Science.gov

Sample records for nucleobase analogue fret

  1. Studying Z-DNA and B- to Z-DNA transitions using a cytosine analogue FRET-pair

    PubMed Central

    Dumat, Blaise; Larsen, Anders Foller; Wilhelmsson, L. Marcus

    2016-01-01

    Herein, we report on the use of a tricyclic cytosine FRET pair, incorporated into DNA with different base pair separations, to study Z-DNA and B-Z DNA junctions. With its position inside the DNA structure, the FRET pair responds to a B- to Z-DNA transition with a distinct change in FRET efficiency for each donor/acceptor configuration allowing reliable structural probing. Moreover, we show how fluorescence spectroscopy and our cytosine analogues can be used to determine rate constants for the B- to Z-DNA transition mechanism. The modified cytosines have little influence on the transition and the FRET pair is thus an easily implemented and virtually non-perturbing fluorescence tool to study Z-DNA. This nucleobase analogue FRET pair represents a valuable addition to the limited number of fluorescence methods available to study Z-DNA and we suggest it will facilitate, for example, deciphering the B- to Z-DNA transition mechanism and investigating the interaction of DNA with Z-DNA binding proteins. PMID:26896804

  2. The Formation of Nucleobases from the Ultraviolet Photoirradiation of Purine in Simple Astrophysical Ice Analogues

    NASA Astrophysics Data System (ADS)

    Materese, Christopher K.; Nuevo, Michel; Sandford, Scott A.

    2017-08-01

    Nucleobases are the informational subunits of RNA and DNA and are essential to all known forms of life. The nucleobases can be divided into two groups of molecules: the pyrimidine-based compounds that include uracil, cytosine, and thymine, and the purine-based compounds that include adenine and guanine. Previous work in our laboratory has demonstrated that uracil, cytosine, thymine, and other nonbiological, less common nucleobases can form abiotically from the UV photoirradiation of pyrimidine in simple astrophysical ice analogues containing combinations of H2O, NH3, and CH4. In this work, we focused on the UV photoirradiation of purine mixed with combinations of H2O and NH3 ices to determine whether or not the full complement of biological nucleobases can be formed abiotically under astrophysical conditions. Room-temperature analyses of the resulting photoproducts resulted in the detection of adenine, guanine, and numerous other functionalized purine derivatives.

  3. Reactions of β-Propiolactone with Nucleobase Analogues, Nucleosides, and Peptides

    PubMed Central

    Uittenbogaard, Joost P.; Zomer, Bert; Hoogerhout, Peter; Metz, Bernard

    2011-01-01

    β-Propiolactone is often applied for inactivation of viruses and preparation of viral vaccines. However, the exact nature of the reactions of β-propiolactone with viral components is largely unknown. The purpose of the current study was to elucidate the chemical modifications occurring on nucleotides and amino acid residues caused by β-propiolactone. Therefore, a set of nucleobase analogues was treated with β-propiolactone, and reaction products were identified and quantified. NMR revealed at least one modification in either deoxyguanosine, deoxyadenosine, or cytidine after treatment with β-propiolactone. However, no reaction products were found from thymidine and uracil. The most reactive sides of the nucleobase analogues and nucleosides were identified by NMR. Furthermore, a series of synthetic peptides was used to determine the conversion of reactive amino acid residues by liquid chromatography-mass spectrometry. β-Propiolactone was shown to react with nine different amino acid residues. The most reactive residues are cysteine, methionine, and histidine and, to a lesser degree, aspartic acid, glutamic acid, tyrosine, lysine, serine, and threonine. Remarkably, cystine residues (disulfide groups) do not react with β-propiolactone. In addition, no reaction was observed for β-propiolactone with asparagine, glutamine, and tryptophan residues. β-Propiolactone modifies proteins to a larger extent than expected from current literature. In conclusion, the study determined the reactivity of β-propiolactone with nucleobase analogues, nucleosides, and amino acid residues and elucidated the chemical structures of the reaction products. The study provides detailed knowledge on the chemistry of β-propiolactone inactivation of viruses. PMID:21868382

  4. A fluorescent analogue of UDP-N-acetylglucosamine: application for FRET assay of peptidoglycan translocase II (MurG).

    PubMed

    Li, Jian-Jun; Bugg, Timothy D H

    2004-01-21

    A direct continuous fluorescence assay for translocase II MurG based on fluorescence resonance energy transfer (FRET) has been developed using a 6-substituted fluorescent analogue of UDP-N-acetylglucosamine.

  5. Ultrafast Dynamics of a Nucleobase Analogue Illuminated by a Short Intense X-ray Free Electron Laser Pulse

    DOE PAGES

    Nagaya, K.; Motomura, K.; Kukk, E.; ...

    2016-06-16

    Understanding x-ray radiation damage is a crucial issue for both medical applications of x rays and x-ray free-electron-laser (XFEL) science aimed at molecular imaging. Decrypting the charge and fragmentation dynamics of nucleobases, the smallest units of a macro-biomolecule, contributes to a bottom-up understanding of the damage via cascades of phenomena following x-ray exposure. We investigate experimentally and by numerical simulations the ultrafast radiation damage induced on a nucleobase analogue (5-iodouracil) by an ultrashort (10 fs) high-intensity radiation pulse generated by XFEL at SPring-8 Angstrom Compact free electron Laser (SACLA). The present study elucidates a plausible underlying radiosensitizing mechanism of 5-iodouracil.more » This mechanism is independent of the exact composition of 5-iodouracil and thus relevant to other such radiosensitizers. Furthermore, we found that despite a rapid increase of the net molecular charge in the presence of iodine, and of the ultrafast release of hydrogen, the other atoms are almost frozen within the 10-fs duration of the exposure. Finally, this validates single-shot molecular imaging as a consistent approach, provided the radiation pulse used is brief enough.« less

  6. Ultrafast Dynamics of a Nucleobase Analogue Illuminated by a Short Intense X-ray Free Electron Laser Pulse

    NASA Astrophysics Data System (ADS)

    Nagaya, K.; Motomura, K.; Kukk, E.; Fukuzawa, H.; Wada, S.; Tachibana, T.; Ito, Y.; Mondal, S.; Sakai, T.; Matsunami, K.; Koga, R.; Ohmura, S.; Takahashi, Y.; Kanno, M.; Rudenko, A.; Nicolas, C.; Liu, X.-J.; Zhang, Y.; Chen, J.; Anand, M.; Jiang, Y. H.; Kim, D.-E.; Tono, K.; Yabashi, M.; Kono, H.; Miron, C.; Yao, M.; Ueda, K.

    2016-04-01

    Understanding x-ray radiation damage is a crucial issue for both medical applications of x rays and x-ray free-electron-laser (XFEL) science aimed at molecular imaging. Decrypting the charge and fragmentation dynamics of nucleobases, the smallest units of a macro-biomolecule, contributes to a bottom-up understanding of the damage via cascades of phenomena following x-ray exposure. We investigate experimentally and by numerical simulations the ultrafast radiation damage induced on a nucleobase analogue (5-iodouracil) by an ultrashort (10 fs) high-intensity radiation pulse generated by XFEL at SPring-8 Angstrom Compact free electron Laser (SACLA). The present study elucidates a plausible underlying radiosensitizing mechanism of 5-iodouracil. This mechanism is independent of the exact composition of 5-iodouracil and thus relevant to other such radiosensitizers. Furthermore, we found that despite a rapid increase of the net molecular charge in the presence of iodine, and of the ultrafast release of hydrogen, the other atoms are almost frozen within the 10-fs duration of the exposure. This validates single-shot molecular imaging as a consistent approach, provided the radiation pulse used is brief enough.

  7. Functionalized Solid Electrodes for Electrochemical Biosensing of Purine Nucleobases and Their Analogues: A Review

    PubMed Central

    Sharma, Vimal Kumar; Jelen, Frantisek; Trnkova, Libuse

    2015-01-01

    Interest in electrochemical analysis of purine nucleobases and few other important purine derivatives has been growing rapidly. Over the period of the past decade, the design of electrochemical biosensors has been focused on achieving high sensitivity and efficiency. The range of existing electrochemical methods with carbon electrode displays the highest rate in the development of biosensors. Moreover, modification of electrode surfaces based on nanomaterials is frequently used due to their extraordinary conductivity and surface to volume ratio. Different strategies for modifying electrode surfaces facilitate electron transport between the electrode surface and biomolecules, including DNA, oligonucleotides and their components. This review aims to summarize recent developments in the electrochemical analysis of purine derivatives, as well as discuss different applications. PMID:25594595

  8. Analogues of acyclic nucleosides derived from tris-(hydroxymethyl)phosphine oxide or bis-(hydroxymethyl)phosphinic acid coupled to DNA nucleobases.

    PubMed

    Nawrot, Barbara; Michalak, Olga; De Clercq, Erik; Stec, Wojciech J

    2004-11-01

    A series of novel acyclic nucleoside analogues containing bis-(hydroxymethyl)phosphinic acid (BHPA) or tris(hydroxymethyl)phosphine oxide (THPO) coupled with DNA nucleobases or with 5-fluorouracil were prepared and their antiviral activity was studied against cytomegalovirus (CMV), varicella-zoster virus (VZV), parainfluenza-virus type 3, reovirus-type 1, sindbis, coxsackie B4, punta toro, vesicular stomatitis and respiratory syncytial virus, herpes simplex virus-type 1 (KOS) and type 2 (G), vaccinia virus and herpes simplex virus-1 (TK- KOS ACVr). No specific antiviral effects were noted for any of test compounds against viruses evaluated, except thymine, cytosine and adenine derivatives of BHPA exerting borderline activity against respiratory syncytial virus at the 80 mg/ml concentration.

  9. Inhibition of Siderophore Biosynthesis in Mycobacterium tuberculosis with Nucleoside Bisubstrate Analogues: Structure–Activity Relationships of the Nucleobase Domain of 5′-O-[N-(Salicyl)sulfamoyl]adenosine

    PubMed Central

    Neres, João; Labello, Nicholas P.; Somu, Ravindranadh V.; Boshoff, Helena I.; Wilson, Daniel J.; Vannada, Jagadeshwar; Chen, Liqiang; Barry, Clifton E.; Bennett, Eric M.; Aldrich, Courtney C.

    2009-01-01

    5′-O-[N-(salicyl)sulfamoyl]adenosine (Sal-AMS) is a prototype for a new class of antitubercular agents that inhibit the aryl acid adenylating enzyme (AAAE) known as MbtA involved in biosynthesis of the mycobactins. Herein, we report the structure-based design, synthesis, biochemical, and biological evaluation of a comprehensive and systematic series of analogues, exploring the structure–activity relationship of the purine nucleobase domain of Sal-AMS. Significantly, 2-phenyl-Sal-AMS derivative 26 exhibited exceptionally potent antitubercular activity with an MIC99 under iron-deficient conditions of 0.049 µM while the N-6-cyclopropyl-Sal-AMS 16 led to improved potency and to a 64-enhancement in activity under iron-deficient conditions relative to iron-replete conditions, a phenotype concordant with the designed mechanism of action. The most potent MbtA inhibitors disclosed here display in vitro antitubercular activity superior to most current first line TB drugs, and these compounds are also expected to be useful against a wide range of pathogens that require aryl-capped siderphores for virulence. PMID:18690677

  10. FRET-based binding assay between a fluorescent cAMP analogue and a cyclic nucleotide-binding domain tagged with a CFP.

    PubMed

    Romero, Francisco; Santana-Calvo, Carmen; Sánchez-Guevara, Yoloxochitl; Nishigaki, Takuya

    2017-07-22

    The cyclic nucleotide-binding domain (CNBD) functions as a regulatory domain of many proteins involved in cyclic nucleotide signalling. We developed a straightforward and reliable binding assay based on intermolecular fluorescence resonance energy transfer (FRET) between an adenosine-3', 5'-cyclic monophosphate analogue labelled with fluorescein and a recombinant CNBD of human EPAC1 tagged with a cyan fluorescence protein (CFP). The high FRET efficiency of this method (~ 80%) allowed us to perform several types of binding experiments with nanomolar range of sample using conventional equipment. In addition, the CFP tag on the CNBD enabled us to perform a specific binding experiment using an unpurified protein. Considering these advantages, this technique is useful to study poorly characterized CNBDs. © 2017 Federation of European Biochemical Societies.

  11. Photoionization spectroscopy of nucleobases and analogues in the gas phase using synchrotron radiation as excitation light source.

    PubMed

    Schwell, Martin; Hochlaf, Majdi

    2015-01-01

    We review here the photoionization and photoelectron spectroscopy of the gas phase nucleic acid bases adenine, thymine, uracil, cytosine, and guanine, as well as the three base analogues 2-hydroxyisoquinoline, 2-pyridone, and δ-valerolactam in the vacuum ultraviolet (VUV) spectral regime. The chapter focuses on experimental work performed with VUV synchrotron radiation and related ab initio quantum chemical calculations of higher excited states beyond the ionization energy. After a general part, where experimental and theoretical techniques are described in detail, key results are presented by order of growing complexity in the spectra of the molecules. Here we concentrate on (1) the accurate determination of ionization energies of isolated gas phase NABs and investigation of the vibrational structure of involved ionic states, including their mutual vibronic couplings, (2) the treatment of tautomerism after photoionization, in competition with other intramolecular processes, (3) the study of fragmentation of these molecular systems at low and high internal energies, and (4) the study of the evolution of the covalent character of hydrogen bonding upon substitution, i.e., examination of electronic effects (acceptor, donor, etc.).

  12. Fanciful FRET.

    PubMed

    Vogel, Steven S; Thaler, Christopher; Koushik, Srinagesh V

    2006-04-18

    The validity of experiments based on Förster resonance energy transfer (FRET), an imaging technique widely used to measure protein-protein interactions in living cells, critically depends on the accurate and precise measurement of FRET efficiency. The use of FRET standards to determine FRET efficiency, and a consideration of such factors as how the abundance of FRET acceptors and the stoichiometry of donors and acceptors in a molecular complex can affect measured FRET efficiency, will enhance the usefulness with which FRET experiments can be interpreted.

  13. Microhydration of Deprotonated Nucleobases

    NASA Astrophysics Data System (ADS)

    Wincel, Henryk

    2016-08-01

    Hydration reactions of deprotonated nucleobases (uracil, thymine, 5-fluorouracil,2-thiouracil, cytosine, adenine, and hypoxanthine) produced by electrospray have been experimentally studied in the gas phase at 10 mbar using a pulsed ion-beam high-pressure mass spectrometer. The thermochemical data, ΔH o , ΔS o , and ΔG o , for the monohydrated systems were determined. The hydration enthalpies were found to be similar for all studied systems and varied between 39.4 and 44.8 kJ/mol. A linear correlation was found between water binding energies in the hydrated complexes and the corresponding acidities of the most acidic site of nucleobases. The structural and energetic aspects of the precursors for the hydrated complexes are discussed in conjunction with available literature data.

  14. FRET or no FRET: a quantitative comparison.

    PubMed

    Berney, Claude; Danuser, Gaudenz

    2003-06-01

    Fluorescence resonance energy transfer (FRET) is a technique used to measure the interaction between two molecules labeled with two different fluorophores (the donor and the acceptor) by the transfer of energy from the excited donor to the acceptor. In biological applications, this technique has become popular to qualitatively map protein-protein interactions, and in biophysical projects it is used as a quantitative measure for distances between a single donor and acceptor molecule. Numerous approaches can be found in the literature to quantify and map FRET, but the measures they provide are often difficult to interpret. We propose here a quantitative comparison of these methods by using a surface FRET system with controlled amounts of donor and acceptor fluorophores and controlled distances between them. We support the system with a Monte Carlo simulation of FRET, which provides reference values for the FRET efficiency under various experimental conditions. We validate a representative set of FRET efficiencies and indices calculated from the different methods with different experimental settings. Finally, we test their sensitivity and draw conclusions for the preparation of FRET experiments in more complex and less-controlled systems.

  15. Roughness Effects on Fretting Fatigue

    NASA Astrophysics Data System (ADS)

    Yue, Tongyan; Abdel Wahab, Magd

    2017-05-01

    Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.

  16. Nucleosides and nucleotides. 158. 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl)-cytosine, 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl)uracil, and their nucleobase analogues as new potential multifunctional antitumor nucleosides with a broad spectrum of activity.

    PubMed

    Hattori, H; Tanaka, M; Fukushima, M; Sasaki, T; Matsuda, A

    1996-12-06

    We previously designed 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl)uracil (EUrd) as a potential multifunctional antitumor nucleoside antimetabolite. It showed a potent and broad spectrum of antitumor activity against various human tumor cells in vitro and in vivo. To determine the structure-activity relationship, various nucleobase analogues of EUrd, such as 5-fluorouracil, thymine, cytosine, 5-fluorocytosine, adenine, and guanine derivatives, were synthesized by condensation of 1-O-acetyl-2,3,5-tri-O-benzoyl-3-C-ethynyl-alpha,beta-D-ribo-pentofur anose (6) and the corresponding pertrimethylsilylated nucleobases in the presence of SnCl4 or TMSOTf as a Lewis acid in CH3CN followed by debenzoylation. The in vitro tumor cell growth inhibitory activity of these 3'-C-ethynyl nucleosides against mouse leukemia L1210 and human nasopharyngeal KB cells showed that 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl)cytosine (ECyd) and EUrd were the most potent inhibitors in the series, with IC50 values for L1210 cells of 0.016 and 0.13 microM and for KB cells of 0.028 and 0.029 microM, respectively. 5-Fluorocytosine, 5-fluorouracil, and adenine nucleosides showed much lower activity, with IC50 values of 0.4-2.5 microM, while thymine and guanine nucleosides did not exhibit any activity up to 300 microM. We next evaluated the tumor cell growth inhibitory activity of ECyd and EUrd against 36 human tumor cell lines in vitro and found that they were highly effective against these cell lines with IC50 values in the nanomolar to micromolar range. These nucleosides have a similar inhibitory spectrum. The in vivo antitumor activities of ECyd and EUrd were compared to that of 5-fluorouracil against 11 human tumor xenografts including three stomach, three colon, two pancreas, one renal, one breast, and one bile duct cancers. ECyd and EUrd showed a potent tumor inhibition ratio (73-92% inhibition relative to the control) in 9 of 11 and 8 of 11 human tumors, respectively, when administered

  17. Fretting in aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Johnson, R. L.; Bill, R. C.

    1974-01-01

    The problem of fretting in aircraft turbine engines is discussed. Critical fretting can occur on fan, compressor, and turbine blade mountings, as well as on splines, rolling element bearing races, and secondary sealing elements of face type seals. Structural fatigue failures have been shown to occur at fretted areas on component parts. Methods used by designers to reduce the effects of fretting are given.

  18. Silicene-based DNA nucleobase sensing

    NASA Astrophysics Data System (ADS)

    Sadeghi, Hatef; Bailey, S.; Lambert, Colin J.

    2014-03-01

    We propose a DNA sequencing scheme based on silicene nanopores. Using first principles theory, we compute the electrical properties of such pores in the absence and presence of nucleobases. Within a two-terminal geometry, we analyze the current-voltage relation in the presence of nucleobases with various orientations. We demonstrate that when nucleobases pass through a pore, even after sampling over many orientations, changes in the electrical properties of the ribbon can be used to discriminate between bases.

  19. Pluto Fretted Terrain

    NASA Image and Video Library

    2016-05-20

    NASA New Horizons scientists have spotted an expanse of terrain they describe as fretted bright plains divided into polygon-shaped blocks by a network of dark, connected valleys in Pluto informally named Venera Terra region.

  20. Extraterrestrial Nucleobases in Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Martins, Z.; Botta, O.; Fogel, M.; Sephton, M.; Glavin, D.; Watson, J.; Dworkin, J.; Schwartz, A.; Ehrenfreund, P.

    Nucleobases in Carbonaceous Chondrites Z. Martins (1), O. Botta (2), M. L. Fogel (3), M. A. Sephton (4), D. P. Glavin (2), J. S. Watson (5), J. P. Dworkin (2), A. W. Schwartz (6) and P. Ehrenfreund (1,6). (1) Astrobiology Laboratory, Leiden Institute of Chemistry, Leiden, The Netherlands, (2) NASA Goddard Space Flight Center, Goddard Center for Astrobiology, Greenbelt, MD, USA, (3) GL, Carnegie Institution of Washington, Washington DC, USA, (4) Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, South Kensington Campus, Imperial College, London, UK, (5) Planetary and Space Sciences Research Institute, The Open University, Walton Hall, Milton Keynes, UK, (6) Radboud University Nijmegen, Nijmegen, The Netherlands. E-mail: z.martins@chem.leidenuniv.nl/Phone:+31715274440 Nucleobases are crucial compounds in terrestrial biochemistry, because they are key components of DNA and RNA. Carbonaceous meteorites have been analyzed for nucleobases by different research groups [1-5]. However, significant quantitative and qualitative differences were observed, leading to the controversial about the origin of these nucleobases. In order to establish the origin of these compounds in carbonaceous chondrites and to assess the plausibility of their exogenous delivery to the early Earth, we have performed formic acid extraction of samples of the Murchison meteorite [6], followed by an extensive purification procedure, analysis and quantification by high-performance liquid chromatography with UV absorption detection and gas chromatography-mass spectrometry. Our results were qualitatively consistent with previous results [3, 4], but showed significant quantitative differences. Compound specific carbon isotope values were obtained, using gas chromatography-combustion- isotope ratio mass spectrometry. A soil sample collected in the proximity of the Murchison meteorite fall site was subjected to the same extraction, purification and analysis procedure

  1. IIem-spFRET: improved Iem-spFRET method for robust FRET measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Jiang; Lin, Fangrui; Chai, Liuying; Wei, Lichun; Chen, Tongsheng

    2016-10-01

    We recently developed a quantitative Förster resonance energy transfer (FRET) measurement method based on emission-spectral unmixing (Iem-spFRET). We here developed an improved Iem-spFRET method (termed as IIem-spFRET) for more robust FRET measurement in living cells. First, two background (BG) spectral fingerprints measured from blank living cells are introduced to remove BG and autofluorescence. Second, we introduce a ρ factor denoting the ratio of two molar extinction coefficient ratios (γ) of acceptor to donor at two excitations into IIem-spFRET for direct measurement of the γ values using a tandem construct with unknown FRET efficiency (E). We performed IIem-spFRET on our microscope-spectrometer platform to measure the γ values of Venus (V) to Cerulean (C) and the E values of C32V, CVC, VCV, and VCVV constructs, respectively, in living Huh7 cells. For the C32V or CVC cells, the Iem-spFRET and IIem-spFRET methods measured consistent E values. However, for the cells especially with low expressing levels of VCV or VCVV, the E values measured by Iem-spFRET showed large deviations and fluctuations, whereas the IIem-spFRET method greatly improved the measured E values. Collectively, IIem-spFRET is a powerful and robust tool for quantitatively measuring FRET signal in living cells.

  2. Enhanced Binding Affinity for an i-Motif DNA Substrate Exhibited by a Protein Containing Nucleobase Amino Acids.

    PubMed

    Bai, Xiaoguang; Talukder, Poulami; Daskalova, Sasha M; Roy, Basab; Chen, Shengxi; Li, Zhongxian; Dedkova, Larisa M; Hecht, Sidney M

    2017-04-05

    Several variants of a nucleic acid binding motif (RRM1) of putative transcription factor hnRNP LL containing nucleobase amino acids at specific positions have been prepared and used to study binding affinity for the BCL2 i-motif DNA. Molecular modeling suggested a number of amino acids in RRM1 likely to be involved in interaction with the i-motif DNA, and His24 and Arg26 were chosen for modification based on their potential ability to interact with G14 of the i-motif DNA. Four nucleobase amino acids were introduced into RRM1 at one or both of positions 24 and 26. The introduction of cytosine nucleobase 2 into position 24 of RRM1 increased the affinity of the modified protein for the i-motif DNA, consistent with the possible Watson-Crick interaction of 2 and G14. In comparison, the introduction of uracil nucleobase 3 had a minimal effect on DNA affinity. Two structurally simplified nucleobase analogues (1 and 4) lacking both the N-1 and the 2-oxo substituents were also introduced in lieu of His24. Again, the RRM1 analogue containing 1 exhibited enhanced affinity for the i-motif DNA, while the protein analogue containing 4 bound less tightly to the DNA substrate. Finally, the modified protein containing 1 in lieu of Arg26 also bound to the i-motif DNA more strongly than the wild-type protein, but a protein containing 1 both at positions 24 and 26 bound to the DNA less strongly than wild type. The results support the idea of using nucleobase amino acids as protein constituents for controlling and enhancing DNA-protein interaction. Finally, modification of the i-motif DNA at G14 diminished RRM1-DNA interaction, as well as the ability of nucleobase amino acid 1 to stabilize RRM1-DNA interaction.

  3. Fretting of AISI 9310 and selected fretting resistant surface treatments

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1977-01-01

    Fretting wear experiments were conducted with uncoated AISI 9310 mating surfaces, and with combinations incorporating a selected coating to one of the mating surfaces. Wear measurements and SEM observations indicated that surface fatigue, as made evident by spallation and surface crack formation, is an important mechanism in promoting fretting wear to uncoated 9310. Increasing humidity resulted in accelerated fretting, and a very noticeable difference in nature of the fretting debris. Of the coatings evaluated, alumimum bronze with a polyester additive was most effective at reducing wear and minimizing fretting damage to the mating uncoated surface, by means of a self-lubricating film that developed on the fretting surfaces. Chromium plate performed as an effective protective coating, itself resisting fretting and not accelerating damage to the uncoated surface.

  4. Fretting of AISI 9310 and selected fretting resistant surface treatments

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1977-01-01

    Fretting wear experiments were conducted with uncoated AISI 9310 mating surfaces, and with combinations incorporating a selected coating to one of the mating surfaces. Wear measurements and SEM observations indicated that surface fatigue, as made evident by spallation and surface crack formation, is an important mechanism in promoting fretting wear to uncoated 9310. Increasing humidity resulted in accelerated fretting, and a very noticeable difference in nature of the fretting debris. Of the coatings evaluated, aluminum bronze with a polyester additive was most effective at reducing wear and minimizing fretting damage to the mating uncoated surface, by means of a selflubricating film that developed on the fretting surfaces. Chromium plate performed as an effective protective coating, itself resisting fretting and not accelerating damage to the uncoated surface.

  5. Spectroscopy of Isolated Prebiotic Nucleobases

    NASA Technical Reports Server (NTRS)

    Svadlenak, Nathan; Callahan, Michael P.; Ligare, Marshall; Gulian, Lisa; Gengeliczki, Zsolt; Nachtigallova, Dana; Hobza, Pavel; deVries, Mattanjah

    2011-01-01

    We use multiphoton ionization and double resonance spectroscopy to study the excited state dynamics of biologically relevant molecules as well as prebiotic nucleobases, isolated in the gas phase. Molecules that are biologically relevant to life today tend to exhibit short excited state lifetimes compared to similar but non-biologically relevant analogs. The mechanism is internal conversion, which may help protect the biologically active molecules from UV damage. This process is governed by conical intersections that depend very strongly on molecular structure. Therefore we have studied purines and pyrimidines with systematic variations of structure, including substitutions, tautomeric forms, and cluster structures that represent different base pair binding motifs. These structural variations also include possible alternate base pairs that may shed light on prebiotic chemistry. With this in mind we have begun to probe the ultrafast dynamics of molecules that exhibit very short excited states and search for evidence of internal conversions.

  6. Fretted Terrain Valleys

    NASA Technical Reports Server (NTRS)

    2004-01-01

    30 October 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows shallow tributary valleys in the Ismenius Lacus fretted terrain region of northern Arabia Terra. These valleys exhibit a variety of typical fretted terrain valley wall and floor textures, including a lineated, pitted material somewhat reminiscent of the surface of a brain. Origins for these features are still being debated within the Mars science community; there are no clear analogs to these landforms on Earth. This image is located near 39.9oN, 332.1oW. The picture covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  7. Fretted Terrain Valleys

    NASA Technical Reports Server (NTRS)

    2004-01-01

    30 October 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows shallow tributary valleys in the Ismenius Lacus fretted terrain region of northern Arabia Terra. These valleys exhibit a variety of typical fretted terrain valley wall and floor textures, including a lineated, pitted material somewhat reminiscent of the surface of a brain. Origins for these features are still being debated within the Mars science community; there are no clear analogs to these landforms on Earth. This image is located near 39.9oN, 332.1oW. The picture covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  8. Human equilibrative nucleoside transporter (ENT) family of nucleoside and nucleobase transporter proteins.

    PubMed

    Young, J D; Yao, S Y M; Sun, L; Cass, C E; Baldwin, S A

    2008-07-01

    1. The human (h) SLC29 family of integral membrane proteins is represented by four members, designated equilibrative nucleoside transporters (ENTs) because of the properties of the first-characterized family member, hENT1. They belong to the widely distributed eukaryotic ENT family of equilibrative and concentrative nucleoside/nucleobase transporter proteins. 2. A predicted topology of eleven transmembrane helices has been experimentally confirmed for hENT1. The best-characterized members of the family, hENT1 and hENT2, possess similar broad permeant selectivities for purine and pyrimidine nucleosides, but hENT2 also efficiently transports nucleobases. hENT3 has a similar broad permeant selectivity for nucleosides and nucleobases and appears to function in intracellular membranes, including lysosomes. 3. hENT4 is uniquely selective for adenosine, and also transports a variety of organic cations. hENT3 and hENT4 are pH sensitive, and optimally active under acidic conditions. ENTs, including those in parasitic protozoa, function in nucleoside and nucleobase uptake for salvage pathways of nucleotide synthesis and, in humans, are also responsible for the cellular uptake of nucleoside analogues used in the treatment of cancers and viral diseases. 4. By regulating the concentration of adenosine available to cell surface receptors, mammalian ENTs additionally influence physiological processes ranging from cardiovascular activity to neurotransmission.

  9. Distribution of Nucleobases in CM and CR Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Callahan, M. P.; Stern, J. C.; Glavin, D. P.; Whelley, K. E.; Martin, M. G.; Dworkin, J. P.

    2010-04-01

    We have developed an analytical method to target nucleobases in meteorites using HPLC with UV detection and tandem mass spectrometry. The distribution of nucleobases appears to correlate with the degree of aqueous alteration in these meteorites.

  10. Photoelectron Spectroscopy of Hexachloroplatinate-Nucleobase Complexes: Nucleobase Excited State Decay Observed via Delayed Electron Emission

    SciTech Connect

    Sen, Ananya; Matthews, Edward M.; Hou, Gao-Lei; Wang, Xue B.; Dessent, Caroline

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ~1.7 eV, values that are lower than the RCB of the uncomplexed PtCl6 2- dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl6 2-∙thymine and PtCl6 2-∙adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN)4 2-∙nucleobase complexes [Sen et al, J. Phys. Chem. B, 119, 11626, 2015]. The observation of delayed electron emission bands in the PtCl6 2-∙nucleobase spectra obtained in this work, as for the previously studied Pt(CN)4 2-∙nucleobase complexes, is attributed to onephoton excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase decays over a timescale long enough to allow autodetachment.

  11. Photoelectron spectroscopy of hexachloroplatinate-nucleobase complexes: Nucleobase excited state decay observed via delayed electron emission.

    PubMed

    Sen, Ananya; Matthews, Edward M; Hou, Gao-Lei; Wang, Xue-Bin; Dessent, Caroline E H

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine, and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ∼1.7 eV, values that are lower than the RCB of the uncomplexed PtCl6 (2-) dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl6 (2-) ⋅ thymine and PtCl6 (2-) ⋅ adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN)4 (2-) ⋅ nucleobase complexes [A. Sen et al., J. Phys. Chem. B 119, 11626 (2015)]. The observation of delayed electron emission bands in the PtCl6 (2-) ⋅ nucleobase spectra obtained in this work, as for the previously studied Pt(CN)4 (2-) ⋅ nucleobase complexes, is attributed to one-photon excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a "dynamic tag" which has the propensity to emit electrons when the attached nucleobase decays over a time scale long enough to allow autodetachment.

  12. Using FRET for Drought Mitigation

    NASA Astrophysics Data System (ADS)

    Osborne, H. D.; Palmer, C. K.; Hobbins, M.

    2016-12-01

    With the ongoing drought plaguing California and much of the Western United States, water agencies and the general public have a heightened need for short term forecasts of evapotranspiration. The National Weather Service's (NWS) Forecast Reference Evapotranspiration (FRET) product suite can fill this need. The FRET product suite uses the Penman - Monteith Reference Evapotranspiration (ETrc) equation for a short canopy (12 cm grasses), adopted by the Environmental Water Resources Institute of the American Society of Civil Engineers. FRET is calculated across the contiguous U.S. using temperatures, humidity, winds, and sky cover from Numerical Weather Prediction (NPW) models and adjusted by NWS forecasters with local expertise of terrain and weather patterns. The Weekly ETrc product is easily incorporated into drought-planning strategies, allowing water managers, the agricultural community, and the public to make better informed water-use decisions. FRET can assist with the decision making process for scheduling irrigation (e.g., farms, golf courses, vineyards) and timing of fertilizers. The California Department of Water Resources (CA DWR) also ingests the FRET into their soil moisture models, and uses FRET to assist in determining the reservoir releases for the Feather River. The United States Bureau of Reclamation (USBR) also uses FRET in determining reservoir releases and assessing water temperature along the Sacramento and American Rivers. FRET is now operational on the National Digital Forecast Database (NDFD), permitting other agencies easy access to this nationwide data for all drought mitigation and planning purposes.

  13. Nucleobase and Ribose Modifications Control Immunostimulation by a MicroRNA-122-mimetic RNA

    PubMed Central

    Peacock, Hayden; Fucini, Raymond V.; Jayalath, Prasanna; Ibarra-Soza, José M.; Haringsma, Henry J.; Flanagan, W. Michael; Willingham, Aarron; Beal, Peter A.

    2011-01-01

    Immune stimulation is a significant hurdle in the development of effective and safe RNA interference therapeutics. Here, we address this problem in the context of a mimic of microRNA-122 by employing novel nucleobase and known 2′-ribose modifications. The nucleobase modifications are analogues of adenosine and guanosine that contain cyclopentyl and propyl minor-groove projections. Via a site-by-site chemical modification analysis, we identify several immunostimulatory ‘hot spots’ within the miRNA guide strand at which single base modifications significantly reduce immune stimulation. A duplex containing one base modification on each strand proved to be most effective in preventing immune stimulation. PMID:21612237

  14. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases.

    PubMed

    Callahan, Michael P; Smith, Karen E; Cleaves, H James; Ruzicka, Josef; Stern, Jennifer C; Glavin, Daniel P; House, Christopher H; Dworkin, Jason P

    2011-08-23

    All terrestrial organisms depend on nucleic acids (RNA and DNA), which use pyrimidine and purine nucleobases to encode genetic information. Carbon-rich meteorites may have been important sources of organic compounds required for the emergence of life on the early Earth; however, the origin and formation of nucleobases in meteorites has been debated for over 50 y. So far, the few nucleobases reported in meteorites are biologically common and lacked the structural diversity typical of other indigenous meteoritic organics. Here, we investigated the abundance and distribution of nucleobases and nucleobase analogs in formic acid extracts of 12 different meteorites by liquid chromatography-mass spectrometry. The Murchison and Lonewolf Nunataks 94102 meteorites contained a diverse suite of nucleobases, which included three unusual and terrestrially rare nucleobase analogs: purine, 2,6-diaminopurine, and 6,8-diaminopurine. In a parallel experiment, we found an identical suite of nucleobases and nucleobase analogs generated in reactions of ammonium cyanide. Additionally, these nucleobase analogs were not detected above our parts-per-billion detection limits in any of the procedural blanks, control samples, a terrestrial soil sample, and an Antarctic ice sample. Our results demonstrate that the purines detected in meteorites are consistent with products of ammonium cyanide chemistry, which provides a plausible mechanism for their synthesis in the asteroid parent bodies, and strongly supports an extraterrestrial origin. The discovery of new nucleobase analogs in meteorites also expands the prebiotic molecular inventory available for constructing the first genetic molecules.

  15. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases

    PubMed Central

    Callahan, Michael P.; Smith, Karen E.; Cleaves, H. James; Ruzicka, Josef; Stern, Jennifer C.; Glavin, Daniel P.; House, Christopher H.; Dworkin, Jason P.

    2011-01-01

    All terrestrial organisms depend on nucleic acids (RNA and DNA), which use pyrimidine and purine nucleobases to encode genetic information. Carbon-rich meteorites may have been important sources of organic compounds required for the emergence of life on the early Earth; however, the origin and formation of nucleobases in meteorites has been debated for over 50 y. So far, the few nucleobases reported in meteorites are biologically common and lacked the structural diversity typical of other indigenous meteoritic organics. Here, we investigated the abundance and distribution of nucleobases and nucleobase analogs in formic acid extracts of 12 different meteorites by liquid chromatography–mass spectrometry. The Murchison and Lonewolf Nunataks 94102 meteorites contained a diverse suite of nucleobases, which included three unusual and terrestrially rare nucleobase analogs: purine, 2,6-diaminopurine, and 6,8-diaminopurine. In a parallel experiment, we found an identical suite of nucleobases and nucleobase analogs generated in reactions of ammonium cyanide. Additionally, these nucleobase analogs were not detected above our parts-per-billion detection limits in any of the procedural blanks, control samples, a terrestrial soil sample, and an Antarctic ice sample. Our results demonstrate that the purines detected in meteorites are consistent with products of ammonium cyanide chemistry, which provides a plausible mechanism for their synthesis in the asteroid parent bodies, and strongly supports an extraterrestrial origin. The discovery of new nucleobase analogs in meteorites also expands the prebiotic molecular inventory available for constructing the first genetic molecules. PMID:21836052

  16. 2',4'-BNA bearing a chiral guanidinopyrrolidine-containing nucleobase with potent ability to recognize the CG base pair in a parallel-motif DNA triplex.

    PubMed

    Hari, Yoshiyuki; Akabane, Masaaki; Obika, Satoshi

    2013-08-28

    In order to expand the target sequence used in triplex DNA formation, seven novel nucleotide analogues were synthesized and incorporated into triplex-forming oligonucleotides by post-elongation modification approaches. Among them, , equipped with a suitable restricted conformation of sugar and nucleobase moieties, was found to have the highest sequence-selectivity and affinity towards CG base pairs within double-stranded DNA.

  17. Fretted Terrain Mass Movement

    NASA Technical Reports Server (NTRS)

    2005-01-01

    18 April 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the results of a small mass movement in a fretted terrain valley in the Coloe Fossae region of Mars (see upper right quarter of the image). The term, mass movement, is usually applied to landslides, although it is unclear in this case whether the landform resulted from a single, catastrophic landslide, or the slow creep of ice-rich debris.

    Location near: 35.3oN, 303.1oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Northern Summer

  18. Engineering Genetically Encoded FRET Sensors

    PubMed Central

    Lindenburg, Laurens; Merkx, Maarten

    2014-01-01

    Förster Resonance Energy Transfer (FRET) between two fluorescent proteins can be exploited to create fully genetically encoded and thus subcellularly targetable sensors. FRET sensors report changes in energy transfer between a donor and an acceptor fluorescent protein that occur when an attached sensor domain undergoes a change in conformation in response to ligand binding. The design of sensitive FRET sensors remains challenging as there are few generally applicable design rules and each sensor must be optimized anew. In this review we discuss various strategies that address this shortcoming, including rational design approaches that exploit self-associating fluorescent domains and the directed evolution of FRET sensors using high-throughput screening. PMID:24991940

  19. Photoelectron spectroscopy of hexachloroplatinate-nucleobase complexes: Nucleobase excited state decay observed via delayed electron emission

    SciTech Connect

    Sen, Ananya; Matthews, Edward M.; Dessent, Caroline E. H. E-mail: xuebin.wang@pnnl.gov; Hou, Gao-Lei; Wang, Xue-Bin E-mail: xuebin.wang@pnnl.gov

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine, and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ∼1.7 eV, values that are lower than the RCB of the uncomplexed PtCl{sub 6}{sup 2−} dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl{sub 6}{sup 2−} ⋅ thymine and PtCl{sub 6}{sup 2−} ⋅ adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN){sub 4}{sup 2−} ⋅ nucleobase complexes [A. Sen et al., J. Phys. Chem. B 119, 11626 (2015)]. The observation of delayed electron emission bands in the PtCl{sub 6}{sup 2−} ⋅ nucleobase spectra obtained in this work, as for the previously studied Pt(CN){sub 4}{sup 2−} ⋅ nucleobase complexes, is attributed to one-photon excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase decays over a time scale long enough to

  20. Graphene sculpturene nanopores for DNA nucleobase sensing.

    PubMed

    Sadeghi, Hatef; Algaragholy, L; Pope, T; Bailey, S; Visontai, D; Manrique, D; Ferrer, J; Garcia-Suarez, V; Sangtarash, Sara; Lambert, Colin J

    2014-06-19

    To demonstrate the potential of nanopores in bilayer graphene for DNA sequencing, we computed the current-voltage characteristics of a bilayer graphene junction containing a nanopore and found that they change significantly when nucleobases are transported through the pore. To demonstrate the sensitivity and selectivity of example devices, we computed the probability distribution PX(β) of the quantity β representing the change in the logarithmic current through the pore due to the presence of a nucleobase X (X = adenine, thymine, guanine, or cytosine). We quantified the selectivity of the bilayer-graphene nanopores by showing that PX(β) exhibits distinct peaks for each base X. To demonstrate that such discriminating sensing is a general feature of bilayer nanopores, the well-separated positions of these peaks were shown to be present for different pores, with alternative examples of electrical contacts.

  1. A Guide to Fluorescent Protein FRET Pairs

    PubMed Central

    Bajar, Bryce T.; Wang, Emily S.; Zhang, Shu; Lin, Michael Z.; Chu, Jun

    2016-01-01

    Förster or fluorescence resonance energy transfer (FRET) technology and genetically encoded FRET biosensors provide a powerful tool for visualizing signaling molecules in live cells with high spatiotemporal resolution. Fluorescent proteins (FPs) are most commonly used as both donor and acceptor fluorophores in FRET biosensors, especially since FPs are genetically encodable and live-cell compatible. In this review, we will provide an overview of methods to measure FRET changes in biological contexts, discuss the palette of FP FRET pairs developed and their relative strengths and weaknesses, and note important factors to consider when using FPs for FRET studies. PMID:27649177

  2. Fretted Terrain Valley

    NASA Technical Reports Server (NTRS)

    2005-01-01

    4 May 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the floor of a fretted terrain valley in the Coloe Fossae region. Valleys found at north middle latitudes, such as this one, often have odd linear features on them. When seen at much lower resolution by the Viking Orbiters in the late 1970s, investigators assumed that the linear features indicated flow of ice or ice-rich debris, as might occur in a glacier or rock glacier. MOC images show little evidence to support the notion that these materials flow; indeed, similar ridges occur in closed valleys, from which nothing can flow. This picture shows a close-up of one such closed valley.

    Location near: 35.3oN, 303.1oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Summer

  3. Carbonaceous Meteorites Contain a Wide Range of Extraterrestrial Nucleobases

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Smith, Karen E.; Cleaves, H. James, II; Ruzicka, Josef; Stern, Jennifer C.; Glavin, Daniel P.; House, Christopher H.; Dworkin, Jason P.

    2011-01-01

    All terrestrial organisms depend on nucleic acids (RNA and DNA), which use pyrimidine and purine nucleobases to encode genetic information. Carbon-rich meteorites may have been important sources of organic compounds required for the emergence of life on the early Earth; however, the origin and formation of nuc1eobases in meteorites has been debated for over 50 y. So far, the few nuc1eobases reported in meteorites are biologically common and lacked the structural diversity typical of other indigenous meteoritic organics. Here, we investigated the abundance and distribution of nucleobases and nucleobase analogs in formic acid extracts of 12 different meteorites by liquid chromatography-mass spectrometry. The Murchison and Lonewolf Nunataks 94102 meteorites contained a diverse suite of nucleobases, which included three unusual and terrestrially rare nucleobase analogs; purine, 2,6-diminopurine, and 6,8-diaminopurine. In a parallel experiment, we found an identical suite of nucleobases and nucleobase analogs generated in reactions of ammonium cyanide. Additionally, these nucleobase analoge were not detected above our parts-per-billion detection limits in any of the procedural blanks, control samples, a terrestrial soil sample, and an Antarctic ice sample. Our results demonstrate that the purines detected in meteorites are consistent with products of ammonium cyanide chemistry, which provides a plausible mechanism for their synthesis in the asteroid parent bodies, and strongly supports an extraterrestrial origin. The discovery of new nucleobase analogs in meteorites also expands the prebiotic molecular inventory available for constructing the first genetic molecules.

  4. Maximizing information content of single-molecule FRET experiments: multi-color FRET and FRET combined with force or torque.

    PubMed

    Hohng, Sungchul; Lee, Sanghwa; Lee, Jinwoo; Jo, Myung Hyun

    2014-02-21

    Since its first demonstration about twenty years ago, single-molecule fluorescence resonance energy transfer (FRET) has undergone remarkable technical advances. In this tutorial review, we will discuss two technical advances that increase the information content of the single-molecule FRET measurements: single-molecule multi-color FRET and single-molecule FRET combined with force or torque. Our expectations for future developments will be briefly discussed at the end.

  5. SLIM for multispectral FRET imaging

    NASA Astrophysics Data System (ADS)

    Rück, A.; Dolp, F.; Steiner, R.; Steinmetz, C.; von Einem, B.; von Arnim, C. A. F.

    2008-02-01

    Spectral fluorescence lifetime imaging (SLIM) is an advanced imaging technique, which combines spectral with time resolved detection. Real spectral information is achieved by using a grating in front of a PML-array, which allows time-correlated single photon counting (TCSPC). Whereas spectrally resolved fluorescence imaging alone has a reasonable sensitivity, the specificity of fluorescence detection can be improved by considering the fluorescence lifetime. The various possibilities which SLIM offers to improve FRET (resonant energy transfer) will be discussed as well as successfully realized applications. These include FRET measurements for protein interactions, related to Alzheimer's disease. Special attention will be focused on molecules involved in the processing and trafficking of the amyloid precursor protein (APP), as trafficking proteins of the GGA family and β-secretase BACE). Taking into account also the lifetime of the acceptor could enhance reliability of the FRET result.

  6. Demonstration of FRET in solutions

    NASA Astrophysics Data System (ADS)

    Shah, Sunil; Gryczynski, Zygmunt; Chib, Rahul; Fudala, Rafal; Baxi, Aatmun; Borejdo, Julian; Synak, Anna; Gryczynski, Ignacy

    2016-03-01

    We measured the Förster resonance energy transfer (FRET) from Uranin (U) donor to Rhodamine 101 (R101) acceptor in propylene glycol. Steady-state fluorescence measurements show a significant difference between mixed and unmixed fluorophore solutions. In the solution with mixed fluorophores, fluorescence intensity of the U donor decreases and intensity of R101 fluorescence increases. This is visualized as a color change from green to orange. Fluorescence anisotropy of the mixture solution increases in the donor emission wavelength region and decreases in the acceptor emission wavelengths; which is consistent with FRET occurrence. Time-resolved (lifetime) measurements show a decrease of the U lifetime in the presence of R101 acceptor. In the intensity decay of R101 acceptor appears a negative component indicating excited state process. All these measurements prove the presence of FRET in U/R101 mixture fluorescence.

  7. Pyrimidine nucleobase radical reactivity in DNA and RNA

    NASA Astrophysics Data System (ADS)

    Greenberg, Marc M.

    2016-11-01

    Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.

  8. Pyrimidine Nucleobase Radical Reactivity in DNA and RNA.

    PubMed

    Greenberg, Marc M

    2016-11-01

    Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.

  9. Nucleobase modification by an RNA enzyme.

    PubMed

    Poudyal, Raghav R; Nguyen, Phuong D M; Lokugamage, Melissa P; Callaway, Mackenzie K; Gavette, Jesse V; Krishnamurthy, Ramanarayanan; Burke, Donald H

    2017-02-17

    Ribozymes can catalyze phosphoryl or nucleotidyl transfer onto ribose hydroxyls of RNA chains. We report a single ribozyme that performs both reactions, with a nucleobase serving as initial acceptor moiety. This unprecedented combined reaction was revealed while investigating potential contributions of ribose hydroxyls to catalysis by kinase ribozyme K28. For a 58nt, cis-acting form of K28, each nucleotide could be replaced with the corresponding 2΄F analog without loss of activity, indicating that no particular 2΄OH is specifically required. Reactivities of two-stranded K28 variants with oligodeoxynucleotide acceptor strands devoid of any 2΄OH moieties implicate modification on an internal guanosine N-2, rather than a ribose hydroxyl. Product mass suggests formation of a GDP(S) adduct along with a second thiophosphorylation, implying that the ribozyme catalyzes both phosphoryl and nucleotidyl transfers. This is further supported by transfer of radiolabels into product from both α and γ phosphates of donor molecules. Furthermore, periodate reactivity of the final product signifies acquisition of a ribose sugar with an intact 2΄-3΄ vicinal diol. Neither nucleobase modification nor nucleotidyl transfer has previously been reported for a kinase ribozyme, making this a first-in-class ribozyme. Base-modifying ribozymes may have played important roles in early RNA world evolution by enhancing nucleic acid functions.

  10. Silver- and gold-mediated nucleobase bonding.

    PubMed

    Acioli, Paulo H; Srinivas, Sudha

    2014-08-01

    We report the results of a density functional theory investigation of the bonding of nucleobases mediated by silver and gold atoms in the gas phase. Our calculations use the Becke exchange and Perdew-Wang correlation functional (BPW91) combined with the Stuttgart effective core potentials to represent the valence electrons of gold, silver, and platinum, and the all-electron DGTZVP basis set for C, H, N, and O. This combination was chosen based on tests on the metal atoms and tautomers of adenine, cytosine, and guanine. To establish a benchmark to understand the metal-mediated bonding, we calculated the binding energy of each of the base pairs in their canonical forms. Our calculations show rather strong bonds between the Watson-Crick base pairs when compared with typical values for N-H-N and N-H-O hydrogen bonds. The neutral metal atoms tend to bond near the nitrogen atoms. The effect of the metal atoms on the bonding of nucleobases differs depending on whether or not the metal atoms bond to one of the hydrogen-bonding sites. When the silver or gold atoms bond to a non-hydrogen-bonding site, the effect is a slight enhancement of the cytosine-guanine bonding, but there is almost no effect on the adenine-thymine pairing. The metal atoms can block one of the hydrogen-bonding sites, thus preventing the normal cytosine-guanine and adenine-thymine pairings. We also find that both silver and gold can bond to consecutive guanines in a similar fashion to platinum, albeit with a significantly lower binding energy.

  11. Recent discovery of non-nucleobase thymidine phosphorylase inhibitors targeting cancer.

    PubMed

    Bera, Hriday; Chigurupati, Sridevi

    2016-11-29

    Thymidine phosphorylase (TP, EC 2.4.2.4), an enzyme involved in pyrimidine salvage pathway, is identical to platelet-derived endothelial cell growth factor (PD-ECGF) and gliostatin. It is extremely upregulated in a variety of solid tumours. The TP amplification is associated with concomitant overexpression of many angiogenic factors such as matrix metalloproteases (MMPs), interleukins (ILs), vascular endothelial growth factor (VEGF) etc., resulting in promotion of angiogenesis and cancer metastasis. In addition, overshooting TP level protects tumour cells from apoptosis and helps cell survival. Thus, TP is identified as a prime target for developing novel anticancer therapies. Pioneering research activities investigated a large number of TP inhibitors, most of which are pyrimidine or purine analogues. Recently, an array of structurally diverse non-nucleobase derivatives was designed, synthesized and established as promising TP inhibitors. This review, following an outline on the TP structure and functions, gives an overview of the recent advancement of various non-nucleobase TP inhibitors as novel anti-cancer agents.

  12. Engineering FRET constructs using CFP and YFP.

    PubMed

    Shimozono, Satoshi; Miyawaki, Atsushi

    2008-01-01

    Fluorescence resonance energy transfer (FRET) technology has been used to develop genetically encoded fluorescent indicators for various cellular functions. Here we discuss how to engineer constructs for FRET between the cyan- and yellow-emitting variants of green fluorescent protein (GFP) from Aequorea victoria (CFP and YFP, respectively). Throughout this chapter, we stress the fact that FRET is highly sensitive to the relative orientation and distance between the donor and the acceptor. The chapter consists of two parts. First, we discuss FRET-based indicators encoded by single genes, which were developed in our laboratory. In this approach, a number of different constructs can be made for a comparative assessment of their FRET efficiencies. For example, the length and sequence of the linker between the fluorescent protein and the host protein should be optimized for each specific application. In the second part, we describe the use of long and flexible linkers for engineering FRET constructs, including an introduction to a general and efficient tool for making successful fusion proteins with long and flexible linkers. When CFP and YFP are fused through floppy linkers to two protein domains that interact with each other, the two fluorescent proteins will associate due to the weak dimerization propensity of Aequorea GFP, which results in moderate FRET. This approach has become even more powerful due to the construction of a new pair of fluorescent proteins for FRET: CyPet and YPet.

  13. Fretting behavior of titanium alloys

    SciTech Connect

    Fayeulle, S.; Blanchard, P.; Vincent, L. )

    1993-04-01

    Fretting wear tests were performed on three titanium alloys, alpha + beta-Ti-6Al-4V, alpha-Ti-15V-3Al-3Cr-3Sn, and beta-Ti-15V-3Al-3Cr-3Sn, in air. Friction conditions were chosen in order to get gross slip at the interface. The tangential load was recorded during each cycle of the test. Optical and scanning electron microscopy, grazing incidence X-ray diffraction, energy dispersive X-ray analysis and TEM were used to characterize the superficial surface layers of the specimens after the fretting test. Particle detachment was observed in every case and the friction coefficient was always very high. A hard tribologically transformed structure (TTS) was detected in some areas of the superficial layers. TEM revealed that TTS was formed of ultra fine non-oriented grains of alpha-titanium. No beta phase was detected. The wear debris particles were produced from the transformed areas of the contact zone and were then quickly oxidized in the interface. The formation of the TTS is interpreted in terms of deformation-induced transformation. Role of the TTS on friction and wear behavior of titanium alloys is discussed. 45 refs.

  14. Photobleaching-Corrected FRET Efficiency Imaging of Live Cells

    PubMed Central

    Zal, Tomasz; Gascoigne, Nicholas R. J.

    2004-01-01

    Fluorescent resonance energy transfer (FRET) imaging techniques can be used to visualize protein-protein interactions in real-time with subcellular resolution. Imaging of sensitized fluorescence of the acceptor, elicited during excitation of the donor, is becoming the most popular method for live FRET (3-cube imaging) because it is fast, nondestructive, and applicable to existing widefield or confocal microscopes. Most sensitized emission-based FRET indices respond nonlinearly to changes in the degree of molecular interaction and depend on the optical parameters of the imaging system. This makes it difficult to evaluate and compare FRET imaging data between laboratories. Furthermore, photobleaching poses a problem for FRET imaging in timelapse experiments and three-dimensional reconstructions. We present a 3-cube FRET imaging method, E-FRET, which overcomes both of these obstacles. E-FRET bridges the gap between the donor recovery after acceptor photobleaching technique (which allows absolute measurements of FRET efficiency, E, but is not suitable for living cells), and the sensitized-emission FRET indices (which reflect FRET in living cells but lack the quantitation and clarity of E). With E-FRET, we visualize FRET in terms of true FRET efficiency images (E), which correlate linearly with the degree of donor interaction. We have defined procedures to incorporate photobleaching correction into E-FRET imaging. We demonstrate the benefits of E-FRET with photobleaching correction for timelapse and three-dimensional imaging of protein-protein interactions in the immunological synapse in living T-cells. PMID:15189889

  15. DNA-mediated excitonic upconversion FRET switching

    SciTech Connect

    Kellis, Donald L.; Rehn, Sarah M.; Cannon, Brittany L.; Davis, Paul H.; Graugnard, Elton; Lee, Jeunghoon; Yurke, Bernard; Knowlton, William B.

    2015-11-17

    Excitonics is a rapidly expanding field of nanophotonics in which the harvesting of photons, ensuing creation and transport of excitons via Förster resonant energy transfer (FRET), and subsequent charge separation or photon emission has led to the demonstration of excitonic wires, switches, Boolean logic and light harvesting antennas for many applications. FRET funnels excitons down an energy gradient resulting in energy loss with each step along the pathway. Conversely, excitonic energy up conversion via up conversion nanoparticles (UCNPs), although currently inefficient, serves as an energy ratchet to boost the exciton energy. Although FRET-based up conversion has been demonstrated, it suffers from low FRET efficiency and lacks the ability to modulate the FRET. We have engineered an up conversion FRET-based switch by combining lanthanide-doped UCNPs and fluorophores that demonstrates excitonic energy up conversion by nearly a factor of 2, an excited state donor to acceptor FRET efficiency of nearly 25%, and an acceptor fluorophore quantum efficiency that is close to unity. These findings offer a promising path for energy up conversion in nanophotonic applications including artificial light harvesting, excitonic circuits, photovoltaics, nanomedicine, and optoelectronics.

  16. FRET Imaging in Three-dimensional Hydrogels

    PubMed Central

    Taboas, Juan M.

    2016-01-01

    Imaging of Förster resonance energy transfer (FRET) is a powerful tool for examining cell biology in real-time. Studies utilizing FRET commonly employ two-dimensional (2D) culture, which does not mimic the three-dimensional (3D) cellular microenvironment. A method to perform quenched emission FRET imaging using conventional widefield epifluorescence microscopy of cells within a 3D hydrogel environment is presented. Here an analysis method for ratiometric FRET probes that yields linear ratios over the probe activation range is described. Measurement of intracellular cyclic adenosine monophosphate (cAMP) levels is demonstrated in chondrocytes under forskolin stimulation using a probe for EPAC1 activation (ICUE1) and the ability to detect differences in cAMP signaling dependent on hydrogel material type, herein a photocrosslinking hydrogel (PC-gel, polyethylene glycol dimethacrylate) and a thermoresponsive hydrogel (TR-gel). Compared with 2D FRET methods, this method requires little additional work. Laboratories already utilizing FRET imaging in 2D can easily adopt this method to perform cellular studies in a 3D microenvironment. It can further be applied to high throughput drug screening in engineered 3D microtissues. Additionally, it is compatible with other forms of FRET imaging, such as anisotropy measurement and fluorescence lifetime imaging (FLIM), and with advanced microscopy platforms using confocal, pulsed, or modulated illumination. PMID:27500354

  17. DNA-mediated excitonic upconversion FRET switching

    DOE PAGES

    Kellis, Donald L.; Rehn, Sarah M.; Cannon, Brittany L.; ...

    2015-11-17

    Excitonics is a rapidly expanding field of nanophotonics in which the harvesting of photons, ensuing creation and transport of excitons via Förster resonant energy transfer (FRET), and subsequent charge separation or photon emission has led to the demonstration of excitonic wires, switches, Boolean logic and light harvesting antennas for many applications. FRET funnels excitons down an energy gradient resulting in energy loss with each step along the pathway. Conversely, excitonic energy up conversion via up conversion nanoparticles (UCNPs), although currently inefficient, serves as an energy ratchet to boost the exciton energy. Although FRET-based up conversion has been demonstrated, it suffersmore » from low FRET efficiency and lacks the ability to modulate the FRET. We have engineered an up conversion FRET-based switch by combining lanthanide-doped UCNPs and fluorophores that demonstrates excitonic energy up conversion by nearly a factor of 2, an excited state donor to acceptor FRET efficiency of nearly 25%, and an acceptor fluorophore quantum efficiency that is close to unity. These findings offer a promising path for energy up conversion in nanophotonic applications including artificial light harvesting, excitonic circuits, photovoltaics, nanomedicine, and optoelectronics.« less

  18. Multiple Condensation Reactions Involving Pt(II) /Pd(II) -OH2 , Pt-NH3 , and Cytosine-NH2 Groups: New Twists in Cisplatin-Nucleobase Chemistry.

    PubMed

    Yin-Bandur, Lu; Sanz Miguel, Pablo J; Rodríguez-Santiago, Luis; Sodupe, Mariona; Berghaus, Melanie; Lippert, Bernhard

    2016-09-12

    The coordination chemistry of the antitumor agent cisplatin and related complexes with DNA and its constituents, that is, the nucleobases, appears to be dominated by 1:1 and 1:2 adducts of the types cis-[Pta2 (nucleobase)X] and cis-[Pta2 (nucleobase)2 ] (a=NH3 or amine; a2 =diamine or diimine; X=Cl, OH or OH2 ). Here, we have studied the interactions of the putative 1:1 adducts cis-[Pta2 (1-MeC-N3)(OH2 )](2+) (with a=NH3 , a2 =2,2'-bpy (2,2'-bipyridine), 1-MeC=model nucleobase 1-methylcytosine) with additional cis-[Pt(NH3 )2 (OH2 )2 ](2+) or its kinetically superior analogues [Pd(en)(OH2 )2 ](2+) (en=ethylenediamine) and [Pd(2,2'-bpy)(OH2 )2 ](2+) . Depending upon the conditions applied different compounds of different nuclearity are formed. Without exception they represent condensation products of the components, containing μ-1-MeC-H , μ-OH(-) , as well as μ-NH2 (-) bridges. In the presence of Ag(+) ions, the isolated products in several cases display additionally Pt→Ag dative bonds. On the basis of the cytosine-containing structures established by X-ray crystallography, it is proposed that any of the feasible initial 1:1 nucleobase adducts of cisplatin could form dinuclear Pt complexes upon reaction with additional hydrolyzed cisplatin, thereby generating nucleobase adducts other than the presently established ones. Two findings appear to be of particular significance: First, hydrolyzed cisplatin can have a moderately accelerating effect on the formation of a secondary nucleobase product. Second, NH3 ligands of the cisplatin moiety can be converted into bridging amido ligands following condensation with the diaqua species of cisplatin.

  19. Nucleobases Undergo Dynamic Rearrangements during RNA Tertiary Folding.

    PubMed

    Welty, Robb; Hall, Kathleen B

    2016-11-06

    The tertiary structure of the GTPase center (GAC) of 23S ribosomal RNA (rRNA) as seen in cocrystals is extremely compact. It is stabilized by long-range hydrogen bonds and nucleobase stacking and by a triloop that forms within its three-way junction. Its folding pathway from secondary structure to tertiary structure has not been previously observed, but it was shown to require Mg(2+) ions in equilibrium experiments. The fluorescent nucleotide 2-aminopurine was substituted at selected sites within the 60-nt GAC. Fluorescence intensity changes upon addition of MgCl2 were monitored over a time-course from 1ms to 100s as the RNA folds. The folding pathway is revealed here to be hierarchical through several intermediates. Observation of the nucleobases during folding provides a new perspective on the process and the pathway, revealing the dynamics of nucleobase conformational exchange during the folding transitions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Recognition of DNA sequencing through binding of nucleobases to graphene

    NASA Astrophysics Data System (ADS)

    Zaffino, Valentina

    Graphene is one of the most promising materials in nanotechnology. Its large surface to volume ratio, high conductivity and electron mobility at room temperature are outstanding properties for use in DNA sensors. For this study, we used Density Functional Theory (DFT), ?with and without the inclusion of van der Waals (vdW) interactions, ?to investigate the adsorption of nucleobases (cytosine, guanine, adenine, thymine, and uracil) on pristine graphene and graphene with defects (Divacancy and Stone-Wales). We investigated the performance of two types of vdW-DF functional (optB86b-vdW and rPW86-vdW), as well as the PBE functional, and their description of the adsorption geometry and electronic structure of the nucleobase-graphene systems.The inclusion of defects results in an increase in binding energy, closer adsorption of the molecule to graphene and greater buckling in both the graphene structure and nucleobase.

  1. Analogue Gravity.

    PubMed

    Barceló, Carlos; Liberati, Stefano; Visser, Matt

    2011-01-01

    Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing) and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity).

  2. Effect of loading parameter on fretting fatigue

    NASA Astrophysics Data System (ADS)

    Kowser, Md. Arefin; Chowdhury, Mohammad Asaduzzaman; Shah, Quazi Md. Zobaer

    2017-06-01

    Fretting fatigue has become one of the major concern in the recent few decades since developed designs both structure's and complex engineering are facing with fatigue accompanied by friction. In this study, load factors as normal and bending forces influence on stress distribution along contact surface as well as fatigue life has been experimented by FEM analysis. Fatigue life is influenced prominently by variable fretting loads than variable tensile loadings. Maximum Von mises Stress and strain shows uniform horizontal straight line is found for maximum loading while for both type of bending, minimum loads yield the same character. It has been observed that stress distribution is more uniform for varying bending loads when variable fretting loads yield stress singularity nearer to the tip of contact between fretting pad and beam.

  3. A FRET approach to phosgene detection.

    PubMed

    Zhang, Hexiang; Rudkevich, Dmitry M

    2007-03-28

    A FRET approach towards potential detection of phosgene is presented, which is based on a selective chemical reaction between phosgene (or triphosgene as a simulant) and donor and acceptor fluorophores.

  4. Quantification of Small Molecule–Protein Interactions using FRET between Tryptophan and the Pacific Blue Fluorophore

    PubMed Central

    2016-01-01

    We report a new method to quantify the affinity of small molecules for proteins. This method is based on Förster resonance energy transfer (FRET) between endogenous tryptophan (Trp) residues and the coumarin-derived fluorophore Pacific Blue (PB). Tryptophan residues are frequently found in proteins near ligand-binding sites, making this approach potentially applicable to a wide range of systems. To improve access to PB, we developed a scalable multigram synthesis of this fluorophore, starting with inexpensive 2,3,4,5-tetrafluorobenzoic acid. This route was used to synthesize fluorescent derivatives of biotin, as well as lower affinity thiobiotin, iminobiotin, and imidazolidinethione analogues that bind the protein streptavidin. Compared with previously published FRET acceptors for tryptophan, PB proved to be superior in both sensitivity and efficiency. These unique properties of PB enabled direct quantification of dissociation constants (Kd) as well as competitive inhibition constants (Ki) in the micromolar to nanomolar range. In comparison to analogous binding studies using fluorescence polarization, fluorescence quenching, or fluorescence enhancement, affinities determined using Trp-FRET were more precise and accurate as validated using independent isothermal titration calorimetry studies. FRET between tryptophan and PB represents a new tool for the characterization of protein–ligand complexes. PMID:28058293

  5. Fretting corrosion and fatigue of gears

    SciTech Connect

    Tsypak, V.I.

    1994-05-01

    We describe the fretting and fatigue fracture of gears with guaranteed clearance. The results of a study of macro- and micro-reliefs of surfaces damaged by fretting and the results of X-ray analysis of products of wear and the oxide film are presented. The dependence of the joint operating conditions on the state of the working surfaces of slot teeth is analyzed.

  6. Pathways for Fluorescence Quenching in 2-Aminopurine π-Stacked with Pyrimidine Nucleobases

    SciTech Connect

    Liang, Jingxin; Matsika, Spiridoula

    2011-05-04

    Fluorescent analogues of nucleobases are very useful as probes to study DNA dynamics, because natural DNA does not fluoresce significantly. In many of these analogues, such as 2-aminopurine (2AP), the fluorescence is quenched when incorporated into DNA through processes that are not well understood. This work uses theoretical studies to examine fluorescence quenching pathways in 2AP-containing dimers. The singlet excited states of π-stacked dimer systems containing 2AP and a pyrimidine base, thymine or cytosine, have been studied using ab initio computational methods. Computed relaxation pathways along the excited-state surfaces reveal novel mechanisms that can lead to fluorescence quenching in the π-stacked dimers. The placement of 2AP on the 5’ or 3’ terminus of the dimers has different effects on the excitation energies and the relaxation pathways on the S₁ excited state. Conical intersections between the ground and first excited states exist when 2AP is placed at the 3’ side, whereas the placement of 2AP at the 5’ side leads to the switching of a bright state to a dark state. Both of these processes can lead to fluorescence quenching and may contribute to the fluorescence quenching observed in 2AP when incorporated in DNA.

  7. Pathways for fluorescence quenching in 2-aminopurine π-stacked with pyrimidine nucleobases.

    PubMed

    Liang, Jingxin; Matsika, Spiridoula

    2011-05-04

    Fluorescent analogues of nucleobases are very useful as probes to study DNA dynamics, because natural DNA does not fluoresce significantly. In many of these analogues, such as 2-aminopurine (2AP), the fluorescence is quenched when incorporated into DNA through processes that are not well understood. This work uses theoretical studies to examine fluorescence quenching pathways in 2AP-containing dimers. The singlet excited states of π-stacked dimer systems containing 2AP and a pyrimidine base, thymine or cytosine, have been studied using ab initio computational methods. Computed relaxation pathways along the excited-state surfaces reveal novel mechanisms that can lead to fluorescence quenching in the π-stacked dimers. The placement of 2AP on the 5' or 3' terminus of the dimers has different effects on the excitation energies and the relaxation pathways on the S(1) excited state. Conical intersections between the ground and first excited states exist when 2AP is placed at the 3' side, whereas the placement of 2AP at the 5' side leads to the switching of a bright state to a dark state. Both of these processes can lead to fluorescence quenching and may contribute to the fluorescence quenching observed in 2AP when incorporated in DNA. © 2011 American Chemical Society

  8. Proton transfer in nucleobases is mediated by water.

    PubMed

    Khistyaev, Kirill; Golan, Amir; Bravaya, Ksenia B; Orms, Natalie; Krylov, Anna I; Ahmed, Musahid

    2013-08-08

    Water plays a central role in chemistry and biology by mediating the interactions between molecules, altering energy levels of solvated species, modifying potential energy profiles along reaction coordinates, and facilitating efficient proton transport through ion channels and interfaces. This study investigates proton transfer in a model system comprising dry and microhydrated clusters of nucleobases. With mass spectrometry and tunable vacuum ultraviolet synchrotron radiation, we show that water shuts down ionization-induced proton transfer between nucleobases, which is very efficient in dry clusters. Instead, a new pathway opens up in which protonated nucleobases are generated by proton transfer from the ionized water molecule and elimination of a hydroxyl radical. Electronic structure calculations reveal that the shape of the potential energy profile along the proton transfer coordinate depends strongly on the character of the molecular orbital from which the electron is removed; i.e., the proton transfer from water to nucleobases is barrierless when an ionized state localized on water is accessed. The computed energetics of proton transfer is in excellent agreement with the experimental appearance energies. Possible adiabatic passage on the ground electronic state of the ionized system, though energetically accessible at lower energies, is not efficient. Thus, proton transfer is controlled electronically, by the character of the ionized state, rather than statistically, by simple energy considerations.

  9. Single Nucleobase Identification Using Biophysical Signatures from Nanoelectronic Quantum Tunneling.

    PubMed

    Korshoj, Lee E; Afsari, Sepideh; Khan, Sajida; Chatterjee, Anushree; Nagpal, Prashant

    2017-03-01

    Nanoelectronic DNA sequencing can provide an important alternative to sequencing-by-synthesis by reducing sample preparation time, cost, and complexity as a high-throughput next-generation technique with accurate single-molecule identification. However, sample noise and signature overlap continue to prevent high-resolution and accurate sequencing results. Probing the molecular orbitals of chemically distinct DNA nucleobases offers a path for facile sequence identification, but molecular entropy (from nucleotide conformations) makes such identification difficult when relying only on the energies of lowest-unoccupied and highest-occupied molecular orbitals (LUMO and HOMO). Here, nine biophysical parameters are developed to better characterize molecular orbitals of individual nucleobases, intended for single-molecule DNA sequencing using quantum tunneling of charges. For this analysis, theoretical models for quantum tunneling are combined with transition voltage spectroscopy to obtain measurable parameters unique to the molecule within an electronic junction. Scanning tunneling spectroscopy is then used to measure these nine biophysical parameters for DNA nucleotides, and a modified machine learning algorithm identified nucleobases. The new parameters significantly improve base calling over merely using LUMO and HOMO frontier orbital energies. Furthermore, high accuracies for identifying DNA nucleobases were observed at different pH conditions. These results have significant implications for developing a robust and accurate high-throughput nanoelectronic DNA sequencing technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. ExiFRET: flexible tool for understanding FRET in complex geometries.

    PubMed

    Deplazes, Evelyne; Jayatilaka, Dylan; Corry, Ben

    2012-01-01

    Fluorescence resonance energy transfer (FRET) can be utilized to gain low-resolution structural information by reporting on the proximity of molecules or measuring inter- and intramolecular distances. This method exploits the fact that the probability of the energy transfer is related to the separation between the fluorescent molecules. This relationship is well described for a single pair of fluorophores but is complicated in systems containing more than two fluorophores. Here, we present a Monte Carlo calculation scheme that has been implemented through a user-friendly web-based program called ExiFRET that can be used to determine the FRET efficiency in a wide range of fluorophore arrangements. ExiFRET is useful to model FRET for individual fluorophores randomly distributed in two or three dimensions, fluorophores linked in pairs or arranged in regular geometries with or without predefined stoichiometries. ExiFRET can model both uniform distributions and fluorophores that are aggregated in clusters. We demonstrate how this tool can be employed to understand the effect of labeling efficiency on FRET efficiency, estimate relative contributions of inter- and intramolecular FRET, investigate the structure of multimeric proteins, stoichiometries, and oligomers, and to aid experiments studying the aggregation of lipids and proteins in membrane environments. We also present an extension that can be used to study instances in which fluorophores have constrained orientations.

  11. Fretting corrosion resistance and fretting corrosion product cytocompatibility of ferritic stainless steel.

    PubMed

    Xulin, S; Ito, A; Tateishi, T; Hoshino, A

    1997-01-01

    To avoid nickel ion release from SUS317L as an implant material, a new type of nickel, commercially free, of high purity, and high chromium ferritic stainless steel, was developed. The new stainless steel (FJ) was studied for aspects of fretting corrosion and cytocompatibility compared with SUS317L. A pin-on-plate fretting corrosion test in an artificial physiologic solution, and cell culture in media with the addition of the artificial physiologic solution used for fretting was conducted. Resistance to the fretting induced crevice corrosion of FJ was higher than that of SUS317L because of the favorable electrochemical stability of the FJ alloy. The amount of iron ion or colloidal fine particles released from FJ was about a quarter of that from SUS317L, although the weight loss of a pin of FJ was almost 5/3 that of SUS317L. The artificial physiologic solution used for SUS317L fretting was more harmful to the growth of L929 and MC3T3-E1 cells than that used for FJ fretting. FJ was therefore superior to SUS317L as a biomaterial, judging from the resistance to fretting-induced crevice corrosion, electrochemical stability, and the cytocompatibility of fretting corrosion products.

  12. The Renaissance of Metal-Pyrimidine Nucleobase Coordination Chemistry.

    PubMed

    Lippert, Bernhard; Sanz Miguel, Pablo J

    2016-08-16

    The significance of metal ions for the function and properties of DNA and RNA, long seen primarily under biological aspects and medicinal uses, has recently gained a renewed momentum. This is a consequence of the advent of novel applications in the fields of materials science, biotechnology, and analytical sensor chemistry that relate to the designed incorporation of transition metal ions into nucleic acid base pairs. Ag(+) and Hg(2+) ions, binding to pyrimidine (pym) nucleobases, represent major players in this development. Interestingly, these metal ions were the ones that some 60 years ago started the field! At the same time, the mentioned metal ions had demonstrated a "special relationship" with the pym nucleobases cytosine, thymine, and uracil! Parallel work conducted with oligonucleotides and model nucleobases fostered numerous significant details of these interactions, in particular when X-ray crystallography was involved, correcting earlier views occasionally. Our own activities during the past three to four decades have focused on, among others, the coordination chemistry of transition and main-group metal ions with pym model nucleobases, with an emphasis on Pt(II) and Pd(II). It has always been our goal to deduce, if possible, the potential relevance of our findings for biological processes. It is interesting to put our data, in particular for trans-a2Pt(II) (a = NH3 or amine), into perspective with those of other metal ions, notably Ag(+) and Hg(2+). Irrespective of major differences in kinetics and lability/inertness between d(8) and d(10) metal ions, there is also a lot of similarity in structural aspects as a result of the preferred linear coordination geometry of these species. Moreover, the apparent clustering of metal ions to the pym nucleobases, which is presumably essential for the formation of nanoclusters on oligonucleotide scaffolds, is impressively reflected in model systems, as are reasons for inter-nucleobase cross-links containing more

  13. The role of fretting corrosion and fretting fatigue in aircraft rivet hole cracking

    NASA Technical Reports Server (NTRS)

    Elliott, Charles B., III; Moesser, Mark; Hoeppner, David W.

    1994-01-01

    Personnel in the Quality and Integrity Design Engineering Center (QIDEC) at the University of Utah are working under a two year grant from the FAA to better understand the role of fretting corrosion and fretting fatigue in aircraft rivet hole cracking. The current program follows a one year grant program which was completed in 1993. This paper provides a status report on the results of these grant programs. Recent effort has been focused on developing basic fretting fatigue models which consider variation in the coefficient of friction with time and location within the fretting interface. This is a very important characteristic of the QIDEC model because coefficient of friction varies significantly during the fretting fatigue process. Copies of QIDEC documents discussed in this paper can be obtained by contacting the authors.

  14. The role of fretting corrosion and fretting fatigue in aircraft rivet hole cracking

    NASA Astrophysics Data System (ADS)

    Elliott, Charles B., III; Moesser, Mark; Hoeppner, David W.

    1994-09-01

    Personnel in the Quality and Integrity Design Engineering Center (QIDEC) at the University of Utah are working under a two year grant from the FAA to better understand the role of fretting corrosion and fretting fatigue in aircraft rivet hole cracking. The current program follows a one year grant program which was completed in 1993. This paper provides a status report on the results of these grant programs. Recent effort has been focused on developing basic fretting fatigue models which consider variation in the coefficient of friction with time and location within the fretting interface. This is a very important characteristic of the QIDEC model because coefficient of friction varies significantly during the fretting fatigue process. Copies of QIDEC documents discussed in this paper can be obtained by contacting the authors.

  15. Communication: Photoactivation of nucleobase bound platinum{sup II} metal complexes: Probing the influence of the nucleobase

    SciTech Connect

    Sen, Ananya; Dessent, Caroline E. H.

    2014-12-28

    We present UV laser action spectra (220-300 nm) of isolated nucleobase-bound Pt{sup II}(CN){sub 4}{sup 2−} complexes, i.e., Pt(CN){sub 4}{sup 2−}⋅M, where M = uracil, thymine, cytosine, and adenine. These metal complex-nucleobase clusters represent model systems for identifying the fundamental photophysical and photochemical processes occurring in photodynamic platinum (II) drug therapies that target DNA. This is the first study to explore the specific role of the nucleobase in the photophysics of the aggregate complex. Each of the complexes studied displays a broadly similar absorption spectra, with a strong λ{sub max} ∼ 4.7 eV absorption band (nucleobase localized chromophore) and a subsequent increase in the absorption intensity towards higher spectral-energy (Pt(CN){sub 4}{sup 2−} localized chromophore). However, strikingly different band widths are observed across the series of complexes, decreasing in the order Pt(CN){sub 4}{sup 2−}⋅Thymine > Pt(CN){sub 4}{sup 2−}⋅Uracil > Pt(CN){sub 4}{sup 2−}⋅Adenine > Pt(CN){sub 4}{sup 2−}⋅Cytosine. Changes in the bandwidth of the ∼4.7 eV band are accompanied by distinctive changes in the photofragment product ions observed following photoexcitation, with the narrower-bandwidth complexes showing a greater propensity to decay via electron detachment decay. We discuss these observations in the context of the distinctive nucleobase-dependent excited state lifetimes.

  16. Action-FRET of a Gaseous Protein

    NASA Astrophysics Data System (ADS)

    Daly, Steven; Knight, Geoffrey; Halim, Mohamed Abdul; Kulesza, Alexander; Choi, Chang Min; Chirot, Fabien; MacAleese, Luke; Antoine, Rodolphe; Dugourd, Philippe

    2017-01-01

    Mass spectrometry is an extremely powerful technique for analysis of biological molecules, in particular proteins. One aspect that has been contentious is how much native solution-phase structure is preserved upon transposition to the gas phase by soft ionization methods such as electrospray ionization. To address this question—and thus further develop mass spectrometry as a tool for structural biology—structure-sensitive techniques must be developed to probe the gas-phase conformations of proteins. Here, we report Förster resonance energy transfer (FRET) measurements on a ubiquitin mutant using specific photofragmentation as a reporter of the FRET efficiency. The FRET data is interpreted in the context of circular dichroism, molecular dynamics simulation, and ion mobility data. Both the dependence of the FRET efficiency on the charge state—where a systematic decrease is observed—and on methanol concentration are considered. In the latter case, a decrease in FRET efficiency with methanol concentration is taken as evidence that the conformational ensemble of gaseous protein cations retains a memory of the solution phase conformational ensemble upon electrospray ionization.

  17. Aldehyde-hydrate equilibrium in nucleobase 2-oxoethyl derivatives: An NMR, ESI-MS and theoretical study

    NASA Astrophysics Data System (ADS)

    Nigro, Mariano J.; Brardinelli, Juan I.; Lewkowicz, Elizabeth S.; Iribarren, Adolfo M.; Laurella, Sergio L.

    2017-09-01

    N-2-oxoethyl derivatives of nucleobases are useful starting materials for the preparation of potentially active nucleoside analogues. The 1HNMR, 13CNMR, DEPT and ESI-MS spectra of adenine and thymine N-2-oxoethyl derivatives reveal that the different species in equilibrium exist mainly in two forms: aldehyde and hydrate. The NMR spectra show that the equilibrium is shifted towards the hydrate form in water-DMSO 2:1, giving equilibrium constants of 8.3 and 5.3 for adenine and thymine derivatives, respectively. ESI-MS experiments show the dependence of equilibrium shift on pH: in the case of the thymine derivative, the effect on the equilibrium is more important than in the case of the adenine derivative; this difference is explained considering different protonation sites in both structures. All assumptions are supported by theoretical calculations, which suggest the important role played by solvent in the stabilization of molecular structures and equilibrium shift. All aspects analyzed in this work are very important in order to understand the further reactivity of these nucleobase derivatives.

  18. An effective approach to artificial nucleases using copper(II) complexes bearing nucleobases.

    PubMed

    Wang, Jin-Tao; Xia, Qing; Zheng, Xiao-Hui; Chen, Huo-Yan; Chao, Hui; Mao, Zong-Wan; Ji, Liang-Nian

    2010-02-28

    Novel copper(ii) complexes bearing 2,2'-bipyridine (bpy) derivatives with adenine, thymine and uracil nucleobases [Cu(L(1))Cl(2)].2H(2)O (1), [Cu(L(2))Cl(2)] (2) and [Cu(L(3))Cl(2)].H(2)O (3) (L(1) = 5,5'-Di[N9-adenylmethyl]-2,2'-bipyridine, L(2) = 5,5'-Di[N1-thyminylmethyl]-2,2'-bipyridine and L(3) = 5,5'-Di[N1-uracilmethyl]-2,2'-bipyridine) were synthesized and characterized. Structure simulation was performed for these complexes. Circular dichroism (CD) spectra revealed the interactions between these ligands and pBR322 DNA and showed that the local DNA structure was perturbed by these ligands. Cleavage of pBR322 DNA by these complexes was carried out in 20 mM HEPES (pH 7.5) at 37 degrees C. The calculated pseudo-Michaelis-Menten kinetic parameters (k(cat)) were 14.7 +/- 0.6 and 40.4 +/- 1.3 h(-1) for and . The cleavage efficiency of was 80-fold higher than that of its simple analogue [Cu(bpy)Cl(2)] (k(cat) = 0.50 h(-1)) and very close to the catalytic rate constant of natural EcoRI endonuclease (k(cat) = 43.2 h(-1)) at similar conditions. Thus, complex might be one of the most effective artificial nucleases that could catalyze double-stranded DNA hydrolytic cleavage so far. Hydrolytic mechanisms involved in DNA cleavage were explored using radical scavengers and T4 ligase. Competitive experiments with special binding agents showed that complexes could preferentially bind to the minor groove of double-stranded DNA, suggesting specific DNA binding characteristics. Molecular docking calculations also indicated that complexes could bind to the minor groove of targeted DNA much more strongly than their simple analogues and preferentially bind at the AT region of the dodecamer. Such high DNA cleavage ability and selectivity of these copper(ii) complexes could be attributed to the synergic effects of the metal center and the pendant nucleobases.

  19. Local piezoresponse and polarization switching in nucleobase thymine microcrystals

    NASA Astrophysics Data System (ADS)

    Bdikin, Igor; Heredia, Alejandro; Neumayer, Sabine M.; Bystrov, Vladimir S.; Gracio, José; Rodriguez, Brian J.; Kholkin, Andrei L.

    2015-08-01

    Thymine (2-oxy-4-oxy-5 methyl pyrimidine) is one of the four nucleobases of deoxyribonucleic acid (DNA). In the DNA molecule, thymine binds to adenine via two hydrogen bonds, thus stabilizing the nucleic acid structure and is involved in pairing and replication. Here, we show that synthetic thymine microcrystals grown from the solution exhibit local piezoelectricity and apparent ferroelectricity, as evidenced by nanoscale electromechanical measurements via Piezoresponse Force Microscopy. Our experimental results demonstrate significant electromechanical activity and polarization switchability of thymine, thus opening a pathway for piezoelectric and ferroelectric-based applications of thymine and, perhaps, of other DNA nucleobase materials. The results are supported by molecular modeling of polarization switching under an external electric field.

  20. Replacing the Nucleobases in DNA with Designer Molecules

    DTIC Science & Technology

    2007-11-02

    electrophiles or especially strong nucleophiles, and they generally do not change protonation near neutral pH. They offer (to the first approximation) only four...DNA bases can impart important biological activity, such as replacing the methyl group of thymine with fluorine , or the oxygen of guanine with sulfur...nucleobases that lack hydrogen- bonding functionality. The design involves replacing oxygen with fluorine and nitrogen with carbon, and keeping aromaticity

  1. Nucleobase and nucleoside transport and integration into plant metabolism.

    PubMed

    Girke, Christopher; Daumann, Manuel; Niopek-Witz, Sandra; Möhlmann, Torsten

    2014-01-01

    Nucleotide metabolism is an essential process in all living organisms. Besides newly synthesized nucleotides, the recycling (salvage) of partially degraded nucleotides, i.e., nucleosides and nucleobases serves to keep the homeostasis of the nucleotide pool. Both types of metabolites are substrates of at least six families of transport proteins in Arabidopsis thaliana (Arabidopsis) with a total of 49 members. In the last years several members of such transport proteins have been analyzed allowing to present a more detailed picture of nucleoside and nucleobase transport and the physiological function of these processes. Besides functioning in nucleotide metabolism it turned out that individual members of the before named transporters exhibit the capacity to transport a wide range of different substrates including vitamins and phytohormones. The aim of this review is to summarize the current knowledge on nucleobase and nucleoside transport processes in plants and integrate this into nucleotide metabolism in general. Thereby, we will focus on those proteins which have been characterized at the biochemical level.

  2. Nucleobase and nucleoside transport and integration into plant metabolism

    PubMed Central

    Girke, Christopher; Daumann, Manuel; Niopek-Witz, Sandra; Möhlmann, Torsten

    2014-01-01

    Nucleotide metabolism is an essential process in all living organisms. Besides newly synthesized nucleotides, the recycling (salvage) of partially degraded nucleotides, i.e., nucleosides and nucleobases serves to keep the homeostasis of the nucleotide pool. Both types of metabolites are substrates of at least six families of transport proteins in Arabidopsis thaliana (Arabidopsis) with a total of 49 members. In the last years several members of such transport proteins have been analyzed allowing to present a more detailed picture of nucleoside and nucleobase transport and the physiological function of these processes. Besides functioning in nucleotide metabolism it turned out that individual members of the before named transporters exhibit the capacity to transport a wide range of different substrates including vitamins and phytohormones. The aim of this review is to summarize the current knowledge on nucleobase and nucleoside transport processes in plants and integrate this into nucleotide metabolism in general. Thereby, we will focus on those proteins which have been characterized at the biochemical level. PMID:25250038

  3. Proton Transfer in Nucleobases is Mediated by Water

    SciTech Connect

    Khistyaev, Kirill; Golan, Amir; Bravaya, Ksenia B.; Orms, Natalie; Krylov, Anna I.; Ahmed, Musahid

    2013-08-08

    Water plays a central role in chemistry and biology by mediating the interactions between molecules, altering energy levels of solvated species, modifying potential energy proles along reaction coordinates, and facilitating ecient proton transport through ion channels and interfaces. This study investigates proton transfer in a model system comprising dry and microhydrated clusters of nucleobases. With mass spectrometry and tunable vacuum ultraviolet synchrotron radiation, we show that water shuts down ionization-induced proton transfer between nucleobases, which is very ecient in dry clusters. Instead, a new pathway opens up in which protonated nucleo bases are generated by proton transfer from the ionized water molecule and elimination of a hydroxyl radical. Electronic structure calculations reveal that the shape of the potential energy prole along the proton transfer coordinate depends strongly on the character of the molecular orbital from which the electron is removed, i.e., the proton transfer from water to nucleobases is barrierless when an ionized state localized on water is accessed. The computed energetics of proton transfer is in excellent agreement with the experimental appearance energies. Possible adiabatic passage on the ground electronic state of the ionized system, while energetically accessible at lower energies, is not ecient. Thus, proton transfer is controlled electronically, by the character of the ionized state, rather than statistically, by simple energy considerations.

  4. Quantitative Intensity-Based FRET Approaches—A Comparative Snapshot

    PubMed Central

    Zeug, André; Woehler, Andrew; Neher, Erwin; Ponimaskin, Evgeni G.

    2012-01-01

    Förster resonance energy transfer (FRET) has become an important tool for analyzing different aspects of interactions among biological macromolecules in their native environments. FRET analysis has also been successfully applied to study the spatiotemporal regulation of various cellular processes using genetically encoded FRET-based biosensors. A variety of procedures have been described for measuring FRET efficiency or the relative abundance of donor-acceptor complexes, based on analysis of the donor fluorescence lifetime or the spectrally resolved fluorescence intensity. The latter methods are preferable if one wants to not only quantify the apparent FRET efficiencies but also calculate donor-acceptor stoichiometry and observe fast dynamic changes in the interactions among donor and acceptor molecules in live cells. This review focuses on a comparison of the available intensity-based approaches used to measure FRET. We discuss their strengths and weaknesses in terms of FRET quantification, and provide several examples of biological applications. PMID:23199910

  5. A Transition-State Interaction Shifts Nucleobase Ionization Toward Neutrality to Facilitate Small Ribozyme Catalysis

    PubMed Central

    Liberman, Joseph A.; Guo, Man; Jenkins, Jermaine L.; Krucinska, Jolanta; Chen, Yuanyuan; Carey, Paul R.; Wedekind, Joseph E.

    2012-01-01

    One mechanism by which ribozymes can accelerate biological reactions is by adopting folds that favorably perturb nucleobase ionization. Herein we used Raman crystallography to directly measure pKa values for the Ade38 N1-imino group of a hairpin ribozyme in distinct conformational states. A transition-state analogue gave a pKa value of 6.27 ± 0.05, which agrees strikingly well with values measured by pH-rate analyses. To identify the chemical attributes that contribute to the shifted pKa we determined crystal structures of hairpin ribozyme variants containing single-atom substitutions at the active site and measured their respective Ade38 N1 pKa values. This approach led to the identification of a single interaction in the transition-state conformation that elevates the base pKa >0.8 log units relative to the precatalytic state. The agreement of the microscopic and macroscopic pKa values and the accompanying structural analysis support a mechanism in which Ade38 N1(H)+ functions as a general acid in phosphodiester bond cleavage. Overall the results quantify the contribution of a single electrostatic interaction to base ionization, which has broad relevance for understanding how RNA structure can control chemical reactivity. PMID:22989273

  6. A transition-state interaction shifts nucleobase ionization toward neutrality to facilitate small ribozyme catalysis.

    PubMed

    Liberman, Joseph A; Guo, Man; Jenkins, Jermaine L; Krucinska, Jolanta; Chen, Yuanyuan; Carey, Paul R; Wedekind, Joseph E

    2012-10-17

    One mechanism by which ribozymes can accelerate biological reactions is by adopting folds that favorably perturb nucleobase ionization. Herein we used Raman crystallography to directly measure pK(a) values for the Ade38 N1 imino group of a hairpin ribozyme in distinct conformational states. A transition-state analogue gave a pK(a) value of 6.27 ± 0.05, which agrees strikingly well with values measured by pH-rate analyses. To identify the chemical attributes that contribute to the shifted pK(a), we determined crystal structures of hairpin ribozyme variants containing single-atom substitutions at the active site and measured their respective Ade38 N1 pK(a) values. This approach led to the identification of a single interaction in the transition-state conformation that elevates the base pK(a) > 0.8 log unit relative to the precatalytic state. The agreement of the microscopic and macroscopic pK(a) values and the accompanying structural analysis supports a mechanism in which Ade38 N1(H)+ functions as a general acid in phosphodiester bond cleavage. Overall the results quantify the contribution of a single electrostatic interaction to base ionization, which has broad relevance for understanding how RNA structure can control chemical reactivity.

  7. Efficient self-assembly in water of long noncovalent polymers by nucleobase analogues.

    PubMed

    Cafferty, Brian J; Gállego, Isaac; Chen, Michael C; Farley, Katherine I; Eritja, Ramon; Hud, Nicholas V

    2013-02-20

    Molecular self-assembly is widely appreciated to result from a delicate balance between several noncovalent interactions and solvation effects. However, current design approaches for achieving self-assembly in water with small, synthetic molecules do not consider all aspects of the hydrophobic effect, in particular the requirement of surface areas greater than 1 nm(2) for an appreciable free energy of hydration. With the concept of a minimum hydrophobic surface area in mind, we designed a system that achieves highly cooperative self-assembly in water. Two weakly interacting low-molecular-weight monomers (cyanuric acid and a modified triaminopyrimidine) are shown to form extremely long supramolecular polymer assemblies that retain water solubility. The complete absence of intermediate assemblies means that the observed equilibrium is between free monomers and supramolecular assemblies. These observations are in excellent agreement with literature values for the free energy of nucleic acid base interactions as well as the calculated free energy penalty for the exposure of hydrophobic structures in water. The results of our study have implications for the design of new self-assembling structures and hydrogel-forming molecules and may provide insights into the origin of the first RNA-like polymers.

  8. Nonenzymatic template-directed reactions on altritol oligomers, preorganized analogues of oligonucleotides

    NASA Technical Reports Server (NTRS)

    Kozlov, I. A.; Zielinski, M.; Allart, B.; Kerremans, L.; Van Aerschot, A.; Busson, R.; Herdewijn, P.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    2000-01-01

    Altritol nucleic acids (ANAs) are RNA analogues with a phosphorylated D-altritol backbone. The nucleobase is attached at the 2-(S)-position of the carbohydrate moiety. We report that ANA oligomers are superior to the corresponding DNA, RNA, and HNA (hexitol nucleic acid) in supporting efficient nonenzymatic template-directed synthesis of complementary RNAs from nucleoside-5'-phosphoro-2-methyl imidazolides. Activated ANA and HNA monomers do not oligomerize efficiently on DNA, RNA, HNA, or ANA templates.

  9. A Re-Examination of Nucleobases in Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Martins, Z.; Botta, O.; de Vries, M.; Becker, L.; Ehrenfreund, E.

    The biomolecular building blocks of life, as we know it, are amino acids, purines and pyrimidines. The latter two form the bases of DNA and RNA, molecules that are used in the storage, transcription and translation of genetic information in all terrestrial organisms. A dedicated search for these compounds in meteorites can shed light on the origins of life in two ways: (i) Results can help assess the plausibility of extraterrestrial formation of prebiotic molecules followed by their meteoritic delivery to the early Earth. (ii) Such studies can also provide insights into possible prebiotic synthetic routes. We will search for these compounds in selected carbonaceous chondrites using formic acid extraction and reverse phase high performance liquid chromatography (HPLC) to isolate specific nucleobases from the bulk meteorite material as previously reported [1,2,3]. We will also use a new technique, resonant two-photon ionization mass spectrometry (R2PI) that can, not only identify organic compounds by their mass, but at the same time by their vibronic spectroscopy [4]. R2PI dramatically enhances the specificity for certain compounds (e.g. amino acids, nucleobases) and allows for distinction of structural isomers, tautomers and enantiomers as well as providing additional information due to isotope shifts. The optical spectroscopy can thus help us to further discriminate between terrestrial and extraterrestrial nucleobases. References: [1] Van Der Velden, W. and Schwarts, A. W. (1977) Geochim. Cosmochim. Acta, 41, 961-968. [2] Stoks, P. G. and Schwartz, A. W. (1979a) Nature, 282, 709-10. [3] Glavin, D. P. and Bada, J. L. (2004) In Lunar and Planetary Science XXXV, Abstract # 1022, Houston. [4] Nir, E., Grace, L. I., Brauer, B. and de Vries, M. S. (1999) Journal of the American Chemical Society, 121, 4896-4897.

  10. Probing nucleobase photo protection with soft x-rays

    NASA Astrophysics Data System (ADS)

    Gühr, Markus

    2013-05-01

    We [1] present a new method for ultrafast spectroscopy of molecular photoexcited dynamics. The technique uses a pair of femtosecond pulses: a photoexcitation pulse initiating excited state dynamics followed by a soft x-ray (SXR) probe pulse that core ionizes certain atoms inside the molecule. We observe the Auger decay of the core hole as a function of delay between the photoexcitation and SXR pulses. The core hole decay is particularly sensitive to the local valence electrons near the core and shows new types of propensity rules, compared to dipole selection rules in SXR absorption or emission spectroscopy. We apply the delayed ultrafast x-ray Auger probing (DUXAP) method to the specific problem of nucleobase photoprotection to demonstrate its potential. The ultraviolet photoexcited ππ * states of nucleobases are prone to chemical reactions with neighboring bases. To avoid this, the single molecules funnel the ππ * population to lower lying electronic states on an ultrafast timescale under violation of the Born-Oppenheimer approximation. The new type of propensity rule, which is confirmed by Auger decay simulations, allows us to have increased sensitivity on the direct relaxation from the ππ * state to the vibrationally hot electronic ground state. For the nucleobase thymine, we measure a decay of the ππ * state and a subsequent filling of the vibrationally hot ground state in 300 fs. This work was supported by the AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.Portions of this research were carried out at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. Other portions of this research were carried out at the Advanced Light Source, which is supported by the Director, Office of

  11. Investigation of Fretting by Microscopic Observation

    NASA Technical Reports Server (NTRS)

    Godfrey, Douglas

    1951-01-01

    An experimental investigation, using microscopic observation and color motion photomicrographs of the action, was conducted to determine the cause of fretting. Glass and other noncorrosive materials, as well as metals, were used as specimens. A very simple apparatus vibrated convex surfaces in contact with stationary flat surfaces at frequencies of 120 cycles or less than l cycle per second, an amplitude of 0.0001 inch, and load of 0.2 pound.

  12. FRET-based luminescence sensors for carbohydrates and glycoproteins analysis

    NASA Astrophysics Data System (ADS)

    Rosenzweig, Zeev; Rosenzweig, Nitsa; Blagoi, Gabriela

    2004-12-01

    This paper describes the development of novel particle-based fluorescence resonance energy transfer (FRET) biosensors. It describes the fundamentals of FRET in heterogeneous systems and the application of the new sensors in monitoring the binding affinity of carbohydrates and glycoproteins to lectins, which are carbohydrate binding proteins. The sensing approach is based on FRET between fluorescein (donor) labeled lectin molecules, adsorbed on the surface of micrometric polymeric beads, and polymeric dextran molecules labeled with Texas Red (acceptor). The FRET signal of the sensor decreases in the presence of carbohydrates or glycoproteins that inhibit the binding of Texas Red-labeled dextran molecules to the lectinic binding sites. The new FRET sensors could discriminate between carbohydrates and glycoproteins based on their binding affinity to the FRET sensing particles. Thery were also used for quantitative analysis of carbohydrates and glycoproteins in aqueous samples.

  13. High-Frequency, High-Temperature Fretting Experiments

    NASA Technical Reports Server (NTRS)

    Matlik, J. F.; Farris, T. N.; Haake, F. K.; Swanson, G. R.; Duke, G. C.

    2005-01-01

    Fretting is a structural damage mechanism observed when two nominally clamped surfaces are subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high-temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact. These contact stresses drive crack nucleation and propagation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). To diagnose the threat that small and relatively undetectable fretting cracks pose to damage tolerance and structural integrity of in-service components, the objective of this work is to develop a well-characterized experimental fretting rig capable of investigating fretting behavior of advanced aerospace alloys subjected to load and temperature conditions representative of such turbomachinery components.

  14. An optofluidic FRET laser using quantum dots as donor

    NASA Astrophysics Data System (ADS)

    Chen, Qiushu; Kiraz, Alper; Fan, Xudong

    2016-03-01

    The integration of optofluidic laser and FRET mechanism provides novel research frontiers, including sensitive biochemical analysis and novel photonic devices, such as on-chip coherent light sources and bio-tunable lasers. Here we investigated an optofluidic FRET laser using quantum dots (QDs) as FRET donors. We achieved lasing from Cy5 as the acceptor in the QD-Cy5 pair with excitation at 450 nm where Cy5 has negligible absorption by itself. The threshold was approximately 14 μJ/mm2. The demonstrated capability of QDs as the donor in a FRET laser greatly improves the versatility of optofluidic laser operation due to the broad and large absorption cross section of QDs in the blue and UV spectral region. The excitation efficiency of the acceptor molecules through FRET channel was also analyzed, showing that the energy transfer rate and the non-radiative Auger recombination rate of QDs plays a significant role in FRET laser performance.

  15. The role of oxidation in the fretting wear process

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1980-01-01

    Fretting experiments were conducted on titanium, a series of Ni-Cr-Al alloys and on some high temperature turbine alloys at room temperature and at elevated temperatures in air and in various inert environments. It was found that, depending on temperature and environment, the fretting behavior of the materials examined could be classified according to four general types of behavior. Briefly, these types of behavior were: (1) the complete absence of oxidation, as in inert environments, generally leading to low rates of fretting wear but high fretting friction; (2) gradual attrition of surface oxide with each fretting stroke, found in these experiments to operate in concert with other dominating mechanisms; (3) rapid oxidation at surface fatigue damage sites, resulting in undermining and rapid disintegration of the load bearing surface; and (4) the formation of coherent, protective oxide film, resulting in low rates of fretting wear. An analytical model predicting conditions favorable to the fourth type of behavior was outlined.

  16. FRET-based glucose monitoring for bioprocessing

    NASA Astrophysics Data System (ADS)

    Bartolome, Amelita; Smalls-Mantey, Lauren; Lin, Debora; Rao, Govind; Tolosa, Leah

    2006-02-01

    The glucose-mediated conformational changes in the glucose binding protein (GBP) have been exploited in the development of fluorescence based glucose sensors. The fluorescence response is generated by a polarity sensitive dye attached to a specific site. Such fluorescent sensors respond to submicromolar glucose at diffusion-controlled rates mimicking the wild type. However, such sensors have been limited to in vitro glucose sensing because of the preliminary dye-labeling step. In the study described here, the dye-labeling step is omitted by genetically encoding the GBP with two green fluorescent mutants namely, the green fluorescent protein (GFP) and the yellow fluorescent protein (YFP) in the N- and C-terminal ends, respectively. These two GFP mutants comprise a fluorescence resonance energy transfer (FRET) donor and acceptor pair. Thus, when glucose binds with GBP, the conformational changes affect the FRET efficiency yielding a dose-dependent response. A potential application for this FRET-based glucose biosensor is online glucose sensing in bioprocessing and cell culture. This was demonstrated by the measurement of glucose consumption in yeast fermentation. Further development of this system should yield in vivo measurement of glucose in bioprocesses.

  17. Effect of humidity on fretting wear of several pure metals

    NASA Technical Reports Server (NTRS)

    Goto, H.; Buckley, D. H.

    1984-01-01

    Fretting wear experiments with several pure metals were conducted in air at various relative humidity levels. The materials used were iron, aluminum, copper, silver, chromium, titanium, and nickel. Each pure metal had a maximum fretting wear volume at a specific humidity level RH sub max that was not dependent on mechanical factors such as contact load, fretting amplitude, and frequency in the ranges studied. The weight loss due to fretting wear at RH sub max for each pure metal decreased with increasing heat of oxygen adsorption on the metal, indicating that adhesive wear dominated at RH sub max.

  18. Two-Photon-Induced Fluorescence of Isomorphic Nucleobase Analogs

    PubMed Central

    Lane, Richard S. K.; Jones, Rosemary; Sinkeldam, Renatus W.

    2014-01-01

    Five isomorphic fluorescent uridine mimics have been subjected to two-photon (2P) excitation analysis to investigate their potential applicability as non-perturbing probes for the single-molecule detection of nucleic acids. We find that small structural differences can cause major changes in the two-photon excitation probability, with the 2P cross sections varying by over one order of magnitude. Two of the probes, both furan-modified uridine analogs, have the highest 2P cross sections (3.8 GM and 7.6 GM) reported for nucleobase analogs, using a conventional Ti:sapphire laser for excitation at 690 nm; they also have the lowest emission quantum yields. In contrast, the analogs with the highest reported quantum yields have the lowest 2P cross sections. The structure-photophysical property relationship presented here is a first step towards the rational design of emissive nucleobase analogs with controlled 2P characteristics. The results demonstrate the potential for major improvements through judicious structural modifications. PMID:24604669

  19. Distinction of nucleobases – a tip-enhanced Raman approach

    PubMed Central

    Treffer, Regina; Lin, Xiumei; Bailo, Elena; Deckert-Gaudig, Tanja

    2011-01-01

    Summary The development of novel DNA sequencing methods is one of the ongoing challenges in various fields of research seeking to address the demand for sequence information. However, many of these techniques rely on some kind of labeling or amplification steps. Here we investigate the intrinsic properties of tip-enhanced Raman scattering (TERS) towards the development of a novel, label-free, direct sequencing method. It is known that TERS allows the acquisition of spectral information with high lateral resolution and single-molecule sensitivity. In the presented experiments, single stranded adenine and uracil homopolymers were immobilized on different kinds of substrates (mica and gold nanoplates) and TERS experiments were conducted, which demonstrated the reproducibility of the technique. To elucidate the signal contributions from the specific nucleobases, TERS spectra were collected on single stranded calf thymus DNA with arbitrary sequence. The results show that, while the Raman signals with respect to the four nucleobases differ remarkably, specific markers can be determined for each respective base. The combination of sensitivity and reproducibility shows that the crucial demands for a sequencing procedure are met. PMID:22003468

  20. Mg2+ ions: do they bind to nucleobase nitrogens?

    PubMed Central

    Leonarski, Filip; D'Ascenzo, Luigi; Auffinger, Pascal

    2017-01-01

    Given the many roles proposed for Mg2+ in nucleic acids, it is essential to accurately determine their binding modes. Here, we surveyed the PDB to classify Mg2+ inner-sphere binding patterns to nucleobase imine N1/N3/N7 atoms. Among those, purine N7 atoms are considered to be the best nucleobase binding sites for divalent metals. Further, Mg2+ coordination to N7 has been implied in several ribozyme catalytic mechanisms. We report that Mg2+ assigned near imine nitrogens derive mostly from poor interpretations of electron density patterns and are most often misidentified Na+, K+, NH4+ ions, water molecules or spurious density peaks. Consequently, apart from few documented exceptions, Mg2+ ions do not bind to N7 atoms. Without much of a surprise, Mn2+, Zn2+ and Cd2+, which have a higher affinity for nitrogens, may contact N7 atoms when present in crystallization buffers. In this respect, we describe for the first time a potential Zn2+ ribosomal binding site involving two purine N7 atoms. Further, we provide a set of guidelines to help in the assignment of Mg2+ in crystallographic, cryo-EM, NMR and model building practices and discuss implications of our findings related to ion substitution experiments. PMID:27923930

  1. Discrimination between FRET and non-FRET quenching in a photochromic CdSe quantum dot/dithienylethene dye system

    NASA Astrophysics Data System (ADS)

    Dworak, Lars; Reuss, Andreas J.; Zastrow, Marc; Rück-Braun, Karola; Wachtveitl, Josef

    2014-11-01

    A photochromic Förster resonance energy transfer (FRET) system was employed to disentangle the fluorescence quenching mechanisms in quantum dot/photochromic dye hybrids. In the off-state of the dye the main quenching mechanism is FRET whereas the moderate quenching in the on-state is due to non-FRET pathways opened up upon assembly.A photochromic Förster resonance energy transfer (FRET) system was employed to disentangle the fluorescence quenching mechanisms in quantum dot/photochromic dye hybrids. In the off-state of the dye the main quenching mechanism is FRET whereas the moderate quenching in the on-state is due to non-FRET pathways opened up upon assembly. Electronic supplementary information (ESI) available: QD and DTE synthesis, preparation of the DTE/QD coupled system, TEM image of the nanocrystals and experimental details. See DOI: 10.1039/c4nr05144k

  2. Prevalence of syn nucleobases in the active sites of functional RNAs

    PubMed Central

    Sokoloski, Joshua E.; Godfrey, Stephanie A.; Dombrowski, Sarah E.; Bevilacqua, Philip C.

    2011-01-01

    Biological RNAs, like their DNA counterparts, contain helical stretches, which have standard Watson-Crick base pairs in the anti conformation. Most functional RNAs also adopt geometries with far greater complexity such as bulges, loops, and multihelical junctions. Occasionally, nucleobases in these regions populate the syn conformation wherein the base resides close to or over the ribose sugar, which leads to a more compact state. The importance of the syn conformation to RNA function is largely unknown. In this study, we analyze 51 RNAs with tertiary structure, including aptamers, riboswitches, ribozymes, and ribosomal RNAs, for number, location, and properties of syn nucleobases. These RNAs represent the set of nonoverlapping, moderate- to high-resolution structures available at present. We find that syn nucleobases are much more common among purines than pyrimidines, and that they favor C2′-endo-like conformations especially among those nucleobases in the intermediate syn conformation. Strikingly, most syn nucleobases participate in tertiary stacking and base-pairing interactions: Inspection of RNA structures revealed that the majority of the syn nucleobases are in regions assigned to function, with many syn nucleobases interacting directly with a ligand or ribozyme active site. These observations suggest that judicious placement of conformationally restricted nucleotides biased into the syn conformation could enhance RNA folding and catalysis. Such changes could also be useful for locking RNAs into functionally competent folds for use in X-ray crystallography and NMR. PMID:21873463

  3. In silico FRET from simulated dye dynamics

    NASA Astrophysics Data System (ADS)

    Hoefling, Martin; Grubmüller, Helmut

    2013-03-01

    Single molecule fluorescence resonance energy transfer (smFRET) experiments probe molecular distances on the nanometer scale. In such experiments, distances are recorded from FRET transfer efficiencies via the Förster formula, E=1/(1+(). The energy transfer however also depends on the mutual orientation of the two dyes used as distance reporter. Since this information is typically inaccessible in FRET experiments, one has to rely on approximations, which reduce the accuracy of these distance measurements. A common approximation is an isotropic and uncorrelated dye orientation distribution. To assess the impact of such approximations, we present the algorithms and implementation of a computational toolkit for the simulation of smFRET on the basis of molecular dynamics (MD) trajectory ensembles. In this study, the dye orientation dynamics, which are used to determine dynamic FRET efficiencies, are extracted from MD simulations. In a subsequent step, photons and bursts are generated using a Monte Carlo algorithm. The application of the developed toolkit on a poly-proline system demonstrated good agreement between smFRET simulations and experimental results and therefore confirms our computational method. Furthermore, it enabled the identification of the structural basis of measured heterogeneity. The presented computational toolkit is written in Python, available as open-source, applicable to arbitrary systems and can easily be extended and adapted to further problems. Catalogue identifier: AENV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPLv3, the bundled SIMD friendly Mersenne twister implementation [1] is provided under the SFMT-License. No. of lines in distributed program, including test data, etc.: 317880 No. of bytes in distributed program, including test data, etc.: 54774217 Distribution format: tar.gz Programming language

  4. Purine nucleobase transport in human erythrocytes. Reinvestigation with a novel "inhibitor-stop" assay.

    PubMed

    Domin, B A; Mahony, W B; Zimmerman, T P

    1988-07-05

    A novel "inhibitor-stop" method for the determination of initial rates of purine nucleobase transport in human erythrocytes has been developed, based on the addition of seven assay volumes of cold 19 mM papaverine to terminate influx. In view of our finding that the initial velocities of adenine, guanine, and hypoxanthine influx into human erythrocytes were linear for only 4-6 s at 37 degrees C, the present method has been used to reexamine the kinetics of purine nucleobase transport in these cells. Initial influx rates of all three purine nucleobases were shown to be the result of concurrent facilitated and nonfacilitated diffusion. The nonfacilitated influx rates could be estimated either from the linear concentration dependence of nucleobase influx at high concentrations of permeant or from residual influx rates which were not inhibited by the presence of co-permeants. Appropriate corrections for nonfacilitated diffusion were made to the influx rates observed at low nucleobase concentrations. Kinetic analyses indicated that adenine (Km = 13 +/- 1 microM, n = 7), guanine (Km = 37 +/- 2 microM, n = 5), and hypoxanthine (Km = 180 +/- 12 microM, n = 6) were mutually competitive substrates for transport. The Ki values obtained with each nucleobase as an inhibitor of the influx of the other nucleobases were similar to their respective Km values for influx. Furthermore, the transport of the purine nucleobases was not inhibited by nucleosides (uridine, inosine) or by inhibitors of nucleoside transport (6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, dilazep, dipyridamole). It is concluded that all three purine nucleobases share a common facilitated transport system in human erythrocytes which is functionally distinct from the nucleoside transporter.

  5. Imaging protein interactions by FRET microscopy: FRET measurements by acceptor photobleaching.

    PubMed

    Verveer, Peter J; Rocks, Oliver; Harpur, Ailsa G; Bastiaens, Philippe I H

    2006-11-01

    This protocol describes the detection of fluorescence resonance energy transfer (FRET) by measuring the quenching of donor emission alone. As opposed to sensitized emission measurements, photobleaching can be performed with high selectivity of the acceptor because absorption spectra are steep at their red edge, allowing the acceptor to be bleached without excitation of the donor. When using acceptor photobleaching FRET measurements, care should be taken that the photochemical product of the bleached acceptor does not have residual absorption at the donor emission and, more importantly, that it does not fluoresce in the donor spectral region. Because of mass movement of protein during the extended time required for photobleaching (typically 1-20 min), it is preferable to perform this type of FRET determination on fixed cell samples. Live-cell FRET measurements based only on donor fluorescence are more feasible using fluorescence lifetime imaging (FLIM), because lifetimes are independent of probe concentration and light path length. The former is not easy to determine in cells, and the latter means that cell shape is not a factor.

  6. PNA containing isocytidine nucleobase: synthesis and recognition of double helical RNA.

    PubMed

    Zengeya, Thomas; Li, Ming; Rozners, Eriks

    2011-04-01

    Peptide nucleic acid (PNA1) containing a 5-methylisocytidine (iC) nucleobase has been synthesized. Triple helix formation between PNA1 and RNA hairpins having variable base pairs interacting with iC was studied using isothermal titration calorimetry. The iC nucleobase recognized the proposed target, C-G inversion in polypurine tract of RNA, with slightly higher affinity than the natural nucleobases, though the sequence selectivity of recognition was low. Compared to non-modified PNA, PNA1 had lower affinity for its RNA target. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. PNA containing isocytidine nucleobase: synthesis and recognition of double helical RNA

    PubMed Central

    Zengeya, Thomas; Li, Ming; Rozners, Eriks

    2011-01-01

    Peptide nucleic acid (PNA1) containing a 5-methylisocytidine (iC) nucleobase has been synthesized. Triple helix formation between PNA1 and RNA hairpins having variable base pairs interacting with iC was studied using isothermal titration calorimetry. The iC nucleobase recognized the proposed target, C-G inversion in polypurine tract of RNA, with slightly higher affinity than the natural nucleobases, though the sequence selectivity of recognition was low. Compared to non-modified PNA, PNA1 had lower affinity for its RNA target. PMID:21333533

  8. Structural evolution of nucleobase clusters using force field models and density functional theory

    NASA Astrophysics Data System (ADS)

    Chiriki, Siva; Dagar, Anuradha; Bulusu, Satya S.

    2015-08-01

    We report global minima for all nucleobase clusters (nucleobase)n, with 2 ≤ n ≤ 4. The global minima are predicted using force field based global optimization methods followed by local optimizations using the dispersion corrected DFT method. In this study, we use both non-polarizable (OPLS-AA) and polarizable (AMOEBA) force fields for global optimization. Here we emphasize on the reliability of AMOEBA force field used for predicting accurate global minima of nucleobase clusters. The average deviation in binding energies using AMOEBA is 3 kcal/mol from the DFT while the average deviation using OPLS-AA is 8 kcal/mol from DFT.

  9. Click Reaction on Solid Phase Enables High Fidelity Synthesis of Nucleobase-Modified DNA.

    PubMed

    Tolle, Fabian; Rosenthal, Malte; Pfeiffer, Franziska; Mayer, Günter

    2016-03-16

    The post-synthetic functionalization of nucleic acids via click chemistry (CuAAC) has seen tremendous implementation, extending the applicability of nucleobase-modified nucleic acids in fields like fluorescent labeling, nanotechnology, and in vitro selection. However, the production of large quantities of high-density functionalized material via solid phase synthesis has been hampered by oxidative by-product formation associated with the alkaline workup conditions. Herein, we describe a rapid and cost-effective protocol for the high fidelity large-scale production of nucleobase-modified nucleic acids, exemplified with a recently described nucleobase-modified aptamer.

  10. Optofluidic FRET Lasers Using Aqueous Quantum Dots as Donors

    PubMed Central

    Chen, Qiushu; Kiraz, Alper; Fan, Xudong

    2015-01-01

    An optofluidic FRET (fluorescence resonance energy transfer) laser is formed by putting FRET pairs inside a microcavity acting as gain medium. This integration of optofluidic laser and FRET mechanism provides novel research frontiers, including sensitive biochemical analysis and novel photonic devices, such as on-chip coherent light sources and bio-tunable lasers. Here we investigated an optofluidic FRET laser using quantum dots (QDs) as FRET donors. We achieved lasing from Cy5 as the acceptor in the QD-Cy5 pair when excited at 450 nm where Cy5 has negligible absorption by itself. The threshold was approximately 14 µJ/mm2. The demonstrated capability of QDs as the donor in a FRET laser greatly improves the versatility of optofluidic laser operation due to the broad and large absorption cross section of QDs in the blue and UV spectral region. The excitation efficiency of the acceptor molecules through FRET channel was also analyzed, showing that the energy transfer rate and the non-radiative Auger recombination rate of QDs plays a significant role in FRET laser performance. PMID:26659274

  11. Influence of Fretting Wear on Lifetime of Tin Plated Connectors

    NASA Astrophysics Data System (ADS)

    Ikeda, Hirosaka; Ito, Tetsuya; Sawada, Shigeru; Hattori, Yasuhiro; Saitoh, Yasushi; Tamai, Terutaka; Iida, Kazuo

    Due to the recent increase in electronic devices mounted on automobiles, a large number of connectors, especially low-cost tin plated connectors are being used. As a result, their contact reliability has become problematic. Furthermore, for the connectors which are subjected to fretting wear caused by heat cycle and vibrations, the contact resistance increases because of wear of tin and deposition of oxides, which generates problems of poor contact. This study is intended to analyze the change in contact resistance of tin plated connectors from the start of fretting wear to the end of their lifetime from the viewpoint of practical reliability, and to observe the trace and the characteristics of fretting wear microscopically. This study found that wear and oxidation of tin plated connectors start immediately with fretting wear, and thus accumulation of abrasion powder on fretting areas causes connectors to reach to the end of their useful lifetime quickly. Especially, it was demonstrated that amplitude of fretting has a considerable influence on a connector's lifetime. It is made clear that air-tightness, so-called “gas-tight” of tin in a fretting area influences fretting wear considerably.

  12. Remote field eddy current inspection of support plate fretting wear

    SciTech Connect

    Shatat, A.; Atherton, D.L.

    1997-03-01

    This article demonstrates how the remote field eddy current technique might be extended to measure support plate fretting wear in heat exchanger tubes. A finite element analysis was used to examine the plate`s effect on the eddy current signal. Experimental data lend support to a suggested multifrequency method for sizing fretting grooves.

  13. Optofluidic FRET lasers using aqueous quantum dots as donors.

    PubMed

    Chen, Qiushu; Kiraz, Alper; Fan, Xudong

    2016-01-21

    An optofluidic FRET (fluorescence resonance energy transfer) laser is formed by putting FRET pairs inside a microcavity acting as a gain medium. This integration of an optofluidic laser and the FRET mechanism provides novel research frontiers, including sensitive biochemical analysis and novel photonic devices, such as on-chip coherent light sources and bio-tunable lasers. Here, we investigated an optofluidic FRET laser using quantum dots (QDs) as FRET donors. We achieved lasing from Cy5 as the acceptor in a QD-Cy5 pair upon excitation at 450 nm, where Cy5 has negligible absorption by itself. The threshold was approximately 14 μJ mm(-2). The demonstrated capability of QDs as donors in the FRET laser greatly improves the versatility of optofluidic laser operation due to the broad and large absorption cross section of the QDs in the blue and UV spectral regions. The excitation efficiency of the acceptor molecules through a FRET channel was also analyzed, showing that the energy transfer rate and the non-radiative Auger recombination rate of QDs play a significant role in FRET laser performance.

  14. BOBA FRET: Bootstrap-Based Analysis of Single-Molecule FRET Data

    PubMed Central

    König, Sebastian L. B.; Hadzic, Mélodie; Fiorini, Erica; Börner, Richard; Kowerko, Danny; Blanckenhorn, Wolf U.; Sigel, Roland K. O.

    2013-01-01

    Time-binned single-molecule Förster resonance energy transfer (smFRET) experiments with surface-tethered nucleic acids or proteins permit to follow folding and catalysis of single molecules in real-time. Due to the intrinsically low signal-to-noise ratio (SNR) in smFRET time traces, research over the past years has focused on the development of new methods to extract discrete states (conformations) from noisy data. However, limited observation time typically leads to pronounced cross-sample variability, i.e., single molecules display differences in the relative population of states and the corresponding conversion rates. Quantification of cross-sample variability is necessary to perform statistical testing in order to assess whether changes observed in response to an experimental parameter (metal ion concentration, the presence of a ligand, etc.) are significant. However, such hypothesis testing has been disregarded to date, precluding robust biological interpretation. Here, we address this problem by a bootstrap-based approach to estimate the experimental variability. Simulated time traces are presented to assess the robustness of the algorithm in conjunction with approaches commonly used in thermodynamic and kinetic analysis of time-binned smFRET data. Furthermore, a pair of functionally important sequences derived from the self-cleaving group II intron Sc.ai5γ (d3'EBS1*/IBS1*) is used as a model system. Through statistical hypothesis testing, divalent metal ions are shown to have a statistically significant effect on both thermodynamic and kinetic aspects of their interaction. The Matlab source code used for analysis (bootstrap-based analysis of smFRET data, BOBA FRET), as well as a graphical user interface, is available via http://www.aci.uzh.ch/rna/. PMID:24386343

  15. Future Perspective of Single-Molecule FRET Biosensors and Intravital FRET Microscopy.

    PubMed

    Hirata, Eishu; Kiyokawa, Etsuko

    2016-09-20

    Förster (or fluorescence) resonance energy transfer (FRET) is a nonradiative energy transfer process between two fluorophores located in close proximity to each other. To date, a variety of biosensors based on the principle of FRET have been developed to monitor the activity of kinases, proteases, GTPases or lipid concentration in living cells. In addition, generation of biosensors that can monitor physical stresses such as mechanical power, heat, or electric/magnetic fields is also expected based on recent discoveries on the effects of these stressors on cell behavior. These biosensors can now be stably expressed in cells and mice by transposon technologies. In addition, two-photon excitation microscopy can be used to detect the activities or concentrations of bioactive molecules in vivo. In the future, more sophisticated techniques for image acquisition and quantitative analysis will be needed to obtain more precise FRET signals in spatiotemporal dimensions. Improvement of tissue/organ position fixation methods for mouse imaging is the first step toward effective image acquisition. Progress in the development of fluorescent proteins that can be excited with longer wavelength should be applied to FRET biosensors to obtain deeper structures. The development of computational programs that can separately quantify signals from single cells embedded in complicated three-dimensional environments is also expected. Along with the progress in these methodologies, two-photon excitation intravital FRET microscopy will be a powerful and valuable tool for the comprehensive understanding of biomedical phenomena. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Epinephrine analogues.

    PubMed

    Sneader, W

    2001-11-01

    Tyramine was the first epinephrine analogue to be introduced into medicine, in the early 1900s. It was followed by ephedrine and pseudoephedrine in the 1920s and by the amfetamines a decade later. The popularity of the amfetamines grew throughout the 1930s and 1940s; after that, there was a slowly dawning realization that they were being widely abused. Isoprenaline, introduced in the 1950s, was soon recognized as superior to epinephrine when used as an inhaler by asthmatics, and it remained the drug of choice for the relief of bronchospasm until around 1970. Orciprenaline, which featured an orcinol system, had a long duration of action and was active by mouth; Boehringer marketed it both as an inhaler and as a syrup for the prophylaxis of bronchospasm. The greatly superior bronchodilators salbutamol and terbutaline, launched in 1968 and 1970, respectively, incorporate further variation on the molecular theme that had led to the development of orciprenaline. (c) 2001 Prous Science. All rights reserved.

  17. Assaying RNA Localization in Situ with Spatially Restricted Nucleobase Oxidation.

    PubMed

    Li, Ying; Aggarwal, Mahima B; Nguyen, Kim; Ke, Ke; Spitale, Robert C

    2017-10-09

    We report herein a novel chemical-genetic method for assaying RNA localization within living cells. RNA localization is critical for normal physiology as well as the onset of cancer and neurodegenerative disorders. Despite its importance, there is a real lack of chemical methods to directly assay RNA localization with high resolution in living cells. Our novel approach relies on in situ nucleobase oxidation by singlet oxygen generated from spatially confined fluorophores. We demonstrate that our novel method can identify RNA molecules localized within specific cellular compartments. We anticipate that this platform will provide the community with a much-needed methodology for tracking RNA localization within living cells, and set the stage for systematic large scale analysis of RNA localization in living systems.

  18. Formation of nucleobases in a Miller-Urey reducing atmosphere.

    PubMed

    Ferus, Martin; Pietrucci, Fabio; Saitta, Antonino Marco; Knížek, Antonín; Kubelík, Petr; Ivanek, Ondřej; Shestivska, Violetta; Civiš, Svatopluk

    2017-04-25

    The Miller-Urey experiments pioneered modern research on the molecular origins of life, but their actual relevance in this field was later questioned because the gas mixture used in their research is considered too reducing with respect to the most accepted hypotheses for the conditions on primordial Earth. In particular, the production of only amino acids has been taken as evidence of the limited relevance of the results. Here, we report an experimental work, combined with state-of-the-art computational methods, in which both electric discharge and laser-driven plasma impact simulations were carried out in a reducing atmosphere containing NH3 + CO. We show that RNA nucleobases are synthesized in these experiments, strongly supporting the possibility of the emergence of biologically relevant molecules in a reducing atmosphere. The reconstructed synthetic pathways indicate that small radicals and formamide play a crucial role, in agreement with a number of recent experimental and theoretical results.

  19. Large Scale Bacterial Colony Screening of Diversified FRET Biosensors

    PubMed Central

    Litzlbauer, Julia; Schifferer, Martina; Ng, David; Fabritius, Arne; Thestrup, Thomas; Griesbeck, Oliver

    2015-01-01

    Biosensors based on Förster Resonance Energy Transfer (FRET) between fluorescent protein mutants have started to revolutionize physiology and biochemistry. However, many types of FRET biosensors show relatively small FRET changes, making measurements with these probes challenging when used under sub-optimal experimental conditions. Thus, a major effort in the field currently lies in designing new optimization strategies for these types of sensors. Here we describe procedures for optimizing FRET changes by large scale screening of mutant biosensor libraries in bacterial colonies. We describe optimization of biosensor expression, permeabilization of bacteria, software tools for analysis, and screening conditions. The procedures reported here may help in improving FRET changes in multiple suitable classes of biosensors. PMID:26061878

  20. Ice and debris in the fretted terrain, Mars

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1984-01-01

    Viking moderate and high resolution images along the northern highland margin have been monoscopically and stereoscopically examined in order to study the development of fretted terrain. Young debris aprons around mesas and debris in tributary channels create typical fretted morphologies identical to ancient fretted morphologies. This suggests that the debris-apron process operating relatively recently also shaped the fretted terrain of the past. The debris aprons were lubricated by interstitial ice derived from ground ice. Abundant collapse features suggest that ground ice existed and may have flowed in places. The fretting process has been active for a long period and may be active today. The location of debris aprons in two latitudinal belts may be controlled by atmospheric conditions that permit ice in the region to remain in the ground below depths of about one meter and temperatures warm enough for ice to flow.

  1. Probing protein-lipid interactions by FRET between membrane fluorophores

    NASA Astrophysics Data System (ADS)

    Trusova, Valeriya M.; Gorbenko, Galyna P.; Deligeorgiev, Todor; Gadjev, Nikolai

    2016-09-01

    Förster resonance energy transfer (FRET) is a powerful fluorescence technique that has found numerous applications in medicine and biology. One area where FRET proved to be especially informative involves the intermolecular interactions in biological membranes. The present study was focused on developing and verifying a Monte-Carlo approach to analyzing the results of FRET between the membrane-bound fluorophores. This approach was employed to quantify FRET from benzanthrone dye ABM to squaraine dye SQ-1 in the model protein-lipid system containing a polycationic globular protein lysozyme and negatively charged lipid vesicles composed of phosphatidylcholine and phosphatidylglycerol. It was found that acceptor redistribution between the lipid bilayer and protein binding sites resulted in the decrease of FRET efficiency. Quantification of this effect in terms of the proposed methodology yielded both structural and binding parameters of lysozyme-lipid complexes.

  2. GFP-based FRET analysis in live cells.

    PubMed

    Takanishi, Christina L; Bykova, Ekaterina A; Cheng, Wei; Zheng, Jie

    2006-05-26

    Fluorescence resonance energy transfer (FRET) is a widely utilized optical technique for measuring small distances of 1-10 nm in live cells. In recent years, its application has been greatly popularized by the discovery of green fluorescent protein (GFP) and many improved variants which make good donor-acceptor fluorophore pairs. GFP-based proteins are structurally stable, relatively inert, and can be reliably attached to points of interest. The combination of easy access to the GFP-based FRET technique and its obvious usefulness in many applications can lead to complacency. Potential problems such as light contaminants, e.g., bleed-through and cross-talk, and inconsistent donor and acceptor concentrations are easily overlooked and can lead to errors in FRET calculation and data interpretation. In this article, we outline possible pitfalls of GFP-based FRET and approaches that address these issues, including a "Spectra FRET" technique that can be easily applied to live cell studies.

  3. Multiplexed FRET to image multiple signaling events in live cells.

    PubMed

    Grant, David M; Zhang, Wei; McGhee, Ewan J; Bunney, Tom D; Talbot, Clifford B; Kumar, Sunil; Munro, Ian; Dunsby, Christopher; Neil, Mark A A; Katan, Matilda; French, Paul M W

    2008-11-15

    We report what to our knowledge is a novel approach for simultaneous imaging of two different Förster resonance energy transfer (FRET) sensors in the same cell with minimal spectral cross talk. Previous methods based on spectral ratiometric imaging of the two FRET sensors have been limited by the availability of suitably bright acceptors for the second FRET pair and the spectral cross talk incurred when measuring in four spectral windows. In contrast to spectral ratiometric imaging, fluorescence lifetime imaging (FLIM) requires measurement of the donor fluorescence only and is independent of emission from the acceptor. By combining FLIM-FRET of the novel red-shifted TagRFP/mPlum FRET pair with spectral ratiometric imaging of an ECFP/Venus pair we were thus able to maximize the spectral separation between our chosen fluorophores while at the same time overcoming the low quantum yield of the far red acceptor mPlum. Using this technique, we could read out a TagRFP/mPlum intermolecular FRET sensor for reporting on small Ras GTP-ase activation in live cells after epidermal growth factor stimulation and an ECFP/Venus Cameleon FRET sensor for monitoring calcium transients within the same cells. The combination of spectral ratiometric imaging of ECFP/Venus and high-speed FLIM-FRET of TagRFP/mPlum can thus increase the spectral bandwidth available and provide robust imaging of multiple FRET sensors within the same cell. Furthermore, since FLIM does not require equal stoichiometries of donor and acceptor, this approach can be used to report on both unimolecular FRET biosensors and protein-protein interactions with the same cell.

  4. First Principles Study of Nuclear Quadrupole Interactions in Single and Double Chain DNA and Solid Nucleobases

    NASA Astrophysics Data System (ADS)

    Das, T. P.; Pink, R. H.; Badu, S. R.; Dubey, Archana; Scheicher, R. H.; Saha, H. P.; Chow, Lee; Huang, M. B.

    2009-03-01

    Nuclear Quadrupole Interactions (NQI) of ^17O, ^14N and ^2H nuclei have been studied for free nucleobases and nucleobases in single strand and double strand DNA and in solid state. Our first-principles investigations were carried out using the Gaussian 2003 set of programs to implement the Hartree-Fock procedure combined with many-body effects included using many-body perturbation theory. As expected for NQI in general, many-body effects are found to be small. Results will be presented for the quadrupole coupling constants (e^2qQ) and asymmetry parameters (η) for the nucleobases in the various environments. Trends in e^2qQ and η in the different environments will be discussed. In the case of the solid nucleobases, comparisons will be made with available experimental data [1] for ^17O nuclei.[3pt] [1] Gang Wu et al., J. Am. Chem. Soc. 124, 1768 (2002)

  5. FRET monitoring of a nonribosomal peptide synthetase.

    PubMed

    Alfermann, Jonas; Sun, Xun; Mayerthaler, Florian; Morrell, Thomas E; Dehling, Eva; Volkmann, Gerrit; Komatsuzaki, Tamiki; Yang, Haw; Mootz, Henning D

    2017-09-01

    Nonribosomal peptide synthetases (NRPSs) are multidomain enzyme templates for the synthesis of bioactive peptides. Large-scale conformational changes during peptide assembly are obvious from crystal structures, yet their dynamics and coupling to catalysis are poorly understood. We have designed an NRPS FRET sensor to monitor, in solution and in real time, the adoption of the productive transfer conformation between phenylalanine-binding adenylation (A) and peptidyl-carrier-protein domains of gramicidin synthetase I from Aneurinibacillus migulanus. The presence of ligands, substrates or intermediates induced a distinct fluorescence resonance energy transfer (FRET) readout, which was pinpointed to the population of specific conformations or, in two cases, mixtures of conformations. A pyrophosphate switch and lysine charge sensors control the domain alternation of the A domain. The phenylalanine-thioester and phenylalanine-AMP products constitute a mechanism of product inhibition and release that is involved in ordered assembly-line peptide biosynthesis. Our results represent insights from solution measurements into the conformational dynamics of the catalytic cycle of NRPSs.

  6. FLIM-FRET for Cancer Applications

    PubMed Central

    Rajoria, Shilpi; Zhao, Lingling; Intes, Xavier; Barroso, Margarida

    2015-01-01

    Optical imaging assays, especially fluorescence molecular assays, are minimally invasive if not completely noninvasive, and thus an ideal technique to be applied to live specimens. These fluorescence imaging assays are a powerful tool in biomedical sciences as they allow the study of a wide range of molecular and physiological events occurring in biological systems. Furthermore, optical imaging assays bridge the gap between the in vitro cell-based analysis of subcellular processes and in vivo study of disease mechanisms in small animal models. In particular, the application of Förster resonance energy transfer (FRET) and fluorescence lifetime imaging (FLIM), well-known techniques widely used in microscopy, to the optical imaging assay toolbox, will have a significant impact in the molecular study of protein-protein interactions during cancer progression. This review article describes the application of FLIM-FRET to the field of optical imaging and addresses their various applications, both current and potential, to anti-cancer drug delivery and cancer research. PMID:26023359

  7. DNA-nucleobases: Gate Dielectric/Passivation Layer for Flexible GFET-based Sensor Applications (Postprint)

    DTIC Science & Technology

    2015-09-24

    AFRL-RX-WP-JA-2016-0271 DNA -NUCLEOBASES: GATE DIELECTRIC/ PASSIVATION LAYER FOR FLEXIBLE GFET-BASED SENSOR APPLICATIONS (POSTPRINT...TITLE AND SUBTITLE DNA -NUCLEOBASES: GATE DIELECTRIC/ PASSIVATION LAYER FOR FLEXIBLE GFET-BASED SENSOR APPLICATIONS (POSTPRINT) 5a. CONTRACT...deposition of the gate dielectric layer used for making transistor devices. The approach was introducing a thin film of deoxyribonucleic acid ( DNA

  8. Which Electronic and Structural Factors Control the Photostability of DNA and RNA Purine Nucleobases?

    NASA Astrophysics Data System (ADS)

    Pollum, Marvin; Reichardt, Christian; Crespo-Hernández, Carlos E.; Martínez-Fernández, Lara; Corral, Inés; Rauer, Clemens; Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2015-06-01

    Following ultraviolet excitation, the canonical purine nucleobases, guanine and adenine, are able to efficiently dissipate the absorbed energy within hundreds of femtoseconds. This property affords these nucleobases with great photostability. Conversely, non-canonical purine nucleobases exhibit high fluorescence quantum yields or efficiently populate long-lived triplet excited states from which chemistry can occur. Using femtosecond broadband transient absorption spectroscopy in combination with ab initio static and surface hopping dynamics simulations we have determined the electronic and structural factors that regulate the excited state dynamics of the purine nucleobase derivatives. Importantly, we have uncovered that the photostability of the guanine and adenine nucleobases is not due to the structure of the purine core itself and that the substituent at the C6 position of the purine nucleobase plays a more important role than that at the C2 position in the ultrafast relaxation of deleterious electronic energy. [The authors acknowledge the CAREER program of the National Science Foundation (Grant No. CHE-1255084) for financial support.

  9. Synthesis, structural, solubility and anticancer activity studies of salts using nucleobases and sulfonic acids coformer

    NASA Astrophysics Data System (ADS)

    Singh, Neetu; Singh, Udai P.; Nikhil, Kumar; Roy, Partha; Singh, Hariji

    2017-10-01

    The reactions of natural and unnatural nucleobases (cytosine (Cyt), adenine (Ade), 5-aminouracil (AU) and caffeine (Caff)) with sulfonic acids coformer (1,5-naphthalenedisulfonic acid, NDSA; 5-sulfosalicylic acid, SSA) resulted in the formation of salts viz. [NDSA.Cyt] (1), [NDSA.Ade] (2), [NDSA.AU] (3), [NDSA.Caff] (4), [SSA.Cyt] (5), [SSA.Ade] (6), [SSA.AU] (7), and [SSA.Caff] (8). The structural analysis revealed that salts 1, 4, 6 and 7 have intermolecular interactions between adjacent nucleobases which form two different homodimer shown in R22 (8) motif and assembled via complementary Nsbnd H⋯O and Nsbnd H⋯N interactions. However, in all other salts an intermediate supramolecular synthon pattern was observed between nucleobases and sulfonic acids. The lattice energy was also calculated by DFT to investigate whether salts were thermodynamically more stable than its coformer. The same was further confirmed by differential scanning calorimetry-thermogravimetric (DSC-TG) analysis. The anticancer activity study of individual nucleobases and their NDSA salts were also performed on human breast (MCF-7) and lung (A 549) cancer cell. The salts formation of nucleobases with sulfonic acids improved their solubility, thereby demonstrating up to 8-fold increase in solubility of nucleobases.

  10. Synthesis of alanyl nucleobase amino acids and their incorporation into proteins.

    PubMed

    Talukder, Poulami; Dedkova, Larisa M; Ellington, Andrew D; Yakovchuk, Petro; Lim, Jaebum; Anslyn, Eric V; Hecht, Sidney M

    2016-09-15

    Proteins which bind to nucleic acids and regulate their structure and functions are numerous and exceptionally important. Such proteins employ a variety of strategies for recognition of the relevant structural elements in their nucleic acid substrates, some of which have been shown to involve rather subtle interactions which might have been difficult to design from first principles. In the present study, we have explored the preparation of proteins containing unnatural amino acids having nucleobase side chains. In principle, the introduction of multiple nucleobase amino acids into the nucleic acid binding domain of a protein should enable these modified proteins to interact with their nucleic acid substrates using Watson-Crick and other base pairing interactions. We describe the synthesis of five alanyl nucleobase amino acids protected in a fashion which enabled their attachment to a suppressor tRNA, and their incorporation into each of two proteins with acceptable efficiencies. The nucleobases studied included cytosine, uracil, thymine, adenine and guanine, i.e. the major nucleobase constituents of DNA and RNA. Dihydrofolate reductase was chosen as one model protein to enable direct comparison of the facility of incorporation of the nucleobase amino acids with numerous other unnatural amino acids studied previously. The Klenow fragment of DNA polymerase I was chosen as a representative DNA binding protein whose mode of action has been studied in detail. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Canonical and unconventional pairing schemes between bis(nucleobase) complexes of trans-a2PtII: Artificial nucleobase quartets and C—H…N bonds

    PubMed Central

    Freisinger, Eva; Rother, Irene B.; Lüth, Marc Sven; Lippert, Bernhard

    2003-01-01

    If two nucleobases are crosslinked by trans-a2PtII, self-association via H bonding may take place either through individual bases or jointly through both bases. Due to the blockage of an acceptor site by the metal, the number of feasible pairing patterns can be reduced, and the preferred ones altered. If the metalated base pair as a whole undergoes association, base quartets can form. Various scenarios resulting from the application of guanine, hypoxanthine, and cytosine model nucleobases are discussed. Unconventional C—H…N hydrogen bonding has been observed in several instances. PMID:12651957

  12. Understanding FRET as a Research Tool for Cellular Studies

    PubMed Central

    Shrestha, Dilip; Jenei, Attila; Nagy, Péter; Vereb, György; Szöllősi, János

    2015-01-01

    Communication of molecular species through dynamic association and/or dissociation at various cellular sites governs biological functions. Understanding these physiological processes require delineation of molecular events occurring at the level of individual complexes in a living cell. Among the few non-invasive approaches with nanometer resolution are methods based on Förster Resonance Energy Transfer (FRET). FRET is effective at a distance of 1–10 nm which is equivalent to the size of macromolecules, thus providing an unprecedented level of detail on molecular interactions. The emergence of fluorescent proteins and SNAP- and CLIP- tag proteins provided FRET with the capability to monitor changes in a molecular complex in real-time making it possible to establish the functional significance of the studied molecules in a native environment. Now, FRET is widely used in biological sciences, including the field of proteomics, signal transduction, diagnostics and drug development to address questions almost unimaginable with biochemical methods and conventional microscopies. However, the underlying physics of FRET often scares biologists. Therefore, in this review, our goal is to introduce FRET to non-physicists in a lucid manner. We will also discuss our contributions to various FRET methodologies based on microscopy and flow cytometry, while describing its application for determining the molecular heterogeneity of the plasma membrane in various cell types. PMID:25815593

  13. Fret wear mediation of NIRCam filter wheel assembly

    NASA Astrophysics Data System (ADS)

    Privári, Béla I.

    2011-10-01

    We will discuss a fret wear solution developed for the James Webb Space Telescope NIRCam filter wheel assembly by implementation of a hard coating. With mechanisms and structures designed for space flight application, titanium is often selected as the choice material of construction. Titanium offers a low-density high strength material that is good for use with many optical instruments due to its' favorable thermal properties. An important factor to consider with titanium mechanisms and structures are component fits and the vibration environment that must be survived during launch. In many instances, small (slip) fits between titanium components can cause fret wear during launch induced vibration. Titanium is particularly susceptible to fret wear, although other materials also demonstrate the fret wear. Fretting is adhesive failure of a material that experiences impact and micro-slip with an adjacent part. The mechanism of fret wear involves small particles that are pulled from the surface of parts that turn into hard oxides that further accelerate the wear between the parts. To mitigate fret wear, the mechanism or structure can be designed to eliminate all slip fits altogether, lubricants may be added to the wear surfaces or hard coatings can be applied to the wear surfaces when the other approaches are not feasible. For the NIRCam filter wheel assembly, which must operate at 35K and remain optically clean, only hard coatings are feasible. A discussion of several coating alternatives and associated wear testing will be presented along with the selection of an optimal solution.

  14. Quantitative tomographic imaging of intermolecular FRET in small animals

    PubMed Central

    Venugopal, Vivek; Chen, Jin; Barroso, Margarida; Intes, Xavier

    2012-01-01

    Forster resonance energy transfer (FRET) is a nonradiative transfer of energy between two fluorescent molecules (a donor and an acceptor) in nanometer range proximity. FRET imaging methods have been applied to proteomic studies and drug discovery applications based on intermolecular FRET efficiency measurements and stoichiometric measurements of FRET interaction as quantitative parameters of interest. Importantly, FRET provides information about biomolecular interactions at a molecular level, well beyond the diffraction limits of standard microscopy techniques. The application of FRET to small animal imaging will allow biomedical researchers to investigate physiological processes occurring at nanometer range in vivo as well as in situ. In this work a new method for the quantitative reconstruction of FRET measurements in small animals, incorporating a full-field tomographic acquisition system with a Monte Carlo based hierarchical reconstruction scheme, is described and validated in murine models. Our main objective is to estimate the relative concentration of two forms of donor species, i.e., a donor molecule involved in FRETing to an acceptor close by and a nonFRETing donor molecule. PMID:23243567

  15. Biologically-validated HIV integrase inhibitors with nucleobase scaffolds: structure, synthesis, chemical biology, molecular modeling, and antiviral activity.

    PubMed

    Nair, Vasu; Uchil, Vinod; Chi, Guochen; Dams, Iwona; Cox, Arthur; Seo, Byung

    2007-01-01

    Integrase, an enzyme of the pol gene of HIV, is a significant viral target for the discovery of anti-HIV agents. In this presentation, we report on the continuation of our work on the discovery of diketo acids, constructed on nucleobase scaffolds, that are inhibitors of HIV integrase. An example of our synthetic approach to inhibitors with purine nucleobase scaffolds is given. Comparison is made between integrase inhibition data arising from compounds with pyrimidine versus purine nucleobase scaffold. Antiviral results are cited.

  16. Small-molecule FRET probes for protein kinase activity monitoring in living cells

    SciTech Connect

    Vaasa, Angela; Lust, Marje; Terrin, Anna; Uri, Asko; Zaccolo, Manuela

    2010-07-09

    In this study, the applicability of fluorescently labeled adenosine analogue-oligoarginine conjugates (ARC-Photo probes) for monitoring of protein kinase A (PKA) activity in living cells was demonstrated. ARC-Photo probes possessing subnanomolar affinity towards the catalytic subunit of PKA (PKAc) and competitive with the regulatory subunit (PKAr), penetrate cell plasma membrane and associate with PKAc fused with yellow fluorescent protein (PKAc-YFP). Detection of inter-molecular Foerster resonance energy transfer (FRET) efficiency between the fluorophores of the fusion protein and ARC-Photo probe can be used for both the evaluation of non-labeled inhibitors of PKAc and for monitoring of cAMP signaling via detection of changes in the activity of PKA as a cAMP downstream effector.

  17. Friction and fretting wear characteristics of different diamond-like carbon coatings against alumina in water-lubricated fretting conditions.

    PubMed

    Watabe, Tsukasa; Amanov, Auezhan; Tsuboi, Ryo; Sasaki, Shinya

    2013-12-01

    Diamond-like carbon (DLC) coatings typically show low friction and high wear resistance. In this study, the friction and fretting wear characteristics of PVD, CVD and CVD-Si DLC coatings were investigated against an alumina (Al2O3) ball under water-lubricated fretting conditions. The objective of this study is to investigate and compare the friction and fretting wear characteristics of those DLC coatings at various fretting frequencies. The test results showed that the PVD DLC coating led to a lower friction coefficient and a higher resistance to fretting wear compared to those of the CVD and CVD-Si DLC coatings. However, the CVD DLC coating showed that the fretting wear resistance decreases with increasing frequency, while no significant difference in fretting wear resistances of the PVD and CVD-Si DLC coatings was observed. Quantitative surface analyses of the specimens were performed using an energy dispersive spectroscopy (EDS), a laser scanning microscope (LSM), a scanning electron microscope (SEM), an atomic force microscope (AFM) and the Raman spectroscopy.

  18. Molecular dynamics simulation of configurational ensembles compatible with experimental FRET efficiency data through a restraint on instantaneous FRET efficiencies.

    PubMed

    Reif, Maria M; Oostenbrink, Chris

    2014-12-15

    Förster resonance energy transfer (FRET) measurements are widely used to investigate (bio)molecular interactions or/and association. FRET efficiencies, the primary data obtained from this method, give, in combination with the common assumption of isotropic chromophore orientation, detailed insight into the lengthscale of molecular phenomena. This study illustrates the application of a FRET efficiency restraint during classical atomistic molecular dynamics simulations of a mutant mastoparan X peptide in either water or 7 M aqueous urea. The restraint forces acting on the donor and acceptor chromophores ensure that the sampled peptide configurational ensemble satisfies the experimental primary data by modifying interchromophore separation and chromophore transition dipole moment orientations. By means of a conformational cluster analysis, it is seen that indeed different configurational ensembles may be sampled without and with application of the restraint. In particular, while the FRET efficiency and interchromophore distances monitored in an unrestrained simulation may differ from the experimentally-determined values, they can be brought in agreement with experimental data through usage of the FRET efficiency restraining potential. Furthermore, the present results suggest that the assumption of isotropic chromophore orientation is not always justified. The FRET efficiency restraint allows the generation of configurational ensembles that may not be accessible with unrestrained simulations, and thereby supports a meaningful interpretation of experimental FRET results in terms of the underlying molecular degrees of freedom. Thus, it offers an additional tool to connect the realms of computer and wet-lab experimentation.

  19. Elevated temperature fretting fatigue of nickel based alloys

    NASA Astrophysics Data System (ADS)

    Gean, Matthew C.

    This document details the high temperature fretting fatigue of high temperature nickel based alloys common to turbine disk and blade applications. The research consists of three area of focus: Experiments are conducted to determine quantitatively the fretting fatigue lives of advanced nickel based alloys; Analytical tools are developed and used to investigate the fretting fatigue response of the material; Fractographic analysis of the experimental results is used to improve the analytical models employed in the analysis of the experiments. Sixty three fretting fatigue experiments were conducted at 649 °C using a polycrystalline Nickel specimen in contact with directionally solidified and single crystal Nickel pads. Various influences on the fretting fatigue life are investigated. Shot peened Rene' 95 had better fretting fatigue life compared to shot peened Rene' 88. Shot peening produced a 2x increase in life for Rene' 95, but only a marginal improvement in the fretting fatigue life for Rene' 88. Minor cycles in variable amplitude loading produces significant damage to the specimen. Addition of occasional overpeaks in load produces improvements in fretting fatigue life. Contact tractions and stresses are obtained through a variety of available tools. The contact tractions can be efficiently obtained for limited geometries, while FEM can provide the contact tractions for a broader class of problems, but with the cost of increased CPU requirements. Similarly, the subsurface contact stresses can be obtained using the contact tractions as a boundary condition with either a semi-analytical FFT method or FEM. It is found that to calculate contact stresses the FFT was only marginally faster than FEM. The experimental results are combined with the analysis to produce tools that are used to design against fretting fatigue. Fractographic analysis of the fracture surface indicates the nature of the fretting fatigue crack behavior. Interrupted tests were performed to analyze

  20. Seeding the Pregenetic Earth: Meteoritic Abundances of Nucleobases and Potential Reaction Pathways

    NASA Astrophysics Data System (ADS)

    Pearce, Ben K. D.; Pudritz, Ralph E.

    2015-07-01

    Carbonaceous chondrites are a class of meteorite known for having high contents of water and organics. In this study, the abundances of the nucleobases, i.e., the building blocks of RNA and DNA, found in carbonaceous chondrites are collated from a variety of published data and compared across various meteorite classes. An extensive review of abiotic chemical reactions producing nucleobases is then performed. These reactions are then reduced to a list of 15 individual reaction pathways that could potentially occur within meteorite parent bodies. The nucleobases guanine, adenine, and uracil are found in carbonaceous chondrites in amounts of 1-500 ppb. It is currently unknown which reaction is responsible for their synthesis within the meteorite parent bodies. One class of carbonaceous meteorite dominates the abundances of both amino acids and nucleobases—the so-called CM2 (e.g., Murchison meteorite). CR2 meteorites (e.g., Graves Nunataks) also dominate the abundances of amino acids, but are the least abundant in nucleobases. The abundances of total nucleobases in these two classes are 330 ± 250 and 16 ± 13 ppb, respectively. Guanine most often has the greatest abundances in carbonaceous chondrites with respect to the other nucleobases, but is 1-2 orders of magnitude less abundant in CM2 meteorites than glycine (the most abundant amino acid). Our survey of the reaction mechanisms for nucleobase formation suggests that Fischer-Tropsch synthesis (i.e., CO, H2, and NH3 gases reacting in the presence of a catalyst such as alumina or silica) is the most likely candidate for conditions that characterize the early states of planetesimals.

  1. Synthesis and binding properties of new selective ligands for the nucleobase opposite the AP site.

    PubMed

    Abe, Yukiko; Nakagawa, Osamu; Yamaguchi, Rie; Sasaki, Shigeki

    2012-06-01

    DNA is continuously damaged by endogenous and exogenous factors such as oxidative stress or DNA alkylating agents. These damaged nucleobases are removed by DNA N-glycosylase and form apurinic/apyrimidinic sites (AP sites) as intermediates in the base excision repair (BER) pathway. AP sites are also representative DNA damages formed by spontaneous hydrolysis. The AP sites block DNA polymerase and a mismatch nucleobase is inserted opposite the AP sites by polymerization to cause acute toxicities and mutations. Thus, AP site specific compounds have attracted much attention for therapeutic and diagnostic purposes. In this study, we have developed nucleobase-polyamine conjugates as the AP site binding ligand by expecting that the nucleobase part would play a role in the specific recognition of the nucleobase opposite the AP site by the Watson-Crick base pair formation and that the polyamine part should contribute to the access of the ligand to the AP site by a non-specific interaction to the DNA phosphate backbone. The nucleobase conjugated with 3,3'-diaminodipropylamine (A-ligand, G-ligand, C-ligand, T-ligand and U-ligand) showed a specific stabilization of the duplex containing the AP site depending on the complementary combination with the nucleobase opposite the AP site; that is A-ligand to T, G-ligand to C, C-ligand to G, T- and U-ligand to A. The thermodynamic binding parameters clearly indicated that the specific stabilization is due to specific binding of the ligands to the complementary AP site. These results have suggested that the complementary base pairs of the Watson-Crick type are formed at the AP site.

  2. Modifications of flexible nonyl chain and nucleobase head group of (+)-erythro-9-(2's-hydroxy-3's-nonyl)adenine [(+)-EHNA] as adenosine deaminase inhibitors.

    PubMed

    Kandalkar, Sachin R; Ramaiah, Parimi Atchuta; Joshi, Manoj; Wavhal, Atul; Waman, Yogesh; Raje, Amol A; Tambe, Ashwini; Ansari, Shariq; De, Siddhartha; Palle, Venkata P; Mookhtiar, Kasim A; Deshpande, Anil M; Barawkar, Dinesh A

    2017-10-15

    A series of terminal nonyl chain and nucleobase modified analogues of (+)-EHNA (III) were synthesized and evaluated for their ability to inhibit adenosine deaminase (ADA). The constrained carbon analogues of (+)-EHNA, 7a-7h, 10a-c, 12, 13, 14 and 17a-c appeared very potent with Ki values in the low nanomolar range. Thio-analogues of (+)-EHNA 24a-e wherein 5'C of nonyl chain replaced by sulfur atom found to be less potent compared to (+)-EHNA. Docking of the representative compounds into the active site of ADA was performed to understand structure-activity relationships. Compounds 7a (Ki: 1.1nM) 7b (Ki: 5.2nM) and 26a (Ki: 5.9nM) showed suitable balance of potency, microsomal stability and demonstrated better pharmacokinetic properties as compared to (+)-EHNA and therefore may have therapeutic potential for various inflammatory diseases, hypertension and cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Pulse-shaping based two-photon FRET stoichiometry.

    PubMed

    Flynn, Daniel C; Bhagwat, Amar R; Brenner, Meredith H; Núñez, Marcos F; Mork, Briana E; Cai, Dawen; Swanson, Joel A; Ogilvie, Jennifer P

    2015-02-09

    Förster Resonance Energy Transfer (FRET) based measurements that calculate the stoichiometry of intermolecular interactions in living cells have recently been demonstrated, where the technique utilizes selective one-photon excitation of donor and acceptor fluorophores to isolate the pure FRET signal. Here, we present work towards extending this FRET stoichiometry method to employ two-photon excitation using a pulse-shaping methodology. In pulse-shaping, frequency-dependent phases are applied to a broadband femtosecond laser pulse to tailor the two-photon excitation conditions to preferentially excite donor and acceptor fluorophores. We have also generalized the existing stoichiometry theory to account for additional cross-talk terms that are non-vanishing under two-photon excitation conditions. Using the generalized theory we demonstrate two-photon FRET stoichiometry in live COS-7 cells expressing fluorescent proteins mAmetrine as the donor and tdTomato as the acceptor.

  4. QD-Based FRET Probes at a Glance

    PubMed Central

    Shamirian, Armen; Ghai, Aashima; Snee, Preston T.

    2015-01-01

    The unique optoelectronic properties of quantum dots (QDs) give them significant advantages over traditional organic dyes, not only as fluorescent labels for bioimaging, but also as emissive sensing probes. QD sensors that function via manipulation of fluorescent resonance energy transfer (FRET) are of special interest due to the multiple response mechanisms that may be utilized, which in turn imparts enhanced flexibility in their design. They may also function as ratiometric, or “color-changing” probes. In this review, we describe the fundamentals of FRET and provide examples of QD-FRET sensors as grouped by their response mechanisms such as link cleavage and structural rearrangement. An overview of early works, recent advances, and various models of QD-FRET sensors for the measurement of pH and oxygen, as well as the presence of metal ions and proteins such as enzymes, are also provided. PMID:26053750

  5. Pulse-shaping based two-photon FRET stoichiometry

    PubMed Central

    Flynn, Daniel C.; Bhagwat, Amar R.; Brenner, Meredith H.; Núñez, Marcos F.; Mork, Briana E.; Cai, Dawen; Swanson, Joel A.; Ogilvie, Jennifer P.

    2015-01-01

    Förster Resonance Energy Transfer (FRET) based measurements that calculate the stoichiometry of intermolecular interactions in living cells have recently been demonstrated, where the technique utilizes selective one-photon excitation of donor and acceptor fluorophores to isolate the pure FRET signal. Here, we present work towards extending this FRET stoichiometry method to employ two-photon excitation using a pulse-shaping methodology. In pulse-shaping, frequency-dependent phases are applied to a broadband femtosecond laser pulse to tailor the two-photon excitation conditions to preferentially excite donor and acceptor fluorophores. We have also generalized the existing stoichiometry theory to account for additional cross-talk terms that are non-vanishing under two-photon excitation conditions. Using the generalized theory we demonstrate two-photon FRET stoichiometry in live COS-7 cells expressing fluorescent proteins mAmetrine as the donor and tdTomato as the acceptor. PMID:25836193

  6. An Experimental Study of Fretting of Gear Teeth

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.

    2008-01-01

    Experiments were conducted to study fretting of gears. The gears were made from case-carburized AISI 9310 alloy to match the material of a flight actuator gearbox of interest. The objective of the testing was to produce damage representative of that observed on flight hardware. The following correlations and observations were noted. The amplitude of dithering motion very strongly influenced the type and magnitude of damage. Sliding amounts on the order of 30% of the width of the line contact were judged to most readily produce fretting damage. There was observed an incubation period on the order of tens-of-thousands of cycles, and the incubation period was influenced by surface roughness, torque, and the motion extent. Fretting damage could be produced for any of the torques tested, and the severity of damage increased slightly with torque. Gear teeth having surface roughness of 0.7-0.8 micrometer were somewhat more resistant to fretting than were smoother surfaces.

  7. Implementation of transportation distance for analyzing FLIM and FRET experiments.

    PubMed

    Heinrich, Philippe; Gonzalez Pisfil, Mariano; Kahn, Jonas; Héliot, Laurent; Leray, Aymeric

    2014-10-01

    Analysis of fluorescence lifetime imaging microscopy (FLIM) and Förster resonance energy transfer (FRET) experiments in living cells is usually based on mean lifetimes computations. However, these mean lifetimes can induce misinterpretations. We propose in this work the implementation of the transportation distance for FLIM and FRET experiments in vivo. This non-fitting indicator, which is easy to compute, reflects the similarity between two distributions and can be used for pixels clustering to improve the estimation of the FRET parameters. We study the robustness and the discriminating power of this transportation distance, both theoretically and numerically. In addition, a comparison study with the largely used mean lifetime differences is performed. We finally demonstrate practically the benefits of the transportation distance over the usual mean lifetime differences for both FLIM and FRET experiments in living cells.

  8. Remote Sensing Applications for the Martian Fretted Terrain

    NASA Astrophysics Data System (ADS)

    Harrold, B. C.; King, D. T.; Marzen, L. J.

    2010-03-01

    The fretted terrain is located along the global escarpment. ArcGIS 9.x and MOLA was used to geoprocess and overlay images along with personal geodatabases to organization thousands of features to access the blocks present orientation/location.

  9. Wide and high resolution tension measurement using FRET in embryo

    PubMed Central

    Yamashita, Satoshi; Tsuboi, Takashi; Ishinabe, Nanako; Kitaguchi, Tetsuya; Michiue, Tatsuo

    2016-01-01

    During embryonic development, physical force plays an important role in morphogenesis and differentiation. Stretch sensitive fluorescence resonance energy transfer (FRET) has the potential to provide non-invasive tension measurements inside living tissue. In this study, we introduced a FRET-based actinin tension sensor into Xenopus laevis embryos and demonstrated that this sensor captures variation of tension across differentiating ectoderm. The actinin tension sensor, containing mCherry and EGFP connected by spider silk protein, was validated in human embryonic kidney (HEK) cells and embryos. It co-localized with actin filaments and changed FRET efficiencies in response to actin filament destruction, myosin deactivation, and osmotic perturbation. Time-lapse FRET analysis showed that the prospective neural ectoderm bears higher tension than the epidermal ectoderm during gastrulation and neurulation, and cells morphogenetic behavior correlated with the tension difference. These data confirmed that the sensor enables us to measure tension across tissues concurrently and with high resolution. PMID:27335157

  10. Nucleobases in Space: Laboratory Studies of Polycyclic Aromatic Nitrogen Heterocycles

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie; Mattioda, Andy; Bernstein, Max; Sandford, Scott; Hudgins, Doug

    2005-01-01

    Polycyclic Aromatic Nitrogen Heterocycles (PANHs) are heterocyclic aromatics Le., PAHs with carbon atoms replaced by a nitrogen atom. These molecules have been detected in meteorite extracts, and in general these nitrogen heterocycles are of astrobiological interest since this class of molecules include nucleobases, basic components of our nucleic acids. These compounds are predicted to be present in the interstellar medium and in Titan tholin, but have received relatively little attention. We will present spectra and reactions of PANHs, frozen in solid H2O at 12 K, conditions germane to astronomical observations. In contrast to simple PAHs, that do not interact strongly with solid H2O, the nitrogen atoms in PANHs are potentially capable of hydrogen bonding with H20 changing their spectra, complicating their remote detection on the surfaces of icy bodies. Moreover, we have studied the photo-chemistry of these interesting compounds under astrophysical conditions and will use our lab studies to assess a potential interstellar heritage of these compounds in carbonaceous chondrites.

  11. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases.

    PubMed

    Niether, Doreen; Afanasenkau, Dzmitry; Dhont, Jan K G; Wiegand, Simone

    2016-04-19

    Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007)Proc Natl Acad Sci USA104(22):9346-9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The thermophoretic properties of aqueous formamide solutions are studied by means of Infrared Thermal Diffusion Forced Rayleigh Scattering. These data are used in numerical finite element calculations in hydrothermal pores for various initial concentrations, ambient temperatures, and pore sizes. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behavior of formamide. The accumulation fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of ∼85 wt% at large aspect ratios. Time-dependent studies show that these high concentrations are reached after 45-90 d, starting with an initial formamide weight fraction of[Formula: see text]wt % that is typical for concentrations in shallow lakes on early Earth.

  12. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases

    PubMed Central

    Niether, Doreen; Afanasenkau, Dzmitry; Dhont, Jan K. G.

    2016-01-01

    Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007) Proc Natl Acad Sci USA 104(22):9346−9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The thermophoretic properties of aqueous formamide solutions are studied by means of Infrared Thermal Diffusion Forced Rayleigh Scattering. These data are used in numerical finite element calculations in hydrothermal pores for various initial concentrations, ambient temperatures, and pore sizes. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behavior of formamide. The accumulation fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of ∼85 wt% at large aspect ratios. Time-dependent studies show that these high concentrations are reached after 45–90 d, starting with an initial formamide weight fraction of 10−3 wt % that is typical for concentrations in shallow lakes on early Earth. PMID:27044100

  13. The role of nucleobase interactions in RNA structure and dynamics

    PubMed Central

    Bottaro, Sandro; Di Palma, Francesco; Bussi, Giovanni

    2014-01-01

    The intricate network of interactions observed in RNA three-dimensional structures is often described in terms of a multitude of geometrical properties, including helical parameters, base pairing/stacking, hydrogen bonding and backbone conformation. We show that a simple molecular representation consisting in one oriented bead per nucleotide can account for the fundamental structural properties of RNA. In this framework, canonical Watson-Crick, non-Watson-Crick base-pairing and base-stacking interactions can be unambiguously identified within a well-defined interaction shell. We validate this representation by performing two independent, complementary tests. First, we use it to construct a sequence-independent, knowledge-based scoring function for RNA structural prediction, which compares favorably to fully atomistic, state-of-the-art techniques. Second, we define a metric to measure deviation between RNA structures that directly reports on the differences in the base–base interaction network. The effectiveness of this metric is tested with respect to the ability to discriminate between structurally and kinetically distant RNA conformations, performing better compared to standard techniques. Taken together, our results suggest that this minimalist, nucleobase-centric representation captures the main interactions that are relevant for describing RNA structure and dynamics. PMID:25355509

  14. Excitation Energies of Canonical Nucleobases Computed by Multiconfigurational Perturbation Theories.

    PubMed

    Wiebeler, Christian; Borin, Veniamin; Sanchez de Araújo, Adalberto Vasconcelos; Schapiro, Igor; Borin, Antonio Carlos

    2017-05-01

    In this computational work, we assessed the performance of ab initio multireference (MR) methods for the calculation of vertical excitation energies of five nucleobases: adenine, guanine, cytosine, thymine and uracil. In total, we have studied 38 singlet and 30 triplet excited states. Where possible we used the multireference configuration interaction (MRCI) method as a reference for various flavors of multireference perturbation theory to second order. In particular, we have benchmarked CASPT2, NEVPT2 and XMCQDPT2. For CASPT2, we have analyzed the single-state, multistate (MS) and extended MS variants. In addition, we have assessed the effect of the ionization potential electron affinity (IPEA) shift. For NEVPT2, we have used the partially and the strongly contracted variants. Further, we have tested the commonly used RI-CC2, RI-ADC2 and EOM-CCSD methods. Generally, we observe the following trends for singlet excited states: NEVPT2 is the closest MR method to MRCISD+Q, closely followed by CASPT2 with the default IPEA shift. The same trend is observed for triplet states, although NEVPT2 and CASPT2-IPEA are getting closer. Interestingly, the n, π* singlet excited states were described more accurately than π, π* excited states, while for triplet states the trend is inverted except for NEVPT2. This work is an important benchmark for future photochemical investigations. © 2017 The American Society of Photobiology.

  15. Nucleobases in Space: Laboratory Studies of Polycyclic Aromatic Nitrogen Heterocycles

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie; Mattioda, Andy; Bernstein, Max; Sandford, Scott; Hudgins, Doug

    2005-01-01

    Polycyclic Aromatic Nitrogen Heterocycles (PANHs) are heterocyclic aromatics Le., PAHs with carbon atoms replaced by a nitrogen atom. These molecules have been detected in meteorite extracts, and in general these nitrogen heterocycles are of astrobiological interest since this class of molecules include nucleobases, basic components of our nucleic acids. These compounds are predicted to be present in the interstellar medium and in Titan tholin, but have received relatively little attention. We will present spectra and reactions of PANHs, frozen in solid H2O at 12 K, conditions germane to astronomical observations. In contrast to simple PAHs, that do not interact strongly with solid H2O, the nitrogen atoms in PANHs are potentially capable of hydrogen bonding with H20 changing their spectra, complicating their remote detection on the surfaces of icy bodies. Moreover, we have studied the photo-chemistry of these interesting compounds under astrophysical conditions and will use our lab studies to assess a potential interstellar heritage of these compounds in carbonaceous chondrites.

  16. The nucleobase adenine as a signalling molecule in the kidney.

    PubMed

    Thimm, D; Schiedel, A C; Peti-Peterdi, J; Kishore, B K; Müller, C E

    2015-04-01

    In 2002, the first receptor activated by the nucleobase adenine was discovered in rats. In the past years, two adenine receptors (AdeRs) in mice and one in Chinese hamsters, all of which belong to the family of G protein-coupled receptors (GPCRs), were cloned and pharmacologically characterized. Based on the nomenclature for other purinergic receptor families (P1 for adenosine receptors and P2 for nucleotide, e.g. ATP, receptors), AdeRs were designated P0 receptors. Pharmacological data indicate the existence of G protein-coupled AdeRs in pigs and humans as well; however, those have not been cloned so far. Current data suggest a role for adenine and AdeRs in renal proximal tubules. Furthermore, AdeRs are suggested to be functional counterplayers of vasopressin in the collecting duct system, thus exerting diuretic effects. We are only at the beginning of understanding the significance of this new class of purinergic receptors, which might become future drug targets.

  17. DNA photoreacts by nucleobase ring cleavage to form labile isocyanates.

    PubMed

    Buschhaus, Laura; Rolf, Josefin; Kleinermanns, Karl

    2013-11-14

    Differential infrared absorption spectroscopy was used to study the formation of isocyanates and further photo-products in the oligonucleotides dG10, dC10 and dT10 and in their mononucleosides by ultraviolet light at 266 nm. We find that α-cleavage takes place in oligonucleotides and mononucleosides both in films and in solution. The very intense and spectrally isolated isocyanate (N=C=O) asymmetric stretch vibration at 2277 cm(-1) is used as a spectroscopic marker for detection of the photo-product. The band disappears upon reaction with small amounts of water vapour as expected for isocyanates. Quantum yields for isocyanate formation by nucleobase ring cleavage in the α-position to the carbonyl group are ∼5 × 10(-5) in the mononucleosides and up to 5 × 10(-4) in the oligonucleotides. In the mixed oligonucleotides dG10/dC10 and dA10/dT10 the quantum yield of α-cleavage drops by a factor of 10 compared to the single oligonucleotides. Implications for DNA repair and photo-induced DNA-protein cross-linking via isocyanate reaction with NH2 groups of amino acids are discussed.

  18. Fretting maps of glass fiber-reinforced composites

    SciTech Connect

    Turki, C.; Salvia, M.; Vincent, L.

    1993-12-31

    Industrial development of new materials are often limited due to an insufficient knowledge in their functional properties. The paper deals with fretting behavior of glass fiber reinforced epoxy/metal contacts. Fretting is a plague for all industries, especially in the case of quasi-static loadings. Furthermore friction testing under small displacements appeared well fitted to understand the effect of fiber orientations and to relate results to microstructure (fiber, matrix and interface).

  19. On the Convergence of Stresses in Fretting Fatigue.

    PubMed

    Pereira, Kyvia; Bordas, Stephane; Tomar, Satyendra; Trobec, Roman; Depolli, Matjaz; Kosec, Gregor; Abdel Wahab, Magd

    2016-07-29

    Fretting is a phenomenon that occurs at the contacts of surfaces that are subjected to oscillatory relative movement of small amplitudes. Depending on service conditions, fretting may significantly reduce the service life of a component due to fretting fatigue. In this regard, the analysis of stresses at contact is of great importance for predicting the lifetime of components. However, due to the complexity of the fretting phenomenon, analytical solutions are available for very selective situations and finite element (FE) analysis has become an attractive tool to evaluate stresses and to study fretting problems. Recent laboratory studies in fretting fatigue suggested the presence of stress singularities in the stick-slip zone. In this paper, we constructed finite element models, with different element sizes, in order to verify the existence of stress singularity under fretting conditions. Based on our results, we did not find any singularity for the considered loading conditions and coefficients of friction. Since no singularity was found, the present paper also provides some comments regarding the convergence rate. Our analyses showed that the convergence rate in stress components depends on coefficient of friction, implying that this rate also depends on the loading condition. It was also observed that errors can be relatively high for cases with a high coefficient of friction, suggesting the importance of mesh refinement in these situations. Although the accuracy of the FE analysis is very important for satisfactory predictions, most of the studies in the literature rarely provide information regarding the level of error in simulations. Thus, some recommendations of mesh sizes for those who wish to perform FE analysis of fretting problems are provided for different levels of accuracy.

  20. On the Convergence of Stresses in Fretting Fatigue

    PubMed Central

    Pereira, Kyvia; Bordas, Stephane; Tomar, Satyendra; Trobec, Roman; Depolli, Matjaz; Kosec, Gregor; Abdel Wahab, Magd

    2016-01-01

    Fretting is a phenomenon that occurs at the contacts of surfaces that are subjected to oscillatory relative movement of small amplitudes. Depending on service conditions, fretting may significantly reduce the service life of a component due to fretting fatigue. In this regard, the analysis of stresses at contact is of great importance for predicting the lifetime of components. However, due to the complexity of the fretting phenomenon, analytical solutions are available for very selective situations and finite element (FE) analysis has become an attractive tool to evaluate stresses and to study fretting problems. Recent laboratory studies in fretting fatigue suggested the presence of stress singularities in the stick-slip zone. In this paper, we constructed finite element models, with different element sizes, in order to verify the existence of stress singularity under fretting conditions. Based on our results, we did not find any singularity for the considered loading conditions and coefficients of friction. Since no singularity was found, the present paper also provides some comments regarding the convergence rate. Our analyses showed that the convergence rate in stress components depends on coefficient of friction, implying that this rate also depends on the loading condition. It was also observed that errors can be relatively high for cases with a high coefficient of friction, suggesting the importance of mesh refinement in these situations. Although the accuracy of the FE analysis is very important for satisfactory predictions, most of the studies in the literature rarely provide information regarding the level of error in simulations. Thus, some recommendations of mesh sizes for those who wish to perform FE analysis of fretting problems are provided for different levels of accuracy. PMID:28773760

  1. Life Prediction of Fretting Fatigue with Advanced Surface Treatments (Preprint)

    DTIC Science & Technology

    2006-05-01

    surfaces and not the fretting pads. The chosen coatings included DLC, Ni-B, Molybdenum, and Nitride. These 4 coatings, their application to the titanium ...Article Preprint 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 4 . TITLE AND SUBTITLE LIFE PREDICTION OF FRETTING FATIGUE WITH ADVANCED SURFACE...TREATMENTS (PREPRINT) 5c. PROGRAM ELEMENT NUMBER N/A 5d. PROJECT NUMBER M02R 5e. TASK NUMBER 30 6 . AUTHOR(S) Patrick J. Golden and Michael

  2. Signal/Noise Analysis of FRET-Based Sensors

    PubMed Central

    Woehler, Andrew; Wlodarczyk, Jakub; Neher, Erwin

    2010-01-01

    Molecular sensors based on intramolecular Förster resonance energy transfer (FRET) have become versatile tools to monitor regulatory molecules in living tissue. However, their use is often compromised by low signal strength and excessive noise. We analyzed signal/noise (SNR) aspects of spectral FRET analysis methods, with the following conclusions: The most commonly used method (measurement of the emission ratio after a single short wavelength excitation) is optimal in terms of signal/noise, if only relative changes of this uncalibrated ratio are of interest. In the case that quantitative data on FRET efficiencies are required, these can be calculated from the emission ratio and some calibration parameters, but at reduced SNR. Lux-FRET, a recently described method for spectral analysis of FRET data, allows one to do so in three different ways, each based on a ratio of two out of three measured fluorescence signals (the donor and acceptor signal during a short-wavelength excitation and the acceptor signal during long wavelength excitation). Lux-FRET also allows for calculation of the total abundance of donor and acceptor fluorophores. The SNR for all these quantities is lower than that of the plain emission ratio due to unfavorable error propagation. However, if ligand concentration is calculated either from lux-FRET values or else, after its calibration, from the emission ratio, SNR for both analysis modes is very similar. Likewise, SNR values are similar, if the noise of these quantities is related to the expected dynamic range. We demonstrate these relationships based on data from an Epac-based cAMP sensor and discuss how the SNR changes with the FRET efficiency and the number of photons collected. PMID:20923670

  3. Intravital FRET: Probing Cellular and Tissue Function in Vivo

    PubMed Central

    Radbruch, Helena; Bremer, Daniel; Mothes, Ronja; Günther, Robert; Rinnenthal, Jan Leo; Pohlan, Julian; Ulbricht, Carolin; Hauser, Anja E.; Niesner, Raluca

    2015-01-01

    The development of intravital Förster Resonance Energy Transfer (FRET) is required to probe cellular and tissue function in the natural context: the living organism. Only in this way can biomedicine truly comprehend pathogenesis and develop effective therapeutic strategies. Here we demonstrate and discuss the advantages and pitfalls of two strategies to quantify FRET in vivo—ratiometrically and time-resolved by fluorescence lifetime imaging—and show their concrete application in the context of neuroinflammation in adult mice. PMID:26006244

  4. FRET-Based Identification of mRNAs Undergoing Translation

    PubMed Central

    Farrell, Ian; Zhang, Haibo; Kaur, Jaskiran; Broitman, Steven L.; Smilansky, Zeev; Cooperman, Barry S.; Goldman, Yale E.

    2012-01-01

    We present proof-of-concept in vitro results demonstrating the feasibility of using single molecule fluorescence resonance energy transfer (smFRET) measurements to distinguish, in real time, between individual ribosomes programmed with several different, short mRNAs. For these measurements we use either the FRET signal generated between two tRNAs labeled with different fluorophores bound simultaneously in adjacent sites to the ribosome (tRNA-tRNA FRET) or the FRET signal generated between a labeled tRNA bound to the ribosome and a fluorescent derivative of ribosomal protein L1 (L1-tRNA FRET). With either technique, criteria were developed to identify the mRNAs, taking into account the relative activity of the mRNAs. These criteria enabled identification of the mRNA being translated by a given ribosome to within 95% confidence intervals based on the number of identified FRET traces. To upgrade the approach for natural mRNAs or more complex mixtures, the stoichiometry of labeling should be enhanced and photobleaching reduced. The potential for porting these methods into living cells is discussed. PMID:22693619

  5. FRET-based identification of mRNAs undergoing translation.

    PubMed

    Stevens, Benjamin; Chen, Chunlai; Farrell, Ian; Zhang, Haibo; Kaur, Jaskiran; Broitman, Steven L; Smilansky, Zeev; Cooperman, Barry S; Goldman, Yale E

    2012-01-01

    We present proof-of-concept in vitro results demonstrating the feasibility of using single molecule fluorescence resonance energy transfer (smFRET) measurements to distinguish, in real time, between individual ribosomes programmed with several different, short mRNAs. For these measurements we use either the FRET signal generated between two tRNAs labeled with different fluorophores bound simultaneously in adjacent sites to the ribosome (tRNA-tRNA FRET) or the FRET signal generated between a labeled tRNA bound to the ribosome and a fluorescent derivative of ribosomal protein L1 (L1-tRNA FRET). With either technique, criteria were developed to identify the mRNAs, taking into account the relative activity of the mRNAs. These criteria enabled identification of the mRNA being translated by a given ribosome to within 95% confidence intervals based on the number of identified FRET traces. To upgrade the approach for natural mRNAs or more complex mixtures, the stoichiometry of labeling should be enhanced and photobleaching reduced. The potential for porting these methods into living cells is discussed.

  6. Fluorescent Proteins as Genetically Encoded FRET Biosensors in Life Sciences

    PubMed Central

    Hochreiter, Bernhard; Pardo Garcia, Alan; Schmid, Johannes A.

    2015-01-01

    Fluorescence- or Förster resonance energy transfer (FRET) is a measurable physical energy transfer phenomenon between appropriate chromophores, when they are in sufficient proximity, usually within 10 nm. This feature has made them incredibly useful tools for many biomedical studies on molecular interactions. Furthermore, this principle is increasingly exploited for the design of biosensors, where two chromophores are linked with a sensory domain controlling their distance and thus the degree of FRET. The versatility of these FRET-biosensors made it possible to assess a vast amount of biological variables in a fast and standardized manner, allowing not only high-throughput studies but also sub-cellular measurements of biological processes. In this review, we aim at giving an overview over the recent advances in genetically encoded, fluorescent-protein based FRET-biosensors, as these represent the largest and most vividly growing group of FRET-based sensors. For easy understanding, we are grouping them into four categories, depending on their molecular mechanism. These are based on: (a) cleavage; (b) conformational-change; (c) mechanical force and (d) changes in the micro-environment. We also address the many issues and considerations that come with the development of FRET-based biosensors, as well as the possibilities that are available to measure them. PMID:26501285

  7. Fretting fatigue mechanism of bearing cap bolted joints.

    PubMed

    Li, Xin; Zuo, Zhengxing; Qin, Wenjie

    2014-05-01

    Fretting fatigue is a common type of failure of the bearing cap bolted joints. This paper proposes a methodology to analyze the fretting fatigue mechanism of the bearing cap bolted joint. A biaxially loading system was designed to simulate fretting fatigue failure under typical engine working condition. Meanwhile, a submodel was developed in the finite element calculation to analyze the contact status and stress distribution of the structural models. The test result shows that long inclined cracks (about 650 μm long, orientation at 17°-34°) initiate at the middle region of the contact interface. As the increase of the bolt pretension load (from 6000 N to 10,000 N), the crack initial location is getting away from the bolt screw, and the fretting fatigue lives is increasing (from 7.8 × 10(5) to 6.0 × 10(6)). With the fatigue phenomenon and the stress field analysis result, it concludes that the crack initiation is governed by the maximum shear stress; the bolt pretension load and the additional rotate torque caused by the bearing load are the two main factors which affect the fretting fatigue mechanism of the bearing cap bolted joints. It is beneficial to fretting fatigue lives of the bearing cap joints by increasing the bolt pretension load and restraining the oscillation of the bearing cap.

  8. Fluorescent proteins as genetically encoded FRET biosensors in life sciences.

    PubMed

    Hochreiter, Bernhard; Garcia, Alan Pardo; Schmid, Johannes A

    2015-10-16

    Fluorescence- or Förster resonance energy transfer (FRET) is a measurable physical energy transfer phenomenon between appropriate chromophores, when they are in sufficient proximity, usually within 10 nm. This feature has made them incredibly useful tools for many biomedical studies on molecular interactions. Furthermore, this principle is increasingly exploited for the design of biosensors, where two chromophores are linked with a sensory domain controlling their distance and thus the degree of FRET. The versatility of these FRET-biosensors made it possible to assess a vast amount of biological variables in a fast and standardized manner, allowing not only high-throughput studies but also sub-cellular measurements of biological processes. In this review, we aim at giving an overview over the recent advances in genetically encoded, fluorescent-protein based FRET-biosensors, as these represent the largest and most vividly growing group of FRET-based sensors. For easy understanding, we are grouping them into four categories, depending on their molecular mechanism. These are based on: (a) cleavage; (b) conformational-change; (c) mechanical force and (d) changes in the micro-environment. We also address the many issues and considerations that come with the development of FRET-based biosensors, as well as the possibilities that are available to measure them.

  9. Fretting fatigue mechanism of bearing cap bolted joints

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zuo, Zhengxing; Qin, Wenjie

    2014-05-01

    Fretting fatigue is a common type of failure of the bearing cap bolted joints. This paper proposes a methodology to analyze the fretting fatigue mechanism of the bearing cap bolted joint. A biaxially loading system was designed to simulate fretting fatigue failure under typical engine working condition. Meanwhile, a submodel was developed in the finite element calculation to analyze the contact status and stress distribution of the structural models. The test result shows that long inclined cracks (about 650 μm long, orientation at 17°-34°) initiate at the middle region of the contact interface. As the increase of the bolt pretension load (from 6000 N to 10 000 N), the crack initial location is getting away from the bolt screw, and the fretting fatigue lives is increasing (from 7.8 × 105 to 6.0 × 106). With the fatigue phenomenon and the stress field analysis result, it concludes that the crack initiation is governed by the maximum shear stress; the bolt pretension load and the additional rotate torque caused by the bearing load are the two main factors which affect the fretting fatigue mechanism of the bearing cap bolted joints. It is beneficial to fretting fatigue lives of the bearing cap joints by increasing the bolt pretension load and restraining the oscillation of the bearing cap.

  10. N-h and N-C bond activation of pyrimidinic nucleobases and nucleosides promoted by an osmium polyhydride.

    PubMed

    Esteruelas, Miguel A; García-Raboso, Jorge; Oliván, Montserrat; Oñate, Enrique

    2012-05-21

    Complex OsH(6)(P(i)Pr(3))(2) (1) reacts with 1-methylthymine and 1-methyluracil to give OsH(3)(P(i)Pr(3))(2)(nucleobase') (2, 3) containing the deprotonated nucleobases (nucleobase') κ(2)-N,O coordinated by the nitrogen atom at position 3 and the oxygen bonded to the carbon atom of the ring at position 4. Similarly, the reactions of 1 with thymidine, 5-methyluridine, deoxyuridine, and uridine lead to OsH(3)(P(i)Pr(3))(2)(nucleoside') (4-7) with the deprotonated nucleoside (nucleoside') κ(2)-N,O coordinated by the nitrogen atom at position 3 and the oxygen bonded to the carbon atom at position 4 of the nucleobases. Treatment of complexes 5 and 7, containing nucleosides derived from ribose, with OsH(2)Cl(2)(P(i)Pr(3))(2) (8) in the presence of Et(3)N affords dinuclear species OsH(3)(P(i)Pr(3))(2)(nucleobase')-(ribose)(P(i)Pr(3))(2)H(2)Os (9, 10) formed by two different metal fragments. Complex 1 also promotes the cleavage of the N-C bond of 2-7 to give the dinuclear species {OsH(3)(P(i)Pr(3))(2)}(2)(nucleobase'') (11, 12) with the nucleobase skeleton (nucleobase'') κ(2)-N,O coordinated to both metal fragments. These compounds can be also prepared by reaction of 1 with 0.5 equiv of thymine and uracil. The use of 1:1 hexahydride:nucleobase molar ratios gives rise to the preferred formation of the mononuclear complexes OsH(3)(P(i)Pr(3))(2)(nucleobase''') (13, 14; nucleobase''' = monodeprotonated thymine or uracil). The X-ray structures of complexes 6, 11, and 14 are also reported.

  11. The Formation of Nucleobases from the Irradiation of Purine in Astophysical Ices and Comparisons with Meteorites.

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Materese, C. K.; Nuevo, M.

    2016-01-01

    N-heterocycles have been identified in meteorites and their extraterrestrial origins are suggested by isotopic ratio measurements. Although small N- heterocycles have not been detected in the interstellar medium (ISM), recent experiments in our lab have shown that the irradiation of the aromatic molecules like benzene (C6H6) and naphthalene (C10H8) in mixed molecular ices leads to the formation of O- and N-heterocyclic molecules. Among the class of N-heterocycles are the nucleobases, which are of astrobiological interest because they are the information bearing units of DNA and RNA. Nucleobases have been detected in meteorites [3-5], with isotopic signatures that are also consistent with an extraterrestrial origin. Three of the biologically relevant nucleobases (uracil, cytosine, and guanine) have a pyrimidine core structure while the remaining two (adenine and guanine) possess a purine core. Previous experiments in our lab have demonstrated that all of the bio-logical nucleobases (and numerous other molecules) with a pyrimidine core structure can be produced by irradiating pyrimidine in mixed molecular ices of several compositions [6-8]. In this work, we study the formation of purine-based molecules, including the nucleobases adenine, and guanine, from the ultraviolet (UV) irradiation of purine in ices consisting mixtures of H2O and NH3 at low temperature. The experiments are designed to simulate the astrophysical conditions under which these species may be formed in dense molecular clouds, protoplanetary disks, or on the surfaces of icy bodies in planetary systems.

  12. Characterization of poly(N-isopropylacrylamide)-nucleobase supramolecular complexes featuring bio-multiple hydrogen bonds.

    PubMed

    Yang, Hsiu-Wen; Lee, Ai-Wei; Huang, Chi-Hsien; Chen, Jem-Kun

    2014-11-07

    In this study we employed poly(N-isopropylacrylamide) (PNIPAAm) as a matrix that we hybridized with five different nucleobase units (adenine, thymine, uracil, guanine, cytosine) to generate PNIPAAm-nucleobase supramolecular complexes (PNSCs) stabilized through bio-multiple hydrogen bonds (BMHBs). These nucleobase units interacted with PNIPAAm through BMHBs of various strengths, leading to competition between the BMHBs and the intramolecular hydrogen bonds (HBs) of PNIPAAm. The changes in morphology, crystalline structure, and thermoresponsive behavior of PNIPAAm were related to the strength of its BMHBs with the nucleobases. The strengths of the BMHBs followed the order guanine > adenine > thymine > cytosine > uracil, as verified through analyses of Fourier transform infrared spectra, lower critical solution temperatures, and inter-association equilibrium constants. The PNSCs also exhibited remarkable improvements in conductivity upon the formation of BMHBs, which facilitated proton transport. The neat PNIPAAm film was an insulator, but it transformed into a semiconductor after hybridizing with the nucleobases. In particular, the resistivity of the PNIPAAm-guanine supramolecular complex decreased to 1.35 × 10(5) ohm cm. The resistivity of the PNIPAAm-cytosine supramolecular complex increased significantly from 5.83 × 10(6) to 3 × 10(8) ohm cm upon increasing the temperature from 40 to 50 °C, suggesting that this material might have applicability in thermo-sensing. The ability to significantly improve the conductivity of hydrogels through such a simple approach involving BMHBs might facilitate their use as novel materials in bioelectronics.

  13. Meteorites and the RNA World: A Thermodynamic Model of Nucleobase Synthesis within Planetesimals

    NASA Astrophysics Data System (ADS)

    Pearce, Ben K. D.; Pudritz, Ralph E.

    2016-11-01

    The possible meteorite parent body origin of Earth's pregenetic nucleobases is substantiated by the guanine (G), adenine (A), and uracil (U) measured in various meteorites. Cytosine (C) and thymine (T), however, are absent in meteorites, making the emergence of an RNA and later RNA/DNA/protein world problematic. We investigated the meteorite parent body (planetesimal) origin of all nucleobases by computationally modeling 18 reactions that potentially contribute to nucleobase formation in such environments. Out of this list, we identified the two most important reactions for each nucleobase and found that these involve small molecules such as HCN, CO, NH3, and water that ultimately arise from the protoplanetary disks in which planetesimals are built. The primary result of this study is that cytosine is unlikely to persist within meteorite parent bodies due to aqueous deamination. Thymine has a thermodynamically favorable reaction pathway from uracil, formaldehyde, and formic acid but likely did not persist within planetesimals containing H2O2 due to an oxidation reaction with this molecule. Finally, while Fischer-Tropsch (FT) synthesis is found to be the dominant source of nucleobases within our model planetesimal, non-catalytic (NC) synthesis may still be significant under certain chemical conditions (e.g., within CR2 parent bodies). We discuss several major consequences of our results for the origin of the RNA world.

  14. High resolution mapping of modified DNA nucleobases using excision repair enzymes

    PubMed Central

    Bryan, D. Suzi; Ransom, Monica; Adane, Biniam; York, Kerri

    2014-01-01

    The incorporation and creation of modified nucleobases in DNA have profound effects on genome function. We describe methods for mapping positions and local content of modified DNA nucleobases in genomic DNA. We combined in vitro nucleobase excision with massively parallel DNA sequencing (Excision-seq) to determine the locations of modified nucleobases in genomic DNA. We applied the Excision-seq method to map uracil in E. coli and budding yeast and discovered significant variation in uracil content, wherein uracil is excluded from the earliest and latest replicating regions of the genome, possibly driven by changes in nucleotide pool composition. We also used Excision-seq to identify sites of pyrimidine dimer formation induced by UV light exposure, where the method could distinguish between sites of cyclobutane and 6-4 photoproduct formation. These UV mapping data enabled analysis of local sequence bias around pyrimidine dimers and suggested a preference for an adenosine downstream from 6-4 photoproducts. The Excision-seq method is broadly applicable for high precision, genome-wide mapping of modified nucleobases with cognate repair enzymes. PMID:25015380

  15. The Formation of Nucleobases from the UV Irradiation of Astrophysical Ice Analogs

    NASA Technical Reports Server (NTRS)

    Materese, C. K.; Nuevo, M.; Sandford, S. A.

    2017-01-01

    Nucleobases are the fundamental information bearing components of both RNA and DNA. They are central to all known terrestrial life and they are generally conserved between species. Biological nucleobases can be divided into two groups based on the N-heterocyclic molecules pyrimidine (uracil, cytosine, and thymine) and purine (adenine and guanine) respectively. Do date, no experimental conditions have been determined that could produce both pyrimidines and purines together, abiotically, in a ter-restrial environment or an early terrestrial analog. Organic materials produced in extraterrestrial envi-ronments may have been delivered to the primitive earth by comets and meteorites and may have contrib-uted to the emergence of life. To date, some, but not all nucleobases have been detected in meteorites and their isotopic signatures may be consistent with an extraterrestrial origin. Earlier work in our lab demonstrated that it is possible to produce all of the pyrimidine group nucleobases from the UV-irradiation of pyrimidine in astrophysically relevant ice analogs. Here we report our most recent work, which studied the formation of the purine group nucleobases under similar conditions.

  16. Meteorites and the RNA World: A Thermodynamic Model of Nucleobase Synthesis within Planetesimals.

    PubMed

    Pearce, Ben K D; Pudritz, Ralph E

    2016-11-01

    The possible meteorite parent body origin of Earth's pregenetic nucleobases is substantiated by the guanine (G), adenine (A), and uracil (U) measured in various meteorites. Cytosine (C) and thymine (T), however, are absent in meteorites, making the emergence of an RNA and later RNA/DNA/protein world problematic. We investigated the meteorite parent body (planetesimal) origin of all nucleobases by computationally modeling 18 reactions that potentially contribute to nucleobase formation in such environments. Out of this list, we identified the two most important reactions for each nucleobase and found that these involve small molecules such as HCN, CO, NH3, and water that ultimately arise from the protoplanetary disks in which planetesimals are built. The primary result of this study is that cytosine is unlikely to persist within meteorite parent bodies due to aqueous deamination. Thymine has a thermodynamically favorable reaction pathway from uracil, formaldehyde, and formic acid but likely did not persist within planetesimals containing H2O2 due to an oxidation reaction with this molecule. Finally, while Fischer-Tropsch (FT) synthesis is found to be the dominant source of nucleobases within our model planetesimal, non-catalytic (NC) synthesis may still be significant under certain chemical conditions (e.g., within CR2 parent bodies). We discuss several major consequences of our results for the origin of the RNA world. Key Words: Astrobiology-Cosmochemistry-Meteorites-RNA world-Abiotic organic synthesis. Astrobiology 16, 853-872.

  17. Identification of nucleobases using variable currents through graphene nanopores: A first principles study

    NASA Astrophysics Data System (ADS)

    Haraldsen, J. T.; McFarland, H.; Ahmed, T.; Zhu, J.-X.; Balatsky, A. V.

    2015-03-01

    Nanopore-based technology has the potential to be an efficient method for DNA/RNA base sequencing, as well as an identifier of other biomolecules. However, the thickness of the nanopore substrate is critical for the identification of individual nucleobases due to resulting noise and resolution problems. Recently, graphene has been suggested as a possible nanopore substrate due to its single atomic thickness and robust strength. In this study, we examine a possible device mechanism for the voltage dependence of nucleobases passing through a graphene nanopore. We utilize density functional theory with a generalized gradient approach on a graphene ribbon with a nucleobase in order to calculate the transmission spectra for each base. Transmission spectra for each base allows for the calculation of the ballistic current and differential current as a function of voltage. We show that applying various bias voltages across a graphene ribbon for the general, energy-minimized position of the translocated nucleobase, it is possible to distinguish individual bases using the resulting current. Overall, our goal is to improve nanopore device design by helping to further DNA/RNA nucleobase identification and sequencing.

  18. Simultaneous determination of 10 nucleosides and nucleobases in Antrodia camphorata using QTRAP LC-MS/MS.

    PubMed

    Chen, Fei; Zhang, Fengsu; Yang, Nianyun; Liu, Xunhong

    2014-09-01

    A liquid chromatography-triple-quadrupole linear ion trap mass spectrometry (LC-QTrap-MS) analysis has been developed for the identification and quantification of 10 nucleosides and nucleobases in extracts of Antrodia camphorata. The method was successfully used to qualitatively identify for six nucleosides namely, cytidine, uridine, inosine, guanosine, thymidine, adenosine and four nucleobases namely, uracil, guanine, xanthine, adenine in A. camphorata. Under optimized chromatographic conditions, good separation for 10 target compounds were obtained on an Agilent HC-C18(2) column (4.6 × 250 mm, 5 μm) eluted by a mobile phase of 5 mM ammonium acetate solution-methanol at a flow rate of 0.5 mL/min. Data acquisition was carried out in multiple reaction monitoring transition mode. Additional identification and confirmation of target compounds were performed using the enhanced product ion modus of the linear ion trap. It was the first report about simultaneous analysis of nucleosides and nucleobases in A. camphorata using this method. These results demonstrated that the QTRAP LC-MS/MS was a useful tool for quality evaluation of some medicinal plant products by using nucleosides and nucleobases as chemical markers. This method might also be utilized for the investigation of edible plant materials and agricultural products containing nucleosides and nucleobases. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Fluorescent Protein Based FRET Pairs with Improved Dynamic Range for Fluorescence Lifetime Measurements

    PubMed Central

    George Abraham, Bobin; Sarkisyan, Karen S.; Mishin, Alexander S.; Santala, Ville; Tkachenko, Nikolai V.; Karp, Matti

    2015-01-01

    Fluorescence Resonance Energy Transfer (FRET) using fluorescent protein variants is widely used to study biochemical processes in living cells. FRET detection by fluorescence lifetime measurements is the most direct and robust method to measure FRET. The traditional cyan-yellow fluorescent protein based FRET pairs are getting replaced by green-red fluorescent protein variants. The green-red pair enables excitation at a longer wavelength which reduces cellular autofluorescence and phototoxicity while monitoring FRET. Despite the advances in FRET based sensors, the low FRET efficiency and dynamic range still complicates their use in cell biology and high throughput screening. In this paper, we utilized the higher lifetime of NowGFP and screened red fluorescent protein variants to develop FRET pairs with high dynamic range and FRET efficiency. The FRET variations were analyzed by proteolytic activity and detected by steady-state and time-resolved measurements. Based on the results, NowGFP-tdTomato and NowGFP-mRuby2 have shown high potentials as FRET pairs with large fluorescence lifetime dynamic range. The in vitro measurements revealed that the NowGFP-tdTomato has the highest Förster radius for any fluorescent protein based FRET pairs yet used in biological studies. The developed FRET pairs will be useful for designing FRET based sensors and studies employing Fluorescence Lifetime Imaging Microscopy (FLIM). PMID:26237400

  20. In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair

    SciTech Connect

    Hsu, Y.-Y.; Liu, Y.-N.; Wang Wenyen; Kao, Fu-Jen; Kung, S.-H. . E-mail: szkung@ym.edu.tw

    2007-02-23

    An in vivo protease assay suitable for analysis by fluorescence resonance energy transfer (FRET) was developed on the basis of a novel FRET pair. The specifically designed fusion substrate consists of green fluorescent protein 2 (GFP{sup 2})-peptide-red fluorescent protein 2 (DsRed2), with a cleavage motif for the enterovirus 2A protease (2A{sup pro}) embedded within the peptide region. FRET can be readily visualized in real-time from cells expressing the fusion substrate until a proteolytic cleavage by 2A{sup pro} from the input virus. The level of FRET decay is a function of the amount and infection duration of the inoculated virus as measured by a fluorometer assay. The FRET biosensor also responded well to other related enteroviruses but not to a phylogenetically distant virus. Western blot analysis confirmed the physical cleavage of the fusion substrate upon the infections. The study provides proof of principle for applying the FRET technology to diagnostics, screening procedures, and cell biological research.

  1. Detecting Pyrolysis Products from Bacteria in a Mars Soil Analogue

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Cleaves, H. J.; Schubert, M.; Aubrey, A.; Buch, A.; Mahaffy, P. R.; Bada, J. L.

    2004-01-01

    One of the primary objectives of the 1976 Viking missions was to determine whether organic compounds, possibly of biological origin, were present in the Martian surface soils. The Viking gas chromatography mass spectrometry (GCMS) instruments found no evidence for any organic compounds of Martian origin above a few parts per billion in the upper 10 cm of surface soil, suggesting the absence of a widely distributed Martian biota. However, it is now known that key organic compounds important to biology, such as amino acids, carboxylic acids and nucleobases, would likely have been missed by the Viking GCMS instruments. In this study, a Mars soil analogue that was inoculated with approx. 10 billion Escherichia coli cells was heated at 500 C under Martian ambient pressure to release volatile organic compounds from the sample. The pyrolysis products were then analyzed for amino acids and nucleobases using high performance liquid chromatography (HPLC) and GCMS. Our experimental results indicate that at the part per billion level, the degradation products generated from several million bacterial cells per gram of Martian soil would not have been detected by the Viking GCMS instruments. Upcoming strategies for Mars exploration will require in-situ analyses by instruments that can assess whether any organic compounds, especially those that might be associated with life, are present in Martian surface samples.

  2. Detecting Pyrolysis Products from Bacteria in a Mars Soil Analogue

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Cleaves, H. J.; Schubert, M.; Aubrey, A.; Buch, A.; Mahaffy, P. R.; Bada, J. L.

    2004-01-01

    One of the primary objectives of the 1976 Viking missions was to determine whether organic compounds, possibly of biological origin, were present in the Martian surface soils. The Viking gas chromatography mass spectrometry (GCMS) instruments found no evidence for any organic compounds of Martian origin above a few parts per billion in the upper 10 cm of surface soil, suggesting the absence of a widely distributed Martian biota. However, it is now known that key organic compounds important to biology, such as amino acids, carboxylic acids and nucleobases, would likely have been missed by the Viking GCMS instruments. In this study, a Mars soil analogue that was inoculated with approx. 10 billion Escherichia coli cells was heated at 500 C under Martian ambient pressure to release volatile organic compounds from the sample. The pyrolysis products were then analyzed for amino acids and nucleobases using high performance liquid chromatography (HPLC) and GCMS. Our experimental results indicate that at the part per billion level, the degradation products generated from several million bacterial cells per gram of Martian soil would not have been detected by the Viking GCMS instruments. Upcoming strategies for Mars exploration will require in-situ analyses by instruments that can assess whether any organic compounds, especially those that might be associated with life, are present in Martian surface samples.

  3. Photoelectron Spectroscopy of Rare-Gas Solvated Nucleobase Anions

    NASA Astrophysics Data System (ADS)

    Buonaugurio, Angela M.; Chen, Jing; Bowen, Kit H.

    2012-06-01

    Gas-phase polar molecular anions [uracil (U^-), thymine (T^-), 1-3 dimethyluracil (DMU^-)] solvated by rare gas atoms were studied by means of negative ion photoelectron spectroscopy. The photoelectron spectrum (PES) of U^-, T^-, and DMU^- each exhibit a distinctive dipole-bound (DB) spectral signature. The spectra of U^-, U^- (Ar)_1,2 and U^- (Kr)_1 also only displayed the DB anion feature. Upon the solvation of more rare gas atoms, the spectra of U^- (Ar)_3, U^- (Kr)_2, and U^- (Xe)1-3 not only retained the DB signature but also exhibited the valence anion features. Moreover, the DB and the valence features shifted together to higher electron binding energies (EBEs) with increasing numbers of rare gas solvent atoms. Therefore, the co-existing DB and the valence anions appeared to be strongly coupled with each other, i.e. they effectively form a single state that is a superposition of both DB and valence anion states. For both U^- and T^- series, the ``onset size" of the Xe, Kr, and Ar solvents for the co-existing of the two anionic states was 1, 2, and 3 respectively. In addition, a minimum of 2 methane (CH_4) molecules or 1 ethane (C_2H_6) molecule were required to induce the coupling between the two states in the T^- series. Thus, the nucleobase anion interaction with non-polar solvent atoms tracks as the sum of the solvent polarizabilities. However for the DMU- series, the DB and the valence anions of DMU^-(Xe)_1, DMU^-(Kr)_2, and DMU^-(Ar)_3 were completely absent in both the mass spectra and the PES. Beyond these ``holes", their PES displayed the similar behaviors to the U^- and T^- series. Extrapolated EA values for these missing species were at or very close to zero, which may explain why they were not seen. However, why this was the case is not clear. With better Franck-Condon overlap between the origins of the NB^- (Rg)_n valence anion and the neutral NB(Rg)n than between those of the NB^- (H2O)n valence anion and the neutral NB(H2O)n, extrapolation of

  4. Intermolecular interaction in nucleobases and dimethyl sulfoxide/water molecules: A DFT, NBO, AIM and NCI analysis.

    PubMed

    Venkataramanan, Natarajan Sathiyamoorthy; Suvitha, Ambigapathy; Kawazoe, Yoshiyuki

    2017-10-02

    This study aims to cast light on the physico-chemical nature and energetics of interactions between the nucleobases and water/DMSO molecules which occurs through the non-conventional CH⋯O/N-H bonds using a comprehensive quantum-chemical approach. The computed interaction energies do not show any appreciable change for all the nucleobase-solvent complexes, conforming the experimental findings on the hydration enthalpies. Compared to water, DMSO form complexes with high interaction energies. The quantitative molecular electrostatic potentials display a charge transfer during the complexation. NBO analysis shows the nucleobase-DMSO complexes, have higher stabilization energy values than the nucleobase-water complexes. AIM analysis illustrates that the in the nucleobase-DMSO complexes, SO⋯H-N type interaction have strongest hydrogen bond strength with high EHB values. Furthermore, the Laplacian of electron density and total electron density were negative indicating the partial covalent nature of bonding in these systems, while the other bonds are classified as noncovalent interactions. EDA analysis indicates, the electrostatic interaction is more pronounced in the case of nucleobase-water complexes, while the dispersion contribution is more dominant in nucleobase-DMSO complexes. NCI-RDG analysis proves the existence of strong hydrogen bonding in nucleobase-DMSO complex, which supports the AIM results. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Dissociative electron attachment to the gas-phase nucleobase hypoxanthine

    SciTech Connect

    Dawley, M. Michele; Tanzer, Katrin; Denifl, Stephan E-mail: Sylwia.Ptasinska.1@nd.edu; Carmichael, Ian; Ptasińska, Sylwia E-mail: Sylwia.Ptasinska.1@nd.edu

    2015-06-07

    We present high-resolution measurements of the dissociative electron attachment (DEA) to isolated gas-phase hypoxanthine (C{sub 5}H{sub 4}N{sub 4}O, Hyp), a tRNA purine base. The anion mass spectra and individual ion efficiency curves from Hyp were measured as a function of electron energy below 9 eV. The mass spectra at 1 and 6 eV exhibit the highest anion yields, indicating possible common precursor ions that decay into the detectable anionic fragments. The (Hyp − H) anion (C{sub 5}H{sub 3}N{sub 4}O{sup −}) exhibits a sharp resonant peak at 1 eV, which we tentatively assign to a dipole-bound state of the keto-N1H,N9H tautomer in which dehydrogenation occurs at either the N1 or N9 position based upon our quantum chemical computations (B3LYP/6-311+G(d,p) and U(MP2-aug-cc-pVDZ+)) and prior studies with adenine. This closed-shell dehydrogenated anion is the dominant fragment formed upon electron attachment, as with other nucleobases. Seven other anions were also observed including (Hyp − NH){sup −}, C{sub 4}H{sub 3}N{sub 4}{sup −}/C{sub 4}HN{sub 3}O{sup −}, C{sub 4}H{sub 2}N{sub 3}{sup −}, C{sub 3}NO{sup −}/HC(HCN)CN{sup −}, OCN{sup −}, CN{sup −}, and O{sup −}. Most of these anions exhibit broad but weak resonances between 4 and 8 eV similar to many analogous anions from adenine. The DEA to Hyp involves significant fragmentation, which is relevant to understanding radiation damage of biomolecules.

  6. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases

    NASA Astrophysics Data System (ADS)

    Niether, Doreen; Afanasenkau, Dzmitry; Dhont, Jan K. G.

    2016-04-01

    Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007) Proc Natl Acad Sci USA 104(22):9346-9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The thermophoretic properties of aqueous formamide solutions are studied by means of Infrared Thermal Diffusion Forced Rayleigh Scattering. These data are used in numerical finite element calculations in hydrothermal pores for various initial concentrations, ambient temperatures, and pore sizes. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behavior of formamide. The accumulation fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of ˜85 wt% at large aspect ratios. Time-dependent studies show that these high concentrations are reached after 45-90 d, starting with an initial formamide weight fraction of 10-310-3 wt % that is typical for concentrations in shallow lakes on early Earth.

  7. The origin of efficient triplet state population in sulfur-substituted nucleobases.

    PubMed

    Mai, Sebastian; Pollum, Marvin; Martínez-Fernández, Lara; Dunn, Nicholas; Marquetand, Philipp; Corral, Inés; Crespo-Hernández, Carlos E; González, Leticia

    2016-10-05

    Elucidating the photophysical mechanisms in sulfur-substituted nucleobases (thiobases) is essential for designing prospective drugs for photo- and chemotherapeutic applications. Although it has long been established that the phototherapeutic activity of thiobases is intimately linked to efficient intersystem crossing into reactive triplet states, the molecular factors underlying this efficiency are poorly understood. Herein we combine femtosecond transient absorption experiments with quantum chemistry and nonadiabatic dynamics simulations to investigate 2-thiocytosine as a necessary step to unravel the electronic and structural elements that lead to ultrafast and near-unity triplet-state population in thiobases in general. We show that different parts of the potential energy surfaces are stabilized to different extents via thionation, quenching the intrinsic photostability of canonical DNA and RNA nucleobases. These findings satisfactorily explain why thiobases exhibit the fastest intersystem crossing lifetimes measured to date among bio-organic molecules and have near-unity triplet yields, whereas the triplet yields of canonical nucleobases are nearly zero.

  8. Survival of gas phase amino acids and nucleobases in space radiation conditions

    NASA Astrophysics Data System (ADS)

    Pilling, S.; Andrade, D. P. P.; de Castilho, R. B.; Cavasso-Filho, R. L.; Lago, A. F.; Coutinho, L. H.; de Souza, G. G. B.; Boechat-Roberty, H. M.; de Brito, A. Naves

    2008-10-01

    We present experimental studies on the photoionization and photodissociation processes (photodestruction) of gaseous amino acids and nucleobases in interstellar and interpla-netary radiation analogs conditions. The measurements have been undertaken at the Brazilian Synchrotron Light Laboratory (LNLS), employing vacuum ultraviolet (VUV) and soft X-ray photons. The experimental set up basically consists of a time-of-flight mass spectrometer kept under high vacuum conditions. Mass spectra were obtained using a photoelectron photoion coincidence technique. We have shown that the amino acids are effectively more destroyed (up to 70 80%) by the stellar radiation than the nucleobases, mainly in the VUV. Since polycyclic aromatic hydrocarbons have the same survival capability and seem to be ubiquitous in the ISM, it is not unreasonable to predict that nucleobases could survive in the interstellar medium and/or in comets, even as a stable cation.

  9. Genetic and molecular characterization reveals a unique nucleobase cation symporter 1 in Arabidopsis.

    PubMed

    Mourad, George S; Tippmann-Crosby, Julie; Hunt, Kevin A; Gicheru, Yvonne; Bade, Kaely; Mansfield, Tyler A; Schultes, Neil P

    2012-05-07

    Locus At5g03555 encodes a nucleobase cation symporter 1 (AtNCS1) in the Arabidopsis genome. Arabidopsis insertion mutants, AtNcs1-1 and AtNcs1-3, were used for in planta toxic nucleobase analog growth studies and radio-labeled nucleobase uptake assays to characterize solute transport specificities. These results correlate with similar growth and uptake studies of AtNCS1 expressed in Saccharomyces cerevisiae. Both in planta and heterologous expression studies in yeast revealed a unique solute transport profile for AtNCS1 in moving adenine, guanine and uracil. This is in stark contrast to the canonical transport profiles determined for the well-characterized S. cerevisiae NCS1 proteins FUR4 (uracil transport) or FCY2 (adenine, guanine, and cytosine transport).

  10. The origin of efficient triplet state population in sulfur-substituted nucleobases

    NASA Astrophysics Data System (ADS)

    Mai, Sebastian; Pollum, Marvin; Martínez-Fernández, Lara; Dunn, Nicholas; Marquetand, Philipp; Corral, Inés; Crespo-Hernández, Carlos E.; González, Leticia

    2016-10-01

    Elucidating the photophysical mechanisms in sulfur-substituted nucleobases (thiobases) is essential for designing prospective drugs for photo- and chemotherapeutic applications. Although it has long been established that the phototherapeutic activity of thiobases is intimately linked to efficient intersystem crossing into reactive triplet states, the molecular factors underlying this efficiency are poorly understood. Herein we combine femtosecond transient absorption experiments with quantum chemistry and nonadiabatic dynamics simulations to investigate 2-thiocytosine as a necessary step to unravel the electronic and structural elements that lead to ultrafast and near-unity triplet-state population in thiobases in general. We show that different parts of the potential energy surfaces are stabilized to different extents via thionation, quenching the intrinsic photostability of canonical DNA and RNA nucleobases. These findings satisfactorily explain why thiobases exhibit the fastest intersystem crossing lifetimes measured to date among bio-organic molecules and have near-unity triplet yields, whereas the triplet yields of canonical nucleobases are nearly zero.

  11. Nucleobases and Other Prebiotic Species from the UV Irradiation of Pyrimidine in Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Materese, Christopher; Nuevo, Michel

    2012-01-01

    Nucleobases are aromatic N-heterocycles that constitute the informational subunits of DNA and RNA and are divided into two families: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites and their extraterrestrial origin confirmed by isotope measurement. Although no N-heterocycles have been individually identified in the ISM, the 6.2-micron interstellar emission feature seen towards many astronomical objects suggests a population of such molecules is likely present. We report on a study of the formation of pyrimidine-based molecules, including nucleobases and other species of prebiotic interest, from the ultraviolet (UV) irradiation of pyrimidine in low temperature ices containing H2O, NH3, C3OH, and CH4, to simulate the astrophysical conditions under which prebiotic species may be formed in the Solar System.

  12. Intonation and compensation of fretted string instruments

    NASA Astrophysics Data System (ADS)

    Varieschi, Gabriele; Gower, Christina

    2011-04-01

    We discuss theoretical and physical models that are useful for analyzing the intonation of musical instruments such as guitars and mandolins and can be used to improve the tuning on these instruments. The placement of frets on the fingerboard is designed according to mathematical rules and the assumption of an ideal string. The analysis becomes more complicated when we include the effects of deformation of the string and inharmonicity due to other string characteristics. As a consequence, perfect intonation of all the notes on the instrument cannot be achieved, but complex compensation procedures can be introduced to minimize the problem. To test the validity of these procedures, we performed extensive measurements using standard monochord sonometers and other acoustical devices, confirming the correctness of our theoretical models. These experimental activities can be integrated into acoustics courses and laboratories and can become a more advanced version of basic experiments with monochords and sonometers. This work was supported by a grant from the Frank R. Seaver College of Science and Engineering, Loyola Marymount University.

  13. The photoinduced transformation of fluorescent DNA base analogue tC triggers DNA melting.

    PubMed

    Preus, Søren; Jønck, Søren; Pittelkow, Michael; Dierckx, Anke; Karpkird, Thitinun; Albinsson, Bo; Wilhelmsson, L Marcus

    2013-08-01

    While fluorescent analogues of the canonical nucleobases have proven to be highly valuable in a large number of applications, up until today, fluorescent DNA base analogues remain virtually inapplicable for single-molecule fluorescence experiments which require extremely bright and photostable dyes. Insight into the photodegradation processes of these fluorophores is thus a key step in the continuous development towards dyes with improved performances. Here, we show that the commercially available fluorescent nucleobase analogue tC under intense long-term illumination and in the presence of O2 is degraded to form a single photoreaction product which we suggest to be the sulfoxide form of tC. The photoproduct is characterized by a blue-shifted absorption and a less intense fluorescence compared to that of tC. Interestingly, when tC is positioned inside double-stranded DNA this photodriven conversion of tC to its photoproduct greatly reduces the duplex stability of the overall double helix in which the probe is positioned. Since tC can be excited selectively at 400 nm, well outside the absorption band of the natural DNA bases, this observation points towards the application of tC as a general light-triggered switch of DNA duplex stability.

  14. Computational analysis of stacking interactions between 3-nitropyrrole and natural nucleobases.

    PubMed

    Ukawa, Hisashi; Seio, Kohji; Sekine, Mitsuo

    2002-01-01

    The stacking energies between natural nucleobases and a universal base of 3-nitropyrrole (3-NP) were calculated by use of two theoretically independent quantum chemical methods, namely, molecular orbital (MO) and density function theory (DFT) calculations. The parameters required for molecular mechanics calculation of 3-NP were obtained by use of a software of Direct Force Field and used to evaluate the stacking energy of the complexes formed between 3-NP and canonical four nucleobases. Dependence of the twist angle between the two stacked bases on the stacking energy was studied in great detail.

  15. Infrared spectral investigations of UV irradiated nucleobases adsorbed on mineral surfaces

    NASA Astrophysics Data System (ADS)

    Fornaro, Teresa; Brucato, John Robert; Pace, Emanuele; Guidi, Mariangela Cestelli; Branciamore, Sergio; Pucci, Amaranta

    2013-09-01

    The interaction between electromagnetic radiation and bio-molecules in heterogeneous environments is a prebiotically relevant process. Minerals may have a pivotal role in the prebiotic evolution of complex chemical systems, mediating the effects of electromagnetic radiation, influencing the photostability of bio-molecules, catalyzing important chemical reactions and/or protecting molecules against degradation. In particular, nucleobases are relevant bio-molecules to investigate both in the prebiotic context, because they are coding components of nucleic acids, and from the standpoint of the survival of biological systems in space conditions. Several studies on the photodynamics of nucleobases suggest that their structure could have been naturally selected for the ability to dissipate electronic energy through ultrafast photophysical decay. Considering the putative involvement of minerals in the prebiotic chemistry, it is necessary to study the photostability of nucleobases under space conditions in the presence of mineral matrices, to investigate both the prebiotic processes that might have had a role in the development of the first living entities on Earth and the physical and chemical processes occurring in extraterrestrial environments. We focused our study on the characterization of the nature of the interaction between nucleobases and the surface of the minerals magnesium oxide and forsterite by infrared vibrational spectroscopy. We observed that most of the characteristic bands of pure nucleobases vanished when adsorbed on magnesium oxide. On the contrary, in the case of adenine and uracil adsorbed on forsterite, very intense nucleobase absorption peaks appeared. This phenomenon pertains to the surface selection rules changes related to molecular orientation. Moreover, based on the vibrational shifts, we deduced the molecular interaction sites with the mineral surfaces. Furthermore, we investigated the photostability of nucleobases adsorbed on such minerals

  16. Infrared spectral investigations of UV irradiated nucleobases adsorbed on mineral surfaces

    NASA Astrophysics Data System (ADS)

    Brucato, John Robert; Pace, Emanuele; Pucci, Amaranta; Branciamore, Sergio; Cestelli Guidi, Mariangela; Fornaro, Teresa

    The interaction between electromagnetic radiation and bio-molecules in heterogeneous environments is a prebiotically relevant process. Minerals may have a pivotal role in the prebiotic evolution of complex chemical systems, mediating the effects of electromagnetic radiation, influencing the photostability of bio-molecules, catalyzing important chemical reactions and/or protecting molecules against degradation. In particular, nucleobases are relevant bio-molecules to investigate both in the prebiotic context, because they are coding components of nucleic acids, and from the standpoint of the survival of biological systems in space conditions. In this talk, laboratory results on photostability of nucleobases adsorbed on minerals will be presented.

  17. Assessment of new triplet forming artificial nucleobases as RNA ligands directed towards HCV IRES IIId loop.

    PubMed

    Safir Filho, Mauro; Martin, Anthony R; Benhida, Rachid

    2017-04-15

    We report the synthesis of two new artificial nucleobase scaffolds, 1 and 2, featuring adequate hydrogen bonding donors and acceptors for the molecular recognition of U:A and C:G base pairs, respectively. The tethering of these structures to various amino acids and the assessment of these artificial nucleobase-amino acid conjugates as RNA ligands against a model of HCV IRES IIId domain are also reported. Compound 1e displayed the highest affinity (Kd twice lower than neomycin - control). Moreover, it appears that this interaction is enthalpically and entropically favored.

  18. Hydrogelation abilities of nucleobase-modified cytidines possessing substituted triazoles

    PubMed Central

    Dodd, David W; Jones, Nathan D

    2010-01-01

    Nucleoside-derived hydrogelators have been sought for their potential biomedical applications, such as are found in tissue engineering and drug delivery. By judiciously adding a degree of hydrophobicity certain analogues are able to form micelles, bi-layers and gels in water. Research in this area has yet to lay down solid ground rules for the rational design of novel nucleoside gelators making further studies necessary. The synthesis and examination of a series of aryl-substituted 5-triazolylcytidines yielded an analogue that gelates water. 5-(1-(2,2′-bithiophen-3-yl)-1H-1,2,3-triazol-4-yl)-2′-deoxycytidine was found to form gels in water down to 0.3 wt%. The ribocytidine analogue failed to form gel in aqueous solution; but was able to form a hydrogel in the presence of guanosine. Images obtained by SEM show the different architectures of the gel; varying from cribriform to fibrous to lamellar. The present gelating compound studied may have potential as a component of a controlled-release drug delivery system. PMID:21686244

  19. An examination of faying surface fretting in single lap splices

    NASA Astrophysics Data System (ADS)

    Brown, Adam

    While fretting damage in mechanically fastened joints is widely acknowledged as a common source of crack nucleation, little work is available in the open literature on the role that fretting damage plays in the fatigue life of a riveted joint. To expand on the limited knowledge available, a study was undertaken on fretting fatigue in thin-sheet riveted fuselage lap joints. In joints constructed out of 1 mm thick 2024-T3 aluminum sheet the rivet forming load was found to have a significant effect on the location of fretting damage and crack nucleation. This effect was observed for splices riveted with machine countersunk and with universal rivets. The shift in the location of peak fretting damage and crack nucleation with changing rivet forming loads was investigated through numerical and experimental methods. A predictive model based on the critical plane Smith-Watson-Topper strain life equation was applied to the complex geometry of the single lap splice and was shown to be effective in predicting the fretting fatigue life as well as the location of fretting-induced crack nucleation. Basing this model on an explicit finite element simulation allowed for the inclusion of compressive residual stresses generated during rivet forming. Key to the proper functionality of the predictive model was to have a validated finite element model from which results for the stress and strain field in the loaded component could be obtained. In addition to the predictive model, a series of splice coupon and simplified geometry fretting fatigue tests were performed. The tests showed that, at higher rivet forming loads, crack nucleation is on the faying surface away from the hole edge and that the type of surface condition is important to the fretting fatigue life of the splice. The discovery of this variation with surface treatment at high rivet forming loads is important as more research is showing the benefit of using load-controlled rivet forming and higher rivet forming loads in

  20. Temperature-cycle single-molecule FRET microscopy on polyprolines.

    PubMed

    Yuan, Haifeng; Xia, Ted; Schuler, Benjamin; Orrit, Michel

    2011-02-07

    Accessing the microsecond dynamics of a single fluorescent molecule in real time is difficult because molecular fluorescence rates usually limit the time resolution to milliseconds. We propose to apply single-molecule temperature-cycle microscopy to probe molecular dynamics at microsecond timescales. Here, we follow donor and acceptor signals of single FRET-labeled polyprolines in glycerol to investigate their conformational dynamics. We observe a steady-state FRET efficiency distribution which differs from theoretical distributions for isotropically orientated fluorescent labels. This may indicate that the orientation of fluorescent labels in glycerol is not isotropic and may reflect the influence of the dye linkers. With proper temperature-cycle parameters, we observed large FRET changes in long series of cycles of the same molecule. We attribute the main conformational changes to reorientations of the fluorescent labels with respect to the oligopeptide chain, which take place in less than a few microseconds at the highest temperature of the cycle (250 K). We were able to follow the FRET efficiency of a particular construct for more than 2000 cycles. This trajectory displays switching between two conformations, which give rise to maxima in the FRET efficiency histogram. Our experiments open the possibility to study biomolecular dynamics at a time scale of a few microseconds at the single-molecule level.

  1. Three Dimensional Finite Element Simulation of the Fretting Wear Problems

    NASA Astrophysics Data System (ADS)

    Lee, Choon Yeol; Bae, Joon Woo; Choi, Byung Sun; Chai, Young Suck

    The structural integrity of steam generators in nuclear power plants is very much dependent upon the fretting wear characteristics of Inconel 690 U-tubes. In this study, a finite element analysis was used to investigate fretting wear on the secondary side of the steam generator, which arises from flow-induced vibrations (FIV) between the U-tubes and supports or foreign objects. Two-dimensional and three-dimensional finite element analyses were adopted to investigate the fretting wear problems. The purpose of the two-dimensional analysis, which simulated the contact between a punch and a plate, was to demonstrate the validity of using finite element analysis to analyze fretting wear problems. This was achieved by controlling the value of the wear constant and the number of cycles. The two-dimensional solutions obtained from this study were in good agreement with previous results reported by Strömberg. In the three-dimensional finite element analysis, a quarterly symmetric model was used to simulate tubes contacting at right angles. The results of the analyses showed donut-shaped wear along the contacting boundary, which is a typical feature of fretting wear.

  2. A Unique Genetically Encoded FRET Pair in Mammalian Cells.

    PubMed

    Mitchell, Amanda L; Addy, Partha Sarathi; Chin, Melissa A; Chatterjee, Abhishek

    2017-03-16

    Förster resonance energy transfer (FRET) between two suitable fluorophores is a powerful tool to monitor dynamic changes in protein structure in vitro and in vivo. The ability to genetically encode a FRET pair represents a convenient "labeling-free" strategy to incorporate them into target protein(s). Currently, the only genetically encoded FRET pairs available for use in mammalian cells use fluorescent proteins. However, their large size can lead to unfavorable perturbations, particularly when two are used at the same time. Additionally, fluorescent proteins are largely restricted to a terminal attachment to the target, which might not be optimal. Here, we report the development of an alternative genetically encoded FRET pair in mammalian cells that circumvents these challenges by taking advantage of a small genetically encoded fluorescent unnatural amino acid as the donor and enhanced green fluorescent protein (EGFP) as the acceptor. The small size of Anap relative to fluorescent proteins, and the ability to co-translationally incorporate it into internal sites on the target protein, endows this novel FRET pair with improved versatility over its counterparts that rely upon two fluorescent proteins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Bleed-through and photobleaching correction in multiphoton FRET microscopy

    NASA Astrophysics Data System (ADS)

    Elangovan, Masilamani; Periasamy, Ammasi

    2001-04-01

    Fluorescence resonance energy transfer (FRET) microscopy provides a tool to visualize the protein with high spatial and temporal resolution. In multi-photon FRET microscopy one experiences considerably less photobleaching compared to one-photon excitation since the illumination is the diffraction limited spot and the excitation is infrared-pulsed laser light. Because of the spectral overlap involved in the selection of the fluorophore pair for FRET imaging, the spectral bleed-through signal in the FRET channel is unavoidable. We describe in this paper the development of dedicated software to correct the bleed-through signal due to donor and acceptor fluorophore molecules. We used living cells expressed with BFP-RFP (DsRed)-C/EBP(alpha) proteins in the nucleus. We acquired images of different combinations like donor alone, acceptor alone, and both acceptor and donor under similar conditions. We statistically evaluated the percentage of bleed-through signal from one channel to the other based on the overlap areas of the spectra. We then reconstructed the images after applying the correction. Characterization of multi-photon FRET imaging system taking into account the intensity, dwell time, concentration of fluorophore pairs, objective lens and the excitation wavelength are described in this paper.

  4. Fluorescent proteins for FRET microscopy: monitoring protein interactions in living cells

    PubMed Central

    Day, Richard N.; Davidson, Michael W.

    2012-01-01

    Summary The discovery and engineering of novel fluorescent proteins (FPs) from diverse organisms is yielding fluorophores with exceptional characteristics for live-cell imaging. In particular, the development of FPs for fluorescence (or Förster) resonance energy transfer (FRET) microscopy is providing important tools for monitoring dynamic protein interactions inside living cells. The increased interest in FRET microscopy has driven the development of many different methods to measure FRET. However, the interpretation of FRET measurements is complicated by several factors including the high fluorescence background, the potential for photoconversion artifacts, and the relatively low dynamic range afforded by this technique. Here, we describe the advantages and disadvantages of four methods commonly used in FRET microscopy. We then discuss the selection of FPs for the different FRET methods, identifying the most useful FP candidates for FRET microscopy. The recent success in expanding the FP color palette offers the opportunity to explore new FRET pairs. PMID:22396229

  5. Influence of fretting on flexural fatigue of 304 stainless steel and mild steel

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Rohn, D. A.

    1978-01-01

    Fretting fatigue experiments conducted on 304 stainless steel using a flexural fatigue test arrangement with bolted on fretting pads demonstrated that fatigue life is reduced by at least a factor of 10 in the 265 to 334 MPa (38,500 - to 48,500 psi) nominal flexural fatigue stress range. In addition, experiments in which the fretting pads were removed after selected numbers of cycles, followed by continued flexural fatigue without fretting show that continued fretting beyond 50,000 cycles does not significantly further reduce fatigue life of 304 stainless steel at 317 MPa (46,000 psi). Microscopic examination of the fretted contact areas revealed fracture initiation sites as well as numerous cracks that did not propagate to failure. Flexural fretting fatigue experiments performed on mild steel showed an insensitivity of fatigue life to the incidence of fretting under flexural stress conditions of from 162 to 217 MPa (23,500 to 31,500 psi).

  6. DNA Probes Using Fluorescence Resonance Energy Transfer (FRET): Designs and Applications

    PubMed Central

    Didenko, Vladimir V.

    2007-01-01

    Fluorescence resonance energy transfer (FRET) is widely used in biomedical research as a reporter method. Oligonucleotides with a DNA backbone and one or several chromophore tags have found multiple applications as FRET probes. They are especially advantageous for the real-time monitoring of biochemical reactions and in vivo studies. This paper reviews the design and applications of various DNA-based probes that use FRET. The approaches used in the design of new DNA FRET probes are discussed. PMID:11730017

  7. ICE AND DEBRIS IN THE FRETTED TERRAIN, MARS.

    USGS Publications Warehouse

    Lucchitta, Baerbel K.

    1984-01-01

    Viking moderate- and high-resolution images along the northern highland margin were studied monoscopically and stereoscopically to contribute to an understanding of the development of fretted terrain. Results support the hypothesis that the fretting process involved flow facilitated by interstitial ice. The process apparently continued for a long period of time, and debris-apron formation shaped the fretted terrain in the past as well as the present. Interstitial ice in debris aprons is most likely derived from ground ice obtained by sapping or scarp collapse. Debris aprons could have been removed by sublimation if they consisted mostly of ice, or by deflation if they consisted mostly of debris. To remove the debris, wind erosion was either very intense early in martian history, or was intermittent, perhaps owing to climatic cycles.

  8. Quantification of waste morphology in Martian fretted terrain

    NASA Technical Reports Server (NTRS)

    Kochel, R. C.; Peake, R. T.

    1984-01-01

    Qualitative and quantitative analyses are performed on the northern fretted terrain of the Martian Isnenius Lacus quadrangle to determine the formation processes. The fretted terrain lies between 35-50 deg N latitude and 305-350 deg W longitude and was mapped with Viking orbiter instrumentation. The dominant landforms are a sequence of heavily cratered terrain, scattered flat-floored, fretted valleys, linear waste-covered valleys between flat-topped mesas, circum-mesa debris areas, a transition from mesas to knobby terrain, fewer upland forms, and low-relief, mantled, polar plains. The features spread out from a cratered terrain boundary in a succession of shapes. A principal components analysis characterizes definable spatial variations in the surface morphology and suggests that the features are youngest in the southwest direction. Relationships are also found between neighboring features. The principal components analysis technique is concluded to be a valuable tool for explaining the geomorphic evolution of the Martian surface.

  9. Martian Fretted Terrain Morphometry Interpreted Using Principal Components Analysis

    NASA Technical Reports Server (NTRS)

    Kochell, R. C.

    1985-01-01

    Martian fretted terrain is an extensive area of complex topography characterized by smooth, flat-floor valleys and mesas separated by abrupt escarpments along the boundary of heavily cratered uplands. The Deuteronilus-Protonilus region of the fretted terrain between latitude 35 degrees N and 50 degrees N and between 305 degrees W and 350 degrees W longitude was selected for quantitative landform study with the use of principal components analysis (PCA). The morphometry of upland mesa remnants and debris aprons was digitized with respect to latitude, longitude, and distance from the cratered terrain boundary (CTB). The PCA demonstrates that there are definable spatial variations in morphology with respect to longitude and latitude which suggest that the degradation along the CTB proceeded toward the southwest. The PCA also showed that there are organized relationships within the fretted landforms irrespective of their location. Finally, PCA indicated that an orientation of the degraded mesas exists which may be controlled by structure.

  10. Salicylates are interference compounds in TR-FRET assays.

    PubMed

    Hanley, Ronan P; Horvath, Shanti; An, Jianghong; Hof, Fraser; Wulff, Jeremy E

    2016-02-01

    Given the importance of high-throughput screening in drug discovery, the identification of compounds that interfere with assay readouts is crucial. The pursuit of false positives wastes time and money, while distracting development teams from more promising leads. In the context of TR-FRET assays, most interfering compounds are dyes or aggregators. In the course of our studies on the PD1-PDL2 interaction, we discovered that salicylic acids, an extremely common compound subclass in screening libraries, interfere with TR-FRET assays. While the precise mechanism of interference was not established, our data suggest that interaction of the salicylate with the cryptand-ligated europium FRET donor is responsible for the change in assay signal.

  11. Borromean three-body FRET in frozen Rydberg gases

    PubMed Central

    Faoro, R.; Pelle, B.; Zuliani, A.; Cheinet, P.; Arimondo, E.; Pillet, P.

    2015-01-01

    Controlling the interactions between ultracold atoms is crucial for quantum simulation and computation purposes. Highly excited Rydberg atoms are considered in this prospect for their strong and controllable interactions known in the dipole-dipole case to induce non-radiative energy transfers between atom pairs, similarly to fluorescence resonance energy transfer (FRET) in biological systems. Here we predict few-body FRET processes in Rydberg atoms and observe the first three-body resonance energy transfer in cold Rydberg atoms using cold caesium atoms. In these resonances, additional relay atoms carry away an energy excess preventing the two-body resonance, leading thus to a Borromean type of energy transfer. These few-body processes present strong similarities with multistep FRET between chromophores sometimes called donor-bridge-acceptor or superexchange. Most importantly, they generalize to any Rydberg atom and could lead to new implementations of few-body quantum gates or entanglement. PMID:26348821

  12. Riboswitch Structure and Dynamics by smFRET Microscopy

    PubMed Central

    Suddala, Krishna C.; Walter, Nils G.

    2016-01-01

    Riboswitches are structured non-coding RNA elements that control the expression of their embedding messenger RNAs by sensing the intracellular concentration of diverse metabolites. As the name suggests, riboswitches are dynamic in nature so that studying their inherent conformational dynamics and ligand-mediated folding is important for understanding their mechanism of action. Single molecule fluorescence energy transfer (smFRET) microscopy is a powerful and versatile technique for studying the folding pathways and intra- and intermolecular dynamics of biological macromolecules, especially RNA. The ability of smFRET to monitor intramolecular distances and their temporal evolution make it a particularly insightful tool for probing the structure and dynamics of riboswitches. Here, we detail the general steps for using prism-based total internal reflection fluorescence (TIRF) microscopy for smFRET studies of the structure, dynamics and ligand binding mechanisms of riboswitches. PMID:25432756

  13. Borromean three-body FRET in frozen Rydberg gases

    NASA Astrophysics Data System (ADS)

    Faoro, R.; Pelle, B.; Zuliani, A.; Cheinet, P.; Arimondo, E.; Pillet, P.

    2015-09-01

    Controlling the interactions between ultracold atoms is crucial for quantum simulation and computation purposes. Highly excited Rydberg atoms are considered in this prospect for their strong and controllable interactions known in the dipole-dipole case to induce non-radiative energy transfers between atom pairs, similarly to fluorescence resonance energy transfer (FRET) in biological systems. Here we predict few-body FRET processes in Rydberg atoms and observe the first three-body resonance energy transfer in cold Rydberg atoms using cold caesium atoms. In these resonances, additional relay atoms carry away an energy excess preventing the two-body resonance, leading thus to a Borromean type of energy transfer. These few-body processes present strong similarities with multistep FRET between chromophores sometimes called donor-bridge-acceptor or superexchange. Most importantly, they generalize to any Rydberg atom and could lead to new implementations of few-body quantum gates or entanglement.

  14. Simultaneous Quantitative Live Cell Imaging of Multiple FRET-Based Biosensors

    PubMed Central

    Woehler, Andrew

    2013-01-01

    We have developed a novel method for multi-color spectral FRET analysis which is used to study a system of three independent FRET-based molecular sensors composed of the combinations of only three fluorescent proteins. This method is made possible by a novel routine for computing the 3-D excitation/emission spectral fingerprint of FRET from reference measurements of the donor and acceptor alone. By unmixing the 3D spectrum of the FRET sample, the total relative concentrations of the fluorophores and their scaled FRET efficiencies are directly measured, from which apparent FRET efficiencies can be computed. If the FRET sample is composed of intramolecular FRET sensors it is possible to determine the total relative concentration of the sensors and then estimate absolute FRET efficiency of each sensor. Using multiple tandem constructs with fixed FRET efficiency as well as FRET-based calcium sensors with novel fluorescent protein combinations we demonstrate that the computed FRET efficiencies are accurate and changes in these quantities occur without crosstalk. We provide an example of this method’s potential by demonstrating simultaneous imaging of spatially colocalized changes in [Ca2+], [cAMP], and PKA activity. PMID:23613792

  15. Phosphatidylethanolamine-lactose permease interaction: a comparative study based on FRET.

    PubMed

    Suárez-Germà, Carme; Loura, Luís M S; Domènech, Oscar; Montero, M Teresa; Vázquez-Ibar, José Luís; Hernández-Borrell, Jordi

    2012-12-06

    In this work we have investigated the selectivity of lactose permease (LacY) of Escherichia coli (E. coli) for its surrounding phospholipids when reconstituted in binary mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), 1,2-Palmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) with 1-palmitoyl-2-oleoyl-sn-glycero-3-(phospho-rac-(1-glycerol)) (POPG). Förster resonance energy transfer (FRET) measurements have been performed to investigate the selectivity between a single tryptophan mutant of LacY used as donor (D), and two analogues of POPE and POPG labeled with pyrene in the acyl chains (Pyr-PE and Pyr-PG) used as acceptors. As a difference from previous works, now the donor has been single-W151/C154G/D68C LacY. It has been reported that the replacement of the aspartic acid in position 68 by cysteine inhibits active transport in LacY. The objectives of this work were to elucidate the phospholipid composition of the annular region of this mutant and to determine whether the mutation performed, D68C, induced changes in the protein-lipid selectivity. FRET efficiencies for Pyr-PE were always higher than for Pyr-PG. The values of the probability of each site in the annular ring being occupied by a label (μ) were similar at the studied temperatures (24 °C and 37 °C), suggesting that the lipid environment is not significantly affected when increasing the temperature. By comparing the results with those obtained for single-W151/C154G LacY, we observe that the mutation in the 68 residue indeed changes the selectivity of the protein for the phospholipids. This might be probably due to a change in the conformational dynamics of LacY.

  16. Characterization of nucleobases and nucleosides in the fruit of Alpinia oxyphylla collected from different cultivation regions.

    PubMed

    Song, Wenjing; Li, Yonghui; Wang, Jianguo; Li, Zeyou; Zhang, Junqing

    2014-03-01

    The fruit of Alpinia oxyphylla, known as Yizhi, Yakuchi and Ikji in Chinese, Japanese, and Korean, respectively, has been utilized as an important drug for the treatment of diarrhea, dyspepsia, spermatorrhea, kidney asthenia and abdominal pain in East Asian traditional medicine for thousands of years. Since the therapeutic effects of A. oxyphylla are attributed to multiple components and nucleobases and nucleosides exhibit various bioactivities, it is necessary to explore the chemical characterization of nucleobases and nucleosides in this herb. Herein, 10 common nucleobases and nucleosides, including cytidine, adenosine, thymidine, inosine, guanosine, 2'-deoxyinosine, guanine, adenine, cytosine, and hypoxanthine, were quantified simultaneously in the fruit of A. oxyphylla collected from different geographical regions. Changes in their contents were discussed, and hierarchical cluster analysis (HCA) was performed to classify all samples on the basis of the contents of the investigated analytes. The results indicated that there was a large variation in the contents of nucleobases and nucleosides among the herbs from different regions, and the samples collected from the same cultivation region were mostly classified in one cluster. The method can be used for comprehensive quality evaluation of A. oxyphylla. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Origin of the RNA world: The fate of nucleobases in warm little ponds.

    PubMed

    Pearce, Ben K D; Pudritz, Ralph E; Semenov, Dmitry A; Henning, Thomas K

    2017-10-02

    Before the origin of simple cellular life, the building blocks of RNA (nucleotides) had to form and polymerize in favorable environments on early Earth. At this time, meteorites and interplanetary dust particles delivered organics such as nucleobases (the characteristic molecules of nucleotides) to warm little ponds whose wet-dry cycles promoted rapid polymerization. We build a comprehensive numerical model for the evolution of nucleobases in warm little ponds leading to the emergence of the first nucleotides and RNA. We couple Earth's early evolution with complex prebiotic chemistry in these environments. We find that RNA polymers must have emerged very quickly after the deposition of meteorites (less than a few years). Their constituent nucleobases were primarily meteoritic in origin and not from interplanetary dust particles. Ponds appeared as continents rose out of the early global ocean, but this increasing availability of "targets" for meteorites was offset by declining meteorite bombardment rates. Moreover, the rapid losses of nucleobases to pond seepage during wet periods, and to UV photodissociation during dry periods, mean that the synthesis of nucleotides and their polymerization into RNA occurred in just one to a few wet-dry cycles. Under these conditions, RNA polymers likely appeared before 4.17 billion years ago.

  18. 6-Pyrazolylpurine as an Artificial Nucleobase for Metal-Mediated Base Pairing in DNA Duplexes

    PubMed Central

    Léon, J. Christian; Sinha, Indranil; Müller, Jens

    2016-01-01

    The artificial nucleobase 6-pyrazol-1-yl-purine (6PP) has been investigated with respect to its usability in metal-mediated base pairing. As was shown by temperature-dependent UV spectroscopy, 6PP may form weakly stabilizing 6PP–Ag(I)–6PP homo base pairs. Interestingly, 6PP can be used to selectively recognize a complementary pyrimidine nucleobase. The addition of Ag(I) to a DNA duplex comprising a central 6PP:C mispair (C = cytosine) leads to a slight destabilization of the duplex. In contrast, a stabilizing 6PP–Ag(I)–T base pair is formed with a complementary thymine (T) residue. It is interesting to note that 6PP is capable of differentiating between the pyrimidine moieties despite the fact that it is not as sterically crowded as 6-(3,5-dimethylpyrazol-1-yl)purine, an artificial nucleobase that had previously been suggested for the recognition of nucleic acid sequences via the formation of a metal-mediated base pair. Hence, the additional methyl groups of 6-(3,5-dimethylpyrazol-1-yl)purine may not be required for the specific recognition of the complementary nucleobase. PMID:27089326

  19. Optical properties of organically functionalized silicon surfaces: Uracil-like nucleobases on Si(001)

    NASA Astrophysics Data System (ADS)

    Molteni, Elena; Cappellini, Giancarlo; Onida, Giovanni; Fratesi, Guido

    2017-02-01

    We predict UV reflectance anisotropy spectra (RAS) of the organically functionalized silicon (001) surface covered by pyrimidinic uracil-like nucleobases. First-principles results based on density functional theory show characteristic spectral features appearing in the UV range between 3 and 7 eV, besides the expected quench in the well-known two-minima RAS signal of clean Si(001). Nucleobase adsorption in the energetically favored "dimer bridge" configuration gives rise to a characteristic RAS line shape, common to thymine, uracil, and 5-fluorouracil. We trace back the origin of such spectral features by singling out RAS structures induced by relaxation and passivation effects on the Si surface, and those directly associated with molecular excitations. The former turn out to be the same for the three nucleobases, and are totally unaffected by molecular tilting. The sign and position of the latter RAS peaks at higher energy exhibit a moderate nucleobase dependence, and can be fully rationalized in terms of the molecular orbitals involved. The present theoretical results call for a RAS experimental study in the UV region extending up to ≃6 -7 eV.

  20. Macrocyclic Metal Complex-DNA Conjugates for Electrochemical Sensing of Single Nucleobase Changes in DNA.

    PubMed

    Duprey, Jean-Louis H A; Carr-Smith, James; Horswell, Sarah L; Kowalski, Jarosław; Tucker, James H R

    2016-01-27

    The direct incorporation of macrocyclic cyclidene complexes into DNA via automated synthesis results in a new family of metal-functionalized DNA derivatives that readily demonstrate their utility through the ability of one redox-active copper(II)-containing strand to distinguish electrochemically between all four canonical DNA nucleobases at a single site within a target sequence of DNA.

  1. The Photochemistry of Pyrimidine in Realistic Astrophysical Ices and the Production of Nucleobases

    NASA Astrophysics Data System (ADS)

    Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A.

    2014-10-01

    Nucleobases, together with deoxyribose/ribose and phosphoric acid, are the building blocks of DNA and RNA for all known life. The presence of nucleobase-like compounds in carbonaceous chondrites delivered to the Earth raises the question of an extraterrestrial origin for the molecules that triggered life on our planet. Whether these molecules are formed in interstellar/protostellar environments, in small parent bodies in the solar system, or both, is currently unclear. Recent experiments show that the UV irradiation of pyrimidine (C4H4N2) in H2O-rich ice mixtures that contain NH3, CH3OH, or CH4 leads to the formation of the pyrimidine-based nucleobases uracil, cytosine, and thymine. In this work, we discuss the low-temperature UV irradiation of pyrimidine in realistic astrophysical ice mixtures containing H2O, CH3OH, and NH3, with or without CH4, to search for the production of nucleobases and other prebiotic compounds. These experiments show the presence of uracil, urea, glycerol, hexamethylenetetramine, small amino acids, and small carboxylic acids in all samples. Cytosine was only found in one sample produced from ices irradiated with a higher UV dose, while thymine was not found in any sample, even after irradiation with a higher UV dose. Results are discussed to evaluate the role of the photochemistry of pyrimidine in the inventory of organic molecules detected in meteorites and their astrophysical/astrobiological implications.

  2. Hartree-Fock Cluster Study of Electronic Structures and Nuclear Quadrupole Interactions in Solid Nucleobases.

    NASA Astrophysics Data System (ADS)

    Scheicher, R. H.; Dubey, Archana; Badu, S. R.; Saha, H. P.; Pink, R. H.; Nagamine, K.; Torikai, E.; Chow, Lee; Das, T. P.

    2008-03-01

    In recent work [1] we have studied nucleobases attached to a CH3 group to simulate the influence of their binding to the sugar rings and the phosphate groups in DNA and RNA and the effect of this binding on the nuclear quadrupole interactions of ^14N, ^17O and ^2H nuclei. Our results from this work have indicated that for ^17O, the binding to the CH3 group moves our results from the free nucleobases closer to the experimentally observed data [2] in the solid nucleobases. We are now investigating the solid nucleobases by the first --principles Hartree-Fock cluster procedure that we have employed earlier for the halogen molecular solids [3]. Our results for the binding energy of an imidazole molecule in the molecular solid system and the ^14N, ^17O and ^2H nuclear quadrupole interaction parameters will be presented. [1] T.P. Das et al (at this APS meeting), [2] Gang Wu et al, J. Am.Chem. Soc. 124, 1768(2002). [3] M.M. Aryal et al Hyperfine Interactions (to be published).

  3. Dependence of Binding Free Energies between RNA Nucleobases and Protein Side Chains on Local Dielectric Properties.

    PubMed

    de Ruiter, Anita; Polyansky, Anton A; Zagrovic, Bojan

    2017-09-12

    In order to fully understand the microscopic origins of binding specificity between nucleic acids and proteins, it is imperative to study the dependence of the binding preferences between nucleobases and protein side chains on the properties of the environment. Here, we employ molecular dynamics simulations and umbrella sampling to derive the potentials of mean force and the associated absolute binding free energies between the four standard RNA nucleobases and the side chains of aspartic acid and tryptophan in water/methanol mixtures exhibiting a wide range of dielectric constants. In addition to their opposing character when it comes to hydrophobicity, aspartate and tryptophan side chains were chosen because they exhibit the greatest change in binding free energies with nucleobases between pure water and methanol environments. We exploit a strong linear dependence of the derived ΔG values on the mole fraction of methanol to estimate the binding free energies of all possible combinations of different standard RNA nucleobases and side chains at multiple values of dielectric constants. Finally, we critically assess the recently proposed complementarity hypothesis concerning direct, coaligned binding between mRNAs and their cognate proteins in light of the present results.

  4. Characterizing 3D RNA structure by single molecule FRET.

    PubMed

    Stephenson, James D; Kenyon, Julia C; Symmons, Martyn F; Lever, Andrew M L

    2016-07-01

    The importance of elucidating the three dimensional structures of RNA molecules is becoming increasingly clear. However, traditional protein structural techniques such as NMR and X-ray crystallography have several important drawbacks when probing long RNA molecules. Single molecule Förster resonance energy transfer (smFRET) has emerged as a useful alternative as it allows native sequences to be probed in physiological conditions and allows multiple conformations to be probed simultaneously. This review serves to describe the method of generating a three dimensional RNA structure from smFRET data from the biochemical probing of the secondary structure to the computational refinement of the final model.

  5. Fretting Stresses in Single Crystal Superalloy Turbine Blade Attachments

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Swanson, Gregory

    2000-01-01

    Single crystal nickel base superalloy turbine blades are being utilized in rocket engine turbopumps and turbine engines because of their superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal nickel base turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. High Cycle Fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Blade attachment regions are prone to fretting fatigue failures. Single crystal nickel base superalloy turbine blades are especially prone to fretting damage because the subsurface shear stresses induced by fretting action at the attachment regions can result in crystallographic initiation and crack growth along octahedral planes. Furthermore, crystallographic crack growth on octahedral planes under fretting induced mixed mode loading can be an order of magnitude faster than under pure mode I loading. This paper presents contact stress evaluation in the attachment region for single crystal turbine blades used in the NASA alternate Advanced High Pressure Fuel Turbo Pump (HPFTP/AT) for the Space Shuttle Main Engine (SSME). Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Blades and the attachment region are modeled using a large-scale 3D finite element (FE) model capable of accounting for contact friction, material orthotrophy, and variation in primary and secondary crystal orientation. Contact stress analysis in the blade attachment regions is presented as a function of coefficient of friction and primary and secondary crystal orientation, Stress results are used to discuss fretting fatigue failure analysis of SSME blades. Attachment stresses are seen to reach

  6. Interactions of the "piano-stool" [ruthenium(II) (eta6-arene)(en)CL]+ complexes with water and nucleobases; ab initio and DFT study.

    PubMed

    Futera, Zdenek; Klenko, Julia; Sponer, Judit E; Sponer, Jirí; Burda, Jaroslav V

    2009-09-01

    Piano stool ruthenium complexes of the composition [Ru(II)(eta6-arene)(en)Cl](+/2+) (en = ethylenediamine) represent an emerging class of cisplatin-analogue anticancer drug candidates. In this study, we use computational quantum chemistry to characterize the structure, stability and reactivity of these compounds. All these structures were optimized at DFT(B3LYP)/6-31G(d) level and their single point properties were determined by the MP2/6-31++G(2df,2pd) method. Thermodynamic parameters and rate constants were determined for the aquation process, as a replacement of the initial chloro ligand by water and subsequent exchange reaction of aqua ligand by nucleobases. The computations were carried out at several levels of DFT and ab initio theories (B3LYP, MP2 and CCSD) utilizing a range of bases sets (from 6-31G(d) to aug-cc-pVQZ). Excellent agreement with experimental results for aquation process was obtained at the CCSD level and reasonable match was achieved also with the B3LYP/6-31++G(2df,2pd) method. This level was used also for nucleobase-water exchange reaction where a smaller rate constant for guanine exchange was found in comparison with adenine. Although adenine follows a simple replacement mechanism, guanine complex passes by a two-step mechanism. At first, Ru-O6(G) adduct is formed, which is transformed through a chelate TS2 to the Ru-N7(G) final complex. In case of guanine, the exchange reaction is more favorable thermodynamically (releasing in total by about 8 kcal/mol) but according to our results, the rate constant for guanine substitution is slightly smaller than the analogous constant in adenine case when reaction course from local minimum is considered. Copyright 2008 Wiley Periodicals, Inc.

  7. Urea Mimics Nucleobases by Preserving the Helical Integrity of B-DNA Duplexes via Hydrogen Bonding and Stacking Interactions.

    PubMed

    Suresh, Gorle; Padhi, Siladitya; Patil, Indrajit; Priyakumar, U Deva

    2016-10-11

    Urea lesions are formed in DNA because of free radical damage of the thymine base, and their occurrence in DNA blocks DNA polymerases, which has deleterious consequences. Recently, it has been shown that urea is capable of forming hydrogen bonding and stacking interactions with nucleobases, which are responsible for the unfolding of RNA in aqueous urea. Base pairing and stacking are inherent properties of nucleobases; because urea is able to form both, this study attempts to investigate if urea can mimic nucleobases in the context of nucleic acid structures by examining the effect of introducing urea lesions complementary to the four different nucleobases on the overall helical integrity of B-DNA duplexes and their thermodynamic stabilities using molecular dynamics (MD) simulations. The MD simulations resulted in stable duplexes without significant changes in the global B-DNA conformation. The urea lesions occupy intrahelical positions by forming hydrogen bonds with nitrogenous nucleobases, in agreement with experimental results. Furthermore, these urea lesions form hydrogen bonding and stacking interactions with other nucleobases of the same and partner strands, analogous to nucleobases in typical B-DNA duplexes. Direct hydrogen bond interactions are observed for the urea-purine pairs within DNA duplexes, whereas two different modes of pairing, namely, direct hydrogen bonds and water-mediated hydrogen bonds, are observed for the urea-pyrimidine pairs. The latter explains the complexities involved in interpreting the experimental nuclear magnetic resonance data reported previously. Binding free energy calculations were further performed to confirm the thermodynamic stability of the urea-incorporated DNA duplexes with respect to pure duplexes. This study suggests that urea mimics nucleobases by pairing opposite all four nucleobases and maintains the overall structure of the B-DNA duplexes.

  8. Structure-activity relationships of β-hydroxyphosphonate nucleoside analogues as cytosolic 5'-nucleotidase II potential inhibitors: synthesis, in vitro evaluation and molecular modeling studies.

    PubMed

    Meurillon, Maïa; Marton, Zsuzsanna; Hospital, Audrey; Jordheim, Lars Petter; Béjaud, Jérôme; Lionne, Corinne; Dumontet, Charles; Périgaud, Christian; Chaloin, Laurent; Peyrottes, Suzanne

    2014-04-22

    The cytosolic 5'-nucleotidase II (cN-II) has been proposed as an attractive molecular target for the development of novel drugs circumventing resistance to cytotoxic nucleoside analogues currently used for treating leukemia and other malignant hemopathies. In the present work, synthesis of β-hydroxyphosphonate nucleoside analogues incorporating modifications either on the sugar residue or the nucleobase, and their in vitro evaluation towards the purified enzyme were carried out in order to determine their potency towards the inhibition of cN-II. In addition to the biochemical investigations, molecular modeling studies revealed important structural features for binding affinities towards the target enzyme.

  9. Mapping the UV Photophysics of Platinum Metal Complexes Bound to Nucleobases

    NASA Astrophysics Data System (ADS)

    Sen, Ananya; Dessent, Caroline

    2015-03-01

    We report the first UV laser spectroscopic study of isolated gas-phase complexes of Platinum metal complex anions bound to a nucleobase as model systems for exploring at the molecular level the key photophysical processes involved in photodynamic therapy. Spectra of the PtIV CN 6 2 - • Uracil and PtII CN 4 2 - • Uracil complexes were acquired across the 220 -320 nm range using mass-selective photodepletion and photofragment action spectroscopy. The spectra of both complexes reveal prominent UV absorption bands that we assign primarily to excitation of the Uracil π - π * localized chromophore. Distinctive UV photofragments are observed for the complexes, with PtIV CN 6 2 - • Uracil photoexcitation resulting in complex fission, while PtII CN 4 2 - • Uracil photoexcitation initiates a nucleobase proton-transfer reaction across 4.4 -5.2 eV and electron detachment above 5.2 eV. The observed photofragments are consistent with ultrafast decay of a Uracil localized excited state back to the electronic ground state followed by intramolecular vibrational relaxation and ergodic complex fragmentation. In addition, we present recent results to explore how the photophysics of the Platinum complex-nucleobase clusters evolves as a function of nucleobase. Results are presented for PtII CN 4 2 - • Uracil complexed to Cytosine, Thymine and Adenine, reveal distinctive decay dynamics which we attribute to the intrinsic decay dynamics of the nucleobase. JPC. Lett. 2014, 5, 3281 to 3285 and PCCP 2014, 16, 15490 to 15500.

  10. Photochemistry of Pyrimidine in Astrophysical Ices: Formation of Nucleobases and Other Prebiotic Species

    NASA Technical Reports Server (NTRS)

    Nuevo, Michel; Sandford, Scott A.; Materese, Christopher K.; Milam, Stefanie N.

    2012-01-01

    Nucleobases are N-heterocycles that are the informational subunits of DNA and RNA. They are divided into two molecular groups: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites, and their extraterrestrial origin confirmed by isotopic measurements. Although no N-heterocycles have ever been observed in the ISM, the positions of the 6.2- m interstellar emission features suggest a population of such molecules is likely to be present. However, laboratory experiments have shown that the ultraviolet (UV) irradiation of pyrimidine in ices of astrophysical relevance such as H2O, NH3, CH3OH, CH4, CO, or combinations of these at low temperature (less than or equal to 20 K) leads to the formation of several pyrimidine derivatives including the nucleobases uracil and cytosine, as well as precursors such as 4(3H)-pyrimidone and 4-aminopyrimidine. Quantum calculations on the formation of 4(3H)-pyrimidone and uracil from the irradiation of pyrimidine in pure H2O ices are in agreement with their experimental formation pathways.10 In those residues, other species of prebiotic interest such as urea as well as the amino acids glycine and alanine could also be identified. However, only very small amounts of pyrimidine derivatives containing CH3 groups could be detected, suggesting that the addition of methyl groups to pyrimidine is not an efficient process. For this reason, the nucleobase thymine was not observed in any of the samples. In this work, we study the formation of nucleobases and other photo-products of prebiotic interest from the UV irradiation of pyrimidine in ices containing H2O, NH3, CH3OH, and CO, mixed in astrophysical proportions.

  11. Identification and Functional Characterization of the First Nucleobase Transporter in Mammals

    PubMed Central

    Yamamoto, Syunsuke; Inoue, Katsuhisa; Murata, Tomoaki; Kamigaso, Syunsuke; Yasujima, Tomoya; Maeda, Jun-ya; Yoshida, Yukihiro; Ohta, Kin-ya; Yuasa, Hiroaki

    2010-01-01

    Nucleobases are important compounds that constitute nucleosides and nucleic acids. Although it has long been suggested that specific transporters are involved in their intestinal absorption and uptake in other tissues, none of their molecular entities have been identified in mammals to date. Here we describe identification of rat Slc23a4 as the first sodium-dependent nucleobase transporter (rSNBT1). The mRNA of rSNBT1 was expressed highly and only in the small intestine. When transiently expressed in HEK293 cells, rSNBT1 could transport uracil most efficiently. The transport of uracil mediated by rSNBT1 was sodium-dependent and saturable with a Michaelis constant of 21.2 μm. Thymine, guanine, hypoxanthine, and xanthine were also transported, but adenine was not. It was also suggested by studies of the inhibitory effect on rSNBT1-mediated uracil transport that several nucleobase analogs such as 5-fluorouracil are recognized by rSNBT1, but cytosine and nucleosides are not or only poorly recognized. Furthermore, rSNBT1 fused with green fluorescent protein was mainly localized at the apical membrane, when stably expressed in polarized Madin-Darby canine kidney II cells. These characteristics of rSNBT1 were almost fully in agreement with those of the carrier-mediated transport system involved in intestinal uracil uptake. Therefore, it is likely that rSNBT1 is its molecular entity or at least in part responsible for that. It was also found that the gene orthologous to the rSNBT1 gene is genetically defective in humans. This may have a biological and evolutional meaning in the transport and metabolism of nucleobases. The present study provides novel insights into the specific transport and metabolism of nucleobases and their analogs for therapeutic use. PMID:20042597

  12. Survey of Analogue Spacetimes

    NASA Astrophysics Data System (ADS)

    Visser, Matt

    Analogue spacetimes (and more boldly, analogue models both of and for gravity), have attracted significant and increasing attention over the last decade and a half. Perhaps the most straightforward physical example, which serves as a template for most of the others, is Bill Unruh's model for a dumb hole,(mute black hole, acoustic black hole), wherein sound is dragged along by a moving fluid—and can even be trapped behind an acoustic horizon. This and related analogue models for curved spacetimes are useful in many ways: analogue spacetimes provide general relativists with extremely concrete physical models to help focus their thinking, and conversely the techniques of curved spacetime can sometimes help improve our understanding of condensed matter and/or optical systems by providing an unexpected and countervailing viewpoint. In this chapter, I shall provide a few simple examples of analogue spacetimes as general background for the rest of the contributions.

  13. FRET-based glucose imaging identifies glucose signalling in response to biotic and abiotic stresses in rice roots.

    PubMed

    Zhu, Qingdong; Wang, Li; Dong, Qianli; Chang, Shu; Wen, Kexin; Jia, Shenghua; Chu, Zhilin; Wang, Hanmeng; Gao, Ping; Zhao, Heping; Han, Shengcheng; Wang, Yingdian

    2017-08-01

    Glucose is the primary energy provider and the most important sugar-signalling molecule, regulating metabolites and modulating gene expression from unicellular yeast to multicellular plants and animals. Therefore, monitoring intracellular glucose levels temporally and spatially in living cells is an essential step for decoding the glucose signalling in response to biotic and abiotic stresses. In this study, the genetically encoded FRET (Förster resonance energy transfer) nanosensors, FLIPglu-2μ∆13 and FLIPglu-600μΔ13, were used to measure cytosolic glucose dynamics in rice plants. First, we found that the FRET signal decreased in response to external glucose in a concentration-dependent manner. The glucose concentration at which the cytosolic level corresponded to the K0.5 value for FLIPglu-2μΔ13 was approximately 10.05μM, and that for FLIPglu-600μΔ13 was 0.9mM, respectively. The substrate selectivity of nanosensors for glucose and its analogues is D-Glucose>2-deoxyglucose>3-O-methylglucose>L-Glucose. We further showed that the biotic elicitors (flg22 and chitin) and the abiotic elicitors (osmotic stress, salinity and extreme temperature) induce the intracellular glucose increases in the detached root segments of transgenic rice containing FLIPglu-2μΔ13 in a stimulus-specific manner, but not in FLIPglu-600μΔ13 transgenic lines. These results demonstrated that FRET nanosensors can be used to detect increases in intracellular glucose within the physiological range of 0.2-20μM in response to various stimuli in transgenic rice root cells, which indicated that intracellular glucose may act as a potential secondary messenger to connect extracellular stimuli with cellular physiological responses in plants. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Fretting of Nickel-Chromium-Aluminum Alloys at Temperatures to 816 C

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1974-01-01

    A series of four nickel-based alloys containing 10 percent and 20 percent chromium in combination with 2 percent and 5 percent aluminum were fretted in dry air at temperatures to 816 C. At all temperatures, the alloys showed far less fretting wear than did high-purity nickel. This was attributed to the formation of protective oxide films on the alloys, the result of the selective oxidation of the alloy constituents. Increasing the aluminum concentration reduced fretting wear at all temperatures. Increasing the chromium concentration from 10 percent to 20 percent resulted in decreased fretting wear at 23 and 540 C, but increased fretting wear at 650 and 816 C.

  15. Synthesis and Evaluation of a Library of Fluorescent Dipeptidomimetic Analogues as Substrates for Modified Bacterial Ribosomes.

    PubMed

    Chowdhury, Sandipan Roy; Chauhan, Pradeep S; Dedkova, Larisa M; Bai, Xiaoguang; Chen, Shengxi; Talukder, Poulami; Hecht, Sidney M

    2016-05-03

    Described herein are the synthesis and photophysical characterization of a library of aryl-substituted oxazole- and thiazole-based dipeptidomimetic analogues, and their incorporation into position 66 of green fluorescent protein (GFP) in lieu of the natural fluorophore. These fluorescent analogues resemble the fluorophore formed naturally by GFP. As anticipated, the photophysical properties of the analogues varied as a function of the substituents at the para position of the phenyl ring. The fluorescence emission wavelength maxima of compounds in the library varied from ∼365 nm (near-UV region) to ∼490 nm (visible region). The compounds also exhibited a large range of quantum yields (0.01-0.92). The analogues were used to activate a suppressor tRNACUA and were incorporated into position 66 of GFP using an in vitro protein biosynthesizing system that employed engineered ribosomes selected for their ability to incorporate dipeptides. Four analogues with interesting photophysical properties and reasonable suppression yields were chosen, and the fluorescent proteins (FPs) containing these fluorophores were prepared on a larger scale for more detailed study. When the FPs were compared with the respective aminoacyl-tRNAs and the actual dipeptide analogues, the FPs exhibited significantly enhanced fluorescence intensities at the same concentrations. Part of this was shown to be due to the presence of the fluorophores as an intrinsic element of the protein backbone. There were also characteristic shifts in the emission maxima, indicating the environmental sensitivity of these probes. Acridon-2-ylalanine and oxazole 1a were incorporated into positions 39 and 66 of GFP, respectively, and were shown to form an efficient Förster resonance energy transfer (FRET) pair, demonstrating that the analogues can be used as FRET probes.

  16. Plant-based FRET biosensor discriminates enviornmental zinc levels

    USDA-ARS?s Scientific Manuscript database

    Heavy metal accumulation in the environment poses great risks to flora and fauna. However, monitoring sites prone to accumulation poses scale and economic challenges. In this study, we present and test a method for monitoring these sites using fluorescent resonance energy transfer (FRET) change in r...

  17. Fretting Fatigue Behavior of Shot-Peened IN 100

    DTIC Science & Technology

    2006-03-01

    117 - x - List of Figures Figure Page Figure 1. Blade/ Disc ...Blade/ Disc Dovetail Joint in a Turbine Engine. - 7 - Figure 2. Simplified Fretting Configuration Contact Load (P) Fatigue Specimen (P...steam turbine power plants, medical applications, nuclear power systems, and in the chemical petrochemical industries 28. Nickel superalloys are

  18. Fretting Fatigue of Gamma TiAl Studied

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2003-01-01

    Gamma titanium-aluminum alloy (g-TiAl) is an attractive new material for aerospace applications because of its low density and high specific strength in comparison to currently used titanium and nickel-base alloys. Potential applications for this material are compressor and low-pressure turbine blades. These blades are fitted into either the compressor or turbine disks via a dovetail connection. The dovetail region experiences a complex stress state due to the alternating centrifugal force and the natural high-frequency vibration of the blade. Because of the dovetail configuration and the complex stress state, fretting is often a problem in this area. Furthermore, the local stress state becomes more complex when the influence of the metal-metal contact and the edge of the contact is evaluated. Titanium and titanium-based alloys in the clean state exhibit strong adhesive bonds when in contact with themselves and other materials (refs. 1 and 2). This adhesion causes heavy surface damage and high friction in practical cases. Although the wear produced by fretting may be mild, the reduction in fatigue life can be substantial. Thus, there is the potential for fretting problems with these TiAl applications. Since TiAl is an emerging material, there has been limited information about its fretting behavior.

  19. FRET-based optical assay for monitoring riboswitch activation.

    PubMed

    Harbaugh, Svetlana; Kelley-Loughnane, Nancy; Davidson, Molly; Narayanan, Latha; Trott, Sandra; Chushak, Yaroslav G; Stone, Morley O

    2009-05-11

    Riboswitches are regulatory RNAs located in the 5'-untranslated region of mRNA sequences that recognize and bind to small molecules and regulate the expression of downstream genes. Creation of synthetic riboswitches to novel ligands depends on the ability to monitor riboswitch activation in the presence of analyte. In our work, we have coupled a synthetic riboswitch to an optical reporter assay based on fluorescence resonance energy transfer (FRET) between two genetically encoded fluorescent proteins. The theophylline-sensitive riboswitch was placed upstream of the Tobacco Etch Virus (TEV) protease coding sequence. Our FRET construct was composed of eGFP and a nonfluorescent yellow fluorescent protein mutant called REACh (for resonance energy-accepting chromoprotein) connected with a peptide linker containing a TEV protease cleavage site. Addition of theophylline to the E. coli cells activates the riboswitch and initiates the translation of mRNA. Synthesized protease cleaves the linker in the FRET-based fusion protein causing a change in the fluorescence signal. By this method, we observed an 11-fold increase in cellular extract fluorescence in the presence of theophylline. The advantage of using an eGFP-REACh pair is the elimination of acceptor fluorescence. This leads to an improved detection of FRET via better signal-to-noise ratio, allowing us to monitor riboswitch activation in a wide range of analyte concentrations from 0.01 to 2.5 mM.

  20. Structural kinetics of myosin by transient time-resolved FRET

    PubMed Central

    Nesmelov, Yuri E.; Agafonov, Roman V.; Negrashov, Igor V.; Blakely, Sarah E.; Titus, Margaret A.; Thomas, David D.

    2011-01-01

    For many proteins, especially for molecular motors and other enzymes, the functional mechanisms remain unsolved due to a gap between static structural data and kinetics. We have filled this gap by detecting structure and kinetics simultaneously. This structural kinetics experiment is made possible by a new technique, (TR)2FRET (transient time-resolved FRET), which resolves protein structural states on the submillisecond timescale during the transient phase of a biochemical reaction. (TR)2FRET is accomplished with a fluorescence instrument that uses a pulsed laser and direct waveform recording to acquire an accurate subnanosecond time-resolved fluorescence decay every 0.1 ms after stopped flow. To apply this method to myosin, we labeled the force-generating region site specifically with two probes, mixed rapidly with ATP to initiate the recovery stroke, and measured the interprobe distance by (TR)2FRET with high resolution in both space and time. We found that the relay helix bends during the recovery stroke, most of which occurs before ATP is hydrolyzed, and two structural states (relay helix straight and bent) are resolved in each nucleotide-bound biochemical state. Thus the structural transition of the force-generating region of myosin is only loosely coupled to the ATPase reaction, with conformational selection driving the motor mechanism. PMID:21245357

  1. Application of FRET probes in the analysis of neuronal plasticity

    PubMed Central

    Ueda, Yoshibumi; Kwok, Showming; Hayashi, Yasunori

    2013-01-01

    Breakthroughs in imaging techniques and optical probes in recent years have revolutionized the field of life sciences in ways that traditional methods could never match. The spatial and temporal regulation of molecular events can now be studied with great precision. There have been several key discoveries that have made this possible. Since green fluorescent protein (GFP) was cloned in 1992, it has become the dominant tracer of proteins in living cells. Then the evolution of color variants of GFP opened the door to the application of Förster resonance energy transfer (FRET), which is now widely recognized as a powerful tool to study complicated signal transduction events and interactions between molecules. Employment of fluorescent lifetime imaging microscopy (FLIM) allows the precise detection of FRET in small subcellular structures such as dendritic spines. In this review, we provide an overview of the basic and practical aspects of FRET imaging and discuss how different FRET probes have revealed insights into the molecular mechanisms of synaptic plasticity and enabled visualization of neuronal network activity both in vitro and in vivo. PMID:24133415

  2. Application of FRET probes in the analysis of neuronal plasticity.

    PubMed

    Ueda, Yoshibumi; Kwok, Showming; Hayashi, Yasunori

    2013-01-01

    Breakthroughs in imaging techniques and optical probes in recent years have revolutionized the field of life sciences in ways that traditional methods could never match. The spatial and temporal regulation of molecular events can now be studied with great precision. There have been several key discoveries that have made this possible. Since green fluorescent protein (GFP) was cloned in 1992, it has become the dominant tracer of proteins in living cells. Then the evolution of color variants of GFP opened the door to the application of Förster resonance energy transfer (FRET), which is now widely recognized as a powerful tool to study complicated signal transduction events and interactions between molecules. Employment of fluorescent lifetime imaging microscopy (FLIM) allows the precise detection of FRET in small subcellular structures such as dendritic spines. In this review, we provide an overview of the basic and practical aspects of FRET imaging and discuss how different FRET probes have revealed insights into the molecular mechanisms of synaptic plasticity and enabled visualization of neuronal network activity both in vitro and in vivo.

  3. Optimizing methods to recover absolute FRET efficiency from immobilized single molecules.

    PubMed

    McCann, James J; Choi, Ucheor B; Zheng, Liqiang; Weninger, Keith; Bowen, Mark E

    2010-08-04

    Microscopy-based fluorescence resonance energy transfer (FRET) experiments measure donor and acceptor intensities by isolating these signals with a series of optical elements. Because this filtering discards portions of the spectrum, the observed FRET efficiency is dependent on the set of filters in use. Similarly, observed FRET efficiency is also affected by differences in fluorophore quantum yield. Recovering the absolute FRET efficiency requires normalization for these effects to account for differences between the donor and acceptor fluorophores in their quantum yield and detection efficiency. Without this correction, FRET is consistent across multiple experiments only if the photophysical and instrument properties remain unchanged. Here we present what is, to our knowledge, the first systematic study of methods to recover the true FRET efficiency using DNA rulers with known fluorophore separations. We varied optical elements to purposefully alter observed FRET and examined protein samples to achieve quantum yields distinct from those in the DNA samples. Correction for calculated instrument transmission reduced FRET deviations, which can facilitate comparison of results from different instruments. Empirical normalization was more effective but required significant effort. Normalization based on single-molecule photobleaching was the most effective depending on how it is applied. Surprisingly, per-molecule gamma-normalization reduced the peak width in the DNA FRET distribution because anomalous gamma-values correspond to FRET outliers. Thus, molecule-to-molecule variation in gamma has an unrecognized effect on the FRET distribution that must be considered to extract information on sample dynamics from the distribution width.

  4. Color control through FRET efficiency modulation using CDI (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wolowelsky, Karni; Guyes, Eric; Rubin, Shimon; Suss, Matthew; Bercovici, Moran; Rotschild, Carmel

    2017-02-01

    Although much progress was made in light emitting devices, the ability to electrically control their spectral emission remains limited. We will present a novel approach and experimental results for dynamic color control, by electrically modulating the non-radiative Forster resonance energy transfer (FRET) efficiency between donor and acceptor dyes in a solution. FRET efficiency depends on the 6th power of the distance between donor and acceptor dye molecules, and thus, it is sensitive to variations in acceptor's concentration. Controlled acceptor concentrations could be achieved by attracting or repelling ionic dyes from the electrodes using a capacitive deionization (CDI) cell, with high surface area porous electrodes. This approach to dynamic color control may open new directions in 100% fill-factor displays, and can be expanded to energy saving applications such as controlling building's external wall emissivity. We studied the modulation of a single dye emission using a CDI cell with negatively charged Fluorescein Sodium Salt in aquatic solution. Photoluminescence was measured along few charging-discharging CDI cycles and showed the ability to control extensive optical response through CDI. We experimented with two types of FRET-pair dyes: a) anion-cation, where the acceptor and the donor ions are oppositely charged, and b) zwitterion and ion, where the donor is neutral. We found that electrical control on FRET in aquatic solution is weak, due to hydrophobic attractive interaction between the acceptor and the donor. In order to avoid this effect, we are experimenting FRET control in organic solvents. These results will be presented in the talk.

  5. Molecular signaling in live cells studied by FRET

    NASA Astrophysics Data System (ADS)

    Chien, Shu; Wang, Yingxiao

    2011-11-01

    Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) enables visualization of signaling events in live cells with high spatiotemporal resolution. We have used FRET to assess temporal and spatial characteristics for signaling molecules, including tyrosine kinases Src and FAK, small GTPase Rac, calcium, and a membrane-bound matrix metalloproteinase MT1-MMP. Activations of Src and Rac by platelet derived growth factor (PDGF) led to distinct subcellular patterns during cell migration on micropatterned surface, and these two enzymes interact with each other to form a feedback loop with differential regulations at different subcellular locations. We have developed FRET biosensors to monitor FAK activities at rafts vs. non-raft regions of plasma membrane in live cells. In response to cell adhesion on matrix proteins or stimulation by PDGF, the raft-targeting FAK biosensor showed a stronger FRET response than that at non-rafts. The FAK activation at rafts induced by PDGF is mediated by Src. In contrast, the FAK activation at rafts induced by adhesion is independent of Src activity, but rather is essential for Src activation. Thus, Src is upstream to FAK in response to chemical stimulation (PDGF), but FAK is upstream to Src in response to mechanical stimulation (adhesion). A novel biosensor has been developed to dynamically visualize the activity of membrane type-1-matrix metalloproteinase (MT1-MMP), which proteolytically remodels the extracellular matrix. Epidermal growth factor (EGF) directed active MT1-MMP to the leading edge of migrating live cancer cells with local accumulation of EGF receptor via a process dependent on an intact cytoskeletal network. In summary, FRET-based biosensors enable the elucidation of molecular processes and hierarchies underlying spatiotemporal regulation of biological and pathological processes, thus advancing our knowledge on how cells perceive mechanical/chemical cues in space and time to coordinate

  6. Molecular signaling in live cells studied by FRET

    NASA Astrophysics Data System (ADS)

    Chien, Shu; Wang, Yingxiao

    2012-03-01

    Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) enables visualization of signaling events in live cells with high spatiotemporal resolution. We have used FRET to assess temporal and spatial characteristics for signaling molecules, including tyrosine kinases Src and FAK, small GTPase Rac, calcium, and a membrane-bound matrix metalloproteinase MT1-MMP. Activations of Src and Rac by platelet derived growth factor (PDGF) led to distinct subcellular patterns during cell migration on micropatterned surface, and these two enzymes interact with each other to form a feedback loop with differential regulations at different subcellular locations. We have developed FRET biosensors to monitor FAK activities at rafts vs. non-raft regions of plasma membrane in live cells. In response to cell adhesion on matrix proteins or stimulation by PDGF, the raft-targeting FAK biosensor showed a stronger FRET response than that at non-rafts. The FAK activation at rafts induced by PDGF is mediated by Src. In contrast, the FAK activation at rafts induced by adhesion is independent of Src activity, but rather is essential for Src activation. Thus, Src is upstream to FAK in response to chemical stimulation (PDGF), but FAK is upstream to Src in response to mechanical stimulation (adhesion). A novel biosensor has been developed to dynamically visualize the activity of membrane type-1-matrix metalloproteinase (MT1-MMP), which proteolytically remodels the extracellular matrix. Epidermal growth factor (EGF) directed active MT1-MMP to the leading edge of migrating live cancer cells with local accumulation of EGF receptor via a process dependent on an intact cytoskeletal network. In summary, FRET-based biosensors enable the elucidation of molecular processes and hierarchies underlying spatiotemporal regulation of biological and pathological processes, thus advancing our knowledge on how cells perceive mechanical/chemical cues in space and time to coordinate

  7. Analysis of Complex Single Molecule FRET Time Trajectories

    PubMed Central

    Blanco, Mario; Walter, Nils

    2010-01-01

    Single molecule methods have given researchers the ability to investigate the structural dynamics of biomolecules at unprecedented resolution and sensitivity. One of the preferred methods of studying single biomolecules is single-molecule fluorescence resonance energy transfer (smFRET). The popularity of smFRET stems from its ability to report on dynamic, either intra- or intermolecular interactions in real-time. For example, smFRET has been successfully used to characterize the role of dynamics in functional RNAs and their protein complexes, including ribozymes, the ribosome, and more recently the spliceosome. Being able to reliably extract quantitative kinetic and conformational parameters from smFRET experiments is crucial for the interpretation of their results. The need for efficient, unbiased analysis routines becomes more evident as the systems studied become more complex. In this article we focus on the practical utility of statistical algorithms, particularly hidden Markov models, to aid in the objective quantification of complex smFRET trajectories with three or more discrete states, and to extract kinetic information from the trajectories. Additionally, we present a method for systematically eliminating transitions associated with uncorrelated fluorophore behavior that may occur due to dye anisotropy and quenching effects. We also highlight the importance of data condensation through the use of various transition density plots to fully understand the underlying conformational dynamics and kinetic behavior of the biological macromolecule of interest under varying conditions. Finally, the application of these techniques to studies of pre-mRNA conformational changes during eukaryotic splicing is discussed. PMID:20580964

  8. Quantitative multi-color FRET measurements by Fourier lifetime excitation-emission matrix spectroscopy.

    PubMed

    Zhao, Ming; Huang, Run; Peng, Leilei

    2012-11-19

    Förster resonant energy transfer (FRET) is extensively used to probe macromolecular interactions and conformation changes. The established FRET lifetime analysis method measures the FRET process through its effect on the donor lifetime. In this paper we present a method that directly probes the time-resolved FRET signal with frequency domain Fourier lifetime excitation-emission matrix (FLEEM) measurements. FLEEM separates fluorescent signals by their different phonon energy pathways from excitation to emission. The FRET process generates a unique signal channel that is initiated by donor excitation but ends with acceptor emission. Time-resolved analysis of the FRET EEM channel allows direct measurements on the FRET process, unaffected by free fluorophores that might be present in the sample. Together with time-resolved analysis on non-FRET channels, i.e. donor and acceptor EEM channels, time resolved EEM analysis allows precise quantification of FRET in the presence of free fluorophores. The method is extended to three-color FRET processes, where quantification with traditional methods remains challenging because of the significantly increased complexity in the three-way FRET interactions. We demonstrate the time-resolved EEM analysis method with quantification of three-color FRET in incompletely hybridized triple-labeled DNA oligonucleotides. Quantitative measurements of the three-color FRET process in triple-labeled dsDNA are obtained in the presence of free single-labeled ssDNA and double-labeled dsDNA. The results establish a quantification method for studying multi-color FRET between multiple macromolecules in biochemical equilibrium.

  9. Role of Achiral Nucleobases in Multicomponent Chiral Self-Assembly: Purine-Triggered Helix and Chirality Transfer.

    PubMed

    Deng, Ming; Zhang, Li; Jiang, Yuqian; Liu, Minghua

    2016-11-21

    Chiral self-assembly is a basic process in biological systems, where many chiral biomolecules such as amino acids and sugars play important roles. Achiral nucleobases usually covalently bond to saccharides and play a significant role in the formation of the double helix structure. However, it remains unclear how the achiral nucleobases can function in chiral self-assembly without the sugar modification. Herein, we have clarified that purine nucleobases could trigger N-(9-fluorenylmethox-ycarbonyl) (Fmoc)-protected glutamic acid to self-assemble into helical nanostructures. Moreover, the helical nanostructure could serve as a matrix and transfer the chirality to an achiral fluorescence probe, thioflavin T (ThT). Upon chirality transfer, the ThT showed not only supramolecular chirality but also circular polarized fluorescence (CPL). Without the nucleobase, the self-assembly processes cannot happen, thus providing an example where achiral molecules played an essential role in the expression and transfer of the chirality.

  10. [QTRAP LC-MS/MS Analytical Study on Nucleosides and Nucleobases of Pseudostellariae Radix Cultivated in Different Idioplasm Resources].

    PubMed

    Ma, Yang; Hou, Ya; Zou, Li-si; Liu, Xun-hong; Xu, Li; Lan, Cai-wu; Yuan, Ji-duan

    2015-04-01

    To analyze nucleosides and nucleobases of Pseudostellariae Radix cultivated in different idibplasni resources and to compare the differences. QTRAP LC-MS/MS method was applied for the analysis of 13 kinds of nucleosides and nucleobases in Pseudostellariae Radix and the data obtained was analyzed by SPSS 16. 0 software. There were some differences between Pseudostellariae Radix cultivated in different idioplasm resources. The highest amount of nucleosides and nucleobases was ZS2 which came from Zherong in Fujian Province. The total content of nucleosides and nucleobases in the sample from Shibing in Guizhou Province was the lowest. There was little difference between ZS1 (Zherong in Fujian Province) and XC(Xuancheng in Anhui Province). This study provides evidence for the influence of eco-environment on the metabolites of Pseudostellariae Radix.

  11. [Dynamic Changes of Nucleosides and Nucleobases in Different Harvest Periods of Polygoni Multiflori Radix by UPLC-QTRAP-MS/MS].

    PubMed

    Luo, Yi-Yuan; Liu, Juan-xiu; Liu, Xun-hong; Lan, Cai-wu; Hou, Ya; Ma, Yang; Xu, Li

    2015-05-01

    To analyze the dynamic changes of nucleosides and nucleobases in Polygoni Multiflori Radix harvested in different periods. UPLC-QTRAP-MS/MS method was applied for the analysis of nine kinds of nucleosides and nucleobases in Polygoni Multiflori Radix. The content of uridine, adenine, guanosine and cytidine was higher in Polygoni Multiflori Radix harvested in different periods and assumed some difference. The trends of nucleosides and nucleobases from Polygoni Multiflori Radix according to the peak valley shape changed. The highest contents of them were in December. The accumulation of nucleosides and nucleobases in Polygoni Multiflori Radix is closely related to its growth cycle. It is found to be basically the same as that obtained when the herb is collected during the conventional collecting time.

  12. Single-Molecule Pull-down FRET (SiMPull-FRET) to dissect the mechanisms of biomolecular machines

    PubMed Central

    Kahlscheuer, Matthew L.; Widom, Julia; Walter, Nils G.

    2016-01-01

    Spliceosomes are multi-megadalton RNA-protein complexes responsible for the faithful removal of non-coding segments (introns) from pre-messenger RNAs (pre-mRNAs), a process critical for the maturation of eukaryotic mRNAs for subsequent translation by the ribosome. Both the spliceosome and ribosome, as well as many other RNA and DNA processing machineries, contain central RNA components that endow biomolecular complexes with precise, sequence-specific nucleic acid recognition and versatile structural dynamics. Single molecule fluorescence (or Förster) resonance energy transfer (smFRET) microscopy is a powerful tool for the study of local and global conformational changes of both simple and complex biomolecular systems involving RNA. The integration of biochemical tools such as immunoprecipitation with advanced methods in smFRET microscopy and data analysis has opened up entirely new avenues towards studying the mechanisms of biomolecular machines isolated directly from complex biological specimens such as cell extracts. Here we detail the general steps for using prism-based total internal reflection fluorescence (TIRF) microscopy in exemplary single molecule pull-down FRET (SiMPull-FRET) studies of the yeast spliceosome and discuss the broad application potential of this technique. PMID:26068753

  13. Perrin and Förster unified: Dual-laser triple-polarization FRET (3polFRET) for interactions at the Förster-distance and beyond.

    PubMed

    Ungvári, Tamás; Gogolák, Péter; Bagdány, Miklós; Damjanovich, László; Bene, László

    2016-04-01

    Dual laser flow cytometric energy transfer (FCET)--elaborated by Trón et al. in 1984--is an efficient and rapid way of measuring FRET on large cell populations. FRET efficiency and the donor and acceptor concentrations are determined from one donor and two acceptor signals. In this communication this method is extended towards the domain of receptor dynamics by the detection of polarized components of the three intensities. By enabling a complete description of the proximity and dynamics of FRET-systems, the new measuring scheme allows a more refined description of both the structure and dynamics of cell surface receptor clusters at the nano-scale and beyond. Associated donor fraction, limiting anisotropy and rotational correlation time of the donor, acceptor anisotropy and cell-by-cell estimation of the orientation factor for FRET (κ2) are available in the steady state on a single FRET sample in a very rapid and statistically efficient way offered by flow cytometry. For a more sensitive detection of conformational changes the "polarized FRET indices"--quantities composed from FRET efficiency and anisotropies--are proposed. The method is illustrated by measurements on a FRET system with changing FRET-fraction and on a two donor-one acceptor-system, when the existence of receptor trimers are proven by the detection of "hetero-FRET induced homo-FRET relief", i.e. the diminishing of homo-FRET between the two donors in the presence of a donor quencher. The method also offers higher sensitivity for assessing conformational changes at the nano-scale, due to its capability for the simultaneous detection of changes of proximity and relative orientations of the FRET donor and acceptor. Although the method has been introduced in the context of FRET, it is more general: It can be used for monitoring triple-anisotropy correlations also in those cases when FRET actually does not occur, e.g. for interactions occuring beyond the Förster-distance R0. Interpretation of κ2 has

  14. rFRET: A comprehensive, Matlab-based program for analyzing intensity-based ratiometric microscopic FRET experiments.

    PubMed

    Nagy, Peter; Szabó, Ágnes; Váradi, Tímea; Kovács, Tamás; Batta, Gyula; Szöllősi, János

    2016-04-01

    Fluorescence or Förster resonance energy transfer (FRET) remains one of the most widely used methods for assessing protein clustering and conformation. Although it is a method with solid physical foundations, many applications of FRET fall short of providing quantitative results due to inappropriate calibration and controls. This shortcoming is especially valid for microscopy where currently available tools have limited or no capability at all to display parameter distributions or to perform gating. Since users of multiparameter flow cytometry usually apply these tools, the absence of these features in applications developed for microscopic FRET analysis is a significant limitation. Therefore, we developed a graphical user interface-controlled Matlab application for the evaluation of ratiometric, intensity-based microscopic FRET measurements. The program can calculate all the necessary overspill and spectroscopic correction factors and the FRET efficiency and it displays the results on histograms and dot plots. Gating on plots and mask images can be used to limit the calculation to certain parts of the image. It is an important feature of the program that the calculated parameters can be determined by regression methods, maximum likelihood estimation (MLE) and from summed intensities in addition to pixel-by-pixel evaluation. The confidence interval of calculated parameters can be estimated using parameter simulations if the approximate average number of detected photons is known. The program is not only user-friendly, but it provides rich output, it gives the user freedom to choose from different calculation modes and it gives insight into the reliability and distribution of the calculated parameters. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  15. High Nucleobase-Solubilizing Ability of Low-Viscous Ionic Liquid/Water Mixtures: Measurements and Mechanism.

    PubMed

    Ghoshdastidar, Debostuti; Ghosh, Dibbendu; Senapati, Sanjib

    2016-01-28

    Research on nucleobases has always been on the forefront owing to their ever-increasing demand in the pharmaceutical, agricultural, and other industries. The applications, however, became limited due to their poor solubility in water. Recently, ionic liquids (ILs) have emerged as promising solvents for nucleobase dissolution, as they exhibit >100-fold increased solubility compared to water. But the high viscosity of ILs remains as a bottleneck in the field. Here, by solubility and viscosity measurements, we show that addition of low-to-moderate quantity of water preserves the high solubilizing capacity of ILs, while reducing the viscosity of the solution by several folds. To understand the mechanism of nucleobase dissolution, molecular dynamics simulations were carried out, which showed that at low concentrations water incorporates into the IL-nucleobase network without much perturbing of the nucleobase-IL interactions. At higher concentrations, increasing numbers of IL anion-water hydrogen bonds replace IL-nucleobase interactions, which have been confirmed by (1)H- and (13)C NMR chemical shifts of the IL ions.

  16. Exciton energy transfer-based quantum dot fluorescence sensing array: "chemical noses" for discrimination of different nucleobases.

    PubMed

    Liu, Jianbo; Li, Gui; Yang, Xiaohai; Wang, Kemin; Li, Li; Liu, Wei; Shi, Xing; Guo, Yali

    2015-01-20

    A novel exciton energy transfer-based fluorescence sensing array for the discrimination of different nucleobases was developed through target nucleobase-triggered self-assembly of quantum dots (QDs). Four QD nanoprobes with different ligand receptors, including mercaptoethylamine, N-acetyl-l-cysteine, 2-dimethyl-aminethanethiol, and thioglycolic acid, were created to detect and identify nucleobase targets. These QDs served as both selective recognition scaffolds and signal transduction elements for a biomolecule target. The extent of particle assembly, induced by the analyte-triggered self-assembly of QDs, led to an exciton energy transfer effect between interparticles that gave a readily detectable fluorescence quenching and distinct fluorescence response patterns. These patterns are characteristic for each nucleobase and can be quantitatively differentiated by linear discriminate analysis. Furthermore, a fingerprint-based barcode was established to conveniently discriminate the nucleobases. This pattern sensing was successfully used to identify nucleobase samples at unknown concentrations and five rare bases. In this "chemical noses" strategy, the robust characteristics of QD nanoprobes, coupled with the diversity of surface functionality that can be readily obtained using nanoparticles, provides a simple and label-free biosensing approach that shows great promise for biomedical applications.

  17. Important factors stabilizing stacking interaction between 3-nitropyrrole and natural nucleobases revealed by ab initio calculations.

    PubMed

    Seio, Kohji; Ukawa, Hisashi; Shohda, Koh-ichiro; Sekine, Mitsuo

    2003-01-01

    Stacking energies between canonical nucleobases and a universal base, 3-nitropyrrole (3-NP), were estimated by use of molecular orbital (MO) and molecular mechanics (MM) calculations. The detailed analysis of the energy profiles revealed the importance of the London dispersion energy to stabilize the stacked dimers and electrostatic interactions to determine the orientation of 3-NP to the nucleobases in the dimers. Although the energy profiles of 3-NP/natural base dimers obtained by the MO and MM calculations were qualitatively correlated with each other, the correlations were poorer than those obtained for the stacking between natural bases. The origin of the difference between 3-NP and natural bases will be discussed to understand the possibility and limitation of the current MM calculations for the simulation and design of other universal bases.

  18. Terahertz spectra of DNA nucleobase crystals: A joint experimental and computational study.

    PubMed

    Wang, Fang; Zhao, Dongbo; Dong, Hao; Jiang, Ling; Liu, Yunfei; Li, Shuhua

    2017-02-21

    Terahertz (THz) spectra of DNA nucleobase crystals were experimentally studied by terahertz time domain spectroscopy (THz-TDS), Fourier transform infrared spectroscopy (FTIR), and computationally studied by the generalized energy-based fragmentation approach under periodic boundary conditions (denoted as PBC-GEBF). We analyzed the vibrational spectra of solid-state DNA nucleobases and assigned the corresponding vibrational modes to the main peaks in the experimental spectra with the PBC-GEBF results. The computational results were verified to be in good accordance with the experimental data. Harmonic vibrational frequency results revealed that all the vibrational modes belong to collective vibrational modes, which involve complicated mixtures of inter- and intramolecular displacements, somewhere in the vicinity of 0.5-9THz.

  19. Terahertz spectra of DNA nucleobase crystals: A joint experimental and computational study

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Zhao, Dongbo; Dong, Hao; Jiang, Ling; Liu, Yunfei; Li, Shuhua

    2017-05-01

    Terahertz (THz) spectra of DNA nucleobase crystals were experimentally studied by terahertz time domain spectroscopy (THz-TDS), Fourier transform infrared spectroscopy (FTIR), and computationally studied by the generalized energy-based fragmentation approach under periodic boundary conditions (denoted as PBC-GEBF). We analyzed the vibrational spectra of solid-state DNA nucleobases and assigned the corresponding vibrational modes to the main peaks in the experimental spectra with the PBC-GEBF results. The computational results were verified to be in good accordance with the experimental data. Harmonic vibrational frequency results revealed that all the vibrational modes belong to collective vibrational modes, which involve complicated mixtures of inter- and intramolecular displacements, somewhere in the vicinity of 0.5-9 THz.

  20. Formation of Nucleobases from the UV Irradiation of Pyrimidine in Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Nuevo, Michel; Sandford, Scott A.; Elsila, Jamie E.; Dworkin, Jason P.

    2010-01-01

    Previous laboratory simulations showed that complex molecules, including prebiotic compounds/can be formed under interstellar conditions from the vacuum UV irradiation of interstellar ice analogs containing H2O, CO, NH3 etc. Although some complex prebiotic species have not been confirmed In the interstellar medium, they are known to be present in meteorites. Nucleobases, the building blocks of DNA and RNA, have also been detected in meteorites. Here, we present a study of the formation of pyrimidine-based compounds from the UV irradiation of pyrimidine in H2O- and/or NH3-ices at 20-30 K, Our results show that various derivatives, induding the nucleobases uracil and cytosine, are formed under these conditions.

  1. Characterization of the stacking interactions between DNA or RNA nucleobases and the aromatic amino acids

    NASA Astrophysics Data System (ADS)

    Rutledge, Lesley R.; Campbell-Verduyn, Lachlan S.; Wetmore, Stacey D.

    2007-08-01

    MP2/6-31G ∗(0.25) gas-phase potential energy surfaces of stacked dimers between the four aromatic amino acids and the natural (DNA or RNA) nucleobases were considered as a function of three variables (vertical separation, angle of rotation, and horizontal displacement). The maximum stacking interaction was found to increase with the amino acid according to PHE < HIS ≈ TYR < TRP, while the stacking energy is generally largest for the purines compared to the pyrimidines. Most notably, the interaction energies are up to -43 kJ mol -1. Comparison of the magnitude of these interactions with, for example, hydrogen-bonding and stacking interactions that stabilize DNA duplexes suggests that π-π stacking between nucleobases and amino acids likely plays a large role in many fundamental biological processes.

  2. Formation of Nucleobases from the UV Irradiation of Pyrimidine in Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Nuevo, Michel; Sandford, Scott A.; Elsila, Jamie E.; Dworkin, Jason P.

    2010-01-01

    Previous laboratory simulations showed that complex molecules, including prebiotic compounds/can be formed under interstellar conditions from the vacuum UV irradiation of interstellar ice analogs containing H2O, CO, NH3 etc. Although some complex prebiotic species have not been confirmed In the interstellar medium, they are known to be present in meteorites. Nucleobases, the building blocks of DNA and RNA, have also been detected in meteorites. Here, we present a study of the formation of pyrimidine-based compounds from the UV irradiation of pyrimidine in H2O- and/or NH3-ices at 20-30 K, Our results show that various derivatives, induding the nucleobases uracil and cytosine, are formed under these conditions.

  3. Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging.

    PubMed

    Afsari, Hamid Samareh; Cardoso Dos Santos, Marcelina; Lindén, Stina; Chen, Ting; Qiu, Xue; van Bergen En Henegouwen, Paul M P; Jennings, Travis L; Susumu, Kimihiro; Medintz, Igor L; Hildebrandt, Niko; Miller, Lawrence W

    2016-06-01

    Time-gated Förster resonance energy transfer (FRET) using the unique material combination of long-lifetime terbium complexes (Tb) and semiconductor quantum dots (QDs) provides many advantages for highly sensitive and multiplexed biosensing. Although time-gated detection can efficiently suppress sample autofluorescence and background fluorescence from directly excited FRET acceptors, Tb-to-QD FRET has rarely been exploited for biomolecular imaging. We demonstrate Tb-to-QD time-gated FRET nanoassemblies that can be applied for intra- and extracellular imaging. Immunostaining of different epitopes of the epidermal growth factor receptor (EGFR) with Tb- and QD-conjugated antibodies and nanobodies allowed for efficient Tb-to-QD FRET on A431 cell membranes. The broad usability of Tb-to-QD FRET was further demonstrated by intracellular Tb-to-QD FRET and Tb-to-QD-to-dye FRET using microinjection as well as cell-penetrating peptide-mediated endocytosis with HeLa cells. Effective brightness enhancement by FRET from several Tb to the same QD, the use of low nanomolar concentrations, and the quick and sensitive detection void of FRET acceptor background fluorescence are important advantages for advanced intra- and extracellular imaging of biomolecular interactions.

  4. Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging

    PubMed Central

    Afsari, Hamid Samareh; Cardoso Dos Santos, Marcelina; Lindén, Stina; Chen, Ting; Qiu, Xue; van Bergen en Henegouwen, Paul M. P.; Jennings, Travis L.; Susumu, Kimihiro; Medintz, Igor L.; Hildebrandt, Niko; Miller, Lawrence W.

    2016-01-01

    Time-gated Förster resonance energy transfer (FRET) using the unique material combination of long-lifetime terbium complexes (Tb) and semiconductor quantum dots (QDs) provides many advantages for highly sensitive and multiplexed biosensing. Although time-gated detection can efficiently suppress sample autofluorescence and background fluorescence from directly excited FRET acceptors, Tb-to-QD FRET has rarely been exploited for biomolecular imaging. We demonstrate Tb-to-QD time-gated FRET nanoassemblies that can be applied for intra- and extracellular imaging. Immunostaining of different epitopes of the epidermal growth factor receptor (EGFR) with Tb- and QD-conjugated antibodies and nanobodies allowed for efficient Tb-to-QD FRET on A431 cell membranes. The broad usability of Tb-to-QD FRET was further demonstrated by intracellular Tb-to-QD FRET and Tb-to-QD-to-dye FRET using microinjection as well as cell-penetrating peptide–mediated endocytosis with HeLa cells. Effective brightness enhancement by FRET from several Tb to the same QD, the use of low nanomolar concentrations, and the quick and sensitive detection void of FRET acceptor background fluorescence are important advantages for advanced intra- and extracellular imaging of biomolecular interactions. PMID:27386579

  5. Synthesis of rigid homo- and heteroditopic nucleobase-terminated molecules incorporating adenine and/or thymine.

    PubMed

    Jacobsen, Mikkel F; Andersen, Casper S; Knudsen, Martin M; Gothelf, Kurt V

    2007-07-19

    A series of homo- and heteroditopic thymine- and/or adenine-terminated molecules incorporating rigid aryl or oligo(phenylene ethynylene) linkers has been efficiently synthesized. The key steps involved in the synthesis are the construction of the N-arylated nucleobases using the Chan-Lam-Evans-modified Ullman coupling and their further elaboration using the Sonogashira coupling. Furthermore, the synthesis of a rigid tripodal thymine derivative is reported.

  6. The photochemistry of pyrimidine in realistic astrophysical ices and the production of nucleobases

    SciTech Connect

    Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A.

    2014-10-01

    Nucleobases, together with deoxyribose/ribose and phosphoric acid, are the building blocks of DNA and RNA for all known life. The presence of nucleobase-like compounds in carbonaceous chondrites delivered to the Earth raises the question of an extraterrestrial origin for the molecules that triggered life on our planet. Whether these molecules are formed in interstellar/protostellar environments, in small parent bodies in the solar system, or both, is currently unclear. Recent experiments show that the UV irradiation of pyrimidine (C{sub 4}H{sub 4}N{sub 2}) in H{sub 2}O-rich ice mixtures that contain NH{sub 3}, CH{sub 3}OH, or CH{sub 4} leads to the formation of the pyrimidine-based nucleobases uracil, cytosine, and thymine. In this work, we discuss the low-temperature UV irradiation of pyrimidine in realistic astrophysical ice mixtures containing H{sub 2}O, CH{sub 3}OH, and NH{sub 3}, with or without CH{sub 4}, to search for the production of nucleobases and other prebiotic compounds. These experiments show the presence of uracil, urea, glycerol, hexamethylenetetramine, small amino acids, and small carboxylic acids in all samples. Cytosine was only found in one sample produced from ices irradiated with a higher UV dose, while thymine was not found in any sample, even after irradiation with a higher UV dose. Results are discussed to evaluate the role of the photochemistry of pyrimidine in the inventory of organic molecules detected in meteorites and their astrophysical/astrobiological implications.

  7. Studies on effective atomic numbers and electron densities of nucleobases in DNA

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok

    2016-10-01

    Various parameters of dosimetric importance such as effective atomic numbers (Zeff) and electron densities (Nel) of nucleobases in DNA have been calculated for the total and partial photon interaction processes in the wide energy range of 1 keV-100 GeV. The variations of Zeff and Nel with energy are shown graphically for all partial and total interaction processes and are found to be similar. Up to 10 keV, Zeff and Nel show a sharp increase for cytosine-guanine and thymine-adenine whereas for all the other nucleobases, it is almost constant. Then there is sharp decrease in Zeff and Nel with energy up to 100 keV for all the nucleobases. From 100 keV to 6 MeV, Zeff and Nel are almost independent of energy. From 6 MeV to 100 MeV, there is regular increase in Zeff and Nel with photon energy. Above 400 MeV, Zeff and Nel remain almost constant. The obtained results are due to the dominance of photoelectric absorption, Compton scattering and pair production in different energy regions as respectively stated above and their dependences on the chemical compositions of the interacting media.

  8. Formation of Nucleobases from the UV Irradiation of Pyrimidine in Astrophysical Ice Analogs

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Nuevo, Michel; Materese, Christopher K.

    2014-01-01

    Nucleobases are the informational subunits of DNA and RNA. They consist of Nheterocycles that belong to either the pyrimidine-base group (uracil, cytosine, and thymine) or the purinebase group (adenine and guanine). Several nucleobases, mostly purine bases, have been detected in meteorites [1-3], with isotopic signatures consistent with an extraterrestrial origin [4]. Uracil is the only pyrimidine-base compound formally reported in meteorites [2], though the presence of cytosine cannot be ruled out [5,6]. However, the actual process by which the uracil was made and the reasons for the non-detection of thymine in meteorites have yet to be fully explained. Although no N-heterocycles have ever been observed in the ISM [7,8], the positions of the 6.2-µm interstellar emission features suggest a population of such molecules is likely to be present [9]. In this work we study the formation of pyrimidine-based molecules, including the three nucleobases uracil, cytosine, and thymine from the ultraviolet (UV) irradiation of pyrimidine in ices consisting of several combinations of H(sub2)O, NH(sub3), CH(sub3)OH, and CH(sub4) at low temperature, in order to simulate the astrophysical conditions under which prebiotic species may be formed in the interstellar medium, in the protosolar nebula, and on icy bodies of the Solar System.

  9. Application of the Mars Organic Analyzer to Nucleobase and Amine Biomarker Detection

    NASA Astrophysics Data System (ADS)

    Skelley, Alison M.; Cleaves, H. James; Jayarajah, Christine N.; Bada, Jeffrey L.; Mathies, Richard A.

    2006-12-01

    The Mars Organic Analyzer (MOA), a portable microfabricated capillary electrophoresis instrument being developed for planetary exploration, is used to analyze a wide variety of fluorescamine-labeled amine-containing biomarker compounds, including amino acids, mono and diaminoalkanes, amino sugars, nucleobases, and nucleobase degradation products. The nucleobases cytosine and adenine, which contain an exocyclic primary amine, were effectively labeled, separated, and detected at concentrations <500 nM. To test the general applicability of the MOA for biomarker detection, amino acids and mono- and diamines were extracted from bacterial cells using both hydrolysis and sublimation followed by analysis. The extrapolated limit of detection provided by the valine biomarker was ~4 × 103 cells per sample. Products of an NH4CN polymerization that simulate a prebiotic synthesis were also successfully isolated via sublimation and analyzed. Adenine and alanine/serine were detected with no additional sample cleanup at 120 +/- 13 µM and 4.1 +/- 1 µM, respectively, corresponding to a reaction yield of 0.04% and 0.0003%, respectively. This study demonstrates that the MOA provides sensitive detection and analysis of low levels of a wide variety of amine-containing organic compounds from both biological and abiotic sources.

  10. Binding of Organometallic Ruthenium(II) Anticancer Compounds to Nucleobases: A Computational Study

    NASA Astrophysics Data System (ADS)

    Gossens, Christian; Tavernelli, Ivano; Rothlisberger, Ursula

    2009-09-01

    The reaction of the anticancer compound [(η6-benzene)Ru(en)(OH2)]2+ (1) toward the nucleobases guanine, adenine, and cytosine is studied computationally using DFT/BP86 calculations. The aqua leaving group of such compounds is known to undergo ligand exchange reactions with nucleophilic centers in DNA and preferentially with the N7 atom of guanine, N7(G). Our results show that an H-bonded reactant adduct with nucleobases is formed via either the aqua ligand (cis adduct) or the en (ethylenediamine) ligand (trans adduct) of 1. All studied nucleobases favor an H-bonded cis adduct. Only guanine forms also a trans reactant adduct in the gas phase. The guanine N7 and O6 atoms in this trans adduct are situated in an ideal position to form each a strong H-bond to both amino groups of the en ligand of 1. A docking study shows that this unique recognition pattern is also plausible for the interaction with double stranded DNA. For the reaction of 1 with guanine, we identified three different reaction pathways: (i) A cis (G)N7-Ru-OH2 transition state (TS). (ii) A direct trans reaction pathway. (iii) A 2-step trans mechanism. The activation energies for the cis pathway are smaller than for the trans pathways. The ultimately formed Ru-N7(G) product is characterized by a thermally stable H-bond between the O6(G) and a diamine-NH2 hydrogen.

  11. Determination of HDV ribozyme N(-1) nucleobase and functional group specificity using internal competition kinetics

    PubMed Central

    Kellerman, Daniel L; Simmons, Kandice S; Pedraza, Mayra; Piccirilli, Joseph A; York, Darrin M; Harris, Michael E

    2015-01-01

    Biological catalysis involves interactions distant from the site of chemistry that can position the substrate for reaction. Catalysis of RNA 2′-O-transphosphorylation by the HDV ribozyme is sensitive to the identity of the N(-1) nucleotide flanking the reactive phosphoryl group. However, the interactions that affect the conformation of this position, and in turn the 2′O nucleophile, are unclear. Here, we describe the application of multiple substrate internal competition kinetic analyses to understand how the N(-1) nucleobase contributes to HDV catalysis, and to test the utility of this approach for RNA structure-function studies. Internal competition reactions containing all four substrate sequence variants at the N(-1) position in reactions using ribozyme active site mutations at A77 and A78 were used to test a proposed basepairing interaction. Mutants A78U, A78G and A79G retain significant catalytic activity, but do not alter the specificity for the N(-1) nucleobase. Effects of nucleobase analog substitutions at N(-1) indicate that U is preferred due to the ability to donate an H-bond in the Watson-Crick face and avoid minor groove steric clash. The results provide information essential for evaluating models of the HDV active site, and illustrate multiple-substrate kinetic analyses as a practical approach for characterizing structure-function relationships in RNA reactions. PMID:25937290

  12. Molecularly resolved label-free sensing of single nucleobase mismatches by interfacial LNA probes

    PubMed Central

    Mishra, Sourav; Lahiri, Hiya; Banerjee, Siddhartha; Mukhopadhyay, Rupa

    2016-01-01

    So far, there has been no report on molecularly resolved discrimination of single nucleobase mismatches using surface-confined single stranded locked nucleic acid (ssLNA) probes. Herein, it is exemplified using a label-independent force-sensing approach that an optimal coverage of 12-mer ssLNA sensor probes formed onto gold(111) surface allows recognition of ssDNA targets with twice stronger force sensitivity than 12-mer ssDNA sensor probes. The force distributions are reproducible and the molecule-by-molecule force measurements are largely in agreement with ensemble on-surface melting temperature data. Importantly, the molecularly resolved detection is responsive to the presence of single nucleobase mismatches in target sequences. Since the labelling steps can be eliminated from protocol, and each force-based detection event occurs within milliseconds' time scale, the force-sensing assay is potentially capable of rapid detection. The LNA probe performance is indicative of versatility in terms of substrate choice - be it gold (for basic research and array-based applications) or silicon (for ‘lab-on-a-chip’ type devices). The nucleic acid microarray technologies could therefore be generally benefited by adopting the LNA films, in place of DNA. Since LNA is nuclease-resistant, unlike DNA, and the LNA-based assay is sensitive to single nucleobase mismatches, the possibilities for label-free in vitro rapid diagnostics based on the LNA probes may be explored. PMID:27025649

  13. Nucleobase and amino acid formation through impacts of meteorites on the early ocean

    NASA Astrophysics Data System (ADS)

    Furukawa, Yoshihiro; Nakazawa, Hiromoto; Sekine, Toshimori; Kobayashi, Takamichi; Kakegawa, Takeshi

    2015-11-01

    The emergence of life's building blocks on the prebiotic Earth was the first crucial step for the origins of life. Extraterrestrial delivery of intact amino acids and nucleobases is the prevailing hypothesis for their availability on prebiotic Earth because of the difficulties associated with the production of these organics from terrestrial carbon and nitrogen sources under plausible prebiotic conditions. However, the variety and amounts of these intact organics delivered by meteorites would have been limited. Previous shock-recovery experiments have demonstrated that meteorite impact reactions could have generated organics on the prebiotic Earth. Here, we report on the simultaneous formation of nucleobases (cytosine and uracil) found in DNA and/or RNA, various proteinogenic amino acids (glycine, alanine, serine, aspartic acid, glutamic acid, valine, leucine, isoleucine, and proline), non-proteinogenic amino acids, and aliphatic amines in experiments simulating reactions induced by extraterrestrial objects impacting on the early oceans. To the best of our knowledge, this is the first report of the formation of nucleobases from inorganic materials by shock conditions. In these experiments, bicarbonate was used as the carbon source. Bicarbonate, which is a common dissolved carbon species in CO2-rich atmospheric conditions, was presumably the most abundant carbon species in the early oceans and in post-impact plumes. Thus, the present results expand the possibility that impact-induced reactions generated various building blocks for life on prebiotic Earth in large quantities through the use of terrestrial carbon reservoirs.

  14. Determination of nucleosides and nucleobases in the pollen of Typha angustifolia by UPLC-PDA-MS.

    PubMed

    Tao, Wei-Wei; Duan, Jin-Ao; Yang, Nian-Yun; Guo, Sheng; Zhu, Zhen-Hua; Tang, Yu-Ping; Qian, Da-Wei

    2012-01-01

    The pollen of Typha angustifolia L. has been used traditionally for the treatment of dysmenorrhea, stranguria and metrorrhagia in China. Recently, nucleosides and nucleobases have been proven as important bioactive compounds. Exploration of the nucleoside and nucleobase profiles from the pollen of T. angustifolia is important for improving its therapeutic value and could be convenient for its quality evaluation. To establish an UPLC-PDA-MS method for simultaneous determination of nucleosides and nucleobases in the pollen of T. angustifolia. The analysis was performed on an Acuity UPLCHSS T3 column with a gradient elution of 5 mM ammonium acetate and methanol solution at a flow rate of 0.3 mL/min. Satisfactory separation of these compounds was obtained in less than 12 min. All calibration curves showed good linear regression (r²  > 0.9995). The method provided good accuracy, precision, recovery, and sensitivity for the quantification of the 10 compounds analysed. The UPLC method established is very helpful for optimising their content and could be convenient for quality evaluation of the pollen of T. angustifolia, which has not been reported as far as we are aware. Copyright © 2011 John Wiley & Sons, Ltd.

  15. The origin of efficient triplet state population in sulfur-substituted nucleobases

    PubMed Central

    Mai, Sebastian; Pollum, Marvin; Martínez-Fernández, Lara; Dunn, Nicholas; Marquetand, Philipp; Corral, Inés; Crespo-Hernández, Carlos E.; González, Leticia

    2016-01-01

    Elucidating the photophysical mechanisms in sulfur-substituted nucleobases (thiobases) is essential for designing prospective drugs for photo- and chemotherapeutic applications. Although it has long been established that the phototherapeutic activity of thiobases is intimately linked to efficient intersystem crossing into reactive triplet states, the molecular factors underlying this efficiency are poorly understood. Herein we combine femtosecond transient absorption experiments with quantum chemistry and nonadiabatic dynamics simulations to investigate 2-thiocytosine as a necessary step to unravel the electronic and structural elements that lead to ultrafast and near-unity triplet-state population in thiobases in general. We show that different parts of the potential energy surfaces are stabilized to different extents via thionation, quenching the intrinsic photostability of canonical DNA and RNA nucleobases. These findings satisfactorily explain why thiobases exhibit the fastest intersystem crossing lifetimes measured to date among bio-organic molecules and have near-unity triplet yields, whereas the triplet yields of canonical nucleobases are nearly zero. PMID:27703148

  16. Time-resolved homo-FRET studies of biotin-streptavidin complexes.

    PubMed

    Andreoni, Alessandra; Nardo, Luca; Rigler, Rudolf

    2016-09-01

    Förster resonance energy transfer is a mechanism of fluorescence quenching that is notably useful for characterizing properties of biomolecules and/or their interactions. Here we study water-solutions of Biotin-Streptavidin complexes, in which Biotin is labeled with a rigidly-bound fluorophore that can interact by Förster resonance energy transfer with the fluorophores labeling the other, up to three, Biotins of the same complex. The fluorophore, Atto550, is a Rhodamine analogue. We detect the time-resolved fluorescence decay of the fluorophores with an apparatus endowed with single-photon sensitivity and temporal resolution of ~30ps. The decay profiles we observe for samples containing constant Biotin-Atto550 conjugates and varying Streptavidin concentrations are multi-exponential. Each decay component can be associated with the rate of quenching exerted on each donor by each of the acceptors that label the other Biotin molecules, depending on the binding site they occupy. The main features that lead to this result are that (i) the transition dipole moments of the up-to-four Atto550 fluorophores that label the complexes are fixed as to both relative positions and mutual orientations; (ii) the fluorophores are identical and the role of donor in each Biotin-Streptavidin complex is randomly attributed to the one that has absorbed the excitation light (homo-FRET). Obviously the high-temporal resolution of the excitation-detection apparatus is necessary to discriminate among the fluorescence decay components.

  17. Detecting Organic Compounds in Martian Soil Analogues Using Gas Chromatography Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Buch, A.; Mahaffy, P. R.

    2004-01-01

    One of the primary objectives of the 1976 Viking missions was to determine whether organic compounds, possibly of biological origin, were present in the Martian surface soils. The Viking gas chromatography mass spectrometry (GCMS) instruments found no evidence for any organic compounds of Martian origin above a few parts per billion in the upper 10 cm of surface soil [l], suggesting the absence of a widely distributed Martian biota. However, Benner et d. have suggested that significant amounts of non-volatile organic compounds, possibly including oxidation products of bioorganic molecules (e.g. carboxylic acids) would not have been detected by the Viking GCMS [2]. Moreover, other key organic compounds important to biology, such as amino acids and nucleobases, would also likely have been missed by the Viking GCMS as these compounds require chemical derivatization to be stable in a GC column [3]. Recent pyrolysis experiments with a Mars soil analogue that had been innoculated with Escherichia coli bacteria have shown that amino acid decomposition products (amines) and nucleobases are among the most abundant products generated after pyrolysis of the bacterial cells [4,5]. At the part per billion level (Viking GCMS detection limit), these pyrolysis products generated from several million bacterial cells per gram of Martian soil would not have been detected by the Viking GCMS instruments [4]. Analytical protocols are under development for upcoming in situ lander opportunities to target several important biological compounds including amino acids and nucleobases. For example, extraction and chemical derivatization techniques [3] are being adapted for space flight use to transform reactive or fragile molecules that would not have been detected by the Viking GCMS instruments, into species that are sufficiently volatile to be detected by GCMS. Recent experiments carried out at NASA Goddard have shown that using this derivatization technique all of the targeted compounds

  18. Mouse equilibrative nucleoside transporter 2 (mENT2) transports nucleosides and purine nucleobases differing from human and rat ENT2.

    PubMed

    Nagai, Katsuhito; Nagasawa, Kazuki; Kyotani, Yoji; Hifumi, Natsuko; Fujimoto, Sadaki

    2007-05-01

    Several mammalian nucleoside transporters have been identified at the molecular level. Human and rat equilibrative nucleoside transporter 2 (hENT2 and rENT2, respectively) was previously reported to have the dual ability of transporting both nucleosides and nucleobases. In the present study, we characterized the transport of a variety of nucleosides and nucleobases via recombinant mouse ENT2 (mENT2). Cloned mENT2 mediated the uptake of nucleosides and purine nucleobases, but not pyrimidine nucleobases. The mENT2-mediated uptake of adenosine was significantly inhibited by nucleosides and nucleobases, irrespective of purine and pyrimidine. The K(m) values for the uptake of nucleosides and purine nucleobases mediated by mENT2 varied between 1.24 and 16.3 microM, and the transport clearances of adenosine and hypoxanthine via the transporter were greater than those of other substrates. Therefore, we concluded that mENT2 is nucleoside and purine nucleobase transporter, and pyrimidine nucleobases are blockers for the transporter, differing from hENT2 and rENT2 that were reported to also transport pyrimidine nucleobases.

  19. Detecting stoichiometry of macromolecular complexes in live cells using FRET.

    PubMed

    Ben-Johny, Manu; Yue, Daniel N; Yue, David T

    2016-12-06

    The stoichiometry of macromolecular interactions is fundamental to cellular signalling yet challenging to detect from living cells. Fluorescence resonance energy transfer (FRET) is a powerful phenomenon for characterizing close-range interactions whereby a donor fluorophore transfers energy to a closely juxtaposed acceptor. Recognizing that FRET measured from the acceptor's perspective reports a related but distinct quantity versus the donor, we utilize the ratiometric comparison of the two to obtain the stoichiometry of a complex. Applying this principle to the long-standing controversy of calmodulin binding to ion channels, we find a surprising Ca(2+)-induced switch in calmodulin stoichiometry with Ca(2+) channels-one calmodulin binds at basal cytosolic Ca(2+) levels while two calmodulins interact following Ca(2+) elevation. This feature is curiously absent for the related Na channels, also potently regulated by calmodulin. Overall, our assay adds to a burgeoning toolkit to pursue quantitative biochemistry of dynamic signalling complexes in living cells.

  20. Detecting stoichiometry of macromolecular complexes in live cells using FRET

    PubMed Central

    Ben-Johny, Manu; Yue, Daniel N.; Yue, David T.

    2016-01-01

    The stoichiometry of macromolecular interactions is fundamental to cellular signalling yet challenging to detect from living cells. Fluorescence resonance energy transfer (FRET) is a powerful phenomenon for characterizing close-range interactions whereby a donor fluorophore transfers energy to a closely juxtaposed acceptor. Recognizing that FRET measured from the acceptor's perspective reports a related but distinct quantity versus the donor, we utilize the ratiometric comparison of the two to obtain the stoichiometry of a complex. Applying this principle to the long-standing controversy of calmodulin binding to ion channels, we find a surprising Ca2+-induced switch in calmodulin stoichiometry with Ca2+ channels—one calmodulin binds at basal cytosolic Ca2+ levels while two calmodulins interact following Ca2+ elevation. This feature is curiously absent for the related Na channels, also potently regulated by calmodulin. Overall, our assay adds to a burgeoning toolkit to pursue quantitative biochemistry of dynamic signalling complexes in living cells. PMID:27922011

  1. Exploring the conformational space of FRET biosensors for improved designs

    NASA Astrophysics Data System (ADS)

    Truong, Kevin; Pham, Elizabeth

    2008-02-01

    Fusion proteins are an important class of proteins with diverse applications in biotechnology. They consist of 2 or more rigid domains joined by a flexible linker. Understanding the conformational space of fusion proteins conferred by the flexible linkers is important to predicting its behavior. In this paper, we introduce a modeling tool called FPMOD (Fusion Protein MODeller) which samples the conformational space of fusion proteins by treating all domains as rigid bodies and rotating each of them around their flexible linkers. As a demonstration, FPMOD was used to predict the fluorescence resonance energy transfer (FRET) efficiency of three different fusion protein biosensors. The simulation results of the FRET efficiency prediction were consistent with the in vitro experimental data, which verified that FPMOD is a valid tool to predicting the behavior of fusion proteins.

  2. FRET in a Synthetic Flavin- and Bilin-binding Protein.

    PubMed

    Simon, Julian; Losi, Aba; Zhao, Kai-Hong; Gärtner, Wolfgang

    2017-07-01

    The last decade has seen development and application of a large number of novel fluorescence-based techniques that have revolutionized fluorescence microscopy in life sciences. Preferred tags for such applications are genetically encoded fluorescent proteins (FP), mostly derivatives of the green fluorescent protein (GFP). Combinations of FPs with wavelength-separated absorption/fluorescence properties serve as excellent tools for molecular interaction studies, for example, protein-protein complexes or enzyme-substrate interactions, based on the FRET phenomenon (Förster resonance energy transfer). However, alternatives are requested for experimental conditions where FP proteins or FP couples are not or less efficiently applicable. We here report as a "proof of principle" a specially designed, non-naturally occurring protein (LG1) carrying a combination of a flavin-binding LOV- and a photochromic bilin-binding GAF domain and demonstrate a FRET process between both chromophores. © 2017 The American Society of Photobiology.

  3. Single Cell FRET Analysis for the Identification of Optimal FRET-Pairs in Bacillus subtilis Using a Prototype MEM-FLIM System

    PubMed Central

    Detert Oude Weme, Ruud G. J.; Kovács, Ákos T.; de Jong, Sander J. G.; Veening, Jan-Willem; Siebring, Jeroen; Kuipers, Oscar P.

    2015-01-01

    Protein-protein interactions can be studied in vitro, e.g. with bacterial or yeast two-hybrid systems or surface plasmon resonance. In contrast to in vitro techniques, in vivo studies of protein-protein interactions allow examination of spatial and temporal behavior of such interactions in their native environment. One approach to study protein-protein interactions in vivo is via Förster Resonance Energy Transfer (FRET). Here, FRET efficiency of selected FRET-pairs was studied at the single cell level using sensitized emission and Frequency Domain-Fluorescence Lifetime Imaging Microscopy (FD-FLIM). For FRET-FLIM, a prototype Modulated Electron-Multiplied FLIM system was used, which is, to the best of our knowledge, the first account of Frequency Domain FLIM to analyze FRET in single bacterial cells. To perform FRET-FLIM, we first determined and benchmarked the best fluorescent protein-pair for FRET in Bacillus subtilis using a novel BglBrick-compatible integration vector. We show that GFP-tagRFP is an excellent donor-acceptor pair for B. subtilis in vivo FRET studies. As a proof of concept, selected donor and acceptor fluorescent proteins were fused using a linker that contained a tobacco etch virus (TEV)-protease recognition sequence. Induction of TEV-protease results in loss of FRET efficiency and increase in fluorescence lifetime. The loss of FRET efficiency after TEV induction can be followed in time in single cells via time-lapse microscopy. This work will facilitate future studies of in vivo dynamics of protein complexes in single B. subtilis cells. PMID:25886351

  4. Sensitive Detection of Proteopathic Seeding Activity with FRET Flow Cytometry.

    PubMed

    Furman, Jennifer L; Holmes, Brandon B; Diamond, Marc I

    2015-12-08

    Increasing evidence supports transcellular propagation of toxic protein aggregates, or proteopathic seeds, as a mechanism for the initiation and progression of pathology in several neurodegenerative diseases, including Alzheimer's disease and the related tauopathies. The potentially critical role of tau seeds in disease progression strongly supports the need for a sensitive assay that readily detects seeding activity in biological samples. By combining the specificity of fluorescence resonance energy transfer (FRET), the sensitivity of flow cytometry, and the stability of a monoclonal cell line, an ultra-sensitive seeding assay has been engineered and is compatible with seed detection from recombinant or biological samples, including human and mouse brain homogenates. The assay employs monoclonal HEK 293T cells that stably express the aggregation-prone repeat domain (RD) of tau harboring the disease-associated P301S mutation fused to either CFP or YFP, which produce a FRET signal upon protein aggregation. The uptake of proteopathic tau seeds (but not other proteins) into the biosensor cells stimulates aggregation of RD-CFP and RD-YFP, and flow cytometry sensitively and quantitatively monitors this aggregation-induced FRET. The assay detects femtomolar concentrations (monomer equivalent) of recombinant tau seeds, has a dynamic range spanning three orders of magnitude, and is compatible with brain homogenates from tauopathy transgenic mice and human tauopathy subjects. With slight modifications, the assay can also detect seeding activity of other proteopathic seeds, such as α-synuclein, and is also compatible with primary neuronal cultures. The ease, sensitivity, and broad applicability of FRET flow cytometry makes it useful to study a wide range of protein aggregation disorders.

  5. Improving membrane voltage measurements using FRET with new fluorescent proteins.

    PubMed

    Tsutsui, Hidekazu; Karasawa, Satoshi; Okamura, Yasushi; Miyawaki, Atsushi

    2008-08-01

    We used two new coral fluorescent proteins as fluorescence resonance energy transfer (FRET) donor and acceptor to develop a voltage sensor, named Mermaid, that displays approximately 40% changes in emission ratio per 100 mV, allowing for direct visualization of electrical activities in cultured excitable cells. Notably, Mermaid has fast on-off kinetics at warm (approximately 33 degrees C) temperatures and can report voltage spikes comparable to action potentials.

  6. Dual Readout BRET/FRET Sensors for Measuring Intracellular Zinc

    PubMed Central

    2016-01-01

    Genetically encoded FRET-based sensor proteins have significantly contributed to our current understanding of the intracellular functions of Zn2+. However, the external excitation required for these fluorescent sensors can give rise to photobleaching and phototoxicity during long-term imaging, limits applications that suffer from autofluorescence and light scattering, and is not compatible with light-sensitive cells. For these applications, sensor proteins based on Bioluminescence Resonance Energy Transfer (BRET) would provide an attractive alternative. In this work, we used the bright and stable luciferase NanoLuc to create the first genetically encoded BRET sensors for measuring intracellular Zn2+. Using a new sensor approach, the NanoLuc domain was fused to the Cerulean donor domain of two previously developed FRET sensors, eCALWY and eZinCh-2. In addition to preserving the excellent Zn2+ affinity and specificity of their predecessors, these newly developed sensors enable both BRET- and FRET-based detection. While the dynamic range of the BRET signal for the eCALWY-based BLCALWY-1 sensor was limited by the presence of two competing BRET pathways, BRET/FRET sensors based on the eZinCh-2 scaffold (BLZinCh-1 and -2) yielded robust 25–30% changes in BRET ratio. In addition, introduction of a chromophore-silencing mutation resulted in a BRET-only sensor (BLZinCh-3) with increased BRET response (50%) and an unexpected 10-fold increase in Zn2+ affinity. The combination of robust ratiometric response, physiologically relevant Zn2+ affinities, and stable and bright luminescence signal offered by the BLZinCh sensors allowed monitoring of intracellular Zn2+ in plate-based assays as well as intracellular BRET-based imaging in single living cells in real time. PMID:27547982

  7. FRET-Based Optical Assay for Monitoring Riboswitch Activation

    DTIC Science & Technology

    2009-04-09

    transfer (FRET) between two genetically encoded fluorescent proteins. The theophylline -sensitive riboswitch was placed upstream of the Tobacco Etch Virus...resonance energy-accepting chromoprotein) connected with a peptide linker containing a TEV protease cleavage site. Addition of theophylline to the E. coli...a change in the fluorescence signal. By this method, we observed an 11-fold increase in cellular extract fluorescence in the presence of theophylline

  8. Fretting Fatigue Behavior of Nickel Alloy IN-100

    DTIC Science & Technology

    2006-03-01

    system 20 τb resolved shear stress related to ultimate tensile strength . 20 N the number of cycles . . . . . . . . . . . . . . . . . . . . . 21 SCN...size was about 100 µm. The material at hand has a modulus of elasticity of 126 GPa and ultimate tensile strength of up to 1520 MPa (at room...different pad geometries was also explored. It was observed that fretting reduced the fatigue strength of IN-100, and that increasing cylindrical pad

  9. Nucleobases and other Prebiotic Species from the Ultraviolet Irradiation of Pyrimidine in Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Nuevo, M.; Materese, C. K.; Milam, S. N.

    2012-01-01

    Nucleobases are N-heterocycles that are the informational subunits of DNA and RNA, and are divided into two families: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites and their extraterrestrial origin confirmed by isotope measurement. Although no Nheterocycles have ever been observed in the ISM, the positions of the 6.2-m interstellar emission features suggest a population of such molecules is likely to be present. In this work we study the formation of pyrimidine-based molecules, including nucleobases, as well as other species of prebiotic interest, from the ultraviolet (UV) irradiation of pyrimidine in combinations of H2O, NH3, CH3OH, and CH4 ices at low temperature, in order to simulate the astrophysical conditions under which prebiotic species may be formed in the interstellar medium and icy bodies of the Solar System. Experimental: Gas mixtures are prepared in a glass mixing line (background pressure approx. 10(exp -6)-10(exp -5) mbar). Relative proportions between mixture components are determined by their partial pressures. Gas mixtures are then deposited on an aluminum foil attached to a cold finger (15-20 K) and simultaneously irradiated with an H2 lamp emitting UV photons (Lyman and a continuum at approx.160 nm). After irradiation samples are warmed to room temperature, at which time the remaining residues are recovered to be analyzed with liquid and gas chromatographies. Results: These experiments showed that the UV irradiation of pyrimidine mixed in these ices at low temperature leads to the formation of several photoproducts derived from pyrimidine, including the nucleobases uracil and cytosine, as well as their precursors 4(3H)-pyrimidone and 4-aminopyrimidine (Fig. 1). Theoretical quantum calculations on the formation of 4(3H)-pyrimidone and uracil from the irradiation of pyrimidine in pure H2O ices are in agreement with their experimental formation pathways. In

  10. Fretting wear of iron, nickel, and titanium under varied environmental conditions

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1978-01-01

    Fretting wear experiments were conducted on high purity iron, nickel and titanium in air under conditions of varied humidity and temperature, and in nitrogen. For iron and titanium, maximum fretting occurred at 10 and 30 percent relative humidity respectively. Nickel showed a minimum in fretting wear at about 10 percent relative humidity. With increasing temperature, all three metals initially showed reduced fretting wear, with increasing wear observed as temperatures increased beyond 200-300 C. For titanium, dramatically reduced fretting wear was observed at temperatures above 500 C, relatable to a change in oxidation kinetics. All three metals showed much less fretting wear in N2 with the presence of moisture in N2 having a proportionally stronger effect than in air.

  11. Rise-Time of FRET-Acceptor Fluorescence Tracks Protein Folding

    PubMed Central

    Lindhoud, Simon; Westphal, Adrie H.; van Mierlo, Carlo P. M.; Visser, Antonie J. W. G.; Borst, Jan Willem

    2014-01-01

    Uniform labeling of proteins with fluorescent donor and acceptor dyes with an equimolar ratio is paramount for accurate determination of Förster resonance energy transfer (FRET) efficiencies. In practice, however, the labeled protein population contains donor-labeled molecules that have no corresponding acceptor. These FRET-inactive donors contaminate the donor fluorescence signal, which leads to underestimation of FRET efficiencies in conventional fluorescence intensity and lifetime-based FRET experiments. Such contamination is avoided if FRET efficiencies are extracted from the rise time of acceptor fluorescence upon donor excitation. The reciprocal value of the rise time of acceptor fluorescence is equal to the decay rate of the FRET-active donor fluorescence. Here, we have determined rise times of sensitized acceptor fluorescence to study the folding of double-labeled apoflavodoxin molecules and show that this approach tracks the characteristics of apoflavodoxinʼs complex folding pathway. PMID:25535076

  12. Study on bending fretting fatigue damage in 17CrNiMo6 steel

    NASA Astrophysics Data System (ADS)

    Peng, J. F.; Jin, X.; Xu, Z. B.; Cai, Z. B.; Zhang, X. Y.; Zhu, M. H.

    2017-07-01

    Bending fretting fatigue behavior of 17CrNiMo6 alloy structural steel at room temperature was investigated under different bending and contact loads; and the S-N curve also was built up. The results showed that the S-N curve had a “C” shape. The bending fretting fatigue life was mainly dependent on the bending fatigue stress and fretting displacement. The limit of the specimens and the fretting fatigue life were dramatically decreased by fretting actions. The bending fretting fatigue damage changed under varied bending fatigue stress levels. When the wear first occurred, there is a lower bending fatigue stress; and with a higher bending fatigue load, microcracks were generated. However, some serious wear and surface delamination were observed under the highest fatigue load.

  13. Multiphoton FLIM: a reliable FRET detection tool in cell biological applications

    NASA Astrophysics Data System (ADS)

    Krishnan, Ramanujan V.; Biener, Eva; Centonze, Victoria E.; Gertler, Arieh; Herman, Brian A.

    2004-06-01

    Fluorescence lifetime imaging microscopy (FLIM) using multiphoton excitation is emerging as a reliable quantitative tool for measuring fluorescence resonance energy transfer (FRET) in living cells. By virtue of being free from spectroscopic artifacts encountered in conventional FRET detection methods, multiphoton FLIM methods offer the advantages of high spatial and temporal resolution, faster data acquisition and data analysis. We compare the FRET results obtained by two different methods namely (i) multiphoton excitation lifetime-based FRET and (ii) single photon excitation intensity-based acceptor photobleaching FRET. Using the same biological samples, we apply these two different methods in understanding the growth hormone receptor dimerization kinetics at the cell surface of human embryonic kidney cells. We conclude that the multiphoton FLIM using the streak-camera approach provides the best ability to monitor FRET in dynamic situations where high temporal and spatial resolution are required with minimal photodamage/phototoxicity.

  14. Conformational Dynamics of Titin PEVK Explored with FRET Spectroscopy

    PubMed Central

    Huber, Tamás; Grama, László; Hetényi, Csaba; Schay, Gusztáv; Fülöp, Lívia; Penke, Botond; Kellermayer, Miklós S.Z.

    2012-01-01

    The proline-, glutamate-, valine-, and lysine-rich (PEVK) domain of the giant muscle protein titin is thought to be an intrinsically unstructured random-coil segment. Various observations suggest, however, that the domain may not be completely devoid of internal interactions and structural features. To test the validity of random polymer models for PEVK, we determined the mean end-to-end distances of an 11- and a 21-residue synthetic PEVK peptide, calculated from the efficiency of the fluorescence resonance energy transfer (FRET) between an N-terminal intrinsic tryptophan donor and a synthetically added C-terminal IAEDANS acceptor obtained in steady-state and time-resolved experiments. We find that the contour-length scaling of mean end-to-end distance deviates from predictions of a purely statistical polymer chain. Furthermore, the addition of guanidine hydrochloride decreased, whereas the addition of salt increased the FRET efficiency, pointing at the disruption of structure-stabilizing interactions. Increasing temperature between 10 and 50°C increased the normalized FRET efficiency in both peptides but with different trajectories, indicating that their elasticity and conformational stability are different. Simulations suggest that whereas the short PEVK peptide displays an overall random structure, the long PEVK peptide retains residual, loose helical configurations. Transitions in the local structure and dynamics of the PEVK domain may play a role in the modulation of passive muscle mechanics. PMID:23062340

  15. Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions

    PubMed Central

    Sung, Uhna; Sepehri-Rad, Masoud; Piao, Hong Hua; Jin, Lei; Hughes, Thomas; Cohen, Lawrence B.; Baker, Bradley J.

    2015-01-01

    FRET (Förster Resonance Energy Transfer)-based protein voltage sensors can be useful for monitoring neuronal activity in vivo because the ratio of signals between the donor and acceptor pair reduces common sources of noise such as heart beat artifacts. We improved the performance of FRET based genetically encoded Fluorescent Protein (FP) voltage sensors by optimizing the location of donor and acceptor FPs flanking the voltage sensitive domain of the Ciona intestinalis voltage sensitive phosphatase. First, we created 39 different “Nabi1” constructs by positioning the donor FP, UKG, at 8 different locations downstream of the voltage-sensing domain and the acceptor FP, mKO, at 6 positions upstream. Several of these combinations resulted in large voltage dependent signals and relatively fast kinetics. Nabi1 probes responded with signal size up to 11% ΔF/F for a 100 mV depolarization and fast response time constants both for signal activation (~2 ms) and signal decay (~3 ms). We improved expression in neuronal cells by replacing the mKO and UKG FRET pair with Clover (donor FP) and mRuby2 (acceptor FP) to create Nabi2 probes. Nabi2 probes also had large signals and relatively fast time constants in HEK293 cells. In primary neuronal culture, a Nabi2 probe was able to differentiate individual action potentials at 45 Hz. PMID:26587834

  16. Fretting Wear of Ti-48Al-2Cr-2Nb

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2001-01-01

    An investigation was conducted to examine the wear behavior of gamma titanium aluminide (Ti-48Al-2Cr-2Nb in atomic percent) in contact with a typical nickel-base superalloy under repeated microscopic vibratory motion in air at temperatures from 296-823 K. The surface damage observed on the interacting surfaces of both Ti-48Al-2Cr-2Nb and superalloy consisted of fracture pits, oxides, metallic debris, scratches, craters, plastic deformation, and cracks. The Ti-48Al-2Cr-2Nb transferred to the superalloy at all fretting conditions and caused scuffing or galling. The increasing rate of oxidation at elevated temperatures led to a drop in Ti-48Al-2Cr-2Nb wear at 473 K. Mild oxidative wear was observed at 473 K. However, fretting wear increased as the temperature was increased from 473-823 K. At 723 and 823 K, oxide disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Ti-48Al-2Cr-2Nb wear generally decreased with increasing fretting frequency. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals. Keywords

  17. Searching the fluorescent protein color palette for new FRET pairs

    NASA Astrophysics Data System (ADS)

    Hazelwood, Kristin L.; Ramko, Ericka B.; Ozarowska, Anna P.; Olenych, Scott G.; Worthy, Patrice N.; Guan, Amy; Murphy, Christopher S.; Davidson, Michael W.

    2008-02-01

    One of the most promising imaging techniques for monitoring dynamic protein interactions in living cells with optical microscopy, universally referred to as FRET, employs the non-radiative transfer of energy between two closely adjacent spectrally active molecules, often fluorescent proteins. The use of FRET in cell biology has expanded to such a degree that hundreds of papers are now published each year using biosensors to monitor a wide spectrum of intracellular processes. Most of these sensors sandwich an environmentally active peptide between cyan and yellow fluorescent protein (CFP and YFP) derivatives to assay variables such as pH, calcium ion concentration, enzyme activity, or membrane potential. The availability of these sensitive indicators is growing rapidly, but many are hampered by a low dynamic range that often is only marginally detectable over the system noise. Furthermore, extended periods of excitation at wavelengths below 500 nm have the potential to induce phototoxic effects that can mask or alter the biological events under observation. Recent success in expanding the fluorescent protein color palette offers the opportunity to explore new FRET partners that may be suitable for use in advanced biosensors.

  18. ESIPT and FRET probes for monitoring nanoparticle polymer coating stability.

    PubMed

    Azcárate, Julio C; Díaz, Sebastián A; Fauerbach, Jonathan A; Gillanders, Florencia; Rubert, Aldo A; Jares-Erijman, Elizabeth A; Jovin, Thomas M; Fonticelli, Mariano H

    2017-06-29

    Coating strategies of inorganic nanoparticles (NPs) can provide properties unavailable to the NP core alone, such as targeting, specific sensing, and increased biocompatibility. Non-covalent amphiphilic NP capping polymers function via hydrophobic interactions with surface ligands and are extensively used to transfer NPs to aqueous media. For applications of coated NPs as actuators (sensors, markers, or for drug delivery) in a complex environment, such as biological systems, it is important to achieve a deep understanding of the factors affecting coating stability and behavior. We have designed a system that tests the coating stability of amphiphilic polymers through a simple fluorescent readout using either polarity sensing ESIPT (excited state intramolecular proton transfer) dyes or NP FRET (Förster resonance energy transfer). The stability of the coating was determined in response to changes in polarity, pH and ionic strength in the medium. Using the ESIPT system we observed linear changes in signal up to ∼20-25% v/v of co-solvent addition, constituting a break point. Based on such data, we propose a model for coating instability and the important adjustable parameters, such as the electrical charge distribution. FRET data provided confirmatory evidence for the model. The ESIPT dyes and FRET based methods represent new, simple tools for testing NP coating stability in complex environments.

  19. Fretting fatigue of anisotropic materials at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Haradanahalli, Murthy N.

    The purpose of this research is to develop an experimental procedure to characterize the contact between blade and disk in aircraft turbo-machinery and to develop a model to predict the life of components based on contact conditions. An experimental setup has been developed to conduct fretting fatigue tests at 610°C. Fretting fatigue lives are characterized for the contacting pair of IN100 and single crystal nickel subjected to a range of loading conditions. A well characterized set of experiments has been conducted to obtain the friction coefficient in the slip zone. Material principal axes and the crystallographic plane of fracture were determined. A robust quasi-analytical approach, based on solution to singular integral equations, has been used to analyze the contact stresses. Different multi-axial fatigue parameters have been investigated for their ability to predict the initiation life of the specimens, after applying a stressed area correction factor using weakest link approach. Multiaxial fatigue parameters also predicted crack nucleation at the edge of contact, consistent with observations of the fractured specimens. Crack propagation lives were evaluated using conventional fracture mechanics, after making certain assumptions to simplify the problem. Total life was estimated as the sum of nucleation life and propagation life. These predicted lives were compared with experimentally observed failure lives. The quality of the comparison provides confidence in the notion that conventional life prediction tools can be used to assess fretting fatigue at elevated temperatures.

  20. General FRET-based coding for application in multiplexing methods.

    PubMed

    Giestas, Letícia; Petrov, Vesselin; Baptista, Pedro V; Lima, João Carlos

    2009-08-01

    FRET can be used as a strategy to assign different simultaneous events in the same sample but "cross-talk" problems are a limitation. Here we present a contribution for the better understanding of the "cross-talk" in FRET experiments that include several pairs in the same sample. Using oligonucleotide probes labeled with fluorescent dyes which can be selectively excited at a specific wavelength, and using target oligonucleotides tagged with a fluorescent dye with specific characteristics that allow only it to emit light upon selective excitation of a specific probe by energy transfer (FRET), we aim to identify the exact probe-target hybridized pair. When using three donors to probe the presence of complementary targets, only 20% of possible donor/acceptor combinations give straightforward signals readily identifiable with the sample composition, while in the remaining cases severe cross-excitation prevents the direct identification of the sample composition. To correctly resolve the samples identity, we developed a theoretical model that enables the unequivocal attribution of a sample composition to a given set of fluorescence signals, in the presence of three donors.

  1. Considerations for sensitivity analysis, uncertainty quantification, and data assimilation for grid-to-rod fretting

    SciTech Connect

    Michael Pernice

    2012-10-01

    Grid-to-rod fretting is the leading cause of fuel failures in pressurized water reactors, and is one of the challenge problems being addressed by the Consortium for Advanced Simulation of Light Water Reactors to guide its efforts to develop a virtual reactor environment. Prior and current efforts in modeling and simulation of grid-to-rod fretting are discussed. Sources of uncertainty in grid-to-rod fretting are also described.

  2. A microenvironment-sensitive fluorescent pyrimidine ribonucleoside analogue: synthesis, enzymatic incorporation, and fluorescence detection of a DNA abasic site.

    PubMed

    Tanpure, Arun A; Srivatsan, Seergazhi G

    2011-11-04

    Base-modified fluorescent ribonucleoside-analogue probes are valuable tools in monitoring RNA structure and function because they closely resemble the structure of natural nucleobases. Especially, 2-aminopurine, a highly environment-sensitive adenosine analogue, is the most extensively utilized fluorescent nucleoside analogue. However, only a few isosteric pyrimidine ribonucleoside analogues that are suitable for probing the structure and recognition properties of RNA molecules are available. Herein, we describe the synthesis and photophysical characterization of a small series of base-modified pyrimidine ribonucleoside analogues derived from tagging indole, N-methylindole, and benzofuran onto the 5-position of uracil. One of the analogues, based on a 5-(benzofuran-2-yl)pyrimidine core, shows emission in the visible region with a reasonable quantum yield and, importantly, displays excellent solvatochromism. The corresponding triphosphate substrate is effectively incorporated into oligoribonucleotides by T7 RNA polymerase to produce fluorescent oligoribonucleotide constructs. Steady-state and time-resolved spectroscopic studies with fluorescent oligoribonucleotide constructs demonstrate that the fluorescent ribonucleoside photophysically responds to subtle changes in its environment brought about by the interaction of the chromophore with neighboring bases. In particular, the emissive ribonucleoside, if incorporated into an oligoribonucleotide, positively reports the presence of a DNA abasic site with an appreciable enhancement in fluorescence intensity. The straightforward synthesis, amicability to enzymatic incorporation, and sensitivity to changes in the microenvironment highlight the potential of the benzofuran-conjugated pyrimidine ribonucleoside as an efficient fluorescent probe to investigate nucleic acid structure, dynamics, and recognition events.

  3. Fretting Fatigue Experiment and Analysis of AlSi9Cu2Mg Alloy.

    PubMed

    Wang, Jun; Xu, Hong; Su, Tiexiong; Zhang, Yi; Guo, Zhen; Mao, Huping; Zhang, Yangang

    2016-12-05

    An investigation was carried out in order to study the fretting fatigue behavior of an AlSi9Cu2Mg aluminum alloy. The fretting fatigue tests of AlSi9Cu2Mg were performed using a specially designed testing machine. The failure mechanism of fretting fatigue was explored by studying the fracture surfaces, fretting scars, fretting debris, and micro-hardness of fretting fatigue specimens using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and micro Vickers hardness test techniques. The experimental results show that the fretting fatigue limit (42 MPa) is significantly reduced to approximately 47% of the plain fatigue limit (89 MPa) under 62.5 MPa contact pressure. Furthermore, the fretting fatigue life decreases with increasing alternating stress and increasing contact pressure. The examination results suggest that the stress concentrates induced by oxidation-assisted wear on the contact interface led to the earlier initiation and propagation of crack under the fretting condition.

  4. Fretting Fatigue Experiment and Analysis of AlSi9Cu2Mg Alloy

    PubMed Central

    Wang, Jun; Xu, Hong; Su, Tiexiong; Zhang, Yi; Guo, Zhen; Mao, Huping; Zhang, Yangang

    2016-01-01

    An investigation was carried out in order to study the fretting fatigue behavior of an AlSi9Cu2Mg aluminum alloy. The fretting fatigue tests of AlSi9Cu2Mg were performed using a specially designed testing machine. The failure mechanism of fretting fatigue was explored by studying the fracture surfaces, fretting scars, fretting debris, and micro-hardness of fretting fatigue specimens using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and micro Vickers hardness test techniques. The experimental results show that the fretting fatigue limit (42 MPa) is significantly reduced to approximately 47% of the plain fatigue limit (89 MPa) under 62.5 MPa contact pressure. Furthermore, the fretting fatigue life decreases with increasing alternating stress and increasing contact pressure. The examination results suggest that the stress concentrates induced by oxidation-assisted wear on the contact interface led to the earlier initiation and propagation of crack under the fretting condition. PMID:28774103

  5. Fretting Wear Behavior of Tin Plated Contacts:. Influence on Contact Resistance

    NASA Astrophysics Data System (ADS)

    Park, Young Woo; Sankara Narayanan, T. S. N.; Lee, Kang Yong

    The fretting wear behavior of tin plated copper alloy contacts and its influence on the contact resistance are addressed in this paper. Based on the change in the area of contact zone as well as the wear depth as a function of fretting cycles, a model was proposed to explain the observed low and stable contact resistance. The extent of wear of tin coating and the formation of wear debris as a function of fretting cycles were assessed by scanning electron microscopy (SEM). Energy dispersive X-ray line scanning (EDX), X-ray mapping, and EDX spot analysis were employed to characterize the nature of changes that occur at the contact zone. The study reveals that the fretted area increases linearly up to 8000 cycles due to the continuous removal of the tin coating and attains saturation when the fretting path length reaches a maximum. The observed low and stable contact resistance observed up to 8000 cycles is due to the common area of contact which provides an electrically conducting area. Surface analysis by SEM, EDX, and X-ray elemental mapping elucidate the nature of changes that occurred at the contact zone. Based on the change in contact resistance as a function of fretting cycles, the fretting wear and fretting corrosion dominant regimes are proposed. The interdependence of extent of wear and oxidation increases the complexity of the fretting corrosion behavior of tin plated contacts.

  6. A communication theoretical analysis of FRET-based mobile ad hoc molecular nanonetworks.

    PubMed

    Kuscu, Murat; Akan, Ozgur B

    2014-09-01

    Nanonetworks refer to a group of nanosized machines with very basic operational capabilities communicating to each other in order to accomplish more complex tasks such as in-body drug delivery, or chemical defense. Realizing reliable and high-rate communication between these nanomachines is a fundamental problem for the practicality of these nanonetworks. Recently, we have proposed a molecular communication method based on Förster Resonance Energy Transfer (FRET) which is a nonradiative excited state energy transfer phenomenon observed among fluorescent molecules, i.e., fluorophores. We have modeled the FRET-based communication channel considering the fluorophores as single-molecular immobile nanomachines, and shown its reliability at high rates, and practicality at the current stage of nanotechnology. In this study, for the first time in the literature, we investigate the network of mobile nanomachines communicating through FRET. We introduce two novel mobile molecular nanonetworks: FRET-based mobile molecular sensor/actor nanonetwork (FRET-MSAN) which is a distributed system of mobile fluorophores acting as sensor or actor node; and FRET-based mobile ad hoc molecular nanonetwork (FRET-MAMNET) which consists of fluorophore-based nanotransmitter, nanoreceivers and nanorelays. We model the single message propagation based on birth-death processes with continuous time Markov chains. We evaluate the performance of FRET-MSAN and FRET-MAMNET in terms of successful transmission probability and mean extinction time of the messages, system throughput, channel capacity and achievable communication rates.

  7. Influence of plasma molybdenizing and shot-peening on fretting damage behavior of titanium alloy

    NASA Astrophysics Data System (ADS)

    Tang, Chang-bin; Liu, Dao-xin; Tang, Bin; Zhang, Xiao-hua; Qin, Lin; Liu, Cheng-song

    2016-12-01

    Effect of plasma molybdenizing and shot-peening on fretting wear and fretting fatigue behaviors of Ti6Al4V alloy was investigated. The plasma molybdenized layer composed of a dense molybdenum deposition layer and a Mo-Ti solid-solution layer can increase surface hardness by 2.8 times and cause its volume loss by fretting wear to decrease to 1/14 compared with that of the substrate. Plasma molybdenized treatment results in a significant decrease in resistance of the substrate to fretting fatigue. It is ascribed that the molybdenized layer with high hardness yields a low toughness, and its high surface roughness leads to a micro-notched effect. However, proper combination plasma molybdenizing and subsequent shot-peening may enhance the simultaneous fretting fatigue and fretting wear resistance of Ti6Al4V significantly, which can decrease the fretting wear volume loss to 1/27, and may increase the fretting fatigue life by more than 69 times. A synergistic improvement in fretting fatigue of the titanium alloy by combining surface alloying with shot-peening can be achieved. The results indicate that a beneficial residual compressive stress distribution, high surface hardness with suitable hardness gradient distribution, good apparent toughness, relatively low surface roughness, and excellent surface integrity are achieved.

  8. Fretting Wear Mechanisms in A216 Plain Carbon Steel

    NASA Astrophysics Data System (ADS)

    Maich, Alyssa Anne

    The subsurface and surface microstructures during pin-on-disk fretting wear of A216 steel disks under various loading conditions and times are investigated. The corresponding pins are fabricated from 410 stainless steel to simulate in-service conditions found in such engineering components as the Siemens W501FD engine row-2 diaphragm of a Siemens turbine engine, which is known to be prone to failure by fretting wear. Loading conditions range from 2N to 15N and times from 1 hour to a maximum of 69 hours, when steady state is confirmed. Wear track depth is quantitatively determined by optical profilometry, and found to range from 3 to 11 microns dependent upon load. Wear depth increases from 2N to 10N load, but decreases when increased to 15N load, due to heavier transfer of pin material to disk, as can be seen by EDS images of chromium transfer on A216 disk. Microstructures are evaluated by transmission electron microscopy of samples prepared by focused ion beam machining to pinpoint wear tracks and expose them in cross-section. EDS is used, in conjunction with TEM, to elucidate primary wear mechanisms at each stage of fretting wear. Microstructures in the subsurface of wear tracks are found to be heavily dislocated and layered, features that vary with both applied load and time. The microstructure eventually evolves into stable dislocation cells with cell walls aligned parallel to the surface. Penetration depth of the damaged layers increases with applied load, associated with a non-uniform maximum shear stress distribution that varies with depth. Primary oxide appears to evolve from Fe2O3 to Fe3O4, with increasing fretting time, leading to a uniform oxide on the surface of the A216 disk. Oxidation rate may be increased with the evolution of this subsurface dislocation cell structure. It is concluded that fretting wear failure is likely associated with a synergy between oxidative wear and crack initiation and propagation along dislocation cell walls under high

  9. Etude de la transition tribologique entre le fretting et le meso-fretting pour des materiaux de contact electrique

    NASA Astrophysics Data System (ADS)

    Gagnon, Daniel

    Dans les installations electriques, les contacts sont toujours soumis a des contraintes alternees ou a des micro-deplacements. Il en resulte une corrosion par fretting, phenomene defini comme un type de deterioration de la surface qui se produit lorsque deux materiaux en contact sont soumis a des mouvements microscopiques d'oscillations de tres faible amplitude (0 a 100 mum). Ceci a pour effet de provoquer une degradation de la resistance de contact et une interruption du passage du courant. Ce phenomene a des repercussions considerables sur le plan pratique puisque les micro-deplacements de pieces en contact peuvent etre causes par la dilatation thermique differentielle des metaux, par des vibrations mecaniques, par la relaxation des contraintes ou par l'echauffement des contacts lorsqu'on interrompt et retablit le courant. Nous avons donc dans le cadre de cette these etudie plusieurs aspects du fretting (0--100 mum) et du meso-fretting (100 a 1000 mum) pour differents materiaux de contact electrique. Des travaux experimentaux ont ete realises a partir de deux montages reproduisant divers aspects de la degradation par le fretting. Un premier montage de fretting de type bille-plaque a ete entierement developpe a l'ETS et un second montage, de type fil-plaque a ete utilise en collaboration avec Hydro Quebec IREQ a Varennes. Plusieurs techniques de mesures et d'analyse relevant tant du domaine de la mecanique du contact que de la metallurgie ont ete utilisees pour traiter les resultats. L'influence du courant sur le taux d'usure et la force de friction a ete examinee pour divers materiaux de contacts. Des essais de fatigue thermique et electrique ont ete realises sur divers materiaux et lubrifiants de contact. Il a ete demontre que pour le domaine entre 100 mum et 1000 mum, le taux d'usure n'est pas le meme de 0 a 100 mum et au dela de 1000 mum. La plupart des materiaux evalues montrent un stade de comportement intermediaire dont le debut se situe entre 100 mum et

  10. Natural Analogue Synthesis Report

    SciTech Connect

    A. M. Simmons

    2002-05-01

    The purpose of this report is to present analogue studies and literature reviews designed to provide qualitative and quantitative information to test and provide added confidence in process models abstracted for performance assessment (PA) and model predictions pertinent to PA. This report provides updates to studies presented in the ''Yucca Mountain Site Description'' (CRWMS M and O 2000 [151945], Section 13) and new examples gleaned from the literature, along with results of quantitative studies conducted specifically for the Yucca Mountain Site Characterization Project (YMP). The intent of the natural analogue studies was to collect corroborative evidence from analogues to demonstrate additional understanding of processes expected to occur during postclosure at a potential Yucca Mountain repository. The report focuses on key processes by providing observations and analyses of natural and anthropogenic (human-induced) systems to improve understanding and confidence in the operation of these processes under conditions similar to those that could occur in a nuclear waste repository. The process models include those that represent both engineered and natural barrier processes. A second purpose of this report is to document the various applications of natural analogues to geologic repository programs, focusing primarily on the way analogues have been used by the YMP. This report is limited to providing support for PA in a confirmatory manner and to providing corroborative inputs for process modeling activities. Section 1.7 discusses additional limitations of this report. Key topics for this report are analogues to emplacement drift degradation, waste form degradation, waste package degradation, degradation of other materials proposed for the engineered barrier, seepage into drifts, radionuclide flow and transport in the unsaturated zone (UZ), analogues to coupled thermal-hydrologic-mechanical-chemical processes, saturated zone (SZ) transport, impact of radionuclide

  11. The mechanics and tribology of fretting fatigue with application to riveted lap joints

    NASA Astrophysics Data System (ADS)

    Szolwinski, Matthew Paul

    Fretting is the synergistic combination of wear, corrosion, and fatigue damage mechanisms driven by the partial slip of contacting surfaces. The surface microslip and near-surface contact stresses associated with fretting can lead to severe reduction in service lifetimes of contacting components as diversified as bearings, turbine blades and mechanically-fastened joints, both structural and biological. This tribologically induced degradation has come under close scrutiny by those responsible for maintaining aging fleets of both commercial and military aircraft. Thus a critical need exists for predicting fretting crack nucleation in riveted aluminum. aircraft joints. Fulfilling this need requires characterizing both the near-surface mechanics and intimately-related tribology of fretting. To this end, a well characterized experimental setup has been developed to generate carefully controlled and monitored fretting contacts to investigate the nature of the near-surface conditions. Included in this investigation were in-situ observations of the fretting contact stress field via a non-invasive thermal imaging technique and a characterization of the evolution of friction under partial slip conditions. With specific qualitative and quantitative understanding of these near-surface conditions, a series of fretting fatigue experiments have been conducted to validate a mechanics-based model for predicting fretting fatigue crack nucleation. Finally, efforts have been directed toward extending this understanding of fretting crack nucleation to riveted aircraft structure through modeling of the riveting process and a related experimental program designed to link riveting process parameters and fretting damage in single-lap joint structures. This work focuses specifically on determination of the residual stresses induced during rivet installation and the morphological characterization of fretting fatigue damage in the riveted test specimens manufactured under controlled

  12. Probing Nucleobase Interactions and Predicting Mechanisms of Synthetic Interest Using Computational Chemistry, and Furthering the Development of BVI Education in Chemistry

    ERIC Educational Resources Information Center

    Harrison, Jason Gordon

    2013-01-01

    Quantum mechanical (QM) and molecular docking methods are used to probe systems of biological and synthetic interest. Probing interactions of nucleobases within proteins, and properly modeling said interactions toward novel nucleobase development, is extremely difficult, and of great utility in RNA interference (RNAi) therapeutics. The issues in…

  13. Probing Nucleobase Interactions and Predicting Mechanisms of Synthetic Interest Using Computational Chemistry, and Furthering the Development of BVI Education in Chemistry

    ERIC Educational Resources Information Center

    Harrison, Jason Gordon

    2013-01-01

    Quantum mechanical (QM) and molecular docking methods are used to probe systems of biological and synthetic interest. Probing interactions of nucleobases within proteins, and properly modeling said interactions toward novel nucleobase development, is extremely difficult, and of great utility in RNA interference (RNAi) therapeutics. The issues in…

  14. Ab Initio Inverstagation of the Excited States of Nucleobases and Nucleosides

    NASA Astrophysics Data System (ADS)

    Szalay, Péter G.; Fogarasi, Géza; Watson, Thomas; Perera, Ajith; Lotrich, Victor; Bartlett, Rod J.

    2011-06-01

    Most living bodies are exposed to sunlight, essential life sustaining processes are using this natural radiation. Sunlight has, however, several components (has a broad "spectrum") and in particular the invisible component (UV, ultraviolet) is harmful for living organisms. Scientists around the word are busy to understand what happens in the cell when it is exposed to light: it seems that the building blocks of cells and in particular those carrying the genetic information (DNA and RNA) are highly protected against this exposition. Our research focuses on the spectral properties of the building blocks of DNA and RNA, the so called nucleobases and nucleosides, in order to understand this mechanism. Due to improvement in computer technology both at hardware and software side we are now able to use the most accurate methods of ab initio quantum chemistry to investigate the spectroscopic properties of these building blocks. These calculations provide direct information on the properties of these molecules but also provide important benchmarks for cheaper methods which can be used for even larger systems. We have calculated the excited state properties for the nucleobases (cytosine, guanine and adenine), their complexes with water and with each other (Watson-Crick base pairs and stacks) as well as corresponding nucleosides at the EOM-CCSD(T)/aug-cc-pVDZ level of theory and try to answer the following questions: (1) how the order of excited states varies in different nucleobases; (2) how hydration influences the excitation energy and order of excited states; (3) is there any effect of the sugar substituent; (4) how do close lying other bases change the spectrum. The calculations involve over hundred correlated electrons and up to thousand basis functions. Such calculations are now routinely available with the recently developed ACESIII code and can make use of hundreds or even several thousand of processors. V. Lotrich, N. Flocke, M. Ponton, A. Yau, A. Perera, E. Deumens

  15. Targeting DNA base pair mismatch with artificial nucleobases. Advances and perspectives in triple helix strategy.

    PubMed

    Malnuit, Vincent; Duca, Maria; Benhida, Rachid

    2011-01-21

    This review, divided into three sections, describes the contribution of the chemists' community to the development and application of triple helix strategy by using artificial nucleic acids, particularly for the recognition of DNA sequences incorporating base pair inversions. Firstly, the development of nucleobases that recognise CG inversion is surveyed followed secondly by specific recognition of TA inverted base pair. Finally, we point out in the last section recent perspectives and applications, driven from knowledge in nucleic acids interactions, in the growing field of nanotechnology and supramolecular chemistry at the border area of physics, chemistry and molecular biology.

  16. Role of pKa of Nucleobases in the Origins of Chemical Evolution

    PubMed Central

    2012-01-01

    The formation of canonical base pairs through Watson–Crick hydrogen bonding sits at the heart of the genetic apparatus. The specificity of the base pairing of adenine with thymine/uracil and guanine with cytosine preserves accurate information for the biochemical blueprint and replicates the instructions necessary for carrying out biological function. The chemical evolution question of how these five canonical nucleobases were selected over various other possibilities remains intriguing. Since these and alternative nucleobases would have been available for chemical evolution, the reasons for the emergence of this system appear to be primarily functional. While investigating the base-pairing properties of structural nucleic acid analogs, we encountered a relationship between the pKa of a series of nonstandard (and canonical) nucleobases and the pH of the aqueous medium. This relationship appeared to correspond with the propensity of these molecules to self-assemble via Watson–Crick-type base-pairing interactions. A simple correlation of the “magnitude of the difference between the pKa and pH” (pKa–pH correlation) enables a general prediction of which types of heterocyclic recognition elements form hydrogen-bonded base pairs in aqueous media. Using the pKa–pH relationship, we can rationalize why nature chose the canonical nucleobases in terms of hydrophobic and hydrophilic interactions, and further extrapolate its significance within the context of chemical evolution. The connection between the physicochemical properties of bioorganic compounds and the interactions with their aqueous environment directly affects structure and function, at both a molecular and a supramolecular level. A general structure–function pattern emerges in biomolecules and biopolymers in aqueous media near neutral pH. A pKa – pH < 2 generally prompts catalytic functions, central to metabolism, but a difference in pKa – pH > 2 seems to result in the emergence of structure

  17. Investigation of DNA nucleobases-thin films for potential application in electronics and photonics

    NASA Astrophysics Data System (ADS)

    Ouchen, Fahima; Gomez, Eliot; Joyce, Donna; Yaney, Perry; Kim, Steve; Williams, Adrienne; Steckl, Andrew; Venkat, Narayanan; Grote, James

    2013-10-01

    In previous research we have demonstrated improvements in device performance with the incorporation of a deoxyribonucleic acid (DNA)-based biopolymer into organic light emitting diodes, organic thin film transistors and other organic photonic and electronic devices. Here, we investigate nucleobases, nitrogen-containing biological compounds found within DNA, ribonucleic acid (RNA), nucleotides and nucleosides, for use in a few of those previously investigated photonic and electronic devices. Used as an electron blocking layer in OLEDs, a gate insulator for grapheme transistors and as a dielectric in organic-based capacitors, we have produced comparable results to those using DNA-based biopolymers.

  18. The role of intramolecular hydrogen bonding on nucleobase acidification following metal coordination: possible implications of an "indirect" role of metals in acid-base catalysis of nucleic acids.

    PubMed

    Roitzsch, Michael; Añorbe, Marta Garijo; Miguel, Pablo J Sanz; Müller, Barbara; Lippert, Bernhard

    2005-11-01

    The acidifying effect of Pt(II) on nucleobase -NH and -NH2 groups depends both on the site of metal coordination and on the efficiency of stabilization of the deprotonated nucleobase via intracomplex hydrogen bonding. Weakly acidic nucleobase protons with pK (a) values between 9 and 17 can be acidified by a single Pt(II) to have pK (a) values which are well within the physiological pH range. This could open the possibility of an acid-base catalysis occurring at pH 7, with the metal-nucleobase entity functioning either as an acid or a base. Examples of Pt(II) complexes studied here include, among others, mixed nucleobase systems of 1-methylcytosine and 1,9-dimethyladenine as well as a complex of the rare iminooxo tautomer of 1-methylcytosine having the metal bonded at N4.

  19. Lateral diffusion contributes to FRET from lanthanide-tagged membrane proteins

    SciTech Connect

    Lan, Tien-Hung; Wu, Guangyu; Lambert, Nevin A.

    2015-08-14

    Diffusion can enhance Förster resonance energy transfer (FRET) when donors or acceptors diffuse distances that are similar to the distances separating them during the donor's excited state lifetime. Lanthanide donors remain in the excited state for milliseconds, which makes them useful for time-resolved FRET applications but also allows time for diffusion to enhance energy transfer. Here we show that diffusion dramatically enhances FRET between membrane proteins labeled with lanthanide donors. This phenomenon complicates interpretation of experiments that use long-lived donors to infer association or proximity of mobile membrane proteins, but also offers a method of monitoring diffusion in membrane domains in real time in living cells. - Highlights: • Diffusion enhances TR-FRET from membrane proteins labeled with lanthanide donors. • Diffusion-dependent FRET can overshadow FRET due to oligomerization or clustering. • FRET studies using lanthanide-tagged membrane proteins should consider diffusion. • FRET from lanthanide donors can be used to monitor membrane protein diffusion.

  20. Effect of wire fretting on the corrosion resistance of common medical alloys.

    PubMed

    Siddiqui, Danyal A; Sivan, Shiril; Weaver, Jason D; Di Prima, Matthew

    2016-09-23

    Metallic medical devices such as intravascular stents can undergo fretting damage in vivo that might increase their susceptibility to pitting corrosion. As a result, the US Food and Drug Administration has recommended that such devices be evaluated for corrosion resistance after the devices have been fatigue tested in situations where significant micromotion can lead to fretting damage. Three common alloys that cardiovascular implants are made from [MP35N cobalt chromium (MP35N), electropolished nitinol (EP NiTi), and 316LVM stainless steel (316LVM)] were selected for this study. In order to evaluate the effect of wire fretting on the pitting corrosion susceptibility of these medical alloys, small and large fretting scar conditions of each alloy fretting against itself, and the other alloys in phosphate buffered saline (PBS) at 37°C were tested per ASTM F2129 and compared against as received or PBS immersed control specimens. Although the general trend observed was that fretting damage significantly lowered the rest potential (Er ) of these specimens (p < 0.01), fretting damage had no significant effect on the breakdown potential (Eb , p > 0.05) and hence did not affect the susceptibility to pitting corrosion. In summary, our results demonstrate that fretting damage in PBS alone is not sufficient to cause increased susceptibility to pitting corrosion in the three common alloys investigated. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  1. Investigating State Restriction in Fluorescent Protein FRET Using Time-Resolved Fluorescence and Anisotropy

    PubMed Central

    2016-01-01

    Most fluorescent proteins exhibit multiexponential fluorescence decays, indicating a heterogeneous excited state population. FRET between fluorescent proteins should therefore involve multiple energy transfer pathways. We recently demonstrated the FRET pathways between EGFP and mCherry (mC), upon the dimerization of 3-phosphoinositide dependent protein kinase 1 (PDK1), to be highly restricted. A mechanism for FRET restriction based on a highly unfavorable κ2 orientation factor arising from differences in donor–acceptor transition dipole moment angles in a far from coplanar and near static interaction geometry was proposed. Here this is tested via FRET to mC arising from the association of glutathione (GSH) and glutathione S-transferase (GST) with an intrinsically homogeneous and more mobile donor Oregon Green 488 (OG). A new analysis of the acceptor window intensity, based on the turnover point of the sensitized fluorescence, is combined with donor window intensity and anisotropy measurements which show that unrestricted FRET to mC takes place. However, a long-lived anisotropy decay component in the donor window reveals a GST-GSH population in which FRET does not occur, explaining previous discrepancies between quantitative FRET measurements of GST-GSH association and their accepted values. This reinforces the importance of the local donor–acceptor environment in mediating energy transfer and the need to perform spectrally resolved intensity and anisotropy decay measurements in the accurate quantification of fluorescent protein FRET. PMID:28217242

  2. Cerulean, Venus, and VenusY67C FRET reference standards.

    PubMed

    Koushik, Srinagesh V; Chen, Huanmian; Thaler, Christopher; Puhl, Henry L; Vogel, Steven S

    2006-12-15

    Förster's resonance energy transfer (FRET) can be used to study protein-protein interactions in living cells. Numerous methods to measure FRET have been devised and implemented; however, the accuracy of these methods is unknown, which makes interpretation of FRET efficiency values difficult if not impossible. This problem exists due to the lack of standards with known FRET efficiencies that can be used to validate FRET measurements. The advent of spectral variants of green fluorescent protein and easy access to cell transfection technology suggests a simple solution to this problem: the development of genetic constructs with known FRET efficiencies that can be replicated with high fidelity and freely distributed. In this study, fluorescent protein constructs with progressively larger separation distances between donors and acceptors were generated and FRET efficiencies were measured using fluorescence lifetime spectroscopy, sensitized acceptor emission, and spectral imaging. Since the results from each method were in good agreement, the FRET efficiency value of each construct could be determined with high accuracy and precision, thereby justifying their use as standards.

  3. Evaluating the Relationship between FRET Changes and Distance Changes Using DNA Length and Restriction Enzyme Specificity

    ERIC Educational Resources Information Center

    Pazhani, Yogitha; Horn, Abigail E.; Grado, Lizbeth; Kugel, Jennifer F.

    2016-01-01

    FRET (Fo¨rster resonance energy transfer) involves the transfer of energy from an excited donor fluorophore to an acceptor molecule in a manner that is dependent on the distance between the two. A biochemistry laboratory experiment is described that teaches students how to use FRET to evaluate distance changes in biological molecules. Students…

  4. Prediction of Fretting Crack Location and Orientation in a Single Crystal Nickel Alloy

    NASA Technical Reports Server (NTRS)

    Matlik, J. F.; Farris, T. N.; Haynes, J.; Swanson, G. R.; Ham-Battista, G.

    2005-01-01

    Fretting is a structural damage mechanism arising between two nominally clamped surfaces subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high- temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact that could potentially foster crack growth leading to component failure. These contact stresses drive crack nucleation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). Recently, a high-frequency, high-temperature load frame has been designed for experimentally investigating fretting damage of single crystal nickel materials employed in aircraft and spacecraft turbomachinery. A modeling method for characterizing the fretting stresses of the spherical fretting contact stress behavior in this experiment is developed and described. The calculated fretting stresses for a series of experiments are then correlated to the observed fretting damage. Results show that knowledge of the normal stresses and resolved shear stresses on each crystal plane can aid in predicting crack locations and orientations.

  5. Evaluating the Relationship between FRET Changes and Distance Changes Using DNA Length and Restriction Enzyme Specificity

    ERIC Educational Resources Information Center

    Pazhani, Yogitha; Horn, Abigail E.; Grado, Lizbeth; Kugel, Jennifer F.

    2016-01-01

    FRET (Fo¨rster resonance energy transfer) involves the transfer of energy from an excited donor fluorophore to an acceptor molecule in a manner that is dependent on the distance between the two. A biochemistry laboratory experiment is described that teaches students how to use FRET to evaluate distance changes in biological molecules. Students…

  6. Multifunctional Concentric FRET-Quantum Dot Probes for Tracking and Imaging of Proteolytic Activity.

    PubMed

    Massey, Melissa; Li, Jia Jun; Algar, W Russ

    2017-01-01

    Proteolysis has many important roles in physiological regulation. It is involved in numerous cell signaling processes and the pathogenesis of many diseases, including cancers. Methods of visualizing and assaying proteolytic activity are therefore in demand. Förster resonance energy transfer (FRET) probes offer several advantages in this respect. FRET supports end-point or real-time measurements, does not require washing or separation steps, and can be implemented in various assay or imaging formats. In this chapter, we describe methodology for preparing self-assembled concentric FRET (cFRET) probes for multiplexed tracking and imaging of proteolytic activity. The cFRET probe comprises a green-emitting semiconductor quantum dot (QD) conjugated with multiple copies of two different peptide substrates for two target proteases. The peptide substrates are labeled with different fluorescent dyes, Alexa Fluor 555 and Alexa Fluor 647, and FRET occurs between the QD and both dyes, as well as between the two dyes. This design enables a single QD probe to track the activity of two proteases simultaneously. Fundamental cFRET theory is presented, and procedures for using the cFRET probe for quantitative measurement of the activity of two model proteases are given, including calibration, fluorescence plate reader or microscope imaging assays, and data analysis. Sufficient detail is provided for other researchers to adapt this method to their specific requirements and proteolytic systems of interest.

  7. Engineering of weak helper interactions for high-efficiency FRET probes.

    PubMed

    Grünberg, Raik; Burnier, Julia V; Ferrar, Tony; Beltran-Sastre, Violeta; Stricher, François; van der Sloot, Almer M; Garcia-Olivas, Raquel; Mallabiabarrena, Arrate; Sanjuan, Xavier; Zimmermann, Timo; Serrano, Luis

    2013-10-01

    Fluorescence resonance energy transfer (FRET)-based detection of protein interactions is limited by the very narrow range of FRET-permitting distances. We show two different strategies for the rational design of weak helper interactions that co-recruit donor and acceptor fluorophores for a more robust detection of bimolecular FRET: (i) in silico design of electrostatically driven encounter complexes and (ii) fusion of tunable domain-peptide interaction modules based on WW or SH3 domains. We tested each strategy for optimization of FRET between (m)Citrine and mCherry, which do not natively interact. Both approaches yielded comparable and large increases in FRET efficiencies with little or no background. Helper-interaction modules can be fused to any pair of fluorescent proteins and could, we found, enhance FRET between mTFP1 and mCherry as well as between mTurquoise2 and mCitrine. We applied enhanced helper-interaction FRET (hiFRET) probes to study the binding between full-length H-Ras and Raf1 as well as the drug-induced interaction between Raf1 and B-Raf.

  8. FRET-based optical assay for selection of artificial riboswitches.

    PubMed

    Harbaugh, Svetlana V; Chapleau, Molly E; Chushak, Yaroslav G; Stone, Morley O; Kelley-Loughnane, Nancy

    2014-01-01

    Artificial riboswitches are engineered to regulate gene expression in response to a variety of non-endogenous small molecules and, therefore, can be useful tools to reprogram cellular behavior for different applications. A new synthetic riboswitch can be created by linking an in vitro-selected aptamer with a randomized expression platform followed by in vivo selection and screening. Here, we describe an in vivo selection and screening technique to discover artificial riboswitches in E. coli cells that is based on TEV protease-FRET substrate reporter system.

  9. Characterization of fretting fatigue damage using nondestructive approaches

    NASA Astrophysics Data System (ADS)

    Matikas, Theodore E.; Shell, Eric B.; Nicolaou, Perikles D.

    1999-02-01

    Ti-6Al-4V alloy specimens cut form a forged plate with a duplex microstructure, similar to the microstructure used in fan blades were tested under conditions of high-cycle fretting fatigue. The contact geometry, the normal stress, as well as the cyclic stress were selectee such that the mixed, slip-stick regime prevails during the experiments. Following testing, the specimens as well as the fretting pads were characterized by a variety of techniques including white light interference profilometry, scanning electron microscopy, ultrasonic force microscopy, microhardness testing, and electron dispersive spectroscopy (EDS). The results revealed that the surface roughness of the slip region increases compared to the roughness of the stick, and non-contact ones. In addition, at the higher spatial frequencies, the power spectral density (PSD) of the slip region increases compared to the PSD of the stick and non- contact regions, thus revealing that an increase of the population of the smaller size asperities occurs. The microstructure of the material below the slip zone was found to be transformed to a finer one; and the percentage of the transformed beta phase has been decreased substantially. The elastic property variation of this region was determined by ultrasonic force microscopy; the results revealed that in contrast to what found for the bulk of the material, there are significant local differences of the elastic properties inside the fretting-affected zone. In addition, the changes in the plastic behavior of the region below the slip zone, was determined using microhardness measurements. It was found that this transformed microstructure area, has also a higher hardness compared to the hardness of the bulk structure. Booth elastic and plastic property variations were attributed to the increased percent of alpha phase and the decreased amount of beta in the transformed zone, since the former phase exhibits higher elastic moduli as well as flow stresses.In addition

  10. Crack propagation analysis of surface enhanced titanium alloys with fretting induced damage

    NASA Astrophysics Data System (ADS)

    Garcia, Daniel Benjamin

    2005-11-01

    The objectives of this research project were to analyze, characterize, and predict the influences that surface treatments have on crack propagation in the presence of fretting fatigue damage. The titanium alloys, Ti-6Al-4V and Ti-17, were implemented for this research, and the surface enhancement methods consisted of shot peening and laser shock peening. The approach was to incorporate methods of contact mechanics, fractography, and fracture mechanics so that the influence of surface enhancements on fretting fatigue could be better understood. The specimens were obtained from prior fretting fatigue experiments that consisted of dog-bones and contact pads with both surface enhanced and bare conditions. The dog-bone specimens had fretting fatigue damage, which is a combination of a cyclic bulk load and the fretting induced damage. These specimens were incorporated in life prediction analyses in which a procedure for calculating fretting fatigue life by correlating nucleation and propagation through a non-arbitrary crack initiation criterion was introduced. The life prediction results show that the fretting fatigue life can be determined with knowledge of the fretting stress field and nature of the fretting cracks. The results also show that surface enhancements do not stop fretting fatigue cracks from forming, do slow the propagation and increase the fretting fatigue life. The contact pads had what is known as 'pure fretting' damage, which consists of the damage from the contact stresses but no cyclic bulk load. The contact pads are the basis for the development of the C-specimen experiment. The contact pads were machined into C-specimens that help measure the threshold stress intensity factor. The objective of the C-specimen experiment is to increase the cyclically applied load of the specimen through step testing until a fatigue crack propagates from the existing fretting induced crack. The testing technique provides for the threshold stress intensity factor to be

  11. Application of FRET Technology to the In Vivo Evaluation of Therapeutic Nucleic Acids (ANTs)

    NASA Astrophysics Data System (ADS)

    Benítez-Hess, María Luisa; Alvarez-Salas, Luis Marat

    2007-02-01

    Developing applications for therapeutic nucleic acids (TNAs) (i.e. ribozymes, antisense oligodeoxynucleotides (AS-ODNs), siRNA and aptamers) requires a reporter system designed to rapidly evaluate their in vivo effect. To this end we designed a reporter system based on the fluorescence resonance energy transfer (FRET) engineered to release the FRET effect produced by two green fluorescent protein (GFP) variants linked by a TNA target site. Because the FRET effect occurs instantaneously when two fluorophores are very close to each other (>100nm) stimulating emission of the acceptor fluorophore by the excitation of the donor fluorophore it has been widely use to reveal interactions between molecules. The present system (FRET2) correlates the FRET effect with the in vivo activity of distinct types of TNAs based on a model consisting of RNA from human papillomavirus type 16 (HPV-16) previously shown accessible to TNAs. HPV-16 is the most common papillomavirus associated with cervical cancer, the leading cause of death by cancer in México. The FRET2 system was first tested in vitro and then used in bacteria in which transcription is linked to translation allowing controlled expression and rapid evaluation of the FRET2 protein. To assure accessibility of the target mRNA to TNAs, the FRET2 mRNA was probed by RNaseH assays prior FRET testing. The fluorescence features of the FRET2 system was tested with different FRET-producing GFP donor-acceptor pairs leading to selection of green (donor) and yellow (acceptor) variants of GFP as the most efficient. Modifications in aminoacid composition and linker length of the target sequence did not affect FRET efficiency. In vivo AS-ODN-mediated destruction of the chimerical FRET2 reporter mRNA resulted in the recovery of GFP fluorescent spectrum in a concentration and time dependent manner. Reported anti-HPV ribozymes were also tested with similar results. Therefore, we conclude that the FRET effect can be a useful tool in the

  12. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications.

    PubMed

    Yuan, Lin; Lin, Weiying; Zheng, Kaibo; Zhu, Sasa

    2013-07-16

    Fluorescence imaging has emerged as a powerful tool for monitoring biomolecules within the context of living systems with high spatial and temporal resolution. Researchers have constructed a large number of synthetic intensity-based fluorescent probes for bio-imaging. However, intensity-based fluorescent probes have some limitations: variations in probe concentration, probe environment, and excitation intensity may influence the fluorescence intensity measurements. In principle, the use of ratiometric fluorescent probes can alleviate this shortcoming. Förster resonance energy transfer (FRET) is one of the most widely used sensing mechanisms for ratiometric fluorescent probes. However, the development of synthetic FRET probes with favorable photophysical properties that are also suitable for biological imaging applications remains challenging. In this Account, we review the rational design and biological applications of synthetic FRET probes, focusing primarily on studies from our laboratory. To construct useful FRET probes, it is a pre-requisite to develop a FRET platform with favorable photophysical properties. The design criteria of a FRET platform include (1) well-resolved absorption spectra of the donor and acceptor, (2) well-separated emission spectra of the donor and acceptor, (3) donors and acceptors with comparable brightness, (4) rigid linkers, and (5) near-perfect efficiency in energy transfer. With an efficient FRET platform in hand, it is then necessary to modulate the donor-acceptor distance or spectral overlap integral in an analyte-dependent fashion for development of FRET probes. Herein, we emphasize our most recent progress on the development of FRET probes by spectral overlap integral, in particular by changing the molar absorption coefficient of the donor dyes such as rhodamine dyes, which undergo unique changes in the absorption profiles during the ring-opening and -closing processes. Although partial success has been obtained in design of

  13. The design of Förster (fluorescence) resonance energy transfer (FRET)-based molecular sensors for Ran GTPase

    PubMed Central

    Kalab, Petr; Soderholm, Jon

    2010-01-01

    The application of FRET-based molecular bio-sensors provided confirmation of the central model of Ran GTPase function and led to important new insights into its physiological role. In many fields of cell biology, methods employing FRET are a standard approach that is becoming increasingly accessible due to advances in instrumentation and available fluorophores. However, the optimal design of a FRET sensor remains to be the cornerstone of any successful FRET application. Utilizing the recent literature on FRET applications and our studies on Ran, we outline the basic considerations involved in designing molecular FRET sensors. We point to several broadly applicable principles that were used in many different FRET sensors that can detect a wide range of molecular events. Using the FRET sensors for Ran that we created as examples, we then focus on the practical aspects of FRET assays. We describe the preparation of a bipartite FRET sensor consisting of ECFP-Ran and EYFP-importin β and its validation as a reporter for FRET-based high throughput screening in small molecule libraries. Finally, we review the design and optimization of monomolecular FRET sensors that monitor the RanGTP-RanBP1 interaction, and of sensors detecting the RanGTP-regulated importin β cargo release. PMID:20096786

  14. The effect of surface modification on fretting fatigue in Ti Alloy turbine components

    NASA Astrophysics Data System (ADS)

    Chakravarty, S.; Andrews, R. G.; Painaik, P. C.; Koul, A. K.

    1995-04-01

    Severe fretting damage has been observed on the pressure surfaces of fan and compressor blade dovetails/disks in an aerospace gas turbine engine. A study has been carried out to evaluate the effect of an ion implantation technique in combination with the presently used surface treatments, such as shot peening and coating, on the fretting fatigue life of titanium alloy gas turbine engine components. The results from fretting fatigue tests, residual stress measurements, and nanoindentation tests were used to quantitatively evaluate the effect of various surface treatments on the fretting fatigue life of the fan blade and disk materials. Results from microstructural characterization and analyses of elemental and phase distributions within the implanted region are used to understand the effect of ion implantation on the surface properties of the alloys. Finally, an attempt has been made to evaluate the potential for improving the fretting fatigue life of the engine components using various surface modification techniques.

  15. Imaging of Metabolic Status in 3D Cultures with an Improved AMPK FRET Biosensor for FLIM

    PubMed Central

    Chennell, George; Willows, Robin J. W.; Warren, Sean C.; Carling, David; French, Paul M. W.; Dunsby, Chris; Sardini, Alessandro

    2016-01-01

    We describe an approach to non-invasively map spatiotemporal biochemical and physiological changes in 3D cell culture using Forster Resonance Energy Transfer (FRET) biosensors expressed in tumour spheroids. In particular, we present an improved Adenosine Monophosphate (AMP) Activated Protein Kinase (AMPK) FRET biosensor, mTurquoise2 AMPK Activity Reporter (T2AMPKAR), for fluorescence lifetime imaging (FLIM) readouts that we have evaluated in 2D and 3D cultures. Our results in 2D cell culture indicate that replacing the FRET donor, enhanced Cyan Fluorescent Protein (ECFP), in the original FRET biosensor, AMPK activity reporter (AMPKAR), with mTurquoise2 (mTq2FP), increases the dynamic range of the response to activation of AMPK, as demonstrated using the direct AMPK activator, 991. We demonstrated 3D FLIM of this T2AMPKAR FRET biosensor expressed in tumour spheroids using two-photon excitation. PMID:27548185

  16. Aspartame and Its Analogues

    NASA Astrophysics Data System (ADS)

    Pavlova, L. A.; Komarova, T. V.; Davidovich, Yurii A.; Rogozhin, S. V.

    1981-04-01

    The results of studies on the biochemistry of the sweet taste are briefly reviewed. The methods of synthesis of "aspartame" — a sweet dipeptide — are considered, its structural analogues are described, and quantitative estimates are made of the degree of sweetness relative to sucrose. Attention is concentrated mainly on problems of the relation between the structure of the substance and its taste in the series of aspartyl derivatives. The bibliography includes 118 references.

  17. Germananes: Germanium Graphane Analogues

    NASA Astrophysics Data System (ADS)

    Goldberger, Joshua

    2014-03-01

    Graphene's success has shown that it is not only possible to create stable, single-atom thick sheets from a crystalline solid, but that these materials have fundamentally different properties than the parent material. Our interest focuses on the synthesis and properties of Group IV graphane analogues. We have synthesized for the first time, mm-scale crystals of a hydrogen-terminated germanium multilayered graphane analogue (germanane, GeH) from the topochemical deintercalation of CaGe2. This layered van der Waals solid is analogous to multilayered graphane. The surface layer of GeH only slowly oxidizes in air over the span of five months, while the underlying layers are resilient to oxidation. We demonstrate that it is possible to covalently terminate the external surface with organic substituents to tune the electronic structure, and enhance the stability. These materials represent a new class of covalently terminated graphane analogues having great potential for a wide range of optoelectronic and sensing applications, especially since theory predicts a direct band gap of 1.53 eV and an electron mobility of 18,000 cm2/Vs which is five times higher than that of bulk Ge.

  18. Quantum analogue computing.

    PubMed

    Kendon, Vivien M; Nemoto, Kae; Munro, William J

    2010-08-13

    We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.

  19. An experimental study of GFP-based FRET, with application to intrinsically unstructured proteins

    PubMed Central

    Ohashi, Tomoo; Galiacy, Stephane D.; Briscoe, Gina; Erickson, Harold P.

    2007-01-01

    We have experimentally studied the fluorescence resonance energy transfer (FRET) between green fluorescent protein (GFP) molecules by inserting folded or intrinsically unstructured proteins between CyPet and Ypet. We discovered that most of the enhanced FRET signal previously reported for this pair was due to enhanced dimerization, so we engineered a monomerizing mutation into each. An insert containing a single fibronectin type III domain (3.7 nm end-to-end) gave a moderate FRET signal while a two-domain insert (7.0 nm) gave no FRET. We then tested unstructured proteins of various lengths, including the charged-plus-PQ domain of ZipA, the tail domain of α-adducin, and the C-terminal tail domain of FtsZ. The structures of these FRET constructs were also studied by electron microscopy and sedimentation. A 12 amino acid linker and the N-terminal 33 amino acids of the charged domain of the ZipA gave strong FRET signals. The C-terminal 33 amino acids of the PQ domain of the ZipA and several unstructured proteins with 66–68 amino acids gave moderate FRET signals. The 150 amino acid charged-plus-PQ construct gave a barely detectable FRET signal. FRET efficiency was calculated from the decreased donor emission to estimate the distance between donor and acceptor. The donor–acceptor distance varied for unstructured inserts of the same length, suggesting that they had variable stiffness (persistence length). We conclude that GFP-based FRET can be useful for studying intrinsically unstructured proteins, and we present a range of calibrated protein inserts to experimentally determine the distances that can be studied. PMID:17586775

  20. Ultraviolet Irradiation of Pyrimidine in Interstellar Ice Analogs: Formation and Photo-Stability of Nucleobases

    NASA Technical Reports Server (NTRS)

    Nuevo, Michel; Milam, Stefanie N.; Sandford, Scott A.; Elsila, Jamie E.; Dworkin, Jason P.

    2010-01-01

    Astrochemistry laboratory experiments recently showed that molecules of prebiotic interest can potentially form in space, as supported by the detection of amino acids in organic residues formed by the UV photolysis of ices simulating interstellar and cometary environments (H2O, CO, CO2, CH3OH, NH3, etc.). Although the presence of amino acids in the interstellar medium (ISM) is still under debate, experiments and the detection of amino acids in meteorites both support a scenario in which prebiotic molecules could be of extraterrestrial origin, before they are delivered to planets by comets, asteroids, and interplanetary dust particles. Nucleobases, the informational subunits of DNA and RNA, have also been detected in meteorites, although they have not yet been observed in the ISM. Thus, these molecules constitute another family of prebiotic compounds that can possibly form via abiotical processes in astrophysical environments. Nucleobases are nitrogen-bearing cyclic aromatic species with various functional groups attached, which are divided into two classes: pyrimidines (uracil, cytosine, and thymine) and purines (adenine and guanine). In this work, we study how UV irradiation affects pyrimidine mixed in interstellar ice analogs (H2O, NH3, CH3OH). In particular, we show that the UV irradiation of H2O:pyrimidine mixtures leads to the production of oxidized compounds including uracil, and show that both uracil and cytosine are formed upon irradiation of H2O:NH3:pyrimidine mixtures. We also study the photostability of pyrimidine and its photoproducts formed during these experiments.

  1. First-principles study of interaction of serine with nucleobases of DNA and RNA.

    PubMed

    Abbas, Haider

    2017-03-01

    The nature of interaction between serine-a vital molecule for cancer cell proliferation and nucleic acid bases-adenine (A), guanine (G), cytosine (C), thymine (T), and uracil (U) is investigated within the framework of Møller-Plesset perturbation theory (MP2) and density functional theory (DFT). To quantify the interaction strength between serine and nucleobases, the corresponding binding energies were computed, showing energetic ordering such that G > C > T > A > U. This shows that the interaction energy of serine with guanine is the highest, while with uracil it is the lowest. The amount of charge transferred is the lowest in case of the serine-guanine complex and highest in case of the serine-uracil complex. The results show the serine-guanine complex to be more stable and to have a salt bridge structure involving the -COOH group. Theoretical analysis based on MP2 and DFT shows that the interaction between the serine and nucleobases is mainly determined by hydrogen bonding.

  2. Biochemical retrosynthesis of 2'-deoxyribonucleosides from glucose, acetaldehyde, and a nucleobase.

    PubMed

    Horinouchi, Nobuyuki; Ogawa, Jun; Kawano, Takako; Sakai, Takafumi; Saito, Kyota; Matsumoto, Seiichiro; Sasaki, Mie; Mikami, Yoichi; Shimizu, Sakayu

    2006-08-01

    2'-Deoxyribonucleosides are important as building blocks for the synthesis of antisense drugs, antiviral nucleosides, and 2'-deoxyribonucleotides for polymerase chain reaction. The microbial production of 2'-deoxyribonucleosides from simple materials, glucose, acetaldehyde, and a nucleobase, through the reverse reactions of 2'-deoxyribonucleoside degradation and the glycolytic pathway, was investigated. The glycolytic pathway of baker's yeast yielded fructose 1,6-diphosphate from glucose using the energy of adenosine 5'-triphosphate generated from adenosine 5'-monophosphate through alcoholic fermentation with the yeast. Fructose 1,6-diphosphate was further transformed to 2-deoxyribose 5-phosphate in the presence of acetaldehyde by deoxyriboaldolase-expressing Escherichia coli cells via D-glyceraldehyde 3-phosphate. E. coli transformants expressing phosphopentomutase and nucleoside phosphorylase produced 2'-deoxyribonucleosides from 2-deoxyribose 5-phosphate and a nucleobase via 2-deoxyribose 1-phosphate through the reverse reactions of 2'-deoxyribonucleoside degradation. Coupling of the glycolytic pathway and deoxyriboaldolase-catalyzing reaction efficiently supplied 2-deoxyribose 5-phosphate, which is a key intermediate for 2'-deoxyribonucleoside synthesis. 2'-Deoxyinosine (9.9 mM) was produced from glucose, acetaldehyde, and adenine through three-step reactions via fructose 1,6-diphosphate and then 2-deoxyribose 5-phosphate, the molar yield as to glucose being 17.8%.

  3. Supramolecular copolymer micelles based on the complementary multiple hydrogen bonds of nucleobases for drug delivery.

    PubMed

    Wang, Dali; Su, Yue; Jin, Chengyu; Zhu, Bangshang; Pang, Yan; Zhu, Lijuan; Liu, Jinyao; Tu, Chunlai; Yan, Deyue; Zhu, Xinyuan

    2011-04-11

    Novel supramolecular copolymer micelles with stimuli-responsive abilities were successfully prepared through the complementary multiple hydrogen bonds of nucleobases and then applied for rapid intracellular release of drugs. First, both adenine-terminated poly(ε-caprolactone) (PCL-A) and uracil-terminated poly(ethylene glycol) (PEG-U) were synthesized. The supramolecular amphiphilic block copolymers (PCL-A:U-PEG) were formed based on multiple hydrogen bonding interactions between PCL-A and PEG-U. The micelles self-assembled from PCL-A:U-PEG were sufficiently stable in water but prone to fast aggregation in acidic condition due to the dynamic and sensitive nature of noncovalent interactions. The low cytotoxicity of supramolecular copolymer micelles was confirmed by MTT assay against NIH/3T3 normal cells. As a hydrophobic anticancer model drug, doxorubicin (DOX) was encapsulated into these supramolecular copolymer micelles. In vitro release studies demonstrated that the release of DOX from micelles was significantly faster at mildly acid pH of 5.0 compared to physiological pH. MTT assay against HeLa cancer cells showed DOX-loaded micelles had high anticancer efficacy. Hence, these supramolecular copolymer micelles based on the complementary multiple hydrogen bonds of nucleobases are very promising candidates for rapid controlled release of drugs.

  4. The search for and identification of amino acids, nucleobases and nucleosides in samples returned from Mars

    NASA Technical Reports Server (NTRS)

    Gehrke, Charles W.; Ponnamperuma, Cyril; Kuo, Kenneth C.; Stalling, David L.; Zumwalt, Robert W.

    1989-01-01

    An investigation of the returned Mars samples for biologically important organic compounds, with emphasis on amino acid, the puring and pyrimidine bases, and nucleosides is proposed. These studies would be conducted on subsurface samples obtained by drilling past the surface oxidizing layer with emphasis on samples containing the larges quantities of organic carbon as determined by the rover gas chromatographic mass spectrometer (GCMS). Extraction of these molecules from the returned samples will be performed using the hydrothermal extraction technique described by Cheng and Ponnamperuma. More rigorous extraction methods will be developed and evaluated. For analysis of the extract for free amino acids or amino acids present in a bound or peptidic form, aliquots will be analyzed by capillary GCMS both before and after hydrolysis with 6N hydrochloric acid. Establishment of the presence of amino acids would then lead to the next logical step which would be the use of chiral stationary gas chromatography phases to determine the enatiomeic composition of the amino acids present, and thus potentially establish their biotic or abiotic origin. Confirmational analyses for amino acids would include ion-exchange and reversed-phase liquid chromatographic analysis. For analyses of the returned Mars samples for nucleobases and nucleosides, affinity and reversed-phase liquid chromatography would be utilized. This technology coupled with scanning UV detection for identification, presents a powerful tool for nucleobase and nucleoside analysis. Mass spectrometric analysis of these compounds would confirm their presence in samples returned form Mars.

  5. Meteoritic Input of Amino Acids and Nucleobases: Methodology and Implications for the Origins of Life

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Stern, Jennifer C.; Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    The discoveries of amino acids of extraterrestrial origin in many meteorites over the last 40 years have revolutionized the Astrobiology field. A variety of non-terrestrial amino acids similar to those found in life on Earth have been detected in meteorites. A few amino acids have even been found with chiral excesses, suggesting that meteorites could have contributed to the origin of homochirality in life on Earth. In addition to amino acids, which have been productively studied for years, sugar-like molecules, activated phosphates, and nucleobases have also been determined to be indigenous to numerous meteorites. Because these molecules are essential for life as we know it, and meteorites have been delivering them to the Earth since accretion, it is plausible that the origin(s) of life on Earth were aided by extraterrestrially-synthesized molecules. Understanding the origins of life on Earth guides our search for life elsewhere, helping to answer the question of whether biology is unique to Earth. This tutorial review focuses on meteoritic amino acids and nucleobases, exploring modern analytical methods and possible formation mechanisms. We will also discuss the unique window that meteorites provide into the chemistry that preceded life on Earth, a chemical record we do not have access to on Earth due to geologic recycling of rocks and the pervasiveness of biology across the planet. Finally, we will address the future of meteorite research, including asteroid sample return mIssIons.

  6. New approach for designing single-chain magnets: organization of chains via hydrogen bonding between nucleobases.

    PubMed

    Zhang, Wei-Xiong; Shiga, Takuya; Miyasaka, Hitoshi; Yamashita, Masahiro

    2012-04-25

    Two one-dimensional (1D) manganese complexes, [Mn(2)(naphtmen)(2)(L)](ClO(4))·2Et(2)O·2MeOH·H(2)O (1) and [Mn(2)(naphtmen)(2)(HL)](ClO(4))(2)·MeOH (2), were synthesized by using a bridging ligand with a nucleobase moiety, 6-amino-9-β-carboxyethylpurine, and a salen-type manganese(III) dinuclear complex, [Mn(2)(naphtmen)(2)(H(2)O)(2)](ClO(4))(2) (naphtmen(2-) = N,N'-(1,1,2,2-tetramethylethylene)bis(naphthylideneiminato) dianion). In 1 and 2, the carboxylate-bridged Mn(III) dinuclear units are alternately linked by two kinds of weak Mn···O interactions into 1D chains. As a result, canted antiferromagnetic and ferromagnetic interactions are alternately present along the chains, leading to a 1D chain with non-cancellation of anisotropic spins. Since the chains connected via H-bonds between nucleobase moieties are magnetically isolated, both 1 and 2 act as single-chain magnets (SCMs). More importantly, this result shows the smaller canting angles hinder long-range ordering in favor of SCM dynamics.

  7. Understanding Prebiotic Chemistry Through the Analysis of Extraterrestrial Amino Acids and Nucleobases in Meteorites

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Stern, Jennifer C.; Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    The discoveries of amino acids of extraterrestrial origin in many meteorites over the last 50 years have revolutionized the Astrobiology field. A variety of non-terrestrial amino acids similar to those found in life on Earth have been detected in meteorites. A few amino acids have even been found with chiral excesses, suggesting that meteorites could have contributed to the origin of homochirality in life on Earth. In addition to amino acids, which have been productively studied for years, sugar-like molecules, activated phosphates, and nucleobases have also been determined to be indigenous to numerous meteorites. Because these molecules are essential for life as we know it, and meteorites have been delivering them to the Earth since accretion, it is plausible that the origines) of life on Earth were aided by extrataterrestrially-synthesized molecules. Understanding the origins of life on Earth guides our search for life elsewhere, helping to answer the question of whether biology is unique to Earth. This tutorial focuses on meteoritic amino acids and nucleobases, exploring modern analytical methods and possible formation mechanisms. We will also discuss the unique window that meteorites provide into the chemistry that preceded life on Earth, a chemical record we do not have access to on Earth due to geologic recycling of rocks and the pervasiveness of biology across the planet. Finally. we will address the future of meteorite research, including asteroid sample return missions.

  8. Catalytic Role of Manganese Oxides in Prebiotic Nucleobases Synthesis from Formamide.

    PubMed

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2016-06-01

    Origin of life processes might have begun with the formation of important biomonomers, such as amino acids and nucleotides, from simple molecules present in the prebiotic environment and their subsequent condensation to biopolymers. While studying the prebiotic synthesis of naturally occurring purine and pyrimidine derivatives from formamide, the manganese oxides demonstrated not only good binding for formamide but demonstrated novel catalytic activity. A novel one pot manganese oxide catalyzed synthesis of pyrimidine nucleobases like thymine is reported along with the formation of other nucleobases like purine, 9-(hydroxyacetyl) purine, cytosine, 4(3 H)-pyrimidinone and adenine in acceptable amounts. The work reported is significant in the sense that the synthesis of thymine has exhibited difficulties especially under one pot conditions and also such has been reported only under the catalytic activity of TiO2. The lower oxides of manganese were reported to show higher potential as catalysts and their existence were favored by the reducing atmospheric conditions prevalent on early Earth; thereby confirming the hypothesis that mineral having metals in reduced form might have been more active during the course of chemical evolution. Our results further confirm the role of formamide as a probable precursor for the formation of purine and pyrimidine bases during the course of chemical evolution and origin of life.

  9. Nucleobase-functionalized graphene nanoribbons for accurate high-speed DNA sequencing

    NASA Astrophysics Data System (ADS)

    Paulechka, Eugene; Wassenaar, Tsjerk A.; Kroenlein, Kenneth; Kazakov, Andrei; Smolyanitsky, Alex

    2016-01-01

    We propose a water-immersed nucleobase-functionalized suspended graphene nanoribbon as an intrinsically selective device for nucleotide detection. The proposed sensing method combines Watson-Crick selective base pairing with graphene's capacity for converting anisotropic lattice strain to changes in an electrical current at the nanoscale. Using detailed atomistic molecular dynamics (MD) simulations, we study sensor operation at ambient conditions. We combine simulated data with theoretical arguments to estimate the levels of measurable electrical signal variation in response to strains and determine that the proposed sensing mechanism shows significant promise for realistic DNA sensing devices without the need for advanced data processing, or highly restrictive operational conditions.We propose a water-immersed nucleobase-functionalized suspended graphene nanoribbon as an intrinsically selective device for nucleotide detection. The proposed sensing method combines Watson-Crick selective base pairing with graphene's capacity for converting anisotropic lattice strain to changes in an electrical current at the nanoscale. Using detailed atomistic molecular dynamics (MD) simulations, we study sensor operation at ambient conditions. We combine simulated data with theoretical arguments to estimate the levels of measurable electrical signal variation in response to strains and determine that the proposed sensing mechanism shows significant promise for realistic DNA sensing devices without the need for advanced data processing, or highly restrictive operational conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07061a

  10. Interaction of nucleobases with silicon doped and defective silicon doped graphene and optical properties.

    PubMed

    Mudedla, Sathish Kumar; Balamurugan, Kanagasabai; Kamaraj, Manoharan; Subramanian, Venkatesan

    2016-01-07

    The interaction of nucleobases (NBs) with the surface of silicon doped graphene (SiGr) and defective silicon doped graphene (dSiGr) has been studied using electronic structure methods. A systematic comparison of the calculated interaction energies (adsorption strength) of NBs with the surface of SiGr and dSiGr with those of pristine graphene (Gr) has also been made. The doping of graphene with silicon increases the adsorption strength of NBs. The introduction of defects in SiGr further enhances the strength of interaction with NBs. The appreciable stability of complexes (SiGr-NBs and dSiGr-NBs) arises due to the partial electrostatic and covalent (Si···O(N)) interaction in addition to π-π stacking. The interaction energy increases with the size of graphene models. The strong interaction between dSiGr-NBs and concomitant charge transfer causes significant changes in the electronic structure of dSiGr in contrast to Gr and SiGr. Further, the calculated optical properties of all the model systems using time dependent density functional theory (TD-DFT) reveal that absorption spectra of SiGr and dSiGr undergo appreciable changes after adsorption of NBs. Thus, the significant variations in the HOMO-LUMO gap and absorption spectra of dSiGr after interaction with the NBs can be exploited for possible applications in the sensing of DNA nucleobases.

  11. Ultraviolet Irradiation of Pyrimidine in Interstellar Ice Analogs: Formation and Stability of Nucleobases

    NASA Astrophysics Data System (ADS)

    Milam, Stefanie; Nuevo, Michel; Sandford, Scott; Elsila, Jamie; Dworkin, Jason

    The detection of amino acids in organic residues formed by the UV photolysis of 10 K ices representative of interstellar and cometary environments (H2 O, CO, CO2 , CH3 OH, NH3 , etc.) show that molecules of prebiotic interest could potentially form in space. The detection of amino acids in meteorites supports a scenario where the organic molecules required for life are of extraterrestrial origin. Nucleobases, the informational units of RNA and DNA, have also been detected in meteorites and constitute another family of prebiotic compounds that can possibly form in interstellar environments. These molecules are functionalized heterocyclic aromatic species. There are two classes of nucleobases: pyrimidines (e.g. thymine, uracil, and cytosine) and purines (e.g. adenine and guanine). The functionalization of PAHs from UV photolysis in mixed molecular ices has been proven effective in the laboratory. This work aims at studying how UV irradiation affects pyrimidine in interstellar ice analogs. In particular, we show how H2 O/ pyrimidine mixtures lead to the production of oxidized compounds and study their photostability.

  12. Molecular hydrogen attenuates radiation-induced nucleobase damage to DNA in aerated aqueous solutions.

    PubMed

    Abou-Hamdan, Mhamad; Gardette, Bernard; Cadet, Jean; Gharib, Bouchra; De Reggi, Max; Douki, Thierry; Triantaphylides, Christian

    2016-09-01

    The main aim of the present study is to gain mechanistic insights into the modulating effect of molecular hydrogen on the γ-radiation-induced alteration pathways of DNA nucleobases. Aerated aqueous solutions of calf thymus DNA were exposed to a (60)Co source at doses ranging from 0 to 55 Gy under normoxic conditions, in the presence or not of 0.7 MPa hydrogen or helium. The measurement of several modified bases was performed using HPLC associated with electrospray ionization tandem pass spectrometry (HPLC-ESI-MS/MS). Bleaching of aqueous solutions of p-nitrosodimethylaniline (p-NDA) solutions was also used to allow the quantification of hydroxyl radical (•OH) formation. pNDA bleaching was significantly reduced in the presence of hyperbaric hydrogen. This is undoubtedly due to (•)OH scavenging by H2 since, under the same conditions, He had no effect. Similarly, base alterations were significantly reduced in the presence of hydrogen, as compared to controls under normal atmosphere or in the presence of helium. The relative proportions of modified nucleobases were not changed, showing that the only effect of H2 is to scavenge (•)OH without exhibiting reducing properties. Our findings demonstrate that H2 exerts a significant protection against radiation-induced DNA base damage in aqueous solutions, (•)OH scavenging being the only mechanism involved.

  13. Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites.

    PubMed

    Burton, Aaron S; Stern, Jennifer C; Elsila, Jamie E; Glavin, Daniel P; Dworkin, Jason P

    2012-08-21

    The discoveries of amino acids of extraterrestrial origin in many meteorites over the last 50 years have revolutionized the Astrobiology field. A variety of non-terrestrial amino acids similar to those found in life on Earth have been detected in meteorites. A few amino acids have even been found with chiral excesses, suggesting that meteorites could have contributed to the origin of homochirality in life on Earth. In addition to amino acids, which have been productively studied for years, sugar-like molecules, activated phosphates, and nucleobases have also been determined to be indigenous to numerous meteorites. Because these molecules are essential for life as we know it, and meteorites have been delivering them to the Earth since accretion, it is plausible that the origin(s) of life on Earth were aided by extraterrestrially-synthesized molecules. Understanding the origins of life on Earth guides our search for life elsewhere, helping to answer the question of whether biology is unique to Earth. This tutorial review focuses on meteoritic amino acids and nucleobases, exploring modern analytical methods and possible formation mechanisms. We will also discuss the unique window that meteorites provide into the chemistry that preceded life on Earth, a chemical record we do not have access to on Earth due to geologic recycling of rocks and the pervasiveness of biology across the planet. Finally, we will address the future of meteorite research, including asteroid sample return missions.

  14. Understanding Prebiotic Chemistry Through the Analysis of Extraterrestrial Amino Acids and Nucleobases in Meteorites

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Stern, Jennifer C.; Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    The discoveries of amino acids of extraterrestrial origin in many meteorites over the last 50 years have revolutionized the Astrobiology field. A variety of non-terrestrial amino acids similar to those found in life on Earth have been detected in meteorites. A few amino acids have even been found with chiral excesses, suggesting that meteorites could have contributed to the origin of homochirality in life on Earth. In addition to amino acids, which have been productively studied for years, sugar-like molecules, activated phosphates, and nucleobases have also been determined to be indigenous to numerous meteorites. Because these molecules are essential for life as we know it, and meteorites have been delivering them to the Earth since accretion, it is plausible that the origines) of life on Earth were aided by extrataterrestrially-synthesized molecules. Understanding the origins of life on Earth guides our search for life elsewhere, helping to answer the question of whether biology is unique to Earth. This tutorial focuses on meteoritic amino acids and nucleobases, exploring modern analytical methods and possible formation mechanisms. We will also discuss the unique window that meteorites provide into the chemistry that preceded life on Earth, a chemical record we do not have access to on Earth due to geologic recycling of rocks and the pervasiveness of biology across the planet. Finally. we will address the future of meteorite research, including asteroid sample return missions.

  15. Infrared spectral investigations of UV irradiated nucleobases adsorbed on mineral surfaces

    NASA Astrophysics Data System (ADS)

    Brucato, J. R.; Fornaro, T.

    2014-04-01

    Spectroscopic studies of the effects of UV radiation on biomolecules such as nucleobases in heterogeneous environments are particularly relevant in prebiotic chemistry to unravel the role of minerals in the transformation/preservation of biomolecules in abiotic environments. Minerals may have a pivotal role in the prebiotic evolution of complex chemical systems, mediating the effects of electromagnetic radiation, influencing the photostability of biomolecules, catalyzing important chemical reactions and/or protecting molecules against degradation. Studies on the photodegradation of biomolecules adsorbed on minerals have applications also in the life detection context to identify potential biomarkers for future space mission and hence to develop suitable sample-extraction protocols for bioanalytical instruments [1]. Moreover, the characterization of the spectroscopic features of biomolecules-mineral complexes provides a support in remote sensing spectroscopy for detecting organic compounds on planetary surfaces or cometary grains and asteroid surfaces. In this context we will present laboratory results on UV photostability of nucleobases adsorbed on magnesium oxide and forsterite minerals and analysed with infrared spectroscopic [2,3].

  16. Enthalpy-Entropy Tuning in the Adsorption of Nucleobases at the Au(111) Surface.

    PubMed

    Rosa, Marta; Corni, Stefano; Di Felice, Rosa

    2014-04-08

    The interaction of DNA molecules with hard substrates is of paramount importance both for the study of DNA itself and for the variety of possible technological applications. Interaction with inorganic surfaces strongly modifies the helical shape of DNA. Hence, an accurate understanding of DNA structure and function at interfaces is a fundamental question with enormous impact in science and society. This work sets the fundamentals for the simulation of entire DNA oligomers on gold surfaces in dry and wet conditions. Thanks to the new GolDNA-AMBER force field, which was derived from first principles and includes dispersion interactions and polarization effects, we simulated self-assembled guanine and adenine monolayers on Au(111) in vacuo and the adsorption of all nucleobases on the same substrate in aqueous conditions. The periodic monolayers obtained from classical simulations match very well those from first principle calculations and experiments, assessing the robustness of the force field and motivating the application to more complex systems for which quantum calculations are not affordable and experiments are elusive. The energetics of nucleobases on Au(111) in solution reveal fundamental physicochemical effects: we find that the adsorption paradigm shifts from purely enthalpic to dominantly entropic by changing the environment and aggregation phase.

  17. Catalytic Role of Manganese Oxides in Prebiotic Nucleobases Synthesis from Formamide

    NASA Astrophysics Data System (ADS)

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2016-06-01

    Origin of life processes might have begun with the formation of important biomonomers, such as amino acids and nucleotides, from simple molecules present in the prebiotic environment and their subsequent condensation to biopolymers. While studying the prebiotic synthesis of naturally occurring purine and pyrimidine derivatives from formamide, the manganese oxides demonstrated not only good binding for formamide but demonstrated novel catalytic activity. A novel one pot manganese oxide catalyzed synthesis of pyrimidine nucleobases like thymine is reported along with the formation of other nucleobases like purine, 9-(hydroxyacetyl) purine, cytosine, 4(3 H)-pyrimidinone and adenine in acceptable amounts. The work reported is significant in the sense that the synthesis of thymine has exhibited difficulties especially under one pot conditions and also such has been reported only under the catalytic activity of TiO2. The lower oxides of manganese were reported to show higher potential as catalysts and their existence were favored by the reducing atmospheric conditions prevalent on early Earth; thereby confirming the hypothesis that mineral having metals in reduced form might have been more active during the course of chemical evolution. Our results further confirm the role of formamide as a probable precursor for the formation of purine and pyrimidine bases during the course of chemical evolution and origin of life.

  18. Synthesis and degradation of nucleobases and nucleic acids by formamide in the presence of montmorillonites.

    PubMed

    Saladino, Raffaele; Crestini, Claudia; Ciambecchini, Umberto; Ciciriello, Fabiana; Costanzo, Giovanna; Di Mauro, Ernesto

    2004-11-05

    We describe the role of formamide, a product of the hydrolysis of hydrogen cyanide, as precursor of several components of nucleic acids under prebiotic conditions. When formamide is heated in the presence of montmorillonites, the efficient one-pot synthesis of purine, adenine, cytosine, and uracil is obtained. Along with these nucleobases, several components of the inosine pathway are obtained: 5-aminoimidazole-4-carboxamide, 5-formamidoimidazole-4-carboxamide and hypoxanthine. This almost complete catalogue of nucleic acid precursors is accompanied by N(9)-formylpurine, which, containing a masked glycosidic bond in its formyl moiety, is a plausible precursor of purine acyclonucleosides. In addition, montmorillonites differentially affect the rate of degradation of nucleobases when embedded in 2'-deoxyoligonucleotides; namely, montmorillonites protect adenine and guanine from the degradative action of formamide, while thymine degradation is enhanced. The oligonucleotide backbone reactivity to formamide is also affected; this shows that the interaction with montmorillonites modifies the rate of abstraction of the Halpha and Hbeta protons on the sugar moieties.

  19. Identification of the distribution of adenosine phosphates, nucleosides and nucleobases in royal jelly.

    PubMed

    Wu, Liming; Chen, Lanzhen; Selvaraj, Jonathan Nimal; Wei, Yue; Wang, Yong; Li, Yi; Zhao, Jing; Xue, Xiaofeng

    2015-04-15

    Nucleotides, nucleosides and nucleobases play a greater role in the physiological activity of organisms which are highly present in royal jelly (RJ). The objective of the present study is to develop a HPLC method to simultaneous determine nucleotides, nucleosides and nucleobases in RJ and access them in fresh and commercial RJ samples. The LOD and LOQ were 12.2-99.6 μg/L and 40.8-289.4 μg/L, respectively with nearly 100.9% recoveries. Except uric acid, all other compounds were found in RJ samples. Significant difference in the average content of compounds in fresh (2682.93 mg/kg) and commercial samples (3152.78 mg/kg) were observed. AMP, adenosine and adenine were found predominant in all the samples. Significant higher levels of ATP, ADP and AMP was seen in fresh RJ samples, and IMP, uridine, guanosine, and thymidine was seen in commercial RJ samples. The investigated compounds can be used as indexes for assessment RJ freshness and quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. kmerPyramid: an interactive visualization tool for nucleobase and k-mer frequencies.

    PubMed

    Kruppa, Jochen; van der Vries, Erhard; Jo, Wendy K; Postel, Alexander; Becher, Paul; Osterhaus, Albert; Jung, Klaus

    2017-10-01

    Bioinformatics methods often incorporate the frequency distribution of nulecobases or k-mers in DNA or RNA sequences, for example as part of metagenomic or phylogenetic analysis. Because the frequency matrix with sequences in the rows and nucleobases in the columns is multi-dimensional it is hard to visualize. We present the R-package 'kmerPyramid' that allows to display each sequence, based on its nucleobase or k-mer distribution projected to the space of principal components, as a point within a 3-dimensional, interactive pyramid. Using the computer mouse, the user can turn the pyramid's axes, zoom in and out and identify individual points. Additionally, the package provides the k-mer frequency matrices of about 2000 bacteria and 5000 virus reference sequences calculated from the NCBI RefSeq genbank. The 'kmerPyramid' can particularly be used for visualization of intra- and inter species differences. The R-package 'kmerPyramid' is available from the GitHub website at https://github.com/jkruppa/kmerPyramid. klaus.jung@tiho-hannover.de. Supplementary data are available at Bioinformatics online.

  1. Numerical investigation of contact stresses for fretting fatigue damage initiation

    NASA Astrophysics Data System (ADS)

    Bhatti, N. A.; Abdel Wahab, M.

    2017-05-01

    Fretting fatigue phenomena occurs due to interaction between contacting bodies under application of cyclic and normal loads. In addition to environmental conditions and material properties, the response at the contact interface highly depends on the combination of applied loads. High stress concentration is present at the contact interface, which can start the damage nucleation process. At the culmination of nucleation process several micro cracks are initiated, ultimately leading to the structural failure. In this study, effect of ratio of tangential to normal load on contact stresses, slip amplitude and damage initiation is studied using finite element analysis. The results are evaluated for Ruiz parameter as it involves the slip amplitude which in an important factor in fretting fatigue conditions. It is observed that tangential to normal load ratio influences the stick zone size and damage initiation life. Furthermore, it is observed that tensile stress is the most important factor that drives the damage initiation to failure for the cases where failure occurs predominantly in mode I manner.

  2. Engineering Dark Chromoprotein Reporters for Photoacoustic Microscopy and FRET Imaging

    PubMed Central

    Li, Yan; Forbrich, Alex; Wu, Jiahui; Shao, Peng; Campbell, Robert E.; Zemp, Roger

    2016-01-01

    A subset of the family of fluorescent proteins are the non-fluorescent chromoproteins which are promising probe molecules for use in photoacoustic imaging and as acceptor chromophores in Förster resonance energy transfer (FRET)-based biosensors. Typical approaches for fluorescent protein optimization by screening of large libraries of variants cannot be effectively applied to chromoproteins due to their characteristic lack of fluorescence. To address this challenge, we have developed a directed evolution method to iteratively screen large libraries of protein variants on the basis of their photoacoustic signal levels. By applying this procedure to the promising Ultramarine and cjBlue chromoprotein templates, we were able to identify improved variants with a 02–04 fold increase in photoacoustic signal-to-noise ratio after only a few evolutionary steps. These improved variants enable more accurate spectral de-mixing and localization of protein-producing bacteria in vivo and serve as effective FRET acceptors for both fluorescence- and photoacoustic-based detection of protease activity. PMID:26926390

  3. Paths to Förster's resonance energy transfer (FRET) theory

    NASA Astrophysics Data System (ADS)

    Masters, B. R.

    2014-02-01

    Theodor Förster (1910-1974) developed a phenomenological theory of nonradiative resonance energy transfer which proved to be transformative in the fields of chemistry, biochemistry, and biology. This paper explores the experimental and the theoretical antecedents of Förster's theory of resonance energy transfer (FRET). Early studies of sensitized fluorescence, fluorescence depolarization, and photosynthesis demonstrated the phenomena of long-range energy transfer. At the same time physicists developed theoretical models which contained common physical mechanisms and parameters: oscillating dipoles as models for the atoms or molecules, dipole-dipole coupling for the interaction, and a distance R0 that is optimal for resonance energy transfer. Early theories predicted R0 that was too large as compared to experiments. Finally, in 1946 Förster developed a classical theory and in 1948 he developed a quantum mechanical theory; both theories predicted an inverse sixth power dependence of the rate of energy transfer and a R0 that agreed with experiments. This paper attempts to determine why Förster succeeded when the other theoreticians failed to develop the correct theory. The putative roles of interdisciplinary education and collaborative research are discussed. Furthermore, I explore the role of science journals and their specific audiences in the popularization of FRET to a broad interdisciplinary community.

  4. Engineering Dark Chromoprotein Reporters for Photoacoustic Microscopy and FRET Imaging

    NASA Astrophysics Data System (ADS)

    Li, Yan; Forbrich, Alex; Wu, Jiahui; Shao, Peng; Campbell, Robert E.; Zemp, Roger

    2016-03-01

    A subset of the family of fluorescent proteins are the non-fluorescent chromoproteins which are promising probe molecules for use in photoacoustic imaging and as acceptor chromophores in Förster resonance energy transfer (FRET)-based biosensors. Typical approaches for fluorescent protein optimization by screening of large libraries of variants cannot be effectively applied to chromoproteins due to their characteristic lack of fluorescence. To address this challenge, we have developed a directed evolution method to iteratively screen large libraries of protein variants on the basis of their photoacoustic signal levels. By applying this procedure to the promising Ultramarine and cjBlue chromoprotein templates, we were able to identify improved variants with a 02–04 fold increase in photoacoustic signal-to-noise ratio after only a few evolutionary steps. These improved variants enable more accurate spectral de-mixing and localization of protein-producing bacteria in vivo and serve as effective FRET acceptors for both fluorescence- and photoacoustic-based detection of protease activity.

  5. Studying DNA Looping by Single-Molecule FRET

    PubMed Central

    Le, Tung T.; Kim, Harold D.

    2014-01-01

    Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA. PMID:24998459

  6. Ligament Rupture Pressure of Fretted SG Tubes of PWRs

    SciTech Connect

    Seong Sik Hwang; Man Kyo Jung; Hong Pyo Kim; Joung Soo Kim

    2006-07-01

    A fretting/wear degradation at the tube support in the U-bend region of a steam generator (SG) of a pressurized water reactor (PWR) has been reported. Simulated fretted flaws were machined on SG tubes of 195 mm in length. A pressure test was carried out with the tubes at room temperature by using a high pressure test facility which consisted of a water pressurizing pump, a test specimen section and a control unit. Water leak rates just after a ligament rupture or a burst were measured. Tubes degraded by up to 70% of the tube wall (TW) showed a high safety margin in terms of the burst pressure during normal operating conditions. Tubes degraded by up to 50% of the TW did not show a burst. Burst pressure depended on the defect depths rather than on the wrap angles. The tube with a wrap angle of 0 deg. showed a fish mouth fracture, whereas the tube with a 45 deg. wrap angle showed a three way fracture. (authors)

  7. Construction of peptides with nucleobase amino acids: design and synthesis of the nucleobase-conjugated peptides derived from HIV-1 Rev and their binding properties to HIV-1 RRE RNA.

    PubMed

    Takahashi, T; Hamasaki, K; Ueno, A; Mihara, H

    2001-04-01

    In order to develop a novel molecule that recognizes a specific structure of RNA, we have attempted to design peptides having L-alpha-amino acids with a nucleobase at the side chain (nucleobase amino acid (NBA)), expecting that the function of a nucleobase which can specifically recognize a base in RNA is regulated in a peptide conformation. In this study, to demonstrate the applicability of the NBA units in the peptide to RNA recognition, we designed and synthesized a variety of NBA-conjugated peptides, derived from HIV-1 Rev. Circular dichroism study revealed that the conjugation of the Rev peptide with an NBA unit did not disturb the peptide conformation. RNA-binding affinities of the designed peptides with RRE IIB RNA were dependent on the structure of the nucleobase moieties in the peptides. The peptide having the cytosine NBA at the position of the Asn40 site in the Rev showed a higher binding ability for RRE IIB RNA, despite the diminishing the Asn40 function. Furthermore, the peptide having the guanine NBA at the position of the Arg44 site, which is the most important residue for the RNA binding in the Rev, bound to RRE IIB RNA in an ability similar to Rev34-50 with native sequence. These results demonstrate that an appropriate NBA unit in the peptide plays an important role in the RNA binding with a specific contact such as hydrogen bonding, and the interaction between the nucleobase in the peptide and the base in the RNA can enhance the RNA-binding affinity and specificity.

  8. Absolute binding-free energies between standard RNA/DNA nucleobases and amino-acid sidechain analogs in different environments.

    PubMed

    de Ruiter, Anita; Zagrovic, Bojan

    2015-01-01

    Despite the great importance of nucleic acid-protein interactions in the cell, our understanding of their physico-chemical basis remains incomplete. In order to address this challenge, we have for the first time determined potentials of mean force and the associated absolute binding free energies between all standard RNA/DNA nucleobases and amino-acid sidechain analogs in high- and low-dielectric environments using molecular dynamics simulations and umbrella sampling. A comparison against a limited set of available experimental values for analogous systems attests to the quality of the computational approach and the force field used. Overall, our analysis provides a microscopic picture behind nucleobase/sidechain interaction preferences and creates a unified framework for understanding and sculpting nucleic acid-protein interactions in different contexts. Here, we use this framework to demonstrate a strong relationship between nucleobase density profiles of mRNAs and nucleobase affinity profiles of their cognate proteins and critically analyze a recent hypothesis that the two may be capable of direct, complementary interactions.

  9. On the Origin of the Canonical Nucleobases: An Assessment of Selection Pressures across Chemical and Early Biological Evolution.

    PubMed

    Rios, Andro C; Tor, Yitzhak

    2013-06-01

    The native bases of RNA and DNA are prominent examples of the narrow selection of organic molecules upon which life is based. How did nature "decide" upon these specific heterocycles? Evidence suggests that many types of heterocycles could have been present on the early Earth. It is therefore likely that the contemporary composition of nucleobases is a result of multiple selection pressures that operated during early chemical and biological evolution. The persistence of the fittest heterocycles in the prebiotic environment towards, for example, hydrolytic and photochemical assaults, may have given some nucleobases a selective advantage for incorporation into the first informational polymers. The prebiotic formation of polymeric nucleic acids employing the native bases remains, however, a challenging problem to reconcile. Hypotheses have proposed that the emerging RNA world may have included many types of nucleobases. This is supported by the extensive utilization of non-canonical nucleobases in extant RNA and the resemblance of many of the modified bases to heterocycles generated in simulated prebiotic chemistry experiments. Selection pressures in the RNA world could have therefore narrowed the composition of the nucleic acid bases. Two such selection pressures may have been related to genetic fidelity and duplex stability. Considering these possible selection criteria, the native bases along with other related heterocycles seem to exhibit a certain level of fitness. We end by discussing the strength of the N-glycosidic bond as a potential fitness parameter in the early DNA world, which may have played a part in the refinement of the alphabetic bases.

  10. Microwave-promoted facile and efficient preparation of N-(alkoxycarbonylmethyl) nucleobases--building blocks for peptide nucleic acids.

    PubMed

    Qu, Guirong; Zhang, Zhiguang; Guo, Haiming; Geng, Mingwei; Xia, Ran

    2007-03-19

    A simple, rapid, and regioselective approach for the synthesis of N-(methoxy-carbonylmethyl)- and N-(n-propoxycarbonylmethyl) nucleobases was developed. By using DMF as the solvent and in the presence of K2CO3 as the base, all the desired products were obtained in moderate yields within 8 min under microwave irradiation.

  11. Comparison of NIR FRET pairs for quantitative transferrin-based assay

    NASA Astrophysics Data System (ADS)

    Sinsuebphon, Nattawut; Bevington, Travis; Zhao, Lingling; Ken, Abe; Barroso, Margarida; Intes, Xavier

    2014-02-01

    Transferrin (Tfn) is commonly used as a drug delivery carrier for cancer treatment. Tfn cellular internalization can be observed by Förster resonance energy transfer (FRET), which occurs when two fluorophores - donor and acceptor - are a few nanometers apart. Donor fluorescence lifetime can be used to sense and quantify FRET occurrence. In FRET state, the donor is quenched leading to a significant reduction in its lifetime. In this study, donor and acceptor near-infrared (NIR) fluorophore-labeled Tfn were used to quantify cellular internalization in breast cancer cell line (T47D). Based on donor lifetime, quantum yield and spectral data, seven NIR FRET pairs were chosen for this comparison. Performance of the different NIR FRET pairs was evaluated in vitro in multiwell plate settings and by analyzing the relationship between quenched donor fraction and acceptor:donor ratio. Additionally, we performed brightness comparison between each pairs. Several parameters, such as brightness, lifetime, R0 and FRET donor population values are used to identify the most suitable NIR FRET pair for in vivo studies in preclinical settings.

  12. Time-resolved FRET fluorescence spectroscopy of visible fluorescent protein pairs.

    PubMed

    Visser, A J W G; Laptenok, S P; Visser, N V; van Hoek, A; Birch, D J S; Brochon, J-C; Borst, J W

    2010-01-01

    Förster resonance energy transfer (FRET) is a powerful method for obtaining information about small-scale lengths between biomacromolecules. Visible fluorescent proteins (VFPs) are widely used as spectrally different FRET pairs, where one VFP acts as a donor and another VFP as an acceptor. The VFPs are usually fused to the proteins of interest, and this fusion product is genetically encoded in cells. FRET between VFPs can be determined by analysis of either the fluorescence decay properties of the donor molecule or the rise time of acceptor fluorescence. Time-resolved fluorescence spectroscopy is the technique of choice to perform these measurements. FRET can be measured not only in solution, but also in living cells by the technique of fluorescence lifetime imaging microscopy (FLIM), where fluorescence lifetimes are determined with the spatial resolution of an optical microscope. Here we focus attention on time-resolved fluorescence spectroscopy of purified, selected VFPs (both single VFPs and FRET pairs of VFPs) in cuvette-type experiments. For quantitative interpretation of FRET-FLIM experiments in cellular systems, details of the molecular fluorescence are needed that can be obtained from experiments with isolated VFPs. For analysis of the time-resolved fluorescence experiments of VFPs, we have utilised the maximum entropy method procedure to obtain a distribution of fluorescence lifetimes. Distributed lifetime patterns turn out to have diagnostic value, for instance, in observing populations of VFP pairs that are FRET-inactive.

  13. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection

    NASA Astrophysics Data System (ADS)

    Yao, B. C.; Wu, Y.; Yu, C. B.; He, J. R.; Rao, Y. J.; Gong, Y.; Fu, F.; Chen, Y. F.; Li, Y. R.

    2016-03-01

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel ‘FRET on Fiber’ concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based ‘FRET on fiber’ configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated ‘FRET on Fiber’ sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response

  14. Impact Fretting Wear Behavior of Alloy 690 Tubes in Dry and Deionized Water Conditions

    NASA Astrophysics Data System (ADS)

    Cai, Zhen-Bing; Peng, Jin-Fang; Qian, Hao; Tang, Li-Chen; Zhu, Min-Hao

    2017-07-01

    The impact fretting wear has largely occurred at nuclear power device induced by the flow-induced vibration, and it will take potential hazards to the service of the equipment. However, the present study focuses on the tangential fretting wear of alloy 690 tubes. Research on impact fretting wear of alloy 690 tubes is limited and the related research is imminent. Therefore, impact fretting wear behavior of alloy 690 tubes against 304 stainless steels is investigated. Deionized water is used to simulate the flow environment of the equipment, and the dry environment is used for comparison. Varied analytical techniques are employed to characterize the wear and tribochemical behavior during impact fretting wear. Characterization results indicate that cracks occur at high impact load in both water and dry equipment; however, the water as a medium can significantly delay the cracking time. The crack propagation behavior shows a jagged shape in the water, but crack extended disorderly in dry equipment because the water changed the stress distribution and retarded the friction heat during the wear process. The SEM and XPS analysis shows that the main failure mechanisms of the tube under impact fretting are fatigue wear and friction oxidation. The effect of medium(water) on fretting wear is revealed, which plays a potential and promising role in the service of nuclear power device and other flow equipments.

  15. Simultaneous Live Cell Imaging Using Dual FRET Sensors with a Single Excitation Light

    PubMed Central

    Niino, Yusuke; Hotta, Kohji; Oka, Kotaro

    2009-01-01

    Fluorescence resonance energy transfer (FRET) between fluorescent proteins is a powerful tool for visualization of signal transduction in living cells, and recently, some strategies for imaging of dual FRET pairs in a single cell have been reported. However, these necessitate alteration of excitation light between two different wavelengths to avoid the spectral overlap, resulting in sequential detection with a lag time. Thus, to follow fast signal dynamics or signal changes in highly motile cells, a single-excitation dual-FRET method should be required. Here we reported this by using four-color imaging with a single excitation light and subsequent linear unmixing to distinguish fluorescent proteins. We constructed new FRET sensors with Sapphire/RFP to combine with CFP/YFP, and accomplished simultaneous imaging of cAMP and cGMP in single cells. We confirmed that signal amplitude of our dual FRET measurement is comparable to of conventional single FRET measurement. Finally, we demonstrated to monitor both intracellular Ca2+ and cAMP in highly motile cardiac myocytes. To cancel out artifacts caused by the movement of the cell, this method expands the applicability of the combined use of dual FRET sensors for cell samples with high motility. PMID:19551140

  16. Mixed-metal fretting corrosion of Ti6Al4V and wrought cobalt alloy.

    PubMed

    Kawalec, J S; Brown, S A; Payer, J H; Merritt, K

    1995-07-01

    Corrosion has been reported at the modular interfaces of total joint replacement implants, but with conflicting theories as to the cause of such damage. The modular design itself leaves the interface susceptible to galvanic, crevice, or fretting corrosion, or a combination of the three. The purpose of this study was to quantify the effect of material combination on fretting corrosion of orthopedic alloys. Each test specimen consisted of a two-hole plate with spherical countersinks and two cortical bone screws. The plates and screws were made of either Ti6Al4V or wrought cobalt-chromium-molybdenum (CCM), and were tested in all mixed-metal and similar-alloy combinations. Fretting corrosion experiments were conducted for 14 days in 10% calf serum, according to ASTM F897. Corrosion damage was evaluated by weight-loss measurements, atomic absorption spectrophotometry and scanning electron microscopy analyses. The results indicated that Ti6Al4V suffered relatively severe damage when fretted against itself, as a result of adhesive galling. The extent of titanium damage was reduced considerably, however, when Ti6Al4V was fretted against wrought CCM. In contrast, there was essentially no difference in wrought CCM damage when the alloys was fretted against itself compared to fretting against Ti6Al4V. Finally, in similar-alloy combinations, Ti6Al4V suffered more severe damage than wrought CCM.

  17. N-way FRET microscopy of multiple protein-protein interactions in live cells.

    PubMed

    Hoppe, Adam D; Scott, Brandon L; Welliver, Timothy P; Straight, Samuel W; Swanson, Joel A

    2013-01-01

    Fluorescence Resonance Energy Transfer (FRET) microscopy has emerged as a powerful tool to visualize nanoscale protein-protein interactions while capturing their microscale organization and millisecond dynamics. Recently, FRET microscopy was extended to imaging of multiple donor-acceptor pairs, thereby enabling visualization of multiple biochemical events within a single living cell. These methods require numerous equations that must be defined on a case-by-case basis. Here, we present a universal multispectral microscopy method (N-Way FRET) to enable quantitative imaging for any number of interacting and non-interacting FRET pairs. This approach redefines linear unmixing to incorporate the excitation and emission couplings created by FRET, which cannot be accounted for in conventional linear unmixing. Experiments on a three-fluorophore system using blue, yellow and red fluorescent proteins validate the method in living cells. In addition, we propose a simple linear algebra scheme for error propagation from input data to estimate the uncertainty in the computed FRET images. We demonstrate the strength of this approach by monitoring the oligomerization of three FP-tagged HIV Gag proteins whose tight association in the viral capsid is readily observed. Replacement of one FP-Gag molecule with a lipid raft-targeted FP allowed direct observation of Gag oligomerization with no association between FP-Gag and raft-targeted FP. The N-Way FRET method provides a new toolbox for capturing multiple molecular processes with high spatial and temporal resolution in living cells.

  18. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection.

    PubMed

    Yao, B C; Wu, Y; Yu, C B; He, J R; Rao, Y J; Gong, Y; Fu, F; Chen, Y F; Li, Y R

    2016-03-24

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel 'FRET on Fiber' concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based 'FRET on fiber' configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated 'FRET on Fiber' sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response.

  19. A Multicolor Single-Molecule FRET Approach to Study Protein Dynamics and Interactions Simultaneously.

    PubMed

    Götz, M; Wortmann, P; Schmid, S; Hugel, T

    2016-01-01

    Single-molecule Förster resonance energy transfer (smFRET) is a versatile tool for studying biomolecules in a quantitative manner. Multiple conformations within and interactions between biomolecules can be detected and their kinetics can be determined. Thus, smFRET has become an essential tool in enzymology. Ordinary two-color smFRET experiments can provide only limited insight into the function of biological systems, which commonly consist of more than two components. A complete understanding of complex multicomponent biological systems requires correlated information on conformational rearrangements on the one hand and transient interactions with binding partners on the other. Multicolor smFRET experiments enable the direct observation of such correlated dynamics and interactions. Here we demonstrate the power and limitations of multicolor smFRET experiments including the description of a multicolor smFRET setup and data analysis. A general analytical procedure for multicolor smFRET data is presented and applied to the multicomponent heat shock protein 90 system. This allows us to identify microscopic states in transient complexes. Conformational dynamics and nucleotide binding are simultaneously detected, which is impossible using two-color smFRET. Additionally, their correlation is quantified using 3D ensemble hidden Markov analysis, in and out of equilibrium. This method is perfectly suited for protein systems that are much more sophisticated than previously studied DNA-based systems. By extending the application to biologically relevant systems, multicolor smFRET comes of age and provides a unique mechanistic insight into protein machines. © 2016 Elsevier Inc. All rights reserved.

  20. Synthesis of oligonucleotides containing N,N-disubstituted 3-deazacytosine nucleobases by post-elongation modification and their triplex-forming ability with double-stranded DNA.

    PubMed

    Akabane-Nakata, Masaaki; Obika, Satoshi; Hari, Yoshiyuki

    2014-11-28

    A phosphoramidite of a 2'-O,4'-C-methylene-bridged nucleoside, bearing 4-(2,4,6-triisopropylbenzenesulfonyloxy)pyridin-2-one as a nucleobase precursor, was synthesized and introduced into an oligonucleotide. Treatment with various secondary amines after elongating the oligonucleotide on an automated DNA synthesizer enabled facile and mild conversion of the precursor into the corresponding N,N-disubstituted 3-deazacytosine nucleobases. The evaluation of the triplex-forming ability of the synthesized oligonucleotides with double-stranded DNA showed that the nucleobase possessing the (3S)-3-guanidinopyrrolidine moiety can recognize a CG base pair with high sequence-selectivity and binding-affinity.

  1. Alpha-beta chimeric oligo-DNA bearing intercalator-conjugated nucleobase inside the linker sequence remarkably improves thermal stability of an alternate-stranded triple helix.

    PubMed

    Zafrul Azam, A T M; Hasegawa, Minoru; Moriguchi, Tomohisa; Shinozuka, Kazuo

    2004-12-06

    Novel alpha-beta chimeric oligodeoxynucleotides bearing an intercalator-conjugated nucleobase located at the internal 4-nt linker region were synthesized, and their triplex-stabilizing property was examined. The triple helical DNA formed between the modified chimera DNA and double-stranded DNA exhibited remarkable thermal stability; however, the position of the intercalator-conjugated nucleobase had little influence on the stability. Among the examined, modified chimera DNA bearing the two intercalator-conjugated nucleobases at adjacent positions exhibited the highest stability.

  2. Lateral diffusion contributes to FRET from lanthanide-tagged membrane proteins.

    PubMed

    Lan, Tien-Hung; Wu, Guangyu; Lambert, Nevin A

    2015-08-14

    Diffusion can enhance Förster resonance energy transfer (FRET) when donors or acceptors diffuse distances that are similar to the distances separating them during the donor's excited state lifetime. Lanthanide donors remain in the excited state for milliseconds, which makes them useful for time-resolved FRET applications but also allows time for diffusion to enhance energy transfer. Here we show that diffusion dramatically enhances FRET between membrane proteins labeled with lanthanide donors. This phenomenon complicates interpretation of experiments that use long-lived donors to infer association or proximity of mobile membrane proteins, but also offers a method of monitoring diffusion in membrane domains in real time in living cells.

  3. Fretting friction and wear characteristics of magnetorheological fluid under different magnetic field strengths

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Lee, K. H.; Lee, C. H.

    2017-01-01

    A magnetorheological fluid (MRF) performs differently under different magnetic field strength. This study examined the fretting friction and wear characteristics of MRFs under a range of magnetic field strengths and oscillation frequencies. The fretting friction and wear behaviors of MRF are investigated using a fretting friction and wear tester. The surfaces of specimen are examined by optical microscopy and 3D surface profilometer before and after the tests and wear surface profiles, the wear volume loss and wear coefficient for each magnetic field strength are evaluated. The results show that the friction and wear properties of MRF change according to the magnetic field strength and oscillation frequency.

  4. Single-molecule FRET of protein structure and dynamics - a primer

    PubMed Central

    2013-01-01

    Single-molecule spectroscopy has developed into a widely used method for probing the structure, dynamics, and mechanisms of biomolecular systems, especially in combination with Förster resonance energy transfer (FRET). In this introductory tutorial, essential concepts and methods will be outlined, from the FRET process and the basic considerations for sample preparation and instrumentation to some key elements of data analysis and photon statistics. Different approaches for obtaining dynamic information over a wide range of timescales will be explained and illustrated with examples, including the quantitative analysis of FRET efficiency histograms, correlation spectroscopy, fluorescence trajectories, and microfluidic mixing. PMID:24565277

  5. Fretting corrosion of CoCrMo and Ti6Al4V interfaces.

    PubMed

    Swaminathan, Viswanathan; Gilbert, Jeremy L

    2012-08-01

    Mechanically assisted corrosion (fretting corrosion, tribocorrosion etc.,) of metallic biomaterials is a primary concern for numerous implant applications, particularly in the performance of highly-loaded medical devices. While the basic underlying concepts of fretting corrosion or tribocorrosion and fretting crevice corrosion are well known, there remains a need to develop an integrated systematic method for the analysis of fretting corrosion involving metal-on-metal contacts. Such a method can provide detailed and quantitative information on the processes present and explore variations in surfaces, alloys, voltages, loadings, motion and solution conditions. This study reports on development of a fretting corrosion test system and presents elements of an in-depth theoretical fretting corrosion model that incorporates both the mechanical and the electrochemical aspects of fretting corrosion. To demonstrate the capabilities of the new system and validate the proposed model, experiments were performed to understand the effect of applied normal load on fretting corrosion performance of Ti6Al4V/Ti6Al4V, CoCrMo/Ti6Al4V, and CoCrMo/CoCrMo material couples under potentiostatic conditions with a fixed starting surface roughness. The results of this study show that fretting corrosion is affected by material couples, normal load and the motion conditions at the interface. In particular, fretting currents and coefficient of friction (COF) vary with load and are higher for Ti6Al4V/Ti6Al4V couple reaching 3 mA/cm(2) and 0.63 at about 73 MPa nominal contact stress, respectively. Ti6Al4V coupled with CoCrMo displayed lower currents (0.6 mA/cm(2)) and COF (0.3), and the fretting corrosion behavior was comparable to CoCrMo/CoCrMo couple (1.2 mA/cm(2) and 0.3, respectively). Information on the mechanical energy dissipated at the interface, the sticking behavior, and the load dependence of the inter-asperity distance calculated using the model elucidated the influence of

  6. Metallurgical Changes in the High Temperature Fretting of Ni and Ti Alloys.

    DTIC Science & Technology

    1977-10-01

    200 and 600 C was observed. Fatigue and fretting fatigue curves have been determined on Inconel 718 at 20, 280, and 540 C, together with isolated...Ti-6Al-4V specimens subjected to fretting fatigue at 400 C have been examined in SEM. Layer formation similar to that obtained on specimens tested at...observations at 700 C where creep becomes excessive. Raising the temperature has little effect on fatigue strength but improves the fretting fatigue strength. The improvement is thought to be due to glaze formation. (Author)

  7. Laser-Induced Shockwave Paired with FRET: A Method to Study Cell Signaling

    PubMed Central

    GOMEZ-GODINEZ, VERONICA; PREECE, DARYL; SHI, LINDA; KHATIBZADEH, NIMA; ROSALES, DERRICK; PAN, YIJIA; LEI, LIE; WANG, YINGXIAO; BERNS, MICHAEL W.

    2015-01-01

    Cells within the body are subject to various forces; however, the details concerning the way in which cells respond to mechanical stimuli are not well understood. We demonstrate that laser-induced shockwaves (LIS) combined with biosensors based on fluorescence resonance energy transfer (FRET) is a promising new approach to study biological processes in single live cells. As “proof-of-concept,” using a FRET biosensor, we show that in response to LIS, cells release intracellular calcium. With the parameters used, cells retain their morphology and remain viable. LIS combined with FRET permits observation of the cells immediate response to a sudden shear force. PMID:25639252

  8. The Effect of Elevated Temperature on the Fretting Fatigue Behavior of Nickel Alloy IN-100

    DTIC Science & Technology

    2008-04-01

    Saladin S-N data points for plain fatigue 86 4.16 Comparison of Ownby and Saladin S-N data points for fretting fatigue 87 4.17 Comparison of Ownby...and Saladin S-N data for all tests 88 4.18 Plot comparing ΔQ vs Nf from Ownby, Saladin & Madhi data points 89 4.19 Plot from Kawagoishi et al. [21...in this study 93 4.3 Madhi fretting and plain fatigue testing data 94 4.4 Saladin fretting and plain fatigue testing data 94 4.5 Comparison of

  9. Micro-Structural Study of Fretting Contact Caused by the Difference of the Tin Plating Thickness

    NASA Astrophysics Data System (ADS)

    Ito, Tetsuya; Sawada, Shigeru; Hattori, Yasuhiro; Saitoh, Yasushi; Tamai, Terutaka; Iida, Kazuo

    In recent years, there has been increasing demand to miniaturize wiring harness connectors in automobiles due to the increasing volume of electronic equipment and the reduction of the installation space allocated for the electronic equipment in automobiles for the comfort of the passengers. With this demand, contact failure caused by the fretting corrosion is expected to become a serious problem. In this report, we examined micro-structural observations of fretting contacts of two different tin plating thicknesses using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) and so on. Based on the results, we compared the microstructure difference of fretting contact caused by the difference of the tin plating thickness.

  10. FRET based characterization of DNA-based assemblies

    NASA Astrophysics Data System (ADS)

    Buckhout-White, Susan; Gray, Rochester; Ancona, Mario; Goldman, Ellen R.; Medintz, Igor L.

    2014-05-01

    The "spectroscopic ruler" based on fluorescence resonance energy transfer (FRET) is explored as a method for detailed structural characterization of DNA nanostructures in solution. The approach is most directly useful for assessing the positional relationships among chromophores organized by the DNA, but it can also be used to characterize the geometry and kinematics of the DNA scaffold itself. By accumulating data for the distances separating various donor-acceptor pairs, and correlating them with the expected distances, one can quantify the shape and deformability of the structure. A 8x16nm "mini-origami" rectangle is used as the model test structure and the dye-pairs are chosen to investigate anisotropy in the origami's mechanical properties. Not unexpectedly, our analysis finds a strong anisotropy in the stiffness, with the measured spacing across the origami weave deviating much more from expectation than the spacing aligned along the weave pattern.

  11. Analogue-to-Digital and Digital-to-Analogue Conversion.

    ERIC Educational Resources Information Center

    Gregory, Martin

    1997-01-01

    Discusses circuits for three-bit and four-bit analogue digital converters and digital analogue converters. These circuits feature slow operating speeds that enable the circuitry to be used to demonstrate the mode of operation using oscilloscopes and signal generators. (DDR)

  12. Mars Global Surveyor observations of Martian fretted terrain

    USGS Publications Warehouse

    Carr, M.H.

    2001-01-01

    The Martian fretted terrain between latitudes 30?? and 50?? N and between 315?? and 360?? W has been reexamined in light of new Mars Orbiter Camera (MOC) and Mars Orbiter Laser Altimeter (MOLA) data from Mars Global Surveyor. Much of the terrain in the 30??-50?? latitude belt in both hemispheres has a characteristic stippled or pitted texture at MOC (1.5 m) scale. The texture appears to result from partial removal of a formerly smooth, thin deposit as a result of sublimation and deflation. A complex history of deposition and exhumation is indicated by remnants of a former, thicker cover of layered deposits. In some hollows and on some slopes, particularly those facing the pole, are smooth textured deposits outlined by an outward facing escarpment. Throughout the study area are numerous escarpments with debris flows at their base. The escarpments typically have slopes in the 20??-30?? range. At the base of the escarpment is commonly a deposit with striae oriented at right angles to the escarpment. Outside this deposit is the main debris apron with a surface that typically slopes 2??-3?? and complex surface textures suggestive of compression, sublimation, and deflation. The presence of undeformed impact craters indicates that the debris flows are no longer forming. Fretted valleys contain lineated fill and are poorly graded. They likely form from fluvial valleys that were initially like those elsewhere on the planet but were subsequently widened and filled by the same mass-wasting processes that formed the debris aprons. Slope reversals indicate that downvalley flow of the lineated fill is minor. The ubiquitous presence of breaks in slope formed by mass wasting and the complex surface textures that result from mass wasting, deflation, and sublimation decreases the recognizability of the shorelines formerly proposed for this area.

  13. Correlating Calmodulin Landscapes with Chemical Catalysis in Neuronal Nitric Oxide Synthase using Time-Resolved FRET and a 5-Deazaflavin Thermodynamic Trap

    PubMed Central

    2016-01-01

    A major challenge in enzymology is the need to correlate the dynamic properties of enzymes with, and understand the impact on, their catalytic cycles. This is especially the case with large, multicenter enzymes such as the nitric oxide synthases (NOSs), where the importance of dynamics has been inferred from a variety of structural, single-molecule, and ensemble spectroscopic approaches but where motions have not been correlated experimentally with mechanistic steps in the reaction cycle. Here we take such an approach. Using time-resolved spectroscopy employing absorbance and Förster resonance energy transfer (FRET) and exploiting the properties of a flavin analogue (5-deazaflavin mononucleotide (5-dFMN)) and isotopically labeled nicotinamide coenzymes, we correlate the timing of CaM structural changes when bound to neuronal nitric oxide synthase (nNOS) with the nNOS catalytic cycle. We show that remodeling of CaM occurs early in the electron transfer sequence (FAD reduction), not at later points in the reaction cycle (e.g., FMN reduction). Conformational changes are tightly correlated with FAD reduction kinetics and reflect a transient “opening” and then “closure” of the bound CaM molecule. We infer that displacement of the C-terminal tail on binding NADPH and subsequent FAD reduction are the likely triggers of conformational change. By combining the use of cofactor/coenzyme analogues and time-resolved FRET/absorbance spectrophotometry, we show how the reaction cycles of complex enzymes can be simplified, enabling a detailed study of the relationship between protein dynamics and reaction cycle chemistry—an approach that can also be used with other complex multicenter enzymes. PMID:27563493

  14. New size-expanded RNA nucleobase analogs: a detailed theoretical study.

    PubMed

    Zhang, Laibin; Zhang, Zhenwei; Ren, Tingqi; Tian, Jianxiang; Wang, Mei

    2015-04-05

    Fluorescent nucleobase analogs have attracted much attention in recent years due to their potential applications in nucleic acids research. In this work, four new size-expanded RNA base analogs were computationally designed and their structural, electronic, and optical properties are investigated by means of DFT calculations. The results indicate that these analogs can form stable Watson-Crick base pairs with natural counterparts and they have smaller ionization potentials and HOMO-LUMO gaps than natural ones. Particularly, the electronic absorption spectra and fluorescent emission spectra are calculated. The calculated excitation maxima are greatly red-shifted compared with their parental and natural bases, allowing them to be selectively excited. In gas phase, the fluorescence from them would be expected to occur around 526, 489, 510, and 462 nm, respectively. The influences of water solution and base pairing on the relevant absorption spectra of these base analogs are also examined. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. New size-expanded RNA nucleobase analogs: A detailed theoretical study

    NASA Astrophysics Data System (ADS)

    Zhang, Laibin; Zhang, Zhenwei; Ren, Tingqi; Tian, Jianxiang; Wang, Mei

    2015-04-01

    Fluorescent nucleobase analogs have attracted much attention in recent years due to their potential applications in nucleic acids research. In this work, four new size-expanded RNA base analogs were computationally designed and their structural, electronic, and optical properties are investigated by means of DFT calculations. The results indicate that these analogs can form stable Watson-Crick base pairs with natural counterparts and they have smaller ionization potentials and HOMO-LUMO gaps than natural ones. Particularly, the electronic absorption spectra and fluorescent emission spectra are calculated. The calculated excitation maxima are greatly red-shifted compared with their parental and natural bases, allowing them to be selectively excited. In gas phase, the fluorescence from them would be expected to occur around 526, 489, 510, and 462 nm, respectively. The influences of water solution and base pairing on the relevant absorption spectra of these base analogs are also examined.

  16. Direct Oxidative Damage of Naked DNA Generated upon Absorption of UV Radiation by Nucleobases.

    PubMed

    Gomez-Mendoza, Miguel; Banyasz, Akos; Douki, Thierry; Markovitsi, Dimitra; Ravanat, Jean-Luc

    2016-10-06

    It has been shown that in addition to formation of pyrimidine dimers, UV irradiation of DNA in the absence of photosensitizer also induces formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine, but the mechanism of formation of that oxidized base has not been clearly established. In the present study, we provide an unambiguous demonstration that absorption of UVC and UVB radiation by the nucleobases induces DNA oxidation via a direct process (one-electron oxidation) and not singlet oxygen. Evidence arose from the fact that polyamine-guanine adducts that are specifically produced through the transient formation of guanine radical cation are generated following UV irradiation of DNA in the presence of a polyamine even in the absence of any photosensitizer.

  17. Synthesis, structure and imaging of oligodeoxyribonucleotides with tellurium-nucleobase derivatization

    SciTech Connect

    Sheng, J.; Soares, A.; Hassan, A. E. A.; Zhang, W.; Zhou, J.; Xu, B.; Huang, Z.

    2011-05-01

    We report here the first synthesis of 5-phenyl-telluride-thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNA duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation.

  18. Synthesis Structure and Imaging of Oligodeoxyribonucleotides with Tellurium-nucleobase Derivatization

    SciTech Connect

    J Sheng; A Hassan; W Zhang; J Zhou; B Xu; A Soares; Z Huang

    2011-12-31

    We report here the first synthesis of 5-phenyl-telluride-thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNA duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation.

  19. Interaction of Nucleobases with Semiconducting Nanotubes and Nanocages: Does the Solvent Matter?

    NASA Astrophysics Data System (ADS)

    Wang, Zhoufei; Slough, William; He, Haiying; Pandey, Ravindra; Karna, Shashi

    2013-03-01

    The tremendous advancement in nanotechnology has brought great promise in the area of bio-applications. Nanoscale materials and structures have attracted a lot of interest for their potential applications in biosensing, biorecognition, luminescent probes for DNA, biomedical labeling, drug delivery etc. Gaining fundamental understanding of the interaction of bio-systems with nanomaterials is critical in putting all these applications into full play. Despite the fact that most of these interactions appear in aqueous environment, the solvent effect has often been neglected in previous computational studies. In this talk, we will report our comparison study of nucleobases interacting with BN nanotubes and chalcogenide nanocages with/without considering the aqueous solution, based on first-principles calculations. The results reveal a significant effect from the water solution, which may largely reduce the interaction energy due to the polarization of the dielectric solvent medium.

  20. Cellular Delivery and Photochemical Activation of Antisense Agents through a Nucleobase Caging Strategy

    PubMed Central

    Govan, Jeane M.; Uprety, Rajendra; Thomas, Meryl; Lusic, Hrvoje; Lively, Mark O.; Deiters, Alexander

    2013-01-01

    Antisense oligonucleotides are powerful tools to regulate gene expression in cells and model organisms. However, a transfection or microinjection is needed for efficient delivery of the antisense agent. We report the conjugation of multiple HIV TAT peptides to a hairpin-protected antisense agent through a light-cleavable nucleobase caging group. This conjugation allows for the facile delivery of the antisense agent without a transfection reagent and photochemical activation offers precise control over gene expression. The developed approach is highly modular, as demonstrated by the conjugation of folic acid to the caged antisense agent. This enabled targeted cell delivery through cell-surface folate receptors followed by photochemical triggering of antisense activity. Importantly, the presented strategy delivers native oligonucleotides after light-activation, devoid of any delivery functionalities or modifications that could otherwise impair their antisense activity. PMID:23915424

  1. Intersystem Crossing Pathways in the Noncanonical Nucleobase 2-Thiouracil: A Time-Dependent Picture.

    PubMed

    Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2016-06-02

    The deactivation mechanism after ultraviolet irradiation of 2-thiouracil has been investigated using nonadiabatic dynamics simulations at the MS-CASPT2 level of theory. It is found that after excitation the S2 quickly relaxes to S1, and from there intersystem crossing takes place to both T2 and T1 with a time constant of 400 fs and a triplet yield above 80%, in very good agreement with recent femtosecond experiments in solution. Both indirect S1 → T2 → T1 and direct S1 → T1 pathways contribute to intersystem crossing, with the former being predominant. The results contribute to the understanding of how some noncanonical nucleobases respond to harmful ultraviolet light, which could be relevant for prospective photochemotherapeutic applications.

  2. Intersystem Crossing Pathways in the Noncanonical Nucleobase 2-Thiouracil: A Time-Dependent Picture

    PubMed Central

    2016-01-01

    The deactivation mechanism after ultraviolet irradiation of 2-thiouracil has been investigated using nonadiabatic dynamics simulations at the MS-CASPT2 level of theory. It is found that after excitation the S2 quickly relaxes to S1, and from there intersystem crossing takes place to both T2 and T1 with a time constant of 400 fs and a triplet yield above 80%, in very good agreement with recent femtosecond experiments in solution. Both indirect S1 → T2 → T1 and direct S1 → T1 pathways contribute to intersystem crossing, with the former being predominant. The results contribute to the understanding of how some noncanonical nucleobases respond to harmful ultraviolet light, which could be relevant for prospective photochemotherapeutic applications. PMID:27167106

  3. The UV absorption of nucleobases: semi-classical ab initio spectra simulations.

    PubMed

    Barbatti, Mario; Aquino, Adelia J A; Lischka, Hans

    2010-05-21

    Semi-classical simulations of the UV-photoabsorption cross sections of adenine, guanine, cytosine, thymine, and uracil in gas phase were performed at the resolution-of-identity coupled cluster to the second-order (RI-CC2) level. With the exception of cytosine, the spectra of the other four nucleobases show a two band pattern separated by a low intensity region. The spectrum of cytosine is shaped by a sequence of three bands of increasing intensity. The first band of guanine is composed by two pipi* transitions of similar intensities. The analysis of individual contributions to the spectra allows a detailed assignment of bands. It is shown that the semi-classical simulations are able to predict general features of the experimental spectra, including their absolute intensities.

  4. Content variations of triterpenic acid, nucleoside, nucleobase, and sugar in jujube (Ziziphus jujuba) fruit during ripening.

    PubMed

    Guo, Sheng; Duan, Jin-Ao; Qian, Dawei; Tang, Yuping; Wu, Dawei; Su, Shulan; Wang, Hanqing; Zhao, Yunan

    2015-01-15

    Jujube (Ziziphus jujuba) fruit is widely consumed as food and traditional Chinese medicine in Asian countries due to its potential effects for human health. To facilitate selection of the maturity stage providing optimum health benefits, jujube fruits were analysed at six stages of growth (S1-6) for triterpenic acids, nucleosides, nucleobases, and sugars by UHPLC-MS/MS or HPLC-ELSD methods. The content levels of most triterpenic acids and sugars increased with ripening, and reached the highest at S5 and S6, respectively. The accumulation of the cyclic nucleotides (cAMP and cGMP) was mainly in the later stage of ripening (S5-6). Therefore, if taking triterpenic acids as the major quality indicator, S5 should be the ideal time to harvest jujube fruit, and the full ripen stage (S6) maybe the best choice when taking sugars and cyclic nucleotides as the most important components.

  5. Synthesis, structure and imaging of oligodeoxyribonucleotides with tellurium-nucleobase derivatization.

    PubMed

    Sheng, Jia; Hassan, Abdalla E A; Zhang, Wen; Zhou, Jianfeng; Xu, Bingqian; Soares, Alexei S; Huang, Zhen

    2011-05-01

    We report here the first synthesis of 5-phenyl-telluride-thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNA duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation.

  6. Carbon nanotube-nucleobase hybrids: nanorings from uracil-modified single-walled carbon nanotubes.

    PubMed

    Singh, Prabhpreet; Toma, Francesca Maria; Kumar, Jitendra; Venkatesh, V; Raya, Jesus; Prato, Maurizio; Verma, Sandeep; Bianco, Alberto

    2011-06-06

    Single-walled carbon nanotubes (SWCNTs) have been covalently functionalized with uracil nucleobase. The hybrids have been characterized by using complementary spectroscopic and microscopic techniques including solid-state NMR spectroscopy. The uracil-functionalized SWCNTs are able to self-assemble into regular nanorings with a diameter of 50-70 nm, as observed by AFM and TEM. AFM shows that the rings do not have a consistent height and thickness, which indicates that they may be formed by separate bundles of CNTs. The simplest model for the nanoring formation likely involves two bundles of CNTs interacting with each other via uracil-uracil base-pairing at both CNT ends. These nanorings can be envisaged for the development of advanced electronic circuits.

  7. Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers

    PubMed Central

    2017-01-01

    , molecular biodynamers are commonly produced in aqueous media under mild or even physiological conditions to suit their biorelated applications. In contrast to static biopolymers emphasizing structural stability and unity by using irreversible covalent bonds, molecular biodynamers are seeking relative structural adaptability and diversity through the formation of reversible covalent bonds. Based on these considerations, molecular biodynamers are capable of reorganizing their monomers, generating, identifying, and amplifying the fittest structures in response to environmental factors. Hence, molecular biodynamers have received considerable research attention over the past decades. Accordingly, the construction of molecular biodynamers through equilibrium polymerization of nucleobase-, carbohydrate- or amino-acid-based monomers can lead to the fabrication of dynamic analogues of nucleic acids (DyNAs), polysaccharides (glycodynamers), or proteins (dynamic proteoids), respectively. In this Account, we summarize recent advances in developing different types of molecular biodynamers as structural or functional biomimetics of biopolymers, including DyNAs, glycodynamers, and dynamic proteoids. We introduce how chemists utilize various reversible reactions to generate molecular biodynamers with specific sequences and well-ordered structures in aqueous medium. We also discuss and list their potential applications in various research fields, such as drug delivery, drug discovery, gene sensing, cancer diagnosis, and treatment. PMID:28169527

  8. Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers.

    PubMed

    Liu, Yun; Lehn, Jean-Marie; Hirsch, Anna K H

    2017-02-21

    biodynamers are commonly produced in aqueous media under mild or even physiological conditions to suit their biorelated applications. In contrast to static biopolymers emphasizing structural stability and unity by using irreversible covalent bonds, molecular biodynamers are seeking relative structural adaptability and diversity through the formation of reversible covalent bonds. Based on these considerations, molecular biodynamers are capable of reorganizing their monomers, generating, identifying, and amplifying the fittest structures in response to environmental factors. Hence, molecular biodynamers have received considerable research attention over the past decades. Accordingly, the construction of molecular biodynamers through equilibrium polymerization of nucleobase-, carbohydrate- or amino-acid-based monomers can lead to the fabrication of dynamic analogues of nucleic acids (DyNAs), polysaccharides (glycodynamers), or proteins (dynamic proteoids), respectively. In this Account, we summarize recent advances in developing different types of molecular biodynamers as structural or functional biomimetics of biopolymers, including DyNAs, glycodynamers, and dynamic proteoids. We introduce how chemists utilize various reversible reactions to generate molecular biodynamers with specific sequences and well-ordered structures in aqueous medium. We also discuss and list their potential applications in various research fields, such as drug delivery, drug discovery, gene sensing, cancer diagnosis, and treatment.

  9. Mechanisms of Damage to DNA Labeled with Electrophilic Nucleobases Induced by Ionizing or UV Radiation.

    PubMed

    Rak, Janusz; Chomicz, Lidia; Wiczk, Justyna; Westphal, Kinga; Zdrowowicz, Magdalena; Wityk, Paweł; Żyndul, Michał; Makurat, Samanta; Golon, Łukasz

    2015-07-02

    Hypoxia--a hallmark of solid tumors--makes hypoxic cells radioresistant. On the other hand, DNA, the main target of anticancer therapy, is not sensitive to the near UV photons and hydrated electrons, one of the major products of water radiolysis under hypoxic conditions. A possible way to overcome these obstacles to the efficient radio- and photodynamic therapy of cancer is to sensitize the cellular DNA to electrons and/or ultraviolet radiation. While incorporated into genomic DNA, modified nucleosides, 5-bromo-2'-deoxyuridine in particular, sensitize cells to both near-ultraviolet photons and γ rays. It is believed that, in both sensitization modes, the reactive nucleobase radical is formed as a primary product which swiftly stabilizes, leading to serious DNA damage, like strand breaks or cross-links. However, despite the apparent similarity, such radio- and photosensitization of DNA seems to be ruled by fundamentally different mechanisms. In this review, we demonstrate that the most important factors deciding on radiodamage to the labeled DNA are (i) the electron affinity (EA) of modified nucleoside (mNZ), (ii) the local surroundings of the label that significantly influences the EA of mNZ, and (iii) the strength of the chemical bond holding together the substituent and a nucleobase. On the other hand, we show that the UV damage to sensitized DNA is governed by long-range photoinduced electron transfer, the efficiency of which is controlled by local DNA sequences. A critical review of the literature mechanisms concerning both types of damage to the labeled biopolymer is presented. Ultimately, the perspectives of studies on DNA sensitization in the context of cancer therapy are discussed.

  10. Identification and quantification of nucleosides and nucleobases in Geosaurus and Leech by hydrophilic-interaction chromatography.

    PubMed

    Chen, Pei; Li, Wei; Li, Qin; Wang, Yinghua; Li, Zhenguo; Ni, Yefeng; Koike, Kazuo

    2011-09-15

    A simple hydrophilic-interaction chromatography (HILIC) method was developed for the identification and quantification of 14 nucleosides and nucleobases, namely cytosine, uracil, cytidine, guanine, hypoxanthine, xanthine, uridine, thymine, inosine, guanosine, thymidine, 2'-deoxyadenosine, 2'-deoxyinosine and 2'-deoxyuridine in two traditional Chinese medicines, Geosaurus and Leech. The separation was achieved on a TSKgel Amide-80 column (150 mm × 2.0 mm, 3.0 μm) with a mixture of acetonitrile and 10 mM aqueous ammonium acetate as the mobile phase at a flow rate of 0.2 mL/min. The temperature was set at 30°C and UV detection wavelength was set at 260 nm. All calibration curves showed good linearity (R(2)>0.9957) within the test ranges. The overall intra- and inter-day RSD ranged from 0.4 to 3.4% and from 0.7 to 3.3%, respectively. The LOD and LOQ were in the range of 0.07-30.49 ng/mL and 0.26-60.98 ng/mL, respectively. The repeatability of the method was in the range of 2.2-5.8% for Geosaurus and 1.4-5.5% for Leech. The recoveries of the samples were in the range of 91.4-100.9% for Geosaurus, and 91.9-99.3% for Leech. The established method was applied successfully for the analysis of nucleosides and nucleobases in 22 commercially available samples collected from different regions in China and Japan. Our data showed that HILIC had advantages as a useful tool for the study of the bioactive components in Geosaurus and Leech as well as their quality control, and could therefore be used for the determination of the analytes in pharmaceutical products and biological fluids.

  11. Electron Detachment as a Probe of Intrinsic Nucleobase Dynamics in Dianion-Nucleobase Clusters: Photoelectron Spectroscopy of the Platinum II Cyanide Dianion Bound to Uracil, Thymine, Cytosine, and Adenine.

    PubMed

    Sen, Ananya; Hou, Gao-Lei; Wang, Xue-Bin; Dessent, Caroline E H

    2015-09-03

    We report the first low-temperature photoelectron spectra of isolated gas-phase complexes of the platinum II cyanide dianion bound to nucleobases. These systems are models for understanding platinum-complex photodynamic therapies, and a knowledge of the intrinsic photodetachment properties is crucial for characterizing their broader photophysical properties. Well-resolved, distinct peaks are observed in the spectra, consistent with complexes where the Pt(CN)4(2-) moiety is largely intact. Adiabatic electron detachment energies for the dianion-nucleobase complexes are measured to be 2.39-2.46 eV. The magnitudes of the repulsive Coulomb barriers of the complexes are estimated to be between 1.9 and 2.1 eV, values that are lower than for the bare Pt(CN)4(2-) dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four dianion-nucleobase complexes and also in the 266 nm spectra of the Pt(CN)4(2-)·thymine and Pt(CN)4(2-)·adenine complexes. The selective excitation of these features in the 266 nm spectra is attributed to one-photon excitation of [Pt(CN)4(2-)·thymine]* and [Pt(CN)4(2-)·adenine]* long-lived excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment signals. We attribute the delayed electron detachment bands observed here for Pt(CN)4(2-)·thymine and Pt(CN)4(2-)·adenine but not for Pt(CN)4(2-)·uracil and Pt(CN)4(2-)·cytosine to fundamental differences in the individual nucleobase photophysics following 266 nm excitation. This indicates that the Pt(CN)4(2-) dianion in the clusters can be viewed as a "dynamic tag" which has the propensity to emit electrons when the attached nucleobase displays a long-lived excited state.

  12. Electron Detachment as a Probe of Intrinsic Nucleobase Dynamics in Dianion-Nucleobase Clusters: Photoelectron Spectroscopy of the Platinum II Cyanide Dianion Bound to Uracil, Thymine, Cytosine and Adenine

    SciTech Connect

    Sen, Ananya; Hou, Gao-Lei; Wang, Xue B.; Dessent, Caroline

    2015-08-05

    We report the first low-temperature photodetachment photoelectron spectra of isolated gas-phase complexes of the platinum II cyanide dianion bound to nucleobases. These systems are model systems for understanding platinum-complex photodynamic therapies, and knowledge of the intrinsic photodetachment properties is crucial for understanding their broader photophysical properties. Well-resolved, distinct peaks are observed in the spectra consistent with the complexes where the Pt(CN)42- moiety is largely intact. The adiabatic electron detachment energies for the dianion-nucleobase complexes are measured to be between 2.39-2.46 eV. The magnitudes of the repulsive Coulomb barriers of the complexes are estimated to be between 1.9 and 2.1 eV, values that are lower than for the bare Pt(CN)42- dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photodetachment spectra of the four nucleobase-dianion complexes, and also in the 266 nm spectra of the Pt(CN)42-∙thymine and Pt(CN)42-∙adenine complexes. The selective excitation of these features in the 266 nm spectra is attributed to one-photon excitation of [Pt(CN)42-∙T]* and [Pt(CN)42-∙A]* long-lived excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment signals. We attribute the resonant electron detachment bands observed here for Pt(CN)42-∙T and Pt(CN)42-∙A but not for Pt(CN)42-∙U and Pt(CN)42-∙C to fundamental differences in the individual nucleobase photophysics following 266 nm excitation. This indicates that the Pt(CN)42- dianion in the Pt(CN)42-∙M clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase disaplys a long-lived excited state.

  13. Methodological considerations for global analysis of cellular FLIM/FRET measurements

    NASA Astrophysics Data System (ADS)

    Adbul Rahim, Nur Aida; Pelet, Serge; Kamm, Roger D.; So, Peter T. C.

    2012-02-01

    Global algorithms can improve the analysis of fluorescence energy transfer (FRET) measurement based on fluorescence lifetime microscopy. However, global analysis of FRET data is also susceptible to experimental artifacts. This work examines several common artifacts and suggests remedial experimental protocols. Specifically, we examined the accuracy of different methods for instrument response extraction and propose an adaptive method based on the mean lifetime of fluorescent proteins. We further examined the effects of image segmentation and a priori constraints on the accuracy of lifetime extraction. Methods to test the applicability of global analysis on cellular data are proposed and demonstrated. The accuracy of global fitting degrades with lower photon count. By systematically tracking the effect of the minimum photon count on lifetime and FRET prefactors when carrying out global analysis, we demonstrate a correction procedure to recover the correct FRET parameters, allowing us to obtain protein interaction information even in dim cellular regions with photon counts as low as 100 per decay curve.

  14. Scanning electron microscope appearances of fretting in the fixed orthodontic appliances.

    PubMed

    Klimek, Leszek; Palatyńska-Ulatowska, Aleksandra

    2012-01-01

    Fretting is one of the types of a tribologic wear. It is a process that occurs at a nominally immovable junction of elements. In dentistry, such elements can be brackets and archwires of fixed orthodontic appliances. They meet all the criteria for fretting to occur, i.e., they are nominally immovable, are subjected to initial loadings and they work in aggressive environment. Chrome-nickel stainless steel Elite Opti-Mim brackets (Trachem) working in vivo in oral cavity environment in combination with NiTi and stainless steel archwires were investigated. Scanning electron micrographs of bracket's working surfaces showed the presence of fretting damaged areas. This research also confirmed that there were almost all the types of fretting wear on the elements of the orthodontic appliances under examination.

  15. Fretting wear in titanium, Monel-400, and cobalt 25-percent-molybdenum using scanning electron microscopy

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1972-01-01

    Damage scar volume measurements taken from like metal fretting pairs combined with scanning electron microscopy observations showed that three sequentially operating mechanisms result in the fretting of titanium, Monel-400, and cobalt - 25-percent molybdenum. Initially, adhesion and plastic deformation of the surface played an important role. This was followed after a few hundred cycles by a fatigue mechanism which produced spall-like pits in the damage scar. Finally, a combination of oxidation and abrasion by debris particles became most significant. Damage scar measurements made on several elemental metals after 600,000 fretting cycles suggested that the ratio of oxide hardness to metal hardness was a measure of the susceptibility of a metal to progressive damage by fretting.

  16. Zn(II)-Coordinated Quantum Dot-FRET Nanosensors for the Detection of Protein Kinase Activity

    PubMed Central

    Lim, Butaek; Park, Ji-In; Lee, Kyung Jin; Lee, Jin-Won; Kim, Tae-Wuk; Kim, Young-Pil

    2015-01-01

    We report a simple detection of protein kinase activity using Zn(II)-mediated fluorescent resonance energy transfer (FRET) between quantum dots (QDs) and dye-tethered peptides. With neither complex chemical ligands nor surface modification of QDs, Zn(II) was the only metal ion that enabled the phosphorylated peptides to be strongly attached on the carboxyl groups of the QD surface via metal coordination, thus leading to a significant FRET efficiency. As a result, protein kinase activity in intermixed solution was efficiently detected by QD-FRET via Zn(II) coordination, especially when the peptide substrate was combined with affinity-based purification. We also found that mono- and di-phosphorylation in the peptide substrate could be discriminated by the Zn(II)-mediated QD-FRET. Our approach is expected to find applications for studying physiological function and signal transduction with respect to protein kinase activity. PMID:26213934

  17. In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse

    PubMed Central

    McGinty, James; Stuckey, Daniel W.; Soloviev, Vadim Y.; Laine, Romain; Wylezinska-Arridge, Marzena; Wells, Dominic J.; Arridge, Simon R.; French, Paul M. W.; Hajnal, Joseph V.; Sardini, Alessandro

    2011-01-01

    Förster resonance energy transfer (FRET) is a powerful biological tool for reading out cell signaling processes. In vivo use of FRET is challenging because of the scattering properties of bulk tissue. By combining diffuse fluorescence tomography with fluorescence lifetime imaging (FLIM), implemented using wide-field time-gated detection of fluorescence excited by ultrashort laser pulses in a tomographic imaging system and applying inverse scattering algorithms, we can reconstruct the three dimensional spatial localization of fluorescence quantum efficiency and lifetime. We demonstrate in vivo spatial mapping of FRET between genetically expressed fluorescent proteins in live mice read out using FLIM. Following transfection by electroporation, mouse hind leg muscles were imaged in vivo and the emission of free donor (eGFP) in the presence of free acceptor (mCherry) could be clearly distinguished from the fluorescence of the donor when directly linked to the acceptor in a tandem (eGFP-mCherry) FRET construct. PMID:21750768

  18. AAV Vectors for FRET-Based Analysis of Protein-Protein Interactions in Photoreceptor Outer Segments

    PubMed Central

    Becirovic, Elvir; Böhm, Sybille; Nguyen, Ong N. P.; Riedmayr, Lisa M.; Hammelmann, Verena; Schön, Christian; Butz, Elisabeth S.; Wahl-Schott, Christian; Biel, Martin; Michalakis, Stylianos

    2016-01-01

    Fluorescence resonance energy transfer (FRET) is a powerful method for the detection and quantification of stationary and dynamic protein-protein interactions. Technical limitations have hampered systematic in vivo FRET experiments to study protein-protein interactions in their native environment. Here, we describe a rapid and robust protocol that combines adeno-associated virus (AAV) vector-mediated in vivo delivery of genetically encoded FRET partners with ex vivo FRET measurements. The method was established on acutely isolated outer segments of murine rod and cone photoreceptors and relies on the high co-transduction efficiency of retinal photoreceptors by co-delivered AAV vectors. The procedure can be used for the systematic analysis of protein-protein interactions of wild type or mutant outer segment proteins in their native environment. Conclusively, our protocol can help to characterize the physiological and pathophysiological relevance of photoreceptor specific proteins and, in principle, should also be transferable to other cell types. PMID:27516733

  19. Mammary Analogue Secretory Carcinoma.

    PubMed

    Stevens, Todd M; Parekh, Vishwas

    2016-09-01

    Mammary analogue secretory carcinoma (MASC) is a recently described salivary gland tumor that shares the same histologic appearance and ETV6 gene (12p13) rearrangement as secretory carcinoma of the breast. Prior to its recognition, MASC cases were commonly labeled acinic cell carcinoma and adenocarcinoma, not otherwise specified. Despite distinctive histologic features, MASC may be difficult to distinguish from other salivary gland tumors, in particular zymogen-poor acinic cell carcinoma and low-grade salivary duct carcinoma. Although characteristic morphologic and immunohistochemical features form the basis of a diagnosis of MASC, the presence of an ETV6-NTRK3 gene fusion is confirmatory. Given its recent recognition the true prognostic import of MASC is not yet clearly defined.

  20. Quantitative study of fretting fatigue damage in shot peened titanium-aluminum-vanadium

    NASA Astrophysics Data System (ADS)

    Martinez, Sonia A.

    Fretting fatigue damage has been known to be the origin of premature failure in some of the aerospace engine components. The blade/disk assemblies, for example have been particularly susceptible to fretting induced failure. Several nondestructive evaluation techniques are being used to detect the cracks due to fretting fatigue damage. Although partial success has been achieved in detection of cracks, research is lacking in the area of detection of precursors to the development of cracks due fretting fatigue damage. The goal of the research presented in this thesis is to develop a methodology based on x-ray diffraction residual stress measurements for quantitative nondestructive characterization of accumulated fretting fatigue damage. To achieve the goal a systematic experimental study of the characteristics of the residual stress due to surface treatments of shot peening (SP), Laser Shock Peening (LSP) and Low Plasticity Burnishing (LPB), used in the aerospace industry was conducted. The residual stress in LSP and LPB was found to be complex involving shear stress and spatial non-uniformity. On the other hand in shot peening it was found to be least complex. More over it is the most cost effective and hence often used surface treatment in the industry. In order to gain an understanding of the effect of shot peening parameters on the fretting fatigue life, experiments were conducted on samples with four different peening intensities (0, 4, 7 and 10 A) and two surface coverage (100% and 400%). It was observed that the fretting fatigue life increases with the increasing peening intensity, and increase in surface coverage beyond 100% has virtually no effect. Scanning Electron Microscopic (SEM) observation of fractured surface was utilized to identify crack initiation. On all of the fretting fatigued specimens relaxation of residual stress was observed and it increased with increasing number of cycles. A complete relaxation was observed before failure. To obtain an

  1. FRET Imaging Trackable Long-Circulating Biodegradable Nanomedicines for Ovarian Cancer Therapy

    DTIC Science & Technology

    2014-09-01

    and with the intracellular degradation of the conjugates on the other hand. In fluorescence spectrophotometry experiments we have demonstrated a...Therefore the content of labels was determined via UV-vis spectrophotometry (Varian Cary 400) using molecular extinction coefficients of Cy3 and Cy5...FRET characterization   4   FRET investigation of P-Cy3-Cy5 was conducted by fluorescence spectrophotometry . Wavelength 520 nm was selected

  2. Fluorescence detection of endogenous bisulfite in liver cancer cells using an effective ESIPT enhanced FRET platform.

    PubMed

    Li, Dong-Peng; Wang, Zhao-Yang; Su, Hao; Miao, Jun-Ying; Zhao, Bao-Xiang

    2017-01-03

    Probe L-HF1, which featured large (pseudo) Stokes shifts and high FRET efficiency, was designed on a new ESIPT enhanced FRET platform for the detection of HSO3(-)/SO3(2-). L-HF1 could detect endogenous bisulfite in HepG2 cells but not in L-02 cells, implying the different bisulfite levels in normal and cancer cells of liver.

  3. A new pair for inter- and intra-molecular FRET measurement

    SciTech Connect

    Yang Xiaofei; Xu Pingyong; Xu Tao . E-mail: xutao@sun5.ibp.ac.cn

    2005-05-13

    Fluorescence resonance energy transfer between mutant green fluorescent proteins provides powerful means to monitor in vivo protein-protein proximity and intracellular signaling. However, the current widely applied FRET pair of this class (CFP/YFP) requires excitation by expensive UV lasers, thereby hindering FRET imaging on many confocal microscopes. Further challenges arise from the large spectral overlap of CFP/YFP emission. Another FRET pair GFP/DsRed could obviate such limitations. However, the use of DsRed as a FRET acceptor is hampered by several critical problems, including a slow and incomplete maturation and obligate tetramerization. A tandem dimer mutant of DsRed (TDimer2) has similar spectral properties as those of DsRed. The rapid maturation and non-oligomerization make TDimer2 a promising substitute for DsRed in FRET experiments. Here, we have explored the possibility of using TDimer2 as a FRET acceptor for the donor EGFP. FRET was demonstrated between the EGFP-TDimer2 chimeric fusion protein. By substituting CFP/YFP in the Ca{sup 2+}-sensor cameleon with EGFP/TDimer2, dynamic changes in cytosolic free Ca{sup 2+} concentrations were observed with 488 nm excitation under conventional wide-field microscopy. The EGFP/TDimer2 pair was further successfully employed to monitor inter-molecular interaction between Syntaxin and SNAP25. These results reveal EGFP/TDimer2 as a promising FRET pair in monitoring intra-molecular conformation change as well as inter-molecular interaction.

  4. A Sensitized Emission Based Calibration of FRET Efficiency for Probing the Architecture of Macromolecular Machines.

    PubMed

    Joglekar, Ajit; Chen, Renjie; Lawrimore, Joshua

    2013-01-01

    Macromolecular machines participate in almost every cell biological function. These machines can take the form of well-defined protein structures such as the kinetochore, or more loosely organized protein assemblies like the endocytic coat. The protein architecture of these machines-the arrangement of multiple copies of protein subunits at the nanoscale, is necessary for understanding their cell biological function and biophysical mechanism. Defining this architecture in vivo presents a major challenge. High density of protein molecules within macromolecular machines severely limits the effectiveness of super-resolution microscopy. However, this density is ideal for Forster Resonance Energy Transfer (FRET), which can determine the proximity between neighboring molecules. Here, we present a simple FRET quantitation scheme that calibrates a standard epifluorescence microscope for measuring donor-acceptor separations. This calibration can be used to deduce FRET efficiency fluorescence intensity measurements. This method will allow accurate determination of FRET efficiency over a wide range of values and FRET pair number. It will also allow dynamic FRET measurements with high spatiotemporal resolution under cell biological conditions. Although the poor maturation efficiency of genetically encoded fluorescent proteins presents a challenge, we show that its effects can be alleviated. To demonstrate this methodology, we probe the in vivo architecture of the γ-Tubulin Ring. Our technique can be applied to study the architecture and dynamics of a wide range of macromolecular machines.

  5. Fretting properties of biodegradable Mg-Nd-Zn-Zr alloy in air and in Hank's solution.

    PubMed

    Li, Wenting; Li, Nan; Zheng, Yufeng; Yuan, Guangyin

    2016-11-04

    Fretting is a significant cause for the failure of orthopedic implants. Currently, since magnesium and its alloys have been developed as promising biodegradable implant materials, the fretting behavior of the Mg alloys is of great research significance. In this study, a Mg-Nd-Zn-Zr alloy (hereafter, denoted as JDBM alloy) was selected as experimental material, and its fretting behaviors were evaluated under 5 N, 10 N and 20 N normal loads with a displacement of 200 μm under the frequency of 10 Hz at 37 °C in air and in Hank's solution, respectively. The results indicated that while the friction coefficient decreased with the increment of the normal load, the wear volume of the alloy increased with the increment of the normal load both in air and in Hank's solution. Both the friction coefficients and the wear volume of the fretting in Hank's solution were much lower than those in air environment. The evolution trend of friction coefficients with time had different performance in air environment and the Hank's solution group. Although oxidation occurred during the fretting tests in Hank's solution, the damage of JDBM alloy was still reduced due to the lubrication effects of Hank's solution. Moreover, the addition of Fetal bovine serum (FBS) could act as lubrication and result in the reduction of the fretting damage.

  6. The effect of surface treatments on the fretting behavior of Ti-6Al-4V alloy.

    PubMed

    Dalmiglio, Matteo; Schaaff, Petra; Holzwarth, Uwe; Chiesa, Roberto; Rondelli, Gianni

    2008-08-01

    Stem modularity in total hip replacement introduces an additional taper joint between Ti-6Al-4V stem components with the potential for fretting corrosion processes. One possible way to reduce the susceptibility of the Ti-6Al-4V/Ti-6Al-4V interface to fretting is the surface modification of the Ti-6Al-4V alloy. Among the tested, industrially available surface treatments, a combination of two deep anodic spark deposition treatments followed by barrel polishing resulted in a four times lower material release with respect to untreated, machined fretting pad surfaces. The fretting release has been quantified by means of radiotracers introduced in the alloy surface by proton irradiation. In a simple sphere on flat geometry, the semispherical fretting pads were pressed against flat, dog-bone shaped Ti-6Al-4V fatigue samples cyclically loaded at 4 Hz. In this way a cyclic displacement amplitude along the surfaces of 20 mum has been achieved. A further simplification consisted in the use of deionized water as lubricant. A comparison of the radiotracer results with an electrochemical material characterization after selected treatments by potentiostatic tests of modular stems in 0.9% NaCl at 40 degrees C for 10 days confirmed the benefit of deep anodic spark deposition and subsequent barrel polishing for improving the fretting behavior of Ti-6Al-4V.

  7. Reduction of fretting corrosion of Ti-6Al-4V by various surface treatments.

    PubMed

    Maurer, A M; Brown, S A; Payer, J H; Merritt, K; Kawalec, J S

    1993-11-01

    Titanium and titanium-6% aluminum-4% vanadium (Ti-6Al-4V) are known to be biocompatible and corrosion resistant. However, there have been numerous reports of elevated tissue levels of titanium due to passive dissolution, wear, or fretting corrosion of implants. Studies were undertaken to determine whether the fretting corrosion of Ti-6Al-4V could be reduced by surface treatment of one or both surfaces in a fretting situation. Three different surface treatments were studied: ion implantation, physical vapor deposition nitriding, and plasma ion nitriding. The specimens used were screws fretting against the countersinks of a two-hole plate. Fretting corrosion was assessed by weight loss, by chemical analysis of test solutions, and by scanning electron microscopy. Surface treatment of one component, the screws, resulted in reduction in the release of titanium to only 18-32% of that seen with the untreated controls. Weight loss of the untreated plates fretted against physical vapor deposition nitrided screws and plasma ion nitrided screws was reduced to 31 and 38% of the control, respectively. The weight loss of plasma nitrided screws was only 30% that of the control. Nitriding of both plates and screws resulted in a further decrease in plate weight loss and metal release. Plasma ion nitriding of both components had the most significant effect, with the weight loss and titanium release being only 11 and 2% of the control values, respectively.

  8. Comparison of different fluorescence fluctuation methods for their use in FRET assays: monitoring a protease reaction.

    PubMed

    Eggeling, C; Jäger, S; Winkler, D; Kask, Peet

    2005-10-01

    We compare the accuracy of a variety of Fluorescence Fluctuation Spectroscopy (FFS) methods for the study of Förster Resonance Energy Transfer (FRET) assays. As an example, the cleavage of a doubly labeled, FRET-active peptide substrate by the protease Trypsin is monitored and analyzed using methods based on fluorescence intensity, Fluorescence Correlation Spectroscopy (FCS) and Fluorescence Intensity Distribution Analysis (FIDA). The presented fluorescence data are compared to High-Pressure Liquid Chromatography (HPLC) data obtained from the same assay. The HPLC analysis discloses general disadvantages of the FRET approach, such as incomplete labeling and the need for aliquots. However, the simultaneous use of two photon detectors monitoring the fluorescence signal of both labels significantly improves the analysis. In particular, the two global analysis tools Two-Dimensional Fluorescence Intensity Distribution Analysis (2D-FIDA) and Two-Color Global Fluorescence Correlation Spectroscopy (2CG-FCS) highlight the potential of a combination of FFS and FRET. While conventional FIDA and FCS auto- or cross-correlation analysis leaves the user with drawbacks inherent in two-color and FRET applications, these effects are overcome by the global analysis on the molecular level. Furthermore, it is advantageous to analyze the unnormalized as opposed to the normalized correlation data when combining any fluorescence correlation method with FRET, since the analysis of the unnormalized data introduces more accuracy and is less sensitive to the experimental drawbacks.

  9. The fretting corrosion resistance of PVD surface-modified orthopedic implant alloys.

    PubMed

    Hendry, J A; Pilliar, R M

    2001-01-01

    The objective of this study was to evaluate the fretting corrosion resistance of both modified and unmodified Ti6Al4V flats fretted against CoCr-alloy spheres in a buffered Hank's solution at 37 degrees C using an original fretting apparatus. A physical vapor deposition (PVD) cathodic arc evaporation technique was used to deposit 3-4 microm thick titanium nitride (TiN), zirconium nitride (ZrN), or amorphous carbon (AC) coatings onto the Ti6Al4V substrates. The fretting behavior of the nitride films (TiN and ZrN) was characterized by the absence of surface damage and the deposition of a Cr-rich oxide transferred from the CoCr-alloy spheres to the modified surfaces. This oxide led to a slight increase in surface roughness. Three of the six multilayered AC coatings tested exhibited extensive fretting damage and generated large, deep, wear scars. Cohesive failure of the AC coating was observed in the low contact stress areas of the fretting scars. The remaining AC-coated specimens experienced only slight polishing wear. The reason for the different behavior within the AC-coated specimens is not clear at the present time. The unmodified Ti6Al4V surfaces experienced severe surface damage consistent with the adhesive galling mechanism to which these alloys are susceptible.

  10. Non-conjugated small molecule FRET for differentiating monomers from higher molecular weight amyloid beta species.

    PubMed

    Ran, Chongzhao; Zhao, Wei; Moir, Robert D; Moore, Anna

    2011-04-29

    Systematic differentiation of amyloid (Aβ) species could be important for diagnosis of Alzheimer's disease (AD). In spite of significant progress, controversies remain regarding which species are the primary contributors to the AD pathology, and which species could be used as the best biomarkers for its diagnosis. These controversies are partially caused by the lack of reliable methods to differentiate the complicated subtypes of Aβ species. Particularly, differentiation of Aβ monomers from toxic higher molecular weight species (HrMW) would be beneficial for drug screening, diagnosis, and molecular mechanism studies. However, fast and cheap methods for these specific aims are still lacking. We demonstrated the feasibility of a non-conjugated FRET (Förster resonance energy transfer) technique that utilized amyloid beta (Aβ) species as intrinsic platforms for the FRET pair assembly. Mixing two structurally similar curcumin derivatives that served as the small molecule FRET pair with Aβ40 aggregates resulted in a FRET signal, while no signal was detected when using Aβ40 monomer solution. Lastly, this FRET technique enabled us to quantify the concentrations of Aβ monomers and high molecular weight species in solution. We believe that this FRET technique could potentially be used as a tool for screening for inhibitors of Aβ aggregation. We also suggest that this concept could be generalized to other misfolded proteins/peptides implicated in various pathologies including amyloid in diabetes, prion in bovine spongiform encephalopathy, tau protein in AD, and α-synuclein in Parkinson disease.

  11. Recent developments in Förster resonance energy transfer (FRET) diagnostics using quantum dots.

    PubMed

    Geißler, Daniel; Hildebrandt, Niko

    2016-07-01

    The exceptional photophysical properties and the nanometric dimensions of colloidal semiconductor quantum dots (QD) have strongly attracted the bioanalytical community over the last approximately 20 y. In particular, the integration of QDs in the analysis of biological components and interactions, and the related diagnostics using Förster resonance energy transfer (FRET), have allowed researchers to significantly improve and diversify fluorescence-based biosensing. In this TRENDS article, we review some recent developments in QD-FRET biosensing that have implemented this technology in electronic consumer products, multiplexed analysis, and detection without light excitation for diagnostic applications. In selected examples of smartphone-based imaging, single- and multistep FRET, steady-state and time-resolved spectroscopy, and bio/chemiluminescence detection of QDs used as both FRET donors and acceptors, we highlight the advantages of QD-based FRET biosensing for multiplexed and sensitive diagnostics. Graphical Abstract Quantum dots (QDs) can be applied as donors and/or acceptors for Förster resonance energy transfer- (FRET-) based biosensing for multiplexed and sensitive diagnostics in various assay formats.

  12. NASA/ESMD Analogue Mission Plans

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2007-01-01

    A viewgraph presentation exploring Earth and its analogues is shown. The topics include: 1) ESMD Goals for the Use of Earth Analogues; 2) Stakeholders Summary; 3) Issues with Current Analogue Situation; 4) Current state of Analogues; 5) External Implementation Plan (Second Step); 6) Recent Progress in Utilizing Analogues; 7) Website Layout Example-Home Page; 8) Website Layout Example-Analogue Site; 9) Website Layout Example-Analogue Mission; 10) Objectives of ARDIG Analog Initiatives; 11) Future Plans; 12) Example: Cold-Trap Sample Return; 13) Example: Site Characterization Matrix; 14) Integrated Analogue Studies-Prerequisites for Human Exploration; and 15) Rating Scale Definitions.

  13. Automated quantum chemistry based molecular dynamics simulations of electron ionization induced fragmentations of the nucleobases Uracil, Thymine, Cytosine, and Guanine.

    PubMed

    Grimme, Stefan; Bauer, Christopher Alexander

    2015-01-01

    The gas-phase decomposition pathways of electron ionization (EI)-induced radical cations of the nucleobases uracil, thymine, cytosine, and guanine are investigated by means of mixed quantum-classical molecular dynamics. No preconceived fragmentation channels are used in the calculations. The results compare well to a plethora of experimental and theoretical data for these important biomolecules. With our combined stochastic and dynamic approach, one can access in an unbiased way the energetically available decomposition mechanisms. Additionally, we are able to separate the EI mass spectra of different tautomers of cytosine and guanine. Our method (previously termed quantum chemistry electron ionization mass spectra) reproduces free nucleobase experimental mass spectra well and provides detailed mechanistic in-sight into high-energy unimolecular decomposition processes.

  14. The effects of fretting on fatigue characteristics of a mechanically fastened aircraft joint

    NASA Astrophysics Data System (ADS)

    Shah, Akbar Hussain

    A research study to investigate the effects of fretting on fatigue characteristics of an aircraft joint was carried out. The selected joint for this study simulates the rotor head of an aircraft capable of taking off vertically. The primary function of this hub-spindle joint is to retain the main rotor blade against the centrifugal forces, both in-plane and out-of-plane bending moments and torsion caused due to the lift, drag and other aerodynamic forces imposed on the rotor blades while the aircraft is in forward flight. The primary objectives of this study were twofold; (a) Verify that the average lives of mechanically fastened joints with combined effects of fretting and fatigue will be lower compared to the average lives due to plain fatigue. (b) Discover whether fretting causes cracks to nucleate and fatigue causes those cracks to propagate. In order to verify the validity of the first hypothesis, seven test joints were tested to failure. Several S/N curves were generated against Mil-Handbook 5H data for comparable plain fatigue response of the same material. Out of the seven specimens that were tested, five were machined from Aluminum 7075-T6, and the other two were machined from Aluminum 7050-T7451. An average fretting fatigue life reduction factor Kff, of 21 was found for all these seven joints. In order to validate the second hypothesis, a detailed investigation under a scanning electron microscope of the fretted/failed surfaces was conducted. Severe fretting damage was observed in all test specimens. It was found that fretting-induced damage provided the crack nucleation sites in all test specimens that failed. These nucleation sites were in the form of fretting scars, pits and gouges providing several regions of stress concentration. Under the influence of high tensile stress fields, these sites allowed several small embryonic cracks to form, coalesce and link up to form primary and multiple cracks, which subsequently propagated under the applied cyclic

  15. Role of plasticity on fretting fatigue behavior of titanium-aluminum-vanadium

    NASA Astrophysics Data System (ADS)

    Shin, Kisu

    Fretting fatigue leads to the degradation of the fatigue strength of a material due to cyclic micro-slip between two contacting materials. Since fatigue life reduction caused by fretting fatigue occurs in various mechanical components, such as bolted connections and blade/disk dovetail joints etc., fretting fatigue is regarded as an important issue in the design of aerospace structures. Consequently, a number of studies have been performed to predict the behavior of fretting fatigue. However, while many studies have evaluated fretting fatigue behavior under elastic deformation conditions, few studies have focused on fretting fatigue behavior under elastic-plastic deformation conditions. Due to the fact that plastic deformation is an integral part of crack nucleation, the role of plastic deformation in crack initiation should be considered, especially when a large plastic zone is presented. The primary goal of this study was to characterize the fretting fatigue crack initiation behavior in the presence of plasticity. Experimental tests were performed using pad configurations involving elastic-plastic deformations. A total of eight different configurations of fretting pads were used for this dissertation. Five of the eight geometries were intended to generate the elastic deformation, i.e. 50.8 mm, 101.6 mm and 304.8 mm radius pads with normal contact load of 1.334 N, 2.224, and 4.003 kN respectively and two flat with rounded edge pads with normal contact load of 1.334 and 4.003 kN. In order to replicate the elastic-plastic deformation conditions, the smaller radii of the cylindrical pads, i.e. 5.08 mm radius pads, and flat pad type3 (FP3) with smaller edge radius, were included in this study. Two different contact loads were applied with the 5.08 mm radius cylindrical pad, i.e. 1.334 and 1.779 kN, while one contact load was applied with the flat pad type3, i.e. 4.003 kN. The crack initiation location was found near the trailing edge under both elastic and elastic

  16. A Search for Amino Acids and Nucleobases in the Martian Meteorite Roberts Massif 04262 Using Liquid Chromatography-Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Burton, Aaron S.; Elsila, Jamie E.; Baker, Eleni M.; Smith, Karen E.; Glavin, Daniel P.; Dworkin, Jason P.

    2013-01-01

    The investigation into whether Mars contains signatures of past or present life is of great interest to science and society. Amino acids and nucleobases are compounds that are essential for all known life on Earth and are excellent target molecules in the search for potential Martian biomarkers or prebiotic chemistry. Martian meteorites represent the only samples from Mars that can be studied directly in the laboratory on Earth. Here, we analyzed the amino acid and nucleobase content of the shergottite Roberts Massif (RBT) 04262 using liquid chromatography-mass spectrometry. We did not detect any nucleobases above our detection limit in formic acid extracts; however, we did measure a suite of protein and nonprotein amino acids in hot-water extracts with high relative abundances of beta-alanine and gamma-amino-eta-butyric acid. The presence of only low (to absent) levels of several proteinogenic amino acids and a lack of nucleobases suggest that this meteorite fragment is fairly uncontaminated with respect to these common biological compounds. The distribution of straight-chained amine-terminal eta-omega-amino acids in RBT 04262 resembled those previously measured in thermally altered carbonaceous meteorites. A carbon isotope ratio of -24(0/00) +/- 6(0/00) for beta-alanine in RBT 04262 is in the range of reduced organic carbon previously measured in Martian meteorites (Steele et al. 2012). The presence of eta-omega-amino acids may be due to a high temperature Fischer-Tropschtype synthesis during igneous processing on Mars or impact ejection of the meteorites from Mars, but more experimental data are needed to support these hypotheses.

  17. On the Origin of the Canonical Nucleobases: An Assessment of Selection Pressures across Chemical and Early Biological Evolution

    PubMed Central

    Rios, Andro C.

    2014-01-01

    The native bases of RNA and DNA are prominent examples of the narrow selection of organic molecules upon which life is based. How did nature “decide” upon these specific heterocycles? Evidence suggests that many types of heterocycles could have been present on the early Earth. It is therefore likely that the contemporary composition of nucleobases is a result of multiple selection pressures that operated during early chemical and biological evolution. The persistence of the fittest heterocycles in the prebiotic environment towards, for example, hydrolytic and photochemical assaults, may have given some nucleobases a selective advantage for incorporation into the first informational polymers. The prebiotic formation of polymeric nucleic acids employing the native bases remains, however, a challenging problem to reconcile. Hypotheses have proposed that the emerging RNA world may have included many types of nucleobases. This is supported by the extensive utilization of non-canonical nucleobases in extant RNA and the resemblance of many of the modified bases to heterocycles generated in simulated prebiotic chemistry experiments. Selection pressures in the RNA world could have therefore narrowed the composition of the nucleic acid bases. Two such selection pressures may have been related to genetic fidelity and duplex stability. Considering these possible selection criteria, the native bases along with other related heterocycles seem to exhibit a certain level of fitness. We end by discussing the strength of the N-glycosidic bond as a potential fitness parameter in the early DNA world, which may have played a part in the refinement of the alphabetic bases. PMID:25284884

  18. Real-time analysis of self-assembled nucleobases by Venturi easy ambient sonic-spray ionization mass spectrometry.

    PubMed

    Na, Na; Shi, Ruixia; Long, Zi; Lu, Xin; Jiang, Fubin; Ouyang, Jin

    2014-10-01

    In this study, the real-time analysis of self-assembled nucleobases was employed by Venturi easy ambient sonic-spray ionization mass spectrometry (V-EASI-MS). With the analysis of three nucleobases including 6-methyluracil (6MU), uracil (U) and thymine (T) as examples, different orders of clusters centered with different metal ions were recorded in both positive and negative modes. Compared with the results obtained by traditional electrospray ionization mass spectrometry (ESI-MS) under the same condition, more clusters with high orders, such as [6MU7+Na](+), [6MU15+2NH4](2+), [6MU10+Na](+), [T7+Na](+), and [T15+2NH4](2+) were detected by V-EASI-MS, which demonstrated the soft ionization ability of V-EASI for studying the non-covalent interaction in a self-assembly process. Furthermore, with the injection of K(+) to the system by a syringe pumping, the real-time monitoring of the formation of nucleobases clusters was achieved by the direct extraction of samples from the system under the Venturi effect. Therefore, the effect of cations on the formation of clusters during self-assembly of nucleobases was demonstrated, which was in accordance with the reports. Free of high voltage, heating or radiation during the ionization, this technique is much soft and suitable for obtaining the real-time information of the self-assembly system, which also makes it quite convenient for extraction samples from the reaction system. This "easy and soft" ionization technique has provided a potential pathway for monitoring and controlling the self-assembly processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A search for amino acids and nucleobases in the Martian meteorite Roberts Massif 04262 using liquid chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Callahan, Michael P.; Burton, Aaron S.; Elsila, Jamie E.; Baker, Eleni M.; Smith, Karen E.; Glavin, Daniel P.; Dworkin, Jason P.

    2013-05-01

    The investigation into whether Mars contains signatures of past or present life is of great interest to science and society. Amino acids and nucleobases are compounds that are essential for all known life on Earth and are excellent target molecules in the search for potential Martian biomarkers or prebiotic chemistry. Martian meteorites represent the only samples from Mars that can be studied directly in the laboratory on Earth. Here, we analyzed the amino acid and nucleobase content of the shergottite Roberts Massif (RBT) 04262 using liquid chromatography-mass spectrometry. We did not detect any nucleobases above our detection limit in formic acid extracts; however, we did measure a suite of protein and nonprotein amino acids in hot-water extracts with high relative abundances of β-alanine and γ-amino-n-butyric acid. The presence of only low (to absent) levels of several proteinogenic amino acids and a lack of nucleobases suggest that this meteorite fragment is fairly uncontaminated with respect to these common biological compounds. The distribution of straight-chained amine-terminal n-ω-amino acids in RBT 04262 resembled those previously measured in thermally altered carbonaceous meteorites (Burton et al. 2012; Chan et al. 2012). A carbon isotope ratio of -24‰ ± 6‰ for β-alanine in RBT 04262 is in the range of reduced organic carbon previously measured in Martian meteorites (Steele et al. 2012). The presence of n-ω-amino acids may be due to a high temperature Fischer-Tropsch-type synthesis during igneous processing on Mars or impact ejection of the meteorites from Mars, but more experimental data are needed to support these hypotheses.

  20. Determination of DNA adducts by combining acid-catalyzed hydrolysis and chromatographic analysis of the carcinogen-modified nucleobases.

    PubMed

    Leung, Elvis M K; Deng, Kailin; Wong, Tin-Yan; Chan, Wan

    2016-01-01

    The commonly used method of analyzing carcinogen-induced DNA adducts involves the hydrolysis of carcinogen-modified DNA samples by using a mixture of enzymes, followed by (32)P-postlabeling or liquid chromatography (LC)-based analyses of carcinogen-modified mononucleotides/nucleosides. In the present study, we report the development and application of a new approach to DNA adduct analysis by combining the H(+)/heat-catalyzed release of carcinogen-modified nucleobases and the use of LC-based methods to analyze DNA adducts. Results showed that heating the carcinogen-modified DNA samples at 70 °C for an extended period of 4 to 6 h in the presence of 0.05% HCl can efficiently induce DNA depurination, releasing the intact carcinogen-modified nucleobases for LC analyses. After optimizing the hydrolysis conditions, DNA samples with C8- and N (2) -modified 2'-deoxyguanosine, as well as N (6) -modified 2'-deoxyadenosine, were synthesized by reacting DNA with 1-nitropyrene, acetaldehyde, and aristolochic acids, respectively. These samples were then hydrolyzed, and the released nucleobase adducts were analyzed using LC-based analytical methods. Analysis results demonstrated a dose-dependent release of target DNA adducts from carcinogen-modified DNA samples, indicating that the developed H(+)/heat-catalyzed hydrolysis method was quantitative. Comparative studies with enzymatic digestion method on carcinogen-modified DNA samples revealed that the two hydrolysis methods did not yield systematically different results.

  1. FUN26 (Function Unknown Now 26) Protein from Saccharomyces cerevisiae Is a Broad Selectivity, High Affinity, Nucleoside and Nucleobase Transporter*

    PubMed Central

    Boswell-Casteel, Rebba C.; Johnson, Jennifer M.; Duggan, Kelli D.; Roe-Žurž, Zygy; Schmitz, Hannah; Burleson, Carter; Hays, Franklin A.

    2014-01-01

    Equilibrative nucleoside transporters (ENTs) are polytopic integral membrane proteins that transport nucleosides and, to a lesser extent, nucleobases across cell membranes. ENTs modulate efficacy for a range of human therapeutics and function in a diffusion-controlled bidirectional manner. A detailed understanding of ENT function at the molecular level has remained elusive. FUN26 (function unknown now 26) is a putative ENT homolog from S. cerevisiae that is expressed in vacuole membranes. In the present system, proteoliposome studies of purified FUN26 demonstrate robust nucleoside and nucleobase uptake into the luminal volume for a broad range of substrates. This transport activity is sensitive to nucleoside modifications in the C(2′)- and C(5′)-positions on the ribose sugar and is not stimulated by a membrane pH differential. [3H]Adenine nucleobase transport efficiency is increased ∼4-fold relative to nucleosides tested with no observed [3H]adenosine or [3H]UTP transport. FUN26 mutational studies identified residues that disrupt (G463A or G216A) or modulate (F249I or L390A) transporter function. These results demonstrate that FUN26 has a unique substrate transport profile relative to known ENT family members and that a purified ENT can be reconstituted in proteoliposomes for functional characterization in a defined system. PMID:25035431

  2. Formamide-based synthesis of nucleobases by metal(II) octacyanomolybdate(IV): implication in prebiotic chemistry.

    PubMed

    Kumar, Anand; Sharma, Rachana; Kamaluddin

    2014-09-01

    We propose that double metal cyanides that formed in primeval seas might have played a vital role in chemical evolution and the origin of life. An array of metal octacyanomolybdates (MOCMos) has been synthesized, and their role as catalyst in the formation of nucleobases from formamide has been studied. Formamide, a hydrolysis product of HCN, was taken as starting material for the formation of nucleobases. Recent studies support the presence of formamide on some celestial bodies. Metal octacyanomolybdates, MOCMos (M = Mn, Fe, Co, Ni, Cu, Zn, Cd), are found to be highly efficient catalysts in the conversion of formamide into different nucleobases. Neat formamide is converted to purine, 4(3H)-pyrimidinone, cytosine, adenine, 9-(hydroxyacetyl)-purine, and thymine in good yield when using MOCMos. The products formed were characterized by high-performance liquid chromatography and electrospray ionization mass spectrometry techniques. The results of our study show that insoluble double metal cyanides might have acted as efficient catalysts in the synthesis of various biologically important compounds (e.g., purines, pyrimidines) under primeval seas on Earth or elsewhere in our solar system.

  3. Emergent functionality of nucleobase radical cations in duplex DNA: prediction of reactivity using qualitative potential energy landscapes.

    PubMed

    Joseph, Joshy; Schuster, Gary B

    2006-05-10

    The one-electron oxidation of a series of DNA oligonucleotides was examined. Each oligomer contains a covalently linked anthraquinone (AQ) group. Irradiation of the AQ group with near-UV light results in a one-electron oxidation of the DNA that generates a radical cation (electron "hole"). The radical cation migrates through the DNA by a hopping mechanism and is trapped by reaction with water or molecular oxygen, which results in chemical reaction at particular nucleobases. This reaction is revealed as strand cleavage when the irradiated oligonucleotide is treated with piperidine. The specific oligomers examined reveal the existence of three categories of nucleobase sequences: charge shuttles, charge traps, and barriers to charge migration. The characterization of a sequence is not independent of the identity of other sequences in the oligonucleotide, and for this reason, the function of a particular sequence emerges from an analysis of the entire structure. Qualitative potential energy landscapes are introduced as a tool to assist in the rationalization and prediction of the reactions of nucleobases in oxidized DNA.

  4. On the structural regularity in nucleobases and amino acids and relationship to the origin and evolution of the genetic code.

    PubMed

    Yang, Chi Ming

    2005-06-01

    To explore how chemical structures of both nucleobases and amino acids may have played a role in shaping the genetic code, numbers of sp2 hybrid nitrogen atoms in nucleobases were taken as a determinative measure for empirical stereo-electronic property to analyze the genetic code. Results revealed that amino acid hydropathy correlates strongly with the sp2 nitrogen atom numbers in nucleobases rather than with the overall electronic property such as redox potentials of the bases, reflecting that stereo-electronic property of bases may play a role. In the rearranged code, five simple but stereo-structurally distinctive amino acids (Gly, Pro, Val, Thr and Ala) and their codon quartets form a crossed intersection "core". Secondly, a re-categorization of the amino acids according to their beta-carbon stereochemistry, verified by charge density (at beta-carbon) calculation, results in five groups of stereo-structurally distinctive amino acids, the group leaders of which are Gly, Pro, Val, Thr and Ala, remarkably overlapping the above "core". These two lines of independent observations provide empirical arguments for a contention that a seemingly "frozen" "core" could have formed at a certain evolutionary stage. The possible existence of this codon "core" is in conformity with a previous evolutionary model whereby stereochemical interactions may have shaped the code. Moreover, the genetic code listed in UCGA succession together with this codon "core" has recently facilitated an identification of the unprecedented icosikaioctagon symmetry and bi-pyramidal nature of the genetic code.

  5. Activatable and Cell-Penetrable Multiplex FRET Nanosensor for Profiling MT1-MMP Activity in Single Cancer Cells

    PubMed Central

    Chung, Eddie Y.; Ochs, Christopher J.; Wang, Yi; Lei, Lei; Qin, Qin; Smith, Andrew M.; Strongin, Alex Y.; Kamm, Roger; Qi, Ying-Xin; Lu, Shaoying; Wang, Yingxiao

    2015-01-01

    We developed a quantum-dot-based fluorescence resonance energy transfer (QD-FRET) nanosensor to visualize the activity of matrix metalloproteinase (MT1-MMP) at cell membrane. A bended peptide with multiple motifs was engineered to position the FRET pair at a close proximity to allow energy transfer, which can be cleaved by active MT1-MMP to result in FRET changes and the exposure of cell penetrating sequence. Via FRET and penetrated QD signals, the nanosensor can profile cancer cells. PMID:26203778

  6. FRETsg: Biomolecular structure model building from multiple FRET experiments

    NASA Astrophysics Data System (ADS)

    Schröder, G. F.; Grubmüller, H.

    2004-04-01

    Fluorescence energy transfer (FRET) experiments of site-specifically labelled proteins allow one to determine distances between residues at the single molecule level, which provide information on the three-dimensional structural dynamics of the biomolecule. To systematically extract this information from the experimental data, we describe a program that generates an ensemble of configurations of residues in space that agree with the experimental distances between these positions. Furthermore, a fluctuation analysis allows to determine the structural accuracy from the experimental error. Program summaryTitle of program: FRETsg Catalogue identifier: ADTU Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTU Computer: SGI Octane, Pentium II/III, Athlon MP, DEC Alpha Operating system: Unix, Linux, Windows98/NT/XP Programming language used: ANSI C No. of bits in a word: 32 or 64 No. of processors used: 1 No. of bytes in distributed program, including test data, etc.: 11407 No. of lines in distributed program, including test data, etc.: 1647 Distribution format: gzipped tar file Nature of the physical problem: Given an arbitrary number of distance distributions between an arbitrary number of points in three-dimensional space, find all configurations (set of coordinates) that obey the given distances. Method of solution: Each distance is described by a harmonic potential. Starting from random initial configurations, their total energy is minimized by steepest descent. Fluctuations of positions are chosen to generate distance distribution widths that best fit the given values.

  7. Fretting and Corrosion in Modular Shoulder Arthroplasty: A Retrieval Analysis.

    PubMed

    Eckert, Johannes A; Mueller, Ulrike; Jaeger, Sebastian; Panzram, Benjamin; Kretzer, J Philippe

    2016-01-01

    Tribocorrosion in taper junctions of retrieved anatomic shoulder arthroplasty implants was evaluated. A comparison of the tribocorrosion between cobalt-chromium and titanium alloy stems was conducted and the observations were correlated with the individual's clinical data. Adverse effects caused by metal debris and subsequent elevated serum metal ion levels are frequently reported in total hip arthroplasty. In total shoulder arthroplasty, to date only a small number of retrieval analyses are available and even fewer address the issue of tribocorrosion at the taper junctions. A total of 36 retrieved hemiarthroplasties and total shoulder arthroplasties were assessed using the modified Goldberg score. The prevalence of fretting and corrosion was confirmed in this cohort. Titanium stems seem to be more susceptible to damage caused by tribocorrosion than cobalt-chromium stems. Furthermore, stemless designs offered less tribocorrosion at the taper junction than stemmed designs. A weak correlation between time to revision and increased levels of tribocorrosion was seen. Whether or not tribocorrosion can lead to adverse clinical reactions and causes failure of shoulder arthroplasties remains to be examined.

  8. Fretting and Corrosion in Modular Shoulder Arthroplasty: A Retrieval Analysis

    PubMed Central

    Panzram, Benjamin

    2016-01-01

    Tribocorrosion in taper junctions of retrieved anatomic shoulder arthroplasty implants was evaluated. A comparison of the tribocorrosion between cobalt-chromium and titanium alloy stems was conducted and the observations were correlated with the individual's clinical data. Adverse effects caused by metal debris and subsequent elevated serum metal ion levels are frequently reported in total hip arthroplasty. In total shoulder arthroplasty, to date only a small number of retrieval analyses are available and even fewer address the issue of tribocorrosion at the taper junctions. A total of 36 retrieved hemiarthroplasties and total shoulder arthroplasties were assessed using the modified Goldberg score. The prevalence of fretting and corrosion was confirmed in this cohort. Titanium stems seem to be more susceptible to damage caused by tribocorrosion than cobalt-chromium stems. Furthermore, stemless designs offered less tribocorrosion at the taper junction than stemmed designs. A weak correlation between time to revision and increased levels of tribocorrosion was seen. Whether or not tribocorrosion can lead to adverse clinical reactions and causes failure of shoulder arthroplasties remains to be examined. PMID:27433471

  9. Hybridization accompanying FRET event in labeled natural nucleoside-unnatural nucleoside containing chimeric DNA duplexes.

    PubMed

    Bag, Subhendu Sekhar; Das, Suman K; Pradhan, Manoj Kumar; Jana, Subhashis

    2016-09-01

    Förster resonance energy transfer (FRET) is a highly efficient strategy in illuminating the structures, structural changes and dynamics of DNA, proteins and other biomolecules and thus is being widely utilized in studying such phenomena, in designing molecular/biomolecular probes for monitoring the hybridization event of two single stranded DNA to form duplex, in gene detection and in many other sensory applications in chemistry, biology and material sciences. Moreover, FRET can give information about the positional status of chromophores within the associated biomolecules with much more accuracy than other methods can yield. Toward this end, we want to report here the ability of fluorescent unnatural nucleoside, triazolylphenanthrene ((TPhen)BDo) to show FRET interaction upon hybridization with fluorescently labeled natural nucleosides, (Per)U or (OxoPy)U or (Per)U, forming two stable chimeric DNA duplexes. The pairing selectivity and the thermal duplex stability of the chimeric duplexes are higher than any of the duplexes with natural nucleoside formed. The hybridization results in a Förster resonance energy transfer (FRET) from donor triazolylphenanthrene of (TPhen)BDo to acceptor oxopyrene of (OxoPy)U and/or to perylene chromophore of (Per)U, respectively, in two chimeric DNA duplexes. Therefore, we have established the FRET process in two chimeric DNA duplexes wherein a fluorescently labeled natural nucleoside ((OxoPy)U or (Per)U) paired against an unnatural nucleoside ((TPhen)BDo) without sacrificing the duplex stability and B-DNA conformation. The hybridization accompanying FRET event in these classes of interacting fluorophores is new. Moreover, there is no report of such designed system of chimeric DNA duplex. Our observed phenomenon and the design can potentially be exploited in designing more of such efficient FRET pairs for useful application in the detection and analysis of biomolecular interactions and in material science application. Copyright

  10. Effect of mixed alloy combinations on fretting corrosion performance of spinal screw and rod implants.

    PubMed

    Mali, Sachin A; Singh, Vaneet; Gilbert, Jeremy L

    2016-04-01

    Spinal implants are made from a variety of materials to meet the unique mechanical demands of each application. However, the medical device community has raised concern about mixing dissimilar metals in an implant because of fear of inducing corrosion. There is a lack of systematic studies on the effects of mixing metals on performance of spinal implants, especially in fretting corrosion conditions. Hence, the goal was to determine whether mixing stainless steel (SS316L), titanium alloy (Ti6Al4V) and cobalt chromium (CoCrMo) alloy components in a spinal implant leads to any increased risk of corrosion degradation. Spinal constructs consisting of single assembly screw-connector-rod components were tested using a novel short-term cyclic fretting corrosion test method. A total of 17 alloy component combinations (comprised of SS316L, Ti6Al4V-anodized and CoCrMo alloy for rod, screws and connectors) were tested under three anatomic orientations. Spinal constructs having all SS316L were most susceptible to fretting-initiated crevice corrosion attack and showed higher average fretting currents (∼25 - 30 µA), whereas constructs containing all Ti6Al4V components were less susceptible to fretting corrosion with average fretting currents in the range of 1 - 6 µA. Mixed groups showed evidence of fretting corrosion but they were not as severe as all SS316L group. SEM results showed evidence of severe corrosion attack in constructs having SS316L components. There also did not appear to be any galvanic effects of combining alloys together. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  11. Single color FRET based measurements of conformational changes of proteins resulting from translocation inside cells.

    PubMed

    Gahl, Robert F; Tekle, Ephrem; Tjandra, Nico

    2014-03-15

    Translocation of proteins to different parts of the cell is necessary for many cellular mechanisms as a means for regulation and a variety of other functions. Identifying how these proteins undergo conformational changes or interact with various partners during these events is critical to understanding how these mechanisms are executed. A protocol is presented that identifies conformational changes in a protein that occur during translocation while overcoming challenges in extracting distance information in very different environments of a living cell. Only two samples are required to be prepared and are observed with one optical setup. Live-cell FRET imaging has been applied to identify conformational changes between two native cysteines in Bax, a member of the Bcl-2 family of proteins that regulates apoptosis. Bax exists in the cytosol and translocates to the mitochondria outer membrane upon apoptosis induction. The distance, r, between the two native cysteines in the cytosolic structure of Bax necessitates the use of a FRET donor-accepter pair with R0~r as the most sensitive probe for identifying structural changes at these positions. Alexa Fluor 546 and Dabcyl, a dark acceptor, were used as FRET pairs - resulting in single color intensity variations of Alexa-546 as a measure of FRET efficiency. An internal reference, conjugated to Bax, was employed to normalize changes in fluorescence intensity of Alexa Fluor 546 due to inherent inhomogeneities in the living cell. This correction allowed the true FRET effects to be measured with increased precision during translocation. Normalization of intensities to the internal reference identified a FRET efficiency of 0.45±0.14 in the cytosol and 0.11±0.20 in the mitochondria. The procedure for the conjugation of the internal reference and FRET probes as well as the data analysis is presented. Published by Elsevier Inc.

  12. Environment influences on the aromatic character of nucleobases and amino acids

    PubMed Central

    Szefler, Beata

    2010-01-01

    Geometric (HOMA) and magnetic (NICS) indices of aromaticity were estimated for aromatic rings of amino acids and nucleobases. Cartesian coordinates were taken directly either from PDB files deposited in public databases at the finest resolution available (≤1.5 Å), or from structures resulting from full gradient geometry optimization in a hybrid QM/MM approach. Significant environmental effects imposing alterations of HOMA values were noted for all aromatic rings analysed. Furthermore, even extra fine resolution (≤1.0 Å) is not sufficient for direct estimation of HOMA values based on Cartesian coordinates provided by PDB files. The values of mean bond errors seem to be much higher than the 0.05 Å often reported for PDB files. The use of quantum chemistry geometry optimization is strongly advised; even a simple QM/MM model comprising only the aromatic substructure within the QM region and the rest of biomolecule treated classically within the MM framework proved to be a promising means of describing aromaticity inside native environments. According to the results presented, three consequences of the interaction with the environment can be observed that induce changes in structural and magnetic indices of aromaticity. First, broad ranges of HOMA or NICS values are usually obtained for different conformations of nearest neighborhood. Next, these values and their means can differ significantly from those characterising isolated monomers. The most significant increase in aromaticities is expected for the six-membered rings of guanine, thymine and cytosine. The same trend was also noticed for all amino acids inside proteins but this effect was much smaller, reaching the highest value for the five-membered ring of tryptophan. Explicit water solutions impose similar changes on HOMA and NICS distributions. Thus, environment effects of protein, DNA and even explicit water molecules are non-negligible sources of aromaticity changes appearing in the rings of

  13. Inhibition of Mycoplasma pneumoniae growth by FDA-approved anticancer and antiviral nucleoside and nucleobase analogs

    PubMed Central

    2013-01-01

    Background Mycoplasma pneumoniae (Mpn) is a human pathogen that causes acute and chronic respiratory diseases and has been linked to many extrapulmonary diseases. Due to the lack of cell wall, Mpn is resistant to antibiotics targeting cell wall synthesis such as penicillin. During the last 10 years macrolide-resistant Mpn strains have been frequently reported in Asian countries and have been spreading to Europe and the United States. Therefore, new antibiotics are needed. In this study, 30 FDA-approved anticancer or antiviral drugs were screened for inhibitory effects on Mpn growth and selected analogs were further characterized by inhibition of target enzymes and metabolism of radiolabeled substrates. Results Sixteen drugs showed varying inhibitory effects and seven showed strong inhibition of Mpn growth. The anticancer drug 6-thioguanine had a MIC (minimum inhibitory concentration required to cause 90% of growth inhibition) value of 0.20 μg ml-1, whereas trifluorothymidine, gemcitabine and dipyridamole had MIC values of approximately 2 μg ml-1. In wild type Mpn culture the presence of 6-thioguanine and dipyridamole strongly inhibited the uptake and metabolism of hypoxanthine and guanine while gemcitabine inhibited the uptake and metabolism of all nucleobases and thymidine. Trifluorothymidine and 5-fluorodeoxyuridine, however, stimulated the uptake and incorporation of radiolabeled thymidine and this stimulation was due to induction of thymidine kinase activity. Furthermore, Mpn hypoxanthine guanine phosphoribosyl transferase (HPRT) was cloned, expressed, and characterized. The 6-thioguanine, but not other purine analogs, strongly inhibited HPRT, which may in part explain the observed growth inhibition. Trifluorothymidine and 5-fluorodeoxyuridine were shown to be good substrates and inhibitors for thymidine kinase from human and Mycoplasma sources. Conclusion We have shown that several anticancer and antiviral nucleoside and nucleobase analogs are potent

  14. Thermus thermophilus nucleoside phosphorylases active in the synthesis of nucleoside analogues.

    PubMed

    Almendros, Marcos; Berenguer, José; Sinisterra, Jose-Vicente

    2012-05-01

    Cells extracts from Thermus thermophilus HB27 express phosphorolytic activities on purines and pyrimidine nucleosides. Five putative encoding genes were cloned and expressed in Escherichia coli, and the corresponding recombinant proteins were purified and studied. Two of these showed phosphorolytic activities against purine nucleosides, and third one showed phosphorolytic activity against pyrimidine nucleosides in vitro, and the three were named TtPNPI, TtPNPII, and TtPyNP, respectively. The optimal temperature for the activity of the three enzymes was beyond the water boiling point and could not be measured accurately, whereas all of them exhibited a wide plateau of optimal pHs that ranged from 5.0 to 7.0. Analytical ultracentrifugation experiments revealed that TtPNPI was a homohexamer, TtPNPII was a monomer, and TtPyNP was a homodimer. Kinetic constants were determined for the phosphorolysis of the natural substrates of each enzyme. Reaction tests with nucleoside analogues revealed critical positions in the nucleoside for its recognition. Activities with synthetic nucleobase analogues, such as 5-iodouracil or 2,6-diaminopurine, and arabinosides were detected, supporting that these enzymes could be applied for the synthesis of new nucleoside analogs with pharmacological activities.

  15. Thermus thermophilus Nucleoside Phosphorylases Active in the Synthesis of Nucleoside Analogues

    PubMed Central

    Almendros, Marcos; Sinisterra, Jose-Vicente

    2012-01-01

    Cells extracts from Thermus thermophilus HB27 express phosphorolytic activities on purines and pyrimidine nucleosides. Five putative encoding genes were cloned and expressed in Escherichia coli, and the corresponding recombinant proteins were purified and studied. Two of these showed phosphorolytic activities against purine nucleosides, and third one showed phosphorolytic activity against pyrimidine nucleosides in vitro, and the three were named TtPNPI, TtPNPII, and TtPyNP, respectively. The optimal temperature for the activity of the three enzymes was beyond the water boiling point and could not be measured accurately, whereas all of them exhibited a wide plateau of optimal pHs that ranged from 5.0 to 7.0. Analytical ultracentrifugation experiments revealed that TtPNPI was a homohexamer, TtPNPII was a monomer, and TtPyNP was a homodimer. Kinetic constants were determined for the phosphorolysis of the natural substrates of each enzyme. Reaction tests with nucleoside analogues revealed critical positions in the nucleoside for its recognition. Activities with synthetic nucleobase analogues, such as 5-iodouracil or 2,6-diaminopurine, and arabinosides were detected, supporting that these enzymes could be applied for the synthesis of new nucleoside analogs with pharmacological activities. PMID:22344645

  16. Nucleoside Analogue Triphosphates Allosterically Regulate Human Ribonucleotide Reductase and Identify Chemical Determinants That Drive Substrate Specificity.

    PubMed

    Knappenberger, Andrew J; Ahmad, Md Faiz; Viswanathan, Rajesh; Dealwis, Chris G; Harris, Michael E

    2016-10-18

    Class I ribonucleotide reductase (RR) maintains balanced pools of deoxyribonucleotide substrates for DNA replication by converting ribonucleoside diphosphates (NDPs) to 2'-deoxyribonucleoside diphosphates (dNDPs). Binding of deoxynucleoside triphosphate (dNTP) effectors (ATP/dATP, dGTP, and dTTP) modulates the specificity of class I RR for CDP, UDP, ADP, and GDP substrates. Crystal structures of bacterial and eukaryotic RRs show that dNTP effectors and NDP substrates bind on either side of a flexible nine-amino acid loop (loop 2). Interactions with the effector nucleobase alter loop 2 geometry, resulting in changes in specificity among the four NDP substrates of RR. However, the functional groups proposed to drive specificity remain untested. Here, we use deoxynucleoside analogue triphosphates to determine the nucleobase functional groups that drive human RR (hRR) specificity. The results demonstrate that the 5-methyl, O4, and N3 groups of dTTP contribute to specificity for GDP. The O6 and protonated N1 of dGTP direct specificity for ADP. In contrast, the unprotonated N1 of adenosine is the primary determinant of ATP/dATP-directed specificity for CDP. Structural models from X-ray crystallography of eukaryotic RR suggest that the side chain of D287 in loop 2 is involved in binding of dGTP and dTTP, but not dATP/ATP. This feature is consistent with experimental results showing that a D287A mutant of hRR is deficient in allosteric regulation by dGTP and dTTP, but not ATP/dATP. Together, these data define the effector functional groups that are the drivers of human RR specificity and provide constraints for evaluating models of allosteric regulation.

  17. Potential and frequency effects on fretting corrosion of Ti6Al4V and CoCrMo surfaces.

    PubMed

    Swaminathan, Viswanathan; Gilbert, Jeremy L

    2013-09-01

    Fretting corrosion has been reported at the metal-metal interfaces of a wide range of medical devices, including total joint replacements, spinal devices, and overlapping cardiovascular stents. Currently, the fretting corrosion phenomenon associated with metal-on-metal contacts is not fully understood. This study investigated the effect of potential and fretting frequency on the fretting corrosion performance of Ti6Al4V/Ti6Al4V, Ti6Al4V/CoCrMo, and CoCrMo/CoCrMo alloy combinations at fixed normal load and displacement conditions using a custom built fretting corrosion test system. The results showed that the fretting current densities increased with increases in potential and were highest for Ti6Al4V/Ti6Al4V couple (1.5 mA/cm(2) at 0 V vs. Ag/AgCl). The coefficient of friction varied with potential and was about two times higher for Ti6Al4V/Ti6Al4V (0.71 V at 0 V vs. Ag/AgCl). In most of the potential range tested, the fretting corrosion behavior of CoCrMo/Ti6Al4V and CoCrMo/CoCrMo was similar and dominated by the CoCrMo surface. Increase in applied fretting frequency linearly increased the fretting current densities in the regions where the passive film is stable. Also, the model-based fretting current densities were in excellent agreement with the experimental results. Overall, Ti6Al4V/Ti6Al4V couple was more susceptible to fretting corrosion compared with other couples. However, the effects of these processes on the biological system were not assessed.

  18. Binding energies of nucleobase complexes: Relevance to homology recognition of DNA

    NASA Astrophysics Data System (ADS)

    León, Sergio Cruz; Prentiss, Mara; Fyta, Maria

    2016-06-01

    The binding energies of complexes of DNA nucleobase pairs are evaluated using quantum mechanical calculations at the level of dispersion corrected density functional theory. We begin with Watson-Crick base pairs of singlets, duplets, and triplets and calculate their binding energies. At a second step, mismatches are incorporated into the Watson-Crick complexes in order to evaluate the variation in the binding energy with respect to the canonical Watson-Crick pairs. A linear variation of this binding energy with the degree of mismatching is observed. The binding energies for the duplets and triplets containing mismatches are further compared to the energies of the respective singlets in order to assess the degree of collectivity in these complexes. This study also suggests that mismatches do not considerably affect the energetics of canonical base pairs. Our work is highly relevant to the recognition process in DNA promoted through the RecA protein and suggests a clear distinction between recognition in singlets, and recognition in duplets or triplets. Our work assesses the importance of collectivity in the homology recognition of DNA.

  19. Formation of Nucleobases from the UV Photo-Irradiation of Pyrimidine in Astrophysical Ice Analogs

    NASA Technical Reports Server (NTRS)

    Milam, S. N.; Nuevo, M.; Sandford, S. A.; Elsila, J. E.; Dworkin, J. P.

    2010-01-01

    Astrochemistry laboratory simulations have shown that complex organic molecules including compounds of astrobiological interest can be formed under interstellarl/circumstellar conditions from the vacuum UV irradiation of astrophysical ice analogs containing H2O, CO, CO2, CH3OH, NH13, etc. Of all prebiotic compounds, the formation of amino acids under such experimental conditions has been the most extensively studied. Although the presence of amino acids in the interstellar medium (ISM) has yet to be confirmed, they have been detected in meteorites, indicating that biomolecules and/or their precursors can be formed under extraterrestrial, abiotic conditions. Nucleobases, the building blocks of DNA and RNA, as well as other 1V-heterocycles, have also been detected in meteorites, but like amino acids, they have yet to be observed in the ISM. In this work, we present an experimental study of the formation of pyrimidine-based compounds from the UV photo-irradiation of pyrimidine in ice mixtures containing H2O, NH3, and/or CH3OH at low temperature and pressure.

  20. Ranking of Molecular Biomarker Interaction with Targeted DNA Nucleobases via Full Atomistic Molecular Dynamics

    PubMed Central

    Zhang, Wenjun; Wang, Ming L.; Cranford, Steven W.

    2016-01-01

    DNA-based sensors can detect disease biomarkers, including acetone and ethanol for diabetes and H2S for cardiovascular diseases. Before experimenting on thousands of potential DNA segments, we conduct full atomistic steered molecular dynamics (SMD) simulations to screen the interactions between different DNA sequences with targeted molecules to rank the nucleobase sensing performance. We study and rank the strength of interaction between four single DNA nucleotides (Adenine (A), Guanine (G), Cytosine (C), and Thymine (T)) on single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) with acetone, ethanol, H2S and HCl. By sampling forward and reverse interaction paths, we compute the free-energy profiles of eight systems for the four targeted molecules. We find that dsDNA react differently than ssDNA to the targeted molecules, requiring more energy to move the molecule close to DNA as indicated by the potential of mean force (PMF). Comparing the PMF values of different systems, we obtain a relative ranking of DNA base for the detection of each molecule. Via the same procedure, we could generate a library of DNA sequences for the detection of a wide range of chemicals. A DNA sensor array built with selected sequences differentiating many disease biomarkers can be used in disease diagnosis and monitoring. PMID:26750747

  1. Preliminary studies on unusual polymorphs of thymine: Structural comparison with other nucleobases

    NASA Astrophysics Data System (ADS)

    Chennuru, Ramanaiah; Muthudoss, Prakash; Ramakrishnan, Srividya; Mohammad, Amjad Basha; Ravi Chandra Babu, R.; Mahapatra, Sudarshan; Nayak, Susanta K.

    2016-09-01

    Two polymorphs Form-R2 and Form-R4 of anhydrous thymine, one of the four nucleobases in the nucleic acid of DNA were obtained via sublimation crystallization and desolvation technique respectively. Form-R2 crystallizes in monoclinic C 2/c with a = 25.107(7) Å, b = 6.846(2) Å, c = 6.715(2) Å, β = 90.529(6)⁰ and V = 1154.1(5) Å3. The supramolecular assembly in Form-R2 is a sheet of hydrogen bonded network similar to that found in the crystal structures of other reported anhydrous form of thymine (Form-R1). Interestingly the thermal behavior is similar for these two forms with a minor difference in powder X-ray diffraction pattern. Further thymine Form-R2 closely matches with one of the predicted form of thymine using Polymorph module of Accelrys. Form-R4 is obtained by the dehydration of the mono hydrated form (Form-R3) and characterized by powder X-ray diffraction, FTIR spectroscopic techniques and thermal analysis.

  2. High-energy chemistry of formamide: a unified mechanism of nucleobase formation.

    PubMed

    Ferus, Martin; Nesvorný, David; Šponer, Jiří; Kubelík, Petr; Michalčíková, Regina; Shestivská, Violetta; Šponer, Judit E; Civiš, Svatopluk

    2015-01-20

    The coincidence of the Late Heavy Bombardment (LHB) period and the emergence of terrestrial life about 4 billion years ago suggest that extraterrestrial impacts could contribute to the synthesis of the building blocks of the first life-giving molecules. We simulated the high-energy synthesis of nucleobases from formamide during the impact of an extraterrestrial body. A high-power laser has been used to induce the dielectric breakdown of the plasma produced by the impact. The results demonstrate that the initial dissociation of the formamide molecule could produce a large amount of highly reactive CN and NH radicals, which could further react with formamide to produce adenine, guanine, cytosine, and uracil. Based on GC-MS, high-resolution FTIR spectroscopic results, as well as theoretical calculations, we present a comprehensive mechanistic model, which accounts for all steps taking place in the studied impact chemistry. Our findings thus demonstrate that extraterrestrial impacts, which were one order of magnitude more abundant during the LHB period than before and after, could not only destroy the existing ancient life forms, but could also contribute to the creation of biogenic molecules.

  3. Low-energy positron scattering from DNA nucleobases: the effects from permanent dipoles

    NASA Astrophysics Data System (ADS)

    Franz, Jan; Gianturco, Francesco Antonio

    2014-10-01

    Ab initio quantum calculations for low-energy positron scattering from gas-phase isolated molecular nucleobases which are part of the DNA structure are presented and discussed over the range of 1 eV to 25 eV. The calculations report the integral cross sections (ICSs) and the momentum-transfer cross sections (MTCSs) for Adenine, Guanine, Thymine and Cytosine. The calculations show very clearly the important role of the dominant long-range interaction between the positron projectile and the permanent dipole-moments of the target molecules in deciding the relative sizes of the ICSs and MTCSs for the present series of molecules. Such results confirm the largely repulsive interaction between positron and DNA bases, which is nevertheless producing very large cross sections and marked deflection functions from the latter molecules. Contribution to the Topical Issue "Nano-scale Insights into Ion-beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Paulo Limão-Vieira and Malgorzata Smialek-Telega.

  4. Novel bead-based platform for direct detection of unlabelled nucleic acids through Single Nucleobase Labelling.

    PubMed

    Venkateswaran, Seshasailam; Luque-González, Maria Angélica; Tabraue-Chávez, Mavys; Fara, Mario Antonio; López-Longarela, Barbara; Cano-Cortes, Victoria; López-Delgado, Francisco Javier; Sánchez-Martín, Rosario María; Ilyine, Hugh; Bradley, Mark; Pernagallo, Salvatore; Díaz-Mochón, Juan José

    2016-12-01

    Over the last decade, circulating microRNAs have received attention as diagnostic and prognostic biomarkers. In particular, microRNA122 has been demonstrated to be an early and more sensitive indicator of drug-induced liver injury than the widely used biomarkers such as alanine aminotransferase and aspartate aminotransferase. Recently, microRNA122 has been used in vitro to assess the cellular toxicity of new drugs and as a biomarker for the development of a rapid test for drug overdose/liver damage. In this proof-of-concept study, we report a PCR-free and label-free detection method that has a limit of detection (3 standard deviations) of 15 fmoles of microRNA122, by integrating a dynamic chemical approach for "Single Nucleobase Labelling" with a bead-based platform (Luminex(®)) thereby, in principle, demonstrating the exciting prospect of rapid and accurate profiling of any microRNAs related to diseases and toxicology. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A Crystal Structure of a Functional RNA Molecule Containing an Artificial Nucleobase Pair.

    PubMed

    Hernandez, Armando R; Shao, Yaming; Hoshika, Shuichi; Yang, Zunyi; Shelke, Sandip A; Herrou, Julien; Kim, Hyo-Joong; Kim, Myong-Jung; Piccirilli, Joseph A; Benner, Steven A

    2015-08-17

    As one of its goals, synthetic biology seeks to increase the number of building blocks in nucleic acids. While efforts towards this goal are well advanced for DNA, they have hardly begun for RNA. Herein, we present a crystal structure for an RNA riboswitch where a stem C:G pair has been replaced by a pair between two components of an artificially expanded genetic-information system (AEGIS), Z and P, (6-amino-5-nitro-2(1H)-pyridone and 2-amino-imidazo[1,2-a]-1,3,5-triazin-4-(8H)-one). The structure shows that the Z:P pair does not greatly change the conformation of the RNA molecule nor the details of its interaction with a hypoxanthine ligand. This was confirmed in solution by in-line probing, which also measured a 3.7 nM affinity of the riboswitch for guanine. These data show that the Z:P pair mimics the natural Watson-Crick geometry in RNA in the first example of a crystal structure of an RNA molecule that contains an orthogonal added nucleobase pair.

  6. A general method for quantifying sequence effects on nucleobase oxidation in DNA.

    PubMed

    Margolin, Yelena; Dedon, Peter C

    2010-01-01

    Oxidative damage to DNA has long been associated with aging and disease, with guanine serving as the primary target for oxidation owing to its low ionization potential. Emerging evidence points to a critical role for sequence context as a determinant of the guanine ionization potential and the associated chemical reactivity of the guanine, as well as the spectrum of damage products that arise from oxidation. Recent studies also suggest that the generally accepted model of oxidation hotspots in runs of guanine bases may not hold for biologically relevant oxidants. One of the primary methods used to address these important problems of sequence context utilizes gel electrophoresis to identify the location and quantity of base damage arising in model oligonucleotides. However, this approach has limited study to those agents that produce few strand breaks arising from deoxyribose oxidation, while ionizing radiation, Fenton chemistry and other biologically relevant oxidants produce sizeable proportions of both base and sugar damage. To this end, we have developed a universal method to quantify sequence context effects on nucleobase damage without interference by strand breaks from deoxyribose oxidation.

  7. High-energy chemistry of formamide: A unified mechanism of nucleobase formation

    PubMed Central

    Ferus, Martin; Nesvorný, David; Šponer, Jiří; Kubelík, Petr; Michalčíková, Regina; Shestivská, Violetta; Šponer, Judit E.; Civiš, Svatopluk

    2015-01-01

    The coincidence of the Late Heavy Bombardment (LHB) period and the emergence of terrestrial life about 4 billion years ago suggest that extraterrestrial impacts could contribute to the synthesis of the building blocks of the first life-giving molecules. We simulated the high-energy synthesis of nucleobases from formamide during the impact of an extraterrestrial body. A high-power laser has been used to induce the dielectric breakdown of the plasma produced by the impact. The results demonstrate that the initial dissociation of the formamide molecule could produce a large amount of highly reactive CN and NH radicals, which could further react with formamide to produce adenine, guanine, cytosine, and uracil. Based on GC-MS, high-resolution FTIR spectroscopic results, as well as theoretical calculations, we present a comprehensive mechanistic model, which accounts for all steps taking place in the studied impact chemistry. Our findings thus demonstrate that extraterrestrial impacts, which were one order of magnitude more abundant during the LHB period than before and after, could not only destroy the existing ancient life forms, but could also contribute to the creation of biogenic molecules. PMID:25489115

  8. High-resolution photoelectron spectra of the pyrimidine-type nucleobases

    SciTech Connect

    Fulfer, K. D.; Hardy, D.; Poliakoff, E. D.; Aguilar, A. A.

    2015-06-14

    High-resolution photoelectron spectra of the gas phase pyrimidine-type nucleobases, thymine, uracil, and cytosine, were collected using synchrotron radiation over the photon energy range 17 ≤ hν ≤ 150 eV. These data provide the highest resolution photoelectron spectra of thymine, uracil, and cytosine published to date. By comparing integrated regions of the energy dependent photoelectron spectra of thymine, the ionization potentials of the first four ionic states of thymine were estimated to be 8.8, 9.8, 10.3, and 10.8 eV. The thymine data also show evidence for low energy shape resonances in three of the outermost valence electronic states. Comparing the uracil spectrum with the thymine spectrum, the four outermost valence electronic states of uracil likely begin at binding energies 9.3, 9.9, 10.5, and 11.0 eV. High-resolution spectra indicate only one tautomeric form of cytosine contributes significantly to the spectrum with the four outermost valence electronic states beginning at binding energies 8.9, 9.9, 10.4, and 10.85 eV.

  9. High-resolution photoelectron spectra of the pyrimidine-type nucleobases

    NASA Astrophysics Data System (ADS)

    Fulfer, K. D.; Hardy, D.; Aguilar, A. A.; Poliakoff, E. D.

    2015-06-01

    High-resolution photoelectron spectra of the gas phase pyrimidine-type nucleobases, thymine, uracil, and cytosine, were collected using synchrotron radiation over the photon energy range 17 ≤ hν ≤ 150 eV. These data provide the highest resolution photoelectron spectra of thymine, uracil, and cytosine published to date. By comparing integrated regions of the energy dependent photoelectron spectra of thymine, the ionization potentials of the first four ionic states of thymine were estimated to be 8.8, 9.8, 10.3, and 10.8 eV. The thymine data also show evidence for low energy shape resonances in three of the outermost valence electronic states. Comparing the uracil spectrum with the thymine spectrum, the four outermost valence electronic states of uracil likely begin at binding energies 9.3, 9.9, 10.5, and 11.0 eV. High-resolution spectra indicate only one tautomeric form of cytosine contributes significantly to the spectrum with the four outermost valence electronic states beginning at binding energies 8.9, 9.9, 10.4, and 10.85 eV.

  10. An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies.

    PubMed

    Chawla, Mohit; Oliva, Romina; Bujnicki, Janusz M; Cavallo, Luigi

    2015-08-18

    Posttranscriptional modifications greatly enhance the chemical information of RNA molecules, contributing to explain the diversity of their structures and functions. A significant fraction of RNA experimental structures available to date present modified nucleobases, with half of them being involved in H-bonding interactions with other bases, i.e. 'modified base pairs'. Herein we present a systematic investigation of modified base pairs, in the context of experimental RNA structures. To this end, we first compiled an atlas of experimentally observed modified base pairs, for which we recorded occurrences and structural context. Then, for each base pair, we selected a representative for subsequent quantum mechanics calculations, to find out its optimal geometry and interaction energy. Our structural analyses show that most of the modified base pairs are non Watson-Crick like and are involved in RNA tertiary structure motifs. In addition, quantum mechanics calculations quantify and provide a rationale for the impact of the different modifications on the geometry and stability of the base pairs they participate in.

  11. An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies

    PubMed Central

    Chawla, Mohit; Oliva, Romina; Bujnicki, Janusz M.; Cavallo, Luigi

    2015-01-01

    Posttranscriptional modifications greatly enhance the chemical information of RNA molecules, contributing to explain the diversity of their structures and functions. A significant fraction of RNA experimental structures available to date present modified nucleobases, with half of them being involved in H-bonding interactions with other bases, i.e. ‘modified base pairs’. Herein we present a systematic investigation of modified base pairs, in the context of experimental RNA structures. To this end, we first compiled an atlas of experimentally observed modified base pairs, for which we recorded occurrences and structural context. Then, for each base pair, we selected a representative for subsequent quantum mechanics calculations, to find out its optimal geometry and interaction energy. Our structural analyses show that most of the modified base pairs are non Watson–Crick like and are involved in RNA tertiary structure motifs. In addition, quantum mechanics calculations quantify and provide a rationale for the impact of the different modifications on the geometry and stability of the base pairs they participate in. PMID:26117545

  12. High-resolution photoelectron spectra of the pyrimidine-type nucleobases.

    PubMed

    Fulfer, K D; Hardy, D; Aguilar, A A; Poliakoff, E D

    2015-06-14

    High-resolution photoelectron spectra of the gas phase pyrimidine-type nucleobases, thymine, uracil, and cytosine, were collected using synchrotron radiation over the photon energy range 17 ≤ hν ≤ 150 eV. These data provide the highest resolution photoelectron spectra of thymine, uracil, and cytosine published to date. By comparing integrated regions of the energy dependent photoelectron spectra of thymine, the ionization potentials of the first four ionic states of thymine were estimated to be 8.8, 9.8, 10.3, and 10.8 eV. The thymine data also show evidence for low energy shape resonances in three of the outermost valence electronic states. Comparing the uracil spectrum with the thymine spectrum, the four outermost valence electronic states of uracil likely begin at binding energies 9.3, 9.9, 10.5, and 11.0 eV. High-resolution spectra indicate only one tautomeric form of cytosine contributes significantly to the spectrum with the four outermost valence electronic states beginning at binding energies 8.9, 9.9, 10.4, and 10.85 eV.

  13. Ranking of Molecular Biomarker Interaction with Targeted DNA Nucleobases via Full Atomistic Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjun; Wang, Ming L.; Cranford, Steven W.

    2016-01-01

    DNA-based sensors can detect disease biomarkers, including acetone and ethanol for diabetes and H2S for cardiovascular diseases. Before experimenting on thousands of potential DNA segments, we conduct full atomistic steered molecular dynamics (SMD) simulations to screen the interactions between different DNA sequences with targeted molecules to rank the nucleobase sensing performance. We study and rank the strength of interaction between four single DNA nucleotides (Adenine (A), Guanine (G), Cytosine (C), and Thymine (T)) on single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) with acetone, ethanol, H2S and HCl. By sampling forward and reverse interaction paths, we compute the free-energy profiles of eight systems for the four targeted molecules. We find that dsDNA react differently than ssDNA to the targeted molecules, requiring more energy to move the molecule close to DNA as indicated by the potential of mean force (PMF). Comparing the PMF values of different systems, we obtain a relative ranking of DNA base for the detection of each molecule. Via the same procedure, we could generate a library of DNA sequences for the detection of a wide range of chemicals. A DNA sensor array built with selected sequences differentiating many disease biomarkers can be used in disease diagnosis and monitoring.

  14. Gate-width impact on NIR FRET lifetime fitting using gated ICCD

    NASA Astrophysics Data System (ADS)

    Chen, Sez-Jade; Intes, Xavier

    2016-03-01

    Förster Resonance Energy Transfer (FRET) is widely used to sense molecular interactions occurring at the nanoscale. In vitro and ex vivo protocols for visualizing FRET are already well-established, but in vivo studies have proven to be more challenging. One issue that hinders in vivo visualization of FRET is the higher absorption and scattering of visible light within tissues. In this case, light in the near-infrared (NIR) spectral window is required for increased depth sensing. Moreover, due to spectral variation in optical properties as well as heterogeneous spatial distribution, lifetime-based FRET imaging is preferred. Herein, we investigate the effect of temporal acquisition settings on the lifetime-based estimation of the fraction of quenched donor molecules (A1) as well as the quenched donor lifetime (τ1). We performed in silico, in vitro, and in vivo experiments under gate widths of 300ps to 1000ps in 100ps intervals to determine the effect on quantification of A1 and τ1. Even though the NIR fluorescent dyes have shorter lifetimes then visible fluorophores, we were still able to accurately quantify FRET under all tested system gate widths and experimental conditions.

  15. Fretting Fatigue with Cylindrical-On-Flat Contact: Crack Nucleation, Crack Path and Fatigue Life

    PubMed Central

    Noraphaiphipaksa, Nitikorn; Manonukul, Anchalee; Kanchanomai, Chaosuan

    2017-01-01

    Fretting fatigue experiments and finite element analysis were carried out to investigate the influence of cylindrical-on-flat contact on crack nucleation, crack path and fatigue life of medium-carbon steel. The location of crack nucleation was predicted using the maximum shear stress range criterion and the maximum relative slip amplitude criterion. The prediction using the maximum relative slip amplitude criterion gave the better agreement with the experimental result, and should be used for the prediction of the location of crack nucleation. Crack openings under compressive bulk stresses were found in the fretting fatigues with flat-on-flat contact and cylindrical-on-flat contacts, i.e., fretting-contact-induced crack openings. The crack opening stress of specimen with flat-on-flat contact was lower than those of specimens with cylindrical-on-flat contacts, while that of specimen with 60-mm radius contact pad was lower than that of specimen with 15-mm radius contact pad. The fretting fatigue lives were estimated by integrating the fatigue crack growth curve from an initial propagating crack length to a critical crack length. The predictions of fretting fatigue life with consideration of crack opening were in good agreement with the experimental results. PMID:28772522

  16. Detection of Salmonella spp. using a generic and differential FRET-PCR.

    PubMed

    Zhang, Jilei; Wei, Lanjing; Kelly, Patrick; Freeman, Mark; Jaegerson, Kirsten; Gong, Jiansen; Xu, Bu; Pan, Zhiming; Xu, Chuanling; Wang, Chengming

    2013-01-01

    To facilitate the detection of Salmonella and to be able to rapidly and conveniently determine the species/subspecies present, we developed and tested a generic and differential FRET-PCR targeting their tetrathionate reductase response regulator gene. The differential pan-Salmonella FRET-PCR we developed successfully detected seven plasmids that contained partial sequences of S. bongori and the six S. enterica subspecies. The detection limit varied from ~5 copies of target gene/per PCR reaction for S. enterica enterica to ~200 for S. bongori. Melting curve analysis demonstrated a T m of ~68 °C for S. enterica enterica, ~62.5 °C for S. enterica houtenae and S. enterica diarizonae, ~57 °C for S. enterica indica, and ~54 °C for S. bongori, S. enterica salamae and S. enterica arizonae. The differential pan-Salmonella FRET-PCR also detected and determined the subspecies of 4 reference strains and 47 Salmonella isolated from clinically ill birds or pigs. Finally, we found it could directly detect and differentiate Salmonella in feline (5/50 positive; 10%; one S. enterica salamae and 4 S. enterica enterica) and canine feces (15/114 positive; 13.2%; all S. enterica enterica). The differential pan-Salmonella FRET-PCR failed to react with 96 non-Salmonella bacterial strains. Our experiments show the differential pan-Salmonella FRET-PCR we developed is a rapid, sensitive and specific method to detect and differentiate Salmonella.

  17. Significant FRET between SWNT/DNA and rare earth ions: a signature of their spatial correlations.

    PubMed

    Ignatova, Tetyana; Najafov, Hikmat; Ryasnyanskiy, Aleksandr; Biaggio, Ivan; Zheng, Ming; Rotkin, Slava V

    2011-07-26

    Significant acceleration of the photoluminescence (PL) decay rate was observed in water solutions of two rare earth ions (REIs), Tb and Eu. We propose that the time-resolved PL spectroscopy data are explained by a fluorescence resonance energy transfer (FRET) between the REIs. FRET was directly confirmed by detecting the induced PL of the energy acceptor, Eu ion, under the PL excitation of the donor ion, Tb, with FRET efficiency reaching 7% in the most saturated solution, where the distance between the unlike REIs is the shortest. Using this as a calibration experiment, a comparable FRET was measured in the mixed solution of REIs with single-wall nanotubes (SWNTs) wrapped with DNA. From the FRET efficiency of 10% and 7% for Tb and Eu, respectively, the characteristic distance between the REI and SWNT/DNA was obtained as 15.9 ± 1.3 Å, suggesting that the complexes are formed because of Coulomb attraction between the REI and the ionized phosphate groups of the DNA.

  18. Identifying molecular dynamics in single-molecule FRET experiments with burst variance analysis.

    PubMed

    Torella, Joseph P; Holden, Seamus J; Santoso, Yusdi; Hohlbein, Johannes; Kapanidis, Achillefs N

    2011-03-16

    Histograms of single-molecule Förster resonance energy transfer (FRET) efficiency are often used to study the structures of biomolecules and relate these structures to function. Methods like probability distribution analysis analyze FRET histograms to detect heterogeneities in molecular structure, but they cannot determine whether this heterogeneity arises from dynamic processes or from the coexistence of several static structures. To this end, we introduce burst variance analysis (BVA), a method that detects dynamics by comparing the standard deviation of FRET from individual molecules over time to that expected from theory. Both simulations and experiments on DNA hairpins show that BVA can distinguish between static and dynamic sources of heterogeneity in single-molecule FRET histograms and can test models of dynamics against the observed standard deviation information. Using BVA, we analyzed the fingers-closing transition in the Klenow fragment of Escherichia coli DNA polymerase I and identified substantial dynamics in polymerase complexes formed prior to nucleotide incorporation; these dynamics may be important for the fidelity of DNA synthesis. We expect BVA to be broadly applicable to single-molecule FRET studies of molecular structure and to complement approaches such as probability distribution analysis and fluorescence correlation spectroscopy in studying molecular dynamics. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Construction, imaging, and analysis of FRET-based tension sensors in living cells.

    PubMed

    LaCroix, Andrew S; Rothenberg, Katheryn E; Berginski, Matthew E; Urs, Aarti N; Hoffman, Brenton D

    2015-01-01

    Due to an increased appreciation for the importance of mechanical stimuli in many biological contexts, an interest in measuring the forces experienced by specific proteins in living cells has recently emerged. The development and use of Förster resonance energy transfer (FRET)-based molecular tension sensors has enabled these types of studies and led to important insights into the mechanisms those cells utilize to probe and respond to the mechanical nature of their surrounding environment. The process for creating and utilizing FRET-based tension sensors can be divided into three main parts: construction, imaging, and analysis. First we review several methods for the construction of genetically encoded FRET-based tension sensors, including restriction enzyme-based methods as well as the more recently developed overlap extension or Gibson Assembly protocols. Next, we discuss the intricacies associated with imaging tension sensors, including optimizing imaging parameters as well as common techniques for estimating artifacts within standard imaging systems. Then, we detail the analysis of such data and describe how to extract useful information from a FRET experiment. Finally, we provide a discussion on identifying and correcting common artifacts in the imaging of FRET-based tension sensors.

  20. A FRET Biosensor for ROCK Based on a Consensus Substrate Sequence Identified by KISS Technology.

    PubMed

    Li, Chunjie; Imanishi, Ayako; Komatsu, Naoki; Terai, Kenta; Amano, Mutsuki; Kaibuchi, Kozo; Matsuda, Michiyuki

    2017-01-11

    Genetically-encoded biosensors based on Förster/fluorescence resonance energy transfer (FRET) are versatile tools for studying the spatio-temporal regulation of signaling molecules within not only the cells but also tissues. Perhaps the hardest task in the development of a FRET biosensor for protein kinases is to identify the kinase-specific substrate peptide to be used in the FRET biosensor. To solve this problem, we took advantage of kinase-interacting substrate screening (KISS) technology, which deduces a consensus substrate sequence for the protein kinase of interest. Here, we show that a consensus substrate sequence for ROCK identified by KISS yielded a FRET biosensor for ROCK, named Eevee-ROCK, with high sensitivity and specificity. By treating HeLa cells with inhibitors or siRNAs against ROCK, we show that a substantial part of the basal FRET signal of Eevee-ROCK was derived from the activities of ROCK1 and ROCK2. Eevee-ROCK readily detected ROCK activation by epidermal growth factor, lysophosphatidic acid, and serum. When cells stably-expressing Eevee-ROCK were time-lapse imaged for three days, ROCK activity was found to increase after the completion of cytokinesis, concomitant with the spreading of cells. Eevee-ROCK also revealed a gradual increase in ROCK activity during apoptosis. Thus, Eevee-ROCK, which was developed from a substrate sequence predicted by the KISS technology, will pave the way to a better understanding of the function of ROCK in a physiological context.

  1. Mechanisms of nickel-based coatings for fretting wear mitigation of titanium-aluminum-vanadium interfaces

    NASA Astrophysics Data System (ADS)

    Hager, Carl H., Jr.

    Fretting wear is an accumulation of damage that occurs at component interfaces that are subjected to high contact stresses coupled with low amplitude oscillation. The key to fretting wear reduction in metallic contacts is the mitigation of galling at the interface, followed by the control of debris production and the rheology of active wear debris. Once the thin surface species of the metallic interfaces is dispersed, adhesion between the contacting nascent surfaces causes the inception of severe surface deformation and material transfer or removal. This is extremely apparent in the fretting wear of aerospace materials such as titanium alloy and nickel alloy contacts. However, the literature suggests that nickel alloy contacts perform very well in sliding and reciprocating wear contacts at elevated temperatures due to the formation of what is often called a 'Glaze' oxide layer. The current state of literature describes the composition of the glaze layer as NiO. The focus of this dissertation was to provide experimentation and analysis of temperature effects on the lubricious tribofilm formation that occurs in nickel contacts. This was accomplished by testing commercially pure nickel coatings and thick nickel oxide surfaces. The enhanced understanding of the fretting performance of nickel oxides aided in the development of nickel graphite based self-lubricating coatings. These coatings were then proved to reduce fretting wear damage within Ti6Al4V mated surfaces over a wide temperature range.

  2. Identifying Molecular Dynamics in Single-Molecule FRET Experiments with Burst Variance Analysis

    PubMed Central

    Torella, Joseph P.; Holden, Seamus J.; Santoso, Yusdi; Hohlbein, Johannes; Kapanidis, Achillefs N.

    2011-01-01

    Histograms of single-molecule Förster resonance energy transfer (FRET) efficiency are often used to study the structures of biomolecules and relate these structures to function. Methods like probability distribution analysis analyze FRET histograms to detect heterogeneities in molecular structure, but they cannot determine whether this heterogeneity arises from dynamic processes or from the coexistence of several static structures. To this end, we introduce burst variance analysis (BVA), a method that detects dynamics by comparing the standard deviation of FRET from individual molecules over time to that expected from theory. Both simulations and experiments on DNA hairpins show that BVA can distinguish between static and dynamic sources of heterogeneity in single-molecule FRET histograms and can test models of dynamics against the observed standard deviation information. Using BVA, we analyzed the fingers-closing transition in the Klenow fragment of Escherichia coli DNA polymerase I and identified substantial dynamics in polymerase complexes formed prior to nucleotide incorporation; these dynamics may be important for the fidelity of DNA synthesis. We expect BVA to be broadly applicable to single-molecule FRET studies of molecular structure and to complement approaches such as probability distribution analysis and fluorescence correlation spectroscopy in studying molecular dynamics. PMID:21402040

  3. Random coil negative control reproduces the discrepancy between scattering and FRET measurements of denatured protein dimensions

    PubMed Central

    Watkins, Herschel M.; Simon, Anna J.; Sosnick, Tobin R.; Lipman, Everett A.; Hjelm, Rex P.; Plaxco, Kevin W.

    2015-01-01

    Small-angle scattering studies generally indicate that the dimensions of unfolded single-domain proteins are independent (to within experimental uncertainty of a few percent) of denaturant concentration. In contrast, single-molecule FRET (smFRET) studies invariably suggest that protein unfolded states contract significantly as the denaturant concentration falls from high (∼6 M) to low (∼1 M). Here, we explore this discrepancy by using PEG to perform a hitherto absent negative control. This uncharged, highly hydrophilic polymer has been shown by multiple independent techniques to behave as a random coil in water, suggesting that it is unlikely to expand further on the addition of denaturant. Consistent with this observation, small-angle neutron scattering indicates that the dimensions of PEG are not significantly altered by the presence of either guanidine hydrochloride or urea. smFRET measurements on a PEG construct modified with the most commonly used FRET dye pair, however, produce denaturant-dependent changes in transfer efficiency similar to those seen for a number of unfolded proteins. Given the vastly different chemistries of PEG and unfolded proteins and the significant evidence that dye-free PEG is well-described as a denaturant-independent random coil, this similarity raises questions regarding the interpretation of smFRET data in terms of the hydrogen bond- or hydrophobically driven contraction of the unfolded state at low denaturant. PMID:25964362

  4. A rapid detection of neopterin based on a label-free and homogeneous FRET immunoassay system

    NASA Astrophysics Data System (ADS)

    Li, Taihua; Kim, Bo Bae; Shim, Won-Bo; Song, Jeong-Eon; Shin, Young-Boem; Kim, Min-Gon

    2013-05-01

    Herein, we have developed a label-free and homogeneous fluorescence resonance energy transfer (FRET) immunoassay for the detection of neopterin (NPT), which is an early and valuable biochemical marker of cellular immunity. Owing to intrinsic fluorescence properties of antibody and NPT, anti-NPT antibody (anti-NPT) and analyte played roles as the respective donor and acceptor in the FRET immunoassay. As the concentration of NPT increases, the fluorescence intensity at ~350 nm decreases owing to the formation of increasing amounts of the anti-NPT/NPT complex in which FRET takes place. The assay system was found to display a high specificity and a low detection limit (0.14 ng mL-1) for NPT. A practical application of the FRET immunoassay system was demonstrated by its use in the detection of NPT in spiked human serum samples. The observations made in these efforts show that the homogeneous FRET immunoassay strategy, which requires a simple sample preparation procedure, serves as a powerful tool for the rapid and sensitive quantitative determination of NPT.

  5. Competitive FRET-aptamer-based detection of methylphosphonic acid, a common nerve agent metabolite.

    PubMed

    Bruno, John G; Carrillo, Maria P; Phillips, Taylor; Vail, Neal K; Hanson, Douglas

    2008-09-01

    Competitive fluorescence resonance energy transfer (FRET)-aptamer-based assay formats are described for one-step detection of methylphosphonic acid (MPA; a metabolite of several organophosphorus (OP) nerve agents). AminoMPA was attached to tosyl-magnetic beads and used for DNA aptamer selection from which one dominant aptamer sequence emerged. Two different FRET approaches were attempted. In one approach, the complementary DNA sequence was used as a template for labeling the aptamer with Alexa Fluor 546 (AF 546)-14-dUTP by asymmetric PCR. Following 3-dimensional (3-D), molecular modeling of the aptamer-MPA complex, a series of three fluoresceinated aptamers labeled at positions 50, 51, and 52 in the putative optimal binding pocket were synthesized. In both FRET formats, aminoMPA was linked to Black Hole Quencher (BHQ-1 or BHQ-2)-succinimides and allowed to bind the fluorescein or AF 546-labeled MPA aptamer. Following gel filtration to purify the labeled MPA aptamer-BHQ-aminoMPA FRET complexes, the complexes were competed against various concentrations of unlabeled MPA, MPA derivatives, and unrelated compounds in titration and cross-reactivity studies. Both approaches yielded low microgram per milliliter detection limits for MPA with generally low levels of cross-reactivity for unrelated compounds. However, the data suggest a pattern of traits that may effect the direction (lights on or off) and intensity of the FRET.

  6. In vivo reconstruction of NIR FRET using full-field time resolved optical tomography

    NASA Astrophysics Data System (ADS)

    Venugopal, Vivek; Chen, Jin; Barroso, Margarida; Intes, Xavier

    2011-03-01

    We investigate the feasibility of 3-D localization of Foerster resonance energy transfer (FRET) between two NIR fluorophores (Alexa Fluor 700 and Alexa Fluor 750) in small animal models. Specifically, the decrease in donor lifetime upon FRET is used as the contrast mechanism to isolate donor-acceptor pairs undergoing FRET. The optical tomography system uses a femtosecond tunable laser coupled with a micro-mirror device based digital light processor as the source to generate wide-field patterns. The time-resolved detection is achieved using a gated intensified CCD camera. The wide-field excitation scheme described herein provides an experimental advantage by reducing the time of acquisition of temporally dense datasets. In this study, anatomical information obtained using MR imaging is used in the computation of the Monte Carlo (MC) based forward model. The MC model reconstructs the 3D distribution of the quantum yield of the donor fluorophore and the FRET complex using the time-gate data type allowing the estimation of fractional distribution (?D) of donor molecules undergoing FRET and unquenched donor molecules. The performance of this approach in the estimation of ?D using the position of fluorophores obtained using the MRI is investigated.

  7. Construction, imaging and analysis of FRET-based tension sensors in living cells

    PubMed Central

    LaCroix, Andrew S.; Rothenberg, Katheryn E.; Berginski, Matthew E.; Urs, Aarti N.; Hoffman, Brenton D.

    2015-01-01

    Due to an increased appreciation for the importance of mechanical stimuli in many biological contexts, an interest in measuring the forces experienced by specific proteins in living cells has recently emerged. The development and use of Forster resonance energy transfer (FRET)-based molecular tension sensors has enabled these types of studies and led to important insights into the mechanisms those cells utilize to probe and respond to the mechanical nature of their surrounding environment. The process for creating and utilizing FRET-based tension sensors can be divided into three main parts: construction, imaging, and analysis. First we review several methods for the construction of genetically encoded FRET-based tension sensors, including restriction enzyme-based methods as well as the more recently developed overlap extension or Gibson Assembly protocols. Next, we discuss the intricacies associated with imaging tension sensors, including optimizing imaging parameters as well as common techniques for estimating artifacts within standard imaging systems. Then, we detail the analysis of such data and describe how to extract useful information from a FRET experiment. Finally, we provide a discussion on identifying and correcting common artifacts in the imaging of FRET-based tension sensors. PMID:25640429

  8. pH sensitivity of FRET reporters based on cyan and yellow fluorescent proteins.

    PubMed

    Betolngar, Dahdjim-Benoît; Erard, Marie; Pasquier, Hélène; Bousmah, Yasmina; Diop-Sy, Awa; Guiot, Elvire; Vincent, Pierre; Mérola, Fabienne

    2015-05-01

    It is generally acknowledged that the popular cyan and yellow fluorescent proteins carried by genetically encoded reporters suffer from strong pH sensitivities close to the physiological pH range. We studied the consequences of these pH responses on the intracellular signals of model Förster resonant energy transfer (FRET) tandems and FRET-based reporters of cAMP-dependent protein kinase activity (AKAR) expressed in the cytosol of living BHK cells, while changing the intracellular pH by means of the nigericin ionophore. Although the simultaneous pH sensitivities of the donor and the acceptor may mask each other in some cases, the magnitude of the perturbations can be very significant, as compared to the functional response of the AKAR biosensor. Replacing the CFP donor by the spectrally identical, but pH-insensitive Aquamarine variant (pK1/2 = 3.3) drastically modifies the biosensor pH response and gives access to the acid transition of the yellow acceptor. We developed a simple model of pH-dependent FRET and used it to describe the expected pH-induced changes in fluorescence lifetime and ratiometric signals. This model qualitatively accounts for most of the observations, but reveals a complex behavior of the cytosolic AKAR biosensor at acid pHs, associated to additional FRET contributions. This study underlines the major and complex impact of pH changes on the signal of FRET reporters in the living cell.

  9. FRET-based protein-DNA binding assay for detection of active NF-kappa B

    SciTech Connect

    Giannetti, Ambra; Baldini, Francesco; Wabuyele, Musundi B; Vo Dinh, Tuan

    2006-01-01

    A novel method to detect the active form of NF-{kappa}B, a transcription factor regulating a battery of inflammatory genes and playing a fundamental role in the development of numerous pathological states, has been developed. In the present work, we used fluorescence resonance energy transfer (FRET) to study DNA-protein binding interaction taking place between double-strand (ds) DNA immobilized in a glass capillary wall and p50 proteins. For this purpose, we developed a regenerable FRET-based system comprising of a single-strand (ss) DNA with auto-complementary sequence that is end-labeled with Cy5 dye and is highly specific for p50 proteins. The proteins were labeled with a Black Hole Quencher (BHQ-3) to be used as FRET pair. The interaction of p50/p50 homodimer active form with its DNA binding site was demonstrated by both electrophoretic mobility shift assays and FRET studies. These preliminary results demonstrated the feasibility of the FRET-based DNA technique to detect the active form of NF-{kappa}B protein with 90% detection efficiency. In addition, we show that the system is stable and highly regenerable.

  10. Live cell monitoring of glycine betaine by FRET-based genetically encoded nanosensor.

    PubMed

    Ahmad, Mohammad; Ameen, Seema; Siddiqi, Tariq Omar; Khan, Parvez; Ahmad, Altaf

    2016-12-15

    Glycine betaine (GB) is one of the key compatible solutes that accumulate in the cell at exceedingly high level under the conditions of high salinity. It plays a crucial role in the maintenance of osmolarity of the cell without affecting the physiological processes. Analysis of stress-induced physiological conditions in living cells, therefore, requires real-time monitoring of cellular GB level. Glycine Betaine Optical Sensor (GBOS), a genetically-encoded FRET-based nanosensor developed in this study, allows the real-time monitoring of GB levels inside living cells. This nanosensor has been developed by sandwiching GB binding protein (ProX) between the Förster resonance energy transfer (FRET) pair, the cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). Conformational change in ProX, which was used as sensory domain, reported the change in the level of this compatible solute in in vitro and in vivo conditions. Binding of the GB to the sensory domain fetches close to both the fluorescent moieties that result in the form of increased FRET ratio. So, any change in the concentration of GB is correlated with change in FRET ratio. This sensor also reported the GB cellular dynamics in real-time in Escherichia coli cells after the addition of its precursor, choline. The GBOS was also expressed in yeast and mammalian cells to monitor the intracellular GB. Therefore, the GBOS represents a unique FRET-based nanosensor which allows the non-invasive ratiometric analysis of the GB in living cells.

  11. Assembling programmable FRET-based photonic networks using designer DNA scaffolds

    PubMed Central

    Buckhout-White, Susan; Spillmann, Christopher M; Algar, W. Russ; Khachatrian, Ani; Melinger, Joseph S.; Goldman, Ellen R.; Ancona, Mario G.; Medintz, Igor L.

    2014-01-01

    DNA demonstrates a remarkable capacity for creating designer nanostructures and devices. A growing number of these structures utilize Förster resonance energy transfer (FRET) as part of the device's functionality, readout or characterization, and, as device sophistication increases so do the concomitant FRET requirements. Here we create multi-dye FRET cascades and assess how well DNA can marshal organic dyes into nanoantennae that focus excitonic energy. We evaluate 36 increasingly complex designs including linear, bifurcated, Holliday junction, 8-arm star and dendrimers involving up to five different dyes engaging in four-consecutive FRET steps, while systematically varying fluorophore spacing by Förster distance (R0). Decreasing R0 while augmenting cross-sectional collection area with multiple donors significantly increases terminal exciton delivery efficiency within dendrimers compared with the first linear constructs. Förster modelling confirms that best results are obtained when there are multiple interacting FRET pathways rather than independent channels by which excitons travel from initial donor(s) to final acceptor. PMID:25504073

  12. Role of surface roughness on corrosion and fretting corrosion behaviour of commercially pure titanium in Ringer's solution for bio-implant application

    NASA Astrophysics Data System (ADS)

    Sivakumar, Bose; Pathak, Lokesh Chandra; Singh, Raghuvir

    2017-04-01

    Influence of roughness (ra) from 43 to 474 nm on corrosion and fretting corrosion of commercially pure titanium (CpTi) was studied in the Ringer's solution. The anodic polarization and electrochemical impedance spectroscopy (EIS) revealed the highest corrosion resistance of CpTi with ra 43 nm and correlated well with the surface energy (SE). The highest potential drop associated with the fretting corrosion is observed for CpTi with ra 43 nm followed by 474 nm; this is found to correspond with the worn out area. The fretting current density (ifretting) is several order higher than obtained during the potentiodynamic polarization (without fretting) study. Fretting corrosion manifested by the drop in electrochemical potential is simulated with high accuracy using fretting current density and an initial contact area. Fretting corrosion at an applied potential (+250 mV(SCE)) is produced much larger fretting corrosion current density than during the open circuit potential (OCP).

  13. Carbon dots based FRET for the detection of DNA damage.

    PubMed

    Kudr, Jiri; Richtera, Lukas; Xhaxhiu, Kledi; Hynek, David; Heger, Zbynek; Zitka, Ondrej; Adam, Vojtech

    2017-02-09

    Here, we aimed our attention at the synthesis of carbon dots (C-dots) with the ability to interact with DNA to suggest an approach for the detection of DNA damage. Primarily, C-dots modified with amine moieties were synthesized using the one-step microwave pyrolysis of citric acid in the presence of diethylenetriamine. The C-dots showed strong photoluminescence with a quantum yield of 4%. In addition, the C-dots (2.8±0.8nm) possessed a good colloidal stability and exhibited a positive surface charge (ζ=36mV) at a neutral pH. An interaction study of the C-dots and the DNA fragment of λ bacteriophage was performed, and the DNA binding resulted in changes to the photoluminescent and absorption properties of the C-dots. A binding of the C-dots to DNA was also observed as a change to DNA electrophoretic mobility and a decreased ability to intercalate ethidium bromide (EtBr). Moreover, the Förster (or fluorescence) resonance energy transfer (FRET) between the C-dots and EtBr was studied, in which the C-dots serve as an excitation energy donor and the EtBr serves as an acceptor. When DNA was damaged using ultraviolet (UV) radiation (λ=254nm) and hydroxyl radicals, the intensity of the emitted photoluminescence at 612nm significantly decreased. The concept was proved on analysis of the genomic DNA from PC-3 cells and DNA isolated from melanoma tissues.

  14. PTH analogues and osteoporotic fractures.

    PubMed

    Verhaar, Harald J J; Lems, Willem F

    2010-09-01

    At present there are two parathyroid hormone (PTH) analogues (PTH 1 - 34 and PTH 1 - 84) registered for the treatment of established osteoporosis in postmenopausal women (PTH 1 - 34 and PTH 1 - 84) and in men (PTH 1 - 34 only) who are at increased risk of having a fracture. The efficacy and safety of PTH 1 - 34 and PTH 1 - 84 in the management of osteoporosis is evaluated by reviewing published literature and presentations from scientific meetings through to 2010. This review focuses on data on fracture risk reduction and safety endpoints of PTH analogues. The adverse reactions reported most are nausea, pain in the extremities, headache and dizziness. Exogenous PTH analogues, given as daily subcutaneous injections, stimulate bone formation, increase bone mass and bone strength, and improve calcium balance. In postmenopausal women with osteoporosis, PTH analogues reduced the risk of vertebral (PTH 1 - 34 and PTH 1 - 84) and non-vertebral fractures (only PTH 1 - 34). In men and women with glucocorticosteroid-induced osteoporosis, PTH 1 - 34 reduced the risk of vertebral fractures. In general, PTH analogues are well tolerated with an acceptable safety profile: they can be used for the prevention and treatment of fractures in postmenopausal women with severe, established osteoporosis.

  15. The influence of contact conditions and micromotions on the fretting behavior of modular titanium alloy taper connections.

    PubMed

    Baxmann, M; Jauch, S Y; Schilling, C; Blömer, W; Grupp, T M; Morlock, M M

    2013-05-01

    Modularity of femoral stems and neck components has become a more frequently used tool for an optimized restoration of the hip joint center and improvement of patient biomechanics. The additional taper interface increases the risk of mechanical failure due to fretting and crevice corrosion. Several failures of titanium alloy neck adapters have been documented in case-reports. An experimental fretting device was developed in this study to systematically investigate the effect of micromotion and contact pressure on fretting damage in contact situations similar to taper interfaces of modular hip prostheses under cyclic loading representative of in vivo load conditions. As a first application, the fretting behavior of Ti-6Al-4V titanium alloy components was investigated. Micromotions were varied between 10μm and 50μm, maximum contact pressures between 400 and 860N/mm(2). All modes of fretting damage were observed: Fretting wear was found for high micromotions in combination with low contact pressures. Fretting fatigue occurred with reduced movement or increased contact pressures. With small micromotions or high normal pressures, low fretting damage was observed. The developed device can be used to evaluate taper design (and especially contact geometry) as well as different materials prior to clinical use.

  16. Fretting fatigue behaviour of Ni-free high-nitrogen stainless steel in a simulated body fluid

    PubMed Central

    Maruyama, Norio; Hiromoto, Sachiko; Akiyama, Eiji; Nakamura, Morihiko

    2013-01-01

    Fretting fatigue behaviour of Ni-free high-nitrogen steel (HNS) with a yield strength of about 800 MPa, which was prepared by nitrogen gas pressurized electroslag remelting, was studied in air and in phosphate-buffered saline (PBS(-)). For comparison, fretting fatigue behaviour of cold-rolled SUS316L steel (SUS316L(CR)) with similar yield strength was examined. The plain fatigue limit of HNS was slightly lower than that of SUS316L(CR) although the former had a higher tensile strength than the latter. The fretting fatigue limit of HNS was higher than that of SUS316L(CR) both in air and in PBS(-). A decrease in fatigue limit of HNS by fretting was significantly smaller than that of SUS316L(CR) in both environments, indicating that HNS has better fretting fatigue resistance than SUS316L(CR). The decrease in fatigue limit by fretting is discussed taking into account the effect of friction stress due to fretting and the additional influences of wear, tribocorrosion and plastic deformation in the fretted area. PMID:27877571

  17. Plasmonic Nanoantennas Enable Forbidden Förster Dipole-Dipole Energy Transfer and Enhance the FRET Efficiency.

    PubMed

    de Torres, Juan; Mivelle, Mathieu; Moparthi, Satish Babu; Rigneault, Hervé; Van Hulst, Niek F; García-Parajó, María F; Margeat, Emmanuel; Wenger, Jérôme

    2016-10-12

    Förster resonance energy transfer (FRET) pla