knockout or mutant alleles can be generated and differentiated into various cell types. This strategy of genome engineering in hPSCs will prove invaluable for studying human biology and disease. Here, we provide a detailed protocol for design and construction of TALEN and CRISPR vectors, testing of their nuclease activity, and delivery of TALEN or CRISPR vectors into hPSCs. In addition, we describe the use of single-stranded oligodeoxynucleotides (ssODNs) to introduce or repair point mutations. Next, we describe the identification of edited hPSC clones without antibiotic selection, including their clonal selection, genotyping, and expansion for downstream applications. Copyright © 2015 John Wiley & Sons, Inc.

  8. Design principles for nuclease-deficient CRISPR-based transcriptional regulators.

    PubMed

    Jensen, Michael K

    2018-06-01

    The engineering of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated proteins continues to expand the toolkit available for genome editing, reprogramming gene regulation, genome visualisation and epigenetic studies of living organisms. In this review, the emerging design principles on the use of nuclease-deficient CRISPR-based reprogramming of gene expression will be presented. The review will focus on the designs implemented in yeast both at the level of CRISPR proteins and guide RNA (gRNA), but will lend due credits to the seminal studies performed in other species where relevant. In addition to design principles, this review also highlights applications benefitting from the use of CRISPR-mediated transcriptional regulation and discusses the future directions to further expand the toolkit for nuclease-deficient reprogramming of genomes. As such, this review should be of general interest for experimentalists to get familiarised with the parameters underlying the power of reprogramming genomic functions by use of nuclease-deficient CRISPR technologies.

  9. A novel mitochondrial nuclease-associated protein: a major executor of the programmed nuclear death in Tetrahymena thermophila.

    PubMed

    Osada, Eriko; Akematsu, Takahiko; Asano, Tomoya; Endoh, Hiroshi

    2014-03-01

    Programmed nuclear death (PND) in the ciliate Tetrahymena is an apoptosis-like phenomenon that occurs in a restricted space of cytoplasm during conjugation. In the process, only the parental macronucleus is selectively eliminated from the progeny cytoplasm, in conjunction with differentiation of new macronuclei for the next generation. For the last decade, mitochondria have been elucidated to be a crucial executioner like apoptosis: apoptosis-inducing factor and yet-unidentified nucleases localised in mitochondria are major factors for PND. To identify such nucleases, we performed a DNase assay in a PAGE (SDS-DNA-PAGE) using total mitochondrial proteins. Some proteins showed DNase activity, but particularly a 17 kDa protein exhibited the highest and predominant activity. Mass spectrometric analysis revealed a novel mitochondrial nuclease, named TMN1, whose homologue has been discovered only in the ciliate Paramecium tetraurelia, but not in other eukaryotes. Gene disruption of TMN1 led to a drastic reduction of mitochondrial nuclease activity and blocked nuclear degradation during conjugation, but did not affect accumulation of autophagic and lysosomal machinery around the parental macronucleus. These observations strongly suggest that the mitochondrial nuclease-associated protein plays a key role in PND as a major executor. Taking the novel protein specific to ciliates in consideration, Tetrahymena would have diverted a different protein from common apoptotic factors shared in eukaryotes to PND in the course of ciliate evolution. © 2014 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  10. The extracellular nuclease Dns and its role in natural transformation of Vibrio cholerae.

    PubMed

    Blokesch, Melanie; Schoolnik, Gary K

    2008-11-01

    Free extracellular DNA is abundant in many aquatic environments. While much of this DNA will be degraded by nucleases secreted by the surrounding microbial community, some is available as transforming material that can be taken up by naturally competent bacteria. One such species is Vibrio cholerae, an autochthonous member of estuarine, riverine, and marine habitats and the causative agent of cholera, whose competence program is induced after colonization of chitin surfaces. In this study, we investigate how Vibrio cholerae's two extracellular nucleases, Xds and Dns, influence its natural transformability. We show that in the absence of Dns, transformation frequencies are significantly higher than in its presence. During growth on a chitin surface, an increase in transformation efficiency was found to correspond in time with increasing cell density and the repression of dns expression by the quorum-sensing regulator HapR. In contrast, at low cell density, the absence of HapR relieves dns repression, leading to the degradation of free DNA and to the abrogation of the transformation phenotype. Thus, as cell density increases, Vibrio cholerae undergoes a switch from nuclease-mediated degradation of extracellular DNA to the uptake of DNA by bacteria induced to a state of competence by chitin. Taken together, these results suggest the following model: nuclease production by low-density populations of V. cholerae might foster rapid growth by providing a source of nucleotides for the repletion of nucleotide pools. In contrast, the termination of nuclease production by static, high-density populations allows the uptake of intact DNA and coincides with a phase of potential genome diversification.

  11. The Extracellular Nuclease Dns and Its Role in Natural Transformation of Vibrio cholerae▿

    PubMed Central

    Blokesch, Melanie; Schoolnik, Gary K.

    2008-01-01

    Free extracellular DNA is abundant in many aquatic environments. While much of this DNA will be degraded by nucleases secreted by the surrounding microbial community, some is available as transforming material that can be taken up by naturally competent bacteria. One such species is Vibrio cholerae, an autochthonous member of estuarine, riverine, and marine habitats and the causative agent of cholera, whose competence program is induced after colonization of chitin surfaces. In this study, we investigate how Vibrio cholerae's two extracellular nucleases, Xds and Dns, influence its natural transformability. We show that in the absence of Dns, transformation frequencies are significantly higher than in its presence. During growth on a chitin surface, an increase in transformation efficiency was found to correspond in time with increasing cell density and the repression of dns expression by the quorum-sensing regulator HapR. In contrast, at low cell density, the absence of HapR relieves dns repression, leading to the degradation of free DNA and to the abrogation of the transformation phenotype. Thus, as cell density increases, Vibrio cholerae undergoes a switch from nuclease-mediated degradation of extracellular DNA to the uptake of DNA by bacteria induced to a state of competence by chitin. Taken together, these results suggest the following model: nuclease production by low-density populations of V. cholerae might foster rapid growth by providing a source of nucleotides for the repletion of nucleotide pools. In contrast, the termination of nuclease production by static, high-density populations allows the uptake of intact DNA and coincides with a phase of potential genome diversification. PMID:18757542

  12. Exploring the transcription activator-like effectors scaffold versatility to expand the toolbox of designer nucleases

    PubMed Central

    2014-01-01

    Background The past decade has seen the emergence of several molecular tools that render possible modification of cellular functions through accurate and easy addition, removal, or exchange of genomic DNA sequences. Among these technologies, transcription activator-like effectors (TALE) has turned out to be one of the most versatile and incredibly robust platform for generating targeted molecular tools as demonstrated by fusion to various domains such as transcription activator, repressor and nucleases. Results In this study, we generated a novel nuclease architecture based on the transcription activator-like effector scaffold. In contrast to the existing Tail to Tail (TtT) and head to Head (HtH) nuclease architectures based on the symmetrical association of two TALE DNA binding domains fused to the C-terminal (TtT) or N-terminal (HtH) end of FokI, this novel architecture consists of the asymmetrical association of two different engineered TALE DNA binding domains fused to the N- and C-terminal ends of FokI (TALE::FokI and FokI::TALE scaffolds respectively). The characterization of this novel Tail to Head (TtH) architecture in yeast enabled us to demonstrate its nuclease activity and define its optimal target configuration. We further showed that this architecture was able to promote substantial level of targeted mutagenesis at three endogenous loci present in two different mammalian cell lines. Conclusion Our results demonstrated that this novel functional TtH architecture which requires binding to only one DNA strand of a given endogenous locus has the potential to extend the targeting possibility of FokI-based TALE nucleases. PMID:24997498

  13. Recent advances in the use of ZFN-mediated gene editing for human gene therapy.

    PubMed

    Chandrasegaran, Srinivasan

    2017-01-01

    Targeted genome editing with programmable nucleases has revolutionized biomedical research. The ability to make site-specific modifications to the human genome, has invoked a paradigm shift in gene therapy. Using gene editing technologies, the sequence in the human genome can now be precisely engineered to achieve a therapeutic effect. Zinc finger nucleases (ZFNs) were the first programmable nucleases designed to target and cleave custom sites. This article summarizes the advances in the use of ZFN-mediated gene editing for human gene therapy and discusses the challenges associated with translating this gene editing technology into clinical use.

  14. Halophilic Nuclease from a Moderately Halophilic Micrococcus varians

    PubMed Central

    Kamekura, Masahiro; Onishi, Hiroshi

    1974-01-01

    The moderately halophilic bacterium Micrococcus varians, isolated from soy sauce mash, produced extracellular nuclease when cultivated aerobically in media containing 1 to 4 M NaCl or KCl. The enzyme, purified to an electrophoretically homogeneous state, had both ribonuclease and deoxyribonuclease activities. The nuclease had maximal activity in the presence of 2.9 M NaCl or 2.1 M KCl at 40 C. The enzymatic activity was lost by dialysis against low-salt buffer, whereas when the inactivated enzyme was dialyzed against 3.4 M NaCl buffer as much as 77% of the initial activity could be restored. Images PMID:4852218

  15. Organization of the BcgI restriction-modification protein for the cleavage of eight phosphodiester bonds in DNA

    PubMed Central

    Smith, Rachel M.; Marshall, Jacqueline J. T.; Jacklin, Alistair J.; Retter, Susan E.; Halford, Stephen E.; Sobott, Frank

    2013-01-01

    Type IIB restriction-modification systems, such as BcgI, feature a single protein with both endonuclease and methyltransferase activities. Type IIB nucleases require two recognition sites and cut both strands on both sides of their unmodified sites. BcgI cuts all eight target phosphodiester bonds before dissociation. The BcgI protein contains A and B polypeptides in a 2:1 ratio: A has one catalytic centre for each activity; B recognizes the DNA. We show here that BcgI is organized as A2B protomers, with B at its centre, but that these protomers self-associate to assemblies containing several A2B units. Moreover, like the well known FokI nuclease, BcgI bound to its site has to recruit additional protomers before it can cut DNA. DNA-bound BcgI can alternatively be activated by excess A subunits, much like the activation of FokI by its catalytic domain. Eight A subunits, each with one centre for nuclease activity, are presumably needed to cut the eight bonds cleaved by BcgI. Its nuclease reaction may thus involve two A2B units, each bound to a recognition site, with two more A2B units bridging the complexes by protein–protein interactions between the nuclease domains. PMID:23147005

  16. Efficient Modification of the CCR5 Locus in Primary Human T Cells With megaTAL Nuclease Establishes HIV-1 Resistance

    PubMed Central

    Romano Ibarra, Guillermo S; Paul, Biswajit; Sather, Blythe D; Younan, Patrick M; Sommer, Karen; Kowalski, John P; Hale, Malika; Stoddard, Barry; Jarjour, Jordan; Astrakhan, Alexander; Kiem, Hans-Peter; Rawlings, David J

    2016-01-01

    A naturally occurring 32-base pair deletion of the HIV-1 co-receptor CCR5 has demonstrated protection against HIV infection of human CD4+ T cells. Recent genetic engineering approaches using engineered nucleases to disrupt the gene and mimic this mutation show promise for HIV therapy. We developed a megaTAL nuclease targeting the third extracellular loop of CCR5 that we delivered to primary human T cells by mRNA transfection. The CCR5 megaTAL nuclease established resistance to HIV in cell lines and disrupted the expression of CCR5 on primary human CD4+ T cells with a high efficiency, achieving up to 80% modification of the locus in primary cells as measured by molecular analysis. Gene-modified cells engrafted at levels equivalent to unmodified cells when transplanted into immunodeficient mice. Furthermore, genetically modified CD4+ cells were preferentially expanded during HIV-1 infection in vivo in an immunodeficient mouse model. Our results demonstrate the feasibility of targeting CCR5 in primary T cells using an engineered megaTAL nuclease, and the potential to use gene-modified cells to reconstitute a patient's immune system and provide protection from HIV infection. PMID:27741222

  17. Label-Free Fluorescence Assay of S1 Nuclease and Hydroxyl Radicals Based on Water-Soluble Conjugated Polymers and WS₂ Nanosheets.

    PubMed

    Li, Junting; Zhao, Qi; Tang, Yanli

    2016-06-13

    We developed a new method for detecting S1 nuclease and hydroxyl radicals based on the use of water-soluble conjugated poly[9,9-bis(6,6-(N,N,N-trimethylammonium)-fluorene)-2,7-ylenevinylene-co-alt-2,5-dicyano-1,4-phenylene)] (PFVCN) and tungsten disulfide (WS₂) nanosheets. Cationic PFVCN is used as a signal reporter, and single-layer WS₂ is used as a quencher with a negatively charged surface. The ssDNA forms complexes with PFVCN due to much stronger electrostatic interactions between cationic PFVCN and anionic ssDNA, whereas PFVCN emits yellow fluorescence. When ssDNA is hydrolyzed by S1 nuclease or hydroxyl radicals into small fragments, the interactions between the fragmented DNA and PFVCN become weaker, resulting in PFVCN being adsorbed on the surface of WS₂ and the fluorescence being quenched through fluorescence resonance energy transfer. The new method based on PFVCN and WS₂ can sense S1 nuclease with a low detection limit of 5 × 10(-6) U/mL. Additionally, this method is cost-effective by using affordable WS₂ as an energy acceptor without the need for dye-labeled ssDNA. Furthermore, the method provides a new platform for the nuclease assay and reactive oxygen species, and provides promising applications for drug screening.

  18. Early zygote-specific nuclease in mitochondria of the true slime mold Physarum polycephalum.

    PubMed

    Moriyama, Yohsuke; Yamazaki, Tomokazu; Nomura, Hideo; Sasaki, Narie; Kawano, Shigeyuki

    2005-11-01

    The active, selective digestion of mtDNA from one parent is a possible molecular mechanism for the uniparental inheritance of mtDNA. In Physarum polycephalum, mtDNA is packed by DNA-binding protein Glom, which packs mtDNA into rod-shaped mt-nucleoids. After the mating, mtDNA from one parent is selectively digested, and the Glom began to disperse. Dispersed Glom was retained for at least 6 h after mtDNA digestion, but disappeared completely by about 12 h after mixing two strains. We identified two novel nucleases using DNA zymography with native-PAGE and SDS-PAGE. One is a Ca2+-dependent, high-molecular-weight nuclease complex (about 670 kDa), and the other is a Mn2+-dependent, high-molecular-weight nuclease complex (440-670 kDa); the activity of the latter was detected as a Mn2+-dependent, 13-kDa DNase band on SDS-PAGE. All mitochondria isolated from myxamoebae had mt-nucleoids, whereas half of the mitochondria isolated from the zygotes at 12 h after mixing had lost the mt-nucleoids. The activity of the Mn2+-dependent nuclease in the isolated mitochondria was detected at least 8 h after mixing of two strains. The timing and localization of the Mn2+-dependent DNase activity matched the selective digestion of mtDNA.

  19. Mouse Spermatozoa Contain a Nuclease that Is Activated by Pretreatment with EGTA and Subsequent Calcium Incubation

    PubMed Central

    Boaz, Segal M.; Dominguez, Kenneth; Shaman, Jeffrey A.; Ward, W. Steven

    2009-01-01

    We demonstrated that mouse spermatozoa cleave their DNA into ~50 kb loop-sized fragments with topoisomerase IIB when treated with MnCl2 and CaCl2 in a process we term sperm chromatin fragmentation (SCF). SCF can be reversed by EDTA. A nuclease then further degrades the DNA in a process we term sperm DNA degradation (SDD). MnCl2 alone could elicit this activity, but CaCl2 had no effect. Here, we demonstrate the existence of a nuclease in the vas deferens that can be activated by EGTA to digest the sperm DNA by SDD. Spermatozoa were extracted with salt and dithiothreitol to remove protamines and then incubated with EGTA. Next, the EGTA was removed and divalent cations were added. We found that Mn+2, Ca+2, or Zn+2 could each activate SDD in spermatozoa but Mg+2 could not. When the reaction was slowed by incubation on ice, EGTA pretreatment followed by incubation in Ca+2 elicited the reversible fragmentation of sperm DNA evident in SCF. When the reactions were then incubated at 37°C they progressed to the more complete degradation of DNA by SDD. EDTA could also be used to activate the nuclease, but required a higher concentration than EGTA. This EGTA-activatable nuclease activity was found in each fraction of the vas deferens plasma: in the spermatozoa, in the surrounding fluid, and in the insoluble components in the fluid. These results suggest that this sperm nuclease is regulated by a mechanism that is sensitive to EGTA, possibly by removing inhibition of a calcium binding protein. PMID:17879959

  20. Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back

    PubMed Central

    Makarova, Kira S.

    2017-01-01

    Abstract The Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-CRISPR-associated proteins (Cas) systems of bacterial and archaeal adaptive immunity show multifaceted evolutionary relationships with at least five classes of mobile genetic elements (MGE). First, the adaptation module of CRISPR-Cas that is responsible for the formation of the immune memory apparently evolved from a Casposon, a self-synthesizing transposon that employs the Cas1 protein as the integrase and might have brought additional cas genes to the emerging immunity loci. Second, a large subset of type III CRISPR-Cas systems recruited a reverse transcriptase from a Group II intron, providing for spacer acquisition from RNA. Third, effector nucleases of Class 2 CRISPR-Cas systems that are responsible for the recognition and cleavage of the target DNA were derived from transposon-encoded TnpB nucleases, most likely, on several independent occasions. Fourth, accessory nucleases in some variants of types I and III toxin and type VI effectors RNases appear to be ultimately derived from toxin nucleases of microbial toxin–antitoxin modules. Fifth, the opposite direction of evolution is manifested in the recruitment of CRISPR-Cas systems by a distinct family of Tn7-like transposons that probably exploit the capacity of CRISPR-Cas to recognize unique DNA sites to facilitate transposition as well as by bacteriophages that employ them to cope with host defense. Additionally, individual Cas proteins, such as the Cas4 nuclease, were recruited by bacteriophages and transposons. The two-sided evolutionary connection between CRISPR-Cas and MGE fits the “guns for hire” paradigm whereby homologous enzymatic machineries, in particular nucleases, are shuttled between MGE and defense systems and are used alternately as means of offense or defense. PMID:28985291

  1. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease.

    PubMed

    Dupuy, Aurélie; Sarasin, Alain

    2015-06-01

    Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Modular Nuclease-Responsive DNA Three-Way Junction-Based Dynamic Assembly of a DNA Device and Its Sensing Application.

    PubMed

    Zhu, Jing; Wang, Lei; Xu, Xiaowen; Wei, Haiping; Jiang, Wei

    2016-04-05

    Here, we explored a modular strategy for rational design of nuclease-responsive three-way junctions (TWJs) and fabricated a dynamic DNA device in a "plug-and-play" fashion. First, inactivated TWJs were designed, which contained three functional domains: the inaccessible toehold and branch migration domains, the specific sites of nucleases, and the auxiliary complementary sequence. The actions of different nucleases on their specific sites in TWJs caused the close proximity of the same toehold and branch migration domains, resulting in the activation of the TWJs and the formation of a universal trigger for the subsequent dynamic assembly. Second, two hairpins (H1 and H2) were introduced, which could coexist in a metastable state, initially to act as the components for the dynamic assembly. Once the trigger initiated the opening of H1 via TWJs-driven strand displacement, the cascade hybridization of hairpins immediately switched on, resulting in the formation of the concatemers of H1/H2 complex appending numerous integrated G-quadruplexes, which were used to obtain label-free signal readout. The inherent modularity of this design allowed us to fabricate a flexible DNA dynamic device and detect multiple nucleases through altering the recognition pattern slightly. Taking uracil-DNA glycosylase and CpG methyltransferase M.SssI as models, we successfully realized the butt joint between the uracil-DNA glycosylase and M.SssI recognition events and the dynamic assembly process. Furthermore, we achieved ultrasensitive assay of nuclease activity and the inhibitor screening. The DNA device proposed here will offer an adaptive and flexible tool for clinical diagnosis and anticancer drug discovery.

  3. Cleavage of influenza RNA by using a human PUF-based artificial RNA-binding protein–staphylococcal nuclease hybrid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Tomoaki; Nakamura, Kento; Masaoka, Keisuke

    Various viruses infect animals and humans and cause a variety of diseases, including cancer. However, effective methodologies to prevent virus infection have not yet been established. Therefore, development of technologies to inactivate viruses is highly desired. We have already demonstrated that cleavage of a DNA virus genome was effective to prevent its replication. Here, we expanded this methodology to RNA viruses. In the present study, we used staphylococcal nuclease (SNase) instead of the PIN domain (PilT N-terminus) of human SMG6 as an RNA-cleavage domain and fused the SNase to a human Pumilio/fem-3 binding factor (PUF)-based artificial RNA-binding protein to constructmore » an artificial RNA restriction enzyme with enhanced RNA-cleavage rates for influenzavirus. The resulting SNase-fusion nuclease cleaved influenza RNA at rates 120-fold greater than the corresponding PIN-fusion nuclease. The cleaving ability of the PIN-fusion nuclease was not improved even though the linker moiety between the PUF and RNA-cleavage domain was changed. Gel shift assays revealed that the RNA-binding properties of the PUF derivative used was not as good as wild type PUF. Improvement of the binding properties or the design method will allow the SNase-fusion nuclease to cleave an RNA target in mammalian animal cells and/or organisms. - Highlights: • A novel RNA restriction enzyme using SNase was developed tor cleave viral RNA. • Our enzyme cleaved influenza RNA with rates >120-fold higher rates a PIN-fusion one. • Our artificial enzyme with the L5 linker showed the highest RNA cleavage rate. • Our artificial enzyme site-selectively cleaved influenza RNA in vitro.« less

  4. A single-chain TALEN architecture for genome engineering.

    PubMed

    Sun, Ning; Zhao, Huimin

    2014-03-04

    Transcription-activator like effector nucleases (TALENs) are tailor-made DNA endonucleases and serve as a powerful tool for genome engineering. Site-specific DNA cleavage can be made by the dimerization of FokI nuclease domains at custom-targeted genomic loci, where a pair of TALENs must be positioned in close proximity with an appropriate orientation. However, the simultaneous delivery and coordinated expression of two bulky TALEN monomers (>100 kDa) in cells may be problematic to implement for certain applications. Here, we report the development of a single-chain TALEN (scTALEN) architecture, in which two FokI nuclease domains are fused on a single polypeptide. The scTALEN was created by connecting two FokI nuclease domains with a 95 amino acid polypeptide linker, which was isolated from a linker library by high-throughput screening. We demonstrated that scTALENs were catalytically active as monomers in yeast and human cells. The use of this novel scTALEN architecture should reduce protein payload, simplify design and decrease production cost.

  5. Translocation-coupled DNA cleavage by the Type ISP restriction-modification enzymes

    PubMed Central

    Chand, Mahesh Kumar; Nirwan, Neha; Diffin, Fiona M.; van Aelst, Kara; Kulkarni, Manasi; Pernstich, Christian; Szczelkun, Mark D.; Saikrishnan, Kayarat

    2015-01-01

    Endonucleolytic double-strand DNA break production requires separate strand cleavage events. Although catalytic mechanisms for simple dimeric endonucleases are available, there are many complex nuclease machines which are poorly understood in comparison. Here we studied the single polypeptide Type ISP restriction-modification (RM) enzymes, which cleave random DNA between distant target sites when two enzymes collide following convergent ATP-driven translocation. We report the 2.7 Angstroms resolution X-ray crystal structure of a Type ISP enzyme-DNA complex, revealing that both the helicase-like ATPase and nuclease are unexpectedly located upstream of the direction of translocation, inconsistent with simple nuclease domain-dimerization. Using single-molecule and biochemical techniques, we demonstrate that each ATPase remodels its DNA-protein complex and translocates along DNA without looping it, leading to a collision complex where the nuclease domains are distal. Sequencing of single cleavage events suggests a previously undescribed endonuclease model, where multiple, stochastic strand nicking events combine to produce DNA scission. PMID:26389736

  6. Synthetic CRISPR RNA-Cas9-guided genome editing in human cells.

    PubMed

    Rahdar, Meghdad; McMahon, Moira A; Prakash, Thazha P; Swayze, Eric E; Bennett, C Frank; Cleveland, Don W

    2015-12-22

    Genome editing with the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 nuclease system is a powerful technology for manipulating genomes, including introduction of gene disruptions or corrections. Here we develop a chemically modified, 29-nucleotide synthetic CRISPR RNA (scrRNA), which in combination with unmodified transactivating crRNA (tracrRNA) is shown to functionally replace the natural guide RNA in the CRISPR-Cas9 nuclease system and to mediate efficient genome editing in human cells. Incorporation of rational chemical modifications known to protect against nuclease digestion and stabilize RNA-RNA interactions in the tracrRNA hybridization region of CRISPR RNA (crRNA) yields a scrRNA with enhanced activity compared with the unmodified crRNA and comparable gene disruption activity to the previously published single guide RNA. Taken together, these findings provide a platform for therapeutic applications, especially for nervous system disease, using successive application of cell-permeable, synthetic CRISPR RNAs to activate and then silence Cas9 nuclease activity.

  7. Design principles for nuclease-deficient CRISPR-based transcriptional regulators

    PubMed Central

    Jensen, Michael K

    2018-01-01

    Abstract The engineering of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated proteins continues to expand the toolkit available for genome editing, reprogramming gene regulation, genome visualisation and epigenetic studies of living organisms. In this review, the emerging design principles on the use of nuclease-deficient CRISPR-based reprogramming of gene expression will be presented. The review will focus on the designs implemented in yeast both at the level of CRISPR proteins and guide RNA (gRNA), but will lend due credits to the seminal studies performed in other species where relevant. In addition to design principles, this review also highlights applications benefitting from the use of CRISPR-mediated transcriptional regulation and discusses the future directions to further expand the toolkit for nuclease-deficient reprogramming of genomes. As such, this review should be of general interest for experimentalists to get familiarised with the parameters underlying the power of reprogramming genomic functions by use of nuclease-deficient CRISPR technologies. PMID:29726937

  8. Noninvasive imaging of Staphylococcus aureus infections with a nuclease-activated probe.

    PubMed

    Hernandez, Frank J; Huang, Lingyan; Olson, Michael E; Powers, Kristy M; Hernandez, Luiza I; Meyerholz, David K; Thedens, Daniel R; Behlke, Mark A; Horswill, Alexander R; McNamara, James O

    2014-03-01

    Technologies that enable the rapid detection and localization of bacterial infections in living animals could address an unmet need for infectious disease diagnostics. We describe a molecular imaging approach for the specific, noninvasive detection of S. aureus based on the activity of the S. aureus secreted nuclease, micrococcal nuclease (MN). Several short synthetic oligonucleotides, rendered resistant to mammalian serum nucleases by various chemical modifications and flanked with a fluorophore and quencher, were activated upon degradation by purified MN and in S. aureus culture supernatants. A probe consisting of a pair of deoxythymidines flanked by several 2'-O-methyl-modified nucleotides was activated in culture supernatants of S. aureus but not in culture supernatants of several other pathogenic bacteria. Systemic administration of this probe to mice bearing S. aureus muscle infections resulted in probe activation at the infection sites in an MN-dependent manner. This new bacterial imaging approach has potential clinical applicability for infections with S. aureus and several other medically important pathogens.

  9. Dna2 nuclease-helicase structure, mechanism and regulation by Rpa.

    PubMed

    Zhou, Chun; Pourmal, Sergei; Pavletich, Nikola P

    2015-11-02

    The Dna2 nuclease-helicase maintains genomic integrity by processing DNA double-strand breaks, Okazaki fragments and stalled replication forks. Dna2 requires ssDNA ends, and is dependent on the ssDNA-binding protein Rpa, which controls cleavage polarity. Here we present the 2.3 Å structure of intact mouse Dna2 bound to a 15-nucleotide ssDNA. The nuclease active site is embedded in a long, narrow tunnel through which the DNA has to thread. The helicase domain is required for DNA binding but not threading. We also present the structure of a flexibly-tethered Dna2-Rpa interaction that recruits Dna2 to Rpa-coated DNA. We establish that a second Dna2-Rpa interaction is mutually exclusive with Rpa-DNA interactions and mediates the displacement of Rpa from ssDNA. This interaction occurs at the nuclease tunnel entrance and the 5' end of the Rpa-DNA complex. Hence, it only displaces Rpa from the 5' but not 3' end, explaining how Rpa regulates cleavage polarity.

  10. High-Throughput Genome Editing and Phenotyping Facilitated by High Resolution Melting Curve Analysis

    PubMed Central

    Thomas, Holly R.; Percival, Stefanie M.; Yoder, Bradley K.; Parant, John M.

    2014-01-01

    With the goal to generate and characterize the phenotypes of null alleles in all genes within an organism and the recent advances in custom nucleases, genome editing limitations have moved from mutation generation to mutation detection. We previously demonstrated that High Resolution Melting (HRM) analysis is a rapid and efficient means of genotyping known zebrafish mutants. Here we establish optimized conditions for HRM based detection of novel mutant alleles. Using these conditions, we demonstrate that HRM is highly efficient at mutation detection across multiple genome editing platforms (ZFNs, TALENs, and CRISPRs); we observed nuclease generated HRM positive targeting in 1 of 6 (16%) open pool derived ZFNs, 14 of 23 (60%) TALENs, and 58 of 77 (75%) CRISPR nucleases. Successful targeting, based on HRM of G0 embryos correlates well with successful germline transmission (46 of 47 nucleases); yet, surprisingly mutations in the somatic tail DNA weakly correlate with mutations in the germline F1 progeny DNA. This suggests that analysis of G0 tail DNA is a good indicator of the efficiency of the nuclease, but not necessarily a good indicator of germline alleles that will be present in the F1s. However, we demonstrate that small amplicon HRM curve profiles of F1 progeny DNA can be used to differentiate between specific mutant alleles, facilitating rare allele identification and isolation; and that HRM is a powerful technique for screening possible off-target mutations that may be generated by the nucleases. Our data suggest that micro-homology based alternative NHEJ repair is primarily utilized in the generation of CRISPR mutant alleles and allows us to predict likelihood of generating a null allele. Lastly, we demonstrate that HRM can be used to quickly distinguish genotype-phenotype correlations within F1 embryos derived from G0 intercrosses. Together these data indicate that custom nucleases, in conjunction with the ease and speed of HRM, will facilitate future high-throughput mutation generation and analysis needed to establish mutants in all genes of an organism. PMID:25503746

  11. Engineering nucleases for gene targeting: safety and regulatory considerations.

    PubMed

    Pauwels, Katia; Podevin, Nancy; Breyer, Didier; Carroll, Dana; Herman, Philippe

    2014-01-25

    Nuclease-based gene targeting (NBGT) represents a significant breakthrough in targeted genome editing since it is applicable from single-celled protozoa to human, including several species of economic importance. Along with the fast progress in NBGT and the increasing availability of customized nucleases, more data are available about off-target effects associated with the use of this approach. We discuss how NBGT may offer a new perspective for genetic modification, we address some aspects crucial for a safety improvement of the corresponding techniques and we also briefly relate the use of NBGT applications and products to the regulatory oversight. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Genome editing and the next generation of antiviral therapy

    PubMed Central

    Stone, Daniel; Niyonzima, Nixon

    2016-01-01

    Engineered endonucleases such as homing endonucleases (HEs), zinc finger nucleases (ZFNs), Tal-effector nucleases (TALENS) and the RNA-guided engineered nucleases (RGENs or CRISPR/Cas9) can target specific DNA sequences for cleavage, and are proving to be valuable tools for gene editing. Recently engineered endonucleases have shown great promise as therapeutics for the treatment of genetic disease and infectious pathogens. In this review, we discuss recent efforts to use the HE, ZFN, TALEN and CRISPR/Cas9 gene-editing platforms as antiviral therapeutics. We also discuss the obstacles facing gene-editing antiviral therapeutics as they are tested in animal models of disease and transition towards human application. PMID:27272125

  13. Therapeutic Genome Editing: Prospects and Challenges

    PubMed Central

    Cox, David Benjamin Turitz; Platt, Randall Jeffrey; Zhang, Feng

    2015-01-01

    Recent advances in the development of genome editing technologies based on programmable nucleases have significantly improved our ability to make precise changes in the genomes of eukaryotic cells. Genome editing is already broadening our ability to elucidate the contribution of genetics to disease by facilitating the creation of more accurate cellular and animal models of pathological processes. A particularly tantalizing application of programmable nucleases is the potential to directly correct genetic mutations in affected tissues and cells to treat diseases that are refractory to traditional therapies. Here we discuss current progress towards developing programmable nuclease-based therapies as well as future prospects and challenges. PMID:25654603

  14. Current Progress in Therapeutic Gene Editing for Monogenic Diseases

    PubMed Central

    Prakash, Versha; Moore, Marc; Yáñez-Muñoz, Rafael J

    2016-01-01

    Programmable nucleases allow defined alterations in the genome with ease-of-use, efficiency, and specificity. Their availability has led to accurate and widespread genome engineering, with multiple applications in basic research, biotechnology, and therapy. With regard to human gene therapy, nuclease-based gene editing has facilitated development of a broad range of therapeutic strategies based on both nonhomologous end joining and homology-dependent repair. This review discusses current progress in nuclease-based therapeutic applications for a subset of inherited monogenic diseases including cystic fibrosis, Duchenne muscular dystrophy, diseases of the bone marrow, and hemophilia and highlights associated challenges and future prospects. PMID:26765770

  15. Two distinct modes of metal ion binding in the nuclease active site of a viral DNA-packaging terminase: insight into the two-metal-ion catalytic mechanism

    PubMed Central

    Zhao, Haiyan; Lin, Zihan; Lynn, Anna Y.; Varnado, Brittany; Beutler, John A.; Murelli, Ryan P.; Le Grice, Stuart F. J.; Tang, Liang

    2015-01-01

    Many dsDNA viruses encode DNA-packaging terminases, each containing a nuclease domain that resolves concatemeric DNA into genome-length units. Terminase nucleases resemble the RNase H-superfamily nucleotidyltransferases in folds, and share a two-metal-ion catalytic mechanism. Here we show that residue K428 of a bacteriophage terminase gp2 nuclease domain mediates binding of the metal cofactor Mg2+. A K428A mutation allows visualization, at high resolution, of a metal ion binding mode with a coupled-octahedral configuration at the active site, exhibiting an unusually short metal-metal distance of 2.42 Å. Such proximity of the two metal ions may play an essential role in catalysis by generating a highly positive electrostatic niche to enable formation of the negatively charged pentacovalent phosphate transition state, and provides the structural basis for distinguishing Mg2+ from Ca2+. Using a metal ion chelator β-thujaplicinol as a molecular probe, we observed a second mode of metal ion binding at the active site, mimicking the DNA binding state. Arrangement of the active site residues differs drastically from those in RNase H-like nucleases, suggesting a drifting of the active site configuration during evolution. The two distinct metal ion binding modes unveiled mechanistic details of the two-metal-ion catalysis at atomic resolution. PMID:26450964

  16. Alteration of gene conversion tract length and associated crossing over during plasmid gap repair in nuclease-deficient strains of Saccharomyces cerevisiae.

    PubMed

    Symington, L S; Kang, L E; Moreau, S

    2000-12-01

    A plasmid gap repair assay was used to assess the role of three known nucleases, Exo1, Mre11 and Rad1, in the processing of DNA ends and resolution of recombination intermediates during double-strand gap repair. In this assay, alterations in end processing or branch migration are reflected by the frequency of co-conversion of a chromosomal marker 200 bp from the gap. Gap repair associated with crossing over results in integration at the homologous chromosomal locus, whereas the plasmid remains episomal for non-crossover repair events. In mre11 strains, the frequency of gap repair was reduced 3- to 10-fold and conversion tracts were shorter than in the wild-type strain, consistent with a role for this nuclease in processing double-strand breaks. However, conversion tracts were longer in a strain containing the nuclease deficient allele, mre11-H125N, suggesting increased end processing by redundant nucleases. The frequency of gap repair was reduced 2-fold in rad1 mutants and crossing over was reduced, consistent with a role for Rad1 in cleaving recombination intermediates. The frequency of gap repair was increased in exo1 mutants with a significant increase in crossing over. In exo1 mre11 double mutants gap repair was reduced to below the mre11 single mutant level.

  17. SPECIES-SPECIFIC DETECTION OF THREE HUMAN-PATHOGENIC MICROSPORIDIAL SPECIES FROM THE GENUS ENCEPHALITOZOON VIA FLUOROGENIC 5' NUCLEASE PCR ASSAYS

    EPA Science Inventory

    This describes fluorogenic 5' nuclease PCR assays suitable for rapid, sensitive, quantitative, high-throughput detection of the human-pathogenic microsporidial species Encephalitozoon hellem, E. cunicli and E. intestinalis. The assays utilize species-specific primer sets and a g...

  18. Selective Enhancement of Nucleases by Polyvalent DNA-Functionalized Gold Nanoparticles

    PubMed Central

    Prigodich, Andrew E.; Alhasan, Ali H.

    2011-01-01

    We demonstrate that polyvalent DNA-functionalized gold nanoparticles (DNA-Au NPs) selectively enhance Ribonuclease H (RNase H) activity, while inhibiting most biologically relevant nucleases. This combination of properties is particularly interesting in the context of gene regulation, since high RNase H activity results in rapid mRNA degradation and general nuclease inhibition results in high biological stability. We investigate the mechanism of selective RNase H activation and find that the high DNA density of DNA-Au NPs is responsible for this unusual behavior. This work adds to our understanding of polyvalent DNA-Au NPs as gene regulation agents, and suggests a new model for selectively controlling protein-nanoparticle interactions. PMID:21268581

  19. [Overview of patents on targeted genome editing technologies and their implications for innovation and entrepreneurship education in universities].

    PubMed

    Fan, Xiang-yu; Lin, Yan-ping; Liao, Guo-jian; Xie, Jian-ping

    2015-12-01

    Zinc finger nuclease, transcription activator-like effector nuclease, and clustered regularly interspaced short palindromic repeats/Cas9 nuclease are important targeted genome editing technologies. They have great significance in scientific research and applications on aspects of functional genomics research, species improvement, disease prevention and gene therapy. There are past or ongoing disputes over ownership of the intellectual property behind every technology. In this review, we summarize the patents on these three targeted genome editing technologies in order to provide some reference for developing genome editing technologies with self-owned intellectual property rights and some implications for current innovation and entrepreneurship education in universities.

  20. Development of Novel DNA Cleavage Systems Based on Copper Complexes. Synthesis and Characterisation of Cu(II) Complexes of Hydroxyflavones

    PubMed Central

    el Amrani, F. Ben-Allal; Perelló, L.; Torres, L.

    2000-01-01

    Copper(II) complexes of several hydroxyflavones were prepared and characterised through their physico-chemical properties. The nuclease activity of three synthesised complexes is reported. These copper(II) complexes present more nuclease activity than the ligands and the copper(II) ion. PMID:18475969

  1. Investigation of a redox-sensitive predictive model of mouse embryonic stem cells differentiation using quantitative nuclease protection assays and glutathione redox status

    EPA Science Inventory

    Investigation of a redox-sensitive predictive model of mouse embryonic stem cell differentiation via quantitative nuclease protection assays and glutathione redox status Chandler KJ,Hansen JM, Knudsen T,and Hunter ES 1. U.S. Environmental Protection Agency, Research Triangl...

  2. Breaking-Cas—interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes

    PubMed Central

    Oliveros, Juan C.; Franch, Mònica; Tabas-Madrid, Daniel; San-León, David; Montoliu, Lluis; Cubas, Pilar; Pazos, Florencio

    2016-01-01

    The CRISPR/Cas technology is enabling targeted genome editing in multiple organisms with unprecedented accuracy and specificity by using RNA-guided nucleases. A critical point when planning a CRISPR/Cas experiment is the design of the guide RNA (gRNA), which directs the nuclease and associated machinery to the desired genomic location. This gRNA has to fulfil the requirements of the nuclease and lack homology with other genome sites that could lead to off-target effects. Here we introduce the Breaking-Cas system for the design of gRNAs for CRISPR/Cas experiments, including those based in the Cas9 nuclease as well as others recently introduced. The server has unique features not available in other tools, including the possibility of using all eukaryotic genomes available in ENSEMBL (currently around 700), placing variable PAM sequences at 5′ or 3′ and setting the guide RNA length and the scores per nucleotides. It can be freely accessed at: http://bioinfogp.cnb.csic.es/tools/breakingcas, and the code is available upon request. PMID:27166368

  3. GUIDE-Seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases

    PubMed Central

    Nguyen, Nhu T.; Liebers, Matthew; Topkar, Ved V.; Thapar, Vishal; Wyvekens, Nicolas; Khayter, Cyd; Iafrate, A. John; Le, Long P.; Aryee, Martin J.; Joung, J. Keith

    2014-01-01

    CRISPR RNA-guided nucleases (RGNs) are widely used genome-editing reagents, but methods to delineate their genome-wide off-target cleavage activities have been lacking. Here we describe an approach for global detection of DNA double-stranded breaks (DSBs) introduced by RGNs and potentially other nucleases. This method, called Genome-wide Unbiased Identification of DSBs Enabled by Sequencing (GUIDE-Seq), relies on capture of double-stranded oligodeoxynucleotides into breaks Application of GUIDE-Seq to thirteen RGNs in two human cell lines revealed wide variability in RGN off-target activities and unappreciated characteristics of off-target sequences. The majority of identified sites were not detected by existing computational methods or ChIP-Seq. GUIDE-Seq also identified RGN-independent genomic breakpoint ‘hotspots’. Finally, GUIDE-Seq revealed that truncated guide RNAs exhibit substantially reduced RGN-induced off-target DSBs. Our experiments define the most rigorous framework for genome-wide identification of RGN off-target effects to date and provide a method for evaluating the safety of these nucleases prior to clinical use. PMID:25513782

  4. CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells.

    PubMed

    Heo, Young Tae; Quan, Xiaoyuan; Xu, Yong Nan; Baek, Soonbong; Choi, Hwan; Kim, Nam-Hyung; Kim, Jongpil

    2015-02-01

    Efficient and precise genetic engineering in livestock such as cattle holds great promise in agriculture and biomedicine. However, techniques that generate pluripotent stem cells, as well as reliable tools for gene targeting in livestock, are still inefficient, and thus not routinely used. Here, we report highly efficient gene targeting in the bovine genome using bovine pluripotent cells and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 nuclease. First, we generate induced pluripotent stem cells (iPSCs) from bovine somatic fibroblasts by the ectopic expression of yamanaka factors and GSK3β and MEK inhibitor (2i) treatment. We observed that these bovine iPSCs are highly similar to naïve pluripotent stem cells with regard to gene expression and developmental potential in teratomas. Moreover, CRISPR/Cas9 nuclease, which was specific for the bovine NANOG locus, showed highly efficient editing of the bovine genome in bovine iPSCs and embryos. To conclude, CRISPR/Cas9 nuclease-mediated homologous recombination targeting in bovine pluripotent cells is an efficient gene editing method that can be used to generate transgenic livestock in the future.

  5. Repair of DNA-polypeptide crosslinks by human excision nuclease

    NASA Astrophysics Data System (ADS)

    Reardon, Joyce T.; Sancar, Aziz

    2006-03-01

    DNA-protein crosslinks are relatively common DNA lesions that form during the physiological processing of DNA by replication and recombination proteins, by side reactions of base excision repair enzymes, and by cellular exposure to bifunctional DNA-damaging agents such as platinum compounds. The mechanism by which pathological DNA-protein crosslinks are repaired in humans is not known. In this study, we investigated the mechanism of recognition and repair of protein-DNA and oligopeptide-DNA crosslinks by the human excision nuclease. Under our assay conditions, the human nucleotide excision repair system did not remove a 16-kDa protein crosslinked to DNA at a detectable level. However, 4- and 12-aa-long oligopeptides crosslinked to the DNA backbone were recognized by some of the damage recognition factors of the human excision nuclease with moderate selectivity and were excised from DNA at relatively efficient rates. Our data suggest that, if coupled with proteolytic degradation of the crosslinked protein, the human excision nuclease may be the major enzyme system for eliminating protein-DNA crosslinks from the genome. damage recognition | nucleotide excision repair

  6. Dna2 nuclease-helicase structure, mechanism and regulation by Rpa

    PubMed Central

    Zhou, Chun; Pourmal, Sergei; Pavletich, Nikola P

    2015-01-01

    The Dna2 nuclease-helicase maintains genomic integrity by processing DNA double-strand breaks, Okazaki fragments and stalled replication forks. Dna2 requires ssDNA ends, and is dependent on the ssDNA-binding protein Rpa, which controls cleavage polarity. Here we present the 2.3 Å structure of intact mouse Dna2 bound to a 15-nucleotide ssDNA. The nuclease active site is embedded in a long, narrow tunnel through which the DNA has to thread. The helicase domain is required for DNA binding but not threading. We also present the structure of a flexibly-tethered Dna2-Rpa interaction that recruits Dna2 to Rpa-coated DNA. We establish that a second Dna2-Rpa interaction is mutually exclusive with Rpa-DNA interactions and mediates the displacement of Rpa from ssDNA. This interaction occurs at the nuclease tunnel entrance and the 5’ end of the Rpa-DNA complex. Hence, it only displaces Rpa from the 5’ but not 3’ end, explaining how Rpa regulates cleavage polarity. DOI: http://dx.doi.org/10.7554/eLife.09832.001 PMID:26491943

  7. Human DNA2 possesses a cryptic DNA unwinding activity that functionally integrates with BLM or WRN helicases

    PubMed Central

    Pinto, Cosimo; Kasaciunaite, Kristina; Seidel, Ralf; Cejka, Petr

    2016-01-01

    Human DNA2 (hDNA2) contains both a helicase and a nuclease domain within the same polypeptide. The nuclease of hDNA2 is involved in a variety of DNA metabolic processes. Little is known about the role of the hDNA2 helicase. Using bulk and single-molecule approaches, we show that hDNA2 is a processive helicase capable of unwinding kilobases of dsDNA in length. The nuclease activity prevents the engagement of the helicase by competing for the same substrate, hence prominent DNA unwinding by hDNA2 alone can only be observed using the nuclease-deficient variant. We show that the helicase of hDNA2 functionally integrates with BLM or WRN helicases to promote dsDNA degradation by forming a heterodimeric molecular machine. This collectively suggests that the hDNA2 motor promotes the enzyme's capacity to degrade dsDNA in conjunction with BLM or WRN and thus promote the repair of broken DNA. DOI: http://dx.doi.org/10.7554/eLife.18574.001 PMID:27612385

  8. Creating Directed Double-strand Breaks with the Ref Protein: A Novel Rec A-Dependent Nuclease from Bacteriophage P1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruenig, Marielle C.; Lu, Duo; Won, Sang Joon

    2012-03-16

    The bacteriophage P1-encoded Ref protein enhances RecA-dependent recombination in vivo by an unknown mechanism. We demonstrate that Ref is a new type of enzyme; that is, a RecA-dependent nuclease. Ref binds to ss- and dsDNA but does not cleave any DNA substrate until RecA protein and ATP are added to form RecA nucleoprotein filaments. Ref cleaves only where RecA protein is bound. RecA functions as a co-nuclease in the Ref/RecA system. Ref nuclease activity can be limited to the targeted strands of short RecA-containing D-loops. The result is a uniquely programmable endonuclease activity, producing targeted double-strand breaks at any chosenmore » DNA sequence in an oligonucleotide-directed fashion. We present evidence indicating that cleavage occurs in the RecA filament groove. The structure of the Ref protein has been determined to 1.4 {angstrom} resolution. The core structure, consisting of residues 77-186, consists of a central 2-stranded {beta}-hairpin that is sandwiched between several {alpha}-helical and extended loop elements. The N-terminal 76 amino acid residues are disordered; this flexible region is required for optimal activity. The overall structure of Ref, including several putative active site histidine residues, defines a new subclass of HNH-family nucleases. We propose that enhancement of recombination by Ref reflects the introduction of directed, recombinogenic double-strand breaks.« less

  9. A 'new lease of life': FnCpf1 possesses DNA cleavage activity for genome editing in human cells.

    PubMed

    Tu, Mengjun; Lin, Li; Cheng, Yilu; He, Xiubin; Sun, Huihui; Xie, Haihua; Fu, Junhao; Liu, Changbao; Li, Jin; Chen, Ding; Xi, Haitao; Xue, Dongyu; Liu, Qi; Zhao, Junzhao; Gao, Caixia; Song, Zongming; Qu, Jia; Gu, Feng

    2017-11-02

    Cpf1 nucleases were recently reported to be highly specific and programmable nucleases with efficiencies comparable to those of SpCas9. AsCpf1 and LbCpf1 require a single crRNA and recognize a 5'-TTTN-3' protospacer adjacent motif (PAM) at the 5' end of the protospacer for genome editing. For widespread application in precision site-specific human genome editing, the range of sequences that AsCpf1 and LbCpf1 can recognize is limited due to the size of this PAM. To address this limitation, we sought to identify a novel Cpf1 nuclease with simpler PAM requirements. Specifically, here we sought to test and engineer FnCpf1, one reported Cpf1 nuclease (FnCpf1) only requires 5'-TTN-3' as a PAM but does not exhibit detectable levels of nuclease-induced indels at certain locus in human cells. Surprisingly, we found that FnCpf1 possesses DNA cleavage activity in human cells at multiple loci. We also comprehensively and quantitatively examined various FnCpf1 parameters in human cells, including spacer sequence, direct repeat sequence and the PAM sequence. Our study identifies FnCpf1 as a new member of the Cpf1 family for human genome editing with distinctive characteristics, which shows promise as a genome editing tool with the potential for both research and therapeutic applications. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. A ‘new lease of life’: FnCpf1 possesses DNA cleavage activity for genome editing in human cells

    PubMed Central

    Tu, Mengjun; Lin, Li; Cheng, Yilu; He, Xiubin; Sun, Huihui; Xie, Haihua; Fu, Junhao; Liu, Changbao; Li, Jin; Chen, Ding; Xi, Haitao; Xue, Dongyu; Liu, Qi; Zhao, Junzhao; Gao, Caixia; Song, Zongming; Qu, Jia

    2017-01-01

    Abstract Cpf1 nucleases were recently reported to be highly specific and programmable nucleases with efficiencies comparable to those of SpCas9. AsCpf1 and LbCpf1 require a single crRNA and recognize a 5′-TTTN-3′ protospacer adjacent motif (PAM) at the 5′ end of the protospacer for genome editing. For widespread application in precision site-specific human genome editing, the range of sequences that AsCpf1 and LbCpf1 can recognize is limited due to the size of this PAM. To address this limitation, we sought to identify a novel Cpf1 nuclease with simpler PAM requirements. Specifically, here we sought to test and engineer FnCpf1, one reported Cpf1 nuclease (FnCpf1) only requires 5′-TTN-3′ as a PAM but does not exhibit detectable levels of nuclease-induced indels at certain locus in human cells. Surprisingly, we found that FnCpf1 possesses DNA cleavage activity in human cells at multiple loci. We also comprehensively and quantitatively examined various FnCpf1 parameters in human cells, including spacer sequence, direct repeat sequence and the PAM sequence. Our study identifies FnCpf1 as a new member of the Cpf1 family for human genome editing with distinctive characteristics, which shows promise as a genome editing tool with the potential for both research and therapeutic applications. PMID:28977650

  11. Biological availability and nuclease resistance extend the in vitro activity of a phosphorothioate-3'hydroxypropylamine oligonucleotide.

    PubMed Central

    Tam, R C; Li, Y; Noonberg, S; Hwang, D G; Lui, G; Hunt, C A; Garovoy, M R

    1994-01-01

    Augmented biological activity in vitro has been demonstrated in oligonucleotides (oligos) modified to provide nuclease resistance, to enhance cellular uptake or to increase target affinity. How chemical modification affects the duration of effect of an oligo with potent activity has not been investigated directly. We postulated that modification with internucleotide phosphorothioates and 3' alkylamine provided additional nuclease protection which could significantly extend the biological activity of a 26 mer, (T2). We showed this analog, sT2a, could maximally inhibit interferon gamma-induced HLA-DR mRNA synthesis and surface expression in both HeLa and retinal pigmented epithelial cells and could continue to be effective, in the absence of oligo, 15 days following initial oligo treatment; an effect not observed with its 3'amine counterpart, T2a. In vitro stability studies confirmed that sT2a conferred the greatest stability to nucleases and that cellular accumulation of 32P-sT2a in both cell types was also greater than other T2 oligos. Using confocal microscopy, we revealed that the intracellular distribution of sT2a favored greater nuclear accumulation and release of oligo from cytoplasmic vesicles; a pattern not observed with T2a. These results suggest that phosphorothioate-3'amine modification could increase the duration of effect of T2 oligo by altering nuclease resistance as well as intracellular accumulation and distribution; factors known to affect biological availability. Images PMID:8152930

  12. Production and characterization of recombinant protein preparations of Endonuclease G-homologs from yeast, C. elegans and humans.

    PubMed

    Kieper, Jana; Lauber, Christiane; Gimadutdinow, Oleg; Urbańska, Anna; Cymerman, Iwona; Ghosh, Mahua; Szczesny, Bartosz; Meiss, Gregor

    2010-09-01

    Nuc1p, CPS-6, EndoG and EXOG are evolutionary conserved mitochondrial nucleases from yeast, Caenorhabditis elegans and humans, respectively. These enzymes play an important role in programmed cell death as well as mitochondrial DNA-repair and recombination. Whereas a significant interest has been given to the cell biology of these proteins, in particular their recruitment during caspase-independent apoptosis, determination of their biochemical properties has lagged behind. In part, biochemical as well as structural analysis of mitochondrial nucleases has been hampered by the fact that upon cloning and overexpression in Escherichia coli these enzymes can exert considerable toxicity and tend to aggregate and form inclusion bodies. We have, therefore, established a uniform E. coli expression system allowing us to obtain these four evolutionary related nucleases in active form from the soluble as well as insoluble fractions of E. coli cell lysates. Using preparations of recombinant Nuc1p, CPS-6, EndoG and EXOG we have compared biochemical properties and the substrate specificities of these related nucleases on selected substrates in parallel. Whereas Nuc1p and EXOG in addition to their endonuclease activity exert 5'-3'-exonuclease activity, CPS-6 and EndoG predominantly are endonucleases. These findings allow speculating that the mechanisms of action of these related nucleases in cell death as well as DNA-repair and recombination differ according to their enzyme activities and substrate specificities. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Nucleases from Prevotella intermedia can degrade neutrophil extracellular traps.

    PubMed

    Doke, M; Fukamachi, H; Morisaki, H; Arimoto, T; Kataoka, H; Kuwata, H

    2017-08-01

    Periodontitis is an inflammatory disease caused by periodontal bacteria in subgingival plaque. These bacteria are able to colonize the periodontal region by evading the host immune response. Neutrophils, the host's first line of defense against infection, use various strategies to kill invading pathogens, including neutrophil extracellular traps (NETs). These are extracellular net-like fibers comprising DNA and antimicrobial components such as histones, LL-37, defensins, myeloperoxidase, and neutrophil elastase from neutrophils that disarm and kill bacteria extracellularly. Bacterial nuclease degrades the NETs to escape NET killing. It has now been shown that extracellular nucleases enable bacteria to evade this host antimicrobial mechanism, leading to increased pathogenicity. Here, we compared the DNA degradation activity of major Gram-negative periodontopathogenic bacteria, Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans. We found that Pr. intermedia showed the highest DNA degradation activity. A genome search of Pr. intermedia revealed the presence of two genes, nucA and nucD, putatively encoding secreted nucleases, although their enzymatic and biological activities are unknown. We cloned nucA- and nucD-encoding nucleases from Pr. intermedia ATCC 25611 and characterized their gene products. Recombinant NucA and NucD digested DNA and RNA, which required both Mg 2+ and Ca 2+ for optimal activity. In addition, NucA and NucD were able to degrade the DNA matrix comprising NETs. © 2016 The Authors Molecular Oral Microbiology Published by John Wiley & Sons Ltd.

  14. Cell wall-anchored nuclease of Streptococcus sanguinis contributes to escape from neutrophil extracellular trap-mediated bacteriocidal activity.

    PubMed

    Morita, Chisato; Sumioka, Ryuichi; Nakata, Masanobu; Okahashi, Nobuo; Wada, Satoshi; Yamashiro, Takashi; Hayashi, Mikako; Hamada, Shigeyuki; Sumitomo, Tomoko; Kawabata, Shigetada

    2014-01-01

    Streptococcus sanguinis, a member of the commensal mitis group of streptococci, is a primary colonizer of the tooth surface, and has been implicated in infectious complications including bacteremia and infective endocarditis. During disease progression, S. sanguinis may utilize various cell surface molecules to evade the host immune system to survive in blood. In the present study, we discovered a novel cell surface nuclease with a cell-wall anchor domain, termed SWAN (streptococcal wall-anchored nuclease), and investigated its contribution to bacterial resistance against the bacteriocidal activity of neutrophil extracellular traps (NETs). Recombinant SWAN protein (rSWAN) digested multiple forms of DNA including NET DNA and human RNA, which required both Mg(2+) and Ca(2+) for optimum activity. Furthermore, DNase activity of S. sanguinis was detected around growing colonies on agar plates containing DNA. In-frame deletion of the swan gene mostly reduced that activity. These findings indicated that SWAN is a major nuclease displayed on the surface, which was further confirmed by immuno-detection of SWAN in the cell wall fraction. The sensitivity of S. sanguinis to NET killing was reduced by swan gene deletion. Moreover, heterologous expression of the swan gene rendered a Lactococcus lactis strain more resistant to NET killing. Our results suggest that the SWAN nuclease on the bacterial surface contributes to survival in the potential situation of S. sanguinis encountering NETs during the course of disease progression.

  15. Cell Wall-Anchored Nuclease of Streptococcus sanguinis Contributes to Escape from Neutrophil Extracellular Trap-Mediated Bacteriocidal Activity

    PubMed Central

    Nakata, Masanobu; Okahashi, Nobuo; Wada, Satoshi; Yamashiro, Takashi; Hayashi, Mikako; Hamada, Shigeyuki; Sumitomo, Tomoko; Kawabata, Shigetada

    2014-01-01

    Streptococcus sanguinis, a member of the commensal mitis group of streptococci, is a primary colonizer of the tooth surface, and has been implicated in infectious complications including bacteremia and infective endocarditis. During disease progression, S. sanguinis may utilize various cell surface molecules to evade the host immune system to survive in blood. In the present study, we discovered a novel cell surface nuclease with a cell-wall anchor domain, termed SWAN (streptococcal wall-anchored nuclease), and investigated its contribution to bacterial resistance against the bacteriocidal activity of neutrophil extracellular traps (NETs). Recombinant SWAN protein (rSWAN) digested multiple forms of DNA including NET DNA and human RNA, which required both Mg2+ and Ca2+ for optimum activity. Furthermore, DNase activity of S. sanguinis was detected around growing colonies on agar plates containing DNA. In-frame deletion of the swan gene mostly reduced that activity. These findings indicated that SWAN is a major nuclease displayed on the surface, which was further confirmed by immuno-detection of SWAN in the cell wall fraction. The sensitivity of S. sanguinis to NET killing was reduced by swan gene deletion. Moreover, heterologous expression of the swan gene rendered a Lactococcus lactis strain more resistant to NET killing. Our results suggest that the SWAN nuclease on the bacterial surface contributes to survival in the potential situation of S. sanguinis encountering NETs during the course of disease progression. PMID:25084357

  16. Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back.

    PubMed

    Koonin, Eugene V; Makarova, Kira S

    2017-10-01

    The Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-CRISPR-associated proteins (Cas) systems of bacterial and archaeal adaptive immunity show multifaceted evolutionary relationships with at least five classes of mobile genetic elements (MGE). First, the adaptation module of CRISPR-Cas that is responsible for the formation of the immune memory apparently evolved from a Casposon, a self-synthesizing transposon that employs the Cas1 protein as the integrase and might have brought additional cas genes to the emerging immunity loci. Second, a large subset of type III CRISPR-Cas systems recruited a reverse transcriptase from a Group II intron, providing for spacer acquisition from RNA. Third, effector nucleases of Class 2 CRISPR-Cas systems that are responsible for the recognition and cleavage of the target DNA were derived from transposon-encoded TnpB nucleases, most likely, on several independent occasions. Fourth, accessory nucleases in some variants of types I and III toxin and type VI effectors RNases appear to be ultimately derived from toxin nucleases of microbial toxin-antitoxin modules. Fifth, the opposite direction of evolution is manifested in the recruitment of CRISPR-Cas systems by a distinct family of Tn7-like transposons that probably exploit the capacity of CRISPR-Cas to recognize unique DNA sites to facilitate transposition as well as by bacteriophages that employ them to cope with host defense. Additionally, individual Cas proteins, such as the Cas4 nuclease, were recruited by bacteriophages and transposons. The two-sided evolutionary connection between CRISPR-Cas and MGE fits the "guns for hire" paradigm whereby homologous enzymatic machineries, in particular nucleases, are shuttled between MGE and defense systems and are used alternately as means of offense or defense. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2017. This work is written by US Government employees and is in the public domain in the US.

  17. Identification of Plasmodium falciparum DNA Repair Protein Mre11 with an Evolutionarily Conserved Nuclease Function

    PubMed Central

    Badugu, Sugith Babu; Nabi, Shaik Abdul; Vaidyam, Pratap; Laskar, Shyamasree; Bhattacharyya, Sunanda; Bhattacharyya, Mrinal Kanti

    2015-01-01

    The eukaryotic Meiotic Recombination protein 11 (Mre11) plays pivotal roles in the DNA damage response (DDR). Specifically, Mre11 senses and signals DNA double strand breaks (DSB) and facilitates their repair through effector proteins belonging to either homologous recombination (HR) or non-homologous end joining (NHEJ) repair mechanisms. In the human malaria parasite Plasmodium falciparum, HR and alternative-NHEJ have been identified; however, little is known about the upstream factors involved in the DDR of this organism. In this report, we identify a putative ortholog of Mre11 in P. falciparum (PfalMre11) that shares 22% sequence similarity to human Mre11. Homology modeling reveals striking structural resemblance of the predicted PfalMre11 nuclease domain to the nuclease domain of Saccharomyces cerevisiae Mre11 (ScMre11). Complementation analyses reveal functional conservation of PfalMre11 nuclease activity as demonstrated by the ability of the PfalMre11 nuclease domain, in conjunction with the C-terminal domain of ScMre11, to functionally complement an mre11 deficient yeast strain. Functional complementation was virtually abrogated by an amino acid substitution in the PfalMre11 nuclease domain (D398N). PfalMre11 is abundant in the mitotically active trophozoite and schizont stages of P. falciparum and is up-regulated in response to DNA damage, suggesting a role in the DDR. PfalMre11 exhibits physical interaction with PfalRad50. In addition, yeast 2-hybrid studies show that PfalMre11 interacts with ScRad50 and ScXrs2, two important components of the well characterized Mre11-Rad50-Xrs2 complex which is involved in DDR signaling and repair in S. cerevisiae, further supporting a role for PfalMre11 in the DDR. Taken together, these findings provide evidence that PfalMre11 is an evolutionarily conserved component of the DDR in Plasmodium. PMID:25938776

  18. Effect of Radiofrequency Radiation on DNA Duplex Stability and Replication.

    DTIC Science & Technology

    1983-08-01

    Ando, T. A nuclease specific for heat-denatured DNA isolated from a product of Aspergillus oryzae . Biochim Biophys Acta 114:158-168 (1966). Blakeley...metabolic acti- vation. Mutation Res 64:315-328 (1979). Vogt,. V.M. Purification and further properties of single-strand-specific nuclease from Aspergillus oryzae . Eur J Biochem 33:192-200 (1973). 42

  19. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials.

    PubMed

    Bikard, David; Euler, Chad W; Jiang, Wenyan; Nussenzweig, Philip M; Goldberg, Gregory W; Duportet, Xavier; Fischetti, Vincent A; Marraffini, Luciano A

    2014-11-01

    Antibiotics target conserved bacterial cellular pathways or growth functions and therefore cannot selectively kill specific members of a complex microbial population. Here, we develop programmable, sequence-specific antimicrobials using the RNA-guided nuclease Cas9 (refs.1,2) delivered by a bacteriophage. We show that Cas9, reprogrammed to target virulence genes, kills virulent, but not avirulent, Staphylococcus aureus. Reprogramming the nuclease to target antibiotic resistance genes destroys staphylococcal plasmids that harbor antibiotic resistance genes and immunizes avirulent staphylococci to prevent the spread of plasmid-borne resistance genes. We also show that CRISPR-Cas9 antimicrobials function in vivo to kill S. aureus in a mouse skin colonization model. This technology creates opportunities to manipulate complex bacterial populations in a sequence-specific manner.

  20. A Novel Nuclease Activity that is Activated by Ca2+ Chelated to EGTA

    PubMed Central

    Dominguez, Kenneth; Ward, W. Steven

    2010-01-01

    Most nucleases require a divalent cation as a cofactor, usually Mg2+ or Ca2+, and are inhibited by the chelators EDTA and EGTA. We report the existence of a novel nuclease activity, initially identified in the luminal fluids of the mouse male reproductive tract but subsequently found in other tissues, that requires EGTA chelated to calcium to digest DNA. We refer to this unique enzyme as CEAN (Chelated EGTA Activated Nuclease). Using a fraction of vas deferens luminal fluid, plasmid DNA was degraded in the presence of excess Ca2+ (Ca2+:EGTA = 16) or excess EGTA (Ca2+:EGTA = 0.25), but required the presence of both. Higher levels of EGTA (Ca2+:EGTA = 0.10) prevented activity, suggesting that unchelated EGTA may be a competitive inhibitor. The EGTA-Ca2+ activation of CEAN is reversible as removing EGTA-Ca2+ stops ongoing DNA degradation, but adding EGTA-Ca2+ again reactivates the enzyme. This suggests the possibility that CEAN binds directly to EGTA-Ca2+. CEAN has a greater specificity for the chelator than for the divalent cation. Two other chelators, BAPTA and sodium citrate, do not activate CEAN in the presence of cation, but chelated EDTA does. EGTA chelated to other divalent cations such as Mn2+, Zn2+, and Cu2+ activate CEAN, but not Mg2+. The activity is lost upon boiling suggesting that it is a protein. These data suggest that EGTA and EDTA may not always prevent DNA from nuclease damage. PMID:19938954

  1. Is passive transmission of non-viral vectors through artificial insemination of sperm-DNA mixtures sufficient for chicken transgenesis?

    PubMed Central

    CHAPARIAN, Shahram; ABDULAHNEJAD, Ahad; RASHIDI, Farzad; TOGHYANI, Majid; GHEISARI, Abbasali; EGHBALSAIED, Shahin

    2016-01-01

    DNA uptake in the post-acrosomal region of the spermatozoa takes place exclusively in immotile spermatozoa that are naturally unable to fertilize eggs. The present study aimed to assess whether passive transmission of non-viral vectors to the surrounding areas of chicken embryos could be an alternate mechanism in chicken sperm-mediated gene transfer. First, the presence of nucleases in rooster seminal plasma was evaluated. Semen ejaculates from five roosters were centrifuged and the supernatant was incubated with pBL2 for 1 h. A robust nuclease cocktail was detected in the rooster semen. To overcome these nucleases, plasmid-TransIT combinations were incubated with semen for 1 h. Incubation of exogenous DNA in the lipoplex structure could considerably bypass the semen nuclease effect. Then, intravaginal insemination of 1 × 109 sperm mixed with lipoplexes (40 µg pBL2:40 µl TransIT) was carried out in 15 virgin hens. Neither the epithelial tissue from the inseminated female reproductive tracts nor the produced embryos following artificial insemination showed the transgene. To remove any bias in the transgene transmission possibility, the plasmid-TransIT admixture was directly injected in close vicinity of the embryos in newly laid eggs. Nonetheless, none of the produced fetuses or chicks carried the transgene. In conclusion, the results of the present study revealed a nuclease admixture in rooster seminal plasma, and passive/active transmission of the non-viral vector into close vicinity of the chicken embryo was inefficient for producing transgenic chicks. PMID:26935324

  2. Crystal structure of a Fanconi anemia-associated nuclease homolog bound to 5' flap DNA: basis of interstrand cross-link repair by FAN1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwon, Gwang Hyeon; Kim, Youngran; Liu, Yaqi

    2014-10-15

    Fanconi anemia (FA) is an autosomal recessive genetic disorder caused by defects in any of 15 FA genes responsible for processing DNA interstrand cross-links (ICLs). The ultimate outcome of the FA pathway is resolution of cross-links, which requires structure-selective nucleases. FA-associated nuclease 1 (FAN1) is believed to be recruited to lesions by a monoubiquitinated FANCI–FANCD2 (ID) complex and participates in ICL repair. Here, we determined the crystal structure of Pseudomonas aeruginosa FAN1 (PaFAN1) lacking the UBZ (ubiquitin-binding zinc) domain in complex with 5' flap DNA. All four domains of the right-hand-shaped PaFAN1 are involved in DNA recognition, with each domainmore » playing a specific role in bending DNA at the nick. The six-helix bundle that binds the junction connects to the catalytic viral replication and repair (VRR) nuclease (VRR nuc) domain, enabling FAN1 to incise the scissile phosphate a few bases distant from the junction. The six-helix bundle also inhibits the cleavage of intact Holliday junctions. PaFAN1 shares several conserved features with other flap structure-selective nucleases despite structural differences. A clamping motion of the domains around the wedge helix, which acts as a pivot, facilitates nucleolytic cleavage. The PaFAN1 structure provides insights into how archaeal Holliday junction resolvases evolved to incise 5' flap substrates and how FAN1 integrates with the FA complex to participate in ICL repair.« less

  3. Biasing genome-editing events toward precise length deletions with an RNA-guided TevCas9 dual nuclease.

    PubMed

    Wolfs, Jason M; Hamilton, Thomas A; Lant, Jeremy T; Laforet, Marcon; Zhang, Jenny; Salemi, Louisa M; Gloor, Gregory B; Schild-Poulter, Caroline; Edgell, David R

    2016-12-27

    The CRISPR/Cas9 nuclease is commonly used to make gene knockouts. The blunt DNA ends generated by cleavage can be efficiently ligated by the classical nonhomologous end-joining repair pathway (c-NHEJ), regenerating the target site. This repair creates a cycle of cleavage, ligation, and target site regeneration that persists until sufficient modification of the DNA break by alternative NHEJ prevents further Cas9 cutting, generating a heterogeneous population of insertions and deletions typical of gene knockouts. Here, we develop a strategy to escape this cycle and bias events toward defined length deletions by creating an RNA-guided dual active site nuclease that generates two noncompatible DNA breaks at a target site, effectively deleting the majority of the target site such that it cannot be regenerated. The TevCas9 nuclease, a fusion of the I-TevI nuclease domain to Cas9, functions robustly in HEK293 cells and generates 33- to 36-bp deletions at frequencies up to 40%. Deep sequencing revealed minimal processing of TevCas9 products, consistent with protection of the DNA ends from exonucleolytic degradation and repair by the c-NHEJ pathway. Directed evolution experiments identified I-TevI variants with broadened targeting range, making TevCas9 an easy-to-use reagent. Our results highlight how the sequence-tolerant cleavage properties of the I-TevI homing endonuclease can be harnessed to enhance Cas9 applications, circumventing the cleavage and ligation cycle and biasing genome-editing events toward defined length deletions.

  4. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases.

    PubMed

    Remy, Séverine; Tesson, Laurent; Menoret, Séverine; Usal, Claire; De Cian, Anne; Thepenier, Virginie; Thinard, Reynald; Baron, Daniel; Charpentier, Marine; Renaud, Jean-Baptiste; Buelow, Roland; Cost, Gregory J; Giovannangeli, Carine; Fraichard, Alexandre; Concordet, Jean-Paul; Anegon, Ignacio

    2014-08-01

    The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%-5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner. © 2014 Remy et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases

    PubMed Central

    Remy, Séverine; Tesson, Laurent; Menoret, Séverine; Usal, Claire; De Cian, Anne; Thepenier, Virginie; Thinard, Reynald; Baron, Daniel; Charpentier, Marine; Renaud, Jean-Baptiste; Buelow, Roland; Cost, Gregory J.; Giovannangeli, Carine; Fraichard, Alexandre; Concordet, Jean-Paul; Anegon, Ignacio

    2014-01-01

    The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%–5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner. PMID:24989021

  6. Genome Editing of Monkey.

    PubMed

    Liu, Zhen; Cai, Yijun; Sun, Qiang

    2017-01-01

    Gene-modified monkey models would be particularly valuable in biomedical and neuroscience research. Virus-based transgenic and programmable nucleases-based site-specific gene editing methods (TALEN, CRISPR-cas9) enable the generation of gene-modified monkeys with gain or loss of function of specific genes. Here, we describe the generation of transgenic and knock-out (KO) monkeys with high efficiency by lentivirus and programmable nucleases.

  7. Breaking-Cas-interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes.

    PubMed

    Oliveros, Juan C; Franch, Mònica; Tabas-Madrid, Daniel; San-León, David; Montoliu, Lluis; Cubas, Pilar; Pazos, Florencio

    2016-07-08

    The CRISPR/Cas technology is enabling targeted genome editing in multiple organisms with unprecedented accuracy and specificity by using RNA-guided nucleases. A critical point when planning a CRISPR/Cas experiment is the design of the guide RNA (gRNA), which directs the nuclease and associated machinery to the desired genomic location. This gRNA has to fulfil the requirements of the nuclease and lack homology with other genome sites that could lead to off-target effects. Here we introduce the Breaking-Cas system for the design of gRNAs for CRISPR/Cas experiments, including those based in the Cas9 nuclease as well as others recently introduced. The server has unique features not available in other tools, including the possibility of using all eukaryotic genomes available in ENSEMBL (currently around 700), placing variable PAM sequences at 5' or 3' and setting the guide RNA length and the scores per nucleotides. It can be freely accessed at: http://bioinfogp.cnb.csic.es/tools/breakingcas, and the code is available upon request. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Gene editing tools: state-of-the-art and the road ahead for the model and non-model fishes.

    PubMed

    Barman, Hirak Kumar; Rasal, Kiran Dashrath; Chakrapani, Vemulawada; Ninawe, A S; Vengayil, Doyil T; Asrafuzzaman, Syed; Sundaray, Jitendra K; Jayasankar, Pallipuram

    2017-10-01

    Advancements in the DNA sequencing technologies and computational biology have revolutionized genome/transcriptome sequencing of non-model fishes at an affordable cost. This has led to a paradigm shift with regard to our heightened understandings of structure-functional relationships of genes at a global level, from model animals/fishes to non-model large animals/fishes. Whole genome/transcriptome sequencing technologies were supplemented with the series of discoveries in gene editing tools, which are being used to modify genes at pre-determined positions using programmable nucleases to explore their respective in vivo functions. For a long time, targeted gene disruption experiments were mostly restricted to embryonic stem cells, advances in gene editing technologies such as zinc finger nuclease, transcriptional activator-like effector nucleases and CRISPR (clustered regulatory interspaced short palindromic repeats)/CRISPR-associated nucleases have facilitated targeted genetic modifications beyond stem cells to a wide range of somatic cell lines across species from laboratory animals to farmed animals/fishes. In this review, we discuss use of different gene editing tools and the strategic implications in fish species for basic and applied biology research.

  9. Cold denaturation and 2H2O stabilization of a staphylococcal nuclease mutant.

    PubMed Central

    Antonino, L C; Kautz, R A; Nakano, T; Fox, R O; Fink, A L

    1991-01-01

    Cold denaturation is now recognized as a general property of proteins but has been observed only under destabilizing conditions, such as moderate denaturant concentration or low pH. By destabilizing the protein using site-directed mutagenesis, we have observed cold denaturation at pH 7.0 in the absence of denaturants in a mutant of staphylococcal nuclease, which we call NCA S28G for a hybrid protein between staphylococcal nuclease and concanavalin A in which there is the point mutation Ser-28----Gly. The temperature of maximum stability (tmax) as determined by circular dichroism (CD) was 18.1 degrees C, and the midpoints of the thermal unfolding transitions (tm) were 0.6 degrees C and 30.0 degrees C. These values may be compared with the tm of 52.5 degrees C for wild-type staphylococcal nuclease, for which no cold denaturation was observed under these conditions. When the stability of the mutant was examined in 2H2O by NMR, CD, or fluorescence, a substantial increase in the amount of folded protein at the tmax was noted as well as a decrease in tmax, reflecting increased stability. PMID:1652762

  10. Detection of single-nucleotide polymorphisms using gold nanoparticles and single-strand-specific nucleases.

    PubMed

    Chen, Yen-Ting; Hsu, Chiao-Ling; Hou, Shao-Yi

    2008-04-15

    The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly.

  11. Advances in targeted genome editing.

    PubMed

    Perez-Pinera, Pablo; Ousterout, David G; Gersbach, Charles A

    2012-08-01

    New technologies have recently emerged that enable targeted editing of genomes in diverse systems. This includes precise manipulation of gene sequences in their natural chromosomal context and addition of transgenes to specific genomic loci. This progress has been facilitated by advances in engineering targeted nucleases with programmable, site-specific DNA-binding domains, including zinc finger proteins and transcription activator-like effectors (TALEs). Recent improvements have enhanced nuclease performance, accelerated nuclease assembly, and lowered the cost of genome editing. These advances are driving new approaches to many areas of biotechnology, including biopharmaceutical production, agriculture, creation of transgenic organisms and cell lines, and studies of genome structure, regulation, and function. Genome editing is also being investigated in preclinical and clinical gene therapies for many diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Targeted mutagenesis in sea urchin embryos using TALENs.

    PubMed

    Hosoi, Sayaka; Sakuma, Tetsushi; Sakamoto, Naoaki; Yamamoto, Takashi

    2014-01-01

    Genome editing with engineered nucleases such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) has been reported in various animals. We previously described ZFN-mediated targeted mutagenesis and insertion of reporter genes in sea urchin embryos. In this study, we demonstrate that TALENs can induce mutagenesis at specific genomic loci of sea urchin embryos. Injection of TALEN mRNAs targeting the HpEts transcription factor into fertilized eggs resulted in the impairment of skeletogenesis. Sequence analyses of the mutations showed that deletions and/or insertions occurred at the HpEts target site in the TALEN mRNAs-injected embryos. The results suggest that targeted gene disruption using TALENs is feasible in sea urchin embryos. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  13. From hacking the human genome to editing organs.

    PubMed

    Tobita, Takamasa; Guzman-Lepe, Jorge; Collin de l'Hortet, Alexandra

    2015-01-01

    In the recent decades, human genome engineering has been one of the major interesting research subjects, essentially because it raises new possibilities for personalized medicine and biotechnologies. With the development of engineered nucleases such as the Zinc Finger Nucleases (ZFNs), the Transcription activator-like effector nucleases (TALENs) and more recently the Clustered Regularly Interspaced short Palindromic Repeats (CRISPR), the field of human genome edition has evolved very rapidly. Every new genetic tool is broadening the scope of applications on human tissues, even before we can completely master each of these tools. In this review, we will present the recent advances regarding human genome edition tools, we will discuss the numerous implications they have in research and medicine, and we will mention the limits and concerns about such technologies.

  14. Development of sequence-specific antimicrobials based on programmable CRISPR-Cas nucleases

    PubMed Central

    Bikard, David; Euler, Chad; Jiang, Wenyan; Nussenzweig, Philip M.; Goldberg, Gregory W.; Duportet, Xavier; Fischetti, Vincent A.; Marraffini, Luciano A.

    2014-01-01

    Antibiotics target conserved bacterial cellular pathways or growth functions and therefore cannot selectively kill specific members of a complex microbial population. Here, we develop programmable, sequence-specific antimicrobials using the RNA-guided nuclease Cas91, 2 delivered by a bacteriophage. We show that Cas9 re-programmed to target virulence genes kills virulent, but not avirulent, Staphylococcus aureus. Re-programming the nuclease to target antibiotic resistance genes destroys staphylococcal plasmids that harbor antibiotic resistance genes3, 4 and immunizes avirulent staphylococci to prevent the spread of plasmid-borne resistance genes. We also demonstrate the approach in vivo, showing its efficacy against S. aureus in a mouse skin colonization model. This new technology creates opportunities to manipulate complex bacterial populations in a sequence-specific manner. PMID:25282355

  15. [CRISPR/Cas system for genome editing in pluripotent stem cells].

    PubMed

    Vasil'eva, E A; Melino, D; Barlev, N A

    2015-01-01

    Genome editing systems based on site-specific nucleases became very popular for genome editing in modern bioengineering. Human pluripotent stem cells provide a unique platform for genes function study, disease modeling, and drugs testing. Consequently, technology for fast, accurate and well controlled genome manipulation is required. CRISPR/Cas (clustered regularly interspaced short palindromic repeat/CRISPR-associated) system could be employed for these purposes. This system is based on site-specific programmable nuclease Cas9. Numerous advantages of the CRISPR/Cas system and its successful application to human stem cells provide wide opportunities for genome therapy and regeneration medicine. In this publication, we describe and compare the main genome editing systems based on site-specific programmable nucleases and discuss opportunities and perspectives of the CRISPR/Cas system for application to pluripotent stem cells.

  16. To CRISPR and beyond: the evolution of genome editing in stem cells

    PubMed Central

    Chen, Kuang-Yui; Knoepfler, Paul S

    2016-01-01

    The goal of editing the genomes of stem cells to generate model organisms and cell lines for genetic and biological studies has been pursued for decades. There is also exciting potential for future clinical impact in humans. While recent, rapid advances in targeted nuclease technologies have led to unprecedented accessibility and ease of gene editing, biology has benefited from past directed gene modification via homologous recombination, gene traps and other transgenic methodologies. Here we review the history of genome editing in stem cells (including via zinc finger nucleases, transcription activator-like effector nucleases and CRISPR–Cas9), discuss recent developments leading to the implementation of stem cell gene therapies in clinical trials and consider the prospects for future advances in this rapidly evolving field. PMID:27905217

  17. Customizing the genome as therapy for the β-hemoglobinopathies

    PubMed Central

    Canver, Matthew C.

    2016-01-01

    Despite nearly complete understanding of the genetics of the β-hemoglobinopathies for several decades, definitive treatment options have lagged behind. Recent developments in technologies for facile manipulation of the genome (zinc finger nucleases, transcription activator-like effector nucleases, or clustered regularly interspaced short palindromic repeats–based nucleases) raise prospects for their clinical application. The use of genome-editing technologies in autologous CD34+ hematopoietic stem and progenitor cells represents a promising therapeutic avenue for the β-globin disorders. Genetic correction strategies relying on the homology-directed repair pathway may repair genetic defects, whereas genetic disruption strategies relying on the nonhomologous end joining pathway may induce compensatory fetal hemoglobin expression. Harnessing the power of genome editing may usher in a second-generation form of gene therapy for the β-globin disorders. PMID:27053533

  18. To CRISPR and beyond: the evolution of genome editing in stem cells.

    PubMed

    Chen, Kuang-Yui; Knoepfler, Paul S

    2016-12-01

    The goal of editing the genomes of stem cells to generate model organisms and cell lines for genetic and biological studies has been pursued for decades. There is also exciting potential for future clinical impact in humans. While recent, rapid advances in targeted nuclease technologies have led to unprecedented accessibility and ease of gene editing, biology has benefited from past directed gene modification via homologous recombination, gene traps and other transgenic methodologies. Here we review the history of genome editing in stem cells (including via zinc finger nucleases, transcription activator-like effector nucleases and CRISPR-Cas9), discuss recent developments leading to the implementation of stem cell gene therapies in clinical trials and consider the prospects for future advances in this rapidly evolving field.

  19. From hacking the human genome to editing organs

    PubMed Central

    Tobita, Takamasa; Guzman-Lepe, Jorge; Collin de l'Hortet, Alexandra

    2015-01-01

    ABSTRACT In the recent decades, human genome engineering has been one of the major interesting research subjects, essentially because it raises new possibilities for personalized medicine and biotechnologies. With the development of engineered nucleases such as the Zinc Finger Nucleases (ZFNs), the Transcription activator-like effector nucleases (TALENs) and more recently the Clustered Regularly Interspaced short Palindromic Repeats (CRISPR), the field of human genome edition has evolved very rapidly. Every new genetic tool is broadening the scope of applications on human tissues, even before we can completely master each of these tools. In this review, we will present the recent advances regarding human genome edition tools, we will discuss the numerous implications they have in research and medicine, and we will mention the limits and concerns about such technologies PMID:26588350

  20. A tailored biocatalyst achieved by the rational anchoring of imidazole groups on a natural polymer: furnishing a potential artificial nuclease by sustainable materials engineering.

    PubMed

    Ferreira, José G L; Grein-Iankovski, Aline; Oliveira, Marco A S; Simas-Tosin, Fernanda F; Riegel-Vidotti, Izabel C; Orth, Elisa S

    2015-04-11

    Foreseeing the development of artificial enzymes by sustainable materials engineering, we rationally anchored reactive imidazole groups on gum arabic, a natural biocompatible polymer. The tailored biocatalyst GAIMZ demonstrated catalytic activity (>10(5)-fold) in dephosphorylation reactions with recyclable features and was effective in cleaving plasmid DNA, comprising a potential artificial nuclease.

  1. The structural biochemistry of Zucchini implicates it as a nuclease in piRNA biogenesis

    PubMed Central

    Ipsaro, Jonathan J.; Haase, Astrid D.; Knott, Simon R.; Joshua-Tor, Leemor; Hannon, Gregory J.

    2012-01-01

    PIWI-family proteins and their associated small RNAs (piRNAs) act in an evolutionarily conserved innate immune mechanism that provides an essential protection for germ cell genomes against the activity of mobile genetic elements1. piRNA populations comprise a molecular definition of transposons that permits them to be distinguished from host genes and selectively silenced. piRNAs can be generated in two distinct ways. Primary piRNAs emanate from discrete genomic loci, termed piRNA clusters, and appear to be derived from long, single-stranded precursors2. The biogenesis of primary piRNAs involves at least two nucleolytic steps. An unknown enzyme cleaves piRNA cluster transcripts to generate monophosphorylated piRNA 5' ends. piRNA 3' ends are likely formed by exonucleolytic trimming, after a piRNA precursor is loaded into its PIWI partner1,3. Secondary piRNAs arise during the adaptive ping-pong cycle, with their 5' termini being formed by the activity of PIWIs themselves2,4. A number of proteins have been implicated genetically in primary piRNA biogenesis. One of these, Zucchini, is a member of the phospholipase D family of phosphodiesterases, which includes both phospholipases and nucleases5–7. We have produced a dimeric, soluble fragment of the mouse Zucchini homolog (mZuc/PLD6) and have shown that it possesses single strand-specific nuclease activity. A crystal structure of mZuc at 1.75 Å resolution indicates greater architectural similarity to PLD-family nucleases than to phospholipases. Considered together, our data suggest that the Zucchini proteins act in primary piRNA biogenesis as nucleases, perhaps generating the 5' ends of primary piRNAs. PMID:23064227

  2. Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations

    PubMed Central

    van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D.

    2015-01-01

    The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1–2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand breaks are introduced at random wherever two translocating enzymes form a so-called collision complex following long-range communication between a pair of target sites in inverted (head-to-head) repeat. Paradoxically, structural models for collision suggest that the nuclease domains are too far apart (>30 bp) to dimerise and produce a double-strand DNA break using just two strand-cleavage events. Here, we examined the organisation of different collision complexes and how these lead to nuclease activation. We mapped DNA cleavage when a translocating enzyme collides with a static enzyme bound to its site. By following communication between sites in both head-to-head and head-to-tail orientations, we could show that motor activity leads to activation of the nuclease domains via distant interactions of the helicase or MTase-TRD. Direct nuclease dimerization is not required. To help explain the observed cleavage patterns, we also used exonuclease footprinting to demonstrate that individual Type ISP domains can swing off the DNA. This study lends further support to a model where DNA breaks are generated by multiple random nicks due to mobility of a collision complex with an overall DNA-binding footprint of ∼30 bp. PMID:26507855

  3. Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions.

    PubMed

    Lo, Te-Wen; Pickle, Catherine S; Lin, Steven; Ralston, Edward J; Gurling, Mark; Schartner, Caitlin M; Bian, Qian; Doudna, Jennifer A; Meyer, Barbara J

    2013-10-01

    Exploitation of custom-designed nucleases to induce DNA double-strand breaks (DSBs) at genomic locations of choice has transformed our ability to edit genomes, regardless of their complexity. DSBs can trigger either error-prone repair pathways that induce random mutations at the break sites or precise homology-directed repair pathways that generate specific insertions or deletions guided by exogenously supplied DNA. Prior editing strategies using site-specific nucleases to modify the Caenorhabditis elegans genome achieved only the heritable disruption of endogenous loci through random mutagenesis by error-prone repair. Here we report highly effective strategies using TALE nucleases and RNA-guided CRISPR/Cas9 nucleases to induce error-prone repair and homology-directed repair to create heritable, precise insertion, deletion, or substitution of specific DNA sequences at targeted endogenous loci. Our robust strategies are effective across nematode species diverged by 300 million years, including necromenic nematodes (Pristionchus pacificus), male/female species (Caenorhabditis species 9), and hermaphroditic species (C. elegans). Thus, genome-editing tools now exist to transform nonmodel nematode species into genetically tractable model organisms. We demonstrate the utility of our broadly applicable genome-editing strategies by creating reagents generally useful to the nematode community and reagents specifically designed to explore the mechanism and evolution of X chromosome dosage compensation. By developing an efficient pipeline involving germline injection of nuclease mRNAs and single-stranded DNA templates, we engineered precise, heritable nucleotide changes both close to and far from DSBs to gain or lose genetic function, to tag proteins made from endogenous genes, and to excise entire loci through targeted FLP-FRT recombination.

  4. Genome Editing with Engineered Nucleases in Economically Important Animals and Plants: State of the Art in the Research Pipeline.

    PubMed

    Sovová, Tereza; Kerins, Gerard; Demnerová, Kateřina; Ovesná, Jaroslava

    2017-01-01

    After induced mutagenesis and transgenesis, genome editing is the next step in the development of breeding techniques. Genome editing using site-directed nucleases - including meganucleases, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the CRISPR/Cas9 system - is based on the mechanism of double strand breaks. The nuclease is directed to cleave the DNA at a specific place of the genome which is then repaired by natural repair mechanisms. Changes are introduced during the repair that are either accidental or can be targeted if a DNA template with the desirable sequence is provided. These techniques allow making virtually any change to the genome including specific DNA sequence changes, gene insertion, replacements or deletions with unprecedented precision and specificity while being less laborious and more straightforward compared to traditional breeding techniques or transgenesis. Therefore, the research in this field is developing quickly and, apart from model species, multiple studies have focused on economically important species and agronomically important traits that were the key subjects of this review. In plants, studies have been undertaken on disease resistance, herbicide tolerance, nutrient metabolism and nutritional value. In animals, the studies have mainly focused on disease resistance, meat production and allergenicity of milk. However, none of the promising studies has led to commercialization despite several patent applications. The uncertain legal status of genome-editing methods is one of the reasons for poor commercial development, as it is not clear whether the products would fall under the GMO regulation. We believe this issue should be clarified soon in order to allow promising methods to reach their full potential.

  5. TALEN-Mediated Homologous Recombination Produces Site-Directed DNA Base Change and Herbicide-Resistant Rice.

    PubMed

    Li, Ting; Liu, Bo; Chen, Chih Ying; Yang, Bing

    2016-05-20

    Over the last decades, much endeavor has been made to advance genome editing technology due to its promising role in both basic and synthetic biology. The breakthrough has been made in recent years with the advent of sequence-specific endonucleases, especially zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPRs) guided nucleases (e.g., Cas9). In higher eukaryotic organisms, site-directed mutagenesis usually can be achieved through non-homologous end-joining (NHEJ) repair to the DNA double-strand breaks (DSBs) caused by the exogenously applied nucleases. However, site-specific gene replacement or genuine genome editing through homologous recombination (HR) repair to DSBs remains a challenge. As a proof of concept gene replacement through TALEN-based HR in rice (Oryza sativa), we successfully produced double point mutations in rice acetolactate synthase gene (OsALS) and generated herbicide resistant rice lines by using TALENs and donor DNA carrying the desired mutations. After ballistic delivery into rice calli of TALEN construct and donor DNA, nine HR events with different genotypes of OsALS were obtained in T0 generation at the efficiency of 1.4%-6.3% from three experiments. The HR-mediated gene edits were heritable to the progeny of T1 generation. The edited T1 plants were as morphologically normal as the control plants while displayed strong herbicide resistance. The results demonstrate the feasibility of TALEN-mediated genome editing in rice and provide useful information for further genome editing by other nuclease-based genome editing platforms. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  6. New frontier in regenerative medicine: site-specific gene correction in patient-specific induced pluripotent stem cells.

    PubMed

    Garate, Zita; Davis, Brian R; Quintana-Bustamante, Oscar; Segovia, Jose C

    2013-06-01

    Advances in cell and gene therapy are opening up new avenues for regenerative medicine. Because of their acquired pluripotency, human induced pluripotent stem cells (hiPSCs) are a promising source of autologous cells for regenerative medicine. They show unlimited self-renewal while retaining the ability, in principle, to differentiate into any cell type of the human body. Since Yamanaka and colleagues first reported the generation of hiPSCs in 2007, significant efforts have been made to understand the reprogramming process and to generate hiPSCs with potential for clinical use. On the other hand, the development of gene-editing platforms to increase homologous recombination efficiency, namely DNA nucleases (zinc finger nucleases, TAL effector nucleases, and meganucleases), is making the application of locus-specific gene therapy in human cells an achievable goal. The generation of patient-specific hiPSC, together with gene correction by homologous recombination, will potentially allow for their clinical application in the near future. In fact, reports have shown targeted gene correction through DNA-Nucleases in patient-specific hiPSCs. Various technologies have been described to reprogram patient cells and to correct these patient hiPSCs. However, no approach has been clearly more efficient and safer than the others. In addition, there are still significant challenges for the clinical application of these technologies, such as inefficient differentiation protocols, genetic instability resulting from the reprogramming process and hiPSC culture itself, the efficacy and specificity of the engineered DNA nucleases, and the overall homologous recombination efficiency. To summarize advances in the generation of gene corrected patient-specific hiPSCs, this review focuses on the available technological platforms, including their strengths and limitations regarding future therapeutic use of gene-corrected hiPSCs.

  7. Small Molecule Targeted Recruitment of a Nuclease to RNA.

    PubMed

    Costales, Matthew G; Matsumoto, Yasumasa; Velagapudi, Sai Pradeep; Disney, Matthew D

    2018-06-06

    The choreography between RNA synthesis and degradation is a key determinant in biology. Engineered systems such as CRISPR have been developed to rid a cell of RNAs. Here, we show that a small molecule can recruit a nuclease to a specific transcript, triggering its destruction. A small molecule that selectively binds the oncogenic microRNA(miR)-96 hairpin precursor was appended with a short 2'-5' poly(A) oligonucleotide. The conjugate locally activated endogenous, latent ribonuclease (RNase L), which selectively cleaved the miR-96 precursor in cancer cells in a catalytic and sub-stoichiometric fashion. Silencing miR-96 derepressed pro-apoptotic FOXO1 transcription factor, triggering apoptosis in breast cancer, but not healthy breast, cells. These results demonstrate that small molecules can be programmed to selectively cleave RNA via nuclease recruitment and has broad implications.

  8. Customizing the genome as therapy for the β-hemoglobinopathies.

    PubMed

    Canver, Matthew C; Orkin, Stuart H

    2016-05-26

    Despite nearly complete understanding of the genetics of the β-hemoglobinopathies for several decades, definitive treatment options have lagged behind. Recent developments in technologies for facile manipulation of the genome (zinc finger nucleases, transcription activator-like effector nucleases, or clustered regularly interspaced short palindromic repeats-based nucleases) raise prospects for their clinical application. The use of genome-editing technologies in autologous CD34(+) hematopoietic stem and progenitor cells represents a promising therapeutic avenue for the β-globin disorders. Genetic correction strategies relying on the homology-directed repair pathway may repair genetic defects, whereas genetic disruption strategies relying on the nonhomologous end joining pathway may induce compensatory fetal hemoglobin expression. Harnessing the power of genome editing may usher in a second-generation form of gene therapy for the β-globin disorders. © 2016 by The American Society of Hematology.

  9. RNA-guided transcriptional regulation

    DOEpatents

    Church, George M.; Mali, Prashant G.; Esvelt, Kevin M.

    2016-02-23

    Methods of modulating expression of a target nucleic acid in a cell are provided including introducing into the cell a first foreign nucleic acid encoding one or more RNAs complementary to DNA, wherein the DNA includes the target nucleic acid, introducing into the cell a second foreign nucleic acid encoding a nuclease-null Cas9 protein that binds to the DNA and is guided by the one or more RNAs, introducing into the cell a third foreign nucleic acid encoding a transcriptional regulator protein or domain, wherein the one or more RNAs, the nuclease-null Cas9 protein, and the transcriptional regulator protein or domain are expressed, wherein the one or more RNAs, the nuclease-null Cas9 protein and the transcriptional regulator protein or domain co-localize to the DNA and wherein the transcriptional regulator protein or domain regulates expression of the target nucleic acid.

  10. Isolation and characterization of naturally occurring hairpin structures in single-stranded DNA of coliphage M13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niyogi, S.K.; Mitra, S.

    With precise conditions of digestion with single-strand-specific nucleases, namely, endonuclease S1 of Aspergillus oryzae and exonuclease I of Escherichia coli, nuclease-resistant DNA cores can be obtained reproducibly from single-stranded M13 DNA. The DNA cores are composed almost exclusively of two sizes (60 and 44 nucleotides long). These have high (G + C)-contents relative to that of intact M13 DNA, and arise from restricted regions of the M13 genome. The resistance of these fragments to single-strand-specific nucleases and their nondenaturability strongly suggest the presence of double-stranded segments in these core pieces. That the core pieces are only partially double-stranded is shownmore » by their lack of complete base complementarity and their pattern of elution from hydroxyapatite.« less

  11. Structural characterization of the virulence factor nuclease A from Streptococcus agalactiae

    DOE PAGES

    Moon, Andrea F.; Gaudu, Philippe; Pedersen, Lars C.

    2014-11-01

    The group B pathogen Streptococcus agalactiae commonly populates the human gut and urogenital tract, and is a major cause of infection-based mortality in neonatal infants and in elderly or immunocompromised adults. Nuclease A (GBS_NucA), a secreted DNA/RNA nuclease, serves as a virulence factor for S. agalactiae , facilitating bacterial evasion of the human innate immune response. GBS_NucA efficiently degrades the DNA matrix component of neutrophil extracellular traps (NETs), which attempt to kill and clear invading bacteria during the early stages of infection. In order to better understand the mechanisms of DNA substrate binding and catalysis of GBS_NucA, the high-resolution structuremore » of a catalytically inactive mutant (H148G) was solved by X-ray crystallography. Several mutants on the surface of GBS_NucA which might influence DNA substrate binding and catalysis were generated and evaluated using an imidazole chemical rescue technique. While several of these mutants severely inhibited nuclease activity, two mutants (K146R and Q183A) exhibited significantly increased activity. Lastly, these structural and biochemical studies have greatly increased our understanding of the mechanism of action of GBS_NucA in bacterial virulence and may serve as a foundation for the structure-based drug design of antibacterial compounds targeted to S. agalactiae.« less

  12. Advances in the Engineering of the Gene Editing Enzymes and the Genomes: Understanding and Handling the Off-Target Effects of CRISPR/Cas9.

    PubMed

    Yin, Yufang; Wang, Qian; Xiao, Li; Wang, Fengjiao; Song, Zhuo; Zhou, Cuilan; Liu, Xuan; Xing, Chungen; He, Nongyue; Li, Kai; Feng, Yan; Zhang, Jia

    2018-03-01

    In the past decades, significant progresses have been achieved in genetic engineering of nucleases. Among the genetically engineered nucleases, zinc finger nucleases, transcription activator-like (TAL) effector nucleases, and CRIPSPR/Cas9 system form a new field of gene editing. The gene editing efficiency or targeting effect and the off-target effect are the two major determinant factors in evaluating the usefulness of a new enzyme. Engineering strategies in improving these gene editing enzymes, particularly in minimizing their off-target effects, are the focus of this paper. Examples of using these genetically engineered enzymes in genome modification are discussed in order to better understand the requirement of engineering efforts in obtaining more powerful and useful gene editing enzymes. In addition, the identification of naturally existed anti-Cas proteins has been employed in minimizing off-target effects. Considering the future application in human gene therapy, optimization of these well recognized gene editing enzymes and exploration of more novel enzymes are both required. Before people find an ideal gene editing system having virtually no off-target effect, technologies used to screen and identify off-target effects are of importance in clinical trials employing gene therapy.

  13. Application of micro-PIV to the study of staphylococci bacteria biofilm dynamics

    NASA Astrophysics Data System (ADS)

    Sherman, Erica; Moormeier, Derek; Bayles, Kenneth; Wei, Timothy

    2014-11-01

    Staphylococci bacteria are recognized as the most frequent cause of biofilm-associated infections. A localized staph infection has the potential to enter the bloodstream and lead to serious infections such as endocarditis, pneumonia, or toxic shock syndrome. Changes in flow conditions, such as shear stress, can lead to stable biofilm growth or the dispersion of portions of the biofilm downstream. Exploration of biofilm physiology indicates a link between production of a specific enzyme called nuclease and biofilm architecture -; however the physical impact of this enzyme in directing the location and behavior of biofilm growth remains unclear. This talk investigates the link between sites of nuclease production and the development of biofilm tower structures using the application of micro-PIV and fluorescently labeled bacterial cells producing nuclease. Staphylococcus aureus bacteria were cultured in a BioFlux1000 square microchannel of a 65 by 65 um cross section, and subjected to a steady shear rate of 0.6 dynes. Micro-PIV and nuclease production measurements were taken to quantify the flow over a biofilm tower structure prior and during development. Data were recorded around the structure at a series of two dimensional planes, which when stacked vertically show a two dimensional flow field as a function of tower height.

  14. Nucleosome exclusion from the interspecies-conserved central AT-rich region of the Ars insulator.

    PubMed

    Takagi, Haruna; Inai, Yuta; Watanabe, Shun-ichiro; Tatemoto, Sayuri; Yajima, Mamiko; Akasaka, Koji; Yamamoto, Takashi; Sakamoto, Naoaki

    2012-01-01

    The Ars insulator is a boundary element identified in the upstream region of the arylsulfatase (HpArs) gene in the sea urchin, Hemicentrotus pulcherrimus, and possesses the ability to both block enhancer-promoter communications and protect transgenes from silent chromatin. To understand the molecular mechanism of the Ars insulator, we investigated the correlation between chromatin structure, DNA structure and insulator activity. Nuclease digestion of nuclei isolated from sea urchin embryos revealed the presence of a nuclease-hypersensitive site within the Ars insulator. Analysis of micrococcal nuclease-sensitive sites in the Ars insulator, reconstituted with nucleosomes, showed the exclusion of nucleosomes from the central AT-rich region. Furthermore, the central AT-rich region in naked DNA was sensitive to nucleotide base modification by diethylpyrocarbonate (DEPC). These observations suggest that non-B-DNA structures in the central AT-rich region may inhibit nucleosomal formation, which leads to nuclease hypersensitivity. Furthermore, comparison of nucleotide sequences between the HpArs gene and its ortholog in Strongylocentrotus purpuratus revealed that the central AT-rich region of the Ars insulator is conserved, and this conserved region showed significant enhancer blocking activity. These results suggest that the central AT-rich nucleosome-free region plays an important role in the function of the Ars insulator.

  15. Geminivirus-Mediated Genome Editing in Potato (Solanum tuberosum L.) Using Sequence-Specific Nucleases

    PubMed Central

    Butler, Nathaniel M.; Baltes, Nicholas J.; Voytas, Daniel F.; Douches, David S.

    2016-01-01

    Genome editing using sequence-specific nucleases (SSNs) is rapidly being developed for genetic engineering in crop species. The utilization of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated systems (CRISPR/Cas) for inducing double-strand breaks facilitates targeting of virtually any sequence for modification. Targeted mutagenesis via non-homologous end-joining (NHEJ) has been demonstrated extensively as being the preferred DNA repair pathway in plants. However, gene targeting via homologous recombination (HR) remains more elusive but could be a powerful tool for directed DNA repair. To overcome barriers associated with gene targeting, a geminivirus replicon (GVR) was used to deliver SSNs targeting the potato ACETOLACTATE SYNTHASE1 (ALS1) gene and repair templates designed to incorporate herbicide-inhibiting point mutations within the ALS1 locus. Transformed events modified with GVRs held point mutations that were capable of supporting a reduced herbicide susceptibility phenotype, while events transformed with conventional T-DNAs held no detectable mutations and were similar to wild-type. Regeneration of transformed events improved detection of point mutations that supported a stronger reduced herbicide susceptibility phenotype. These results demonstrate the use of geminiviruses for delivering genome editing reagents in plant species, and a novel approach to gene targeting in a vegetatively propagated species. PMID:27493650

  16. Distinct properties of proteases and nucleases in the gut, salivary gland and saliva of southern green stink bug, Nezara viridula

    PubMed Central

    Lomate, Purushottam R.; Bonning, Bryony C.

    2016-01-01

    Stink bugs negatively impact numerous plant species of agricultural and horticultural importance. While efforts to develop effective control measures are underway, the unique digestive physiology of these pests presents a significant hurdle for either protein- or nucleotide-based management options. Here we report the comparative biochemical and proteomic characterization of proteases and nucleases from the gut, salivary gland and saliva of the southern green stink bug, Nezara viridula. The pH optimum for protease activity was acidic (5 to 6) in the gut with the primary proteases being cysteine proteases, and alkaline (8 to 9) in the saliva and salivary gland with the primary proteases being serine proteases. The serine proteases in saliva differ biochemically from trypsin and chymotrypsin, and the cathepsins in the gut and saliva showed distinct properties in inhibitor assays. Nuclease activity (DNase, RNase, dsRNase) was concentrated in the salivary gland and saliva with negligible activity in the gut. The most abundant proteins of the gut (530) and salivary gland (631) identified by proteomic analysis included four gut proteases along with eight proteases and one nuclease from the salivary gland. Understanding of N. viridula digestive physiology will facilitate the design of new strategies for management of this significant pest. PMID:27282882

  17. Baculovirus-based genome editing in primary cells.

    PubMed

    Mansouri, Maysam; Ehsaei, Zahra; Taylor, Verdon; Berger, Philipp

    2017-03-01

    Genome editing in eukaryotes became easier in the last years with the development of nucleases that induce double strand breaks in DNA at user-defined sites. CRISPR/Cas9-based genome editing is currently one of the most powerful strategies. In the easiest case, a nuclease (e.g. Cas9) and a target defining guide RNA (gRNA) are transferred into a target cell. Non-homologous end joining (NHEJ) repair of the DNA break following Cas9 cleavage can lead to inactivation of the target gene. Specific repair or insertion of DNA with Homology Directed Repair (HDR) needs the simultaneous delivery of a repair template. Recombinant Lentivirus or Adenovirus genomes have enough capacity for a nuclease coding sequence and the gRNA but are usually too small to also carry large targeting constructs. We recently showed that a baculovirus-based multigene expression system (MultiPrime) can be used for genome editing in primary cells since it possesses the necessary capacity to carry the nuclease and gRNA expression constructs and the HDR targeting sequences. Here we present new Acceptor plasmids for MultiPrime that allow simplified cloning of baculoviruses for genome editing and we show their functionality in primary cells with limited life span and induced pluripotent stem cells (iPS). Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Structural characterization of the virulence factor nuclease A from Streptococcus agalactiae.

    PubMed

    Moon, Andrea F; Gaudu, Philippe; Pedersen, Lars C

    2014-11-01

    The group B pathogen Streptococcus agalactiae commonly populates the human gut and urogenital tract, and is a major cause of infection-based mortality in neonatal infants and in elderly or immunocompromised adults. Nuclease A (GBS_NucA), a secreted DNA/RNA nuclease, serves as a virulence factor for S. agalactiae, facilitating bacterial evasion of the human innate immune response. GBS_NucA efficiently degrades the DNA matrix component of neutrophil extracellular traps (NETs), which attempt to kill and clear invading bacteria during the early stages of infection. In order to better understand the mechanisms of DNA substrate binding and catalysis of GBS_NucA, the high-resolution structure of a catalytically inactive mutant (H148G) was solved by X-ray crystallography. Several mutants on the surface of GBS_NucA which might influence DNA substrate binding and catalysis were generated and evaluated using an imidazole chemical rescue technique. While several of these mutants severely inhibited nuclease activity, two mutants (K146R and Q183A) exhibited significantly increased activity. These structural and biochemical studies have greatly increased our understanding of the mechanism of action of GBS_NucA in bacterial virulence and may serve as a foundation for the structure-based drug design of antibacterial compounds targeted to S. agalactiae.

  19. Use of Genome Editing Tools to Treat Sickle Cell Disease

    PubMed Central

    Tasan, Ipek; Jain, Surbhi; Zhao, Huimin

    2016-01-01

    Recent advances in genome editing techniques have made it possible to modify any desired DNA sequence by employing programmable nucleases. These next generation genome-modifying tools are the ideal candidates for therapeutic applications, especially for the treatment of genetic disorders like sickle cell disease (SCD). SCD is an inheritable monogenic disorder which is caused by a point mutation in the β-globin gene. Substantial success has been achieved in the development of supportive therapeutic strategies for SCD but unfortunately there is still a lack of long-term universal cure. The only existing curative treatment is based on allogeneic stem cell transplantation from healthy donors; however, this treatment is applicable to a limited number of patients only. Hence, a universally applicable therapy is highly desirable. In this review we will discuss the three programmable nucleases that are commonly used for genome editing purposes: zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9). We will continue by exemplifying uses of these methods to correct the sickle cell mutation. Additionally, we will present induction of fetal globin expression as an alternative approach to cure sickle cell disease. We will conclude by comparing the three methods and explaining the concerns about their use in therapy. PMID:27250347

  20. Inactivation of Hepatitis B Virus Replication in Cultured Cells and In Vivo with Engineered Transcription Activator-Like Effector Nucleases

    PubMed Central

    Bloom, Kristie; Ely, Abdullah; Mussolino, Claudio; Cathomen, Toni; Arbuthnot, Patrick

    2013-01-01

    Chronic hepatitis B virus (HBV) infection remains an important global health problem. Stability of the episomal covalently closed circular HBV DNA (cccDNA) is largely responsible for the modest curative efficacy of available therapy. Since licensed anti-HBV drugs have a post-transcriptional mechanism of action, disabling cccDNA is potentially of therapeutic benefit. To develop this approach, we engineered mutagenic transcription activator-like effector nucleases (TALENs) that target four HBV-specific sites within the viral genome. TALENs with cognate sequences in the S or C open-reading frames (ORFs) efficiently disrupted sequences at the intended sites and suppressed markers of viral replication. Following triple transfection of cultured HepG2.2.15 cells under mildly hypothermic conditions, the S TALEN caused targeted mutation in ~35% of cccDNA molecules. Markers of viral replication were also inhibited in vivo in a murine hydrodynamic injection model of HBV replication. HBV target sites within S and C ORFs of the injected HBV DNA were mutated without evidence of toxicity. These findings are the first to demonstrate a targeted nuclease-mediated disruption of HBV cccDNA. Efficacy in vivo also indicates that these engineered nucleases have potential for use in treatment of chronic HBV infection. PMID:23883864

  1. Construction of a quadruple auxotrophic mutant of an industrial polyploid saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease.

    PubMed

    Zhang, Guo-Chang; Kong, In Iok; Kim, Heejin; Liu, Jing-Jing; Cate, Jamie H D; Jin, Yong-Su

    2014-12-01

    Industrial polyploid yeast strains harbor numerous beneficial traits but suffer from a lack of available auxotrophic markers for genetic manipulation. Here we demonstrated a quick and efficient strategy to generate auxotrophic markers in industrial polyploid yeast strains with the RNA-guided Cas9 nuclease. We successfully constructed a quadruple auxotrophic mutant of a popular industrial polyploid yeast strain, Saccharomyces cerevisiae ATCC 4124, with ura3, trp1, leu2, and his3 auxotrophies through RNA-guided Cas9 nuclease. Even though multiple alleles of auxotrophic marker genes had to be disrupted simultaneously, we observed knockouts in up to 60% of the positive colonies after targeted gene disruption. In addition, growth-based spotting assays and fermentation experiments showed that the auxotrophic mutants inherited the beneficial traits of the parental strain, such as tolerance of major fermentation inhibitors and high temperature. Moreover, the auxotrophic mutants could be transformed with plasmids containing selection marker genes. These results indicate that precise gene disruptions based on the RNA-guided Cas9 nuclease now enable metabolic engineering of polyploid S. cerevisiae strains that have been widely used in the wine, beer, and fermentation industries. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Application of halophilic nuclease H of Micrococcus varians subsp. halophilus to commercial production of flavoring agent 5'-GMP.

    PubMed Central

    Kamekura, M; Hamakawa, T; Onishi, H

    1982-01-01

    RNA was degraded at 60 degrees C for 24 h by halophilic nuclease H in supernatants from broth cultures of Micrococcus varians subsp. halophilus containing 12% NaCl. Since contaminating 5'-nucleotidase exhibited almost no activity under these conditions, the 5'-GMP formed could be recovered from the reaction mixture, and the yield was 805 mg from 5 g of RNA. PMID:6184020

  3. Mung bean nuclease: mode of action and specificity vs synthetic esters of 3′-nucleotides

    PubMed Central

    Kole, R.; Sierakowska, Halina; Szemplińska, Halina; Shugar, D.

    1974-01-01

    Mung bean nuclease hydrolyzes synthetic esters of 3′-nucleotides to nucleosides and phosphate esters; esters of 2′-nucleotides, and 2′→ 5′ internucleotide linkages, are resistant. Esters of ribonucleotides are cleaved at 100-fold the rate for deoxyribonucleotides, the increased rate being due to presence of the 2′-hydroxyl and not to differences in conformation. Introduction of a 5′-substituent leads to a 3-fold increase in rate. The rates of hydrolysis vary up to 10-fold with the nature of the base, in the order adenine > hypoxanthine > uracil; and up to 6-fold with the nature of the ester radical. This form of cleavage of esters of 3′-nucleotides is also characteristic for nuclease-3′-nucleotidase activities from potato tubers and wheat, suggesting that one type of enzyme is responsible for all these activities. PMID:10793750

  4. megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering.

    PubMed

    Boissel, Sandrine; Jarjour, Jordan; Astrakhan, Alexander; Adey, Andrew; Gouble, Agnès; Duchateau, Philippe; Shendure, Jay; Stoddard, Barry L; Certo, Michael T; Baker, David; Scharenberg, Andrew M

    2014-02-01

    Rare-cleaving endonucleases have emerged as important tools for making targeted genome modifications. While multiple platforms are now available to generate reagents for research applications, each existing platform has significant limitations in one or more of three key properties necessary for therapeutic application: efficiency of cleavage at the desired target site, specificity of cleavage (i.e. rate of cleavage at 'off-target' sites), and efficient/facile means for delivery to desired target cells. Here, we describe the development of a single-chain rare-cleaving nuclease architecture, which we designate 'megaTAL', in which the DNA binding region of a transcription activator-like (TAL) effector is used to 'address' a site-specific meganuclease adjacent to a single desired genomic target site. This architecture allows the generation of extremely active and hyper-specific compact nucleases that are compatible with all current viral and nonviral cell delivery methods.

  5. An antiviral RISC isolated from Tobacco rattle virus-infected plants

    PubMed Central

    Ciomperlik, Jessica J.; Omarov, Rustem T.; Scholthof, Herman B.

    2011-01-01

    The RNAi model predicts that during antiviral defense a RNA-induced silencing complex (RISC) is programmed with viral short-interfering RNAs (siRNAs) to target the cognate viral RNA for degradation. We show that infection of Nicotiana benthamiana with Tobacco rattle virus (TRV) activates an antiviral nuclease that specifically cleaves TRV RNA in vitro. In agreement with known RISC properties, the nuclease activity was inhibited by NaCl and EDTA and stimulated by divalent metal cations; a novel property was its preferential targeting of elongated RNA molecules. Intriguingly, the specificity of the TRV RISC could be re-programmed by exogenous addition of RNA (containing siRNAs) from plants infected with an unrelated virus, resulting in a newly acquired ability of RISC to target this heterologous genome in vitro. Evidently the virus-specific nuclease complex from N. benthamiana represents a genuine RISC that functions as a readily employable and reprogrammable antiviral defense unit. PMID:21272908

  6. [The application of genome editing in identification of plant gene function and crop breeding].

    PubMed

    Zhou, Xiang-chun; Xing, Yong-zhong

    2016-03-01

    Plant genome can be modified via current biotechnology with high specificity and excellent efficiency. Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system are the key engineered nucleases used in the genome editing. Genome editing techniques enable gene targeted mutagenesis, gene knock-out, gene insertion or replacement at the target sites during the endogenous DNA repair process, including non-homologous end joining (NHEJ) and homologous recombination (HR), triggered by the induction of DNA double-strand break (DSB). Genome editing has been successfully applied in the genome modification of diverse plant species, such as Arabidopsis thaliana, Oryza sativa, and Nicotiana tabacum. In this review, we summarize the application of genome editing in identification of plant gene function and crop breeding. Moreover, we also discuss the improving points of genome editing in crop precision genetic improvement for further study.

  7. Genome Editing for the Study of Cardiovascular Diseases.

    PubMed

    Chadwick, Alexandra C; Musunuru, Kiran

    2017-03-01

    The opportunities afforded through the recent advent of genome-editing technologies have allowed investigators to more easily study a number of diseases. The advantages and limitations of the most prominent genome-editing technologies are described in this review, along with potential applications specifically focused on cardiovascular diseases. The recent genome-editing tools using programmable nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), have rapidly been adapted to manipulate genes in a variety of cellular and animal models. A number of recent cardiovascular disease-related publications report cases in which specific mutations are introduced into disease models for functional characterization and for testing of therapeutic strategies. Recent advances in genome-editing technologies offer new approaches to understand and treat diseases. Here, we discuss genome editing strategies to easily characterize naturally occurring mutations and offer strategies with potential clinical relevance.

  8. Developmental history and application of CRISPR in human disease.

    PubMed

    Liang, Puping; Zhang, Xiya; Chen, Yuxi; Huang, Junjiu

    2017-06-01

    Genome-editing tools are programmable artificial nucleases, mainly including zinc-finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeat (CRISPR). By recognizing and cleaving specific DNA sequences, genome-editing tools make it possible to generate site-specific DNA double-strand breaks (DSBs) in the genome. DSBs will then be repaired by either error-prone nonhomologous end joining or high-fidelity homologous recombination mechanisms. Through these two different mechanisms, endogenous genes can be knocked out or precisely repaired/modified. Rapid developments in genome-editing tools, especially CRISPR, have revolutionized human disease models generation, for example, various zebrafish, mouse, rat, pig, monkey and human cell lines have been constructed. Here, we review the developmental history of CRISPR and its application in studies of human diseases. In addition, we also briefly discussed the therapeutic application of CRISPR in the near future. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Identifying p53 Transactivation Domain 1-Specific Inhibitors to Alleviate the Side Effects of Prostate Cancer Therapy

    DTIC Science & Technology

    2013-09-01

    further expanded with the exciting   7   development of Tal-effector and CRISPR guided nucleases. Transcription activator-like effector nucleases...also be achieved by the recently developed CRISPR -Cas9 system. CRISPR (Clustered Regulatory Interspaced Short Palindromic Repeats) is widely believed...to be the most efficient method to engineer mammalian genomes. CRISPR RNAs (crRNA) that hybridize to a specific target DNA can be utilized to guide a

  10. Highly efficient Cas9-mediated transcriptional programming

    DOE PAGES

    Chavez, Alejandro; Scheiman, Jonathan; Vora, Suhani; ...

    2015-03-02

    The RNA-guided nuclease Cas9 can be reengineered as a programmable transcription factor. However, modest levels of gene activation have limited potential applications. Here we describe an improved transcriptional regulator through the rational design of a tripartite activator, VP64-p65-Rta (VPR), fused to nuclease-null Cas9. Here, we demonstrate its utility in activating endogenous coding and non-coding genes, targeting several genes simultaneously and stimulating neuronal differentiation of human induced pluripotent stem cells (iPSCs).

  11. [Genome-editing: focus on the off-target effects].

    PubMed

    He, Xiubin; Gu, Feng

    2017-10-25

    Breakthroughs of genome-editing in recent years have paved the way to develop new therapeutic strategies. These genome-editing tools mainly include Zinc-finger nucleases (ZFNs), Transcription activator-like effector nucleases (TALENs), and clustered regulatory interspaced short palindromic repeat (CRISPR)/Cas-based RNA-guided DNA endonucleases. However, off-target effects are still the major issue in genome editing, and limit the application in gene therapy. Here, we summarized the cause and compared different detection methods of off-targets.

  12. Syntheses of prodrug-type phosphotriester oligonucleotides responsive to intracellular reducing environment for improvement of cell membrane permeability and nuclease resistance.

    PubMed

    Hayashi, Junsuke; Samezawa, Yusuke; Ochi, Yosuke; Wada, Shun-Ichi; Urata, Hidehito

    2017-07-15

    We synthesized prodrug-type phosphotriester (PTE) oligonucleotides containing the six-membered cyclic disulfide moiety by using phosphoramidite chemistry. Prodrug-type oligonucleotides named "Reducing-Environment-Dependent Uncatalyzed Chemical Transforming (REDUCT) PTE oligonucleotides" were converted into natural oligonucleotides under cytosol-mimetic reductive condition. Furthermore, the REDUCT PTE oligonucleotides were robust to nuclease digestion and exhibited good cell membrane permeability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Linker DNA accessibility in chromatin fibers of different conformations: a reevaluation.

    PubMed Central

    Zlatanova, J; Leuba, S H; Yang, G; Bustamante, C; van Holde, K

    1994-01-01

    New studies on chromatin fiber morphology, using the technique of scanning force microscopy (SFM), have caused us to reexamine recent analysis of nuclease digestion of chromatin. Chicken erythrocyte chromatin fibers, glutaraldehyde-fixed at 0, 10, and 80 mM NaCl, were imaged with the help of SFM. The chromatin fibers possessed a loose three-dimensional 30-nm structure even in the absence of added salt. This structure slightly condensed upon addition of 10 mM NaCl, and highly compacted, irregularly segmented fibers were observed at 80 mM NaCl. This sheds new light upon our previously reported analysis of the kinetics of digestion by soluble and membrane-immobilized micrococcal nuclease [Leuba, S. H., Zlatanova, J. & van Holde, K. (1994) J. Mol. Biol. 235, 871-880]. While the low-ionic-strength fibers were readily digested, the highly compacted structure formed at 80 mM NaCl was refractory to nuclease attack, implying that the linkers were fully accessible in the low-ionic-strength conformation but not in the condensed fibers. We now find that cleavage of the linker DNA by a small molecule, methidiumpropyl-EDTA-Fe(II), proceeds for all types of conformations at similar rates. Thus, steric hindrance is responsible for the lack of accessibility to micrococcal nuclease in the condensed fiber. Taken in total the data suggest that reexamination of existing models of chromatin conformation is warranted. Images PMID:8202481

  14. Efficient genome editing by FACS enrichment of paired D10A Cas9 nickases coupled with fluorescent proteins.

    PubMed

    Gopalappa, Ramu; Song, Myungjae; Chandrasekaran, Arun Pandian; Das, Soumyadip; Haq, Saba; Koh, Hyun Chul; Ramakrishna, Suresh

    2018-05-31

    Targeted genome editing by clustered regularly interspaced short palindromic repeats (CRISPR-Cas9) raised concerns over off-target effects. The use of double-nicking strategy using paired Cas9 nickase has been developed to minimize off-target effects. However, it was reported that the efficiency of paired nickases were comparable or lower than that of either corresponding nuclease alone. Recently, we conducted a systematic comparison of the efficiencies of several paired Cas9 with their corresponding Cas9 nucleases and showed that paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption. However, sometimes the designed paired Cas9 nickases exhibited significantly lower mutation frequencies than nucleases, hampering the generation of cells containing paired Cas9 nickase-induced mutations. Here we implemented IRES peptide-conjugation of fluorescent protein to Cas9 nickase and subjected for fluorescence-activated cell sorting. The sorted cell populations are highly enriched with cells containing paired Cas9 nickase-induced mutations, by a factor of up to 40-fold as compared with the unsorted population. Furthermore, gene-disrupted single cell clones using paired nickases followed by FACS sorting strategy were generated highly efficiently, without compromising with its low off-target effects. We envision that our fluorescent protein coupled paired nickase-mediated gene disruption, facilitating efficient and highly specific genome editing in medical research.

  15. Comparison of tissue deterioration of ripening banana fruit (Musa spp., AAA group, Cavendish subgroup) under chilling and non-chilling temperatures.

    PubMed

    Ramírez-Sánchez, Maricruz; Huber, Donald J; Vallejos, Carlos E

    2018-03-08

    In fleshy fruits, induced programmed cell death (PCD) has been observed in heat-treated tomato, and in ethylene-treated and low-temperature exposure in immature cucumber. No other fleshy fruit has been evaluated for chilling-injury-induced PCD, especially mature fruit with full ripening capacity. The purpose of this research was to identify and evaluate the presence of PCD processes during the development of low-temperature-induced physiopathy of banana fruit. Exposure of fruit to 5 °C for 4 days induced degradative processes similar to those occurring during ripening and overripening of non-chilled fruit. Nuclease from banana peel showed activity in both DNA substrates and RNA substrates. No exclusive low-temperature-induced proteases and nucleases were observed. DNA of chilled peel showed earlier signs of degradation and higher levels of DNA tailing during overripening. This study shows that exposure to low temperatures did not induce a pattern of degradative processes that differed from that occurring during ripening and overripening of non-chilled fruit. DNA showed earlier signs of degradation and higher levels of DNA tailing. Nuclease activity analysis showed bifunctionality in both chilled and non-chilled tissue and no chilling-exclusive protease and nuclease. Fleshy fruit might use their available resources on degradative processes and adjust them depending on environmental conditions. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  16. CRISPR/Cas9 Mediated Genome Engineering for Improvement of Horticultural Crops

    PubMed Central

    Karkute, Suhas G.; Singh, Achuit K.; Gupta, Om P.; Singh, Prabhakar M.; Singh, Bijendra

    2017-01-01

    Horticultural crops are an important part of agriculture for food as well as nutritional security. However, several pests and diseases along with adverse abiotic environmental factors pose a severe threat to these crops by affecting their quality and productivity. This warrants the effective and accelerated breeding programs by utilizing innovative biotechnological tools that can tackle aforementioned issues. The recent technique of genome editing by Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated 9 (CRISPR/Cas9) has greatly advanced the breeding for crop improvement due to its simplicity and high efficiency over other nucleases such as Zinc Finger Nucleases and Transcription Activator Like Effector Nucleases. CRISPR/Cas9 tool contains a non-specific Cas9 nuclease and a single guide RNA that directs Cas9 to the specific genomic location creating double-strand breaks and subsequent repair process creates insertion or deletion mutations. This is currently the widely adopted tool for reverse genetics, and crop improvement in large number of agricultural crops. The use of CRISPR/Cas9 in horticultural crops is limited to few crops due to lack of availability of regeneration protocols and sufficient sequence information in many horticultural crops. In this review, the present status of applicability of CRISPR/Cas9 in horticultural crops was discussed along with the challenges and future potential for possible improvement of these crops for their yield, quality, and resistance to biotic and abiotic stress. PMID:28970844

  17. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing.

    PubMed

    Miyaoka, Yuichiro; Berman, Jennifer R; Cooper, Samantha B; Mayerl, Steven J; Chan, Amanda H; Zhang, Bin; Karlin-Neumann, George A; Conklin, Bruce R

    2016-03-31

    Precise genome-editing relies on the repair of sequence-specific nuclease-induced DNA nicking or double-strand breaks (DSBs) by homology-directed repair (HDR). However, nonhomologous end-joining (NHEJ), an error-prone repair, acts concurrently, reducing the rate of high-fidelity edits. The identification of genome-editing conditions that favor HDR over NHEJ has been hindered by the lack of a simple method to measure HDR and NHEJ directly and simultaneously at endogenous loci. To overcome this challenge, we developed a novel, rapid, digital PCR-based assay that can simultaneously detect one HDR or NHEJ event out of 1,000 copies of the genome. Using this assay, we systematically monitored genome-editing outcomes of CRISPR-associated protein 9 (Cas9), Cas9 nickases, catalytically dead Cas9 fused to FokI, and transcription activator-like effector nuclease at three disease-associated endogenous gene loci in HEK293T cells, HeLa cells, and human induced pluripotent stem cells. Although it is widely thought that NHEJ generally occurs more often than HDR, we found that more HDR than NHEJ was induced under multiple conditions. Surprisingly, the HDR/NHEJ ratios were highly dependent on gene locus, nuclease platform, and cell type. The new assay system, and our findings based on it, will enable mechanistic studies of genome-editing and help improve genome-editing technology.

  18. Functional analysis of Streptococcus pyogenes nuclease A (SpnA), a novel group A streptococcal virulence factor.

    PubMed

    Chang, Ann; Khemlani, Adrina; Kang, HaeJoo; Proft, Thomas

    2011-03-01

    Streptococcus pyogenes nuclease A (SpnA) is a recently discovered DNase that plays a role in virulence as shown in a mouse infection model. SpnA is the only cell wall-anchored DNase found in S. pyogenes thus far and shows a unique protein architecture. The C-terminal nuclease domain contains highly conserved catalytic site and Mg(2+) binding site residues. However, expression of the SpnA nuclease domain alone resulted in a soluble, but enzymatically inactive protein. We found that at least two out of three oligonucleotide/oligosaccharide-binding fold motifs found in the N-terminal domain are required for SpnA activity, probably contributing to substrate binding. Using a combination of a spnA deletion mutant and a Lactococcus lactis'gain-of-function' mutant, we have shown that SpnA promotes survival in whole human blood and in neutrophil killing assays and this is, at least in part, achieved by the destruction of neutrophil extracellular traps (NETs). We observed higher frequencies for anti-SpnA antibodies in streptococcal disease patient sera (79%, n = 19) compared with sera from healthy donors (33%, n = 9) suggesting that SpnA is expressed during infection. Detection of anti-SpnA antibodies in patient serum might be useful for the diagnostic of post-streptococcal diseases, such as acute rheumatic fever or glomerulonephritis. © 2011 Blackwell Publishing Ltd.

  19. An aggregated perylene-based broad-spectrum, efficient and label-free quencher for multiplexed fluorescent bioassays.

    PubMed

    Liu, Tao; Hu, Rong; Lv, Yi-Fan; Wu, Yuan; Liang, Hao; Huan, Shuang-Yan; Zhang, Xiao-Bing; Tan, Weihong; Yu, Ru-Qin

    2014-08-15

    Fluorescent sensing systems based on the quenching of fluorophores have found wide applications in bioassays. An efficient quencher will endow the sensing system a high sensitivity. The frequently used quenchers are based on organic molecules or nanomaterials, which usually need tedious synthesizing and modifying steps, and exhibit different quenching efficiencies to different fluorophores. In this work, we for the first time report that aggregated perylene derivative can serve as a broad-spectrum and label-free quencher that is able to efficiently quench a variety of fluorophores, such as green, red and far red dyes labeled on DNA. By choosing nucleases as model biomolecules, such a broad-spectrum quencher was then employed to construct a multiplexed bioassay platform through a label-free manner. Due to the high quenching efficiency of the aggregated perylene, the proposed platform could detect nuclease with high sensitivity, with a detection limit of 0.03U/mL for EcoRV, and 0.05U/mL for EcoRI. The perylene quencher does not affect the activity of nuclease, which makes it possible to design post-addition type bioassay platform. Moreover, the proposed platform allows simultaneous and multicolor analysis of nucleases in homogeneous solution, demonstrating its value of potential application in rapid screening of multiple bio-targets. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Functional Specificity of Extracellular Nucleases of Shewanella oneidensis MR-1

    PubMed Central

    Heun, Magnus; Binnenkade, Lucas; Kreienbaum, Maximilian

    2012-01-01

    Bacterial species such as Shewanella oneidensis MR-1 require extracellular nucleolytic activity for the utilization of extracellular DNA (eDNA) as a source of nutrients and for the turnover of eDNA as a structural matrix component during biofilm formation. We have previously characterized two extracellular nucleases of S. oneidensis MR-1, ExeM and ExeS. Although both are involved in biofilm formation, they are not specifically required for the utilization of eDNA as a nutrient. Here we identified and characterized EndA, a third extracellular nuclease of Shewanella. The heterologously overproduced and purified protein was highly active and rapidly degraded linear and supercoiled DNAs of various origins. Divalent metal ions (Mg2+ or Mn2+) were required for function. endA is cotranscribed with phoA, an extracellular phosphatase, and is not upregulated upon phosphostarvation. Deletion of endA abolished both extracellular degradation of DNA by S. oneidensis MR-1 and the ability to use eDNA as a sole source of phosphorus. PhoA is not strictly required for the exploitation of eDNA as a nutrient. The activity of EndA prevents the formation of large cell aggregates during planktonic growth. However, in contrast to the findings for ExeM, endA deletion had only minor effects on biofilm formation. The findings strongly suggest that the extracellular nucleases of S. oneidensis exert specific functions required under different conditions. PMID:22492434

  1. CRISPR/Cas9 Mediated Genome Engineering for Improvement of Horticultural Crops.

    PubMed

    Karkute, Suhas G; Singh, Achuit K; Gupta, Om P; Singh, Prabhakar M; Singh, Bijendra

    2017-01-01

    Horticultural crops are an important part of agriculture for food as well as nutritional security. However, several pests and diseases along with adverse abiotic environmental factors pose a severe threat to these crops by affecting their quality and productivity. This warrants the effective and accelerated breeding programs by utilizing innovative biotechnological tools that can tackle aforementioned issues. The recent technique of genome editing by Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated 9 (CRISPR/Cas9) has greatly advanced the breeding for crop improvement due to its simplicity and high efficiency over other nucleases such as Zinc Finger Nucleases and Transcription Activator Like Effector Nucleases. CRISPR/Cas9 tool contains a non-specific Cas9 nuclease and a single guide RNA that directs Cas9 to the specific genomic location creating double-strand breaks and subsequent repair process creates insertion or deletion mutations. This is currently the widely adopted tool for reverse genetics, and crop improvement in large number of agricultural crops. The use of CRISPR/Cas9 in horticultural crops is limited to few crops due to lack of availability of regeneration protocols and sufficient sequence information in many horticultural crops. In this review, the present status of applicability of CRISPR/Cas9 in horticultural crops was discussed along with the challenges and future potential for possible improvement of these crops for their yield, quality, and resistance to biotic and abiotic stress.

  2. Label-free optical detection of single-base mismatches by the combination of nuclease and gold nanoparticles.

    PubMed

    Liu, Meiying; Yuan, Min; Lou, Xinhui; Mao, Hongju; Zheng, Dongmei; Zou, Ruxing; Zou, Nengli; Tang, Xiangrong; Zhao, Jianlong

    2011-07-15

    We report here an optical approach that enables highly selective and colorimetric single-base mismatch detection without the need of target modification, precise temperature control or stringent washes. The method is based on the finding that nucleoside monophosphates (dNMPs), which are digested elements of DNA, can better stabilize unmodified gold nanoparticles (AuNPs) than single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) with the same base-composition and concentration. The method combines the exceptional mismatch discrimination capability of the structure-selective nucleases with the attractive optical property of AuNPs. Taking S1 nuclease as one example, the perfectly matched 16-base synthetic DNA target was distinctively differentiated from those with single-base mutation located at any position of the 16-base synthetic target. Single-base mutations present in targets with varied length up to 80-base, located either in the middle or near to the end of the targets, were all effectively detected. In order to prove that the method can be potentially used for real clinic samples, the single-base mismatch detections with two HBV genomic DNA samples were conducted. To further prove the generality of this method and potentially overcome the limitation on the detectable lengths of the targets of the S1 nuclease-based method, we also demonstrated the use of a duplex-specific nuclease (DSN) for color reversed single-base mismatch detection. The main limitation of the demonstrated methods is that it is limited to detect mutations in purified ssDNA targets. However, the method coupled with various convenient ssDNA generation and purification techniques, has the potential to be used for the future development of detector-free testing kits in single nucleotide polymorphism screenings for disease diagnostics and treatments. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. [Genome editing ~Principle and possibility of a novel genetic engineering technology. Basic principles of genome editing.

    PubMed

    Yamamoto, Takashi

    Programmable site-specific nuclease mediated-genome editing is an emerging biotechnology for precise manipulation of target genes. In genome editing, gene-knockout as well as gene-knockin are possible in various organisms and cultured cells. CRISPR-Cas9, which was developed in 2012, is a convenient and efficient programmable site-specific nuclease and the use spreads around the world rapidly. For this, it is important for the progress of life science research to introduce the genome editing technology.

  4. Genome Editing in Mice Using TALE Nucleases.

    PubMed

    Wefers, Benedikt; Brandl, Christina; Ortiz, Oskar; Wurst, Wolfgang; Kühn, Ralf

    2016-01-01

    Gene engineering for generating targeted mouse mutants is a key technology for biomedical research. Using TALENs as sequence-specific nucleases to induce targeted double-strand breaks, the mouse genome can be directly modified in zygotes in a single step without the need for embryonic stem cells. By embryo microinjection of TALEN mRNAs and targeting vectors, knockout and knock-in alleles can be generated fast and efficiently. In this chapter we provide protocols for the application of TALENs in mouse zygotes.

  5. Nanoplasmonic molecular ruler for nuclease activity and DNA footprinting

    DOEpatents

    Chen, Fanqing Frank; Liu, Gang L; Lee, Luke P

    2013-10-29

    This invention provides a nanoplasmonic molecular ruler, which can perform label-free and real-time monitoring of nucleic acid (e.g., DNA) length changes and perform nucleic acid footprinting. In various embodiments the ruler comprises a nucleic acid attached to a nanoparticle, such that changes in the nucleic acid length are detectable using surface plasmon resonance. The nanoplasmonic ruler provides a fast and convenient platform for mapping nucleic acid-protein interactions, for nuclease activity monitoring, and for other footprinting related methods.

  6. Targeting siRNA Missiles to Her2+ Breast Cancer

    DTIC Science & Technology

    2009-06-01

    that HerPBK10 protects siRNA from serum nuclease-mediated degradation, T7 transcribed siRNA is more cytotoxic than synthetic siRNA when delivered to...nuclease-mediated degradation, T7 transcribed siRNA is more cytotoxic than synthetic siRNA when delivered to HER2+ breast cancer cells by HerPBK10...produced either synthetically by a commercial vendor (Dharmacon), or from a T7 transcription kit (Ambion), and shRNA, which is reportedly a more effective

  7. Therapeutic Genome Editing and its Potential Enhancement through CRISPR Guide RNA and Cas9 Modifications.

    PubMed

    Batzir, Nurit Assia; Tovin, Adi; Hendel, Ayal

    2017-06-01

    Genome editing with engineered nucleases is a rapidly growing field thanks to transformative technologies that allow researchers to precisely alter genomes for numerous applications including basic research, biotechnology, and human gene therapy. The genome editing process relies on creating a site-specific DNA double-strand break (DSB) by engineered nucleases and then allowing the cell's repair machinery to repair the break such that precise changes are made to the DNA sequence. The recent development of CRISPR-Cas systems as easily accessible and programmable tools for genome editing accelerates the progress towards using genome editing as a new approach to human therapeutics. Here we review how genome editing using engineered nucleases works and how using different genome editing outcomes can be used as a tool set for treating human diseases. We then review the major challenges of therapeutic genome editing and we discuss how its potential enhancement through CRISPR guide RNA and Cas9 protein modifications could resolve some of these challenges. Copyright© of YS Medical Media ltd.

  8. Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease

    PubMed Central

    Flowers, G. Parker; Timberlake, Andrew T.; Mclean, Kaitlin C.; Monaghan, James R.; Crews, Craig M.

    2014-01-01

    Among tetrapods, only urodele salamanders, such as the axolotl Ambystoma mexicanum, can completely regenerate limbs as adults. The mystery of why salamanders, but not other animals, possess this ability has for generations captivated scientists seeking to induce this phenomenon in other vertebrates. Although many recent advances in molecular biology have allowed limb regeneration and tissue repair in the axolotl to be investigated in increasing detail, the molecular toolkit for the study of this process has been limited. Here, we report that the CRISPR-Cas9 RNA-guided nuclease system can efficiently create mutations at targeted sites within the axolotl genome. We identify individual animals treated with RNA-guided nucleases that have mutation frequencies close to 100% at targeted sites. We employ this technique to completely functionally ablate EGFP expression in transgenic animals and recapitulate developmental phenotypes produced by loss of the conserved gene brachyury. Thus, this advance allows a reverse genetic approach in the axolotl and will undoubtedly provide invaluable insight into the mechanisms of salamanders' unique regenerative ability. PMID:24764077

  9. A TALEN genome editing system to generate human stem cell-based disease models

    PubMed Central

    Ding, Qiurong; Lee, Youn-Kyoung; Schaefer, Esperance A. K.; Peters, Derek T.; Veres, Adrian; Kim, Kevin; Kuperwasser, Nicolas; Motola, Daniel L.; Meissner, Torsten B.; Hendriks, William T.; Trevisan, Marta; Gupta, Rajat M.; Moisan, Annie; Banks, Eric; Friesen, Max; Schinzel, Robert T.; Xia, Fang; Tang, Alexander; Xia, Yulei; Figueroa, Emmanuel; Wann, Amy; Ahfeldt, Tim; Daheron, Laurence; Zhang, Feng; Rubin, Lee L.; Peng, Lee F.; Chung, Raymond T.; Musunuru, Kiran; Cowan, Chad A.

    2012-01-01

    SUMMARY Transcription activator-like effector nucleases (TALENs) are a new class of engineered nucleases that are easier to design to cleave at desired sites in a genome than previous types of nucleases. We report the use of TALENs to rapidly and efficiently generate mutant alleles of 15 genes in cultured somatic cells or human pluripotent stem cells, the latter of which we differentiated both the targeted lines and isogenic control lines into various metabolic cell types. We demonstrate cell-autonomous phenotypes directly linked to disease—dyslipidemia, insulin resistance, hypoglycemia, lipodystrophy, motor neuron death, and hepatitis C infection. We find little evidence of TALEN off-target effects, but each clonal line nevertheless harbors a significant number of unique mutations. Given the speed and ease with which we were able to derive and characterize these cell lines, we anticipate TALEN-mediated genome editing of human cells becoming a mainstay for the investigation of human biology and disease. PMID:23246482

  10. Fanconi anemia gene editing by the CRISPR/Cas9 system.

    PubMed

    Osborn, Mark J; Gabriel, Richard; Webber, Beau R; DeFeo, Anthony P; McElroy, Amber N; Jarjour, Jordan; Starker, Colby G; Wagner, John E; Joung, J Keith; Voytas, Daniel F; von Kalle, Christof; Schmidt, Manfred; Blazar, Bruce R; Tolar, Jakub

    2015-02-01

    Genome engineering with designer nucleases is a rapidly progressing field, and the ability to correct human gene mutations in situ is highly desirable. We employed fibroblasts derived from a patient with Fanconi anemia as a model to test the ability of the clustered regularly interspaced short palindromic repeats/Cas9 nuclease system to mediate gene correction. We show that the Cas9 nuclease and nickase each resulted in gene correction, but the nickase, because of its ability to preferentially mediate homology-directed repair, resulted in a higher frequency of corrected clonal isolates. To assess the off-target effects, we used both a predictive software platform to identify intragenic sequences of homology as well as a genome-wide screen utilizing linear amplification-mediated PCR. We observed no off-target activity and show RNA-guided endonuclease candidate sites that do not possess low sequence complexity function in a highly specific manner. Collectively, we provide proof of principle for precision genome editing in Fanconi anemia, a DNA repair-deficient human disorder.

  11. Dual-reporter surrogate systems for efficient enrichment of genetically modified cells.

    PubMed

    Ren, Chonghua; Xu, Kun; Liu, Zhongtian; Shen, Juncen; Han, Furong; Chen, Zhilong; Zhang, Zhiying

    2015-07-01

    Isolation of genetically modified cells generated by designed nucleases are challenging, since they are often phenotypically indistinguishable from their parental cells. To efficiently enrich genetically modified cells, we developed two dual-reporter surrogate systems, namely NHEJ-RPG and SSA-RPG based on NHEJ and SSA repair mechanisms, respectively. Repair and enrichment efficiencies of these two systems were compared using different nucleases. In both CRISPR-Cas9- and ZFNs-induced DSB repair studies, we found that the efficiency and sensitivity of the SSA-RPG reporter with direct repeat length more than 200 bp were much higher than the NHEJ-RPG reporter. By utilizing the SSA-RPG reporter, we achieved the enrichment for indels in several endogenous loci with 6.3- to 34.8-fold of non-selected cells. Thus, the highly sensitive SSA-RPG reporter can be used for activity validation of designed nucleases and efficient enrichment of genetically modified cells. Besides, our systems offer alternative enrichment choices either by puromycin selection or FACS.

  12. In vivo topography of Rap1p-DNA complex at Saccharomyces cerevisiae TEF2 UAS(RPG) during transcriptional regulation.

    PubMed

    De Sanctis, Veronica; La Terra, Sabrina; Bianchi, Alessandro; Shore, David; Burderi, Luciano; Di Mauro, Ernesto; Negri, Rodolfo

    2002-04-26

    We have analyzed in detail the structure of RAP1-UAS(RPG) complexes in Saccharomyces cerevisiae cells using multi-hit KMnO(4), UV and micrococcal nuclease high-resolution footprinting. Three copies of the Rap1 protein are bound to the promoter simultaneously in exponentially growing cells, as shown by KMnO(4) multi-hit footprinting analysis, causing extended and diagnostic changes in the DNA structure of the region containing the UAS(RPG). Amino acid starvation does not cause loss of Rap1p from the complex; however, in vivo UV-footprinting reveals the occurrence of structural modifications of the complex. Moreover, low-resolution micrococcal nuclease digestion shows that the chromatin of the entire region is devoid of positioned nucleosomes but is susceptible to changes in accessibility to the nuclease upon amino acid starvation. The implications of these results for the mechanism of Rap1p action are discussed. (c) 2002 Elsevier Science Ltd.

  13. Genome-editing Technologies for Gene and Cell Therapy.

    PubMed

    Maeder, Morgan L; Gersbach, Charles A

    2016-03-01

    Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed.

  14. Genome-editing Technologies for Gene and Cell Therapy

    PubMed Central

    Maeder, Morgan L; Gersbach, Charles A

    2016-01-01

    Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed. PMID:26755333

  15. All-in-One CRISPR-Cas9/FokI-dCas9 Vector-Mediated Multiplex Genome Engineering in Cultured Cells.

    PubMed

    Sakuma, Tetsushi; Sakamoto, Takuya; Yamamoto, Takashi

    2017-01-01

    CRISPR-Cas9 enables highly convenient multiplex genome engineering in cultured cells, because it utilizes generic Cas9 nuclease and an easily customizable single-guide RNA (sgRNA) for site-specific DNA double-strand break induction. We previously established a multiplex CRISPR-Cas9 assembly system for constructing an all-in-one vector simultaneously expressing multiple sgRNAs and Cas9 nuclease or other Cas9 variants including FokI-dCas9, which supersedes the wild-type Cas9 with regard to high specificity. In this chapter, we describe a streamlined protocol to design and construct multiplex CRISPR-Cas9 or FokI-dCas9 vectors, to introduce them into cultured cells by lipofection or electroporation, to enrich the genomically edited cells with a transient puromycin selection, to validate the mutation efficiency by Surveyor nuclease assay, and to perform off-target analyses. We show that our protocol enables highly efficient multiplex genome engineering even in hard-to-transfect HepG2 cells.

  16. Structural insights into 5‧ flap DNA unwinding and incision by the human FAN1 dimer

    NASA Astrophysics Data System (ADS)

    Zhao, Qi; Xue, Xiaoyu; Longerich, Simonne; Sung, Patrick; Xiong, Yong

    2014-12-01

    Human FANCD2-associated nuclease 1 (FAN1) is a DNA structure-specific nuclease involved in the processing of DNA interstrand crosslinks (ICLs). FAN1 maintains genomic stability and prevents tissue decline in multiple organs, yet it confers ICL-induced anti-cancer drug resistance in several cancer subtypes. Here we report three crystal structures of human FAN1 in complex with a 5‧ flap DNA substrate, showing that two FAN1 molecules form a head-to-tail dimer to locate the lesion, orient the DNA and unwind a 5‧ flap for subsequent incision. Biochemical experiments further validate our model for FAN1 action, as structure-informed mutations that disrupt protein dimerization, substrate orientation or flap unwinding impair the structure-specific nuclease activity. Our work elucidates essential aspects of FAN1-DNA lesion recognition and a unique mechanism of incision. These structural insights shed light on the cellular mechanisms underlying organ degeneration protection and cancer drug resistance mediated by FAN1.

  17. Therapeutic applications of CRISPR RNA-guided genome editing.

    PubMed

    Koo, Taeyoung; Kim, Jin-Soo

    2017-01-01

    The rapid development of programmable nuclease-based genome editing technologies has enabled targeted gene disruption and correction both in vitro and in vivo This revolution opens up the possibility of precise genome editing at target genomic sites to modulate gene function in animals and plants. Among several programmable nucleases, the type II clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated nuclease 9 (Cas9) system has progressed remarkably in recent years, leading to its widespread use in research, medicine and biotechnology. In particular, CRISPR-Cas9 shows highly efficient gene editing activity for therapeutic purposes in systems ranging from patient stem cells to animal models. However, the development of therapeutic approaches and delivery methods remains a great challenge for biomedical applications. Herein, we review therapeutic applications that use the CRISPR-Cas9 system and discuss the possibilities and challenges ahead. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Nucleic Acid Detection Methods

    DOEpatents

    Smith, Cassandra L.; Yaar, Ron; Szafranski, Przemyslaw; Cantor, Charles R.

    1998-05-19

    The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3'-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated.

  19. An antiviral RISC isolated from Tobacco rattle virus-infected plants.

    PubMed

    Ciomperlik, Jessica J; Omarov, Rustem T; Scholthof, Herman B

    2011-03-30

    The RNAi model predicts that during antiviral defense a RNA-induced silencing complex (RISC) is programmed with viral short-interfering RNAs (siRNAs) to target the cognate viral RNA for degradation. We show that infection of Nicotiana benthamiana with Tobacco rattle virus (TRV) activates an antiviral nuclease that specifically cleaves TRV RNA in vitro. In agreement with known RISC properties, the nuclease activity was inhibited by NaCl and EDTA and stimulated by divalent metal cations; a novel property was its preferential targeting of elongated RNA molecules. Intriguingly, the specificity of the TRV RISC could be reprogrammed by exogenous addition of RNA (containing siRNAs) from plants infected with an unrelated virus, resulting in a newly acquired ability of RISC to target this heterologous genome in vitro. Evidently the virus-specific nuclease complex from N. benthamiana represents a genuine RISC that functions as a readily employable and reprogrammable antiviral defense unit. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Applications of Gene Editing Technologies to Cellular Therapies.

    PubMed

    Rein, Lindsay A M; Yang, Haeyoon; Chao, Nelson J

    2018-03-27

    Hematologic malignancies are characterized by genetic heterogeneity, making classic gene therapy with a goal of correcting 1 genetic defect ineffective in many of these diseases. Despite initial tribulations, gene therapy, as a field, has grown by leaps and bounds with the recent development of gene editing techniques including zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat (CRISPR) sequences and CRISPR-associated protein-9 (Cas9) nuclease or CRISPR/Cas9. These novel technologies have been applied to efficiently and specifically modify genetic information in target and effector cells. In particular, CRISPR/Cas9 technology has been applied to various hematologic malignancies and has also been used to modify and improve chimeric antigen receptor-modified T cells for the purpose of providing effective cellular therapies. Although gene editing is in its infancy in malignant hematologic diseases, there is much room for growth and application in the future. Copyright © 2018 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  1. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation

    NASA Astrophysics Data System (ADS)

    Ponnuswamy, Nandhini; Bastings, Maartje M. C.; Nathwani, Bhavik; Ryu, Ju Hee; Chou, Leo Y. T.; Vinther, Mathias; Li, Weiwei Aileen; Anastassacos, Frances M.; Mooney, David J.; Shih, William M.

    2017-05-01

    DNA nanostructures have evoked great interest as potential therapeutics and diagnostics due to ease and robustness of programming their shapes, site-specific functionalizations and responsive behaviours. However, their utility in biological fluids can be compromised through denaturation induced by physiological salt concentrations and degradation mediated by nucleases. Here we demonstrate that DNA nanostructures coated by oligolysines to 0.5:1 N:P (ratio of nitrogen in lysine to phosphorus in DNA), are stable in low salt and up to tenfold more resistant to DNase I digestion than when uncoated. Higher N:P ratios can lead to aggregation, but this can be circumvented by coating instead with an oligolysine-PEG copolymer, enabling up to a 1,000-fold protection against digestion by serum nucleases. Oligolysine-PEG-stabilized DNA nanostructures survive uptake into endosomal compartments and, in a mouse model, exhibit a modest increase in pharmacokinetic bioavailability. Thus, oligolysine-PEG is a one-step, structure-independent approach that provides low-cost and effective protection of DNA nanostructures for in vivo applications.

  2. Recent Advances in Preclinical Developments Using Adenovirus Hybrid Vectors.

    PubMed

    Ehrke-Schulz, Eric; Zhang, Wenli; Gao, Jian; Ehrhardt, Anja

    2017-10-01

    Adenovirus (Ad)-based vectors are efficient gene-transfer vehicles to deliver foreign DNA into living organisms, offering large cargo capacity and low immunogenicity and genotoxicity. As Ad shows low integration rates of their genomes into host chromosomes, vector-derived gene expression decreases due to continuous cell cycling in regenerating tissues and dividing cell populations. To overcome this hurdle, adenoviral delivery can be combined with mechanisms leading to maintenance of therapeutic DNA and long-term effects of the desired treatment. Several hybrid Ad vectors (AdV) exploiting various strategies for long-term treatment have been developed and characterized. This review summarizes recent developments of preclinical approaches using hybrid AdVs utilizing either the Sleeping Beauty transposase system for somatic integration into host chromosomes or designer nucleases, including transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease for permanent gene editing. Further options on how to optimize these vectors further are discussed, which may lead to future clinical applications of these versatile gene-therapy tools.

  3. Genome Editing for the Study of Cardiovascular Diseases

    PubMed Central

    Chadwick, Alexandra C.

    2018-01-01

    Purpose of Review The opportunities afforded through the recent advent of genome-editing technologies have allowed investigators to more easily study a number of diseases. The advantages and limitations of the most prominent genome-editing technologies are described in this review, along with potential applications specifically focused on cardiovascular diseases. Recent Findings The recent genome-editing tools using programmable nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), have rapidly been adapted to manipulate genes in a variety of cellular and animal models. A number of recent cardiovascular disease-related publications report cases in which specific mutations are introduced into disease models for functional characterization and for testing of therapeutic strategies. Summary Recent advances in genome-editing technologies offer new approaches to understand and treat diseases. Here, we discuss genome editing strategies to easily characterize naturally occurring mutations and offer strategies with potential clinical relevance. PMID:28220462

  4. Nonenzymatic Role for WRN in Preserving Nascent DNA Strands after Replication Stress

    DOE PAGES

    Su, Fengtao; Mukherjee, Shibani; Yang, Yanyong; ...

    2014-11-20

    WRN, the protein defective in Werner syndrome (WS), is a multifunctional nuclease involved in DNA damage repair, replication, and genome stability maintenance. It was assumed that the nuclease activities of WRN were critical for these functions. Here, we report a nonenzymatic role for WRN in preserving nascent DNA strands following replication stress. We found that lack of WRN led to shortening of nascent DNA strands after replication stress. Furthermore, we discovered that the exonuclease activity of MRE11 was responsible for the shortening of newly replicated DNA in the absence of WRN. Mechanistically, the N-terminal FHA domain of NBS1 recruits WRNmore » to replication-associated DNA double-stranded breaks to stabilize Rad51 and to limit the nuclease activity of its C-terminal binding partner MRE11. Thus, this previously unrecognized nonenzymatic function of WRN in the stabilization of nascent DNA strands sheds light on the molecular reason for the origin of genome instability in WS individuals.« less

  5. Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks

    NASA Astrophysics Data System (ADS)

    Singleton, Martin R.; Dillingham, Mark S.; Gaudier, Martin; Kowalczykowski, Stephen C.; Wigley, Dale B.

    2004-11-01

    RecBCD is a multi-functional enzyme complex that processes DNA ends resulting from a double-strand break. RecBCD is a bipolar helicase that splits the duplex into its component strands and digests them until encountering a recombinational hotspot (Chi site). The nuclease activity is then attenuated and RecBCD loads RecA onto the 3' tail of the DNA. Here we present the crystal structure of RecBCD bound to a DNA substrate. In this initiation complex, the DNA duplex has been split across the RecC subunit to create a fork with the separated strands each heading towards different helicase motor subunits. The strands pass along tunnels within the complex, both emerging adjacent to the nuclease domain of RecB. Passage of the 3' tail through one of these tunnels provides a mechanism for the recognition of a Chi sequence by RecC within the context of double-stranded DNA. Gating of this tunnel suggests how nuclease activity might be regulated.

  6. Genome Editing in Mouse Spermatogonial Stem/Progenitor Cells Using Engineered Nucleases

    PubMed Central

    Fanslow, Danielle A.; Wirt, Stacey E.; Barker, Jenny C.; Connelly, Jon P.; Porteus, Matthew H.; Dann, Christina Tenenhaus

    2014-01-01

    Editing the genome to create specific sequence modifications is a powerful way to study gene function and promises future applicability to gene therapy. Creation of precise modifications requires homologous recombination, a very rare event in most cell types that can be stimulated by introducing a double strand break near the target sequence. One method to create a double strand break in a particular sequence is with a custom designed nuclease. We used engineered nucleases to stimulate homologous recombination to correct a mutant gene in mouse “GS” (germline stem) cells, testicular derived cell cultures containing spermatogonial stem cells and progenitor cells. We demonstrated that gene-corrected cells maintained several properties of spermatogonial stem/progenitor cells including the ability to colonize following testicular transplantation. This proof of concept for genome editing in GS cells impacts both cell therapy and basic research given the potential for GS cells to be propagated in vitro, contribute to the germline in vivo following testicular transplantation or become reprogrammed to pluripotency in vitro. PMID:25409432

  7. Apollo contributes to G overhang maintenance and protects leading-end telomeres.

    PubMed

    Wu, Peng; van Overbeek, Megan; Rooney, Sean; de Lange, Titia

    2010-08-27

    Mammalian telomeres contain a single-stranded 3' overhang that is thought to mediate telomere protection. Here we identify the TRF2-interacting factor Apollo as a nuclease that contributes to the generation/maintenance of this overhang. The function of mouse Apollo was determined using Cre-mediated gene deletion, complementation with Apollo mutants, and the TRF2-F120A mutant that cannot bind Apollo. Cells lacking Apollo activated the ATM kinase at their telomeres in S phase and showed leading-end telomere fusions. These telomere dysfunction phenotypes were accompanied by a reduction in the telomeric overhang signal. The telomeric functions of Apollo required its TRF2-interaction and nuclease motifs. Thus, TRF2 recruits the Apollo nuclease to process telomere ends synthesized by leading-strand DNA synthesis, thereby creating a terminal structure that avoids ATM activation and resists end-joining. These data establish that the telomeric overhang is required for the protection of telomeres from the DNA damage response. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  8. Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci.

    PubMed

    Canver, Matthew C; Lessard, Samuel; Pinello, Luca; Wu, Yuxuan; Ilboudo, Yann; Stern, Emily N; Needleman, Austen J; Galactéros, Frédéric; Brugnara, Carlo; Kutlar, Abdullah; McKenzie, Colin; Reid, Marvin; Chen, Diane D; Das, Partha Pratim; A Cole, Mitchel; Zeng, Jing; Kurita, Ryo; Nakamura, Yukio; Yuan, Guo-Cheng; Lettre, Guillaume; Bauer, Daniel E; Orkin, Stuart H

    2017-04-01

    Cas9-mediated, high-throughput, saturating in situ mutagenesis permits fine-mapping of function across genomic segments. Disease- and trait-associated variants identified in genome-wide association studies largely cluster at regulatory loci. Here we demonstrate the use of multiple designer nucleases and variant-aware library design to interrogate trait-associated regulatory DNA at high resolution. We developed a computational tool for the creation of saturating-mutagenesis libraries with single or multiple nucleases with incorporation of variants. We applied this methodology to the HBS1L-MYB intergenic region, which is associated with red-blood-cell traits, including fetal hemoglobin levels. This approach identified putative regulatory elements that control MYB expression. Analysis of genomic copy number highlighted potential false-positive regions, thus emphasizing the importance of off-target analysis in the design of saturating-mutagenesis experiments. Together, these data establish a widely applicable high-throughput and high-resolution methodology to identify minimal functional sequences within large disease- and trait-associated regions.

  9. Cancer translocations in human cells induced by zinc finger and TALE nucleases

    PubMed Central

    Piganeau, Marion; Ghezraoui, Hind; De Cian, Anne; Guittat, Lionel; Tomishima, Mark; Perrouault, Loic; René, Oliver; Katibah, George E.; Zhang, Lei; Holmes, Michael C.; Doyon, Yannick; Concordet, Jean-Paul; Giovannangeli, Carine; Jasin, Maria; Brunet, Erika

    2013-01-01

    Chromosomal translocations are signatures of numerous cancers and lead to expression of fusion genes that act as oncogenes. The wealth of genomic aberrations found in cancer, however, makes it challenging to assign a specific phenotypic change to a specific aberration. In this study, we set out to use genome editing with zinc finger (ZFN) and transcription activator-like effector (TALEN) nucleases to engineer, de novo, translocation-associated oncogenes at cognate endogenous loci in human cells. Using ZFNs and TALENs designed to cut precisely at relevant translocation breakpoints, we induced cancer-relevant t(11;22)(q24;q12) and t(2;5)(p23;q35) translocations found in Ewing sarcoma and anaplastic large cell lymphoma (ALCL), respectively. We recovered both translocations with high efficiency, resulting in the expression of the EWSR1–FLI1 and NPM1–ALK fusions. Breakpoint junctions recovered after ZFN cleavage in human embryonic stem (ES) cell–derived mesenchymal precursor cells fully recapitulated the genomic characteristics found in tumor cells from Ewing sarcoma patients. This approach with tailored nucleases demonstrates that expression of fusion genes found in cancer cells can be induced from the native promoter, allowing interrogation of both the underlying mechanisms and oncogenic consequences of tumor-related translocations in human cells. With an analogous strategy, the ALCL translocation was reverted in a patient cell line to restore the integrity of the two participating chromosomes, further expanding the repertoire of genomic rearrangements that can be engineered by tailored nucleases. PMID:23568838

  10. The Cdc45/RecJ-like protein forms a complex with GINS and MCM, and is important for DNA replication in Thermococcus kodakarensis

    PubMed Central

    Nagata, Mariko; Yamagami, Takeshi; Ogino, Hiromi; Simons, Jan-Robert; Kanai, Tamotsu; Atomi, Haruyuki

    2017-01-01

    Abstract The archaeal minichromosome maintenance (MCM) has DNA helicase activity, which is stimulated by GINS in several archaea. In the eukaryotic replicative helicase complex, Cdc45 forms a complex with MCM and GINS, named as CMG (Cdc45-MCM-GINS). Cdc45 shares sequence similarity with bacterial RecJ. A Cdc45/RecJ-like protein from Thermococcus kodakarensis shows a bacterial RecJ-like exonuclease activity, which is stimulated by GINS in vitro. Therefore, this archaeal Cdc45/RecJ is designated as GAN, from GINS-associated nuclease. In this study, we identified the CMG-like complex in T. kodakarensis cells. The GAN·GINS complex stimulated the MCM helicase, but MCM did not affect the nuclease activity of GAN in vitro. The gene disruption analysis showed that GAN was non-essential for its viability but the Δgan mutant did not grow at 93°C. Furthermore, the Δgan mutant showed a clear retardation in growth as compared with the parent cells under optimal conditions at 85°C. These deficiencies were recovered by introducing the gan gene encoding the nuclease deficient GAN protein back to the genome. These results suggest that the replicative helicase complex without GAN may become unstable and ineffective in replication fork progression. The nuclease activity of GAN is not related to the growth defects of the Δgan mutant cells. PMID:28977567

  11. A magic bullet to specifically eliminate mutated mitochondrial genomes from patients' cells

    PubMed Central

    Moraes, Carlos T

    2014-01-01

    When mitochondrial diseases result from mutations found in the mitochondrial DNA, engineered mitochondrial-targeted nucleases such as mitochondrial-targeted zinc finger nucleases are shown to specifically eliminate the mutated molecules, leaving the wild-type mitochondrial DNA intact to replicate and restore normal copy number. In this issue, Gammage and colleagues successfully apply this improved technology on patients' cells with two types of genetic alterations responsible for neuropathy ataxia and retinitis pigmentosa (NARP) syndrome and Kearns Sayre syndrome and progressive external ophthalmoplegia (PEO). PMID:24623377

  12. Probing chromatin structure with nuclease sensitivity assays.

    PubMed

    Gregory, R I; Khosla, S; Feil, R

    2001-01-01

    To further our understanding of genomic imprinting it will be essential to identify key control elements, and to investigate their regulation by both epigenetic modifications (such as DNA methylation) and trans-acting factors. So far, sequence elements that regulate parental allele-specific gene expression have been identified in a number of imprinted loci, either because of their differential DNA methylation or through functional studies in transgenic mice (1,2). A systematic search for allele-specific chromatin features constitutes an alternative strategy to identify elements that regulate imprinting. The validity of such an in vivo chromatin approach derives from the fact that in several known imprinting control-elements, a specialized organization of chromatin characterized by nuclease hypersensitivity is present on only one of the two parental chromosome (3). For example, the differentially methylated 5 -portion of the human SNRPN gene-a sequence element that controls imprinting in the Prader-Willi and Angelman syndromes' domain on chromosome 15q11- q13-has strong DNase-I hypersensitive sites on the unmethylated paternal chromosome (4). A differentially methylated region that regulates the imprinting of H19 and that of the neighboring insulin-like growth factor-2 gene on mouse chromosome 7 was also found to have parental chromosome-specific hypersensitive sites (5,6). The precise nature of the allelic nuclease hypersensitivity in these and other imprinted loci remains to be determined in more detail, for example, by applying complementary chromatin methodologies (7,8). However, it is commonly observed that a nuclease hypersensitive site corresponds to a small region where nucleosomes are absent or partially disrupted.

  13. Proline cis-trans isomerization in staphylococcal nuclease: multi-substrate free energy perturbation calculations.

    PubMed Central

    Hodel, A.; Rice, L. M.; Simonson, T.; Fox, R. O.; Brünger, A. T.

    1995-01-01

    Staphylococcal nuclease A exists in two folded forms that differ in the isomerization state of the Lys 116-Pro 117 peptide bond. The dominant form (90% occupancy) adopts a cis peptide bond, which is observed in the crystal structure. NMR studies show that the relatively small difference in free energy between the cis and trans forms (delta Gcis-->trans approximately 1.2 kcal/mol) results from large and nearly compensating differences in enthalpy and entropy (delta Hcis-->trans approximately delta TScis-->trans approximately 10 kcal/mol). There is evidence from X-ray crystal structures that the structural differences between the cis and the trans forms of nuclease are confined to the conformation of residues 112-117, a solvated protein loop. Here, we obtain a thermodynamic and structural description of the conformational equilibrium of this protein loop through an exhaustive conformational search that identified several substates followed by free energy simulations between the substrates. By partitioning the search into conformational substates, we overcame the multiple minima problem in this particular case and obtained precise and reproducible free energy values. The protein and water environment was implicitly modeled by appropriately chosen nonbonded terms between the explicitly treated loop and the rest of the protein. These simulations correctly predicted a small free energy difference between the cis and trans forms composed of larger, compensating differences in enthalpy and entropy. The structural predictions of these simulations were qualitatively consistent with known X-ray structures of nuclease variants and yield a model of the unknown minor trans conformation. PMID:7613463

  14. The Cdc45/RecJ-like protein forms a complex with GINS and MCM, and is important for DNA replication in Thermococcus kodakarensis.

    PubMed

    Nagata, Mariko; Ishino, Sonoko; Yamagami, Takeshi; Ogino, Hiromi; Simons, Jan-Robert; Kanai, Tamotsu; Atomi, Haruyuki; Ishino, Yoshizumi

    2017-10-13

    The archaeal minichromosome maintenance (MCM) has DNA helicase activity, which is stimulated by GINS in several archaea. In the eukaryotic replicative helicase complex, Cdc45 forms a complex with MCM and GINS, named as CMG (Cdc45-MCM-GINS). Cdc45 shares sequence similarity with bacterial RecJ. A Cdc45/RecJ-like protein from Thermococcus kodakarensis shows a bacterial RecJ-like exonuclease activity, which is stimulated by GINS in vitro. Therefore, this archaeal Cdc45/RecJ is designated as GAN, from GINS-associated nuclease. In this study, we identified the CMG-like complex in T. kodakarensis cells. The GAN·GINS complex stimulated the MCM helicase, but MCM did not affect the nuclease activity of GAN in vitro. The gene disruption analysis showed that GAN was non-essential for its viability but the Δgan mutant did not grow at 93°C. Furthermore, the Δgan mutant showed a clear retardation in growth as compared with the parent cells under optimal conditions at 85°C. These deficiencies were recovered by introducing the gan gene encoding the nuclease deficient GAN protein back to the genome. These results suggest that the replicative helicase complex without GAN may become unstable and ineffective in replication fork progression. The nuclease activity of GAN is not related to the growth defects of the Δgan mutant cells. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Characterization of Sulfolobus islandicus rod-shaped virus 2 gp19, a single-strand specific endonuclease.

    PubMed

    Gardner, Andrew F; Prangishvili, David; Jack, William E

    2011-09-01

    The hyperthermophilic Sulfolobus islandicus rod-shaped virus 2 (SIRV2) encodes a 25-kDa protein (SIRV2gp19) annotated as a hypothetical protein with sequence homology to the RecB nuclease superfamily. Even though SIRV2gp19 homologs are conserved throughout the rudivirus family and presumably play a role in the viral life cycle, SIRV2gp19 has not been functionally characterized. To define the minimal requirements for activity, SIRV2gp19 was purified and tested under varying conditions. SIRV2gp19 is a single-strand specific endonuclease that requires Mg(2+) for activity and is inactive on double-stranded DNA. A conserved aspartic acid in RecB nuclease superfamily Motif II (D89) is also essential for SIRV2gp19 activity and mutation to alanine (D89A) abolishes activity. Therefore, the SIRV2gp19 cleavage mechanism is similar to previously described RecB nucleases. Finally, SIRV2gp19 single-stranded DNA endonuclease activity could play a role in host chromosome degradation during SIRV2 lytic infection.

  16. Rapid and Scalable Characterization of CRISPR Technologies Using an E. coli Cell-Free Transcription-Translation System.

    PubMed

    Marshall, Ryan; Maxwell, Colin S; Collins, Scott P; Jacobsen, Thomas; Luo, Michelle L; Begemann, Matthew B; Gray, Benjamin N; January, Emma; Singer, Anna; He, Yonghua; Beisel, Chase L; Noireaux, Vincent

    2018-01-04

    CRISPR-Cas systems offer versatile technologies for genome engineering, yet their implementation has been outpaced by ongoing discoveries of new Cas nucleases and anti-CRISPR proteins. Here, we present the use of E. coli cell-free transcription-translation (TXTL) systems to vastly improve the speed and scalability of CRISPR characterization and validation. TXTL can express active CRISPR machinery from added plasmids and linear DNA, and TXTL can output quantitative dynamics of DNA cleavage and gene repression-all without protein purification or live cells. We used TXTL to measure the dynamics of DNA cleavage and gene repression for single- and multi-effector CRISPR nucleases, predict gene repression strength in E. coli, determine the specificities of 24 diverse anti-CRISPR proteins, and develop a fast and scalable screen for protospacer-adjacent motifs that was successfully applied to five uncharacterized Cpf1 nucleases. These examples underscore how TXTL can facilitate the characterization and application of CRISPR technologies across their many uses. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Distinct Mechanisms of Nuclease-Directed DNA-Structure-Induced Genetic Instability in Cancer Genomes.

    PubMed

    Zhao, Junhua; Wang, Guliang; Del Mundo, Imee M; McKinney, Jennifer A; Lu, Xiuli; Bacolla, Albino; Boulware, Stephen B; Zhang, Changsheng; Zhang, Haihua; Ren, Pengyu; Freudenreich, Catherine H; Vasquez, Karen M

    2018-01-30

    Sequences with the capacity to adopt alternative DNA structures have been implicated in cancer etiology; however, the mechanisms are unclear. For example, H-DNA-forming sequences within oncogenes have been shown to stimulate genetic instability in mammals. Here, we report that H-DNA-forming sequences are enriched at translocation breakpoints in human cancer genomes, further implicating them in cancer etiology. H-DNA-induced mutations were suppressed in human cells deficient in the nucleotide excision repair nucleases, ERCC1-XPF and XPG, but were stimulated in cells deficient in FEN1, a replication-related endonuclease. Further, we found that these nucleases cleaved H-DNA conformations, and the interactions of modeled H-DNA with ERCC1-XPF, XPG, and FEN1 proteins were explored at the sub-molecular level. The results suggest mechanisms of genetic instability triggered by H-DNA through distinct structure-specific, cleavage-based replication-independent and replication-dependent pathways, providing critical evidence for a role of the DNA structure itself in the etiology of cancer and other human diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Single-molecule FRET unveils induced-fit mechanism for substrate selectivity in flap endonuclease 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashid, Fahad; Harris, Paul D.; Zaher, Manal S.

    Human flap endonuclease 1 (FEN1) and related structure-specific 5’nucleases precisely identify and incise aberrant DNA structures during replication, repair and recombination to avoid genomic instability. Yet, it is unclear how the 5’nuclease mechanisms of DNA distortion and protein ordering robustly mediate efficient and accurate substrate recognition and catalytic selectivity. Here, single-molecule sub-millisecond and millisecond analyses of FEN1 reveal a protein-DNA induced-fit mechanism that efficiently verifies substrate and suppresses off-target cleavage. FEN1 sculpts DNA with diffusion-limited kinetics to test DNA substrate. This DNA distortion mutually ‘locks’ protein and DNA conformation and enables substrate verification with extreme precision. Strikingly, FEN1 never missesmore » cleavage of its cognate substrate while blocking probable formation of catalytically competent interactions with noncognate substrates and fostering their pre-incision dissociation. These findings establish FEN1 has practically perfect precision and that separate control of induced-fit substrate recognition sets up the catalytic selectivity of the nuclease active site for genome stability.« less

  19. Single-molecule FRET unveils induced-fit mechanism for substrate selectivity in flap endonuclease 1

    DOE PAGES

    Rashid, Fahad; Harris, Paul D.; Zaher, Manal S.; ...

    2017-02-23

    Human flap endonuclease 1 (FEN1) and related structure-specific 5’nucleases precisely identify and incise aberrant DNA structures during replication, repair and recombination to avoid genomic instability. Yet, it is unclear how the 5’nuclease mechanisms of DNA distortion and protein ordering robustly mediate efficient and accurate substrate recognition and catalytic selectivity. Here, single-molecule sub-millisecond and millisecond analyses of FEN1 reveal a protein-DNA induced-fit mechanism that efficiently verifies substrate and suppresses off-target cleavage. FEN1 sculpts DNA with diffusion-limited kinetics to test DNA substrate. This DNA distortion mutually ‘locks’ protein and DNA conformation and enables substrate verification with extreme precision. Strikingly, FEN1 never missesmore » cleavage of its cognate substrate while blocking probable formation of catalytically competent interactions with noncognate substrates and fostering their pre-incision dissociation. These findings establish FEN1 has practically perfect precision and that separate control of induced-fit substrate recognition sets up the catalytic selectivity of the nuclease active site for genome stability.« less

  20. Nucleic acid detection methods

    DOEpatents

    Smith, C.L.; Yaar, R.; Szafranski, P.; Cantor, C.R.

    1998-05-19

    The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3{prime}-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated. 18 figs.

  1. Biochemical analyses indicate that binding and cleavage specificities define the ordered processing of human Okazaki fragments by Dna2 and FEN1.

    PubMed

    Gloor, Jason W; Balakrishnan, Lata; Campbell, Judith L; Bambara, Robert A

    2012-08-01

    In eukaryotic Okazaki fragment processing, the RNA primer is displaced into a single-stranded flap prior to removal. Evidence suggests that some flaps become long before they are cleaved, and that this cleavage involves the sequential action of two nucleases. Strand displacement characteristics of the polymerase show that a short gap precedes the flap during synthesis. Using biochemical techniques, binding and cleavage assays presented here indicate that when the flap is ∼ 30 nt long the nuclease Dna2 can bind with high affinity to the flap and downstream double strand and begin cleavage. When the polymerase idles or dissociates the Dna2 can reorient for additional contacts with the upstream primer region, allowing the nuclease to remain stably bound as the flap is further shortened. The DNA can then equilibrate to a double flap that can bind Dna2 and flap endonuclease (FEN1) simultaneously. When Dna2 shortens the flap even more, FEN1 can displace the Dna2 and cleave at the flap base to make a nick for ligation.

  2. Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation

    PubMed Central

    Ponnuswamy, Nandhini; Bastings, Maartje M. C.; Nathwani, Bhavik; Ryu, Ju Hee; Chou, Leo Y. T.; Vinther, Mathias; Li, Weiwei Aileen; Anastassacos, Frances M.; Mooney, David J.; Shih, William M.

    2017-01-01

    DNA nanostructures have evoked great interest as potential therapeutics and diagnostics due to ease and robustness of programming their shapes, site-specific functionalizations and responsive behaviours. However, their utility in biological fluids can be compromised through denaturation induced by physiological salt concentrations and degradation mediated by nucleases. Here we demonstrate that DNA nanostructures coated by oligolysines to 0.5:1 N:P (ratio of nitrogen in lysine to phosphorus in DNA), are stable in low salt and up to tenfold more resistant to DNase I digestion than when uncoated. Higher N:P ratios can lead to aggregation, but this can be circumvented by coating instead with an oligolysine-PEG copolymer, enabling up to a 1,000-fold protection against digestion by serum nucleases. Oligolysine-PEG-stabilized DNA nanostructures survive uptake into endosomal compartments and, in a mouse model, exhibit a modest increase in pharmacokinetic bioavailability. Thus, oligolysine-PEG is a one-step, structure-independent approach that provides low-cost and effective protection of DNA nanostructures for in vivo applications. PMID:28561045

  3. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation

    PubMed Central

    Seper, Andrea; Fengler, Vera H I; Roier, Sandro; Wolinski, Heimo; Kohlwein, Sepp D; Bishop, Anne L; Camilli, Andrew; Reidl, Joachim; Schild, Stefan

    2011-01-01

    Biofilms are a preferred mode of survival for many microorganisms including Vibrio cholerae, the causative agent of the severe secretory diarrhoeal disease cholera. The ability of the facultative human pathogen V. cholerae to form biofilms is a key factor for persistence in aquatic ecosystems and biofilms act as a source for new outbreaks. Thus, a better understanding of biofilm formation and transmission of V. cholerae is an important target to control the disease. So far the Vibrio exopolysaccharide was the only known constituent of the biofilm matrix. In this study we identify and characterize extracellular DNA as a component of the Vibrio biofilm matrix. Furthermore, we show that extracellular DNA is modulated and controlled by the two extracellular nucleases Dns and Xds. Our results indicate that extracellular DNA and the extracellular nucleases are involved in diverse processes including the development of a typical biofilm architecture, nutrient acquisition, detachment from biofilms and the colonization fitness of biofilm clumps after ingestion by the host. This study provides new insights into biofilm development and transmission of biofilm-derived V. cholerae. PMID:22032623

  4. Single-molecule FRET unveils induced-fit mechanism for substrate selectivity in flap endonuclease 1

    PubMed Central

    Rashid, Fahad; Harris, Paul D; Zaher, Manal S; Sobhy, Mohamed A; Joudeh, Luay I; Yan, Chunli; Piwonski, Hubert; Tsutakawa, Susan E; Ivanov, Ivaylo; Tainer, John A; Habuchi, Satoshi; Hamdan, Samir M

    2017-01-01

    Human flap endonuclease 1 (FEN1) and related structure-specific 5’nucleases precisely identify and incise aberrant DNA structures during replication, repair and recombination to avoid genomic instability. Yet, it is unclear how the 5’nuclease mechanisms of DNA distortion and protein ordering robustly mediate efficient and accurate substrate recognition and catalytic selectivity. Here, single-molecule sub-millisecond and millisecond analyses of FEN1 reveal a protein-DNA induced-fit mechanism that efficiently verifies substrate and suppresses off-target cleavage. FEN1 sculpts DNA with diffusion-limited kinetics to test DNA substrate. This DNA distortion mutually ‘locks’ protein and DNA conformation and enables substrate verification with extreme precision. Strikingly, FEN1 never misses cleavage of its cognate substrate while blocking probable formation of catalytically competent interactions with noncognate substrates and fostering their pre-incision dissociation. These findings establish FEN1 has practically perfect precision and that separate control of induced-fit substrate recognition sets up the catalytic selectivity of the nuclease active site for genome stability. DOI: http://dx.doi.org/10.7554/eLife.21884.001 PMID:28230529

  5. Production of genome-edited pluripotent stem cells and mice by CRISPR/Cas.

    PubMed

    Horii, Takuro; Hatada, Izuho

    2016-01-01

    Clustered regularly at interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) nucleases, so-called CRISPR/Cas, was recently developed as an epoch-making genome engineering technology. This system only requires Cas9 nuclease and single-guide RNA complementary to a target locus. CRISPR/Cas enables the generation of knockout cells and animals in a single step. This system can also be used to generate multiple mutations and knockin in a single step, which is not possible using other methods. In this review, we provide an overview of genome editing by CRISPR/Cas in pluripotent stem cells and mice.

  6. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  7. A novel quantitative electrochemical method to monitor DNA double-strand breaks caused by a DNA cleavage agent at a DNA sensor.

    PubMed

    Banasiak, Anna; Cassidy, John; Colleran, John

    2018-06-01

    To date, DNA cleavage, caused by cleavage agents, has been monitored mainly by gel and capillary electrophoresis. However, these techniques are time-consuming, non-quantitative and require gel stains. In this work, a novel, simple and, importantly, a quantitative method for monitoring the DNA nuclease activity of potential anti-cancer drugs, at a DNA electrochemical sensor, is presented. The DNA sensors were prepared using thiol-modified oligonucleotides that self-assembled to create a DNA monolayer at gold electrode surfaces. The quantification of DNA double-strand breaks is based on calculating the DNA surface coverage, before and after exposure to a DNA cleavage agent. The nuclease properties of a model DNA cleavage agent, copper bis-phenanthroline ([Cu II (phen) 2 ] 2+ ), that can cleave DNA in a Fenton-type reaction, were quantified electrochemically. The DNA surface coverage decreased on average by 21% after subjecting the DNA sensor to a nuclease assay containing [Cu II (phen) 2 ] 2+ , a reductant and an oxidant. This percentage indicates that 6 base pairs were cleaved in the nuclease assay from the immobilised 30 base pair strands. The DNA cleavage can be also induced electrochemically in the absence of a chemical reductant. [Cu II (phen) 2 ] 2+ intercalates between DNA base pairs and, on application of a suitable potential, can be reduced to [Cu I (phen) 2 ] + , with dissolved oxygen acting as the required oxidant. This reduction process is facilitated through DNA strands via long-range electron transfer, resulting in DNA cleavage of 23%. The control measurements for both chemically and electrochemically induced cleavage revealed that DNA strand breaks did not occur under experimental conditions in the absence of [Cu II (phen) 2 ] 2+ . Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The Modification of siRNA with 3′ Cholesterol to Increase Nuclease Protection and Suppression of Native mRNA by Select siRNA Polyplexes

    PubMed Central

    Ambardekar, Vishakha V.; Han, Huai-Yun; Varney, Michelle L.; Vinogradov, Serguei V.; Singh, Rakesh K.; Vetro, Joseph A.

    2010-01-01

    Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3′ cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC. PMID:21047680

  9. The modification of siRNA with 3' cholesterol to increase nuclease protection and suppression of native mRNA by select siRNA polyplexes.

    PubMed

    Ambardekar, Vishakha V; Han, Huai-Yun; Varney, Michelle L; Vinogradov, Serguei V; Singh, Rakesh K; Vetro, Joseph A

    2011-02-01

    Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3' cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Single substitution in bacteriophage T4 RNase H alters the ratio between its exo- and endonuclease activities.

    PubMed

    Kholod, Natalia; Sivogrivov, Dmitry; Latypov, Oleg; Mayorov, Sergey; Kuznitsyn, Rafail; Kajava, Andrey V; Shlyapnikov, Mikhail; Granovsky, Igor

    2015-11-01

    The article describes substitutions in bacteriophage T4 RNase H which provide so called das-effect. Phage T4 DNA arrest suppression (das) mutations have been described to be capable of partially suppressing the phage DNA arrest phenotype caused by a dysfunction in genes 46 and/or 47 (also known as Mre11/Rad50 complex). Genetic mapping of das13 (one of the das mutations) has shown it to be in the region of the rnh gene encoding RNase H. Here we report that Das13 mutant of RNase H has substitutions of valine 43 and leucine 242 with isoleucines. To investigate the influence of these mutations on RNase H nuclease properties we have designed a novel in vitro assay that allows us to separate and quantify exo- or endonuclease activities of flap endonuclease. The nuclease assay in vitro showed that V43I substitution increased the ratio between exonuclease/endonuclease activities of RNase H whereas L242I substitution did not affect the nuclease activity of RNase H in vitro. However, both mutations were necessary for the full das effect in vivo. Molecular modelling of the nuclease structure suggests that V43I substitution may lead to disposition of H4 helix, responsible for the interaction with the first base pairs of 5'end of branched DNA. These structural changes may affect unwinding of the first base pairs of gapped or nicked DNA generating a short flap and therefore may stabilize the DNA-enzyme complex. L242I substitution did not affect the structure of RNase H and its role in providing das-effect remains unclear. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template.

    PubMed

    Sather, Blythe D; Romano Ibarra, Guillermo S; Sommer, Karen; Curinga, Gabrielle; Hale, Malika; Khan, Iram F; Singh, Swati; Song, Yumei; Gwiazda, Kamila; Sahni, Jaya; Jarjour, Jordan; Astrakhan, Alexander; Wagner, Thor A; Scharenberg, Andrew M; Rawlings, David J

    2015-09-30

    Genetic mutations or engineered nucleases that disrupt the HIV co-receptor CCR5 block HIV infection of CD4(+) T cells. These findings have motivated the engineering of CCR5-specific nucleases for application as HIV therapies. The efficacy of this approach relies on efficient biallelic disruption of CCR5, and the ability to efficiently target sequences that confer HIV resistance to the CCR5 locus has the potential to further improve clinical outcomes. We used RNA-based nuclease expression paired with adeno-associated virus (AAV)-mediated delivery of a CCR5-targeting donor template to achieve highly efficient targeted recombination in primary human T cells. This method consistently achieved 8 to 60% rates of homology-directed recombination into the CCR5 locus in T cells, with over 80% of cells modified with an MND-GFP expression cassette exhibiting biallelic modification. MND-GFP-modified T cells maintained a diverse repertoire and engrafted in immune-deficient mice as efficiently as unmodified cells. Using this method, we integrated sequences coding chimeric antigen receptors (CARs) into the CCR5 locus, and the resulting targeted CAR T cells exhibited antitumor or anti-HIV activity. Alternatively, we introduced the C46 HIV fusion inhibitor, generating T cell populations with high rates of biallelic CCR5 disruption paired with potential protection from HIV with CXCR4 co-receptor tropism. Finally, this protocol was applied to adult human mobilized CD34(+) cells, resulting in 15 to 20% homologous gene targeting. Our results demonstrate that high-efficiency targeted integration is feasible in primary human hematopoietic cells and highlight the potential of gene editing to engineer T cell products with myriad functional properties. Copyright © 2015, American Association for the Advancement of Science.

  12. Genome engineering in cattle: recent technological advancements.

    PubMed

    Wang, Zhongde

    2015-02-01

    Great strides in technological advancements have been made in the past decade in cattle genome engineering. First, the success of cloning cattle by somatic cell nuclear transfer (SCNT) or chromatin transfer (CT) is a significant advancement that has made obsolete the need for using embryonic stem (ES) cells to conduct cell-mediated genome engineering, whereby site-specific genetic modifications can be conducted in bovine somatic cells via DNA homologous recombination (HR) and whereby genetically engineered cattle can subsequently be produced by animal cloning from the genetically modified cells. With this approach, a chosen bovine genomic locus can be precisely modified in somatic cells, such as to knock out (KO) or knock in (KI) a gene via HR, a gene-targeting strategy that had almost exclusively been used in mouse ES cells. Furthermore, by the creative application of embryonic cloning to rejuvenate somatic cells, cattle genome can be sequentially modified in the same line of somatic cells and complex genetic modifications have been achieved in cattle. Very recently, the development of designer nucleases-such as zinc finger nucleases (ZFNs) and transcription activator-like effector nuclease (TALENs), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-has enabled highly efficient and more facile genome engineering in cattle. Most notably, by employing such designer nucleases, genomes can be engineered at single-nucleotide precision; this process is now often referred to as genome or gene editing. The above achievements are a drastic departure from the traditional methods of creating genetically modified cattle, where foreign DNAs are randomly integrated into the animal genome, most often along with the integrations of bacterial or viral DNAs. Here, I review the most recent technological developments in cattle genome engineering by highlighting some of the major achievements in creating genetically engineered cattle for agricultural and biomedical applications.

  13. Surveyor assay to diagnose persistent Müllerian duct syndrome in Miniature Schnauzers.

    PubMed

    Kim, Young June; Kwon, Hyuk Jin; Byun, Hyuk Soo; Yeom, Donguk; Choi, Jea-Hong; Kim, Joong-Hyun; Shim, Hosup

    2017-12-31

    Persistent Müllerian duct syndrome (PMDS) is a pseudohermaphroditism in males characterized by the presence of Müllerian duct derivatives. As PMDS dogs often lack clinical symptoms, a molecular diagnosis is essential to identify the syndrome in these animals. In this study, a new molecular method using DNA mismatch-specific Surveyor nuclease was developed. The Surveyor nuclease assay identified the AMHR2 mutation that produced PMDS in a Miniature Schnauzer as accurately as that obtained by using the conventional method based on restriction digestion. As an alternative to the current molecular diagnostic method, the new method may result in increased accuracy when detecting PMDS.

  14. Surveyor assay to diagnose persistent Müllerian duct syndrome in Miniature Schnauzers

    PubMed Central

    Kim, Young June; Kwon, Hyuk Jin; Byun, Hyuk Soo; Yeom, Donguk; Choi, Jea-Hong; Kim, Joong-Hyun

    2017-01-01

    Persistent Müllerian duct syndrome (PMDS) is a pseudohermaphroditism in males characterized by the presence of Müllerian duct derivatives. As PMDS dogs often lack clinical symptoms, a molecular diagnosis is essential to identify the syndrome in these animals. In this study, a new molecular method using DNA mismatch-specific Surveyor nuclease was developed. The Surveyor nuclease assay identified the AMHR2 mutation that produced PMDS in a Miniature Schnauzer as accurately as that obtained by using the conventional method based on restriction digestion. As an alternative to the current molecular diagnostic method, the new method may result in increased accuracy when detecting PMDS. PMID:27515263

  15. A CRISPR view of development

    PubMed Central

    Harrison, Melissa M.; Jenkins, Brian V.; O’Connor-Giles, Kate M.

    2014-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeat)–Cas9 (CRISPR-associated nuclease 9) system is poised to transform developmental biology by providing a simple, efficient method to precisely manipulate the genome of virtually any developing organism. This RNA-guided nuclease (RGN)-based approach already has been effectively used to induce targeted mutations in multiple genes simultaneously, create conditional alleles, and generate endogenously tagged proteins. Illustrating the adaptability of RGNs, the genomes of >20 different plant and animal species as well as multiple cell lines and primary cells have been successfully modified. Here we review the current and potential uses of RGNs to investigate genome function during development. PMID:25184674

  16. (NZ)CH...O contacts assist crystallization of a ParB-like nuclease.

    PubMed

    Shaw, Neil; Cheng, Chongyun; Tempel, Wolfram; Chang, Jessie; Ng, Joseph; Wang, Xin-Yu; Perrett, Sarah; Rose, John; Rao, Zihe; Wang, Bi-Cheng; Liu, Zhi-Jie

    2007-07-07

    The major bottleneck for determination of 3 D structures of proteins using X-rays is the production of diffraction quality crystals. Often proteins are subjected to chemical modification to improve the chances of crystallization Here, we report the successful crystallization of a nuclease employing a reductive methylation protocol. The key to crystallization was the successful introduction of 44 new cohesive (NZ) CH...O contacts (3.2-3.7 A) by the addition of 2 methyl groups to the side chain amine nitrogen (NZ) of 9 lysine residues of the nuclease. The new contacts dramatically altered the crystallization properties of the protein, resulting in crystals that diffracted to 1.2 A resolution. Analytical ultracentrifugation analysis and thermodynamics results revealed a more compact protein structure with better solvent exclusion of buried Trp residues in the folded state of the methylated protein, assisting crystallization. In this study, introduction of novel cohesive (NZ)CH...O contacts by reductive methylation resulted in the crystallization of a protein that had previously resisted crystallization in spite of extensive purification and crystallization space screening. Introduction of (NZ)CH...O contacts could provide a solution to crystallization problems for a broad range of protein targets.

  17. Structural insights into the functions of the FANCM-FAAP24 complex in DNA repair

    PubMed Central

    Yang, Hui; Zhang, Tianlong; Tao, Ye; Wang, Fang; Tong, Liang; Ding, Jianping

    2013-01-01

    Fanconi anemia (FA) is a genetically heterogeneous disorder associated with deficiencies in the FA complementation group network. FA complementation group M (FANCM) and FA-associated protein 24 kDa (FAAP24) form a stable complex to anchor the FA core complex to chromatin in repairing DNA interstrand crosslinks. Here, we report the first crystal structure of the C-terminal segment of FANCM in complex with FAAP24. The C-terminal segment of FANCM and FAAP24 both consist of a nuclease domain at the N-terminus and a tandem helix-hairpin-helix (HhH)2 domain at the C-terminus. The FANCM-FAAP24 complex exhibits a similar architecture as that of ApXPF. However, the variations of several key residues and the electrostatic property at the active-site region render a catalytically inactive nuclease domain of FANCM, accounting for the lack of nuclease activity. We also show that the first HhH motif of FAAP24 is a potential binding site for DNA, which plays a critical role in targeting FANCM-FAAP24 to chromatin. These results reveal the mechanistic insights into the functions of FANCM-FAAP24 in DNA repair. PMID:24003026

  18. Enhancing Targeted Genomic DNA Editing in Chicken Cells Using the CRISPR/Cas9 System

    PubMed Central

    Wang, Ling; Yang, Likai; Guo, Yijie; Du, Weili; Yin, Yajun; Zhang, Tao; Lu, Hongzhao

    2017-01-01

    The CRISPR/Cas9 system has enabled highly efficient genome targeted editing for various organisms. However, few studies have focused on CRISPR/Cas9 nuclease-mediated chicken genome editing compared with mammalian genomes. The current study combined CRISPR with yeast Rad52 (yRad52) to enhance targeted genomic DNA editing in chicken DF-1 cells. The efficiency of CRISPR/Cas9 nuclease-induced targeted mutations in the chicken genome was increased to 41.9% via the enrichment of the dual-reporter surrogate system. In addition, the combined effect of CRISPR nuclease and yRad52 dramatically increased the efficiency of the targeted substitution in the myostatin gene using 50-mer oligodeoxynucleotides (ssODN) as the donor DNA, resulting in a 36.7% editing efficiency after puromycin selection. Furthermore, based on the effect of yRad52, the frequency of exogenous gene integration in the chicken genome was more than 3-fold higher than that without yRad52. Collectively, these results suggest that ssODN is an ideal donor DNA for targeted substitution and that CRISPR/Cas9 combined with yRad52 significantly enhances chicken genome editing. These findings could be extensively applied in other organisms. PMID:28068387

  19. Design and Characterization of DNA Strand-Displacement Circuits in Serum-Supplemented Cell Medium.

    PubMed

    Fern, Joshua; Schulman, Rebecca

    2017-09-15

    The functional stability and lifetimes of synthetic molecular circuits in biological environments are important for long-term, stable sensors or controllers of cell or tissue behavior. DNA-based molecular circuits, in particular DNA strand-displacement circuits, provide simple and effective biocompatible control mechanisms and sensors, but are vulnerable to digestion by nucleases present in living tissues and serum-supplemented cell culture. The stability of double-stranded and single-stranded DNA circuit components in serum-supplemented cell medium and the corresponding effect of nuclease-mediated degradation on circuit performance were characterized to determine the major routes of degradation and DNA strand-displacement circuit failure. Simple circuit design choices, such as the use of 5' toeholds within the DNA complexes used as reactants in the strand-displacement reactions and the termination of single-stranded components with DNA hairpin domains at the 3' termini, significantly increase the functional lifetime of the circuit components in the presence of nucleases. Simulations of multireaction circuits, guided by the experimentally measured operation of single-reaction circuits, enable predictive realization of multilayer and competitive-reaction circuit behavior. Together, these results provide a basic route to increased DNA circuit stability in cell culture environments.

  20. Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster

    PubMed Central

    Simoni, Alekos; Siniscalchi, Carla; Chan, Yuk-Sang; Huen, David S.; Russell, Steven; Windbichler, Nikolai; Crisanti, Andrea

    2014-01-01

    Selfish genes are DNA elements that increase their rate of genetic transmission at the expense of other genes in the genome and can therefore quickly spread within a population. It has been suggested that selfish elements could be exploited to modify the genome of entire populations for medical and ecological applications. Here we report that transcription activator-like effector nuclease (TALEN) and zinc finger nuclease (ZFN) can be engineered into site-specific synthetic selfish elements (SSEs) and demonstrate their transmission of up to 70% in the Drosophila germline. We show here that SSEs can spread via DNA break-induced homologous recombination, a process known as ‘homing’ similar to that observed for homing endonuclease genes (HEGs), despite their fundamentally different modes of DNA binding and cleavage. We observed that TALEN and ZFN have a reduced capability of secondary homing compared to HEG as their repetitive structure had a negative effect on their genetic stability. The modular architecture of ZFNs and TALENs allows for the rapid design of novel SSEs against specific genomic sequences making them potentially suitable for the genetic engineering of wild-type populations of animals and plants, in applications such as gene replacement or population suppression of pest species. PMID:24803674

  1. Investigating Engineered Ribonucleoprotein Particles to Improve Oral RNAi Delivery in Crop Insect Pests

    PubMed Central

    Gillet, François-Xavier; Garcia, Rayssa A.; Macedo, Leonardo L. P.; Albuquerque, Erika V. S.; Silva, Maria C. M.; Grossi-de-Sa, Maria F.

    2017-01-01

    Genetically modified (GM) crops producing double-stranded RNAs (dsRNAs) are being investigated largely as an RNA interference (RNAi)-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil (Anthonomus grandis), we showed that the chimeric protein PTD-DRBD (peptide transduction domain—dsRNA binding domain) combined with dsRNA forms a ribonucleoprotein particle (RNP) that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests. PMID:28503153

  2. Investigating Engineered Ribonucleoprotein Particles to Improve Oral RNAi Delivery in Crop Insect Pests.

    PubMed

    Gillet, François-Xavier; Garcia, Rayssa A; Macedo, Leonardo L P; Albuquerque, Erika V S; Silva, Maria C M; Grossi-de-Sa, Maria F

    2017-01-01

    Genetically modified (GM) crops producing double-stranded RNAs (dsRNAs) are being investigated largely as an RNA interference (RNAi)-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil ( Anthonomus grandis ), we showed that the chimeric protein PTD-DRBD (peptide transduction domain-dsRNA binding domain) combined with dsRNA forms a ribonucleoprotein particle (RNP) that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests.

  3. Design and Characterization of DNA Strand-Displacement Circuits in Serum-Supplemented Cell Medium

    DOE PAGES

    Fern, Joshua; Schulman, Rebecca

    2017-05-30

    The functional stability and lifetimes of synthetic molecular circuits in biological environments are important for long-term, stable sensors or controllers of cell or tissue behavior. DNA-based molecular circuits, particularly DNA strand-displacement circuits, provide simple and effective biocompatible control mechanisms and sensors, but are vulnerable to digestion by nucleases present in living tissues and serum-supplemented cell culture. The stability of double-stranded and single-stranded DNA circuit components in serum-supplemented cell medium and the corresponding effect of nuclease-mediated degradation on circuit performance were characterized to determine the major routes of degradation and DNA strand-displacement circuit failure. Simple circuit design choices, such as themore » use of 5' toeholds within the DNA complexes used as reactants in the strand-displacement reactions and the termination of single-stranded components with DNA hairpin domains at the 3' termini, significantly increase the functional lifetime of the circuit components in the presence of nucleases. Furthermore, simulations of multireaction circuits, guided by the experimentally measured operation of single-reaction circuits, enable predictive realization of multilayer and competitive-reaction circuit behavior. Altogether, these results provide a basic route to increased DNA circuit stability in cell culture environments.« less

  4. Design and Characterization of DNA Strand-Displacement Circuits in Serum-Supplemented Cell Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fern, Joshua; Schulman, Rebecca

    The functional stability and lifetimes of synthetic molecular circuits in biological environments are important for long-term, stable sensors or controllers of cell or tissue behavior. DNA-based molecular circuits, particularly DNA strand-displacement circuits, provide simple and effective biocompatible control mechanisms and sensors, but are vulnerable to digestion by nucleases present in living tissues and serum-supplemented cell culture. The stability of double-stranded and single-stranded DNA circuit components in serum-supplemented cell medium and the corresponding effect of nuclease-mediated degradation on circuit performance were characterized to determine the major routes of degradation and DNA strand-displacement circuit failure. Simple circuit design choices, such as themore » use of 5' toeholds within the DNA complexes used as reactants in the strand-displacement reactions and the termination of single-stranded components with DNA hairpin domains at the 3' termini, significantly increase the functional lifetime of the circuit components in the presence of nucleases. Furthermore, simulations of multireaction circuits, guided by the experimentally measured operation of single-reaction circuits, enable predictive realization of multilayer and competitive-reaction circuit behavior. Altogether, these results provide a basic route to increased DNA circuit stability in cell culture environments.« less

  5. Rapid screening for nuclear genes mutations in isolated respiratory chain complex I defects.

    PubMed

    Pagniez-Mammeri, Hélène; Lombes, Anne; Brivet, Michèle; Ogier-de Baulny, Hélène; Landrieu, Pierre; Legrand, Alain; Slama, Abdelhamid

    2009-04-01

    Complex I or reduced nicotinamide adenine dinucleotide (NADH): ubiquinone oxydoreductase deficiency is the most common cause of respiratory chain defects. Molecular bases of complex I deficiencies are rarely identified because of the dual genetic origin of this multi-enzymatic complex (nuclear DNA and mitochondrial DNA) and the lack of phenotype-genotype correlation. We used a rapid method to screen patients with isolated complex I deficiencies for nuclear genes mutations by Surveyor nuclease digestion of cDNAs. Eight complex I nuclear genes, among the most frequently mutated (NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS7, NDUFS8, NDUFV1 and NDUFV2), were studied in 22 cDNA fragments spanning their coding sequences in 8 patients with a biochemically proved complex I deficiency. Single nucleotide polymorphisms and missense mutations were detected in 18.7% of the cDNA fragments by Surveyor nuclease treatment. Molecular defects were detected in 3 patients. Surveyor nuclease screening is a reliable method for genotyping nuclear complex I deficiencies, easy to interpret, and limits the number of sequence reactions. Its use will enhance the possibility of prenatal diagnosis and help us for a better understanding of complex I molecular defects.

  6. CRISPR/Cas9-Mediated Mutagenesis of Human Pluripotent Stem Cells in Defined Xeno-Free E8 Medium.

    PubMed

    Soh, Chew-Li; Huangfu, Danwei

    2017-01-01

    The recent advent of engineered nucleases including the CRISPR/Cas9 system has greatly facilitated genome manipulation in human pluripotent stem cells (hPSCs). In addition to facilitating hPSC-based disease studies, the application of genome engineering in hPSCs has also opened up new avenues for cell replacement therapy. To improve consistency and reproducibility of hPSC-based studies, and to meet the safety and regulatory requirements for clinical translation, it is necessary to use a defined, xeno-free cell culture system. This chapter describes protocols for CRISPR/Cas9 genome editing in an inducible Cas9 hPSC-based system, using cells cultured in chemically defined, xeno-free E8 Medium on a recombinant human vitronectin substrate. We detail procedures for the design and transfection of CRISPR guide RNAs, colony selection, and the expansion and validation of clonal mutant lines, all within this fully defined culture condition. These methods may be applied to a wide range of genome-engineering applications in hPSCs, including those that utilize different types of site-specific nucleases such as zinc finger nucleases (ZFNs) and TALENs, and form a closer step towards clinical utility of these cells.

  7. CRISPR Genome Engineering for Human Pluripotent Stem Cell Research

    PubMed Central

    Chaterji, Somali; Ahn, Eun Hyun; Kim, Deok-Ho

    2017-01-01

    The emergence of targeted and efficient genome editing technologies, such as repurposed bacterial programmable nucleases (e.g., CRISPR-Cas systems), has abetted the development of cell engineering approaches. Lessons learned from the development of RNA-interference (RNA-i) therapies can spur the translation of genome editing, such as those enabling the translation of human pluripotent stem cell engineering. In this review, we discuss the opportunities and the challenges of repurposing bacterial nucleases for genome editing, while appreciating their roles, primarily at the epigenomic granularity. First, we discuss the evolution of high-precision, genome editing technologies, highlighting CRISPR-Cas9. They exist in the form of programmable nucleases, engineered with sequence-specific localizing domains, and with the ability to revolutionize human stem cell technologies through precision targeting with greater on-target activities. Next, we highlight the major challenges that need to be met prior to bench-to-bedside translation, often learning from the path-to-clinic of complementary technologies, such as RNA-i. Finally, we suggest potential bioinformatics developments and CRISPR delivery vehicles that can be deployed to circumvent some of the challenges confronting genome editing technologies en route to the clinic. PMID:29158838

  8. Design of nuclease-based target recycling signal amplification in aptasensors.

    PubMed

    Yan, Mengmeng; Bai, Wenhui; Zhu, Chao; Huang, Yafei; Yan, Jiao; Chen, Ailiang

    2016-03-15

    Compared with conventional antibody-based immunoassay methods, aptasensors based on nucleic acid aptamer have made at least two significant breakthroughs. One is that aptamers are more easily used for developing various simple and rapid homogeneous detection methods by "sample in signal out" without multi-step washing. The other is that aptamers are more easily employed for developing highly sensitive detection methods by using various nucleic acid-based signal amplification approaches. As many substances playing regulatory roles in physiology or pathology exist at an extremely low concentration and many chemical contaminants occur in trace amounts in food or environment, aptasensors for signal amplification contribute greatly to detection of such targets. Among the signal amplification approaches in highly sensitive aptasensors, the nuclease-based target recycling signal amplification has recently become a research focus because it shows easy design, simple operation, and rapid reaction and can be easily developed for homogenous assay. In this review, we summarized recent advances in the development of various nuclease-based target recycling signal amplification with the aim to provide a general guide for the design of aptamer-based ultrasensitive biosensing assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Apollo, an Artemis-related nuclease, interacts with TRF2 and protects human telomeres in S phase.

    PubMed

    van Overbeek, Megan; de Lange, Titia

    2006-07-11

    Human chromosome ends are protected by shelterin, an abundant six-subunit protein complex that binds specifically to the telomeric-repeat sequences, regulates telomere length, and ensures that chromosome ends do not elicit a DNA-damage response (reviewed in). Using mass spectrometry of proteins associated with the shelterin component Rap1, we identified an SMN1/PSO2 nuclease family member that is closely related to Artemis. We refer to this protein as Apollo and report that Apollo has the ability to localize to telomeres through an interaction with the shelterin component TRF2. Although its low abundance at telomeres indicates that Apollo is not a core component of shelterin, Apollo knockdown with RNAi resulted in senescence and the activation of a DNA-damage signal at telomeres as evidenced by telomere-dysfunction-induced foci (TIFs). The TIFs occurred primarily in S phase, suggesting that Apollo contributes to a processing step associated with the replication of chromosome ends. Furthermore, some of the metaphase chromosomes showed two telomeric signals at single-chromatid ends, suggesting an aberrant telomere structure. We propose that the Artemis-like nuclease Apollo is a shelterin accessory factor required for the protection of telomeres during or after their replication.

  10. SNMIB/Apollo protects leading-strand telomeres against NHEJ-mediated repair.

    PubMed

    Lam, Yung C; Akhter, Shamima; Gu, Peili; Ye, Jing; Poulet, Anaïs; Giraud-Panis, Marie-Josèphe; Bailey, Susan M; Gilson, Eric; Legerski, Randy J; Chang, Sandy

    2010-07-07

    Progressive telomere attrition or deficiency of the protective shelterin complex elicits a DNA damage response as a result of a cell's inability to distinguish dysfunctional telomeric ends from DNA double-strand breaks. SNMIB/Apollo is a shelterin-associated protein and a member of the SMN1/PSO2 nuclease family that localizes to telomeres through its interaction with TRF2. Here, we generated SNMIB/Apollo knockout mouse embryo fibroblasts (MEFs) to probe the function of SNMIB/Apollo at mammalian telomeres. SNMIB/Apollo null MEFs exhibit an increased incidence of G2 chromatid-type fusions involving telomeres created by leading-strand DNA synthesis, reflective of a failure to protect these telomeres after DNA replication. Mutations within SNMIB/Apollo's conserved nuclease domain failed to suppress this phenotype, suggesting that its nuclease activity is required to protect leading-strand telomeres. SNMIB/Apollo(-/-)ATM(-/-) MEFs display robust telomere fusions when Trf2 is depleted, indicating that ATM is dispensable for repair of uncapped telomeres in this setting. Our data implicate the 5'-3' exonuclease function of SNM1B/Apollo in the generation of 3' single-stranded overhangs at newly replicated leading-strand telomeres to protect them from engaging the non-homologous end-joining pathway.

  11. The adnAB Locus, Encoding a Putative Helicase-Nuclease Activity, Is Essential in Streptomyces

    PubMed Central

    Zhang, Lingli; Nguyen, Hoang Chuong; Chipot, Ludovic; Piotrowski, Emilie; Bertrand, Claire

    2014-01-01

    Homologous recombination is a crucial mechanism that repairs a wide range of DNA lesions, including the most deleterious ones, double-strand breaks (DSBs). This multistep process is initiated by the resection of the broken DNA ends by a multisubunit helicase-nuclease complex exemplified by Escherichia coli RecBCD, Bacillus subtilis AddAB, and newly discovered Mycobacterium tuberculosis AdnAB. Here we show that in Streptomyces, neither recBCD nor addAB homologues could be detected. The only putative helicase-nuclease-encoding genes identified were homologous to M. tuberculosis adnAB genes. These genes are conserved as a single copy in all sequenced genomes of Streptomyces. The disruption of adnAB in Streptomyces ambofaciens and Streptomyces coelicolor could not be achieved unless an ectopic copy was provided, indicating that adnAB is essential for growth. Both adnA and adnB genes were shown to be inducible in response to DNA damage (mitomycin C) and to be independently transcribed. Introduction of S. ambofaciens adnAB genes in an E. coli recB mutant restored viability and resistance to UV light, suggesting that Streptomyces AdnAB could be a functional homologue of RecBCD and be involved in DNA damage resistance. PMID:24837284

  12. Cellular and molecular aspects of quinoa leaf senescence.

    PubMed

    López-Fernández, María Paula; Burrieza, Hernán Pablo; Rizzo, Axel Joel; Martínez-Tosar, Leandro Julián; Maldonado, Sara

    2015-09-01

    During leaf senescence, degradation of chloroplasts precede to changes in nuclei and other cytoplasmic organelles, RuBisCO stability is progressively lost, grana lose their structure, plastidial DNA becomes distorted and degraded, the number of plastoglobuli increases and abundant senescence-associated vesicles containing electronically dense particles emerge from chloroplasts pouring their content into the central vacuole. This study examines quinoa leaf tissues during development and senescence using a range of well-established markers of programmed cell death (PCD), including: morphological changes in nuclei and chloroplasts, degradation of RuBisCO, changes in chlorophyll content, DNA degradation, variations in ploidy levels, and changes in nuclease profiles. TUNEL reaction and DNA electrophoresis demonstrated that DNA fragmentation in nuclei occurs at early senescence, which correlates with induction of specific nucleases. During senescence, metabolic activity is high and nuclei endoreduplicate, peaking at 4C. At this time, TEM images showed some healthy nuclei with condensed chromatin and nucleoli. We have found that DNA fragmentation, induction of senescence-associated nucleases and endoreduplication take place during leaf senescence. This provides a starting point for further research aiming to identify key genes involved in the senescence of quinoa leaves. Published by Elsevier Ireland Ltd.

  13. Evolution of hierarchical cytoplasmic inheritance in the plasmodial slime mold Physarum polycephalum.

    PubMed

    Iwanaga, Akiko; Sasaki, Akira

    2004-04-01

    A striking linear dominance relationship for uniparental mitochondrial transmission is known between many mating types of plasmodial slime mold Physarum polycephalum. We herein examine how such hierarchical cytoplasmic inheritance evolves in isogamous organisms with many self-incompatible mating types. We assume that a nuclear locus determines the mating type of gametes and that another nuclear locus controls the digestion of mitochondria DNAs (mtDNAs) of the recipient gamete after fusion. We then examine the coupled genetic dynamics for the evolution of self-incompatible mating types and biased mitochondrial transmission between them. In Physarum, a multiallelic nuclear locus matA controls both the mating type of the gametes and the selective elimination of the mtDNA in the zygotes. We theoretically examine two potential mechanisms that might be responsible for the preferential digestion of mitochondria in the zygote. In the first model, the preferential digestion of mitochondria is assumed to be the outcome of differential expression levels of a suppressor gene carried by each gamete (suppression-power model). In the second model (site-specific nuclease model), the digestion of mtDNAs is assumed to be due to their cleavage by a site-specific nuclease that cuts the mtDNA at unmethylated recognition sites. Also assumed is that the mtDNAs are methylated at the same recognition site prior to the fusion, thereby being protected against the nuclease of the same gamete, and that the suppressor alleles convey information for the recognition sequences of nuclease and methylase. In both models, we found that a linear dominance hierarchy evolves as a consequence of the buildup of a strong linkage disequilibrium between the mating-type locus and the suppressor locus, though it fails to evolve if the recombination rate between the two loci is larger than a threshold. This threshold recombination rate depends on the number of mating types and the degree of fitness reduction in the heteroplasmic zygotes. If the recombination rate is above the threshold, suppressor alleles are equally distributed in each mating type at evolutionary equilibrium. Based on the theoretical results of the site-specific nuclease model, we propose that a nested subsequence structure in the recognition sequence should underlie the linear dominance hierarchy of mitochondrial transmission.

  14. Identification of N-(deoxyguanosin-8-yl)-4-azobiphenyl by (32)P-postlabeling analyses of DNA in human uroepithelial cells exposed to proximate metabolites of the environmental carcinogen 4-aminobiphenyl.

    PubMed

    Hatcher, James F; Swaminathan, Santhanam

    2002-01-01

    DNA adducts formed in human uroepithelial cells (HUC) following exposure to N-hydroxy-4-aminobiphenyl (N-OH-ABP), the proximate metabolite of the human bladder carcinogen 4-aminobiphenyl (ABP), were analyzed by the (32)P-postlabeling method. Two adducts detected by (32)P-postlabeling were previously identified as the 3',5'-bisphospho derivatives of N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP) and N-(deoxyadenosin-8-yl)-4-aminobiphenyl (dA-C8-ABP) (Frederickson S et al. [1992] Carcinogenesis 13: 955-961; Hatcher and Swaminathan [1995b] Carcinogenesis 16: 295-301). In contrast to the dG-C8-ABP adduct, which was 3'-dephosphorylated by nuclease P1, dA-C8-ABP was resistant to nuclease P1, thus providing an enrichment step before postlabeling. Autoradiography of the two-dimensional thin-layer chromatogram of the postlabeled products obtained following nuclease P1 digestion revealed several minor adducts, one of which has been identified in the present study. Postlabeling analyses following nuclease P1 digestion of the products obtained from the reaction of N-acetoxy-4-aminobiphenyl with deoxyguanosine-3'-monophosphate (dGp) demonstrated the presence of this minor adduct. The 3'-monophosphate derivative of the adduct was subsequently chromatographically purified and subjected to spectroscopic analyses. Based on proton NMR and mass spectroscopic analyses of the synthetic product, the chemical structure of the adduct has been identified as N-(deoxyguanosin-N(2)-yl)-4-azobiphenyl (dG-N==N-ABP). (32)P-Postlabeling analysis of the nuclease P1-enriched DNA hydrolysate of HUCs treated with N-OH-ABP or N-hydroxy-4-acetylaminobiphenyl (N-OH-AABP) showed the presence of the dG-N==N-ABP adduct. It was also detected in calf thymus DNA incubated with HUC cytosol and N-OH-ABP in the presence of acetyl-CoA, or incubated with HUC microsomes and N-OH-AABP. These results demonstrate that in the target cells for ABP carcinogenesis in vivo, N-OH-ABP and N-OH-AABP are bioactivated by acyltransferases to reactive arylnitrenium ions that covalently interact at the N2 position of deoxyguanosine in DNA. Copyright 2002 Wiley-Liss, Inc.

  15. Disruption or Excision of Provirus as an Approach to HIV Cure.

    PubMed

    Jerome, Keith R

    2016-12-01

    An effective approach to HIV cure will almost certainly require a combination of strategies, including some means of reducing the latent HIV reservoir. Because the integrated HIV provirus represents the major source of viral persistence and reactivation, one attractive approach is the direct targeting of provirus for disruption or excision using targeted endonucleases, such as CRISPR/Cas9, zinc finger nucleases, TAL effector nucleases, or meganucleases (homing endonucleases). This article highlights some of the challenges for successful endonuclease therapy for HIV, including optimization of enzyme activity and specificity, the possible emergence of viral resistance, and most importantly, efficient in vivo delivery of the enzymes to a sufficient portion of the latent reservoir.

  16. Zinc finger nuclease technology: advances and obstacles in modelling and treating genetic disorders.

    PubMed

    Jabalameli, Hamid Reza; Zahednasab, Hamid; Karimi-Moghaddam, Amin; Jabalameli, Mohammad Reza

    2015-03-01

    Zinc finger nucleases (ZFNs) are engineered restriction enzymes designed to target specific DNA sequences within the genome. Assembly of zinc finger DNA-binding domain to a DNA-cleavage domain enables the enzyme machinery to target unique locus in the genome and invoke endogenous DNA repair mechanisms. This machinery offers a versatile approach in allele editing and gene therapy. Here we discuss the architecture of ZFNs and strategies for generating targeted modifications within the genome. We review advances in gene therapy and modelling of the disease using these enzymes and finally, discuss the practical obstacles in using this technology. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair.

    PubMed

    Liu, Ting; Ghosal, Gargi; Yuan, Jingsong; Chen, Junjie; Huang, Jun

    2010-08-06

    Fanconi anemia (FA) is caused by mutations in 13 Fanc genes and renders cells hypersensitive to DNA interstrand cross-linking (ICL) agents. A central event in the FA pathway is mono-ubiquitylation of the FANCI-FANCD2 (ID) protein complex. Here, we characterize a previously unrecognized nuclease, Fanconi anemia-associated nuclease 1 (FAN1), that promotes ICL repair in a manner strictly dependent on its ability to accumulate at or near sites of DNA damage and that relies on mono-ubiquitylation of the ID complex. Thus, the mono-ubiquitylated ID complex recruits the downstream repair protein FAN1 and facilitates the repair of DNA interstrand cross-links.

  18. Spacer-length DNA intermediates are associated with Cas1 in cells undergoing primed CRISPR adaptation.

    PubMed

    Musharova, Olga; Klimuk, Evgeny; Datsenko, Kirill A; Metlitskaya, Anastasia; Logacheva, Maria; Semenova, Ekaterina; Severinov, Konstantin; Savitskaya, Ekaterina

    2017-04-07

    During primed CRISPR adaptation spacers are preferentially selected from DNA recognized by CRISPR interference machinery, which in the case of Type I CRISPR-Cas systems consists of CRISPR RNA (crRNA) bound effector Cascade complex that locates complementary targets, and Cas3 executor nuclease/helicase. A complex of Cas1 and Cas2 proteins is capable of inserting new spacers in the CRISPR array. Here, we show that in Escherichia coli cells undergoing primed adaptation, spacer-sized fragments of foreign DNA are associated with Cas1. Based on sensitivity to digestion with nucleases, the associated DNA is not in a standard double-stranded state. Spacer-sized fragments are cut from one strand of foreign DNA in Cas1- and Cas3-dependent manner. These fragments are generated from much longer S1-nuclease sensitive fragments of foreign DNA that require Cas3 for their production. We propose that in the course of CRISPR interference Cas3 generates fragments of foreign DNA that are recognized by the Cas1-Cas2 adaptation complex, which excises spacer-sized fragments and channels them for insertion into CRISPR array. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. New traits in crops produced by genome editing techniques based on deletions.

    PubMed

    van de Wiel, C C M; Schaart, J G; Lotz, L A P; Smulders, M J M

    2017-01-01

    One of the most promising New Plant Breeding Techniques is genome editing (also called gene editing) with the help of a programmable site-directed nuclease (SDN). In this review, we focus on SDN-1, which is the generation of small deletions or insertions (indels) at a precisely defined location in the genome with zinc finger nucleases (ZFN), TALENs, or CRISPR-Cas9. The programmable nuclease is used to induce a double-strand break in the DNA, while the repair is left to the plant cell itself, and mistakes are introduced, while the cell is repairing the double-strand break using the relatively error-prone NHEJ pathway. From a biological point of view, it could be considered as a form of targeted mutagenesis. We first discuss improvements and new technical variants for SDN-1, in particular employing CRISPR-Cas, and subsequently explore the effectiveness of targeted deletions that eliminate the function of a gene, as an approach to generate novel traits useful for improving agricultural sustainability, including disease resistances. We compare them with examples of deletions that resulted in novel functionality as known from crop domestication and classical mutation breeding (both using radiation and chemical mutagens). Finally, we touch upon regulatory and access and benefit sharing issues regarding the plants produced.

  20. Use of a fluorogenic probe in a PCR-based assay for the detection of Listeria monocytogenes.

    PubMed

    Bassler, H A; Flood, S J; Livak, K J; Marmaro, J; Knorr, R; Batt, C A

    1995-10-01

    A PCR-based assay for Listeria monocytogenes that uses the hydrolysis of an internal fluorogenic probe to monitor the amplification of the target has been formatted. The fluorogenic 5' nuclease PCR assay takes advantage of the endogenous 5' --> 3' nuclease activity of Taq DNA polymerase to digest a probe which is labelled with two fluorescent dyes and hybridizes to the amplicon during PCR. When the probe is intact, the two fluorophores interact such that the emission of the reporter dye is quenched. During amplification, the probe is hydrolyzed, relieving the quenching of the reporter and resulting in an increase in its fluorescence intensity. This change in reporter dye fluorescence is quantitative for the amount of PCR product and, under appropriate conditions, for the amount of template. We have applied the fluorogenic 5' nuclease PCR assay to detect L. monocytogenes, using an 858-bp amplicon of hemolysin (hlyA) as the target. Maximum sensitivity was achieved by evaluating various fluorogenic probes and then optimizing the assay components and cycling parameters. With crude cell lysates, the total assay could be completed in 3 h with a detection limit of approximately 50 CFU. Quantification was linear over a range of 5 x 10(1) to 5 x 10(5) CFU.

  1. Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster.

    PubMed

    Simoni, Alekos; Siniscalchi, Carla; Chan, Yuk-Sang; Huen, David S; Russell, Steven; Windbichler, Nikolai; Crisanti, Andrea

    2014-06-01

    Selfish genes are DNA elements that increase their rate of genetic transmission at the expense of other genes in the genome and can therefore quickly spread within a population. It has been suggested that selfish elements could be exploited to modify the genome of entire populations for medical and ecological applications. Here we report that transcription activator-like effector nuclease (TALEN) and zinc finger nuclease (ZFN) can be engineered into site-specific synthetic selfish elements (SSEs) and demonstrate their transmission of up to 70% in the Drosophila germline. We show here that SSEs can spread via DNA break-induced homologous recombination, a process known as 'homing' similar to that observed for homing endonuclease genes (HEGs), despite their fundamentally different modes of DNA binding and cleavage. We observed that TALEN and ZFN have a reduced capability of secondary homing compared to HEG as their repetitive structure had a negative effect on their genetic stability. The modular architecture of ZFNs and TALENs allows for the rapid design of novel SSEs against specific genomic sequences making them potentially suitable for the genetic engineering of wild-type populations of animals and plants, in applications such as gene replacement or population suppression of pest species. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Precision Genome Editing for Treating Single-gene Disorders

    NASA Astrophysics Data System (ADS)

    Bao, Gang

    There are an estimated 6,000 human single-gene disorders, most of them have no cure. This imposes a significant burden on human health worldwide. The recent advent in developing engineered nucleases, especially CRISPR/Cas9 (clustered, regularly interspaced, short palindromic repeats and CRISPR-associated protein 9) systems provides a powerful tool for precisely modifying the human genome, thus revolutionizing the treatment of single-gene disorders. In this talk, I will present recent work in my lab on developing new tools and methods for the design and optimization of CRISPR/Cas9 systems, and the efforts in developing a clinically applicable gene correction strategy for treating sickle cell disease (SCD), which is the first single-gene disorder with molecular understanding. We optimized CRISPR/Cas9 systems targeting the beta-globin gene, and systematically evaluated their on- and off-target cleavage in different cells. We also quantified the nuclease-induced gene modification rates in CD34+ cells from SCD patients, and demonstrated that CRISPR/Cas9 based genome editing is effective in generating normal hemoglobin (HbA) and reducing sickling hemoglobin (HbS). These studies significantly facilitated our pre-clinical investigation of SCD treatment using CRISPR/Cas9 and donor templates. The opportunities and challenges in developing nuclease-based genome editing strategies for treating single-gene disorders are discussed.

  3. Detection of Yersinia pestis using real-time PCR in patients with suspected bubonic plague.

    PubMed

    Riehm, Julia M; Rahalison, Lila; Scholz, Holger C; Thoma, Bryan; Pfeffer, Martin; Razanakoto, Léa Mamiharisoa; Al Dahouk, Sascha; Neubauer, Heinrich; Tomaso, Herbert

    2011-02-01

    Yersinia (Y.) pestis, the causative agent of plague, is endemic in natural foci of Asia, Africa, and America. Real-time PCR assays have been described as rapid diagnostic tools, but so far none has been validated for its clinical use. In a retrospective clinical study we evaluated three real-time PCR assays in two different assay formats, 5'-nuclease and hybridization probes assays. Lymph node aspirates from 149 patients from Madagascar with the clinical diagnosis of bubonic plague were investigated for the detection of Y. pestis DNA. Results of real-time PCR assays targeting the virulence plasmids pPCP1 (pla gene), and pMT1 (caf1, Ymt genes) were compared with an F1-antigen immunochromatographic test (ICT) and cultivation of the organism. Out of the 149 samples an infection with Y. pestis was confirmed by culture in 47 patients while ICT was positive in 88 including all culture proven cases. The best real-time PCR assay was the 5'-nuclease assay targeting pla which was positive in 120 cases. In conclusion, the 5'-nuclease assay targeting pla can be recommended as diagnostic tool for establishing a presumptive diagnosis when bubonic plague is clinically suspected. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Secondary structure prediction and structure-specific sequence analysis of single-stranded DNA.

    PubMed

    Dong, F; Allawi, H T; Anderson, T; Neri, B P; Lyamichev, V I

    2001-08-01

    DNA sequence analysis by oligonucleotide binding is often affected by interference with the secondary structure of the target DNA. Here we describe an approach that improves DNA secondary structure prediction by combining enzymatic probing of DNA by structure-specific 5'-nucleases with an energy minimization algorithm that utilizes the 5'-nuclease cleavage sites as constraints. The method can identify structural differences between two DNA molecules caused by minor sequence variations such as a single nucleotide mutation. It also demonstrates the existence of long-range interactions between DNA regions separated by >300 nt and the formation of multiple alternative structures by a 244 nt DNA molecule. The differences in the secondary structure of DNA molecules revealed by 5'-nuclease probing were used to design structure-specific probes for mutation discrimination that target the regions of structural, rather than sequence, differences. We also demonstrate the performance of structure-specific 'bridge' probes complementary to non-contiguous regions of the target molecule. The structure-specific probes do not require the high stringency binding conditions necessary for methods based on mismatch formation and permit mutation detection at temperatures from 4 to 37 degrees C. Structure-specific sequence analysis is applied for mutation detection in the Mycobacterium tuberculosis katG gene and for genotyping of the hepatitis C virus.

  5. [The research advances and applications of genome editing in hereditary eye diseases].

    PubMed

    Cai, S W; Zhang, Y; Hou, M Z; Liu, Y; Li, X R

    2017-05-11

    Genome editing is a cutting-edge technology that generates DNA double strand breaks at the specific genomic DNA sequence through nuclease recognition and cleavage, and then achieves insertion, replacement, or deletion of the target gene via endogenous DNA repair mechanisms, such as non-homologous end joining, homology directed repair, and homologous recombination. So far, more than 600 human hereditary eye diseases and systemic hereditary diseases with ocular phenotypes have been found. However, most of these diseases are of incompletely elucidated pathogenesis and without effective therapies. Genome editing technology can precisely target and alter the genomes of animals, establish animal models of the hereditary diseases, and elucidate the relationship between the target gene and the disease phenotype, thereby providing a powerful approach to studying the pathogenic mechanisms underlying the hereditary eye diseases. In addition, correction of gene mutations by the genome editing brings a new hope to gene therapy for the hereditary eye diseases. This review introduces the molecular characteristics of 4 major enzymes used in the genome editing, including homing endonucleases, zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated protein 9 (Cas9), and summarizes the current applications of this technology in investigating the pathogenic mechanisms underlying the hereditary eye diseases. (Chin J Ophthalmol, 2017, 53: 386-371 ) .

  6. Generation of TALE-Based Designer Epigenome Modifiers.

    PubMed

    Nitsch, Sandra; Mussolino, Claudio

    2018-01-01

    Manipulation of gene expression can be facilitated by editing the genome or the epigenome. Precise genome editing is traditionally achieved by using designer nucleases which are generally exploited to eliminate a specific gene product. Upon the introduction of a site-specific DNA double-strand break (DSB) by the nuclease, endogenous DSB repair mechanisms are in turn harnessed to induce DNA sequence changes that can result in target gene inactivation. Minimal off-target effects can be obtained by endowing designer nucleases with the highly specific DNA-binding domain (DBD) derived from transcription activator-like effectors (TALEs). In contrast, epigenome editing allows gene expression control without inducing changes in the DNA sequence by specifically altering epigenetic marks, as histone tails modifications or DNA methylation patterns within promoter or enhancer regions. Importantly, this approach allows both up- and downregulation of the target gene expression, and the effect is generally reversible. TALE-based designer epigenome modifiers combine the high specificity of TALE-derived DBDs with the power of epigenetic modifier domains to induce fast and long-lasting changes in the epigenetic landscape of a target gene and control its expression. Here we provide a detailed description for the generation of TALE-based designer epigenome modifiers and of a suitable reporter cell line to easily monitor their activity.

  7. TALE-PvuII fusion proteins--novel tools for gene targeting.

    PubMed

    Yanik, Mert; Alzubi, Jamal; Lahaye, Thomas; Cathomen, Toni; Pingoud, Alfred; Wende, Wolfgang

    2013-01-01

    Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity.

  8. Big Data and Genome Editing Technology: A New Paradigm of Cardiovascular Genomics.

    PubMed

    Krittanawong, Chayakrit; Sun, Tao; Herzog, Eyal

    2017-01-01

    Opinion Statements: Cardiovascular diseases (CVDs) encompass a range of conditions extending from congenital heart disease to acute coronary syndrome most of which are heterogenous in nature and some of them are multiple genetic loci. However, the pathogenesis of most CVDs remains incompletely understood. The advance in genome-editing technologies, an engineering process of DNA sequences at precise genomic locations, has enabled a new paradigm that human genome can be precisely modified to achieve a therapeutic effect. Genome-editing includes the correction of genetic variants that cause disease, the addition of therapeutic genes to specific sites in the genomic locations, and the removal of deleterious genes or genome sequences. Site-specific genome engineering can be used as nucleases (known as molecular scissors) including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) systems to provide remarkable opportunities for developing novel therapies in cardiovascular clinical care. Here we discuss genetic polymorphisms and mechanistic insights in CVDs with an emphasis on the impact of genome-editing technologies. The current challenges and future prospects for genomeediting technologies in cardiovascular medicine are also discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Surveyor nuclease detection of mutations and polymorphisms of mtDNA in children.

    PubMed

    Pilch, Jacek; Asman, Marek; Jamroz, Ewa; Kajor, Maciej; Kotrys-Puchalska, Elżbieta; Goss, Małgorzata; Krzak, Maria; Witecka, Joanna; Gmiński, Jan; Sieroń, Aleksander L

    2010-11-01

    Mitochondrial encephalomyopathies are complex disorders with wide range of clinical manifestations. Particularly time-consuming is the identification of mutations in mitochondrial DNA. A group of 20 children with clinical manifestations of mitochondrial encephalomyopathies was selected for molecular studies. The aims were (a) to identify mutations in mtDNA isolated from muscle and (b) to verify detected mutations in DNA isolated from blood, in order to assess the utility of a Surveyor nuclease assay kit for patient screening. The most common changes found were polymorphisms, including a few missense mutations altering the amino acid sequence of mitochondrial proteins. In two boys with MELAS (i.e., mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes), a mutation A→G3243 was detected in the tRNALeu gene of mtDNA isolated from muscle and blood. In one boy, the carrier status of his mother was confirmed, based on molecular analysis of DNA isolated from blood. A method using Surveyor nuclease allows systematic screening for small mutations in mtDNA, using as its source blood of the patients and asymptomatic carriers. The method still requires confirmation studying a larger group. In some patients, the use of this method should precede and might limit indications for traumatic muscle and skin biopsy. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Detection and quantification of genetically modified organisms using very short, locked nucleic acid TaqMan probes.

    PubMed

    Salvi, Sergio; D'Orso, Fabio; Morelli, Giorgio

    2008-06-25

    Many countries have introduced mandatory labeling requirements on foods derived from genetically modified organisms (GMOs). Real-time quantitative polymerase chain reaction (PCR) based upon the TaqMan probe chemistry has become the method mostly used to support these regulations; moreover, event-specific PCR is the preferred method in GMO detection because of its high specificity based on the flanking sequence of the exogenous integrant. The aim of this study was to evaluate the use of very short (eight-nucleotide long), locked nucleic acid (LNA) TaqMan probes in 5'-nuclease PCR assays for the detection and quantification of GMOs. Classic TaqMan and LNA TaqMan probes were compared for the analysis of the maize MON810 transgene. The performance of the two types of probes was tested on the maize endogenous reference gene hmga, the CaMV 35S promoter, and the hsp70/cryIA(b) construct as well as for the event-specific 5'-integration junction of MON810, using plasmids as standard reference molecules. The results of our study demonstrate that the LNA 5'-nuclease PCR assays represent a valid and reliable analytical system for the detection and quantification of transgenes. Application of very short LNA TaqMan probes to GMO quantification can simplify the design of 5'-nuclease assays.

  11. TaqMan 5′-Nuclease Human Immunodeficiency Virus Type 1 PCR Assay with Phage-Packaged Competitive Internal Control for High-Throughput Blood Donor Screening

    PubMed Central

    Drosten, C.; Seifried, E.; Roth, W. K.

    2001-01-01

    Screening of blood donors for human immunodeficiency virus type 1 (HIV-1) infection by PCR permits the earlier diagnosis of HIV-1 infection compared with that by serologic assays. We have established a high-throughput reverse transcription (RT)-PCR assay based on 5′-nuclease PCR. By in-tube detection of HIV-1 RNA with a fluorogenic probe, the 5′-nuclease PCR technology (TaqMan PCR) eliminates the risk of carryover contamination, a major problem in PCR testing. We outline the development and evaluation of the PCR assay from a technical point of view. A one-step RT-PCR that targets the gag genes of all known HIV-1 group M isolates was developed. An internal control RNA detectable with a heterologous 5′-nuclease probe was derived from the viral target cDNA and was packaged into MS2 coliphages (Armored RNA). Because the RNA was protected against digestion with RNase, it could be spiked into patient plasma to control the complete sample preparation and amplification process. The assay detected 831 HIV-1 type B genome equivalents per ml of native plasma (95% confidence interval [CI], 759 to 936 HIV-1 B genome equivalents per ml) with a ≥95% probability of a positive result, as determined by probit regression analysis. A detection limit of 1,195 genome equivalents per ml of (individual) donor plasma (95% CI, 1,014 to 1,470 genome equivalents per ml of plasma pooled from individuals) was achieved when 96 samples were pooled and enriched by centrifugation. Up to 4,000 plasma samples per PCR run were tested in a 3-month trial period. Although data from the present pilot feasibility study will have to be complemented by a large clinical validation study, the assay is a promising approach to the high-throughput screening of blood donors and is the first noncommercial test for high-throughput screening for HIV-1. PMID:11724836

  12. The CRISPR-Cas system - from bacterial immunity to genome engineering.

    PubMed

    Czarnek, Maria; Bereta, Joanna

    2016-09-01

    Precise and efficient genome modifications present a great value in attempts to comprehend the roles of particular genes and other genetic elements in biological processes as well as in various pathologies. In recent years novel methods of genome modification known as genome editing, which utilize so called "programmable" nucleases, came into use. A true revolution in genome editing has been brought about by the introduction of the CRISP-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) system, in which one of such nucleases, i.e. Cas9, plays a major role. This system is based on the elements of the bacterial and archaeal mechanism responsible for acquired immunity against phage infections and transfer of foreign genetic material. Microorganisms incorporate fragments of foreign DNA into CRISPR loci present in their genomes, which enables fast recognition and elimination of future infections. There are several types of CRISPR-Cas systems among prokaryotes but only elements of CRISPR type II are employed in genome engineering. CRISPR-Cas type II utilizes small RNA molecules (crRNA and tracrRNA) to precisely direct the effector nuclease - Cas9 - to a specific site in the genome, i.e. to the sequence complementary to crRNA. Cas9 may be used to: (i) introduce stable changes into genomes e.g. in the process of generation of knock-out and knock-in animals and cell lines, (ii) activate or silence the expression of a gene of interest, and (iii) visualize specific sites in genomes of living cells. The CRISPR-Cas-based tools have been successfully employed for generation of animal and cell models of a number of diseases, e.g. specific types of cancer. In the future, the genome editing by programmable nucleases may find wide application in medicine e.g. in the therapies of certain diseases of genetic origin and in the therapy of HIV-infected patients.

  13. Synthesis of 2',4'-propylene-bridged (carba-ENA) thymidine and its analogues: the engineering of electrostatic and steric effects at the bottom of the minor groove for nuclease and thermodynamic stabilities and elicitation of RNase H.

    PubMed

    Liu, Yi; Xu, Jianfeng; Karimiahmadabadi, Mansoureh; Zhou, Chuanzheng; Chattopadhyaya, Jyoti

    2010-11-05

    2',4'-Propylene-bridged thymidine (carba-ENA-T) and five 8'-Me/NH(2)/OH modified carba-ENA-T analogues have been prepared through intramolecular radical addition to C═N of the tethered oxime-ether. These carba-ENA nucleosides have been subsequently incorporated into 15mer oligodeoxynucleotides (AON), and their affinity toward cDNA and RNA, nuclease resistance, and RNase H recruitment capability have been investigated in comparison with those of the native and ENA counterparts. These carba-ENAs modified AONs are highly RNA-selective since all of them led to slight thermal stabilization effect for the AON:RNA duplex, but quite large destabilization effect for the AON:DNA duplex. It was found that different C8' substituents (at the bottom of the minor groove) on carba-ENA-T only led to rather small variation of thermal stability of the AON:RNA duplexes. We, however, observed that the parent carba-ENA-T modified AONs exhibited higher nucleolytic stability than those of the ENA-T modified counterparts. The nucleolytic stability of carba-ENA-T modified AONs can be further modulated by C8' substituent to variable extents depending on not only the chemical nature but also the stereochemical orientation of the C8' substituents: Thus, (1) 8'S-Me on carba-ENA increases the nucleolytic stability but 8'R-Me leads to a decreased effect; (2) 8'R-OH on carba-ENA had little, if any, effect on nuclease resistance but 8'S-OH resulted in significantly decreased nucleolytic stability; and (3) 8'-NH(2) substituted carba-ENA leads to obvious loss in the nuclease resistance. The RNA strand in all of the carba-ENA derivatives modified AON:RNA hybrid duplexes can be digested by RNase H1 with high efficiency, even at twice the rate of those of the native and ENA modified counterpart.

  14. Loop propensity of the sequence YKGQP from staphylococcal nuclease: implications for the folding of nuclease.

    PubMed

    Patel, Sunita; Sasidhar, Yellamraju U

    2007-10-01

    Recently we performed molecular dynamics (MD) simulations on the folding of the hairpin peptide DTVKLMYKGQPMTFR from staphylococcal nuclease in explicit water. We found that the peptide folds into a hairpin conformation with native and nonnative hydrogen-bonding patterns. In all the folding events observed in the folding of the hairpin peptide, loop formation involving the region YKGQP was an important event. In order to trace the origins of the loop propensity of the sequence YKGQP, we performed MD simulations on the sequence starting from extended, polyproline II and native type I' turn conformations for a total simulation length of 300 ns, using the GROMOS96 force field under constant volume and temperature (NVT) conditions. The free-energy landscape of the peptide YKGQP shows minima corresponding to loop conformation with Tyr and Pro side-chain association, turn and extended conformational forms, with modest free-energy barriers separating the minima. To elucidate the role of Gly in facilitating loop formation, we also performed MD simulations of the mutated peptide YKAQP (Gly --> Ala mutation) under similar conditions starting from polyproline II conformation for 100 ns. Two minima corresponding to bend/turn and extended conformations were observed in the free-energy landscape for the peptide YKAQP. The free-energy barrier between the minima in the free-energy landscape of the peptide YKAQP was also modest. Loop conformation is largely sampled by the YKGQP peptide, while extended conformation is largely sampled by the YKAQP peptide. We also explain why the YKGQP sequence samples type II turn conformation in these simulations, whereas the sequence as part of the hairpin peptide DTVKLMYKGQPMTFR samples type I' turn conformation both in the X-ray crystal structure and in our earlier simulations on the folding of the hairpin peptide. We discuss the implications of our results to the folding of the staphylococcal nuclease. Copyright (c) 2007 European Peptide Society and John Wiley & Sons, Ltd.

  15. Zinc-finger nucleases-based genome engineering to generate isogenic human cell lines.

    PubMed

    Dreyer, Anne-Kathrin; Cathomen, Toni

    2012-01-01

    Customized zinc-finger nucleases (ZFNs) have developed into a promising technology to precisely alter mammalian genomes for biomedical research, biotechnology, or human gene therapy. In the context of synthetic biology, the targeted integration of a transgene or reporter cassette into a "neutral site" of the human genome, such as the AAVS1 locus, permits the generation of isogenic human cell lines with two major advantages over standard genetic manipulation techniques: minimal integration site-dependent effects on the transgene and, vice versa, no functional perturbation of the host-cell transcriptome. Here we describe in detail how ZFNs can be employed to target integration of a transgene cassette into the AAVS1 locus and how to characterize the targeted cells by PCR-based genotyping.

  16. Genetic and epigenetic control of gene expression by CRISPR–Cas systems

    PubMed Central

    Lo, Albert; Qi, Lei

    2017-01-01

    The discovery and adaption of bacterial clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas) systems has revolutionized the way researchers edit genomes. Engineering of catalytically inactivated Cas variants (nuclease-deficient or nuclease-deactivated [dCas]) combined with transcriptional repressors, activators, or epigenetic modifiers enable sequence-specific regulation of gene expression and chromatin state. These CRISPR–Cas-based technologies have contributed to the rapid development of disease models and functional genomics screening approaches, which can facilitate genetic target identification and drug discovery. In this short review, we will cover recent advances of CRISPR–dCas9 systems and their use for transcriptional repression and activation, epigenome editing, and engineered synthetic circuits for complex control of the mammalian genome. PMID:28649363

  17. Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding.

    PubMed

    Podevin, Nancy; Davies, Howard V; Hartung, Frank; Nogué, Fabien; Casacuberta, Josep M

    2013-06-01

    Conventional plant breeding exploits existing genetic variability and introduces new variability by mutagenesis. This has proven highly successful in securing food supplies for an ever-growing human population. The use of genetically modified plants is a complementary approach but all plant breeding techniques have limitations. Here, we discuss how the recent evolution of targeted mutagenesis and DNA insertion techniques based on tailor-made site-directed nucleases (SDNs) provides opportunities to overcome such limitations. Plant breeding companies are exploiting SDNs to develop a new generation of crops with new and improved traits. Nevertheless, some technical limitations as well as significant uncertainties on the regulatory status of SDNs may challenge their use for commercial plant breeding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Caffeine impairs resection during DNA break repair by reducing the levels of nucleases Sae2 and Dna2

    PubMed Central

    Tsabar, Michael; Eapen, Vinay V.; Mason, Jennifer M.; Memisoglu, Gonen; Waterman, David P.; Long, Marcus J.; Bishop, Douglas K.; Haber, James E.

    2015-01-01

    In response to chromosomal double-strand breaks (DSBs), eukaryotic cells activate the DNA damage checkpoint, which is orchestrated by the PI3 kinase-like protein kinases ATR and ATM (Mec1 and Tel1 in budding yeast). Following DSB formation, Mec1 and Tel1 phosphorylate histone H2A on serine 129 (known as γ-H2AX). We used caffeine to inhibit the checkpoint kinases after DSB induction. We show that prolonged phosphorylation of H2A-S129 does not require continuous Mec1 and Tel1 activity. Unexpectedly, caffeine treatment impaired homologous recombination by inhibiting 5′ to 3′ end resection, independent of Mec1 and Tel1 inhibition. Caffeine treatment led to the rapid loss, by proteasomal degradation, of both Sae2, a nuclease that plays a role in early steps of resection, and Dna2, a nuclease that facilitates one of two extensive resection pathways. Sae2's instability is evident in the absence of DNA damage. A similar loss is seen when protein synthesis is inhibited by cycloheximide. Caffeine treatment had similar effects on irradiated HeLa cells, blocking the formation of RPA and Rad51 foci that depend on 5′ to 3′ resection of broken chromosome ends. Our findings provide insight toward the use of caffeine as a DNA damage-sensitizing agent in cancer cells. PMID:26019182

  19. Nuclease footprint analyses of the interactions between RNase P ribozyme and a model mRNA substrate.

    PubMed Central

    Trang, P; Hsu, A W; Liu, F

    1999-01-01

    RNase P ribozyme cleaves an RNA helix substrate which resembles the acceptor stem and T-stem structures of its natural tRNA substrate. By linking the ribozyme covalently to a sequence (guide sequence) complementary to a target RNA, the catalytic RNA can be converted into a sequence-specific ribozyme, M1GS RNA. We have previously shown that M1GS RNA can efficiently cleave the mRNA sequence encoding thymidine kinase (TK) of herpes simplex virus 1. In this study, a footprint procedure using different nucleases was carried out to map the regions of a M1GS ribozyme that potentially interact with the TK mRNA substrate. The ribozyme regions that are protected from nuclease degradation in the presence of the TK mRNA substrate include those that interact with the acceptor stem and T-stem, the 3' terminal CCA sequence and the cleavage site of a tRNA substrate. However, some of the protected regions (e.g. P13 and P14) are unique and not among those protected in the presence of a tRNA substrate. Identification of the regions that interact with a mRNA substrate will allow us to study how M1GS RNA recognizes a mRNA substrate and facilitate the development of mRNA-cleaving ribozymes for gene-targeting applications. PMID:10556315

  20. Multiplexed screening assay for mRNA combining nuclease protection with luminescent array detection.

    PubMed

    Martel, Ralph R; Botros, Ihab W; Rounseville, Matthew P; Hinton, James P; Staples, Robin R; Morales, David A; Farmer, John B; Seligmann, Bruce E

    2002-11-01

    The principles and performance are described for the ArrayPlate mRNA assay, a multiplexed mRNA assay for high-throughput and high-content screening and drug development. THP-1 monocytes grown and subjected to compound treatments in 96-well plates were subjected to a multiplexed nuclease protection assay in situ. The nuclease protection assay destroyed all cell-derived mRNA, but left intact stoichiometric amounts of 16 target-specific oligonucleotide probes. Upon transfer of processed cell lysates to a microplate that contained a 16-element oligonucleotide array at the bottom of each well, the various probe species were separated by immobilization at predefined elements of the array. Quantitative detection of array-bound probes was by enzyme-mediated chemiluminescence. A high-resolution charge-coupled device imager was used for the simultaneous readout of all 1536 array elements in a 96-well plate. For the measurement of 16 genes in samples of 25000 cells, the average standard deviation from well to well within a plate was 8.6% of signal intensity and was 10.8% from plate to plate. Assay response was linear and reproducibility was constant for all detected genes in samples ranging from 1000 to 50000 cells. When THP-1 monocytes were differentiated with phorbol ester and subsequently activated with bacterial lipopolysaccharide that contained different concentrations of dexamethasone, dose-dependent effects of dexamethasone on the mRNA levels of several genes were observed.

  1. CRISPR/Cas9-Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development.

    PubMed

    Okoli, Arinze; Okeke, Malachy I; Tryland, Morten; Moens, Ugo

    2018-01-22

    The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) technology is revolutionizing genome editing approaches. Its high efficiency, specificity, versatility, flexibility, simplicity and low cost have made the CRISPR/Cas9 system preferable to other guided site-specific nuclease-based systems such as TALENs (Transcription Activator-like Effector Nucleases) and ZFNs (Zinc Finger Nucleases) in genome editing of viruses. CRISPR/Cas9 is presently being applied in constructing viral mutants, preventing virus infections, eradicating proviral DNA, and inhibiting viral replication in infected cells. The successful adaptation of CRISPR/Cas9 to editing the genome of Vaccinia virus paves the way for its application in editing other vaccine/vector-relevant orthopoxvirus (OPXV) strains. Thus, CRISPR/Cas9 can be used to resolve some of the major hindrances to the development of OPXV-based recombinant vaccines and vectors, including sub-optimal immunogenicity; transgene and genome instability; reversion of attenuation; potential of spread of transgenes to wildtype strains and close contacts, which are important biosafety and risk assessment considerations. In this article, we review the published literature on the application of CRISPR/Cas9 in virus genome editing and discuss the potentials of CRISPR/Cas9 in advancing OPXV-based recombinant vaccines and vectors. We also discuss the application of CRISPR/Cas9 in combating viruses of clinical relevance, the limitations of CRISPR/Cas9 and the current strategies to overcome them.

  2. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T; Huang, S; Zhao, XF

    Recent studies indicate that the DNA recognition domain of transcription activator-like (TAL) effectors can be combined with the nuclease domain of FokI restriction enzyme to produce TAL effector nucleases (TALENs) that, in pairs, bind adjacent DNA target sites and produce double-strand breaks between the target sequences, stimulating non-homologous end-joining and homologous recombination. Here, we exploit the four prevalent TAL repeats and their DNA recognition cipher to develop a 'modular assembly' method for rapid production of designer TALENs (dTALENs) that recognize unique DNA sequence up to 23 bases in any gene. We have used this approach to engineer 10 dTALENs tomore » target specific loci in native yeast chromosomal genes. All dTALENs produced high rates of site-specific gene disruptions and created strains with expected mutant phenotypes. Moreover, dTALENs stimulated high rates (up to 34%) of gene replacement by homologous recombination. Finally, dTALENs caused no detectable cytotoxicity and minimal levels of undesired genetic mutations in the treated yeast strains. These studies expand the realm of verified TALEN activity from cultured human cells to an intact eukaryotic organism and suggest that low-cost, highly dependable dTALENs can assume a significant role for gene modifications of value in human and animal health, agriculture and industry.« less

  3. The antigenic surface of staphylococcal nuclease. II. Analysis of the N-1 epitope by site-directed mutagenesis.

    PubMed

    Smith, A M; Benjamin, D C

    1991-02-15

    Previous studies in our laboratory on the production and isolation of a panel of mAb to staphylococcal nuclease allowed us to define a series of eight overlapping epitopes. Using site-directed mutagenesis of the nuclease coding sequences we were able to map the nonoverlapping epitopes recognized by two members of this panel. In the study reported here, we report the generation and analysis of a number of single amino acid substitutions for seven surface residues predicted to lie within one of these two epitopes. Immunochemical analysis showed that one or more substitutions at each of these seven positions had a major effect on mAb binding, whereas other substitutions had none. Based on the nature of these substitutions and the chemical and physical properties of the variant molecules, we believe that any structural effects induced by these substitutions are local and do not result in long-range structural alterations that indirectly influence antibody reactivity. Therefore, we conclude that disruption of mAb binding can be directly attributed to changes in amino acid side chains and that not only are all seven of the residues studied part of the epitope but all seven make contact with the antibody combining site. These studies demonstrate the advantages of using site-directed mutagenesis to study antigen structure and emphasize the importance of constructing the examining multiple substitutions for any given amino acid.

  4. The quantitative determination of metabolites of 6-mercaptopurine in biological materials. VI. Evidence for posttranscriptional modification of 6-thioguanosine residues in RNA from L5178Y cells treated with 6-mercaptopurine.

    PubMed

    Breter, H J

    1985-05-24

    Mammalian cells incorporate 6-thioguanosine into their nucleic acids when grown in the presence of 6-mercaptopurine. 35S-labeled total RNA was prepared from L5178Y murine lymphoma cells grown in vitro in the presence of 6-[35S]mercaptopurine. Base analyses of this RNA suggested that 6-thioguanosine residues in RNA molecules undergo posttranscriptional modification. Thus, enzymatic peak-shifting analyses using anion-exchange high-performance liquid chromatography were applied to the hydrolysis products released from total RNA preparations by digestion with nuclease P1 or nuclease P1 plus nucleotide pyrophosphatase. At least eight 35S-labeled, phosphatase-sensitive compounds structurally different from [35S]6thioGMP were found in nuclease P1 digests. Four of these compounds were susceptible to cleavage with nucleotide pyrophosphatase, thus indicating that they contained phosphoric acid anhydride bonds. Individual RNA species were not separately examined, the radiochromatographic data, however, which were obtained from digests of total RNA preparations, present evidence that 6-thioguanosine 5'-diphosphate and 6-thioguanosine 5'-triphosphate exist as 5'-terminal starting nucleotides (in tRNA and rRNA) and that 6-thioguanosine becomes incorporated into the highly modified dinucleoside triphosphate structures (caps) which commonly block the 5'-termini of eukaryotic poly(A)+ mRNA-molecules.

  5. Toward eliminating HLA class I expression to generate universal cells from allogeneic donors

    PubMed Central

    Torikai, Hiroki; Reik, Andreas; Soldner, Frank; Warren, Edus H.; Yuen, Carrie; Zhou, Yuanyue; Crossland, Denise L.; Huls, Helen; Littman, Nicholas; Zhang, Ziying; Tykodi, Scott S.; Kebriaei, Partow; Lee, Dean A.; Miller, Jeffrey C.; Rebar, Edward J.; Holmes, Michael C.; Jaenisch, Rudolf; Champlin, Richard E.; Gregory, Philip D.

    2013-01-01

    Long-term engraftment of allogeneic cells necessitates eluding immune-mediated rejection, which is currently achieved by matching for human leukocyte antigen (HLA) expression, immunosuppression, and/or delivery of donor-derived cells to sanctuary sites. Genetic engineering provides an alternative approach to avoid clearance of cells that are recognized as “non-self” by the recipient. To this end, we developed designer zinc finger nucleases and employed a “hit-and-run” approach to genetic editing for selective elimination of HLA expression. Electro-transfer of mRNA species coding for these engineered nucleases completely disrupted expression of HLA-A on human T cells, including CD19-specific T cells. The HLA-Aneg T-cell pools can be enriched and evade lysis by HLA-restricted cytotoxic T-cell clones. Recognition by natural killer cells of cells that had lost HLA expression was circumvented by enforced expression of nonclassical HLA molecules. Furthermore, we demonstrate that zinc finger nucleases can eliminate HLA-A expression from embryonic stem cells, which broadens the applicability of this strategy beyond infusing HLA-disparate immune cells. These findings establish that clinically appealing cell types derived from donors with disparate HLA expression can be genetically edited to evade an immune response and provide a foundation whereby cells from a single donor can be administered to multiple recipients. PMID:23741009

  6. Inhibition of aac(6′)-Ib-mediated amikacin resistance by nuclease-resistant external guide sequences in bacteria

    PubMed Central

    Soler Bistué, Alfonso J. C.; Martín, Fernando A.; Vozza, Nicolás; Ha, Hongphuc; Joaquín, Jonathan C.; Zorreguieta, Angeles; Tolmasky, Marcelo E.

    2009-01-01

    Inhibition of bacterial gene expression by RNase P-directed cleavage is a promising strategy for the development of antibiotics and pharmacological agents that prevent expression of antibiotic resistance. The rise in multiresistant bacteria harboring AAC(6′)-Ib has seriously limited the effectiveness of amikacin and other aminoglycosides. We have recently shown that recombinant plasmids coding for external guide sequences (EGS), short antisense oligoribonucleotides (ORN) that elicit RNase P-mediated cleavage of a target mRNA, induce inhibition of expression of aac(6′)-Ib and concomitantly induce a significant decrease in the levels of resistance to amikacin. However, since ORN are rapidly degraded by nucleases, development of a viable RNase P-based antisense technology requires the design of nuclease-resistant RNA analog EGSs. We have assayed a variety of ORN analogs of which selected LNA/DNA co-oligomers elicited RNase P-mediated cleavage of mRNA in vitro. Although we found an ideal configuration of LNA/DNA residues, there seems not to be a correlation between number of LNA substitutions and level of activity. Exogenous administration of as low as 50 nM of an LNA/DNA co-oligomer to the hyperpermeable E. coli AS19 harboring the aac(6′)-Ib inhibited growth in the presence of amikacin. Our experiments strongly suggest an RNase P-mediated mechanism in the observed antisense effect. PMID:19666539

  7. Viral genome packaging terminase cleaves DNA using the canonical RuvC-like two-metal catalysis mechanism

    PubMed Central

    Xu, Rui-Gang; Jenkins, Huw T.; Chechik, Maria; Blagova, Elena V.; Lopatina, Anna; Klimuk, Evgeny; Minakhin, Leonid; Severinov, Konstantin

    2017-01-01

    Abstract Bacteriophages and large dsDNA viruses encode sophisticated machinery to translocate their DNA into a preformed empty capsid. An essential part of this machine, the large terminase protein, processes viral DNA into constituent units utilizing its nuclease activity. Crystal structures of the large terminase nuclease from the thermophilic bacteriophage G20c show that it is most similar to the RuvC family of the RNase H-like endonucleases. Like RuvC proteins, the nuclease requires either Mn2+, Mg2+ or Co2+ ions for activity, but is inactive with Zn2+ and Ca2+. High resolution crystal structures of complexes with different metals reveal that in the absence of DNA, only one catalytic metal ion is accommodated in the active site. Binding of the second metal ion may be facilitated by conformational variability, which enables the two catalytic aspartic acids to be brought closer to each other. Structural comparison indicates that in common with the RuvC family, the location of the two catalytic metals differs from other members of the RNase H family. In contrast to a recently proposed mechanism, the available data do not support binding of the two metals at an ultra-short interatomic distance. Thus we postulate that viral terminases cleave DNA by the canonical RuvC-like mechanism. PMID:28100693

  8. Progress in Genome Editing Technology and Its Application in Plants

    PubMed Central

    Zhang, Kai; Raboanatahiry, Nadia; Zhu, Bin; Li, Maoteng

    2017-01-01

    Genome editing technology (GET) is a versatile approach that has progressed rapidly as a mechanism to alter the genotype and phenotype of organisms. However, conventional genome modification using GET cannot satisfy current demand for high-efficiency and site-directed mutagenesis, retrofitting of artificial nucleases has developed into a new avenue within this field. Based on mechanisms to recognize target genes, newly-developed GETs can generally be subdivided into three cleavage systems, protein-dependent DNA cleavage systems (i.e., zinc-finger nucleases, ZFN, and transcription activator-like effector nucleases, TALEN), RNA-dependent DNA cleavage systems (i.e., clustered regularly interspaced short palindromic repeats-CRISPR associated proteins, CRISPR-Cas9, CRISPR-Cpf1, and CRISPR-C2c1), and RNA-dependent RNA cleavage systems (i.e., RNA interference, RNAi, and CRISPR-C2c2). All these techniques can lead to double-stranded (DSB) or single-stranded breaks (SSB), and result in either random mutations via non-homologous end-joining (NHEJ) or targeted mutation via homologous recombination (HR). Thus, site-directed mutagenesis can be induced via targeted gene knock-out, knock-in, or replacement to modify specific characteristics including morphology-modification, resistance-enhancement, and physiological mechanism-improvement along with plant growth and development. In this paper, an non-comprehensive review on the development of different GETs as applied to plants is presented. PMID:28261237

  9. Emerging applications of genome-editing technology to examine functionality of GWAS-associated variants for complex traits.

    PubMed

    Smith, Andrew J P; Deloukas, Panos; Munroe, Patricia B

    2018-04-13

    Over the last decade, genome-wide association studies (GWAS) have propelled the discovery of thousands of loci associated with complex diseases. The focus is now turning towards the function of these association signals, determining the causal variant(s) amongst those in strong linkage disequilibrium, and identifying their underlying mechanisms, such as long-range gene regulation. Genome-editing techniques utilising zinc-finger nucleases (ZFN), transcription activator-like effector nucleases (TALENs) and clustered regularly-interspaced short palindromic repeats with Cas9 nuclease (CRISPR-Cas9), are becoming the tools of choice to establish functionality for these variants, due to the ability to assess effects of single variants in vivo. This review will discuss examples of how these technologies have begun to aid functional analysis of GWAS loci for complex traits such as cardiovascular disease, type 2 diabetes, cancer, obesity and autoimmune disease. We focus on analysis of variants occurring within non-coding genomic regions, as these comprise the majority of GWAS variants, providing the greatest challenges to determining functionality, and compare editing strategies that provide different levels of evidence for variant functionality. The review describes molecular insights into some of these potentially causal variants, and how these may relate to the pathology of the trait, and look towards future directions for these technologies in post-GWAS analysis, such as base-editing.

  10. CRISPR/Cas9 Technology as an Emerging Tool for Targeting Amyotrophic Lateral Sclerosis (ALS).

    PubMed

    Kruminis-Kaszkiel, Ewa; Juranek, Judyta; Maksymowicz, Wojciech; Wojtkiewicz, Joanna

    2018-03-19

    The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) is a genome editing tool that has recently caught enormous attention due to its novelty, feasibility, and affordability. This system naturally functions as a defense mechanism in bacteria and has been repurposed as an RNA-guided DNA editing tool. Unlike zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), CRISPR/Cas9 takes advantage of an RNA-guided DNA endonuclease enzyme, Cas9, which is able to generate double-strand breaks (DSBs) at specific genomic locations. It triggers cellular endogenous DNA repair pathways, contributing to the generation of desired modifications in the genome. The ability of the system to precisely disrupt DNA sequences has opened up new avenues in our understanding of amyotrophic lateral sclerosis (ALS) pathogenesis and the development of new therapeutic approaches. In this review, we discuss the current knowledge of the principles and limitations of the CRISPR/Cas9 system, as well as strategies to improve these limitations. Furthermore, we summarize novel approaches of engaging the CRISPR/Cas9 system in establishing an adequate model of neurodegenerative disease and in the treatment of SOD1-linked forms of ALS. We also highlight possible applications of this system in the therapy of ALS, both the inherited type as well as ALS of sporadic origin.

  11. CRISPR/Cas9 Technology as an Emerging Tool for Targeting Amyotrophic Lateral Sclerosis (ALS)

    PubMed Central

    Juranek, Judyta; Maksymowicz, Wojciech

    2018-01-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) is a genome editing tool that has recently caught enormous attention due to its novelty, feasibility, and affordability. This system naturally functions as a defense mechanism in bacteria and has been repurposed as an RNA-guided DNA editing tool. Unlike zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), CRISPR/Cas9 takes advantage of an RNA-guided DNA endonuclease enzyme, Cas9, which is able to generate double-strand breaks (DSBs) at specific genomic locations. It triggers cellular endogenous DNA repair pathways, contributing to the generation of desired modifications in the genome. The ability of the system to precisely disrupt DNA sequences has opened up new avenues in our understanding of amyotrophic lateral sclerosis (ALS) pathogenesis and the development of new therapeutic approaches. In this review, we discuss the current knowledge of the principles and limitations of the CRISPR/Cas9 system, as well as strategies to improve these limitations. Furthermore, we summarize novel approaches of engaging the CRISPR/Cas9 system in establishing an adequate model of neurodegenerative disease and in the treatment of SOD1-linked forms of ALS. We also highlight possible applications of this system in the therapy of ALS, both the inherited type as well as ALS of sporadic origin. PMID:29562705

  12. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells.

    PubMed

    Byrne, Susan M; Ortiz, Luis; Mali, Prashant; Aach, John; Church, George M

    2015-02-18

    Sequence-specific nucleases such as TALEN and the CRISPR/Cas9 system have so far been used to disrupt, correct or insert transgenes at precise locations in mammalian genomes. We demonstrate efficient 'knock-in' targeted replacement of multi-kilobase genes in human induced pluripotent stem cells (iPSC). Using a model system replacing endogenous human genes with their mouse counterpart, we performed a comprehensive study of targeting vector design parameters for homologous recombination. A 2.7 kilobase (kb) homozygous gene replacement was achieved in up to 11% of iPSC without selection. The optimal homology arm length was around 2 kb, with homology length being especially critical on the arm not adjacent to the cut site. Homologous sequence inside the cut sites was detrimental to targeting efficiency, consistent with a synthesis-dependent strand annealing (SDSA) mechanism. Using two nuclease sites, we observed a high degree of gene excisions and inversions, which sometimes occurred more frequently than indel mutations. While homozygous deletions of 86 kb were achieved with up to 8% frequency, deletion frequencies were not solely a function of nuclease activity and deletion size. Our results analyzing the optimal parameters for targeting vector design will inform future gene targeting efforts involving multi-kilobase gene segments, particularly in human iPSC. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. TALE-PvuII Fusion Proteins – Novel Tools for Gene Targeting

    PubMed Central

    Yanik, Mert; Alzubi, Jamal; Lahaye, Thomas; Cathomen, Toni; Pingoud, Alfred; Wende, Wolfgang

    2013-01-01

    Zinc finger nucleases (ZFNs) consist of zinc fingers as DNA-binding module and the non-specific DNA-cleavage domain of the restriction endonuclease FokI as DNA-cleavage module. This architecture is also used by TALE nucleases (TALENs), in which the DNA-binding modules of the ZFNs have been replaced by DNA-binding domains based on transcription activator like effector (TALE) proteins. Both TALENs and ZFNs are programmable nucleases which rely on the dimerization of FokI to induce double-strand DNA cleavage at the target site after recognition of the target DNA by the respective DNA-binding module. TALENs seem to have an advantage over ZFNs, as the assembly of TALE proteins is easier than that of ZFNs. Here, we present evidence that variant TALENs can be produced by replacing the catalytic domain of FokI with the restriction endonuclease PvuII. These fusion proteins recognize only the composite recognition site consisting of the target site of the TALE protein and the PvuII recognition sequence (addressed site), but not isolated TALE or PvuII recognition sites (unaddressed sites), even at high excess of protein over DNA and long incubation times. In vitro, their preference for an addressed over an unaddressed site is > 34,000-fold. Moreover, TALE-PvuII fusion proteins are active in cellula with minimal cytotoxicity. PMID:24349308

  14. Au nanoparticles/hollow molybdenum disulfide microcubes based biosensor for microRNA-21 detection coupled with duplex-specific nuclease and enzyme signal amplification.

    PubMed

    Shuai, Hong-Lei; Huang, Ke-Jing; Chen, Ying-Xu; Fang, Lin-Xia; Jia, Meng-Pei

    2017-03-15

    An ultrasensitive electrochemical biosensor for detecting microRNAs is fabricated based on hollow molybdenum disulfide (MoS 2 ) microcubes. Duplex-specific nuclease, enzyme and electrochemical-chemical-chemical redox cycling are used for signal amplification. Hollow MoS 2 microcubes constructed by ultrathin nanosheets are synthesized by a facile template-assisted strategy and used as supporting substrate. For biosensor assembling, biotinylated ssDNA capture probes are first immobilized on Au nanoparticles (AuNPs)/MoS 2 modified electrode in order to combine with streptavidin-conjugated alkaline phosphatase (SA-ALP). When capture probes hybridize with miRNAs, duplex-specific nuclease cleaves the formative duplexes. At the moment, the biotin group strips from the electrode surface and SA-ALP is incapacitated to attach onto electrode. Then, ascorbic acids induce the electrochemical-chemical-chemical redox cycling to produce electrochemical response in the presence of ferrocene methanol and tris (2-carboxyethyl) phosphine. Under optimum conditions, the proposed biosensor shows a good linear relationship between the current variation and logarithm of the microRNAs concentration ranging from 0.1fM to 0.1pM with a detection limit of 0.086fM (S/N=3). Furthermore, the biosensor is successfully applied to detect target miRNA-21 in human serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The CRISPR-Cas system for plant genome editing: advances and opportunities.

    PubMed

    Kumar, Vinay; Jain, Mukesh

    2015-01-01

    Genome editing is an approach in which a specific target DNA sequence of the genome is altered by adding, removing, or replacing DNA bases. Artificially engineered hybrid enzymes, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), and the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated protein) system are being used for genome editing in various organisms including plants. The CRISPR-Cas system has been developed most recently and seems to be more efficient and less time-consuming compared with ZFNs or TALENs. This system employs an RNA-guided nuclease, Cas9, to induce double-strand breaks. The Cas9-mediated breaks are repaired by cellular DNA repair mechanisms and mediate gene/genome modifications. Here, we provide a detailed overview of the CRISPR-Cas system and its adoption in different organisms, especially plants, for various applications. Important considerations and future opportunities for deployment of the CRISPR-Cas system in plants for numerous applications are also discussed. Recent investigations have revealed the implications of the CRISPR-Cas system as a promising tool for targeted genetic modifications in plants. This technology is likely to be more commonly adopted in plant functional genomics studies and crop improvement in the near future. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. GeneKnockout by Targeted Mutagenesis in a Hemimetabolous Insect, the Two-Spotted Cricket Gryllus bimaculatus, using TALENs.

    PubMed

    Watanabe, Takahito; Noji, Sumihare; Mito, Taro

    2016-01-01

    Hemimetabolous, or incompletely metamorphosing, insects are phylogenetically basal. These insects include many deleterious species. The cricket, Gryllus bimaculatus, is an emerging model for hemimetabolous insects, based on the success of RNA interference (RNAi)-based gene-functional analyses and transgenic technology. Taking advantage of genome-editing technologies in this species would greatly promote functional genomics studies. Genome editing using transcription activator-like effector nucleases (TALENs) has proven to be an effective method for site-specific genome manipulation in various species. TALENs are artificial nucleases that are capable of inducing DNA double-strand breaks into specified target sequences. Here, we describe a protocol for TALEN-based gene knockout in G. bimaculatus, including a mutant selection scheme via mutation detection assays, for generating homozygous knockout organisms.

  17. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  18. Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2

    PubMed Central

    White, Rebekah R.; Shan, Siqing; Rusconi, Christopher P.; Shetty, Geetha; Dewhirst, Mark W.; Kontos, Christopher D.; Sullenger, Bruce A.

    2003-01-01

    Angiopoietin-2 (Ang2) appears to be a naturally occurring antagonist of the endothelial receptor tyrosine kinase Tie2, an important regulator of vascular stability. Destabilization of the endothelium by Ang2 is believed to potentiate the actions of proangiogenic growth factors. To investigate the specific role of Ang2 in the adult vasculature, we generated a nuclease-resistant RNA aptamer that binds and inhibits Ang2 but not the related Tie2 agonist, angiopoietin-1. Local delivery of this aptamer but not a partially scrambled mutant aptamer inhibited basic fibroblast growth factor-mediated neovascularization in the rat corneal micropocket angiogenesis assay. These in vivo data directly demonstrate that a specific inhibitor of Ang2 can act as an antiangiogenic agent. PMID:12692304

  19. Generation of genetically-engineered animals using engineered endonucleases.

    PubMed

    Lee, Jong Geol; Sung, Young Hoon; Baek, In-Jeoung

    2018-05-17

    The key to successful drug discovery and development is to find the most suitable animal model of human diseases for the preclinical studies. The recent emergence of engineered endonucleases is allowing for efficient and precise genome editing, which can be used to develop potentially useful animal models for human diseases. In particular, zinc finger nucleases, transcription activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeat systems are revolutionizing the generation of diverse genetically-engineered experimental animals including mice, rats, rabbits, dogs, pigs, and even non-human primates that are commonly used for preclinical studies of the drug discovery. Here, we describe recent advances in engineered endonucleases and their application in various laboratory animals. We also discuss the importance of genome editing in animal models for more closely mimicking human diseases.

  20. Genome Editing and Its Applications in Model Organisms.

    PubMed

    Ma, Dongyuan; Liu, Feng

    2015-12-01

    Technological advances are important for innovative biological research. Development of molecular tools for DNA manipulation, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly-interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas), has revolutionized genome editing. These approaches can be used to develop potential therapeutic strategies to effectively treat heritable diseases. In the last few years, substantial progress has been made in CRISPR/Cas technology, including technical improvements and wide application in many model systems. This review describes recent advancements in genome editing with a particular focus on CRISPR/Cas, covering the underlying principles, technological optimization, and its application in zebrafish and other model organisms, disease modeling, and gene therapy used for personalized medicine. Copyright © 2016 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  1. Lipid Membrane Encapsulation of a 3D DNA Nano Octahedron.

    PubMed

    Perrault, Steven D; Shih, William M

    2017-01-01

    Structural DNA nanotechnology methods such as DNA origami allow for the synthesis of highly precise nanometer-scale materials (Rothemund, Nature 440:297-302, 2006; Douglas et al., Nature 459:414-418, 2009). These offer compelling advantages for biomedical applications. Such materials can suffer from structural instability in biological environments due to denaturation and nuclease digestion (Hahn et al., ACS Nano 2014; Perrault and Shih, ACS Nano 8:5132-5140, 2014). Encapsulation of DNA nanostructures in a lipid membrane compartmentalizes them from their environment and prevents denaturation and nuclease digestion (Perrault and Shih, ACS Nano 8:5132-5140, 2014). Here, we describe the encapsulation of a 50 nm DNA nanostructure having the geometry of a wireframe octahedron in a phospholipid membrane containing poly-(ethylene glycol), resulting in biocompatible DNA nanostructures.

  2. Generation of a Knockout Mouse Embryonic Stem Cell Line Using a Paired CRISPR/Cas9 Genome Engineering Tool.

    PubMed

    Wettstein, Rahel; Bodak, Maxime; Ciaudo, Constance

    2016-01-01

    CRISPR/Cas9, originally discovered as a bacterial immune system, has recently been engineered into the latest tool to successfully introduce site-specific mutations in a variety of different organisms. Composed only of the Cas9 protein as well as one engineered guide RNA for its functionality, this system is much less complex in its setup and easier to handle than other guided nucleases such as Zinc-finger nucleases or TALENs.Here, we describe the simultaneous transfection of two paired CRISPR sgRNAs-Cas9 plasmids, in mouse embryonic stem cells (mESCs), resulting in the knockout of the selected target gene. Together with a four primer-evaluation system, it poses an efficient way to generate new independent knockout mouse embryonic stem cell lines.

  3. Inhibition of DNA2 nuclease as a therapeutic strategy targeting replication stress in cancer cells.

    PubMed

    Kumar, S; Peng, X; Daley, J; Yang, L; Shen, J; Nguyen, N; Bae, G; Niu, H; Peng, Y; Hsieh, H-J; Wang, L; Rao, C; Stephan, C C; Sung, P; Ira, G; Peng, G

    2017-04-17

    Replication stress is a characteristic feature of cancer cells, which is resulted from sustained proliferative signaling induced by activation of oncogenes or loss of tumor suppressors. In cancer cells, oncogene-induced replication stress manifests as replication-associated lesions, predominantly double-strand DNA breaks (DSBs). An essential mechanism utilized by cells to repair replication-associated DSBs is homologous recombination (HR). In order to overcome replication stress and survive, cancer cells often require enhanced HR repair capacity. Therefore, the key link between HR repair and cellular tolerance to replication-associated DSBs provides us with a mechanistic rationale for exploiting synthetic lethality between HR repair inhibition and replication stress. DNA2 nuclease is an evolutionarily conserved essential enzyme in replication and HR repair. Here we demonstrate that DNA2 is overexpressed in pancreatic cancers, one of the deadliest and more aggressive forms of human cancers, where mutations in the KRAS are present in 90-95% of cases. In addition, depletion of DNA2 significantly reduces pancreatic cancer cell survival and xenograft tumor growth, suggesting the therapeutic potential of DNA2 inhibition. Finally, we develop a robust high-throughput biochemistry assay to screen for inhibitors of the DNA2 nuclease activity. The top inhibitors were shown to be efficacious against both yeast Dna2 and human DNA2. Treatment of cancer cells with DNA2 inhibitors recapitulates phenotypes observed upon DNA2 depletion, including decreased DNA double strand break end resection and attenuation of HR repair. Similar to genetic ablation of DNA2, chemical inhibition of DNA2 selectively attenuates the growth of various cancer cells with oncogene-induced replication stress. Taken together, our findings open a new avenue to develop a new class of anticancer drugs by targeting druggable nuclease DNA2. We propose DNA2 inhibition as new strategy in cancer therapy by targeting replication stress, a molecular property of cancer cells that is acquired as a result of oncogene activation instead of targeting currently undruggable oncoprotein itself such as KRAS.

  4. Assays for the determination of the activity of DNA nucleases based on the fluorometric properties of the YOYO dye.

    PubMed

    Fernández-Sierra, Mónica; Quiñones, Edwin

    2015-03-15

    Here we characterize the fluorescence of the YOYO dye as a tool for studying DNA-protein interactions in real time and present two continuous YOYO-based assays for sensitively monitoring the kinetics of DNA digestion by λ-exonuclease and the endonuclease EcoRV. The described assays rely on the different fluorescence intensities between single- and double-stranded DNA-YOYO complexes, allowing straightforward determination of nuclease activity and quantitative determination of reaction products. The assays were also employed to assess the effect of single-stranded DNA-binding proteins on the λ-exonuclease reaction kinetics, showing that the extreme thermostable single-stranded DNA-binding protein (ET-SSB) significantly reduced the reaction rate, while the recombination protein A (RecA) displayed no effect. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Staphylococcus aureus detection in blood samples by silica nanoparticle-oligonucleotides conjugates.

    PubMed

    Borsa, Baris A; Tuna, Bilge G; Hernandez, Frank J; Hernandez, Luiza I; Bayramoglu, Gulay; Arica, M Yakup; Ozalp, V Cengiz

    2016-12-15

    A fast, specific and sensitive homogeneous assay for Staphylococcus aureus detection was developed by measuring the activity of secreted nuclease from the bacteria via a modified DNA oligonucleotide. As biosensor format, an effective system, Nanokeepers as previously reported, were used for triggered release of confined fluorophores, and hence specific detection of S. aureus on nuclease activity was obtained. The interference from blood components for fluorescent quantification was eliminated by a pre-purification by aptamer-functionalized silica magnetic nanoparticles. The reported assay system was exclusively formed by nucleic acid oligos and magnetic or mesoporous silica nanoparticles, that can be used on blood samples in a stepwise manner. The assay was successfully used as a sensing platform for the specific detection of S. aureus cells as low as 682 CFU in whole blood. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Unlocking the potential of CRISPR technology for improving livelihoods in Africa.

    PubMed

    Mudziwapasi, Reagan; Ndudzo, Abigarl; Nyamusamba, Rutendo Patricia; Jomane, Fortune Ntengwa; Mutengwa, Tendai Trudor; Maphosa, Mcebisi

    2018-06-11

    Africa is burdened with food shortages and plant, animal and human diseases. Some of these can be ameliorated by adopting genome editing technologies such as CRISPR. This technology is considered better than its predecessors, Zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), because it is cheaper, easy to use, has high gene modification efficiency and is less time consuming. CRISPR technology has wide applications in the African context ranging from crop and animal improvement to disease diagnosis and treatment as well as improving food shelf life, organoleptic properties and food safety. It has the potential to bring back species of organisms that are extinct. However, some African countries have not taken advantage of the potential of CRISPR to solve many of their problems. This paper explores possible applications of CRISPR towards improvement of African livelihoods.

  7. Gene knockout by targeted mutagenesis in a hemimetabolous insect, the two-spotted cricket Gryllus bimaculatus, using TALENs.

    PubMed

    Watanabe, Takahito; Noji, Sumihare; Mito, Taro

    2014-08-15

    Hemimetabolous, or incompletely metamorphosing, insects are phylogenetically basal. These insects include many deleterious species. The cricket, Gryllus bimaculatus, is an emerging model for hemimetabolous insects, based on the success of RNA interference (RNAi)-based gene-functional analyses and transgenic technology. Taking advantage of genome-editing technologies in this species would greatly promote functional genomics studies. Genome editing using transcription activator-like effector nucleases (TALENs) has proven to be an effective method for site-specific genome manipulation in various species. TALENs are artificial nucleases that are capable of inducing DNA double-strand breaks into specified target sequences. Here, we describe a protocol for TALEN-based gene knockout in G. bimaculatus, including a mutant selection scheme via mutation detection assays, for generating homozygous knockout organisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish.

    PubMed

    Kawahara, Atsuo; Hisano, Yu; Ota, Satoshi; Taimatsu, Kiyohito

    2016-05-13

    The zebrafish (Danio rerio) is an ideal vertebrate model to investigate the developmental molecular mechanism of organogenesis and regeneration. Recent innovation in genome editing technologies, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) system, have allowed researchers to generate diverse genomic modifications in whole animals and in cultured cells. The CRISPR/Cas9 and TALEN techniques frequently induce DNA double-strand breaks (DSBs) at the targeted gene, resulting in frameshift-mediated gene disruption. As a useful application of genome editing technology, several groups have recently reported efficient site-specific integration of exogenous genes into targeted genomic loci. In this review, we provide an overview of TALEN- and CRISPR/Cas9-mediated site-specific integration of exogenous genes in zebrafish.

  9. Engineering designer transcription activator-like effector nucleases (TALENs) by REAL or REAL-Fast assembly.

    PubMed

    Reyon, Deepak; Khayter, Cyd; Regan, Maureen R; Joung, J Keith; Sander, Jeffry D

    2012-10-01

    Engineered transcription activator-like effector nucleases (TALENs) are broadly useful tools for performing targeted genome editing in a wide variety of organisms and cell types including plants, zebrafish, C. elegans, rat, human somatic cells, and human pluripotent stem cells. Here we describe detailed protocols for the serial, hierarchical assembly of TALENs that require neither PCR nor specialized multi-fragment ligations and that can be implemented by any laboratory. These restriction enzyme and ligation (REAL)-based protocols can be practiced using plasmid libraries and user-friendly, Web-based software that both identifies target sites in sequences of interest and generates printable graphical guides that facilitate assembly of TALENs. With the described platform of reagents, protocols, and software, researchers can easily engineer multiple TALENs within 2 weeks using standard cloning techniques. 2012 by John Wiley & Sons, Inc.

  10. OutKnocker: a web tool for rapid and simple genotyping of designer nuclease edited cell lines.

    PubMed

    Schmid-Burgk, Jonathan L; Schmidt, Tobias; Gaidt, Moritz M; Pelka, Karin; Latz, Eicke; Ebert, Thomas S; Hornung, Veit

    2014-10-01

    The application of designer nucleases allows the induction of DNA double-strand breaks (DSBs) at user-defined genomic loci. Due to imperfect DNA repair mechanisms, DSBs can lead to alterations in the genomic architecture, such as the disruption of the reading frame of a critical exon. This can be exploited to generate somatic knockout cell lines. While high genome editing activities can be achieved in various cellular systems, obtaining cell clones that contain all-allelic frameshift mutations at the target locus of interest remains a laborious task. To this end, we have developed an easy-to-follow deep sequencing workflow and the evaluation tool OutKnocker (www.OutKnocker.org), which allows convenient, reliable, and cost-effective identification of knockout cell lines. © 2014 Schmid-Burgk et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Using CRISPR-Cas systems as antimicrobials.

    PubMed

    Bikard, David; Barrangou, Rodolphe

    2017-06-01

    Although CRISPR-Cas systems naturally evolved to provide adaptive immunity in bacteria and archaea, Cas nucleases can be co-opted to target chromosomal sequences rather than invasive genetic elements. Although genome editing is the primary outcome of self-targeting using CRISPR-based technologies in eukaryotes, self-targeting by CRISPR is typically lethal in bacteria. Here, we discuss how DNA damage introduced by Cas nucleases in bacteria can efficiently and specifically lead to plasmid curing or drive cell death. Specifically, we discuss how various CRISPR-Cas systems can be engineered and delivered using phages or phagemids as vectors. These principles establish CRISPR-Cas systems as potent and programmable antimicrobials, and open new avenues for the development of CRISPR-based tools for selective removal of bacterial pathogens and precise microbiome composition alteration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A trait stacking system via intra-genomic homologous recombination.

    PubMed

    Kumar, Sandeep; Worden, Andrew; Novak, Stephen; Lee, Ryan; Petolino, Joseph F

    2016-11-01

    A gene targeting method has been developed, which allows the conversion of 'breeding stacks', containing unlinked transgenes into a 'molecular stack' and thereby circumventing the breeding challenges associated with transgene segregation. A gene targeting method has been developed for converting two unlinked trait loci into a single locus transgene stack. The method utilizes intra-genomic homologous recombination (IGHR) between stably integrated target and donor loci which share sequence homology and nuclease cleavage sites whereby the donor contains a promoterless herbicide resistance transgene. Upon crossing with a zinc finger nuclease (ZFN)-expressing plant, double-strand breaks (DSB) are created in both the stably integrated target and donor loci. DSBs flanking the donor locus result in intra-genomic mobilization of a promoterless selectable marker-containing donor sequence, which can be utilized as a template for homology-directed repair of a concomitant DSB at the target locus resulting in a functional selectable marker via nuclease-mediated cassette exchange (NMCE). The method was successfully demonstrated in maize using a glyphosate tolerance gene as a donor whereby up to 3.3 % of the resulting progeny embryos cultured on selection medium regenerated plants with the donor sequence integrated into the target locus. The process could be extended to multiple cycles of trait stacking by virtue of a unique intron sequence homology for NMCE between the target and the donor loci. This is the first report that describes NMCE via IGHR, thereby enabling trait stacking using conventional crossing.

  13. Gene delivery to the lungs: pulmonary gene therapy for cystic fibrosis.

    PubMed

    Villate-Beitia, Ilia; Zarate, Jon; Puras, Gustavo; Pedraz, José Luis

    2017-07-01

    Cystic fibrosis (CF) is a monogenic autosomal recessive disorder where the defective gene, the cystic fibrosis transmembrane conductance regulator (CFTR), is well identified. Moreover, the respiratory tract can be targeted through noninvasive aerosolized formulations for inhalation. Therefore, gene therapy is considered a plausible strategy to address this disease. Conventional gene therapy strategies rely on the addition of a correct copy of the CFTR gene into affected cells in order to restore the channel activity. In recent years, genome correction strategies have emerged, such as zinc-finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats associated to Cas9 nucleases. These gene editing tools aim to repair the mutated gene at its original genomic locus with high specificity. Besides, the success of gene therapy critically depends on the nucleic acids carriers. To date, several clinical studies have been carried out to add corrected copies of the CFTR gene into target cells using viral and non-viral vectors, some of them with encouraging results. Regarding genome editing systems, preliminary in vitro studies have been performed in order to repair the CFTR gene. In this review, after briefly introducing the basis of CF, we discuss the up-to-date gene therapy strategies to address the disease. The review focuses on the main factors to take into consideration when developing gene delivery strategies, such as the design of vectors and plasmid DNA, in vitro/in vivo tests, translation to human use, administration methods, manufacturing conditions and regulatory issues.

  14. CRISPR/Cas9—Advancing Orthopoxvirus Genome Editing for Vaccine and Vector Development

    PubMed Central

    Okoli, Arinze; Okeke, Malachy I.; Tryland, Morten; Moens, Ugo

    2018-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/associated protein 9 (Cas9) technology is revolutionizing genome editing approaches. Its high efficiency, specificity, versatility, flexibility, simplicity and low cost have made the CRISPR/Cas9 system preferable to other guided site-specific nuclease-based systems such as TALENs (Transcription Activator-like Effector Nucleases) and ZFNs (Zinc Finger Nucleases) in genome editing of viruses. CRISPR/Cas9 is presently being applied in constructing viral mutants, preventing virus infections, eradicating proviral DNA, and inhibiting viral replication in infected cells. The successful adaptation of CRISPR/Cas9 to editing the genome of Vaccinia virus paves the way for its application in editing other vaccine/vector-relevant orthopoxvirus (OPXV) strains. Thus, CRISPR/Cas9 can be used to resolve some of the major hindrances to the development of OPXV-based recombinant vaccines and vectors, including sub-optimal immunogenicity; transgene and genome instability; reversion of attenuation; potential of spread of transgenes to wildtype strains and close contacts, which are important biosafety and risk assessment considerations. In this article, we review the published literature on the application of CRISPR/Cas9 in virus genome editing and discuss the potentials of CRISPR/Cas9 in advancing OPXV-based recombinant vaccines and vectors. We also discuss the application of CRISPR/Cas9 in combating viruses of clinical relevance, the limitations of CRISPR/Cas9 and the current strategies to overcome them. PMID:29361752

  15. Versatile High-Throughput Fluorescence Assay for Monitoring Cas9 Activity.

    PubMed

    Seamon, Kyle J; Light, Yooli K; Saada, Edwin A; Schoeniger, Joseph S; Harmon, Brooke

    2018-06-05

    The RNA-guided DNA nuclease Cas9 is now widely used for the targeted modification of genomes of human cells and various organisms. Despite the extensive use of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) systems for genome engineering and the rapid discovery and engineering of new CRISPR-associated nucleases, there are no high-throughput assays for measuring enzymatic activity. The current laboratory and future therapeutic uses of CRISPR technology have a significant risk of accidental exposure or clinical off-target effects, underscoring the need for therapeutically effective inhibitors of Cas9. Here, we develop a fluorescence assay for monitoring Cas9 nuclease activity and demonstrate its utility with S. pyogenes (Spy), S. aureus (Sau), and C. jejuni (Cje) Cas9. The assay was validated by quantitatively profiling the species specificity of published anti-CRISPR (Acr) proteins, confirming the reported inhibition of Spy Cas9 by AcrIIA4 and Cje Cas9 by AcrIIC1 and no inhibition of Sau Cas9 by either anti-CRISPR. To identify drug-like inhibitors, we performed a screen of 189 606 small molecules for inhibition of Spy Cas9. Of 437 hits (0.2% hit rate), six were confirmed as Cas9 inhibitors in a direct gel electrophoresis secondary assay. The high-throughput nature of this assay makes it broadly applicable for the discovery of additional Cas9 inhibitors or the characterization of Cas9 enzyme variants.

  16. Chromatin modification contributes to the expression divergence of three TaGS2 homoeologs in hexaploid wheat

    PubMed Central

    Zhang, Wei; Fan, Xiaoli; Gao, Yingjie; Liu, Lei; Sun, Lijing; Su, Qiannan; Han, Jie; Zhang, Na; Cui, Fa; Ji, Jun; Tong, Yiping; Li, Junming

    2017-01-01

    Plastic glutamine synthetase (GS2) is responsible for ammonium assimilation. The reason that TaGS2 homoeologs in hexaploid wheat experience different selection pressures in the breeding process remains unclear. TaGS2 were minimally expressed in roots but predominantly expressed in leaves, and TaGS2-B had higher expression than TaGS2-A and TaGS2-D. ChIP assays revealed that the activation of TaGS2-B expression in leaves was correlated with increased H3K4 trimethylation. The transcriptional silencing of TaGS2 in roots was correlated with greater cytosine methylation and less H3K4 trimethylation. Micrococcal nuclease and DNase I accessibility experiments indicated that the promoter region was more resistant to digestion in roots than leaves, which indicated that the closed nucleosome conformation of the promoter region was important to the transcription initiation for the spatial-temporal expression of TaGS2. In contrast, the transcribed regions possess different nuclease accessibilities of three TaGS2 homoeologs in the same tissue, suggesting that nucleosome conformation of the transcribed region was part of the fine adjustment of TaGS2 homoeologs. This study provides evidence that histone modification, DNA methylation and nuclease accessibility coordinated the control of the transcription of TaGS2 homoeologs. Our results provided important evidence that TaGS2-B experienced the strongest selection pressures during the breeding process. PMID:28300215

  17. Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases

    PubMed Central

    Merlin, Christine; Beaver, Lauren E.; Taylor, Orley R.; Wolfe, Scot A.; Reppert, Steven M.

    2013-01-01

    The development of reverse-genetic tools in “nonmodel” insect species with distinct biology is critical to establish them as viable model systems. The eastern North American monarch butterfly (Danaus plexippus), whose genome is sequenced, has emerged as a model to study animal clocks, navigational mechanisms, and the genetic basis of long-distance migration. Here, we developed a highly efficient gene-targeting approach in the monarch using zinc-finger nucleases (ZFNs), engineered nucleases that generate mutations at targeted genomic sequences. We focused our ZFN approach on targeting the type 2 vertebrate-like cryptochrome gene of the monarch (designated cry2), which encodes a putative transcriptional repressor of the monarch circadian clockwork. Co-injections of mRNAs encoding ZFNs targeting the second exon of monarch cry2 into “one nucleus” stage embryos led to high-frequency nonhomologous end-joining-mediated, mutagenic lesions in the germline (up to 50%). Heritable ZFN-induced lesions in two independent lines produced truncated, nonfunctional CRY2 proteins, resulting in the in vivo disruption of circadian behavior and the molecular clock mechanism. Our work genetically defines CRY2 as an essential transcriptional repressor of the monarch circadian clock and provides a proof of concept for the use of ZFNs for manipulating genes in the monarch butterfly genome. Importantly, this approach could be used in other lepidopterans and “nonmodel” insects, thus opening new avenues to decipher the molecular underpinnings of a variety of biological processes. PMID:23009861

  18. Versatile High-Throughput Fluorescence Assay for Monitoring Cas9 Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seamon, Kyle Jeffrey; Light, Yooli Kim; Saada, Edwin A.

    Here, the RNA-guided DNA nuclease Cas9 is now widely used for the targeted modification of genomes of human cells and various organisms. Despite the extensive use of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) systems for genome engineering and the rapid discovery and engineering of new CRISPR-associated nucleases, there are no high-throughput assays for measuring enzymatic activity. The current laboratory and future therapeutic uses of CRISPR technology have a significant risk of accidental exposure or clinical off-target effects, underscoring the need for therapeutically effective inhibitors of Cas9. Here, we develop a fluorescence assay for monitoring Cas9 nuclease activity and demonstrate itsmore » utility with S. pyogenes (Spy), S. aureus (Sau), and C. jejuni (Cje) Cas9. The assay was validated by quantitatively profiling the species specificity of published anti-CRISPR (Acr) proteins, confirming the reported inhibition of Spy Cas9 by AcrIIA4 and Cje Cas9 by AcrIIC1 and no inhibition of Sau Cas9 by either anti-CRISPR. To identify drug-like inhibitors, we performed a screen of 189 606 small molecules for inhibition of Spy Cas9. Of 437 hits (0.2% hit rate), six were confirmed as Cas9 inhibitors in a direct gel electrophoresis secondary assay. The high-throughput nature of this assay makes it broadly applicable for the discovery of additional Cas9 inhibitors or the characterization of Cas9 enzyme variants.« less

  19. Versatile High-Throughput Fluorescence Assay for Monitoring Cas9 Activity

    DOE PAGES

    Seamon, Kyle Jeffrey; Light, Yooli Kim; Saada, Edwin A.; ...

    2018-05-14

    Here, the RNA-guided DNA nuclease Cas9 is now widely used for the targeted modification of genomes of human cells and various organisms. Despite the extensive use of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) systems for genome engineering and the rapid discovery and engineering of new CRISPR-associated nucleases, there are no high-throughput assays for measuring enzymatic activity. The current laboratory and future therapeutic uses of CRISPR technology have a significant risk of accidental exposure or clinical off-target effects, underscoring the need for therapeutically effective inhibitors of Cas9. Here, we develop a fluorescence assay for monitoring Cas9 nuclease activity and demonstrate itsmore » utility with S. pyogenes (Spy), S. aureus (Sau), and C. jejuni (Cje) Cas9. The assay was validated by quantitatively profiling the species specificity of published anti-CRISPR (Acr) proteins, confirming the reported inhibition of Spy Cas9 by AcrIIA4 and Cje Cas9 by AcrIIC1 and no inhibition of Sau Cas9 by either anti-CRISPR. To identify drug-like inhibitors, we performed a screen of 189 606 small molecules for inhibition of Spy Cas9. Of 437 hits (0.2% hit rate), six were confirmed as Cas9 inhibitors in a direct gel electrophoresis secondary assay. The high-throughput nature of this assay makes it broadly applicable for the discovery of additional Cas9 inhibitors or the characterization of Cas9 enzyme variants.« less

  20. U1 small nuclear ribonucleoprotein particle-specific proteins interact with the first and second stem-loops of U1 RNA, with the A protein binding directly to the RNA independently of the 70K and Sm proteins.

    PubMed Central

    Patton, J R; Habets, W; van Venrooij, W J; Pederson, T

    1989-01-01

    The U1 small nuclear ribonucleoprotein particle (U1 snRNP), a cofactor in pre-mRNA splicing, contains three proteins, termed 70K, A, and C, that are not present in the other spliceosome-associated snRNPs. We studied the binding of the A and C proteins to U1 RNA, using a U1 snRNP reconstitution system and an antibody-induced nuclease protection technique. Antibodies that reacted with the A and C proteins induced nuclease protection of the first two stem-loops of U1 RNA in reconstituted U1 snRNP. Detailed analysis of the antibody-induced nuclease protection patterns indicated the existence of relatively long-range protein-protein interactions in the U1 snRNP, with the 5' end of U1 RNA and its associated specific proteins interacting with proteins bound to the Sm domain near the 3' end. UV cross-linking experiments in conjunction with an A-protein-specific antibody demonstrated that the A protein bound directly to the U1 RNA rather than assembling in the U1 snRNP exclusively via protein-protein interactions. This conclusion was supported by additional experiments revealing that the A protein could bind to U1 RNA in the absence of bound 70K and Sm core proteins. Images PMID:2529425

  1. Gene editing of stem cells for kidney disease modelling and therapeutic intervention.

    PubMed

    Lau, Ricky W K; Wang, Bo; Ricardo, Sharon D

    2018-05-30

    Recent developments in targeted gene editing have paved the way for the wide adoption of cluster regular interspaced short palindromic repeats (CRISPR)-associated protein-9 nucleases (Cas9) as a RNA guide molecular tool to modify the genome of eukaryotic cells or animals. Theoretically, the translation of CRISPR-Cas9 can be applied to the treatment of inherited or acquired kidney disease, kidney transplantation and genetic corrections of somatic cells from kidneys with inherited mutations such as polycystic kidney disease. Human pluripotent stem cells have been used to generate an unlimited source of kidney progenitor cells or when spontaneously differentiated into three-dimensional kidney organoids to model kidney organogenesis or the pathogenesis of disease. Gene editing now allows for the tagging and selection of specific kidney cell types or disease specific gene knock in/out, which enables more precise understanding of kidney organogenesis and genetic diseases. This review discusses the mechanisms of action, in addition to the advantages and disadvantages, of the major three gene editing technologies, namely CRISPR-Cas9, zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). The implications of using gene editing to better understand kidney disease is reviewed in detail. In addition, the ethical issues of gene editing, which could be easily neglected in the modern fast paced research environment, are highlighted. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template.

    PubMed

    Ran, Yidong; Patron, Nicola; Kay, Pippa; Wong, Debbie; Buchanan, Margaret; Cao, Ying-Ying; Sawbridge, Tim; Davies, John P; Mason, John; Webb, Steven R; Spangenberg, German; Ainley, William M; Walsh, Terence A; Hayden, Matthew J

    2018-05-07

    Sequence-specific nucleases have been used to engineer targeted genome modifications in various plants. While targeted gene knockouts resulting in loss of function have been reported with relatively high rates of success, targeted gene editing using an exogenously supplied DNA repair template and site-specific transgene integration has been more challenging. Here, we report the first application of zinc finger nuclease (ZFN)-mediated, nonhomologous end-joining (NHEJ)-directed editing of a native gene in allohexaploid bread wheat to introduce, via a supplied DNA repair template, a specific single amino acid change into the coding sequence of acetohydroxyacid synthase (AHAS) to confer resistance to imidazolinone herbicides. We recovered edited wheat plants having the targeted amino acid modification in one or more AHAS homoalleles via direct selection for resistance to imazamox, an AHAS-inhibiting imidazolinone herbicide. Using a cotransformation strategy based on chemical selection for an exogenous marker, we achieved a 1.2% recovery rate of edited plants having the desired amino acid change and a 2.9% recovery of plants with targeted mutations at the AHAS locus resulting in a loss-of-function gene knockout. The latter results demonstrate a broadly applicable approach to introduce targeted modifications into native genes for nonselectable traits. All ZFN-mediated changes were faithfully transmitted to the next generation. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Development of a 5'-nuclease real-time PCR assay targeting fliP for the rapid identification of Burkholderia mallei in clinical samples.

    PubMed

    Tomaso, Herbert; Scholz, Holger C; Al Dahouk, Sascha; Eickhoff, Meike; Treu, Thomas M; Wernery, Renate; Wernery, Ulrich; Neubauer, Heinrich

    2006-02-01

    Burkholderia mallei is a potential biological agent that causes glanders or farcy in solipeds, a disease notifiable to the Office International des Epizooties (OIE). The number of reported outbreaks has increased steadily during the last decade, but diagnosis is hampered by the low bacterial load in infected tissues and excretions. We developed a B. mallei-specific 5'-nuclease real-time PCR assay that targets the fliP gene of B. mallei and includes an internal amplification control. Specificity was assessed with 19 B. mallei strains, 27 Burkholderia pseudomallei strains, other Burkholderia strains of 29 species, and clinically relevant non-Burkholderia organisms. Amplification products were observed in all B. mallei strains but in no other bacteria. The linear range of the B. mallei real-time PCR covered concentrations from 240 pg to 70 fg of bacterial DNA/reaction. The detection limit was 60 fg of B. mallei DNA. The clinical applicability of the assay was demonstrated by use of organ samples from diseased horses of a recent outbreak that was reported to the OIE by the United Arab Emirates in 2004. Compared with conventional PCR, our rapid 5'-nuclease real-time PCR assay for the specific identification of B. mallei has a lower risk of carryover contamination and eliminates the need for post-PCR manipulations. This real-time PCR assay also shortens the turnaround time for results and has the potential for automation.

  4. Engineering customized TALE nucleases (TALENs) and TALE transcription factors by fast ligation-based automatable solid-phase high-throughput (FLASH) assembly.

    PubMed

    Reyon, Deepak; Maeder, Morgan L; Khayter, Cyd; Tsai, Shengdar Q; Foley, Jonathan E; Sander, Jeffry D; Joung, J Keith

    2013-07-01

    Customized DNA-binding domains made using transcription activator-like effector (TALE) repeats are rapidly growing in importance as widely applicable research tools. TALE nucleases (TALENs), composed of an engineered array of TALE repeats fused to the FokI nuclease domain, have been used successfully for directed genome editing in various organisms and cell types. TALE transcription factors (TALE-TFs), consisting of engineered TALE repeat arrays linked to a transcriptional regulatory domain, have been used to up- or downregulate expression of endogenous genes in human cells and plants. This unit describes a detailed protocol for the recently described fast ligation-based automatable solid-phase high-throughput (FLASH) assembly method. FLASH enables automated high-throughput construction of engineered TALE repeats using an automated liquid handling robot or manually using a multichannel pipet. Using the automated approach, a single researcher can construct up to 96 DNA fragments encoding TALE repeat arrays of various lengths in a single day, and then clone these to construct sequence-verified TALEN or TALE-TF expression plasmids in a week or less. Plasmids required for FLASH are available by request from the Joung lab (http://eGenome.org). This unit also describes improvements to the Zinc Finger and TALE Targeter (ZiFiT Targeter) web server (http://ZiFiT.partners.org) that facilitate the design and construction of FLASH TALE repeat arrays in high throughput. © 2013 by John Wiley & Sons, Inc.

  5. Engineering Customized TALE Nucleases (TALENs) and TALE Transcription Factors by Fast Ligation-based Automatable Solid-phase High-throughput (FLASH) Assembly

    PubMed Central

    Reyon, Deepak; Maeder, Morgan L.; Khayter, Cyd; Tsai, Shengdar Q.; Foley, Jonathan E.; Sander, Jeffry D.; Joung, J. Keith

    2013-01-01

    Customized DNA-binding domains made using Transcription Activator-Like Effector (TALE) repeats are rapidly growing in importance as widely applicable research tools. TALE nucleases (TALENs), composed of an engineered array of TALE repeats fused to the FokI nuclease domain, have been used successfully for directed genome editing in multiple different organisms and cell types. TALE transcription factors (TALE-TFs), consisting of engineered TALE repeat arrays linked to a transcriptional regulatory domain, have been used to up- or down-regulate expression of endogenous genes in human cells and plants. Here we describe a detailed protocol for practicing the recently described Fast Ligation-based Automatable Solid-phase High-throughput (FLASH) assembly method. FLASH enables automated high-throughput construction of engineered TALE repeats using an automated liquid handling robot or manually using a multi-channel pipet. With the automated version of FLASH, a single researcher can construct up to 96 DNA fragments encoding various length TALE repeat arrays in one day and then clone these to construct sequence-verified TALEN or TALE-TF expression plasmids in one week or less. Plas-mids required to practice FLASH are available by request from the Joung Lab (http://www.jounglab.org/). We also describe here improvements to the Zinc Finger and TALE Targeter (ZiFiT Targeter) webserver (http://ZiFiTBeta.partners.org) that facilitate the design and construction of FLASH TALE repeat arrays in high-throughput. PMID:23821439

  6. Efficient TALEN-mediated gene knockout in livestock

    PubMed Central

    Carlson, Daniel F.; Tan, Wenfang; Lillico, Simon G.; Stverakova, Dana; Proudfoot, Chris; Christian, Michelle; Voytas, Daniel F.; Long, Charles R.; Whitelaw, C. Bruce A.; Fahrenkrug, Scott C.

    2012-01-01

    Transcription activator-like effector nucleases (TALENs) are programmable nucleases that join FokI endonuclease with the modular DNA-binding domain of TALEs. Although zinc-finger nucleases enable a variety of genome modifications, their application to genetic engineering of livestock has been slowed by technical limitations of embryo-injection, culture of primary cells, and difficulty in producing reliable reagents with a limited budget. In contrast, we found that TALENs could easily be manufactured and that over half (23/36, 64%) demonstrate high activity in primary cells. Cytoplasmic injections of TALEN mRNAs into livestock zygotes were capable of inducing gene KO in up to 75% of embryos analyzed, a portion of which harbored biallelic modification. We also developed a simple transposon coselection strategy for TALEN-mediated gene modification in primary fibroblasts that enabled both enrichment for modified cells and efficient isolation of modified colonies. Coselection after treatment with a single TALEN-pair enabled isolation of colonies with mono- and biallelic modification in up to 54% and 17% of colonies, respectively. Coselection after treatment with two TALEN-pairs directed against the same chromosome enabled the isolation of colonies harboring large chromosomal deletions and inversions (10% and 4% of colonies, respectively). TALEN-modified Ossabaw swine fetal fibroblasts were effective nuclear donors for cloning, resulting in the creation of miniature swine containing mono- and biallelic mutations of the LDL receptor gene as models of familial hypercholesterolemia. TALENs thus appear to represent a highly facile platform for the modification of livestock genomes for both biomedical and agricultural applications. PMID:23027955

  7. Genome editing strategies: potential tools for eradicating HIV-1/AIDS

    PubMed Central

    Khalili, Kamel; Gordon, Jennifer; Cosentino, Laura; Hu, Wenhui

    2015-01-01

    Current therapy for controlling HIV-1 infection and preventing AIDS progression has profoundly decreased viral replication in cells susceptible to HIV-1 infection, but it does not eliminate the low level of viral replication in latently infected cells which contain integrated copies of HIV-1 proviral DNA. There is an urgent need for the development of HIV-1 genome eradication strategies that will lead to a permanent or “sterile” cure of HIV-1/AIDS. In the past few years, novel nuclease-initiated genome editing tools have been developing rapidly, including ZFNs, TALENs, and the CRISPR/Cas9 system. These surgical knives, which can excise any genome, provide a great opportunity to eradicate the HIV-1 genome by targeting highly conserved regions of the HIV-1 long terminal repeats or essential viral genes. Given the time consuming and costly engineering of target-specific ZFNs and TALENs, the RNA-guided endonuclease Cas9 technology has emerged as a simpler and more versatile technology to allow permanent removal of integrated HIV-1 proviral DNA in eukaryotic cells, and hopefully animal models or human patients. The major unmet challenges of this approach at present include inefficient nuclease gene delivery, potential off-target cleavage, and cell-specific genome targeting. Nanoparticle or lentivirus-mediated delivery of next generation Cas9 technologies including nickase or RNA-guided FokI nuclease (RFN) will further improve the potential for genome editing to become a promising approach for curing HIV-1/AIDS. PMID:25716921

  8. Sensitive detection of microRNAs based on the conversion of colorimetric assay into electrochemical analysis with duplex-specific nuclease-assisted signal amplification

    PubMed Central

    Xia, Ning; Liu, Ke; Zhou, Yingying; Li, Yuanyuan; Yi, Xinyao

    2017-01-01

    miRNAs have emerged as new biomarkers for the detection of a wide variety of cancers. By employing duplex-specific nuclease for signal amplification and gold nanoparticles (AuNPs) as the carriers of detection probes, a novel electrochemical assay of miRNAs was performed. The method is based on conversion of the well-known colorimetric assay into electrochemical analysis with enhanced sensitivity. DNA capture probes immobilized on the electrode surface and ferrocene (Fc)-labeled DNA detection probes (denoted “Fc-DNA-Fc”) presented in the solution induced the assembly of positively charged AuNPs on the electrode surface through the electrostatic interaction. As a result, a large number of Fc-DNA-Fc molecules were attached on the electrode surface, thus amplifying the electrochemical signal. When duplex-specific nuclease was added to recycle the process of miRNA-initiated digestion of the immobilized DNA probes, Fc-DNA-Fc-induced assembly of AuNPs on the electrode surface could not occur. This resulted in a significant fall in the oxidation current of Fc. The current was found to be inversely proportional to the concentration of miRNAs in the range of 0–25 fM, and a detection limit of 0.1 fM was achieved. Moreover, this work presents a new method for converting colorimetric assays into sensitive electrochemical analyses, and thus would be valuable for design of novel chemical/biosensors. PMID:28761341

  9. Innate Immune Dysfunctions in Aged Mice Facilitate the Systemic Dissemination of Methicillin-Resistant S. aureus

    PubMed Central

    Tseng, Ching Wen; Kyme, Pierre A.; Arruda, Andrea; Ramanujan, V. Krishnan; Tawackoli, Wafa; Liu, George Y.

    2012-01-01

    Elderly humans show increased susceptibility to invasive staphylococcal disease after skin and soft tissue infection. However, it is not understood how host immunity changes with aging, and how that predisposes to invasive disease. In a model of severe skin infection, we showed that aged mice (16- to 20-month-old) exhibit dramatic bacterial dissemination compared with young adult mice (2-month-old). Bacterial dissemination was associated with significant reductions of CXCL1 (KC), polymorphonuclear cells (PMNs), and extracellular DNA traps (NETs) at the infection site. PMNs and primary skin fibroblasts isolated from aged mice showed decreased secretion of CXCL2 (MIP-2) and KC in response to MRSA, and in vitro analyses of mitochondrial functions revealed that the mitochondrial electron transport chain complex I plays a significant role in induction of chemokines in the cells isolated from young but not old mice. Additionally, PMNs isolated from aged mice have reduced ability to form NETs and to kill MRSA. Expression of nuclease by S. aureus led to increased bacterial systemic dissemination in young but not old mice, suggesting that defective NETs formation in elderly mice permitted nuclease and non-nuclease expressing S. aureus to disseminate equally well. Overall, these findings suggest that gross impairment of both skin barrier function and innate immunity contributes to the propensity for MRSA to disseminate in aged mice. Furthermore, the study indicates that contribution of bacterial factors to pathogenicity may vary with host age. PMID:22844481

  10. Methylation-sensitive enrichment of minor DNA alleles using a double-strand DNA-specific nuclease.

    PubMed

    Liu, Yibin; Song, Chen; Ladas, Ioannis; Fitarelli-Kiehl, Mariana; Makrigiorgos, G Mike

    2017-04-07

    Aberrant methylation changes, often present in a minor allelic fraction in clinical samples such as plasma-circulating DNA (cfDNA), are potentially powerful prognostic and predictive biomarkers in human disease including cancer. We report on a novel, highly-multiplexed approach to facilitate analysis of clinically useful methylation changes in minor DNA populations. Methylation Specific Nuclease-assisted Minor-allele Enrichment (MS-NaME) employs a double-strand-specific DNA nuclease (DSN) to remove excess DNA with normal methylation patterns. The technique utilizes oligonucleotide-probes that direct DSN activity to multiple targets in bisulfite-treated DNA, simultaneously. Oligonucleotide probes targeting unmethylated sequences generate local double stranded regions resulting to digestion of unmethylated targets, and leaving methylated targets intact; and vice versa. Subsequent amplification of the targeted regions results in enrichment of the targeted methylated or unmethylated minority-epigenetic-alleles. We validate MS-NaME by demonstrating enrichment of RARb2, ATM, MGMT and GSTP1 promoters in multiplexed MS-NaME reactions (177-plex) using dilutions of methylated/unmethylated DNA and in DNA from clinical lung cancer samples and matched normal tissue. MS-NaME is a highly scalable single-step approach performed at the genomic DNA level in solution that combines with most downstream detection technologies including Sanger sequencing, methylation-sensitive-high-resolution melting (MS-HRM) and methylation-specific-Taqman-based-digital-PCR (digital Methylight) to boost detection of low-level aberrant methylation-changes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Analysis of Chromatin Organisation

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2011-01-01

    Terms to be familiar with before you start to solve the test: chromatin, nucleases, sucrose density gradient centrifugation, melting point, gel electrophoresis, ethidium bromide, autoradiography, Southern blotting, Northern blotting, Sanger sequencing, restriction endonucleases, exonucleases, linker DNA, chloroform extraction, nucleosomes,…

  12. Plant-pathogen interactions: toward development of next-generation disease-resistant plants.

    PubMed

    Nejat, Naghmeh; Rookes, James; Mantri, Nitin L; Cahill, David M

    2017-03-01

    Briskly evolving phytopathogens are dire threats to our food supplies and threaten global food security. From the recent advances made toward high-throughput sequencing technologies, understanding of pathogenesis and effector biology, and plant innate immunity, translation of these means into new control tools is being introduced to develop durable disease resistance. Effectoromics as a powerful genetic tool for uncovering effector-target genes, both susceptibility genes and executor resistance genes in effector-assisted breeding, open up new avenues to improve resistance. TALENs (Transcription Activator-Like Effector Nucleases), engineered nucleases and CRISPR (Clustered Regulatory Interspaced Short Palindromic Repeats)/Cas9 systems are breakthrough and powerful techniques for genome editing, providing efficient mechanisms for targeted crop protection strategies in disease resistance programs. In this review, major advances in plant disease management to confer durable disease resistance and novel strategies for boosting plant innate immunity are highlighted.

  13. Evaluation of Novel Design Strategies for Developing Zinc Finger Nucleases Tools for Treating Human Diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bach, Christian; Sherman, William; Pallis, Jani

    Zinc finger nucleases (ZFNs) are associated with cell death and apoptosis by binding at countless undesired locations. This cytotoxicity is associated with the binding ability of engineered zinc finger domains to bind dissimilar DNA sequences with high affinity. In general, binding preferences of transcription factors are associated with significant degenerated diversity and complexity which convolutes the design and engineering of precise DNA binding domains. Evolutionary success of natural zinc finger proteins, however, evinces that nature created specific evolutionary traits and strategies, such as modularity and rank-specific recognition to cope with binding complexity that are critical for creating clinical viable toolsmore » to precisely modify the human genome. Our findings indicate preservation of general modularity and significant alteration of the rank-specific binding preferences of the three-finger binding domain of transcription factor SP1 when exchanging amino acids in the 2nd finger.« less

  14. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin

    PubMed Central

    Giresi, Paul G.; Kim, Jonghwan; McDaniell, Ryan M.; Iyer, Vishwanath R.; Lieb, Jason D.

    2007-01-01

    DNA segments that actively regulate transcription in vivo are typically characterized by eviction of nucleosomes from chromatin and are experimentally identified by their hypersensitivity to nucleases. Here we demonstrate a simple procedure for the isolation of nucleosome-depleted DNA from human chromatin, termed FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements). To perform FAIRE, chromatin is crosslinked with formaldehyde in vivo, sheared by sonication, and phenol-chloroform extracted. The DNA recovered in the aqueous phase is fluorescently labeled and hybridized to a DNA microarray. FAIRE performed in human cells strongly enriches DNA coincident with the location of DNaseI hypersensitive sites, transcriptional start sites, and active promoters. Evidence for cell-type–specific patterns of FAIRE enrichment is also presented. FAIRE has utility as a positive selection for genomic regions associated with regulatory activity, including regions traditionally detected by nuclease hypersensitivity assays. PMID:17179217

  15. CRISPR-Cas: From the Bacterial Adaptive Immune System to a Versatile Tool for Genome Engineering.

    PubMed

    Kirchner, Marion; Schneider, Sabine

    2015-11-09

    The field of biology has been revolutionized by the recent advancement of an adaptive bacterial immune system as a universal genome engineering tool. Bacteria and archaea use repetitive genomic elements termed clustered regularly interspaced short palindromic repeats (CRISPR) in combination with an RNA-guided nuclease (CRISPR-associated nuclease: Cas) to target and destroy invading DNA. By choosing the appropriate sequence of the guide RNA, this two-component system can be used to efficiently modify, target, and edit genomic loci of interest in plants, insects, fungi, mammalian cells, and whole organisms. This has opened up new frontiers in genome engineering, including the potential to treat or cure human genetic disorders. Now the potential risks as well as the ethical, social, and legal implications of this powerful new technique move into the limelight. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Inhibition of human papillomavirus expression using DNAzymes.

    PubMed

    Benítez-Hess, María Luisa; Reyes-Gutiérrez, Pablo; Alvarez-Salas, Luis Marat

    2011-01-01

    Deoxyribozymes (DXZs) are catalytic oligodeoxynucleotides capable of performing diverse functions including the specific cleavage of a target RNA. These molecules represent a new type of therapeutic oligonucleotides combining the efficiency of ribozymes and the intracellular endurance and simplicity of modified antisense oligonucleotides. Commonly used DXZs include the 8-17 and 10-23 motifs, which have been engineered to destroy disease-associated genes with remarkable efficiency. Targeting DXZs to disease-associated transcripts requires extensive biochemical testing to establish target RNA accessibility, catalytic efficiency, and nuclease sensibility. The usage of modified nucleotides to render nuclease-resistance DXZs must be counterweighted against deleterious consequences on catalytic activity. Further intracellular testing is required to establish the effect of microenvironmental conditions on DXZ activity and off-target issues. Application of modified DXZs to cervical cancer results in specific growth inhibition, cell death, and apoptosis. Thus, DXZs represent a highly effective antisense moiety with minimal secondary effects.

  17. Nuclease-mediated double-strand break (DSB) enhancement of small fragment homologous recombination (SFHR) gene modification in human-induced pluripotent stem cells (hiPSCs).

    PubMed

    Sargent, R Geoffrey; Suzuki, Shingo; Gruenert, Dieter C

    2014-01-01

    Recent developments in methods to specifically modify genomic DNA using sequence-specific endonucleases and donor DNA have opened the door to a new therapeutic paradigm for cell and gene therapy of inherited diseases. Sequence-specific endonucleases, in particular transcription activator-like (TAL) effector nucleases (TALENs), have been coupled with polynucleotide small/short DNA fragments (SDFs) to correct the most common mutation in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene, a 3-base-pair deletion at codon 508 (delF508), in induced pluripotent stem (iPS) cells. The studies presented here describe the generation of candidate TALENs and their co-transfection with wild-type (wt) CFTR-SDFs into CF-iPS cells homozygous for the delF508 mutation. Using an allele-specific PCR (AS-PCR)-based cyclic enrichment protocol, clonal populations of corrected CF-iPS cells were isolated and expanded.

  18. Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research

    DOE PAGES

    Liu, Degao; Hu, Rongbin; Palla, Kaitlin J.; ...

    2016-02-18

    Genome editing with site-specific nucleases has become a powerful tool for functional characterization of plant genes and genetic improvement of agricultural crops. Among the various site-specific nuclease-based technologies available for genome editing, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems have shown the greatest potential for rapid and efficient editing of genomes in plant species. Here, this article reviews the current status of application of CRISPR/Cas9 to plant genomics research, with a focus on loss-of-function and gain-of-function analysis of individual genes in the context of perennial plants and the potential application of CRISPR/Cas9 to perturbation ofmore » gene expression, as well as identification and analysis of gene modules as part of an accelerated domestication and synthetic biology effort.« less

  19. Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Degao; Hu, Rongbin; Palla, Kaitlin J.

    Genome editing with site-specific nucleases has become a powerful tool for functional characterization of plant genes and genetic improvement of agricultural crops. Among the various site-specific nuclease-based technologies available for genome editing, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems have shown the greatest potential for rapid and efficient editing of genomes in plant species. Here, this article reviews the current status of application of CRISPR/Cas9 to plant genomics research, with a focus on loss-of-function and gain-of-function analysis of individual genes in the context of perennial plants and the potential application of CRISPR/Cas9 to perturbation ofmore » gene expression, as well as identification and analysis of gene modules as part of an accelerated domestication and synthetic biology effort.« less

  20. Digital detection of endonuclease mediated gene disruption in the HIV provirus

    PubMed Central

    Sedlak, Ruth Hall; Liang, Shu; Niyonzima, Nixon; De Silva Feelixge, Harshana S.; Roychoudhury, Pavitra; Greninger, Alexander L.; Weber, Nicholas D.; Boissel, Sandrine; Scharenberg, Andrew M.; Cheng, Anqi; Magaret, Amalia; Bumgarner, Roger; Stone, Daniel; Jerome, Keith R.

    2016-01-01

    Genome editing by designer nucleases is a rapidly evolving technology utilized in a highly diverse set of research fields. Among all fields, the T7 endonuclease mismatch cleavage assay, or Surveyor assay, is the most commonly used tool to assess genomic editing by designer nucleases. This assay, while relatively easy to perform, provides only a semi-quantitative measure of mutation efficiency that lacks sensitivity and accuracy. We demonstrate a simple droplet digital PCR assay that quickly quantitates a range of indel mutations with detection as low as 0.02% mutant in a wild type background and precision (≤6%CV) and accuracy superior to either mismatch cleavage assay or clonal sequencing when compared to next-generation sequencing. The precision and simplicity of this assay will facilitate comparison of gene editing approaches and their optimization, accelerating progress in this rapidly-moving field. PMID:26829887

  1. Advances in therapeutic CRISPR/Cas9 genome editing.

    PubMed

    Savić, Nataša; Schwank, Gerald

    2016-02-01

    Targeted nucleases are widely used as tools for genome editing. Two years ago the clustered regularly interspaced short palindromic repeat (CRISPR)-associated Cas9 nuclease was used for the first time, and since then has largely revolutionized the field. The tremendous success of the CRISPR/Cas9 genome editing tool is powered by the ease design principle of the guide RNA that targets Cas9 to the desired DNA locus, and by the high specificity and efficiency of CRISPR/Cas9-generated DNA breaks. Several studies recently used CRISPR/Cas9 to successfully modulate disease-causing alleles in vivo in animal models and ex vivo in somatic and induced pluripotent stem cells, raising hope for therapeutic genome editing in the clinics. In this review, we will summarize and discuss such preclinical CRISPR/Cas9 gene therapy reports. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Protein Interaction Profile Sequencing (PIP-seq).

    PubMed

    Foley, Shawn W; Gregory, Brian D

    2016-10-10

    Every eukaryotic RNA transcript undergoes extensive post-transcriptional processing from the moment of transcription up through degradation. This regulation is performed by a distinct cohort of RNA-binding proteins which recognize their target transcript by both its primary sequence and secondary structure. Here, we describe protein interaction profile sequencing (PIP-seq), a technique that uses ribonuclease-based footprinting followed by high-throughput sequencing to globally assess both protein-bound RNA sequences and RNA secondary structure. PIP-seq utilizes single- and double-stranded RNA-specific nucleases in the absence of proteins to infer RNA secondary structure. These libraries are also compared to samples that undergo nuclease digestion in the presence of proteins in order to find enriched protein-bound sequences. Combined, these four libraries provide a comprehensive, transcriptome-wide view of RNA secondary structure and RNA protein interaction sites from a single experimental technique. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  3. Genetically Engineered Pig Models for Human Diseases

    PubMed Central

    Prather, Randall S.; Lorson, Monique; Ross, Jason W.; Whyte, Jeffrey J.; Walters, Eric

    2015-01-01

    Although pigs are used widely as models of human disease, their utility as models has been enhanced by genetic engineering. Initially, transgenes were added randomly to the genome, but with the application of homologous recombination, zinc finger nucleases, and transcription activator-like effector nuclease (TALEN) technologies, now most any genetic change that can be envisioned can be completed. To date these genetic modifications have resulted in animals that have the potential to provide new insights into human diseases for which a good animal model did not exist previously. These new animal models should provide the preclinical data for treatments that are developed for diseases such as Alzheimer's disease, cystic fibrosis, retinitis pigmentosa, spinal muscular atrophy, diabetes, and organ failure. These new models will help to uncover aspects and treatments of these diseases that were otherwise unattainable. The focus of this review is to describe genetically engineered pigs that have resulted in models of human diseases. PMID:25387017

  4. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases.

    PubMed

    Citorik, Robert J; Mimee, Mark; Lu, Timothy K

    2014-11-01

    Current antibiotics tend to be broad spectrum, leading to indiscriminate killing of commensal bacteria and accelerated evolution of drug resistance. Here, we use CRISPR-Cas technology to create antimicrobials whose spectrum of activity is chosen by design. RNA-guided nucleases (RGNs) targeting specific DNA sequences are delivered efficiently to microbial populations using bacteriophage or bacteria carrying plasmids transmissible by conjugation. The DNA targets of RGNs can be undesirable genes or polymorphisms, including antibiotic resistance and virulence determinants in carbapenem-resistant Enterobacteriaceae and enterohemorrhagic Escherichia coli. Delivery of RGNs significantly improves survival in a Galleria mellonella infection model. We also show that RGNs enable modulation of complex bacterial populations by selective knockdown of targeted strains based on genetic signatures. RGNs constitute a class of highly discriminatory, customizable antimicrobials that enact selective pressure at the DNA level to reduce the prevalence of undesired genes, minimize off-target effects and enable programmable remodeling of microbiota.

  5. Quantifying Genome Editing Outcomes at Endogenous Loci using SMRT Sequencing

    PubMed Central

    Clark, Joseph; Punjya, Niraj; Sebastiano, Vittorio; Bao, Gang; Porteus, Matthew H

    2014-01-01

    SUMMARY Targeted genome editing with engineered nucleases has transformed the ability to introduce precise sequence modifications at almost any site within the genome. A major obstacle to probing the efficiency and consequences of genome editing is that no existing method enables the frequency of different editing events to be simultaneously measured across a cell population at any endogenous genomic locus. We have developed a novel method for quantifying individual genome editing outcomes at any site of interest using single molecule real time (SMRT) DNA sequencing. We show that this approach can be applied at various loci, using multiple engineered nuclease platforms including TALENs, RNA guided endonucleases (CRISPR/Cas9), and ZFNs, and in different cell lines to identify conditions and strategies in which the desired engineering outcome has occurred. This approach facilitates the evaluation of new gene editing technologies and permits sensitive quantification of editing outcomes in almost every experimental system used. PMID:24685129

  6. Base-unpaired regions in supercoiled replicative form DNA of coliphage M13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, S.; Allison, D.P.; Snyder, C.E.

    Superhelical covalently closed circular replicative form DNA (RF I) of coliphage M13 appears as a relaxed molecule that has a base-unpaired region in the form of a bubble (100 to 200 base pairs long) seen in electron micrographs when spread in the presence of formaldehyde and formamide or after pretreatment with glyoxal. S1 endonuclease, specific for single-stranded DNA, converts superhelical M13 RF I DNA, but not nonsuperhelical M13 RF I to a significant extent, into unit-length linear molecules by sequential nicking of two strands. The locations of S1 nuclease-susceptible sites and glyoxal-fixed base-unpaired regions were both related to the fivemore » A-T-rich regions in M13 RF DNA. While S1 nuclease does not show preference for any of these sites, glyoxal-fixed bubbles occur predominantly at the major A-T-rich region in M13 RF DNA.« less

  7. An ameliorative protocol for the quantification of purine 5',8-cyclo-2'-deoxynucleosides in oxidized DNA

    NASA Astrophysics Data System (ADS)

    Terzidis, Michael; Chatgilialoglu, Chryssostomos

    2015-07-01

    5',8-Cyclo-2'-deoxyadenosine (cdA) and 5',8-cyclo-2'-deoxyguanosine (cdG) are lesions resulting from hydroxyl radical (HO•) attack on the 5'H of the nucleoside sugar moiety and exist in both 5'R and 5'S diastereomeric forms. Increased levels of cdA and cdG are linked to Nucleotide Excision Repair mechanism deficiency and mutagenesis. Discrepancies in the damage measurements reported over recent years indicated the weakness of the actual protocols, in particular for ensuring the quantitative release of these lesions from the DNA sample and the appropriate method for their analysis. Herein we report the detailed revision leading to a cost-effective and efficient protocol for the DNA damage measurement, consisting of the nuclease benzonase and nuclease P1 enzymatic combination for DNA digestion followed by liquid chromatography isotope dilution tandem mass spectrometry analysis.

  8. Evaluation of Novel Design Strategies for Developing Zinc Finger Nucleases Tools for Treating Human Diseases

    DOE PAGES

    Bach, Christian; Sherman, William; Pallis, Jani; ...

    2014-01-01

    Zinc finger nucleases (ZFNs) are associated with cell death and apoptosis by binding at countless undesired locations. This cytotoxicity is associated with the binding ability of engineered zinc finger domains to bind dissimilar DNA sequences with high affinity. In general, binding preferences of transcription factors are associated with significant degenerated diversity and complexity which convolutes the design and engineering of precise DNA binding domains. Evolutionary success of natural zinc finger proteins, however, evinces that nature created specific evolutionary traits and strategies, such as modularity and rank-specific recognition to cope with binding complexity that are critical for creating clinical viable toolsmore » to precisely modify the human genome. Our findings indicate preservation of general modularity and significant alteration of the rank-specific binding preferences of the three-finger binding domain of transcription factor SP1 when exchanging amino acids in the 2nd finger.« less

  9. Site-Specific Editing of the Plasmodium falciparum Genome Using Engineered Zinc-Finger Nucleases

    PubMed Central

    Straimer, Judith; Lee, Marcus CS; Lee, Andrew H; Zeitler, Bryan; Williams, April E; Pearl, Jocelynn R; Zhang, Lei; Rebar, Edward J; Gregory, Philip D; Llinás, Manuel; Urnov, Fyodor D; Fidock, David A

    2013-01-01

    Malaria afflicts over 200 million people worldwide and its most lethal etiologic agent, Plasmodium falciparum, is evolving to resist even the latest-generation therapeutics. Efficient tools for genome-directed investigations of P. falciparum pathogenesis, including drug resistance mechanisms, are clearly required. Here we report rapid and targeted genetic engineering of this parasite, using zinc-finger nucleases (ZFNs) that produce a double-strand break in a user-defined locus and trigger homology-directed repair. Targeting an integrated egfp locus, we obtained gene deletion parasites with unprecedented speed (two weeks), both with and without direct selection. ZFNs engineered against the endogenous parasite gene pfcrt, responsible for chloroquine treatment escape, rapidly produced parasites that carried either an allelic replacement or a panel of specified point mutations. The efficiency, versatility and precision of this method will enable a diverse array of genome editing approaches to interrogate this human pathogen. PMID:22922501

  10. Mutagenesis and phenotyping resources in zebrafish for studying development and human disease

    PubMed Central

    Varshney, Gaurav Kumar

    2014-01-01

    The zebrafish (Danio rerio) is an important model organism for studying development and human disease. The zebrafish has an excellent reference genome and the functions of hundreds of genes have been tested using both forward and reverse genetic approaches. Recent years have seen an increasing number of large-scale mutagenesis projects and the number of mutants or gene knockouts in zebrafish has increased rapidly, including for the first time conditional knockout technologies. In addition, targeted mutagenesis techniques such as zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short sequences (CRISPR) or CRISPR-associated (Cas), have all been shown to effectively target zebrafish genes as well as the first reported germline homologous recombination, further expanding the utility and power of zebrafish genetics. Given this explosion of mutagenesis resources, it is now possible to perform systematic, high-throughput phenotype analysis of all zebrafish gene knockouts. PMID:24162064

  11. Zinc-finger nuclease-mediated targeted insertion of reporter genes for quantitative imaging of gene expression in sea urchin embryos

    PubMed Central

    Ochiai, Hiroshi; Sakamoto, Naoaki; Fujita, Kazumasa; Nishikawa, Masatoshi; Suzuki, Ken-ichi; Matsuura, Shinya; Miyamoto, Tatsuo; Sakuma, Tetsushi; Shibata, Tatsuo; Yamamoto, Takashi

    2012-01-01

    To understand complex biological systems, such as the development of multicellular organisms, it is important to characterize the gene expression dynamics. However, there is currently no universal technique for targeted insertion of reporter genes and quantitative imaging in multicellular model systems. Recently, genome editing using zinc-finger nucleases (ZFNs) has been reported in several models. ZFNs consist of a zinc-finger DNA-binding array with the nuclease domain of the restriction enzyme FokI and facilitate targeted transgene insertion. In this study, we successfully inserted a GFP reporter cassette into the HpEts1 gene locus of the sea urchin, Hemicentrotus pulcherrimus. We achieved this insertion by injecting eggs with a pair of ZFNs for HpEts1 with a targeting donor construct that contained ∼1-kb homology arms and a 2A-histone H2B–GFP cassette. We increased the efficiency of the ZFN-mediated targeted transgene insertion by in situ linearization of the targeting donor construct and cointroduction of an mRNA for a dominant-negative form of HpLig4, which encodes the H. pulcherrimus homolog of DNA ligase IV required for error-prone nonhomologous end joining. We measured the fluorescence intensity of GFP at the single-cell level in living embryos during development and found that there was variation in HpEts1 expression among the primary mesenchyme cells. These findings demonstrate the feasibility of ZFN-mediated targeted transgene insertion to enable quantification of the expression levels of endogenous genes during development in living sea urchin embryos. PMID:22711830

  12. The Saccharomyces cerevisiae Mlh1-Mlh3 Heterodimer Is an Endonuclease That Preferentially Binds to Holliday Junctions*

    PubMed Central

    Ranjha, Lepakshi; Anand, Roopesh; Cejka, Petr

    2014-01-01

    MutLγ, a heterodimer of the MutL homologues Mlh1 and Mlh3, plays a critical role during meiotic homologous recombination. The meiotic function of Mlh3 is fully dependent on the integrity of a putative nuclease motif DQHAX2EX4E, inferring that the anticipated nuclease activity of Mlh1-Mlh3 is involved in the processing of joint molecules to generate crossover recombination products. Although a vast body of genetic and cell biological data regarding Mlh1-Mlh3 is available, mechanistic insights into its function have been lacking due to the unavailability of the recombinant protein complex. Here we expressed the yeast Mlh1-Mlh3 heterodimer and purified it into near homogeneity. We show that recombinant MutLγ is a nuclease that nicks double-stranded DNA. We demonstrate that MutLγ binds DNA with a high affinity and shows a marked preference for Holliday junctions. We also expressed the human MLH1-MLH3 complex and show that preferential binding to Holliday junctions is a conserved capacity of eukaryotic MutLγ complexes. Specific DNA recognition has never been observed with any other eukaryotic MutL homologue. MutLγ thus represents a new paradigm for the function of the eukaryotic MutL protein family. We provide insights into the mode of Holliday junction recognition and show that Mlh1-Mlh3 prefers to bind the open unstacked Holliday junction form. This further supports the model where MutLγ is part of a complex acting on joint molecules to generate crossovers in meiosis. PMID:24443562

  13. The Saccharomyces cerevisiae Mlh1-Mlh3 heterodimer is an endonuclease that preferentially binds to Holliday junctions.

    PubMed

    Ranjha, Lepakshi; Anand, Roopesh; Cejka, Petr

    2014-02-28

    MutLγ, a heterodimer of the MutL homologues Mlh1 and Mlh3, plays a critical role during meiotic homologous recombination. The meiotic function of Mlh3 is fully dependent on the integrity of a putative nuclease motif DQHAX2EX4E, inferring that the anticipated nuclease activity of Mlh1-Mlh3 is involved in the processing of joint molecules to generate crossover recombination products. Although a vast body of genetic and cell biological data regarding Mlh1-Mlh3 is available, mechanistic insights into its function have been lacking due to the unavailability of the recombinant protein complex. Here we expressed the yeast Mlh1-Mlh3 heterodimer and purified it into near homogeneity. We show that recombinant MutLγ is a nuclease that nicks double-stranded DNA. We demonstrate that MutLγ binds DNA with a high affinity and shows a marked preference for Holliday junctions. We also expressed the human MLH1-MLH3 complex and show that preferential binding to Holliday junctions is a conserved capacity of eukaryotic MutLγ complexes. Specific DNA recognition has never been observed with any other eukaryotic MutL homologue. MutLγ thus represents a new paradigm for the function of the eukaryotic MutL protein family. We provide insights into the mode of Holliday junction recognition and show that Mlh1-Mlh3 prefers to bind the open unstacked Holliday junction form. This further supports the model where MutLγ is part of a complex acting on joint molecules to generate crossovers in meiosis.

  14. Roles of SLX1–SLX4, MUS81–EME1, and GEN1 in avoiding genome instability and mitotic catastrophe

    PubMed Central

    Sarbajna, Shriparna; Davies, Derek; West, Stephen C.

    2014-01-01

    The resolution of recombination intermediates containing Holliday junctions (HJs) is critical for genome maintenance and proper chromosome segregation. Three pathways for HJ processing exist in human cells and involve the following enzymes/complexes: BLM–TopoIIIα–RMI1–RMI2 (BTR complex), SLX1–SLX4–MUS81–EME1 (SLX–MUS complex), and GEN1. Cycling cells preferentially use the BTR complex for the removal of double HJs in S phase, with SLX–MUS and GEN1 acting at temporally distinct phases of the cell cycle. Cells lacking SLX–MUS and GEN1 exhibit chromosome missegregation, micronucleus formation, and elevated levels of 53BP1-positive G1 nuclear bodies, suggesting that defects in chromosome segregation lead to the transmission of extensive DNA damage to daughter cells. In addition, however, we found that the effects of SLX4, MUS81, and GEN1 depletion extend beyond mitosis, since genome instability is observed throughout all phases of the cell cycle. This is exemplified in the form of impaired replication fork movement and S-phase progression, endogenous checkpoint activation, chromosome segmentation, and multinucleation. In contrast to SLX4, SLX1, the nuclease subunit of the SLX1–SLX4 structure-selective nuclease, plays no role in the replication-related phenotypes associated with SLX4/MUS81 and GEN1 depletion. These observations demonstrate that the SLX1–SLX4 nuclease and the SLX4 scaffold play divergent roles in the maintenance of genome integrity in human cells. PMID:24831703

  15. Gene Editing in Human Lymphoid Cells: Role for Donor DNA, Type of Genomic Nuclease and Cell Selection Method.

    PubMed

    Zotova, Anastasia; Lopatukhina, Elena; Filatov, Alexander; Khaitov, Musa; Mazurov, Dmitriy

    2017-11-02

    Programmable endonucleases introduce DNA breaks at specific sites, which are repaired by non-homologous end joining (NHEJ) or homology recombination (HDR). Genome editing in human lymphoid cells is challenging as these difficult-to-transfect cells may also inefficiently repair DNA by HDR. Here, we estimated efficiencies and dynamics of knockout (KO) and knockin (KI) generation in human T and B cell lines depending on repair template, target loci and types of genomic endonucleases. Using zinc finger nuclease (ZFN), we have engineered Jurkat and CEM cells with the 8.2 kb human immunodeficiency virus type 1 (HIV-1) ∆Env genome integrated at the adeno-associated virus integration site 1 (AAVS1) locus that stably produce virus particles and mediate infection upon transfection with helper vectors. Knockouts generated by ZFN or clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) double nicking techniques were comparably efficient in lymphoid cells. However, unlike polyclonal sorted cells, gene-edited cells selected by cloning exerted tremendous deviations in functionality as estimated by replication of HIV-1 and human T cell leukemia virus type 1 (HTLV-1) in these cells. Notably, the recently reported high-fidelity eCas9 1.1 when combined to the nickase mutation displayed gene-dependent decrease in on-target activity. Thus, the balance between off-target effects and on-target efficiency of nucleases, as well as choice of the optimal method of edited cell selection should be taken into account for proper gene function validation in lymphoid cells.

  16. SiRNAs conjugated with aromatic compounds induce RISC-mediated antisense strand selection and strong gene-silencing activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubo, Takanori, E-mail: kubo-t@yasuda-u.ac.jp; Yanagihara, Kazuyoshi; Division of Genetics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer SiRNAs conjugated with aromatic compounds (Ar-siRNAs) at 5 Prime -sense strand were synthesized. Black-Right-Pointing-Pointer Ar-siRNAs increased resistance against nuclease degradation. Black-Right-Pointing-Pointer Ar-siRNAs were thermodynamically stable compared with the unmodified siRNA. Black-Right-Pointing-Pointer High levels of cellular uptake and cytoplasmic localization were found. Black-Right-Pointing-Pointer Strong gene-silencing efficacy was exhibited in the Ar-siRNAs. -- Abstract: Short interference RNA (siRNA) is a powerful tool for suppressing gene expression in mammalian cells. In this study, we focused on the development of siRNAs conjugated with aromatic compounds in order to improve the potency of RNAi and thus to overcome several problems with siRNAs, suchmore » as cellular delivery and nuclease stability. The siRNAs conjugated with phenyl, hydroxyphenyl, naphthyl, and pyrenyl derivatives showed strong resistance to nuclease degradation, and were thermodynamically stable compared with unmodified siRNA. A high level of membrane permeability in HeLa cells was also observed. Moreover, these siRNAs exhibited enhanced RNAi efficacy, which exceeded that of locked nucleic acid (LNA)-modified siRNAs, against exogenous Renilla luciferase in HeLa cells. In particular, abundant cytoplasmic localization and strong gene-silencing efficacy were found in the siRNAs conjugated with phenyl and hydroxyphenyl derivatives. The novel siRNAs conjugated with aromatic compounds are promising candidates for a new generation of modified siRNAs that can solve many of the problems associated with RNAi technology.« less

  17. Unifying the DNA End-processing Roles of the Artemis Nuclease

    PubMed Central

    Chang, Howard H. Y.; Watanabe, Go; Lieber, Michael R.

    2015-01-01

    Artemis is a member of the metallo-β-lactamase protein family of nucleases. It is essential in vertebrates because, during V(D)J recombination, the RAG complex generates hairpins when it creates the double strand breaks at V, D, and J segments, and Artemis is required to open the hairpins so that they can be joined. Artemis is a diverse endo- and exonuclease, and creating a unified model for its wide range of nuclease properties has been challenging. Here we show that Artemis resects iteratively into blunt DNA ends with an efficiency that reflects the AT-richness of the DNA end. GC-rich ends are not cut by Artemis alone because of a requirement for DNA end breathing (and confirmed using fixed pseudo-Y structures). All DNA ends are cut when both the DNA-dependent protein kinase catalytic subunit and Ku accompany Artemis but not when Ku is omitted. These are the first biochemical data demonstrating a Ku dependence of Artemis action on DNA ends of any configuration. The action of Artemis at blunt DNA ends is slower than at overhangs, consistent with a requirement for a slow DNA end breathing step preceding the cut. The AT sequence dependence, the order of strand cutting, the length of the cuts, and the Ku-dependence of Artemis action at blunt ends can be reconciled with the other nucleolytic properties of both Artemis and Artemis·DNA-PKcs in a model incorporating DNA end breathing of blunt ends to form transient single to double strand boundaries that have structural similarities to hairpins and fixed 5′ and 3′ overhangs. PMID:26276388

  18. Identification and characterization of cannabinoids that induce cell death through mitochondrial permeability transition in Cannabis leaf cells.

    PubMed

    Morimoto, Satoshi; Tanaka, Yumi; Sasaki, Kaori; Tanaka, Hiroyuki; Fukamizu, Tomohide; Shoyama, Yoshinari; Shoyama, Yukihiro; Taura, Futoshi

    2007-07-13

    Cannabinoids are secondary metabolites stored in capitate-sessile glands on leaves of Cannabis sativa. We discovered that cell death is induced in the leaf tissues exposed to cannabinoid resin secreted from the glands, and identified cannabichromenic acid (CBCA) and Delta(1)-tetrahydrocannabinolic acid (THCA) as unique cell death mediators from the resin. These cannabinoids effectively induced cell death in the leaf cells or suspension-cultured cells of C. sativa, whereas pretreatment with the mitochondrial permeability transition (MPT) inhibitor cyclosporin A suppressed this cell death response. Examinations using isolated mitochondria demonstrated that CBCA and THCA mediate opening of MPT pores without requiring Ca(2+) and other cytosolic factors, resulting in high amplitude mitochondrial swelling, release of mitochondrial proteins (cytochrome c and nuclease), and irreversible loss of mitochondrial membrane potential. Therefore, CBCA and THCA are considered to cause serious damage to mitochondria through MPT. The mitochondrial damage was also confirmed by a marked decrease of ATP level in cannabinoid-treated suspension cells. These features are in good accord with those of necrotic cell death, whereas DNA degradation was also observed in cannabinoid-mediated cell death. However, the DNA degradation was catalyzed by nuclease(s) released from mitochondria during MPT, indicating that this reaction was not induced via a caspase-dependent apoptotic pathway. Furthermore, the inhibition of the DNA degradation only slightly blocked the cell death induced by cannabinoids. Based on these results, we conclude that CBCA and THCA have the ability to induce necrotic cell death via mitochondrial dysfunction in the leaf cells of C. sativa.

  19. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification.

    PubMed

    Li, Lixin; Piatek, Marek J; Atef, Ahmed; Piatek, Agnieszka; Wibowo, Anjar; Fang, Xiaoyun; Sabir, J S M; Zhu, Jian-Kang; Mahfouz, Magdy M

    2012-03-01

    Transcription activator-like effectors (TALEs) can be used as DNA-targeting modules by engineering their repeat domains to dictate user-selected sequence specificity. TALEs have been shown to function as site-specific transcriptional activators in a variety of cell types and organisms. TALE nucleases (TALENs), generated by fusing the FokI cleavage domain to TALE, have been used to create genomic double-strand breaks. The identity of the TALE repeat variable di-residues, their number, and their order dictate the DNA sequence specificity. Because TALE repeats are nearly identical, their assembly by cloning or even by synthesis is challenging and time consuming. Here, we report the development and use of a rapid and straightforward approach for the construction of designer TALE (dTALE) activators and nucleases with user-selected DNA target specificity. Using our plasmid set of 100 repeat modules, researchers can assemble repeat domains for any 14-nucleotide target sequence in one sequential restriction-ligation cloning step and in only 24 h. We generated several custom dTALEs and dTALENs with new target sequence specificities and validated their function by transient expression in tobacco leaves and in vitro DNA cleavage assays, respectively. Moreover, we developed a web tool, called idTALE, to facilitate the design of dTALENs and the identification of their genomic targets and potential off-targets in the genomes of several model species. Our dTALE repeat assembly approach along with the web tool idTALE will expedite genome-engineering applications in a variety of cell types and organisms including plants.

  20. Electrostatic effects in unfolded staphylococcal nuclease

    PubMed Central

    Fitzkee, Nicholas C.; García-Moreno E, Bertrand

    2008-01-01

    Structure-based calculations of pK a values and electrostatic free energies of proteins assume that electrostatic effects in the unfolded state are negligible. In light of experimental evidence showing that this assumption is invalid for many proteins, and with increasing awareness that the unfolded state is more structured and compact than previously thought, a detailed examination of electrostatic effects in unfolded proteins is warranted. Here we address this issue with structure-based calculations of electrostatic interactions in unfolded staphylococcal nuclease. The approach involves the generation of ensembles of structures representing the unfolded state, and calculation of Coulomb energies to Boltzmann weight the unfolded state ensembles. Four different structural models of the unfolded state were tested. Experimental proton binding data measured with a variant of nuclease that is unfolded under native conditions were used to establish the validity of the calculations. These calculations suggest that weak Coulomb interactions are an unavoidable property of unfolded proteins. At neutral pH, the interactions are too weak to organize the unfolded state; however, at extreme pH values, where the protein has a significant net charge, the combined action of a large number of weak repulsive interactions can lead to the expansion of the unfolded state. The calculated pK a values of ionizable groups in the unfolded state are similar but not identical to the values in small peptides in water. These studies suggest that the accuracy of structure-based calculations of electrostatic contributions to stability cannot be improved unless electrostatic effects in the unfolded state are calculated explicitly. PMID:18227429

  1. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Masahito; Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571; Umeyama, Kazuhiro

    2010-11-05

    Research highlights: {yields} EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. {yields} ZFNs induced targeted mutations in porcine primary cultured cells. {yields} Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor themore » exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.« less

  2. An Intracellular Peptidyl-Prolyl cis/trans Isomerase Is Required for Folding and Activity of the Staphylococcus aureus Secreted Virulence Factor Nuclease.

    PubMed

    Wiemels, Richard E; Cech, Stephanie M; Meyer, Nikki M; Burke, Caleb A; Weiss, Andy; Parks, Anastacia R; Shaw, Lindsey N; Carroll, Ronan K

    2017-01-01

    Staphylococcus aureus is an important human pathogen that relies on a large repertoire of secreted and cell wall-associated proteins for pathogenesis. Consequently, the ability of the organism to cause disease is absolutely dependent on its ability to synthesize and successfully secrete these proteins. In this study, we investigate the role of peptidyl-prolyl cis/trans isomerases (PPIases) on the activity of the S. aureus secreted virulence factor nuclease (Nuc). We identify a staphylococcal cyclophilin-type PPIase (PpiB) that is required for optimal activity of Nuc. Disruption of ppiB results in decreased nuclease activity in culture supernatants; however, the levels of Nuc protein are not altered, suggesting that the decrease in activity results from misfolding of Nuc in the absence of PpiB. We go on to demonstrate that PpiB exhibits PPIase activity in vitro, is localized to the bacterial cytosol, and directly interacts with Nuc in vitro to accelerate the rate of Nuc refolding. Finally, we demonstrate an additional role for PpiB in S. aureus hemolysis and demonstrate that the S. aureus parvulin-type PPIase PrsA also plays a role in the activity of secreted virulence factors. The deletion of prsA leads to a decrease in secreted protease and phospholipase activity, similar to that observed in other Gram-positive pathogens. Together, these results demonstrate, for the first time to our knowledge, that PPIases play an important role in the secretion of virulence factors in S. aureus IMPORTANCE: Staphylococcus aureus is a highly dangerous bacterial pathogen capable of causing a variety of infections throughout the human body. The ability of S. aureus to cause disease is largely due to an extensive repertoire of secreted and cell wall-associated proteins, including adhesins, toxins, exoenzymes, and superantigens. These virulence factors, once produced, are typically transported across the cell membrane by the secretory (Sec) system in a denatured state. Consequently, once outside the cell, they must refold into their active form. This step often requires the assistance of bacterial folding proteins, such as PPIases. In this work, we investigate the role of PPIases in S. aureus and uncover a cyclophilin-type enzyme that assists in the folding/refolding of staphylococcal nuclease. Copyright © 2016 American Society for Microbiology.

  3. The generation of oxidative stress-induced rearrangements in Saccharomyces cerevisiae mtDNA is dependent on the Nuc1 (EndoG/ExoG) nuclease and is enhanced by inactivation of the MRX complex.

    PubMed

    Dzierzbicki, Piotr; Kaniak-Golik, Aneta; Malc, Ewa; Mieczkowski, Piotr; Ciesla, Zygmunt

    2012-12-01

    Oxidative stress is known to enhance the frequency of two major types of alterations in the mitochondrial genome of Saccharomyces cerevisiae: point mutations and large deletions resulting in the generation of respiration-deficient petite rhō mutants. We investigated the effect of antimycin A, a well-known agent inducing oxidative stress, on the stability of mtDNA. We show that antimycin enhances exclusively the generation of respiration-deficient petite mutants and this is accompanied by a significant increase in the level of reactive oxygen species (ROS) and in a marked drop of cellular ATP. Whole mitochondrial genome sequencing revealed that mtDNAs of antimycin-induced petite mutants are deleted for most of the wild-type sequence and usually contain one of the active origins of mtDNA replication: ori1, ori2 ori3 or ori5. We show that the frequency of antimycin-induced rhō mutants is significantly elevated in mutants deleted either for the RAD50 or XRS2 gene, both encoding the components of the MRX complex, which is known to be involved in the repair of double strand breaks (DSBs) in DNA. Furthermore, enhanced frequency of rhō mutants in cultures of antimycin-treated cells lacking Rad50 was further increased by the simultaneous absence of the Ogg1 glycosylase, an important enzyme functioning in mtBER. We demonstrate also that rad50Δ and xrs2Δ deletion mutants display a considerable reduction in the frequency of allelic mitochondrial recombination, suggesting that it is the deficiency in homologous recombination which is responsible for enhanced rearrangements of mtDNA in antimycin-treated cells of these mutants. Finally, we show that the generation of large-scale mtDNA deletions induced by antimycin is markedly decreased in a nuc1Δ mutant lacking the activity of the Nuc1 nuclease, an ortholog of the mammalian mitochondrial nucleases EndoG and ExoG. This result indicates that the nuclease plays an important role in processing of oxidative stress-induced lesions in the mitochondrial genome. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. A REVOLUTION IN MOLD IDENTIFICATION AND ENUMERATION

    EPA Science Inventory

    More than 100 assay were developed to identify and quantify indoor molds using quantitiative PCR (QPCR) assays. This technology incorporates fluorigenic 5' nuclease (TaqMan�) chemistry directed at the nuclear ribosomal RNA operon internal transcribed spacer regions (ITS1 or ITS2...

  5. Functionalized bioengineered spider silk spheres improve nuclease resistance and activity of oligonucleotide therapeutics providing a strategy for cancer treatment.

    PubMed

    Kozlowska, Anna Karolina; Florczak, Anna; Smialek, Maciej; Dondajewska, Ewelina; Mackiewicz, Andrzej; Kortylewski, Marcin; Dams-Kozlowska, Hanna

    2017-09-01

    Cell-selective delivery and sensitivity to serum nucleases remain major hurdles to the clinical application of RNA-based oligonucleotide therapeutics, such as siRNA. Spider silk shows great potential as a biomaterial due to its biocompatibility and biodegradability. Self-assembling properties of silk proteins allow for processing into several different morphologies such as fibers, scaffolds, films, hydrogels, capsules and spheres. Moreover, bioengineering of spider silk protein sequences can functionalize silk by adding peptide moieties with specific features including binding or cell recognition domains. We demonstrated that modification of silk protein by adding the nucleic acid binding domain enabled the development of a novel oligonucleotide delivery system that can be utilized to improve pharmacokinetics of RNA-based therapeutics, such as CpG-siRNA. The MS2 bioengineered silk was functionalized with poly-lysine domain (KN) to generate hybrid silk MS2KN. CpG-siRNA efficiently bound to MS2KN in contrary to control MS2. Both MS2KN complexes and spheres protected CpG-siRNA from degradation by serum nucleases. CpG-siRNA molecules encapsulated into MS2KN spheres were efficiently internalized and processed by TLR9-positive macrophages. Importantly, CpG-STAT3siRNA loaded in silk spheres showed delayed and extended target gene silencing compared to naked oligonucleotides. The prolonged Stat3 silencing resulted in the more pronounced downregulation of interleukin 6 (IL-6), a proinflammatory cytokine and upstream activator of STAT3, which limits the efficacy of TLR9 immunostimulation. Our results demonstrate the feasibility of using spider silk spheres as a carrier of therapeutic nucleic acids. Moreover, the modified kinetic and activity of the CpG-STAT3siRNA embedded into silk spheres is likely to improve immunotherapeutic effects in vivo. We demonstrated that modification of silk protein by adding the nucleic acid binding domain enabled the development of a novel oligonucleotide delivery system that can be utilized to improve pharmacokinetics of RNA-based therapeutics. Although, the siRNA constructs have already given very promising results in the cancer therapy, the in vivo application of RNA-based oligonucleotide therapeutics still is limited due to their sensitivity to serum nucleases and some toxicity. We propose a carrier for RNA-based therapeutics that is made of bioengineered spider silk. We showed that functionalized bioengineered spider silk spheres not only protected RNA-based therapeutics from degradation by serum nucleases, but what is more important the embedding of siRNA into silk spheres delayed and extended target gene silencing compared with naked oligonucleotides. Moreover, we showed that plain silk spheres did not have unspecific effect on target gene levels proving not only to be non-cytotoxic but also very neutral vehicles in terms of TLR9/STAT3 activation in macrophages. We demonstrated advantages of novel delivery technology in safety and efficacy comparing with delivery of naked CpG-STAT3siRNA therapeutics. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Genome editing for crop improvement: Challenges and opportunities

    PubMed Central

    Abdallah, Naglaa A; Prakash, Channapatna S; McHughen, Alan G

    2015-01-01

    ABSTRACT Genome or gene editing includes several new techniques to help scientists precisely modify genome sequences. The techniques also enables us to alter the regulation of gene expression patterns in a pre-determined region and facilitates novel insights into the functional genomics of an organism. Emergence of genome editing has brought considerable excitement especially among agricultural scientists because of its simplicity, precision and power as it offers new opportunities to develop improved crop varieties with clear-cut addition of valuable traits or removal of undesirable traits. Research is underway to improve crop varieties with higher yields, strengthen stress tolerance, disease and pest resistance, decrease input costs, and increase nutritional value. Genome editing encompasses a wide variety of tools using either a site-specific recombinase (SSR) or a site-specific nuclease (SSN) system. Both systems require recognition of a known sequence. The SSN system generates single or double strand DNA breaks and activates endogenous DNA repair pathways. SSR technology, such as Cre/loxP and Flp/FRT mediated systems, are able to knockdown or knock-in genes in the genome of eukaryotes, depending on the orientation of the specific sites (loxP, FLP, etc.) flanking the target site. There are 4 main classes of SSN developed to cleave genomic sequences, mega-nucleases (homing endonuclease), zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs), and the CRISPR/Cas nuclease system (clustered regularly interspaced short palindromic repeat/CRISPR-associated protein). The recombinase mediated genome engineering depends on recombinase (sub-) family and target-site and induces high frequencies of homologous recombination. Improving crops with gene editing provides a range of options: by altering only a few nucleotides from billions found in the genomes of living cells, altering the full allele or by inserting a new gene in a targeted region of the genome. Due to its precision, gene editing is more precise than either conventional crop breeding methods or standard genetic engineering methods. Thus this technology is a very powerful tool that can be used toward securing the world's food supply. In addition to improving the nutritional value of crops, it is the most effective way to produce crops that can resist pests and thrive in tough climates. There are 3 types of modifications produced by genome editing; Type I includes altering a few nucleotides, Type II involves replacing an allele with a pre-existing one and Type III allows for the insertion of new gene(s) in predetermined regions in the genome. Because most genome-editing techniques can leave behind traces of DNA alterations evident in a small number of nucleotides, crops created through gene editing could avoid the stringent regulation procedures commonly associated with GM crop development. For this reason many scientists believe plants improved with the more precise gene editing techniques will be more acceptable to the public than transgenic plants. With genome editing comes the promise of new crops being developed more rapidly with a very low risk of off-target effects. It can be performed in any laboratory with any crop, even those that have complex genomes and are not easily bred using conventional methods. PMID:26930114

  7. From classical mutagenesis to nuclease-based breeding - directing natural DNA repair for a natural end-product.

    PubMed

    Pacher, Michael; Puchta, Holger

    2017-05-01

    Production of mutants of crop plants by the use of chemical or physical genotoxins has a long tradition. These factors induce the natural DNA repair machinery to repair damage in an error-prone way. In the case of radiation, multiple double-strand breaks (DSBs) are induced randomly in the genome, leading in very rare cases to a desirable phenotype. In recent years the use of synthetic, site-directed nucleases (SDNs) - also referred to as sequence-specific nucleases - like the CRISPR/Cas system has enabled scientists to use exactly the same naturally occurring DNA repair mechanisms for the controlled induction of genomic changes at pre-defined sites in plant genomes. As these changes are not necessarily associated with the permanent integration of foreign DNA, the obtained organisms per se cannot be regarded as genetically modified as there is no way to distinguish them from natural variants. This applies to changes induced by DSBs as well as single-strand breaks, and involves repair by non-homologous end-joining and homologous recombination. The recent development of SDN-based 'DNA-free' approaches makes mutagenesis strategies in classical breeding indistinguishable from SDN-derived targeted genome modifications, even in regard to current regulatory rules. With the advent of new SDN technologies, much faster and more precise genome editing becomes available at reasonable cost, and potentially without requiring time-consuming deregulation of newly created phenotypes. This review will focus on classical mutagenesis breeding and the application of newly developed SDNs in order to emphasize similarities in the context of the regulatory situation for genetically modified crop plants. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  8. The CRISPR/Cas revolution reaches the RNA world: Cas13, a new Swiss Army knife for plant biologists.

    PubMed

    Wolter, Felix; Puchta, Holger

    2018-06-01

    Application of the bacterial CRISPR/Cas systems to eukaryotes is revolutionizing biology. Cas9 and Cas12 (previously called Cpf1) are widely used as DNA nucleases for inducing site-specific DNA breaks for different kinds of genome engineering applications, and in their mutated forms as DNA-binding proteins to modify gene expression. Moreover, histone modifications, as well as cytosine methylation or base editing, were achieved with these systems in plants. Recently, with the discovery of the nuclease Cas13a (previously called C2c2), molecular biologists have obtained a system that enables sequence-specific cleavage of single-stranded RNA molecules. The latest experiments with this and also the alternative Cas13b system demonstrate that these proteins can be used in a similar manner in eukaryotes for RNA manipulation as Cas9 and Cas12 for DNA manipulations. The first application of Cas13a for post-transcriptional regulation of gene expression in plants has been reported. Recent results show that the system is also applicable for combating viral infection in plants. As single-stranded RNA viruses are by far the most abundant class of viruses in plants, the application of this system is of special promise for crops. More interesting applications are imminent for plant biologists, with nuclease dead versions of Cas13 enabling the ability to visualize RNA molecules in vivo, as well as to edit different kinds of RNA molecules at specific bases by deamination or to modify them by conjugation. Moreover, by combining DNA- and RNA-directed systems, the most complex of changes in plant metabolism might be achievable. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  9. Chitosan Stabilized Gold-Folate-Poly(lactide-co-glycolide) Nanoplexes Facilitate Efficient Gene Delivery in Hepatic and Breast Cancer Cells.

    PubMed

    Akinyelu, Jude; Singh, Moganavelli

    2018-07-01

    The biodegradable polymer, poly(lactide-co-glycolide) is a popular polymer of choice in many nanotherapeutic studies. Herein, we report on the synthesis and evaluation of four chitosan stabilized poly(lactide-co-glycolide) nanoparticles with and without coating with gold, and the targeting ligand, folic acid, as potential non-viral gene delivery vectors. The poly(lactide-co-glycolide) nanoparticles were synthesized via nanoprecipitation/solvent evaporation method in conjunction with the surface functionalizing folic acid and chitosan. The physiochemical properties (morphology, particle size, zeta potential, folic acid/chitosan presence, DNA binding), and biological properties (nuclease protection, in vitro cytotoxicity and transfection potential in human kidney, hepatocellular carcinoma and breast adenocarcinoma cells), of all four gene bound nanoparticles were evaluated. Gel retardation assays confirmed that all the nanoparticles were able to successfully bind the reporter plasmid, pCMV-luc DNA at varying weight ratios. The gold-folate-poly(lactide-co-glycolide) nanoplexes with the highest binding efficiency (w/w ratio 4:1), best protected the plasmid DNA as evidenced from the nuclease protection assays. Furthermore, these nanoplexes presented as spherical particles with an average particle size of 199.4 nm and zeta potential of 35.7 mV. Folic acid and chitosan functionalization of the nanoparticles was confirmed by attenuated total reflection-Fourier transform infrared spectroscopy. All nanoplexes maintained over 90% cell viability in all cell lines investigated. Interestingly, the gold-folate-poly(lactide-co-glycolide) nanoplexes showed a greater transgene activity in the hepatic and breast cancer cells compared to the other nanocomplexes in the same cell lines. The favorable size, colloidal stability, low cytotoxicity, significant transgene expression, and nuclease protection ability in vitro, all provide support for the use of gold-folate-poly(lactide-co-glycolide) nanoplexes in future gene therapy applications.

  10. Low-Dose Irradiation Enhances Gene Targeting in Human Pluripotent Stem Cells.

    PubMed

    Hatada, Seigo; Subramanian, Aparna; Mandefro, Berhan; Ren, Songyang; Kim, Ho Won; Tang, Jie; Funari, Vincent; Baloh, Robert H; Sareen, Dhruv; Arumugaswami, Vaithilingaraja; Svendsen, Clive N

    2015-09-01

    Human pluripotent stem cells (hPSCs) are now being used for both disease modeling and cell therapy; however, efficient homologous recombination (HR) is often crucial to develop isogenic control or reporter lines. We showed that limited low-dose irradiation (LDI) using either γ-ray or x-ray exposure (0.4 Gy) significantly enhanced HR frequency, possibly through induction of DNA repair/recombination machinery including ataxia-telangiectasia mutated, histone H2A.X and RAD51 proteins. LDI could also increase HR efficiency by more than 30-fold when combined with the targeting tools zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Whole-exome sequencing confirmed that the LDI administered to hPSCs did not induce gross genomic alterations or affect cellular viability. Irradiated and targeted lines were karyotypically normal and made all differentiated lineages that continued to express green fluorescent protein targeted at the AAVS1 locus. This simple method allows higher throughput of new, targeted hPSC lines that are crucial to expand the use of disease modeling and to develop novel avenues of cell therapy. The simple and relevant technique described in this report uses a low level of radiation to increase desired gene modifications in human pluripotent stem cells by an order of magnitude. This higher efficiency permits greater throughput with reduced time and cost. The low level of radiation also greatly increased the recombination frequency when combined with developed engineered nucleases. Critically, the radiation did not lead to increases in DNA mutations or to reductions in overall cellular viability. This novel technique enables not only the rapid production of disease models using human stem cells but also the possibility of treating genetically based diseases by correcting patient-derived cells. ©AlphaMed Press.

  11. Genome editing in pluripotent stem cells: research and therapeutic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deleidi, Michela, E-mail: michela.deleidi@dzne.de; Hertie Institute for Clinical Brain Research, University of Tübingen; Yu, Cong

    Recent progress in human pluripotent stem cell (hPSC) and genome editing technologies has opened up new avenues for the investigation of human biology in health and disease as well as the development of therapeutic applications. Gene editing approaches with programmable nucleases have been successfully established in hPSCs and applied to study gene function, develop novel animal models and perform genetic and chemical screens. Several studies now show the successful editing of disease-linked alleles in somatic and patient-derived induced pluripotent stem cells (iPSCs) as well as in animal models. Importantly, initial clinical trials have shown the safety of programmable nucleases formore » ex vivo somatic gene therapy. In this context, the unlimited proliferation potential and the pluripotent properties of iPSCs may offer advantages for gene targeting approaches. However, many technical and safety issues still need to be addressed before genome-edited iPSCs are translated into the clinical setting. Here, we provide an overview of the available genome editing systems and discuss opportunities and perspectives for their application in basic research and clinical practice, with a particular focus on hPSC based research and gene therapy approaches. Finally, we discuss recent research on human germline genome editing and its social and ethical implications. - Highlights: • Programmable nucleases have proven efficient and specific for genome editing in human pluripotent stem cells (hPSCs). • Genome edited hPSCs can be employed to study gene function in health and disease as well as drug and chemical screens. • Genome edited hPSCs hold great promise for ex vivo gene therapy approaches. • Technical and safety issues should be first addressed to advance the clinical use of gene-edited hPSCs.« less

  12. A Novel Prokaryotic Green Fluorescent Protein Expression System for Testing Gene Editing Tools Activity Like Zinc Finger Nuclease.

    PubMed

    Sabzehei, Faezeh; Kouhpayeh, Shirin; Dastjerdeh, Mansoureh Shahbazi; Khanahmad, Hossein; Salehi, Rasoul; Naderi, Shamsi; Taghizadeh, Razieh; Rabiei, Parisa; Hejazi, Zahra; Shariati, Laleh

    2017-01-01

    Gene editing technology has created a revolution in the field of genome editing. The three of the most famous tools in gene editing technology are zinc finger nucleases (ZFNs), transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated systems. As their predictable nature, it is necessary to assess their efficiency. There are some methods for this purpose, but most of them are time labor and complicated. Here, we introduce a new prokaryotic reporter system, which makes it possible to evaluate the efficiency of gene editing tools faster, cheaper, and simpler than previous methods. At first, the target sites of a custom ZFN, which is designed against a segment of ampicillin resistance gene, were cloned on both sides of green fluorescent protein (GFP) gene to construct pPRO-GFP. Then pPRO-GFP was transformed into Escherichia coli TOP10F' that contains pZFN (contains expression cassette of a ZFN against ampicillin resistant gene), or p15A-KanaR as a negative control. The transformed bacteria were cultured on three separate media that contained ampicillin, kanamycin, and ampicillin + kanamycin; then the resulted colonies were assessed by flow cytometry. The results of flow cytometry showed a significant difference between the case (bacteria contain pZFN) and control (bacteria contain p15A, KanaR) in MFI (Mean Fluorescence Intensity) ( P < 0.0001). According to ZFN efficiency, it can bind and cut the target sites, the bilateral cutting can affect the intensity of GFP fluorescence. Our flow cytometry results showed that this ZFN could reduce the intensity of GFP color and colony count of bacteria in media containing amp + kana versus control sample.

  13. Electroactive chitosan nanoparticles for the detection of single-nucleotide polymorphisms using peptide nucleic acids.

    PubMed

    Kerman, Kagan; Saito, Masato; Tamiya, Eiichi

    2008-08-01

    Here we report an electrochemical biosensor that would allow for simple and rapid analysis of nucleic acids in combination with nuclease activity on nucleic acids and electroactive bionanoparticles. The detection of single-nucleotide polymorphisms (SNPs) using PNA probes takes advantage of the significant structural and physicochemical differences between the full hybrids and SNPs in PNA/DNA and DNA/DNA duplexes. Ferrocene-conjugated chitosan nanoparticles (Chi-Fc) were used as the electroactive indicator of hybridization. Chi-Fc had no affinity towards the neutral PNA probe immobilized on a gold electrode (AuE) surface. When the PNA probe on the electrode surface hybridized with a full-complementary target DNA, Chi-Fc electrostatically attached to the negatively-charged phosphate backbone of DNA on the surface and gave rise to a high electrochemical oxidation signal from ferrocene at approximately 0.30 V. Exposing the surface to a single-stranded DNA specific nuclease, Nuclease S1, was found to be very effective for removing the nonspecifically adsorbed SNP DNA. An SNP in the target DNA to PNA made it susceptible to the enzymatic digestion. After the enzymatic digestion and subsequent exposure to Chi-Fc, the presence of SNPs was determined by monitoring the changes in the electrical current response of Chi-Fc. The method provided a detection limit of 1 fM (S/N = 3) for the target DNA oligonucleotide. Additionally, asymmetric PCR was employed to detect the presence of genetically modified organism (GMO) in standard Roundup Ready soybean samples. PNA-mediated PCR amplification of real DNA samples was performed to detect SNPs related to alcohol dehydrogenase (ALDH). Chitosan nanoparticles are promising biomaterials for various analytical and pharmaceutical applications.

  14. Tudor staphylococcal nuclease is a structure-specific ribonuclease that degrades RNA at unstructured regions during microRNA decay.

    PubMed

    Li, Chia-Lung; Yang, Wei-Zen; Shi, Zhonghao; Yuan, Hanna S

    2018-05-01

    Tudor staphylococcal nuclease (TSN) is an evolutionarily conserved ribonuclease in eukaryotes that is composed of five staphylococcal nuclease-like domains (SN1-SN5) and a Tudor domain. TSN degrades hyper-edited double-stranded RNA, including primary miRNA precursors containing multiple I•U and U•I pairs, and mature miRNA during miRNA decay. However, how TSN binds and degrades its RNA substrates remains unclear. Here, we show that the C. elegans TSN (cTSN) is a monomeric Ca 2+ -dependent ribonuclease, cleaving RNA chains at the 5'-side of the phosphodiester linkage to produce degraded fragments with 5'-hydroxyl and 3'-phosphate ends. cTSN degrades single-stranded RNA and double-stranded RNA containing mismatched base pairs, but is not restricted to those containing multiple I•U and U•I pairs. cTSN has at least two catalytic active sites located in the SN1 and SN3 domains, since mutations of the putative Ca 2+ -binding residues in these two domains strongly impaired its ribonuclease activity. We further show by small-angle X-ray scattering that rice osTSN has a flexible two-lobed structure with open to closed conformations, indicating that TSN may change its conformation upon RNA binding. We conclude that TSN is a structure-specific ribonuclease targeting not only single-stranded RNA, but also unstructured regions of double-stranded RNA. This study provides the molecular basis for how TSN cooperates with RNA editing to eliminate duplex RNA in cell defense, and how TSN selects and degrades RNA during microRNA decay. © 2018 Li et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  15. Disabling a Type I-E CRISPR-Cas Nuclease with a Bacteriophage-Encoded Anti-CRISPR Protein.

    PubMed

    Pawluk, April; Shah, Megha; Mejdani, Marios; Calmettes, Charles; Moraes, Trevor F; Davidson, Alan R; Maxwell, Karen L

    2017-12-12

    CRISPR (clustered regularly interspaced short palindromic repeat)-Cas adaptive immune systems are prevalent defense mechanisms in bacteria and archaea. They provide sequence-specific detection and neutralization of foreign nucleic acids such as bacteriophages and plasmids. One mechanism by which phages and other mobile genetic elements are able to overcome the CRISPR-Cas system is through the expression of anti-CRISPR proteins. Over 20 different families of anti-CRISPR proteins have been described, each of which inhibits a particular type of CRISPR-Cas system. In this work, we determined the structure of type I-E anti-CRISPR protein AcrE1 by X-ray crystallography. We show that AcrE1 binds to the CRISPR-associated helicase/nuclease Cas3 and that the C-terminal region of the anti-CRISPR protein is important for its inhibitory activity. We further show that AcrE1 can convert the endogenous type I-E CRISPR system into a programmable transcriptional repressor. IMPORTANCE The CRISPR-Cas immune system provides bacteria with resistance to invasion by potentially harmful viruses, plasmids, and other foreign mobile genetic elements. This study presents the first structural and mechanistic insight into a phage-encoded protein that inactivates the type I-E CRISPR-Cas system in Pseudomonas aeruginosa The interaction of this anti-CRISPR protein with the CRISPR-associated helicase/nuclease proteins Cas3 shuts down the CRISPR-Cas system and protects phages carrying this gene from destruction. This interaction also allows the repurposing of the endogenous type I-E CRISPR system into a programmable transcriptional repressor, providing a new biotechnological tool for genetic studies of bacteria encoding this type I-E CRISPR-Cas system. Copyright © 2017 Pawluk et al.

  16. Genome editing in sea urchin embryos by using a CRISPR/Cas9 system.

    PubMed

    Lin, Che-Yi; Su, Yi-Hsien

    2016-01-15

    Sea urchin embryos are a useful model system for investigating early developmental processes and the underlying gene regulatory networks. Most functional studies using sea urchin embryos rely on antisense morpholino oligonucleotides to knockdown gene functions. However, major concerns related to this technique include off-target effects, variations in morpholino efficiency, and potential morpholino toxicity; furthermore, such problems are difficult to discern. Recent advances in genome editing technologies have introduced the prospect of not only generating sequence-specific knockouts, but also providing genome-engineering applications. Two genome editing tools, zinc-finger nuclease (ZFN) and transcription activator-like effector nucleases (TALENs), have been utilized in sea urchin embryos, but the resulting efficiencies are far from satisfactory. The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) system serves as an easy and efficient method with which to edit the genomes of several established and emerging model organisms in the field of developmental biology. Here, we apply the CRISPR/Cas9 system to the sea urchin embryo. We designed six guide RNAs (gRNAs) against the well-studied nodal gene and discovered that five of the gRNAs induced the expected phenotype in 60-80% of the injected embryos. In addition, we developed a simple method for isolating genomic DNA from individual embryos, enabling phenotype to be precisely linked to genotype, and revealed that the mutation rates were 67-100% among the sequenced clones. Of the two potential off-target sites we examined, no off-target effects were observed. The detailed procedures described herein promise to accelerate the usage of CRISPR/Cas9 system for genome editing in sea urchin embryos. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease.

    PubMed

    Doetschman, Thomas; Georgieva, Teodora

    2017-03-03

    Genetic engineering of model organisms and cultured cells has for decades provided important insights into the mechanisms underlying cardiovascular development and disease. In the past few years the development of several nuclease systems has broadened the range of model/cell systems that can be engineered. Of these, the CRISPR (clustered regularly interspersed short palindromic repeats)/Cas9 (CRISPR-associated protein 9) system has become the favorite for its ease of application. Here we will review this RNA-guided nuclease system for gene editing with respect to its usefulness for cardiovascular studies and with an eye toward potential therapy. Studies on its off-target activity, along with approaches to minimize this activity will be given. The advantages of gene editing versus gene targeting in embryonic stem cells, including the breadth of species and cell types to which it is applicable, will be discussed. We will also cover its use in iPSC for research and possible therapeutic purposes; and we will review its use in muscular dystrophy studies where considerable progress has been made toward dystrophin correction in mice. The CRISPR/Ca9s system is also being used for high-throughput screening of genes, gene regulatory regions, and long noncoding RNAs. In addition, the CRISPR system is being used for nongene-editing purposes such as activation and inhibition of gene expression, as well as for fluorescence tagging of chromosomal regions and individual mRNAs to track their cellular location. Finally, an approach to circumvent the inability of post-mitotic cells to support homologous recombination-based gene editing will be presented. In conclusion, applications of the CRISPR/Cas system are expanding at a breath-taking pace and are revolutionizing approaches to gain a better understanding of human diseases. © 2017 American Heart Association, Inc.

  18. CRISPR therapeutic tools for complex genetic disorders and cancer (Review)

    PubMed Central

    Baliou, Stella; Adamaki, Maria; Kyriakopoulos, Anthony M.; Spandidos, Demetrios A.; Panayiotidis, Mihalis; Christodoulou, Ioannis; Zoumpourlis, Vassilis

    2018-01-01

    One of the fundamental discoveries in the field of biology is the ability to modulate the genome and to monitor the functional outputs derived from genomic alterations. In order to unravel new therapeutic options, scientists had initially focused on inducing genetic alterations in primary cells, in established cancer cell lines and mouse models using either RNA interference or cDNA overexpression or various programmable nucleases [zinc finger nucleases (ZNF), transcription activator-like effector nucleases (TALEN)]. Even though a huge volume of data was produced, its use was neither cheap nor accurate. Therefore, the clustered regularly interspaced short palindromic repeats (CRISPR) system was evidenced to be the next step in genome engineering tools. CRISPR-associated protein 9 (Cas9)-mediated genetic perturbation is simple, precise and highly efficient, empowering researchers to apply this method to immortalized cancerous cell lines, primary cells derived from mouse and human origins, xenografts, induced pluripotent stem cells, organoid cultures, as well as the generation of genetically engineered animal models. In this review, we assess the development of the CRISPR system and its therapeutic applications to a wide range of complex diseases (particularly distinct tumors), aiming at personalized therapy. Special emphasis is given to organoids and CRISPR screens in the design of innovative therapeutic approaches. Overall, the CRISPR system is regarded as an eminent genome engineering tool in therapeutics. We envision a new era in cancer biology during which the CRISPR-based genome engineering toolbox will serve as the fundamental conduit between the bench and the bedside; nonetheless, certain obstacles need to be addressed, such as the eradication of side-effects, maximization of efficiency, the assurance of delivery and the elimination of immunogenicity. PMID:29901119

  19. The ATPase domain of the large terminase protein, gp17, from bacteriophage T4 binds DNA: implications to the DNA packaging mechanism.

    PubMed

    Alam, Tanfis I; Rao, Venigalla B

    2008-03-07

    Translocation of double-stranded DNA into a preformed capsid by tailed bacteriophages is driven by powerful motors assembled at the special portal vertex. The motor is thought to drive processive cycles of DNA binding, movement, and release to package the viral genome. In phage T4, there is evidence that the large terminase protein, gene product 17 (gp17), assembles into a multisubunit motor and translocates DNA by an inchworm mechanism. gp17 consists of two domains; an N-terminal ATPase domain (amino acids 1-360) that powers translocation of DNA, and a C-terminal nuclease domain (amino acids 361-610) that cuts concatemeric DNA to generate a headful-size viral genome. While the functional motifs of ATPase and nuclease have been well defined and the ATPase atomic structure has been solved, the DNA binding motif(s) responsible for viral DNA recognition, cutting, and translocation are unknown. Here we report the first evidence for the presence of a double-stranded DNA binding activity in the gp17 ATPase domain. Binding to DNA is sensitive to Mg(2+) and salt, but not the type of DNA used. DNA fragments as short as 20 bp can bind to the ATPase but preferential binding was observed to DNA greater than 1 kb. A high molecular weight ATPase-DNA complex was isolated by gel filtration, suggesting oligomerization of ATPase following DNA interaction. DNA binding was not observed with the full-length gp17, or the C-terminal nuclease domain. The small terminase protein, gp16, inhibited DNA binding, which was further accentuated by ATP. The presence of a DNA binding site in the ATPase domain and its binding properties implicate a role in the DNA packaging mechanism.

  20. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.

    PubMed

    Koonin, Eugene V; Makarova, Kira S

    2013-05-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails.

  1. A Novel Prokaryotic Green Fluorescent Protein Expression System for Testing Gene Editing Tools Activity Like Zinc Finger Nuclease

    PubMed Central

    Sabzehei, Faezeh; Kouhpayeh, Shirin; Dastjerdeh, Mansoureh Shahbazi; Khanahmad, Hossein; Salehi, Rasoul; Naderi, Shamsi; Taghizadeh, Razieh; Rabiei, Parisa; Hejazi, Zahra; Shariati, Laleh

    2017-01-01

    Background: Gene editing technology has created a revolution in the field of genome editing. The three of the most famous tools in gene editing technology are zinc finger nucleases (ZFNs), transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated systems. As their predictable nature, it is necessary to assess their efficiency. There are some methods for this purpose, but most of them are time labor and complicated. Here, we introduce a new prokaryotic reporter system, which makes it possible to evaluate the efficiency of gene editing tools faster, cheaper, and simpler than previous methods. Materials and Methods: At first, the target sites of a custom ZFN, which is designed against a segment of ampicillin resistance gene, were cloned on both sides of green fluorescent protein (GFP) gene to construct pPRO-GFP. Then pPRO-GFP was transformed into Escherichia coli TOP10F’ that contains pZFN (contains expression cassette of a ZFN against ampicillin resistant gene), or p15A-KanaR as a negative control. The transformed bacteria were cultured on three separate media that contained ampicillin, kanamycin, and ampicillin + kanamycin; then the resulted colonies were assessed by flow cytometry. Results: The results of flow cytometry showed a significant difference between the case (bacteria contain pZFN) and control (bacteria contain p15A, KanaR) in MFI (Mean Fluorescence Intensity) (P < 0.0001). Conclusion: According to ZFN efficiency, it can bind and cut the target sites, the bilateral cutting can affect the intensity of GFP fluorescence. Our flow cytometry results showed that this ZFN could reduce the intensity of GFP color and colony count of bacteria in media containing amp + kana versus control sample. PMID:29285485

  2. (Poly)cation-induced protection of conventional and wireframe DNA origami nanostructures.

    PubMed

    Ahmadi, Yasaman; De Llano, Elisa; Barišić, Ivan

    2018-04-26

    DNA nanostructures hold immense potential to be used for biological and medical applications. However, they are extremely vulnerable towards salt depletion and nucleases, which are common under physiological conditions. In this contribution, we used chitosan and linear polyethyleneimine for coating and long-term stabilization of several three-dimensional DNA origami nanostructures. The impact of the degree of polymerization and the charge density of the polymer together with the N/P charge ratio (ratio of the amines in polycations to the phosphates in DNA) on the stability of encapsulated DNA origami nanostructures in the presence of nucleases and in low-salt media was examined. The polycation shells were compatible with enzyme- and aptamer-based functionalization of the DNA nanostructures. Additionally, we showed that despite being highly vulnerable to salt depletion and nucleolytic digestion, self-assembled DNA nanostructures are stable in cell culture media up to a week. This was contrary to unassembled DNA scaffolds that degraded in one hour, showing that placing DNA strands into a spatially designed configuration crucially affect the structural integrity. The stability of naked DNA nanostructures in cell culture was shown to be mediated by growth media. DNA origami nanostructures kept in growth media were significantly more resistant towards low-salt denaturation, DNase I and serum-mediated digestion than when in a conventional buffer. Moreover, we confirmed that DNA origami nanostructures remain not only structurally intact but also fully functional after exposure to cell media. Agarose gel electrophoresis and negative stain transmission electron microscopy analysis revealed the hybridization of DNA origami nanostructures to their targets in the presence of serum proteins and nucleases. The structural integrity and functionality of DNA nanostructures in physiological fluids validate their use particularly for short-time biological applications in which the shape and structural details of DNA nanodevices are functionally critical.

  3. Enhanced expression of the DNA damage-inducible gene DIN7 results in increased mutagenesis of mitochondrial DNA in Saccharomyces cerevisiae.

    PubMed

    Koprowski, P; Fikus, M U; Dzierzbicki, P; Mieczkowski, P; Lazowska, J; Ciesla, Z

    2003-08-01

    We reported previously that the product of DIN7, a DNA damage-inducible gene of Saccharomyces cerevisiae, belongs to the XPG family of proteins, which are involved in DNA repair and replication. This family includes the S. cerevisiae protein Rad2p and its human homolog XPGC, Rad27p and its mammalian homolog FEN-1, and Exonuclease I (Exo I). Interestingly, Din7p is the only member of the XPG family which specifically functions in mitochondria. We reported previously that overexpression of DIN7 results in a mitochondrial mutator phenotype. In the present study we wished to test the hypothesis that this phenotype is dependent on the nuclease activity of Din7p. For this purpose, we constructed two alleles, din7-D78A and din7-D173A, which encode proteins in which highly conserved aspartates important for the nuclease activity of the XPG proteins have been replaced by alanines. Here, we report that overexpression of the mutant alleles, in contrast to DIN7, fails to increase the frequency of mitochondrial petite mutants or erythromycin-resistant (Er) mutants. Also, overproduction of din7-D78Ap does not result in destabilization of poly GT tracts in mitochondrial DNA (mtDNA), the phenotype observed in cells that overexpress Din7p. We also show that petite mutants induced by enhanced synthesis of wild-type Din7p exhibit gross rearrangements of mtDNA, and that this correlates with enhanced recombination within the mitochondrial cyt b gene. These results suggest that the stability of the mitochondrial genome of S. cerevisiae is modulated by the level of the nuclease Din7p.

  4. The Expression of TALEN before Fertilization Provides a Rapid Knock-Out Phenotype in Xenopus laevis Founder Embryos.

    PubMed

    Miyamoto, Kei; Suzuki, Ken-Ichi T; Suzuki, Miyuki; Sakane, Yuto; Sakuma, Tetsushi; Herberg, Sarah; Simeone, Angela; Simpson, David; Jullien, Jerome; Yamamoto, Takashi; Gurdon, J B

    2015-01-01

    Recent advances in genome editing using programmable nucleases have revolutionized gene targeting in various organisms. Successful gene knock-out has been shown in Xenopus, a widely used model organism, although a system enabling less mosaic knock-out in founder embryos (F0) needs to be explored in order to judge phenotypes in the F0 generation. Here, we injected modified highly active transcription activator-like effector nuclease (TALEN) mRNA to oocytes at the germinal vesicle (GV) stage, followed by in vitro maturation and intracytoplasmic sperm injection, to achieve a full knock-out in F0 embryos. Unlike conventional injection methods to fertilized embryos, the injection of TALEN mRNA into GV oocytes allows expression of nucleases before fertilization, enabling them to work from an earlier stage. Using this procedure, most of developed embryos showed full knock-out phenotypes of the pigmentation gene tyrosinase and/or embryonic lethal gene pax6 in the founder generation. In addition, our method permitted a large 1 kb deletion. Thus, we describe nearly complete gene knock-out phenotypes in Xenopus laevis F0 embryos. The presented method will help to accelerate the production of knock-out frogs since we can bypass an extra generation of about 1 year in Xenopus laevis. Meantime, our method provides a unique opportunity to rapidly test the developmental effects of disrupting those genes that do not permit growth to an adult able to reproduce. In addition, the protocol shown here is considerably less invasive than the previously used host transfer since our protocol does not require surgery. The experimental scheme presented is potentially applicable to other organisms such as mammals and fish to resolve common issues of mosaicism in founders.

  5. Isolating DNA from sexual assault cases: a comparison of standard methods with a nuclease-based approach

    PubMed Central

    2012-01-01

    Background Profiling sperm DNA present on vaginal swabs taken from rape victims often contributes to identifying and incarcerating rapists. Large amounts of the victim’s epithelial cells contaminate the sperm present on swabs, however, and complicate this process. The standard method for obtaining relatively pure sperm DNA from a vaginal swab is to digest the epithelial cells with Proteinase K in order to solubilize the victim’s DNA, and to then physically separate the soluble DNA from the intact sperm by pelleting the sperm, removing the victim’s fraction, and repeatedly washing the sperm pellet. An alternative approach that does not require washing steps is to digest with Proteinase K, pellet the sperm, remove the victim’s fraction, and then digest the residual victim’s DNA with a nuclease. Methods The nuclease approach has been commercialized in a product, the Erase Sperm Isolation Kit (PTC Labs, Columbia, MO, USA), and five crime laboratories have tested it on semen-spiked female buccal swabs in a direct comparison with their standard methods. Comparisons have also been performed on timed post-coital vaginal swabs and evidence collected from sexual assault cases. Results For the semen-spiked buccal swabs, Erase outperformed the standard methods in all five laboratories and in most cases was able to provide a clean male profile from buccal swabs spiked with only 1,500 sperm. The vaginal swabs taken after consensual sex and the evidence collected from rape victims showed a similar pattern of Erase providing superior profiles. Conclusions In all samples tested, STR profiles of the male DNA fractions obtained with Erase were as good as or better than those obtained using the standard methods. PMID:23211019

  6. The SNM1B/APOLLO DNA nuclease functions in resolution of replication stress and maintenance of common fragile site stability.

    PubMed

    Mason, Jennifer M; Das, Ishita; Arlt, Martin; Patel, Neil; Kraftson, Stephanie; Glover, Thomas W; Sekiguchi, JoAnn M

    2013-12-15

    SNM1B/Apollo is a DNA nuclease that has important functions in telomere maintenance and repair of DNA interstrand crosslinks (ICLs) within the Fanconi anemia (FA) pathway. SNM1B is required for efficient localization of key repair proteins, such as the FA protein, FANCD2, to sites of ICL damage and functions epistatically to FANCD2 in cellular survival to ICLs and homology-directed repair. The FA pathway is also activated in response to replication fork stalling. Here, we sought to determine the importance of SNM1B in cellular responses to stalled forks in the absence of a blocking lesion, such as ICLs. We found that depletion of SNM1B results in hypersensitivity to aphidicolin, a DNA polymerase inhibitor that causes replication stress. We observed that the SNM1B nuclease is required for efficient localization of the DNA repair proteins, FANCD2 and BRCA1, to subnuclear foci upon aphidicolin treatment, thereby indicating SNM1B facilitates direct repair of stalled forks. Consistent with a role for SNM1B subsequent to recognition of the lesion, we found that SNM1B is dispensable for upstream events, including activation of ATR-dependent signaling and localization of RPA, γH2AX and the MRE11/RAD50/NBS1 complex to aphidicolin-induced foci. We determined that a major consequence of SNM1B depletion is a marked increase in spontaneous and aphidicolin-induced chromosomal gaps and breaks, including breakage at common fragile sites. Thus, this study provides evidence that SNM1B functions in resolving replication stress and preventing accumulation of genomic damage.

  7. QUANTITATIVE PCR OF SELECTED ASPERGILLUS, PENICILLIUM AND PAECILOMYCES SPECIES

    EPA Science Inventory

    A total of 65 quantitative PCR (QPCR) assays, incorporating fluorigenic 5' nuclease (TaqMan®) chemistry and directed at the nuclear ribosomal RNA operon, internal transcribed spacer regions (ITS1 or ITS2) was developed and tested for the detection of Aspergillus, Penicillium and ...

  8. Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting.

    PubMed

    Chen, Fuqiang; Ding, Xiao; Feng, Yongmei; Seebeck, Timothy; Jiang, Yanfang; Davis, Gregory D

    2017-04-07

    Bacterial CRISPR-Cas systems comprise diverse effector endonucleases with different targeting ranges, specificities and enzymatic properties, but many of them are inactive in mammalian cells and are thus precluded from genome-editing applications. Here we show that the type II-B FnCas9 from Francisella novicida possesses novel properties, but its nuclease function is frequently inhibited at many genomic loci in living human cells. Moreover, we develop a proximal CRISPR (termed proxy-CRISPR) targeting method that restores FnCas9 nuclease activity in a target-specific manner. We further demonstrate that this proxy-CRISPR strategy is applicable to diverse CRISPR-Cas systems, including type II-C Cas9 and type V Cpf1 systems, and can facilitate precise gene editing even between identical genomic sites within the same genome. Our findings provide a novel strategy to enable use of diverse otherwise inactive CRISPR-Cas systems for genome-editing applications and a potential path to modulate the impact of chromatin microenvironments on genome modification.

  9. Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting

    PubMed Central

    Chen, Fuqiang; Ding, Xiao; Feng, Yongmei; Seebeck, Timothy; Jiang, Yanfang; Davis, Gregory D.

    2017-01-01

    Bacterial CRISPR–Cas systems comprise diverse effector endonucleases with different targeting ranges, specificities and enzymatic properties, but many of them are inactive in mammalian cells and are thus precluded from genome-editing applications. Here we show that the type II-B FnCas9 from Francisella novicida possesses novel properties, but its nuclease function is frequently inhibited at many genomic loci in living human cells. Moreover, we develop a proximal CRISPR (termed proxy-CRISPR) targeting method that restores FnCas9 nuclease activity in a target-specific manner. We further demonstrate that this proxy-CRISPR strategy is applicable to diverse CRISPR–Cas systems, including type II-C Cas9 and type V Cpf1 systems, and can facilitate precise gene editing even between identical genomic sites within the same genome. Our findings provide a novel strategy to enable use of diverse otherwise inactive CRISPR–Cas systems for genome-editing applications and a potential path to modulate the impact of chromatin microenvironments on genome modification. PMID:28387220

  10. Asymmetric structure of five and six membered DNA hairpin loops

    NASA Technical Reports Server (NTRS)

    Baumann, U.; Chang, S.

    1995-01-01

    The tertiary structure of nucleic acid hairpins was elucidated by means of the accessibility of the single-strand-specific nuclease from mung bean. This molecular probe has proven especially useful in determining details of the structural arrangement of the nucleotides within a loop. In this study 3'-labeling is introduced to complement previously used 5'-labeling in order to assess and to exclude possible artifacts of the method. Both labeling procedures result in mutually consistent cleavage patterns. Therefore, methodological artifacts can be excluded and the potential of the nuclease as structural probe is increased. DNA hairpins with five and six membered loops reveal an asymmetric loop structure with a sharp bend of the phosphate-ribose backbone between the second and third nucleotide on the 3'-side of a loop. These hairpin structures differ from smaller loops with 3 or 4 members, which reveal this type of bend between the first and second 3' nucleotide, and resemble with respect to the asymmetry anticodon loops of tRNA.

  11. Nucleotide Catabolism on the Surface of Aortic Valve Xenografts; Effects of Different Decellularization Strategies.

    PubMed

    Kutryb-Zajac, Barbara; Yuen, Ada H Y; Khalpey, Zain; Zukowska, Paulina; Slominska, Ewa M; Taylor, Patricia M; Goldstein, Steven; Heacox, Albert E; Lavitrano, Marialuisa; Chester, Adrian H; Yacoub, Magdi H; Smolenski, Ryszard T

    2016-04-01

    Extracellular nucleotide metabolism controls thrombosis and inflammation and may affect degeneration and calcification of aortic valve prostheses. We evaluated the effect of different decellularization strategies on enzyme activities involved in extracellular nucleotide metabolism. Porcine valves were tested intact or decellularized either by detergent treatment or hypotonic lysis and nuclease digestion. The rates of ATP hydrolysis, AMP hydrolysis, and adenosine deamination were estimated by incubation of aorta or valve leaflet sections with substrates followed by HPLC analysis. We demonstrated relatively high activities of ecto-enzymes on porcine valve as compared to the aortic wall. Hypotonic lysis/nuclease digestion preserved >80 % of ATP and AMP hydrolytic activity but reduced adenosine deamination to <10 %. Detergent decellularization completely removed (<5 %) all these activities. These results demonstrate high intensity of extracellular nucleotide metabolism on valve surface and indicate that various valve decellularization techniques differently affect ecto-enzyme activities that could be important in the development of improved valve prostheses.

  12. Disabling a Type I-E CRISPR-Cas Nuclease with a Bacteriophage-Encoded Anti-CRISPR Protein

    PubMed Central

    Shah, Megha; Mejdani, Marios; Calmettes, Charles; Moraes, Trevor F.

    2017-01-01

    ABSTRACT CRISPR (clustered regularly interspaced short palindromic repeat)-Cas adaptive immune systems are prevalent defense mechanisms in bacteria and archaea. They provide sequence-specific detection and neutralization of foreign nucleic acids such as bacteriophages and plasmids. One mechanism by which phages and other mobile genetic elements are able to overcome the CRISPR-Cas system is through the expression of anti-CRISPR proteins. Over 20 different families of anti-CRISPR proteins have been described, each of which inhibits a particular type of CRISPR-Cas system. In this work, we determined the structure of type I-E anti-CRISPR protein AcrE1 by X-ray crystallography. We show that AcrE1 binds to the CRISPR-associated helicase/nuclease Cas3 and that the C-terminal region of the anti-CRISPR protein is important for its inhibitory activity. We further show that AcrE1 can convert the endogenous type I-E CRISPR system into a programmable transcriptional repressor. PMID:29233895

  13. Consequences of Normalizing Transcriptomic and Genomic Libraries of Plant Genomes Using a Duplex-Specific Nuclease and Tetramethylammonium Chloride

    PubMed Central

    Froenicke, Lutz; Lavelle, Dean; Martineau, Belinda; Perroud, Bertrand; Michelmore, Richard

    2013-01-01

    Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes. It also reduces contamination from organellar DNA in preparations of nuclear DNA. Hybridization in the presence of 3 M tetramethylammonium chloride (TMAC), which equalizes the rates of hybridization of GC and AT nucleotide pairs, reduced the bias against sequences with high GC content. Consequences of this method on the reduction of high-copy and enrichment of low-copy sequences are reported for Arabidopsis and lettuce. PMID:23409088

  14. Using FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) to isolate active regulatory DNA

    PubMed Central

    Simon, Jeremy M.; Giresi, Paul G.; Davis, Ian J.; Lieb, Jason D.

    2013-01-01

    Eviction or destabilization of nucleosomes from chromatin is a hallmark of functional regulatory elements of the eukaryotic genome. Historically identified by nuclease hypersensitivity, these regulatory elements are typically bound by transcription factors or other regulatory proteins. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) is an alternative approach to identify these genomic regions and has proven successful in a multitude of eukaryotic cell and tissue types. Cells or dissociated tissues are crosslinked briefly with formaldehyde, lysed, and sonicated. Sheared chromatin is subjected to phenol-chloroform extraction and the isolated DNA, typically encompassing 1–3% of the human genome, is purified. We provide guidelines for quantitative analysis by PCR, microarrays, or next-generation sequencing. Regulatory elements enriched by FAIRE display high concordance with those identified by nuclease hypersensitivity or ChIP, and the entire procedure can be completed in three days. FAIRE exhibits low technical variability, which allows its use in large-scale studies of chromatin from normal or diseased tissues. PMID:22262007

  15. Preorganized bis-zinc phosphodiester cleavage catalysts possessing natural ligands: a lesson pertinent to bimetallic artificial enzymes.

    PubMed

    Worm, Karen; Chu, Feiya; Matsumoto, Kazunari; Best, Michael D; Lynch, Vincent; Anslyn, Eric V

    2003-02-03

    Two preorganized bis-zinc receptors (2 and 3) were synthesized wherein the metals were ligated with ligands present in natural phosphodiesterases: imidazoles and carboxylates. The intrametallic distance is near 4.5 A, that found in natural nucleases and other successful artificial nucleases. With only two imidazoles (2), the zinc binding affinities were not high enough to achieve cooperativity. Yet, with a third ligand, a carboxylate (3), cooperativity was found in the cleavage of HPNPP. The preorganization of 3 was achieved using a "steric gearing" strategy. The enhancement was 80-fold for cooperation between the two metals relative to a mono-metallic analogue (5). However, there was no observable enhancement in the hydrolysis of RNA using 3 relative to 5. Therefore, we conclude that placing two zinc atoms that are ligated with natural ligands at the appropriate distance for catalysis is not sufficient to enhance the cleavage of RNA, but is successful for activated RNA substrate mimics.

  16. DNA targeting specificity of RNA-guided Cas9 nucleases.

    PubMed

    Hsu, Patrick D; Scott, David A; Weinstein, Joshua A; Ran, F Ann; Konermann, Silvana; Agarwala, Vineeta; Li, Yinqing; Fine, Eli J; Wu, Xuebing; Shalem, Ophir; Cradick, Thomas J; Marraffini, Luciano A; Bao, Gang; Zhang, Feng

    2013-09-01

    The Streptococcus pyogenes Cas9 (SpCas9) nuclease can be efficiently targeted to genomic loci by means of single-guide RNAs (sgRNAs) to enable genome editing. Here, we characterize SpCas9 targeting specificity in human cells to inform the selection of target sites and avoid off-target effects. Our study evaluates >700 guide RNA variants and SpCas9-induced indel mutation levels at >100 predicted genomic off-target loci in 293T and 293FT cells. We find that SpCas9 tolerates mismatches between guide RNA and target DNA at different positions in a sequence-dependent manner, sensitive to the number, position and distribution of mismatches. We also show that SpCas9-mediated cleavage is unaffected by DNA methylation and that the dosage of SpCas9 and sgRNA can be titrated to minimize off-target modification. To facilitate mammalian genome engineering applications, we provide a web-based software tool to guide the selection and validation of target sequences as well as off-target analyses.

  17. Genome editing: the road of CRISPR/Cas9 from bench to clinic

    PubMed Central

    Eid, Ayman; Mahfouz, Magdy M

    2016-01-01

    Molecular scissors engineered for site-specific modification of the genome hold great promise for effective functional analyses of genes, genomes and epigenomes and could improve our understanding of the molecular underpinnings of disease states and facilitate novel therapeutic applications. Several platforms for molecular scissors that enable targeted genome engineering have been developed, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and, most recently, clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated-9 (Cas9). The CRISPR/Cas9 system's simplicity, facile engineering and amenability to multiplexing make it the system of choice for many applications. CRISPR/Cas9 has been used to generate disease models to study genetic diseases. Improvements are urgently needed for various aspects of the CRISPR/Cas9 system, including the system's precision, delivery and control over the outcome of the repair process. Here, we discuss the current status of genome engineering and its implications for the future of biological research and gene therapy. PMID:27741224

  18. [Construction of the eukaryotic recombinant vector and expression of the outer membrane protein LipL32 gene from Leptospira serovar Lai].

    PubMed

    Huang, Bi; Bao, Lang; Zhong, Qi; Shang, Zheng-ling; Zhang, Hui-dong; Zhang, Ying

    2008-02-01

    To construct the eukaryotic experssion vector of LipL32 gene from Leptospira serovar Lai and express the recombinant plasmid in COS-7 cell. The LipL32 gene was amplified from Leptospira strain 017 genomic DNA by PCR and cloned into pcDNA3.1, through restriction nuclease enzyme digestion. Then the recombinant plasmid was transformed into E.coli DH5alpha. After identified by nuclease digestion, PCR and sequencing analysis, the recombinant vector was transfected into COS-7 cell with lipsome. The expression of the target gene was detected by RT-PCR and Western blot. The eukaryotic experssion vector pcDNA3.1-LipL32 was successfully constructed and stably expressed in COS-7 cell. The eukaryotic recombinant vector of outer membrane protein LipL32 gene from Leptospira serovar Lai can be expressed in mammalian cell, which provides an experimental basis for the application of the Leptospira DNA vaccine.

  19. Molecular Imaging of Human Embryonic Stem Cells Stably Expressing Human PET Reporter Genes After Zinc Finger Nuclease-Mediated Genome Editing.

    PubMed

    Wolfs, Esther; Holvoet, Bryan; Ordovas, Laura; Breuls, Natacha; Helsen, Nicky; Schönberger, Matthias; Raitano, Susanna; Struys, Tom; Vanbilloen, Bert; Casteels, Cindy; Sampaolesi, Maurilio; Van Laere, Koen; Lambrichts, Ivo; Verfaillie, Catherine M; Deroose, Christophe M

    2017-10-01

    Molecular imaging is indispensable for determining the fate and persistence of engrafted stem cells. Standard strategies for transgene induction involve the use of viral vectors prone to silencing and insertional mutagenesis or the use of nonhuman genes. Methods: We used zinc finger nucleases to induce stable expression of human imaging reporter genes into the safe-harbor locus adeno-associated virus integration site 1 in human embryonic stem cells. Plasmids were generated carrying reporter genes for fluorescence, bioluminescence imaging, and human PET reporter genes. Results: In vitro assays confirmed their functionality, and embryonic stem cells retained differentiation capacity. Teratoma formation assays were performed, and tumors were imaged over time with PET and bioluminescence imaging. Conclusion: This study demonstrates the application of genome editing for targeted integration of human imaging reporter genes in human embryonic stem cells for long-term molecular imaging. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  20. May I Cut in? Gene Editing Approaches in Human Induced Pluripotent Stem Cells.

    PubMed

    Brookhouser, Nicholas; Raman, Sreedevi; Potts, Christopher; Brafman, David A

    2017-02-06

    In the decade since Yamanaka and colleagues described methods to reprogram somatic cells into a pluripotent state, human induced pluripotent stem cells (hiPSCs) have demonstrated tremendous promise in numerous disease modeling, drug discovery, and regenerative medicine applications. More recently, the development and refinement of advanced gene transduction and editing technologies have further accelerated the potential of hiPSCs. In this review, we discuss the various gene editing technologies that are being implemented with hiPSCs. Specifically, we describe the emergence of technologies including zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 that can be used to edit the genome at precise locations, and discuss the strengths and weaknesses of each of these technologies. In addition, we present the current applications of these technologies in elucidating the mechanisms of human development and disease, developing novel and effective therapeutic molecules, and engineering cell-based therapies. Finally, we discuss the emerging technological advances in targeted gene editing methods.

  1. LEM-3 is a midbody-tethered DNA nuclease that resolves chromatin bridges during late mitosis.

    PubMed

    Hong, Ye; Sonneville, Remi; Wang, Bin; Scheidt, Viktor; Meier, Bettina; Woglar, Alexander; Demetriou, Sarah; Labib, Karim; Jantsch, Verena; Gartner, Anton

    2018-02-20

    Faithful chromosome segregation and genome maintenance requires the removal of all DNA bridges that physically link chromosomes before cells divide. Using C. elegans embryos we show that the LEM-3/Ankle1 nuclease defines a previously undescribed genome integrity mechanism by processing DNA bridges right before cells divide. LEM-3 acts at the midbody, the structure where abscission occurs at the end of cytokinesis. LEM-3 localization depends on factors needed for midbody assembly, and LEM-3 accumulation is increased and prolonged when chromatin bridges are trapped at the cleavage plane. LEM-3 locally processes chromatin bridges that arise from incomplete DNA replication, unresolved recombination intermediates, or the perturbance of chromosome structure. Proper LEM-3 midbody localization and function is regulated by AIR-2/Aurora B kinase. Strikingly, LEM-3 acts cooperatively with the BRC-1/BRCA1 homologous recombination factor to promote genome integrity. These findings provide a molecular basis for the suspected role of the LEM-3 orthologue Ankle1 in human breast cancer.

  2. Pluripotent Stem Cells in Research and Treatment of Hemoglobinopathies

    PubMed Central

    Arora, Natasha; Daley, George Q.

    2012-01-01

    Pluripotent stem cells (PSCs) hold great promise for research and treatment of hemoglobinopathies. In principle, patient-specific induced pluripotent stem cells could be derived from a blood sample, genetically corrected to repair the disease-causing mutation, differentiated into hematopoietic stem cells (HSCs), and returned to the patient to provide a cure through autologous gene and cell therapy. However, there are many challenges at each step of this complex treatment paradigm. Gene repair is currently inefficient in stem cells, but use of zinc finger nucleases and transcription activator-like effector nucleases appear to be a major advance. To date, no successful protocol exists for differentiating PSCs into definitive HSCs. PSCs can be directly differentiated into primitive red blood cells, but not yet in sufficient numbers to enable treating patients, and the cost of clinical scale differentiation is prohibitively expensive with current differentiation methods and efficiencies. Here we review the progress, promise, and remaining hurdles in realizing the potential of PSCs for cell therapy. PMID:22474618

  3. Structural and biochemical analysis of nuclease domain of clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 3 (Cas3).

    PubMed

    Mulepati, Sabin; Bailey, Scott

    2011-09-09

    RNA transcribed from clustered regularly interspaced short palindromic repeats (CRISPRs) protects many prokaryotes from invasion by foreign DNA such as viruses, conjugative plasmids, and transposable elements. Cas3 (CRISPR-associated protein 3) is essential for this CRISPR protection and is thought to mediate cleavage of the foreign DNA through its N-terminal histidine-aspartate (HD) domain. We report here the 1.8 Å crystal structure of the HD domain of Cas3 from Thermus thermophilus HB8. Structural and biochemical studies predict that this enzyme binds two metal ions at its active site. We also demonstrate that the single-stranded DNA endonuclease activity of this T. thermophilus domain is activated not by magnesium but by transition metal ions such as manganese and nickel. Structure-guided mutagenesis confirms the importance of the metal-binding residues for the nuclease activity and identifies other active site residues. Overall, these results provide a framework for understanding the role of Cas3 in the CRISPR system.

  4. Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beloglazova, Natalia; Petit, Pierre; Flick, Robert

    Clustered regularly interspaced short palindromic repeats (CRISPRs) and Cas proteins represent an adaptive microbial immunity system against viruses and plasmids. Cas3 proteins have been proposed to play a key role in the CRISPR mechanism through the direct cleavage of invasive DNA. Here, we show that the Cas3 HD domain protein MJ0384 from Methanocaldococcus jannaschii cleaves endonucleolytically and exonucleolytically (3'-5') single-stranded DNAs and RNAs, as well as 3'-flaps, splayed arms, and R-loops. The degradation of branched DNA substrates by MJ0384 is stimulated by the Cas3 helicase MJ0383 and ATP. The crystal structure of MJ0384 revealed the active site with two boundmore » metal cations and together with site-directed mutagenesis suggested a catalytic mechanism. Our studies suggest that the Cas3 HD nucleases working together with the Cas3 helicases can completely degrade invasive DNAs through the combination of endo- and exonuclease activities.« less

  5. Cas9-based tools for targeted genome editing and transcriptional control.

    PubMed

    Xu, Tao; Li, Yongchao; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong

    2014-03-01

    Development of tools for targeted genome editing and regulation of gene expression has significantly expanded our ability to elucidate the mechanisms of interesting biological phenomena and to engineer desirable biological systems. Recent rapid progress in the study of a clustered, regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) protein system in bacteria has facilitated the development of newly facile and programmable platforms for genome editing and transcriptional control in a sequence-specific manner. The core RNA-guided Cas9 endonuclease in the type II CRISPR system has been harnessed to realize gene mutation and DNA deletion and insertion, as well as transcriptional activation and repression, with multiplex targeting ability, just by customizing 20-nucleotide RNA components. Here we describe the molecular basis of the type II CRISPR/Cas system and summarize applications and factors affecting its utilization in model organisms. We also discuss the advantages and disadvantages of Cas9-based tools in comparison with widely used customizable tools, such as Zinc finger nucleases and transcription activator-like effector nucleases.

  6. Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response.

    PubMed

    Heler, Robert; Wright, Addison V; Vucelja, Marija; Bikard, David; Doudna, Jennifer A; Marraffini, Luciano A

    2017-01-05

    CRISPR loci and their associated (Cas) proteins encode a prokaryotic immune system that protects against viruses and plasmids. Upon infection, a low fraction of cells acquire short DNA sequences from the invader. These sequences (spacers) are integrated in between the repeats of the CRISPR locus and immunize the host against the matching invader. Spacers specify the targets of the CRISPR immune response through transcription into short RNA guides that direct Cas nucleases to the invading DNA molecules. Here we performed random mutagenesis of the RNA-guided Cas9 nuclease to look for variants that provide enhanced immunity against viral infection. We identified a mutation, I473F, that increases the rate of spacer acquisition by more than two orders of magnitude. Our results highlight the role of Cas9 during CRISPR immunization and provide a useful tool to study this rare process and develop it as a biotechnological application. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system.

    PubMed

    Belhaj, Khaoula; Chaparro-Garcia, Angela; Kamoun, Sophien; Nekrasov, Vladimir

    2013-10-11

    Targeted genome engineering (also known as genome editing) has emerged as an alternative to classical plant breeding and transgenic (GMO) methods to improve crop plants. Until recently, available tools for introducing site-specific double strand DNA breaks were restricted to zinc finger nucleases (ZFNs) and TAL effector nucleases (TALENs). However, these technologies have not been widely adopted by the plant research community due to complicated design and laborious assembly of specific DNA binding proteins for each target gene. Recently, an easier method has emerged based on the bacterial type II CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) immune system. The CRISPR/Cas system allows targeted cleavage of genomic DNA guided by a customizable small noncoding RNA, resulting in gene modifications by both non-homologous end joining (NHEJ) and homology-directed repair (HDR) mechanisms. In this review we summarize and discuss recent applications of the CRISPR/Cas technology in plants.

  8. Using RNA-seq and targeted nucleases to identify mechanisms of drug resistance in acute myeloid leukemia.

    PubMed

    Rathe, Susan K; Moriarity, Branden S; Stoltenberg, Christopher B; Kurata, Morito; Aumann, Natalie K; Rahrmann, Eric P; Bailey, Natashay J; Melrose, Ellen G; Beckmann, Dominic A; Liska, Chase R; Largaespada, David A

    2014-08-13

    The evolution from microarrays to transcriptome deep-sequencing (RNA-seq) and from RNA interference to gene knockouts using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) and Transcription Activator-Like Effector Nucleases (TALENs) has provided a new experimental partnership for identifying and quantifying the effects of gene changes on drug resistance. Here we describe the results from deep-sequencing of RNA derived from two cytarabine (Ara-C) resistance acute myeloid leukemia (AML) cell lines, and present CRISPR and TALEN based methods for accomplishing complete gene knockout (KO) in AML cells. We found protein modifying loss-of-function mutations in Dck in both Ara-C resistant cell lines. CRISPR and TALEN-based KO of Dck dramatically increased the IC₅₀ of Ara-C and introduction of a DCK overexpression vector into Dck KO clones resulted in a significant increase in Ara-C sensitivity. This effort demonstrates the power of using transcriptome analysis and CRISPR/TALEN-based KOs to identify and verify genes associated with drug resistance.

  9. Functional identification of the non-specific nuclease from white spot syndrome virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Li; Lin Shumei; Yanga Feng

    2005-07-05

    The product encoded by the wsv191 gene from shrimp white spot syndrome virus (WSSV) is homologous with non-specific nucleases (NSN) of other organisms. To functionally identify the protein, the wsv191 gene was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein with 6His-tag at C-terminal. The fusion protein (termed as rWSSV-NSN) was purified using Ni-NTA affinity chromatography under denatured conditions, renatured and characterized by three methods. The results showed that rWSSV-NSN could hydrolyze both DNA and RNA. 5'-RACE result revealed that the transcription initiation site of the wsv191 gene was located at nucleotide residue G of the predictedmore » ATG triplet. Therefore, we concluded that the next ATG should be the genuine translation initiation codon of the wsv191 gene. Western blot analysis revealed that the molecular mass of natural WSSV-NSN was 37 kDa.« less

  10. Temperature effect on CRISPR-Cas9 mediated genome editing.

    PubMed

    Xiang, Guanghai; Zhang, Xingying; An, Chenrui; Cheng, Chen; Wang, Haoyi

    2017-04-20

    Zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR-Cas9) are the most commonly used genome editing tools. Previous studies demonstrated that hypothermia treatment increased the mutation rates induced by ZFNs and TALENs in mammalian cells. Here, we characterize the effect of different culture temperatures on CRISPR-Cas9 mediated genome editing and find that the genome editing efficiency of CRISPR-Cas9 is significantly hampered by hypothermia treatment, unlike ZFN and TALEN. In addition, hyperthermia culture condition enhances genome editing by CRISPR-Cas9 in some cell lines, due to the higher enzyme activity and sgRNA expression level at higher temperature. Our study has implications on CRISPR-Cas9 applications in a broad spectrum of species, many of which do not live at 37°C. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  11. Transcriptome-wide Analysis of Exosome Targets

    PubMed Central

    Schneider, Claudia; Kudla, Grzegorz; Wlotzka, Wiebke; Tuck, Alex; Tollervey, David

    2012-01-01

    Summary The exosome plays major roles in RNA processing and surveillance but the in vivo target range and substrate acquisition mechanisms remain unclear. Here we apply in vivo RNA crosslinking (CRAC) to the nucleases (Rrp44, Rrp6), two structural subunits (Rrp41, Csl4) and a cofactor (Trf4) of the yeast exosome. Analysis of wild-type Rrp44 and catalytic mutants showed that both the CUT and SUT classes of non-coding RNA, snoRNAs and, most prominently, pre-tRNAs and other Pol III transcripts are targeted for oligoadenylation and exosome degradation. Unspliced pre-mRNAs were also identified as targets for Rrp44 and Rrp6. CRAC performed using cleavable proteins (split-CRAC) revealed that Rrp44 endonuclease and exonuclease activities cooperate on most substrates. Mapping oligoadenylated reads suggests that the endonuclease activity may release stalled exosome substrates. Rrp6 was preferentially associated with structured targets, which frequently did not associate with the core exosome indicating that substrates follow multiple pathways to the nucleases. PMID:23000172

  12. Tsetse Salivary Gland Proteins 1 and 2 Are High Affinity Nucleic Acid Binding Proteins with Residual Nuclease Activity

    PubMed Central

    Caljon, Guy; Ridder, Karin De; Stijlemans, Benoît; Coosemans, Marc; Magez, Stefan; De Baetselier, Patrick; Van Den Abbeele, Jan

    2012-01-01

    Analysis of the tsetse fly salivary gland EST database revealed the presence of a highly enriched cluster of putative endonuclease genes, including tsal1 and tsal2. Tsal proteins are the major components of tsetse fly (G. morsitans morsitans) saliva where they are present as monomers as well as high molecular weight complexes with other saliva proteins. We demonstrate that the recombinant tsetse salivary gland proteins 1&2 (Tsal1&2) display DNA/RNA non-specific, high affinity nucleic acid binding with KD values in the low nanomolar range and a non-exclusive preference for duplex. These Tsal proteins exert only a residual nuclease activity with a preference for dsDNA in a broad pH range. Knockdown of Tsal expression by in vivo RNA interference in the tsetse fly revealed a partially impaired blood digestion phenotype as evidenced by higher gut nucleic acid, hematin and protein contents. PMID:23110062

  13. May I Cut in? Gene Editing Approaches in Human Induced Pluripotent Stem Cells

    PubMed Central

    Brookhouser, Nicholas; Raman, Sreedevi; Potts, Christopher; Brafman, David. A.

    2017-01-01

    In the decade since Yamanaka and colleagues described methods to reprogram somatic cells into a pluripotent state, human induced pluripotent stem cells (hiPSCs) have demonstrated tremendous promise in numerous disease modeling, drug discovery, and regenerative medicine applications. More recently, the development and refinement of advanced gene transduction and editing technologies have further accelerated the potential of hiPSCs. In this review, we discuss the various gene editing technologies that are being implemented with hiPSCs. Specifically, we describe the emergence of technologies including zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 that can be used to edit the genome at precise locations, and discuss the strengths and weaknesses of each of these technologies. In addition, we present the current applications of these technologies in elucidating the mechanisms of human development and disease, developing novel and effective therapeutic molecules, and engineering cell-based therapies. Finally, we discuss the emerging technological advances in targeted gene editing methods. PMID:28178187

  14. Induced Pluripotency and Gene Editing in Disease Modelling: Perspectives and Challenges

    PubMed Central

    Seah, Yu Fen Samantha; EL Farran, Chadi A.; Warrier, Tushar; Xu, Jian; Loh, Yuin-Han

    2015-01-01

    Embryonic stem cells (ESCs) are chiefly characterized by their ability to self-renew and to differentiate into any cell type derived from the three main germ layers. It was demonstrated that somatic cells could be reprogrammed to form induced pluripotent stem cells (iPSCs) via various strategies. Gene editing is a technique that can be used to make targeted changes in the genome, and the efficiency of this process has been significantly enhanced by recent advancements. The use of engineered endonucleases, such as homing endonucleases, zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and Cas9 of the CRISPR system, has significantly enhanced the efficiency of gene editing. The combination of somatic cell reprogramming with gene editing enables us to model human diseases in vitro, in a manner considered superior to animal disease models. In this review, we discuss the various strategies of reprogramming and gene targeting with an emphasis on the current advancements and challenges of using these techniques to model human diseases. PMID:26633382

  15. New transgenic models of Parkinson's disease using genome editing technology.

    PubMed

    Cota-Coronado, J A; Sandoval-Ávila, S; Gaytan-Dávila, Y P; Diaz, N F; Vega-Ruiz, B; Padilla-Camberos, E; Díaz-Martínez, N E

    2017-11-28

    Parkinson's disease (PD) is the second most common neurodegenerative disorder. It is characterised by selective loss of dopaminergic neurons in the substantia nigra pars compacta, which results in dopamine depletion, leading to a number of motor and non-motor symptoms. In recent years, the development of new animal models using nuclease-based genome-editing technology (ZFN, TALEN, and CRISPR/Cas9 nucleases) has enabled the introduction of custom-made modifications into the genome to replicate key features of PD, leading to significant advances in our understanding of the pathophysiology of the disease. We review the most recent studies on this new generation of in vitro and in vivo PD models, which replicate the most relevant symptoms of the disease and enable better understanding of the aetiology and mechanisms of PD. This may be helpful in the future development of effective treatments to halt or slow disease progression. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. In vivo and in vitro disease modeling with CRISPR/Cas9.

    PubMed

    Kato, Tomoko; Takada, Shuji

    2017-01-01

    In the past few years, extensive progress has been made in the development of genome-editing technology. Among several genome-editing tools, the clustered regularly interspaced short palindrome repeat-associated Cas9 nuclease (CRISPR/Cas9) system is particularly widely used owing to the ease of sequence-specific nuclease construction and the highly efficient introduction of mutations. The CRISPR/Cas9 system was originally constructed to induce small insertion and deletion mutations, but various methods have been developed to introduce point mutations, deletions, insertions, chromosomal translocations and so on. These methods should be useful for the reconstruction of disease-causing mutations in cultured cell lines and living organisms to elucidate disease pathogenesis and for disease prevention, treatment and drug discovery. This review summarizes the current technical aspects of the CRISPR/Cas9 system for disease modeling in cultured cells and living organisms, mainly mice. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. A Transcription Activator-Like Effector (TALE) Toolbox for Genome Engineering

    PubMed Central

    Sanjana, Neville E.; Cong, Le; Zhou, Yang; Cunniff, Margaret M.; Feng, Guoping; Zhang, Feng

    2013-01-01

    Transcription activator-like effectors (TALEs) are a class of naturally occurring DNA binding proteins found in the plant pathogen Xanthomonas sp. The DNA binding domain of each TALE consists of tandem 34-amino acid repeat modules that can be rearranged according to a simple cipher to target new DNA sequences. Customized TALEs can be used for a wide variety of genome engineering applications, including transcriptional modulation and genome editing. Here we describe a toolbox for rapid construction of custom TALE transcription factors (TALE-TFs) and nucleases (TALENs) using a hierarchical ligation procedure. This toolbox facilitates affordable and rapid construction of custom TALE-TFs and TALENs within one week and can be easily scaled up to construct TALEs for multiple targets in parallel. We also provide details for testing the activity in mammalian cells of custom TALE-TFs and TALENs using, respectively, qRT-PCR and Surveyor nuclease. The TALE toolbox described here will enable a broad range of biological applications. PMID:22222791

  18. Production of Mutated Porcine Embryos Using Zinc Finger Nucleases and a Reporter-based Cell Enrichment System.

    PubMed

    Koo, Ok Jae; Park, Sol Ji; Lee, Choongil; Kang, Jung Taek; Kim, Sujin; Moon, Joon Ho; Choi, Ji Yei; Kim, Hyojin; Jang, Goo; Kim, Jin-Soo; Kim, Seokjoong; Lee, Byeong-Chun

    2014-03-01

    To facilitate the construction of genetically-modified pigs, we produced cloned embryos derived from porcine fibroblasts transfected with a pair of engineered zinc finger nuclease (ZFN) plasmids to create targeted mutations and enriched using a reporter plasmid system. The reporter expresses RFP and eGFP simultaneously when ZFN-mediated site-specific mutations occur. Thus, double positive cells (RFP(+)/eGFP(+)) were selected and used for somatic cell nuclear transfer. Two types of reporter based enrichment systems were used in this study; the cloned embryos derived from cells enriched using a magnetic sorting-based system showed better developmental competence than did those derived from cells enriched by flow cytometry. Mutated sequences, such as insertions, deletions, or substitutions, together with the wild-type sequence, were found in the cloned porcine blastocysts. Therefore, genetic mutations can be achieved in cloned porcine embryos reconstructed with ZFN-treated cells that were enriched by a reporter-based system.

  19. Detection of miRNA using a double-strand displacement biosensor with a self-complementary fluorescent reporter.

    PubMed

    Larkey, Nicholas E; Almlie, C Kyle; Tran, Victoria; Egan, Marianne; Burrows, Sean M

    2014-02-04

    Design of rapid, selective, and sensitive DNA and ribonucleic acid (RNA) biosensors capable of minimizing false positives from nuclease degradation is crucial for translational research and clinical diagnostics. We present proof-of-principle studies of an innovative micro-ribonucleic acid (miRNA) reporter-probe biosensor that displaces a self-complementary reporter, while target miRNA binds to the probe. The freed reporter folds into a hairpin structure to induce a decrease in the fluorescent signal. The self-complementarity of the reporter facilitates the reduction of false positives from nuclease degradation. Nanomolar limits of detection and quantitation were capable with this proof-of-principle design. Detection of miRNA occurs within 10 min and does not require any additional hybridization, labeling, or rinsing steps. The potential for medical applications of the reporter-probe biosensor is demonstrated by selective detection of a cancer regulating microRNA, Lethal-7 (Let-7a). Mechanisms for transporting the biosensor across the cell membrane will be the focus of future work.

  20. Genome editing: the road of CRISPR/Cas9 from bench to clinic.

    PubMed

    Eid, Ayman; Mahfouz, Magdy M

    2016-10-14

    Molecular scissors engineered for site-specific modification of the genome hold great promise for effective functional analyses of genes, genomes and epigenomes and could improve our understanding of the molecular underpinnings of disease states and facilitate novel therapeutic applications. Several platforms for molecular scissors that enable targeted genome engineering have been developed, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and, most recently, clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated-9 (Cas9). The CRISPR/Cas9 system's simplicity, facile engineering and amenability to multiplexing make it the system of choice for many applications. CRISPR/Cas9 has been used to generate disease models to study genetic diseases. Improvements are urgently needed for various aspects of the CRISPR/Cas9 system, including the system's precision, delivery and control over the outcome of the repair process. Here, we discuss the current status of genome engineering and its implications for the future of biological research and gene therapy.

  1. Design, synthesis, and functional testing of recombinant cell penetrating peptides

    NASA Astrophysics Data System (ADS)

    Widyaningtyas, S. T.; Soebandrio, A.; Ibrahim, F.; Bela, B.

    2017-08-01

    Cell penetrating peptides (CPP) are one of the most attractive DNA delivery systems currently in development. In this research, in silico CPP development was performed based on a literature study to look for peptides that induce endosome escape, have the ability to bind DNA, and pass through cell membranes and/or nuclear membranes with a final goal of creating a new CPP to be used as a DNA delivery system. We report herein the successful isolation of three candidate CPP molecules, which have all been successfully expressed and purified by NiNTA. One of the determinants of CPP success as a DNA carrier is the ability of the CPP to bind and protect DNA from the effects of nucleases. The DNA binding test results show that all three CPPs can bind to DNA and protect it from the effects of serum nucleases. These three CPP candidates designed in silico and synthesized in the prokaryote system are eligible candidates for further testing of their ability to deliver DNA in vitro and in vivo.

  2. Consequences of normalizing transcriptomic and genomic libraries of plant genomes using a duplex-specific nuclease and tetramethylammonium chloride.

    PubMed

    Matvienko, Marta; Kozik, Alexander; Froenicke, Lutz; Lavelle, Dean; Martineau, Belinda; Perroud, Bertrand; Michelmore, Richard

    2013-01-01

    Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes. It also reduces contamination from organellar DNA in preparations of nuclear DNA. Hybridization in the presence of 3 M tetramethylammonium chloride (TMAC), which equalizes the rates of hybridization of GC and AT nucleotide pairs, reduced the bias against sequences with high GC content. Consequences of this method on the reduction of high-copy and enrichment of low-copy sequences are reported for Arabidopsis and lettuce.

  3. TT2014 meeting report on the 12th Transgenic Technology meeting in Edinburgh: new era of transgenic technologies with programmable nucleases in the foreground.

    PubMed

    Beck, Inken M; Sedlacek, Radislav

    2015-02-01

    The 12th Transgenic Technology meeting was held in Edinburgh on 6th-8th October 2014 and interest to participate in the meeting overcame all expectations. The TT2014 was the largest meeting ever with more than 540 scientists, technicians, and students from all over the world. The meeting had an excellent scientific program that brought information on the latest ground-breaking technologies for gene targeting and genome editing using programmable nucleases into the foreground. These presentations were well balanced with several highlights over viewing topics in embryonic stem cell research, embryogenesis, disease models, and animals in agriculture. Ample space was reserved also for short talks presenting technical development and for highlighting posters contributions. A highlight of the meeting was the award of the 10th International Society of Transgenic Technologies Prize to Janet Rossant for her outstanding contributions in the field of mouse embryogenesis.

  4. EVALUATION OF RAPID, QUANTITATIVE REAL-TIME PCR METHOD FOR ENUMERATION OF PATHOGENIC CANDIDA CELLS IN WATER

    EPA Science Inventory

    Quantitative Real-Time PCR (QRT-PCR) technology, incorporating fluorigenic 5' nuclease (TaqMan (trademark)) chemistry, was developed for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glab...

  5. Genomic tools and and prospects for new breeding techniques in flower bulb crops

    USDA-ARS?s Scientific Manuscript database

    For many of the new breeding techniques, sequence information is of the utmost importance. In addition to current breeding techniques, such as marker-assisted selection (MAS) and genetic modification (GM), new breeding techniques such as zinc finger nucleases, oligonucleotide-mediated mutagenesis, R...

  6. Sequence-selective DNA cleavage by a chimeric metallopeptide.

    PubMed

    Kovacic, Roger T; Welch, Joel T; Franklin, Sonya J

    2003-06-04

    A chimeric metallopeptide derived from the sequences of two structurally superimposable motifs was designed as an artificial nuclease. Both DNA recognition and nuclease activity have been incorporated into a small peptide sequence. P3W, a 33-mer peptide comprising helices alpha2 and alpha3 from the engrailed homeodomain and the consensus EF-hand Ca-binding loop binds one equivalent of lanthanides or calcium and folds upon metal binding. The conditional formation constants (in the presence of 50 mM Tris) of P3W for Eu(III) (K(a) = (2.1 +/- 0.1) x 10(5) M(-1)) and Ce(IV) (K(a) = (2.6 +/- 0.1) x 10(5) M(-1)) are typical of isolated EF-hand peptides. Circular dichroism studies show that 1:1 CeP3W is 26% alpha-helical and EuP3W is up to 40% alpha-helical in the presence of excess metal. The predicted helicity of the folded peptide based on helix length and end effects is about 50%, showing the metallopeptides are significantly folded. EuP3W has considerably more secondary structure than our previously reported chimeras (Welch, J. T.; Sirish, M.; Lindstrom, K. M.; Franklin, S. J. Inorg. Chem. 2001, 40, 1982-1984). Eu(III)P3W and Ce(IV)P3W nick supercoiled DNA at pH 6.9, although EuP3W is more active at pH 8. CeP3W cleaves linearized, duplex DNA as well as supercoiled plasmid. The cleavage of a 5'-(32)P-labeled 121-mer DNA fragment was followed by polyacrylamide gel electrophoresis. The cleavage products are 3'-OPO(3) termini exclusively, suggesting a regioselective or multistep mechanism. In contrast, uncomplexed Ce(IV) and Eu(III) ions produce both 3'-OPO(3) and 3'-OH, and no evidence of 4'-oxidative cleavage termini with either metal. The complementary 3'-(32)P-labeled oligonucleotide experiment also showed both 5'-OPO(3) and 5'-OH termini were produced by the free ions, whereas CeP3W produces only 5'-OPO(3) termini. In addition to apparent regioselectivity, the metallopeptides cut DNA with modest sequence discrimination, which suggests that the HTH motif binds DNA as a folded domain and thus cleaves selected sequences. The de novo artificial nuclease LnP3W represents the first small, underivatized peptide that is both active as a nuclease and sequence selective.

  7. Vast potential for using the piggyBac transposon to engineer transgenic plants

    USDA-ARS?s Scientific Manuscript database

    The acceptance of bioengineered plants by some nations is hampered by a number of factors, including the random insertion of a transgene into the host genome. Emerging technologies, such as site-specific nucleases, are enabling plant scientists to promote recombination or mutations at specific plant...

  8. Nucleases Encoded by Integrated Elements CJIE2 and CJIE4 Inhibit Natural Transformation of Campylobacter jejuni

    USDA-ARS?s Scientific Manuscript database

    The species Campylobacter jejuni displays huge genetic diversity, and is naturally competent for DNA uptake. Nevertheless, not every strain is able to acquire foreign DNA since nonnaturally transformable strains do exist. Previously we showed that many nonnaturally transformable C. jejuni strains ex...

  9. Targeted mutagenesis using CRISPR/Cas in inbred potatoes

    USDA-ARS?s Scientific Manuscript database

    Targeted mutagenesis using sequence-specific nucleases (SSNs) has been well established in several important crop species, but is in need of improvement in potato (Solanum tuberosum L.). For over a century, potatoes have been bred as autotetraploids (2n = 4x = 48), relying on F1 selections and clona...

  10. EVALUATION OF A RAPID, QUANTITATIVE REAL-TIME PCR METHOD FOR ENUMERATION OF PATHOGENIC CANDIDA CELLS IN WATER

    EPA Science Inventory

    Quantitative Real-Time PCR (QRT-PCR) technology, incorporating fluorigenic 5' nuclease (TaqMan?) chemistry, was developed for the specific detection and quantification of six pathogenic species of Candida (C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. glabrata and C....

  11. Purification of Marek's disease virus DNA for 454 pyrosequencing using micrococcal nuclease digestion and polyethylene glycol precipitation

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease virus (MDV-1) is a cell-associated alphaherpesvirus that induces rapid-onset T-cell lymphomas in poultry. The genomes of 6 strains have been sequenced using both Sanger didoxy sequencing and 454 Life Science pyrosequencing. These genomes largely represent cell culture adapted strains...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiani, Samira; Chavez, Alejandro; Tuttle, Marcelle

    Here we demonstrate that by altering the length of Cas9-associated guide RNA(gRNA) we were able to control Cas9 nuclease activity and simultaneously perform genome editing and transcriptional regulation with a single Cas9 protein. We exploited these principles to engineer mammalian synthetic circuits with combined transcriptional regulation and kill functions governed by a single multifunctional Cas9 protein.

  13. A Survey of Validation Strategies for CRISPR-Cas9 Editing.

    PubMed

    Sentmanat, Monica F; Peters, Samuel T; Florian, Colin P; Connelly, Jon P; Pruett-Miller, Shondra M

    2018-01-17

    The T7 endonuclease 1 (T7E1) mismatch detection assay is a widely used method for evaluating the activity of site-specific nucleases, such as the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system. To determine the accuracy and sensitivity of this assay, we compared the editing estimates derived by the T7E1 assay with that of targeted next-generation sequencing (NGS) in pools of edited mammalian cells. Here, we report that estimates of nuclease activity determined by T7E1 most often do not accurately reflect the activity observed in edited cells. Editing efficiencies of CRISPR-Cas9 complexes with similar activity by T7E1 can prove dramatically different by NGS. Additionally, we compared editing efficiencies predicted by the Tracking of Indels by Decomposition (TIDE) assay and the Indel Detection by Amplicon Analysis (IDAA) assay to that observed by targeted NGS for both cellular pools and single-cell derived clones. We show that targeted NGS, TIDE, and IDAA assays predict similar editing efficiencies for pools of cells but that TIDE and IDAA can miscall alleles in edited clones.

  14. From Agrobacterium to viral vectors: genome modification of plant cells by rare cutting restriction enzymes.

    PubMed

    Marton, Ira; Honig, Arik; Omid, Ayelet; De Costa, Noam; Marhevka, Elena; Cohen, Barry; Zuker, Amir; Vainstein, Alexander

    2013-01-01

    Researchers and biotechnologists require methods to accurately modify the genome of higher eukaryotic cells. Such modifications include, but are not limited to, site-specific mutagenesis, site-specific insertion of foreign DNA, and replacement and deletion of native sequences. Accurate genome modifications in plant species have been rather limited, with only a handful of plant species and genes being modified through the use of early genome-editing techniques. The development of rare-cutting restriction enzymes as a tool for the induction of site-specific genomic double-strand breaks and their introduction as a reliable tool for genome modification in animals, animal cells and human cell lines have paved the way for the adaptation of rare-cutting restriction enzymes to genome editing in plant cells. Indeed, the number of plant species and genes which have been successfully edited using zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and engineered homing endonucleases is on the rise. In our review, we discuss the basics of rare-cutting restriction enzyme-mediated genome-editing technology with an emphasis on its application in plant species.

  15. Nucleolin forms a specific complex with a fragment of the viral (minus) strand of minute virus of mice DNA.

    PubMed Central

    Barrijal, S; Perros, M; Gu, Z; Avalosse, B L; Belenguer, P; Amalric, F; Rommelaere, J

    1992-01-01

    Nucleolin, a major nucleolar protein, forms a specific complex with the genome (a single-stranded DNA molecule of minus polarity) of parvovirus MVMp in vitro. By means of South-western blotting experiments, we mapped the binding site to a 222-nucleotide motif within the non-structural transcription unit, referred to as NUBE (nucleolin-binding element). The specificity of the interaction was confirmed by competitive gel retardation assays. DNaseI and nuclease S1 probing showed that NUBE folds into a secondary structure, in agreement with a computer-assisted conformational prediction. The whole NUBE may be necessary for the interaction with nucleolin, as suggested by the failure of NUBE subfragments to bind the protein and by the nuclease footprinting experiments. The present work extends the previously reported ability of nucleolin to form a specific complex with ribosomal RNA, to a defined DNA substrate. Considering the tropism of MVMp DNA replication for host cell nucleoli, these data raise the possibility that nucleolin may contribute to the regulation of the parvoviral life-cycle. Images PMID:1408821

  16. Genome Editing Tools in Plants

    PubMed Central

    Mohanta, Tapan Kumar; Bashir, Tufail; Hashem, Abeer; Bae, Hanhong

    2017-01-01

    Genome editing tools have the potential to change the genomic architecture of a genome at precise locations, with desired accuracy. These tools have been efficiently used for trait discovery and for the generation of plants with high crop yields and resistance to biotic and abiotic stresses. Due to complex genomic architecture, it is challenging to edit all of the genes/genomes using a particular genome editing tool. Therefore, to overcome this challenging task, several genome editing tools have been developed to facilitate efficient genome editing. Some of the major genome editing tools used to edit plant genomes are: Homologous recombination (HR), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), pentatricopeptide repeat proteins (PPRs), the CRISPR/Cas9 system, RNA interference (RNAi), cisgenesis, and intragenesis. In addition, site-directed sequence editing and oligonucleotide-directed mutagenesis have the potential to edit the genome at the single-nucleotide level. Recently, adenine base editors (ABEs) have been developed to mutate A-T base pairs to G-C base pairs. ABEs use deoxyadeninedeaminase (TadA) with catalytically impaired Cas9 nickase to mutate A-T base pairs to G-C base pairs. PMID:29257124

  17. Structure of the hexameric HerA ATPase reveals a mechanism of translocation-coupled DNA-end processing in archaea.

    PubMed

    Rzechorzek, Neil J; Blackwood, John K; Bray, Sian M; Maman, Joseph D; Pellegrini, Luca; Robinson, Nicholas P

    2014-11-25

    The HerA ATPase cooperates with the NurA nuclease and the Mre11-Rad50 complex for the repair of double-strand DNA breaks in thermophilic archaea. Here we extend our structural knowledge of this minimal end-resection apparatus by presenting the first crystal structure of hexameric HerA. The full-length structure visualizes at atomic resolution the N-terminal HerA-ATP synthase domain and a conserved C-terminal extension, which acts as a physical brace between adjacent protomers. The brace also interacts in trans with nucleotide-binding residues of the neighbouring subunit. Our observations support a model in which the coaxial interaction of the HerA ring with the toroidal NurA dimer generates a continuous channel traversing the complex. HerA-driven translocation would propel the DNA towards the narrow annulus of NurA, leading to duplex melting and nucleolytic digestion. This system differs substantially from the bacterial end-resection paradigms. Our findings suggest a novel mode of DNA-end processing by this integrated archaeal helicase-nuclease machine.

  18. Genome editing in plants: Advancing crop transformation and overview of tools.

    PubMed

    Shah, Tariq; Andleeb, Tayyaba; Lateef, Sadia; Noor, Mehmood Ali

    2018-05-07

    Genome manipulation technology is one of emerging field which brings real revolution in genetic engineering and biotechnology. Targeted editing of genomes pave path to address a wide range of goals not only to improve quality and productivity of crops but also permit to investigate the fundamental roots of biological systems. These goals includes creation of plants with valued compositional properties and with characters that confer resistance to numerous biotic and abiotic stresses. Numerous novel genome editing systems have been introduced during the past few years; these comprise zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9). Genome editing technique is consistent for improving average yield to achieve the growing demands of the world's existing food famine and to launch a feasible and environmentally safe agriculture scheme, to more specific, productive, cost-effective and eco-friendly. These exciting novel methods, concisely reviewed herein, have verified themselves as efficient and reliable tools for the genetic improvement of plants. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres.

    PubMed

    Zhang, Tao; Talbert, Paul B; Zhang, Wenli; Wu, Yufeng; Yang, Zujun; Henikoff, Jorja G; Henikoff, Steven; Jiang, Jiming

    2013-12-10

    Plant and animal centromeres comprise megabases of highly repeated satellite sequences, yet centromere function can be specified epigenetically on single-copy DNA by the presence of nucleosomes containing a centromere-specific variant of histone H3 (cenH3). We determined the positions of cenH3 nucleosomes in rice (Oryza sativa), which has centromeres composed of both the 155-bp CentO satellite repeat and single-copy non-CentO sequences. We find that cenH3 nucleosomes protect 90-100 bp of DNA from micrococcal nuclease digestion, sufficient for only a single wrap of DNA around the cenH3 nucleosome core. cenH3 nucleosomes are translationally phased with 155-bp periodicity on CentO repeats, but not on non-CentO sequences. CentO repeats have an ∼10-bp periodicity in WW dinucleotides and in micrococcal nuclease cleavage, providing evidence for rotational phasing of cenH3 nucleosomes on CentO and suggesting that satellites evolve for translational and rotational stabilization of centromeric nucleosomes.

  20. Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk

    PubMed Central

    Cui, Chenchen; Song, Yujie; Liu, Jun; Ge, Hengtao; Li, Qian; Huang, Hui; Hu, Linyong; Zhu, Hongmei; Jin, Yaping; Zhang, Yong

    2015-01-01

    β-Lactoglobulin (BLG) is a major goat’s milk allergen that is absent in human milk. Engineered endonucleases, including transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases, enable targeted genetic modification in livestock. In this study, TALEN-mediated gene knockout followed by gene knock-in were used to generate BLG knockout goats as mammary gland bioreactors for large-scale production of human lactoferrin (hLF). We introduced precise genetic modifications in the goat genome at frequencies of approximately 13.6% and 6.09% for the first and second sequential targeting, respectively, by using targeting vectors that underwent TALEN-induced homologous recombination (HR). Analysis of milk from the cloned goats revealed large-scale hLF expression or/and decreased BLG levels in milk from heterozygous goats as well as the absence of BLG in milk from homozygous goats. Furthermore, the TALEN-mediated targeting events in somatic cells can be transmitted through the germline after SCNT. Our result suggests that gene targeting via TALEN-induced HR may expedite the production of genetically engineered livestock for agriculture and biomedicine. PMID:25994151

  1. Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens.

    PubMed

    Morgens, David W; Wainberg, Michael; Boyle, Evan A; Ursu, Oana; Araya, Carlos L; Tsui, C Kimberly; Haney, Michael S; Hess, Gaelen T; Han, Kyuho; Jeng, Edwin E; Li, Amy; Snyder, Michael P; Greenleaf, William J; Kundaje, Anshul; Bassik, Michael C

    2017-05-05

    CRISPR-Cas9 screens are powerful tools for high-throughput interrogation of genome function, but can be confounded by nuclease-induced toxicity at both on- and off-target sites, likely due to DNA damage. Here, to test potential solutions to this issue, we design and analyse a CRISPR-Cas9 library with 10 variable-length guides per gene and thousands of negative controls targeting non-functional, non-genic regions (termed safe-targeting guides), in addition to non-targeting controls. We find this library has excellent performance in identifying genes affecting growth and sensitivity to the ricin toxin. The safe-targeting guides allow for proper control of toxicity from on-target DNA damage. Using this toxicity as a proxy to measure off-target cutting, we demonstrate with tens of thousands of guides both the nucleotide position-dependent sensitivity to single mismatches and the reduction of off-target cutting using truncated guides. Our results demonstrate a simple strategy for high-throughput evaluation of target specificity and nuclease toxicity in Cas9 screens.

  2. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation

    PubMed Central

    Horlbeck, Max A; Gilbert, Luke A; Villalta, Jacqueline E; Adamson, Britt; Pak, Ryan A; Chen, Yuwen; Fields, Alexander P; Park, Chong Yon; Corn, Jacob E; Kampmann, Martin; Weissman, Jonathan S

    2016-01-01

    We recently found that nucleosomes directly block access of CRISPR/Cas9 to DNA (Horlbeck et al., 2016). Here, we build on this observation with a comprehensive algorithm that incorporates chromatin, position, and sequence features to accurately predict highly effective single guide RNAs (sgRNAs) for targeting nuclease-dead Cas9-mediated transcriptional repression (CRISPRi) and activation (CRISPRa). We use this algorithm to design next-generation genome-scale CRISPRi and CRISPRa libraries targeting human and mouse genomes. A CRISPRi screen for essential genes in K562 cells demonstrates that the large majority of sgRNAs are highly active. We also find CRISPRi does not exhibit any detectable non-specific toxicity recently observed with CRISPR nuclease approaches. Precision-recall analysis shows that we detect over 90% of essential genes with minimal false positives using a compact 5 sgRNA/gene library. Our results establish CRISPRi and CRISPRa as premier tools for loss- or gain-of-function studies and provide a general strategy for identifying Cas9 target sites. DOI: http://dx.doi.org/10.7554/eLife.19760.001 PMID:27661255

  3. Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens

    PubMed Central

    Morgens, David W.; Wainberg, Michael; Boyle, Evan A.; Ursu, Oana; Araya, Carlos L.; Tsui, C. Kimberly; Haney, Michael S.; Hess, Gaelen T.; Han, Kyuho; Jeng, Edwin E.; Li, Amy; Snyder, Michael P.; Greenleaf, William J.; Kundaje, Anshul; Bassik, Michael C.

    2017-01-01

    CRISPR-Cas9 screens are powerful tools for high-throughput interrogation of genome function, but can be confounded by nuclease-induced toxicity at both on- and off-target sites, likely due to DNA damage. Here, to test potential solutions to this issue, we design and analyse a CRISPR-Cas9 library with 10 variable-length guides per gene and thousands of negative controls targeting non-functional, non-genic regions (termed safe-targeting guides), in addition to non-targeting controls. We find this library has excellent performance in identifying genes affecting growth and sensitivity to the ricin toxin. The safe-targeting guides allow for proper control of toxicity from on-target DNA damage. Using this toxicity as a proxy to measure off-target cutting, we demonstrate with tens of thousands of guides both the nucleotide position-dependent sensitivity to single mismatches and the reduction of off-target cutting using truncated guides. Our results demonstrate a simple strategy for high-throughput evaluation of target specificity and nuclease toxicity in Cas9 screens. PMID:28474669

  4. CRISPR/Cas9-Based Multiplex Genome Editing in Monocot and Dicot Plants.

    PubMed

    Ma, Xingliang; Liu, Yao-Guang

    2016-07-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome targeting system has been applied to a variety of organisms, including plants. Compared to other genome-targeting technologies such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), the CRISPR/Cas9 system is easier to use and has much higher editing efficiency. In addition, multiple "single guide RNAs" (sgRNAs) with different target sequences can be designed to direct the Cas9 protein to multiple genomic sites for simultaneous multiplex editing. Here, we present a procedure for highly efficient multiplex genome targeting in monocot and dicot plants using a versatile and robust CRISPR/Cas9 vector system, emphasizing the construction of binary constructs with multiple sgRNA expression cassettes in one round of cloning using Golden Gate ligation. We also describe the genotyping of targeted mutations in transgenic plants by direct Sanger sequencing followed by decoding of superimposed sequencing chromatograms containing biallelic or heterozygous mutations using the Web-based tool DSDecode. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  5. Clustered Regularly Interspaced Short Palindromic Repeats: Challenges in Treating Retinal Disease.

    PubMed

    Chrenek, Micah A; Nickerson, John M; Boatright, Jeffrey H

    2016-01-01

    Ophthalmic researchers and clinicians arguably have led the way for safe, effective gene therapy, most notably with adeno-associated viral gene supplementation in the treatment for patients with Leber congenital amaurosis type 2 with mutations in the RPE65 gene. These successes notwithstanding, most other genetic retinal disease will be refractory to supplementation. The ideal gene therapy approach would correct gene mutations to restore normal function in the affected cells. Gene editing in which a mutant allele is inactivated or converted to sequence that restores normal function is hypothetically one such approach. Such editing involves site-specific digestion of mutant genomic DNA followed by repair. Previous experimental approaches were hampered by inaccurate and high rates of off-site lesioning and by overall low digestion rates. A new tool, clustered regularly interspaced short palindromic repeats coupled with the nuclease Cas9, may address both shortcomings. Some of the many challenges that must be addressed in moving clustered regularly interspaced short palindromic repeats coupled with the nuclease Cas9 therapies to the ophthalmic clinic are discussed here.

  6. Hit and go CAS9 delivered through a lentiviral based self-limiting circuit.

    PubMed

    Petris, Gianluca; Casini, Antonio; Montagna, Claudia; Lorenzin, Francesca; Prandi, Davide; Romanel, Alessandro; Zasso, Jacopo; Conti, Luciano; Demichelis, Francesca; Cereseto, Anna

    2017-05-22

    In vivo application of the CRISPR-Cas9 technology is still limited by unwanted Cas9 genomic cleavages. Long-term expression of Cas9 increases the number of genomic loci non-specifically cleaved by the nuclease. Here we develop a Self-Limiting Cas9 circuit for Enhanced Safety and specificity (SLiCES) which consists of an expression unit for Streptococcus pyogenes Cas9 (SpCas9), a self-targeting sgRNA and a second sgRNA targeting a chosen genomic locus. The self-limiting circuit results in increased genome editing specificity by controlling Cas9 levels. For its in vivo utilization, we next integrate SLiCES into a lentiviral delivery system (lentiSLiCES) via circuit inhibition to achieve viral particle production. Upon delivery into target cells, the lentiSLiCES circuit switches on to edit the intended genomic locus while simultaneously stepping up its own neutralization through SpCas9 inactivation. By preserving target cells from residual nuclease activity, our hit and go system increases safety margins for genome editing.

  7. Evaluation of viral removal by nanofiltration using real-time quantitative polymerase chain reaction.

    PubMed

    Zhao, Xiaowen; Bailey, Mark R; Emery, Warren R; Lambooy, Peter K; Chen, Dayue

    2007-06-01

    Nanofiltration is commonly introduced into purification processes of biologics produced in mammalian cells to serve as a designated step for removal of potential exogenous viral contaminants and endogenous retrovirus-like particles. The LRV (log reduction value) achieved by nanofiltration is often determined by cell-based infectivity assay, which is time-consuming and labour-intensive. We have explored the possibility of employing QPCR (quantitative PCR) to evaluate LRV achieved by nanofiltration in scaled-down studies using two model viruses, namely xenotropic murine leukemia virus and murine minute virus. We report here the successful development of a QPCR-based method suitable for quantification of virus removal by nanofiltration. The method includes a nuclease treatment step to remove free viral nucleic acids, while viral genome associated with intact virus particles is shielded from the nuclease. In addition, HIV Armored RNA was included as an internal control to ensure the accuracy and reliability of the method. The QPCRbased method described here provides several advantages such as better sensitivity, faster turnaround time, reduced cost and higher throughput over the traditional cell-based infectivity assays.

  8. Evolution of thermophilic DNA polymerases for the recognition and amplification of C2ʹ-modified DNA

    NASA Astrophysics Data System (ADS)

    Chen, Tingjian; Hongdilokkul, Narupat; Liu, Zhixia; Adhikary, Ramkrishna; Tsuen, Shujian S.; Romesberg, Floyd E.

    2016-06-01

    The PCR amplification of oligonucleotides enables the evolution of sequences called aptamers that bind specific targets with antibody-like affinity. However, in many applications the use of these aptamers is limited by nuclease-mediated degradation. In contrast, oligonucleotides that are modified at their sugar C2ʹ positions with methoxy or fluorine substituents are stable to nucleases, but they cannot be synthesized by natural polymerases. Here we report the development of a polymerase-evolution system and its use to evolve thermostable polymerases that efficiently interconvert C2ʹ-OMe-modified oligonucleotides and their DNA counterparts via ‘transcription’ and ‘reverse transcription’ or, more importantly, that PCR-amplify partially C2ʹ-OMe- or C2ʹ-F-modified oligonucleotides. A mechanistic analysis demonstrates that the ability to amplify the modified oligonucleotides evolved by optimizing interdomain interactions that stabilize the catalytically competent closed conformation of the polymerase. The evolved polymerases should find practical applications and the developed evolution system should be a powerful tool for tailoring polymerases to have other types of novel function.

  9. Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk.

    PubMed

    Cui, Chenchen; Song, Yujie; Liu, Jun; Ge, Hengtao; Li, Qian; Huang, Hui; Hu, Linyong; Zhu, Hongmei; Jin, Yaping; Zhang, Yong

    2015-05-21

    β-Lactoglobulin (BLG) is a major goat's milk allergen that is absent in human milk. Engineered endonucleases, including transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases, enable targeted genetic modification in livestock. In this study, TALEN-mediated gene knockout followed by gene knock-in were used to generate BLG knockout goats as mammary gland bioreactors for large-scale production of human lactoferrin (hLF). We introduced precise genetic modifications in the goat genome at frequencies of approximately 13.6% and 6.09% for the first and second sequential targeting, respectively, by using targeting vectors that underwent TALEN-induced homologous recombination (HR). Analysis of milk from the cloned goats revealed large-scale hLF expression or/and decreased BLG levels in milk from heterozygous goats as well as the absence of BLG in milk from homozygous goats. Furthermore, the TALEN-mediated targeting events in somatic cells can be transmitted through the germline after SCNT. Our result suggests that gene targeting via TALEN-induced HR may expedite the production of genetically engineered livestock for agriculture and biomedicine.

  10. Structure-function relations in the NTPase domain of the antiviral tRNA ribotoxin Escherichia coli PrrC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meineke, Birthe; Shuman, Stewart, E-mail: s-shuman@ski.mskcc.org

    2012-06-05

    Breakage of tRNA by Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies a host antiviral response to phage T4 infection. Expression of EcoPrrC is cytocidal in yeast, signifying that PrrC ribotoxicity crosses phylogenetic domain boundaries. EcoPrrC consists of an N-terminal NTPase module that resembles ABC transporters and a C-terminal nuclease module that is sui generis. PrrC homologs are prevalent in many other bacteria. Here we report that Haemophilus influenzae PrrC is toxic in E. coli and yeast. To illuminate structure-activity relations, we conducted a new round of mutational analysis of EcoPrrC guided by primary structure conservation among toxic PrrC homologs. Wemore » indentify 17 candidate active site residues in the NTPase module that are essential for toxicity in yeast when EcoPrrC is expressed at high gene dosage. Their functions could be educed by integrating mutational data with the atomic structure of the transition-state complex of a homologous ABC protein.« less

  11. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases.

    PubMed

    Bi, Yanwei; Sun, Le; Gao, Dandan; Ding, Chen; Li, Zhihua; Li, Yadong; Cun, Wei; Li, Qihan

    2014-05-01

    A facile and efficient method for the precise editing of large viral genomes is required for the selection of attenuated vaccine strains and the construction of gene therapy vectors. The type II prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)) RNA-guided nuclease system can be introduced into host cells during viral replication. The CRISPR-Cas9 system robustly stimulates targeted double-stranded breaks in the genomes of DNA viruses, where the non-homologous end joining (NHEJ) and homology-directed repair (HDR) pathways can be exploited to introduce site-specific indels or insert heterologous genes with high frequency. Furthermore, CRISPR-Cas9 can specifically inhibit the replication of the original virus, thereby significantly increasing the abundance of the recombinant virus among progeny virus. As a result, purified recombinant virus can be obtained with only a single round of selection. In this study, we used recombinant adenovirus and type I herpes simplex virus as examples to demonstrate that the CRISPR-Cas9 system is a valuable tool for editing the genomes of large DNA viruses.

  12. High-Efficiency Targeted Editing of Large Viral Genomes by RNA-Guided Nucleases

    PubMed Central

    Gao, Dandan; Ding, Chen; Li, Zhihua; Li, Yadong; Cun, Wei; Li, Qihan

    2014-01-01

    A facile and efficient method for the precise editing of large viral genomes is required for the selection of attenuated vaccine strains and the construction of gene therapy vectors. The type II prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)) RNA-guided nuclease system can be introduced into host cells during viral replication. The CRISPR-Cas9 system robustly stimulates targeted double-stranded breaks in the genomes of DNA viruses, where the non-homologous end joining (NHEJ) and homology-directed repair (HDR) pathways can be exploited to introduce site-specific indels or insert heterologous genes with high frequency. Furthermore, CRISPR-Cas9 can specifically inhibit the replication of the original virus, thereby significantly increasing the abundance of the recombinant virus among progeny virus. As a result, purified recombinant virus can be obtained with only a single round of selection. In this study, we used recombinant adenovirus and type I herpes simplex virus as examples to demonstrate that the CRISPR-Cas9 system is a valuable tool for editing the genomes of large DNA viruses. PMID:24788700

  13. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9.

    PubMed

    Li, Hongmei Lisa; Fujimoto, Naoko; Sasakawa, Noriko; Shirai, Saya; Ohkame, Tokiko; Sakuma, Tetsushi; Tanaka, Michihiro; Amano, Naoki; Watanabe, Akira; Sakurai, Hidetoshi; Yamamoto, Takashi; Yamanaka, Shinya; Hotta, Akitsu

    2015-01-13

    Duchenne muscular dystrophy (DMD) is a severe muscle-degenerative disease caused by a mutation in the dystrophin gene. Genetic correction of patient-derived induced pluripotent stem cells (iPSCs) by TALENs or CRISPR-Cas9 holds promise for DMD gene therapy; however, the safety of such nuclease treatment must be determined. Using a unique k-mer database, we systematically identified a unique target region that reduces off-target sites. To restore the dystrophin protein, we performed three correction methods (exon skipping, frameshifting, and exon knockin) in DMD-patient-derived iPSCs, and found that exon knockin was the most effective approach. We further investigated the genomic integrity by karyotyping, copy number variation array, and exome sequencing to identify clones with a minimal mutation load. Finally, we differentiated the corrected iPSCs toward skeletal muscle cells and successfully detected the expression of full-length dystrophin protein. These results provide an important framework for developing iPSC-based gene therapy for genetic disorders using programmable nucleases. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Development and Potential Applications of CRISPR-Cas9 Genome Editing Technology in Sarcoma

    PubMed Central

    Liu, Tang; Shen, Jacson K.; Li, Zhihong; Choy, Edwin; Hornicek, Francis J.; Duan, Zhenfeng

    2016-01-01

    Sarcomas include some of the most aggressive tumors and typically respond poorly to chemotherapy. In recent years, specific gene fusion/mutations and gene over-expression/activation have been shown to drive sarcoma pathogenesis and development. These emerging genomic alterations may provide targets for novel therapeutic strategies and have the potential to transform sarcoma patient care. The RNA-guided nuclease CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein-9 nuclease) is a convenient and versatile platform for site-specific genome editing and epigenome targeted modulation. Given that sarcoma is believed to develop as a result of genetic alterations in mesenchymal progenitor/stem cells, CRISPR-Cas9 genome editing technologies hold extensive application potentials in sarcoma models and therapies. We review the development and mechanisms of the CRISPR-Cas9 system in genome editing and introduce its application in sarcoma research and potential therapy in clinic. Additionally, we propose future directions and discuss the challenges faced with these applications, providing concise and enlightening information for readers interested in this area. PMID:26806808

  15. Nucleosome positioning in the regulatory region of SV40 chromatin correlates with the activation and repression of early and late transcription during infection

    PubMed Central

    Kumar, Meera Ajeet; Christensen, Kendra; Woods, Benjamin; Dettlaff, Ashley; Perley, Danielle; Scheidegger, Adam; Balakrishnan, Lata; Milavetz, Barry

    2017-01-01

    The location of nucleosomes in SV40 virions and minichromosomes isolated during infection were determined by next generation sequencing (NGS). The patterns of reads within the regulatory region of chromatin from wild-type virions indicated that micrococcal nuclease-resistant nucleosomes were specifically positioned at nt 5223 and nt 363, while in minichromosomes isolated 48 h post-infection we observed nuclease-resistant nucleosomes at nt 5119 and nt 212. The nucleosomes at nt 5223 and nt 363 in virion chromatin would be expected to repress early and late transcription, respectively. In virions from the mutant cs1085, which does not repress early transcription, we found that these two nucleosomes were significantly reduced compared to wild-type virions confirming a repressive role for them. In chromatin from cells infected for only 30 min with wild-type virus, we observed a significant reduction in the nucleosomes at nt 5223 and nt 363 indicating that the potential repression by these nucleosomes appeared to be relieved very early in infection. PMID:28126638

  16. ORF157 from the Archaeal Virus Acidianus Filamentous Virus 1 Defines a New Class of Nuclease▿

    PubMed Central

    Goulet, Adeline; Pina, Mery; Redder, Peter; Prangishvili, David; Vera, Laura; Lichière, Julie; Leulliot, Nicolas; van Tilbeurgh, Herman; Ortiz-Lombardia, Miguel; Campanacci, Valérie; Cambillau, Christian

    2010-01-01

    Acidianus filamentous virus 1 (AFV1) (Lipothrixviridae) is an enveloped filamentous virus that was characterized from a crenarchaeal host. It infects Acidianus species that thrive in the acidic hot springs (>85°C and pH <3) of Yellowstone National Park, WY. The AFV1 20.8-kb, linear, double-stranded DNA genome encodes 40 putative open reading frames whose sequences generally show little similarity to other genes in the sequence databases. Because three-dimensional structures are more conserved than sequences and hence are more effective at revealing function, we set out to determine protein structures from putative AFV1 open reading frames (ORF). The crystal structure of ORF157 reveals an α+β protein with a novel fold that remotely resembles the nucleotidyltransferase topology. In vitro, AFV1-157 displays a nuclease activity on linear double-stranded DNA. Alanine substitution mutations demonstrated that E86 is essential to catalysis. AFV1-157 represents a novel class of nuclease, but its exact role in vivo remains to be determined. PMID:20200253

  17. Mre11-Sae2 and RPA Collaborate to Prevent Palindromic Gene Amplification.

    PubMed

    Deng, Sarah K; Yin, Yi; Petes, Thomas D; Symington, Lorraine S

    2015-11-05

    Foldback priming at DNA double-stranded breaks is one mechanism proposed to initiate palindromic gene amplification, a common feature of cancer cells. Here, we show that small (5-9 bp) inverted repeats drive the formation of large palindromic duplications, the major class of chromosomal rearrangements recovered from yeast cells lacking Sae2 or the Mre11 nuclease. RPA dysfunction increased the frequency of palindromic duplications in Sae2 or Mre11 nuclease-deficient cells by ∼ 1,000-fold, consistent with intra-strand annealing to create a hairpin-capped chromosome that is subsequently replicated to form a dicentric isochromosome. The palindromic duplications were frequently associated with duplication of a second chromosome region bounded by a repeated sequence and a telomere, suggesting the dicentric chromosome breaks and repairs by recombination between dispersed repeats to acquire a telomere. We propose secondary structures within single-stranded DNA are potent instigators of genome instability, and RPA and Mre11-Sae2 play important roles in preventing their formation and propagation, respectively. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Identification of Staphylococcal Nuclease Domain-containing 1 (SND1) as a Metadherin-interacting Protein with Metastasis-promoting Functions*

    PubMed Central

    Blanco, Mario Andres; Alečković, Maša; Hua, Yuling; Li, Tuo; Wei, Yong; Xu, Zhen; Cristea, Ileana M.; Kang, Yibin

    2011-01-01

    Metastasis is the deadliest and most poorly understood feature of malignant diseases. Recent work has shown that Metadherin (MTDH) is overexpressed in over 40% of breast cancer patients and promotes metastasis and chemoresistance in experimental models of breast cancer progression. Here we applied mass spectrometry-based screen to identify staphylococcal nuclease domain-containing 1 (SND1) as a candidate MTDH-interacting protein. After confirming the interaction between SND1 and MTDH, we tested the role of SND1 in breast cancer and found that it strongly promotes lung metastasis. SND1 was further shown to promote resistance to apoptosis and to regulate the expression of genes associated with metastasis and chemoresistance. Analyses of breast cancer clinical microarray data indicated that high expression of SND1 in primary tumors is strongly associated with reduced metastasis-free survival in multiple large scale data sets. Thus, we have uncovered SND1 as a novel MTDH-interacting protein and shown that it is a functionally and clinically significant mediator of metastasis. PMID:21478147

  19. Development and potential applications of CRISPR-Cas9 genome editing technology in sarcoma.

    PubMed

    Liu, Tang; Shen, Jacson K; Li, Zhihong; Choy, Edwin; Hornicek, Francis J; Duan, Zhenfeng

    2016-04-01

    Sarcomas include some of the most aggressive tumors and typically respond poorly to chemotherapy. In recent years, specific gene fusion/mutations and gene over-expression/activation have been shown to drive sarcoma pathogenesis and development. These emerging genomic alterations may provide targets for novel therapeutic strategies and have the potential to transform sarcoma patient care. The RNA-guided nuclease CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein-9 nuclease) is a convenient and versatile platform for site-specific genome editing and epigenome targeted modulation. Given that sarcoma is believed to develop as a result of genetic alterations in mesenchymal progenitor/stem cells, CRISPR-Cas9 genome editing technologies hold extensive application potentials in sarcoma models and therapies. We review the development and mechanisms of the CRISPR-Cas9 system in genome editing and introduce its application in sarcoma research and potential therapy in clinic. Additionally, we propose future directions and discuss the challenges faced with these applications, providing concise and enlightening information for readers interested in this area. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Application of CRISPR/Cas9 genome editing to the study and treatment of disease.

    PubMed

    Pellagatti, Andrea; Dolatshad, Hamid; Valletta, Simona; Boultwood, Jacqueline

    2015-07-01

    CRISPR/Cas is a microbial adaptive immune system that uses RNA-guided nucleases to cleave foreign genetic elements. The CRISPR/Cas9 method has been engineered from the type II prokaryotic CRISPR system and uses a single-guide RNA to target the Cas9 nuclease to a specific genomic sequence. Cas9 induces double-stranded DNA breaks which are repaired either by imperfect non-homologous end joining to generate insertions or deletions (indels) or, if a repair template is provided, by homology-directed repair. Due to its specificity, simplicity and versatility, the CRISPR/Cas9 system has recently emerged as a powerful tool for genome engineering in various species. This technology can be used to investigate the function of a gene of interest or to correct gene mutations in cells via genome editing, paving the way for future gene therapy approaches. Improvements to the efficiency of CRISPR repair, in particular to increase the rate of gene correction and to reduce undesired off-target effects, and the development of more effective delivery methods will be required for its broad therapeutic application.

  1. Surveyor Nuclease: a new strategy for a rapid identification of heteroplasmic mitochondrial DNA mutations in patients with respiratory chain defects.

    PubMed

    Bannwarth, Sylvie; Procaccio, Vincent; Paquis-Flucklinger, Veronique

    2005-06-01

    Molecular analysis of mitochondrial DNA (mtDNA) is a critical step in diagnosis and genetic counseling of respiratory chain defects. No fast method is currently available for the identification of unknown mtDNA point mutations. We have developed a new strategy based on complete mtDNA PCR amplification followed by digestion with a mismatch-specific DNA endonuclease, Surveyor Nuclease. This enzyme, a member of the CEL nuclease family of plant DNA endonucleases, cleaves double-strand DNA at any mismatch site including base substitutions and small insertions/deletions. After digestion, cleavage products are separated and analyzed by agarose gel electrophoresis. The size of the digestion products indicates the location of the mutation, which is then confirmed and characterized by sequencing. Although this method allows the analysis of 2 kb mtDNA amplicons and the detection of multiple mutations within the same fragment, it does not lead to the identification of homoplasmic base substitutions. Homoplasmic pathogenic mutations have been described. Nevertheless, most homoplasmic base substitutions are neutral polymorphisms while deleterious mutations are typically heteroplasmic. Here, we report that this method can be used to detect mtDNA mutations such as m.3243A>G tRNA(Leu) and m.14709T>C tRNA(Glu) even when they are present at levels as low as 3% in DNA samples derived from patients with respiratory chain defects. Then, we tested five patients suffering from a mitochondrial respiratory chain defect and we identified a variant (m.16189T>C) in two of them, which was previously associated with susceptibility to diabetes and cardiomyopathy. In conclusion, this method can be effectively used to rapidly and completely screen the entire human mitochondrial genome for heteroplasmic mutations and in this context represents an important advance for the diagnosis of mitochondrial diseases.

  2. Production and purification of staphylococcal nuclease in Lactococcus lactis using a new expression-secretion system and a pH-regulated mini-reactor

    PubMed Central

    2010-01-01

    Background Staphylococcal (or micrococcal) nuclease or thermonuclease (SNase or Nuc) is a naturally-secreted nucleic acid degrading enzyme that participates in Staphylococcus aureus spread in the infected host. Purified Nuc protein can be used as an exogenous reagent to clear cellular extracts and improve protein purification. Here, a recombinant form of Nuc was produced and secreted in a Gram-positive host, Lactococcus lactis, and purified from the culture medium. Results The gene segment corresponding to the S. aureus nuclease without its signal peptide was cloned in an expression-secretion vector. It was then fused to a lactococcal sequence encoding a signal peptide, and expressed under the control of a lactococcal promoter that is inducible by zinc starvation. An L. lactis subsp cremoris model strain (MG1363) transformed with the resulting plasmid was grown in either of two media (GM17v and CDM) that are free of animal compounds, allowing GMP (Good Manufacturing Practice) production. Induction conditions (concentration of the metal chelator EDTA and timing of addition) in small-scale pH-regulated fermentors were optimized using LacMF (Lactis Multi-Fermentor), a home-made parallel fermentation control system able to monitor 12 reactors simultaneously. Large amounts of recombinant Nuc (rNuc) were produced and secreted in both media, and rNuc was purified from GM17v medium in a single-step procedure. Conclusions In L. lactis, rNuc production and secretion were optimal after induction by 0.5 mM EDTA in small scale (200 mL) GM17v exponential phase cultures (at an OD600 of 2), leading to a maximal protein yield of 210 mg per L of culture medium. Purified rNuc was highly active, displaying a specific activity of 2000 U/mg. PMID:20492646

  3. Liposomal SLA co-incorporated with PO CpG ODNs or PS CpG ODNs induce the same protection against the murine model of leishmaniasis.

    PubMed

    Shargh, Vahid Heravi; Jaafari, Mahmoud Reza; Khamesipour, Ali; Jaafari, Iman; Jalali, Seyed Amir; Abbasi, Azam; Badiee, Ali

    2012-06-06

    First generation Leishmania vaccines consisting of whole killed parasites with or without adjuvants have reached phase 3 trial and failed to show enough efficacy mainly due to the lack of an appropriate adjuvant. In this study, the nuclease-resistant phosphorothioate CpG oligodeoxynucleotides (PS CpG) or nuclease-sensitive phosphodiester CpG ODNs (PO CpG) were used as adjuvants to enhance immunogenicity and rate of protection against leishmaniasis. Due to the susceptibility of PO CpG to nuclease degradation, an efficient liposomal delivery system was developed to protect them from degradation. 1, 2-dioleoyl-3-trimethylammonium-propane (DOTAP) as a cationic lipid was used because of its unique adjuvanticity and electrostatic interaction with negatively charged CpG ODNs. To evaluate the role of liposomal formulation in protection rate and enhanced immune response, BALB/c mice were immunized subcutaneously with liposomal soluble Leishmania antigens (SLA) co-incorporated with PO CpG (Lip-SLA-PO CpG), Lip-SLA-PS CpG, SLA+PO CpG, SLA+PS CpG, SLA or buffer. As criteria for protection, footpad swelling at the site of challenge, parasite loads, the levels of IFN-γ and IL-4, and the IgG subtypes were evaluated. The groups of mice receiving Lip-SLA-PO CpG or Lip-SLA-PS CpG showed a high protection rate compared with the control groups. In addition, there was no significant difference in immune response generation between mice immunized with PS CpG and the group receiving PO CpG when incorporated into the liposomes. The results suggested that liposomal form of PO CpG might be used instead of PS CpG in future vaccine formulations as an efficient adjuvant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Proline Scanning Mutagenesis Reveals a Role for the Flap Endonuclease-1 Helical Cap in Substrate Unpairing*

    PubMed Central

    Patel, Nikesh; Exell, Jack C.; Jardine, Emma; Ombler, Ben; Finger, L. David; Ciani, Barbara; Grasby, Jane A.

    2013-01-01

    The prototypical 5′-nuclease, flap endonuclease-1 (FEN1), catalyzes the essential removal of single-stranded flaps during DNA replication and repair. FEN1 hydrolyzes a specific phosphodiester bond one nucleotide into double-stranded DNA. This specificity arises from double nucleotide unpairing that places the scissile phosphate diester on active site divalent metal ions. Also related to FEN1 specificity is the helical arch, through which 5′-flaps, but not continuous DNAs, can thread. The arch contains basic residues (Lys-93 and Arg-100 in human FEN1 (hFEN1)) that are conserved by all 5′-nucleases and a cap region only present in enzymes that process DNAs with 5′ termini. Proline mutations (L97P, L111P, L130P) were introduced into the hFEN1 helical arch. Each mutation was severely detrimental to reaction. However, all proteins were at least as stable as wild-type (WT) hFEN1 and bound substrate with comparable affinity. Moreover, all mutants produced complexes with 5′-biotinylated substrate that, when captured with streptavidin, were resistant to challenge with competitor DNA. Removal of both conserved basic residues (K93A/R100A) was no more detrimental to reaction than the single mutation R100A, but much less severe than L97P. The ability of protein-Ca2+ to rearrange 2-aminopurine-containing substrates was monitored by low energy CD. Although L97P and K93A/R100A retained the ability to unpair substrates, the cap mutants L111P and L130P did not. Taken together, these data challenge current assumptions related to 5′-nuclease family mechanism. Conserved basic amino acids are not required for double nucleotide unpairing and appear to act cooperatively, whereas the helical cap plays an unexpected role in hFEN1-substrate rearrangement. PMID:24126913

  5. A beginner's guide to gene editing.

    PubMed

    Harrison, Patrick T; Hart, Stephen

    2018-04-01

    What is the topic of this review? This review summarizes the development of gene editing from early proof-of-concept studies in the 1980s to contemporary programmable and RNA-guided nucleases, which enable rapid and precise alteration of DNA sequences of almost any living cell. What advances does it highlight? With an average of one clustered regularly interspaced short palindromic repeat (CRISPR) Cas9 paper published every 4 h in 2017, this review cannot highlight all new developments, but a number of key improvements, including increases in efficiency, a range of new options to reduce off-target effects and plans for CRISPR to enter clinical trials in 2018, are discussed. Genome editing enables precise changes to be made in the genome of living cells. The technique was originally developed in the 1980s but largely limited to use in mice. The discovery that a targeted double-stranded break at a unique site in the genome, close to the site to be changed, could substantially increase the efficiency of editing raised the possibility of using the technique in a broader range of animal models and, potentially, human cells. But the challenge was to identify reagents that could create targeted breaks at a unique genomic location with minimal off-target effects. In 2005, the demonstration that programmable zinc finger nucleases (ZFNs) could perform this task led to a number of proof-of-concept studies, but a limitation was the ease with which effective ZFNs could be produced. In 2009, the development of TAL effector nucleases (TALENs) increased the specificity of gene editing and the ease of design and production. However, it was not until 2013 and the development of the clustered regularly interspaced short palindromic repeat (CRISPR) Cas9/guide RNA that gene editing became a research tool that any laboratory could use. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  6. Generation and Inheritance of Targeted Mutations in Potato (Solanum tuberosum L.) Using the CRISPR/Cas System

    PubMed Central

    Butler, Nathaniel M.; Atkins, Paul A.; Voytas, Daniel F.; Douches, David S.

    2015-01-01

    Genome editing using sequence-specific nucleases (SSNs) offers an alternative approach to conventional genetic engineering and an opportunity to extend the benefits of genetic engineering in agriculture. Currently available SSN platforms, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas (clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems (Cas)) have been used in a range of plant species for targeted mutagenesis via non-homologous end joining (NHEJ) are just beginning to be explored in crops such as potato (Solanum tuberosum Group Tuberosum L.). In this study, CRISPR/Cas reagents expressing one of two single-guide RNA (sgRNA) targeting the potato ACETOLACTATE SYNTHASE1 (StALS1) gene were tested for inducing targeted mutations in callus and stable events of diploid and tetraploid potato using Agrobacterium-mediated transformation with either a conventional T-DNA or a modified geminivirus T-DNA. The percentage of primary events with targeted mutations ranged from 3–60% per transformation and from 0–29% above an expected threshold based on the number of ALS alleles. Primary events with targeted mutation frequencies above the expected threshold were used for mutation cloning and inheritance studies using clonal propagation and crosses or selfing. Four of the nine primary events used for mutation cloning had more than one mutation type, and eight primary events contained targeted mutations that were maintained across clonal generations. Somatic mutations were most evident in the diploid background with three of the four primary events having more than two mutation types at a single ALS locus. Conversely, in the tetraploid background, four of the five candidates carried only one mutation type. Single targeted mutations were inherited through the germline of both diploid and tetraploid primary events with transmission percentages ranging from 87–100%. This demonstration of CRISPR/Cas in potato extends the range of plant species modified using CRISPR/Cas and provides a framework for future studies. PMID:26657719

  7. Multiplexed Elimination of Wild-Type DNA and High-Resolution Melting Prior to Targeted Resequencing of Liquid Biopsies.

    PubMed

    Ladas, Ioannis; Fitarelli-Kiehl, Mariana; Song, Chen; Adalsteinsson, Viktor A; Parsons, Heather A; Lin, Nancy U; Wagle, Nikhil; Makrigiorgos, G Mike

    2017-10-01

    The use of clinical samples and circulating cell-free DNA (cfDNA) collected from liquid biopsies for diagnostic and prognostic applications in cancer is burgeoning, and improved methods that reduce the influence of excess wild-type (WT) portion of the sample are desirable. Here we present enrichment of mutation-containing sequences using enzymatic degradation of WT DNA. Mutation enrichment is combined with high-resolution melting (HRM) performed in multiplexed closed-tube reactions as a rapid, cost-effective screening tool before targeted resequencing. We developed a homogeneous, closed-tube approach to use a double-stranded DNA-specific nuclease for degradation of WT DNA at multiple targets simultaneously. The No Denaturation Nuclease-assisted Minor Allele Enrichment with Probe Overlap (ND-NaME-PrO) uses WT oligonucleotides overlapping both strands on putative DNA targets. Under conditions of partial denaturation (DNA breathing), the oligonucleotide probes enhance double-stranded DNA-specific nuclease digestion at the selected targets, with high preference toward WT over mutant DNA. To validate ND-NaME-PrO, we used multiplexed HRM, digital PCR, and MiSeq targeted resequencing of mutated genomic DNA and cfDNA. Serial dilution of KRAS mutation-containing DNA shows mutation enrichment by 10- to 120-fold and detection of allelic fractions down to 0.01%. Multiplexed ND-NaME-PrO combined with multiplexed PCR-HRM showed mutation scanning of 10-20 DNA amplicons simultaneously. ND-NaME-PrO applied on cfDNA from clinical samples enables mutation enrichment and HRM scanning over 10 DNA targets. cfDNA mutations were enriched up to approximately 100-fold (average approximately 25-fold) and identified via targeted resequencing. Closed-tube homogeneous ND-NaME-PrO combined with multiplexed HRM is a convenient approach to efficiently enrich for mutations on multiple DNA targets and to enable prescreening before targeted resequencing. © 2017 American Association for Clinical Chemistry.

  8. Persistence of Microbial Contamination on Transvaginal Ultrasound Probes despite Low-Level Disinfection Procedure

    PubMed Central

    M'Zali, Fatima; Bounizra, Carole; Leroy, Sandrine; Mekki, Yahia; Quentin-Noury, Claudine; Kann, Michael

    2014-01-01

    Aim of the Study In many countries, Low Level Disinfection (LLD) of covered transvaginal ultrasound probes is recommended between patients' examinations. The aim of this study was to evaluate the antimicrobial efficacy of LLD under routine conditions on a range of microorganisms. Materials and Methods Samples were taken over a six month period in a private French Radiology Center. 300 specimens derived from endovaginal ultrasound probes were analyzed after disinfection of the probe with wipes impregnated with a quaternary ammonium compound and chlorhexidine. Human papillomavirus (HPV) was sought in the first set of s100 samples, Chlamydia trachomatis and mycoplasmas were searched in the second set of 100 samples, bacteria and fungi in the third 100 set samples. HPV, C. trachomatis and mycoplasmas were detected by PCR amplification. PCR positive samples were subjected to a nuclease treatment before an additional PCR assay to assess the likely viable microorganisms. Bacteria and fungi were investigated by conventional methods. Results A substantial persistence of microorganisms was observed on the disinfected probes: HPV DNA was found on 13% of the samples and 7% in nuclease-resistant form. C. trachomatis DNA was detected on 20% of the probes by primary PCR but only 2% after nuclease treatment, while mycoplasma DNA was amplified in 8% and 4%, respectively. Commensal and/or environmental bacterial flora was present on 86% of the probes, occasionally in mixed culture, and at various levels (10->3000 CFU/probe); Staphylococcus aureus was cultured from 4% of the probes (10-560 CFU/probe). No fungi were isolated. Conclusion Our findings raise concerns about the efficacy of impregnated towels as a sole mean for disinfection of ultrasound probes. Although the ultrasound probes are used with disposable covers, our results highlight the potential risk of cross contamination between patients during ultrasound examination and emphasize the need for reviewing the disinfection procedure. PMID:24695371

  9. A Comprehensive TALEN-Based Knockout Library for Generating Human Induced Pluripotent Stem Cell-Based Models for Cardiovascular Diseases

    PubMed Central

    Karakikes, Ioannis; Termglinchan, Vittavat; Cepeda, Diana A.; Lee, Jaecheol; Diecke, Sebastian; Hendel, Ayal; Itzhaki, Ilanit; Ameen, Mohamed; Shrestha, Rajani; Wu, Haodi; Ma, Ning; Shao, Ning-Yi; Seeger, Timon; Woo, Nicole; Wilson, Kitchener D.; Matsa, Elena; Porteus, Matthew H.; Sebastiano, Vittorio; Wu, Joseph C.

    2017-01-01

    Rationale Targeted genetic engineering using programmable nucleases such as transcription activator–like effector nucleases (TALENs) is a valuable tool for precise, site-specific genetic modification in the human genome. Objective The emergence of novel technologies such as human induced pluripotent stem cells (iPSCs) and nuclease-mediated genome editing represent a unique opportunity for studying cardiovascular diseases in vitro. Methods and Results By incorporating extensive literature and database searches, we designed a collection of TALEN constructs to knockout (KO) eighty-eight human genes that are associated with cardiomyopathies and congenital heart diseases. The TALEN pairs were designed to induce double-strand DNA break near the starting codon of each gene that either disrupted the start codon or introduced a frameshift mutation in the early coding region, ensuring faithful gene KO. We observed that all the constructs were active and disrupted the target locus at high frequencies. To illustrate the general utility of the TALEN-mediated KO technique, six individual genes (TNNT2, LMNA/C, TBX5, MYH7, ANKRD1, and NKX2.5) were knocked out with high efficiency and specificity in human iPSCs. By selectively targeting a dilated cardiomyopathy (DCM)-causing mutation (TNNT2 p.R173W) in patient-specific iPSC-derived cardiac myocytes (iPSC-CMs), we demonstrated that the KO strategy ameliorates the DCM phenotype in vitro. In addition, we modeled the Holt-Oram syndrome (HOS) in iPSC-CMs in vitro and uncovered novel pathways regulated by TBX5 in human cardiac myocyte development. Conclusion Collectively, our study illustrates the powerful combination of iPSCs and genome editing technology for understanding the biological function of genes and the pathological significance of genetic variants in human cardiovascular diseases. The methods, strategies, constructs and iPSC lines developed in this study provide a validated, readily available resource for cardiovascular research. PMID:28246128

  10. Generation and Inheritance of Targeted Mutations in Potato (Solanum tuberosum L.) Using the CRISPR/Cas System.

    PubMed

    Butler, Nathaniel M; Atkins, Paul A; Voytas, Daniel F; Douches, David S

    2015-01-01

    Genome editing using sequence-specific nucleases (SSNs) offers an alternative approach to conventional genetic engineering and an opportunity to extend the benefits of genetic engineering in agriculture. Currently available SSN platforms, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas (clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated systems (Cas)) have been used in a range of plant species for targeted mutagenesis via non-homologous end joining (NHEJ) are just beginning to be explored in crops such as potato (Solanum tuberosum Group Tuberosum L.). In this study, CRISPR/Cas reagents expressing one of two single-guide RNA (sgRNA) targeting the potato ACETOLACTATE SYNTHASE1 (StALS1) gene were tested for inducing targeted mutations in callus and stable events of diploid and tetraploid potato using Agrobacterium-mediated transformation with either a conventional T-DNA or a modified geminivirus T-DNA. The percentage of primary events with targeted mutations ranged from 3-60% per transformation and from 0-29% above an expected threshold based on the number of ALS alleles. Primary events with targeted mutation frequencies above the expected threshold were used for mutation cloning and inheritance studies using clonal propagation and crosses or selfing. Four of the nine primary events used for mutation cloning had more than one mutation type, and eight primary events contained targeted mutations that were maintained across clonal generations. Somatic mutations were most evident in the diploid background with three of the four primary events having more than two mutation types at a single ALS locus. Conversely, in the tetraploid background, four of the five candidates carried only one mutation type. Single targeted mutations were inherited through the germline of both diploid and tetraploid primary events with transmission percentages ranging from 87-100%. This demonstration of CRISPR/Cas in potato extends the range of plant species modified using CRISPR/Cas and provides a framework for future studies.

  11. Cancel all Hollidays for SLX4 mutations: identification of a new Fanconi anemia subtype, FANCP.

    PubMed

    Kang, M H

    2011-07-01

    SLX4, a coordinator of structure-specific endo-nucleases, is mutated in a new Fanconi anemia subtype Stoepker et al. (2011) Nature Genetics 43:138-141. Mutations of the SLX4 gene in Fanconi anemia Kim et al. (2011) Nature Genetics 43:142-146. © 2011 John Wiley & Sons A/S.

  12. Quantitative Nuclease Protection Assays (qNPA) as Windows into Chemical-Induced Adaptive Response in Cultures of Primary Human Hepatocytes (Concentration and Time-Response)

    EPA Science Inventory

    Cultures of primary human hepatocytes have been shown to be dynamic in vitro model systems that retain liver-like functionality (e.g. metabolism, transport, induction). We have utilized these culture models to interrogate 309 ToxCast chemicals. The study design characterized both...

  13. Somatic cell nuclear transfer followed by CRIPSR/CAS9 microinjection results in highly efficient genome editing in cloned pigs

    USDA-ARS?s Scientific Manuscript database

    The domestic pig is an ideal “dual purpose” animal model for agricultural and biomedical research. With the availability of genome editing tools [e.g. clustered regularly interspersed short palindromic repeat (CRISPR) and associated nuclease Cas9 (CRISPR/Cas9)] it is now possible to perform site-sp...

  14. Nucleic acids through condensation of nucleosides and phosphorous acid in the presence of sulfur

    PubMed Central

    2016-01-01

    Summary Short phosphorothioate oligonucleotides have been prepared by refluxing an equimolar mixture of thymidine and triethylammonium phosphite in toluene in the presence of elemental sulfur. Desulfurization and subsequent digestion of the products by P1 nuclease revealed that nearly 80% of the internucleosidic linkages thus formed were of the canonical 3´,5´-type. PMID:27340459

  15. 9 CFR 147.30 - Laboratory procedure recommended for the polymerase chain reaction (PCR) test for Mycoplasma...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... for Mycoplasma gallisepticum and M. synoviae. (a) DNA isolation. Isolate DNA from 1 mL of eluate from... supernatant DNA to a nuclease-free tube. Estimate the DNA concentration and purity by spectrophotometric... primer (50 μM), 1 μl Forward primer (50 μM). (2) Perform DNA amplification in a Perkin-Elmer 9600...

  16. 9 CFR 147.30 - Laboratory procedure recommended for the polymerase chain reaction (PCR) test for Mycoplasma...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for Mycoplasma gallisepticum and M. synoviae. (a) DNA isolation. Isolate DNA from 1 mL of eluate from... supernatant DNA to a nuclease-free tube. Estimate the DNA concentration and purity by spectrophotometric... primer (50 μM), 1 μl Forward primer (50 μM). (2) Perform DNA amplification in a Perkin-Elmer 9600...

  17. 9 CFR 147.30 - Laboratory procedure recommended for the polymerase chain reaction (PCR) test for Mycoplasma...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... for Mycoplasma gallisepticum and M. synoviae. (a) DNA isolation. Isolate DNA from 1 mL of eluate from... supernatant DNA to a nuclease-free tube. Estimate the DNA concentration and purity by spectrophotometric... primer (50 μM), 1 μl Forward primer (50 μM). (2) Perform DNA amplification in a Perkin-Elmer 9600...

  18. Connections of intermediate filaments with the nuclear lamina and the cell periphery.

    PubMed

    Katsuma, Y; Swierenga, S H; Marceau, N; French, S W

    1987-01-01

    We investigated the relationship between intermediate filaments (IFs) and other detergent- and nuclease-resistant filamentous structures of cultured liver epithelial cells (T51B cell line) using whole mount unembedded preparations which were sequentially extracted with Triton X-100 and nucleases. Immunogold labelling and stereoscopic observation facilitated the examination of each filamentous structure and their three-dimensional relationships to each other. After solubilizing phospholipid, nucleic acid and soluble cellular protein, the resulting cytoskeleton preparation consisted of a network of cytokeratin and vimentin IFs linked by 3 nm filaments. The IFs were anchored to and determined the position of the nuclear lamina filaments (NLF) network and the centrioles. The NLF was composed of the nuclear lamina filaments measuring 3-6 nm in diameter which radiated from and anchored to the skeleton of the nuclear pores. The IFs located in the nuclear region appeared to be interwoven with the NLF. At the cell surface, the IFs seemed to be attached to the putative actin filament network. They formed a focally interrupted plexus-like structure at the cell periphery. Fragments of vimentin filaments were found among the filamentous network located at the cell surface, and some filaments terminated blindly there.

  19. The nuclear matrix prepared by amine modification

    PubMed Central

    Wan, Katherine M.; Nickerson, Jeffrey A.; Krockmalnic, Gabriela; Penman, Sheldon

    1999-01-01

    The nucleus is spatially ordered by attachments to a nonchromatin nuclear structure, the nuclear matrix. The nuclear matrix and chromatin are intimately connected and integrated structures, and so a major technical challenge in nuclear matrix research has been to remove chromatin while retaining a native nuclear matrix. Most methods for removing chromatin require first a nuclease digestion and then a salt extraction to remove cut chromatin. We have hypothesized that cut chromatin is held in place by charge interactions involving nucleosomal amino groups. We have tested this hypothesis by chemically modifying amino groups after nuclease digestion. By using this protocol, chromatin could be effectively removed at physiological ionic strength. We compared the ultrastructure and composition of this nuclear matrix preparation with the traditional high-salt nuclear matrix and with the third nuclear matrix preparation that we have developed from which chromatin is removed after extensive crosslinking. All three matrix preparations reveal internal nuclear matrix structures that are built on a network of branched filaments of about 10 nm diameter. That such different chromatin-removal protocols reveal similar principles of nuclear matrix construction increases our confidence that we are observing important architectural elements of the native structure in the living cell. PMID:9927671

  20. Cas9, Cpf1 and C2c1/2/3―What's next?

    PubMed Central

    Yamamoto, Takashi; Sakuma, Tetsushi

    2017-01-01

    ABSTRACT Since the rapid emergence of clustered regulatory interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system, developed as a genome engineering tool in 2012–2013, most researchers in the life science field have had a fixated interest in this fascinating technology. CRISPR-Cas9 is an RNA-guided DNA endonuclease system, which consists of Cas9 nuclease defining a few targeting base via protospacer adjacent motif complexed with easily customizable single guide RNA targeting around 20-bp genomic sequence. Although Streptococcus pyogenes Cas9 (SpCas9), one of the Cas9 proteins that applications in genome engineering were first demonstrated, still has wide usage because of its high nuclease activity and broad targeting range, there are several limitations such as large molecular weight and potential off-target effect. In this commentary, we describe various improvements and alternatives of CRISPR-Cas systems, including engineered Cas9 variants, Cas9 homologs, and novel Cas proteins other than Cas9. These variations enable flexible genome engineering with high efficiency and specificity, orthogonal genetic control at multiple gene loci, gene knockdown, or fluorescence imaging of transcripts mediated by RNA targeting, and beyond. PMID:28140746

  1. Inactivation of Phaeodactylum tricornutum urease gene using transcription activator-like effector nuclease-based targeted mutagenesis

    DOE PAGES

    Weyman, Philip D.; Beeri, Karen; Lefebvre, Stephane C.; ...

    2014-10-10

    Diatoms are unicellular photosynthetic algae with promise for green production of fuels and other chemicals. Recent genome-editing techniques have greatly improved the potential of many eukaryotic genetic systems, including diatoms, to enable knowledge-based studies and bioengineering. Using a new technique, transcription activator-like effector nucleases (TALENs), the gene encoding the urease enzyme in the model diatom, Phaeodactylum tricornutum, was targeted for interruption. The knockout cassette was identified within the urease gene by PCR and Southern blot analyses of genomic DNA. The lack of urease protein was confirmed by Western blot analyses in mutant cell lines that were unable to grow onmore » urea as the sole nitrogen source. Untargeted metabolomic analysis revealed a build-up of urea, arginine and ornithine in the urease knockout lines. All three intermediate metabolites are upstream of the urease reaction within the urea cycle, suggesting a disruption of the cycle despite urea production. Numerous high carbon metabolites were enriched in the mutant, implying a breakdown of cellular C and N repartitioning. The presented method improves the molecular toolkit for diatoms and clarifies the role of urease in the urea cycle.« less

  2. Integrity of chromatin and replicating DNA in nuclei released from fission yeast by semi-automated grinding in liquid nitrogen

    PubMed Central

    2011-01-01

    Background Studies of nuclear function in many organisms, especially those with tough cell walls, are limited by lack of availability of simple, economical methods for large-scale preparation of clean, undamaged nuclei. Findings Here we present a useful method for nuclear isolation from the important model organism, the fission yeast, Schizosaccharomyces pombe. To preserve in vivo molecular configurations, we flash-froze the yeast cells in liquid nitrogen. Then we broke their tough cell walls, without damaging their nuclei, by grinding in a precision-controlled motorized mortar-and-pestle apparatus. The cryo-ground cells were resuspended and thawed in a buffer designed to preserve nuclear morphology, and the nuclei were enriched by differential centrifugation. The washed nuclei were free from contaminating nucleases and have proven well-suited as starting material for genome-wide chromatin analysis and for preparation of fragile DNA replication intermediates. Conclusions We have developed a simple, reproducible, economical procedure for large-scale preparation of endogenous-nuclease-free, morphologically intact nuclei from fission yeast. With appropriate modifications, this procedure may well prove useful for isolation of nuclei from other organisms with, or without, tough cell walls. PMID:22088094

  3. Direct observation of transcription activator-like effector (TALE) protein dynamics

    NASA Astrophysics Data System (ADS)

    Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M.

    2014-03-01

    In this work, we describe a single molecule assay to probe the site-search dynamics of transcription activator-like effector (TALE) proteins along DNA. In modern genetics, the ability to selectively edit the human genome is an unprecedented development, driven by recent advances in targeted nuclease proteins. Specific gene editing can be accomplished using TALE proteins, which are programmable DNA-binding proteins that can be fused to a nuclease domain. In this way, TALENs are a leading technology that has shown great success in the genomic editing of pluripotent stem cells. A major hurdle facing clinical implementation, however, is the potential for deleterious off-target binding events. For these reasons, a molecular-level understanding of TALE binding and target sequence search on DNA is essential. To this end, we developed a single-molecule fluorescence imaging assay that provides a first-of-its-kind view of the 1-D diffusion of TALE proteins along stretched DNA. Taken together with co-crystal structures of DNA-bound TALEs, our results suggest a rotationally-coupled, major groove tracking model for diffusion. We further report diffusion constants for TALE proteins as a function of salt concentration, consistent with previously described models of 1-D protein diffusion.

  4. Cas9, Cpf1 and C2c1/2/3-What's next?

    PubMed

    Nakade, Shota; Yamamoto, Takashi; Sakuma, Tetsushi

    2017-05-04

    Since the rapid emergence of clustered regulatory interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system, developed as a genome engineering tool in 2012-2013, most researchers in the life science field have had a fixated interest in this fascinating technology. CRISPR-Cas9 is an RNA-guided DNA endonuclease system, which consists of Cas9 nuclease defining a few targeting base via protospacer adjacent motif complexed with easily customizable single guide RNA targeting around 20-bp genomic sequence. Although Streptococcus pyogenes Cas9 (SpCas9), one of the Cas9 proteins that applications in genome engineering were first demonstrated, still has wide usage because of its high nuclease activity and broad targeting range, there are several limitations such as large molecular weight and potential off-target effect. In this commentary, we describe various improvements and alternatives of CRISPR-Cas systems, including engineered Cas9 variants, Cas9 homologs, and novel Cas proteins other than Cas9. These variations enable flexible genome engineering with high efficiency and specificity, orthogonal genetic control at multiple gene loci, gene knockdown, or fluorescence imaging of transcripts mediated by RNA targeting, and beyond.

  5. Mutational and Biochemical Analysis of the DNA-entry Nuclease EndA from Streptococcus pneumoniae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Midon; P Schafer; A Pingoud

    2011-12-31

    EndA is a membrane-attached surface-exposed DNA-entry nuclease previously known to be required for genetic transformation of Streptococcus pneumoniae. More recent studies have shown that the enzyme also plays an important role during the establishment of invasive infections by degrading extracellular chromatin in the form of neutrophil extracellular traps (NETs), enabling streptococci to overcome the innate immune system in mammals. As a virulence factor, EndA has become an interesting target for future drug design. Here we present the first mutational and biochemical analysis of recombinant forms of EndA produced either in a cell-free expression system or in Escherichia coli. We identifymore » His160 and Asn191 to be essential for catalysis and Asn182 to be required for stability of EndA. The role of His160 as the putative general base in the catalytic mechanism is supported by chemical rescue of the H160A variant of EndA with imidazole added in excess. Our study paves the way for the identification and development of protein or low-molecular-weight inhibitors for EndA in future high-throughput screening assays.« less

  6. Synthesis, biophysical properties and biological activity of second generation antisense oligonucleotides containing chiral phosphorothioate linkages

    PubMed Central

    Wan, W. Brad; Migawa, Michael T.; Vasquez, Guillermo; Murray, Heather M.; Nichols, Josh G.; Gaus, Hans; Berdeja, Andres; Lee, Sam; Hart, Christopher E.; Lima, Walt F.; Swayze, Eric E.; Seth, Punit P.

    2014-01-01

    Bicyclic oxazaphospholidine monomers were used to prepare a series of phosphorothioate (PS)-modified gapmer antisense oligonucleotides (ASOs) with control of the chirality of each of the PS linkages within the 10-base gap. The stereoselectivity was determined to be 98% for each coupling. The objective of this work was to study how PS chirality influences biophysical and biological properties of the ASO including binding affinity (Tm), nuclease stability, activity in vitro and in vivo, RNase H activation and cleavage patterns (both human and E. coli) in a gapmer context. Compounds that had nine or more Sp-linkages in the gap were found to be poorly active in vitro, while compounds with uniform Rp-gaps exhibited activity very similar to that of the stereo-random parent ASOs. Conversely, when tested in vivo, the full Rp-gap compound was found to be quickly metabolized resulting in low activity. A total of 31 ASOs were prepared with control of the PS chirally of each linkage within the gap in an attempt to identify favorable Rp/Sp positions. We conclude that a mix of Rp and Sp is required to achieve a balance between good activity and nuclease stability. PMID:25398895

  7. CRISPR/Cas9 therapeutics: a cure for cancer and other genetic diseases.

    PubMed

    Khan, Faheem Ahmed; Pandupuspitasari, Nuruliarizki Shinta; Chun-Jie, Huang; Ao, Zhou; Jamal, Muhammad; Zohaib, Ali; Khan, Farhan Ahmed; Hakim, Muthia Raihana; ShuJun, Zhang

    2016-08-09

    Cancer is caused by a series of alterations in genome and epigenome mostly resulting in activation of oncogenes or inactivation of cancer suppressor genes. Genetic engineering has become pivotal in the treatment of cancer and other genetic diseases, especially the formerly-niche use of clustered regularly interspaced short palindromic repeats (CRISPR) associated with Cas9. In defining its superior use, we have followed the recent advances that have been made in producing CRISPR/Cas9 as a therapy of choice. We also provide important genetic mutations where CRISPRs can be repurposed to create adaptive immunity to fight carcinomas and edit genetic mutations causing it. Meanwhile, challenges to CRISPR technology are also discussed with emphasis on ability of pathogens to evolve against CRISPRs. We follow the recent developments on the function of CRISPRs with different carriers which can efficiently deliver it to target cells; furthermore, analogous technologies are also discussed along CRISPRs, including zinc-finger nuclease (ZFN) and transcription activator-like effector nucleases (TALENs). Moreover, progress in clinical applications of CRISPR therapeutics is reviewed; in effect, patients can have lower morbidity and/or mortality from the therapeutic method with least possible side-effects.

  8. Integrity of chromatin and replicating DNA in nuclei released from fission yeast by semi-automated grinding in liquid nitrogen.

    PubMed

    Givens, Robert M; Mesner, Larry D; Hamlin, Joyce L; Buck, Michael J; Huberman, Joel A

    2011-11-16

    Studies of nuclear function in many organisms, especially those with tough cell walls, are limited by lack of availability of simple, economical methods for large-scale preparation of clean, undamaged nuclei. Here we present a useful method for nuclear isolation from the important model organism, the fission yeast, Schizosaccharomyces pombe. To preserve in vivo molecular configurations, we flash-froze the yeast cells in liquid nitrogen. Then we broke their tough cell walls, without damaging their nuclei, by grinding in a precision-controlled motorized mortar-and-pestle apparatus. The cryo-ground cells were resuspended and thawed in a buffer designed to preserve nuclear morphology, and the nuclei were enriched by differential centrifugation. The washed nuclei were free from contaminating nucleases and have proven well-suited as starting material for genome-wide chromatin analysis and for preparation of fragile DNA replication intermediates. We have developed a simple, reproducible, economical procedure for large-scale preparation of endogenous-nuclease-free, morphologically intact nuclei from fission yeast. With appropriate modifications, this procedure may well prove useful for isolation of nuclei from other organisms with, or without, tough cell walls.

  9. Modification of the Genome of Domestic Animals.

    PubMed

    Lotti, Samantha N; Polkoff, Kathryn M; Rubessa, Marcello; Wheeler, Matthew B

    2017-07-03

    In the past few years, new technologies have arisen that enable higher efficiency of gene editing. With the increase ease of using gene editing technologies, it is important to consider the best method for transferring new genetic material to livestock animals. Microinjection is a technique that has proven to be effective in mice but is less efficient in large livestock animals. Over the years, a variety of methods have been used for cloning as well as gene transfer including; nuclear transfer, sperm mediated gene transfer (SMGT), and liposome-mediated DNA transfer. This review looks at the different success rate of these methods and how they have evolved to become more efficient. As well as gene editing technologies, including Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the most recent clustered regulatory interspaced short palindromic repeats (CRISPRs). Through the advancements in gene-editing technologies, generating transgenic animals is now more accessible and affordable. The goals of producing transgenic animals are to 1) increase our understanding of biology and biomedical science; 2) increase our ability to produce more efficient animals; and 3) produce disease resistant animals. ZFNs, TALENs, and CRISPRs combined with gene transfer methods increase the possibility of achieving these goals.

  10. Reproductive medicine involving genome editing: clinical uncertainties and embryological needs.

    PubMed

    Ishii, Tetsuya

    2017-01-01

    Genome editing based on site-directed nucleases facilitated efficient and versatile genetic modifications in human cells. However, recent reports, demonstrating CRISPR/Cas9-mediated genome editing in human embryos have raised profound concerns worldwide. This commentary explores the clinical justification and feasibility of reproductive medicine using germline genome editing. Despite the perceived utility of reproductive medicine for treating intractable infertility, it is difficult to justify germline genome editing from the perspective of the prospective child. As suggested by the UK legalization regarding mitochondrial donation, the prevention of genetic disease in offspring by genome editing might be acceptable in limited cases of serious or life-threatening conditions, where no alternative medicine is available. Nonetheless, the mosaicism underlying human embryos as well as the off-target effect by artificial nucleases will likely hamper preimplantation genetic diagnosis prior to embryo transfer. Such considerations suggest that this type of reproductive medicine should not be developed toward a clinical application. However, the clinical uncertainties underscore the need for embryology that can address fundamental questions regarding germline aneuploidy and mosaicism using genome editing. Copyright © 2016 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  11. A robust TALENs system for highly efficient mammalian genome editing.

    PubMed

    Feng, Yuanxi; Zhang, Siliang; Huang, Xin

    2014-01-10

    Recently, transcription activator-like effector nucleases (TALENs) have emerged as a highly effective tool for genomic editing. A pair of TALENs binds to two DNA recognition sites separated by a spacer sequence, and the dimerized FokI nucleases at the C terminal then cleave DNA in the spacer. Because of its modular design and capacity to precisely target almost any desired genomic locus, TALEN is a technology that can revolutionize the entire biomedical research field. Currently, for genomic editing in cultured cells, two plasmids encoding a pair of TALENs are co-transfected, followed by limited dilution to isolate cell colonies with the intended genomic manipulation. However, uncertain transfection efficiency becomes a bottleneck, especially in hard-to-transfect cells, reducing the overall efficiency of genome editing. We have developed a robust TALENs system in which each TALEN plasmid also encodes a fluorescence protein. Thus, cells transfected with both TALEN plasmids, a prerequisite for genomic editing, can be isolated by fluorescence-activated cell sorting. Our improved TALENs system can be applied to all cultured cells to achieve highly efficient genomic editing. Furthermore, an optimized procedure for genomic editing using TALENs is also presented. We expect our system to be widely adopted by the scientific community.

  12. In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting.

    PubMed

    Chen, Xiaoyu; Janssen, Josephine M; Liu, Jin; Maggio, Ignazio; 't Jong, Anke E J; Mikkers, Harald M M; Gonçalves, Manuel A F V

    2017-09-22

    Precise genome editing involves homologous recombination between donor DNA and chromosomal sequences subjected to double-stranded DNA breaks made by programmable nucleases. Ideally, genome editing should be efficient, specific, and accurate. However, besides constituting potential translocation-initiating lesions, double-stranded DNA breaks (targeted or otherwise) are mostly repaired through unpredictable and mutagenic non-homologous recombination processes. Here, we report that the coordinated formation of paired single-stranded DNA breaks, or nicks, at donor plasmids and chromosomal target sites by RNA-guided nucleases based on CRISPR-Cas9 components, triggers seamless homology-directed gene targeting of large genetic payloads in human cells, including pluripotent stem cells. Importantly, in addition to significantly reducing the mutagenicity of the genome modification procedure, this in trans paired nicking strategy achieves multiplexed, single-step, gene targeting, and yields higher frequencies of accurately edited cells when compared to the standard double-stranded DNA break-dependent approach.CRISPR-Cas9-based gene editing involves double-strand breaks at target sequences, which are often repaired by mutagenic non-homologous end-joining. Here the authors use Cas9 nickases to generate coordinated single-strand breaks in donor and target DNA for precise homology-directed gene editing.

  13. Targeted Mutagenesis of Duplicated Genes in Soybean with Zinc-Finger Nucleases1[W][OA

    PubMed Central

    Curtin, Shaun J.; Zhang, Feng; Sander, Jeffry D.; Haun, William J.; Starker, Colby; Baltes, Nicholas J.; Reyon, Deepak; Dahlborg, Elizabeth J.; Goodwin, Mathew J.; Coffman, Andrew P.; Dobbs, Drena; Joung, J. Keith; Voytas, Daniel F.; Stupar, Robert M.

    2011-01-01

    We performed targeted mutagenesis of a transgene and nine endogenous soybean (Glycine max) genes using zinc-finger nucleases (ZFNs). A suite of ZFNs were engineered by the recently described context-dependent assembly platform—a rapid, open-source method for generating zinc-finger arrays. Specific ZFNs targeting DICER-LIKE (DCL) genes and other genes involved in RNA silencing were cloned into a vector under an estrogen-inducible promoter. A hairy-root transformation system was employed to investigate the efficiency of ZFN mutagenesis at each target locus. Transgenic roots exhibited somatic mutations localized at the ZFN target sites for seven out of nine targeted genes. We next introduced a ZFN into soybean via whole-plant transformation and generated independent mutations in the paralogous genes DCL4a and DCL4b. The dcl4b mutation showed efficient heritable transmission of the ZFN-induced mutation in the subsequent generation. These findings indicate that ZFN-based mutagenesis provides an efficient method for making mutations in duplicate genes that are otherwise difficult to study due to redundancy. We also developed a publicly accessible Web-based tool to identify sites suitable for engineering context-dependent assembly ZFNs in the soybean genome. PMID:21464476

  14. Roles for the Rad27 Flap Endonuclease in Mitochondrial Mutagenesis and Double-Strand Break Repair in Saccharomyces cerevisiae.

    PubMed

    Nagarajan, Prabha; Prevost, Christopher T; Stein, Alexis; Kasimer, Rachel; Kalifa, Lidza; Sia, Elaine A

    2017-06-01

    The structure-specific nuclease, Rad27p/FEN1, plays a crucial role in DNA repair and replication mechanisms in the nucleus. Genetic assays using the rad27-∆ mutant have shown altered rates of DNA recombination, microsatellite instability, and point mutation in mitochondria. In this study, we examined the role of Rad27p in mitochondrial mutagenesis and double-strand break (DSB) repair in Saccharomyces cerevisiae Our findings show that Rad27p is essential for efficient mitochondrial DSB repair by a pathway that generates deletions at a region flanked by direct repeat sequences. Mutant analysis suggests that both exonuclease and endonuclease activities of Rad27p are required for its role in mitochondrial DSB repair. In addition, we found that the nuclease activities of Rad27p are required for the prevention of mitochondrial DNA (mtDNA) point mutations, and in the generation of spontaneous mtDNA rearrangements. Overall, our findings underscore the importance of Rad27p in the maintenance of mtDNA, and demonstrate that it participates in multiple DNA repair pathways in mitochondria, unlinked to nuclear phenotypes. Copyright © 2017 by the Genetics Society of America.

  15. Characterization of Genomic Deletion Efficiency Mediated by Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/Cas9 Nuclease System in Mammalian Cells*♦

    PubMed Central

    Canver, Matthew C.; Bauer, Daniel E.; Dass, Abhishek; Yien, Yvette Y.; Chung, Jacky; Masuda, Takeshi; Maeda, Takahiro; Paw, Barry H.; Orkin, Stuart H.

    2014-01-01

    The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 nuclease system has provided a powerful tool for genome engineering. Double strand breaks may trigger nonhomologous end joining repair, leading to frameshift mutations, or homology-directed repair using an extrachromosomal template. Alternatively, genomic deletions may be produced by a pair of double strand breaks. The efficiency of CRISPR/Cas9-mediated genomic deletions has not been systematically explored. Here, we present a methodology for the production of deletions in mammalian cells, ranging from 1.3 kb to greater than 1 Mb. We observed a high frequency of intended genomic deletions. Nondeleted alleles are nonetheless often edited with inversions or small insertion/deletions produced at CRISPR recognition sites. Deleted alleles also typically include small insertion/deletions at predicted deletion junctions. We retrieved cells with biallelic deletion at a frequency exceeding that of probabilistic expectation. We demonstrate an inverse relationship between deletion frequency and deletion size. This work suggests that CRISPR/Cas9 is a robust system to produce a spectrum of genomic deletions to allow investigation of genes and genetic elements. PMID:24907273

  16. In vivo genome editing of the albumin locus as a platform for protein replacement therapy

    PubMed Central

    Sharma, Rajiv; Anguela, Xavier M.; Doyon, Yannick; Wechsler, Thomas; DeKelver, Russell C.; Sproul, Scott; Paschon, David E.; Miller, Jeffrey C.; Davidson, Robert J.; Shivak, David; Zhou, Shangzhen; Rieders, Julianne; Gregory, Philip D.; Holmes, Michael C.; Rebar, Edward J.

    2015-01-01

    Site-specific genome editing provides a promising approach for achieving long-term, stable therapeutic gene expression. Genome editing has been successfully applied in a variety of preclinical models, generally focused on targeting the diseased locus itself; however, limited targeting efficiency or insufficient expression from the endogenous promoter may impede the translation of these approaches, particularly if the desired editing event does not confer a selective growth advantage. Here we report a general strategy for liver-directed protein replacement therapies that addresses these issues: zinc finger nuclease (ZFN) –mediated site-specific integration of therapeutic transgenes within the albumin gene. By using adeno-associated viral (AAV) vector delivery in vivo, we achieved long-term expression of human factors VIII and IX (hFVIII and hFIX) in mouse models of hemophilia A and B at therapeutic levels. By using the same targeting reagents in wild-type mice, lysosomal enzymes were expressed that are deficient in Fabry and Gaucher diseases and in Hurler and Hunter syndromes. The establishment of a universal nuclease-based platform for secreted protein production would represent a critical advance in the development of safe, permanent, and functional cures for diverse genetic and nongenetic diseases. PMID:26297739

  17. Crystal structure of the Mus81-Eme1 complex.

    PubMed

    Chang, Jeong Ho; Kim, Jeong Joo; Choi, Jung Min; Lee, Jung Hoon; Cho, Yunje

    2008-04-15

    The Mus81-Eme1 complex is a structure-specific endonuclease that plays an important role in rescuing stalled replication forks and resolving the meiotic recombination intermediates in eukaryotes. We have determined the crystal structure of the Mus81-Eme1 complex. Both Mus81 and Eme1 consist of a central nuclease domain, two repeats of the helix-hairpin-helix (HhH) motif at their C-terminal region, and a linker helix. While each domain structure resembles archaeal XPF homologs, the overall structure is significantly different from those due to the structure of a linker helix. We show that a flexible intradomain linker that formed with 36 residues in the nuclease domain of Eme1 is essential for the recognition of DNA. We identified several basic residues lining the outer surface of the active site cleft of Mus81 that are involved in the interaction with a flexible arm of a nicked Holliday junction (HJ). These interactions might contribute to the optimal positioning of the opposite junction across the nick into the catalytic site, which provided the basis for the "nick and counternick" mechanism of Mus81-Eme1 and for the nicked HJ to be the favored in vitro substrate of this enzyme.

  18. Crystal structures of the structure-selective nuclease Mus81-Eme1 bound to flap DNA substrates

    PubMed Central

    Gwon, Gwang Hyeon; Jo, Aera; Baek, Kyuwon; Jin, Kyeong Sik; Fu, Yaoyao; Lee, Jong-Bong; Kim, YoungChang; Cho, Yunje

    2014-01-01

    The Mus81-Eme1 complex is a structure-selective endonuclease with a critical role in the resolution of recombination intermediates during DNA repair after interstrand cross-links, replication fork collapse, or double-strand breaks. To explain the molecular basis of 3′ flap substrate recognition and cleavage mechanism by Mus81-Eme1, we determined crystal structures of human Mus81-Eme1 bound to various flap DNA substrates. Mus81-Eme1 undergoes gross substrate-induced conformational changes that reveal two key features: (i) a hydrophobic wedge of Mus81 that separates pre- and post-nick duplex DNA and (ii) a “5′ end binding pocket” that hosts the 5′ nicked end of post-nick DNA. These features are crucial for comprehensive protein-DNA interaction, sharp bending of the 3′ flap DNA substrate, and incision strand placement at the active site. While Mus81-Eme1 unexpectedly shares several common features with members of the 5′ flap nuclease family, the combined structural, biochemical, and biophysical analyses explain why Mus81-Eme1 preferentially cleaves 3′ flap DNA substrates with 5′ nicked ends. PMID:24733841

  19. alpha-DNA II. Synthesis of unnatural alpha-anomeric oligodeoxyribonucleotides containing the four usual bases and study of their substrate activities for nucleases.

    PubMed Central

    Morvan, F; Rayner, B; Imbach, J L; Thenet, S; Bertrand, J R; Paoletti, J; Malvy, C; Paoletti, C

    1987-01-01

    This paper describes for the first time the synthesis of alpha-oligonucleotides containing the four usual bases. Two unnatural hexadeoxyribonucleotides: alpha-[d(CpApTpGpCpG)] and alpha-[d(CpGpCpApTpG)], consisting only of alpha-anomeric nucleotide units, were obtained by an improved phosphotriester method, in solution. Starting material was the four base-protected alpha-deoxyribonucleosides 3a-d. Pyrimidine alpha-deoxynucleosides 3a and 3b were prepared by self-anomerization reactions followed by selective deprotection of sugar hydroxyles, while the two purine alpha-deoxynucleosides 3c and 3d were prepared by glycosylation reactions. In the case of guanine alpha-nucleoside derivative a supplementary base-protecting group: N,N-diphenylcarbamoyl was introduced on O6-position in order to avoid side-reactions during oligonucleotide assembling. The hexadeoxynucleotide alpha-[d(CpApTpGpCpG)] was tested as substrate of selected endo- and exonucleases. In conditions where the natural corresponding beta-hexamer was completely degradated by nuclease S1 and calf spleen phosphodiesterase, the alpha-oligonucleotide remained almost intact. PMID:3575096

  20. CRISPR/Cas9 therapeutics: a cure for cancer and other genetic diseases

    PubMed Central

    Khan, Faheem Ahmed; Pandupuspitasari, Nuruliarizki Shinta; Chun-Jie, Huang; Ao, Zhou; Jamal, Muhammad; Zohaib, Ali; Khan, Farhan Ahmed; Hakim, Muthia Raihana; ShuJun, Zhang

    2016-01-01

    Cancer is caused by a series of alterations in genome and epigenome mostly resulting in activation of oncogenes or inactivation of cancer suppressor genes. Genetic engineering has become pivotal in the treatment of cancer and other genetic diseases, especially the formerly-niche use of clustered regularly interspaced short palindromic repeats (CRISPR) associated with Cas9. In defining its superior use, we have followed the recent advances that have been made in producing CRISPR/Cas9 as a therapy of choice. We also provide important genetic mutations where CRISPRs can be repurposed to create adaptive immunity to fight carcinomas and edit genetic mutations causing it. Meanwhile, challenges to CRISPR technology are also discussed with emphasis on ability of pathogens to evolve against CRISPRs. We follow the recent developments on the function of CRISPRs with different carriers which can efficiently deliver it to target cells; furthermore, analogous technologies are also discussed along CRISPRs, including zinc-finger nuclease (ZFN) and transcription activator-like effector nucleases (TALENs). Moreover, progress in clinical applications of CRISPR therapeutics is reviewed; in effect, patients can have lower morbidity and/or mortality from the therapeutic method with least possible side-effects. PMID:27250031

Top