Science.gov

Sample records for nuclei echo spinowe

  1. Echo Mapping of Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Peterson, B. M.; Horne, K.

    2004-01-01

    Echo mapping makes use of the intrinsic variability of the continuum source in active galactic nuclei to map out the distribution and kinematics of line-emitting gas from its light travel time-delayed response to continuum changes. Echo mapping experiments have yielded sizes for the broad line-emitting region in about three dozen AGNs. The dynamics of the line-emitting gas seem to be dominated by the gravity of the central black hole, enabling measurement of the black-hole masses in AGNs. We discuss requirements for future echo-mapping experiments that will yield the high quality velocity-delay maps of the broad-line region that are needed to determine its physical nature.

  2. Echo Mapping of Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Horne, K.

    Echo mapping exploits light travel time delays, revealed by multi-wavelength variability studies, to map the geometry, kinematics, and physical conditions of reprocessing sites in photo-ionized gas flows. In active galactic nuclei (AGN), the ultraviolet to near infrared light arises in part from reprocessing of EUV and X-ray light from a compact and erratically variable source in the nucleus. The observed time delays, 0.1-2 days for the continuum and 1-100 days for the broad emission lines, probe regions only micro-arcseconds from the nucleus. Emission-line delays reveal radially stratified ionization zones, identify the nature of the gas motions, and estimate the masses of the central black holes. Continuum time delays map the temperature-radius structure of AGN accretion discs, and provide distances that may be accurate enough to realize the potential of AGNs as cosmological probes.

  3. Efficient imaging of midbrain nuclei using inverse double-echo steady-state acquisition a)

    PubMed Central

    Wu, Ming-Long; Chang, Hing-Chiu; Chao, Tzu-Cheng; Chen, Nan-Kuei

    2015-01-01

    Purpose: Imaging of midbrain nuclei using T2- or T2*-weighted MRI often entails long echo time, leading to long scan time. In this study, an inverse double-echo steady-state (iDESS) technique is proposed for efficiently depicting midbrain nuclei. Methods: Thirteen healthy subjects participated in this study. iDESS was performed along with two sets of T2*-weighted spoiled gradient-echo images (SPGR1, with scan time identical to iDESS and SPGR2, using clinical scanning parameters as a reference standard) for comparison. Generation of iDESS composite images combining two echo signals was optimized for maximal contrast-to-noise ratio (CNR) between the red nuclei and surrounding tissues. Signal-to-noise ratios (SNRs) were calculated from the occipital lobe. Comparison was also made using phase-enhanced images as in standard susceptibility-weighted imaging (SWI). Results: The iDESS images present significantly higher SNR efficiency (171.3) than SPGR1 (158.7, p = 0.013) and SPGR2 (95.5, p < 10−8). iDESS CNR efficiency (19.2) is also significantly greater than SPGR1 (6.9, p < 10−6) and SPGR2 (14.3, p = 0.0016). Compared with DESS, iDESS provides further advantage on enhanced phase information and hence improved contrast on SWI-processed images. Conclusions: iDESS efficiently depicts midbrain nuclei with improved CNR efficiency, increased SNR efficiency, and reduced scan time and is less prone to susceptibility signal loss from air-tissue interfaces. PMID:26133633

  4. Echo

    NASA Technical Reports Server (NTRS)

    1961-01-01

    'William J. O'Sullivan, the father of the Echo balloon, was also the father of five children. ... The NASA public affairs office distributed copies of this family portrait to the news media along with stories about O'Sullivan's ingenious invention of the Echo balloon.' 'O'Sullivan became one of NASA's most highly publicized scientists. In December 1960, the U.S. Post Office Department issued a commemorative 4-cent stamp in honor of his beloved Echo balloon. For his concept of the inflatable space vehicle, NASA would award him one of its distinguished service medals, in addition to $5000 cash. In 1962, O'Sullivan would appear as a guest on the popular TV game show 'What's My Line?'; all four of the celebrity panelists correctly picked him from the lineup as the father of the Echo satelloons.'

  5. Echo mapping of active galactic nuclei broad-line regions: Fundamental algorithms

    NASA Technical Reports Server (NTRS)

    Vio, Roberto; Horne, Keith; Wamsteker, Willem

    1994-01-01

    We formulate and test a series of algorithms for echo mapping the emission-line regions near active galactic nuclei from measurements of correlated variability in their line and continuum light curves. The linear regularization method (LRM) employs a direct inversion of evenly spaced light-curve data, with a regularization parameter that can be used to control the trade-off between noise and resolution. Matrix formulas express the formal solution as well as its variance and covariance in terms of uncertainties in the measurements. Unlike the maximum-entropy method (MEM), LRM applies to kernels with both positive and negative values, but the results are somewhat limited by ringing effects. A positivity constraint proves effective in controlling the ringing. MEM combines regularization and positivity in a natural way, but similar results are also found using positivity constraints with nonentropic regularization functions. Direct inversions of unevenly sampled light curves require interpolating the noisy data. In this case better results are found by solving for both the continuum light curve and kernel function in a simultaneous fit to the data. Our conclusion is that while echo mapping currently gives ambiguous results, the algorithms are not the limiting factor. Progress depends on efforts to increase the accuracy and completeness of sampling of the observed light curves.

  6. ECHO virus

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001340.htm ECHO virus To use the sharing features on this page, please enable JavaScript. Enteric cytopathic human orphan (ECHO) viruses are a group of viruses that lead to ...

  7. Exactly solvable spin dynamics of an electron coupled to a large number of nuclei; the electron-nuclear spin echo in a quantum dot

    SciTech Connect

    Kozlov, G. G.

    2007-10-15

    The model used to describe the spin dynamics in quantum dots after optical excitation is considered. Problems of the electron-spin polarization decay and the dependence of the steady-state polarization on magnetic field are solved on the basis of exact diagonalization of the model Hamiltonian. An important role of the nuclear state is shown and methods of its calculation for different regimes of optical excitation are proposed. The effect of spin echo generation after application of a {pi} pulse of a magnetic field is predicted for the system under consideration.

  8. Echo's Legacy

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Echo 1 Satellite is simply a very large balloon, the diameter of a 10 story building. Metallized Products, Inc. developed a special material for NASA used for the balloons's skin. For "bouncing signals," material had to be reflective, lightweight, and thin enough to be folded into a beach ball size canister for delivery into orbit, where it would automatically inflate. Material selected was mylar polyester, with a reflective layer of tiny aluminum particles so fine that Echo's skin had a thickness half that of cellophane on a cigarette package.

  9. ECHO Site Map | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  10. ECHO Rest Services Documentation | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  11. Resources - ECHO Data | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  12. Contact Us about ECHO | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  13. ECHO Release Notes | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  14. Learn More About ECHO | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  15. ECHO Gov Login | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  16. Light echoes - Novae

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1988-01-01

    The sudden brilliance of a nova eruption will be reflected on surrounding dust grains to create a phantom nebula. Previous searches for these light echoes have used relatively short exposures with photograhic detectors. This paper reports on a search around eight recent novae with long exposures using a CCD camera. Despite an increase of sensitivity by over an order of magnitude, no light echoes were detected. It is found that the average grain density must be less than about 10 to the -9th per cu cm for distances from 0.1 pc to 1000 pc from the novae. The light echo around Nova Persei 1901 was caused by reflection off clouds with grain densities of several times 10 to the -9th per cu cm which are at distances between 0.1 pc and 10 pc. Echoes from dust in a circumstellar shell or ejected during a previous eruption will be effectively unobservable.

  17. Resources | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  18. Echoes in Space and Time

    NASA Astrophysics Data System (ADS)

    Lin, Kang; Lu, Peifen; Ma, Junyang; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Zeng, Heping; Wu, Jian; Karras, Gabriel; Siour, Guillaume; Hartmann, Jean-Michel; Faucher, Olivier; Gershnabel, Erez; Prior, Yehiam; Averbukh, Ilya Sh.

    2016-10-01

    Echo in mountains is a well-known phenomenon, where an acoustic pulse is mirrored by the rocks, often with reverberating recurrences. For spin echoes in magnetic resonance and photon echoes in atomic and molecular systems, the role of the mirror is played by a second, time-delayed pulse that is able to reverse the flow of time and recreate the original impulsive event. Recently, alignment and orientation echoes were discussed in terms of rotational-phase-space filamentation, and they were optically observed in laser-excited molecular gases. Here, we observe hitherto unreported fractional echoes of high order, spatially rotated echoes, and the counterintuitive imaginary echoes at negative times. Coincidence Coulomb explosion imaging is used for a direct spatiotemporal analysis of various molecular alignment echoes, and the implications to echo phenomena in other fields of physics are discussed.

  19. ECHO Status for International Partners

    NASA Technical Reports Server (NTRS)

    Weinstein, Beth; Lubelczyk, Jeff

    2006-01-01

    The EOS Clearinghouse (ECHO) is a clearinghouse of spatial and temporal metadata, inclusive of NASA's Distributed Active Archive Center (DAAC) data holdings, that enables the science community to more easily exchange NASA data and information. Currently, ECHO has metadata descriptors for over 55 million individual data granules and 13 million browse images. The majority of ECHO's holdings come directly from data held in the NASA DAACs. The science disciplines and domains represented in ECHO are diverse and include metadata for all of NASA's Science Focus Area data. As middleware for a service-oriented enterprise, ECHO offers access to its capabilities through a set of publicly available Application Program Interfaces (APIs). More information about ECHO is available at http://eos.nasa.gov.echo. The presentation will discuss the status of the ECHO Partners, holdings, and activities, including the transition from the EOS Data Gateway to the Warehouse Inventory Search Tool (WIST)

  20. Rotary echo nutation NMR

    NASA Astrophysics Data System (ADS)

    Janssen, R.; Tijink, G. A. H.; Veeman, W. S.

    1988-01-01

    A two-dimensional solid state NMR experiment which combines rotary echoes and nutation NMR is investigated and used to study different sodium sites in zeolite NaA. It is shown that with this technique sodium ions with different relaxation rates in the rotating frame can be distinguished.

  1. Echo Boom Impact

    ERIC Educational Resources Information Center

    Dordai, Phillipe; Rizzo, Joseph

    2006-01-01

    Like their baby-boomer parents, the echo-boom generation is reshaping the college and university landscape. At 80 million strong, this group of children and young adults born between 1980 and 1995 now is flooding the college and university system, spurring a college building boom. According to Campus Space Crunch, a Hillier Architecture survey of…

  2. Project Echo: Receiving System

    NASA Technical Reports Server (NTRS)

    Ohm, E. A.

    1961-01-01

    A tracking horn-reflector antenna, a maser preamplifier (and standby parametric preamplifier), and a special FM demodulator were combined to form a low-noise receiving system which made possible the establishment of a high-quality voice circuit via the Echo I passive satellite. This paper describes the 2390-Mc receiving system located at the Bell Telephone Laboratories facility in Holmdel, New Jersey.

  3. Echo: skin stress test

    NASA Technical Reports Server (NTRS)

    1960-01-01

    Skin Stress Test of the 12-foot satellite built as a prototype of the full-scale Echo satellite. The 12-foot diameter of the sphere was chosen because that was the ceiling height in the Langley model shop. The proposal to build the 12-foot satellite was made in November 1957. - Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, pp. 170-171.

  4. Spin echo in synchrotrons

    NASA Astrophysics Data System (ADS)

    Chao, Alexander W.; Courant, Ernest D.

    2007-01-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency Δνspin of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time τ between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference-overlap effect and a spin echo effect. This paper is to address these two effects. The interference-overlap effect occurs when Δνspin is too small, or when τ is too short, to complete the smearing process. In this case, the two resonance crossings overlap each other, and the final polarization exhibits constructive or destructive interference patterns depending on the exact value of τ. Typically, the beam’s energy spread is large and this interference-overlap effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time τ after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when τ is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving an analysis

  5. Spin Echo in Synchrotrons

    SciTech Connect

    Chao, Alexander W.; Courant, Ernest D.; /Brookhaven

    2006-12-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency {Delta}{nu}{sub spin} of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time {tau} between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference effect and a spin echo effect. This paper is to address these two effects. The interference effect occurs when {Delta}{nu}{sub spin} is too small, or when {tau} is too short, to complete the smearing process. In this case, the two resonance crossings interfere with each other, and the final polarization exhibits constructive or destructive patterns depending on the exact value of {tau}. Typically, the beam's energy spread is large and this interference effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time {tau} after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when {tau} is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving an

  6. Superdeformed nuclei

    SciTech Connect

    Janssens, R.V.F.; Khoo, Teng Lek.

    1991-01-01

    This paper reviews the most recent advances in the understanding of the physics of superdeformed nuclei from the point of view of the experimentalists. It covers among other subjects the following topics: (1) the discovery of a new region of superdeformed nuclei near A=190, (2) the surprising result of the occurrence of bands with identical transition energies in neighboring superdeformed nuclei near A=150 and A=190, (3) the importance of octupole degrees of freedom at large deformation and (4) the properties associated with the feeding and the decay of superdeformed bands. The text presented hereafter will appear as a contribution to the Annual Review of Nuclear and Particle Science, Volume 41. 88 refs., 11 figs.

  7. Cosmogenic nuclei

    NASA Technical Reports Server (NTRS)

    Raisbeck, G. M.

    1986-01-01

    Cosmogenic nuclei, nuclides formed by nuclear interactions of galactic and solar cosmic rays with extraterrestrial or terrestrial matter are discussed. Long lived radioactive cosmogenic isotopes are focused upon. Their uses in dating, as tracers of the interactions of cosmic rays with matter, and in obtaining information on the variation of primary cosmic ray flux in the past are discussed.

  8. Light Echoes of Historic Transients

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Sinnott, B.; Welch, D. L.; Prieto, J. L.; Bianco, F.

    2014-01-01

    Light echoes, light from a variable source scattered off dust, have been observed for over a century. The recent discovery of light echoes around centuries-old supernovae in the Milky Way and the Large Magellanic Cloud have allowed the spectroscopic characterization of these events, even without contemporaneous photometry and spectroscopy using modern instrumentation. Here we review the recent scientific advances using light echoes of ancient and historic transients, and focus on our latest work on SN 1987A's and Eta Carinae's light echoes.

  9. Neutron Speed Echo Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ioffe, A.

    Neutron speed echo (NSPE) technique is in a way a generalization of the neutron spin echo (NSE) technique. Similar to NSE spectrometers, the resolution of such NSPE spectrometer is extremely high and is not connected with the monochromatization of the incoming beam. However, in contrast to NSE spectrometers, the operation of proposed spectrometer does not necessarily require a polarized neutron beam. Such decoupling the polarization and the resolution is in clear contrast to NSE technique. Because the resolution of a NSPE spectrometer can be a few orders higher than the resolution of NSE spectrometers, one can achieve the energy resolution of about 10-14 eV by the use of ultra cold neutrons; a fact that can be used in some fundamental physics experiments. Though the scattering on the sample impose limitations on the resolution of a NSPE spectrometer, the use of the proposed technique in a low-resolution mode can be useful in the combination with triple-axis spectrometers and allow for the significant improvement of their energy resolution, however, without the use of polarized neutrons. This fact opens new possibilities for the study of magnetic phenomena in solids, where the NSE method is principally not applicable because of the neutron precession in the sample, especially by combining polarization analysis with high-resolution spectroscopy. The proposed technique also allows for an easy implementation of the principle of the NSE focusing, when the resolution ellipse is aligned along a dispersion curve.

  10. Dissecting a Light Echo

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for audio animation

    This animation illustrates how a light echo works, and how an optical illusion of material moving outward is created.

    A light echo occurs when a star explodes, acting like a cosmic flashbulb. The light from this explosion zips through nearby dust clumps, illuminating and heating them up slightly. This brief period of warming causes them to glow in infrared, like a chain of Christmas bulbs lighting up one by one.

    The animation starts by showing the explosion of a star, which results in a flash of light that moves outward in all directions. The direction of our line of sight from Earth is indicated by the blue arrow.

    When the light flash reaches surrounding dust, shown here as three dark clouds, the dust is heated up, creating infrared light that begins to travel toward Earth (indicated by the red arrows). Dust closest to the explosion lights up first, while the explosion's shock wave takes longer to reach more distant material. This results in light from different parts of the cloud reaching Earth at different times, creating the illusion of motion over time.

    As the animation shows, the inclination of the cloud toward our line of sight can result in the material seeming to move both away from and toward the central star.

  11. Echo 1 container

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Echo 1 container: The design of this container was one of the most difficult technical tasks. Hansen writes: 'After several weeks of examining potential solutions to this problem, the Langley engineers narrowed the field of ideas to five. They then built working models of these five container designs, and 12-foot-diameter models of the satellite for simulation studies. With help from Langley's Engineering Service and Mechanical Service divisions, the Echo group built a special 41-foot-diameter spherical vacuum chamber equipped with pressure-proof windows. There the dynamics of opening the container and inflating the satelloon could be studies as the satelloon fell to the bottom of the tank.' 'The container-opening mechanism that eventually resulted from these vacuum tests was surely one of the oddest explosive devices ever contrived. The container was a sphere that opened at its equator into top and bottom hemispheres. the top half fit on the bottom half much like a lid fits snugly atop a kitchen pot. The joint between the two hemispheres, therefore, formed a sliding valve. The halves had to move apart an inch or two before the canister was actually open. It was in this joint between the hemispheres that the charge was placed.' The whole whole system was laced together with fishing line which resulted in many disdainful comments from visiting scientists and engineers but the system worked. Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, (Washington: NASA, 1995), p. 180.

  12. Simple Echoes and Subtle Reverberations

    ERIC Educational Resources Information Center

    Keeports, David

    2010-01-01

    Reverberation within an enclosed space can be viewed as a superposition of a large number of simple echoes. The echoes that make up the sound of reverberation fall neatly into two categories, relatively loud and sparse early reflections, and relatively soft and dense late reflections. Ways in which readily available music production software can…

  13. Exotic Nuclei

    SciTech Connect

    Galindo-Uribarri, Alfredo {nmn}

    2010-01-01

    Current experimental developments on the study of exotic nuclei far from the valley of stability are discussed. I start with general aspects related to the production of radioactive beams followed by the description of some of the experimental tools and specialized techniques for studies in reaction spectroscopy, nuclear structure research and nuclear applications with examples from selected topical areas with which I have been involved. I discuss some of the common challenges faced in Accelerator Mass Spectrometry (AMS) and Radioactive Ion Beam (RIB) science.

  14. Guide to Regulated Facilities in ECHO | ECHO | US EPA

    EPA Pesticide Factsheets

    There are multiple ways ECHO can be used to search compliance data. By default, ECHO searches focus on larger, more regulated facilities. Each search page allows users to search a more comprehensive group of facilities by electing to search for minor or smaller facilities. Information is presented that explains the types and approximate numbers of facilities that are included in searches when the default and custom options are used.

  15. Effluent Charts | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  16. Enforcement Cases | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  17. Data Downloads | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide for searching and downloading. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  18. Frequency selective detection of nuclear quadrupole resonance (NQR) spin echoes

    NASA Astrophysics Data System (ADS)

    Somasundaram, Samuel D.; Jakobsson, Andreas; Smith, John A. S.; Althoefer, Kaspar A.

    2006-05-01

    Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF) technique that can be used to detect the presence of quadrupolar nuclei, such as the 14N nucleus prevalent in many explosives and narcotics. The technique has been hampered by low signal-to-noise ratios and is further aggravated by the presence of RF interference (RFI). To ensure accurate detection, proposed detectors should exploit the rich form of the NQR signal. Furthermore, the detectors should also be robust to any remaining residual interference, left after suitable RFI mitigation has been employed. In this paper, we propose a new NQR data model, particularly for the realistic case where multiple pulse sequences are used to generate trains of spin echoes. Furthermore, we refine two recently proposed approximative maximum likelihood (AML) detectors, enabling the algorithm to optimally exploit the data model of the entire echo train and also incorporate knowledge of the temperature dependent spin-echo decay time. The AML-based detectors ensure accurate detection and robustness against residual RFI, even when the temperature of the sample is not precisely known, by exploiting the dependencies of the NQR resonant lines on temperature. Further robustness against residual interference is gained as the proposed detector is frequency selective; exploiting only those regions of the spectrum where the NQR signal is expected. Extensive numerical evaluations based on both simulated and measured NQR data indicate that the proposed Frequency selective Echo Train AML (FETAML) detector offers a significant improvement as compared to other existing detectors.

  19. Rapid Gradient-Echo Imaging

    PubMed Central

    Hargreaves, Brian

    2012-01-01

    Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185

  20. X-ray Echo Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  1. Echo particle image velocimetry.

    PubMed

    DeMarchi, Nicholas; White, Christopher

    2012-12-27

    The transport of mass, momentum, and energy in fluid flows is ultimately determined by spatiotemporal distributions of the fluid velocity field.(1) Consequently, a prerequisite for understanding, predicting, and controlling fluid flows is the capability to measure the velocity field with adequate spatial and temporal resolution.(2) For velocity measurements in optically opaque fluids or through optically opaque geometries, echo particle image velocimetry (EPIV) is an attractive diagnostic technique to generate "instantaneous" two-dimensional fields of velocity.(3,4,5,6) In this paper, the operating protocol for an EPIV system built by integrating a commercial medical ultrasound machine(7) with a PC running commercial particle image velocimetry (PIV) software(8) is described, and validation measurements in Hagen-Poiseuille (i.e., laminar pipe) flow are reported. For the EPIV measurements, a phased array probe connected to the medical ultrasound machine is used to generate a two-dimensional ultrasound image by pulsing the piezoelectric probe elements at different times. Each probe element transmits an ultrasound pulse into the fluid, and tracer particles in the fluid (either naturally occurring or seeded) reflect ultrasound echoes back to the probe where they are recorded. The amplitude of the reflected ultrasound waves and their time delay relative to transmission are used to create what is known as B-mode (brightness mode) two-dimensional ultrasound images. Specifically, the time delay is used to determine the position of the scatterer in the fluid and the amplitude is used to assign intensity to the scatterer. The time required to obtain a single B-mode image, t, is determined by the time it take to pulse all the elements of the phased array probe. For acquiring multiple B-mode images, the frame rate of the system in frames per second (fps) = 1/δt. (See 9 for a review of ultrasound imaging.) For a typical EPIV experiment, the frame rate is between 20-60 fps

  2. Stellar Echo Imaging of Exoplanets

    NASA Technical Reports Server (NTRS)

    Mann, Chris; Lerch, Kieran; Lucente, Mark; Meza-Galvan, Jesus; Mitchell, Dan; Ruedin, Josh; Williams, Spencer; Zollars, Byron

    2016-01-01

    All stars exhibit intensity fluctuations over several timescales, from nanoseconds to years. These intensity fluctuations echo off bodies and structures in the star system. We posit that it is possible to take advantage of these echoes to detect, and possibly image, Earth-scale exoplanets. Unlike direct imaging techniques, temporal measurements do not require fringe tracking, maintaining an optically-perfect baseline, or utilizing ultra-contrast coronagraphs. Unlike transit or radial velocity techniques, stellar echo detection is not constrained to any specific orbital inclination. Current results suggest that existing and emerging technology can already enable stellar echo techniques at flare stars, such as Proxima Centauri, including detection, spectroscopic interrogation, and possibly even continent-level imaging of exoplanets in a variety of orbits. Detection of Earth-like planets around Sun-like stars appears to be extremely challenging, but cannot be fully quantified without additional data on micro- and millisecond-scale intensity fluctuations of the Sun. We consider survey missions in the mold of Kepler and place preliminary constraints on the feasibility of producing 3D tomographic maps of other structures in star systems, such as accretion disks. In this report we discuss the theory, limitations, models, and future opportunities for stellar echo imaging.

  3. Commissioning the Echo-Seeding Experiment Echo-7 at SLAC

    SciTech Connect

    Weathersby, S.a E.Colby; Dunning, M.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Woodley, M.; Xiang, D.; Pernet, P-L.; /Ecole Polytechnique, Lausanne

    2011-06-02

    ECHO-7 is a proof-of-principle echo-enabled harmonic generation (EEHG) FEL experiment in the Next Linear Collider Test Accelerator (NLCTA) at SLAC. The experiment is intended to test the EEHG principle at low electron beam energy, 120 MeV, and determine the sensitivities and limitations to understand the expected performance at the higher energy scales and harmonic numbers required for x-ray FELs. In this paper we present the experimental results from the commissioning run of the completed experimental setup which started in April 2010.

  4. Fluid echoes in a pure electron plasma.

    PubMed

    Yu, J H; O'Neil, T M; Driscoll, C F

    2005-01-21

    Experimental observations of diocotron wave echoes on a magnetized electron column are reported, representing Kelvin wave echoes on a rotating near-ideal fluid. The echoes occur by reversal of an inviscid wave damping process, and the phase-space mixing and unmixing are directly imaged. The basic echo characteristics agree with a simple nonlinear ballistic theory. At late times, the echo is degraded, and the maximal observed echo times agree with a theory of electron-electron collisions acting on separately evolving velocity classes.

  5. Facility Search Criteria Help | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides powerful search capabilities offering more than 100 search criteria to target your results. Use the ECHO to search compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide.

  6. Nuclear quadrupole resonance echoes from hexamethylenetetramine.

    PubMed

    Ota, Go; Itozaki, Hideo

    2006-10-01

    We investigated the echo phenomenon of nuclear quadrupole resonance (NQR) from hexamethylenetetramine (HMT). We detected the pure NQR echo signal of HMT with a short pulse interval. The intensity of the echo signal increased as the pulse interval time was decreased. We observed that a clean echo signal was generated even when the pulse interval was shorter than the decay time constant T(2)(*). Since the short interval time gives a strong echo, our result insists that shorter interval time is preferred for the NQR detection.

  7. Echo-Enabled Harmonic Generation

    SciTech Connect

    Stupakov, Gennady; /SLAC

    2012-06-28

    A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

  8. Dance of the Light Echoes

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version

    This composite image from NASA's Spitzer Space Telescope shows the remnant of a star that exploded, called Cassiopeia A (center) and its surrounding 'light echoes' -- dances of light through dusty clouds, created when stars blast apart. The light echoes are colored and the surrounding clouds of dust are gray.

    In figure 1, dramatic changes are highlighted in phenomena referred to as light echoes (colored areas) around the Cassiopeia A supernova remnant (center). Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died.

    A light echo occurs when a star explodes, acting like a cosmic flashbulb. The light from this explosion zips through nearby dust clumps, illuminating and heating them up slightly. This brief period of warming causes them to glow in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light. In figure 1, this apparent motion can be seen here by the shift in colored dust clumps

    Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. This remnant is located 11,000 light-years away in the northern constellation Cassiopeia.

    This composite consists of six processed images taken over a time span of three years. Dust features that have not changed over time appear gray, while those that have changed are colored blue or orange. Bluer colors represent an earlier time and redder ones, a later time. The progression of the light echo through the dust can be seen here by the shift in colored dust clumps.

    This

  9. A radar-echo model for Mars

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Moore, H. J.

    1990-01-01

    Researchers developed a radar-echo model for Mars based on 12.6 cm continuous wave radio transmissions backscattered from the planet. The model broadly matches the variations in depolarized and polarized total radar cross sections with longitude observed by Goldstone in 1986 along 7 degrees S. and yields echo spectra that are generally similiar to the observed spectra. Radar map units in the model include an extensive cratered uplands unit with weak depolarized echo cross sections, average thermal inertias, moderate normal refelectivities, and moderate rms slopes; the volcanic units of Tharsis, Elysium, and Amazonis regions with strong depolarized echo cross sections, low thermal inertia, low normal reflectivities, and large rms slopes; and the northern planes units with moderate to strong depolarized echo cross sections, moderate to very high thermal inertias, moderate to large normal reflectivities, and moderate rms slopes. The relevance of the model to the interpretation of radar echoes from Mars is discussed.

  10. Is Echo a complex adaptive system?

    PubMed

    Smith, R M; Bedau, M A

    2000-01-01

    We evaluate whether John Holland's Echo model exemplifies his theory of complex adaptive systems. After reviewing Holland's theory of complex adaptive systems and describing his Escho model, we describe and explain the characteristic evolutionary behavior observed in a series of Echo model runs. We conclude that Echo lacks the diversity of hierarchically organized aggregates that typify complex adaptive systems, and we explore possible explanations for this failure.

  11. The Echoes of Earth Science

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA s Earth Observing System Data and Information System (EOSDIS) acquires, archives, and manages data from all of NASA s Earth science satellites, for the benefit of the Space Agency and for the benefit of others, including local governments, first responders, the commercial remote sensing industry, teachers, museums, and the general public. EOSDIS is currently handling an extraordinary amount of NASA scientific data. To give an idea of the volume of information it receives, NASA s Terra Earth-observing satellite, just one of many NASA satellites sending down data, sends it hundreds of gigabytes a day, almost as much data as the Hubble Space Telescope acquires in an entire year, or about equal to the amount of information that could be found in hundreds of pickup trucks filled with books. To make EOSDIS data completely accessible to the Earth science community, NASA teamed up with private industry in 2000 to develop an Earth science "marketplace" registry that lets public users quickly drill down to the exact information they need. It also enables them to publish their research and resources alongside of NASA s research and resources. This registry is known as the Earth Observing System ClearingHOuse, or ECHO. The charter for this project focused on having an infrastructure completely independent from EOSDIS that would allow for more contributors and open up additional data access options. Accordingly, it is only fitting that the term ECHO is more than just an acronym; it represents the functionality of the system in that it can echo out and create interoperability among other systems, all while maturing with time as industry technologies and standards change and improve.

  12. Project Echo: Antenna Steering System

    NASA Technical Reports Server (NTRS)

    Klahn, R.; Norton, J. A.; Githens, J. A.

    1961-01-01

    The Project Echo communications experiment employed large, steerable,transmitting and receiving antennas at the ground terminals. It was necessary that these highly directional antennas be continuously and accurately pointed at the passing satellite. This paper describes a new type of special purpose data converter for directing narrow-beam communication antennas on the basis of predicted information. The system is capable of converting digital input data into real-time analog voltage commands with a dynamic accuracy of +/- 0.05 degree, which meets the requirements of the present antennas.

  13. Light echoes - Type II supernovae

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1987-01-01

    Type II supernovae (SNs) light curves show a remarkable range of shapes. Data have been collected for the 12 Type II SNs that have light curve information for more than four months past maximum. Contrary to previous reports, it is found that (1) the decay rate after 100 days past maximum varies by almost an order of magnitude and (2) the light curve shapes are not bimodally distributed, but actually form a continuum. In addition, it is found that the extinctions to the SNs are related to the light curve shapes. This implies that the absorbing dust is local to the SNs. The dust is likely to be part of a circumstellar shell emitted by the SN progenitor that Dwek (1983) has used to explain infrared echoes. The optical depth of the shell can get quite large. In such cases, it is found that the photons scattered and delayed by reflection off dust grains will dominate the light curve several months after peak brightness. This 'light echo' offers a straightforward explanation of the diversity of Type II SN light curves.

  14. Solar Sail Model Validation from Echo Trajectories

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew F.; Brickerhoff, Adam T.

    2007-01-01

    The NASA In-Space Propulsion program has been engaged in a project to increase the technology readiness of solar sails. Recently, these efforts came to fruition in the form of several software tools to model solar sail guidance, navigation and control. Furthermore, solar sails are one of five technologies competing for the New Millennium Program Space Technology 9 flight demonstration mission. The historic Echo 1 and Echo 2 balloons were comprised of aluminized Mylar, which is the near-term material of choice for solar sails. Both spacecraft, but particularly Echo 2, were in low Earth orbits with characteristics similar to the proposed Space Technology 9 orbit. Therefore, the Echo balloons are excellent test cases for solar sail model validation. We present the results of studies of Echo trajectories that validate solar sail models of optics, solar radiation pressure, shape and low-thrust orbital dynamics.

  15. Fast magnetospheric echoes of energetic electron beams

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1983-01-01

    Electron beam experiments using rocket-borne instrumentation confirmed earlier observations of fast magnetospheric echoes of artificially injected energetic electrons. A total of 234 echoes were observed in a pitch angle range from 9 to 110 deg at energies of 1.87 and 3.90 keV. Of these, 102 echoes could unambiguously be identified with known accelerator operations at 2, 4 or 8 keV energy and highest current levels resulting in the determination of transit times of typically 300 to 400 ms. In most cases, when echoes were present in both energy channels, the higher energy electrons led the lower energy ones by 50 to 70 ms. Adiabatic theory applied to these observations yields a reflection height of 3000 to 4000 km. The injection process is discussed as the strong beam-plasma interaction that occurred near the electron accelerator appears to be instrumental in generating the source of heated electrons required for successful echo detection.

  16. Hematite Abundance Map at Echo

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows the hematite abundance map for a portion of the Meridiani Planum rock outcrop near where the Mars Exploration Rover Opportunity landed. It was acquired by the rover's miniature thermal emission spectrometer instrument from a spot called 'Echo.' Portions of the inner crater wall in this region appear rich in hematite (red). The sharp boundary from hematite-rich to hematite-poor (yellow and green) surfaces corresponds to a change in the surface texture and color. The hematite-rich surfaces have ripple-like forms suggesting wind transported hematite to these surfaces. The bounce marks produced during landing at the base of the slope on the left are low in hematite (blue). The hematite grains that originally covered the surface were pushed below the surface by the lander, exposing a soil that has less hematite.

  17. Active galactic nuclei

    PubMed Central

    Fabian, Andrew C.

    1999-01-01

    Active galactic nuclei are the most powerful, long-lived objects in the Universe. Recent data confirm the theoretical idea that the power source is accretion into a massive black hole. The common occurrence of obscuration and outflows probably means that the contribution of active galactic nuclei to the power density of the Universe has been generally underestimated. PMID:10220363

  18. Excitation of photon echo by noise pulses

    NASA Astrophysics Data System (ADS)

    Baruzdin, S. A.

    2016-10-01

    The excitation of photon echo by noise pulses that are formed by modulation of the carrying frequency with Gauss noise is modeled. The modeling is based on optical Bloch equations the solution of which for noise pulse realizations is constructed by their stepwise approximation. In terms of the formalism of state transfer matrices, the two- and three-pulse excitation modes are analyzed. The complex envelopes of the primary and stimulated echo responses are determined. In the linear (low-level-signal) mode, the shape of the two-pulse echo corresponds to that of the time delayed and inverted noise pulse. The boundary of the linear mode, upon exceeding of which distortions of the shape of the noise pulse become noticeable, is determined. The shape of the stimulated (three-pulse) echo in the linear mode corresponds to that of the autocorrelation function of the noise pulse realization. Upon passage beyond the boundary of the linear mode, the shape of the three-pulse echo corresponds either to the cross-correlation function of distorted noise pulses (with different intensities) or to the autocorrelation function of distorted pulses (with the same intensities). The modeled photon echo excitation modes can be used in photon echo processors to process signals in the light range.

  19. Diffusion weighted vertical gradient and spin echo.

    PubMed

    Engström, Mathias; Bammer, Roland; Skare, Stefan

    2012-12-01

    In this work, diffusion weighting and parallel imaging is combined with a vertical gradient and spin echo data readout. This sequence was implemented and evaluated on healthy volunteers using a 1.5 and a 3 T whole-body MR system. As the vertical gradient and spin echo trajectory enables a higher k-space velocity in the phase-encoding direction than single-shot echo planar imaging, the geometrical distortions are reduced. When combined with parallel imaging such as generalized autocalibrating partially parallel acquisition, the geometric distortions are reduced even further, while also keeping the minimum echo time reasonably low. However, this combination of a diffusion preparation and multiple refocusing pulses during the vertical gradient and spin echo readout, generally violates the Carr-Purcell-Meiboom-Gill condition, which leads to interferences between echo pathways. To suppress the stimulated echo pathway, refocusing pulses with a sharper slice profiles and an odd/even crusher variation scheme were implemented and evaluated. Being a single-shot acquisition technique, the reconstructed images are robust to rigid-body head motion and spatially varying brain motion, both of which are common sources of artifacts in diffusion MRI.

  20. Isolation of Nuclei.

    PubMed

    Nabbi, Arash; Riabowol, Karl

    2015-08-03

    The isolation of nuclei is often the first step in studying processes such as nuclear-cytoplasmic shuttling, subcellular localization of proteins, and protein-chromatin or nuclear protein-protein interactions in response to diverse stimuli. Therefore, rapidly obtaining nuclei from cells with relatively high purity and minimal subcellular contamination, protein degradation, or postharvesting modification is highly desirable. Historically, the isolation of nuclei involved a homogenization step followed by centrifugation through high-density glycerol or sucrose. Although clean nuclei with little cytoplasmic contamination can be prepared using this method, it is typically time consuming and can allow protein degradation, protein modification, and leaching of components from the nuclei to occur. We have developed a rapid and simple fractionation method that is based on the selective dissolution of the cytoplasmic membrane (but not the nuclear membrane) using a low concentration of a nonionic detergent and rapid centrifugation steps. Here we describe important considerations when isolating nuclei from cells, introduce our rapid method, and compare this method to a more traditional protocol for isolating nuclei, noting the strengths and limitations of each approach.

  1. Geometric spin echo under zero field

    PubMed Central

    Sekiguchi, Yuhei; Komura, Yusuke; Mishima, Shota; Tanaka, Touta; Niikura, Naeko; Kosaka, Hideo

    2016-01-01

    Spin echo is a fundamental tool for quantum registers and biomedical imaging. It is believed that a strong magnetic field is needed for the spin echo to provide long memory and high resolution, since a degenerate spin cannot be controlled or addressed under a zero magnetic field. While a degenerate spin is never subject to dynamic control, it is still subject to geometric control. Here we show the spin echo of a degenerate spin subsystem, which is geometrically controlled via a mediating state split by the crystal field, in a nitrogen vacancy centre in diamond. The demonstration reveals that the degenerate spin is protected by inherent symmetry breaking called zero-field splitting. The geometric spin echo under zero field provides an ideal way to maintain the coherence without any dynamics, thus opening the way to pseudo-static quantum random access memory and non-invasive biosensors. PMID:27193936

  2. Air Dashboard Help | ECHO | US EPA

    EPA Pesticide Factsheets

    The dashboards found on the Enforcement and Compliance History Online (ECHO) website are specialized to track both facility and agency performance as they relate to compliance with and enforcement of environmental standards under the Clean Air Act (CAA).

  3. Geometric spin echo under zero field

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Yuhei; Komura, Yusuke; Mishima, Shota; Tanaka, Touta; Niikura, Naeko; Kosaka, Hideo

    2016-05-01

    Spin echo is a fundamental tool for quantum registers and biomedical imaging. It is believed that a strong magnetic field is needed for the spin echo to provide long memory and high resolution, since a degenerate spin cannot be controlled or addressed under a zero magnetic field. While a degenerate spin is never subject to dynamic control, it is still subject to geometric control. Here we show the spin echo of a degenerate spin subsystem, which is geometrically controlled via a mediating state split by the crystal field, in a nitrogen vacancy centre in diamond. The demonstration reveals that the degenerate spin is protected by inherent symmetry breaking called zero-field splitting. The geometric spin echo under zero field provides an ideal way to maintain the coherence without any dynamics, thus opening the way to pseudo-static quantum random access memory and non-invasive biosensors.

  4. Data processing of records of meteoric echoes

    NASA Astrophysics Data System (ADS)

    Dolinský, P.

    2016-01-01

    The data obtained in the period from 4 November 2014 to 31 July 2014 by our receiving and recording system was statistically processed. The system records meteoric echoes from the TV transmitter Lviv 49.739583 MHz (N49.8480° E24.0369°, Ukraine) using a 4-element Yagi antenna with horizontal polarization (elevation of 0° and azimuth of 60°), receiver ICOM R-75 in the CW mode, and a computer with a recording using HROFFT v1.0.0f. The main goal was to identify weak showers in these data. Mayor or strong showers are visible without processing (referred at IMC2015, Mistelbach). To find or to identify weaker showers is more difficult. Not all echoes are meteoric echoes, but also ionospheric echoes or lightning disturbances are present.

  5. MEASUREMENT OF TRANSVERSE ECHOES IN RHIC.

    SciTech Connect

    FISCHER, W.; SATOGATA, T.; TOMAS. R.

    2005-05-16

    Beam echoes are a very sensitive method to measure diffusion, and longitudinal echo measurements were performed in a number of machines. In RHIC, for the first time, a transverse beam echo was observed after applying a dipole kick followed by a quadrupole .kick. After application of the dipole kick, the dipole moment decohered completely due to lattice nonlinearities. When a quadrupole kick is applied at time {tau} after the dipole kick, the beam re-cohered at time 2{tau} thus showing an echo response. We describe the experimental setup and measurement results. In the measurements the dipole and quadrupole kick amplitudes, amplitude dependent tune shift, and the time between dipole and quadrupole kick were varied. In addition, measurements were taken with gold bunches of different intensities. These should exhibit different transverse diffusion rates due to intra-beam scattering.

  6. Hazardous Waste Dashboard Help | ECHO | US EPA

    EPA Pesticide Factsheets

    The dashboards found on the Enforcement and Compliance History Online (ECHO) website are specialized to track both facility and agency performance as they relate to compliance with and enforcement of environmental standards under the Resource Conservation and Recovery Act (RCRA).

  7. Water Dashboard Help | ECHO | US EPA

    EPA Pesticide Factsheets

    The dashboards found on the Enforcement and Compliance History Online (ECHO) website are specialized to track both facility and agency performance as they relate to compliance with and enforcement of environmental standards under the Clean Water Act (CWA).

  8. Exotic Light Nuclei

    ERIC Educational Resources Information Center

    Cerny, Joseph; Poskanzer, Arthur M.

    1978-01-01

    Among the light elements, nuclei with unequal numbers of protons and neutrons are highly unstable. Some survive just long enough to be detected and exhibit unusual regimes of radioactive decay. ( Autor/MA)

  9. Observations of cometary nuclei

    NASA Astrophysics Data System (ADS)

    A'Hearn, M. F.

    Attempts to observe cometary nuclei and to determine fundamental physical parameters relevant to the relationship between comets and asteroids are reviewed. It has been found that cometary nuclei, at least of periodic comets, are bigger and blacker than generally thought as recently as five years ago. Geometric albedos may be typically three percent and typical radii are probably of order 5 km. Nuclei of periodic comets are probably highly prolate unless they are both oblate and rotating about one of the major axes. P/Halley images provide convincing evidence of the existence of mantles discussed in many models. Numerous pieces of evidence suggest a connection between cometary nuclei and A-A asteroids of types D and C.

  10. Estimation of Characteristics of Echo Envelope Using RF Echo Signal from the Liver

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tadashi; Hachiya, Hiroyuki; Kamiyama, Naohisa; Ikeda, Kazuki; Moriyasu, Norifumi

    2001-05-01

    To realize quantitative diagnosis of liver cirrhosis, we have been analyzing the probability density function (PDF) of echo amplitude using B-mode images. However, the B-mode image is affected by the various signal and image processing techniques used in the diagnosis equipment, so a detailed and quantitative analysis is very difficult. In this paper, we analyze the PDF of echo amplitude using RF echo signal and B-mode images of normal and cirrhotic livers, and compare both results to examine the validity of the RF echo signal.

  11. Drinking Water Dashboard Help | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  12. Frequently Asked Questions | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  13. Facility Search - All Data | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  14. Facility Search - Drinking Water | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  15. Detailed Facility Report | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  16. Facility Search - Hazardous Waste | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  17. Facility Search - Air | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  18. Facility Search - Water | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  19. About the Data | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  20. Enforcement Case Search | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  1. Search Results Help - Air | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  2. Air Pollutant Report Help | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  3. Analyze Trends: State Hazardous Waste Dashboard | ECHO ...

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  4. Corporate Compliance Screener | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  5. Enforcement Case Search Help | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  6. Facility Search Results | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  7. Corporate Compliance Screener Help | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  8. X-ray echo spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shvyd'ko, Yuri V.

    2016-09-01

    X-ray echo spectroscopy, a counterpart of neutron spin-echo, was recently introduced [1] to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a point-like x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x-rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-meV and 0.02-meV ultra-high-resolution IXS applications (resolving power > 10^8) with broadband 5-13 meV dispersing systems will be presented featuring more than 1000-fold signal enhancement. The technique is general, applicable in different photon frequency domains. [1.] Yu. Shvyd'ko, Phys. Rev. Lett. 116, accepted (2016), arXiv:1511.01526.

  9. Radiations from hot nuclei

    NASA Technical Reports Server (NTRS)

    Malik, F. Bary

    1993-01-01

    The investigation indicates that nuclei with excitation energy of a few hundred MeV to BeV are more likely to radiate hot nuclear clusters than neutrons. These daughter clusters could, furthermore, de-excite emitting other hot nuclei, and the chain continues until these nuclei cool off sufficiently to evaporate primarily neutrons. A few GeV excited nuclei could radiate elementary particles preferentially over neutrons. Impact of space radiation with materials (for example, spacecraft) produces highly excited nuclei which cool down emitting electromagnetic and particle radiations. At a few MeV excitation energy, neutron emission becomes more dominant than gamma-ray emission and one often attributes the cooling to take place by successive neutron decay. However, a recent experiment studying the cooling process of 396 MeV excited Hg-190 casts some doubt on this thinking, and the purpose of this investigation is to explore the possibility of other types of nuclear emission which might out-compete with neutron evaporation.

  10. Physics of Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Khoa, Dao Tien; Egelhof, Peter; Gales, Sydney; Giai, Nguyen Van; Motobayashi, Tohru

    2008-04-01

    Studies at the RIKEN RI beam factory / T. Motobayashi -- Dilute nuclear states / M. Freer -- Studies of exotic systems using transfer reactions at GANIL / D. Beaumel et al. -- First results from the Magnex large-acceptance spectrometer / A. Cunsolo et al. -- The ICHOR project and spin-isospin physics with unstable beams / H. Sakai -- Structure and low-lying states of the [symbol]He exotic nucleus via direct reactions on proton / V. Lapoux et al. -- Shell gap below [symbol]Sn based on the excited states in [symbol]Cd and [symbol]In / M. Górska -- Heavy neutron-rich nuclei produced in the fragmentation of a [symbol]Pb beam / Zs. Podolyák et al. -- Breakup and incomplete fusion in reactions of weakly-bound nuclei / D.J. Hinde et al. -- Excited states of [symbol]B and [symbol]He and their cluster aspect / Y. Kanada-En'yo et al. -- Nuclear reactions with weakly-bound systems: the treatment of the continuum / C. H. Dasso, A. Vitturi -- Dynamic evolution of three-body decaying resonances / A. S. Jensen et al. -- Prerainbow oscillations in [symbol]He scattering from the Hoyle state of [symbol]C and alpha particle condensation / S. Ohkubo, Y. Hirabayashi -- Angular dispersion behavior in heavy ion elastic scattering / Q. Wang et al. -- Microscopic optical potential in relativistic approach / Z.Yu. Ma et al. -- Exotic nuclei studied in direct reactions at low momentum transfer - recent results and future perspectives at fair / P. Egelhof -- Isotopic temperatures and symmetry energy in spectator fragmentation / M. De Napoli et al. -- Multi-channel algebraic scattering theory and the structure of exotic compound nuclei / K. Amos et al. -- Results for the first feasibility study for the EXL project at the experimental storage ring at GSI / N. Kalantar-Nayestanaki et al. -- Coulomb excitation of ISOLDE neutron-rich beams along the Z = 28 chain / P. Van Duppen -- The gamma decay of the pygmy resonance far from stability and the GDR at finite temperature / G. Benzoni et al

  11. Photon echo studies of photosynthetic light harvesting.

    PubMed

    Read, Elizabeth L; Lee, Hohjai; Fleming, Graham R

    2009-01-01

    The broad linewidths in absorption spectra of photosynthetic complexes obscure information related to their structure and function. Photon echo techniques represent a powerful class of time-resolved electronic spectroscopy that allow researchers to probe the interactions normally hidden under broad linewidths with sufficient time resolution to follow the fastest energy transfer events in light harvesting. Here, we outline the technical approach and applications of two types of photon echo experiments: the photon echo peak shift and two-dimensional (2D) Fourier transform photon echo spectroscopy. We review several extensions of these techniques to photosynthetic complexes. Photon echo peak shift spectroscopy can be used to determine the strength of coupling between a pigment and its surrounding environment including neighboring pigments and to quantify timescales of energy transfer. Two-dimensional spectroscopy yields a frequency-resolved map of absorption and emission processes, allowing coupling interactions and energy transfer pathways to be viewed directly. Furthermore, 2D spectroscopy reveals structural information such as the relative orientations of coupled transitions. Both classes of experiments can be used to probe the quantum mechanical nature of photosynthetic light-harvesting: peak shift experiments allow quantification of correlated energetic fluctuations between pigments, while 2D techniques measure quantum beating directly, both of which indicate the extent of quantum coherence over multiple pigment sites in the protein complex. The mechanistic and structural information obtained by these techniques reveals valuable insights into the design principles of photosynthetic light-harvesting complexes, and a multitude of variations on the methods outlined here.

  12. Fast magnetospheric echoes of energetic electron beams

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1985-01-01

    Electron beam experiments using rocketborne instrumentation have confirmed earlier observations of fast magnetospheric echoes of artificially injected energetic electrons. A total of 234 echoes have been observed in a pitch angle range from 9 to 110 deg at energies of 1.87 and 3.90 keV. Out of this number, 95 echoes could unambiguously be identified with known accelerator operations at 2-, 4-, or 8-keV energy and highest current levels resulting in the determination of transit times of typically 300 to 400 ms. In most cases, when echoes were present in both energy channels, the higher-energy electrons led the lower-energy ones by 50 to 70 ms. Adiabatic theory applied to these observations yields a reflection height of 3000 to 4000 km. An alternative interpretation is briefly examined, and its relative merit in describing the observations is evaluated. The injection process is discussed in some detail as the strong beam-plasma interaction that occurred near the electron accelerator appears to be instrumental in generating the source of heated electrons required for successful echo detection for both processes.

  13. Light Echoes of Galactic Explosions and Eruptions

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Bianco, Federica; Chornock, Ryan; Foley, Ryan; Matheson, Thomas; Olsen, Knut; Prieto, Jose Luis; Sinnott, Brendan; Smith, Chris; Smith, Nathan; Welch, Doug

    2013-02-01

    We propose to continue our search for the first light echoes (LEs) associated with historical Galactic supernovae and LBV outbursts: SN 1006, Kepler's SN, RCW 86, Crab Nebula, and P Cygni. In previously granted NOAO time, we have discovered light echoes of three ancient SNe in the LMC as well as from the historic SN events of Cas A and Tycho [2, 3], which allowed their spectroscopic classification [6, 7, 10] and 3D spectroscopy [8, 9]. Most recently, we discovered light echoes of the mid-19th-century Great Eruption of eta Carinae using CTIO 4m Mosaic images [11]. Subsequent spectroscopic follow-up of Eta Carinae revealed that its outburst spectral type was most similar to those of G-type supergiants, rather than reported LBV outburst spectral types of F-type (or earlier) [11]. We propose to continue our search for light echoes of the remaining historical events. With DECam, we have a 10-15 fold improvement in efficiency over the retired Mosaic camera, which allows us to cover the bigger search areas of most of the remaining targets. The study of scattered-light echoes from these Galactic supernovae and eruptions will give us the opportunity to directly compare the original outburst and its current remnant, and in favorable cases (like Eta Carinae), it provides a three-dimensional view of the event and/or a spectral time series.

  14. Classical Acoustic Echoes in Model Glasses

    NASA Astrophysics Data System (ADS)

    Burton, Justin; Nagel, Sidney

    2013-03-01

    For the last 40 years, the low-temperature excitations in glasses have traditionally been explained in terms of a distribution of dilute, two-level quantum states that are created by clusters of particles tunneling between two nearly degenerate ground states. Strong evidence for this model has come from ultrasonic saturation effects and acoustic echoes observed in experiments. Recently, a classical analysis of vibrational modes in model glasses has shown that at low frequencies, the modes are quasi-localized and highly anharmonic. Using molecular dynamics simulations, we show that this anharmonicity can produce an acoustic echo due to the shift in the mode frequency with increasing amplitude. We observe this both in jammed packings of spherical particles with finite-range, Hertzian repulsions, and in model glasses interacting with a Lennard-Jones potential. In contrast to pulse echoes in two-level systems, a distinguishing feature of these ``anharmonic echoes'' is the appearance of multiple echoes after two excitation pulses, a feature also observed in experiments.

  15. Scattering Of Light Nuclei

    SciTech Connect

    Quaglioni, S; Navratil, P; Roth, R

    2009-12-15

    The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. Above all nuclear scattering and reactions, which require the solution of the many-body quantum-mechanical problem in the continuum, represent an extraordinary theoretical as well as computational challenge for ab initio approaches.We present a new ab initio many-body approach which derives from the combination of the ab initio no-core shell model with the resonating-group method [4]. By complementing a microscopic cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters, this approach is capable of describing simultaneously both bound and scattering states in light nuclei. We will discuss applications to neutron and proton scattering on sand light p-shell nuclei using realistic nucleon-nucleon potentials, and outline the progress toward the treatment of more complex reactions.

  16. Disintegration of comet nuclei

    NASA Astrophysics Data System (ADS)

    Ksanfomality, Leonid V.

    2012-02-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies.

  17. The shapes of nuclei

    NASA Astrophysics Data System (ADS)

    Bertsch, G. F.

    Gerry Brown initiated some early studies on the coexistence of different nuclear shapes. The subject has continued to be of interest and is crucial for understanding nuclear fission. We now have a very good picture of the potential energy surface with respect to shape degrees of freedom in heavy nuclei, but the dynamics remain problematic. In contrast, the early studies on light nuclei were quite successful in describing the mixing between shapes. Perhaps a new approach in the spirit of the old calculations could better elucidate the character of the fission dynamics and explain phenomena that current theory does not model well.

  18. Transient Loschmidt echo in quenched Ising chains

    NASA Astrophysics Data System (ADS)

    Lupo, Carla; Schiró, Marco

    2016-07-01

    We study the response to sudden local perturbations of highly excited quantum Ising spin chains. The key quantity encoding this response is the overlap between time-dependent wave functions, which we write as a transient Loschmidt Echo. Its asymptotics at long time differences contain crucial information about the structure of the highly excited nonequilibrium environment induced by the quench. We compute the echo perturbatively for a weak local quench but for arbitrarily large global quench, using a cumulant expansion. Our perturbative results suggest that the echo decays exponentially, rather than power law as in the low-energy orthogonality catastrophe, a further example of quench-induced decoherence already found in the case of quenched Luttinger liquids. The emerging decoherence scale is set by the strength of the local potential and the bulk excitation energy.

  19. Search Results Help - Water | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available. Search Results Help explains how to navigate the search results page and describes the data presented.

  20. Physics with Polarized Nuclei.

    ERIC Educational Resources Information Center

    Thompson, William J.; Clegg, Thomas B.

    1979-01-01

    Discusses recent advances in polarization techniques, specifically those dealing with polarization of atomic nuclei, and how polarized beams and targets are produced. These techniques have greatly increased the scope of possible studies, and provided the tools for testing fundamental symmetries and the spin dependence of nuclear forces. (GA)

  1. Relationship between tornadoes and hook echoes on April 3, 1974

    NASA Technical Reports Server (NTRS)

    Forbes, G. S.

    1975-01-01

    Radar observations of tornado families occurring on April 3, 1974 are discussed. Of the 93 tornadoes included in the sample, 81% were associated with hook-like echoes with appendages at least 40 deg to the south of the echo movement. At least one tornado was associated with 62% of the hook-like echoes observed. All of the tornadoes with intensities of F 4 and F 5 were produced by hook-like echoes; the mean intensity of all tornadoes associated with this type of echo was F 3, while the mean intensity of the remaining tornadoes was F1. The tornadic hook-like echoes moved to the right of the non-tornadic echoes forming a tornado line in advance of the squall line. Some tornadoes were associated with 'spiral' echoes.

  2. On the reliability of hook echoes as tornado indicators

    NASA Technical Reports Server (NTRS)

    Forbes, G. S.

    1981-01-01

    A study of radar echoes associated with the tornadoes of the 3 April 1974 outbreak was performed to evaluate the usefulness of echo shape as an indicator of tornadic thunderstorms. The hook shape was usually successful in characterizing an echo as tornadic, with a false alarm rate of 16%. Because hook echoes were relatively rare, however, a less restrictive shape called distinctive was more successful at detecting tornadic thunderstorms, identifying 65% of the tornadic echoes. An echo had a distinctive shape if it possessed a marked appendage on its right rear flank or was in the shape of a spiral, comma or line echo wave pattern (LEWP). Characteristics of the distinctive echo are given.

  3. Asymmetric radar echo patterns from insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radar echoes from insects, birds, and bats in the atmosphere exhibit both symmetry and asymmetry in polarimetric patterns. Symmetry refers to similar magnitudes of polarimetric variables at opposite azimuths, and asymmetry relegates to differences in these magnitudes. Asymmetry can be due to diffe...

  4. Light Echoes of Galactic Explosions and Eruptions

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Bianco, Federica; Chornock, Ryan; Foley, Ryan; Matheson, Thomas; Narayan, Gautham; Olsen, Knut; Prieto, Jose Luis; Smith, Chris; Smith, Nathan; Suntzeff, Nick; Welch, Doug; Zenteno, Alfredo

    2014-02-01

    We propose to continue our search for the first light echoes (LEs) associated with historical Galactic supernovae and LBV outbursts: SN 1006, Kepler's SN, RCW 86, Crab Nebula, and P Cygni. In previously granted NOAO time, we have discovered LEs of three ancient SNe in the LMC as well as from the historic SN events of Cas A and Tycho [2, 3], which allowed their spectroscopic classification [6, 7, 10] and 3D spectroscopy [8, 9]. Most recently, we discovered light echoes of the mid-19th-century Great Eruption of η Carinae using CTIO 4m Mosaic images [11]. Subsequent spectroscopic follow-up of Eta Carinae revealed that its outburst spectral type was most similar to those of G-type supergiants, rather than reported LBV outburst spectral types of F-type (or earlier) [11]. We propose to continue our search for light echoes of the remaining historical events. With DECam, we have a 10-15 fold improvement in efficiency over the retired CTIO-Mosaic camera, which allows us to cover the bigger search areas of most of the remaining targets. With the KPNO 4-m, we will observe fields too far north for CTIO/DECam. The study of scattered-light echoes from these Galactic supernovae and eruptions will give us the opportunity to directly compare the original outburst and its current remnant, and in favorable cases (like Eta Carinae), it provides a three-dimensional view of the event and/or a spectral time series.

  5. Data Entry Requirements | ECHO | US EPA

    EPA Pesticide Factsheets

    Data in ECHO are provided by authorized state, tribal, and local governments, and EPA Regional offices. Information is presented to help users understand where data are more complete. Many states voluntarily enter additional data that are not required; therefore, data completeness may vary widely from state to state.

  6. Choroidal osteoma: acoustic shadowing and reduplication echoes.

    PubMed

    Abramson, D H; Servodidio, C A; Poole, T A; Budinger, K

    1996-12-01

    A 27-year-old woman had a curious choroidal mass of 12 years duration in her right eye. Interesting ultrasonic findings of a choroidal osteoma, including acoustic shadowing and reduplication echoes on A-scan and B-scan are presented. Ophthalmic nurses can assist in performing ophthalmic examinations and in reinforcing regular follow-up examinations for these patients.

  7. An Evaluation of HF Ionospheric Backscatter Echoes

    DTIC Science & Technology

    1975-11-01

    regulated bj the following claaaiTlcaUone In order t’i aaf^uard proprietär) mior- matk in: CLASS l: GENERAL INFORMATION .\\\\ ailable ti i an] one on...km and were gen - tiallv spread in range (diffuse). The occurrence of the sunset echoes was relatively inde- pendent of magnetic activity. The

  8. State Comparative Maps Help | ECHO | US EPA

    EPA Pesticide Factsheets

    Comparative Maps in ECHO focus on environmental compliance and enforcement trends at a state and national level. Comparative maps provide a quick cross-country look at key environmental compliance and enforcement indicators. The maps link to dashboards that provide details by state/territory.

  9. AN ECHO OF SUPERNOVA 2008bk

    SciTech Connect

    Van Dyk, Schuyler D.

    2013-08-01

    I have discovered a prominent light echo around the low-luminosity Type II-plateau supernova (SN) 2008bk in NGC 7793, seen in archival images obtained with the Wide Field Channel of the Advanced Camera for Surveys on board the Hubble Space Telescope (HST). The echo is a partial ring, brighter to the north and east than to the south and west. The analysis of the echo I present suggests that it is due to the SN light pulse scattered by a sheet, or sheets, of dust located Almost-Equal-To 15 pc from the SN. The composition of the dust is assumed to be of standard Galactic diffuse interstellar grains. The visual extinction of the dust responsible for the echo is A{sub V} Almost-Equal-To 0.05 mag in addition to the extinction due to the Galactic foreground toward the host galaxy. That the SN experienced much less overall extinction implies that it is seen through a less dense portion of the interstellar medium in its environment. The late-time HST photometry of SN 2008bk also clearly demonstrates that the progenitor star has vanished.

  10. Energetic Nuclei, Superdensity and Biomedicine

    ERIC Educational Resources Information Center

    Baldin, A. M.

    1977-01-01

    High-energy, relativistic nuclei were first observed in cosmic rays. Studing these nuclei has provided an opportunity for analyzing the composition of cosmic rays and for experimentally verifying principles governing the behavior of nuclear matter at high and super-high temperatures. Medical research using accelerated nuclei is suggested.…

  11. Preliminary Results of the Echo-Seeding Experiment ECHO-7 at SLAC

    SciTech Connect

    Xiang, D.; Colby, E.; Ding, Y.; Dunning, M.; Frederico, J.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodley, M.; Corlett, J.; Qiang, J.; Penn, G.; Prestemon, S.; /LBL, Berkeley /LPHE, Lausanne

    2010-06-15

    ECHO-7 is a proof-of-principle echo-enabled harmonic generation FEL experiment in the Next Linear Collider Test Accelerator (NLCTA) at SLAC. The experiment aims to generate coherent radiation at 318 nm and 227 nm, which are the 5th and 7th harmonic of the infrared seed laser. In this paper we present the preliminary results from the commissioning run of the completed experimental setup which started in April 2010.

  12. Nuclei and Fundamental Symmetries

    NASA Astrophysics Data System (ADS)

    Haxton, Wick

    2016-09-01

    Nuclei provide marvelous laboratories for testing fundamental interactions, often enhancing weak processes through accidental degeneracies among states, and providing selection rules that can be exploited to isolate selected interactions. I will give an overview of current work, including the use of parity violation to probe unknown aspects of the hadronic weak interaction; nuclear electric dipole moment searches that may shed light on new sources of CP violation; and tests of lepton number violation made possible by the fact that many nuclei can only decay by rare second-order weak interactions. I will point to opportunities in both theory and experiment to advance the field. Based upon work supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics and SciDAC under Awards DE-SC00046548 (Berkeley), DE-AC02-05CH11231 (LBNL), and KB0301052 (LBNL).

  13. Diffusion-Weighted Imaging with Dual-Echo Echo-Planar Imaging for Better Sensitivity to Acute Stroke

    PubMed Central

    Holdsworth, S.J.; Yeom, K.W.; Antonucci, M.U.; Andre, J.B.; Rosenberg, J.; Aksoy, M.; Straka, M.; Fischbein, N.J.; Bammer, R.; Moseley, M.E.; Zaharchuk, G.; Skare, S.

    2015-01-01

    BACKGROUND AND PURPOSE Parallel imaging facilitates the acquisition of echo-planar images with a reduced TE, enabling the incorporation of an additional image at a later TE. Here we investigated the use of a parallel imaging–enhanced dual-echo EPI sequence to improve lesion conspicuity in diffusion-weighted imaging. MATERIALS AND METHODS Parallel imaging–enhanced dual-echo DWI data were acquired in 50 consecutive patients suspected of stroke at 1.5T. The dual-echo acquisition included 2 EPI for 1 diffusion-preparation period (echo 1 [TE = 48 ms] and echo 2 [TE = 105 ms]). Three neuroradiologists independently reviewed the 2 echoes by using the routine DWI of our institution as a reference. Images were graded on lesion conspicuity, diagnostic confidence, and image quality. The apparent diffusion coefficient map from echo 1 was used to validate the presence of acute infarction. Relaxivity maps calculated from the 2 echoes were evaluated for potential complementary information. RESULTS Echo 1 and 2 DWIs were rated as better than the reference DWI. While echo 1 had better image quality overall, echo 2 was unanimously favored over both echo 1 and the reference DWI for its high sensitivity in detecting acute infarcts. CONCLUSIONS Parallel imaging–enhanced dual-echo diffusion-weighted EPI is a useful method for evaluating lesions with reduced diffusivity. The long TE of echo 2 produced DWIs that exhibited superior lesion conspicuity compared with images acquired at a shorter TE. Echo 1 provided higher SNR ADC maps for specificity to acute infarction. The relaxivity maps may serve to complement information regarding blood products and mineralization. PMID:24763417

  14. Cytometric measurement of cell proliferation in echo-guided biopsies from focal lesions of the liver.

    PubMed

    Faccioli, S; Chieco, P; Gramantieri, L; Stecca, B A; Bolondi, L

    1996-02-01

    Increased proliferative activity determined in surgical specimens of hepatocellular carcinoma (HCC) has been associated with tumor grade and patient survival. The measurement of cell proliferation in echo-guided biopsies of small focal liver lesions might provide useful information for the early recognition of malignancy and for predicting the aggressiveness of small HCCs. We assessed the diagnostic and prognostic value of cell proliferation in 91 echo-guided needle biopsies of focal liver lesions using the monoclonal antibody Ki-67, which detects a human nuclear antigen that is present in proliferating cells. Measurements were performed by image cytometry as the percentage of Ki-67 positive hepatocytes nuclei over total hepatocyte nuclei in the biopsy. At the histological examination, 27 lesions were diagnosed as chronic hepatitis, 10 as cirrhosis, 11 as macroregenerative nodule, and 43 as HCC in cirrhotic liver. Although the highest Ki-67 values (> 20%) were found in less-differentiated HCCs, most well-differentiated HCCs and nine borderline nodules were completely devoid of Ki-67-positive hepatocytes. A sustained Ki-67 labeling (up to 16%) was found in hepatitis and cirrhosis, similar to that found in several malignant tumors. In the HCC subset, Ki-67 labeling was strongly correlated to the Edmondson-Steiner histological grade. However, survival analysis did not indicate a better outcome for those patients with low-proliferating tumors.

  15. Intensity-Corrected Dual-Echo Echo-Planar Imaging (DE-EPI) for Improved Pediatric Brain Diffusion Imaging

    PubMed Central

    Straka, Matus; Iv, Michael; Moseley, Michael E.; Barnes, Patrick D.; Skare, Stefan

    2015-01-01

    Here we investigate the utility of a dual-echo Echo-Planar Imaging (DE-EPI) Diffusion Weighted Imaging (DWI) approach to improve lesion conspicuity in pediatric imaging. This method delivers two ‘echo images’ for one diffusion-preparation period. We also demonstrate how the echoes can be utilized to remove transmit/receive coil-induced and static magnetic field intensity modulations on both echo images, which often mimic pathology and thereby pose diagnostic challenges. DE-EPI DWI data were acquired in 18 pediatric patients with abnormal diffusion lesions, and 46 pediatric patient controls at 3T. Echo1 [TE = 45ms] and Echo2 [TE = 86ms] were corrected for signal intensity variation across the images by exploiting the images equivalent coil-sensitivity and susceptibility-induced modulations. Two neuroradiologists independently reviewed Echo1 and Echo2 and their intensity-corrected variants (cEcho1 and cEcho2) on a 7-point Likert scale, with grading on lesion conspicuity diagnostic confidence. The apparent diffusion coefficient (ADC) map from Echo1 was used to validate presence of true pathology. Echo2 was unanimously favored over Echo1 for its sensitivity for detecting acute brain injury, with a mean respective lesion conspicuity of 5.7/4.4 (p < 0.005) and diagnostic confidence of 5.1/4.3 (p = 0.025). cEcho2 was rated higher than cEcho1, with a mean respective lesion conspicuity of 5.5/4.3 (p < 0.005) and diagnostic confidence of 5.4/4.4 (p < 0.005). cEcho2 was favored over all echoes for its diagnostic reliability, particularly in regions close to the head coil. This work concludes that DE-EPI DWI is a useful alternative to conventional single-echo EPI DWI, whereby Echo2 and cEcho2 allows for improved lesion detection and overall higher diagnostic confidence. PMID:26069959

  16. Ultrasonic unipolar pulse/echo instrument

    DOEpatents

    Hughes, Michael S.; Hsu, David K.; Thompson, Donald O.; Wormley, Samuel J.

    1993-01-01

    An ultrasonic unipolar pulse/echo instrument uses active switches and a timing and drive circuitry to control electrical energy to a transducer, the discharging of the transducer, and the opening of an electrical pathway to the receiving circuitry for the returning echoes. The active switches utilize MOSFET devices along with decoupling circuitry to insure the preservation of the unipolar nature of the pulses, insure fast transition times, and maintain broad band width and time resolution. A housing contains the various circuitry and switches and allows connection to a power supply and a movable ultrasonic transducer. The circuitry maintains low impedance input to the transducer during transmitting cycles, and high impedance between the transducer and the receiving circuit during receive cycles to maintain the unipolar pulse shape. A unipolar pulse is valuable for nondestructive evaluation, a prime use for the present instrument.

  17. Ultrasonic unipolar pulse/echo instrument

    DOEpatents

    Hughes, M.J.; Hsu, D.K.; Thompson, D.O.; Wormley, S.J.

    1993-04-06

    An ultrasonic unipolar pulse/echo instrument uses active switches and a timing and drive circuitry to control electrical energy to a transducer, the discharging of the transducer, and the opening of an electrical pathway to the receiving circuitry for the returning echoes. The active switches utilize MOSFET devices along with decoupling circuitry to insure the preservation of the unipolar nature of the pulses, insure fast transition times, and maintain broad band width and time resolution. A housing contains the various circuitry and switches and allows connection to a power supply and a movable ultrasonic transducer. The circuitry maintains low impedance input to the transducer during transmitting cycles, and high impedance between the transducer and the receiving circuit during receive cycles to maintain the unipolar pulse shape. A unipolar pulse is valuable for nondestructive evaluation, a prime use for the present instrument.

  18. Loschmidt Echo Revivals: Critical and Noncritical

    NASA Astrophysics Data System (ADS)

    Jafari, R.; Johannesson, Henrik

    2017-01-01

    A quantum phase transition is generally thought to imprint distinctive characteristics on the nonequilibrium dynamics of a closed quantum system. Specifically, the Loschmidt echo after a sudden quench to a quantum critical point—measuring the time dependence of the overlap between initial and time-evolved states—is expected to exhibit an accelerated relaxation followed by periodic revivals. We here introduce a new exactly solvable model, the extended Su-Schrieffer-Heeger model, the Loschmidt echo of which provides a counterexample. A parallell analysis of the quench dynamics of the three-site spin-interacting X Y model allows us to pinpoint the conditions under which a periodic Loschmidt revival actually appears.

  19. Light-echo spectroscopy of historic Supernovae

    NASA Astrophysics Data System (ADS)

    Krause, Oliver

    Young Galactic supernova remnants are unique laboratories for supernova physics. Due to their proximity they provide us with the most detailed view of the outcome of a supernova. However, the exact spectroscopic types of their original explosions have been undetermined so far -hindering to link the wealth of multi-wavelength knowledge about their remnants with the diverse population of supernovae. Light echoes, reflektions of the brilliant supernova burst of light by interstellar dust, provide a unique opportunity to reobserve today -with powerful scientific instruments of the 21st century -historic supernova exlosions even after hundreds of years and to conclude on their nature. We report on optical light-echo spectroscopy of two famous Galactic supernovae: Tycho Brahe's SN 1572 and the supernova that created the Cassiopeia A remnant around the year 1680. These observations finally recovered the missing spectroscopic classifications and provide new constraints on explosion models for future studies.

  20. Skyrmions and Nuclei

    NASA Astrophysics Data System (ADS)

    Battye, R. A.; Manton, N. S.; Sutcliffe, P. M.

    We review recent work on the modelling of atomic nuclei as quantised Skyrmions, using Skyrme's original model with pion fields only. Skyrmions are topological soliton solutions, whose conserved topological charge B is identified with the baryon number of a nucleus. Apart from an energy and length scale, the Skyrme model has just one dimensionless parameter m, proportional to the pion mass. It has been found that a good fit to experimental nuclear data requires m to be of order 1. The Skyrmions for B up to 7 have been known for some time, and are qualitatively insensitive to whether m is zero or of order 1. However, for baryon numbers B = 8 and above, the Skyrmions have quite a compact structure for m of order 1, rather than the hollow polyhedral structure found when m = 0. One finds for baryon numbers which are multiples of four, that the Skyrmions are composed of B = 4 sub-units, as in the α-particle model of nuclei. The rational map ansatz gives a useful approximation to the Skyrmion solutions for all baryon numbers when m = 0. For m of order 1, it gives a good approximation for baryon numbers up to 7, and generalisations of this ansatz are helpful for higher baryon numbers. We briefly review the work from the 1980s and 90s on the semiclassical rigidbody quantisation of Skyrmions for B = 1, 2, 3 and 4. We then discuss more recent work extending this method to B = 6, 7, 8, 10 and 12. We determine the quantum states of the Skyrmions, finding their spins, isospins and parities, and compare with the experimental data on the ground and excited states of nuclei up to mass number 12.

  1. Properties of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Rahe, J.; Vanysek, V.; Weissman, P. R.

    1994-01-01

    Active long- and short-period comets contribute about 20 to 30 % of the major impactors on the Earth. Cometary nuclei are irregular bodies, typically a few to ten kilometers in diameter, with masses in the range 10(sup 15) to 10(sup 18) g. The nuclei are composed of an intimate mixture of volatile ices, mostly water ice and hydrocarbon and silicate grains. The composition is the closest to solar composition of any known bodies in the solar system. The nuclei appear to be weakly bonded agglomerations of smaller icy planetesimals, and material strengths estimated from observed tidal disruption events are fairly low, typically 10(sup 2) to 10(sup 4) N m(sup -2). Density estimates range between 0.2 and 1.2 g cm(sup -3) but are very poorly determined, if at all. As comets age they develop nonvolitile crusts on their surfaces which eventually render them inactive, similar in appearance to carbonaceous asteroids. However, dormant comets may continue to show sporadic activity and outbursts for some time before they become truly extinct. The source of the long-period comets is the Oort cloud, a vast spherical cloud of perhaps 10(sup 12) to 10(sup 13) comets surrounding the solar system and extending to interstellar distances. The likely source for short-period comets is the Kuiper belt. a ring of perhaps 10(sup 8) to 10(sup 10) remnant icy planetesimals beyond the orbit of Neptune, though some short-period comets may also be long-period comets from the Oort cloud which have been perturbed into short-period orbits.

  2. Echo Ranging/Probe Alert Performance Analysis.

    DTIC Science & Technology

    1982-11-04

    contract included technical analyses of acoustic communication equipment, system performance predictions, sea test design and data analysis, and...proposing functional system design alternatives. 2.0 SUMMARY OF WORK PERFORMED The JAYCOR effort focused on the analysis of the Echo Ranging/ Probe Alert...JAYCOR Document No. J640-020-82-2242, 16 August 1982, CONFIDENTIAL. 13. Probe Alert Design System Performance Estimates (U), J.L. Collins, JAYCOR Document

  3. Project Echo: Satellite-Tracking Radar

    NASA Technical Reports Server (NTRS)

    DeLange, O. E.

    1961-01-01

    The radar employed at the Bell Telephone Laboratories' Holmdel, New Jersey site for tracking the Echo I satellite was originally designed for the sole purpose of antenna pointing. Recently, however, it has also been employed to measure earth-balloon-earth path loss at regular intervals of time in order to ascertain the balloon's condition. The performance of the system and some of the data obtained are discussed.

  4. Facility Search Help | ECHO | US EPA

    EPA Pesticide Factsheets

    Search for compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  5. Eldor spin echoes and slow motions

    NASA Astrophysics Data System (ADS)

    Hornak, Joseph P.; Freed, Jack H.

    1983-10-01

    It is shown how an ELDOR technique based upon spin echoes and rapid stepping of the magnetic field may be employed to measure rotational correlation times, τ R for very slow motions. Experiments on PD-Tempone in 85% glycerol/ D 2O at low temperatures led to τ R values of 10 -4 to 10 -5 s obtained with a simple analysis of the data.

  6. State Compliance Monitoring Expectations | ECHO | US EPA

    EPA Pesticide Factsheets

    EPA sets national goals for how frequently facilities should be evaluated by the authorized enforcement agency for three programs included in ECHO (Clean Air Act, Clean Water Act, and Resource Conservation and Recovery Act). EPA develops Compliance Monitoring Strategies (CMSs) to ensure that the regulated facilities across the country are evaluated for compliance on a regular basis. Information on CMSs, evaluations (such as on-site inspections), and inspection frequency goals that are defined by each program is included.

  7. Electroproduction of Strange Nuclei

    SciTech Connect

    E.V. Hungerford

    2002-06-01

    The advent of high-energy, CW-beams of electrons now allows electro-production and precision studies of nuclei containing hyperons. Previously, the injection of strangeness into a nucleus was accomplished using secondary beams of mesons, where beam quality and target thickness limited the missing mass resolution. We review here the theoretical description of the (e, e'K+) reaction mechanism, and discuss the first experiment demonstrating that this reaction can be used to precisely study the spectra of light hypernuclei. Future experiments based on similar techniques, are expected to attain even better resolutions and rates.

  8. Total photoabsorption in nuclei

    SciTech Connect

    Bianchi, N.

    1992-06-01

    The Frascati-Genova collaboration proposes to measure the total photonuclear cross section on a wide range of nuclei between 500 MeV and 2 GeV, to obtain informations on the interaction of baryon resonances with nucleons and on the onset of the shadowing effect. The experiment could be performed in the Hall B as soon as the tagging facility will be ready and before the end of the installation of the CLAS spectrometer. The requirements for the photon beam, like maximum energy, intensity and beam definition, are not so strong so that the experiment would also be a good first test of the tagged photon facility.

  9. Lattice QCD for nuclei

    NASA Astrophysics Data System (ADS)

    Beane, Silas

    2016-09-01

    Over the last several decades, theoretical nuclear physics has been evolving from a very-successful phenomenology of the properties of nuclei, to a first-principles derivation of the properties of visible matter in the Universe from the known underlying theories of Quantum Chromodynamics (QCD) and Electrodynamics. Many nuclear properties have now been calculated using lattice QCD, a method for treating QCD numerically with large computers. In this talk, some of the most recent results in this frontier area of nuclear theory will be reviewed.

  10. Light Echoes of Galactic Explosions and Eruptions

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Bianco, Federica; Chornock, Ryan; Clocchiatti, Alejandro; Foley, Ryan; James, David; Matheson, Thomas; Narayan, Gautham; Olsen, Knut; Points, Sean; Prieto, Jose Luis; Smith, Chris; Smith, Nathan; Suntzeff, Nick; Welch, Doug; Zenteno, Alfredo

    2014-08-01

    We propose to search for light echoes (LEs) from the historical brightening of the Luminous Blue Variable (LBV) P Cygni using the KPNO 4m Mosaic 1.1 imager. We also propose to us DECam to continue our search for LEs from the the Crab supernova SN 1054. In addition, we continue to monitor the LEs from the Cas A and Tycho supernovae in order to identify suitable LE candidates for 3D-spectroscopy and spectral time series. In previously granted NOAO time, we have discovered light echoes of three ancient SNe in the LMC as well as from the historic SN events of Cas A and Tycho [2, 3], which allowed their spectroscopic classification [6, 7, 10] and 3D spectroscopy [8, 9]. Most recently, we discovered light echoes of the mid-19th-century Great Eruption of η Carinae using CTIO 4m Mosaic images [11]. Subsequent spectroscopic follow-up of Eta Carinae revealed that its outburst spectral type was most similar to those of G-type supergiants, rather than reported LBV outburst spectral types of F-type (or earlier) [11]. Our extension of LE techniques to LBV outbursts promises to extend our ability to record outburst activity hundreds of years into the past - a timescale which is likely a significant fraction of the brief final phases of these probable core- collapse supernova precursors.

  11. A multifilter approach to acoustic echo cancellation

    NASA Astrophysics Data System (ADS)

    Usher, John; Woszczyk, Wieslaw; Cooperstock, Jeremy

    2004-05-01

    Hands-free teleconferencing is increasingly frequent today. An important design consideration for any such communication tool that uses high-quality audio is the return echo caused by the acoustic coupling between the loudspeakers and microphones at each end of the conference. An echo-suppression filter (ESF) reduces the level of this return echo, increasing speech intelligibility. A new ESF has been designed based on a block frequency domain adaptive filter using the well-known least-mean-square (LMS) criteria. There are two important coefficients in LMS adaptive filters which affect how an ESF adapts to changing acoustic conditions at each end of the conference, such as double-talk conditions and moving electroacoustic transducers. Previous approaches to similar ESFs have used either a single or double pair of these coefficients, whereas the new model typically uses ten. The performance of single, double, and multifilter architectures was compared. Performance was evaluated using both empirical measurements and subjective listening tests. Speech and music were used as the stimuli for a two-way teleconferencing experiment. The new filter performed better than the single- and two-filter ESF designs, especially in conferencing conditions with frequent double talk, and the new ESF can be optimized to suit different acoustic situations.

  12. Light Echoes of Galactic Explosions and Eruptions

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Bianco, Federica; Chornock, Ryan; Foley, Ryan; Kunder, Andrea; Matheson, Thomas; Olsen, Knut; Prieto, Jose Luis; Sinnott, Brendan; Smith, Chris; Smith, Nathan; Welch, Doug

    2013-08-01

    We propose to search for light echoes (LEs) from the historical brightening of the Luminous Blue Variable (LBV) P Cygni using the KPNO 4m Mosaic 1.1 imager. We also propose to conclude our search - so far unsuccessful - for LEs from the the Crab supernova SN 1054 by surveying one remaining region of the LE ellipsoid behind the plane of the supernova remnant on the sky. In addition, we continue to monitor the LEs from the Cas A and Tycho supernovae in order to identify suitable LE candidates for 3D-spectroscopy and spectral time series. In previously granted NOAO time, we have discovered light echoes of three ancient SNe in the LMC as well as from the historic SN events of Cas A and Tycho [2, 3], which allowed their spectroscopic classification [6, 7, 10] and 3D spectroscopy [8, 9]. Most recently, we discovered light echoes of the mid-19th-century Great Eruption of η Carinae using CTIO 4m Mosaic images [11]. Subsequent spectroscopic follow-up of Eta Carinae revealed that its outburst spectral type was most similar to those of G-type supergiants, rather than reported LBV outburst spectral types of F-type (or earlier) [11]. Our extension of LE techniques to LBV outbursts promises to extend our ability to record outburst activity hundreds of years into the past - a timescale which is likely a significant fraction of the brief final phases of these probable core- collapse supernova precursors.

  13. D mesic nuclei

    NASA Astrophysics Data System (ADS)

    García-Recio, C.; Nieves, J.; Tolos, L.

    2010-06-01

    The energies and widths of several D0 meson bound states for different nuclei are obtained using a D-meson selfenergy in the nuclear medium, which is evaluated in a selfconsistent manner using techniques of unitarized coupled-channel theory. The kernel of the meson-baryon interaction is based on a model that treats heavy pseudoscalar and heavy vector mesons on equal footing, as required by heavy quark symmetry. We find D0 bound states in all studied nuclei, from 12C up to 208Pb. The inclusion of vector mesons is the keystone for obtaining an attractive D-nucleus interaction that leads to the existence of D0-nucleus bound states, as compared to previous studies based on SU(4) flavor symmetry. In some cases, the half widths are smaller than the separation of the levels, what makes possible their experimental observation by means of a nuclear reaction. This can be of particular interest for the future P¯ANDA@FAIR physics program. We also find a D+ bound state in 12C, but it is too broad and will have a significant overlap with the energies of the continuum.

  14. Temporal characteristics of NMR signals from spin 3/2 nuclei of incompletely disordered systems.

    PubMed

    Woessner, D E; Bansal, N

    1998-07-01

    Anisotropic nuclear quadrupole interactions can produce residual quadrupole splitting in the NMR spectra of rapidly moving quadrupolar nuclei in incompletely disordered aqueous heterogeneous systems. Such systems may include hydrated sodium nuclei in biological tissue and biopolymer gels. To describe the NMR signals from such samples, we use a domain model in which each domain is characterized by a quadrupole frequency and a residence time of the nucleus. We show that the signals from each domain after one pulse, the quadrupole echo sequence, and the various multiple quantum filters (MQFs) can be expressed as a linear combination of five different phase coherences. To simulate the effect of various distributions (Pake powder pattern, Gaussian, etc.) of quadrupole frequencies for different domains on the NMR signal, we have written the computer program CORVUS. CORVUS also includes the effects of exchange between different domains using diffusion and random jump models. The results of computer simulations show that the Gaussian and Pake powder pattern quadrupole frequency distributions produce very different phase coherences and observable NMR signals when the exchange rate (1/taue) between different domains is slow. When 1/taue is similar to the root mean square quadrupole frequency (final sigma), the signals from the two distributions are similar. When 1/taue is an order of magnitude greater than final sigma, there is no apparent evidence of quadrupole splitting in the shape of the signal following one pulse, but the residual effects of the quadrupole splitting make a significant contribution to the fast transverse relaxation rate. Therefore, in this case, it is inappropriate to use the observed biexponential relaxation rates to obtain a single correlation time. The quadrupole echo and the various MQF signals contain an echo from the satellite transitions in the presence of quadrupole splitting. The peak of this echo is very sensitive to 1/taue. The time domain

  15. Heavy and Superheavy Atomic Nuclei

    NASA Astrophysics Data System (ADS)

    Sobiczewski, Adam

    2008-10-01

    The appearance and development of the concept of super-heavy atomic nuclei are described. The concept appeared during the studies of the limits of the nuclear chart and of the periodic table of the chemical elements. The article concentrates on theoretical studies of the properties of heaviest nuclei. Results of these studies are illustrated and discussed. Prospects for a nearest future of the research of heaviest nuclei are outlined.

  16. The EChO science case

    NASA Astrophysics Data System (ADS)

    Tinetti, Giovanna; Drossart, Pierre; Eccleston, Paul; Hartogh, Paul; Isaak, Kate; Linder, Martin; Lovis, Christophe; Micela, Giusi; Ollivier, Marc; Puig, Ludovic; Ribas, Ignasi; Snellen, Ignas; Swinyard, Bruce; Allard, France; Barstow, Joanna; Cho, James; Coustenis, Athena; Cockell, Charles; Correia, Alexandre; Decin, Leen; de Kok, Remco; Deroo, Pieter; Encrenaz, Therese; Forget, Francois; Glasse, Alistair; Griffith, Caitlin; Guillot, Tristan; Koskinen, Tommi; Lammer, Helmut; Leconte, Jeremy; Maxted, Pierre; Mueller-Wodarg, Ingo; Nelson, Richard; North, Chris; Pallé, Enric; Pagano, Isabella; Piccioni, Guseppe; Pinfield, David; Selsis, Franck; Sozzetti, Alessandro; Stixrude, Lars; Tennyson, Jonathan; Turrini, Diego; Zapatero-Osorio, Mariarosa; Beaulieu, Jean-Philippe; Grodent, Denis; Guedel, Manuel; Luz, David; Nørgaard-Nielsen, Hans Ulrik; Ray, Tom; Rickman, Hans; Selig, Avri; Swain, Mark; Banaszkiewicz, Marek; Barlow, Mike; Bowles, Neil; Branduardi-Raymont, Graziella; du Foresto, Vincent Coudé; Gerard, Jean-Claude; Gizon, Laurent; Hornstrup, Allan; Jarchow, Christopher; Kerschbaum, Franz; Kovacs, Géza; Lagage, Pierre-Olivier; Lim, Tanya; Lopez-Morales, Mercedes; Malaguti, Giuseppe; Pace, Emanuele; Pascale, Enzo; Vandenbussche, Bart; Wright, Gillian; Ramos Zapata, Gonzalo; Adriani, Alberto; Azzollini, Ruymán; Balado, Ana; Bryson, Ian; Burston, Raymond; Colomé, Josep; Crook, Martin; Di Giorgio, Anna; Griffin, Matt; Hoogeveen, Ruud; Ottensamer, Roland; Irshad, Ranah; Middleton, Kevin; Morgante, Gianluca; Pinsard, Frederic; Rataj, Mirek; Reess, Jean-Michel; Savini, Giorgio; Schrader, Jan-Rutger; Stamper, Richard; Winter, Berend; Abe, L.; Abreu, M.; Achilleos, N.; Ade, P.; Adybekian, V.; Affer, L.; Agnor, C.; Agundez, M.; Alard, C.; Alcala, J.; Allende Prieto, C.; Alonso Floriano, F. J.; Altieri, F.; Alvarez Iglesias, C. A.; Amado, P.; Andersen, A.; Aylward, A.; Baffa, C.; Bakos, G.; Ballerini, P.; Banaszkiewicz, M.; Barber, R. J.; Barrado, D.; Barton, E. J.; Batista, V.; Bellucci, G.; Belmonte Avilés, J. A.; Berry, D.; Bézard, B.; Biondi, D.; Błęcka, M.; Boisse, I.; Bonfond, B.; Bordé, P.; Börner, P.; Bouy, H.; Brown, L.; Buchhave, L.; Budaj, J.; Bulgarelli, A.; Burleigh, M.; Cabral, A.; Capria, M. T.; Cassan, A.; Cavarroc, C.; Cecchi-Pestellini, C.; Cerulli, R.; Chadney, J.; Chamberlain, S.; Charnoz, S.; Christian Jessen, N.; Ciaravella, A.; Claret, A.; Claudi, R.; Coates, A.; Cole, R.; Collura, A.; Cordier, D.; Covino, E.; Danielski, C.; Damasso, M.; Deeg, H. J.; Delgado-Mena, E.; Del Vecchio, C.; Demangeon, O.; De Sio, A.; De Wit, J.; Dobrijévic, M.; Doel, P.; Dominic, C.; Dorfi, E.; Eales, S.; Eiroa, C.; Espinoza Contreras, M.; Esposito, M.; Eymet, V.; Fabrizio, N.; Fernández, M.; Femenía Castella, B.; Figueira, P.; Filacchione, G.; Fletcher, L.; Focardi, M.; Fossey, S.; Fouqué, P.; Frith, J.; Galand, M.; Gambicorti, L.; Gaulme, P.; García López, R. J.; Garcia-Piquer, A.; Gear, W.; Gerard, J.-C.; Gesa, L.; Giani, E.; Gianotti, F.; Gillon, M.; Giro, E.; Giuranna, M.; Gomez, H.; Gomez-Leal, I.; Gonzalez Hernandez, J.; González Merino, B.; Graczyk, R.; Grassi, D.; Guardia, J.; Guio, P.; Gustin, J.; Hargrave, P.; Haigh, J.; Hébrard, E.; Heiter, U.; Heredero, R. L.; Herrero, E.; Hersant, F.; Heyrovsky, D.; Hollis, M.; Hubert, B.; Hueso, R.; Israelian, G.; Iro, N.; Irwin, P.; Jacquemoud, S.; Jones, G.; Jones, H.; Justtanont, K.; Kehoe, T.; Kerschbaum, F.; Kerins, E.; Kervella, P.; Kipping, D.; Koskinen, T.; Krupp, N.; Lahav, O.; Laken, B.; Lanza, N.; Lellouch, E.; Leto, G.; Licandro Goldaracena, J.; Lithgow-Bertelloni, C.; Liu, S. J.; Lo Cicero, U.; Lodieu, N.; Lognonné, P.; Lopez-Puertas, M.; Lopez-Valverde, M. A.; Lundgaard Rasmussen, I.; Luntzer, A.; Machado, P.; MacTavish, C.; Maggio, A.; Maillard, J.-P.; Magnes, W.; Maldonado, J.; Mall, U.; Marquette, J.-B.; Mauskopf, P.; Massi, F.; Maurin, A.-S.; Medvedev, A.; Michaut, C.; Miles-Paez, P.; Montalto, M.; Montañés Rodríguez, P.; Monteiro, M.; Montes, D.; Morais, H.; Morales, J. C.; Morales-Calderón, M.; Morello, G.; Moro Martín, A.; Moses, J.; Moya Bedon, A.; Murgas Alcaino, F.; Oliva, E.; Orton, G.; Palla, F.; Pancrazzi, M.; Pantin, E.; Parmentier, V.; Parviainen, H.; Peña Ramírez, K. Y.; Peralta, J.; Perez-Hoyos, S.; Petrov, R.; Pezzuto, S.; Pietrzak, R.; Pilat-Lohinger, E.; Piskunov, N.; Prinja, R.; Prisinzano, L.; Polichtchouk, I.; Poretti, E.; Radioti, A.; Ramos, A. A.; Rank-Lüftinger, T.; Read, P.; Readorn, K.; Rebolo López, R.; Rebordão, J.; Rengel, M.; Rezac, L.; Rocchetto, M.; Rodler, F.; Sánchez Béjar, V. J.; Sanchez Lavega, A.; Sanromá, E.; Santos, N.; Sanz Forcada, J.; Scandariato, G.; Schmider, F.-X.; Scholz, A.; Scuderi, S.; Sethenadh, J.; Shore, S.; Showman, A.; Sicardy, B.; Sitek, P.; Smith, A.; Soret, L.; Sousa, S.; Stiepen, A.; Stolarski, M.; Strazzulla, G.; Tabernero, H. M.; Tanga, P.; Tecsa, M.; Temple, J.; Terenzi, L.; Tessenyi, M.; Testi, L.; Thompson, S.; Thrastarson, H.; Tingley, B. W.; Trifoglio, M.; Martín Torres, J.; Tozzi, A.; Turrini, D.; Varley, R.; Vakili, F.; de Val-Borro, M.; Valdivieso, M. L.; Venot, O.; Villaver, E.; Vinatier, S.; Viti, S.; Waldmann, I.; Waltham, D.; Ward-Thompson, D.; Waters, R.; Watkins, C.; Watson, D.; Wawer, P.; Wawrzaszk, A.; White, G.; Widemann, T.; Winek, W.; Wiśniowski, T.; Yelle, R.; Yung, Y.; Yurchenko, S. N.

    2015-12-01

    The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune—all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10-4 relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength

  17. Exotic nuclei in astrophysics

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.

    2012-07-01

    Recently the academic community has marked several anniversaries connected with discoveries that played a significant role in the development of astrophysical investigations. The year 2009 was proclaimed by the United Nations the International Year of Astronomy. This was associated with the 400th anniversary of Galileo Galilei's discovery of the optical telescope, which marked the beginning of regular research in the field of astronomy. An important contribution to not only the development of physics of the microcosm, but also to the understanding of processes occurring in the Universe, was the discovery of the atomic nucleus made by E. Rutherford 100 years ago. Since then the investigations in the fields of physics of particles and atomic nuclei have helped to understand many processes in the microcosm. Exactly 80 years ago, K. Yanski used a radio-telescope in order to receive the radiation from cosmic objects for the first time, and at the present time this research area of physics is the most efficient method for studying the properties of the Universe. Finally, the April 12, 1961 (50 years ago) launching of the first sputnik into space with a human being onboard, the Russian cosmonaut Yuri Gagarin, marked the beginning of exploration of the Universe with the direct participation of man. All these achievements considerably extended our ideas about the Universe. This work is an attempt to present some problems on the evolution of the Universe: the nucleosynthesis and cosmochronology from the standpoint of physics of particles and nuclei, in particular with the use of the latest results, obtained by means of radioactive nuclear beams. The comparison is made between the processes taking place in the Universe and the mechanisms of formation and decay of nuclei, as well as of their interaction at different energies. Examples are given to show the capabilities of nuclear-physics methods for studying cosmic objects and properties of the Universe. The results of

  18. Comparison of gradient echo with spin echo magnetic resonance imaging and echocardiography in the evaluation of major aortopulmonary collateral arteries.

    PubMed

    Vick, G W; Wendt, R E; Rokey, R

    1994-05-01

    This study compared gradient echo magnetic resonance imaging, spin echo magnetic resonance imaging, echocardiography, and echocardiography with x-ray cineangiography in the evaluation of major aortopulmonary collateral arteries. Twelve patients (ages 9 months to 35 years, mean 11 +/- 11 years) with known or suspected major aortopulmonary collateral arteries were studied. The aortic insertion and proximal course of 29 major aortopulmonary collateral arteries demonstrated by x-ray contrast angiography were shown in all 29 cases by gradient echo magnetic resonance imaging but in only 23 of the 29 cases by spin echo magnetic resonance imaging. Color Doppler-echocardiography detected aortopulmonary collateral arteries in four patients but did not define the proximal course or distal anatomy. Gradient echo images of distal aortopulmonary collateral anatomy were qualitatively superior to spin echo images. The contrast-to-noise ratio between the vessel lumen and adjacent lung was greater for gradient echo (6.06 +/- 2.91) than for spin echo (1.45 +/- 1.13)(p < 0.05). Gradient echo magnetic resonance imaging is a useful method for identification and characterization of aortopulmonary collateral arteries in patients of all ages and is superior to spin echo magnetic resonance imaging and echocardiography.

  19. Pulsars:. Gigantic Nuclei

    NASA Astrophysics Data System (ADS)

    Xu, Renxin

    What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the gigantic nucleus speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction.

  20. Nucleomorphs: enslaved algal nuclei.

    PubMed

    Cavalier-Smith, T

    2002-12-01

    Nucleomorphs of cryptomonad and chlorarachnean algae are the relict, miniaturised nuclei of formerly independent red and green algae enslaved by separate eukaryote hosts over 500 million years ago. The complete 551 kb genome sequence of a cryptomonad nucleomorph confirms that cryptomonads are eukaryote-eukaryote chimeras and greatly illuminates the symbiogenetic event that created the kingdom Chromista and their alveolate protozoan sisters. Nucleomorph membranes may, like plasma membranes, be more enduring after secondary symbiogenesis than are their genomes. Partial sequences of chlorarachnean nucleomorphs indicate that genomic streamlining is limited by the mutational difficulty of removing useless introns. Nucleomorph miniaturisation emphasises that selection can dramatically reduce eukaryote genome size and eliminate most non-functional nuclear non-coding DNA. Given the differential scaling of nuclear and nucleomorph genomes with cell size, it follows that most non-coding nuclear DNA must have a bulk-sequence-independent function related to cell volume.

  1. Echo tracker/range finder for radars and sonars

    NASA Technical Reports Server (NTRS)

    Constantinides, N. J. (Inventor)

    1982-01-01

    An echo tracker/range finder or altimeter is described. The pulse repetition frequency (PFR) of a predetermined plurality of transmitted pulses is adjusted so that echo pulses received from a reflecting object are positioned between transmitted pulses and divided their interpulse time interval into two time intervals having a predetermined ratio with respect to each other. The invention described provides a means whereby the arrival time of a plurality of echo pulses is defined as the time at which a composite echo pulse formed of a sum of the individual echo pulses has the highest amplitude. The invention is applicable to radar systems, sonar systems, or any other kind of system in which pulses are transmitted and echoes received therefrom.

  2. Project Echo: FM Demodulators with Negative Feedback

    NASA Technical Reports Server (NTRS)

    Ruthroff, Clyde L.

    1961-01-01

    The primary experimental objective of Project Echo was the transmission of radio communications between points on the earth by reflection from the balloon satellite. Owing to the large path losses from transmitter to receiver via the satellite, a wide-band frequency modulation technique was used in which bandwidth was traded for signal-to-noise ratio. This paper describes the FM receiving demodulators employed. Negative feedback applied to the local oscillator reduces the FM modulation index in the receiver IF amplifiers, resulting in threshold performance superior to that of conventional FM receivers.

  3. Decoherence and spin echo in biological systems.

    PubMed

    Nesterov, Alexander I; Berman, Gennady P

    2015-05-01

    The spin-echo approach is extended to include biocomplexes for which the interaction with dynamical noise, produced by the protein environment, is strong. Significant restoration of the free induction decay signal due to homogeneous (decoherence) and inhomogeneous (dephasing) broadening is demonstrated analytically and numerically for both an individual dimer of interacting chlorophylls and for an ensemble of dimers. Our approach does not require the use of small interaction constants between the electron states and the protein fluctuations. It is based on an exact and closed system of ordinary differential equations that can be easily solved for a wide range of parameters that are relevant for bioapplications.

  4. Quarks in Few Body Nuclei

    NASA Astrophysics Data System (ADS)

    Holt, Roy J.

    2016-03-01

    Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  5. Extra echo spaces: ultrasonography and computerised tomography correlations.

    PubMed Central

    Wada, T; Honda, M; Matsuyama, S

    1982-01-01

    Among the echocardiograms of 844 patients of the International Goodwill Hospital from January 1980 to April 1981, 700 showed clinically inexplicable extra echo spaces. Fifty of the 700 had computerised tomography of their hearts which showed the extra echo spaces to be caused either by anterior or posterior subepicardial fat. Six of the 50 cases had both fat and pericardial effusions, which are difficult to differentiate echocardiographically unless follow-up clinical observations are performed. Subepicardial fat deposits are reasonable explanations for the extra echo spaces frequently observed by echocardiography: they correlate well with clinical findings. Subepicardial fat should be recognised as the cause of such extra echo spaces. Images PMID:7073903

  6. Temporal signal processing of dolphin biosonar echoes from salmon prey.

    PubMed

    Au, Whitlow W L; Ou, Hui Helen

    2014-08-01

    Killer whales project short broadband biosonar clicks. The broadband nature of the clicks provides good temporal resolution of echo highlights and allows for the discriminations of salmon prey. The echoes contain many highlights as the signals reflect off different surfaces and parts of the fish body and swim bladder. The temporal characteristics of echoes from salmon are highly aspect dependent and six temporal parameters were used in a support vector machine to discriminate between species. Results suggest that killer whales can classify salmon based on their echoes and provide some insight as to which features might enable the classification.

  7. Echoes of Historical Supernovae in the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Suntzeff, Nicholas B.; Rest, Armin; Welch, Douglas; Stubbs, Christopher; Smith, R. Chris; Olsen, Knut; Bergmann, Marcel; Clocchiatti, Alejandro; Minnite, Dante; Cook, Kem; Prieto, J. L.; Becker, Andy; Garg, Arti; Huber, Mark; Nikolaev, Sergei; Miknaitis, Gajus

    2006-08-01

    Our SuperMACHO collaboration has discovered echoes from four ancient supernovae in the Large Magellanic Cloud. The echoes were discovered using our SuperMACHO MOSAIC data difference images. The echo motions point to three supernova remnants which are listed as three of the six youngest SNRs in the LMC. These three remnants are also identified as Type Ia events, based on the X-ray spectral abundances. We have dated these echoes at 400-800 years. The echoes are easy to detect - they are as bright as 22 mag arcsec^-2, generally superluminal, a few arc- seconds wide, and tens of arc-seconds across. We are asking for NOAO time to get images of regions of significant dust concentration near the Galactic SNe Crab/1054, Tycho (4+3n KPNO 4m) and Kepler, Lupus/1006 (4n CTIO 4m). These supernovae are the youngest and/or brightest. By obtaining these images, we will be able to search for echoes in the second epoch images and have the first epoch images for a run next semester. Our group, which pioneered the discovery of echoes, will be at a great advantage for finding these echoes first if we can get these images this observing season. Finding echoes from historical supernovae and typeing them with spectra will be a major discovery for the NOAO 4m telescopes.

  8. Fast REDOR with CPMG multiple-echo acquisition

    NASA Astrophysics Data System (ADS)

    Hung, Ivan; Gan, Zhehong

    2014-01-01

    Rotational-Echo Double Resonance (REDOR) is a widely used experiment for distance measurements in solids. The conventional REDOR experiment measures the signal dephasing from hetero-nuclear recoupling under magic-angle spinning (MAS) in a point by point manner. A modified Carr-Purcell Meiboom-Gill (CPMG) multiple-echo scheme is introduced for fast REDOR measurement. REDOR curves are measured from the CPMG echo amplitude modulation under dipolar recoupling. The real time CPMG-REDOR experiment can speed up the measurement by an order of magnitude. The effects from hetero-nuclear recoupling, the Bloch-Siegert shift and echo truncation to the signal acquisition are discussed and demonstrated.

  9. Impact echo scanning of concrete and wood

    NASA Astrophysics Data System (ADS)

    Sack, Dennis A.; Olson, Larry D.; Aouad, Marwan F.

    1995-05-01

    This paper presents an overview of a new nondestructive testing (NDT) system that allows rapid nondestructive assessment of many types of structural materials. The new system is based on scanning impact echo (IE), using a rolling receiver, digitally controlled impact source, and a distance measurement wheel integrated into a system that is capable of performing over 3000 IE tests per hour. The system has been successfully used on both concrete and wood for condition assessment. Previously, impact echo testing has been limited to point-by-point testing at rates of typically 30 - 60 points per hour. The new system is usable on any flat, relatively smooth surface such as floor slabs, pavements, walls, columns, beams, etc. In addition to IE scanning, the new system has recently been expanded to allow the performance of spectral analysis of surface waves (SASW) scanning on concrete and wood. The SASW method allows the measurement of material stiffness (modulus) versus depth, and therefore can give a profile of the material condition versus depth. Included in this paper are brief discussions of the IE and SASW methods, the scanner system hardware, and the software which was developed to enable efficient processing, analysis, and display of the test data and results. Also included are sample data plots and a case history presentation of the use of the system in the field, including one in which 23,000 IE tests were performed on an elevated floor slab in approximately 16 hours of testing time.

  10. Image domain propeller fast spin echo.

    PubMed

    Skare, Stefan; Holdsworth, Samantha J; Lilja, Anders; Bammer, Roland

    2013-04-01

    A new pulse sequence for high-resolution T2-weighted (T2-w) imaging is proposed - image domain propeller fast spin echo (iProp-FSE). Similar to the T2-w PROPELLER sequence, iProp-FSE acquires data in a segmented fashion, as blades that are acquired in multiple TRs. However, the iProp-FSE blades are formed in the image domain instead of in the k-space domain. Each iProp-FSE blade resembles a single-shot fast spin echo (SSFSE) sequence with a very narrow phase-encoding field of view (FOV), after which N rotated blade replicas yield the final full circular FOV. Our method of combining the image domain blade data to a full FOV image is detailed, and optimal choices of phase-encoding FOVs and receiver bandwidths were evaluated on phantom and volunteers. The results suggest that a phase FOV of 15-20%, a receiver bandwidth of ±32-63 kHz and a subsequent readout time of about 300 ms provide a good tradeoff between signal-to-noise ratio (SNR) efficiency and T2 blurring. Comparisons between iProp-FSE, Cartesian FSE and PROPELLER were made on single-slice axial brain data, showing similar T2-w tissue contrast and SNR with great anatomical conspicuity at similar scan times - without colored noise or streaks from motion. A new slice interleaving order is also proposed to improve the multislice capabilities of iProp-FSE.

  11. Light Echoes of Transients and Variables

    NASA Astrophysics Data System (ADS)

    Rest, Armin

    2012-04-01

    abstract-type="normal">SummaryTycho Brahe's observations of a supernova in 1572 challenged the contemporaneous European view of the cosmos that the celestial realm was unchanging. 439 years later we have once again seen the light that Tycho saw, as some of the light from the 1572 supernova is reflected off dust and is only now reaching Earth. These light echoes, as well as ones detected from other transients and variables, give us a very rare opportunity in astronomy: direct observation of the cause (the supernova explosion) and the effect (the supernova remnant) of the same astronomical event. Furthermore, in some cases we can compare light echoes at different angles around a supernova remnant, and thus investigate possible asymmetry in the supernova explosion. In addition, in cases where the scattering dust is favorably positioned, the geometric distance to the SN remnant can be determined using polarization measurements. These techniques have been successfully applied to various transients in the last decade, and the talk gave an overview of the scientific results and techniques, with a particular focus on the challenges we will face in the current and upcoming wide-field time-domain surveys.

  12. Neutron spin echo scattering angle measurement (SESAME)

    SciTech Connect

    Pynn, R.; Fitzsimmons, M.R.; Fritzsche, H.; Gierlings, M.; Major, J.; Jason, A.

    2005-05-15

    We describe experiments in which the neutron spin echo technique is used to measure neutron scattering angles. We have implemented the technique, dubbed spin echo scattering angle measurement (SESAME), using thin films of Permalloy electrodeposited on silicon wafers as sources of the magnetic fields within which neutron spins precess. With 30-{mu}m-thick films we resolve neutron scattering angles to about 0.02 deg. with neutrons of 4.66 A wavelength. This allows us to probe correlation lengths up to 200 nm in an application to small angle neutron scattering. We also demonstrate that SESAME can be used to separate specular and diffuse neutron reflection from surfaces at grazing incidence. In both of these cases, SESAME can make measurements at higher neutron intensity than is available with conventional methods because the angular resolution achieved is independent of the divergence of the neutron beam. Finally, we discuss the conditions under which SESAME might be used to probe in-plane structure in thin films and show that the method has advantages for incident neutron angles close to the critical angle because multiple scattering is automatically accounted for.

  13. The Future of ECHO: Evaluating Open Source Possibilities

    NASA Astrophysics Data System (ADS)

    Pilone, D.; Gilman, J.; Baynes, K.; Mitchell, A. E.

    2012-12-01

    NASA's Earth Observing System ClearingHOuse (ECHO) is a format agnostic metadata repository supporting over 3000 collections and 100M science granules. ECHO exposes FTP and RESTful Data Ingest APIs in addition to both SOAP and RESTful search and order capabilities. Built on top of ECHO is a human facing search and order web application named Reverb. ECHO processes hundreds of orders, tens of thousands of searches, and 1-2M ingest actions each week. As ECHO's holdings, metadata format support, and visibility have increased, the ECHO team has received requests by non-NASA entities for copies of ECHO that can be run locally against their data holdings. ESDIS and the ECHO Team have begun investigations into various deployment and Open Sourcing models that can balance the real constraints faced by the ECHO project with the benefits of providing ECHO capabilities to a broader set of users and providers. This talk will discuss several release and Open Source models being investigated by the ECHO team along with the impacts those models are expected to have on the project. We discuss: - Addressing complex deployment or setup issues for potential users - Models of vetting code contributions - Balancing external (public) user requests versus our primary partners - Preparing project code for public release, including navigating licensing issues related to leveraged libraries - Dealing with non-free project dependencies such as commercial databases - Dealing with sensitive aspects of project code such as database passwords, authentication approaches, security through obscurity, etc. - Ongoing support for the released code including increased testing demands, bug fixes, security fixes, and new features.

  14. Gluon density in nuclei

    SciTech Connect

    Ayala, A.L.; Ducati, M.B.G.; Levin, E.M.

    1996-10-01

    In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab.

  15. Neural coding of echo-envelope disparities in echolocating bats.

    PubMed

    Borina, Frank; Firzlaff, Uwe; Wiegrebe, Lutz

    2011-05-01

    The effective use of echolocation requires not only measuring the delay between the emitted call and returning echo to estimate the distance of an ensonified object. To locate an object in azimuth and elevation, the bat's auditory system must analyze the returning echoes in terms of their binaural properties, i.e., the echoes' interaural intensity and time differences (IIDs and ITDs). The effectiveness of IIDs for echolocation is undisputed, but when bats ensonify complex objects, the temporal structure of echoes may facilitate the analysis of the echo envelope in terms of envelope ITDs. Using extracellular recordings from the auditory midbrain of the bat, Phyllostomus discolor, we found a population of neurons that are sensitive to envelope ITDs of echoes of their sonar calls. Moreover, the envelope-ITD sensitivity improved with increasing temporal fluctuations in the echo envelopes, a sonar parameter related to the spatial statistics of complex natural reflectors like vegetation. The data show that in bats envelope ITDs may be used not only to locate external, prey-generated rustling sounds but also in the context of echolocation. Specifically, the temporal fluctuations in the echo envelope, which are created when the sonar emission is reflected from a complex natural target, support ITD-mediated echolocation.

  16. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ultrasonic pulsed echo imaging system. 892.1560 Section 892.1560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1560 Ultrasonic pulsed echo...

  17. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ultrasonic pulsed echo imaging system. 892.1560 Section 892.1560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1560 Ultrasonic pulsed echo...

  18. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed echo imaging system. 892.1560 Section 892.1560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1560 Ultrasonic pulsed echo...

  19. ECHOS: Early Childhood Hands-On Science Efficacy Study

    ERIC Educational Resources Information Center

    Brown, Judy A.; Greenfield, Daryl B.; Bell, Elizabeth; Juárez, Cheryl Lani; Myers, Ted; Nayfeld, Irena

    2013-01-01

    "ECHOS: Early Childhood Hands-On Science" was developed at the Miami Science Museum as a comprehensive set of science lessons sequenced to lead children toward a deeper understanding of science content and the use of science process skills. The purpose of the research is to determine whether use of the "ECHOS" model will…

  20. Psychoacoustic influences of the echoing environments of prehistoric art

    NASA Astrophysics Data System (ADS)

    Waller, Steven J.

    2002-11-01

    Cave paintings and ancient petroglyphs around the world are typically found in echo rich locations such as caves, canyons, and rocky cliff faces. Analysis of field data shows that echo decibel levels at a large number of prehistoric art sites are higher than those at nondecorated locations. The selection of these echoing environments by the artists appears not to be a mere coincidence. This paper considers the perception of an echoed sound as a psychoacoustic event that would have been inexplicable to ancient humans. A variety of ancient legends from cultures on several continents attribute the phenomenon of echoes to supernatural beings. These legends, together with the quantitative data, strongly implicate echoing as relevant to the artists of the past. The notion that the echoes were caused by spirits within the rock would explain not only the unusual locations of prehistoric art, but also the perplexing subject matter. For example, the common theme of hoofed animal imagery could have been inspired by echoes of percussion noises perceived as hoof beats. Further systematic acoustical studies of prehistoric art sites is warranted. Conservation of the natural acoustic properties of rock art environments--a previously unrecognized need--is urged.

  1. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic pulsed echo imaging system. 892.1560 Section 892.1560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project...

  2. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ultrasonic pulsed echo imaging system. 892.1560 Section 892.1560 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project...

  3. Echoes from Ancient supernovae in the Large Magellanic Cloud

    SciTech Connect

    Rest, A; Suntzeff, N B; Olsen, K; Prieto, J L; Smith, R C; Welch, D L; Becker, A; Bergmann, M; Clocchiatti, A; Cook, K; Garg, A; Huber, M; Miknaitis, G; Minniti, D; Nikolaev, S; Stubbs, C

    2005-06-15

    In principle, historical supernovae could still be visible as scattered-light echoes even centuries later [1, 2]. Searches for surface brightness variations using photographic plates have not recovered any echoes in the regions of historical Galactic supernovae [3]. Using differenced images, our SuperMACHO collaboration has discovered three faint new variable surface brightness complexes with high apparent proper motion pointing back to well-defined positions in the Large Magellanic Cloud (LMC). These correspond to three of the six smallest (and likely youngest) supernova remnants believed to be due to thermonuclear (Type Ia) supernovae [4]. A lower limit to the age of these remnants and echoes is 200 years given the lack of any reported LMC supernovae until 1987. The discovery of historical supernova echoes in the LMC suggests that similar echoes for Galactic supernovae such as Tycho, Kepler, Cas A, or SN1006 could be visible using standard image differencing techniques.

  4. Diurnal variation of overdense meteor echo duration and ozone

    NASA Technical Reports Server (NTRS)

    Simek, Milos

    1992-01-01

    The diurnal variation of the median duration of overdense sporadic radar meteor echoes is examined. The meteors recorded in August, December, and January by the Ondrejov meteor radar during the period 1958-1990 were used for the analysis. A maximum median echo duration 1-3 hours after the time of local sunrise in the meteor region confirms the already known sunrise effect. Minimum echo duration occurring at the time of sunset seems to be the most important point of diurnal variation of the echo duration, when ozone is no longer dissociated by solar UV radiation. The effect of diurnal changes of the echo duration should be considered when the mass distribution of meteor showers is analyzed.

  5. Enhanced sensitivity to echo cues in blind subjects.

    PubMed

    Dufour, André; Després, Olivier; Candas, Victor

    2005-09-01

    Many studies have reported that blind people compensate for their visual deficit by sharpening auditory processes. Here we compare the sensitivity to echo cues between blind and sighted subjects. In the first experiment, the blind subjects were more accurate than the sighted subjects in localizing an object on the basis of echo cues. To ensure that enhanced echolocalization abilities were not only due to the fact that blind individuals are more used to consciously paying attention to echo cues and are more familiar with this kind of tasks than sighted subjects, we tested both groups of subjects in a simple azimuthal localization task of auditory stimuli. In this second experiment, we evaluated the influence of irrelevant echo signals on auditory localization by placing the subjects and the sound sources at different positions in a sound reverberant room. Results revealed that blind subjects exhibit a higher sensitivity to echo signals than sighted subjects.

  6. Light echoes from ancient supernovae in the Large Magellanic Cloud.

    PubMed

    Rest, Armin; Suntzeff, Nicholas B; Olsen, Knut; Prieto, Jose Luis; Smith, R Chris; Welch, Douglas L; Becker, Andrew; Bergmann, Marcel; Clocchiatti, Alejandro; Cook, Kem; Garg, Arti; Huber, Mark; Miknaitis, Gajus; Minniti, Dante; Nikolaev, Sergei; Stubbs, Christopher

    2005-12-22

    The light from historical supernovae could in principle still be visible as scattered-light echoes centuries after the explosion. The detection of light echoes could allow us to pinpoint the supernova event both in position and age and, most importantly, permit the acquisition of spectra to determine the 'type' of the supernova centuries after the direct light from the explosion first reached Earth. Although echoes have been discovered around some nearby extragalactic supernovae, targeted searches have not found any echoes in the regions of historical Galactic supernovae. Here we report three faint variable-surface-brightness complexes with high apparent proper motions pointing back to three of the six smallest (and probably youngest) previously catalogued supernova remnants in the Large Magellanic Cloud, which are believed to have been thermonuclear (type Ia) supernovae. Using the distance and apparent proper motions of these echo arcs, we estimate ages of 610 and 410 years for two of them.

  7. Echo power analysis and simulation of low altitude radio fuze

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolu; Chen, Biao; Xu, Tao; Xu, Suqin

    2013-01-01

    The echo power from the earth gound which was received by fuze plays an important role in aerial defense missile, especially when the fuze is working in the look down mode. It is necessary to analyze and even simulate the echo power signals to enhance the missile's anti-jamming ability. In this paper, the quantity of echo power from the earth ground of low altitude radio fuze was analyzed in detail. Three boundary equations of area irradiated by electromagnetic beams were presented, which include two equidistant curve equations and one equal-Doppler curve equation. The relationship between the working mode and the critical height was analyzed. The calculating formula of echo power waveform was derived. And based on the derived formula, the correlation between the maximal echo power and the incident height was given and simulated, which would be helpful for the further researches of low altitude radio fuze.

  8. Quartet excitations in atomic nuclei

    NASA Astrophysics Data System (ADS)

    Cseh, J.

    2016-06-01

    The recently invented phenomenologic and semimicroscopic algebraic quartet models, as well as their relations to other approaches are discussed. The semimicroscopic model is applied to the 20Ne and 28Si nuclei.

  9. The nature of comet nuclei

    NASA Technical Reports Server (NTRS)

    Sykes, Mark V.; Walker, Russell G.

    1992-01-01

    The icy-conglomerate model of comet nuclei has dominated all others since its introduction. It provided a basis for understanding the non-gravitational motions of comets which had perplexed dynamicists up to that time, and provided a focus for understanding cometary composition and origin. The image of comets as dirty snowballs was quickly adopted. Comet nuclei including their trail mass loss rates and refractory to volatile mass ratios are described.

  10. Exotic Orbital Modes in Nuclei

    NASA Astrophysics Data System (ADS)

    von Neumann-Cosel, P.

    2003-06-01

    Experimental evidence for two types of collective excitations in nuclei generated by orbital motion is discussed, viz. a magnetic quadrupole twist mode observed in 180° electron scattering experiments and a toroidal electric dipole mode. The latter may be a source of low-energy pygmy dipole resonances observed in many nuclei. This is discussed in detail for the example of 208Pb based on the recent finding of a resonance at particle threshold in a high-resolution (γ, γ') experiment.

  11. Generalized parton distributions in nuclei

    SciTech Connect

    Vadim Guzey

    2009-12-01

    Generalized parton distributions (GPDs) of nuclei describe the distribution of quarks and gluons in nuclei probed in hard exclusive reactions, such as e.g. deeply virtual Compton scattering (DVCS). Nuclear GPDs and nuclear DVCS allow us to study new aspects of many traditional nuclear effects (nuclear shadowing, EMC effect, medium modifications of the bound nucleons) as well as to access novel nuclear effects. In my talk, I review recent theoretical progress in the area of nuclear GPDs.

  12. Acoustooptic pulse-echo transducer system

    NASA Technical Reports Server (NTRS)

    Claus, R. O.; Wade, J. C.

    1983-01-01

    A pulse-echo transducer system which uses an ultrasonic generating element and an optical detection technique is described. The transmitting transducer consists of a concentric ring electrode pattern deposited on a circular, X-cut quartz substrate with a circular hole in the center. The rings are independently pulsed with a sequence high voltage signals phased in such a way that the ultrasonic waves generated by the separate rings superimpose to produce a composite field which is focused at a controllable distance below the surface of the specimen. The amplitude of the field reflected from this focus position is determined by the local reflection coefficient of the medium at the effective focal point. By processing the signals received for a range of ultrasonic transducer array focal lengths, the system can be used to locate and size anomalies within solids and liquids. Applications in both nondestructive evaluation and biomedical scanning are suggested.

  13. Dual-rail optical gradient echo memory

    NASA Astrophysics Data System (ADS)

    Higginbottom, D. B.; Geng, J.; Campbell, G. T.; Hosseini, M.; Cao, M. T.; Sparkes, B. M.; Bernu, J.; Robins, N. P.; Lam, P. K.; Buchler, B. C.

    2015-09-01

    We introduce a scheme for the parallel storage of frequency separated signals in an optical memory and demonstrate that this dual-rail storage is a suitable memory for high fidelity frequency qubits. The two signals are stored simultaneously in the Zeeman-split Raman absorption lines of a cold atom ensemble using gradient echo memory techniques. Analysis of the split-Zeeman storage shows that the memory can be configured to preserve the relative amplitude and phase of the frequency separated signals. In an experimental demonstration dual-frequency pulses are recalled with 35% efficiency, 82% interference fringe visibility, and 6 degrees phase stability. The fidelity of the frequency-qubit memory is limited by frequency-dependent polarisation rotation and ambient magnetic field fluctuations, our analysis describes how these can be addressed in an alternative configuration.

  14. Spin Echo and Interference in Synchrotrons

    SciTech Connect

    Chao, Alex; /SLAC

    2006-11-30

    Spin dynamics in crossing a single depolarization resonance is a well-studied subject. One well-known example is that of Froissart and Stora in 1960. More is needed to complete the understanding, particularly of the transient effects, when crossing a single resonance, but question arises what happens if we cross two resonances or cross a single resonance twice. When a resonance is crossed twice, the particle's spin dynamics encounters two additional phenomena. First, the two crossings will interfere with each other, leading to an interference effect. Second, there will be a spin echo effect. We discuss these two effects in this report. Two proposals to test these effects experimentally are made at the end.

  15. Simultaneous Acquisition of Gradient Echo / Spin Echo BOLD and Perfusion with a Separate Labeling Coil

    PubMed Central

    Glielmi, C.B.; Xu, Q.; Craddock, R.C.; Hu, X.

    2010-01-01

    Arterial spin labeling (ASL) based cerebral blood flow (CBF) imaging complements blood oxygenation level dependent (BOLD) imaging with a measure that is more quantitative and has better specificity to neuronal activation. Relative to gradient echo (GE) BOLD, spin echo (SE) BOLD has better spatial specificity because it is less biased to large draining veins. While there have been many studies comparing simultaneously acquired CBF data with GE BOLD data in fMRI, there have been few studies comparing CBF with SE BOLD and no study comparing all three. We present a pulse sequence that simultaneously acquires CBF data with a separate labeling coil, GE BOLD and SE BOLD images. Simultaneous acquisition avoids inter-scan variability, allowing more direct assessment and comparison of each contrast’s relative specificity and reproducibility. Furthermore, it facilitates studies that may benefit from multiple complementary measures. PMID:20648682

  16. Dynamic hysteresis between gradient echo and spin echo attenuations in dynamic susceptibility contrast imaging.

    PubMed

    Xu, Chao; Kiselev, Valerij G; Möller, Harald E; Fiebach, Jochen B

    2013-04-01

    Perfusion measurements using dynamic susceptibility contrast imaging provide additional information about the mean vessel size of microvasculature when supplemented with a dual gradient echo (GE) - spin echo (SE) contrast. Dynamic increase in the corresponding transverse relaxation rate constant changes, ΔR2GE and ΔR2SE , forms a loop on the (Δ R2SE3/2, ΔR2GE ) plane, rather than a reversible line. The shape of the loop and the direction of its passage differentiate between healthy brain and pathological tissue, such as tumour and ischemic tissue. By considering a tree model of microvasculature, the direction of the loop is found to be influenced mainly by the relative arterial and venous blood volume, as well as the tracer bolus dispersion. A parameter Λ is proposed to characterize the direction and shape of the loop, which might be considered as a novel imaging marker for describing the pathology of cerebrovascular network.

  17. Recent Results for the ECHo Experiment

    NASA Astrophysics Data System (ADS)

    Hassel, C.; Blaum, K.; Goodacre, T. Day; Dorrer, H.; Düllmann, Ch. E.; Eberhardt, K.; Eliseev, S.; Enss, C.; Filianin, P.; Fäßler, A.; Fleischmann, A.; Gastaldo, L.; Goncharov, M.; Hengstler, D.; Jochum, J.; Johnston, K.; Keller, M.; Kempf, S.; Kieck, T.; Köster, U.; Krantz, M.; Marsh, B.; Mokry, C.; Novikov, Yu. N.; Ranitzsch, P. C. O.; Rothe, S.; Rischka, A.; Runke, J.; Saenz, A.; Schneider, F.; Scholl, S.; Schüssler, R. X.; Simkovic, F.; Stora, T.; Thörle-Pospiech, P.; Türler, A.; Veinhard, M.; Wegner, M.; Wendt, K.; Zuber, K.

    2016-08-01

    The Electron Capture in ^{163}Ho experiment, ECHo, is designed to investigate the electron neutrino mass in the sub-eV range by means of the analysis of the calorimetrically measured spectrum following the electron capture (EC) in ^{163}Ho. Arrays of low-temperature metallic magnetic calorimeters (MMCs), read-out by microwave SQUID multiplexing, will be used in this experiment. With a first MMC prototype having the ^{163}Ho source ion-implanted into the absorber, we performed the first high energy resolution measurement of the EC spectrum, which demonstrated the feasibility of such an experiment. In addition to the technological challenges for the development of MMC arrays, which preserve the single pixel performance in terms of energy resolution and bandwidth, the success of the experiment relies on the availability of large ultra-pure ^{163}Ho samples, on the precise description of the expected spectrum, and on the identification and reduction of background. We present preliminary results obtained with standard MMCs developed for soft X-ray spectroscopy, maXs-20, where the ^{163}Ho ion-implantation was performed using a high-purity ^{163}Ho source produced by advanced chemical and mass separation. With these measurements, we aim at determining an upper limit for the background level due to source contamination and provide a refined description of the calorimetrically measured spectrum. We discuss the plan for a medium scale experiment, ECHo-1k, in which about 1000 mathrm {Bq} of high-purity ^{163}Ho will be ion-implanted into detector arrays. With one year of measuring time, we will be able to achieve a sensitivity on the electron neutrino mass below 20 eV/c^2 (90 % C.L.), improving the present limit by more than one order of magnitude. This experiment will guide the necessary developments to reach the sub-eV sensitivity.

  18. Noncontrast Peripheral MRA with Spiral Echo Train Imaging

    PubMed Central

    Fielden, Samuel W.; Mugler, John P.; Hagspiel, Klaus D.; Norton, Patrick T.; Kramer, Christopher M.; Meyer, Craig H.

    2015-01-01

    Purpose To develop a spin echo train sequence with spiral readout gradients with improved artery–vein contrast for noncontrast angiography. Theory Venous T2 becomes shorter as the echo spacing is increased in echo train sequences, improving contrast. Spiral acquisitions, due to their data collection efficiency, facilitate long echo spacings without increasing scan times. Methods Bloch equation simulations were performed to determine optimal sequence parameters, and the sequence was applied in five volunteers. In two volunteers, the sequence was performed with a range of echo times and echo spacings to compare with the theoretical contrast behavior. A Cartesian version of the sequence was used to compare contrast appearance with the spiral sequence. Additionally, spiral parallel imaging was optionally used to improve image resolution. Results In vivo, artery–vein contrast properties followed the general shape predicted by simulations, and good results were obtained in all stations. Compared with a Cartesian implementation, the spiral sequence had superior artery–vein contrast, better spatial resolution (1.2 mm2 versus 1.5 mm2), and was acquired in less time (1.4 min versus 7.5 min). Conclusion The spiral spin echo train sequence can be used for flow-independent angiography to generate threedimensional angiograms of the periphery quickly and without the use of contrast agents. PMID:24753164

  19. Radar echo from a flat conducting plate, near and far

    NASA Astrophysics Data System (ADS)

    Williams, C. S.

    1982-01-01

    Over certain types of terrain, a radar fuze (or altimeter), by virtue of the horizontal component of its velocity, is likely to pass over various flat objects of limited size. The echo from such objects could have a duration less than that of one Doppler cycle, where the Doppler frequency is due to the vertical component of the velocity. If the terrain is principally made up of such objects, their echoes are in most cases entirely uncorrelated with each other. Hence, the total echo after mixing at the radar with the delayed transmitted wave would have a noise-like spectrum not at all confined to the Doppler-frequency band where the desired echo signal is expected. This would seriously degrade the performance of a radar that utilizes correlation. This work shows that the echo from a square flat plate will be of duration greater than the time it takes to pass over the plate if the height h above it satisfies h a squared lambda where a is the plate-edge dimension and lambda is the radar wavelength. The results presented here can be used to determine the spatial region wherein the echo exists, and the magnitude and phase of the echo from such a plate.

  20. Radar echo from a flat conducting plate - near and far

    SciTech Connect

    Williams, C.S.

    1982-01-01

    Over certain types of terrain, a radar fuze (or altimeter), by virtue of the horizontal component of its velocity, is likely to pass over various flat objects of limited size. The echo from such objects could have a duration less than that of one Doppler cycle, where the Doppler frequency is due to the vertical component of the velocity. If the terrain is principally made up of such objects, their echoes are in most cases entirely uncorrelated with each other. Hence, the total echo after mixing at the radar with the delayed transmitted wave would have a noise-like spectrum not at all confined to the Doppler-frequency band where the desired echo signal is expected. This would seriously degrade the performance of a radar that utilizes correlation. This work shows that the echo from a square flat plate will be of duration greater than the time it takes to pass over the plate if the height h above it satisfies h > a/sup 2//lambda where a is the plate-edge dimension and lambda is the radar wavelength. The results presented here can be used to determine the spatial region wherein the echo exists, and the magnitude and phase of the echo from such a plate. I infer from these results that the case where the signal has a noise-like spectrum is not impossible but it is unlikely for the applications with which I am familiar.

  1. First HF radar measurements of summer mesopause echoes at SURA

    NASA Astrophysics Data System (ADS)

    Karashtin, A. N.; Shlyugaev, Y. V.; Abramov, V. I.; Belov, I. F.; Berezin, I. V.; Bychkov, V. V.; Eryshev, E. B.; Komrakov, G. P.

    1997-07-01

    HF sounding of the mesosphere was first carried out at SURA in summer 1994 at frequencies in the range 8-9 MHz using one of the sub-arrays of the SURA heating facility. The observations had a range resolution of 3 km. Almost all measurements indicated the presence of strong radar returns from altitudes between 83 and 90 km with features very similar to VHF measurements of mesopause summer echoes at mid-latitudes and polar mesopause summer echoes. In contrast to VHF observations, HF mesopause echoes are almost always present.

  2. Temperature echoes revisited to probe the vibrational behavior of dendrimers

    NASA Astrophysics Data System (ADS)

    Paulo, Pedro M. R.

    2010-03-01

    Temperature quench echoes were induced in molecular dynamics simulations of dendrimers. This phenomenon was used to probe the vibrational behavior of these molecules by comparing simulation results with harmonic model predictions. The echo depth for short time intervals between temperature quenches is well described by the harmonic approximation and the fluctuations observed are related to the vibrational density of states. The echo depth for long time intervals decays progressively revealing dephasing due to anharmonic interactions. The density of states was calculated from the temperature fluctuations after the first quench and high-frequency modes were assigned by comparison with vibrational spectra of similar dendrimers.

  3. Temperature echoes revisited to probe the vibrational behavior of dendrimers.

    PubMed

    Paulo, Pedro M R

    2010-03-21

    Temperature quench echoes were induced in molecular dynamics simulations of dendrimers. This phenomenon was used to probe the vibrational behavior of these molecules by comparing simulation results with harmonic model predictions. The echo depth for short time intervals between temperature quenches is well described by the harmonic approximation and the fluctuations observed are related to the vibrational density of states. The echo depth for long time intervals decays progressively revealing dephasing due to anharmonic interactions. The density of states was calculated from the temperature fluctuations after the first quench and high-frequency modes were assigned by comparison with vibrational spectra of similar dendrimers.

  4. Cavitation inception from bubble nuclei

    PubMed Central

    Mørch, K. A.

    2015-01-01

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure–time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes. PMID:26442138

  5. Reflection asymmetric shapes in nuclei

    SciTech Connect

    Ahmad, I.; Carpenter, M.P.; Emling, H.; Holzmann, R.; Janssens, R.V.F.; Khoo, T.L.; Moore, E.F.; Morss, L.R.; Durell, J.L.; Fitzgerald, J.B.; Mowbary, A.S.; Hotchkiss, M.A.; Phillips, W.R.; Drigert, M.W.; Ye, D.; Benet, P.; Manchester Univ. . Dept. of Physics; EG and G Idaho, Inc., Idaho Falls, ID; Notre Dame Univ., IN; Purdue Univ., Lafayette, IN )

    1989-01-01

    Experimental data show that there is no even-even nucleus with a reflection asymmetric shape in its ground state. Maximum octupole- octupole correlations occur in nuclei in the mass 224 (N{approximately}134, Z{approximately}88) region. Parity doublets, which are the characteristic signature of octupole deformation, have been observed in several odd mass Ra, Ac and Pa nuclei. Intertwined negative and positive parity levels have been observed in several even-even Ra and Th nuclei above spin {approximately}8{Dirac h}. In both cases, the opposite parity states are connected by fast El transitions. In some medium-mass nuclei intertwined negative and positive parity levels have also been observed above spin {approximately}7{Dirac h}. The nuclei which exhibit octupole deformation in this mass region are {sup 144}Ba, {sup 146}Ba and {sub 146}Ce; {sup 142}Ba, {sup 148}Ce, {sup 150}Ce and {sup 142}Xe do not show these characteristics. No case of parity doublet has been observed in the mass 144 region. 32 refs., 16 figs., 1 tab.

  6. Cavitation inception from bubble nuclei.

    PubMed

    Mørch, K A

    2015-10-06

    The tensile strength of ordinary water such as tap water or seawater is typically well below 1 bar. It is governed by cavitation nuclei in the water, not by the tensile strength of the water itself, which is extremely high. Different models of the nuclei have been suggested over the years, and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid. The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model and associated experiments throw new light on the effects of transient pressures on the tensile strength of water, which may be notably reduced or increased by such pressure changes.

  7. A SAMPLE OF SEYFERT-2 GALAXIES WITH ULTRALUMINOUS GALAXY-WIDE NARROW-LINE REGIONS: QUASAR LIGHT ECHOES?

    SciTech Connect

    Schirmer, M.; Diaz, R.; Levenson, N. A.; Winge, C.; Holhjem, K.

    2013-01-20

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc{sup -3} at z {approx} 0.3, these 'green beans' (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240-0927 (z = 0.326). Its NLR extends over 26 Multiplication-Sign 44 kpc and is surrounded by an extended NLR. With a total [O III] {lambda}5008 luminosity of (5.7 {+-} 0.9) Multiplication-Sign 10{sup 43} erg s{sup -1}, this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 {mu}m luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes.

  8. First radar echoes from cumulus clouds

    NASA Technical Reports Server (NTRS)

    Knight, Charles A.; Miller, L. J.

    1993-01-01

    In attempting to use centimeter-wavelength radars to investigate the early stage of precipitation formation in clouds, 'mantle echoes' are rediscovered and shown to come mostly from scattering by small-scale variations in refractive index, a Bragg kind of scattering mechanism. This limits the usefulness of single-wavelength radar for studies of hydrometeor growth, according to data on summer cumulus clouds in North Dakota, Hawaii, and Florida, to values of reflectivity factor above about 10 dBZe with 10-cm radar, 0 dBZe with 5-cm radar, and -10 dBZe with 3-cm radar. These are limits at or above which the backscattered radar signal from the kinds of clouds observed can be assumed to be almost entirely from hydrometeors or (rarely) other particulate material such as insects. Dual-wavelength radar data can provide the desired information about hydrometeors at very low reflectivity levels if assumptions can be made about the inhomogeneities responsible for the Bragg scattering. The Bragg scattering signal itself probably will be a useful way to probe inhomogeneities one-half the radar wavelength in scale for studying cloud entrainment and mixing processes. However, this use is possible only before scattering from hydrometeors dominates the radar return.

  9. CRITICAL CARE ECHO ROUNDS: Haemodynamic instability

    PubMed Central

    Francisco, Nadia; Rendon, Alejandro; Gillon, Stuart; Walker, David

    2014-01-01

    The use of echocardiography, whilst well established in cardiology, is a relatively new concept in critical care medicine. However, in recent years echocardiography's potential as both a diagnostic tool and a form of advanced monitoring in the critically ill patient has been increasingly recognised. In this series of Critical Care Echo Rounds, we explore the role of echocardiography in critical illness, beginning here with haemodynamic instability. We discuss the pathophysiology of the shock state, the techniques available to manage haemodynamic compromise, and the unique role which echocardiography plays in this complex process. Case A 69-year-old female presents to the emergency department with a fever, confusion and pain on urinating. Her blood pressure on arrival was 70/40, with heart rate of 117 bpm Despite 3 l of i.v. fluid she remained hypotensive. A central venous catheter was inserted and noradrenaline infusion commenced, and she was admitted to the intensive care unit for management of her shock state. At 6 h post admission, she was on high dose of noradrenaline (0.7 μg/kg per min) but blood pressure remained problematic. An echocardiogram was requested to better determine her haemodynamic state. PMID:26693291

  10. Factors Influencing Ultrasound Echoes From Arterial Walls

    NASA Astrophysics Data System (ADS)

    Griffith, Jim; Maciel, Mario; Zalesky, Paul

    1988-04-01

    Significant progress in methods for the treatment of arterial disease has been made during the past several years. The trend towards least invasive therapies has led to an increasing need for instruments which quantify arterial disease status before, during, and after an intervention or treatment. Such instruments should provide safer and more effective disease treatment by providing the physician with a procedure guidance tool. The use of miniature ultrasound transducers, mounted at the distal end of a vascular catheter or probe, offers a promising method for producing images and quantitative measure-ment of arterial lumen and wall thickness. Several approaches have been suggested for placing the transducers in a probe configuration which is then mounted in a catheter and advanced to the vascular site of interest for image generation. The "best" probe configuration is defined by the specific questions of interest to the physician. It also depends upon transducer characteristics and how the sound beam "interacts" with the arterial wall. Imaging the small diameter coronary arteries, in particular, requires careful consideration of various transducer-tissue parameters. Transducer signal-to-noise ratio will likely be a critical parameter for systems designed to image healthy and diseased coronary arteries. The reported study shows how arterial wall echo amplitude changes as the angle between sound beam and wall varies. Changes are measured under carefully defined laboratory conditions.

  11. Light Echoes of Galactic Explosions and Eruptions

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Bianco, Federica; Chornock, Ryan; Foley, Ryan; Huber, Mark E.; Matheson, Thomas; McDonald, Brittany; Olsen, Knut; Prieto, Jose Luis; Sinnott, Brendan; Smith, Nathan; Welch, Doug

    2012-08-01

    We propose to search for light echoes (LEs) from the historical brightening of the Luminous Blue Variable (LBV) P Cygni using the KPNO 4m Mosaic 1.1 imager. We also propose to conclude our search - so far unsuccessful - for LEs from the the Crab supernova SN 1054 by surveying one remaining region of the LE ellipsoid behind the plane of the supernova remnant on the sky. In addition, we continue to monitor the LEs from the Cas A and Tycho supernovae in order to identify suitable LE candidates for 3D-spectroscopy and spectral time series. Recently, we discovered LEs of the mid-19th-century Great Eruption of η Carinae using CTIO 4m Mosaic images. Subsequent spectroscopic follow-up revealed that its outburst spectral type was most similar to those of G-type supergiants, rather than the reported LBV outburst spectral types (F-type or earlier) teRest12_eta. The application of the LE studies to LBVs promises to extend our ability to record outburst activity hundreds of years into the past - a timescale which is likely a significant fraction of the brief final phases of these probable core-collapse supernova precursors.

  12. Chromatin structure in barley nuclei.

    PubMed

    Mithieux, G; Roux, B

    1983-10-03

    In order to study the chromatin structure of a higher plant we used a high-yield method, which allows one to obtain up to 10(9) nuclei/kg fresh barley leaves. Significant amounts of low-ionic-strength-soluble chromatin can be extracted from these nuclei. Physicochemical properties were examined and discussed. Electric birefringence allowed us to observe the same transition in electro-optical properties as has been observed for animal chromatin, and suggested the existence of a symetrical structure occurring for approximately six nucleosomes. Circular dichroism showed that barley oligonucleosomes exhibit a higher molar ellipticity at 282 nm than total soluble chromatin and than their animal counterparts.

  13. 122. AERIAL VIEW OF GLEN ECHO AND CLARA BARTON PARKWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    122. AERIAL VIEW OF GLEN ECHO AND CLARA BARTON PARKWAY AND MACARTHUR BLVD. INTERCHANGE LOOKING NORTHWEST. - George Washington Memorial Parkway, Along Potomac River from McLean to Mount Vernon, VA, Mount Vernon, Fairfax County, VA

  14. Statistical Characterization of the Medical Ultrasound Echo Signals

    NASA Astrophysics Data System (ADS)

    Cai, Runqiu

    2016-12-01

    Medical ultrasound echo signals provide the basic information for obtaining the ultrasonic image in medical ultrasound technology. The statistics of the ultrasound echo signals reveals the systematic structure of the medical ultrasonic image via analyzing the corresponding statistical distributions. A novel statistical distribution, the ascending order K distribution, was proposed here to model the medical ultrasound echo signals. The ascending order K distribution was developed in light of the statistical analysis of the sequential waveforms in the echo signals. Comparison with the previous statistical distributions was made to verify the superiority of the ascending order K distribution. Further discussion showed the determination of the statistical principles for the ultrasound signals can enhance our understanding of the statistical principles of the ultrasound imaging, and thus, facilitate the optimization of the ultrasound image and the tissue identification in the ultrasound diagnosis.

  15. Light echoes and transient luminescence near SN 1987A

    NASA Technical Reports Server (NTRS)

    Crotts, Arlin P. S.; Kunkel, William E.; Mccarthy, Patrick J.

    1989-01-01

    The discovery of two new light echoes from sheets of material behind supernova 1987A and present images of the progenitor's circumstellar shell are reported, indicating diffuse echoes from the star's red giant wind. The echo sheets' geometry explains well the behavior of SN 1987's 10-micron flux, but the circumstellar shell appears to be 70 percent larger than the prediction from the analysis of narrow UV emission lines. The sheets' recombination time show them relatively thin and dense. The data also constrain the existence of any fourth star in the Sanduleak -69 deg 202 system and show that the feature reported 8 arcsecs from the supernova is probably not an echo from a thin sheet in SN 1987A's foreground.

  16. Loschmidt echo and time reversal in complex systems

    PubMed Central

    Goussev, Arseni; Jalabert, Rodolfo A.; Pastawski, Horacio M.; Wisniacki, Diego A.

    2016-01-01

    Echoes are ubiquitous phenomena in several branches of physics, ranging from acoustics, optics, condensed matter and cold atoms to geophysics. They are at the base of a number of very useful experimental techniques, such as nuclear magnetic resonance, photon echo and time-reversal mirrors. Particularly interesting physical effects are obtained when the echo studies are performed on complex systems, either classically chaotic, disordered or many-body. Consequently, the term Loschmidt echo has been coined to designate and quantify the revival occurring when an imperfect time-reversal procedure is applied to a complex quantum system, or equivalently to characterize the stability of quantum evolution in the presence of perturbations. Here, we present the articles which discuss the work that has shaped the field in the past few years. PMID:27140977

  17. Detecting faint echoes in stellar-flare light curves

    NASA Technical Reports Server (NTRS)

    Bromley, Benjamin C.

    1992-01-01

    Observational considerations are discussed for detecting echoes from flare-star photospheres and from stellar or planetary companions. Synthetic spectra are used to determine optimal conditions for the recovery of echoes in flare light curves. The most detectable echoes are expected to appear in broadband observations of the UV continuum. Short-lived flares are ideal for resolving echoes from the flare-star photosphere and may provide constraints for stellar-flare models. Strong outbursts may be used to detect stellar or planetary companions of a flare star. However, the possible planetary configurations that may be probed by this method are limited to Jupiter-size objects in tight orbits about the parent star.

  18. Statistical Characterization of the Medical Ultrasound Echo Signals

    PubMed Central

    Cai, Runqiu

    2016-01-01

    Medical ultrasound echo signals provide the basic information for obtaining the ultrasonic image in medical ultrasound technology. The statistics of the ultrasound echo signals reveals the systematic structure of the medical ultrasonic image via analyzing the corresponding statistical distributions. A novel statistical distribution, the ascending order K distribution, was proposed here to model the medical ultrasound echo signals. The ascending order K distribution was developed in light of the statistical analysis of the sequential waveforms in the echo signals. Comparison with the previous statistical distributions was made to verify the superiority of the ascending order K distribution. Further discussion showed the determination of the statistical principles for the ultrasound signals can enhance our understanding of the statistical principles of the ultrasound imaging, and thus, facilitate the optimization of the ultrasound image and the tissue identification in the ultrasound diagnosis. PMID:27991564

  19. How New National Air Data System Affects ECHO Data ...

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  20. NPDES Program Search Criteria Help | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  1. Preliminary results of the echo-seeding experiment at SLAC

    SciTech Connect

    Xiang, D.; Colby, E.; Ding, Y.; Dunning, M.; Frederico, J.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodley, M.; Corlett, J.; Qiang, J.; Penn, G.; Prestemon, S.; Schlueter, R.; Venturini, M.; Wan, W.; Pernet, P-L.

    2010-05-23

    ECHO-7 is a proof-of-principle echo-enabled harmonic generation FEL experiment in the Next Linear Collider Test Accelerator (NLCTA) at SLAC. The experiment aims to generate coherent radiation at 318 nm and 227 nm, which are the 5th and 7th harmonic of the infrared seed laser. In this paper we present the preliminary results from the commissioning run of the completed experimental setup which started in April 2010.

  2. Analyze Trends: Drinking Water Dashboard | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  3. ECHO Services: Foundational Middleware for a Science Cyberinfrastructure

    NASA Technical Reports Server (NTRS)

    Burnett, Michael

    2005-01-01

    This viewgraph presentation describes ECHO, an interoperability middleware solution. It uses open, XML-based APIs, and supports net-centric architectures and solutions. ECHO has a set of interoperable registries for both data (metadata) and services, and provides user accounts and a common infrastructure for the registries. It is built upon a layered architecture with extensible infrastructure for supporting community unique protocols. It has been operational since November, 2002 and it available as open source.

  4. Analyze Trends: State Air Dashboard | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  5. Civil Enforcement Case Report Data Dictionary | ECHO | US ...

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  6. Analyze Trends: State Water Dashboard | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  7. ICIS-Air Program Code Subpart Descriptions | ECHO | US ...

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  8. State Comments on Frozen Data - 2014 | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  9. Facility Search – Enforcement and Compliance Data | ECHO ...

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  10. Criminal Enforcement Case Report Help | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  11. Civil Enforcement Case Report Help | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  12. Significance-aware filtering for nonlinear acoustic echo cancellation

    NASA Astrophysics Data System (ADS)

    Hofmann, Christian; Huemmer, Christian; Guenther, Michael; Kellermann, Walter

    2016-12-01

    This article summarizes and extends the recently proposed concept of Significance-Aware (SA) filtering for nonlinear acoustic echo cancellation. The core idea of SA filtering is to decompose the estimation of the nonlinear echo path into beneficially interacting subsystems, each of which can be adapted with high computational efficiency. The previously proposed SA Hammerstein Group Models (SA-HGMs) decompose the nonlinear acoustic echo path into a direct-path part, modeled by a Hammerstein Group Model (HGM) and a complementary part, modeled by a very efficient Hammerstein model. In this article, we furthermore propose a novel Equalization-based SA (ESA) structure, where the echo path is equalized by a linear filter to allow for an estimation of the loudspeaker nonlinearities by very small and efficient models. Additionally, we provide a novel in-depth analysis of the computational complexity of the previously proposed SA and the novel ESA filters and compare both SA filtering approaches to each other, to adaptive HGMs, and to linear filters, where fast partitioned-block frequency-domain realizations of the competing filter structures are considered. Finally, the echo reduction performance of the proposed SA filtering approaches is verified using real recordings from a commercially available smartphone. Beyond the scope of previous publications on SA-HGMs, the ability of the SA filters to generalize for double-talk situations is explicitly considered as well. The low complexity as well as the good echo reduction performance of both SA filters illustrate the potential of SA filtering in practice.

  13. Velocities of auroral coherent echoes at 12 and 144 MHz

    NASA Astrophysics Data System (ADS)

    Koustov, A. V.; Danskin, D. W.; Uspensky, M. V.; Ogawa, T.; Janhunen, P.; Nishitani, N.; Nozawa, S.; Lester, M.; Milan, S.

    2002-10-01

    Two Doppler coherent radar systems are currently working at Hankasalmi, Finland, the STARE and CUTLASS radars operating at ~144 MHz and ~12 MHz, respectively. The STARE beam 3 is nearly co-located with the CUTLASS beam 5, providing an opportunity for echo velocity comparison along the same direction but at significantly different radar frequencies. In this study we consider an event when STARE radar echoes are detected at the same ranges as CUT-LASS radar echoes. The observations are complemented by EISCAT measurements of the ionospheric electric field and electron density behaviour at one range of 900 km. Two separate situations are studied; for the first one, CUTLASS observed F-region echoes (including the range of the EIS-CAT measurements), while for the second one CUTLASS observed E-region echoes. In both cases STARE E-region measurements were available. We show that F-region CUT-LASS velocities agree well with the convection component along the CUTLASS radar beam, while STARE velocities are typically smaller by a factor of 2 3. For the second case, STARE velocities are found to be either smaller or larger than CUTLASS velocities, depending on the range. Plasma physics of E-and F-region irregularities is discussed in attempt to explain the inferred relationship between various velocities. Special attention is paid to ionospheric refraction that is important for the detection of 12-MHz echoes.

  14. Chiral electroweak currents in nuclei

    DOE PAGES

    Riska, D. O.; Schiavilla, R.

    2017-01-10

    Here, the development of the chiral dynamics based description of nuclear electroweak currents is reviewed. Gerald E. (Gerry) Brown’s role in basing theoretical nuclear physics on chiral Lagrangians is emphasized. Illustrative examples of the successful description of electroweak observables of light nuclei obtained from chiral effective field theory are presented.

  15. Electromagnetic structure of light nuclei

    SciTech Connect

    Pastore, Saori

    2016-03-25

    Here, the present understanding of nuclear electromagnetic properties including electromagnetic moments, form factors and transitions in nuclei with A ≤ 10 is reviewed. Emphasis is on calculations based on nuclear Hamiltonians that include two- and three-nucleon realistic potentials, along with one- and two-body electromagnetic currents derived from a chiral effective field theory with pions and nucleons.

  16. Octupole correlation effects in nuclei

    SciTech Connect

    Chasman, R.R.

    1992-01-01

    Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions.

  17. Octupole correlation effects in nuclei

    SciTech Connect

    Chasman, R.R.

    1992-08-01

    Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions.

  18. Proton Distribution in Heavy Nuclei

    DOE R&D Accomplishments Database

    Johnson, M. H; Teller, E.

    1953-11-13

    It is reasoned that, from considerations connected with beta-decay stability and Coulomb repulsion forces, a neutron excess is developed on the surface of heavy nuclei. Several consequences of this qualitative analysis in nucleon interactions are briefly noted. (K.S.)

  19. Nuclei and propeller cavitation inception

    SciTech Connect

    Gindroz, B.; Billet, M.L.

    1994-12-31

    Propeller cavitation inception tests were conducted in the Grand Tunnel Hydrodynamique (GTH) of the Bassin d`Essaid des Carenes. Both acoustic and visual cavitation inception were determined for leading-edge sheet, travelling bubble, and tip vortex. These data were obtained for specific water quality conditions. The water quality was determined from cavitation susceptibility meter measurements for degassed water (maximum liquid tension, few nuclei), low injection rate of microbubbles (medium liquid tension, low nuclei concentration), medium injection rate of microbubbles (medium liquid tension, high nuclei concentration) and high injection rate of microbubbles (minimum liquid tension, high nuclei concentration). Results clearly demonstrate a different influence of water quality for each type of cavitation. Little variation in cavitation inception index for a significant increase in liquid tension and microbubble size distribution was found for leading-edge sheet; however, tip vortex cavitation inception index decreased significantly for an increase in liquid tension. In addition, a dependency on event rate was determined for tip vortex cavitation inception.

  20. Resolution of overlapping ultrasonic echoes using consistent frequency domain amplitude-phase relationships

    NASA Astrophysics Data System (ADS)

    Kwan, Chi-Hang; Sinclair, Anthony N.

    2017-02-01

    We introduce a new post-processing ultrasonic echo identification algorithm for the special case of two overlapping echoes. Compared to dictionary-based deconvolution, the algorithm has a reduced solution space and can reconstruct echoes that have a better fit with the acquired data. We have tested the algorithm using a synthetic test case using two dissimilar echoes and the algorithm was able to reconstruct the constituent echoes with good accuracy.

  1. Cortical neurons of bats respond best to echoes from nearest targets when listening to natural biosonar multi-echo streams

    PubMed Central

    Beetz, M. Jerome; Hechavarría, Julio C.; Kössl, Manfred

    2016-01-01

    Bats orientate in darkness by listening to echoes from their biosonar calls, a behaviour known as echolocation. Recent studies showed that cortical neurons respond in a highly selective manner when stimulated with natural echolocation sequences that contain echoes from single targets. However, it remains unknown how cortical neurons process echolocation sequences containing echo information from multiple objects. In the present study, we used echolocation sequences containing echoes from three, two or one object separated in the space depth as stimuli to study neuronal activity in the bat auditory cortex. Neuronal activity was recorded with multi-electrode arrays placed in the dorsal auditory cortex, where neurons tuned to target-distance are found. Our results show that target-distance encoding neurons are mostly selective to echoes coming from the closest object, and that the representation of echo information from distant objects is selectively suppressed. This suppression extends over a large part of the dorsal auditory cortex and may override possible parallel processing of multiple objects. The presented data suggest that global cortical suppression might establish a cortical “default mode” that allows selectively focusing on close obstacle even without active attention from the animals. PMID:27786252

  2. LEGUS Discovery of a Light Echo Around Supernova 2012aw

    NASA Astrophysics Data System (ADS)

    Van Dyk, Schuyler D.; Lee, Janice C.; Anderson, Jay; Andrews, Jennifer E.; Calzetti, Daniela; Bright, Stacey N.; Ubeda, Leonardo; Smith, Linda J.; Sabbi, Elena; Grebel, Eva K.; Herrero, Artemio; de Mink, Selma E.

    2015-06-01

    We have discovered a luminous light echo around the normal Type II-Plateau Supernova (SN) 2012aw in Messier 95 (M95; NGC 3351), detected in images obtained approximately two years after explosion with the Wide Field Channel 3 on board the Hubble Space Telescope by the Legacy ExtraGalactic Ultraviolet Survey. The multi-band observations span from the near-ultraviolet through the optical (F275W, F336W, F438W, F555W, and F814W). The apparent brightness of the echo at the time was ˜21-22 mag in all of these bands. The echo appears circular, although less obviously as a ring, with an inhomogeneous surface brightness, in particular, a prominent enhanced brightness to the southeast. The SN itself was still detectable, particularly in the redder bands. We are able to model the light echo as the time-integrated SN light scattered off of diffuse interstellar dust in the SN environment. We have assumed that this dust is analogous to that in the Milky Way with {R}V=3.1. The SN light curves that we consider also include models of the unobserved early burst of light from the SN shock breakout. Our analysis of the echo suggests that the distance from the SN to the scattering dust elements along the echo is ≈ 45 pc. The implied visual extinction for the echo-producing dust is consistent with estimates made previously from the SN itself. Finally, our estimate of the SN brightness in F814W is fainter than that measured for the red supergiant star at the precise SN location in pre-SN images, possibly indicating that the star has vanished and confirming it as the likely SN progenitor.

  3. A high success rate full-waveform lidar echo decomposition method

    NASA Astrophysics Data System (ADS)

    Xu, Lijun; Li, Duan; Li, Xiaolu

    2016-01-01

    A full-waveform Light detection and ranging (LiDAR) echo decomposition method is proposed in this paper. In this method, the peak points are used to detect the separated echo components, while the inflection points are combined with corresponding peak points to detect the overlapping echo components. The detected echo components are then sorted according to their energies in a descending order. The sorted echo components are one by one added into the decomposition model according to their orders. For each addition, the parameters of all echo components already added into the decomposition model are iteratively renewed. After renewing, the amplitudes and full width at half maximums of the echo components are compared with pre-set thresholds to determine and remove the false echo components. Both simulation and experiment were carried out to evaluate the proposed method. In simulation, 4000 full-waveform echoes with different numbers and parameters of echo components were generated and decomposed using the proposed and three other commonly used methods. Results show that the proposed method is of the highest success rate, 91.43%. In experiment, 9549 Geoscience Laser Altimeter System (GLAS) echoes for Shennongjia forest district in south China were employed as test echoes. The test echoes were first decomposed using the four methods and the decomposition results were also compared with those provided by the National Snow and Ice Data Center. Comparison results show that the determination coefficient ({{R}2} ) of the proposed method is of the largest mean, 0.6838, and the smallest standard deviation, 0.3588, and the distribution of the number of the echo components decomposed from the GLAS echoes is the most satisfied with the situation of full-waveform echoes from the forest area, implying that the superposition of the echo components decomposed from a full-waveform echo by using the proposed method can best approximate the full-waveform echo.

  4. Single-shot echo-planar imaging with Nyquist ghost compensation: interleaved dual echo with acceleration (IDEA) echo-planar imaging (EPI).

    PubMed

    Poser, Benedikt A; Barth, Markus; Goa, Pål-Erik; Deng, Weiran; Stenger, V Andrew

    2013-01-01

    Echo planar imaging (EPI) is most commonly used for blood oxygen level-dependent fMRI, owing to its sensitivity and acquisition speed. A major problem with EPI is Nyquist (N/2) ghosting, most notably at high field. EPI data are acquired under an oscillating readout gradient and hence vulnerable to gradient imperfections such as eddy current delays and off-resonance effects, as these cause inconsistencies between odd and even k-space lines after time reversal. We propose a straightforward and pragmatic method herein termed "interleaved dual echo with acceleration (IDEA) EPI": two k-spaces (echoes) are acquired under the positive and negative readout lobes, respectively, by performing phase encoding blips only before alternate readout gradients. From these two k-spaces, two almost entirely ghost free images per shot can be constructed, without need for phase correction. The doubled echo train length can be compensated by parallel imaging and/or partial Fourier acquisition. The two k-spaces can either be complex averaged during reconstruction, which results in near-perfect cancellation of residual phase errors, or reconstructed into separate images. We demonstrate the efficacy of IDEA EPI and show phantom and in vivo images at both 3 T and 7 T.

  5. Properties of nuclei probed by laser light

    NASA Astrophysics Data System (ADS)

    Neugart, Rainer

    2017-03-01

    Viewing objects as small as atomic nuclei by visible light sounds quite unrealistic. However, nuclei usually appear as constituents of atoms whose excitations are indeed associated with the absorption and emission of light. Nuclei can thus interact with light via the atomic system as a whole.

  6. X-ray shout echoing through space

    NASA Astrophysics Data System (ADS)

    2004-01-01

    a flash of X-rays hi-res Size hi-res: 3991 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in hours. At their largest size, the rings would appear in the sky about five times smaller than the full moon. a flash of X-rays hi-res Size hi-res: 2153 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays (Please choose "hi-res" version for animation) XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in seconds. At their largest size, the rings would appear in the sky about five times smaller than the full moon. This echo forms when the powerful radiation of a gamma-ray burst, coming from far away, crosses a slab of dust in our Galaxy and is scattered by it, like the beam of a lighthouse in clouds. Using the expanding rings to precisely pin-point the location of this dust, astronomers can identify places where new stars and planets are likely to form. On 3 December 2003 ESA's observatory, Integral, detected a burst of gamma rays, lasting about 30 seconds, from the direction of a distant galaxy. Within minutes of the detection, thanks to a sophisticated alert network, many

  7. Radio characteristics of galactic nuclei

    NASA Astrophysics Data System (ADS)

    Condon, J. J.

    1986-02-01

    Radio characteristics of galactic nuclei, providing such unique information as spectral data on source variability, and the long-term history of the central engine and its duration of activity and total energy, are reviewed. The compact radio source characteristics are complicated by orientation-dependent relativistic beaming and by refractive focusing in the interstellar medium. Incoherent synchrotron radiation is thought to be the emission mechanism, with the result that synchrotron self-absorption in compact sources hides the central engine from direct radio observation. However, the history revealed by the extended jets and lobes of radio galaxies and quasars favors a single massive object not supported by radiation pressure, either a spinar or a black hole, as the energy source in radio-galaxy nuclei.

  8. Quadrupolar Echo Spectra of the Tunneling CD 3Group

    NASA Astrophysics Data System (ADS)

    Olejniczak, Z.; Detken, A.; Manz, B.; Haeberlen, U.

    Deuteron NMR spectra of both single crystal and powder samples of acetylsalicylic acid-CD 3were measured using the quadrupolar-echo technique. The experiments were done in the temperature range 17-100 K, with a special emphasis on the range 20- 30 K, in which the observable tunneling frequency decreases rapidly from its low-temperature value of 2.7 down to 1.2 MHz. In the tunneling regime, modulations of the line intensities and phases as a function of the echo time τ are observed in the single-crystal spectra. The modulation frequency is equal to the orientation-dependent displacement of the inner satellite pairs (α lines) from the Larmor frequency. These effects were confirmed in numerical simulations and fully explain the phase-modulation effects observed previously in quadrupolar-echo spectra of methyl-deuterated methanol and para-xylene guest molecules in some inclusion compounds. By measuring the temperature and orientation dependence of the quadrupolar lineshapes, it was found that the echo spectra are more sensitive to the value of the tunneling frequency than the spectra obtained from the free induction decay. It is pointed out that, because of the modulation effects, special care must be taken when structural parameters are to be extracted from quadrupolar-echo spectra, in particular from spectra of powder samples.

  9. Light echo detection of circumstellar disks around flaring stars

    NASA Technical Reports Server (NTRS)

    Gaidos, Eric J.

    1994-01-01

    Light echoes can be used to detect and characterize disks around flaring stars. Such disks are thought to be a hallmark of planet formation but are very difficult to detect by ordinary means. Dwarf emission-line M stars experience flares with luminosities comparable to their quiescent photospheres on time scales of minutes, less than the light travel time across a disk many astronomical units in extent; they are thus ideal candidates for such a search. Bromley (1992) calculated that the detection of Jupiter-sized companions using light echoes requires photometric accuracies better than 1 part in 10(exp 6). However, a disk consisting of grains or small bodies will scatter a much larger fraction of the light than a planet of similar mass. I estimate the light echo amplitutdes from plausible geometries of circumstellar material and present simulation light curves. The light echo amplitudes are typically 1% of the flare and I conclude that such events will be detected best in cases where the flare is eclipsed by the star. An examination of the time scales associated with internal processes in a protoplanetary disks around dM stars indicates that any primordial disks may become undetectable in 10(exp 4) years and will have completely disappeared by 10(exp 8) years, the estimated age of dMe stars in the solar neighborhood. However, searches for light echoes might constrain the amount of material continuing to fall into these young stellar systems in the form of comet-like objects.

  10. Modeling of Field-Aligned Guided Echoes in the Plasmasphere

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Green, James L.

    2004-01-01

    The conditions under which high frequency (f>>f(sub uh)) long-range extraordinary-mode discrete field-aligned echoes observed by the Radio Plasma Imager (RPI) on board the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite in the plasmasphere are investigated by ray tracing modeling. Field-aligned discrete echoes are most commonly observed by RPI in the plasmasphere although they are also observed over the polar cap region. The plasmasphere field-aligned echoes appearing as multiple echo traces at different virtual ranges are attributed to signals reflected successively between conjugate hemispheres that propagate along or nearly along closed geomagnetic field lines. The ray tracing simulations show that field-aligned ducts with as little as 1% density perturbations (depletions) and less than 10 wavelengths wide can guide nearly field-aligned propagating high frequency X mode waves. Effective guidance of wave at a given frequency and wave normal angle (Psi) depends on the cross-field density scale of the duct, such that ducts with stronger density depletions need to be wider in order to maintain the same gradient of refractive index across the magnetic field. While signal guidance by field aligned density gradient without ducting is possible only over the polar region, conjugate field-aligned echoes that have traversed through the equatorial region are most likely guided by ducting.

  11. Ultrafast NMR diffusion measurements exploiting chirp spin echoes.

    PubMed

    Ahola, Susanna; Mankinen, Otto; Telkki, Ville-Veikko

    2017-04-01

    Standard diffusion NMR measurements require the repetition of the experiment multiple times with varying gradient strength or diffusion delay. This makes the experiment time-consuming and restricts the use of hyperpolarized substances to boost sensitivity. We propose a novel single-scan diffusion experiment, which is based on spatial encoding of two-dimensional data, employing the spin-echoes created by two successive adiabatic frequency-swept chirp π pulses. The experiment is called ultrafast pulsed-field-gradient spin-echo (UF-PGSE). We present a rigorous derivation of the echo amplitude in the UF-PGSE experiment, justifying the theoretical basis of the method. The theory reveals also that the standard analysis of experimental data leads to a diffusion coefficient value overestimated by a few per cent. Although the overestimation is of the order of experimental error and thus insignificant in many practical applications, we propose that it can be compensated by a bipolar gradient version of the experiment, UF-BP-PGSE, or by corresponding stimulated-echo experiment, UF-BP-pulsed-field-gradient stimulated-echo. The latter also removes the effect of uniform background gradients. The experiments offer significant prospects for monitoring fast processes in real time as well as for increasing the sensitivity of experiments by several orders of magnitude by nuclear spin hyperpolarization. Furthermore, they can be applied as basic blocks in various ultrafast multidimensional Laplace NMR experiments. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Faraday rotation echo spectroscopy and detection of quantum fluctuations.

    PubMed

    Chen, Shao-Wen; Liu, Ren-Bao

    2014-04-15

    Central spin decoherence is useful for detecting many-body physics in environments and moreover, the spin echo control can remove the effects of static thermal fluctuations so that the quantum fluctuations are revealed. The central spin decoherence approach, however, is feasible only in some special configurations and often requires uniform coupling between the central spin and individual spins in the baths, which are very challenging in experiments. Here, by making analogue between central spin decoherence and depolarization of photons, we propose a scheme of Faraday rotation echo spectroscopy (FRES) for studying quantum fluctuations in interacting spin systems. The echo control of the photon polarization is realized by flipping the polarization with a birefringence crystal. The FRES, similar to spin echo in magnetic resonance spectroscopy, can suppress the effects of the static magnetic fluctuations and therefore reveal dynamical magnetic fluctuations. We apply the scheme to a rare-earth compound LiHoF4 and calculate the echo signal, which is related to the quantum fluctuations of the system. We observe enhanced signals at the phase boundary. The FRES should be useful for studying quantum fluctuations in a broad range of spin systems, including cold atoms, quantum dots, solid-state impurities, and transparent magnetic materials.

  13. Direct Reactions with Exotic Nuclei

    SciTech Connect

    Baur, G.; Typel, S.

    2005-10-14

    We discuss recent work on Coulomb dissociation and an effective-range theory of low-lying electromagnetic strength of halo nuclei. We propose to study Coulomb dissociation of a halo nucleus bound by a zero-range potential as a homework problem. We study the transition from stripping to bound and unbound states and point out in this context that the Trojan-Horse method is a suitable tool to investigate subthreshold resonances.

  14. Properties of echo spectra observed by MST radars

    NASA Technical Reports Server (NTRS)

    Wakasugi, K.

    1983-01-01

    Turbulent scatter and Fresnel reflection are the fundamental echoing mechanisms to interpret the signals observed by Mesosphere-stratosphere-troposphere (MST) radars. Turbulent scattered echoes provide information about the turbulence structure and mean flow of the atmosphere. Observational results with VHF MST radars, however, show the importance of Fresnel reflection due to the infinite gradient of reflectivity at the edges of a scattering layer. This condition is excluded for the weak fluctuation models but it is still possible to include the observed aspect sensitivity by assuming an anisotropic structure of fluctuations. Another explanation of the aspect sensitivity observed by MST radars is advanced. Spectral estimates by the widely used periodogram were related to a four-dimensional spectrum of atmospheric fluctuations with anisotropic structure. Effects of the radar system such as antenna beam width, beam direction and Fast Fourier Transformations (FFT) data length were discussed for the anisotropic turbulent atmosphere. Echo parameters were also estimated.

  15. Collision-induced stimulated photon echo in magnetic field

    NASA Astrophysics Data System (ADS)

    Reshetov, V. A.

    2015-12-01

    The action of the longitudinal magnetic field on the collision-induced stimulated photon echo formed on the transition with the angular momentum change {{J}a}=0\\to {{J}b}=1 is studied theoretically. It is shown that this action depends essentially on the sign of the difference in the orientation Γb(1) and alignment Γb(2) relaxation rates of the excited level b. If Γb(2)>Γb(1) , then the echo intensity in a weak magnetic field increases with the increase in the magnetic field strength, while in the alternative case Γb(2)<Γb(1) it decreases up to zero value. The formulae enabling the determination of the magnitude of the difference Γb(1)-Γb(2) from the experimental study of the oscillations of the echo intensity with the increase in the magnetic field strength are obtained.

  16. Echo 7: Magnetospheric properties determined by artificial electron beams

    SciTech Connect

    Nemzek, R.J.

    1990-01-01

    The sounding rocket Echo 7 was launched from the Poker Flat Research Range. An on-board accelerator injected high-power electron beams into the magnetospheric tail near L = 6.5. After mirroring at the southern conjugate point, about 20 percent of the initial beam electrons returned to the North as Conjugate Echoes, where detectors (scintillators and spectrometers) on four subpayloads measured their energy and bounce time. The other 80 percent of the beam was pitch angle diffused by wave near the equatorial plane either into the conjugate atmosphere or up to mirror points above the payload. Comparison of measured values to calculations showed that the actual magnetosphere during the flight was well-described by the Tsyganenko-Usmanov model magnetosphere with a Kp value of 2- or 2+. Analysis of echo energies yielded values for the highly variable magnetospheric convection electric field.

  17. Echo-seeding options for LCLS-II

    SciTech Connect

    Xiang, D.; Stupakov, G.; /SLAC

    2010-09-14

    The success of LCLS has opened up a new era of x-ray sciences. An upgrade to LCLS is currently being planned to enhance its capabilities. In this paper we study the feasibility of using the echo-enabled harmonic generation (EEHG) technique to generate narrow bandwidth soft x-ray radiation in the proposed LCLS-II soft x-ray beam line. We focus on the conceptual design, the technical implementation and the expected performances of the echo-seeding scheme. We will also show how the echo-seeding scheme allows one to generate two color x-ray pulses with the higher energy photons leading the lower energy ones as is favored in the x-ray pump-probe experiments.

  18. Geometry of Superluminal Light-Echo Pair Events

    NASA Astrophysics Data System (ADS)

    Nemiroff, Robert J.

    2017-01-01

    Light echoes, shadows, and ionization fronts can and do move faster than light, both in the lab and out in the cosmos. In general, though, a single observer cannot tell the speed of such echoes without distance information -- unless a very specific geometry arises: the radial component crosses c. The observer then sees this crossing location as the site where a pair of bright light echoes is created or annihilated. This pair event tells the observer that a precise speed occurs, a speed that does not scale with distance and so can potentially be leveraged to reveal geometry and distance information. A few simple scattering surface geometries are shown illuminated by a point flash, including linear and circular filaments. In practice, useful astronomical flash sources include novae and supernovae, although in theory any uniquely varying source of stellar variability could be sufficient.

  19. Loschmidt echo in one-dimensional interacting Bose gases

    SciTech Connect

    Lelas, K.; Seva, T.; Buljan, H.

    2011-12-15

    We explore Loschmidt echo in two regimes of one-dimensional interacting Bose gases: the strongly interacting Tonks-Girardeau (TG) regime, and the weakly interacting mean-field regime. We find that the Loschmidt echo of a TG gas decays as a Gaussian when small (random and time independent) perturbations are added to the Hamiltonian. The exponent is proportional to the number of particles and the magnitude of a small perturbation squared. In the mean-field regime the Loschmidt echo shows richer behavior: it decays faster for larger nonlinearity, and the decay becomes more abrupt as the nonlinearity increases; it can be very sensitive to the particular realization of the noise potential, especially for relatively small nonlinearities.

  20. Efficient algorithm for discrimination of overlapping ultrasonic echoes.

    PubMed

    Fortineau, Julien P; Vander Meulen, François; Fortineau, Jérôme; Feuillard, Guy

    2017-01-01

    We propose a method to identify the different echoes of an overlapped ultrasonic signal. This method is based on an iterative algorithm that compares the experimental signal to a realistic dictionary of trial functions and allows identification of one overlapped echo at each iteration. Adding physical parameters to the dictionary such as sample attenuation and ultrasound beam diffraction allows the method to be applied to various materials and sample geometries. Measurements at 500kHz and 5MHz on a ABS material and a copper plate are reported. The effectiveness and the robustness of the method are studied as a function of time delay between the different echoes. We show that taking into account the experimental set-up and material properties in the development of the dictionary are critical to identifying a round-trip signal when overlapping occurs.

  1. Auditory-tactile echo-reverberating stuttering speech corrector

    NASA Astrophysics Data System (ADS)

    Kuniszyk-Jozkowiak, Wieslawa; Adamczyk, Bogdan

    1997-02-01

    The work presents the construction of a device, which transforms speech sounds into acoustical and tactile signals of echo and reverberation. Research has been done on the influence of the echo and reverberation, which are transmitted as acoustic and tactile stimuli, on speech fluency. Introducing the echo or reverberation into the auditory feedback circuit results in a reduction of stuttering. A bit less, but still significant corrective effects are observed while using the tactile channel for transmitting the signals. The use of joined auditory and tactile channels increases the effects of their corrective influence on the stutterers' speech. The results of the experiment justify the use of the tactile channel in the stutterers' therapy.

  2. Light echoes - supernovae 1987A and 1986G

    SciTech Connect

    Schaefer, B.E.

    1987-12-01

    The sudden brilliance of a supernova (SN) eruption will be reflected on surrounding dust grains to create a phantom nebula. The paper presents a series of calculations in which the apparent brightness of this light echo is predicted for a variety of situations where the dust is part of the interstellar medium (ISM). It is found that the supernova 1987 A will have a very bright echo off the ISM that may perhaps be visible with binoculars for many years. At a time of 400 days past maximum, the SN 1986G is found to be 2.7 mag brighter than would be predicted by an extrapolation of its light curve. This unique property has an easy explanation as a light echo off the dust in the dust lane of Cen A. 24 references.

  3. Ecological echoes observed by moving biomimetic sonar characterize objects

    NASA Astrophysics Data System (ADS)

    Kuc, Roman

    2001-05-01

    This paper examines echoes from in situ foliage, similar to those observed by flying bats. A moving sonar converts echoes into spike sequences and applies neural-computational methods to estimate passing range and travel speed. Retro-reflectors and favorably oriented planar patches generate strong echoes (SEs), identified by spike firing rate. Linear sonar trajectories cause SEs to form hyperbolic patterns, termed glints, specified by passing range and travel speed. Passing-range specific detectors compare successive SE times with values in a table and tally coincidences. A glint terminates after a sufficient number of coincidences are tallied and two consecutive mismatches occur in the maximum-count detector. SE arrival jitter necessitates a coincidence window. Short windows identify individual glints while long windows generalize extended objects. SEs from distant objects exhibit almost constant incremental delays, used to estimate sonar travel speed, necessary for robust glint detection. Passing-range estimates may explain how bats can fly through small openings without collision.

  4. Visualization of intra-thalamic nuclei with optimized white-matter-nulled MPRAGE at 7T.

    PubMed

    Tourdias, Thomas; Saranathan, Manojkumar; Levesque, Ives R; Su, Jason; Rutt, Brian K

    2014-01-01

    Novel MR image acquisition strategies have been investigated to elicit contrast within the thalamus, but direct visualization of individual thalamic nuclei remains a challenge because of their small size and the low intrinsic contrast between adjacent nuclei. We present a step-by-step specific optimization of the 3D MPRAGE pulse sequence at 7T to visualize the intra-thalamic nuclei. We first measured T1 values within different sub-regions of the thalamus at 7T in 5 individuals. We used these to perform simulations and sequential experimental measurements (n=17) to tune the parameters of the MPRAGE sequence. The optimal set of parameters was used to collect high-quality data in 6 additional volunteers. Delineation of thalamic nuclei was performed twice by one rater and MR-defined nuclei were compared to the classic Morel histological atlas. T1 values within the thalamus ranged from 1400ms to 1800ms for adjacent nuclei. Using these values for theoretical evaluations combined with in vivo measurements, we showed that a short inversion time (TI) close to the white matter null regime (TI=670ms) enhanced the contrast between the thalamus and the surrounding tissues, and best revealed intra-thalamic contrast. At this particular nulling regime, lengthening the time between successive inversion pulses (TS=6000ms) increased the thalamic signal and contrast and lengthening the α pulse train time (N*TR) further increased the thalamic signal. Finally, a low flip angle during the gradient echo acquisition (α=4°) was observed to mitigate the blur induced by the evolution of the magnetization along the α pulse train. This optimized set of parameters enabled the 3D delineation of 15 substructures in all 6 individuals; these substructures corresponded well with the known anatomical structures of the thalamus based on the classic Morel atlas. The mean Euclidean distance between the centers of mass of MR- and Morel atlas-defined nuclei was 2.67mm (±1.02mm). The reproducibility of

  5. Visualization of intra-thalamic nuclei with optimized white-matter-nulled MPRAGE at 7T

    PubMed Central

    Tourdias, Thomas; Saranathan, Manojkumar; Levesque, Ives R.; Su, Jason; Rutt, Brian K.

    2013-01-01

    Novel MR image acquisition strategies have been investigated to elicit contrast within the thalamus, but direct visualization of individual thalamic nuclei remains a challenge because of their small size and the low intrinsic contrast between adjacent nuclei. We present a step-by-step specific optimization of the 3D MPRAGE pulse sequence at 7T to visualize the intra-thalamic nuclei. We first measured T1 values within different sub-regions of the thalamus at 7T in 5 individuals. We used these to perform simulations and sequential experimental measurements (n=17) to tune the parameters of the MPRAGE sequence. The optimal set of parameters was used to collect high-quality data in 6 additional volunteers. Delineation of thalamic nuclei was performed twice by one rater and MR-defined nuclei were compared to the classic Morel histological atlas. T1 values within the thalamus ranged from 1400ms to 1800ms for adjacent nuclei. Using these values for theoretical evaluations combined with in vivo measurements, we showed that a short inversion time (TI) close to the white matter null regime (TI=670ms) enhanced the contrast between the thalamus and the surrounding tissues, and best revealed intra-thalamic contrast. At this particular nulling regime, lengthening the time between successive inversion pulses (TS=6000ms) increased the thalamic signal and contrast and lengthening the α pulse train time (N*TR) further increased the thalamic signal. Finally, a low flip angle during the gradient echo acquisition (α=4°) was observed to mitigate the blur induced by the evolution of the magnetization along the α pulse train. This optimized set of parameters enabled the 3D delineation of 15 substructures in all 6 individuals; these substructures corresponded well with the known anatomical structures of the thalamus based on the classical Morel atlas. The mean Euclidean distance between the centers of mass of MR- and Morel atlas-defined nuclei was 2.67mm (±1.02mm). The reproducibility

  6. Echoing and scaling in Einstein-Yang-Mills critical collapse

    NASA Astrophysics Data System (ADS)

    Gundlach, Carsten

    1997-05-01

    We confirm recent numerical results of echoing and mass scaling in the gravitational collapse of a spherical Yang-Mills field by constructing the critical solution and its perturbations as an eigenvalue problem. Because the field equations are not scale invariant, the Yang-Mills critical solution is asymptotically, rather than exactly, self-similar, but the methods for dealing with discrete self-similarity developed for the real scalar field can be generalized. We find an echoing period Δ=0.73784+/-0.00002 and a critical exponent for the black hole mass γ=0.1964+/-0.0007.

  7. Asteroidal meteors detected by MU radar head-echo observations

    NASA Astrophysics Data System (ADS)

    Abe, S.; Kero, J.; Nakamura, T.; Fujiwara, Y.; Kastinen, D.; Watanabe, J.; Hashiguchi, H.

    2016-01-01

    The recent development of the technique carried out using the middle and upper atmosphere radar (MU radar) of Kyoto University at Shigaraki (34.9N, 136.1S), which is large atmospheric VHF radar with 46.5 MHz frequency, 1 MW output transmission power and 8330 m2 aperture array antenna, has established very precise orbital determination from meteor head echoes. A tremendous number, more than 150000, of observed precise orbits of meteoroids by the MU radar meteor head-echo observation will shed light on new discoveries of meteoroids. Here we report some interesting features related with asteroids or distinct comets.

  8. Asteroid shapes from radar echo spectra - A new theoretical approach

    NASA Technical Reports Server (NTRS)

    Ostro, Steven J.; Belkora, Leila; Connelly, Robert

    1988-01-01

    Asteroid shape determinations are presently made by means of a novel technique based on the geometric relation between spectral edge frequencies and the shape of a rotating, rigid radar target. By employing the echo spectra obtained at many rotational phases, the asteroid's convex polar silhouette hull is obtained; noise content is treated as a problem in weighted-least-squares optimization, subject to inequality constraints. The performance of this estimation method is assessed in a series of simulated data giving attention to spectral noise propagation into hull error; sensitivity to echo strength and spectral resolution are also evaluated.

  9. All-optical photon echo on a chip

    NASA Astrophysics Data System (ADS)

    Moiseev, E. S.; Moiseev, S. A.

    2017-01-01

    We demonstrate that a photon echo can be implemented by all-optical means using an array of on-chip high-finesse ring cavities whose parameters are chirped in such a way as to support equidistant spectra of cavity modes. When launched into such a system, a classical or quantum optical signal—even a single-photon field—becomes distributed between individual cavities, giving rise to prominent coherence echo revivals at well-defined delay times, controlled by the chirp of cavity parameters. This effect enables long storage times for high-throughput broadband optical delay and quantum memory.

  10. High-resolution solid-state NMR of quadrupolar nuclei

    PubMed Central

    Meadows, Michael D.; Smith, Karen A.; Kinsey, Robert A.; Rothgeb, T. Michael; Skarjune, Robert P.; Oldfield, Eric

    1982-01-01

    We report the observation of high-resolution solid-state NMR spectra of 23Na (I = [unk]), 27Al (I = [unk]) and 51V (I = [unk]) in various inorganic systems. We show that, contrary to popular belief, relatively high-resolution (≈10 ppm linewidth) spectra may be obtained from quadrupolar systems, in which electric quadrupole coupling constants (e2qQ/h) are in the range ≈1-5 MHz, by means of observation of the (½, -½) spin transition. The (½, -½) transition for all nonintegral spin quadrupolar nuclei (I = [unk], [unk], [unk], or [unk]) is only normally broadened by dipolar, chemical shift (or Knight shift) anisotropy or second-order quadrupolar effects, all of which are to a greater or lesser extent averaged under fast magic-angle sample rotation. In the case of 23Na and 27Al, high-resolution spectra of 23NaNO3 (e2qQ/h ≈300 kHz) and α-27Al2O3 (e2qQ/h ≈2-3 MHz) are presented; in the case of 51V2O5 (e2qQ/h ≈800 kHz), rotational echo decays are observed due to the presence of a ≈103-ppm chemical shift anisotropy. The observation of high-resolution solid-state spectra of systems having spins I = [unk], [unk], and [unk] in asymmetric environments opens up the possibility of examining about two out of three nuclei by solid-state NMR that were previously thought of as “inaccessible” due to the presence of large (a few megahertz) quadrupole coupling constants. Preliminary results for an I = [unk] system, 93Nb, having e2qQ/h ≈19.5 MHz, are also reported. PMID:16593165

  11. Breakup Densities of Hot Nuclei

    NASA Astrophysics Data System (ADS)

    Viola, V. E.; Kwiatkowski, K.; Natowitz, J. B.; Yennello, S. J.

    2004-09-01

    Breakup densities of hot 197Au-like residues have been deduced from the systematic trends of Coulomb parameters required to fit intermediate-mass-fragment kinetic-energy spectra. The results indicate emission from nuclei near normal nuclear density below an excitation energy E*/A≲2 MeV, followed by a gradual decrease to a near-constant value of ρ/ρ0˜0.3 for E*/A≳5 MeV. Temperatures derived from these data with a density-dependent Fermi-gas model yield a nuclear caloric curve that is generally consistent with those derived from isotope ratios.

  12. Superdeformation in the mercury nuclei

    SciTech Connect

    Janssens, R.V.F.; Carpenter, M.P.; Fernandez, P.B.; Moore, E.F.; Ahmad, I.; Khoo, T.L.; Wolfs, F.L.H. ); Drigert, M.W. ); Ye, D.; Beard, K.B.; Garg, U.; Reviol, W. ); Bearden, I.G.; Benet, P.; Daly, P.J.; Grabowski, Z.W. )

    1990-01-01

    We shall first summarize the present experimental situation concerning {sup 192}Hg, the nucleus regarded as the analog of {sup 152}Dy for this superdeformation (SD) region in that gaps are calculated to occur at large deformation for Z = 80 and N = 112. Proton and neutron excitations out of the {sup 192}Hg core will then be reviewed with particular emphasis on {sup 191}Hg and {sup 193}Tl. The presentation will conclude with a brief discussion on limits of the SD region for neutron deficient Hg nuclei. 26 refs., 10 figs.

  13. Ground states of larger nuclei

    SciTech Connect

    Pieper, S.C.; Wiringa, R.B.; Pandharipande, V.R.

    1995-08-01

    The methods used for the few-body nuclei require operations on the complete spin-isospin vector; the size of this vector makes such methods impractical for nuclei with A > 8. During the last few years we developed cluster expansion methods that do not require operations on the complete vector. We use the same Hamiltonians as for the few-body nuclei and variational wave functions of form similar to the few-body wave functions. The cluster expansions are made for the noncentral parts of the wave functions and for the operators whose expectation values are being evaluated. The central pair correlations in the wave functions are treated exactly and this requires the evaluation of 3A-dimensional integrals which are done with Monte Carlo techniques. Most of our effort was on {sup 16}O, other p-shell nuclei, and {sup 40}Ca. In 1993 the Mathematics and Computer Science Division acquired a 128-processor IBM SP which has a theoretical peak speed of 16 Gigaflops (GFLOPS). We converted our program to run on this machine. Because of the large memory on each node of the SP, it was easy to convert the program to parallel form with very low communication overhead. Considerably more effort was needed to restructure the program from one oriented towards long vectors for the Cray computers at NERSC to one that makes efficient use of the cache of the RS6000 architecture. The SP made possible complete five-body cluster calculations of {sup 16}O for the first time; previously we could only do four-body cluster calculations. These calculations show that the expectation value of the two-body potential is converging less rapidly than we had thought, while that of the three-body potential is more rapidly convergent; the net result is no significant change to our predicted binding energy for {sup 16}O using the new Argonne v{sub 18} potential and the Urbana IX three-nucleon potential. This result is in good agreement with experiment.

  14. 1. GENERAL VIEW LOOKING NORTH SHOWING 130FOOT SPAN OF ECHO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW LOOKING NORTH SHOWING 130-FOOT SPAN OF ECHO BRIDGE OVER THE CHARLES RIVER. - Sudbury River Aqueduct, Echo Bridge, Spanning Charles River at Upper Newton Falls, Newton, Middlesex County, MA

  15. Unexpected characteristics of the 150 km echoes observed over Gadanki and their implications

    NASA Astrophysics Data System (ADS)

    Patra, A. K.; Pavan Chaitanya, P.

    2016-11-01

    Recent discovery of two distinct types of 150 km echoes, namely, type-A and type-B, and subsequent progress in the large-scale kinetic simulation of photoelectron-induced plasma waves have begun a new era in resolving the five decades long 150 km echoing riddle. In this paper, we present hitherto unrevealed three important and unexpected findings on the two distinct types of 150 km echoes based on Gadanki radar observations. Our observations show unexpected predominance of type-A echoes, strong seasonal dependence of both type-A and type-B echoes, and a surprising connection of the type-B echoes to the unusually deep solar minimum of 2008-2009. We discuss how these results provide important new clues in tethering the competing processes involved in the daytime 150 km echoes and have significance in the recently proposed photoelectron-induced plasma fluctuations as a potential mechanism for the 150 km echoes.

  16. Characteristics of spondylotic myelopathy on 3D driven-equilibrium fast spin echo and 2D fast spin echo magnetic resonance imaging: a retrospective cross-sectional study.

    PubMed

    Abdulhadi, Mike A; Perno, Joseph R; Melhem, Elias R; Nucifora, Paolo G P

    2014-01-01

    In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures. However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as 2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for quantitative signal measurements in the spinal cord.

  17. Echoing in Autistic Children: A Chronometric Study of Semantic Processing.

    ERIC Educational Resources Information Center

    Shapiro, Theodore; Lucy, Peter

    1978-01-01

    Explores the idea that echoing in autistics differs from normal imitation and represents a different species of production. Subjects were five autistic children, ranging in age from 3 years 10 months to 6 years 8 months, and two normal children, aged 2 years 6 months and 3 years 11 months. (MP)

  18. Echo signal modeling of imaging LADAR target simulator

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Shi, Rui; Wang, Xin; Li, Zhuo

    2014-11-01

    LADAR guidance technology is one of the most promising precision guidance technologies. In the aim of simulating the return waveform of the target, a 3D geometrical model of a target is built and mathematical model of target echo signal for imaging LADAR target simulator is established by using the coordinate transformation, radar equation and ranging equation. First, the 3D geometrical data of the object model is obtained by 3D geometrical modeling. Then, target coordinate system and viewpoint coordinate system are created respectively. 3D geometrical model is built in the target coordinate system. The 3D geometrical model is transformed to the viewpoint coordinate system based on the derived relationship between the two coordinate systems. Furthermore, the range information of the target could be obtained under viewpoint coordinate system. Thus, the data of the target echo signal can be obtained by using radar equation and ranging equation. Finally, the echo signal can be exported through corresponding data interface. In order to validate the method proposed in this paper, the echo signal generated by a typical target is computed and compared with the theory solutions. The signals can be applied to drive target simulator to generate a physical target LADAR image.

  19. Echo Behavior in Large Populations of Chemical Oscillators

    NASA Astrophysics Data System (ADS)

    Chen, Tianran; Tinsley, Mark R.; Ott, Edward; Showalter, Kenneth

    2016-10-01

    Experimental and theoretical studies are reported, for the first time, on the observation and characterization of echo phenomena in oscillatory chemical reactions. Populations of uncoupled and coupled oscillators are globally perturbed. The macroscopic response to this perturbation dies out with time: At some time τ after the perturbation (where τ is long enough that the response has died out), the system is again perturbed, and the initial response to this second perturbation again dies out. Echoes can potentially appear as responses that arise at 2 τ ,3 τ ,... after the first perturbation. The phase-resetting character of the chemical oscillators allows a detailed analysis, offering insights into the origin of the echo in terms of an intricate structure of phase relationships. Groups of oscillators experiencing different perturbations are analyzed with a geometric approach and in an analytical theory. The characterization of echo phenomena in populations of chemical oscillators reinforces recent theoretical studies of the behavior in populations of phase oscillators [E. Ott et al., Chaos 18, 037115 (2008)]. This indicates the generality of the behavior, including its likely occurrence in biological systems.

  20. MU Radar Head Echo Observations of the 2011 October Draconids

    NASA Astrophysics Data System (ADS)

    Kero, J.; Fujiwara, Y.; Abo, M.; Szasz, C.; Nakamura, T.

    2012-05-01

    13 meteor head echoes from the 2011 October Draconids were observed with the MU radar in Japan. Their weighted mean geocentric velocity was 20.6±0.4km/s and the radiant located at RA=263°.3±0°.6, dec=55°.8±0°.2, in good agreement with simulations.

  1. Larry Echo Hawk: A Rising Star from Idaho.

    ERIC Educational Resources Information Center

    Wisecarver, Charmaine

    1993-01-01

    Larry Echo Hawk, Idaho attorney general and former state legislator, discusses success factors in college and law school; early experiences as an Indian lawyer; first election campaign; and his views on tribal sovereignty, state-tribal relationship, gambling, and his dual responsibility to the general public and Native American issues. (SV)

  2. HF Radar Sea-echo from Shallow Water.

    PubMed

    Lipa, Belinda; Nyden, Bruce; Barrick, Don; Kohut, Josh

    2008-08-06

    HF radar systems are widely and routinely used for the measurement of ocean surface currents and waves. Analysis methods presently in use are based on the assumption of infinite water depth, and may therefore be inadequate close to shore where the radar echo is strongest. In this paper, we treat the situation when the radar echo is returned from ocean waves that interact with the ocean floor. Simulations are described which demonstrate the effect of shallow water on radar sea-echo. These are used to investigate limits on the existing theory and to define water depths at which shallow-water effects become significant. The second-order spectral energy increases relative to the first-order as the water depth decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar transmit frequency. This effect is particularly marked for lower radar transmit frequencies. The saturation limit on waveheight is less for shallow water. Shallow water affects second-order spectra (which gives wave information) far more than first-order (which gives information on current velocities), the latter being significantly affected only for the lowest radar transmit frequencies for extremely shallow water. We describe analysis of radar echo from shallow water measured by a Rutgers University HF radar system to give ocean wave spectral estimates. Radar-derived wave height, period and direction are compared with simultaneous shallow-water in-situ measurements.

  3. Project Echo: Horn-Reflector Antenna for Space Communication

    NASA Technical Reports Server (NTRS)

    Crawford, A. B.; Hogg, D. C.; Hunt, L. E.

    1961-01-01

    This paper describes the mechanical features of the horn- reflector antenna used for receiving signals reflected from the Project Echo balloon satellite, and presents in some detail the electrical characteristics (radiation patterns and gain) measured at a frequency of 2390 Mc. Theoretically derived characteristics which agree very well with the measurements are also presented; details of the calculations are given in the appendices.

  4. Communication: Phase incremented echo train acquisition in NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Baltisberger, Jay H.; Walder, Brennan J.; Keeler, Eric G.; Kaseman, Derrick C.; Sanders, Kevin J.; Grandinetti, Philip J.

    2012-06-01

    We present an improved and general approach for implementing echo train acquisition (ETA) in magnetic resonance spectroscopy, particularly where the conventional approach of Carr-Purcell-Meiboom-Gill (CPMG) acquisition would produce numerous artifacts. Generally, adding ETA to any N-dimensional experiment creates an N + 1 dimensional experiment, with an additional dimension associated with the echo count, n, or an evolution time that is an integer multiple of the spacing between echo maxima. Here we present a modified approach, called phase incremented echo train acquisition (PIETA), where the phase of the mixing pulse and every other refocusing pulse, ϕP, is incremented as a single variable, creating an additional phase dimension in what becomes an N + 2 dimensional experiment. A Fourier transform with respect to the PIETA phase, ϕP, converts the ϕP dimension into a Δp dimension where desired signals can be easily separated from undesired coherence transfer pathway signals, thereby avoiding cumbersome or intractable phase cycling schemes where the receiver phase must follow a master equation. This simple modification eliminates numerous artifacts present in NMR experiments employing CPMG acquisition and allows "single-scan" measurements of transverse relaxation and J-couplings. Additionally, unlike CPMG, we show how PIETA can be appended to experiments with phase modulated signals after the mixing pulse.

  5. Scheduling the EChO survey with known exoplanets

    NASA Astrophysics Data System (ADS)

    Morales, J. C.; Beaulieu, J.-P.; Coudé du Foresto, V.; Ollivier, M.; Castello, I. Ortega; Clédassou, R.; Jaubert, J.; Van-Troostenberghe, P.; Varley, R.; Waldmann, I. P.; Pascale, E.; Tessenyi, M.

    2015-12-01

    The Exoplanet Characterization Observatory ( EChO) is a concept of a dedicated space telescope optimized for low-resolution transit and occultation spectroscopy to study the exoplanet diversity through the composition of their atmospheres. The scope of this paper is to answer the following question: Can we schedule a nominal EChO mission, with targets known today (in mid 2013), given the science requirements, realistic performances and operational constraints? We examine this issue from the point of view of duration of the mission and the scheduling restrictions with a sample of exoplanet systems known nowadays. We choose different scheduling algorithms taking into account the science and operational constraints and we verified that it is fairly straightforward to schedule a mission scenario over the lifetime of EChO compliant with the science requirements. We identified agility as a critical constraint that reduces significantly the efficiency of the survey. We conclude that even with known targets today the EChO science objectives can be reached in the 4.5 years duration of the mission. We also show that it is possible to use gaps between exoplanet observations, to fit the required calibration observations, data downlinks and station keeping operations or even to observe more exoplanet targets to be discovered in the coming years.

  6. Participatory Culture at the Echo Park Film Center

    ERIC Educational Resources Information Center

    Rosales, Jennifer Ann

    2013-01-01

    The Echo Park Film Center, a Los Angeles nonprofit media education organization, teaches underprivileged youth how to comprehend and make media in order to empower them to speak and be heard. Due to the organization's nonmainstream media courses and its connection to its community, the Center is able to create a participatory and socially…

  7. Long-term changes of (polar) mesosphere summer echoes

    NASA Astrophysics Data System (ADS)

    Bremer, J.; Hoffmann, P.; Latteck, R.; Singer, W.; Zecha, M.

    2009-10-01

    Strong VHF radar echoes have been observed not only during summer months at polar latitudes (polar mesosphere summer echoes, PMSE) but also at middle latitudes (mesosphere summer echoes, MSE). These echoes are closely connected with small ice particles, thus containing information about mesospheric temperature and water vapour content. But the (P)MSE also depend on the ionisation due to solar wave radiation and precipitating high energetic particles. Observations with VHF radars at Andenes (69.3°N; 16.0°E) since 1994 and at Kühlungsborn (54.6°N; 11.8°E) since 1998 are used for investigations of the solar and geomagnetic control of the (P)MSE as well as of possible long-term changes. The (P)MSE are positively correlated with the solar Lyman [alpha] radiation and the geomagnetic activity and have slightly positive trends. Due to the limited measuring period, the significance levels of the detected (P)MSE trends are small. Positive trends in noctilucent clouds (NLC) and polar mesospheric clouds (PMC) are in general agreement with (P)MSE trends.

  8. Transcription in Isolated Wheat Nuclei

    PubMed Central

    Luthe, Dawn Sywassink; Quatrano, Ralph S.

    1980-01-01

    Nuclei free of RNase activity were isolated from 3-hour-imbibed wheat (var. Yamhill) embryos by centrifugation through a discontinuous gradient of Percoll. The maximum rate of RNA synthesis observed in these nuclei was approximately 5 picomoles [3H]UTP per milligram DNA per minute. Two monovalent cation optima were found when measured in the presence of 15 millimolar MgCl2 or 2 millimolar MnCl2; 15 and 75 millimolar (NH4)2SO4. At the high monovalent cation optimum, the rate of RNA synthesis was linear for the first 10 to 15 minutes of incubation and still increasing after 3 hours. RNA synthesized in vitro (30-minute pulse followed by a 30-minute chase) showed distinct 18 and 26S RNA peaks comprising 13 and 17% of the total radioactivity, respectively. The over-all pattern of RNA synthesized in vitro was similar to the in vivo pattern. Approximately 40 to 50% of the RNA synthesized was inhibited by α-amanitin at 4 micrograms per milliliter. The newly synthesized 6 to 10S RNA appeared to be selectively inhibited by α-amanitin. PMID:16661179

  9. Selfconsistent calculations for hyperdeformed nuclei

    SciTech Connect

    Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D.

    1996-12-31

    Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.

  10. Physical Processing of Cometary Nuclei

    NASA Astrophysics Data System (ADS)

    Weissman, Paul R.; Stern, S. Alan

    1997-12-01

    Cometary nuclei preserve a cosmo-chemical record of conditions and processes in the primordial solar nebula, and possibly even the interstellar medium. However, that record is not perfectly preserved over the age of the solar system due to a variety of physical processes which act to modify cometary surfaces and interiors. Possible structural and/or internal processes include: collisional accretion, disruption, and reassembly during formation; internal heating by long and short-lived radionuclides; amorphous to crystalline phase transitions, and thermal stresses. Identified surface modification processes include: irradiation by galactic cosmic rays, solar protons, UV photons, and the Sun's T Tauri stage mass outflow; heating by passing stars and nearby supernovae; gardening by debris impacts; the accretion of interstellar dust and gas and accompanying erosion by hypervelocity dust impacts and sputtering; and solar heating with accompanying crust formation. These modification processes must be taken into account in both the planning and the interpretation of the results of a Comet Nucleus Sample Return Mission. Sampling of nuclei should be done at as great a depth below the surface crust as technically feasible, and at vents or fissures leading to exposed volatiles at depth. Samples of the expected cometary crust and near-surface layers also need to be returned for analysis to achieve a better understanding of the effects of these physical processes. We stress that comets are still likely less modified dm any other solar system bodies, but the degree of modification can vary greatly from one comet to the next.

  11. Physical Processing of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Weissman, Paul R.; Stern, S. Alan

    1997-01-01

    Cometary nuclei preserve a cosmo-chemical record of conditions and processes in the primordial solar nebula, and possibly even the interstellar medium. However, that record is not perfectly preserved over the age of the solar system due to a variety of physical processes which act to modify cometary surfaces and interiors. Possible structural and/or internal processes include: collisional accretion, disruption, and reassembly during formation; internal heating by long and short-lived radionuclides; amorphous to crystalline phase transitions, and thermal stresses. Identified surface modification processes include: irradiation by galactic cosmic rays, solar protons, UV photons, and the Sun's T Tauri stage mass outflow; heating by passing stars and nearby supernovae; gardening by debris impacts; the accretion of interstellar dust and gas and accompanying erosion by hypervelocity dust impacts and sputtering; and solar heating with accompanying crust formation. These modification processes must be taken into account in both the planning and the interpretation of the results of a Comet Nucleus Sample Return Mission. Sampling of nuclei should be done at as great a depth below the surface crust as technically feasible, and at vents or fissures leading to exposed volatiles at depth. Samples of the expected cometary crust and near-surface layers also need to be returned for analysis to achieve a better understanding of the effects of these physical processes. We stress that comets are still likely less modified dm any other solar system bodies, but the degree of modification can vary greatly from one comet to the next.

  12. Mass-23 nuclei in astrophysics

    NASA Astrophysics Data System (ADS)

    Fraser, P. R.; Amos, K.; Canton, L.; Karataglidis, S.; Svenne, J. P.; van der Kniff, D.

    2015-09-01

    The formation of mass-23 nuclei by radiative capture is of great interest in astrophysics. A topical problem associated with these isobars is the so-called 22Na puzzle of ONe white dwarf novae, where the abundance of 22Na observed is not as is predicted by current stellar models, indicating there is more to learn about how the distribution of elements in the universe occurred. Another concerns unexplained variations in elements abundance on the surface of aging red giant stars. One method for theoretically studying nuclear scattering is the Multi-Channel Algebraic Scattering (MCAS) formalism. Studies to date have used a simple collective-rotor prescription to model the target states which couple to projectile nucleons. While, in general, the target states considered all belong to the ground state rotor band, for some systems it is necessary to include coupling to states outside of this band. Herein we discuss an extension of MCAS to allow coupling of different strengths between such states and the ground state band. This consideration is essential when studying the scattering of neutrons from 22Ne, a necessary step in studying the mass-23 nuclei mentioned above.

  13. Use of earth field spin echo NMR to search for liquid minerals

    DOEpatents

    Stoeffl, Wolfgang

    2001-01-01

    An instrument for measuring the spatial, qualitative and quantitative parameters of an underground nuclear magnetic resonance (NMR) active liquid mineral deposit, including oil and water. A phased array of excitation and receiver antennas on the surface and/or in a borehole excites the NMR active nuclei in the deposit, and using known techniques from magnetic resonance imaging (MRI), the spatial and quantitative distribution of the deposit can be measured. A surface array may utilize, for example, four large (50-500 diameter) diameter wire loops laid on the ground surface, and a weak (1.5-2.5 kHz) alternating current (AC) field applied, matching the NMR frequency of hydrogen in the rather flat and uniform earth magnetic field. For a short duration (a few seconds) an additional gradient field can be generated, superimposed to the earth field, by applying direct current (DC) to the grid (wire loops), enhancing the position sensitivity of the spin-echo and also suppressing large surface water signals by shifting them to a different frequency. The surface coil excitation can be combined with downhole receivers, which are much more radio-quiet compared to surface receivers, and this combination also enhances the position resolution of the MRI significantly. A downhole receiver module, for example, may have a 5.5 inch diameter and fit in a standard six inch borehole having a one-quarter inch thick stainless steel casing. The receiver module may include more than one receiver units for improved penetration and better position resolution.

  14. A Year in the Life of an Infrared Echo

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: Supernova Remnant Cassiopeia A One Year Apart

    These Spitzer Space Telescope images, taken one year apart, show the supernova remnant Cassiopeia A (yellow ball) and surrounding clouds of dust (reddish orange). The pictures illustrate that a blast of light from Cassiopeia A is waltzing outward through the dusty skies. This dance, called an 'infrared echo,' began when the remnant erupted about 50 years ago.

    Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion 325 years ago. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. This remnant is located 10,000 light-years away in the northern constellation Cassiopeia.

    Infrared echoes are created when a star explodes or erupts, flashing light into surrounding clumps of dust. As the light zips through the dust clumps, it heats them up, causing them to glow successively in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light. Echoes are distinct from supernova shockwaves, which are made up material that is swept up and hurled outward by exploding stars.

    This infrared echo is the largest ever seen, stretching more than 50 light-years away from Cassiopeia A. If viewed from Earth, the entire movie frame would take up the same amount of space as two full moons.

    Hints of an older infrared echo from Cassiopeia A's supernova explosion hundreds of years ago can also be seen.

    The top Spitzer image was taken on November 30, 2003, and the bottom, on December 2, 2004.

  15. Neutron resonance spin echo with longitudinal DC fields

    NASA Astrophysics Data System (ADS)

    Krautloher, Maximilian; Kindervater, Jonas; Keller, Thomas; Häußler, Wolfgang

    2016-12-01

    We report on the design, construction, and performance of a neutron resonance spin echo (NRSE) instrument employing radio frequency (RF) spin flippers combining RF fields with DC fields, the latter oriented parallel (longitudinal) to the neutron propagation direction (longitudinal NRSE (LNRSE)). The advantage of the longitudinal configuration is the inherent homogeneity of the effective magnetic path integrals. In the center of the RF coils, the sign of the spin precession phase is inverted by a π flip of the neutron spins, such that non-uniform spin precession at the boundaries of the RF flippers is canceled. The residual inhomogeneity can be reduced by Fresnel- or Pythagoras-coils as in the case of conventional spin echo instruments (neutron spin echo (NSE)). Due to the good intrinsic homogeneity of the B0 coils, the current densities required for the correction coils are at least a factor of three less than in conventional NSE. As the precision and the current density of the correction coils are the limiting factors for the resolution of both NSE and LNRSE, the latter has the intrinsic potential to surpass the energy resolution of present NSE instruments. Our prototype LNRSE spectrometer described here was implemented at the resonance spin echo for diverse applications (RESEDA) beamline at the MLZ in Garching, Germany. The DC fields are generated by B0 coils, based on resistive split-pair solenoids with an active shielding for low stray fields along the beam path. One pair of RF flippers at a distance of 2 m generates a field integral of ˜0.5 Tm. The LNRSE technique is a future alternative for high-resolution spectroscopy of quasi-elastic excitations. In addition, it also incorporates the MIEZE technique, which allows to achieve spin echo resolution for spin depolarizing samples and sample environments. Here we present the results of numerical optimization of the coil geometry and first data from the prototype instrument.

  16. Neutron resonance spin echo with longitudinal DC fields.

    PubMed

    Krautloher, Maximilian; Kindervater, Jonas; Keller, Thomas; Häußler, Wolfgang

    2016-12-01

    We report on the design, construction, and performance of a neutron resonance spin echo (NRSE) instrument employing radio frequency (RF) spin flippers combining RF fields with DC fields, the latter oriented parallel (longitudinal) to the neutron propagation direction (longitudinal NRSE (LNRSE)). The advantage of the longitudinal configuration is the inherent homogeneity of the effective magnetic path integrals. In the center of the RF coils, the sign of the spin precession phase is inverted by a π flip of the neutron spins, such that non-uniform spin precession at the boundaries of the RF flippers is canceled. The residual inhomogeneity can be reduced by Fresnel- or Pythagoras-coils as in the case of conventional spin echo instruments (neutron spin echo (NSE)). Due to the good intrinsic homogeneity of the B0 coils, the current densities required for the correction coils are at least a factor of three less than in conventional NSE. As the precision and the current density of the correction coils are the limiting factors for the resolution of both NSE and LNRSE, the latter has the intrinsic potential to surpass the energy resolution of present NSE instruments. Our prototype LNRSE spectrometer described here was implemented at the resonance spin echo for diverse applications (RESEDA) beamline at the MLZ in Garching, Germany. The DC fields are generated by B0 coils, based on resistive split-pair solenoids with an active shielding for low stray fields along the beam path. One pair of RF flippers at a distance of 2 m generates a field integral of ∼0.5 Tm. The LNRSE technique is a future alternative for high-resolution spectroscopy of quasi-elastic excitations. In addition, it also incorporates the MIEZE technique, which allows to achieve spin echo resolution for spin depolarizing samples and sample environments. Here we present the results of numerical optimization of the coil geometry and first data from the prototype instrument.

  17. Clutter interference and the integration time of echoes in the echolocating bat, Eptesicus fuscus.

    PubMed

    Simmons, J A; Freedman, E G; Stevenson, S B; Chen, L; Wohlgenant, T J

    1989-10-01

    The ability of the echolocating bat, Eptesicus fuscus, to detect a sonar target is affected by the presence of other targets along the same axis at slightly different ranges. If echoes from one target arrive at about the same delay as echoes from another target, clutter interference occurs and one set of echoes masks the other. Although the bat's sonar emissions and the echoes themselves are 2 to 5 ms long, echoes (of approximately equal sensation levels--around 15 dB SL) only interfere with each other if they arrive within 200 to 400 microseconds of the same arrival time. This figure is an estimate of the integration time of the bat's sonar receiver for echoes. The fine structure of the clutter-interference data reflects the reinforcement and cancellation of echoes according to their time separation. When clutter interference first occurs, the waveforms of test and cluttering echoes already overlap for much of their duration. The masking effect underlying clutter interference appears specifically due to overlap, not between raw echo waveforms, but between the patterns of mechanical excitation created when echoes pass through bandpass filters equivalent to auditory-nerve tuning curves. While the time scale of clutter interference is substantially shorter than the duration of echo waveforms, it still is much longer than the eventual width of a target's range-axis image expressed in terms of echo delay.

  18. 32 CFR 199.5 - TRICARE Extended Care Health Option (ECHO).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... disabling effects of the ECHO-eligible dependent's qualifying condition. Services include those necessary to.... The cumulative effect of multiple disabilities, as determined by the Director, TRICARE Management... involving separate body systems. (3) Loss of ECHO eligibility. Eligibility for ECHO benefits ceases as of...

  19. Echo-acoustic flow shapes object representation in spatially complex acoustic scenes.

    PubMed

    Greiter, Wolfgang; Firzlaff, Uwe

    2017-03-08

    Echolocating bats use echoes of their sonar emissions to determine the position and distance of objects or prey. Target distance is represented as a map of echo delay in the auditory cortex (AC) of bats. During a bat's flight through a natural complex environment, echo streams are reflected from multiple objects along its flight path. Separating such complex streams of echoes or other sounds is a challenge for the auditory system of bats as well as other animals. We investigated the representation of multiple echo streams in the AC of anaesthetized bats (Phyllostomus discolor) and tested the hypothesis, if neurons can lock on echoes from specific objects in a complex echo-acoustic pattern while the representation of surrounding objects is suppressed. We combined naturalistic pulse/echo sequences simulating a bat's flight through a virtual acoustic space with extracellular recordings. Neurons could selectively lock on echoes from one object in complex echo streams originating from two different objects along a virtual flight path. The objects were processed sequentially in the order in which they were approached. Object selection depended on sequential changes of echo delay and amplitude but not on absolute values. Furthermore, the detailed representation of the object echo delays in the cortical target range map was not fixed but could be dynamically adapted depending on the temporal pattern of sonar emission during target approach within a simulated flight sequence.

  20. Modeling Statistics of Fish Patchiness and Predicting Associated Influence on Statistics of Acoustic Echoes

    DTIC Science & Technology

    2015-09-30

    active sonar. Toward this goal, fundamental advances in the understanding of fish behavior , especially in aggregations, will be made under conditions...relevant to the echo statistics problem. OBJECTIVES To develop new models of behavior of fish aggregations, including the fission/fusion process...and to describe the echo statistics associated with the random fish behavior using existing formulations of echo statistics. APPROACH

  1. PHYSICAL STUDIES OF ISOLATED EUCARYOTIC NUCLEI

    PubMed Central

    Olins, Donald E.; Olins, Ada L.

    1972-01-01

    The degree of chromatin condensation in isolated rat liver nuclei and chicken erythrocyte nuclei was studied by phase-contrast microscopy as a function of solvent pH, K+ and Mg++ concentrations Data were represented as "phase" maps, and standard solvent conditions selected that reproducibly yield granular, slightly granular, and homogeneous nuclei Nuclei in these various states were examined by ultraviolet absorption and circular dichroism (CD) spectroscopy, low-angle X-ray diffraction, electron microscopy, and binding capacity for ethidium bromide Homogeneous nuclei exhibited absorption and CD spectra resembling those of isolated nucleohistone. Suspensions of granular nuclei showed marked turbidity and absorption flattening, and a characteristic blue-shift of a crossover wavelength in the CD spectra. In all solvent conditions studied, except pH < 2 3, low-angle X-ray reflections characteristic of the native, presumably superhelical, nucleohistone were observed from pellets of intact nuclei. Threads (100–200 A diameter) were present in the condensed and dispersed phases of nuclei fixed under the standard solvent conditions, and examined in the electron microscope after thin sectioning and staining Nuclei at neutral pH, with different degrees of chromatin condensation, exhibited similar binding capacities for ethidium bromide. These data suggest a model that views chromatin condensation as a close packing of superhelical nucleohistone threads but still permits condensed chromatin to respond rapidly to alterations in solvent environment. PMID:4554987

  2. Review of metastable states in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.

    2016-07-01

    The structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A≳ 150 . The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

  3. Review of metastable states in heavy nuclei

    DOE PAGES

    Dracoulis, G. D.; Walker, P. M.; Kondev, F. G.

    2016-05-31

    Here, the structure of nuclear isomeric states is reviewed in the context of their role in contemporary nuclear physics research. Emphasis is given to high-spin isomers in heavy nuclei, with A ≳ 150. The possibility to exploit isomers to study some of the most exotic nuclei is a recurring theme. In spherical nuclei, the role of octupole collectivity is discussed in detail, while in deformed nuclei the limitations of the K quantum number are addressed. Isomer targets and isomer beams are considered, along with applications related to energy storage, astrophysics, medicine, and experimental advances.

  4. Slice Accelerated Gradient-Echo Spin-Echo Dynamic Susceptibility Contrast Imaging with Blipped CAIPI for Increased Slice Coverage

    PubMed Central

    Eichner, Cornelius; Jafari-Khouzani, Kourosh; Cauley, Stephen; Bhat, Himanshu; Polaskova, Pavlina; Andronesi, Ovidiu C.; Rapalino, Otto; Turner, Robert; Wald, Lawrence L.; Stufflebeam, Steven; Setsompop, Kawin

    2014-01-01

    Purpose To improve slice coverage of gradient echo spin echo (GESE) sequences for dynamic susceptibility contrast (DSC) MRI using a simultaneous-multiple-slice (SMS) method. Methods Data were acquired on 3 Tesla (T) MR scanners with a 32-channel head coil. To evaluate use of SMS for DSC, an SMS GESE sequence with two-fold slice coverage and same temporal sampling was compared with a standard GESE sequence, both with 2× in-plane acceleration. A signal to noise ratio (SNR) comparison was performed on one healthy subject. Additionally, data with Gadolinium injection were collected on three patients with glioblastoma using both sequences, and perfusion analysis was performed on healthy tissues as well as on tumor. Results Retained SNR of SMS DSC is 90% for a gradient echo (GE) and 99% for a spin echo (SE) acquisition, compared with a standard acquisition without slice acceleration. Comparing cerebral blood volume maps, it was observed that the results of standard and SMS acquisitions are comparable for both GE and SE images. Conclusion Two-fold slice accelerated DSC MRI achieves similar SNR and perfusion metrics as a standard acquisition, while allowing a significant increase in slice coverage of the brain. The results also point to a possibility to improve temporal sampling rate, while retaining the same slice coverage. PMID:24285593

  5. Proton echo-planar spectroscopic imaging with highly effective outer volume suppression using combined presaturation and spatially selective echo dephasing.

    PubMed

    Chu, Archie; Alger, Jeffry R; Moore, Gregory J; Posse, Stefan

    2003-05-01

    A highly effective outer volume suppression (OVS) technique, termed spatially selective echo dephasing (SSED), which employs gradient dephasing of spatially selective spin echoes, is introduced. SSED, which is relatively insensitive to T(1) dispersion among lipid signals and B(1) inhomogeneity, was integrated with very high spatial resolution 2D proton echo-planar spectroscopic imaging (PEPSI) to assess residual lipid bleeding into cortical regions in the human brain. The method was optimized to minimize signal refocusing of secondary spin-echoes in areas of overlapping suppression slices. A comparison of spatial presaturation with single or double SSED, and with combined presaturation and SSED shows that the latter method has superior performance with spatially uniform lipid suppression factors in excess of 70. Metabolite mapping (choline, creatine, and NAA) with a 64 x 64 spatial matrix and 0.3 cm(3) voxels in close proximity to peripheral lipid regions was demonstrated at 1.5 T with a scan time of 32 min using the standard head coil.

  6. Accelerated Fast Spin-Echo Magnetic Resonance Imaging of the Heart Using a Self-Calibrated Split-Echo Approach

    PubMed Central

    Klix, Sabrina; Hezel, Fabian; Fuchs, Katharina; Ruff, Jan; Dieringer, Matthias A.; Niendorf, Thoralf

    2014-01-01

    Purpose Design, validation and application of an accelerated fast spin-echo (FSE) variant that uses a split-echo approach for self-calibrated parallel imaging. Methods For self-calibrated, split-echo FSE (SCSE-FSE), extra displacement gradients were incorporated into FSE to decompose odd and even echo groups which were independently phase encoded to derive coil sensitivity maps, and to generate undersampled data (reduction factor up to R = 3). Reference and undersampled data were acquired simultaneously. SENSE reconstruction was employed. Results The feasibility of SCSE-FSE was demonstrated in phantom studies. Point spread function performance of SCSE-FSE was found to be competitive with traditional FSE variants. The immunity of SCSE-FSE for motion induced mis-registration between reference and undersampled data was shown using a dynamic left ventricular model and cardiac imaging. The applicability of black blood prepared SCSE-FSE for cardiac imaging was demonstrated in healthy volunteers including accelerated multi-slice per breath-hold imaging and accelerated high spatial resolution imaging. Conclusion SCSE-FSE obviates the need of external reference scans for SENSE reconstructed parallel imaging with FSE. SCSE-FSE reduces the risk for mis-registration between reference scans and accelerated acquisitions. SCSE-FSE is feasible for imaging of the heart and of large cardiac vessels but also meets the needs of brain, abdominal and liver imaging. PMID:24728341

  7. Studies of heteronuclear dipolar interactions between spin-1/2 and quadrupolar nuclei by using REDOR during multiple quantum evolution

    NASA Astrophysics Data System (ADS)

    Pruski, M.; Bailly, A.; Lang, D. P.; Amoureux, J.-P.; Fernandez, C.

    1999-06-01

    A new technique for measurements of dipolar interactions in rotating solids is presented that combines the capabilities of multiple quantum magic angle spinning (MQMAS) with the rotational echo double resonance (REDOR). It employs the dipolar recoupling between spin-1/2 ( I) and quadrupolar ( S) nuclei by applying a series of π pulses to the I spins. In contrast to the previously reported MQ-REDOR method, the recoupling sequence is applied during the triple quantum, rather than single quantum evolution. As the dipolar effect is enhanced by the MQ coherence order, this new technique exhibits improved sensitivity toward weak dipolar interactions.

  8. Breakup Densities of Hot Nuclei.

    NASA Astrophysics Data System (ADS)

    Viola, Vic

    2006-04-01

    Breakup densities of hot ^197Au-like residues have been deduced from the systematic trends of Coulomb parameters required to fit intermediate-mass-fragment kinetic-energy spectra. The results indicate emission from nuclei near normal nuclear density below an excitation energy E*/A .3ex<˜x 2 MeV, followed by a gradual decrease to a near-constant value of ρ/ρ0˜ 3 for E*/A .3ex>˜x 5 MeV. Temperatures derived from these data with a density-dependent Fermi-gas model yield a nuclear caloric curve that is generally consistent with those derived from isotope ratios.

  9. Quasifree kaon photoproduction on nuclei

    SciTech Connect

    Frank Lee; T. MART; Cornelius Bennhold; Lester Wright

    2001-12-01

    Investigations of the quasifree reaction A({gamma}, K Y)B are presented in the distorted wave impulse approximation (DWIA). For this purpose, we present a revised tree-level model of elementary kaon photoproduction that incorporates hadronic form factors consistent with gauge invariance, uses SU(3) values for the Born couplings and uses resonances consistent with multi-channel analyses. The potential of exclusive quasifree kaon photoproduction on nuclei to reveal details of the hyperon-nucleus interaction is examined. Detailed predictions for the coincidence cross section, the photon asymmetry, and the hyperon polarization and their sensitivities to the ingredients of the model are obtained for all six production channels. Under selected kinematics these observables are found to be sensitive to the hyperon-nucleus final state interaction. Some polarization observables are found to be insensitive to distortion effects, making them ideal tools to search for possible medium modifications of the elementary amplitude.

  10. The Physics of Cometary Nuclei

    NASA Technical Reports Server (NTRS)

    Whipple, Fred L.

    1997-01-01

    The recent developments in cometary studies suggest rather low mean densities and weak structures for the nuclei. They appear to be accumulations of fairly discrete units loosely bound together, as deduced from the observations of Comet Shoemaker-Levy 9 during its encounter with Jupiter. The compressive strengths deduced from comet splitting by Opik and Sekanina are extremely low. These values are confirmed by theory developed here. assuming that Comet P/Holmes had a companion that collided with it in 1892. There follows a short discussion that suggests that the mean densities of comets should increase with comet dimensions. The place of origin of short-period comets may relate to these properties.

  11. Reaction theory for exotic nuclei

    SciTech Connect

    Bonaccorso, Angela

    2014-05-09

    Exotic nuclei are usually defined as those with unusual N/Z ratios. They can be found in the crust of neutron stars enbedded in a sea of electrons or created in laboratory by fragmentation of a primary beam (in-flight method) or of the target (ISOL method). They are extremely important for nuclear astrophysics, see for example Ref.[1]. Furthermore by studying them we can check the limits of validity of nuclear reaction and structure models. This contribution will be devoted to the understanding of how by using reaction theory and comparing to the data we can extract structure information. We shall discuss the differences between the mechanisms of transfer and breakup reactions, an we will try to explain how nowadays it is possible to do accurate spectroscopy in extreme conditions.

  12. Proton emission from triaxial nuclei

    SciTech Connect

    Delion, D.S.; Wyss, R.; Karlgren, D.; Liotta, R.J.

    2004-12-01

    Proton decay from triaxially deformed nuclei is investigated. The deformation parameters corresponding to the mother nucleus are determined microscopically and the calculated decay widths are used to probe the mean-field wave function. The proton wave function in the mother nucleus is described as a resonant state in a coupled-channel formalism. The decay width, as well as the angular distribution of the decaying particle, are evaluated and their dependence upon the triaxial deformation parameters is studied in the decay of {sup 161}Re and {sup 185}Bi. It is found that the decay width is very sensitive to the parameters defining the triaxial deformation while the angular distribution is a universal function which does not depend upon details of the nuclear structure.

  13. Analysis and interpretation of Cassini Titan radar altimeter echoes

    NASA Astrophysics Data System (ADS)

    Zebker, Howard A.; Gim, Yonggyu; Callahan, Philip; Hensley, Scott; Lorenz, Ralph; Cassini Radar Team

    2009-03-01

    The Cassini spacecraft has acquired 25 radar altimeter elevation profiles along Titan's surface as of April 2008, and we have analyzed 18 of these for which there are currently reconstructed ephemeris data. Altimeter measurements were collected at spatial footprint sizes from 6-60 km along ground tracks of length 400-3600 km. The elevation profiles yield topographic information at this resolution with a statistical height accuracy of 35-50 m and kilometer-scale errors several times greater. The data exhibit significant variations in terrain, from flat regions with little topographic expression to very rugged Titanscapes. The bandwidth of the transmitted waveform admits vertical resolution of the terrain height to 35 m at each observed location on the surface. Variations in antenna pointing and changes in surface statistics cause the range-compressed radar echoes to exhibit strong systematic and time-variable biases of hundreds of meters in delay. It is necessary to correct the received echoes for these changes, and we have derived correction algorithms such that the derived echo profiles are accurate at the 100 m level for off-nadir pointing errors of 0.3° and 0.6°, for leading edge and echo centroid estimators, respectively. The leading edge of the echo yields the elevation of the highest points on the surface, which we take to be the peaks of any terrain variation. The mean value of the echo delay is more representative of the mean elevation, so that the difference of these values gives an estimate of any local mountain heights. Finding locations where these values diverge indicates higher-relief terrain. Elevation features are readily seen in the height profiles. Several of the passes show mountains of several hundred m altitude, spread over 10's or even 100's of km in spatial extent, so that slopes are very small. Large expanses of sub-100 m topography are commonplace on Titan, so it is rather smooth in many locations. Other areas exhibit more relief

  14. Towards the exact calculation of medium nuclei

    SciTech Connect

    Gandolfi, Stefano; Carlson, Joseph Allen; Lonardoni, Diego; Wang, Xiaobao

    2016-12-19

    The prediction of the structure of light and medium nuclei is crucial to test our knowledge of nuclear interactions. The calculation of the nuclei from two- and three-nucleon interactions obtained from rst principle is, however, one of the most challenging problems for many-body nuclear physics.

  15. Discrimination of amplitude-modulated synthetic echo trains by an echolocating bottlenose dolphin.

    PubMed

    Dankiewicz, Lois A; Helweg, David A; Moore, Patrick W; Zafran, Justine M

    2002-10-01

    Bottlenose dolphins (Tursiops truncatus) have an acute ability to use target echoes to judge attributes such as size, shape, and material composition. Most target recognition studies have focused on features associated with individual echoes as opposed to information conveyed across echo sequences (feature envelope of the multi-echo train). One feature of aspect-dependent targets is an amplitude modulation (AM) across the return echoes in the echo train created by relative movement of the target and dolphin. The current study examined whether dolphins could discriminate targets with different AM envelopes. "Electronic echoes" triggered by a dolphin's outgoing echolocation clicks were manipulated to create sinusoidal envelopes with varying AM rate and depth. Echo trains were equated for energy, requiring the dolphin to extract and retain information from multiple echoes in order to detect and report the presence of AM. The dolphin discriminated amplitude-modulated echo trains from those that were not modulated. AM depth thresholds were approximately 0.8 dB, similar to other published amplitude limens. Decreasing the rate of modulation from approximately 16 to 2 cycles per second did not affect the dolphin's AM depth sensitivity. The results support multiple-echo processing in bottlenose dolphin echolocation. This capability provides additional theoretical justification for exploring synthetic aperture sonar concepts in models of animal echolocation that potentially support theories postulating formation of images as an ultimate means for target identification.

  16. Radar Exploration of Cometary Nuclei

    NASA Astrophysics Data System (ADS)

    Gim, Yonggyu; Heggy, E.; Belton, M.; Weissman, P.; Asphaug, E.

    2012-10-01

    We have developed a mission formulation, based on the use of previously flown planetary radar sounding techniques, to image the 3D internal structure of the nucleus of a Jupiter-family comet (JFC). Believed to originate in the outer solar system and to be delivered recently to the inner solar system from the Kuiper Belt, JFCs are among the most primitive bodies accessible by spacecraft, and are indicated in the 2010 Decadal Survey as primary targets for primitive bodies sample return. We consider a sounder design operating at dual frequencies, 5 and 15 MHz center frequencies with 1 and 10 MHz bandwidths, respectively. Operating from close orbit about the nucleus of a spinning comet nucleus, CORE obtains a dense network of echoes that are used to image its interior structure to 10 m and to map the dielectric properties inside the nucleus to better than 200 m throughout. Clear images of internal structure and dielectric composition will reveal how the nucleus was formed and how it has evolved. Radiometric tracking of the spacecraft orbit will provide an interior mass distribution that constrains the radar-based models of interior composition. High-resolution visible and infrared color images provide surface and exterior boundary conditions for interior models and hypotheses. They present the geology and morphology of the nucleus surface at meter-scales, and the time-evolving activity, structure, and composition of the inner coma. By making global yet detailed connections from interior to exterior, the data from CORE will provide answers to fundamental questions about the earliest stages of planetesimal evolution and planet formation, will be an important complement to the Rosetta mission science, and will lay the foundation for comet nucleus sample return.

  17. Benefits of the Multiple Echo Technique for Ultrasonic Thickness Testing

    SciTech Connect

    Elder, J.; Vandekamp, R.

    2011-02-10

    Much effort has been put into determining methods to make accurate thickness measurements, especially at elevated temperatures. An accuracy of +/- 0.001 inches is typically noted for commercial ultrasonic thickness gauges and ultrasonic thickness techniques. Codes and standards put limitations on many inspection factors including equipment, calibration tolerance and temperature variations. These factors are important and should be controlled, but unfortunately do not guarantee accurate and repeatable measurements in the field. Most technicians long for a single technique that is best for every situation, unfortunately, there are no 'silver bullets' when it comes to nondestructive testing. This paper will describe and discuss some of the major contributors to measurement error as well as some advantages and limitations of multiple echo techniques and why multiple echo techniques should be more widely utilized for ultrasonic thickness measurements.

  18. Time reversal and charge echo in an electron gas.

    PubMed

    Creswick, Richard J

    2004-09-03

    Apart from subtle violations of CP symmetry by the weak interactions, the basic laws of physics are time-reversal invariant. Nevertheless, in the macroscopic world, time has a very definite direction, or arrow. Given that the dynamics of a closed system are time-reversal invariant, the arrow of time is introduced through boundary or initial conditions. In this Letter it is argued that if the Hamiltonian for a system, H, has the property THT(-1)=-H for a unitary transformation T, then the system can, in principle, be made to evolve backward in time. The prototype of this sort of behavior is the spin echo. Calculations for a single-band tight-binding model suggest that it may be possible to observe the electronic counterpart, or charge echo.

  19. Elasticity reconstructive imaging by means of stimulated echo MRI.

    PubMed

    Chenevert, T L; Skovoroda, A R; O'Donnell, M; Emelianov, S Y

    1998-03-01

    A method is introduced to measure internal mechanical displacement and strain by means of MRI. Such measurements are needed to reconstruct an image of the elastic Young's modulus. A stimulated echo acquisition sequence with additional gradient pulses encodes internal displacements in response to an externally applied differential deformation. The sequence provides an accurate measure of static displacement by limiting the mechanical transitions to the mixing period of the simulated echo. Elasticity reconstruction involves definition of a region of interest having uniform Young's modulus along its boundary and subsequent solution of the discretized elasticity equilibrium equations. Data acquisition and reconstruction were performed on a urethane rubber phantom of known elastic properties and an ex vivo canine kidney phantom using <2% differential deformation. Regional elastic properties are well represented on Young's modulus images. The long-term objective of this work is to provide a means for remote palpation and elasticity quantitation in deep tissues otherwise inaccessible to manual palpation.

  20. Mean-field theory of echo state networks

    NASA Astrophysics Data System (ADS)

    Massar, Marc; Massar, Serge

    2013-04-01

    Dynamical systems driven by strong external signals are ubiquitous in nature and engineering. Here we study “echo state networks,” networks of a large number of randomly connected nodes, which represent a simple model of a neural network, and have important applications in machine learning. We develop a mean-field theory of echo state networks. The dynamics of the network is captured by the evolution law, similar to a logistic map, for a single collective variable. When the network is driven by many independent external signals, this collective variable reaches a steady state. But when the network is driven by a single external signal, the collective variable is non stationary but can be characterized by its time averaged distribution. The predictions of the mean-field theory, including the value of the largest Lyapunov exponent, are compared with the numerical integration of the equations of motion.

  1. Diffusion of Echo 7 electron beams during bounce motion

    SciTech Connect

    Nemzek, R.J.

    1992-01-01

    The Echo 7 sounding rocket experiment injected electron beams into the magnetosphere and detected them after one or more bounces along field lines near L = 6.5. Waves with equatorial amplitudes of a few mV/m diffused the beams so that only {approx}2O% of the initial current returned to the rocket altitude in the northern hemisphere. On successive bounces the electron flux continued to drop at the same rate. These results imply a lifetime of {approx}1.7 for 20 kev electrons just outside of the loss cone. comparison with other Echo flights shows that the beam return is dependent upon geomagnetic conditions: low activity causes there to be less scattering, while high activity can actually prevent detection of the returning beam.

  2. Diffusion of Echo 7 electron beams during bounce motion

    SciTech Connect

    Nemzek, R.J.

    1992-08-01

    The Echo 7 sounding rocket experiment injected electron beams into the magnetosphere and detected them after one or more bounces along field lines near L = 6.5. Waves with equatorial amplitudes of a few mV/m diffused the beams so that only {approx}2O% of the initial current returned to the rocket altitude in the northern hemisphere. On successive bounces the electron flux continued to drop at the same rate. These results imply a lifetime of {approx}1.7 for 20 kev electrons just outside of the loss cone. comparison with other Echo flights shows that the beam return is dependent upon geomagnetic conditions: low activity causes there to be less scattering, while high activity can actually prevent detection of the returning beam.

  3. Analysis on the characteristics of pulsed laser proximity fuze's echo

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Chen, Huimin

    2011-06-01

    With the rapid development of semiconductor technology and laser technology, a kind of proximity fuze named pulsed laser proximity fuze has been applied. Compared with other fuzes, pulsed laser proximity fuze has high ranging precision and strong resistance to artificial active interference. It is an important development tendency of proximity fuze. The paper analyze the characteristic of target echo of laser signal, and then make theoretical analysis and calculation on the laser signal transmission in the smog. Firstly, use the pulse width of 10ns semiconductor laser fuze to do typical targets experiment, to get the echo information of target distance is 5m; then to do smog interference experiment, by comparing the pulse width amplitude and backscattering signal amplitude of laser fuze in simulation and experiment, analyzing the effect of anti-clutter, providing the evidence for the subsequent of circuit of signal amplification and processing.

  4. 76 FR 63702 - In the Matter of the Designation of Conspiracy of Fire Nuclei, aka Conspiracy of the Nuclei of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... Conspiracy of Fire Nuclei, aka Conspiracy of the Nuclei of Fire, aka Conspiracy of Cells of Fire, aka Synomosia of Pyrinon Tis Fotias, aka Thessaloniki-Athens Fire Nuclei Conspiracy, as a Specially Designated... that the organization known as Conspiracy of Fire Nuclei, also known as Conspiracy of the Nuclei...

  5. NMR polarization echoes in a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Levstein, Patricia R.; Chattah, Ana K.; Pastawski, Horacio M.; Raya, Jésus; Hirschinger, Jérôme

    2004-10-01

    We have modified the polarization echo (PE) sequence through the incorporation of Lee-Goldburg cross polarization steps to quench the 1H-1H dipolar dynamics. In this way, the 13C becomes an ideal local probe to inject and detect polarization in the proton system. This improvement made possible the observation of the local polarization P00(t) and polarization echoes in the interphenyl proton of the liquid crystal N-(4-methoxybenzylidene)-4-butylaniline. The decay of P00(t) was well fitted to an exponential law with a characteristic time τC≈310 μs. The hierarchy of the intramolecular dipolar couplings determines a dynamical bottleneck that justifies the use of the Fermi Golden Rule to obtain a spectral density consistent with the structural parameters. The time evolution of P00(t) was reversed by the PE sequence generating echoes at the time expected by the scaling of the dipolar Hamiltonian. This indicates that the reversible 1H-1H dipolar interaction is the main contribution to the local polarization decrease and that the exponential decay for P00(t) does not imply irreversibility. The attenuation of the echoes follows a Gaussian law with a characteristic time τφ≈527 μs. The shape and magnitude of the characteristic time of the PE decay suggest that it is dominated by the unperturbed homonuclear dipolar Hamiltonian. This means that τφ is an intrinsic property of the dipolar coupled network and not of other degrees of freedom. In this case, one cannot unambiguously identify the mechanism that produces the decoherence of the dipolar order. This is because even weak interactions are able to break the fragile multiple coherences originated on the dipolar evolution, hindering its reversal. Other schemes to investigate these underlying mechanisms are proposed.

  6. Loschmidt Echo in a System of Interacting Electrons

    SciTech Connect

    Manfredi, G.; Hervieux, P.-A.

    2006-11-10

    We study the Loschmidt echo for a system of electrons interacting through mean-field Coulomb forces. The electron gas is modeled by a self-consistent set of hydrodynamic equations. It is observed that the quantum fidelity drops abruptly after a time that is proportional to the logarithm of the perturbation amplitude. The fidelity drop is related to the breakdown of the symmetry properties of the wave function.

  7. RESPECT: Neutron resonance spin-echo spectrometer for extreme studies

    NASA Astrophysics Data System (ADS)

    Georgii, R.; Kindervater, J.; Pfleiderer, C.; Böni, P.

    2016-11-01

    We propose the design of a REsonance SPin-echo spECtrometer for exTreme studies, RESPECT, that is ideally suited for the exploration of non-dispersive processes such as diffusion, crystallization, slow dynamics, tunneling processes, crystal electric field excitations, and spin fluctuations. It is a variant of the conventional neutron spin-echo technique (NSE) by (i) replacing the long precession coils by pairs of longitudinal neutron spin-echo coils combined with RF-spin flippers and (ii) by stabilizing the neutron polarization with small longitudinal guide fields that can in addition be used as field subtraction coils thus allowing to adjust the field integrals over a range of 8 orders of magnitude. Therefore, the dynamic range of RESPECT can in principle be varied over 8 orders of magnitude in time, if neutrons with the required energy are made available. Similarly as for existing NSE-spectrometers, spin echo times of up to approximately 1 μs can be reached if the divergence and the correction elements are properly adjusted. Thanks to the optional use of neutron guides and the fact that the currents for the correction coils are much smaller than in standard NSE, intensity gains of at least one order of magnitude are expected, making the concept of RESPECT also competitive for operation at medium flux neutron sources. RESPECT can also be operated in a MIEZE configuration allowing the investigation of relaxation processes in depolarizing environments as they occur when magnetic fields are applied at the sample position, i.e. for the investigation of the dynamics of flux lines in superconductors, magnetic fluctuations in ferromagnetic materials, and samples containing hydrogen.

  8. Search Results Help - Drinking Water | ECHO | US EPA

    EPA Pesticide Factsheets

    Search for compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  9. Nonlinear system modeling with random matrices: echo state networks revisited.

    PubMed

    Zhang, Bai; Miller, David J; Wang, Yue

    2012-01-01

    Echo state networks (ESNs) are a novel form of recurrent neural networks (RNNs) that provide an efficient and powerful computational model approximating nonlinear dynamical systems. A unique feature of an ESN is that a large number of neurons (the "reservoir") are used, whose synaptic connections are generated randomly, with only the connections from the reservoir to the output modified by learning. Why a large randomly generated fixed RNN gives such excellent performance in approximating nonlinear systems is still not well understood. In this brief, we apply random matrix theory to examine the properties of random reservoirs in ESNs under different topologies (sparse or fully connected) and connection weights (Bernoulli or Gaussian). We quantify the asymptotic gap between the scaling factor bounds for the necessary and sufficient conditions previously proposed for the echo state property. We then show that the state transition mapping is contractive with high probability when only the necessary condition is satisfied, which corroborates and thus analytically explains the observation that in practice one obtains echo states when the spectral radius of the reservoir weight matrix is smaller than 1.

  10. Long duration meteor echoes characterized by Doppler spectrum bifurcation

    NASA Astrophysics Data System (ADS)

    Bourdillon, A.; Haldoupis, C.; Hanuise, C.; Le Roux, Y.; Menard, J.

    2005-03-01

    We report on a new category of long lasting meteor echoes observed occasionally with HF and VHF radars. These meteoric returns, which have lifetimes from many seconds to a few minutes, are characterized by a distinct Doppler spectral signature showing a pronounced Doppler bifurcation which includes narrow bands of discrete Doppler velocities, often of opposite polarity. The large signal to noise ratios and the narrowness of the spectra imply that coherent or Bragg scattering is not of relevance here, therefore these echoes do not associate with the long living meteor-induced backscatter (MIB) from the lower E region. A reasonable interpretation needs to explain both the Doppler spectrum bifurcation and the long echo duration. As such, we propose the idea of a structured vertical wind shear in the lower E region which traps different fragments of a meteor trail plasma in the same way that sporadic E layers form. These trail parts inside the shear-related wind profile may act as relatively long-lasting meteoric reflectors moving with different Doppler velocities, also of opposite polarity.

  11. THIRTY YEARS OF SN 1980K: EVIDENCE FOR LIGHT ECHOES

    SciTech Connect

    Sugerman, Ben E. K.; Andrews, Jennifer E.; Barlow, Michael J.; Clayton, Geoffrey C.; Ercolano, Barbara; Ghavamian, Parviz; Kennicutt, Robert C. Jr.; Krause, Oliver; Meixner, Margaret; Otsuka, Masaaki

    2012-04-20

    We report optical and mid-infrared photometry of SN 1980K between 2004 and 2010, which shows slow monotonic fading consistent with previous spectroscopic and photometric observations made 8-17 yr after outburst. The slow rate of change over two decades suggests that this evolution may result from scattered and thermal light echoes off of extended circumstellar material. We present a semi-analytic dust radiative-transfer model that uses an empirically corrected effective optical depth to provide a fast and robust alternative to full Monte Carlo radiative-transfer modeling for homogenous dust at low to intermediate optical depths. We find that unresolved echoes from a thin circumstellar shell 14-15 lt-yr from the progenitor, and containing {approx}< 0.02 M{sub Sun} of carbon-rich dust, can explain the broadband spectral and temporal evolution. The size, mass, and dust composition are in good agreement with the contact discontinuity observed in scattered echoes around SN 1987A. The origin of slowly changing high-velocity [O I] and H{alpha} lines is also considered. We propose an origin in shocked high-velocity metal-rich clumps of ejecta, rather than arising in the impact of ejecta on slowly moving circumstellar material, as is the case with hot spots in SN 1987A.

  12. The MU radar meteor head echo observation programme

    NASA Astrophysics Data System (ADS)

    Kero, Johan; Nakamura, Takuji; Nishimura, Koji; Meisel, David D.; Terasawa, Toshio; Masayoshi, Ueda; Fujiwara, Yasunori; Szasz, Csilla; Watanabe, Juniichi

    2012-07-01

    Earth's atmosphere is daily bombarded by billions of dust-sized particles. Those larger than a few tenths of a millimetre give rise to visible streaks of light on the night sky, meteors, or colloquially shooting stars. Meteor science contains many open questions, and the flux of extraterrestrial material into the Earth's atmosphere is one of them. High-power MST radars are powerful tools for providing new insights. This talk contains a review of meteor head echo observations with the 46.5 MHz Shigaraki Middle and Upper atmosphere (MU) radar in Japan (34.85N, 136.10E). We conducted a systematic set of monthly 24 h observations from 2009 June to 2010 December (>500 h) resulting in more than 100,000 high-quality meteor detections. Meteor showers are caused by the Earth intersecting streams of meteoroids on orbits still very similar to those of their parent bodies, usually comets. Meteor showers provide opportunities to compare head echo observations with other observation techniques and simulations. We present comparisons indicating that the head echo radar method provides precision and accuracy comparable to the photographic reduction of much brighter meteors with longer detectable trajectories.

  13. Background analysis and reduction for the ECHo experiment

    NASA Astrophysics Data System (ADS)

    Scholl, Stephan

    2016-05-01

    ECHo-lk is a new experiment which is designed to investigate the electron neutrino mass from the calorimetric measurement of the electron capture spectrum of 163Ho. In this presentation, we give an overview of our recent activities in the background analysis and reduction. Low background measurements of the radiopurity of the implanted Holmium in the ECHo detectors have been used to constrain the maximum activity of 166mHo in the sample to be less than ~ 0.4 mBq. On top of this, the background spectrum introduced by coimplanted 166Ho in the absorber of the ECHo detectors has been obtained with a GEANT4 simulation showing that if the projected reduction of coimplanted 166mHo to 163Ho of 10-10 can be achieved, the background contribution of 166mHo is negligible. Additional GEANT4 based Monte-Carlo simulations of test contaminations have been conducted. Simulations have been completed for internal 210Pb contamination in the absorber and 55Fe contaminations on the surface of the absorber.

  14. Synthesis of the lightest nuclei

    NASA Astrophysics Data System (ADS)

    Kneller, James Patrick

    The lightest nuclei are principally synthesized either during the first moments of the Universe or as fragments from the spallation of heavier nuclei when Cosmic Rays interact with the Interstellar Medium and this dissertation investigates each in turn. In the first half the predictions from Big Bang Nucleosynthesis are studied when the requirements of only three relativistic neutrino flavors and a small electron neutrino chemical potential are relaxed. The hope that a small, acceptable region for each can be identified is shown to be unfounded because of a degeneracy amongst the parameters. Additional information is required and this may be obtained from the anisotropies in the Cosmic Microwave Background. The estimates of the baryon to photon ratio are shown to be consistent and a relatively well identified value for the number of relativistic neutrino species can be found but with a variance that exhibits a dependency upon the prior assumptions. By imposing a constraint upon the age of the Universe the number of relativistic neutrino species is shown to be <=6 which then yields an limit to the electron neutrino chemical potential of <=0.3. The second is concerned with the kinetics and evolution of Galactic Cosmic Ray Nucleosynthesis. Two approximations are frequently employed in calculations of the production rates: the termination of the reaction expansion at the `One-Step' term and the Straight-Ahead Approximation for the fragment energies. Relaxing the Straight-Ahead Approximation produces minor differences of order 5% but changes of order 10-50% are found when the Two-Step terms in the reaction expansion are included. The two proposed solutions capable of reconciling the theoretical predictions of the evolution of the abundances of these elements with the observations: the possibility of an enriched cosmic ray composition and a modified Oxygen to Iron relation. From the analysis of a simple model it is found that an enriched component greater than >~ 70% is

  15. Fusion probability in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Banerjee, Tathagata; Nath, S.; Pal, Santanu

    2015-03-01

    Background: Fusion between two massive nuclei is a very complex process and is characterized by three stages: (a) capture inside the potential barrier, (b) formation of an equilibrated compound nucleus (CN), and (c) statistical decay of the CN leading to a cold evaporation residue (ER) or fission. The second stage is the least understood of the three and is the most crucial in predicting yield of superheavy elements (SHE) formed in complete fusion reactions. Purpose: A systematic study of average fusion probability, , is undertaken to obtain a better understanding of its dependence on various reaction parameters. The study may also help to clearly demarcate onset of non-CN fission (NCNF), which causes fusion probability, PCN, to deviate from unity. Method: ER excitation functions for 52 reactions leading to CN in the mass region 170-220, which are available in the literature, have been compared with statistical model (SM) calculations. Capture cross sections have been obtained from a coupled-channels code. In the SM, shell corrections in both the level density and the fission barrier have been included. for these reactions has been extracted by comparing experimental and theoretical ER excitation functions in the energy range ˜5 %-35% above the potential barrier, where known effects of nuclear structure are insignificant. Results: has been shown to vary with entrance channel mass asymmetry, η (or charge product, ZpZt ), as well as with fissility of the CN, χCN. No parameter has been found to be adequate as a single scaling variable to determine . Approximate boundaries have been obtained from where starts deviating from unity. Conclusions: This study quite clearly reveals the limits of applicability of the SM in interpreting experimental observables from fusion reactions involving two massive nuclei. Deviation of from unity marks the beginning of the domain of dynamical models of fusion. Availability of precise ER cross

  16. A pilot validation of multi-echo based echo-planar correlated spectroscopic imaging in human calf muscles.

    PubMed

    Furuyama, Jon K; Nagarajan, Rajakumar; Roberts, Christian K; Lee, Cathy C; Hahn, Theodore J; Thomas, M Albert

    2014-10-01

    A current limitation of MR spectroscopic imaging of multiple skeletal muscles is prolonged scan duration. A significant reduction in the total scan duration using the echo-planar correlated spectroscopic imaging (EP-COSI) sequence was accomplished using two bipolar readout trains with different phase-encoded echoes for one of two spatial dimensions within a single repetition time (TR). The second bipolar readout was used for spatially encoding the outer k-space, whereas the first readout was used for the central k-space only. The performance of this novel sequence, called multi-echo based echo-planar correlated spectroscopic imaging (ME-EPCOSI), was demonstrated by localizing specific key features in calf muscles and bone marrow of 11 healthy volunteers and five subjects with type 2 diabetes (T2D). A 3 T MRI-MRS scanner equipped with a transmit-receive extremity coil was used. Localization of the ME-EPCOSI sequence was in good agreement with the earlier single-readout based EP-COSI sequence and the required scan time was reduced by a factor of two. In agreement with an earlier report using single-voxel based 2D MRS, significantly increased unsaturated pools of intramyocellular lipid (IMCL) and extramyocellular lipid (EMCL) and decreased IMCL and EMCL unsaturation indices (UIs) were observed in the soleus and tibialis anterior muscle regions of subjects with T2D compared with healthy controls. In addition, significantly decreased choline content was observed in the soleus of T2D subjects compared with healthy controls. Multi-voxel characterization of IMCL and EMCL ratios and UI in the calf muscle may be useful for the non-invasive assessment of altered lipid metabolism in the pathophysiology of T2D.

  17. Molecular outflows in starburst nuclei

    NASA Astrophysics Data System (ADS)

    Roy, Arpita; Nath, Biman B.; Sharma, Prateek; Shchekinov, Yuri

    2016-12-01

    Recent observations have detected molecular outflows in a few nearby starburst nuclei. We discuss the physical processes at work in such an environment in order to outline a scenario that can explain the observed parameters of the phenomenon, such as the molecular mass, speed and size of the outflows. We show that outflows triggered by OB associations, with NOB ≥ 105 (corresponding to a star formation rate (SFR)≥1 M⊙ yr-1 in the nuclear region), in a stratified disc with mid-plane density n0 ˜ 200-1000 cm-3 and scaleheight z0 ≥ 200(n0/102 cm-3)-3/5 pc, can form molecules in a cool dense and expanding shell. The associated molecular mass is ≥107 M⊙ at a distance of a few hundred pc, with a speed of several tens of km s-1. We show that an SFR surface density of 10 ≤ ΣSFR ≤ 50 M⊙ yr-1 kpc-2 favours the production of molecular outflows, consistent with observed values.

  18. Neurotransmitters of the suprachiasmatic nuclei

    PubMed Central

    Reghunandanan, Vallath; Reghunandanan, Rajalaxmy

    2006-01-01

    There has been extensive research in the recent past looking into the molecular basis and mechanisms of the biological clock, situated in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. Neurotransmitters are a very important component of SCN function. Thorough knowledge of neurotransmitters is not only essential for the understanding of the clock but also for the successful manipulation of the clock with experimental chemicals and therapeutical drugs. This article reviews the current knowledge about neurotransmitters in the SCN, including neurotransmitters that have been identified only recently. An attempt was made to describe the neurotransmitters and hormonal/diffusible signals of the SCN efference, which are necessary for the master clock to exert its overt function. The expression of robust circadian rhythms depends on the integrity of the biological clock and on the integration of thousands of individual cellular clocks found in the clock. Neurotransmitters are required at all levels, at the input, in the clock itself, and in its efferent output for the normal function of the clock. The relationship between neurotransmitter function and gene expression is also discussed because clock gene transcription forms the molecular basis of the clock and its working. PMID:16480518

  19. The morphology of cometary nuclei

    NASA Astrophysics Data System (ADS)

    Keller, H. U.; Jorda, L.

    comets display residual activity or clouds of dust grains around their nuclei. Taking the residual signal into account (mostly using simple models for the brightness distribution) the size estimates of the nuclei could be improved. The (nuclear) magnitude of a comet depends on the product of its albedo and cross-section. Only in a few cases could the albedo and size of a cometary nucleus be separated by additional observation of its thermal emission at infrared wavelengths. By comparison with outer Solar System asteroids Cruikshank et al. (1985) derived a surprisingly low albedo of about 0.04. A value in clear contradiction to the perception of an icy surface but fully confirmed by the first resolved images of a cometary nucleus during the flybys of the Vega and Giotto spacecraft of comet Halley (Sagdeev et al. 1986, Keller et al. 1986). The improvements of radar techniques led to the detection of reflected signals and finally to the derivation of nuclear dimensions and rotation rates. The observations, however, are also model dependent (rotation and size are similarly interwoven as are albedo and size) and sensitive to large dust grains in the vicinity of a nucleus. As an example, Kamoun et al. (1982) determined the radius of comet Encke to 1.5 (2.3, 1.0) km using the spin axis determination of Whipple and Sekanina (1979). The superb spatial resolution of the Hubble Space Telescope (HST) is not quite sufficient to resolve a cometary nucleus. The intensity distribution of the inner coma, however, can be observed and extrapolated toward the nucleus based on models of the dust distribution. If this contribution is subtracted from the central brightness the signal of the nucleus can be derived and hence its product of albedo times cross-section (Lamy and Toth 1995, Rembor 1998, Keller and Rembor 1998; Section 4.3). It has become clear that cometary nuclei are dark, small, often irregular bodies with dimensions ranging from about a kilometre (comet Wirtanen, the target of

  20. Apparatus and method for measuring relative phase of signals in a multiple-echo system

    NASA Technical Reports Server (NTRS)

    Froggatt, Mark E. (Inventor)

    1998-01-01

    An apparatus and method for measuring the relative phase of echo signals in a multiple-echo system. A signal generator generates an exciting tone burst and subsequent tone bursts delayed in phase from the exciting tone burst. The exciting tone burst is gated into a transducer coupled to the multiple-echo system. Each subsequent tone burst is converted into a series of pulses. Each pulse triggers a sample/hold circuit to sample each echo signal. The samples of the echo signal are averaged and then compared to a reference value. The signal generator is controlled to vary the subsequent tone burst phase delay to determine for each echo signal a subsequent tone burst phase delay that causes the average of the samples of the echo signal to be substantially equal to the reference value wherein the determined subsequent tone burst phase delay is the phase delay of the echo signal with respect to the exciting tone burst. The control circuit then determines the difference in phase delay between echo signals to determine the relative phase delay of the echo signals.

  1. Electrically and optically detected spin echo of hopping carriers in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Mkhitaryan, Vagharsh; Dobrovitski, Viatcheslav

    We develop a theory for electrically and optically detected primary (2-pulse) and stimulated (3-pulse) spin echo produced by the polaron pairs coupled to the nuclear spins in organic semiconductors. The theory employs fully quantum description of the nuclear and polaron spins, and explains how the structure of the echo signal (electron spin echo envelope modulation, ESEEM) depends on the statistics and rate of the polaron hopping. For the primary spin echo the envelope modulation is strong for slow hopping; both modulation amplitude and dephasing time T2 decrease with increasing hopping rate. As the hopping rate increases further, T2 starts to increase again due to motional narrowing, while the primary echo signal becomes exponential without modulation. The stimulated spin echo signal also shows strong envelope modulation for slow polaron hopping. For faster hopping the stimulated echo (unlike the primary echo) shows a modulation which does not disappear for fast hopping, and has the frequency of the nuclear Larmor precession. Besides describing the recent spin echo measurements in π-conjugated polymers, our work provides a way to directly determine the polaron hopping dynamics from the spin echo experiments. This work was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  2. Separating Cloud Forming Nuclei from Interstitial Aerosol

    SciTech Connect

    Kulkarni, Gourihar R.

    2012-09-12

    It has become important to characterize the physicochemical properties of aerosol that have initiated the warm and ice clouds. The data is urgently needed to better represent the aerosol-cloud interaction mechanisms in the climate models. The laboratory and in-situ techniques to separate precisely the aerosol particles that act as cloud condensation nuclei (CCN) and ice nuclei (IN), termed as cloud nuclei (CN) henceforth, have become imperative in studying aerosol effects on clouds and the environment. This review summarizes these techniques, design considerations, associated artifacts and challenges, and briefly discusses the need for improved designs to expand the CN measurement database.

  3. Variabilities of low latitude mesospheric and E region echoes: linked to common sources?

    NASA Astrophysics Data System (ADS)

    Dharmalingam, Selvaraj; Patra, Amit; Sathishkumar, Sundararaman; Narayana Rao, D.

    2016-07-01

    Variability in dynamics of the mesospheric and E region echoes have been studied in isolation. Both echoing phenomena are directly or indirectly coupled with each other through neutral dynamics. This is especially so for the low-latitudes outside the equatorial electrojet belt, where E region plasma irregularities causing radar echoes are governed by neutral dynamics, such as tides and gravity waves. Although these regions are close to each other, no effort has been made yet to understand the dynamical coupling processes manifesting the observed variabilities in the two echoing phenomena. To investigate linkage between the two phenomena, if any, we conducted systematic observations of low latitude mesospheric and E region echoes during 2011-2012 using the Gadanki MST radar and used these in conjunction with SABER temperature, MF radar wind, and sporadic E observations. Both echoes are found to occur in the height regions where temperature observations show negative gradients. Mesospheric echoes are collocated with temperature gradient associated with mesospheric temperature inversion while the E region echoes are collocated with negative temperature gradient close to the mesopause. Observations have revealed a common signature of semi-annual variations in the occurrence of both mesospheric and ionospheric E-region - occurrences peak in the equinoxes. The E region echoes have an additional peak occurring in the summer and this occurrence is well correlated with the enhancement in the diurnal tidal amplitude. We surmise that the enhancement in the diurnal tidal amplitude is linked with non-migrating tide of tropospheric weather phenomena in summer. Intriguingly, mesospheric echoing layers display descending pattern quite similar to the E region echoes and sporadic E layer, which have been used to invoke tidal dynamics in manifesting similar morphology in both mesospheric and E region echoes. These results will be presented and the role of tidal dynamics on the

  4. Light Echoes and Late-Time Emissions of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Drozdov, Dina

    2016-05-01

    Type Ia supernovae have many applications in astronomy, yet with fundamental properties still not fully understood, new methods for investigating the environment of a supernova need to be developed. A light echo is produced from the scattering of light from a bright source and can be used to analyze the dust in the vicinity of the supernova and learn invaluable information about the source. These techniques can put constraints on explosion and progenitor models. Although light echo detections from Type Ia supernovae are rare, with only seven total extragalactic detections, this could be due to the lack of thorough late-epoch monitoring. Since key information is determined from even a single light echo detection, light echo searches should be undertaken in the future to supplement our understanding of supernovae. As part of our collaborative campaign for studying the emission of supernovae at late epochs, we have added two light echoes to a small sample size of Type Ia supernova light echo detections: SN 2009ig in NGC 1015 and a dual echo from SN 2007af in NGC 5584. Both echoes were observed with the Hubble Space Telescope and allow for the most detailed images of Type Ia supernova light echoes to date. Three filters (F555W, F814W, and F350LP) captured the echoes obtained with the Wide Field Camera 3, and since both host galaxies were imaged as part of the same observing program, these cases will be the best comparable light echo pairs. We also further investigate the light echoes from SN 2006X in NGC 4321 and SN 1998bu in NGC 3368 from Hubble Space Telescope archival images. Analyses performed on the images gives crucial insight into the dusty environment of the host galaxy and the surroundings of the supernova. The outer echo from SN 2007af was created from an interstellar dust sheet located ~800 pc in front of the supernova, while the inner echo could be from interstellar or circumstellar origin. A circumstellar light echo could imply a single degenerate

  5. Effective Interactions for Light Nuclei

    NASA Astrophysics Data System (ADS)

    Caldwell, Bryan R.

    The G-matrix technique in which one is able to easily calculate ground and excited states of many-body systems is used to calculate the ground state energies and some excited levels of ^3H and ^4He. Energy independent effective interactions are obtained for these nuclei using the technique of Suzuki and Lee which requires the G-matrix and its derivatives with respect to starting energy. It is found that accurate energy derivatives of the G-matrix are necessary to obtain energy independence and thus analytic expressions are presented for these derivatives in both center-of-mass/relative and shell model coordinate systems. Several rules of thumb are given pertaining to the convergence criteria in both coordinate systems. Further, since the G-matrix includes only intra -channel two-body correlations outside the active space, we explore the effect on the binding energies when the active space is enlarged to include several major shells. By enlarging the active space, we hope to include the most important many-body correlations explicitly. It is found that when the active space includes more than 2 major shells, the effective interaction is well approximated by the G-matrix. Our results essentially agree with exact Faddeev calculations for ^3 H but underbind by about.5 MeV in ^4 He as compared to exact Yabukovsky and Green function Monte Carlo calculations. A possible reason for this underbinding, the inclusion of unlinked diagrams in the energy expansion, is studied. The energy independent G-matrix technique is then applied to the p-shell (^5He, ^6Li and ^7Li) where the active space includes all excitations up to 2 hbaromega. Zero, one, two and three -body effective interactions are extracted and it is found that a schematic two-parameter three-body potential can be used to approximate the effective three-body potential that results from the truncation of the active space.

  6. Where Should the Nuclei Be Located?

    ERIC Educational Resources Information Center

    Ying Liu; Yue Liu; Drew, Michael G. B.

    2005-01-01

    The approach of determining the nature of the electron wave function via orbital representations qualitatively and via numerical calculations quantitatively is demonstrated. The angular part of the wave function provides suitable representation of the positions of the nuclei.

  7. Infrared Observations of Cometary Dust and Nuclei

    NASA Technical Reports Server (NTRS)

    Lisse, Carey

    2004-01-01

    This bibliography lists citations for publications published under the grant. Subjects of the publications include cometary dust, instellar and interplanetary dust, comet nuclei and comae, Comet Hale-Bopp, infrared observations of comets, mass loss, and comet break-up.

  8. From nucleons to nuclei to fusion reactions

    NASA Astrophysics Data System (ADS)

    Quaglioni, S.; Navrátil, P.; Roth, R.; Horiuchi, W.

    2012-12-01

    Nuclei are prototypes of many-body open quantum systems. Complex aggregates of protons and neutrons that interact through forces arising from quantum chromo-dynamics, nuclei exhibit both bound and unbound states, which can be strongly coupled. In this respect, one of the major challenges for computational nuclear physics, is to provide a unified description of structural and reaction properties of nuclei that is based on the fundamental underlying physics: the constituent nucleons and the realistic interactions among them. This requires a combination of innovative theoretical approaches and high-performance computing. In this contribution, we present one of such promising techniques, the ab initio no-core shell model/resonating-group method, and discuss applications to light nuclei scattering and fusion reactions that power stars and Earth-base fusion facilities.

  9. A focus on shape coexistence in nuclei

    NASA Astrophysics Data System (ADS)

    Wood, J. L.; Heyde, K.

    2016-02-01

    The present collection of articles focuses on new directions and developments under the title of shape coexistence in nuclei, following our 2011 Reviews of Modern Physics article (K Heyde and J L Wood).

  10. Clusterization and quadrupole deformation in nuclei

    SciTech Connect

    Cseh, J.; Algora, A.; Antonenko, N. V.; Jolos, R. V.; Scheid, W.; Darai, J.; Hess, P. O.

    2006-04-26

    We study the interrelation of the clusterization and quadrupole deformation of atomic nuclei, by applying cluster models. Both the energetic stability and the exclusion principle is investigated. Special attention is paid to the relative orientations of deformed clusters.

  11. ULTRA-RELATIVISTIC NUCLEI: A NEW FRONTIER

    SciTech Connect

    MCLERRAN,L.

    1999-10-29

    The collisions of ultra-relativistic nuclei provide a window on the behavior of strong interactions at asymptotically high energies. They also will allow the authors to study the bulk properties of hadronic matter at very high densities.

  12. From Nucleons To Nuclei To Fusion Reactions

    SciTech Connect

    Quaglioni, S; Navratil, P; Roth, R; Horiuchi, W

    2012-02-15

    Nuclei are prototypes of many-body open quantum systems. Complex aggregates of protons and neutrons that interact through forces arising from quantum chromo-dynamics, nuclei exhibit both bound and unbound states, which can be strongly coupled. In this respect, one of the major challenges for computational nuclear physics, is to provide a unified description of structural and reaction properties of nuclei that is based on the fundamental underlying physics: the constituent nucleons and the realistic interactions among them. This requires a combination of innovative theoretical approaches and high-performance computing. In this contribution, we present one of such promising techniques, the ab initio no-core shell model/resonating-group method, and discuss applications to light nuclei scattering and fusion reactions that power stars and Earth-base fusion facilities.

  13. Parton distributions in nuclei: Quagma or quagmire

    SciTech Connect

    Close, F.E.

    1988-01-01

    The emerging information on the way quark, antiquark, and gluon distributions are modified in nuclei relative to free nucleons is reviewed. Particular emphasis is placed on Drell-Yan and /psi/ production on nuclei and caution against premature use of these as signals for quagma in heavy-ion collisions. If we are to identify the formation of quark-gluon plasma in heavy-ion collisions by changes in the production rates for /psi/ relative to Drell-Yan lepton pairs, then it is important that we first understand the ''intrinsic'' changes in parton distributions in nuclei relative to free nucleons. So, emerging knowledge on how quark, antiquark, and gluon distributions are modified in nuclei relative to free nucleons is reviewed, and the emerging theoretical concensus is briefly summarized.

  14. Organization of projections from the raphe nuclei to the vestibular nuclei in rats

    NASA Technical Reports Server (NTRS)

    Halberstadt, A. L.; Balaban, C. D.

    2003-01-01

    Previous anatomic and electrophysiological evidence suggests that serotonin modulates processing in the vestibular nuclei. This study examined the organization of projections from serotonergic raphe nuclei to the vestibular nuclei in rats. The distribution of serotonergic axons in the vestibular nuclei was visualized immunohistochemically in rat brain slices using antisera directed against the serotonin transporter. The density of serotonin transporter-immunopositive fibers is greatest in the superior vestibular nucleus and the medial vestibular nucleus, especially along the border of the fourth ventricle; it declines in more lateral and caudal regions of the vestibular nuclear complex. After unilateral iontophoretic injections of Fluoro-Gold into the vestibular nuclei, retrogradely labeled neurons were found in the dorsal raphe nucleus (including the dorsomedial, ventromedial and lateral subdivisions) and nucleus raphe obscurus, and to a minor extent in nucleus raphe pallidus and nucleus raphe magnus. The combination of retrograde tracing with serotonin immunohistofluorescence in additional experiments revealed that the vestibular nuclei receive both serotonergic and non-serotonergic projections from raphe nuclei. Tracer injections in densely innervated regions (especially the medial and superior vestibular nuclei) were associated with the largest numbers of Fluoro-Gold-labeled cells. Differences were observed in the termination patterns of projections from the individual raphe nuclei. Thus, the dorsal raphe nucleus sends projections that terminate predominantly in the rostral and medial aspects of the vestibular nuclear complex, while nucleus raphe obscurus projects relatively uniformly throughout the vestibular nuclei. Based on the topographical organization of raphe input to the vestibular nuclei, it appears that dense projections from raphe nuclei are colocalized with terminal fields of flocculo-nodular lobe and uvula Purkinje cells. It is hypothesized that

  15. Characteristic analysis of underwater acoustic scattering echoes in the wavelet transform domain

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Li, Xiukun; Yang, Yang; Meng, Xiangxia

    2017-01-01

    Underwater acoustic scattering echoes have time-space structures and are aliasing in time and frequency domains. Different series of echoes properties are not identified when incident angle is unknown. This article investigates variations in target echoes of monostatic sonar to address this problem. The mother wavelet with similar structures has been proposed on the basis of preprocessing signal waveform using matched filter, and the theoretical expressions between delay factor and incident angle are derived in the wavelet domain. Analysis of simulation data and experimental results in free-field pool show that this method can effectively separate geometrical scattering components of target echoes. The time delay estimation obtained from geometrical echoes at a single angle is consistent with target geometrical features, which provides a basis for object recognition without angle information. The findings provide valuable insights for analyzing elastic scattering echoes in actual ocean environment.

  16. Characteristic analysis of underwater acoustic scattering echoes in the wavelet transform domain

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Li, Xiukun; Yang, Yang; Meng, Xiangxia

    2017-03-01

    Underwater acoustic scattering echoes have time-space structures and are aliasing in time and frequency domains. Different series of echoes properties are not identified when incident angle is unknown. This article investigates variations in target echoes of monostatic sonar to address this problem. The mother wavelet with similar structures has been proposed on the basis of preprocessing signal waveform using matched filter, and the theoretical expressions between delay factor and incident angle are derived in the wavelet domain. Analysis of simulation data and experimental results in free-field pool show that this method can effectively separate geometrical scattering components of target echoes. The time delay estimation obtained from geometrical echoes at a single angle is consistent with target geometrical features, which provides a basis for object recognition without angle information. The findings provide valuable insights for analyzing elastic scattering echoes in actual ocean environment.

  17. Dependence of ultrasound echo decorrelation on local tissue temperature during ex vivo radiofrequency ablation.

    PubMed

    Subramanian, Swetha; Schmidt, Daniel T; Rao, Marepalli B; Mast, T Douglas

    2016-03-21

    This study investigates echo decorrelation imaging, an ultrasound method for thermal ablation monitoring. The effect of tissue temperature on the mapped echo decorrelation parameter was assessed in radiofrequency ablation experiments performed on ex vivo bovine liver tissue. Echo decorrelation maps were compared with corresponding tissue temperatures simulated using the finite element method. For both echo decorrelation imaging and integrated backscatter imaging, the mapped tissue parameters correlated significantly but weakly with local tissue temperature. Receiver operating characteristic (ROC) curves were used to assess the ability of echo decorrelation and integrated backscatter to predict tissue temperature greater than 40, 60, and 80 °C. Significantly higher area under the ROC curve (AUROC) values were obtained for prediction of tissue temperatures greater than 40, 60, and 80 °C using echo decorrelation imaging (AUROC = 0.871, 0.948 and 0.966) compared to integrated backscatter imaging (AUROC = 0.865, 0.877 and 0.832).

  18. Ion acoustic HF radar echoes at high latitudes and far ranges

    NASA Astrophysics Data System (ADS)

    Lacroix, P. J.; Moorcroft, D. R.

    2001-12-01

    Using data taken over 18 months with the Iceland East (CUT-LASS/Iceland) Super Dual Auroral Radar Network (SuperDARN) HF radar we have made a statistical study of a class of echoes which occur at ranges typically associated with F region echoes, but which have Doppler speeds near the ion acoustic speed Cs typical of E region echoes [Milan et al., 1997]. Comparison of the seasonal, diurnal, and range distributions of these echoes with the predictions of propagation models show that these are, indeed, E region echoes, differing in morphology from similar echoes at nearer ranges mainly because of the propagation conditions which are required to observe them. For the particular radar geometry of this study, conventional theory predicts that the effects of ionospheric gradients will result in phase velocities (radar Doppler velocities) which differ significantly from Cs, in disagreement with these observations. However, the observations are consistent with a new nonlinear theory of St.-Maurice and Hamza [2001].

  19. In vivo quantification of amygdala subnuclei using 4.7 T fast spin echo imaging.

    PubMed

    Aghamohammadi-Sereshki, Arash; Huang, Yushan; Olsen, Fraser; Malykhin, Nikolai V

    2017-03-10

    The amygdala (AG) is an almond-shaped heterogeneous structure located in the medial temporal lobe. The majority of previous structural Magnetic Resonance Imaging (MRI) volumetric methods for AG measurement have so far only been able to examine this region as a whole. In order to understand the role of the AG in different neuropsychiatric disorders, it is necessary to understand the functional role of its subnuclei. The main goal of the present study was to develop a reliable volumetric method to delineate major AG subnuclei groups using ultra-high resolution high field MRI. 38 healthy volunteers (15 males and 23 females, 21-60 years of age) without any history of medical or neuropsychiatric disorders were recruited for this study. Structural MRI datasets were acquired at 4.7T Varian Inova MRI system using a fast spin echo (FSE) sequence. The AG was manually segmented into its five major anatomical subdivisions: lateral (La), basal (B), accessory basal (AB) nuclei, and cortical (Co) and centromedial (CeM) groups. Inter-(intra-) rater reliability of our novel volumetric method was assessed using intra-class correlation coefficient (ICC) and Dice's Kappa. Our results suggest that reliable measurements of the AG subnuclei can be obtained by image analysts with experience in AG anatomy. We provided a step-by-step segmentation protocol and reported absolute and relative volumes for the AG subnuclei. Our results showed that the basolateral (BLA) complex occupies seventy-eight percent of the total AG volume, while CeM and Co groups occupy twenty-two percent of the total AG volume. Finally, we observed no hemispheric effects and no gender differences in the total AG volume and the volumes of its subnuclei. Future applications of this method will help to understand the selective vulnerability of the AG subnuclei in neurological and psychiatric disorders.

  20. The anatomy of the vestibular nuclei.

    PubMed

    Highstein, Stephen M; Holstein, Gay R

    2006-01-01

    The vestibular portion of the eighth cranial nerve informs the brain about the linear and angular movements of the head in space and the position of the head with respect to gravity. The termination sites of these eighth nerve afferents define the territory of the vestibular nuclei in the brainstem. (There is also a subset of afferents that project directly to the cerebellum.) This chapter reviews the anatomical organization of the vestibular nuclei, and the anatomy of the pathways from the nuclei to various target areas in the brain. The cytoarchitectonics of the vestibular brainstem are discussed, since these features have been used to distinguish the individual nuclei. The neurochemical phenotype of vestibular neurons and pathways are also summarized because the chemical anatomy of the system contributes to its signal-processing capabilities. Similarly, the morphologic features of short-axon local circuit neurons and long-axon cells with extrinsic projections are described in detail, since these structural attributes of the neurons are critical to their functional potential. Finally, the composition and hodology of the afferent and efferent pathways of the vestibular nuclei are discussed. In sum, this chapter reviews the morphology, chemoanatomy, connectivity, and synaptology of the vestibular nuclei.

  1. Major new sources of biological ice nuclei

    NASA Astrophysics Data System (ADS)

    Moffett, B. F.; Hill, T.; Henderson-Begg, S. K.

    2009-12-01

    Almost all research on biological ice nucleation has focussed on a limited number of bacteria. Here we characterise several major new sources of biogenic ice nuclei. These include mosses, hornworts, liverworts and cyanobacteria. Ice nucleation in the eukaryotic bryophytes appears to be ubiquitous. The temperature at which these organisms nucleate is that at which the difference in vapour pressure over ice and water is at or close to its maximum. At these temperatures (-8 to -18 degrees C) ice will grow at the expense of supercooled water. These organisms are dependent for their water on occult precipitation - fog, dew and cloudwater which by its nature is not collected in conventional rain gauges. Therefore we suggest that these organism produce ice nuclei as a water harvesting mechanism. Since the same mechanism would also drive the Bergeron-Findeisen process, and as moss is known to become airborne, these nuclei may have a role in the initiation of precipitation. The properties of these ice nuclei are very different from the well characterised bacterial nuclei. We will also present DNA sequence data showing that, although related, the proteins responsible are only very distantly related to the classical bacterial ice nuclei.

  2. Analysis of echoes in ultrasonic testing for round bar using angle beam immersion technique

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Kameyama, S.; Misu, K.; Wadaka, S.; Tanaka, H.

    2001-04-01

    A design is presented for a probe, used for automatic ultrasonic testing for a round bar using the angle beam immersion technique, to improve a signal to noise ratio. It is defined based on a flaw echo height and a spurious echo height, taking into consideration of a time gate and variation of the flaw echo height along with a rotation of the probe round the bar. The result of the design is in good agreement with that of experiments.

  3. First Demonstration of ECHO: an External Calibrator for Hydrogen Observatories

    NASA Astrophysics Data System (ADS)

    Jacobs, Daniel C.; Burba, Jacob; Bowman, Judd D.; Neben, Abraham R.; Stinnett, Benjamin; Turner, Lauren; Johnson, Kali; Busch, Michael; Allison, Jay; Leatham, Marc; Serrano Rodriguez, Victoria; Denney, Mason; Nelson, David

    2017-03-01

    Multiple instruments are pursuing constraints on dark energy, observing reionization and opening a window on the dark ages through the detection and characterization of the 21 cm hydrogen line for redshifts ranging from ∼1 to 25. These instruments, including CHIME in the sub-meter and HERA in the meter bands, are wide-field arrays with multiple-degree beams, typically operating in transit mode. Accurate knowledge of their primary beams is critical for separation of bright foregrounds from the desired cosmological signals, but difficult to achieve through astronomical observations alone. Previous beam calibration work at low frequencies has focused on model verification and does not address the need of 21 cm experiments for routine beam mapping, to the horizon, of the as-built array. We describe the design and methodology of a drone-mounted calibrator, the External Calibrator for Hydrogen Observatories (ECHO), that aims to address this need. We report on a first set of trials to calibrate low-frequency dipoles at 137 MHz and compare ECHO measurements to an established beam-mapping system based on transmissions from the Orbcomm satellite constellation. We create beam maps of two dipoles at a 9° resolution and find sample noise ranging from 1% at the zenith to 100% in the far sidelobes. Assuming this sample noise represents the error in the measurement, the higher end of this range is not yet consistent with the desired requirement but is an improvement on Orbcomm. The overall performance of ECHO suggests that the desired precision and angular coverage is achievable in practice with modest improvements. We identify the main sources of systematic error and uncertainty in our measurements and describe the steps needed to overcome them.

  4. Chandra Discovers Light Echo from the Milky Way's Black Hole

    NASA Astrophysics Data System (ADS)

    2007-01-01

    Like cold case investigators, astronomers have used NASA's Chandra X-ray Observatory to uncover evidence of a powerful outburst from the giant black hole at the Milky Way's center. A light echo was produced when X-ray light generated by gas falling into the Milky Way's supermassive black hole, known as Sagittarius A* (pronounced "A-star"), was reflected off gas clouds near the black hole. While the primary X-rays from the outburst would have reached Earth about 50 years ago, the reflected X-rays took a longer path and arrived in time to be recorded by Chandra. Variability in Chandra Images of Light Echo Variability in Chandra Images of Light Echo "This dramatic event happened before we had satellites in space that could detect it," said Michael Muno of the California Institute of Technology in Pasadena. "So, it's remarkable that we can use Chandra to dig into the past and see this monster black hole's capacity for destruction." Previously, scientists have used Chandra to directly detect smaller and more recent outbursts from the black hole. This latest outburst revealed by the X-ray echo was about 1,000 times brighter and lasted well over 1,000 times longer than any of the recent outbursts observed by Chandra. Theory predicts that an outburst from Sagittarius A* would cause X-ray emission from the clouds to vary in both intensity and shape. Muno and his team found these changes for the first time, thus ruling out other interpretations. The latest results corroborate other independent, but indirect, evidence for light echoes generated by the black hole in the more distant past. Illustrations of Light Echo Illustrations of Light Echo Scientists have long known that Sagittarius A*, with a mass of about 3 million suns, lurked at the center for Milky Way. However, the black hole is incredibly faint at all wavelengths, especially in X-rays. "This faintness implies that stars and gas rarely get close enough to the black hole to be in any danger," said co-author Frederick

  5. The wide-angle neutron spin echo spectrometer project WASP

    SciTech Connect

    Ehlers, Georg

    2007-01-01

    This paper describes design and optimization for the wide angle spin-echo spectrometer (WASP) presently being planned at the ILL. The spectrometer will be a replacement for the high intensity spectrometer IN11 and will enhance its signal by more than one order of magnitude while maintaining the resolution of the present spectrometer. The paper outlines the magnetic field calculations and the considerations about possible limitations. The projected performance has been verified carefully by Monte Carlo raytracing and Biot-Savart magnetic field calculations. The maximum momentum transfer of the new spectrometer is to be extended to 4 angstroms {sup -1}.

  6. Automatic speech recognition using a predictive echo state network classifier.

    PubMed

    Skowronski, Mark D; Harris, John G

    2007-04-01

    We have combined an echo state network (ESN) with a competitive state machine framework to create a classification engine called the predictive ESN classifier. We derive the expressions for training the predictive ESN classifier and show that the model was significantly more noise robust compared to a hidden Markov model in noisy speech classification experiments by 8+/-1 dB signal-to-noise ratio. The simple training algorithm and noise robustness of the predictive ESN classifier make it an attractive classification engine for automatic speech recognition.

  7. Photonic crystal fiber mapping using Brillouin echoes distributed sensing.

    PubMed

    Stiller, B; Foaleng, S M; Beugnot, J-C; Lee, M W; Delqué, M; Bouwmans, G; Kudlinski, A; Thévenaz, L; Maillotte, H; Sylvestre, T

    2010-09-13

    In this paper we investigate the effect of microstructure irregularities and applied strain on backward Brillouin scattering by comparing two photonic crystal fibers drawn with different parameters in order to minimize diameter and microstructure fluctuations. We fully characterize their Brillouin properties including the gain spectrum and the critical power. Using Brillouin echoes distributed sensing with a high spatial resolution of 30 cm we are able to map the Brillouin frequency shift along the fiber and get an accurate estimation of the microstructure longitudinal fluctuations. Our results reveal a clear-cut difference of longitudinal homogeneity between the two fibers.

  8. Examining the robustness of automated aural classification of active sonar echoes.

    PubMed

    Murphy, Stefan M; Hines, Paul C

    2014-02-01

    Active sonar systems are used to detect underwater man-made objects of interest (targets) that are too quiet to be reliably detected with passive sonar. Performance of active sonar can be degraded by false alarms caused by echoes returned from geological seabed structures (clutter) in shallow regions. To reduce false alarms, a method of distinguishing target echoes from clutter echoes is required. Research has demonstrated that perceptual-based signal features similar to those employed in the human auditory system can be used to automatically discriminate between target and clutter echoes, thereby reducing the number of false alarms and improving sonar performance. An active sonar experiment on the Malta Plateau in the Mediterranean Sea was conducted during the Clutter07 sea trial and repeated during the Clutter09 sea trial. The dataset consists of more than 95,000 pulse-compressed echoes returned from two targets and many geological clutter objects. These echoes were processed using an automatic classifier that quantifies the timbre of each echo using a number of perceptual signal features. Using echoes from 2007, the aural classifier was trained to establish a boundary between targets and clutter in the feature space. Temporal robustness was then investigated by testing the classifier on echoes from the 2009 experiment.

  9. The design and implementation of a multi-waveform radar echo simulator.

    PubMed

    Quan, Yinghui; Gao, Xiaoxiao; Li, Yachao; Xing, Mengdao

    2015-10-01

    Radar simulator is an effective tool for performance assessment of radar systems by accurately reproducing echo signals from complicated environment. This paper presents a design of fast multi-waveform radar echo generation based on deconvolution method. First, scene information is retrieved from outfield data based on improved conjugate gradient algorithm. Then, the new radar echoes are generated through convolution of new transmitted signal and restored scene information. A fast and area-efficient field programmable gate array realization is provided to meet the real-time requirement of radar echo simulation. Finally, a series of experiments are performed to evaluate the effectiveness of proposed radar simulation instrument.

  10. Characterization of biological ice nuclei from a lichen.

    PubMed Central

    Kieft, T L; Ruscetti, T

    1990-01-01

    Biological ice nuclei (active at approximately -4 degrees C) were extracted from cells of the lichen Rhizoplaca chrysoleuca by sonication. Sensitivity to proteases, guanidine hydrochloride, and urea showed these nuclei to be proteinaceous. The nuclei were relatively heat stable, active from pH 1.5 to 12, and active without lipids, thereby demonstrating significant differences from bacterial ice nuclei. PMID:2188965

  11. Meniscal tears: comparison of the conventional spin-echo and fast spin-echo techniques through image processing

    PubMed Central

    2014-01-01

    Background Conventional spin-echo (PD-CSE) and fast spin-echo (PD-FSE) techniques are frequently used to detect meniscal tears. However, the time delay for imaging with PD-CSE has resulted in its replacement with faster techniques, such as proton density fast spin-echo (PD-FSE), which has become a frequent tool at most diagnostic centres. Qualitative analysis shows that the PD-CSE technique is more sensitive, but other authors have not found significant differences between the aforementioned techniques. Therefore, we performed a quantitative analysis in this study that aims to measure differences in the quality of the images obtained with both techniques. Methods We compared the PD-CSE and PD-FSE techniques by quantitatively analysing the obtained proton density images: the area shown, as well as the brightness and lesion contrast of the obtained image. A set of 100 images from 50 patients thought to contain meniscal tears of the knee were selected. These 100 images were obtained from all individuals using both the PD-CSE and PD-FSE techniques. The images were processed using software developed in Delphi. In addition to these quantifications, three physicians, who are specialists in radiology and capable of analysing magnetic resonance (MR) images of the musculoskeletal system, qualitatively analysed the diagnostic sensitivity of both techniques. Results On average, samples obtained via the PD-CSE technique contained 22% more pixels in the lesion area. The contrast differed by 28%, and the brightness differed by 31%. The two techniques were correlated using Student’s t-test, which showed a statistically significant difference. The specialists detected meniscal tears in 30 of the images obtained via the PD-CSE technique, while only 72% of these cases were detected via the PD-FSE technique. Conclusions The PD-CSE technique was shown to be superior to PD-FSE for all of the evaluated properties, making its selection preferable. PMID:24673813

  12. Echo Park controversy and the American conservation movement

    SciTech Connect

    Harvey, M.W.T.

    1986-01-01

    During the twentieth century, a few conservation battles have pitted in as classic a fashion the foes of preservation and development as that waged during the 1950s over Dinosaur National Monument. The issue was whether to build the proposed Echo Park Dam within Dinosaur National Monument. The Monument spans the Utah-Colorado border, and comprises the confluence of the Green and Yampa Rivers. Echo Park, a lovely, peaceful meadow flanked by massive sandstone walls at the rivers' confluence, became the storm-center of controversy when the Bureau of Reclamation made plans to dam the Green River just two miles to the south. The dam would have flooded a hundred miles of this canyon country, and the proposal startled the nation's major conservation organizations and occupied their attention for several years. Their effort to prevent the dam ultimately succeeded, and their story is critical in tracing the roots of contemporary conservation. In the end, pressure from conservation groups helped to delete the dam from the legislation, and Dinosaur's river canyons were preserved.

  13. Emergence of metapopulations and echo chambers in mobile agents

    PubMed Central

    Starnini, Michele; Frasca, Mattia; Baronchelli, Andrea

    2016-01-01

    Multi-agent models often describe populations segregated either in the physical space, i.e. subdivided in metapopulations, or in the ecology of opinions, i.e. partitioned in echo chambers. Here we show how both kinds of segregation can emerge from the interplay between homophily and social influence in a simple model of mobile agents endowed with a continuous opinion variable. In the model, physical proximity determines a progressive convergence of opinions but differing opinions result in agents moving away from each others. This feedback between mobility and social dynamics determines the onset of a stable dynamical metapopulation scenario where physically separated groups of like-minded individuals interact with each other through the exchange of agents. The further introduction of confirmation bias in social interactions, defined as the tendency of an individual to favor opinions that match his own, leads to the emergence of echo chambers where different opinions coexist also within the same group. We believe that the model may be of interest to researchers investigating the origin of segregation in the offline and online world. PMID:27572928

  14. Emergence of metapopulations and echo chambers in mobile agents

    NASA Astrophysics Data System (ADS)

    Starnini, Michele; Frasca, Mattia; Baronchelli, Andrea

    2016-08-01

    Multi-agent models often describe populations segregated either in the physical space, i.e. subdivided in metapopulations, or in the ecology of opinions, i.e. partitioned in echo chambers. Here we show how both kinds of segregation can emerge from the interplay between homophily and social influence in a simple model of mobile agents endowed with a continuous opinion variable. In the model, physical proximity determines a progressive convergence of opinions but differing opinions result in agents moving away from each others. This feedback between mobility and social dynamics determines the onset of a stable dynamical metapopulation scenario where physically separated groups of like-minded individuals interact with each other through the exchange of agents. The further introduction of confirmation bias in social interactions, defined as the tendency of an individual to favor opinions that match his own, leads to the emergence of echo chambers where different opinions coexist also within the same group. We believe that the model may be of interest to researchers investigating the origin of segregation in the offline and online world.

  15. Cardiac echo-lab productivity in times of economic austerity.

    PubMed

    Katsi, Vasiliki K; Vrachatis, Dimitrios A; Politi, Anastasia; Papageorgiou, Manto; Koumoulidis, Anastasios; Vlasseros, Ioannis; Vavuranakis, Manolis; Tousoulis, Dimitrios; Stefanadis, Christodoulos; Kallikazaros, Ioannis; Souliotis, Kyriakos

    2014-01-01

    The present study attempts to offer insight into the volume, cost, and productivity of the operation of a cardiac echocardiographic laboratory (echo-lab) in a major public hospital of Greece and thus to contribute, on a practical level, to the widening of knowledge in the strategic field of secondary and tertiary healthcare management. The conducted research includes the basic step of the deployment of a primary data registry in the echo-lab and unfolds in three levels, i.e. the variability measurement of the quantity and cost of medical services provided to different patient populations, the assessment of operating costs and the development of productivity indexes. The results show that the mean costs of provision do change among distinct patient populations. The most important, from a financial standpoint, population cluster appears to be the one corresponding to outpatients. Productivity indices presented in this analysis constitute an essential piece of information which the public healthcare system is currently largely lacking, and which, combined with the pricing and the diagnosis-related group coding system of hospitals, can be used to improve efficiency in the management of secondary and tertiary care.

  16. Dust Formation and Light Echoes Around Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Andrews, Jennifer; Clayton, Geoffrey; Sugerman, Ben; Barlow, Mike; Meixner, Margaret; Wesson, Roger; Gallagher, Joseph; Matsuura, Mikako; Otsuka, Masaaki; Ercolano, Barbara

    2012-12-01

    The importance of core collapse supernovae (CCSNe) in the dust budget of the universe is still poorly understood. Recent discoveries of massive amounts of cool dust in SN 1987A and the Crab nebula have once again brought this debate to the forefront. We are proposing to continue observations of 7 CCSNe (SNe 1980K, 2002hh, 2008S, 2004et, 2010jl, 2011ja, and 2012aw) with Spitzer as part of our multi-wavelength campaign to both classify and quantify newly condensed dust in the SN ejecta as well as to accurately map out pre-existing circumstellar dust in light echoes. The proposed observations will be combined with previous epochs of Spitzer data and coordinated with other approved and proposed ground and space based observations with Gemini, and HST. We may be able to increase the small sample of CCSNe that show conclusive evidence of dust formation, as well as constrain pre-existing progenitor dust creation by studying the IR echoes around the older SNe. Measuring the location and mass of the dust around a SN, while the dust is still warm, is essential in deciphering the origin of the large masses of cold dust that have been discovered in nearby SN remnants, which is critical to understand the role of CCSNe as dust producers in the early universe.

  17. EChO fine guidance sensor design and architecture

    NASA Astrophysics Data System (ADS)

    Ottensamer, Roland; Rataj, Miroslaw; Schrader, Jan-Rutger; Ferstl, Roman; Güdel, Manuel; Kerschbaum, Franz; Luntzer, Armin

    2014-08-01

    EChO, the Exoplanet Characterization Observatory, is an M-class candidate in the ESA Comic Vision programme. It will provide high resolution, multi-wavelength spectroscopic observations of exoplanets, measure their atmospheric composition, temperature and albedo. The scientific payload is a spectrometer covering the 0.4-11 micron waveband. High photometric stability over a time scale of about 10 hours is one of the most stringent requirements of the EChO mission. As a result, fine pointing stability relative to the host star is mandatory. This will be achieved through a Fine Guidance Sensor (FGS), a separate photometric channel that uses a fraction of the target star signal from the optical channel. The main task of the FGS is to ensure the centering, focusing and guiding of the satellite, but it will also provide supplemental high-precision astrometry and photometry of the target to ground for de-trending the spectra and complementary science. In this paper we give an overview of the current architectural design of the FGS subsystem and discuss related requirements as well as the expected performance.

  18. The science of EChO - Exoplanet Characterisation Obseravtory

    NASA Astrophysics Data System (ADS)

    Tinetti, G.; Drossart, P.; Hartogh, P.; Isaak, K.; Linder, M.; Lovis, C.; Micela, G.; Puig, L.; Ollivier, M.; Ribas, I.; Snellen, I.; Swinyard, B.

    2013-09-01

    It is now accepted that exoplanets are ubiquitous in our Galaxy. The planetary parameters mass, radius and temperature alone do not explain the diversity revealed by current observations. The chemical composition of these planets is needed to trace back their formation history and evolution, as was the case for the Solar System. Pioneering results were obtained through transit spectroscopy with Hubble, Spitzer and groundbased facilities, enabling the detection of a few, most abundant ionic, atomic and molecular species and to constrain the planet's thermal structure. With the arrival of EChO in the coming decade, planetary science will expand beyond the narrow boundaries of our Solar System to encompass our whole Galaxy. EChO will address the following fundamental questions: - Why are exoplanets as they are? - What are the causes for the observed diversity? - Can their formation history be traced back from their current composition and evolution? Spectroscopic observations from the visible to Mid-IR of a large, select sample of exoplanets, will allow us to use the chemical composition as a powerful diagnostic of the history, formation mechanisms and evolution of gaseous and rocky exoplanets. Our strategy is to balance statistical information, obtainable through a chemical survey of a large and diverse sample of objects - as it is traditionally done for stars - with deep, repeated observations of a more restricted, select sample of planets - a strategy that will enable the kind of science that was accomplished for Solar System planets.

  19. Photon echo spectroscopy reveals structure-dynamics relationships in carotenoids

    NASA Astrophysics Data System (ADS)

    Christensson, N.; Polivka, T.; Yartsev, A.; Pullerits, T.

    2009-06-01

    Based on simultaneous analysis of the frequency-resolved transient grating, peak shift, and echo width signals, we present a model for the third-order optical response of carotenoids including population dynamics and system-bath interactions. Our frequency-resolved photon echo experiments show that the model needs to incorporate the excited-state absorption from both the S2 and the S1 states. We apply our model to analyze the experimental results on astaxanthin and lycopene, aiming to elucidate the relation between structure and system-bath interactions. Our analysis allows us to relate structural motifs to changes in the energy-gap correlation functions. We find that the terminal rings of astaxanthin lead to increased coupling between slow molecular motions and the electronic transition. We also find evidence for stronger coupling to higher frequency overdamped modes in astaxanthin, pointing to the importance of the functional groups in providing coupling to fluctuations influencing the dynamics in the passage through the conical intersection governing the S2-S1 relaxation.

  20. Quantum and classical correlations in electron-nuclear spin echo

    SciTech Connect

    Zobov, V. E.

    2014-11-15

    The quantum properties of dynamic correlations in a system of an electron spin surrounded by nuclear spins under the conditions of free induction decay and electron spin echo have been studied. Analytical results for the time evolution of mutual information, classical part of correlations, and quantum part characterized by quantum discord have been obtained within the central-spin model in the high-temperature approximation. The same formulas describe discord in both free induction decay and spin echo although the time and magnetic field dependences are different because of difference in the parameters entering into the formulas. Changes in discord in the presence of the nuclear polarization β{sub I} in addition to the electron polarization β{sub S} have been calculated. It has been shown that the method of reduction of the density matrix to a two-spin electron-nuclear system provides a qualitatively correct description of pair correlations playing the main role at β{sub S} ≈ β{sub I} and small times. At large times, such correlations decay and multispin correlations ensuring nonzero mutual information and zero quantum discord become dominant.

  1. Echo Chambers: Emotional Contagion and Group Polarization on Facebook

    NASA Astrophysics Data System (ADS)

    Del Vicario, Michela; Vivaldo, Gianna; Bessi, Alessandro; Zollo, Fabiana; Scala, Antonio; Caldarelli, Guido; Quattrociocchi, Walter

    2016-12-01

    Recent findings showed that users on Facebook tend to select information that adhere to their system of beliefs and to form polarized groups – i.e., echo chambers. Such a tendency dominates information cascades and might affect public debates on social relevant issues. In this work we explore the structural evolution of communities of interest by accounting for users emotions and engagement. Focusing on the Facebook pages reporting on scientific and conspiracy content, we characterize the evolution of the size of the two communities by fitting daily resolution data with three growth models – i.e. the Gompertz model, the Logistic model, and the Log-logistic model. Although all the models appropriately describe the data structure, the Logistic one shows the best fit. Then, we explore the interplay between emotional state and engagement of users in the group dynamics. Our findings show that communities’ emotional behavior is affected by the users’ involvement inside the echo chamber. Indeed, to an higher involvement corresponds a more negative approach. Moreover, we observe that, on average, more active users show a faster shift towards the negativity than less active ones.

  2. Echo Chambers: Emotional Contagion and Group Polarization on Facebook.

    PubMed

    Del Vicario, Michela; Vivaldo, Gianna; Bessi, Alessandro; Zollo, Fabiana; Scala, Antonio; Caldarelli, Guido; Quattrociocchi, Walter

    2016-12-01

    Recent findings showed that users on Facebook tend to select information that adhere to their system of beliefs and to form polarized groups - i.e., echo chambers. Such a tendency dominates information cascades and might affect public debates on social relevant issues. In this work we explore the structural evolution of communities of interest by accounting for users emotions and engagement. Focusing on the Facebook pages reporting on scientific and conspiracy content, we characterize the evolution of the size of the two communities by fitting daily resolution data with three growth models - i.e. the Gompertz model, the Logistic model, and the Log-logistic model. Although all the models appropriately describe the data structure, the Logistic one shows the best fit. Then, we explore the interplay between emotional state and engagement of users in the group dynamics. Our findings show that communities' emotional behavior is affected by the users' involvement inside the echo chamber. Indeed, to an higher involvement corresponds a more negative approach. Moreover, we observe that, on average, more active users show a faster shift towards the negativity than less active ones.

  3. Plasma Density and Radio Echoes in the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1995-01-01

    This project provided a opportunity to study a variety of interesting topics related to radio sounding in the magnetosphere. The results of this study are reported in two papers which have been submitted for publication in the Journal of Geophysical Research and Radio Science, and various aspects of this study were also reported at meetings of the American Geophysical Union (AGU) at Baltimore, Maryland and the International Scientific Radio Union (URSI) at Boulder, Colorado. The major results of this study were also summarized during a one-day symposium on this topic sponsored by Marshall Space Flight Center in December 1994. The purpose of the study was to examine the density structure of the plasmasphere and determine the relevant mechanisms for producing radio echoes which can be detected by a radio sounder in the magnetosphere. Under this study we have examined density irregularities, biteouts, and outliers of the plasmasphere, studied focusing, specular reflection, ducting, and scattering by the density structures expected to occur in the magnetosphere, and predicted the echoes which can be detected by a magnetospheric radio sounder.

  4. Echo Chambers: Emotional Contagion and Group Polarization on Facebook

    PubMed Central

    Del Vicario, Michela; Vivaldo, Gianna; Bessi, Alessandro; Zollo, Fabiana; Scala, Antonio; Caldarelli, Guido; Quattrociocchi, Walter

    2016-01-01

    Recent findings showed that users on Facebook tend to select information that adhere to their system of beliefs and to form polarized groups – i.e., echo chambers. Such a tendency dominates information cascades and might affect public debates on social relevant issues. In this work we explore the structural evolution of communities of interest by accounting for users emotions and engagement. Focusing on the Facebook pages reporting on scientific and conspiracy content, we characterize the evolution of the size of the two communities by fitting daily resolution data with three growth models – i.e. the Gompertz model, the Logistic model, and the Log-logistic model. Although all the models appropriately describe the data structure, the Logistic one shows the best fit. Then, we explore the interplay between emotional state and engagement of users in the group dynamics. Our findings show that communities’ emotional behavior is affected by the users’ involvement inside the echo chamber. Indeed, to an higher involvement corresponds a more negative approach. Moreover, we observe that, on average, more active users show a faster shift towards the negativity than less active ones. PMID:27905402

  5. Volumetric Echocardiographic Particle Image Velocimetry (V-Echo-PIV)

    NASA Astrophysics Data System (ADS)

    Falahatpisheh, Ahmad; Kheradvar, Arash

    2015-11-01

    Measurement of 3D flow field inside the cardiac chambers has proven to be a challenging task. Current laser-based 3D PIV methods estimate the third component of the velocity rather than directly measuring it and also cannot be used to image the opaque heart chambers. Modern echocardiography systems are equipped with 3D probes that enable imaging the entire 3D opaque field. However, this feature has not yet been employed for 3D vector characterization of blood flow. For the first time, we introduce a method that generates velocity vector field in 4D based on volumetric echocardiographic images. By assuming the conservation of brightness in 3D, blood speckles are tracked. A hierarchical 3D PIV method is used to account for large particle displacement. The discretized brightness transport equation is solved in a least square sense in interrogation windows of size 163 voxels. We successfully validate the method in analytical and experimental cases. Volumetric echo data of a left ventricle is then processed in the systolic phase. The expected velocity fields were successfully predicted by V-Echo-PIV. In this work, we showed a method to image blood flow in 3D based on volumetric images of human heart using no contrast agent.

  6. Suppressing magnetization exchange effects in stimulated-echo diffusion experiments.

    PubMed

    Pagès, Guilhem; Dvinskikh, Sergey V; Furó, István

    2013-09-01

    Exchange of nuclear magnetization between spin pools, either by chemical exchange or by cross-relaxation or both, has a significant influence on the signal attenuation in stimulated-echo-type pulsed field gradient experiments. Hence, in such cases the obtained molecular self-diffusion coefficients can carry a large systematic error. We propose a modified stimulated echo pulse sequence that contains T2-filters during the z-magnetization store period. We demonstrate, using a common theoretical description for chemical exchange and cross-relaxation, that these filters suppress the effects of exchange on the diffusional decay in that frequent case where one of the participating spin pools is immobile and exhibits a short T2. We demonstrate the performance of this experiment in an agarose/water gel. We posit that this new experiment has advantages over other approaches hitherto used, such as that consisting of measuring separately the magnetization exchange rate, if suitable by Goldman-Shen type experiments, and then correcting for exchange effects within the framework of a two-site exchange model. We also propose experiments based on selective decoupling and applicable in systems with no large T2 difference between the different spin pools.

  7. Echoes of Historical Supernovae in the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Badenes, Carles; Blondin, Stephane; Challis, Peter; Clocchiatti, Alejandro; Filippenko, Alex; Foley, Ryan; Huber, Mark E.; Matheson, Thomas; Mazzali, Paolo; Olsen, Knut; Sauer, Daniel; Sinnott, Brendan; Smith, R. Chris; Suntzeff, Nicholas; Welch, Doug; Bergmann, Marcel

    2010-08-01

    We propose to discover the first light echoes (LEs) associated with the historical Galactic supernovae SN 1181 (3C 58) and SN 1054 (Crab), and to locate additional LE complexes from SN 1680 (Cas A) and SN 1572 (Tycho). Using other facilities, we will obtain spectra of the LEs to determine the nature and properties of these important events. This is a continuation of a previously approved NOAO program to obtain images of regions of significant dust concentration near these Galactic supernova remnants. With data from previous semesters, we found LEs from the Cas A and Tycho supernovae teRest08b. We then used the rich set of LEs from Cas A to examine the Cas A SN from different viewing angles teRest10_casaspec, Rest10_leprofile, finding that in one direction the He I (lambda) 5876 and H(alpha) features are blue-shifted by an additional about 4000 km/s relative to the other directions teRest10_casaspec, which is direct evidence that the SN was asymmetric. The study of scattered-light echoes from Galactic supernovae provides a host of newly-recognized observational benefits which have only just begun to be exploited including (1) a direct comparison of a supernova and its remnant, (2) a three-dimensional view of a supernova, and (3) a Galactic network of absolute distance differences.

  8. An energetic stellar outburst accompanied by circumstellar light echoes.

    PubMed

    Bond, Howard E; Henden, Arne; Levay, Zoltan G; Panagia, Nino; Sparks, William B; Starrfield, Sumner; Wagner, R Mark; Corradi, R L M; Munari, U

    2003-03-27

    Some classes of stars, including novae and supernovae, undergo explosive outbursts that eject stellar material into space. In 2002, the previously unknown variable star V838 Monocerotis brightened suddenly by a factor of approximately 10(4). Unlike a supernova or nova, it did not explosively eject its outer layers; rather, it simply expanded to become a cool supergiant with a moderate-velocity stellar wind. Superluminal light echoes were discovered as light from the outburst propagated into the surrounding, pre-existing circumstellar dust. Here we report high-resolution imaging and polarimetry of those light echoes, which allow us to set direct geometric distance limits to the object. At a distance of >6 kpc, V838 Mon at its maximum brightness was temporarily the brightest star in the Milky Way. The presence of the circumstellar dust implies that previous eruptions have occurred, and spectra show it to be a binary system. When combined with the high luminosity and unusual outburst behaviour, these characteristics indicate that V838 Mon represents a hitherto unknown type of stellar outburst, for which we have no completely satisfactory physical explanation.

  9. Range imaging results from polar mesosphere summer echoes

    NASA Astrophysics Data System (ADS)

    Zecha, Marius; Hoffmann, Peter; Rapp, Markus; Chen, Jenn-Shyong

    The range resolution of pulsed radars is usually limited by the transmitting pulse length and the sampling time. The so-called range imaging (RIM) has been developed to reduce these lim-itations. To apply this method the radar operates alternately over a set of distinct frequencies. Then the phase differences of the receiving signals can be used for optimization methods to generate high-resolution maps of reflections as function of range insight the pulse length. The technique has been implemented on the ALWIN VHF radar in Andenes (69) and the OSWIN VHF radar in Kühlungsborn (54N). Here we present results of the RIM method from measurements in polar mesosphere summer echoes -PMSE. These strong radar echoes are linked to ice particle clouds in the mesopause region. The dynamic of the PMSE can be reflected very well by RIM. The movement of PMSE and the edges of the extension can be tracked with a high altitude resolution. Comparisons between simultaneous measurements by RIM and by standard radar techniques demonstrate the advan-tages of RIM. Wave structures can be identified with RIM whereas they are not detectable with the lesser resolution of the standard measurements. Gravity wave parameter associated with these variations are estimated using the simultaneous measured velocity field.

  10. Full-waveform LiDAR echo decomposition based on wavelet decomposition and particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Li, Duan; Xu, Lijun; Li, Xiaolu

    2017-04-01

    To measure the distances and properties of the objects within a laser footprint, a decomposition method for full-waveform light detection and ranging (LiDAR) echoes is proposed. In this method, firstly, wavelet decomposition is used to filter the noise and estimate the noise level in a full-waveform echo. Secondly, peak and inflection points of the filtered full-waveform echo are used to detect the echo components in the filtered full-waveform echo. Lastly, particle swarm optimization (PSO) is used to remove the noise-caused echo components and optimize the parameters of the most probable echo components. Simulation results show that the wavelet-decomposition-based filter is of the best improvement of SNR and decomposition success rates than Wiener and Gaussian smoothing filters. In addition, the noise level estimated using wavelet-decomposition-based filter is more accurate than those estimated using other two commonly used methods. Experiments were carried out to evaluate the proposed method that was compared with our previous method (called GS-LM for short). In experiments, a lab-build full-waveform LiDAR system was utilized to provide eight types of full-waveform echoes scattered from three objects at different distances. Experimental results show that the proposed method has higher success rates for decomposition of full-waveform echoes and more accurate parameters estimation for echo components than those of GS-LM. The proposed method based on wavelet decomposition and PSO is valid to decompose the more complicated full-waveform echoes for estimating the multi-level distances of the objects and measuring the properties of the objects in a laser footprint.

  11. Investigating the Group-Level Impact of Advanced Dual-Echo fMRI Combinations

    PubMed Central

    Kettinger, Ádám; Hill, Christopher; Vidnyánszky, Zoltán; Windischberger, Christian; Nagy, Zoltán

    2016-01-01

    Multi-echo fMRI data acquisition has been widely investigated and suggested to optimize sensitivity for detecting the BOLD signal. Several methods have also been proposed for the combination of data with different echo times. The aim of the present study was to investigate whether these advanced echo combination methods provide advantages over the simple averaging of echoes when state-of-the-art group-level random-effect analyses are performed. Both resting-state and task-based dual-echo fMRI data were collected from 27 healthy adult individuals (14 male, mean age = 25.75 years) using standard echo-planar acquisition methods at 3T. Both resting-state and task-based data were subjected to a standard image pre-processing pipeline. Subsequently the two echoes were combined as a weighted average, using four different strategies for calculating the weights: (1) simple arithmetic averaging, (2) BOLD sensitivity weighting, (3) temporal-signal-to-noise ratio weighting and (4) temporal BOLD sensitivity weighting. Our results clearly show that the simple averaging of data with the different echoes is sufficient. Advanced echo combination methods may provide advantages on a single-subject level but when considering random-effects group level statistics they provide no benefit regarding sensitivity (i.e., group-level t-values) compared to the simple echo-averaging approach. One possible reason for the lack of clear advantages may be that apart from increasing the average BOLD sensitivity at the single-subject level, the advanced weighted averaging methods also inflate the inter-subject variance. As the echo combination methods provide very similar results, the recommendation is to choose between them depending on the availability of time for collecting additional resting-state data or whether subject-level or group-level analyses are planned. PMID:28018165

  12. Flavanol binding of nuclei from tree species.

    PubMed

    Feucht, W; Treutter, D; Polster, J

    2004-01-01

    Light microscopy was used to examine the nuclei of five tree species with respect to the presence of flavanols. Flavanols develop a blue colouration in the presence of a special p-dimethylaminocinnamaldehyde (DMACA) reagent that enables those nuclei loaded with flavanols to be recognized. Staining of the nuclei was most pronounced in both Tsuga canadensis and Taxus baccata, variable in Metasequoia glyptostroboides, faint in Coffea arabica and minimal in Prunus avium. HPLC analysis showed that the five species contained substantial amounts of different flavanols such as catechin, epicatechin and proanthocyanidins. Quantitatively, total flavanols were quite different among the species. The nuclei themselves, as studied in Tsuga seed wings, were found to contain mainly catechin, much lower amounts of epicatechin and traces of proanthocyanidins. Blue-coloured nuclei located centrally in small cells were often found to maximally occupy up to 90% of a cell's radius, and the surrounding small rim of cytoplasm was visibly free of flavanols. A survey of 34 gymnosperm and angiosperm species indicated that the first group has much higher nuclear binding capacities for flavanols than the second group.

  13. A Comparison Study of Single-Echo Susceptibility Weighted Imaging and Combined Multi-Echo Susceptibility Weighted Imaging in Visualizing Asymmetric Medullary Veins in Stroke Patients

    PubMed Central

    Wang, Chao; Qiu, Tiantian; Song, Ruirui; Jiaerken, Yerfan; Yang, Linglin; Wang, Shaoze

    2016-01-01

    Background Asymmetric medullary veins (AMV) are frequently observed in stroke patients and single-echo susceptibility weighted imaging (SWIs) is the main technique in detecting AMV. Our study aimed to investigate which echo time (TE) on single-echo susceptibility is the optimal echo for visualizing AMV and to compare the ability in detecting AMV in stroke patients between SWIs and multi-echo susceptibility weighted imaging (SWIc). Materials and Methods Twenty patients with middle cerebral artery stroke were included. SWI was acquired by using a multi-echo gradient-echo sequence with six echoes ranging from 5 ms to 35.240 ms. Three different echoes of SWIs including SWIs1 (TE = 23.144 ms), SWIs2 (TE = 29.192 ms) and SWIs3 (TE = 35.240 ms) were reconstructed. SWIc was averaged using the three echoes of SWIs. Image quality and venous contrast of medullary veins were compared between SWIs and SWIc using peak signal-to-noise ratio (PSNR), mean opinion score (MOS), contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR). The presence of AMV was evaluated in each SWIs (1–3) and SWIc. Results SWIs2 had the highest PSNR, MOS and CNR and SWIs1 had the highest SNR among three different echoes of SWIs. No significant difference was found in SNR between SWIs1 and SWIs2. PSNR, MOS and CNR in SWIc were significantly increased by 27.9%, 28.2% and 17.2% compared with SWIs2 and SNR in SWIc was significantly increased by 32.4% compared with SWIs1. 55% of patients with AMV were detected in SWIs2, SWIs3 and SWIc, while 50% AMV were found in SWIs1. Conclusions SWIs using TE around 29ms was optimal in visualizing AMV. SWIc could improve image quality and venous contrast, but was equal to SWIs using a relative long TE in evaluating AMV. These results provide the technique basis for further research of AMV in stroke. PMID:27494171

  14. Endor, triple resonance and electron spin echo envelope modulation of 14N in sulphur and selenium coordinated copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Böttcher, R.; Kirmse, R.; Stach, J.; Reijerse, E. J.; Keijzers, C. P.

    1986-08-01

    Single-crystal ENDOR and TRIPLE resonance studies on "long-range" coupled 14N nuclei are reported for Cu(II) complexes in four host lattices: bis(diethyldithiocarbamato)Ni(II) and Zn(II), bis(diethyldiselenocarbamato)Zn(II) and tetra- n-butylammonium(maleonitriledithiolato)(diethyldithiocarbamato)Ni(II). The ENDOR spectra are unusual because the 14N nuclear quadrupole interaction exceeds the hyperfine coupling and the nuclear Zeeman interaction. The spectra are analyzed in detail and correlated with the molecular structures of the host compounds. According to the TRIPLE experiments the 14N hyperfine tensor components are negative. The populations of the nitrogen orbitals are evaluated from the quadrupole coupling tensors. In order to compare these double resonance methods with pulsed techniques, electron spin echo envelope modulation (ESEEM) is applied to a powder of one of the systems.

  15. Is Fusion Inhibited for Weakly Bound Nuclei?

    SciTech Connect

    Takahashi, J.; Munhoz, M.; Szanto, E.M.; Carlin, N.; Added, N.; Suaide, A.A.; de Moura, M.M.; Liguori Neto, R.; Szanto de Toledo, A.; Canto, L.F.

    1997-01-01

    Complete fusion of light radioactive nuclei is predicted to be hindered at near-barrier energies. This feature is investigated in the case of the least bound stable nuclei. Evaporation residues resulting from the {sup 6,7}Li+{sup 9}Be and {sup 6,7}Li+{sup 12}C fusion reactions have been measured in order to study common features in reactions involving light weakly bound nuclei. The experimental excitation functions revealed that the fusion cross section is significantly smaller than the total reaction cross section and also smaller than the fusion cross section expected from the available systematics. A clear correlation between the fusion probability and nucleon (cluster) separation energy has been established.The results suggest that the breakup process has a strong influence on the hindrance of the fusion cross section. {copyright} {ital 1996} {ital The American Physical Society}

  16. Structure and spectroscopy of transcurium nuclei.

    SciTech Connect

    Ahmad, I.

    2001-11-09

    The stability of the superheavy elements depends on the shell corrections which are governed by the single-particle spectra. Ideally one would like to experimentally determine the single-particle levels in the superheavy nuclei but the production of only a few atoms of these nuclides precludes such measurements. One therefore has to identify single-particle levels in the heaviest nuclei which are available in at least nanoCurie amounts. They have studied the structure of such heavy nuclei in the Z=98 region and identified many single-particle states. In particular, they have studied the structure of {sup 251}Cf and {sup 249}Bk by measuring the radiations emitted in the {alpha} decay of {sup 255}Fm and {sup 253}Es. These single-particle spectra can be used to test theoretical models for superheavy elements.

  17. Spin Dynamics Simulations of Multiple Echo Spacing Pulse Sequences in Grossly Inhomogeneous Fields

    NASA Astrophysics Data System (ADS)

    Heidler, R.; Bachman, H. N.; Johansen, Y.

    2008-12-01

    Pulse sequences with multiple lengths of echo spacings are used in oilfield NMR logging for diffusion-based NMR applications such as rock and fluid characterization. One specific implementation is the so-called diffusion editing sequence comprising two long echo spacings followed by a standard CPMG at a shorter echo spacing. The echoes in the CPMG portion contain signal from both the direct and stimulated echoes. Modern oilfield NMR logging tools are designed for continuous depth logging of earth formations by projecting both the static (B0) and dynamic (B1) fields into the formation. Both B0 and B1 profiles are grossly inhomogeneous which results in non-steady-state behavior in the early echoes. The spin dynamics effects present a challenge for processing the echo amplitudes to measure porosity (amplitude extrapolated to zero time) and attenuations for fluid or pore size characterization. In this work we describe a calculation of the spin dynamics of the diffusion editing sequence with two long echo spacings. The calculation takes into account full B1 and B0 field maps, and comparisons will be made for sensors and parameters typical of oilfield logging tools and environments.

  18. Solar control of winter mesospheric echo occurrence at Poker Flat, Alaska

    NASA Technical Reports Server (NTRS)

    Ecklund, W. L.; Balsley, B. B.

    1983-01-01

    Winter mesospheric echoes are observed between about 55 and 80 km when auroral absorption is present during daylight hours. Relatively steady auroral absorption during sunrise and sunset periods causes a distinct onset and decay signature in mesospheric echo occurrence. The echo onset and disappearance time are shown versus height by the inclined lines for four different dates. The more vertical lines give the visible sunlight height/time curves for both sunrise (SR) and sunset (SS). The data is combined and replotted to give the morning onset height and the afternoon disappearance height as a function of solar zenith angle. Echoes are not observed at the lowest heights in the morning until the solar zenith angle is less than 90 deg. The afternoon echoes at the lowest heights also start to disappear as soon as the solar zenith angle exceeds 90 deg, implying that the solar component which sustains the mesospheric echo is screened by a layer extending up to about 60 km. The morning echo at 73 km onsets near the time of visible sunrise, but in the afternoon the 73 km echo lasts well past visible sunset.

  19. CHRONICLE: Second All-Union Symposium on Optical Echo, Kazan, June 17-19, 1981

    NASA Astrophysics Data System (ADS)

    Samartsev, V. V.

    1982-05-01

    A brief review is given of the papers presented at the Second All-Union Symposium on Optical Echo, which was held in Kazan on June 17-19, 1981. The following topics were discussed at the Symposium: optical (photon) and phonon echo, self-induced transparency, nutation, superradiance, superscattering, and spectroscopic applications of these phenomena.

  20. Echo strength and density structure of Hawaiian mesopelagic boundary community patches

    NASA Astrophysics Data System (ADS)

    Benoit-Bird, Kelly J.; Au, Whitlow W. L.

    2003-10-01

    A broadband sonar system and digital camera with strobe lights were mounted on a vertically profiling frame with a depth sensor. The echo strengths and densities of animals within individual mesopelagic boundary community patches were investigated as a function of depth. Time and distance from shore were also investigated. Simultaneous surface echosounder surveys permitted comparison of density estimates from two techniques. Echo strength values suggest nearshore boundary community animals are primarily myctophid fishes, which was confirmed by preliminary photographic evidence. Echo strength varied significantly as a function of distance from the shoreline and time. These measures of echo strength are important for estimating density from a surface echosounder. Density estimates from these revised echo strengths compare well with those made with echo highlight counting, which is independent of echo strength. These density measures suggest that previous density estimates were too low but do not change the conclusions of these studies. Vertical microstructure in density was apparent but animal size and compositional structure was not evident within a patch. Patch edges were abrupt, with no differences in the density or echo strength from patch interiors. These edges were generally straight, with a sharp drop in density to the background density of zero. Estimates of animal size as a function of time provide information about the diel migration patterns of these mesopelagic animals.

  1. Echo strength and density structure of Hawaiian mesopelagic boundary community patches.

    PubMed

    Benoit-Bird, Kelly J; Au, Whitlow W L

    2003-10-01

    A broadband sonar system and digital camera with strobe lights were mounted on a vertically profiling frame with a depth sensor. The echo strengths and densities of animals within individual mesopelagic boundary community patches were investigated as a function of depth. Time and distance from shore were also investigated. Simultaneous surface echosounder surveys permitted comparison of density estimates from two techniques. Echo strength values suggest nearshore boundary community animals are primarily myctophid fishes, which was confirmed by preliminary photographic evidence. Echo strength varied significantly as a function of distance from the shoreline and time. These measures of echo strength are important for estimating density from a surface echosounder. Density estimates from these revised echo strengths compare well with those made with echo highlight counting, which is independent of echo strength. These density measures suggest that previous density estimates were too low but do not change the conclusions of these studies. Vertical microstructure in density was apparent but animal size and compositional structure was not evident within a patch. Patch edges were abrupt, with no differences in the density or echo strength from patch interiors. These edges were generally straight, with a sharp drop in density to the background density of zero. Estimates of animal size as a function of time provide information about the diel migration patterns of these mesopelagic animals.

  2. Time-domain Fresnel-to-Fraunhofer diffraction with photon echoes.

    PubMed

    Ménager, L; Lorgeré, I; Gouët, J L; Mohan, R K; Kröll, S

    1999-07-15

    A photon echo experiment in Tm(3+):YAG is reported that shows, for the first time to the authors' knowledge, the time-domain equivalent of the transition from near- to far-field diffraction, including Talbot self-imaging effects. The experiment demonstrates the huge dispersion capability of photon echoes and opens the way to further exploration of space-time duality.

  3. Short T2 contrast with three-dimensional ultrashort echo time imaging

    PubMed Central

    Du, Jiang; Bydder, Mark; Takahashi, Atsushi M.; Carl, Michael; Chung, Christine B.; Bydder, Graeme M.

    2014-01-01

    There is increasing interest in imaging short T2 species which show little or no signal with conventional magnetic resonance (MR) pulse sequences. In this paper, we describe the use of three-dimensional ultrashort echo time (3D UTE) sequences with TEs down to 8 μs for imaging of these species. Image contrast was generated with acquisitions using dual echo 3D UTE with echo subtraction, dual echo 3D UTE with rescaled subtraction, long T2 saturation 3D UTE, long T2 saturation dual echo 3D UTE with echo subtraction, single adiabatic inversion recovery 3D UTE, single adiabatic inversion recovery dual echo 3D UTE with echo subtraction and dual adiabatic inversion recovery 3D UTE. The feasibility of using these approaches was demonstrated in in vitro and in vivo imaging of calcified cartilage, aponeuroses, menisci, tendons, ligaments and cortical bone with a 3-T clinical MR scanner. Signal-to-noise ratios and contrast-to-noise ratios were used to compare the techniques. PMID:21440400

  4. Analysis of flash echo from contrast agent for designing optimal ultrasound diagnostic systems.

    PubMed

    Kamiyama, N; Moriyasu, F; Mine, Y; Goto, Y

    1999-03-01

    Microbubble-based contrast agents can enhance echoes in areas of low blood flow, but the bubbles are extremely sensitive and collapse easily when exposed to ultrasound (US) irradiation. An experimental study of bubble collapse was carried out to design new functions for US diagnostic systems to detect echoes from microbubbles more efficiently. For contrast agent (Levovist) solution, a high-intensity, but momentary, echo (flash echo), was observed in the first frame image after a several-second suspension of transmission, but was not seen in the second frame image. These "flash echo" signals were analyzed and categorized based on microscopic observation, and the results showed that the longevity of the microbubbles was reduced by conditions such as B-mode imaging. Next, a numerical simulation of the bubbles in liquid was performed under the same conditions as in the in vitro experiment. The results showed that even bubbles less than 1 microm in diameter expand and collapse within one pulse drive, which would generate flash echoes. The flash echo imaging system described here permits flexible intermittent scanning with variable intervals, with a variable number of frames at the trigger, and with simultaneous monitoring at low power output. Animal experiments were also conducted to evaluate the system. As the interval between frames was increased, the flash echoes gradually increased, and perfusion in the parenchyma was clearly observed with an interval of 4 s.

  5. Adiabatic fission barriers in superheavy nuclei

    NASA Astrophysics Data System (ADS)

    Jachimowicz, P.; Kowal, M.; Skalski, J.

    2017-01-01

    Using the microscopic-macroscopic model based on the deformed Woods-Saxon single-particle potential and the Yukawa-plus-exponential macroscopic energy, we calculated static fission barriers Bf for 1305 heavy and superheavy nuclei 98 ≤Z ≤126 , including even-even, odd-even, even-odd and odd-odd systems. For odd and odd-odd nuclei, adiabatic potential-energy surfaces were calculated by a minimization over configurations with one blocked neutron or/and proton on a level from the 10th below to the 10th above the Fermi level. The parameters of the model that have been fixed previously by a fit to masses of even-even heavy nuclei were kept unchanged. A search for saddle points has been performed by the "imaginary water flow" method on a basic five-dimensional deformation grid, including triaxiality. Two auxiliary grids were used for checking the effects of the mass asymmetry and hexadecapole nonaxiality. The ground states (g.s.) were found by energy minimization over configurations and deformations. We find that the nonaxiality significantly changes first and second fission saddle in many nuclei. The effect of the mass asymmetry, known to lower the second, very deformed saddles in actinides, in the heaviest nuclei appears at the less deformed saddles in more than 100 nuclei. It happens for those saddles in which the triaxiality does not play any role, which suggests a decoupling between effects of the mass asymmetry and triaxiality. We studied also the influence of the pairing interaction strength on the staggering of Bf for odd- and even-particle numbers. Finally, we provide a comparison of our results with other theoretical fission barrier evaluations and with available experimental estimates.

  6. Constraining nucleon high momentum in nuclei

    NASA Astrophysics Data System (ADS)

    Yong, Gao-Chan

    2017-02-01

    Recent studies at Jefferson Lab show that there are a certain proportion of nucleons in nuclei have momenta greater than the so-called nuclear Fermi momentum pF. Based on the transport model of nucleus-nucleus collisions at intermediate energies, nucleon high momentum caused by the neutron-proton short-range correlations in nuclei is constrained by comparing with π and photon experimental data and considering some uncertainties. The high momentum cutoff value pmax ≤ 2pF is obtained.

  7. Structure of neutron-rich nuclei

    SciTech Connect

    Nazarewicz, W. ||

    1997-11-01

    One of the frontiers of today`s nuclear science is the ``journey to the limits``: of atomic charge and nuclear mass, of neutron-to-proton ratio, and of angular momentum. The new data on exotic nuclei are expected to bring qualitatively new information about the fundamental properties of the nucleonic many-body system, the nature of the nuclear interaction, and nucleonic correlations at various energy-distance scales. In this talk, current developments in nuclear structure of neutron-rich nuclei are discussed from a theoretical perspective.

  8. Clathrate hydrates in cometary nuclei and porosity

    NASA Technical Reports Server (NTRS)

    Smoluchowski, R.

    1988-01-01

    Possible mechanisms of formation and decomposition of CO2-clathrate hydrate in cometary nuclei are discussed. As far as it is known, this is the only clathrate hydrate which is unstable at low temperatures. Calculation shows that, in accord with other evidence, neither volume nor grain boundary diffusion in the clathrate lattice can be responsible for the rate of these reactions and that a surface mechanism with the attendant sensitivity to pressure must play a crucial role. Density changes accompanying CO2-clathrate decomposition and formation can lead to microporosity and enhanced brittleness or even to fracture of cometary nuclei at low temperatures. Other clathrate hydrates and mixed clathrates are also discussed.

  9. {gamma}-vibrational states in superheavy nuclei

    SciTech Connect

    Sun Yang; Long Guilu; Al-Khudair, Falih; Sheikh, Javid A.

    2008-04-15

    Recent experimental advances have made it possible to study excited structure in superheavy nuclei. The observed states have often been interpreted as quasiparticle excitations. We show that in superheavy nuclei collective vibrations systematically appear as low-energy excitation modes. By using the microscopic Triaxial Projected Shell Model, we make a detailed prediction on {gamma}-vibrational states and their E2 transition probabilities to the ground state band in fermium and nobelium isotopes where active structure research is going on, and in {sup 270}Ds, the heaviest isotope where decay data have been obtained for the ground-state and for an isomeric state.

  10. Computer Model Of Fragmentation Of Atomic Nuclei

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.

    1995-01-01

    High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.

  11. African Dust Aerosols as Atmospheric Ice Nuclei

    NASA Technical Reports Server (NTRS)

    DeMott, Paul J.; Brooks, Sarah D.; Prenni, Anthony J.; Kreidenweis, Sonia M.; Sassen, Kenneth; Poellot, Michael; Rogers, David C.; Baumgardner, Darrel

    2003-01-01

    Measurements of the ice nucleating ability of aerosol particles in air masses over Florida having sources from North Africa support the potential importance of dust aerosols for indirectly affecting cloud properties and climate. The concentrations of ice nuclei within dust layers at particle sizes below 1 pn exceeded 1/cu cm; the highest ever reported with our device at temperatures warmer than homogeneous freezing conditions. These measurements add to previous direct and indirect evidence of the ice nucleation efficiency of desert dust aerosols, but also confirm their contribution to ice nuclei populations at great distances from source regions.

  12. Light nuclei from chiral EFT interactions

    NASA Astrophysics Data System (ADS)

    Navrátil, P.; Gueorguiev, V. G.; Vary, J. P.; Ormand, W. E.; Nogga, A.; Quaglioni, S.

    2008-12-01

    Recent developments in nuclear theory allow us to make a connection between quantum chromodynamics (QCD) and low-energy nuclear physics. First, chiral effective field theory (χEFT) provides a natural hierarchy to define two-nucleon ( NN), three-nucleon ( NNN), and even four-nucleon interactions. Second, ab-initio methods have been developed capable to test these interactions for light nuclei. In this contribution, we discuss ab-initio no-core shell-model (NCSM) calculations for s-shell and p-shell nuclei with NN and NNN interactions derived within χEFT.

  13. Photon echo in exciton-plasmon nanomaterials: A time-dependent signature of strong coupling.

    PubMed

    Blake, Adam; Sukharev, Maxim

    2017-02-28

    We investigate the dynamics of the photon echo exhibited by exciton-plasmon systems under strong coupling conditions. Using a self-consistent model based on coupled Maxwell-Bloch equations, we investigate the femtosecond time dynamics of ensembles of interacting molecules optically coupled to surface plasmon supporting materials. It is shown that observed photon echoes under a two pulse pump-probe sequence are highly dependent on various material parameters such as molecular concentration and periodicity. Simulations of photon echoes in exciton-plasmon materials reveal a unique signature of the strong exciton-plasmon coupling, namely, a double-peak structure in spectra of recorded echo signals. This phenomenon is shown to be related to hybrid states (upper and lower polaritons) in exciton-plasmon systems under strong coupling conditions. It is also demonstrated that the double-peak echo is highly sensitive to mild deviations of the coupling from resonant conditions making it a great tool for ultrafast probes.

  14. The Search for Light Echoes of Historic SNe in the Southern Hemisphere with DECam

    NASA Astrophysics Data System (ADS)

    Rest, Armin; Bianco, Federica; Chornock, Ryan; Clocchiatti, Alejandro; Foley, Ryan J.; James, David; Matheson, Thomas; Narayan, Gautham; Olsen, Knut A.; Points, Sean; Prieto, Jose Luis; Smith, R. Chris; Smith, Nathan; Suntzeff, Nicholas B.; Welch, Douglas L.; Zenteno, Alfredo

    2015-01-01

    In recent years, light echoes of ancient SNe have been discovered with the Mosaic II cameras at the CTIO Blanco and KPNO Mayall telescopes. We have found light echoes in the LMC (Rest et al. 2005, 2008a) and near the historical Galactic events Cas A, Tycho, and Eta Car (Rest et al. 2008b, 2011a, 2012). However, searches for light echoes near the Kepler SN and SN 1006 have not yet been successful. We have started a search for light echoes in the southern hemisphere using DECam at the CTIO Blanco telescope. DECam is an excellent light echo detection system with its larger field of view and much faster read time compared to Mosaic II. This increases the efficiency of the search by more than a factor of 10, allowing us to cover significantly larger areas of the sky. We report on strategy, progress, current coverage, and first results of our project.

  15. Echo-acoustic flow dynamically modifies the cortical map of target range in bats

    NASA Astrophysics Data System (ADS)

    Bartenstein, Sophia K.; Gerstenberg, Nadine; Vanderelst, Dieter; Peremans, Herbert; Firzlaff, Uwe

    2014-08-01

    Echolocating bats use the delay between their sonar emissions and the reflected echoes to measure target range, a crucial parameter for avoiding collisions or capturing prey. In many bat species, target range is represented as an orderly organized map of echo delay in the auditory cortex. Here we show that the map of target range in bats is dynamically modified by the continuously changing flow of acoustic information perceived during flight (‘echo-acoustic flow’). Combining dynamic acoustic stimulation in virtual space with extracellular recordings, we found that neurons in the auditory cortex of the bat Phyllostomus discolor encode echo-acoustic flow information on the geometric relation between targets and the bat’s flight trajectory, rather than echo delay per se. Specifically, the cortical representation of close-range targets is enlarged when the lateral passing distance of the target decreases. This flow-dependent enlargement of target representation may trigger adaptive behaviours such as vocal control or flight manoeuvres.

  16. The influence of geomagnetic activity on mesospheric summer echoes in middle and polar latitudes

    NASA Astrophysics Data System (ADS)

    Zeller, O.; Bremer, J.

    2009-02-01

    The dependence of mesospheric VHF radar echoes during summer months on geomagnetic activity has been investigated with observation data of the OSWIN radar in Kühlungsborn (54° N) and of the ALWIN radar in Andenes (69° N). Using daily mean values of VHF radar echoes and of geomagnetic activity indices in superimposed epoch analyses, the comparison of both data sets shows in general stronger radar echoes on the day of the maximum geomagnetic activity, the maximum value one day after the geomagnetic disturbance, and enhanced radar echoes also on the following 2-3 days. This phenomenon is observed at middle and polar latitudes and can be explained by precipitating particle fluxes during the ionospheric post storm effect. At polar latitudes, the radar echoes decrease however during and one day after very strong geomagnetic disturbances. The possible reason of this surprising effect is discussed.

  17. TU-EF-BRA-03: Free Induction Decay (without the Decay) and Spin-Echo Imaging

    SciTech Connect

    Price, R.

    2015-06-15

    NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm. MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other common

  18. Echo decorrelation imaging of ex vivo HIFU and bulk ultrasound ablation using image-treat arrays

    NASA Astrophysics Data System (ADS)

    Fosnight, Tyler R.; Hooi, Fong Ming; Colbert, Sadie B.; Keil, Ryan D.; Barthe, Peter G.; Mast, T. Douglas

    2017-03-01

    In this study, the ability of ultrasound echo decorrelation imaging to map and predict heat-induced cell death was tested using bulk ultrasound thermal ablation, high intensity focused ultrasound (HIFU) thermal ablation, and pulse-echo imaging of ex vivo liver tissue by a custom image-treat array. Tissue was sonicated at 5.0 MHz using either pulses of unfocused ultrasound (N=12) (7.5 s, 50.9-101.8 W/cm2 in situ spatial-peak, temporal-peak intensity) for bulk ablation or focused ultrasound (N=21) (1 s, 284-769 W/cm2 in situ spatial-peak, temporal-peak intensity and focus depth of 10 mm) for HIFU ablation. Echo decorrelation and integrated backscatter (IBS) maps were formed from radiofrequency pulse-echo images captured at 118 frames per second during 5.0 s rest periods, beginning 1.1 s after each sonication pulse. Tissue samples were frozen at -80˚C, sectioned, vitally stained, imaged, and semi-automatically segmented for receiver operating characteristic (ROC) analysis. ROC curves were constructed to assess prediction performance for echo decorrelation and IBS. Logarithmically scaled mean echo decorrelation in non-ablated and ablated tissue regions before and after electronic noise and motion correction were compared. Ablation prediction by echo decorrelation and IBS was significant for both focused and bulk ultrasound ablation. The log10-scaled mean echo decorrelation was significantly greater in regions of ablation for both HIFU and bulk ultrasound ablation. Echo decorrelation due to electronic noise and motion was significantly reduced by correction. These results suggest that ultrasound echo decorrelation imaging is a promising approach for real-time prediction of heat-induced cell death for guidance and monitoring of clinical thermal ablation, including radiofrequency ablation and HIFU.

  19. REDOR with a relative full-echo reference

    NASA Astrophysics Data System (ADS)

    Mehta, Anil K.; Cegelski, Lynette; O'Connor, Robert D.; Schaefer, Jacob

    2003-07-01

    REDOR and REDOR-like 13C{ 19F} and 2H{ 19F} NMR experiments have been performed on lyophilized whole cells of Staphylococcus aureus. The bacteria were grown to maturity on media containing L-[ 13C3]alanine or L-[methyl- d3]alanine, and then complexed with the 4-fluorobiphenyl derivative of chloroeremomycin, an analogue of the widely used antibiotic, vancomycin. The position of the 19F of the drug bound in the bacterial cell wall was determined relative to L-alanine 13C and 2H labels in the peptidoglycan peptide stem that was closest to the fluorinated biphenyl moiety of the drug. These determinations were made by dipolar recoupling methods that do not require an absolute measurement of the REDOR full echo (the signal observed without rotor-synchronized dephasing pulses) of the labels in the peptide stem.

  20. Echo Particle Image Velocimetry Measurements of Liquified Biomass

    NASA Astrophysics Data System (ADS)

    Demarchi, Nicholas; White, Christopher

    2013-11-01

    Echo particle image velocimetry (EPIV) is used to acquire planar fields of velocity in pipe flow of liquefied biomass. The biomass studied is pre-treated (i.e., acid washed) corn stover and it is liquefied by enzymatic hydrolysis. The liquefaction process is carried out for various biomass mass loadings (1.5%-15%). For each biomass loading, the fluid's microstructure and rheology are studied and EPIV measurements are acquired. The aim is to demonstrate the usefulness of EPIV to acquire planar fields of velocity in optically opaque flows and to evaluate the effect of particle size, distribution, and mass loading of the dispersed solid phase on the EPIV measurements. NSF-CBET0846359.

  1. Echo Particle Image Velocimetry in Pipeflow of Liquefied Lignocellulosic Biomass

    NASA Astrophysics Data System (ADS)

    Demarchi, Nicholas; White, Chris

    2014-11-01

    Echo particle image velocimetry (EPIV) is used to acquire planar fields of velocity in pipeflow of liquefied biomass. The biomass used is acid washed corn stover liquefied by enzymatic hydrolysis. The liquefaction process produces a complex multiphase fluid suspension with a microstructure consisting of insoluble solid particles dispersed within a continuous liquid phase. The solid particles are generally heavier than the liquid phase, non-spherical, and distributed over a wide size range. Batches of liquefied biomass are produced at various mass loadings from 1.5% to 20%, from which samples are withdrawn and used to evaluate the rheology, microstructure, and solid particle settling velocities. Next, EPIV measurements are used to evaluate how the suspension rheology, microstructure, and particle sedimentation affects the flow of liquefied biomass under laminar pipeflow conditions.

  2. Ultrafast optical spin echo in a single quantum dot

    NASA Astrophysics Data System (ADS)

    Press, David; de Greve, Kristiaan; McMahon, Peter L.; Ladd, Thaddeus D.; Friess, Benedikt; Schneider, Christian; Kamp, Martin; Höfling, Sven; Forchel, Alfred; Yamamoto, Yoshihisa

    2010-06-01

    Many proposed photonic quantum networks rely on matter qubits to serve as memory elements. The spin of a single electron confined in a semiconductor quantum dot forms a promising matter qubit that may be interfaced with a photonic network. Ultrafast optical spin control allows gate operations to be performed on the spin within a picosecond timescale, orders of magnitude faster than microwave or electrical control. One obstacle to storing quantum information in a single quantum dot spin is the apparent nanosecond-timescale dephasing due to slow variations in the background nuclear magnetic field. Here we use an ultrafast, all-optical spin echo technique to increase the decoherence time of a single quantum dot electron spin from nanoseconds to several microseconds. The ratio of decoherence time to gate time exceeds 105, suggesting strong promise for future photonic quantum information processors and repeater networks.

  3. Null Result in gamma-ray burst lensed echo search

    NASA Technical Reports Server (NTRS)

    Nemiroff, R. J.; Wickramasinghe, W. A. D. T.; Norris, J. P.; Kouveliotou, C.; Fishman, G. J.; Meegan, C. A.; Paciesas, W. S.; Horack, J.

    1994-01-01

    We have searched for gravitational-lens-induced echoes between gamma-ray bursts (GRBs) in Burst and Transient Source Experiment (BATSE) data. The search was conducted in two phases. In the first phase we compared all GRBs in a brightness-complete sample of the first 260 GRBs with recorded angular positions having at least a 5% chance of being coincident from their combined positional error. In the second phase, we compared all GRB light curves of the first 611 GRBs with recorded angular positions having at least a 55% chance of being coincident from their combined positional error. No unambiguous gravitational lens candidate pairs were found in either phase, although a 'library of close calls' was accumulated for future reference. This result neither excludes nor significantly constrains a cosmological origin for GRBs.

  4. Echo Particle Image Velocimetry in Pipeflow of Liquefied Lignocellulosic Biomass

    NASA Astrophysics Data System (ADS)

    Demarchi, Nicholas; White, Christopher

    2016-11-01

    Echo particle image velocimetry (EPIV) is used to acquire planar fields of velocity in pipeflow of liquefied biomass. The biomass used is acid washed corn stover, liquefied through enzymatic hydrolysis. The liquefaction process produces a complex multiphase fluid suspension with a microstructure consisting of insoluble solid particles dispersed within a continuous liquid phase. The solid particles are generally heavier than the liquid phase, non-spherical, and distributed over a wide range of aspect ratios and sizes. Batches of liquefied biomass are produced at incremental mass loadings doubling from 1.5% to 12%, samples are withdrawn to evaluate the rheology, microstructure, and solid particle settling velocities. EPIV is used to experimentally determine the mean particle behaviour under laminar and turbulent pressure driven pipeflow conditions. Work presented in this study can be used to design pipeline infrastructure with respect to suspension transport.

  5. Measurement of Intramuscular Fat by Muscle Echo Intensity

    PubMed Central

    Young, Hui-Ju; Jenkins, Nathan T.; Zhao, Qun; McCully, Kevin K.

    2015-01-01

    Purpose To compare ultrasound echo intensity (EI) to high-resolution T1-weighted MRI and to establish calibration equations to estimate percent intramuscular fat from EI. Methods Thirty-one participants underwent both ultrasound and MRI testing of 4 muscles: rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and medial gastrocnemius (MG). Results Strong correlations were found between MRI percent fat and muscle EI after correcting for subcutaneous fat thickness (r = 0.91 in RF, r = 0.80 in BF, r = 0.80 in TA, r = 0.76 in MG). Three types of calibration equations were established. Conclusion Muscle ultrasound is a practical and reproducible method that can be used as an imaging technique for examination of percent intramuscular fat. Future ultrasound studies are needed to establish equations for other muscle groups to enhance its use in both research and clinical settings. PMID:25787260

  6. Quench echo and work statistics in integrable quantum field theories.

    PubMed

    Pálmai, T; Sotiriadis, S

    2014-11-01

    We propose a boundary thermodynamic Bethe ansatz calculation technique to obtain the Loschmidt echo and the statistics of the work done when a global quantum quench is performed on an integrable quantum field theory. We derive an analytic expression for the lowest edge of the probability density function and find that it exhibits universal features, in the sense that its scaling form depends only on the statistics of excitations. We perform numerical calculations on the sinh-Gordon model, a deformation of the free boson theory, and we obtain that by turning on the interaction the density function develops fermionic properties. The calculations are facilitated by a previously unnoticed property of the thermodynamic Bethe ansatz construction.

  7. Acoustic Echo-Sounding Experiments in an Urban Environment

    NASA Technical Reports Server (NTRS)

    Damkevala, R. J.

    1971-01-01

    A 1320 Hz tuned source was mounted on a 4 ft diameter parabolic reflector, with the same driver working as the receiving transducer. This highly directional system is able to detect the small amount of energy backscattered from a vertically directed pulse of sound by inhomogeneities in the density structure of the atmosphere even in the presence of city noises which include rapid-transit and express-way traffic sounds. Results showing thermal plumes and the formation and breakup of radiation inversions are presented. A network of such echo-sounding stations in and around a city could be used to give early warning of atmospheric conditions which might lead to a pollution incident.

  8. 127I NMR study of quadrupolar echoes in KI

    NASA Astrophysics Data System (ADS)

    Lee, Nelson; Sanctuary, B. C.; Halstead, T. K.

    Potassium iodide (K 121I), like KBr and many other alkali halide solids, has cubic symmetry. Distortion of this cubic symmetry in single crystals of KI creates electric field gradients of sufficient strength for the quadrupolar interactions to dominate the dynamics of the system. Simple one-, two-, and three-pulse sequences applied to such crystals permit the observation, in the time domain, of the solid- or quadrupolar-echo phenomenon for spin I = {5}/{2}( 127I) . Using the multipole approach to interpret the experimental responses of three-pulse sequences, the characteristic relaxation behavior of the first-, second-, third-, and fifth-rank zero- and multiquantum polarizations are determined. The experimental determination of distinct relaxation times for the higher rank polarizations in both KI and KBr ( I = {3}/{2}) lends credibility to the concept of the multipoles as physical quantities.

  9. Ionization and Light Echoes in the T Pyxidis Nebula

    NASA Astrophysics Data System (ADS)

    Shara, Michael

    2010-09-01

    Contrary to published predictions, the famous prototype recurrent nova T Pyxidis unexpectedly commenced a new outburst on 2011 April 14 UT -- its first outburst since 1966. T Pyx is unique among recurrent novae in being surrounded by a nebula, representing material ejected during previous eruptions, which is well resolved into thousands of sub-arcsecond features in HST images. The outburst offers the opportunity to make two unique measurements. {1} A direct geometric determination of the distance to T Pyx {a highly controversial subject}, based on imaging polarimetry of the knots -- a technique already validated for the light echo around V838 Monocerotis. {2} A determination of the 3D structure of the nebula, based on the ionization echo that will sweep out into the nebula, causing each individual knot to develop strong Halpha emission when first illuminated by the nova. Our proposed observations consist of Halpha imaging with WFC3, and broadband polarimetric imaging with ACS. Our results will 1} Allow a determination of the distance, and hence the true luminosity and mass accretion rate onto the white dwarf in T Pyx. This is essential for determining if T Pyx {and other recurrent novae} will exceed the Chandrasekhar limit and erupt as a type Ia SN. 2} Allow a direct test of the most detailed numerical modeling of nova explosions ever done. Recently predicted features and geometries in the ejecta must be present, and will be observed by HST for the first time, if, and only if our state-of-the-art models of novae are correct. The wave of illumination and ionization will pass through the entire nebula within the next few months, so it is crucial to begin the HST observations as soon as possible.

  10. Artificial intelligence for the EChO mission planning tool

    NASA Astrophysics Data System (ADS)

    Garcia-Piquer, Alvaro; Ribas, Ignasi; Colomé, Josep

    2015-12-01

    The Exoplanet Characterisation Observatory (EChO) has as its main goal the measurement of atmospheres of transiting planets. This requires the observation of two types of events: primary and secondary eclipses. In order to yield measurements of sufficient Signal-to-Noise Ratio to fulfil the mission objectives, the events of each exoplanet have to be observed several times. In addition, several criteria have to be considered to carry out each observation, such as the exoplanet visibility, its event duration, and no overlapping with other tasks. It is expected that a suitable mission plan increases the efficiency of telescope operation, which will represent an important benefit in terms of scientific return and operational costs. Nevertheless, to obtain a long term mission plan becomes unaffordable for human planners due to the complexity of computing the huge number of possible combinations for finding an optimum solution. In this contribution we present a long term mission planning tool based on Genetic Algorithms, which are focused on solving optimization problems such as the planning of several tasks. Specifically, the proposed tool finds a solution that highly optimizes the defined objectives, which are based on the maximization of the time spent on scientific observations and the scientific return (e.g., the coverage of the mission survey). The results obtained on the large experimental set up support that the proposed scheduler technology is robust and can function in a variety of scenarios, offering a competitive performance which does not depend on the collection of exoplanets to be observed. Specifically, the results show that, with the proposed tool, EChO uses 94% of the available time of the mission, so the amount of downtime is small, and it completes 98% of the targets.

  11. Spearhead echo and downburst near the approach end of a John F. Kennedy Airport runway, New York City

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.

    1976-01-01

    Radar echoes of a storm at John F. Kennedy International Airport are examined. Results regarding the phenomena presented suggest the existence of downburst cells. These cells are characterized by spearhead echoes. About 2% of the echoes in the New York area were spearhead echoes. The detection and identification of downburst cells, their potential hazard to approaching and landing aircraft, and communication of this information to the pilots of those aircraft are discussed.

  12. Multifrequency electron spin-echo envelope modulation studies of nitrogen ligation to the manganese cluster of photosystem II

    PubMed Central

    Yeagle, Gregory J; Gilchrist, M. Lane; Walker, Lee M; Debus, Richard J; Britt, R. David

    2007-01-01

    The CalEPR Center at UC-Davis (http://brittepr.ucdavis.edu) is equipped with five research grade electron paramagnetic resonance (EPR) instruments operating at various excitation frequencies between 8 and 130 GHz. Of particular note for this RSC meeting are two pulsed EPR spectrometers working at the intermediate microwave frequencies of 31 and 35 GHz. Previous lower frequency electron spin-echo envelope modulation (ESEEM) studies indicated that histidine nitrogen is electronically coupled to the Mn cluster in the S2 state of photosystem II (PSII). However, the amplitude and resolution of the spectra were relatively poor at these low frequencies, precluding any in-depth analysis of the electronic structure properties of this closely associated nitrogen nucleus. With the intermediate frequency instruments, we are much closer to the ‘exact cancellation’ limit, which optimizes ESEEM spectra for hyperfine-coupled nuclei such as 14N and 15N. Herein, we report the results from ESEEM studies of both 14N- and 15N-labelled PSII at these two frequencies. Spectral simulations were constrained by both isotope datasets at both frequencies, with a focus on high-resolution spectral examination of the histidine ligation to the Mn cluster in the S2 state. PMID:17954435

  13. Neutron-antineutron oscillations in nuclei

    SciTech Connect

    Dover, C.B.; Gal, A.; Richard, J.M.; Hebrew Univ., Jerusalem . Racah Inst. of Physics; Grenoble-1 Univ., 38 . Inst. des Sciences Nucleaires)

    1989-01-01

    We briefly review the state of the art for extracting the period of neutron-antineutron oscillations from the lifetime of nuclei. The most recent data on nuclear stability provide a limit of 10{sup 8} s for the oscillation period. 13 refs.

  14. Four-Body Correlations in Nuclei

    NASA Astrophysics Data System (ADS)

    Sambataro, M.; Sandulescu, N.

    2015-09-01

    Low-energy spectra of 4 n nuclei are described with high accuracy in terms of four-body correlated structures ("quartets"). The states of all N ≥Z nuclei belonging to the A =24 isobaric chain are represented as a superposition of two-quartet states, with quartets being characterized by isospin T and angular momentum J . These quartets are assumed to be those describing the lowest states in 20Ne (Tz=0 ), 20F (Tz=1 ), and 20O (Tz=2 ). We find that the spectrum of the self-conjugate nucleus 24Mg can be well reproduced in terms of T =0 quartets only and that, among these, the J =0 quartet plays by far the leading role in the structure of the ground state. The same conclusion is drawn in the case of the three-quartet N =Z nucleus 28Si. As an application of the quartet formalism to nuclei not confined to the s d shell, we provide a description of the low-lying spectrum of the proton-rich 92Pd. The results achieved indicate that, in 4 n nuclei, four-body degrees of freedom are more important and more general than usually expected.

  15. Precision lifetime measurements in light exotic nuclei

    NASA Astrophysics Data System (ADS)

    McCutchan, Elizabeth

    2017-01-01

    A new generation of ab-initio calculations, based on realistic two- and three-body forces have had a profound impact on our understanding of nuclei. They have shed light on topics such as the origin of effective forces (like spin-orbit and tensor interactions) and the mechanisms behind cluster and pairing correlations. New precise data are required to both better parameterize the three body forces and to improve numerical methods. A sensitive probe of the structure of light nuclei comes from their electromagnetic transition rates. A refined Doppler Shift Attenuation Method (DSAM) will be outlined which is used to precisely measure lifetimes in light nuclei and helps to reduce and quantity systematic uncertainties in the measurement. Using this careful DSAM, we have made a series of precise measurements of electromagnetic transition strengths in Li isotopes, A =10 nuclei, and the exotic halo nucleus, 12Be. Various phenomena, such as alpha clustering and meson-exchange currents, can be investigated in these seemingly simple systems, while the collection of data spanning stable to neutron-rich, allows us to probe the influence of additional valence neutrons. This talk will report on what has been learned, and the challenges that lie in the future, both in experiment and theory, as we push to describing and measuring even more exotic systems. Work supported by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under contract No. DE-AC02-98CH10886.

  16. Quasars: Active nuclei of young galaxies

    NASA Technical Reports Server (NTRS)

    Komberg, B. V.

    1980-01-01

    The hypothetical properties of 'young' galaxies and possible methods of observing them are discussed. It is proposed that star formation first takes place in the central regions of protogalaxies which may appear as quasar-like objects. An evolutionary scheme is outlined in which the radio quasars are transformed in time into the nuclei of radio galaxies.

  17. Form Factors and Radii of Light Nuclei

    SciTech Connect

    Sick, Ingo

    2015-09-15

    We discuss the determination of electromagnetic form factors from the world data on electron–nucleus scattering for nuclei Z ≤ 3, with particular emphasis on the derivation of the moments required for comparison with measurements from electronic/muonic atoms and isotope shifts.

  18. Transfer-induced fission of superheavy nuclei

    SciTech Connect

    Adamian, G. G.; Antonenko, N. V.; Zubov, A. S.; Sargsyan, V. V.; Scheid, W.

    2010-07-15

    Possibilities of transfer-induced fission of new isotopes of superheavy nuclei with charge numbers 103-108 are studied for the first time in the reactions {sup 48}Ca+{sup 244,246,248}Cm at energies near the corresponding Coulomb barriers. The predicted cross sections are found to be measurable with the detection of three-body final states.

  19. Nucleon compositeness and nucleon-nuclei scattering

    NASA Astrophysics Data System (ADS)

    Li, Ming

    1990-04-01

    Large N QCD arguments are used to distinguish phenomenology of nucleon-nuclei scattering based on the Dirac equation with point nucleons and on quark based models with composite nucleons. The Friedberg-Lee soliton model is used as an explicit example.

  20. Physics of Exotic Nuclei at RIBF

    NASA Astrophysics Data System (ADS)

    Sakurai, Hiroyoshi

    2014-09-01

    ``Exotic nuclei'' far from the stability line are unique objects of many-body quantum system, where ratios of neutron number to proton number are much larger or much smaller than those of nuclei found in nature. Their exotic properties and phenomena emerge from their large isospin asymmetry, and even affect scenarios of nucleosynthesis in the universe. Efforts have been made to produce and investigate such exotic nuclei at the accelerator facilities in the world. One of the facilities, the Radioactive Isotope Beam Factory (RIBF) facility at RIKEN, Japan has delivered intense radioactive isotope (RI) beams since 2007. In US, the Facility for Rare Isotope Beams is being constructed to start around 2020. To access nuclei far from the stability line, especially neutron-rich nuclei, the RIBF facility is highly optimized for inflight production of fission fragments via a U beam. The Super-conducting Ring Cyclotron delivers a 345 MeV/u U beam. The U nuclide is converted at a target to fission fragments. An inflight separator BigRIPS was designed to collect about 50% of fission fragments produced at the target and separate nuclei of interest. The RI beams produced at BigRIPS are then delivered to several experimental devices. Large-scale international collaborations have been formed at three spectrometers to conduct unique programs for the investigation of decay properties single particle orbits, collective motions, nucleon correlation, and the equation-of-state of asymmetric nuclear matter. Nuclear binding energy will be measured at a newly constructed ring for the r-process path, and charge distribution of exotic nuclei will be examined at a unique setup of an RI target section in an electron storage ring. Ultra slow RI beams available at a gas catcher system will be utilized for table-top and high precision measurements. In this talk, I would give a facility overview of RIBF, and introduce objectives at RIBF. Special emphasis would be given to selected recent highlights

  1. RNA-sequencing from single nuclei

    PubMed Central

    Grindberg, Rashel V.; Yee-Greenbaum, Joyclyn L.; McConnell, Michael J.; Novotny, Mark; O’Shaughnessy, Andy L.; Lambert, Georgina M.; Araúzo-Bravo, Marcos J.; Lee, Jun; Fishman, Max; Robbins, Gillian E.; Lin, Xiaoying; Venepally, Pratap; Badger, Jonathan H.; Galbraith, David W.; Gage, Fred H.; Lasken, Roger S.

    2013-01-01

    It has recently been established that synthesis of double-stranded cDNA can be done from a single cell for use in DNA sequencing. Global gene expression can be quantified from the number of reads mapping to each gene, and mutations and mRNA splicing variants determined from the sequence reads. Here we demonstrate that this method of transcriptomic analysis can be done using the extremely low levels of mRNA in a single nucleus, isolated from a mouse neural progenitor cell line and from dissected hippocampal tissue. This method is characterized by excellent coverage and technical reproducibility. On average, more than 16,000 of the 24,057 mouse protein-coding genes were detected from single nuclei, and the amount of gene-expression variation was similar when measured between single nuclei and single cells. Several major advantages of the method exist: first, nuclei, compared with whole cells, have the advantage of being easily isolated from complex tissues and organs, such as those in the CNS. Second, the method can be widely applied to eukaryotic species, including those of different kingdoms. The method also provides insight into regulatory mechanisms specific to the nucleus. Finally, the method enables dissection of regulatory events at the single-cell level; pooling of 10 nuclei or 10 cells obscures some of the variability measured in transcript levels, implying that single nuclei and cells will be extremely useful in revealing the physiological state and interconnectedness of gene regulation in a manner that avoids the masking inherent to conventional transcriptomics using bulk cells or tissues. PMID:24248345

  2. RNA-sequencing from single nuclei.

    PubMed

    Grindberg, Rashel V; Yee-Greenbaum, Joyclyn L; McConnell, Michael J; Novotny, Mark; O'Shaughnessy, Andy L; Lambert, Georgina M; Araúzo-Bravo, Marcos J; Lee, Jun; Fishman, Max; Robbins, Gillian E; Lin, Xiaoying; Venepally, Pratap; Badger, Jonathan H; Galbraith, David W; Gage, Fred H; Lasken, Roger S

    2013-12-03

    It has recently been established that synthesis of double-stranded cDNA can be done from a single cell for use in DNA sequencing. Global gene expression can be quantified from the number of reads mapping to each gene, and mutations and mRNA splicing variants determined from the sequence reads. Here we demonstrate that this method of transcriptomic analysis can be done using the extremely low levels of mRNA in a single nucleus, isolated from a mouse neural progenitor cell line and from dissected hippocampal tissue. This method is characterized by excellent coverage and technical reproducibility. On average, more than 16,000 of the 24,057 mouse protein-coding genes were detected from single nuclei, and the amount of gene-expression variation was similar when measured between single nuclei and single cells. Several major advantages of the method exist: first, nuclei, compared with whole cells, have the advantage of being easily isolated from complex tissues and organs, such as those in the CNS. Second, the method can be widely applied to eukaryotic species, including those of different kingdoms. The method also provides insight into regulatory mechanisms specific to the nucleus. Finally, the method enables dissection of regulatory events at the single-cell level; pooling of 10 nuclei or 10 cells obscures some of the variability measured in transcript levels, implying that single nuclei and cells will be extremely useful in revealing the physiological state and interconnectedness of gene regulation in a manner that avoids the masking inherent to conventional transcriptomics using bulk cells or tissues.

  3. Ice Nuclei Production in Volcanic Clouds

    NASA Astrophysics Data System (ADS)

    Few, A. A.

    2012-12-01

    The paper [Durant et al., 2008] includes a review of research on ice nucleation in explosive volcanic clouds in addition to reporting their own research on laboratory measurements focused on single-particle ice nucleation. Their research as well as the research they reviewed were concerned with the freezing of supercooled water drops (250 to 260 K) by volcanic ash particles acting as ice freezing nuclei. Among their conclusions are: Fine volcanic ash particles are very efficient ice freezing nuclei. Volcanic clouds likely contain fine ash concentrations 104 to 105 times greater than found in meteorological clouds. This overabundance of ice nuclei will produce a cloud with many small ice crystals that will not grow larger as they do in meteorological clouds because the cloud water content is widely distributed among the numerous small ice crystals. The small ice crystals have a small fall velocity, thus volcanic clouds are very stable. The small ice crystals are easily lofted into the stratosphere transporting water and adsorbed trace gasses. In this paper we examine the mechanism for the production of the small ice nuclei and develop a simple model for calculating the size of the ice nuclei based upon the distribution of magma around imbedded bubbles. We also have acquired a volcanic bomb that exhibits bubble remnants on its entire surface. The naturally occurring fragments from the volcanic bomb reveal a size distribution consistent with that predicted by the simple model. Durant, A. J., R. A. Shaw, W. I. Rose, Y. Mi, and G. G. J. Ernst (2008), Ice nucleation and overseeding of ice in volcanic clouds, J. Geophys. Res., 113, D09206, doi:10.1029/2007JD009064.

  4. About AGN ionization echoes, thermal echoes and ionization deficits in low-redshift Lyα blobs

    NASA Astrophysics Data System (ADS)

    Schirmer, Mischa; Malhotra, Sangeeta; Levenson, Nancy A.; Fu, Hai; Davies, Rebecca L.; Keel, William C.; Torrey, Paul; Bennert, Vardha N.; Pancoast, Anna; Turner, James E. H.

    2016-12-01

    We report the discovery of 14 Lyα blobs (LABs) at z ˜ 0.3, existing at least 4-7 billion years later in the Universe than all other LABs known. Their optical diameters are 20-70 kpc, and GALEX data imply Lyα luminosities of (0.4-6.3) × 1043 erg s-1. Contrary to high-z LABs, they live in low-density areas. They are ionized by AGN, suggesting that cold accretion streams as a power source must deplete between z = 2 and 0.3. We also show that transient AGN naturally explain the ionization deficits observed in many LABs. Their Lyα and X-ray fluxes decorrelate below ≲106 years because of the delayed escape of resonantly scattering Lyα photons. High Lyα luminosities do not require currently powerful AGN, independent of obscuration. Chandra X-ray data reveal intrinsically weak AGN, confirming the luminous optical nebulae as impressive ionization echoes. For the first time, we also report mid-infrared thermal echoes from the dusty tori. We conclude that the AGN have faded by three to four orders of magnitude within the last 104-5 years, leaving fossil UV, optical and thermal radiation behind. The host galaxies belong to the group of previously discovered Green Bean galaxies (GBs). Gemini optical imaging reveals smooth spheres, mergers, spectacular outflows and ionization cones. Because of their proximity and high flux densities, GBs are perfect targets to study AGN feedback, mode switching and the Lyα escape. The fully calibrated, co-added optical FITS images are publicly available.

  5. A Sample of Seyfert-2 Galaxies with Ultraluminous Galaxy-wide Narrow-line Regions: Quasar Light Echoes?

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Diaz, R.; Holhjem, K.; Levenson, N. A.; Winge, C.

    2013-01-01

    We report the discovery of Seyfert-2 galaxies in SDSS-DR8 with galaxy-wide, ultraluminous narrow-line regions (NLRs) at redshifts z = 0.2-0.6. With a space density of 4.4 Gpc-3 at z ~ 0.3, these "green beans" (GBs) are amongst the rarest objects in the universe. We are witnessing an exceptional and/or short-lived phenomenon in the life cycle of active galactic nuclei (AGNs). The main focus of this paper is on a detailed analysis of the GB prototype galaxy J2240-0927 (z = 0.326). Its NLR extends over 26 × 44 kpc and is surrounded by an extended NLR. With a total [O III] λ5008 luminosity of (5.7 ± 0.9) × 1043 erg s-1, this is one of the most luminous NLRs known around any type-2 galaxy. Using VLT/XSHOOTER, we show that the NLR is powered by an AGN, and we derive resolved extinction, density, and ionization maps. Gas kinematics is disturbed on a global scale, and high-velocity outflows are absent or faint. This NLR is unlike any other NLR or extended emission line region known. Spectroscopy with Gemini/GMOS reveals extended, high-luminosity [O III] emission also in other GBs. WISE 24 μm luminosities are 5-50 times lower than predicted by the [O III] fluxes, suggesting that the NLRs reflect earlier, very active quasar states that have strongly subsided in less than a galaxy's light-crossing time. These light echoes, or ionization echoes, are about 100 times more luminous than any other such echo known to date. X-ray data are needed for photoionization modeling and to verify the light echoes. Based on observations made with ESO Telescopes at the La Silla and Paranal Observatories, Chile. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. Based on observations

  6. Nuclear Shell Structure and Beta Decay I. Odd A Nuclei II. Even A Nuclei

    DOE R&D Accomplishments Database

    Mayer, M.G.; Moszkowski, S.A.; Nordheim, L.W.

    1951-05-01

    In Part I a systematics is given of all transitions for odd A nuclei for which sufficiently reliable data are available. The allowed or forbidden characters of the transitions are correlated with the positions of the initial and final odd nucleon groups in the nuclear shell scheme. The nuclear shells show definite characteristics with respect to parity of the ground states. The latter is the same as the one obtained from known spins and magnetic moments in a one-particle interpretation. In Part II a systematics of the beta transitions of even-A nuclei is given. An interpretation of the character of the transitions in terms of nuclear shell structure is achieved on the hypothesis that the odd nucleon groups have the same structure as in odd-A nuclei, together with a simple coupling rule between the neutron and proton groups in odd-odd nuclei.

  7. Evaluation of ECHO PS Positioning System in a Porcine Model of Simulated Laparoscopic Ventral Hernia Repair

    PubMed Central

    Hanna, Erin M.; Voeller, Guy R.; Roth, J. Scott; Scott, Jeffrey R.; Gagne, Darcy H.; Iannitti, David A.

    2013-01-01

    Purpose. Operative efficiency improvements for laparoscopic ventral hernia repair (LVHR) have focused on reducing operative time while maintaining overall repair efficacy. Our objective was to evaluate procedure time and positioning accuracy of an inflatable mesh positioning device (Echo PS Positioning System), as compared to a standard transfascial suture technique, using a porcine model of simulated LVHR. Methods. The study population consisted of seventeen general surgeons (n = 17) that performed simulated LVHR on seventeen (n = 17) female Yorkshire pigs using two implantation techniques: (1) Ventralight ST Mesh + Echo PS Positioning System (Echo PS) and (2) Ventralight ST Mesh + transfascial sutures (TSs). Procedure time and mesh centering accuracy overtop of a simulated surgical defect were evaluated. Results. Echo PS demonstrated a 38.9% reduction in the overall procedure time, as compared to TS. During mesh preparation and positioning, Echo PS demonstrated a 60.5% reduction in procedure time (P < 0.0001). Although a trend toward improved centering accuracy was observed for Echo PS (16.2%), this was not significantly different than TS. Conclusions. Echo PS demonstrated a significant reduction in overall simulated LVHR procedure time, particularly during mesh preparation/positioning. These operative time savings may translate into reduced operating room costs and improved surgeon/operating room efficiency. PMID:23762628

  8. Reverberation Mapping of the Dusty Tori in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Richmond, Michael; Batcheldor, Daniel; Buchanan, Catherine; Capetti, Alessandro; Moshe, Elitzur; Gallimore, Jack; Horne, Keith; Kishimoto, Makoto; Marconi, Alessandro; Mason, Rachel; Maiolino, Robert; Netzer, Hagai; Packham, Christopher; Perez, Enrique; Peterson, Brad; Tadhunter, Clive; Robinson, Andrew; Stirpe, Giovanna; Storchi-Bergmann, Thaisa

    2012-12-01

    Our current understanding of the size and structure of AGN tori is weak, despite their central role in AGN unification models and their importance for studies of supermassive black hole demographics. We propose to use the warm phase of Spitzer to determine the sizes of circum-nuclear dust tori in AGN. To accomplish this we will extend an existing Spitzer monitoring campaign, coordinated with ground-based observations, to measure the 'light echo' as the dust emission responds to variations in the AGN optical/UV continuum. We have selected a sample of 12 bright type 1 nuclei in close proximity to the Spitzer Continuous Viewing Zone which can be observed for at least 70% of the 365 day cycle. We will observe each AGN every 30 days for the whole of Cycle 9, roughly doubling our existing baseline of one year, permitting us to identify optical-IR time lags of many months. We will continue our current ground based monitoring program using a variety of telescopes to determine the AGN light-curves in the optical. These observations will sample the torus more faithfully than previous measurements made in the K-band. Such high fidelity, continuously sampled IR light curves covering ~years cannot be obtained from the ground, and are needed because the expected reverberation timescales are hundreds of days. We will apply well developed techniques to determine the reverberation lag and therefore obtain the characteristic size of the torus in this sample which spans a range of black hole mass and Eddington ratio. Our team contains many leading experts in reverberation mapping of AGN and in the observational study and theoretical modeling of the physics of the dusty torus. We are requesting a total of 14 hours in the cycle to perform our observations. These observations will provide a stringent observational test of current models for the obscuring torus in AGN. The required measurements - long timescales, continuous monitoring in the near-infrared - are possible only with the

  9. Multiband multi-echo imaging of simultaneous oxygenation and flow timeseries for resting state connectivity

    PubMed Central

    Cohen, Alexander D.; Nencka, Andrew S.; Lebel, R. Marc; Wang, Yang

    2017-01-01

    A novel sequence has been introduced that combines multiband imaging with a multi-echo acquisition for simultaneous high spatial resolution pseudo-continuous arterial spin labeling (ASL) and blood-oxygenation-level dependent (BOLD) echo-planar imaging (MBME ASL/BOLD). Resting-state connectivity in healthy adult subjects was assessed using this sequence. Four echoes were acquired with a multiband acceleration of four, in order to increase spatial resolution, shorten repetition time, and reduce slice-timing effects on the ASL signal. In addition, by acquiring four echoes, advanced multi-echo independent component analysis (ME-ICA) denoising could be employed to increase the signal-to-noise ratio (SNR) and BOLD sensitivity. Seed-based and dual-regression approaches were utilized to analyze functional connectivity. Cerebral blood flow (CBF) and BOLD coupling was also evaluated by correlating the perfusion-weighted timeseries with the BOLD timeseries. These metrics were compared between single echo (E2), multi-echo combined (MEC), multi-echo combined and denoised (MECDN), and perfusion-weighted (PW) timeseries. Temporal SNR increased for the MECDN data compared to the MEC and E2 data. Connectivity also increased, in terms of correlation strength and network size, for the MECDN compared to the MEC and E2 datasets. CBF and BOLD coupling was increased in major resting-state networks, and that correlation was strongest for the MECDN datasets. These results indicate our novel MBME ASL/BOLD sequence, which collects simultaneous high-resolution ASL/BOLD data, could be a powerful tool for detecting functional connectivity and dynamic neurovascular coupling during the resting state. The collection of more than two echoes facilitates the use of ME-ICA denoising to greatly improve the quality of resting state functional connectivity MRI. PMID:28253268

  10. Infrared Echoes Reveal the Shock Breakout of the Cas A Supernova

    NASA Astrophysics Data System (ADS)

    Dwek, Eli; Arendt, Richard G.

    2008-10-01

    Through the serendipitous discovery of infrared echoes around the Cas A supernova remnant, the Spitzer satellite has provided astronomers with a unique opportunity to study the properties of the echoing material and the history and nature of the outburst that generated these echoes. In retrospect, we find that the echoes are also clearly visible as infrared "hot spots" in IRAS images of the region. The spectra of the echoes are distinct from that of the dust in the general diffuse interstellar medium (ISM), revealing hot silicate grains that are either stochastically heated to temperatures in excess of ~150 K or radiating at an equilibrium temperature of this value. We show that the maximum luminosity that can be generated by the radioactive decay of 56Ni is not capable of producing such spectra, and could therefore not have given rise to the echoes. Instead, we find that the echoes must have been generated by an intense and short burst of EUV-UV radiation associated with the breakout of the shock through the surface of the exploding star. The inferred luminosity of the burst depends on the amount of attenuation in the intervening medium to the clouds, and we derive a burst luminosity of ~1.5 × 1011 L⊙ for an assumed H-column density of 1.5 × 1019 cm-2. The average H-column density of the IR-emitting region in the echoing clouds is about 5 × 1017 cm-2. Derivation of their density requires knowledge of the width of the echo that is sweeping through the ISM, which in turn is determined by the duration of the burst. A burst time of ~1 day gives a cloud density of ~400 cm-3, typical of dense IR cirrus.

  11. FM echolocating bats shift frequencies to avoid broadcast-echo ambiguity in clutter.

    PubMed

    Hiryu, Shizuko; Bates, Mary E; Simmons, James A; Riquimaroux, Hiroshi

    2010-04-13

    Sonar broadcasts are followed by echoes at different delays from objects at different distances. When broadcasts are emitted rapidly in cluttered surroundings, echo streams from successive broadcasts overlap and cause ambiguity in matching echoes to corresponding broadcasts. To identify reactions to ambiguity in clutter, echolocating bats that emit multiple-harmonic FM sounds were trained to fly into a dense, extended array of obstacles (multiple rows of vertically hanging chains) while the sonar sounds the bat emitted were recorded with a miniature radio microphone carried by the bat. Flight paths were reconstructed from thermal-infrared video recordings. Successive rows of chains extended more than 6 m in depth, so each broadcast was followed by a series of echoes from multiple rows of chains that lasted up to 40 ms. Bats emitted sounds in pairs ("strobe groups") at short (20-40 ms) interpulse intervals (IPIs) alternating with longer IPIs (>50 ms). For many short IPIs, the stream of echoes from the first broadcast was still arriving when the second broadcast was emitted. This overlap caused ambiguity about matching echoes with broadcasts. Bats shifted frequencies of the first sound in each strobe group upward and the second sound downward by 3-6 kHz. When overlap and ambiguity ceased, frequency shifts ceased also. Frequency differences were small compared with the total broadcast band, which was 75-80 kHz wide, but the harmonic structure of echoes enhances the differences in spectrograms. Bats could use time-frequency comparisons of echoes with broadcasts to assign echoes to the corresponding broadcasts and thus avoid ambiguity.

  12. Multiband multi-echo imaging of simultaneous oxygenation and flow timeseries for resting state connectivity.

    PubMed

    Cohen, Alexander D; Nencka, Andrew S; Lebel, R Marc; Wang, Yang

    2017-01-01

    A novel sequence has been introduced that combines multiband imaging with a multi-echo acquisition for simultaneous high spatial resolution pseudo-continuous arterial spin labeling (ASL) and blood-oxygenation-level dependent (BOLD) echo-planar imaging (MBME ASL/BOLD). Resting-state connectivity in healthy adult subjects was assessed using this sequence. Four echoes were acquired with a multiband acceleration of four, in order to increase spatial resolution, shorten repetition time, and reduce slice-timing effects on the ASL signal. In addition, by acquiring four echoes, advanced multi-echo independent component analysis (ME-ICA) denoising could be employed to increase the signal-to-noise ratio (SNR) and BOLD sensitivity. Seed-based and dual-regression approaches were utilized to analyze functional connectivity. Cerebral blood flow (CBF) and BOLD coupling was also evaluated by correlating the perfusion-weighted timeseries with the BOLD timeseries. These metrics were compared between single echo (E2), multi-echo combined (MEC), multi-echo combined and denoised (MECDN), and perfusion-weighted (PW) timeseries. Temporal SNR increased for the MECDN data compared to the MEC and E2 data. Connectivity also increased, in terms of correlation strength and network size, for the MECDN compared to the MEC and E2 datasets. CBF and BOLD coupling was increased in major resting-state networks, and that correlation was strongest for the MECDN datasets. These results indicate our novel MBME ASL/BOLD sequence, which collects simultaneous high-resolution ASL/BOLD data, could be a powerful tool for detecting functional connectivity and dynamic neurovascular coupling during the resting state. The collection of more than two echoes facilitates the use of ME-ICA denoising to greatly improve the quality of resting state functional connectivity MRI.

  13. Examination of the Spatial Correlation of Statistics Information in the Ultrasonic Echo from Diseased Liver

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tadashi; Hachiya, Hiroyuki; Kamiyama, Naohisa; Moriyasu, Fuminori

    2002-05-01

    To realize a quantitative diagnosis of liver cirrhosis, we have been analyzing the characteristics of echo amplitude in B-mode images. Realizing the distinction between liver diseases such as liver cirrhosis and chronic hepatitis is required in the field of medical ultrasonics. In this study, we examine the spatial correlation, with the coefficient of correlation between the frames and the amplitude characteristics of each frame, using the volumetric data of RF echo signals from normal and diseased liver. It is found that there is a relationship between the tissue structure of liver and the spatial correlation of echo information.

  14. Acoustic Pulse Echoes Probed with Time-Resolved X-Ray Triple-Crystal Diffractometry

    SciTech Connect

    Hayashi, Yujiro; Tanaka, Yoshihito; Kirimura, Tomoyuki; Ishikawa, Tetsuya; Tsukuda, Noboru; Kuramoto, Eiichi

    2006-03-24

    Acoustic pulse echoes generated by femtosecond laser irradiation were detected using time-resolved x-ray triple-crystal diffractometry. The determined time-dependent longitudinal strain component for pulse echoes in silicon and gallium arsenide plates showed that the polarity of the strain pulse was dependent on the optically induced initial stress, and that the bipolar pulse waveform was gradually deformed and broadened in the course of propagation. The three-dimensional wave front distortion of pulse echoes was shown simply as the pulse duration broadening, which was consistent with a boundary roughness for an unpolished plate.

  15. Time-dependent self-diffusion by NMR spin-echo

    NASA Astrophysics Data System (ADS)

    Stepišnik, Janez

    1993-05-01

    The relation between the NMR spin-echo attenuation in the magnetic field gradient and the velocity autocorrelations of molecular random migration has been derived by using the comulant expansion theorem for averaging stochastic processes. It may explain certain cases of time-dependent diffusion observed in many systems. In the limit of long correlation times it is identical to Torrey's well-known formula for spin echo attenuation due to self-diffusion. The method is used to derive the expression for spin-echo attenuation of diffusion in restricted regions.

  16. Middle ear muscle contractions and their relation to pulse and echo evoked potentials in the bat

    NASA Technical Reports Server (NTRS)

    Henson, O. W., Jr.; Henson, M. M.

    1972-01-01

    An analysis is made of pulse and echo orientation cries of the Mustache Bat. That bat's cries are characterized by a long, 60 to 30 msec, pure tone component and brief beginning and terminal FM sweeps. In addition to obvious echo overlap and middle ear muscle contractions, the following are examined: (1) characteristics of pulse- and echo-evoked potential under various conditions, (2) evidence of changes in hearing sensitivity during and after pulse emission, and (3) the role of the middle ear muscles in bringing about these changes.

  17. 29Si NMR spin-echo decay in YbRh2Si2

    NASA Astrophysics Data System (ADS)

    Kambe, S.; Sakai, H.; Tokunaga, Y.; Hattori, T.; Lapertot, G.; Matsuda, T. D.; Knebel, G.; Flouquet, J.; Walstedt, R. E.

    2016-02-01

    29Si nuclear magnetic resonance (NMR) has been measured in a 29Si-enriched single crystal sample of YbRh2Si2. The spin-echo decay for applied field H ∥, ⊥ the c-axes has been measured at 100 K. A clear spin-echo decay oscillation is observed for both cases, possibly reflecting the Ruderman-Kittel (RK) interaction. Since the observed oscillation frequency depends on the direction of applied magnetic field, anisotropic RK coupling and pseudo-dipolar (PD) interactions may not be negligible in this compound. The origin of spin-echo decay oscillations is discussed.

  18. Few-nucleon transfer reactions on deformed nuclei

    SciTech Connect

    van den Berg, A.M.

    1985-01-01

    Recent developments discussed include: alpha-transfer reactions on deformed nuclei, quasi-elastic neutron transfer reactions induced by /sup 58/Ni beams on spherical and deformed samarium nuclei, and the population of low-lying states in neutron rich nuclei using (particle,..gamma..) or (particle,e) coincidence methods. 37 refs., 10 figs. (LEW)

  19. Antiproton Production by CR on Air Nuclei

    NASA Technical Reports Server (NTRS)

    Maskalenko, I. V.; Mashnik, S. G.

    2003-01-01

    Recent measurements of the cosmic ray (CR) antiproton flux have been shown to challenge existing CR propagation models. In particular, the conventional reacceleration model designed to match secondary/primary nuclei ratios produces too few antiprotons. Recently there appear some indications that the atmospheric contribution to antiproton production is considerably underestimated, which implies that antiproton CR flux might be lower. This may be the primary reason of the discrepancy discovered in CR propagation. We use the Los Alamos version of the Quark-Gluon String Model code LAQGSM together with available data on antiproton production on nuclei to analyse the accuracy of existing parameterizations of antiproton production cross section. The LAQGSM model has been shown to reproduce well nuclear reactions and hadronic data in the range 0.01-800 GeV/nucleon.

  20. Nuclei at HERA and heavy ion physics

    SciTech Connect

    Gavin, S.; Strikman, M.

    1995-12-31

    Copies of 16 viewgraph sets from a workshop held at Brookhaven National Laboratory, 17-18 November, 1995. Titles of talks: HERA: The Present; HERA: Potential with Nuclei; Review of Hadron-Lepton Nucleus Data; Fermilab E665: results in muon scattering; Interactions of Quarks and Gluons with Nuclear Matter; Rescattering in Nuclear Targets for Photoproduction and DIS; Structure Functions and Nuclear Effect at PHENIX; Probing Spin-Averaged and Spin-Dependent Parton Distributions Using the Solenoidal Tracker at RHIC (STAR); Jet Quenching in eA, pA, AA; Nuclear Gluon Shadowing via Continuum Lepton Pairs; What can we learn from HERA with a colliding heavy ion beam? The limiting curve of leading particles at infinite A; Coherent Production of Vector Mesons off Light Nuclei in DIS; A Model of High Parton Densities in PQCD; Gluon Production for Weizaecker-Williams Field in Nucleus-Nucleus Collisions; Summary Talk.

  1. Collective properties of drip-line nuclei

    SciTech Connect

    Hamamoto, I.; Sagawa, H.

    1996-12-31

    Performing the spherical Hartree-Fock (HF) calculations with Skyrme interactions and, then, using RPA solved in the coordinate space with the Green`s function method, the authors have studied the effect of the unique shell structure as well as the very low particle threshold on collective modes in drip line nuclei. In this method a proper strength function in the continuum is obtained, though the spreading width of collective modes is not included. They have examined also one-particle resonant states in the obtained HF potential. Unperturbed particle-hole (p-h) response functions are carefully studied, which contain all basic information on the exotic behaviour of the RPA strength function in drip line nuclei.

  2. Shell model for warm rotating nuclei

    SciTech Connect

    Matsuo, M.; Yoshida, K.; Dossing, T.

    1996-12-31

    Utilizing a shell model which combines the cranked Nilsson mean-field and the residual surface and volume delta two-body forces, the authors discuss the onset of rotational damping in normal- and super-deformed nuclei. Calculation for a typical normal deformed nucleus {sup 168}Yb indicates that the rotational damping sets in at around 0.8 MeV above the yrast line, and about 30 rotational bands of various length exists at a given rotational frequency, in overall agreement with experimental findings. It is predicted that the onset of rotational damping changes significantly in different superdeformed nuclei due to the variety of the shell gaps and single-particle orbits associated with the superdeformed mean-field.

  3. DAPI fluorescence in nuclei isolated from tumors.

    PubMed

    Krishan, Awtar; Dandekar, Payal D

    2005-08-01

    In DNA histograms of some human solid tumors stained with nuclear isolation medium--4,6-diamidino-2-phenylindole dihydrochloride (NIM-DAPI), the coefficient of variation (CV) of the G0/G1 peak was broad, and in nuclear volume vs DNA scattergrams, a prominent slope was seen. To determine the cause for this, nuclei from frozen breast tumors were stained with NIM-DAPI and analyzed after dilution or resuspension in PBS. In two-color (blue vs red) analysis, most of the slope and broad CV was due to red fluorescence of nuclei stained with NIM-DAPI, which was reduced on dilution or resuspension in PBS, resulting in elimination of the slope and tightening of the CV.

  4. Green's function calculations of light nuclei

    NASA Astrophysics Data System (ADS)

    Sun, ZhongHao; Wu, Qiang; Xu, FuRong

    2016-09-01

    The influence of short-range correlations in nuclei was investigated with realistic nuclear force. The nucleon-nucleon interaction was renormalized with V lowk technique and applied to the Green's function calculations. The Dyson equation was reformulated with algebraic diagrammatic constructions. We also analyzed the binding energy of 4He, calculated with chiral potential and CD-Bonn potential. The properties of Green's function with realistic nuclear forces are also discussed.

  5. Intrinsic excitations in doubly odd nuclei

    SciTech Connect

    Sood, P.C.

    1985-01-15

    A procedure is outlined for predicting the bandhead energies of the two-particle (intrinsic) states of odd-odd deformed nuclei based on a quantitative evaluation of the zero range n-p residual interaction energy. We present our results for 250Bk, where many such levels are experimentally known, and for 236Np and 246Am, where the information is very scarce and that too uncertain, to illustrate the effectiveness of this approach.

  6. Complex fragment emission from hot compound nuclei

    SciTech Connect

    Moretto, L.G.

    1986-03-01

    The experimental evidence for compound nucleus emission of complex fragments at low energies is used to interpret the emission of the same fragments at higher energies. The resulting experimental picture is that of highly excited compound nuclei formed in incomplete fusion processes which decay statistically. In particular, complex fragments appear to be produced mostly through compound nucleus decay. In the appendix a geometric-kinematic theory for incomplete fusion and the associated momentum transfer is outlined. 10 refs., 19 figs.

  7. On Closed Shells in Nuclei. II

    DOE R&D Accomplishments Database

    Mayer, M. G.

    1949-04-01

    Discussion on the use of spins and magnetic moments of the even-odd nuclei by Feenberg and Nordheim to determine the angular momentum of the eigenfunction of the odd particle; discussion of prevalence of isomerism in certain regions of the isotope chart; tabulated data on levels of square well potential, spectroscopic levels, spin term, number of states, shells and known spins and orbital assignments.

  8. How do nuclei really vibrate or rotate

    SciTech Connect

    Andresen, H.G.; Kunz, J.; Mosel, U.; Mueller, M.; Schuh, A.; Wust, U.

    1983-01-01

    By means of the adiabatic cranking model the properties of the current and velocity fields of nuclear quadrupole vibrations for even-even nuclei in the rare-earth region are investigated. BCS correlated wave functions based on the Nilsson single particle Hamiltonian have been used. The current fields are analyzed in terms of vector spherical harmonics. The realistic microscopic currents show a vortex structure not present in the classical irrotational flow. The microscopic origin of the vortex structure is investigated.

  9. Accretion disk thermal instability in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Mineshige, S.; Shields, G. A.

    1990-03-01

    The nonlinear evolution and spatial propagation of the thermal instability in accretion disks in galactic nuclei are investigated. Integrations of the vertical structure of the disks are described for different alpha prescriptions, and the thermal stability is examined. Global time-dependent calculations of the unstable disks are performed which show that there are two distinct types of behavior according to the assumed prescription for the viscosity parameter: the 'purr' type and the 'roar' type. The roar type is analyzed in some detail.

  10. Deeply virtual Compton scattering off nuclei

    SciTech Connect

    Voutier, Eric

    2009-01-01

    Deeply virtual Compton scattering (DVCS) is the golden exclusive channel for the study of the partonic structure of hadrons, within the universal framework of generalized parton distributions (GPDs). This paper presents the aim and general ideas of the DVCS experimental program off nuclei at the Jefferson Laboratory. The benefits of the study of the coherent and incoherent channels to the understanding of the EMC (European Muon Collaboration) effect are discussed, along with the case of nuclear targets to access neutron GPDs.

  11. Spatio-temporal properties of shallow clouds with an emphasis on the area distribution of radar echoes

    NASA Astrophysics Data System (ADS)

    Trivej, Panu

    Statistical information of shallow cumuli is extracted from the SPolKa data. The data contains echo fields at different snapshots in time. The area distribution of echoes appears to be a power law upto 10 km 2. This power law is robust, that is, it does not sway with environmental conditions. The area distributions of big echoes vary with the level of moisture. At time it appears to be another power law with different and varying exponent which approaches that of smaller echoes as the air is getting wetter. The size which separates these two regimes is called the scalebreak. The temporal behaviors of the whole fields are studied via tracking algorithm. The contribution of isolated echoes -- ones which through out their lifetimes do not split or merge with other echoes -- is contrast to that of systems. Isolated echoes are less numerous, cover much less area and have shorter lifespan. Allowing an echo field to develop reveals that unlike increasing environmental moisture, it is the area distribution of small echoes which evolves with time, while of the big echoes remains comparatively unchanged. The divergences of radial velocities are proxies to the behaviors of vertical transportations inside echoes. The number of echoes with negative total transportations are found to be as many as echoes with positive transportations; statistically neither the updraft nor the downdraft dominates the vertical mass flux. Echoes can either start off with strong negative or positive buoyancy and become weaker until in some cases the signs even reverse. Finally the simulation of the optical array probe determines the forward matrix which can be used to convert the drop size distribution into the image area distribution. As well it can be used in approximating the drop size distribution from the image area distribution. The result is promising; our conversion algorithm performs rather well, and in most cases the sampling errors are even bigger than the error due to this new conversion

  12. Fusion excitation functions involving transitional nuclei

    SciTech Connect

    Rehm, K.E.; Jiang, C.L.; Esbensen, H.

    1995-08-01

    Measurements of fusion excitation functions involving transitional nuclei {sup 78}Kr and {sup 100}Mo showed a different behavior at low energies, if compared to measurements with {sup 86}Kr and {sup 92}Mo. This points to a possible influence of nuclear structure on the fusion process. One way to characterize the structure of vibrational nuclei is via their restoring force parameters C{sub 2} which can be calculated from the energy of the lowest 2{sup +} state and the corresponding B(E2) value. A survey of the even-even nuclei between A = 28-150 shows strong variations in C{sub 2} values spanning two orders of magnitude. The lowest values for C{sub 2} are observed for {sup 78}Kr, {sup 104}Ru and {sup 124}Xe followed by {sup 74,76}Ge, {sup 74,76}Se, {sup 100}Mo and {sup 110}Pd. In order to learn more about the influence of {open_quotes}softness{close_quotes} on the sub-barrier fusion enhancement, we measured cross sections for evaporation residue production for the systems {sup 78}Kr + {sup 104}Ru and {sup 78}Kr + {sup 76}Ge with the gas-filled magnet technique. For both systems, fusion excitation functions involving the closed neutron shell nucleus {sup 86}Kr were measured previously. The data are presently being analyzed.

  13. Multi-K¯ nuclei and kaon condensation

    NASA Astrophysics Data System (ADS)

    Gazda, D.; Friedman, E.; Gal, A.; Mareš, J.

    2008-04-01

    We extend previous relativistic mean-field (RMF) calculations of multi-K¯ nuclei, using vector boson fields with SU(3) PPV coupling constants and scalar boson fields constrained phenomenologically. For a given core nucleus, the resulting K¯ separation energy BK¯, as well as the associated nuclear and K¯-meson densities, saturate with the number κ of K¯ mesons for κ>κsat~10. Saturation appears robust against a wide range of variations, including the RMF nuclear model used and the type of boson fields mediating the strong interactions. Because BK¯ generally does not exceed 200 MeV, it is argued that multi-K¯ nuclei do not compete with multihyperonic nuclei in providing the ground state of strange hadronic configurations and that kaon condensation is unlikely to occur in strong-interaction self-bound strange hadronic matter. Last, we explore possibly self-bound strange systems made of neutrons and K¯0 mesons, or protons and K- mesons, and study their properties.

  14. Chromatin associations in Arabidopsis interphase nuclei.

    PubMed

    Schubert, Veit; Rudnik, Radoslaw; Schubert, Ingo

    2014-01-01

    The arrangement of chromatin within interphase nuclei seems to be caused by topological constraints and related to gene expression depending on tissue and developmental stage. In yeast and animals it was found that homologous and heterologous chromatin association are required to realize faithful expression and DNA repair. To test whether such associations are present in plants we analyzed Arabidopsis thaliana interphase nuclei by FISH using probes from different chromosomes. We found that chromatin fiber movement and variable associations, although in general relatively seldom, may occur between euchromatin segments along chromosomes, sometimes even over large distances. The combination of euchromatin segments bearing high or low co-expressing genes did not reveal different association frequencies probably due to adjacent genes of deviating expression patterns. Based on previous data and on FISH analyses presented here, we conclude that the global interphase chromatin organization in A. thaliana is relatively stable, due to the location of its 10 centromeres at the nuclear periphery and of the telomeres mainly at the centrally localized nucleolus. Nevertheless, chromatin movement enables a flexible spatial genome arrangement in plant nuclei.

  15. Potential energy surfaces of superheavy nuclei

    SciTech Connect

    Bender, M.; Rutz, K.; Maruhn, J.A.; Greiner, W.; Reinhard, P.-G. Rutz, K.; Maruhn, J.A.; Greiner, W.

    1998-10-01

    We investigate the structure of the potential energy surfaces of the superheavy nuclei {sub 158}{sup 258}Fm{sub 100}, {sub 156}{sup 264}Hs{sub 108}, {sub 166}{sup 278}112, {sub 184}{sup 298}114, and {sub 172}{sup 292}120 within the framework of self-consistent nuclear models, i.e., the Skyrme-Hartree-Fock approach and the relativistic mean-field model. We compare results obtained with one representative parametrization of each model which is successful in describing superheavy nuclei. We find systematic changes as compared to the potential energy surfaces of heavy nuclei in the uranium region: there is no sufficiently stable fission isomer any more, the importance of triaxial configurations to lower the first barrier fades away, and asymmetric fission paths compete down to rather small deformation. Comparing the two models, it turns out that the relativistic mean-field model gives generally smaller fission barriers. {copyright} {ital 1998} {ital The American Physical Society}

  16. Gradient Echo Quantum Memory in Warm Atomic Vapor

    PubMed Central

    Pinel, Olivier; Hosseini, Mahdi; Sparkes, Ben M.; Everett, Jesse L.; Higginbottom, Daniel; Campbell, Geoff T.; Lam, Ping Koy; Buchler, Ben C.

    2013-01-01

    Gradient echo memory (GEM) is a protocol for storing optical quantum states of light in atomic ensembles. The primary motivation for such a technology is that quantum key distribution (QKD), which uses Heisenberg uncertainty to guarantee security of cryptographic keys, is limited in transmission distance. The development of a quantum repeater is a possible path to extend QKD range, but a repeater will need a quantum memory. In our experiments we use a gas of rubidium 87 vapor that is contained in a warm gas cell. This makes the scheme particularly simple. It is also a highly versatile scheme that enables in-memory refinement of the stored state, such as frequency shifting and bandwidth manipulation. The basis of the GEM protocol is to absorb the light into an ensemble of atoms that has been prepared in a magnetic field gradient. The reversal of this gradient leads to rephasing of the atomic polarization and thus recall of the stored optical state. We will outline how we prepare the atoms and this gradient and also describe some of the pitfalls that need to be avoided, in particular four-wave mixing, which can give rise to optical gain. PMID:24300586

  17. Light Echoes as Probes of Supernova Type Ia Environments

    NASA Astrophysics Data System (ADS)

    Crotts, Arlin

    2009-07-01

    Environmental factors of Type Ia supernovae are key in understanding their nature, lightcurve evolution, and utility as cosmological standard candles. The progenitor ages {and many other properties} are bimodal, differing by roughly an order of magnitude. Is this reflected as well in the differences in their immediate surroundings in terms of gas and dust? The most powerful and direct way to address this issue is by imaging the reflected light from the dust itself via a light echo. In order for this approach to work, however, one must start imaging the vicinity of the supernova frequently and soon after the explosion is seen. We propose to maintain the imaging sequences crucial for understanding the three-dimensional dust distribution of two recent and key Type Ia supernovae, in a timely manner that will prevent otherwise significant holes in our knowledge. These observations are likely to be important in determining if the interstellar versus the circumstellar environments are more important in determining the appearance of Type Ia explosions, and thereby offer a clue as to the poorly-understood mass-loss history of SN Ia progenitors.JUSTIFICATION FOR VISIT TIME CONSTRAINTS:We have requested "Before" conditions

  18. Light Echoes and Cold Dust in Cas A

    NASA Astrophysics Data System (ADS)

    Krause, O.; Rieke, G. H.; Birkmann, S.

    2006-06-01

    We report on infrared observations of the prototypical supernova remnant Cassiopeia A obtained with the Spitzer Space Telescope. Two images of Cas A taken at 24 micrometers with the MIPS instrument over a 1-year time interval revealed moving structures outside the shell of the supernova remnant to a distance of more than 20 arc minutes. The observed tangential velocities are at roughly the speed of light. The moving structures are infrared echoes, in which interstellar dust is heated by the explosion and by flares from the compact object near the center of the remnant. Far-infrared maps of the remnant at 160 micrometers in combination with molecular line observations demonstrate that most of recently detected submillimetre emission towards Cas A originates from interstellar dust in a molecular cloud complex located in the line of sight between the Earth and the remnant, rather than from a large amount (about three solar masses) of cold (18K) dust within Cas A. The argument that type II supernovae produce copious amounts of dust is therefore not supported by the case of Cas A, which previously appeared to provide the best evidence for this possibility.

  19. Gradient echo quantum memory in warm atomic vapor.

    PubMed

    Pinel, Olivier; Hosseini, Mahdi; Sparkes, Ben M; Everett, Jesse L; Higginbottom, Daniel; Campbell, Geoff T; Lam, Ping Koy; Buchler, Ben C

    2013-11-11

    Gradient echo memory (GEM) is a protocol for storing optical quantum states of light in atomic ensembles. The primary motivation for such a technology is that quantum key distribution (QKD), which uses Heisenberg uncertainty to guarantee security of cryptographic keys, is limited in transmission distance. The development of a quantum repeater is a possible path to extend QKD range, but a repeater will need a quantum memory. In our experiments we use a gas of rubidium 87 vapor that is contained in a warm gas cell. This makes the scheme particularly simple. It is also a highly versatile scheme that enables in-memory refinement of the stored state, such as frequency shifting and bandwidth manipulation. The basis of the GEM protocol is to absorb the light into an ensemble of atoms that has been prepared in a magnetic field gradient. The reversal of this gradient leads to rephasing of the atomic polarization and thus recall of the stored optical state. We will outline how we prepare the atoms and this gradient and also describe some of the pitfalls that need to be avoided, in particular four-wave mixing, which can give rise to optical gain.

  20. MU radar head echo observations of the 2011 October Draconids

    NASA Astrophysics Data System (ADS)

    Kero, J.; Fujiwara, Y.; Abo, M.; Szasz, C.; Nakamura, T.

    2012-08-01

    On 2011 October 8, the Earth passed through a stream of dust ejected by the comet 21P/Giacobini-Zinner during its perihelion passage of the year 1900, causing an outburst of October Draconid meteors. 13 Draconids were observed among ˜6300 meteor head echoes with precisely determined orbits during an observational campaign ranging from October 8 05:00 UT to October 9 13:00 UT with the Shigaraki middle and upper atmosphere (MU) radar in Japan (34°.85 N and 136°.10 E). The meteor outburst occurred while the Draconid radiant was descending below and 2 h later rising up above the horizon. Therefore, 11 of the detections were from very low (<15°) elevation. The detection altitudes of the Draconids were high compared to sporadic meteors of the same velocity and radiant elevation. The weighted mean geocentric velocity of the 13 Draconids was 20.6 ± 0.4 km s-1, and the weighted mean radiant located at right ascension α = 263°.3 ± 0°.6 and declination δ = 55°.8 ± 0°.2.

  1. Investigating hard sphere interactions through spin echo scattering angle measurement

    NASA Astrophysics Data System (ADS)

    Washington, Adam

    Spin Echo Scattering Angle Measurement (SESAME) allows neutron scattering instruments to perform real space measurements on large micron scale samples by encoding the scattering angle into the neutron's spin state via Larmor precession. I have built a SESAME instrument at the Low Energy Neutron Source. I have also assisted in the construction of a modular SESAME instrument on the ASTERIX beamline at Los Alamos National lab. The ability to tune these instruments has been proved mathematically and optimized and automated experimentally. Practical limits of the SESAME technique with respect to polarization analyzers, neutron spectra, Larmor elements, and data analysis were investigated. The SESAME technique was used to examine the interaction of hard spheres under depletion. Poly(methyl methacrylate) spheres suspended in decalin had previously been studied as a hard sphere solution. The interparticle correlations between the spheres were found to match the Percus-Yevick closure, as had been previously seen in dynamical light scattering experiments. To expand beyond pure hard spheres, 900kDa polystyrene was added to the solution in concentrations of less than 1% by mass. The steric effects of the polystyrene were expected to produce a short-range, attractive, "sticky" potential. Experiment showed, however, that the "sticky" potential was not a stable state and that the spheres would eventually form long range aggregates.

  2. Unusual radar echoes from the Greenland ice sheet

    NASA Technical Reports Server (NTRS)

    Rignot, E. J.; Vanzyl, J. J.; Ostro, S. J.; Jezek, K. C.

    1993-01-01

    In June 1991, the NASA/Jet Propulsion Laboratory airborne synthetic-aperture radar (AIRSAR) instrument collected the first calibrated data set of multifrequency, polarimetric, radar observations of the Greenland ice sheet. At the time of the AIRSAR overflight, ground teams recorded the snow and firn (old snow) stratigraphy, grain size, density, and temperature at ice camps in three of the four snow zones identified by glaciologists to characterize four different degrees of summer melting of the Greenland ice sheet. The four snow zones are: (1) the dry-snow zone, at high elevation, where melting rarely occurs; (2) the percolation zone, where summer melting generates water that percolates down through the cold, porous, dry snow and then refreezes in place to form massive layers and pipes of solid ice; (3) the soaked-snow zone where melting saturates the snow with liquid water and forms standing lakes; and (4) the ablation zone, at the lowest elevations, where melting is vigorous enough to remove the seasonal snow cover and ablate the glacier ice. There is interest in mapping the spatial extent and temporal variability of these different snow zones repeatedly by using remote sensing techniques. The objectives of the 1991 experiment were to study changes in radar scattering properties across the different melting zones of the Greenland ice sheet, and relate the radar properties of the ice sheet to the snow and firn physical properties via relevant scattering mechanisms. Here, we present an analysis of the unusual radar echoes measured from the percolation zone.

  3. ON THE INTERPRETATION OF SUPERNOVA LIGHT ECHO PROFILES AND SPECTRA

    SciTech Connect

    Rest, A.; Narayan, G.; Sinnott, B.; Welch, D. L.; R. J. Foley; Mandel, K.; Huber, M. E.; Blondin, S.

    2011-05-01

    The light echo (LE) systems of historical supernovae in the Milky Way and local group galaxies provide an unprecedented opportunity to reveal the effects of asymmetry on observables, particularly optical spectra. Scattering dust at different locations on the LE ellipsoid witnesses the supernova from different perspectives, and the light consequently scattered toward Earth preserves the shape of line profile variations introduced by asymmetries in the supernova photosphere. However, the interpretation of supernova LE spectra to date has not involved a detailed consideration of the effects of outburst duration and geometrical scattering modifications due to finite scattering dust filament dimension, inclination, and image point-spread function and spectrograph slit width. In this paper, we explore the implications of these factors and present a framework for future-resolved supernova LE spectra interpretation, and test it against Cas A and SN 1987A LE spectra. We conclude that the full modeling of the dimensions and orientation of the scattering dust using the observed LEs at two or more epochs is critical for the correct interpretation of LE spectra. Indeed, without doing so one might falsely conclude that differences exist when none are actually present.

  4. Architectural and Markovian factors of echo state networks.

    PubMed

    Gallicchio, Claudio; Micheli, Alessio

    2011-06-01

    Echo State Networks (ESNs) constitute an emerging approach for efficiently modeling Recurrent Neural Networks (RNNs). In this paper we investigate some of the main aspects that can be accounted for the success and limitations of this class of models. In particular, we propose complementary classes of factors related to contractivity and architecture of reservoirs and we study their relative relevance. First, we show the existence of a class of tasks for which ESN performance is independent of the architectural design. The effect of the Markovian factor, characterizing a significant class within these cases, is shown by introducing instances of easy/hard tasks for ESNs featured by contractivity of reservoir dynamics. In the complementary cases, for which architectural design is effective, we investigate and decompose the aspects of network design that allow a larger reservoir to progressively improve the predictive performance. In particular, we introduce four key architectural factors: input variability, multiple time-scales dynamics, non-linear interactions among units and regression in an augmented feature space. To investigate the quantitative effects of the different architectural factors within this class of tasks successfully approached by ESNs, variants of the basic ESN model are proposed and tested on instances of datasets of different nature and difficulty. Experimental evidences confirm the role of the Markovian factor and show that all the identified key architectural factors have a major role in determining ESN performances.

  5. Observational Definition of Future AGN Echo-Mapping Experiments

    NASA Technical Reports Server (NTRS)

    Collier, Stefan; Peterson, Bradley M.; Horne, Keith

    2001-01-01

    We describe numerical simulations we have begun in order to determine the observational requirements for future echo-apping experiments. We focus on two particular problems: (1) determination of the structure and kinematics of the broad-line region through emission- line reverberation mapping, and (2) detection of interband continuum lags that may be used as a probe of the continuum source, presumably a temperature-stratified accretion disk. Our preliminary results suggest the broad-line region can be reverberation-mapped to good precision with spectra of signal-to-noise ratio per pixel S/N approx. = 30, time resolution (Delta)t approx. = 0.1 day, and duration of about 60 days (which is a factor of three larger than the longest time scale in the input models); data that meet these requirements do not yet exist. We also find that interband continuum lags of approx. greater than 0.5 days can be detected at approx. greater than 95% confidence with at least daily observations for about 6 weeks, or rather more easily and definitively with shorter programs undertaken with satellite-based observatories. The results of these simulations show that significant steps forward in multiwavelength monitoring will almost certainly require dedicated facilities.

  6. Phase transition of social learning collectives and the echo chamber

    NASA Astrophysics Data System (ADS)

    Mori, Shintaro; Nakayama, Kazuaki; Hisakado, Masato

    2016-11-01

    We study a simple model for social learning agents in a restless multiarmed bandit. There are N agents, and the bandit has M good arms that change to bad with the probability qc/N . If the agents do not know a good arm, they look for it by a random search (with the success probability qI) or copy the information of other agents' good arms (with the success probability qO) with probabilities 1 -p or p , respectively. The distribution of the agents in M good arms obeys the Yule distribution with the power-law exponent 1 +γ in the limit N ,M →∞ , and γ =1 +(1/-p ) qI p qO . The system shows a phase transition at pc=q/IqI+qo . For p pc) , the variance of N1 per agent is finite (diverges as ∝N2 -γ with N ). There is a threshold value Ns for the system size that scales as lnNs∝1 /(γ -1 ) . The expected value of the number of the agents with a good arm N1 increases with p for N >Ns . For p >pc and N echo chamber."

  7. Noise pair velocity and range echo location system

    DOEpatents

    Erskine, David J.

    1999-01-01

    An echo-location method for microwaves, sound and light capable of using incoherent and arbitrary waveforms of wide bandwidth to measure velocity and range (and target size) simultaneously to high resolution. Two interferometers having very long and nearly equal delays are used in series with the target interposed. The delays can be longer than the target range of interest. The first interferometer imprints a partial coherence on an initially incoherent source which allows autocorrelation to be performed on the reflected signal to determine velocity. A coherent cross-correlation subsequent to the second interferometer with the source determines a velocity discriminated range. Dithering the second interferometer identifies portions of the cross-correlation belonging to a target apart from clutter moving at a different velocity. The velocity discrimination is insensitive to all slowly varying distortions in the signal path. Speckle in the image of target and antenna lobing due to parasitic reflections is minimal for an incoherent source. An arbitrary source which varies its spectrum dramatically and randomly from pulse to pulse creates a radar elusive to jamming. Monochromatic sources which jigger in frequency from pulse to pulse or combinations of monochromatic sources can simulate some benefits of incoherent broadband sources. Clutter which has a symmetrical velocity spectrum will self-cancel for short wavelengths, such as the apparent motion of ground surrounding target from a sidelooking airborne antenna.

  8. Noise pair velocity and range echo location system

    DOEpatents

    Erskine, D.J.

    1999-02-16

    An echo-location method for microwaves, sound and light capable of using incoherent and arbitrary waveforms of wide bandwidth to measure velocity and range (and target size) simultaneously to high resolution is disclosed. Two interferometers having very long and nearly equal delays are used in series with the target interposed. The delays can be longer than the target range of interest. The first interferometer imprints a partial coherence on an initially incoherent source which allows autocorrelation to be performed on the reflected signal to determine velocity. A coherent cross-correlation subsequent to the second interferometer with the source determines a velocity discriminated range. Dithering the second interferometer identifies portions of the cross-correlation belonging to a target apart from clutter moving at a different velocity. The velocity discrimination is insensitive to all slowly varying distortions in the signal path. Speckle in the image of target and antenna lobing due to parasitic reflections is minimal for an incoherent source. An arbitrary source which varies its spectrum dramatically and randomly from pulse to pulse creates a radar elusive to jamming. Monochromatic sources which jigger in frequency from pulse to pulse or combinations of monochromatic sources can simulate some benefits of incoherent broadband sources. Clutter which has a symmetrical velocity spectrum will self-cancel for short wavelengths, such as the apparent motion of ground surrounding target from a sidelooking airborne antenna. 46 figs.

  9. EchoComTEE - a simulator for transoesophageal echocardiography.

    PubMed

    Weidenbach, M; Drachsler, H; Wild, F; Kreutter, S; Razek, V; Grunst, G; Ender, J; Berlage, T; Janousek, J

    2007-04-01

    Transoesophageal echocardiography (TOE) requires extensive hands-on training, and it is for this purpose we have designed EchoComTEE, a simulator for TOE. It consists of a manikin and dummy probe; according to the position of the dummy probe (tracked by an electromagnetic sensor), two-dimensional (2D) images are calculated from three-dimensional (3D) data sets. Echocardiographic images are presented side-by-side with a virtual scene consisting of a 3D heart, probe tip and image plane. In this way the trainee is provided with visual feed-back of the relationship between echocardiogram and image plane position. We evaluated the simulator using a standardised questionnaire. Twenty-five experts and 31 novice users participated in the study. Most experts graded the simulator as realistic and all recommended its use for training. Most novice users felt the simulator supported spatial orientation during TOE and, as anaesthetists often do not have training in transthoracic echocardiography, in this group the TOE simulator might be particularly useful.

  10. Searching for Cosmic Ray Radar Echos In TARA Data

    NASA Astrophysics Data System (ADS)

    Myers, Isaac

    2013-04-01

    The TARA (Telescope Array Radar) cosmic ray detector has been in operation for about a year and half. This bi-static CW radar detector was designed with the goal of detecting cosmic rays in coincidence with Telescope Array (TA). For the majority of its operation it has been in the TARA1.5 phase in which a 1.5 kW transmitter broadcasts from a single Yagi antenna across the TA surface detector array to our receiver station 50 km away. Our initial DAQ system has obtained millions of triggers utilizing a USRP2 PC controlled radio. During recent months, we have commissioned a 250 MHz sample rate detector with an intelligent self-triggering algorithm that can detect radar echo chirp signals below the noise. I will describe the stages of analysis used for comparing TARA radar triggers with TA data and present a synopsis of the analysis of the USRP2 data and preliminary results from the more advanced DAQ system.

  11. Echo-sounding method aids earthquake hazard studies

    USGS Publications Warehouse

    ,

    1995-01-01

    Dramatic examples of catastrophic damage from an earthquake occurred in 1989, when the M 7.1 Lorna Prieta rocked the San Francisco Bay area, and in 1994, when the M 6.6 Northridge earthquake jolted southern California. The surprising amount and distribution of damage to private property and infrastructure emphasizes the importance of seismic-hazard research in urbanized areas, where the potential for damage and loss of life is greatest. During April 1995, a group of scientists from the U.S. Geological Survey and the University of Tennessee, using an echo-sounding method described below, is collecting data in San Antonio Park, California, to examine the Monte Vista fault which runs through this park. The Monte Vista fault in this vicinity shows evidence of movement within the last 10,000 years or so. The data will give them a "picture" of the subsurface rock deformation near this fault. The data will also be used to help locate a trench that will be dug across the fault by scientists from William Lettis & Associates.

  12. Conditions for Using Stimulated Photon Echo to Record and Reproduce Information in Three-Level Systems

    NASA Astrophysics Data System (ADS)

    Nefediev, L. A.; Nizamova, E. I.

    2016-01-01

    The conditions for observing photon echo signals in crystals with excitation and detection in different resonant transitions with a single common energy level are studied. Uncorrelated inhomogeneous broadening in different resonance transitions is shown to influence the formation of stimulated photon echo in three-level systems. Lowering the sample temperature makes it possible to increase the relaxation time, which is used in experiments for observing photon echo. Uncorrelated inhomogeneous broadening in different resonance transitions is temperature independent and affects the intensity of the response at low temperatures, as well. Observation of stimulated photon echo in solid three-level samples requires a correct choice of the time interval between the first and second exciting pulses, but is not related to the magnitude of the irreversible transverse relaxation of the system.

  13. Rapid decrease of radar cross section of meteor head echo observed by the MU radar

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Nishio, M.; Sato, T.; Tsutsumi, S.; Tsuda, T.; Fushimi, K.

    The meteor head echo observation using the MU (Middle and Upper atmosphere) radar (46.5M Hz, 1MW), Shigaraki, Japan, was carried out simultaneously with a high sensitive ICCD (Image-intensified CCD) camera observation in November 2001. The time records were synchronized using GPS satellite signals, in order to compare instantaneous radar and optical meteor magnitudes. 26 faint meteors were successfully observed simultaneously by both equipments. Detailed comparison of the time variation of radar echo intensity and absolute optical magnitude showed that the radar scattering cross section is likely to decrease rapidly by 5 - 20 dB without no corresponding magnitude variation in the optical data. From a simple modeling, we concluded that such decrease of RCS (radar cross section ) is probably due to the transition from overdense head echo to underd ense head echo.

  14. Fast magnetospheric echoes of artificially injected electrons observed above a bright auroral arc

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.

    1983-01-01

    Rocket-borne electron beam experiments confirmed earlier observations of fast magnetospheric echoes of artificially injected energetic electrons. A total of 234 echoes were observed at pitch angles from 9 to 10 deg at energies of 1.87 and 3.90 keV. Of these, 102 echoes are unambiguously related to preceding accelerator operations at 2, 4 or 8 keV energy and highest current levels resulting in the determination of transit times of typically 300 to 400 msec. When echoes are present in both energy channels, higher energy electrons lead lower energy ones by 50 to 70 msec. Adiabatic theory applied to the observations yields a reflection height of 3000 to 4000 km.

  15. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Principles of construction of optical echo processors

    NASA Astrophysics Data System (ADS)

    Manykin, É. A.; Chernyshev, N. A.

    1991-09-01

    An analysis is made of the possibility of utilization of the photon echo effect in optical digital processing of discrete images by the method of control operators, which makes it possible to solve a number of problems. Different regimes for the excitation of the photon echo are in practice usable in all component parts of a processor, which makes this effect potentially promising for the use in optical data processing.

  16. On the origin of 150-km echoes: Recent observational results and current understanding

    NASA Astrophysics Data System (ADS)

    Patra, Amit

    2012-07-01

    Discovered nearly 45 years ago, the so-called 150-km echoing phenomenon continues to be a puzzle. These are the coherent radar echoes coming from the height region of 140-180 km during daytime and are of special interest to the ionospheric scientists since they are very useful means for estimating the daytime electric fields, a crucial parameter for studying daytime electrodynamics and plasma physics, and can be observed by radar with moderate sensitivity. Although the 150-km echoes are being regularly used for studying low latitude electrodynamics, it is a bit awkward using them in the scientific work without knowing their origin. This paper is meant to present and discuss new results obtained from Gadanki (13.5o N, 79.2o E, mag. lat. 6.5o N), India to elucidate the underlying physical processes, not considered before. Two new findings, one obtained during the passage of a solar eclipse and another linked with the intermediate layer type descending properties of 150-km echoes, clearly indicate the role of electron density gradient in generating the irregularities responsible for the 150-km radar echoes, not envisioned before. Given the fact that Gadanki is located at magnetically low latitude, it is proposed that the descending echoing layers are produced by interchange instability on the gradient of daytime descending ion layer formed by meridional wind shear associated with tidal/gravity waves quite similar to that observed during nighttime. Comparative anatomy of daytime 150-km echoes and nighttime intermediate layer echoes will also be presented and discussed in an effort to have a deeper understanding on the underlying instability processes.

  17. Collision-induced stimulated photon echo on the broad spectral line

    NASA Astrophysics Data System (ADS)

    Reshetov, V. A.

    2017-01-01

    The collision-induced stimulated photon echo formed on the broad spectral line on the transition with the angular momentum change {{J}a}=0\\to {{J}b}=1 is studied theoretically. The dependencies of the echo intensity on the areas of exciting pulses and on the strength of the external magnetic field under the conditions of experiments in ytterbium (174Yb) vapor are obtained. The ways to measure orientation and alignment relaxation rates of the excited atomic level are discussed.

  18. Two-frequency information recording in a three-level system using stimulated photon echo

    SciTech Connect

    Garnaeva, G I; Nefediev, L A; Akhmedshina, E N; Garnaev, R N

    2015-07-31

    The process of recording and reproducing information in a three-level system using stimulated photon echo is studied as a function of the amount of information embedded in the first and second two-frequency object laser pulses. It is shown that two-frequency information recording leads to an increase in the power of the stimulated photon echo response on one frequency transition and to its reduction on the other. (laser applications and other topics in quantum electronics)

  19. Interaction of eta mesons with nuclei.

    PubMed

    Kelkar, N G; Khemchandani, K P; Upadhyay, N J; Jain, B K

    2013-06-01

    Back in the mid-1980s, a new branch of investigation related to the interaction of eta mesons with nuclei came into existence. It started with the theoretical prediction of possible exotic states of eta mesons and nuclei bound by the strong interaction and later developed into an extensive experimental program to search for such unstable states as well as understand the underlying interaction via eta-meson producing reactions. The vast literature of experimental as well as theoretical works that studied various aspects of eta-producing reactions such as the π(+)n → ηp, pd → (3)Heη, p (6)Li → (7)Be η and γ (3)He → η X, to name a few, had but one objective in mind: to understand the eta-nucleon (ηN) and hence the η-nucleus interaction which could explain the production data and confirm the existence of some η-mesic nuclei. In spite of these efforts, there remain uncertainties in the knowledge of the ηN and hence the η-nucleus interaction. Therefore, this review is an attempt to bind together the findings in these works and draw some global and specific conclusions which can be useful for future explorations.The ηN scattering length (which represents the strength of the η-nucleon interaction) using different theoretical models and analyzing the data on η production in pion, photon and proton induced reactions was found to be spread out in a wide range, namely, 0.18 ≤ Re aηN ≤ 1.03 fm and 0.16 ≤ Rm aηN ≤ 0.49 fm. Theoretical searches of heavy η-mesic nuclei based on η-nucleus optical potentials and lighter ones based on Faddeev type few-body approaches predict the existence of several quasibound and resonant states. Although some hints of η-mesic states such as (3)(η)He and (25)(η)Mg do exist from previous experiments, the promise of clearer signals for the existence of η-mesic nuclei lies in the experiments to be performed at the J-PARC, MAMI and COSY facilities in the near future. This review is aimed at giving an overall status

  20. Diffusion and flow in a porous structure by the gradient spin echo spectral analysis

    NASA Astrophysics Data System (ADS)

    Stepišnik, Janez; Mohorič, Aleš; Duh, Andrej

    2001-12-01

    The frequency analysis of relation between the NMR gradient spin echo method and the correlation of molecular motion throws a new light upon the measurement of molecular transport in porous media by magnetic resonance. The spectral analysis provides, in some other way, a known Dt early time dependence of attenuation or the pulse gradient spin echo sequence, and at intermediate times, it gives a not-known Dpt+ d(1-exp(- t/ τr)). When the displacements are getting larger than the size of compartments, the spin echo is levelling into a time-independent asymptote. In the system of packed poly-dispersed beds, the spin echo measurement of flow dispersion perpendicular to flows confirms the predicted spin echo decay. It demonstrates a clear distinction between different time regimes of signal decay, from which different properties of the porous structure can be revealed. The results gives almost identical long-time dispersion coefficient, D‧= Dp, for different flows, but the shortening of the dispersion correlation time τr with the increase of interstitial velocity. In combination with the modulated gradient sequence, the method extends the measuring range of spin echo over multi-pore length scale, and opens a new way to provide information about important properties of porous media like average pore size, the interconnectivity and the tortuosity.

  1. T2 Relaxometry with Indirect Echo Compensation from Highly Undersampled Data

    PubMed Central

    Huang, Chuan; Bilgin, Ali; Barr, Tomoe; Altbach, Maria I.

    2012-01-01

    Purpose To develop an algorithm for fast and accurate T2 estimation from highly undersampled multi-echo spin-echo (MESE) data. Methods The algorithm combines a model-based reconstruction with a signal decay based on the slice-resolved extended phase graph (SEPG) model with the goal of reconstructing T2 maps from highly undersampled radial MESE data with indirect echo compensation. To avoid problems associated with the nonlinearity of the SEPG model, principal component decomposition is used to linearize the signal model. The proposed CUrve Reconstruction via pca-based Linearization with Indirect Echo compensation (CURLIE) algorithm is used to estimate T2 curves from highly undersampled data. T2 maps are obtained by fitting the curves to the SEPG model. Results Results on phantoms showed T2 biases (1.9% to 18.4%) when indirect echoes are not taken into account. The T2 biases were reduced (<3.2%) when the CURLIE reconstruction was performed along with SEPG fitting even for high degrees of undersampling (4% sampled). Experiments in vivo for brain, liver and heart followed the same trend as the phantoms. Conclusion The CURLIE reconstruction combined with SEPG fitting enables accurate T2 estimation from highly undersampled MESE radial data thus, yielding a fast T2 mapping method without errors caused by indirect echoes. PMID:23165796

  2. Increasing sensitivity of pulse EPR experiments using echo train detection schemes

    NASA Astrophysics Data System (ADS)

    Mentink-Vigier, F.; Collauto, A.; Feintuch, A.; Kaminker, I.; Tarle, V.; Goldfarb, D.

    2013-11-01

    Modern pulse EPR experiments are routinely used to study the structural features of paramagnetic centers. They are usually performed at low temperatures, where relaxation times are long and polarization is high, to achieve a sufficient Signal/Noise Ratio (SNR). However, when working with samples whose amount and/or concentration are limited, sensitivity becomes an issue and therefore measurements may require a significant accumulation time, up to 12 h or more. As the detection scheme of practically all pulse EPR sequences is based on the integration of a spin echo - either primary, stimulated or refocused - a considerable increase in SNR can be obtained by replacing the single echo detection scheme by a train of echoes. All these echoes, generated by Carr-Purcell type sequences, are integrated and summed together to improve the SNR. This scheme is commonly used in NMR and here we demonstrate its applicability to a number of frequently used pulse EPR experiments: Echo-Detected EPR, Davies and Mims ENDOR (Electron-Nuclear Double Resonance), DEER (Electron-Electron Double Resonance|) and EDNMR (Electron-Electron Double Resonance (ELDOR)-Detected NMR), which were combined with a Carr-Purcell-Meiboom-Gill (CPMG) type detection scheme at W-band. By collecting the transient signal and integrating a number of refocused echoes, this detection scheme yielded a 1.6-5 folds SNR improvement, depending on the paramagnetic center and the pulse sequence applied. This improvement is achieved while keeping the experimental time constant and it does not introduce signal distortion.

  3. Real-time three dimensional echo-guided closure of atrial septal defect: an experimental model.

    PubMed

    Orihashi, Kazumasa; Sueda, Taijiro; Okada, Kenji; Imai, Katsuhiko; Ban, Koji; Hamamoto, Masaki

    2005-10-01

    Real-time 3D echo may open the way to off-pump closure of an atrial septal defect with a robotic surgery technique without remnant of closure device. We report the preliminary results of 3D echo-guided closure of defect in an experimental model. A sheet with an oval defect immersed in water was visualized with 3D echo as well as surgical instruments. The defect was closed under echo guidance. Visualization of objects and instruments, and feasibility and problems of this technique were examined. The defect was visualized like an endoscopic view. Changing the view point without moving the transducer was a unique advantage. Visualization of instruments was acceptable with the lowest gain level. Acoustic shadow was helpful for comprehending the spatial relationship among the objects. Position of needle entry could be confirmed by the movement of the sheet. As the defect was sutured, fold convergence appeared on the sheet. Difficulties were encountered in passing the needle between instruments because of echo dropout. The string was poorly visualized. 3D echo-guided suturing was feasible with adequate image quality. However, an improvement of the surface of instruments and a wider scanning area is necessary for achieving surgical procedures with more safety and reliability.

  4. Object-Oriented Echo Perception and Cortical Representation in Echolocating Bats

    PubMed Central

    Grunwald, Jan E; Schuller, Gerd; Wiegrebe, Lutz

    2007-01-01

    Echolocating bats can identify three-dimensional objects exclusively through the analysis of acoustic echoes of their ultrasonic emissions. However, objects of the same structure can differ in size, and the auditory system must achieve a size-invariant, normalized object representation for reliable object recognition. This study describes both the behavioral classification and the cortical neural representation of echoes of complex virtual objects that vary in object size. In a phantom-target playback experiment, it is shown that the bat Phyllostomus discolor spontaneously classifies most scaled versions of objects according to trained standards. This psychophysical performance is reflected in the electrophysiological responses of a population of cortical units that showed an object-size invariant response (14/109 units, 13%). These units respond preferentially to echoes from objects in which echo duration (encoding object depth) and echo amplitude (encoding object surface area) co-varies in a meaningful manner. These results indicate that at the level of the bat's auditory cortex, an object-oriented rather than a stimulus-parameter–oriented representation of echoes is achieved. PMID:17425407

  5. A whale better adjusts the biosonar to ordered rather than to random changes in the echo parameters.

    PubMed

    Supin, Alexander Ya; Nachtigall, Paul E; Breese, Marlee

    2012-09-01

    A false killer whale's (Pseudorca crassidens) sonar clicks and auditory evoked potentials (AEPs) were recorded during echolocation with simulated echoes in two series of experiments. In the first, both the echo delay and transfer factor (which is the dB-ratio of the echo sound-pressure level to emitted pulse source level) were varied randomly from trial to trial until enough data were collected (random presentation). In the second, a combination of the echo delay and transfer factor was kept constant until enough data were collected (ordered presentation). The mean click level decreased with shortening the delay and increasing the transfer factor, more at the ordered presentation rather than at the random presentation. AEPs to the self-heard emitted clicks decreased with shortening the delay and increasing the echo level equally in both series. AEPs to echoes increased with increasing the echo level, little dependent on the echo delay at random presentations but much more dependent on delay with ordered presentations. So some adjustment of the whale's biosonar was possible without prior information about the echo parameters; however, the availability of prior information about echoes provided additional whale capabilities to adjust both the transmitting and receiving parts of the biosonar.

  6. Dynamic Echo Information Guides Flight in the Big Brown Bat

    PubMed Central

    Warnecke, Michaela; Lee, Wu-Jung; Krishnan, Anand; Moss, Cynthia F.

    2016-01-01

    Animals rely on sensory feedback from their environment to guide locomotion. For instance, visually guided animals use patterns of optic flow to control their velocity and to estimate their distance to objects (e.g., Srinivasan et al., 1991, 1996). In this study, we investigated how acoustic information guides locomotion of animals that use hearing as a primary sensory modality to orient and navigate in the dark, where visual information is unavailable. We studied flight and echolocation behaviors of big brown bats as they flew under infrared illumination through a corridor with walls constructed from a series of individual vertical wooden poles. The spacing between poles on opposite walls of the corridor was experimentally manipulated to create dense/sparse and balanced/imbalanced spatial structure. The bats’ flight trajectories and echolocation signals were recorded with high-speed infrared motion-capture cameras and ultrasound microphones, respectively. As bats flew through the corridor, successive biosonar emissions returned cascades of echoes from the walls of the corridor. The bats flew through the center of the corridor when the pole spacing on opposite walls was balanced and closer to the side with wider pole spacing when opposite walls had an imbalanced density. Moreover, bats produced shorter duration echolocation calls when they flew through corridors with smaller spacing between poles, suggesting that clutter density influences features of the bat’s sonar signals. Flight speed and echolocation call rate did not, however, vary with dense and sparse spacing between the poles forming the corridor walls. Overall, these data demonstrate that bats adapt their flight and echolocation behavior dynamically when flying through acoustically complex environments. PMID:27199690

  7. Phase transition of social learning collectives and the echo chamber.

    PubMed

    Mori, Shintaro; Nakayama, Kazuaki; Hisakado, Masato

    2016-11-01

    We study a simple model for social learning agents in a restless multiarmed bandit. There are N agents, and the bandit has M good arms that change to bad with the probability q_{c}/N. If the agents do not know a good arm, they look for it by a random search (with the success probability q_{I}) or copy the information of other agents' good arms (with the success probability q_{O}) with probabilities 1-p or p, respectively. The distribution of the agents in M good arms obeys the Yule distribution with the power-law exponent 1+γ in the limit N,M→∞, and γ=1+(1-p)q_{I}/pq_{O}. The system shows a phase transition at p_{c}=q_{I}/q_{I}+q_{o}. For pp_{c}), the variance of N_{1} per agent is finite (diverges as ∝N^{2-γ} with N). There is a threshold value N_{s} for the system size that scales as lnN_{s}∝1/(γ-1). The expected value of the number of the agents with a good arm N_{1} increases with p for N>N_{s}. For p>p_{c} and Necho chamber."

  8. Polar mesosphere summer echoes (PMSE) a southern hemisphere perspective

    NASA Astrophysics Data System (ADS)

    Morris, R. J.; Murphy, D. J.; Klekociuk, A. R.; Holdsworth, D. A.

    The existence of Polar Mesosphere Summer Echoes PMSE in the Southern Hemisphere SH has recently been confirmed using HF radar Ogawa et al 2002 MST radar Morris et al 2004 and a Dynasonde Jarvis et al 2005 following earlier observations using MST radar Woodman et al 1999 These studies spanned the geographic latitudes 62 1 r S Machu Picchu 68 6 r S Davis 69 0 r S Syowa and 75 5 r S Halley Bay The emerging array of SH SuperDARN radars provide an opportunity to extend the spatial coverage of PMSE observations An understanding of the occurrence and intensity of PMSE against latitude in the SH is needed to facilitate a comparison with the better spatial coverage of Northern Hemisphere NH PMSE observations Such a comparison will contribute to the ongoing debate as to whether PMSE can provide a proxy for mesosphere temperature and thus shed light on the existence of any interhemispheric asymmetry or otherwise in the polar mesosphere regions The argument for different polar mesosphere environments spawned in part by the reported lack of SH PMSE observations Recent PMSE reflectivity and intensity results from Davis 68 6 r S and Andenes 69 0 r N are given The characteristics and morphology of PMSE events above these Antarctic stations are considered in the context of the thermal and dynamical state of the mesosphere as deduced from satellite i e SABER and AURA and radar i e MF and MST observations respectively A brief account of recent coincident PMSE MST radar and Polar Mesospheric Cloud PMC

  9. Characteristics of mesosphere echoes over Antarctica obtained using PANSY and MF radars

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Masaki; Nakamura, Takuji; Sato, Toru; Nishimura, Koji; Sato, Kaoru; Tomikawa, Yoshihiro; Kohma, Masashi

    2016-07-01

    In the polar region characteristic radar echoes are observed from the mesosphere by using a VHF system. The nature of the echoes is distinctively different between summer and winter and those echoes are called Polar Mesosphere Summer Echoes (PMSEs) and Polar Mesosphere Winter Echoes (PMWEs), respectively. Since the PMSEs are usually very strong and can be easily measured with a small radar system, their nature is relatively well understood. On the other hand PMWEs are much weaker and they are still only poorly understood. The PANSY radar (47MHz) at Syowa station (69S) is the only large aperture atmospheric radar in the Antarctic, and can continuously survey the dynamics of the middle atmosphere with high time and height resolutions [Sato et al., 2014]. Nishiyama et al [2014] reported the first study of PMWEs using PANSY radar and showed a seasonal and local time dependence of these echoes. An MF radar system (2.4MHz) is co-located at Syowa, and has been operating for mesosphere and lower thermosphere observations. Although the MF radar has only a much poorer height resolution and is incapable of vertical wind measurement, it can almost continuously measure mesosphere day and night. In this study the nature of the mesosphere echoes, mainly PMWEs, are being studied using the two radars based on the observation made in 2015. These radars are operated using largely different radio frequencies and can provide complementary information with each other such as wind velocities and also echo scattering mechanisms. Horizontal wind velocities have been compared between the two radars with a great care mostly in the MF radar winds in order to avoid possible biases inherent in the correlation analysis technique employed for the MF radar wind measurement. A careful analysis has shown that the horizontal wind velocities agree well between the two systems with a high correlation coefficient around 0.8 throughout the height region of 65-85km. Aspect sensitivities estimated using

  10. The Evolution and Structure of the Bow Echo/microburst Events.

    NASA Astrophysics Data System (ADS)

    Lee, Wen-Chau

    The evolution and structure of several bow echo/microburst events are investigated in this study. Multiple Doppler radar analysis (three dimensional wind fields, pressure and buoyancy retrievals, vorticity budget and trajectory) is performed for the primary case of July 14, 1982 during the Joint Airport Weather Study (JAWS) experiment while single Doppler radar analysis is performed in 4 other bow echo/microburst events. The downdraft is initiated by precipitation loading at 4 km Above Ground Level (AGL) 7 min before the surface microburst. The precipitation particles within the reflectivity core contribute not only to the loading effect but also to the cooling effect via evaporation, melting and sublimation. The downdraft core initially coincides with the reflectivity core but shifts toward the weak echo region at the peak microburst time. A high perturbation pressure (maximum of 0.6 mb) builds up from the surface at the microburst center upon impact with the ground. At the surface, the microburst air is warmer than its environment. A maximum cooling of 3^circ C is located at 1.6 km at the reflectivity gradient region. The reflectivity core precedes the descent of the downdraft core, while the maximum w correlates well with the maximum negative buoyancy. The storm relative trajectories indicate that the source region of the microburst air is from 3-4 km level. A conceptual model of the single-cell type bow echo evolution is constructed based on the vorticity budget analysis. A bow echo is formed by the redistribution of hydrometeors by a vorticity couplet which is generated by the interaction between the downdraft and the vertical shear vector or the tilting effect. The rear inflow jet is induced by the vorticity couplet and its intensity should depend on the strength of the vorticity couplet. This model indicates that a bow echo may be produced by a weak downdraft as long as a proper vertical shear exists. However, strong downdrafts of microburst intensity will

  11. Evolution of Web Services in EOSDIS: Search and Order Metadata Registry (ECHO)

    NASA Technical Reports Server (NTRS)

    Mitchell, Andrew; Ramapriyan, Hampapuram; Lowe, Dawn

    2009-01-01

    During 2005 through 2008, NASA defined and implemented a major evolutionary change in it Earth Observing system Data and Information System (EOSDIS) to modernize its capabilities. This implementation was based on a vision for 2015 developed during 2005. The EOSDIS 2015 Vision emphasizes increased end-to-end data system efficiency and operability; increased data usability; improved support for end users; and decreased operations costs. One key feature of the Evolution plan was achieving higher operational maturity (ingest, reconciliation, search and order, performance, error handling) for the NASA s Earth Observing System Clearinghouse (ECHO). The ECHO system is an operational metadata registry through which the scientific community can easily discover and exchange NASA's Earth science data and services. ECHO contains metadata for 2,726 data collections comprising over 87 million individual data granules and 34 million browse images, consisting of NASA s EOSDIS Data Centers and the United States Geological Survey's Landsat Project holdings. ECHO is a middleware component based on a Service Oriented Architecture (SOA). The system is comprised of a set of infrastructure services that enable the fundamental SOA functions: publish, discover, and access Earth science resources. It also provides additional services such as user management, data access control, and order management. The ECHO system has a data registry and a services registry. The data registry enables organizations to publish EOS and other Earth-science related data holdings to a common metadata model. These holdings are described through metadata in terms of datasets (types of data) and granules (specific data items of those types). ECHO also supports browse images, which provide a visual representation of the data. The published metadata can be mapped to and from existing standards (e.g., FGDC, ISO 19115). With ECHO, users can find the metadata stored in the data registry and then access the data either

  12. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images.

    PubMed

    Paramanandam, Maqlin; O'Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods-Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets.

  13. Automated Segmentation of Nuclei in Breast Cancer Histopathology Images

    PubMed Central

    Paramanandam, Maqlin; O’Byrne, Michael; Ghosh, Bidisha; Mammen, Joy John; Manipadam, Marie Therese; Thamburaj, Robinson; Pakrashi, Vikram

    2016-01-01

    The process of Nuclei detection in high-grade breast cancer images is quite challenging in the case of image processing techniques due to certain heterogeneous characteristics of cancer nuclei such as enlarged and irregularly shaped nuclei, highly coarse chromatin marginalized to the nuclei periphery and visible nucleoli. Recent reviews state that existing techniques show appreciable segmentation accuracy on breast histopathology images whose nuclei are dispersed and regular in texture and shape; however, typical cancer nuclei are often clustered and have irregular texture and shape properties. This paper proposes a novel segmentation algorithm for detecting individual nuclei from Hematoxylin and Eosin (H&E) stained breast histopathology images. This detection framework estimates a nuclei saliency map using tensor voting followed by boundary extraction of the nuclei on the saliency map using a Loopy Back Propagation (LBP) algorithm on a Markov Random Field (MRF). The method was tested on both whole-slide images and frames of breast cancer histopathology images. Experimental results demonstrate high segmentation performance with efficient precision, recall and dice-coefficient rates, upon testing high-grade breast cancer images containing several thousand nuclei. In addition to the optimal performance on the highly complex images presented in this paper, this method also gave appreciable results in comparison with two recently published methods—Wienert et al. (2012) and Veta et al. (2013), which were tested using their own datasets. PMID:27649496

  14. Nuclei at extreme conditions. A relativistic study

    SciTech Connect

    Afanasjev, Anatoli

    2014-11-14

    The major goals of the current project were further development of covariant density functional theory (CDFT), better understanding of its features, its application to different nuclear structure and nuclear astrophysics phenomena and training of graduate and undergraduate students. The investigations have proceeded in a number of directions which are discussed in detail in the part “Accomplishments” of this report. We have studied the role of isovector and isoscalar proton-neutron pairings in rotating nuclei; based on available experimental data it was concluded that there are no evidences for the existence of isoscalar proton-neutron pairing. Generalized theoretical approach has been developed for pycnonuclear reaction rates in the crust of neutron stars and interior of white dwarfs. Using this approach, extensive database for considerable number of pycnonuclear reactions involving stable and neutron-rich light nuclei has been created; it can be used in future for the study of various nuclear burning phenomena in different environments. Time-odd mean fields and their manifestations in terminating states, non-rotating and rotating nuclei have been studied in the framework of covariant density functional theory. Contrary to non-relativistic density functional theories these fields, which are important for a proper description of nuclear systems with broken time-reversal symmetry, are uniquely defined in the CDFT framework. Hyperdeformed nuclear shapes (with semi-axis ratio 2.5:1 and larger) have been studied in the Z = 40-58 part of nuclear chart. We strongly believe that such shapes could be studied experimentally in the future with full scale GRETA detector.

  15. Exploring the Physics of Unstable Nuclei

    NASA Astrophysics Data System (ADS)

    Volya, Alexander

    In this presentation the Continuum Shell Model (CSM) approach is advertised as a powerful theoretical tool for studying physics of unstable nuclei. The approach is illustrated using 17O as an example, which is followed by a brief presentation of the general CSM formalism. The successes of the CSM are highlighted and references are provided throughout the text. As an example, the CSM is applied perturbatively to 20O allowing one to explore the effects of continuum on positions of weakly bound states and low-lying resonances, as well as to discern some effects of threshold discontinuity.

  16. Signatures for quark clustering in nuclei

    SciTech Connect

    Carlson, C.E.; Lassila, K.E.

    1994-04-01

    As a signature for the presence of quark clusters in nuclei, the authors suggest studying backward protons produced by electron scattering off deuterons and suggest a ratio that cancels out much of the detailed properties of deuterons or 6-quark clusters. The test may be viewed as a test that the short range part of the deuteron is still a 2-nucleon system. They make estimates to show how it fails in characteristic and significant ways if the two nucleons at short range coalesce into a kneaded 6-quark cluster.

  17. Effective field theory for deformed atomic nuclei

    SciTech Connect

    Papenbrock, Thomas F.; Weidenmüller, H. A.

    2016-04-13

    In this paper, we present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. Finally, for rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.

  18. Naked megakaryocyte nuclei: a clue to malignancy.

    PubMed

    Lefkowitz, M; Lefkowitz, E

    1977-10-01

    Bone marrow smears from 63 patients with various malignancies and a series of 51 controls were examined for the presence and percentage of naked megakaryocyte nuclei (NMN). Patients with malignancy had more than 15% NMN, which, when compared with the incidence in controls, was statistically significant. The etiology of this artifact is unknown. It is a clue to the presence of malignancy, and might be useful in following treated cases of malignancy for evidence of relapse. NMN should not be confused with metastatic malignant cells.

  19. Probing Chiral Interactions in Light Nuclei

    SciTech Connect

    Nogga, A; Barrett, B R; Meissner, U; Witala, H; Epelbaum, E; Kamada, H; Navratil, P; Glockle, W; Vary, J P

    2004-01-08

    Chiral two- and three-nucleon interactions are studied in a few-nucleon systems. We investigate the cut-off dependence and convergence with respect to the chiral expansion. It is pointed out that the spectra of light nuclei are sensitive to the three-nucleon force structure. As an example, we present calculations of the 1{sup +} and 3{sup +} states of {sup 6}Li using the no-core shell model approach. The results show contributions of the next-to-next-to-leading order terms to the spectra, which are not correlated to the three-nucleon binding energy prediction.

  20. Self-Consistency Effects In Superheavy Nuclei

    SciTech Connect

    Afanasjev, A.V.; Frauendorf, S.

    2005-04-05

    The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied within the relativistic mean field theory. Large depression leads to the shell gaps at the proton Z = 120 and neutron N = 172 numbers, while flatter density distribution favors N = 184 for neutrons and leads to the appearance of a Z 126 shell gap and to the decrease of the size of the Z = 120 shell gap. The correlations between the magic shell gaps and the magnitude of central depression are discussed for relativistic and non-relativistic mean field theories.