Science.gov

Sample records for nucleobase analogue fret

  1. Studying Z-DNA and B- to Z-DNA transitions using a cytosine analogue FRET-pair

    PubMed Central

    Dumat, Blaise; Larsen, Anders Foller; Wilhelmsson, L. Marcus

    2016-01-01

    Herein, we report on the use of a tricyclic cytosine FRET pair, incorporated into DNA with different base pair separations, to study Z-DNA and B-Z DNA junctions. With its position inside the DNA structure, the FRET pair responds to a B- to Z-DNA transition with a distinct change in FRET efficiency for each donor/acceptor configuration allowing reliable structural probing. Moreover, we show how fluorescence spectroscopy and our cytosine analogues can be used to determine rate constants for the B- to Z-DNA transition mechanism. The modified cytosines have little influence on the transition and the FRET pair is thus an easily implemented and virtually non-perturbing fluorescence tool to study Z-DNA. This nucleobase analogue FRET pair represents a valuable addition to the limited number of fluorescence methods available to study Z-DNA and we suggest it will facilitate, for example, deciphering the B- to Z-DNA transition mechanism and investigating the interaction of DNA with Z-DNA binding proteins. PMID:26896804

  2. A fluorescent analogue of UDP-N-acetylglucosamine: application for FRET assay of peptidoglycan translocase II (MurG).

    PubMed

    Li, Jian-Jun; Bugg, Timothy D H

    2004-01-21

    A direct continuous fluorescence assay for translocase II MurG based on fluorescence resonance energy transfer (FRET) has been developed using a 6-substituted fluorescent analogue of UDP-N-acetylglucosamine.

  3. Ultrafast Dynamics of a Nucleobase Analogue Illuminated by a Short Intense X-ray Free Electron Laser Pulse

    NASA Astrophysics Data System (ADS)

    Nagaya, K.; Motomura, K.; Kukk, E.; Fukuzawa, H.; Wada, S.; Tachibana, T.; Ito, Y.; Mondal, S.; Sakai, T.; Matsunami, K.; Koga, R.; Ohmura, S.; Takahashi, Y.; Kanno, M.; Rudenko, A.; Nicolas, C.; Liu, X.-J.; Zhang, Y.; Chen, J.; Anand, M.; Jiang, Y. H.; Kim, D.-E.; Tono, K.; Yabashi, M.; Kono, H.; Miron, C.; Yao, M.; Ueda, K.

    2016-04-01

    Understanding x-ray radiation damage is a crucial issue for both medical applications of x rays and x-ray free-electron-laser (XFEL) science aimed at molecular imaging. Decrypting the charge and fragmentation dynamics of nucleobases, the smallest units of a macro-biomolecule, contributes to a bottom-up understanding of the damage via cascades of phenomena following x-ray exposure. We investigate experimentally and by numerical simulations the ultrafast radiation damage induced on a nucleobase analogue (5-iodouracil) by an ultrashort (10 fs) high-intensity radiation pulse generated by XFEL at SPring-8 Angstrom Compact free electron Laser (SACLA). The present study elucidates a plausible underlying radiosensitizing mechanism of 5-iodouracil. This mechanism is independent of the exact composition of 5-iodouracil and thus relevant to other such radiosensitizers. Furthermore, we found that despite a rapid increase of the net molecular charge in the presence of iodine, and of the ultrafast release of hydrogen, the other atoms are almost frozen within the 10-fs duration of the exposure. This validates single-shot molecular imaging as a consistent approach, provided the radiation pulse used is brief enough.

  4. Functionalized Solid Electrodes for Electrochemical Biosensing of Purine Nucleobases and Their Analogues: A Review

    PubMed Central

    Sharma, Vimal Kumar; Jelen, Frantisek; Trnkova, Libuse

    2015-01-01

    Interest in electrochemical analysis of purine nucleobases and few other important purine derivatives has been growing rapidly. Over the period of the past decade, the design of electrochemical biosensors has been focused on achieving high sensitivity and efficiency. The range of existing electrochemical methods with carbon electrode displays the highest rate in the development of biosensors. Moreover, modification of electrode surfaces based on nanomaterials is frequently used due to their extraordinary conductivity and surface to volume ratio. Different strategies for modifying electrode surfaces facilitate electron transport between the electrode surface and biomolecules, including DNA, oligonucleotides and their components. This review aims to summarize recent developments in the electrochemical analysis of purine derivatives, as well as discuss different applications. PMID:25594595

  5. Analogues of acyclic nucleosides derived from tris-(hydroxymethyl)phosphine oxide or bis-(hydroxymethyl)phosphinic acid coupled to DNA nucleobases.

    PubMed

    Nawrot, Barbara; Michalak, Olga; De Clercq, Erik; Stec, Wojciech J

    2004-11-01

    A series of novel acyclic nucleoside analogues containing bis-(hydroxymethyl)phosphinic acid (BHPA) or tris(hydroxymethyl)phosphine oxide (THPO) coupled with DNA nucleobases or with 5-fluorouracil were prepared and their antiviral activity was studied against cytomegalovirus (CMV), varicella-zoster virus (VZV), parainfluenza-virus type 3, reovirus-type 1, sindbis, coxsackie B4, punta toro, vesicular stomatitis and respiratory syncytial virus, herpes simplex virus-type 1 (KOS) and type 2 (G), vaccinia virus and herpes simplex virus-1 (TK- KOS ACVr). No specific antiviral effects were noted for any of test compounds against viruses evaluated, except thymine, cytosine and adenine derivatives of BHPA exerting borderline activity against respiratory syncytial virus at the 80 mg/ml concentration.

  6. Fanciful FRET.

    PubMed

    Vogel, Steven S; Thaler, Christopher; Koushik, Srinagesh V

    2006-04-18

    The validity of experiments based on Förster resonance energy transfer (FRET), an imaging technique widely used to measure protein-protein interactions in living cells, critically depends on the accurate and precise measurement of FRET efficiency. The use of FRET standards to determine FRET efficiency, and a consideration of such factors as how the abundance of FRET acceptors and the stoichiometry of donors and acceptors in a molecular complex can affect measured FRET efficiency, will enhance the usefulness with which FRET experiments can be interpreted.

  7. Microhydration of Deprotonated Nucleobases

    NASA Astrophysics Data System (ADS)

    Wincel, Henryk

    2016-08-01

    Hydration reactions of deprotonated nucleobases (uracil, thymine, 5-fluorouracil,2-thiouracil, cytosine, adenine, and hypoxanthine) produced by electrospray have been experimentally studied in the gas phase at 10 mbar using a pulsed ion-beam high-pressure mass spectrometer. The thermochemical data, ΔH o , ΔS o , and ΔG o , for the monohydrated systems were determined. The hydration enthalpies were found to be similar for all studied systems and varied between 39.4 and 44.8 kJ/mol. A linear correlation was found between water binding energies in the hydrated complexes and the corresponding acidities of the most acidic site of nucleobases. The structural and energetic aspects of the precursors for the hydrated complexes are discussed in conjunction with available literature data.

  8. FRET or no FRET: a quantitative comparison.

    PubMed

    Berney, Claude; Danuser, Gaudenz

    2003-06-01

    Fluorescence resonance energy transfer (FRET) is a technique used to measure the interaction between two molecules labeled with two different fluorophores (the donor and the acceptor) by the transfer of energy from the excited donor to the acceptor. In biological applications, this technique has become popular to qualitatively map protein-protein interactions, and in biophysical projects it is used as a quantitative measure for distances between a single donor and acceptor molecule. Numerous approaches can be found in the literature to quantify and map FRET, but the measures they provide are often difficult to interpret. We propose here a quantitative comparison of these methods by using a surface FRET system with controlled amounts of donor and acceptor fluorophores and controlled distances between them. We support the system with a Monte Carlo simulation of FRET, which provides reference values for the FRET efficiency under various experimental conditions. We validate a representative set of FRET efficiencies and indices calculated from the different methods with different experimental settings. Finally, we test their sensitivity and draw conclusions for the preparation of FRET experiments in more complex and less-controlled systems.

  9. Fretting in aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Johnson, R. L.; Bill, R. C.

    1974-01-01

    The problem of fretting in aircraft turbine engines is discussed. Critical fretting can occur on fan, compressor, and turbine blade mountings, as well as on splines, rolling element bearing races, and secondary sealing elements of face type seals. Structural fatigue failures have been shown to occur at fretted areas on component parts. Methods used by designers to reduce the effects of fretting are given.

  10. Extraterrestrial Nucleobases in Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Martins, Z.; Botta, O.; Fogel, M.; Sephton, M.; Glavin, D.; Watson, J.; Dworkin, J.; Schwartz, A.; Ehrenfreund, P.

    Nucleobases in Carbonaceous Chondrites Z. Martins (1), O. Botta (2), M. L. Fogel (3), M. A. Sephton (4), D. P. Glavin (2), J. S. Watson (5), J. P. Dworkin (2), A. W. Schwartz (6) and P. Ehrenfreund (1,6). (1) Astrobiology Laboratory, Leiden Institute of Chemistry, Leiden, The Netherlands, (2) NASA Goddard Space Flight Center, Goddard Center for Astrobiology, Greenbelt, MD, USA, (3) GL, Carnegie Institution of Washington, Washington DC, USA, (4) Impacts and Astromaterials Research Centre, Department of Earth Science and Engineering, South Kensington Campus, Imperial College, London, UK, (5) Planetary and Space Sciences Research Institute, The Open University, Walton Hall, Milton Keynes, UK, (6) Radboud University Nijmegen, Nijmegen, The Netherlands. E-mail: z.martins@chem.leidenuniv.nl/Phone:+31715274440 Nucleobases are crucial compounds in terrestrial biochemistry, because they are key components of DNA and RNA. Carbonaceous meteorites have been analyzed for nucleobases by different research groups [1-5]. However, significant quantitative and qualitative differences were observed, leading to the controversial about the origin of these nucleobases. In order to establish the origin of these compounds in carbonaceous chondrites and to assess the plausibility of their exogenous delivery to the early Earth, we have performed formic acid extraction of samples of the Murchison meteorite [6], followed by an extensive purification procedure, analysis and quantification by high-performance liquid chromatography with UV absorption detection and gas chromatography-mass spectrometry. Our results were qualitatively consistent with previous results [3, 4], but showed significant quantitative differences. Compound specific carbon isotope values were obtained, using gas chromatography-combustion- isotope ratio mass spectrometry. A soil sample collected in the proximity of the Murchison meteorite fall site was subjected to the same extraction, purification and analysis procedure

  11. IIem-spFRET: improved Iem-spFRET method for robust FRET measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Jiang; Lin, Fangrui; Chai, Liuying; Wei, Lichun; Chen, Tongsheng

    2016-10-01

    We recently developed a quantitative Förster resonance energy transfer (FRET) measurement method based on emission-spectral unmixing (Iem-spFRET). We here developed an improved Iem-spFRET method (termed as IIem-spFRET) for more robust FRET measurement in living cells. First, two background (BG) spectral fingerprints measured from blank living cells are introduced to remove BG and autofluorescence. Second, we introduce a ρ factor denoting the ratio of two molar extinction coefficient ratios (γ) of acceptor to donor at two excitations into IIem-spFRET for direct measurement of the γ values using a tandem construct with unknown FRET efficiency (E). We performed IIem-spFRET on our microscope-spectrometer platform to measure the γ values of Venus (V) to Cerulean (C) and the E values of C32V, CVC, VCV, and VCVV constructs, respectively, in living Huh7 cells. For the C32V or CVC cells, the Iem-spFRET and IIem-spFRET methods measured consistent E values. However, for the cells especially with low expressing levels of VCV or VCVV, the E values measured by Iem-spFRET showed large deviations and fluctuations, whereas the IIem-spFRET method greatly improved the measured E values. Collectively, IIem-spFRET is a powerful and robust tool for quantitatively measuring FRET signal in living cells.

  12. Enhanced Binding Affinity for an i-Motif DNA Substrate Exhibited by a Protein Containing Nucleobase Amino Acids.

    PubMed

    Bai, Xiaoguang; Talukder, Poulami; Daskalova, Sasha M; Roy, Basab; Chen, Shengxi; Li, Zhongxian; Dedkova, Larisa M; Hecht, Sidney M

    2017-03-17

    Several variants of a nucleic acid binding motif (RRM1) of putative transcription factor hnRNP LL containing nucleobase amino acids at specific positions have been prepared and used to study binding affinity for the BCL2 i-motif DNA. Molecular modeling suggested a number of amino acids in RRM1 likely to be involved in interaction with the i-motif DNA, and His24 and Arg26 were chosen for modification based on their potential ability to interact with G14 of the i-motif DNA. Four nucleobase amino acids were introduced into RRM1 at one or both of positions 24 and 26. The introduction of cytosine nucleobase 2 into position 24 of RRM1 increased the affinity of the modified protein for the i-motif DNA, consistent with the possible Watson-Crick interaction of 2 and G14. In comparison, the introduction of uracil nucleobase 3 had a minimal effect on DNA affinity. Two structurally simplified nucleobase analogues (1 and 4) lacking both the N-1 and the 2-oxo substituents were also introduced in lieu of His24. Again, the RRM1 analogue containing 1 exhibited enhanced affinity for the i-motif DNA, while the protein analogue containing 4 bound less tightly to the DNA substrate. Finally, the modified protein containing 1 in lieu of Arg26 also bound to the i-motif DNA more strongly than the wild-type protein, but a protein containing 1 both at positions 24 and 26 bound to the DNA less strongly than wild type. The results support the idea of using nucleobase amino acids as protein constituents for controlling and enhancing DNA-protein interaction. Finally, modification of the i-motif DNA at G14 diminished RRM1-DNA interaction, as well as the ability of nucleobase amino acid 1 to stabilize RRM1-DNA interaction.

  13. Spectroscopy of Isolated Prebiotic Nucleobases

    NASA Technical Reports Server (NTRS)

    Svadlenak, Nathan; Callahan, Michael P.; Ligare, Marshall; Gulian, Lisa; Gengeliczki, Zsolt; Nachtigallova, Dana; Hobza, Pavel; deVries, Mattanjah

    2011-01-01

    We use multiphoton ionization and double resonance spectroscopy to study the excited state dynamics of biologically relevant molecules as well as prebiotic nucleobases, isolated in the gas phase. Molecules that are biologically relevant to life today tend to exhibit short excited state lifetimes compared to similar but non-biologically relevant analogs. The mechanism is internal conversion, which may help protect the biologically active molecules from UV damage. This process is governed by conical intersections that depend very strongly on molecular structure. Therefore we have studied purines and pyrimidines with systematic variations of structure, including substitutions, tautomeric forms, and cluster structures that represent different base pair binding motifs. These structural variations also include possible alternate base pairs that may shed light on prebiotic chemistry. With this in mind we have begun to probe the ultrafast dynamics of molecules that exhibit very short excited states and search for evidence of internal conversions.

  14. Fretted Terrain Valleys

    NASA Technical Reports Server (NTRS)

    2004-01-01

    30 October 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows shallow tributary valleys in the Ismenius Lacus fretted terrain region of northern Arabia Terra. These valleys exhibit a variety of typical fretted terrain valley wall and floor textures, including a lineated, pitted material somewhat reminiscent of the surface of a brain. Origins for these features are still being debated within the Mars science community; there are no clear analogs to these landforms on Earth. This image is located near 39.9oN, 332.1oW. The picture covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  15. Human equilibrative nucleoside transporter (ENT) family of nucleoside and nucleobase transporter proteins.

    PubMed

    Young, J D; Yao, S Y M; Sun, L; Cass, C E; Baldwin, S A

    2008-07-01

    1. The human (h) SLC29 family of integral membrane proteins is represented by four members, designated equilibrative nucleoside transporters (ENTs) because of the properties of the first-characterized family member, hENT1. They belong to the widely distributed eukaryotic ENT family of equilibrative and concentrative nucleoside/nucleobase transporter proteins. 2. A predicted topology of eleven transmembrane helices has been experimentally confirmed for hENT1. The best-characterized members of the family, hENT1 and hENT2, possess similar broad permeant selectivities for purine and pyrimidine nucleosides, but hENT2 also efficiently transports nucleobases. hENT3 has a similar broad permeant selectivity for nucleosides and nucleobases and appears to function in intracellular membranes, including lysosomes. 3. hENT4 is uniquely selective for adenosine, and also transports a variety of organic cations. hENT3 and hENT4 are pH sensitive, and optimally active under acidic conditions. ENTs, including those in parasitic protozoa, function in nucleoside and nucleobase uptake for salvage pathways of nucleotide synthesis and, in humans, are also responsible for the cellular uptake of nucleoside analogues used in the treatment of cancers and viral diseases. 4. By regulating the concentration of adenosine available to cell surface receptors, mammalian ENTs additionally influence physiological processes ranging from cardiovascular activity to neurotransmission.

  16. Distribution of Nucleobases in CM and CR Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Callahan, M. P.; Stern, J. C.; Glavin, D. P.; Whelley, K. E.; Martin, M. G.; Dworkin, J. P.

    2010-04-01

    We have developed an analytical method to target nucleobases in meteorites using HPLC with UV detection and tandem mass spectrometry. The distribution of nucleobases appears to correlate with the degree of aqueous alteration in these meteorites.

  17. Photoelectron Spectroscopy of Hexachloroplatinate-Nucleobase Complexes: Nucleobase Excited State Decay Observed via Delayed Electron Emission

    SciTech Connect

    Sen, Ananya; Matthews, Edward M.; Hou, Gao-Lei; Wang, Xue B.; Dessent, Caroline

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ~1.7 eV, values that are lower than the RCB of the uncomplexed PtCl6 2- dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl6 2-∙thymine and PtCl6 2-∙adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN)4 2-∙nucleobase complexes [Sen et al, J. Phys. Chem. B, 119, 11626, 2015]. The observation of delayed electron emission bands in the PtCl6 2-∙nucleobase spectra obtained in this work, as for the previously studied Pt(CN)4 2-∙nucleobase complexes, is attributed to onephoton excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase decays over a timescale long enough to allow autodetachment.

  18. Nucleobase and Ribose Modifications Control Immunostimulation by a MicroRNA-122-mimetic RNA

    PubMed Central

    Peacock, Hayden; Fucini, Raymond V.; Jayalath, Prasanna; Ibarra-Soza, José M.; Haringsma, Henry J.; Flanagan, W. Michael; Willingham, Aarron; Beal, Peter A.

    2011-01-01

    Immune stimulation is a significant hurdle in the development of effective and safe RNA interference therapeutics. Here, we address this problem in the context of a mimic of microRNA-122 by employing novel nucleobase and known 2′-ribose modifications. The nucleobase modifications are analogues of adenosine and guanosine that contain cyclopentyl and propyl minor-groove projections. Via a site-by-site chemical modification analysis, we identify several immunostimulatory ‘hot spots’ within the miRNA guide strand at which single base modifications significantly reduce immune stimulation. A duplex containing one base modification on each strand proved to be most effective in preventing immune stimulation. PMID:21612237

  19. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases.

    PubMed

    Callahan, Michael P; Smith, Karen E; Cleaves, H James; Ruzicka, Josef; Stern, Jennifer C; Glavin, Daniel P; House, Christopher H; Dworkin, Jason P

    2011-08-23

    All terrestrial organisms depend on nucleic acids (RNA and DNA), which use pyrimidine and purine nucleobases to encode genetic information. Carbon-rich meteorites may have been important sources of organic compounds required for the emergence of life on the early Earth; however, the origin and formation of nucleobases in meteorites has been debated for over 50 y. So far, the few nucleobases reported in meteorites are biologically common and lacked the structural diversity typical of other indigenous meteoritic organics. Here, we investigated the abundance and distribution of nucleobases and nucleobase analogs in formic acid extracts of 12 different meteorites by liquid chromatography-mass spectrometry. The Murchison and Lonewolf Nunataks 94102 meteorites contained a diverse suite of nucleobases, which included three unusual and terrestrially rare nucleobase analogs: purine, 2,6-diaminopurine, and 6,8-diaminopurine. In a parallel experiment, we found an identical suite of nucleobases and nucleobase analogs generated in reactions of ammonium cyanide. Additionally, these nucleobase analogs were not detected above our parts-per-billion detection limits in any of the procedural blanks, control samples, a terrestrial soil sample, and an Antarctic ice sample. Our results demonstrate that the purines detected in meteorites are consistent with products of ammonium cyanide chemistry, which provides a plausible mechanism for their synthesis in the asteroid parent bodies, and strongly supports an extraterrestrial origin. The discovery of new nucleobase analogs in meteorites also expands the prebiotic molecular inventory available for constructing the first genetic molecules.

  20. 2',4'-BNA bearing a chiral guanidinopyrrolidine-containing nucleobase with potent ability to recognize the CG base pair in a parallel-motif DNA triplex.

    PubMed

    Hari, Yoshiyuki; Akabane, Masaaki; Obika, Satoshi

    2013-08-28

    In order to expand the target sequence used in triplex DNA formation, seven novel nucleotide analogues were synthesized and incorporated into triplex-forming oligonucleotides by post-elongation modification approaches. Among them, , equipped with a suitable restricted conformation of sugar and nucleobase moieties, was found to have the highest sequence-selectivity and affinity towards CG base pairs within double-stranded DNA.

  1. Photoelectron spectroscopy of hexachloroplatinate-nucleobase complexes: Nucleobase excited state decay observed via delayed electron emission

    SciTech Connect

    Sen, Ananya; Matthews, Edward M.; Dessent, Caroline E. H. E-mail: xuebin.wang@pnnl.gov; Hou, Gao-Lei; Wang, Xue-Bin E-mail: xuebin.wang@pnnl.gov

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine, and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ∼1.7 eV, values that are lower than the RCB of the uncomplexed PtCl{sub 6}{sup 2−} dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl{sub 6}{sup 2−} ⋅ thymine and PtCl{sub 6}{sup 2−} ⋅ adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN){sub 4}{sup 2−} ⋅ nucleobase complexes [A. Sen et al., J. Phys. Chem. B 119, 11626 (2015)]. The observation of delayed electron emission bands in the PtCl{sub 6}{sup 2−} ⋅ nucleobase spectra obtained in this work, as for the previously studied Pt(CN){sub 4}{sup 2−} ⋅ nucleobase complexes, is attributed to one-photon excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase decays over a time scale long enough to

  2. A Guide to Fluorescent Protein FRET Pairs

    PubMed Central

    Bajar, Bryce T.; Wang, Emily S.; Zhang, Shu; Lin, Michael Z.; Chu, Jun

    2016-01-01

    Förster or fluorescence resonance energy transfer (FRET) technology and genetically encoded FRET biosensors provide a powerful tool for visualizing signaling molecules in live cells with high spatiotemporal resolution. Fluorescent proteins (FPs) are most commonly used as both donor and acceptor fluorophores in FRET biosensors, especially since FPs are genetically encodable and live-cell compatible. In this review, we will provide an overview of methods to measure FRET changes in biological contexts, discuss the palette of FP FRET pairs developed and their relative strengths and weaknesses, and note important factors to consider when using FPs for FRET studies. PMID:27649177

  3. Carbonaceous Meteorites Contain a Wide Range of Extraterrestrial Nucleobases

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Smith, Karen E.; Cleaves, H. James, II; Ruzicka, Josef; Stern, Jennifer C.; Glavin, Daniel P.; House, Christopher H.; Dworkin, Jason P.

    2011-01-01

    All terrestrial organisms depend on nucleic acids (RNA and DNA), which use pyrimidine and purine nucleobases to encode genetic information. Carbon-rich meteorites may have been important sources of organic compounds required for the emergence of life on the early Earth; however, the origin and formation of nuc1eobases in meteorites has been debated for over 50 y. So far, the few nuc1eobases reported in meteorites are biologically common and lacked the structural diversity typical of other indigenous meteoritic organics. Here, we investigated the abundance and distribution of nucleobases and nucleobase analogs in formic acid extracts of 12 different meteorites by liquid chromatography-mass spectrometry. The Murchison and Lonewolf Nunataks 94102 meteorites contained a diverse suite of nucleobases, which included three unusual and terrestrially rare nucleobase analogs; purine, 2,6-diminopurine, and 6,8-diaminopurine. In a parallel experiment, we found an identical suite of nucleobases and nucleobase analogs generated in reactions of ammonium cyanide. Additionally, these nucleobase analoge were not detected above our parts-per-billion detection limits in any of the procedural blanks, control samples, a terrestrial soil sample, and an Antarctic ice sample. Our results demonstrate that the purines detected in meteorites are consistent with products of ammonium cyanide chemistry, which provides a plausible mechanism for their synthesis in the asteroid parent bodies, and strongly supports an extraterrestrial origin. The discovery of new nucleobase analogs in meteorites also expands the prebiotic molecular inventory available for constructing the first genetic molecules.

  4. Demonstration of FRET in solutions

    NASA Astrophysics Data System (ADS)

    Shah, Sunil; Gryczynski, Zygmunt; Chib, Rahul; Fudala, Rafal; Baxi, Aatmun; Borejdo, Julian; Synak, Anna; Gryczynski, Ignacy

    2016-03-01

    We measured the Förster resonance energy transfer (FRET) from Uranin (U) donor to Rhodamine 101 (R101) acceptor in propylene glycol. Steady-state fluorescence measurements show a significant difference between mixed and unmixed fluorophore solutions. In the solution with mixed fluorophores, fluorescence intensity of the U donor decreases and intensity of R101 fluorescence increases. This is visualized as a color change from green to orange. Fluorescence anisotropy of the mixture solution increases in the donor emission wavelength region and decreases in the acceptor emission wavelengths; which is consistent with FRET occurrence. Time-resolved (lifetime) measurements show a decrease of the U lifetime in the presence of R101 acceptor. In the intensity decay of R101 acceptor appears a negative component indicating excited state process. All these measurements prove the presence of FRET in U/R101 mixture fluorescence.

  5. Pyrimidine nucleobase radical reactivity in DNA and RNA

    NASA Astrophysics Data System (ADS)

    Greenberg, Marc M.

    2016-11-01

    Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.

  6. Silver- and gold-mediated nucleobase bonding.

    PubMed

    Acioli, Paulo H; Srinivas, Sudha

    2014-08-01

    We report the results of a density functional theory investigation of the bonding of nucleobases mediated by silver and gold atoms in the gas phase. Our calculations use the Becke exchange and Perdew-Wang correlation functional (BPW91) combined with the Stuttgart effective core potentials to represent the valence electrons of gold, silver, and platinum, and the all-electron DGTZVP basis set for C, H, N, and O. This combination was chosen based on tests on the metal atoms and tautomers of adenine, cytosine, and guanine. To establish a benchmark to understand the metal-mediated bonding, we calculated the binding energy of each of the base pairs in their canonical forms. Our calculations show rather strong bonds between the Watson-Crick base pairs when compared with typical values for N-H-N and N-H-O hydrogen bonds. The neutral metal atoms tend to bond near the nitrogen atoms. The effect of the metal atoms on the bonding of nucleobases differs depending on whether or not the metal atoms bond to one of the hydrogen-bonding sites. When the silver or gold atoms bond to a non-hydrogen-bonding site, the effect is a slight enhancement of the cytosine-guanine bonding, but there is almost no effect on the adenine-thymine pairing. The metal atoms can block one of the hydrogen-bonding sites, thus preventing the normal cytosine-guanine and adenine-thymine pairings. We also find that both silver and gold can bond to consecutive guanines in a similar fashion to platinum, albeit with a significantly lower binding energy.

  7. Recent discovery of non-nucleobase thymidine phosphorylase inhibitors targeting cancer.

    PubMed

    Bera, Hriday; Chigurupati, Sridevi

    2016-11-29

    Thymidine phosphorylase (TP, EC 2.4.2.4), an enzyme involved in pyrimidine salvage pathway, is identical to platelet-derived endothelial cell growth factor (PD-ECGF) and gliostatin. It is extremely upregulated in a variety of solid tumours. The TP amplification is associated with concomitant overexpression of many angiogenic factors such as matrix metalloproteases (MMPs), interleukins (ILs), vascular endothelial growth factor (VEGF) etc., resulting in promotion of angiogenesis and cancer metastasis. In addition, overshooting TP level protects tumour cells from apoptosis and helps cell survival. Thus, TP is identified as a prime target for developing novel anticancer therapies. Pioneering research activities investigated a large number of TP inhibitors, most of which are pyrimidine or purine analogues. Recently, an array of structurally diverse non-nucleobase derivatives was designed, synthesized and established as promising TP inhibitors. This review, following an outline on the TP structure and functions, gives an overview of the recent advancement of various non-nucleobase TP inhibitors as novel anti-cancer agents.

  8. Engineering FRET constructs using CFP and YFP.

    PubMed

    Shimozono, Satoshi; Miyawaki, Atsushi

    2008-01-01

    Fluorescence resonance energy transfer (FRET) technology has been used to develop genetically encoded fluorescent indicators for various cellular functions. Here we discuss how to engineer constructs for FRET between the cyan- and yellow-emitting variants of green fluorescent protein (GFP) from Aequorea victoria (CFP and YFP, respectively). Throughout this chapter, we stress the fact that FRET is highly sensitive to the relative orientation and distance between the donor and the acceptor. The chapter consists of two parts. First, we discuss FRET-based indicators encoded by single genes, which were developed in our laboratory. In this approach, a number of different constructs can be made for a comparative assessment of their FRET efficiencies. For example, the length and sequence of the linker between the fluorescent protein and the host protein should be optimized for each specific application. In the second part, we describe the use of long and flexible linkers for engineering FRET constructs, including an introduction to a general and efficient tool for making successful fusion proteins with long and flexible linkers. When CFP and YFP are fused through floppy linkers to two protein domains that interact with each other, the two fluorescent proteins will associate due to the weak dimerization propensity of Aequorea GFP, which results in moderate FRET. This approach has become even more powerful due to the construction of a new pair of fluorescent proteins for FRET: CyPet and YPet.

  9. Photobleaching-Corrected FRET Efficiency Imaging of Live Cells

    PubMed Central

    Zal, Tomasz; Gascoigne, Nicholas R. J.

    2004-01-01

    Fluorescent resonance energy transfer (FRET) imaging techniques can be used to visualize protein-protein interactions in real-time with subcellular resolution. Imaging of sensitized fluorescence of the acceptor, elicited during excitation of the donor, is becoming the most popular method for live FRET (3-cube imaging) because it is fast, nondestructive, and applicable to existing widefield or confocal microscopes. Most sensitized emission-based FRET indices respond nonlinearly to changes in the degree of molecular interaction and depend on the optical parameters of the imaging system. This makes it difficult to evaluate and compare FRET imaging data between laboratories. Furthermore, photobleaching poses a problem for FRET imaging in timelapse experiments and three-dimensional reconstructions. We present a 3-cube FRET imaging method, E-FRET, which overcomes both of these obstacles. E-FRET bridges the gap between the donor recovery after acceptor photobleaching technique (which allows absolute measurements of FRET efficiency, E, but is not suitable for living cells), and the sensitized-emission FRET indices (which reflect FRET in living cells but lack the quantitation and clarity of E). With E-FRET, we visualize FRET in terms of true FRET efficiency images (E), which correlate linearly with the degree of donor interaction. We have defined procedures to incorporate photobleaching correction into E-FRET imaging. We demonstrate the benefits of E-FRET with photobleaching correction for timelapse and three-dimensional imaging of protein-protein interactions in the immunological synapse in living T-cells. PMID:15189889

  10. FRET Imaging in Three-dimensional Hydrogels

    PubMed Central

    Taboas, Juan M.

    2016-01-01

    Imaging of Förster resonance energy transfer (FRET) is a powerful tool for examining cell biology in real-time. Studies utilizing FRET commonly employ two-dimensional (2D) culture, which does not mimic the three-dimensional (3D) cellular microenvironment. A method to perform quenched emission FRET imaging using conventional widefield epifluorescence microscopy of cells within a 3D hydrogel environment is presented. Here an analysis method for ratiometric FRET probes that yields linear ratios over the probe activation range is described. Measurement of intracellular cyclic adenosine monophosphate (cAMP) levels is demonstrated in chondrocytes under forskolin stimulation using a probe for EPAC1 activation (ICUE1) and the ability to detect differences in cAMP signaling dependent on hydrogel material type, herein a photocrosslinking hydrogel (PC-gel, polyethylene glycol dimethacrylate) and a thermoresponsive hydrogel (TR-gel). Compared with 2D FRET methods, this method requires little additional work. Laboratories already utilizing FRET imaging in 2D can easily adopt this method to perform cellular studies in a 3D microenvironment. It can further be applied to high throughput drug screening in engineered 3D microtissues. Additionally, it is compatible with other forms of FRET imaging, such as anisotropy measurement and fluorescence lifetime imaging (FLIM), and with advanced microscopy platforms using confocal, pulsed, or modulated illumination. PMID:27500354

  11. DNA-mediated excitonic upconversion FRET switching

    DOE PAGES

    Kellis, Donald L.; Rehn, Sarah M.; Cannon, Brittany L.; ...

    2015-11-17

    Excitonics is a rapidly expanding field of nanophotonics in which the harvesting of photons, ensuing creation and transport of excitons via Förster resonant energy transfer (FRET), and subsequent charge separation or photon emission has led to the demonstration of excitonic wires, switches, Boolean logic and light harvesting antennas for many applications. FRET funnels excitons down an energy gradient resulting in energy loss with each step along the pathway. Conversely, excitonic energy up conversion via up conversion nanoparticles (UCNPs), although currently inefficient, serves as an energy ratchet to boost the exciton energy. Although FRET-based up conversion has been demonstrated, it suffersmore » from low FRET efficiency and lacks the ability to modulate the FRET. We have engineered an up conversion FRET-based switch by combining lanthanide-doped UCNPs and fluorophores that demonstrates excitonic energy up conversion by nearly a factor of 2, an excited state donor to acceptor FRET efficiency of nearly 25%, and an acceptor fluorophore quantum efficiency that is close to unity. These findings offer a promising path for energy up conversion in nanophotonic applications including artificial light harvesting, excitonic circuits, photovoltaics, nanomedicine, and optoelectronics.« less

  12. DNA-mediated excitonic upconversion FRET switching

    SciTech Connect

    Kellis, Donald L.; Rehn, Sarah M.; Cannon, Brittany L.; Davis, Paul H.; Graugnard, Elton; Lee, Jeunghoon; Yurke, Bernard; Knowlton, William B.

    2015-11-17

    Excitonics is a rapidly expanding field of nanophotonics in which the harvesting of photons, ensuing creation and transport of excitons via Förster resonant energy transfer (FRET), and subsequent charge separation or photon emission has led to the demonstration of excitonic wires, switches, Boolean logic and light harvesting antennas for many applications. FRET funnels excitons down an energy gradient resulting in energy loss with each step along the pathway. Conversely, excitonic energy up conversion via up conversion nanoparticles (UCNPs), although currently inefficient, serves as an energy ratchet to boost the exciton energy. Although FRET-based up conversion has been demonstrated, it suffers from low FRET efficiency and lacks the ability to modulate the FRET. We have engineered an up conversion FRET-based switch by combining lanthanide-doped UCNPs and fluorophores that demonstrates excitonic energy up conversion by nearly a factor of 2, an excited state donor to acceptor FRET efficiency of nearly 25%, and an acceptor fluorophore quantum efficiency that is close to unity. These findings offer a promising path for energy up conversion in nanophotonic applications including artificial light harvesting, excitonic circuits, photovoltaics, nanomedicine, and optoelectronics.

  13. Multiple Condensation Reactions Involving Pt(II) /Pd(II) -OH2 , Pt-NH3 , and Cytosine-NH2 Groups: New Twists in Cisplatin-Nucleobase Chemistry.

    PubMed

    Yin-Bandur, Lu; Sanz Miguel, Pablo J; Rodríguez-Santiago, Luis; Sodupe, Mariona; Berghaus, Melanie; Lippert, Bernhard

    2016-09-12

    The coordination chemistry of the antitumor agent cisplatin and related complexes with DNA and its constituents, that is, the nucleobases, appears to be dominated by 1:1 and 1:2 adducts of the types cis-[Pta2 (nucleobase)X] and cis-[Pta2 (nucleobase)2 ] (a=NH3 or amine; a2 =diamine or diimine; X=Cl, OH or OH2 ). Here, we have studied the interactions of the putative 1:1 adducts cis-[Pta2 (1-MeC-N3)(OH2 )](2+) (with a=NH3 , a2 =2,2'-bpy (2,2'-bipyridine), 1-MeC=model nucleobase 1-methylcytosine) with additional cis-[Pt(NH3 )2 (OH2 )2 ](2+) or its kinetically superior analogues [Pd(en)(OH2 )2 ](2+) (en=ethylenediamine) and [Pd(2,2'-bpy)(OH2 )2 ](2+) . Depending upon the conditions applied different compounds of different nuclearity are formed. Without exception they represent condensation products of the components, containing μ-1-MeC-H , μ-OH(-) , as well as μ-NH2 (-) bridges. In the presence of Ag(+) ions, the isolated products in several cases display additionally Pt→Ag dative bonds. On the basis of the cytosine-containing structures established by X-ray crystallography, it is proposed that any of the feasible initial 1:1 nucleobase adducts of cisplatin could form dinuclear Pt complexes upon reaction with additional hydrolyzed cisplatin, thereby generating nucleobase adducts other than the presently established ones. Two findings appear to be of particular significance: First, hydrolyzed cisplatin can have a moderately accelerating effect on the formation of a secondary nucleobase product. Second, NH3 ligands of the cisplatin moiety can be converted into bridging amido ligands following condensation with the diaqua species of cisplatin.

  14. Recognition of DNA sequencing through binding of nucleobases to graphene

    NASA Astrophysics Data System (ADS)

    Zaffino, Valentina

    Graphene is one of the most promising materials in nanotechnology. Its large surface to volume ratio, high conductivity and electron mobility at room temperature are outstanding properties for use in DNA sensors. For this study, we used Density Functional Theory (DFT), ?with and without the inclusion of van der Waals (vdW) interactions, ?to investigate the adsorption of nucleobases (cytosine, guanine, adenine, thymine, and uracil) on pristine graphene and graphene with defects (Divacancy and Stone-Wales). We investigated the performance of two types of vdW-DF functional (optB86b-vdW and rPW86-vdW), as well as the PBE functional, and their description of the adsorption geometry and electronic structure of the nucleobase-graphene systems.The inclusion of defects results in an increase in binding energy, closer adsorption of the molecule to graphene and greater buckling in both the graphene structure and nucleobase.

  15. Nucleobases Undergo Dynamic Rearrangements during RNA Tertiary Folding.

    PubMed

    Welty, Robb; Hall, Kathleen B

    2016-11-06

    The tertiary structure of the GTPase center (GAC) of 23S ribosomal RNA (rRNA) as seen in cocrystals is extremely compact. It is stabilized by long-range hydrogen bonds and nucleobase stacking and by a triloop that forms within its three-way junction. Its folding pathway from secondary structure to tertiary structure has not been previously observed, but it was shown to require Mg(2+) ions in equilibrium experiments. The fluorescent nucleotide 2-aminopurine was substituted at selected sites within the 60-nt GAC. Fluorescence intensity changes upon addition of MgCl2 were monitored over a time-course from 1ms to 100s as the RNA folds. The folding pathway is revealed here to be hierarchical through several intermediates. Observation of the nucleobases during folding provides a new perspective on the process and the pathway, revealing the dynamics of nucleobase conformational exchange during the folding transitions.

  16. Analogue Gravity.

    PubMed

    Barceló, Carlos; Liberati, Stefano; Visser, Matt

    2011-01-01

    Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for) gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing) and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity).

  17. Quantification of Small Molecule–Protein Interactions using FRET between Tryptophan and the Pacific Blue Fluorophore

    PubMed Central

    2016-01-01

    We report a new method to quantify the affinity of small molecules for proteins. This method is based on Förster resonance energy transfer (FRET) between endogenous tryptophan (Trp) residues and the coumarin-derived fluorophore Pacific Blue (PB). Tryptophan residues are frequently found in proteins near ligand-binding sites, making this approach potentially applicable to a wide range of systems. To improve access to PB, we developed a scalable multigram synthesis of this fluorophore, starting with inexpensive 2,3,4,5-tetrafluorobenzoic acid. This route was used to synthesize fluorescent derivatives of biotin, as well as lower affinity thiobiotin, iminobiotin, and imidazolidinethione analogues that bind the protein streptavidin. Compared with previously published FRET acceptors for tryptophan, PB proved to be superior in both sensitivity and efficiency. These unique properties of PB enabled direct quantification of dissociation constants (Kd) as well as competitive inhibition constants (Ki) in the micromolar to nanomolar range. In comparison to analogous binding studies using fluorescence polarization, fluorescence quenching, or fluorescence enhancement, affinities determined using Trp-FRET were more precise and accurate as validated using independent isothermal titration calorimetry studies. FRET between tryptophan and PB represents a new tool for the characterization of protein–ligand complexes. PMID:28058293

  18. Fretting corrosion and fatigue of gears

    SciTech Connect

    Tsypak, V.I.

    1994-05-01

    We describe the fretting and fatigue fracture of gears with guaranteed clearance. The results of a study of macro- and micro-reliefs of surfaces damaged by fretting and the results of X-ray analysis of products of wear and the oxide film are presented. The dependence of the joint operating conditions on the state of the working surfaces of slot teeth is analyzed.

  19. Fretting corrosion resistance and fretting corrosion product cytocompatibility of ferritic stainless steel.

    PubMed

    Xulin, S; Ito, A; Tateishi, T; Hoshino, A

    1997-01-01

    To avoid nickel ion release from SUS317L as an implant material, a new type of nickel, commercially free, of high purity, and high chromium ferritic stainless steel, was developed. The new stainless steel (FJ) was studied for aspects of fretting corrosion and cytocompatibility compared with SUS317L. A pin-on-plate fretting corrosion test in an artificial physiologic solution, and cell culture in media with the addition of the artificial physiologic solution used for fretting was conducted. Resistance to the fretting induced crevice corrosion of FJ was higher than that of SUS317L because of the favorable electrochemical stability of the FJ alloy. The amount of iron ion or colloidal fine particles released from FJ was about a quarter of that from SUS317L, although the weight loss of a pin of FJ was almost 5/3 that of SUS317L. The artificial physiologic solution used for SUS317L fretting was more harmful to the growth of L929 and MC3T3-E1 cells than that used for FJ fretting. FJ was therefore superior to SUS317L as a biomaterial, judging from the resistance to fretting-induced crevice corrosion, electrochemical stability, and the cytocompatibility of fretting corrosion products.

  20. Single Nucleobase Identification Using Biophysical Signatures from Nanoelectronic Quantum Tunneling.

    PubMed

    Korshoj, Lee E; Afsari, Sepideh; Khan, Sajida; Chatterjee, Anushree; Nagpal, Prashant

    2017-03-01

    Nanoelectronic DNA sequencing can provide an important alternative to sequencing-by-synthesis by reducing sample preparation time, cost, and complexity as a high-throughput next-generation technique with accurate single-molecule identification. However, sample noise and signature overlap continue to prevent high-resolution and accurate sequencing results. Probing the molecular orbitals of chemically distinct DNA nucleobases offers a path for facile sequence identification, but molecular entropy (from nucleotide conformations) makes such identification difficult when relying only on the energies of lowest-unoccupied and highest-occupied molecular orbitals (LUMO and HOMO). Here, nine biophysical parameters are developed to better characterize molecular orbitals of individual nucleobases, intended for single-molecule DNA sequencing using quantum tunneling of charges. For this analysis, theoretical models for quantum tunneling are combined with transition voltage spectroscopy to obtain measurable parameters unique to the molecule within an electronic junction. Scanning tunneling spectroscopy is then used to measure these nine biophysical parameters for DNA nucleotides, and a modified machine learning algorithm identified nucleobases. The new parameters significantly improve base calling over merely using LUMO and HOMO frontier orbital energies. Furthermore, high accuracies for identifying DNA nucleobases were observed at different pH conditions. These results have significant implications for developing a robust and accurate high-throughput nanoelectronic DNA sequencing technique.

  1. Proton transfer in nucleobases is mediated by water.

    PubMed

    Khistyaev, Kirill; Golan, Amir; Bravaya, Ksenia B; Orms, Natalie; Krylov, Anna I; Ahmed, Musahid

    2013-08-08

    Water plays a central role in chemistry and biology by mediating the interactions between molecules, altering energy levels of solvated species, modifying potential energy profiles along reaction coordinates, and facilitating efficient proton transport through ion channels and interfaces. This study investigates proton transfer in a model system comprising dry and microhydrated clusters of nucleobases. With mass spectrometry and tunable vacuum ultraviolet synchrotron radiation, we show that water shuts down ionization-induced proton transfer between nucleobases, which is very efficient in dry clusters. Instead, a new pathway opens up in which protonated nucleobases are generated by proton transfer from the ionized water molecule and elimination of a hydroxyl radical. Electronic structure calculations reveal that the shape of the potential energy profile along the proton transfer coordinate depends strongly on the character of the molecular orbital from which the electron is removed; i.e., the proton transfer from water to nucleobases is barrierless when an ionized state localized on water is accessed. The computed energetics of proton transfer is in excellent agreement with the experimental appearance energies. Possible adiabatic passage on the ground electronic state of the ionized system, though energetically accessible at lower energies, is not efficient. Thus, proton transfer is controlled electronically, by the character of the ionized state, rather than statistically, by simple energy considerations.

  2. The role of fretting corrosion and fretting fatigue in aircraft rivet hole cracking

    NASA Astrophysics Data System (ADS)

    Elliott, Charles B., III; Moesser, Mark; Hoeppner, David W.

    1994-09-01

    Personnel in the Quality and Integrity Design Engineering Center (QIDEC) at the University of Utah are working under a two year grant from the FAA to better understand the role of fretting corrosion and fretting fatigue in aircraft rivet hole cracking. The current program follows a one year grant program which was completed in 1993. This paper provides a status report on the results of these grant programs. Recent effort has been focused on developing basic fretting fatigue models which consider variation in the coefficient of friction with time and location within the fretting interface. This is a very important characteristic of the QIDEC model because coefficient of friction varies significantly during the fretting fatigue process. Copies of QIDEC documents discussed in this paper can be obtained by contacting the authors.

  3. The role of fretting corrosion and fretting fatigue in aircraft rivet hole cracking

    NASA Technical Reports Server (NTRS)

    Elliott, Charles B., III; Moesser, Mark; Hoeppner, David W.

    1994-01-01

    Personnel in the Quality and Integrity Design Engineering Center (QIDEC) at the University of Utah are working under a two year grant from the FAA to better understand the role of fretting corrosion and fretting fatigue in aircraft rivet hole cracking. The current program follows a one year grant program which was completed in 1993. This paper provides a status report on the results of these grant programs. Recent effort has been focused on developing basic fretting fatigue models which consider variation in the coefficient of friction with time and location within the fretting interface. This is a very important characteristic of the QIDEC model because coefficient of friction varies significantly during the fretting fatigue process. Copies of QIDEC documents discussed in this paper can be obtained by contacting the authors.

  4. The Renaissance of Metal-Pyrimidine Nucleobase Coordination Chemistry.

    PubMed

    Lippert, Bernhard; Sanz Miguel, Pablo J

    2016-08-16

    The significance of metal ions for the function and properties of DNA and RNA, long seen primarily under biological aspects and medicinal uses, has recently gained a renewed momentum. This is a consequence of the advent of novel applications in the fields of materials science, biotechnology, and analytical sensor chemistry that relate to the designed incorporation of transition metal ions into nucleic acid base pairs. Ag(+) and Hg(2+) ions, binding to pyrimidine (pym) nucleobases, represent major players in this development. Interestingly, these metal ions were the ones that some 60 years ago started the field! At the same time, the mentioned metal ions had demonstrated a "special relationship" with the pym nucleobases cytosine, thymine, and uracil! Parallel work conducted with oligonucleotides and model nucleobases fostered numerous significant details of these interactions, in particular when X-ray crystallography was involved, correcting earlier views occasionally. Our own activities during the past three to four decades have focused on, among others, the coordination chemistry of transition and main-group metal ions with pym model nucleobases, with an emphasis on Pt(II) and Pd(II). It has always been our goal to deduce, if possible, the potential relevance of our findings for biological processes. It is interesting to put our data, in particular for trans-a2Pt(II) (a = NH3 or amine), into perspective with those of other metal ions, notably Ag(+) and Hg(2+). Irrespective of major differences in kinetics and lability/inertness between d(8) and d(10) metal ions, there is also a lot of similarity in structural aspects as a result of the preferred linear coordination geometry of these species. Moreover, the apparent clustering of metal ions to the pym nucleobases, which is presumably essential for the formation of nanoclusters on oligonucleotide scaffolds, is impressively reflected in model systems, as are reasons for inter-nucleobase cross-links containing more

  5. Action-FRET of a Gaseous Protein

    NASA Astrophysics Data System (ADS)

    Daly, Steven; Knight, Geoffrey; Halim, Mohamed Abdul; Kulesza, Alexander; Choi, Chang Min; Chirot, Fabien; MacAleese, Luke; Antoine, Rodolphe; Dugourd, Philippe

    2017-01-01

    Mass spectrometry is an extremely powerful technique for analysis of biological molecules, in particular proteins. One aspect that has been contentious is how much native solution-phase structure is preserved upon transposition to the gas phase by soft ionization methods such as electrospray ionization. To address this question—and thus further develop mass spectrometry as a tool for structural biology—structure-sensitive techniques must be developed to probe the gas-phase conformations of proteins. Here, we report Förster resonance energy transfer (FRET) measurements on a ubiquitin mutant using specific photofragmentation as a reporter of the FRET efficiency. The FRET data is interpreted in the context of circular dichroism, molecular dynamics simulation, and ion mobility data. Both the dependence of the FRET efficiency on the charge state—where a systematic decrease is observed—and on methanol concentration are considered. In the latter case, a decrease in FRET efficiency with methanol concentration is taken as evidence that the conformational ensemble of gaseous protein cations retains a memory of the solution phase conformational ensemble upon electrospray ionization.

  6. Communication: Photoactivation of nucleobase bound platinum{sup II} metal complexes: Probing the influence of the nucleobase

    SciTech Connect

    Sen, Ananya; Dessent, Caroline E. H.

    2014-12-28

    We present UV laser action spectra (220-300 nm) of isolated nucleobase-bound Pt{sup II}(CN){sub 4}{sup 2−} complexes, i.e., Pt(CN){sub 4}{sup 2−}⋅M, where M = uracil, thymine, cytosine, and adenine. These metal complex-nucleobase clusters represent model systems for identifying the fundamental photophysical and photochemical processes occurring in photodynamic platinum (II) drug therapies that target DNA. This is the first study to explore the specific role of the nucleobase in the photophysics of the aggregate complex. Each of the complexes studied displays a broadly similar absorption spectra, with a strong λ{sub max} ∼ 4.7 eV absorption band (nucleobase localized chromophore) and a subsequent increase in the absorption intensity towards higher spectral-energy (Pt(CN){sub 4}{sup 2−} localized chromophore). However, strikingly different band widths are observed across the series of complexes, decreasing in the order Pt(CN){sub 4}{sup 2−}⋅Thymine > Pt(CN){sub 4}{sup 2−}⋅Uracil > Pt(CN){sub 4}{sup 2−}⋅Adenine > Pt(CN){sub 4}{sup 2−}⋅Cytosine. Changes in the bandwidth of the ∼4.7 eV band are accompanied by distinctive changes in the photofragment product ions observed following photoexcitation, with the narrower-bandwidth complexes showing a greater propensity to decay via electron detachment decay. We discuss these observations in the context of the distinctive nucleobase-dependent excited state lifetimes.

  7. An effective approach to artificial nucleases using copper(II) complexes bearing nucleobases.

    PubMed

    Wang, Jin-Tao; Xia, Qing; Zheng, Xiao-Hui; Chen, Huo-Yan; Chao, Hui; Mao, Zong-Wan; Ji, Liang-Nian

    2010-02-28

    Novel copper(ii) complexes bearing 2,2'-bipyridine (bpy) derivatives with adenine, thymine and uracil nucleobases [Cu(L(1))Cl(2)].2H(2)O (1), [Cu(L(2))Cl(2)] (2) and [Cu(L(3))Cl(2)].H(2)O (3) (L(1) = 5,5'-Di[N9-adenylmethyl]-2,2'-bipyridine, L(2) = 5,5'-Di[N1-thyminylmethyl]-2,2'-bipyridine and L(3) = 5,5'-Di[N1-uracilmethyl]-2,2'-bipyridine) were synthesized and characterized. Structure simulation was performed for these complexes. Circular dichroism (CD) spectra revealed the interactions between these ligands and pBR322 DNA and showed that the local DNA structure was perturbed by these ligands. Cleavage of pBR322 DNA by these complexes was carried out in 20 mM HEPES (pH 7.5) at 37 degrees C. The calculated pseudo-Michaelis-Menten kinetic parameters (k(cat)) were 14.7 +/- 0.6 and 40.4 +/- 1.3 h(-1) for and . The cleavage efficiency of was 80-fold higher than that of its simple analogue [Cu(bpy)Cl(2)] (k(cat) = 0.50 h(-1)) and very close to the catalytic rate constant of natural EcoRI endonuclease (k(cat) = 43.2 h(-1)) at similar conditions. Thus, complex might be one of the most effective artificial nucleases that could catalyze double-stranded DNA hydrolytic cleavage so far. Hydrolytic mechanisms involved in DNA cleavage were explored using radical scavengers and T4 ligase. Competitive experiments with special binding agents showed that complexes could preferentially bind to the minor groove of double-stranded DNA, suggesting specific DNA binding characteristics. Molecular docking calculations also indicated that complexes could bind to the minor groove of targeted DNA much more strongly than their simple analogues and preferentially bind at the AT region of the dodecamer. Such high DNA cleavage ability and selectivity of these copper(ii) complexes could be attributed to the synergic effects of the metal center and the pendant nucleobases.

  8. Local piezoresponse and polarization switching in nucleobase thymine microcrystals

    NASA Astrophysics Data System (ADS)

    Bdikin, Igor; Heredia, Alejandro; Neumayer, Sabine M.; Bystrov, Vladimir S.; Gracio, José; Rodriguez, Brian J.; Kholkin, Andrei L.

    2015-08-01

    Thymine (2-oxy-4-oxy-5 methyl pyrimidine) is one of the four nucleobases of deoxyribonucleic acid (DNA). In the DNA molecule, thymine binds to adenine via two hydrogen bonds, thus stabilizing the nucleic acid structure and is involved in pairing and replication. Here, we show that synthetic thymine microcrystals grown from the solution exhibit local piezoelectricity and apparent ferroelectricity, as evidenced by nanoscale electromechanical measurements via Piezoresponse Force Microscopy. Our experimental results demonstrate significant electromechanical activity and polarization switchability of thymine, thus opening a pathway for piezoelectric and ferroelectric-based applications of thymine and, perhaps, of other DNA nucleobase materials. The results are supported by molecular modeling of polarization switching under an external electric field.

  9. Replacing the Nucleobases in DNA with Designer Molecules

    DTIC Science & Technology

    2007-11-02

    electrophiles or especially strong nucleophiles, and they generally do not change protonation near neutral pH. They offer (to the first approximation) only four...DNA bases can impart important biological activity, such as replacing the methyl group of thymine with fluorine , or the oxygen of guanine with sulfur...nucleobases that lack hydrogen- bonding functionality. The design involves replacing oxygen with fluorine and nitrogen with carbon, and keeping aromaticity

  10. Nucleobase and nucleoside transport and integration into plant metabolism.

    PubMed

    Girke, Christopher; Daumann, Manuel; Niopek-Witz, Sandra; Möhlmann, Torsten

    2014-01-01

    Nucleotide metabolism is an essential process in all living organisms. Besides newly synthesized nucleotides, the recycling (salvage) of partially degraded nucleotides, i.e., nucleosides and nucleobases serves to keep the homeostasis of the nucleotide pool. Both types of metabolites are substrates of at least six families of transport proteins in Arabidopsis thaliana (Arabidopsis) with a total of 49 members. In the last years several members of such transport proteins have been analyzed allowing to present a more detailed picture of nucleoside and nucleobase transport and the physiological function of these processes. Besides functioning in nucleotide metabolism it turned out that individual members of the before named transporters exhibit the capacity to transport a wide range of different substrates including vitamins and phytohormones. The aim of this review is to summarize the current knowledge on nucleobase and nucleoside transport processes in plants and integrate this into nucleotide metabolism in general. Thereby, we will focus on those proteins which have been characterized at the biochemical level.

  11. Proton Transfer in Nucleobases is Mediated by Water

    SciTech Connect

    Khistyaev, Kirill; Golan, Amir; Bravaya, Ksenia B.; Orms, Natalie; Krylov, Anna I.; Ahmed, Musahid

    2013-08-08

    Water plays a central role in chemistry and biology by mediating the interactions between molecules, altering energy levels of solvated species, modifying potential energy proles along reaction coordinates, and facilitating ecient proton transport through ion channels and interfaces. This study investigates proton transfer in a model system comprising dry and microhydrated clusters of nucleobases. With mass spectrometry and tunable vacuum ultraviolet synchrotron radiation, we show that water shuts down ionization-induced proton transfer between nucleobases, which is very ecient in dry clusters. Instead, a new pathway opens up in which protonated nucleo bases are generated by proton transfer from the ionized water molecule and elimination of a hydroxyl radical. Electronic structure calculations reveal that the shape of the potential energy prole along the proton transfer coordinate depends strongly on the character of the molecular orbital from which the electron is removed, i.e., the proton transfer from water to nucleobases is barrierless when an ionized state localized on water is accessed. The computed energetics of proton transfer is in excellent agreement with the experimental appearance energies. Possible adiabatic passage on the ground electronic state of the ionized system, while energetically accessible at lower energies, is not ecient. Thus, proton transfer is controlled electronically, by the character of the ionized state, rather than statistically, by simple energy considerations.

  12. Nucleobase and nucleoside transport and integration into plant metabolism

    PubMed Central

    Girke, Christopher; Daumann, Manuel; Niopek-Witz, Sandra; Möhlmann, Torsten

    2014-01-01

    Nucleotide metabolism is an essential process in all living organisms. Besides newly synthesized nucleotides, the recycling (salvage) of partially degraded nucleotides, i.e., nucleosides and nucleobases serves to keep the homeostasis of the nucleotide pool. Both types of metabolites are substrates of at least six families of transport proteins in Arabidopsis thaliana (Arabidopsis) with a total of 49 members. In the last years several members of such transport proteins have been analyzed allowing to present a more detailed picture of nucleoside and nucleobase transport and the physiological function of these processes. Besides functioning in nucleotide metabolism it turned out that individual members of the before named transporters exhibit the capacity to transport a wide range of different substrates including vitamins and phytohormones. The aim of this review is to summarize the current knowledge on nucleobase and nucleoside transport processes in plants and integrate this into nucleotide metabolism in general. Thereby, we will focus on those proteins which have been characterized at the biochemical level. PMID:25250038

  13. Quantitative Intensity-Based FRET Approaches—A Comparative Snapshot

    PubMed Central

    Zeug, André; Woehler, Andrew; Neher, Erwin; Ponimaskin, Evgeni G.

    2012-01-01

    Förster resonance energy transfer (FRET) has become an important tool for analyzing different aspects of interactions among biological macromolecules in their native environments. FRET analysis has also been successfully applied to study the spatiotemporal regulation of various cellular processes using genetically encoded FRET-based biosensors. A variety of procedures have been described for measuring FRET efficiency or the relative abundance of donor-acceptor complexes, based on analysis of the donor fluorescence lifetime or the spectrally resolved fluorescence intensity. The latter methods are preferable if one wants to not only quantify the apparent FRET efficiencies but also calculate donor-acceptor stoichiometry and observe fast dynamic changes in the interactions among donor and acceptor molecules in live cells. This review focuses on a comparison of the available intensity-based approaches used to measure FRET. We discuss their strengths and weaknesses in terms of FRET quantification, and provide several examples of biological applications. PMID:23199910

  14. A transition-state interaction shifts nucleobase ionization toward neutrality to facilitate small ribozyme catalysis.

    PubMed

    Liberman, Joseph A; Guo, Man; Jenkins, Jermaine L; Krucinska, Jolanta; Chen, Yuanyuan; Carey, Paul R; Wedekind, Joseph E

    2012-10-17

    One mechanism by which ribozymes can accelerate biological reactions is by adopting folds that favorably perturb nucleobase ionization. Herein we used Raman crystallography to directly measure pK(a) values for the Ade38 N1 imino group of a hairpin ribozyme in distinct conformational states. A transition-state analogue gave a pK(a) value of 6.27 ± 0.05, which agrees strikingly well with values measured by pH-rate analyses. To identify the chemical attributes that contribute to the shifted pK(a), we determined crystal structures of hairpin ribozyme variants containing single-atom substitutions at the active site and measured their respective Ade38 N1 pK(a) values. This approach led to the identification of a single interaction in the transition-state conformation that elevates the base pK(a) > 0.8 log unit relative to the precatalytic state. The agreement of the microscopic and macroscopic pK(a) values and the accompanying structural analysis supports a mechanism in which Ade38 N1(H)+ functions as a general acid in phosphodiester bond cleavage. Overall the results quantify the contribution of a single electrostatic interaction to base ionization, which has broad relevance for understanding how RNA structure can control chemical reactivity.

  15. Determination of pKa values for deprotonable nucleobases in short model oligonucleotides.

    PubMed

    González-Olvera, Julio C; Martínez-Reyes, José; González-Jasso, Eva; Pless, Reynaldo C

    2015-11-01

    The deprotonation of ionizable nucleobases centrally placed in short model oligonucleotides was examined under different physical conditions, using UV absorption spectroscopy. The oligonucleotide sequences were designed so that only the central base would be ionized over the pH range examined. pKa values of 9.90±0.01 and 9.34±0.04 were determined for the guanine group in the oligomer d-ACAGCAC and 2'-deoxyguanosine, respectively, both at 25°C and 0.1M NaCl. Lengthening the oligonucleotide up to the tridecamer stage further increases the pKa of the central guanine moiety. Electrolyte concentration, temperature, and mixed water-ethanol solvents affect the acidity of the central base. Changes in the sequence surrounding the central guanine can also have a significant effect, especially in the case of strongly stacking sequences. The pKa values were also determined for the hepta(2'-O-methyl)ribonucleotide and the heptamer PNA of identical sequence, as well as for oligodeoxyribonucleotides with different deprotonable bases, viz. thymine, uracil, or hypoxanthine, in the central position. The results are interpreted in terms of the electric-field effect exerted on the departing proton by the negative electric charges located on the internucleotide phosphate groups, and calculations show this effect to approximately explain the magnitude of the pKa difference observed between the deoxyriboheptanucleotide and its electroneutral PNA analogue.

  16. A Transition-State Interaction Shifts Nucleobase Ionization Toward Neutrality to Facilitate Small Ribozyme Catalysis

    PubMed Central

    Liberman, Joseph A.; Guo, Man; Jenkins, Jermaine L.; Krucinska, Jolanta; Chen, Yuanyuan; Carey, Paul R.; Wedekind, Joseph E.

    2012-01-01

    One mechanism by which ribozymes can accelerate biological reactions is by adopting folds that favorably perturb nucleobase ionization. Herein we used Raman crystallography to directly measure pKa values for the Ade38 N1-imino group of a hairpin ribozyme in distinct conformational states. A transition-state analogue gave a pKa value of 6.27 ± 0.05, which agrees strikingly well with values measured by pH-rate analyses. To identify the chemical attributes that contribute to the shifted pKa we determined crystal structures of hairpin ribozyme variants containing single-atom substitutions at the active site and measured their respective Ade38 N1 pKa values. This approach led to the identification of a single interaction in the transition-state conformation that elevates the base pKa >0.8 log units relative to the precatalytic state. The agreement of the microscopic and macroscopic pKa values and the accompanying structural analysis support a mechanism in which Ade38 N1(H)+ functions as a general acid in phosphodiester bond cleavage. Overall the results quantify the contribution of a single electrostatic interaction to base ionization, which has broad relevance for understanding how RNA structure can control chemical reactivity. PMID:22989273

  17. Efficient self-assembly in water of long noncovalent polymers by nucleobase analogues.

    PubMed

    Cafferty, Brian J; Gállego, Isaac; Chen, Michael C; Farley, Katherine I; Eritja, Ramon; Hud, Nicholas V

    2013-02-20

    Molecular self-assembly is widely appreciated to result from a delicate balance between several noncovalent interactions and solvation effects. However, current design approaches for achieving self-assembly in water with small, synthetic molecules do not consider all aspects of the hydrophobic effect, in particular the requirement of surface areas greater than 1 nm(2) for an appreciable free energy of hydration. With the concept of a minimum hydrophobic surface area in mind, we designed a system that achieves highly cooperative self-assembly in water. Two weakly interacting low-molecular-weight monomers (cyanuric acid and a modified triaminopyrimidine) are shown to form extremely long supramolecular polymer assemblies that retain water solubility. The complete absence of intermediate assemblies means that the observed equilibrium is between free monomers and supramolecular assemblies. These observations are in excellent agreement with literature values for the free energy of nucleic acid base interactions as well as the calculated free energy penalty for the exposure of hydrophobic structures in water. The results of our study have implications for the design of new self-assembling structures and hydrogel-forming molecules and may provide insights into the origin of the first RNA-like polymers.

  18. Nonenzymatic template-directed reactions on altritol oligomers, preorganized analogues of oligonucleotides

    NASA Technical Reports Server (NTRS)

    Kozlov, I. A.; Zielinski, M.; Allart, B.; Kerremans, L.; Van Aerschot, A.; Busson, R.; Herdewijn, P.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    2000-01-01

    Altritol nucleic acids (ANAs) are RNA analogues with a phosphorylated D-altritol backbone. The nucleobase is attached at the 2-(S)-position of the carbohydrate moiety. We report that ANA oligomers are superior to the corresponding DNA, RNA, and HNA (hexitol nucleic acid) in supporting efficient nonenzymatic template-directed synthesis of complementary RNAs from nucleoside-5'-phosphoro-2-methyl imidazolides. Activated ANA and HNA monomers do not oligomerize efficiently on DNA, RNA, HNA, or ANA templates.

  19. A Re-Examination of Nucleobases in Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Martins, Z.; Botta, O.; de Vries, M.; Becker, L.; Ehrenfreund, E.

    The biomolecular building blocks of life, as we know it, are amino acids, purines and pyrimidines. The latter two form the bases of DNA and RNA, molecules that are used in the storage, transcription and translation of genetic information in all terrestrial organisms. A dedicated search for these compounds in meteorites can shed light on the origins of life in two ways: (i) Results can help assess the plausibility of extraterrestrial formation of prebiotic molecules followed by their meteoritic delivery to the early Earth. (ii) Such studies can also provide insights into possible prebiotic synthetic routes. We will search for these compounds in selected carbonaceous chondrites using formic acid extraction and reverse phase high performance liquid chromatography (HPLC) to isolate specific nucleobases from the bulk meteorite material as previously reported [1,2,3]. We will also use a new technique, resonant two-photon ionization mass spectrometry (R2PI) that can, not only identify organic compounds by their mass, but at the same time by their vibronic spectroscopy [4]. R2PI dramatically enhances the specificity for certain compounds (e.g. amino acids, nucleobases) and allows for distinction of structural isomers, tautomers and enantiomers as well as providing additional information due to isotope shifts. The optical spectroscopy can thus help us to further discriminate between terrestrial and extraterrestrial nucleobases. References: [1] Van Der Velden, W. and Schwarts, A. W. (1977) Geochim. Cosmochim. Acta, 41, 961-968. [2] Stoks, P. G. and Schwartz, A. W. (1979a) Nature, 282, 709-10. [3] Glavin, D. P. and Bada, J. L. (2004) In Lunar and Planetary Science XXXV, Abstract # 1022, Houston. [4] Nir, E., Grace, L. I., Brauer, B. and de Vries, M. S. (1999) Journal of the American Chemical Society, 121, 4896-4897.

  20. Investigation of Fretting by Microscopic Observation

    NASA Technical Reports Server (NTRS)

    Godfrey, Douglas

    1951-01-01

    An experimental investigation, using microscopic observation and color motion photomicrographs of the action, was conducted to determine the cause of fretting. Glass and other noncorrosive materials, as well as metals, were used as specimens. A very simple apparatus vibrated convex surfaces in contact with stationary flat surfaces at frequencies of 120 cycles or less than l cycle per second, an amplitude of 0.0001 inch, and load of 0.2 pound.

  1. High-Frequency, High-Temperature Fretting Experiments

    NASA Technical Reports Server (NTRS)

    Matlik, J. F.; Farris, T. N.; Haake, F. K.; Swanson, G. R.; Duke, G. C.

    2005-01-01

    Fretting is a structural damage mechanism observed when two nominally clamped surfaces are subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high-temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact. These contact stresses drive crack nucleation and propagation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). To diagnose the threat that small and relatively undetectable fretting cracks pose to damage tolerance and structural integrity of in-service components, the objective of this work is to develop a well-characterized experimental fretting rig capable of investigating fretting behavior of advanced aerospace alloys subjected to load and temperature conditions representative of such turbomachinery components.

  2. The role of oxidation in the fretting wear process

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1980-01-01

    Fretting experiments were conducted on titanium, a series of Ni-Cr-Al alloys and on some high temperature turbine alloys at room temperature and at elevated temperatures in air and in various inert environments. It was found that, depending on temperature and environment, the fretting behavior of the materials examined could be classified according to four general types of behavior. Briefly, these types of behavior were: (1) the complete absence of oxidation, as in inert environments, generally leading to low rates of fretting wear but high fretting friction; (2) gradual attrition of surface oxide with each fretting stroke, found in these experiments to operate in concert with other dominating mechanisms; (3) rapid oxidation at surface fatigue damage sites, resulting in undermining and rapid disintegration of the load bearing surface; and (4) the formation of coherent, protective oxide film, resulting in low rates of fretting wear. An analytical model predicting conditions favorable to the fourth type of behavior was outlined.

  3. FRET-based glucose monitoring for bioprocessing

    NASA Astrophysics Data System (ADS)

    Bartolome, Amelita; Smalls-Mantey, Lauren; Lin, Debora; Rao, Govind; Tolosa, Leah

    2006-02-01

    The glucose-mediated conformational changes in the glucose binding protein (GBP) have been exploited in the development of fluorescence based glucose sensors. The fluorescence response is generated by a polarity sensitive dye attached to a specific site. Such fluorescent sensors respond to submicromolar glucose at diffusion-controlled rates mimicking the wild type. However, such sensors have been limited to in vitro glucose sensing because of the preliminary dye-labeling step. In the study described here, the dye-labeling step is omitted by genetically encoding the GBP with two green fluorescent mutants namely, the green fluorescent protein (GFP) and the yellow fluorescent protein (YFP) in the N- and C-terminal ends, respectively. These two GFP mutants comprise a fluorescence resonance energy transfer (FRET) donor and acceptor pair. Thus, when glucose binds with GBP, the conformational changes affect the FRET efficiency yielding a dose-dependent response. A potential application for this FRET-based glucose biosensor is online glucose sensing in bioprocessing and cell culture. This was demonstrated by the measurement of glucose consumption in yeast fermentation. Further development of this system should yield in vivo measurement of glucose in bioprocesses.

  4. Effect of humidity on fretting wear of several pure metals

    NASA Technical Reports Server (NTRS)

    Goto, H.; Buckley, D. H.

    1984-01-01

    Fretting wear experiments with several pure metals were conducted in air at various relative humidity levels. The materials used were iron, aluminum, copper, silver, chromium, titanium, and nickel. Each pure metal had a maximum fretting wear volume at a specific humidity level RH sub max that was not dependent on mechanical factors such as contact load, fretting amplitude, and frequency in the ranges studied. The weight loss due to fretting wear at RH sub max for each pure metal decreased with increasing heat of oxygen adsorption on the metal, indicating that adhesive wear dominated at RH sub max.

  5. Discrimination between FRET and non-FRET quenching in a photochromic CdSe quantum dot/dithienylethene dye system

    NASA Astrophysics Data System (ADS)

    Dworak, Lars; Reuss, Andreas J.; Zastrow, Marc; Rück-Braun, Karola; Wachtveitl, Josef

    2014-11-01

    A photochromic Förster resonance energy transfer (FRET) system was employed to disentangle the fluorescence quenching mechanisms in quantum dot/photochromic dye hybrids. In the off-state of the dye the main quenching mechanism is FRET whereas the moderate quenching in the on-state is due to non-FRET pathways opened up upon assembly.A photochromic Förster resonance energy transfer (FRET) system was employed to disentangle the fluorescence quenching mechanisms in quantum dot/photochromic dye hybrids. In the off-state of the dye the main quenching mechanism is FRET whereas the moderate quenching in the on-state is due to non-FRET pathways opened up upon assembly. Electronic supplementary information (ESI) available: QD and DTE synthesis, preparation of the DTE/QD coupled system, TEM image of the nanocrystals and experimental details. See DOI: 10.1039/c4nr05144k

  6. Two-Photon-Induced Fluorescence of Isomorphic Nucleobase Analogs

    PubMed Central

    Lane, Richard S. K.; Jones, Rosemary; Sinkeldam, Renatus W.

    2014-01-01

    Five isomorphic fluorescent uridine mimics have been subjected to two-photon (2P) excitation analysis to investigate their potential applicability as non-perturbing probes for the single-molecule detection of nucleic acids. We find that small structural differences can cause major changes in the two-photon excitation probability, with the 2P cross sections varying by over one order of magnitude. Two of the probes, both furan-modified uridine analogs, have the highest 2P cross sections (3.8 GM and 7.6 GM) reported for nucleobase analogs, using a conventional Ti:sapphire laser for excitation at 690 nm; they also have the lowest emission quantum yields. In contrast, the analogs with the highest reported quantum yields have the lowest 2P cross sections. The structure-photophysical property relationship presented here is a first step towards the rational design of emissive nucleobase analogs with controlled 2P characteristics. The results demonstrate the potential for major improvements through judicious structural modifications. PMID:24604669

  7. Mg2+ ions: do they bind to nucleobase nitrogens?

    PubMed Central

    Leonarski, Filip; D'Ascenzo, Luigi; Auffinger, Pascal

    2017-01-01

    Given the many roles proposed for Mg2+ in nucleic acids, it is essential to accurately determine their binding modes. Here, we surveyed the PDB to classify Mg2+ inner-sphere binding patterns to nucleobase imine N1/N3/N7 atoms. Among those, purine N7 atoms are considered to be the best nucleobase binding sites for divalent metals. Further, Mg2+ coordination to N7 has been implied in several ribozyme catalytic mechanisms. We report that Mg2+ assigned near imine nitrogens derive mostly from poor interpretations of electron density patterns and are most often misidentified Na+, K+, NH4+ ions, water molecules or spurious density peaks. Consequently, apart from few documented exceptions, Mg2+ ions do not bind to N7 atoms. Without much of a surprise, Mn2+, Zn2+ and Cd2+, which have a higher affinity for nitrogens, may contact N7 atoms when present in crystallization buffers. In this respect, we describe for the first time a potential Zn2+ ribosomal binding site involving two purine N7 atoms. Further, we provide a set of guidelines to help in the assignment of Mg2+ in crystallographic, cryo-EM, NMR and model building practices and discuss implications of our findings related to ion substitution experiments. PMID:27923930

  8. In silico FRET from simulated dye dynamics

    NASA Astrophysics Data System (ADS)

    Hoefling, Martin; Grubmüller, Helmut

    2013-03-01

    Single molecule fluorescence resonance energy transfer (smFRET) experiments probe molecular distances on the nanometer scale. In such experiments, distances are recorded from FRET transfer efficiencies via the Förster formula, E=1/(1+(). The energy transfer however also depends on the mutual orientation of the two dyes used as distance reporter. Since this information is typically inaccessible in FRET experiments, one has to rely on approximations, which reduce the accuracy of these distance measurements. A common approximation is an isotropic and uncorrelated dye orientation distribution. To assess the impact of such approximations, we present the algorithms and implementation of a computational toolkit for the simulation of smFRET on the basis of molecular dynamics (MD) trajectory ensembles. In this study, the dye orientation dynamics, which are used to determine dynamic FRET efficiencies, are extracted from MD simulations. In a subsequent step, photons and bursts are generated using a Monte Carlo algorithm. The application of the developed toolkit on a poly-proline system demonstrated good agreement between smFRET simulations and experimental results and therefore confirms our computational method. Furthermore, it enabled the identification of the structural basis of measured heterogeneity. The presented computational toolkit is written in Python, available as open-source, applicable to arbitrary systems and can easily be extended and adapted to further problems. Catalogue identifier: AENV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPLv3, the bundled SIMD friendly Mersenne twister implementation [1] is provided under the SFMT-License. No. of lines in distributed program, including test data, etc.: 317880 No. of bytes in distributed program, including test data, etc.: 54774217 Distribution format: tar.gz Programming language

  9. Imaging protein interactions by FRET microscopy: FRET measurements by acceptor photobleaching.

    PubMed

    Verveer, Peter J; Rocks, Oliver; Harpur, Ailsa G; Bastiaens, Philippe I H

    2006-11-01

    This protocol describes the detection of fluorescence resonance energy transfer (FRET) by measuring the quenching of donor emission alone. As opposed to sensitized emission measurements, photobleaching can be performed with high selectivity of the acceptor because absorption spectra are steep at their red edge, allowing the acceptor to be bleached without excitation of the donor. When using acceptor photobleaching FRET measurements, care should be taken that the photochemical product of the bleached acceptor does not have residual absorption at the donor emission and, more importantly, that it does not fluoresce in the donor spectral region. Because of mass movement of protein during the extended time required for photobleaching (typically 1-20 min), it is preferable to perform this type of FRET determination on fixed cell samples. Live-cell FRET measurements based only on donor fluorescence are more feasible using fluorescence lifetime imaging (FLIM), because lifetimes are independent of probe concentration and light path length. The former is not easy to determine in cells, and the latter means that cell shape is not a factor.

  10. Purine nucleobase transport in human erythrocytes. Reinvestigation with a novel "inhibitor-stop" assay.

    PubMed

    Domin, B A; Mahony, W B; Zimmerman, T P

    1988-07-05

    A novel "inhibitor-stop" method for the determination of initial rates of purine nucleobase transport in human erythrocytes has been developed, based on the addition of seven assay volumes of cold 19 mM papaverine to terminate influx. In view of our finding that the initial velocities of adenine, guanine, and hypoxanthine influx into human erythrocytes were linear for only 4-6 s at 37 degrees C, the present method has been used to reexamine the kinetics of purine nucleobase transport in these cells. Initial influx rates of all three purine nucleobases were shown to be the result of concurrent facilitated and nonfacilitated diffusion. The nonfacilitated influx rates could be estimated either from the linear concentration dependence of nucleobase influx at high concentrations of permeant or from residual influx rates which were not inhibited by the presence of co-permeants. Appropriate corrections for nonfacilitated diffusion were made to the influx rates observed at low nucleobase concentrations. Kinetic analyses indicated that adenine (Km = 13 +/- 1 microM, n = 7), guanine (Km = 37 +/- 2 microM, n = 5), and hypoxanthine (Km = 180 +/- 12 microM, n = 6) were mutually competitive substrates for transport. The Ki values obtained with each nucleobase as an inhibitor of the influx of the other nucleobases were similar to their respective Km values for influx. Furthermore, the transport of the purine nucleobases was not inhibited by nucleosides (uridine, inosine) or by inhibitors of nucleoside transport (6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, dilazep, dipyridamole). It is concluded that all three purine nucleobases share a common facilitated transport system in human erythrocytes which is functionally distinct from the nucleoside transporter.

  11. Click Reaction on Solid Phase Enables High Fidelity Synthesis of Nucleobase-Modified DNA.

    PubMed

    Tolle, Fabian; Rosenthal, Malte; Pfeiffer, Franziska; Mayer, Günter

    2016-03-16

    The post-synthetic functionalization of nucleic acids via click chemistry (CuAAC) has seen tremendous implementation, extending the applicability of nucleobase-modified nucleic acids in fields like fluorescent labeling, nanotechnology, and in vitro selection. However, the production of large quantities of high-density functionalized material via solid phase synthesis has been hampered by oxidative by-product formation associated with the alkaline workup conditions. Herein, we describe a rapid and cost-effective protocol for the high fidelity large-scale production of nucleobase-modified nucleic acids, exemplified with a recently described nucleobase-modified aptamer.

  12. Structural evolution of nucleobase clusters using force field models and density functional theory

    NASA Astrophysics Data System (ADS)

    Chiriki, Siva; Dagar, Anuradha; Bulusu, Satya S.

    2015-08-01

    We report global minima for all nucleobase clusters (nucleobase)n, with 2 ≤ n ≤ 4. The global minima are predicted using force field based global optimization methods followed by local optimizations using the dispersion corrected DFT method. In this study, we use both non-polarizable (OPLS-AA) and polarizable (AMOEBA) force fields for global optimization. Here we emphasize on the reliability of AMOEBA force field used for predicting accurate global minima of nucleobase clusters. The average deviation in binding energies using AMOEBA is 3 kcal/mol from the DFT while the average deviation using OPLS-AA is 8 kcal/mol from DFT.

  13. Optofluidic FRET lasers using aqueous quantum dots as donors.

    PubMed

    Chen, Qiushu; Kiraz, Alper; Fan, Xudong

    2016-01-21

    An optofluidic FRET (fluorescence resonance energy transfer) laser is formed by putting FRET pairs inside a microcavity acting as a gain medium. This integration of an optofluidic laser and the FRET mechanism provides novel research frontiers, including sensitive biochemical analysis and novel photonic devices, such as on-chip coherent light sources and bio-tunable lasers. Here, we investigated an optofluidic FRET laser using quantum dots (QDs) as FRET donors. We achieved lasing from Cy5 as the acceptor in a QD-Cy5 pair upon excitation at 450 nm, where Cy5 has negligible absorption by itself. The threshold was approximately 14 μJ mm(-2). The demonstrated capability of QDs as donors in the FRET laser greatly improves the versatility of optofluidic laser operation due to the broad and large absorption cross section of the QDs in the blue and UV spectral regions. The excitation efficiency of the acceptor molecules through a FRET channel was also analyzed, showing that the energy transfer rate and the non-radiative Auger recombination rate of QDs play a significant role in FRET laser performance.

  14. Remote field eddy current inspection of support plate fretting wear

    SciTech Connect

    Shatat, A.; Atherton, D.L.

    1997-03-01

    This article demonstrates how the remote field eddy current technique might be extended to measure support plate fretting wear in heat exchanger tubes. A finite element analysis was used to examine the plate`s effect on the eddy current signal. Experimental data lend support to a suggested multifrequency method for sizing fretting grooves.

  15. EPR Assembly of Microgel for FRET Imaging of Breast Cancer

    DTIC Science & Technology

    2008-04-01

    AD_________________ Award Number: W81XWH-05-1-0342 TITLE: EPR Assembly of Microgel for FRET...4. TITLE AND SUBTITLE EPR Assembly of Microgel for FRET Imaging of Breast Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-05-1-0342 5c

  16. Optofluidic FRET Lasers Using Aqueous Quantum Dots as Donors

    PubMed Central

    Chen, Qiushu; Kiraz, Alper; Fan, Xudong

    2015-01-01

    An optofluidic FRET (fluorescence resonance energy transfer) laser is formed by putting FRET pairs inside a microcavity acting as gain medium. This integration of optofluidic laser and FRET mechanism provides novel research frontiers, including sensitive biochemical analysis and novel photonic devices, such as on-chip coherent light sources and bio-tunable lasers. Here we investigated an optofluidic FRET laser using quantum dots (QDs) as FRET donors. We achieved lasing from Cy5 as the acceptor in the QD-Cy5 pair when excited at 450 nm where Cy5 has negligible absorption by itself. The threshold was approximately 14 µJ/mm2. The demonstrated capability of QDs as the donor in a FRET laser greatly improves the versatility of optofluidic laser operation due to the broad and large absorption cross section of QDs in the blue and UV spectral region. The excitation efficiency of the acceptor molecules through FRET channel was also analyzed, showing that the energy transfer rate and the non-radiative Auger recombination rate of QDs plays a significant role in FRET laser performance. PMID:26659274

  17. BOBA FRET: Bootstrap-Based Analysis of Single-Molecule FRET Data

    PubMed Central

    König, Sebastian L. B.; Hadzic, Mélodie; Fiorini, Erica; Börner, Richard; Kowerko, Danny; Blanckenhorn, Wolf U.; Sigel, Roland K. O.

    2013-01-01

    Time-binned single-molecule Förster resonance energy transfer (smFRET) experiments with surface-tethered nucleic acids or proteins permit to follow folding and catalysis of single molecules in real-time. Due to the intrinsically low signal-to-noise ratio (SNR) in smFRET time traces, research over the past years has focused on the development of new methods to extract discrete states (conformations) from noisy data. However, limited observation time typically leads to pronounced cross-sample variability, i.e., single molecules display differences in the relative population of states and the corresponding conversion rates. Quantification of cross-sample variability is necessary to perform statistical testing in order to assess whether changes observed in response to an experimental parameter (metal ion concentration, the presence of a ligand, etc.) are significant. However, such hypothesis testing has been disregarded to date, precluding robust biological interpretation. Here, we address this problem by a bootstrap-based approach to estimate the experimental variability. Simulated time traces are presented to assess the robustness of the algorithm in conjunction with approaches commonly used in thermodynamic and kinetic analysis of time-binned smFRET data. Furthermore, a pair of functionally important sequences derived from the self-cleaving group II intron Sc.ai5γ (d3'EBS1*/IBS1*) is used as a model system. Through statistical hypothesis testing, divalent metal ions are shown to have a statistically significant effect on both thermodynamic and kinetic aspects of their interaction. The Matlab source code used for analysis (bootstrap-based analysis of smFRET data, BOBA FRET), as well as a graphical user interface, is available via http://www.aci.uzh.ch/rna/. PMID:24386343

  18. Large Scale Bacterial Colony Screening of Diversified FRET Biosensors

    PubMed Central

    Litzlbauer, Julia; Schifferer, Martina; Ng, David; Fabritius, Arne; Thestrup, Thomas; Griesbeck, Oliver

    2015-01-01

    Biosensors based on Förster Resonance Energy Transfer (FRET) between fluorescent protein mutants have started to revolutionize physiology and biochemistry. However, many types of FRET biosensors show relatively small FRET changes, making measurements with these probes challenging when used under sub-optimal experimental conditions. Thus, a major effort in the field currently lies in designing new optimization strategies for these types of sensors. Here we describe procedures for optimizing FRET changes by large scale screening of mutant biosensor libraries in bacterial colonies. We describe optimization of biosensor expression, permeabilization of bacteria, software tools for analysis, and screening conditions. The procedures reported here may help in improving FRET changes in multiple suitable classes of biosensors. PMID:26061878

  19. GFP-based FRET analysis in live cells.

    PubMed

    Takanishi, Christina L; Bykova, Ekaterina A; Cheng, Wei; Zheng, Jie

    2006-05-26

    Fluorescence resonance energy transfer (FRET) is a widely utilized optical technique for measuring small distances of 1-10 nm in live cells. In recent years, its application has been greatly popularized by the discovery of green fluorescent protein (GFP) and many improved variants which make good donor-acceptor fluorophore pairs. GFP-based proteins are structurally stable, relatively inert, and can be reliably attached to points of interest. The combination of easy access to the GFP-based FRET technique and its obvious usefulness in many applications can lead to complacency. Potential problems such as light contaminants, e.g., bleed-through and cross-talk, and inconsistent donor and acceptor concentrations are easily overlooked and can lead to errors in FRET calculation and data interpretation. In this article, we outline possible pitfalls of GFP-based FRET and approaches that address these issues, including a "Spectra FRET" technique that can be easily applied to live cell studies.

  20. Probing protein-lipid interactions by FRET between membrane fluorophores

    NASA Astrophysics Data System (ADS)

    Trusova, Valeriya M.; Gorbenko, Galyna P.; Deligeorgiev, Todor; Gadjev, Nikolai

    2016-09-01

    Förster resonance energy transfer (FRET) is a powerful fluorescence technique that has found numerous applications in medicine and biology. One area where FRET proved to be especially informative involves the intermolecular interactions in biological membranes. The present study was focused on developing and verifying a Monte-Carlo approach to analyzing the results of FRET between the membrane-bound fluorophores. This approach was employed to quantify FRET from benzanthrone dye ABM to squaraine dye SQ-1 in the model protein-lipid system containing a polycationic globular protein lysozyme and negatively charged lipid vesicles composed of phosphatidylcholine and phosphatidylglycerol. It was found that acceptor redistribution between the lipid bilayer and protein binding sites resulted in the decrease of FRET efficiency. Quantification of this effect in terms of the proposed methodology yielded both structural and binding parameters of lysozyme-lipid complexes.

  1. Ice and debris in the fretted terrain, Mars

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1984-01-01

    Viking moderate and high resolution images along the northern highland margin have been monoscopically and stereoscopically examined in order to study the development of fretted terrain. Young debris aprons around mesas and debris in tributary channels create typical fretted morphologies identical to ancient fretted morphologies. This suggests that the debris-apron process operating relatively recently also shaped the fretted terrain of the past. The debris aprons were lubricated by interstitial ice derived from ground ice. Abundant collapse features suggest that ground ice existed and may have flowed in places. The fretting process has been active for a long period and may be active today. The location of debris aprons in two latitudinal belts may be controlled by atmospheric conditions that permit ice in the region to remain in the ground below depths of about one meter and temperatures warm enough for ice to flow.

  2. FLIM-FRET for Cancer Applications

    PubMed Central

    Rajoria, Shilpi; Zhao, Lingling; Intes, Xavier; Barroso, Margarida

    2015-01-01

    Optical imaging assays, especially fluorescence molecular assays, are minimally invasive if not completely noninvasive, and thus an ideal technique to be applied to live specimens. These fluorescence imaging assays are a powerful tool in biomedical sciences as they allow the study of a wide range of molecular and physiological events occurring in biological systems. Furthermore, optical imaging assays bridge the gap between the in vitro cell-based analysis of subcellular processes and in vivo study of disease mechanisms in small animal models. In particular, the application of Förster resonance energy transfer (FRET) and fluorescence lifetime imaging (FLIM), well-known techniques widely used in microscopy, to the optical imaging assay toolbox, will have a significant impact in the molecular study of protein-protein interactions during cancer progression. This review article describes the application of FLIM-FRET to the field of optical imaging and addresses their various applications, both current and potential, to anti-cancer drug delivery and cancer research. PMID:26023359

  3. First Principles Study of Nuclear Quadrupole Interactions in Single and Double Chain DNA and Solid Nucleobases

    NASA Astrophysics Data System (ADS)

    Das, T. P.; Pink, R. H.; Badu, S. R.; Dubey, Archana; Scheicher, R. H.; Saha, H. P.; Chow, Lee; Huang, M. B.

    2009-03-01

    Nuclear Quadrupole Interactions (NQI) of ^17O, ^14N and ^2H nuclei have been studied for free nucleobases and nucleobases in single strand and double strand DNA and in solid state. Our first-principles investigations were carried out using the Gaussian 2003 set of programs to implement the Hartree-Fock procedure combined with many-body effects included using many-body perturbation theory. As expected for NQI in general, many-body effects are found to be small. Results will be presented for the quadrupole coupling constants (e^2qQ) and asymmetry parameters (η) for the nucleobases in the various environments. Trends in e^2qQ and η in the different environments will be discussed. In the case of the solid nucleobases, comparisons will be made with available experimental data [1] for ^17O nuclei.[3pt] [1] Gang Wu et al., J. Am. Chem. Soc. 124, 1768 (2002)

  4. Which Electronic and Structural Factors Control the Photostability of DNA and RNA Purine Nucleobases?

    NASA Astrophysics Data System (ADS)

    Pollum, Marvin; Reichardt, Christian; Crespo-Hernández, Carlos E.; Martínez-Fernández, Lara; Corral, Inés; Rauer, Clemens; Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2015-06-01

    Following ultraviolet excitation, the canonical purine nucleobases, guanine and adenine, are able to efficiently dissipate the absorbed energy within hundreds of femtoseconds. This property affords these nucleobases with great photostability. Conversely, non-canonical purine nucleobases exhibit high fluorescence quantum yields or efficiently populate long-lived triplet excited states from which chemistry can occur. Using femtosecond broadband transient absorption spectroscopy in combination with ab initio static and surface hopping dynamics simulations we have determined the electronic and structural factors that regulate the excited state dynamics of the purine nucleobase derivatives. Importantly, we have uncovered that the photostability of the guanine and adenine nucleobases is not due to the structure of the purine core itself and that the substituent at the C6 position of the purine nucleobase plays a more important role than that at the C2 position in the ultrafast relaxation of deleterious electronic energy. [The authors acknowledge the CAREER program of the National Science Foundation (Grant No. CHE-1255084) for financial support.

  5. Understanding FRET as a Research Tool for Cellular Studies

    PubMed Central

    Shrestha, Dilip; Jenei, Attila; Nagy, Péter; Vereb, György; Szöllősi, János

    2015-01-01

    Communication of molecular species through dynamic association and/or dissociation at various cellular sites governs biological functions. Understanding these physiological processes require delineation of molecular events occurring at the level of individual complexes in a living cell. Among the few non-invasive approaches with nanometer resolution are methods based on Förster Resonance Energy Transfer (FRET). FRET is effective at a distance of 1–10 nm which is equivalent to the size of macromolecules, thus providing an unprecedented level of detail on molecular interactions. The emergence of fluorescent proteins and SNAP- and CLIP- tag proteins provided FRET with the capability to monitor changes in a molecular complex in real-time making it possible to establish the functional significance of the studied molecules in a native environment. Now, FRET is widely used in biological sciences, including the field of proteomics, signal transduction, diagnostics and drug development to address questions almost unimaginable with biochemical methods and conventional microscopies. However, the underlying physics of FRET often scares biologists. Therefore, in this review, our goal is to introduce FRET to non-physicists in a lucid manner. We will also discuss our contributions to various FRET methodologies based on microscopy and flow cytometry, while describing its application for determining the molecular heterogeneity of the plasma membrane in various cell types. PMID:25815593

  6. Quantum dots as FRET acceptors for highly sensitive multiplexing immunoassays

    NASA Astrophysics Data System (ADS)

    Geissler, Daniel; Hildebrandt, Niko; Charbonnière, Loïc J.; Ziessel, Raymond F.; Löhmannsröben, Hans-Gerd

    2009-02-01

    Homogeneous immunoassays have the benefit that they do not require any time-consuming separation steps. FRET is one of the most sensitive homogeneous methods used for immunoassays. Due to their extremely strong absorption over a broad wavelength range the use of quantum dots as FRET acceptors allows for large Foerster radii, an important advantage for assays in the 5 to 10 nm distance range. Moreover, because of their size-tunable emission, quantum dots of different sizes can be used with a single donor for the detection of different analytes (multiplexing). As the use of organic dyes with short fluorescence decay times as donors is known to be inefficient with quantum dot acceptors, lanthanide complexes with long luminescence decays are very efficient alternatives. In this contribution we present the application of commercially available biocompatible CdSe/ZnS core/shell quantum dots as multiplexing FRET acceptors together with a single terbium complex as donor in a homogeneous immunoassay system. Foerster radii of 10 nm and FRET efficiencies of 75 % are demonstrated. The high sensitivity of the terbium-toquantum dot FRET assay is shown by sub-100-femtomolar detection limits for two different quantum dots (emitting at 605 and 655 nm) within the same biotin-streptavidin assay. Direct comparison to the FRET immunoassay "gold standard" (FRET from Eu-TBP to APC) yields a three orders of magnitude sensitivity improvement, demonstrating the big advantages of quantum dots not only for multiplexing but also for highly sensitive nanoscale analysis.

  7. Fret wear mediation of NIRCam filter wheel assembly

    NASA Astrophysics Data System (ADS)

    Privári, Béla I.

    2011-10-01

    We will discuss a fret wear solution developed for the James Webb Space Telescope NIRCam filter wheel assembly by implementation of a hard coating. With mechanisms and structures designed for space flight application, titanium is often selected as the choice material of construction. Titanium offers a low-density high strength material that is good for use with many optical instruments due to its' favorable thermal properties. An important factor to consider with titanium mechanisms and structures are component fits and the vibration environment that must be survived during launch. In many instances, small (slip) fits between titanium components can cause fret wear during launch induced vibration. Titanium is particularly susceptible to fret wear, although other materials also demonstrate the fret wear. Fretting is adhesive failure of a material that experiences impact and micro-slip with an adjacent part. The mechanism of fret wear involves small particles that are pulled from the surface of parts that turn into hard oxides that further accelerate the wear between the parts. To mitigate fret wear, the mechanism or structure can be designed to eliminate all slip fits altogether, lubricants may be added to the wear surfaces or hard coatings can be applied to the wear surfaces when the other approaches are not feasible. For the NIRCam filter wheel assembly, which must operate at 35K and remain optically clean, only hard coatings are feasible. A discussion of several coating alternatives and associated wear testing will be presented along with the selection of an optimal solution.

  8. Quantitative tomographic imaging of intermolecular FRET in small animals

    PubMed Central

    Venugopal, Vivek; Chen, Jin; Barroso, Margarida; Intes, Xavier

    2012-01-01

    Forster resonance energy transfer (FRET) is a nonradiative transfer of energy between two fluorescent molecules (a donor and an acceptor) in nanometer range proximity. FRET imaging methods have been applied to proteomic studies and drug discovery applications based on intermolecular FRET efficiency measurements and stoichiometric measurements of FRET interaction as quantitative parameters of interest. Importantly, FRET provides information about biomolecular interactions at a molecular level, well beyond the diffraction limits of standard microscopy techniques. The application of FRET to small animal imaging will allow biomedical researchers to investigate physiological processes occurring at nanometer range in vivo as well as in situ. In this work a new method for the quantitative reconstruction of FRET measurements in small animals, incorporating a full-field tomographic acquisition system with a Monte Carlo based hierarchical reconstruction scheme, is described and validated in murine models. Our main objective is to estimate the relative concentration of two forms of donor species, i.e., a donor molecule involved in FRETing to an acceptor close by and a nonFRETing donor molecule. PMID:23243567

  9. Canonical and unconventional pairing schemes between bis(nucleobase) complexes of trans-a2PtII: Artificial nucleobase quartets and C—H…N bonds

    PubMed Central

    Freisinger, Eva; Rother, Irene B.; Lüth, Marc Sven; Lippert, Bernhard

    2003-01-01

    If two nucleobases are crosslinked by trans-a2PtII, self-association via H bonding may take place either through individual bases or jointly through both bases. Due to the blockage of an acceptor site by the metal, the number of feasible pairing patterns can be reduced, and the preferred ones altered. If the metalated base pair as a whole undergoes association, base quartets can form. Various scenarios resulting from the application of guanine, hypoxanthine, and cytosine model nucleobases are discussed. Unconventional C—H…N hydrogen bonding has been observed in several instances. PMID:12651957

  10. Small-molecule FRET probes for protein kinase activity monitoring in living cells

    SciTech Connect

    Vaasa, Angela; Lust, Marje; Terrin, Anna; Uri, Asko; Zaccolo, Manuela

    2010-07-09

    In this study, the applicability of fluorescently labeled adenosine analogue-oligoarginine conjugates (ARC-Photo probes) for monitoring of protein kinase A (PKA) activity in living cells was demonstrated. ARC-Photo probes possessing subnanomolar affinity towards the catalytic subunit of PKA (PKAc) and competitive with the regulatory subunit (PKAr), penetrate cell plasma membrane and associate with PKAc fused with yellow fluorescent protein (PKAc-YFP). Detection of inter-molecular Foerster resonance energy transfer (FRET) efficiency between the fluorophores of the fusion protein and ARC-Photo probe can be used for both the evaluation of non-labeled inhibitors of PKAc and for monitoring of cAMP signaling via detection of changes in the activity of PKA as a cAMP downstream effector.

  11. Molecular dynamics simulation of configurational ensembles compatible with experimental FRET efficiency data through a restraint on instantaneous FRET efficiencies.

    PubMed

    Reif, Maria M; Oostenbrink, Chris

    2014-12-15

    Förster resonance energy transfer (FRET) measurements are widely used to investigate (bio)molecular interactions or/and association. FRET efficiencies, the primary data obtained from this method, give, in combination with the common assumption of isotropic chromophore orientation, detailed insight into the lengthscale of molecular phenomena. This study illustrates the application of a FRET efficiency restraint during classical atomistic molecular dynamics simulations of a mutant mastoparan X peptide in either water or 7 M aqueous urea. The restraint forces acting on the donor and acceptor chromophores ensure that the sampled peptide configurational ensemble satisfies the experimental primary data by modifying interchromophore separation and chromophore transition dipole moment orientations. By means of a conformational cluster analysis, it is seen that indeed different configurational ensembles may be sampled without and with application of the restraint. In particular, while the FRET efficiency and interchromophore distances monitored in an unrestrained simulation may differ from the experimentally-determined values, they can be brought in agreement with experimental data through usage of the FRET efficiency restraining potential. Furthermore, the present results suggest that the assumption of isotropic chromophore orientation is not always justified. The FRET efficiency restraint allows the generation of configurational ensembles that may not be accessible with unrestrained simulations, and thereby supports a meaningful interpretation of experimental FRET results in terms of the underlying molecular degrees of freedom. Thus, it offers an additional tool to connect the realms of computer and wet-lab experimentation.

  12. Elevated temperature fretting fatigue of nickel based alloys

    NASA Astrophysics Data System (ADS)

    Gean, Matthew C.

    This document details the high temperature fretting fatigue of high temperature nickel based alloys common to turbine disk and blade applications. The research consists of three area of focus: Experiments are conducted to determine quantitatively the fretting fatigue lives of advanced nickel based alloys; Analytical tools are developed and used to investigate the fretting fatigue response of the material; Fractographic analysis of the experimental results is used to improve the analytical models employed in the analysis of the experiments. Sixty three fretting fatigue experiments were conducted at 649 °C using a polycrystalline Nickel specimen in contact with directionally solidified and single crystal Nickel pads. Various influences on the fretting fatigue life are investigated. Shot peened Rene' 95 had better fretting fatigue life compared to shot peened Rene' 88. Shot peening produced a 2x increase in life for Rene' 95, but only a marginal improvement in the fretting fatigue life for Rene' 88. Minor cycles in variable amplitude loading produces significant damage to the specimen. Addition of occasional overpeaks in load produces improvements in fretting fatigue life. Contact tractions and stresses are obtained through a variety of available tools. The contact tractions can be efficiently obtained for limited geometries, while FEM can provide the contact tractions for a broader class of problems, but with the cost of increased CPU requirements. Similarly, the subsurface contact stresses can be obtained using the contact tractions as a boundary condition with either a semi-analytical FFT method or FEM. It is found that to calculate contact stresses the FFT was only marginally faster than FEM. The experimental results are combined with the analysis to produce tools that are used to design against fretting fatigue. Fractographic analysis of the fracture surface indicates the nature of the fretting fatigue crack behavior. Interrupted tests were performed to analyze

  13. An Experimental Study of Fretting of Gear Teeth

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.

    2008-01-01

    Experiments were conducted to study fretting of gears. The gears were made from case-carburized AISI 9310 alloy to match the material of a flight actuator gearbox of interest. The objective of the testing was to produce damage representative of that observed on flight hardware. The following correlations and observations were noted. The amplitude of dithering motion very strongly influenced the type and magnitude of damage. Sliding amounts on the order of 30% of the width of the line contact were judged to most readily produce fretting damage. There was observed an incubation period on the order of tens-of-thousands of cycles, and the incubation period was influenced by surface roughness, torque, and the motion extent. Fretting damage could be produced for any of the torques tested, and the severity of damage increased slightly with torque. Gear teeth having surface roughness of 0.7-0.8 micrometer were somewhat more resistant to fretting than were smoother surfaces.

  14. QD-Based FRET Probes at a Glance

    PubMed Central

    Shamirian, Armen; Ghai, Aashima; Snee, Preston T.

    2015-01-01

    The unique optoelectronic properties of quantum dots (QDs) give them significant advantages over traditional organic dyes, not only as fluorescent labels for bioimaging, but also as emissive sensing probes. QD sensors that function via manipulation of fluorescent resonance energy transfer (FRET) are of special interest due to the multiple response mechanisms that may be utilized, which in turn imparts enhanced flexibility in their design. They may also function as ratiometric, or “color-changing” probes. In this review, we describe the fundamentals of FRET and provide examples of QD-FRET sensors as grouped by their response mechanisms such as link cleavage and structural rearrangement. An overview of early works, recent advances, and various models of QD-FRET sensors for the measurement of pH and oxygen, as well as the presence of metal ions and proteins such as enzymes, are also provided. PMID:26053750

  15. Pulse-shaping based two-photon FRET stoichiometry.

    PubMed

    Flynn, Daniel C; Bhagwat, Amar R; Brenner, Meredith H; Núñez, Marcos F; Mork, Briana E; Cai, Dawen; Swanson, Joel A; Ogilvie, Jennifer P

    2015-02-09

    Förster Resonance Energy Transfer (FRET) based measurements that calculate the stoichiometry of intermolecular interactions in living cells have recently been demonstrated, where the technique utilizes selective one-photon excitation of donor and acceptor fluorophores to isolate the pure FRET signal. Here, we present work towards extending this FRET stoichiometry method to employ two-photon excitation using a pulse-shaping methodology. In pulse-shaping, frequency-dependent phases are applied to a broadband femtosecond laser pulse to tailor the two-photon excitation conditions to preferentially excite donor and acceptor fluorophores. We have also generalized the existing stoichiometry theory to account for additional cross-talk terms that are non-vanishing under two-photon excitation conditions. Using the generalized theory we demonstrate two-photon FRET stoichiometry in live COS-7 cells expressing fluorescent proteins mAmetrine as the donor and tdTomato as the acceptor.

  16. Wide and high resolution tension measurement using FRET in embryo

    PubMed Central

    Yamashita, Satoshi; Tsuboi, Takashi; Ishinabe, Nanako; Kitaguchi, Tetsuya; Michiue, Tatsuo

    2016-01-01

    During embryonic development, physical force plays an important role in morphogenesis and differentiation. Stretch sensitive fluorescence resonance energy transfer (FRET) has the potential to provide non-invasive tension measurements inside living tissue. In this study, we introduced a FRET-based actinin tension sensor into Xenopus laevis embryos and demonstrated that this sensor captures variation of tension across differentiating ectoderm. The actinin tension sensor, containing mCherry and EGFP connected by spider silk protein, was validated in human embryonic kidney (HEK) cells and embryos. It co-localized with actin filaments and changed FRET efficiencies in response to actin filament destruction, myosin deactivation, and osmotic perturbation. Time-lapse FRET analysis showed that the prospective neural ectoderm bears higher tension than the epidermal ectoderm during gastrulation and neurulation, and cells morphogenetic behavior correlated with the tension difference. These data confirmed that the sensor enables us to measure tension across tissues concurrently and with high resolution. PMID:27335157

  17. Remote Sensing Applications for the Martian Fretted Terrain

    NASA Astrophysics Data System (ADS)

    Harrold, B. C.; King, D. T.; Marzen, L. J.

    2010-03-01

    The fretted terrain is located along the global escarpment. ArcGIS 9.x and MOLA was used to geoprocess and overlay images along with personal geodatabases to organization thousands of features to access the blocks present orientation/location.

  18. Seeding the Pregenetic Earth: Meteoritic Abundances of Nucleobases and Potential Reaction Pathways

    NASA Astrophysics Data System (ADS)

    Pearce, Ben K. D.; Pudritz, Ralph E.

    2015-07-01

    Carbonaceous chondrites are a class of meteorite known for having high contents of water and organics. In this study, the abundances of the nucleobases, i.e., the building blocks of RNA and DNA, found in carbonaceous chondrites are collated from a variety of published data and compared across various meteorite classes. An extensive review of abiotic chemical reactions producing nucleobases is then performed. These reactions are then reduced to a list of 15 individual reaction pathways that could potentially occur within meteorite parent bodies. The nucleobases guanine, adenine, and uracil are found in carbonaceous chondrites in amounts of 1-500 ppb. It is currently unknown which reaction is responsible for their synthesis within the meteorite parent bodies. One class of carbonaceous meteorite dominates the abundances of both amino acids and nucleobases—the so-called CM2 (e.g., Murchison meteorite). CR2 meteorites (e.g., Graves Nunataks) also dominate the abundances of amino acids, but are the least abundant in nucleobases. The abundances of total nucleobases in these two classes are 330 ± 250 and 16 ± 13 ppb, respectively. Guanine most often has the greatest abundances in carbonaceous chondrites with respect to the other nucleobases, but is 1-2 orders of magnitude less abundant in CM2 meteorites than glycine (the most abundant amino acid). Our survey of the reaction mechanisms for nucleobase formation suggests that Fischer-Tropsch synthesis (i.e., CO, H2, and NH3 gases reacting in the presence of a catalyst such as alumina or silica) is the most likely candidate for conditions that characterize the early states of planetesimals.

  19. Synthesis and binding properties of new selective ligands for the nucleobase opposite the AP site.

    PubMed

    Abe, Yukiko; Nakagawa, Osamu; Yamaguchi, Rie; Sasaki, Shigeki

    2012-06-01

    DNA is continuously damaged by endogenous and exogenous factors such as oxidative stress or DNA alkylating agents. These damaged nucleobases are removed by DNA N-glycosylase and form apurinic/apyrimidinic sites (AP sites) as intermediates in the base excision repair (BER) pathway. AP sites are also representative DNA damages formed by spontaneous hydrolysis. The AP sites block DNA polymerase and a mismatch nucleobase is inserted opposite the AP sites by polymerization to cause acute toxicities and mutations. Thus, AP site specific compounds have attracted much attention for therapeutic and diagnostic purposes. In this study, we have developed nucleobase-polyamine conjugates as the AP site binding ligand by expecting that the nucleobase part would play a role in the specific recognition of the nucleobase opposite the AP site by the Watson-Crick base pair formation and that the polyamine part should contribute to the access of the ligand to the AP site by a non-specific interaction to the DNA phosphate backbone. The nucleobase conjugated with 3,3'-diaminodipropylamine (A-ligand, G-ligand, C-ligand, T-ligand and U-ligand) showed a specific stabilization of the duplex containing the AP site depending on the complementary combination with the nucleobase opposite the AP site; that is A-ligand to T, G-ligand to C, C-ligand to G, T- and U-ligand to A. The thermodynamic binding parameters clearly indicated that the specific stabilization is due to specific binding of the ligands to the complementary AP site. These results have suggested that the complementary base pairs of the Watson-Crick type are formed at the AP site.

  20. Life Prediction of Fretting Fatigue with Advanced Surface Treatments (Preprint)

    DTIC Science & Technology

    2006-05-01

    surfaces and not the fretting pads. The chosen coatings included DLC, Ni-B, Molybdenum, and Nitride. These 4 coatings, their application to the titanium ...Article Preprint 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 4 . TITLE AND SUBTITLE LIFE PREDICTION OF FRETTING FATIGUE WITH ADVANCED SURFACE...TREATMENTS (PREPRINT) 5c. PROGRAM ELEMENT NUMBER N/A 5d. PROJECT NUMBER M02R 5e. TASK NUMBER 30 6 . AUTHOR(S) Patrick J. Golden and Michael

  1. Signal/Noise Analysis of FRET-Based Sensors

    PubMed Central

    Woehler, Andrew; Wlodarczyk, Jakub; Neher, Erwin

    2010-01-01

    Molecular sensors based on intramolecular Förster resonance energy transfer (FRET) have become versatile tools to monitor regulatory molecules in living tissue. However, their use is often compromised by low signal strength and excessive noise. We analyzed signal/noise (SNR) aspects of spectral FRET analysis methods, with the following conclusions: The most commonly used method (measurement of the emission ratio after a single short wavelength excitation) is optimal in terms of signal/noise, if only relative changes of this uncalibrated ratio are of interest. In the case that quantitative data on FRET efficiencies are required, these can be calculated from the emission ratio and some calibration parameters, but at reduced SNR. Lux-FRET, a recently described method for spectral analysis of FRET data, allows one to do so in three different ways, each based on a ratio of two out of three measured fluorescence signals (the donor and acceptor signal during a short-wavelength excitation and the acceptor signal during long wavelength excitation). Lux-FRET also allows for calculation of the total abundance of donor and acceptor fluorophores. The SNR for all these quantities is lower than that of the plain emission ratio due to unfavorable error propagation. However, if ligand concentration is calculated either from lux-FRET values or else, after its calibration, from the emission ratio, SNR for both analysis modes is very similar. Likewise, SNR values are similar, if the noise of these quantities is related to the expected dynamic range. We demonstrate these relationships based on data from an Epac-based cAMP sensor and discuss how the SNR changes with the FRET efficiency and the number of photons collected. PMID:20923670

  2. Fretting maps of glass fiber-reinforced composites

    SciTech Connect

    Turki, C.; Salvia, M.; Vincent, L.

    1993-12-31

    Industrial development of new materials are often limited due to an insufficient knowledge in their functional properties. The paper deals with fretting behavior of glass fiber reinforced epoxy/metal contacts. Fretting is a plague for all industries, especially in the case of quasi-static loadings. Furthermore friction testing under small displacements appeared well fitted to understand the effect of fiber orientations and to relate results to microstructure (fiber, matrix and interface).

  3. EPR Assembly of Microgel for FRET Imaging of Breast Cancer

    DTIC Science & Technology

    2006-04-01

    W81XWH-05-1-0342 TITLE: EPR Assembly for Microgel for FRET Imaging of Breast Cancer PRINCIPAL INVESTIGATOR: Stanley Stein, Ph.D...Annual 3. DATES COVERED (From - To) 1 Apr 05 – 31 Mar 06 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER EPR Assembly of Microgel for FRET Imaging...administered. This second conjugate will chemoselectively interact with the first conjugate to form insoluble microgels only in tumors. Alternating

  4. Nucleobases in Space: Laboratory Studies of Polycyclic Aromatic Nitrogen Heterocycles

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie; Mattioda, Andy; Bernstein, Max; Sandford, Scott; Hudgins, Doug

    2005-01-01

    Polycyclic Aromatic Nitrogen Heterocycles (PANHs) are heterocyclic aromatics Le., PAHs with carbon atoms replaced by a nitrogen atom. These molecules have been detected in meteorite extracts, and in general these nitrogen heterocycles are of astrobiological interest since this class of molecules include nucleobases, basic components of our nucleic acids. These compounds are predicted to be present in the interstellar medium and in Titan tholin, but have received relatively little attention. We will present spectra and reactions of PANHs, frozen in solid H2O at 12 K, conditions germane to astronomical observations. In contrast to simple PAHs, that do not interact strongly with solid H2O, the nitrogen atoms in PANHs are potentially capable of hydrogen bonding with H20 changing their spectra, complicating their remote detection on the surfaces of icy bodies. Moreover, we have studied the photo-chemistry of these interesting compounds under astrophysical conditions and will use our lab studies to assess a potential interstellar heritage of these compounds in carbonaceous chondrites.

  5. DNA photoreacts by nucleobase ring cleavage to form labile isocyanates.

    PubMed

    Buschhaus, Laura; Rolf, Josefin; Kleinermanns, Karl

    2013-11-14

    Differential infrared absorption spectroscopy was used to study the formation of isocyanates and further photo-products in the oligonucleotides dG10, dC10 and dT10 and in their mononucleosides by ultraviolet light at 266 nm. We find that α-cleavage takes place in oligonucleotides and mononucleosides both in films and in solution. The very intense and spectrally isolated isocyanate (N=C=O) asymmetric stretch vibration at 2277 cm(-1) is used as a spectroscopic marker for detection of the photo-product. The band disappears upon reaction with small amounts of water vapour as expected for isocyanates. Quantum yields for isocyanate formation by nucleobase ring cleavage in the α-position to the carbonyl group are ∼5 × 10(-5) in the mononucleosides and up to 5 × 10(-4) in the oligonucleotides. In the mixed oligonucleotides dG10/dC10 and dA10/dT10 the quantum yield of α-cleavage drops by a factor of 10 compared to the single oligonucleotides. Implications for DNA repair and photo-induced DNA-protein cross-linking via isocyanate reaction with NH2 groups of amino acids are discussed.

  6. The nucleobase adenine as a signalling molecule in the kidney.

    PubMed

    Thimm, D; Schiedel, A C; Peti-Peterdi, J; Kishore, B K; Müller, C E

    2015-04-01

    In 2002, the first receptor activated by the nucleobase adenine was discovered in rats. In the past years, two adenine receptors (AdeRs) in mice and one in Chinese hamsters, all of which belong to the family of G protein-coupled receptors (GPCRs), were cloned and pharmacologically characterized. Based on the nomenclature for other purinergic receptor families (P1 for adenosine receptors and P2 for nucleotide, e.g. ATP, receptors), AdeRs were designated P0 receptors. Pharmacological data indicate the existence of G protein-coupled AdeRs in pigs and humans as well; however, those have not been cloned so far. Current data suggest a role for adenine and AdeRs in renal proximal tubules. Furthermore, AdeRs are suggested to be functional counterplayers of vasopressin in the collecting duct system, thus exerting diuretic effects. We are only at the beginning of understanding the significance of this new class of purinergic receptors, which might become future drug targets.

  7. The role of nucleobase interactions in RNA structure and dynamics

    PubMed Central

    Bottaro, Sandro; Di Palma, Francesco; Bussi, Giovanni

    2014-01-01

    The intricate network of interactions observed in RNA three-dimensional structures is often described in terms of a multitude of geometrical properties, including helical parameters, base pairing/stacking, hydrogen bonding and backbone conformation. We show that a simple molecular representation consisting in one oriented bead per nucleotide can account for the fundamental structural properties of RNA. In this framework, canonical Watson-Crick, non-Watson-Crick base-pairing and base-stacking interactions can be unambiguously identified within a well-defined interaction shell. We validate this representation by performing two independent, complementary tests. First, we use it to construct a sequence-independent, knowledge-based scoring function for RNA structural prediction, which compares favorably to fully atomistic, state-of-the-art techniques. Second, we define a metric to measure deviation between RNA structures that directly reports on the differences in the base–base interaction network. The effectiveness of this metric is tested with respect to the ability to discriminate between structurally and kinetically distant RNA conformations, performing better compared to standard techniques. Taken together, our results suggest that this minimalist, nucleobase-centric representation captures the main interactions that are relevant for describing RNA structure and dynamics. PMID:25355509

  8. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases.

    PubMed

    Niether, Doreen; Afanasenkau, Dzmitry; Dhont, Jan K G; Wiegand, Simone

    2016-04-19

    Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007)Proc Natl Acad Sci USA104(22):9346-9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The thermophoretic properties of aqueous formamide solutions are studied by means of Infrared Thermal Diffusion Forced Rayleigh Scattering. These data are used in numerical finite element calculations in hydrothermal pores for various initial concentrations, ambient temperatures, and pore sizes. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behavior of formamide. The accumulation fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of ∼85 wt% at large aspect ratios. Time-dependent studies show that these high concentrations are reached after 45-90 d, starting with an initial formamide weight fraction of[Formula: see text]wt % that is typical for concentrations in shallow lakes on early Earth.

  9. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases

    PubMed Central

    Niether, Doreen; Afanasenkau, Dzmitry; Dhont, Jan K. G.

    2016-01-01

    Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007) Proc Natl Acad Sci USA 104(22):9346−9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The thermophoretic properties of aqueous formamide solutions are studied by means of Infrared Thermal Diffusion Forced Rayleigh Scattering. These data are used in numerical finite element calculations in hydrothermal pores for various initial concentrations, ambient temperatures, and pore sizes. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behavior of formamide. The accumulation fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of ∼85 wt% at large aspect ratios. Time-dependent studies show that these high concentrations are reached after 45–90 d, starting with an initial formamide weight fraction of 10−3 wt % that is typical for concentrations in shallow lakes on early Earth. PMID:27044100

  10. Fretting fatigue mechanism of bearing cap bolted joints.

    PubMed

    Li, Xin; Zuo, Zhengxing; Qin, Wenjie

    2014-05-01

    Fretting fatigue is a common type of failure of the bearing cap bolted joints. This paper proposes a methodology to analyze the fretting fatigue mechanism of the bearing cap bolted joint. A biaxially loading system was designed to simulate fretting fatigue failure under typical engine working condition. Meanwhile, a submodel was developed in the finite element calculation to analyze the contact status and stress distribution of the structural models. The test result shows that long inclined cracks (about 650 μm long, orientation at 17°-34°) initiate at the middle region of the contact interface. As the increase of the bolt pretension load (from 6000 N to 10,000 N), the crack initial location is getting away from the bolt screw, and the fretting fatigue lives is increasing (from 7.8 × 10(5) to 6.0 × 10(6)). With the fatigue phenomenon and the stress field analysis result, it concludes that the crack initiation is governed by the maximum shear stress; the bolt pretension load and the additional rotate torque caused by the bearing load are the two main factors which affect the fretting fatigue mechanism of the bearing cap bolted joints. It is beneficial to fretting fatigue lives of the bearing cap joints by increasing the bolt pretension load and restraining the oscillation of the bearing cap.

  11. Fluorescent proteins as genetically encoded FRET biosensors in life sciences.

    PubMed

    Hochreiter, Bernhard; Garcia, Alan Pardo; Schmid, Johannes A

    2015-10-16

    Fluorescence- or Förster resonance energy transfer (FRET) is a measurable physical energy transfer phenomenon between appropriate chromophores, when they are in sufficient proximity, usually within 10 nm. This feature has made them incredibly useful tools for many biomedical studies on molecular interactions. Furthermore, this principle is increasingly exploited for the design of biosensors, where two chromophores are linked with a sensory domain controlling their distance and thus the degree of FRET. The versatility of these FRET-biosensors made it possible to assess a vast amount of biological variables in a fast and standardized manner, allowing not only high-throughput studies but also sub-cellular measurements of biological processes. In this review, we aim at giving an overview over the recent advances in genetically encoded, fluorescent-protein based FRET-biosensors, as these represent the largest and most vividly growing group of FRET-based sensors. For easy understanding, we are grouping them into four categories, depending on their molecular mechanism. These are based on: (a) cleavage; (b) conformational-change; (c) mechanical force and (d) changes in the micro-environment. We also address the many issues and considerations that come with the development of FRET-based biosensors, as well as the possibilities that are available to measure them.

  12. FRET-Based Identification of mRNAs Undergoing Translation

    PubMed Central

    Farrell, Ian; Zhang, Haibo; Kaur, Jaskiran; Broitman, Steven L.; Smilansky, Zeev; Cooperman, Barry S.; Goldman, Yale E.

    2012-01-01

    We present proof-of-concept in vitro results demonstrating the feasibility of using single molecule fluorescence resonance energy transfer (smFRET) measurements to distinguish, in real time, between individual ribosomes programmed with several different, short mRNAs. For these measurements we use either the FRET signal generated between two tRNAs labeled with different fluorophores bound simultaneously in adjacent sites to the ribosome (tRNA-tRNA FRET) or the FRET signal generated between a labeled tRNA bound to the ribosome and a fluorescent derivative of ribosomal protein L1 (L1-tRNA FRET). With either technique, criteria were developed to identify the mRNAs, taking into account the relative activity of the mRNAs. These criteria enabled identification of the mRNA being translated by a given ribosome to within 95% confidence intervals based on the number of identified FRET traces. To upgrade the approach for natural mRNAs or more complex mixtures, the stoichiometry of labeling should be enhanced and photobleaching reduced. The potential for porting these methods into living cells is discussed. PMID:22693619

  13. FRET-based identification of mRNAs undergoing translation.

    PubMed

    Stevens, Benjamin; Chen, Chunlai; Farrell, Ian; Zhang, Haibo; Kaur, Jaskiran; Broitman, Steven L; Smilansky, Zeev; Cooperman, Barry S; Goldman, Yale E

    2012-01-01

    We present proof-of-concept in vitro results demonstrating the feasibility of using single molecule fluorescence resonance energy transfer (smFRET) measurements to distinguish, in real time, between individual ribosomes programmed with several different, short mRNAs. For these measurements we use either the FRET signal generated between two tRNAs labeled with different fluorophores bound simultaneously in adjacent sites to the ribosome (tRNA-tRNA FRET) or the FRET signal generated between a labeled tRNA bound to the ribosome and a fluorescent derivative of ribosomal protein L1 (L1-tRNA FRET). With either technique, criteria were developed to identify the mRNAs, taking into account the relative activity of the mRNAs. These criteria enabled identification of the mRNA being translated by a given ribosome to within 95% confidence intervals based on the number of identified FRET traces. To upgrade the approach for natural mRNAs or more complex mixtures, the stoichiometry of labeling should be enhanced and photobleaching reduced. The potential for porting these methods into living cells is discussed.

  14. Fluorescent Proteins as Genetically Encoded FRET Biosensors in Life Sciences

    PubMed Central

    Hochreiter, Bernhard; Pardo Garcia, Alan; Schmid, Johannes A.

    2015-01-01

    Fluorescence- or Förster resonance energy transfer (FRET) is a measurable physical energy transfer phenomenon between appropriate chromophores, when they are in sufficient proximity, usually within 10 nm. This feature has made them incredibly useful tools for many biomedical studies on molecular interactions. Furthermore, this principle is increasingly exploited for the design of biosensors, where two chromophores are linked with a sensory domain controlling their distance and thus the degree of FRET. The versatility of these FRET-biosensors made it possible to assess a vast amount of biological variables in a fast and standardized manner, allowing not only high-throughput studies but also sub-cellular measurements of biological processes. In this review, we aim at giving an overview over the recent advances in genetically encoded, fluorescent-protein based FRET-biosensors, as these represent the largest and most vividly growing group of FRET-based sensors. For easy understanding, we are grouping them into four categories, depending on their molecular mechanism. These are based on: (a) cleavage; (b) conformational-change; (c) mechanical force and (d) changes in the micro-environment. We also address the many issues and considerations that come with the development of FRET-based biosensors, as well as the possibilities that are available to measure them. PMID:26501285

  15. Fretting fatigue mechanism of bearing cap bolted joints

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zuo, Zhengxing; Qin, Wenjie

    2014-05-01

    Fretting fatigue is a common type of failure of the bearing cap bolted joints. This paper proposes a methodology to analyze the fretting fatigue mechanism of the bearing cap bolted joint. A biaxially loading system was designed to simulate fretting fatigue failure under typical engine working condition. Meanwhile, a submodel was developed in the finite element calculation to analyze the contact status and stress distribution of the structural models. The test result shows that long inclined cracks (about 650 μm long, orientation at 17°-34°) initiate at the middle region of the contact interface. As the increase of the bolt pretension load (from 6000 N to 10 000 N), the crack initial location is getting away from the bolt screw, and the fretting fatigue lives is increasing (from 7.8 × 105 to 6.0 × 106). With the fatigue phenomenon and the stress field analysis result, it concludes that the crack initiation is governed by the maximum shear stress; the bolt pretension load and the additional rotate torque caused by the bearing load are the two main factors which affect the fretting fatigue mechanism of the bearing cap bolted joints. It is beneficial to fretting fatigue lives of the bearing cap joints by increasing the bolt pretension load and restraining the oscillation of the bearing cap.

  16. Fluorescent Protein Based FRET Pairs with Improved Dynamic Range for Fluorescence Lifetime Measurements

    PubMed Central

    George Abraham, Bobin; Sarkisyan, Karen S.; Mishin, Alexander S.; Santala, Ville; Tkachenko, Nikolai V.; Karp, Matti

    2015-01-01

    Fluorescence Resonance Energy Transfer (FRET) using fluorescent protein variants is widely used to study biochemical processes in living cells. FRET detection by fluorescence lifetime measurements is the most direct and robust method to measure FRET. The traditional cyan-yellow fluorescent protein based FRET pairs are getting replaced by green-red fluorescent protein variants. The green-red pair enables excitation at a longer wavelength which reduces cellular autofluorescence and phototoxicity while monitoring FRET. Despite the advances in FRET based sensors, the low FRET efficiency and dynamic range still complicates their use in cell biology and high throughput screening. In this paper, we utilized the higher lifetime of NowGFP and screened red fluorescent protein variants to develop FRET pairs with high dynamic range and FRET efficiency. The FRET variations were analyzed by proteolytic activity and detected by steady-state and time-resolved measurements. Based on the results, NowGFP-tdTomato and NowGFP-mRuby2 have shown high potentials as FRET pairs with large fluorescence lifetime dynamic range. The in vitro measurements revealed that the NowGFP-tdTomato has the highest Förster radius for any fluorescent protein based FRET pairs yet used in biological studies. The developed FRET pairs will be useful for designing FRET based sensors and studies employing Fluorescence Lifetime Imaging Microscopy (FLIM). PMID:26237400

  17. N-h and N-C bond activation of pyrimidinic nucleobases and nucleosides promoted by an osmium polyhydride.

    PubMed

    Esteruelas, Miguel A; García-Raboso, Jorge; Oliván, Montserrat; Oñate, Enrique

    2012-05-21

    Complex OsH(6)(P(i)Pr(3))(2) (1) reacts with 1-methylthymine and 1-methyluracil to give OsH(3)(P(i)Pr(3))(2)(nucleobase') (2, 3) containing the deprotonated nucleobases (nucleobase') κ(2)-N,O coordinated by the nitrogen atom at position 3 and the oxygen bonded to the carbon atom of the ring at position 4. Similarly, the reactions of 1 with thymidine, 5-methyluridine, deoxyuridine, and uridine lead to OsH(3)(P(i)Pr(3))(2)(nucleoside') (4-7) with the deprotonated nucleoside (nucleoside') κ(2)-N,O coordinated by the nitrogen atom at position 3 and the oxygen bonded to the carbon atom at position 4 of the nucleobases. Treatment of complexes 5 and 7, containing nucleosides derived from ribose, with OsH(2)Cl(2)(P(i)Pr(3))(2) (8) in the presence of Et(3)N affords dinuclear species OsH(3)(P(i)Pr(3))(2)(nucleobase')-(ribose)(P(i)Pr(3))(2)H(2)Os (9, 10) formed by two different metal fragments. Complex 1 also promotes the cleavage of the N-C bond of 2-7 to give the dinuclear species {OsH(3)(P(i)Pr(3))(2)}(2)(nucleobase'') (11, 12) with the nucleobase skeleton (nucleobase'') κ(2)-N,O coordinated to both metal fragments. These compounds can be also prepared by reaction of 1 with 0.5 equiv of thymine and uracil. The use of 1:1 hexahydride:nucleobase molar ratios gives rise to the preferred formation of the mononuclear complexes OsH(3)(P(i)Pr(3))(2)(nucleobase''') (13, 14; nucleobase''' = monodeprotonated thymine or uracil). The X-ray structures of complexes 6, 11, and 14 are also reported.

  18. High resolution mapping of modified DNA nucleobases using excision repair enzymes

    PubMed Central

    Bryan, D. Suzi; Ransom, Monica; Adane, Biniam; York, Kerri

    2014-01-01

    The incorporation and creation of modified nucleobases in DNA have profound effects on genome function. We describe methods for mapping positions and local content of modified DNA nucleobases in genomic DNA. We combined in vitro nucleobase excision with massively parallel DNA sequencing (Excision-seq) to determine the locations of modified nucleobases in genomic DNA. We applied the Excision-seq method to map uracil in E. coli and budding yeast and discovered significant variation in uracil content, wherein uracil is excluded from the earliest and latest replicating regions of the genome, possibly driven by changes in nucleotide pool composition. We also used Excision-seq to identify sites of pyrimidine dimer formation induced by UV light exposure, where the method could distinguish between sites of cyclobutane and 6-4 photoproduct formation. These UV mapping data enabled analysis of local sequence bias around pyrimidine dimers and suggested a preference for an adenosine downstream from 6-4 photoproducts. The Excision-seq method is broadly applicable for high precision, genome-wide mapping of modified nucleobases with cognate repair enzymes. PMID:25015380

  19. The Formation of Nucleobases from the Irradiation of Purine in Astophysical Ices and Comparisons with Meteorites.

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Materese, C. K.; Nuevo, M.

    2016-01-01

    N-heterocycles have been identified in meteorites and their extraterrestrial origins are suggested by isotopic ratio measurements. Although small N- heterocycles have not been detected in the interstellar medium (ISM), recent experiments in our lab have shown that the irradiation of the aromatic molecules like benzene (C6H6) and naphthalene (C10H8) in mixed molecular ices leads to the formation of O- and N-heterocyclic molecules. Among the class of N-heterocycles are the nucleobases, which are of astrobiological interest because they are the information bearing units of DNA and RNA. Nucleobases have been detected in meteorites [3-5], with isotopic signatures that are also consistent with an extraterrestrial origin. Three of the biologically relevant nucleobases (uracil, cytosine, and guanine) have a pyrimidine core structure while the remaining two (adenine and guanine) possess a purine core. Previous experiments in our lab have demonstrated that all of the bio-logical nucleobases (and numerous other molecules) with a pyrimidine core structure can be produced by irradiating pyrimidine in mixed molecular ices of several compositions [6-8]. In this work, we study the formation of purine-based molecules, including the nucleobases adenine, and guanine, from the ultraviolet (UV) irradiation of purine in ices consisting mixtures of H2O and NH3 at low temperature. The experiments are designed to simulate the astrophysical conditions under which these species may be formed in dense molecular clouds, protoplanetary disks, or on the surfaces of icy bodies in planetary systems.

  20. Meteorites and the RNA World: A Thermodynamic Model of Nucleobase Synthesis within Planetesimals

    NASA Astrophysics Data System (ADS)

    Pearce, Ben K. D.; Pudritz, Ralph E.

    2016-11-01

    The possible meteorite parent body origin of Earth's pregenetic nucleobases is substantiated by the guanine (G), adenine (A), and uracil (U) measured in various meteorites. Cytosine (C) and thymine (T), however, are absent in meteorites, making the emergence of an RNA and later RNA/DNA/protein world problematic. We investigated the meteorite parent body (planetesimal) origin of all nucleobases by computationally modeling 18 reactions that potentially contribute to nucleobase formation in such environments. Out of this list, we identified the two most important reactions for each nucleobase and found that these involve small molecules such as HCN, CO, NH3, and water that ultimately arise from the protoplanetary disks in which planetesimals are built. The primary result of this study is that cytosine is unlikely to persist within meteorite parent bodies due to aqueous deamination. Thymine has a thermodynamically favorable reaction pathway from uracil, formaldehyde, and formic acid but likely did not persist within planetesimals containing H2O2 due to an oxidation reaction with this molecule. Finally, while Fischer-Tropsch (FT) synthesis is found to be the dominant source of nucleobases within our model planetesimal, non-catalytic (NC) synthesis may still be significant under certain chemical conditions (e.g., within CR2 parent bodies). We discuss several major consequences of our results for the origin of the RNA world.

  1. Characterization of poly(N-isopropylacrylamide)-nucleobase supramolecular complexes featuring bio-multiple hydrogen bonds.

    PubMed

    Yang, Hsiu-Wen; Lee, Ai-Wei; Huang, Chi-Hsien; Chen, Jem-Kun

    2014-11-07

    In this study we employed poly(N-isopropylacrylamide) (PNIPAAm) as a matrix that we hybridized with five different nucleobase units (adenine, thymine, uracil, guanine, cytosine) to generate PNIPAAm-nucleobase supramolecular complexes (PNSCs) stabilized through bio-multiple hydrogen bonds (BMHBs). These nucleobase units interacted with PNIPAAm through BMHBs of various strengths, leading to competition between the BMHBs and the intramolecular hydrogen bonds (HBs) of PNIPAAm. The changes in morphology, crystalline structure, and thermoresponsive behavior of PNIPAAm were related to the strength of its BMHBs with the nucleobases. The strengths of the BMHBs followed the order guanine > adenine > thymine > cytosine > uracil, as verified through analyses of Fourier transform infrared spectra, lower critical solution temperatures, and inter-association equilibrium constants. The PNSCs also exhibited remarkable improvements in conductivity upon the formation of BMHBs, which facilitated proton transport. The neat PNIPAAm film was an insulator, but it transformed into a semiconductor after hybridizing with the nucleobases. In particular, the resistivity of the PNIPAAm-guanine supramolecular complex decreased to 1.35 × 10(5) ohm cm. The resistivity of the PNIPAAm-cytosine supramolecular complex increased significantly from 5.83 × 10(6) to 3 × 10(8) ohm cm upon increasing the temperature from 40 to 50 °C, suggesting that this material might have applicability in thermo-sensing. The ability to significantly improve the conductivity of hydrogels through such a simple approach involving BMHBs might facilitate their use as novel materials in bioelectronics.

  2. Simultaneous determination of 10 nucleosides and nucleobases in Antrodia camphorata using QTRAP LC-MS/MS.

    PubMed

    Chen, Fei; Zhang, Fengsu; Yang, Nianyun; Liu, Xunhong

    2014-09-01

    A liquid chromatography-triple-quadrupole linear ion trap mass spectrometry (LC-QTrap-MS) analysis has been developed for the identification and quantification of 10 nucleosides and nucleobases in extracts of Antrodia camphorata. The method was successfully used to qualitatively identify for six nucleosides namely, cytidine, uridine, inosine, guanosine, thymidine, adenosine and four nucleobases namely, uracil, guanine, xanthine, adenine in A. camphorata. Under optimized chromatographic conditions, good separation for 10 target compounds were obtained on an Agilent HC-C18(2) column (4.6 × 250 mm, 5 μm) eluted by a mobile phase of 5 mM ammonium acetate solution-methanol at a flow rate of 0.5 mL/min. Data acquisition was carried out in multiple reaction monitoring transition mode. Additional identification and confirmation of target compounds were performed using the enhanced product ion modus of the linear ion trap. It was the first report about simultaneous analysis of nucleosides and nucleobases in A. camphorata using this method. These results demonstrated that the QTRAP LC-MS/MS was a useful tool for quality evaluation of some medicinal plant products by using nucleosides and nucleobases as chemical markers. This method might also be utilized for the investigation of edible plant materials and agricultural products containing nucleosides and nucleobases.

  3. In vivo dynamics of enterovirus protease revealed by fluorescence resonance emission transfer (FRET) based on a novel FRET pair

    SciTech Connect

    Hsu, Y.-Y.; Liu, Y.-N.; Wang Wenyen; Kao, Fu-Jen; Kung, S.-H. . E-mail: szkung@ym.edu.tw

    2007-02-23

    An in vivo protease assay suitable for analysis by fluorescence resonance energy transfer (FRET) was developed on the basis of a novel FRET pair. The specifically designed fusion substrate consists of green fluorescent protein 2 (GFP{sup 2})-peptide-red fluorescent protein 2 (DsRed2), with a cleavage motif for the enterovirus 2A protease (2A{sup pro}) embedded within the peptide region. FRET can be readily visualized in real-time from cells expressing the fusion substrate until a proteolytic cleavage by 2A{sup pro} from the input virus. The level of FRET decay is a function of the amount and infection duration of the inoculated virus as measured by a fluorometer assay. The FRET biosensor also responded well to other related enteroviruses but not to a phylogenetically distant virus. Western blot analysis confirmed the physical cleavage of the fusion substrate upon the infections. The study provides proof of principle for applying the FRET technology to diagnostics, screening procedures, and cell biological research.

  4. Detecting Pyrolysis Products from Bacteria in a Mars Soil Analogue

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Cleaves, H. J.; Schubert, M.; Aubrey, A.; Buch, A.; Mahaffy, P. R.; Bada, J. L.

    2004-01-01

    One of the primary objectives of the 1976 Viking missions was to determine whether organic compounds, possibly of biological origin, were present in the Martian surface soils. The Viking gas chromatography mass spectrometry (GCMS) instruments found no evidence for any organic compounds of Martian origin above a few parts per billion in the upper 10 cm of surface soil, suggesting the absence of a widely distributed Martian biota. However, it is now known that key organic compounds important to biology, such as amino acids, carboxylic acids and nucleobases, would likely have been missed by the Viking GCMS instruments. In this study, a Mars soil analogue that was inoculated with approx. 10 billion Escherichia coli cells was heated at 500 C under Martian ambient pressure to release volatile organic compounds from the sample. The pyrolysis products were then analyzed for amino acids and nucleobases using high performance liquid chromatography (HPLC) and GCMS. Our experimental results indicate that at the part per billion level, the degradation products generated from several million bacterial cells per gram of Martian soil would not have been detected by the Viking GCMS instruments. Upcoming strategies for Mars exploration will require in-situ analyses by instruments that can assess whether any organic compounds, especially those that might be associated with life, are present in Martian surface samples.

  5. The photoinduced transformation of fluorescent DNA base analogue tC triggers DNA melting.

    PubMed

    Preus, Søren; Jønck, Søren; Pittelkow, Michael; Dierckx, Anke; Karpkird, Thitinun; Albinsson, Bo; Wilhelmsson, L Marcus

    2013-08-01

    While fluorescent analogues of the canonical nucleobases have proven to be highly valuable in a large number of applications, up until today, fluorescent DNA base analogues remain virtually inapplicable for single-molecule fluorescence experiments which require extremely bright and photostable dyes. Insight into the photodegradation processes of these fluorophores is thus a key step in the continuous development towards dyes with improved performances. Here, we show that the commercially available fluorescent nucleobase analogue tC under intense long-term illumination and in the presence of O2 is degraded to form a single photoreaction product which we suggest to be the sulfoxide form of tC. The photoproduct is characterized by a blue-shifted absorption and a less intense fluorescence compared to that of tC. Interestingly, when tC is positioned inside double-stranded DNA this photodriven conversion of tC to its photoproduct greatly reduces the duplex stability of the overall double helix in which the probe is positioned. Since tC can be excited selectively at 400 nm, well outside the absorption band of the natural DNA bases, this observation points towards the application of tC as a general light-triggered switch of DNA duplex stability.

  6. Intonation and compensation of fretted string instruments

    NASA Astrophysics Data System (ADS)

    Varieschi, Gabriele; Gower, Christina

    2011-04-01

    We discuss theoretical and physical models that are useful for analyzing the intonation of musical instruments such as guitars and mandolins and can be used to improve the tuning on these instruments. The placement of frets on the fingerboard is designed according to mathematical rules and the assumption of an ideal string. The analysis becomes more complicated when we include the effects of deformation of the string and inharmonicity due to other string characteristics. As a consequence, perfect intonation of all the notes on the instrument cannot be achieved, but complex compensation procedures can be introduced to minimize the problem. To test the validity of these procedures, we performed extensive measurements using standard monochord sonometers and other acoustical devices, confirming the correctness of our theoretical models. These experimental activities can be integrated into acoustics courses and laboratories and can become a more advanced version of basic experiments with monochords and sonometers. This work was supported by a grant from the Frank R. Seaver College of Science and Engineering, Loyola Marymount University.

  7. Photoelectron Spectroscopy of Rare-Gas Solvated Nucleobase Anions

    NASA Astrophysics Data System (ADS)

    Buonaugurio, Angela M.; Chen, Jing; Bowen, Kit H.

    2012-06-01

    Gas-phase polar molecular anions [uracil (U^-), thymine (T^-), 1-3 dimethyluracil (DMU^-)] solvated by rare gas atoms were studied by means of negative ion photoelectron spectroscopy. The photoelectron spectrum (PES) of U^-, T^-, and DMU^- each exhibit a distinctive dipole-bound (DB) spectral signature. The spectra of U^-, U^- (Ar)_1,2 and U^- (Kr)_1 also only displayed the DB anion feature. Upon the solvation of more rare gas atoms, the spectra of U^- (Ar)_3, U^- (Kr)_2, and U^- (Xe)1-3 not only retained the DB signature but also exhibited the valence anion features. Moreover, the DB and the valence features shifted together to higher electron binding energies (EBEs) with increasing numbers of rare gas solvent atoms. Therefore, the co-existing DB and the valence anions appeared to be strongly coupled with each other, i.e. they effectively form a single state that is a superposition of both DB and valence anion states. For both U^- and T^- series, the ``onset size" of the Xe, Kr, and Ar solvents for the co-existing of the two anionic states was 1, 2, and 3 respectively. In addition, a minimum of 2 methane (CH_4) molecules or 1 ethane (C_2H_6) molecule were required to induce the coupling between the two states in the T^- series. Thus, the nucleobase anion interaction with non-polar solvent atoms tracks as the sum of the solvent polarizabilities. However for the DMU- series, the DB and the valence anions of DMU^-(Xe)_1, DMU^-(Kr)_2, and DMU^-(Ar)_3 were completely absent in both the mass spectra and the PES. Beyond these ``holes", their PES displayed the similar behaviors to the U^- and T^- series. Extrapolated EA values for these missing species were at or very close to zero, which may explain why they were not seen. However, why this was the case is not clear. With better Franck-Condon overlap between the origins of the NB^- (Rg)_n valence anion and the neutral NB(Rg)n than between those of the NB^- (H2O)n valence anion and the neutral NB(H2O)n, extrapolation of

  8. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases

    NASA Astrophysics Data System (ADS)

    Niether, Doreen; Afanasenkau, Dzmitry; Dhont, Jan K. G.

    2016-04-01

    Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007) Proc Natl Acad Sci USA 104(22):9346-9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The thermophoretic properties of aqueous formamide solutions are studied by means of Infrared Thermal Diffusion Forced Rayleigh Scattering. These data are used in numerical finite element calculations in hydrothermal pores for various initial concentrations, ambient temperatures, and pore sizes. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behavior of formamide. The accumulation fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of ˜85 wt% at large aspect ratios. Time-dependent studies show that these high concentrations are reached after 45-90 d, starting with an initial formamide weight fraction of 10-310-3 wt % that is typical for concentrations in shallow lakes on early Earth.

  9. Dissociative electron attachment to the gas-phase nucleobase hypoxanthine

    SciTech Connect

    Dawley, M. Michele; Tanzer, Katrin; Denifl, Stephan E-mail: Sylwia.Ptasinska.1@nd.edu; Carmichael, Ian; Ptasińska, Sylwia E-mail: Sylwia.Ptasinska.1@nd.edu

    2015-06-07

    We present high-resolution measurements of the dissociative electron attachment (DEA) to isolated gas-phase hypoxanthine (C{sub 5}H{sub 4}N{sub 4}O, Hyp), a tRNA purine base. The anion mass spectra and individual ion efficiency curves from Hyp were measured as a function of electron energy below 9 eV. The mass spectra at 1 and 6 eV exhibit the highest anion yields, indicating possible common precursor ions that decay into the detectable anionic fragments. The (Hyp − H) anion (C{sub 5}H{sub 3}N{sub 4}O{sup −}) exhibits a sharp resonant peak at 1 eV, which we tentatively assign to a dipole-bound state of the keto-N1H,N9H tautomer in which dehydrogenation occurs at either the N1 or N9 position based upon our quantum chemical computations (B3LYP/6-311+G(d,p) and U(MP2-aug-cc-pVDZ+)) and prior studies with adenine. This closed-shell dehydrogenated anion is the dominant fragment formed upon electron attachment, as with other nucleobases. Seven other anions were also observed including (Hyp − NH){sup −}, C{sub 4}H{sub 3}N{sub 4}{sup −}/C{sub 4}HN{sub 3}O{sup −}, C{sub 4}H{sub 2}N{sub 3}{sup −}, C{sub 3}NO{sup −}/HC(HCN)CN{sup −}, OCN{sup −}, CN{sup −}, and O{sup −}. Most of these anions exhibit broad but weak resonances between 4 and 8 eV similar to many analogous anions from adenine. The DEA to Hyp involves significant fragmentation, which is relevant to understanding radiation damage of biomolecules.

  10. The origin of efficient triplet state population in sulfur-substituted nucleobases

    NASA Astrophysics Data System (ADS)

    Mai, Sebastian; Pollum, Marvin; Martínez-Fernández, Lara; Dunn, Nicholas; Marquetand, Philipp; Corral, Inés; Crespo-Hernández, Carlos E.; González, Leticia

    2016-10-01

    Elucidating the photophysical mechanisms in sulfur-substituted nucleobases (thiobases) is essential for designing prospective drugs for photo- and chemotherapeutic applications. Although it has long been established that the phototherapeutic activity of thiobases is intimately linked to efficient intersystem crossing into reactive triplet states, the molecular factors underlying this efficiency are poorly understood. Herein we combine femtosecond transient absorption experiments with quantum chemistry and nonadiabatic dynamics simulations to investigate 2-thiocytosine as a necessary step to unravel the electronic and structural elements that lead to ultrafast and near-unity triplet-state population in thiobases in general. We show that different parts of the potential energy surfaces are stabilized to different extents via thionation, quenching the intrinsic photostability of canonical DNA and RNA nucleobases. These findings satisfactorily explain why thiobases exhibit the fastest intersystem crossing lifetimes measured to date among bio-organic molecules and have near-unity triplet yields, whereas the triplet yields of canonical nucleobases are nearly zero.

  11. The origin of efficient triplet state population in sulfur-substituted nucleobases.

    PubMed

    Mai, Sebastian; Pollum, Marvin; Martínez-Fernández, Lara; Dunn, Nicholas; Marquetand, Philipp; Corral, Inés; Crespo-Hernández, Carlos E; González, Leticia

    2016-10-05

    Elucidating the photophysical mechanisms in sulfur-substituted nucleobases (thiobases) is essential for designing prospective drugs for photo- and chemotherapeutic applications. Although it has long been established that the phototherapeutic activity of thiobases is intimately linked to efficient intersystem crossing into reactive triplet states, the molecular factors underlying this efficiency are poorly understood. Herein we combine femtosecond transient absorption experiments with quantum chemistry and nonadiabatic dynamics simulations to investigate 2-thiocytosine as a necessary step to unravel the electronic and structural elements that lead to ultrafast and near-unity triplet-state population in thiobases in general. We show that different parts of the potential energy surfaces are stabilized to different extents via thionation, quenching the intrinsic photostability of canonical DNA and RNA nucleobases. These findings satisfactorily explain why thiobases exhibit the fastest intersystem crossing lifetimes measured to date among bio-organic molecules and have near-unity triplet yields, whereas the triplet yields of canonical nucleobases are nearly zero.

  12. Survival of gas phase amino acids and nucleobases in space radiation conditions

    NASA Astrophysics Data System (ADS)

    Pilling, S.; Andrade, D. P. P.; de Castilho, R. B.; Cavasso-Filho, R. L.; Lago, A. F.; Coutinho, L. H.; de Souza, G. G. B.; Boechat-Roberty, H. M.; de Brito, A. Naves

    2008-10-01

    We present experimental studies on the photoionization and photodissociation processes (photodestruction) of gaseous amino acids and nucleobases in interstellar and interpla-netary radiation analogs conditions. The measurements have been undertaken at the Brazilian Synchrotron Light Laboratory (LNLS), employing vacuum ultraviolet (VUV) and soft X-ray photons. The experimental set up basically consists of a time-of-flight mass spectrometer kept under high vacuum conditions. Mass spectra were obtained using a photoelectron photoion coincidence technique. We have shown that the amino acids are effectively more destroyed (up to 70 80%) by the stellar radiation than the nucleobases, mainly in the VUV. Since polycyclic aromatic hydrocarbons have the same survival capability and seem to be ubiquitous in the ISM, it is not unreasonable to predict that nucleobases could survive in the interstellar medium and/or in comets, even as a stable cation.

  13. Genetic and molecular characterization reveals a unique nucleobase cation symporter 1 in Arabidopsis.

    PubMed

    Mourad, George S; Tippmann-Crosby, Julie; Hunt, Kevin A; Gicheru, Yvonne; Bade, Kaely; Mansfield, Tyler A; Schultes, Neil P

    2012-05-07

    Locus At5g03555 encodes a nucleobase cation symporter 1 (AtNCS1) in the Arabidopsis genome. Arabidopsis insertion mutants, AtNcs1-1 and AtNcs1-3, were used for in planta toxic nucleobase analog growth studies and radio-labeled nucleobase uptake assays to characterize solute transport specificities. These results correlate with similar growth and uptake studies of AtNCS1 expressed in Saccharomyces cerevisiae. Both in planta and heterologous expression studies in yeast revealed a unique solute transport profile for AtNCS1 in moving adenine, guanine and uracil. This is in stark contrast to the canonical transport profiles determined for the well-characterized S. cerevisiae NCS1 proteins FUR4 (uracil transport) or FCY2 (adenine, guanine, and cytosine transport).

  14. Nucleobases and Other Prebiotic Species from the UV Irradiation of Pyrimidine in Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Materese, Christopher; Nuevo, Michel

    2012-01-01

    Nucleobases are aromatic N-heterocycles that constitute the informational subunits of DNA and RNA and are divided into two families: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites and their extraterrestrial origin confirmed by isotope measurement. Although no N-heterocycles have been individually identified in the ISM, the 6.2-micron interstellar emission feature seen towards many astronomical objects suggests a population of such molecules is likely present. We report on a study of the formation of pyrimidine-based molecules, including nucleobases and other species of prebiotic interest, from the ultraviolet (UV) irradiation of pyrimidine in low temperature ices containing H2O, NH3, C3OH, and CH4, to simulate the astrophysical conditions under which prebiotic species may be formed in the Solar System.

  15. Infrared spectral investigations of UV irradiated nucleobases adsorbed on mineral surfaces

    NASA Astrophysics Data System (ADS)

    Fornaro, Teresa; Brucato, John Robert; Pace, Emanuele; Guidi, Mariangela Cestelli; Branciamore, Sergio; Pucci, Amaranta

    2013-09-01

    The interaction between electromagnetic radiation and bio-molecules in heterogeneous environments is a prebiotically relevant process. Minerals may have a pivotal role in the prebiotic evolution of complex chemical systems, mediating the effects of electromagnetic radiation, influencing the photostability of bio-molecules, catalyzing important chemical reactions and/or protecting molecules against degradation. In particular, nucleobases are relevant bio-molecules to investigate both in the prebiotic context, because they are coding components of nucleic acids, and from the standpoint of the survival of biological systems in space conditions. Several studies on the photodynamics of nucleobases suggest that their structure could have been naturally selected for the ability to dissipate electronic energy through ultrafast photophysical decay. Considering the putative involvement of minerals in the prebiotic chemistry, it is necessary to study the photostability of nucleobases under space conditions in the presence of mineral matrices, to investigate both the prebiotic processes that might have had a role in the development of the first living entities on Earth and the physical and chemical processes occurring in extraterrestrial environments. We focused our study on the characterization of the nature of the interaction between nucleobases and the surface of the minerals magnesium oxide and forsterite by infrared vibrational spectroscopy. We observed that most of the characteristic bands of pure nucleobases vanished when adsorbed on magnesium oxide. On the contrary, in the case of adenine and uracil adsorbed on forsterite, very intense nucleobase absorption peaks appeared. This phenomenon pertains to the surface selection rules changes related to molecular orientation. Moreover, based on the vibrational shifts, we deduced the molecular interaction sites with the mineral surfaces. Furthermore, we investigated the photostability of nucleobases adsorbed on such minerals

  16. Infrared spectral investigations of UV irradiated nucleobases adsorbed on mineral surfaces

    NASA Astrophysics Data System (ADS)

    Brucato, John Robert; Pace, Emanuele; Pucci, Amaranta; Branciamore, Sergio; Cestelli Guidi, Mariangela; Fornaro, Teresa

    The interaction between electromagnetic radiation and bio-molecules in heterogeneous environments is a prebiotically relevant process. Minerals may have a pivotal role in the prebiotic evolution of complex chemical systems, mediating the effects of electromagnetic radiation, influencing the photostability of bio-molecules, catalyzing important chemical reactions and/or protecting molecules against degradation. In particular, nucleobases are relevant bio-molecules to investigate both in the prebiotic context, because they are coding components of nucleic acids, and from the standpoint of the survival of biological systems in space conditions. In this talk, laboratory results on photostability of nucleobases adsorbed on minerals will be presented.

  17. Computational analysis of stacking interactions between 3-nitropyrrole and natural nucleobases.

    PubMed

    Ukawa, Hisashi; Seio, Kohji; Sekine, Mitsuo

    2002-01-01

    The stacking energies between natural nucleobases and a universal base of 3-nitropyrrole (3-NP) were calculated by use of two theoretically independent quantum chemical methods, namely, molecular orbital (MO) and density function theory (DFT) calculations. The parameters required for molecular mechanics calculation of 3-NP were obtained by use of a software of Direct Force Field and used to evaluate the stacking energy of the complexes formed between 3-NP and canonical four nucleobases. Dependence of the twist angle between the two stacked bases on the stacking energy was studied in great detail.

  18. An examination of faying surface fretting in single lap splices

    NASA Astrophysics Data System (ADS)

    Brown, Adam

    While fretting damage in mechanically fastened joints is widely acknowledged as a common source of crack nucleation, little work is available in the open literature on the role that fretting damage plays in the fatigue life of a riveted joint. To expand on the limited knowledge available, a study was undertaken on fretting fatigue in thin-sheet riveted fuselage lap joints. In joints constructed out of 1 mm thick 2024-T3 aluminum sheet the rivet forming load was found to have a significant effect on the location of fretting damage and crack nucleation. This effect was observed for splices riveted with machine countersunk and with universal rivets. The shift in the location of peak fretting damage and crack nucleation with changing rivet forming loads was investigated through numerical and experimental methods. A predictive model based on the critical plane Smith-Watson-Topper strain life equation was applied to the complex geometry of the single lap splice and was shown to be effective in predicting the fretting fatigue life as well as the location of fretting-induced crack nucleation. Basing this model on an explicit finite element simulation allowed for the inclusion of compressive residual stresses generated during rivet forming. Key to the proper functionality of the predictive model was to have a validated finite element model from which results for the stress and strain field in the loaded component could be obtained. In addition to the predictive model, a series of splice coupon and simplified geometry fretting fatigue tests were performed. The tests showed that, at higher rivet forming loads, crack nucleation is on the faying surface away from the hole edge and that the type of surface condition is important to the fretting fatigue life of the splice. The discovery of this variation with surface treatment at high rivet forming loads is important as more research is showing the benefit of using load-controlled rivet forming and higher rivet forming loads in

  19. Temperature-cycle single-molecule FRET microscopy on polyprolines.

    PubMed

    Yuan, Haifeng; Xia, Ted; Schuler, Benjamin; Orrit, Michel

    2011-02-07

    Accessing the microsecond dynamics of a single fluorescent molecule in real time is difficult because molecular fluorescence rates usually limit the time resolution to milliseconds. We propose to apply single-molecule temperature-cycle microscopy to probe molecular dynamics at microsecond timescales. Here, we follow donor and acceptor signals of single FRET-labeled polyprolines in glycerol to investigate their conformational dynamics. We observe a steady-state FRET efficiency distribution which differs from theoretical distributions for isotropically orientated fluorescent labels. This may indicate that the orientation of fluorescent labels in glycerol is not isotropic and may reflect the influence of the dye linkers. With proper temperature-cycle parameters, we observed large FRET changes in long series of cycles of the same molecule. We attribute the main conformational changes to reorientations of the fluorescent labels with respect to the oligopeptide chain, which take place in less than a few microseconds at the highest temperature of the cycle (250 K). We were able to follow the FRET efficiency of a particular construct for more than 2000 cycles. This trajectory displays switching between two conformations, which give rise to maxima in the FRET efficiency histogram. Our experiments open the possibility to study biomolecular dynamics at a time scale of a few microseconds at the single-molecule level.

  20. Bleed-through and photobleaching correction in multiphoton FRET microscopy

    NASA Astrophysics Data System (ADS)

    Elangovan, Masilamani; Periasamy, Ammasi

    2001-04-01

    Fluorescence resonance energy transfer (FRET) microscopy provides a tool to visualize the protein with high spatial and temporal resolution. In multi-photon FRET microscopy one experiences considerably less photobleaching compared to one-photon excitation since the illumination is the diffraction limited spot and the excitation is infrared-pulsed laser light. Because of the spectral overlap involved in the selection of the fluorophore pair for FRET imaging, the spectral bleed-through signal in the FRET channel is unavoidable. We describe in this paper the development of dedicated software to correct the bleed-through signal due to donor and acceptor fluorophore molecules. We used living cells expressed with BFP-RFP (DsRed)-C/EBP(alpha) proteins in the nucleus. We acquired images of different combinations like donor alone, acceptor alone, and both acceptor and donor under similar conditions. We statistically evaluated the percentage of bleed-through signal from one channel to the other based on the overlap areas of the spectra. We then reconstructed the images after applying the correction. Characterization of multi-photon FRET imaging system taking into account the intensity, dwell time, concentration of fluorophore pairs, objective lens and the excitation wavelength are described in this paper.

  1. Hydrogelation abilities of nucleobase-modified cytidines possessing substituted triazoles

    PubMed Central

    Dodd, David W; Jones, Nathan D

    2010-01-01

    Nucleoside-derived hydrogelators have been sought for their potential biomedical applications, such as are found in tissue engineering and drug delivery. By judiciously adding a degree of hydrophobicity certain analogues are able to form micelles, bi-layers and gels in water. Research in this area has yet to lay down solid ground rules for the rational design of novel nucleoside gelators making further studies necessary. The synthesis and examination of a series of aryl-substituted 5-triazolylcytidines yielded an analogue that gelates water. 5-(1-(2,2′-bithiophen-3-yl)-1H-1,2,3-triazol-4-yl)-2′-deoxycytidine was found to form gels in water down to 0.3 wt%. The ribocytidine analogue failed to form gel in aqueous solution; but was able to form a hydrogel in the presence of guanosine. Images obtained by SEM show the different architectures of the gel; varying from cribriform to fibrous to lamellar. The present gelating compound studied may have potential as a component of a controlled-release drug delivery system. PMID:21686244

  2. Fluorescent proteins for FRET microscopy: monitoring protein interactions in living cells

    PubMed Central

    Day, Richard N.; Davidson, Michael W.

    2012-01-01

    Summary The discovery and engineering of novel fluorescent proteins (FPs) from diverse organisms is yielding fluorophores with exceptional characteristics for live-cell imaging. In particular, the development of FPs for fluorescence (or Förster) resonance energy transfer (FRET) microscopy is providing important tools for monitoring dynamic protein interactions inside living cells. The increased interest in FRET microscopy has driven the development of many different methods to measure FRET. However, the interpretation of FRET measurements is complicated by several factors including the high fluorescence background, the potential for photoconversion artifacts, and the relatively low dynamic range afforded by this technique. Here, we describe the advantages and disadvantages of four methods commonly used in FRET microscopy. We then discuss the selection of FPs for the different FRET methods, identifying the most useful FP candidates for FRET microscopy. The recent success in expanding the FP color palette offers the opportunity to explore new FRET pairs. PMID:22396229

  3. Riboswitch Structure and Dynamics by smFRET Microscopy

    PubMed Central

    Suddala, Krishna C.; Walter, Nils G.

    2016-01-01

    Riboswitches are structured non-coding RNA elements that control the expression of their embedding messenger RNAs by sensing the intracellular concentration of diverse metabolites. As the name suggests, riboswitches are dynamic in nature so that studying their inherent conformational dynamics and ligand-mediated folding is important for understanding their mechanism of action. Single molecule fluorescence energy transfer (smFRET) microscopy is a powerful and versatile technique for studying the folding pathways and intra- and intermolecular dynamics of biological macromolecules, especially RNA. The ability of smFRET to monitor intramolecular distances and their temporal evolution make it a particularly insightful tool for probing the structure and dynamics of riboswitches. Here, we detail the general steps for using prism-based total internal reflection fluorescence (TIRF) microscopy for smFRET studies of the structure, dynamics and ligand binding mechanisms of riboswitches. PMID:25432756

  4. Borromean three-body FRET in frozen Rydberg gases

    PubMed Central

    Faoro, R.; Pelle, B.; Zuliani, A.; Cheinet, P.; Arimondo, E.; Pillet, P.

    2015-01-01

    Controlling the interactions between ultracold atoms is crucial for quantum simulation and computation purposes. Highly excited Rydberg atoms are considered in this prospect for their strong and controllable interactions known in the dipole-dipole case to induce non-radiative energy transfers between atom pairs, similarly to fluorescence resonance energy transfer (FRET) in biological systems. Here we predict few-body FRET processes in Rydberg atoms and observe the first three-body resonance energy transfer in cold Rydberg atoms using cold caesium atoms. In these resonances, additional relay atoms carry away an energy excess preventing the two-body resonance, leading thus to a Borromean type of energy transfer. These few-body processes present strong similarities with multistep FRET between chromophores sometimes called donor-bridge-acceptor or superexchange. Most importantly, they generalize to any Rydberg atom and could lead to new implementations of few-body quantum gates or entanglement. PMID:26348821

  5. Salicylates are interference compounds in TR-FRET assays.

    PubMed

    Hanley, Ronan P; Horvath, Shanti; An, Jianghong; Hof, Fraser; Wulff, Jeremy E

    2016-02-01

    Given the importance of high-throughput screening in drug discovery, the identification of compounds that interfere with assay readouts is crucial. The pursuit of false positives wastes time and money, while distracting development teams from more promising leads. In the context of TR-FRET assays, most interfering compounds are dyes or aggregators. In the course of our studies on the PD1-PDL2 interaction, we discovered that salicylic acids, an extremely common compound subclass in screening libraries, interfere with TR-FRET assays. While the precise mechanism of interference was not established, our data suggest that interaction of the salicylate with the cryptand-ligated europium FRET donor is responsible for the change in assay signal.

  6. ICE AND DEBRIS IN THE FRETTED TERRAIN, MARS.

    USGS Publications Warehouse

    Lucchitta, Baerbel K.

    1984-01-01

    Viking moderate- and high-resolution images along the northern highland margin were studied monoscopically and stereoscopically to contribute to an understanding of the development of fretted terrain. Results support the hypothesis that the fretting process involved flow facilitated by interstitial ice. The process apparently continued for a long period of time, and debris-apron formation shaped the fretted terrain in the past as well as the present. Interstitial ice in debris aprons is most likely derived from ground ice obtained by sapping or scarp collapse. Debris aprons could have been removed by sublimation if they consisted mostly of ice, or by deflation if they consisted mostly of debris. To remove the debris, wind erosion was either very intense early in martian history, or was intermittent, perhaps owing to climatic cycles.

  7. Borromean three-body FRET in frozen Rydberg gases

    NASA Astrophysics Data System (ADS)

    Faoro, R.; Pelle, B.; Zuliani, A.; Cheinet, P.; Arimondo, E.; Pillet, P.

    2015-09-01

    Controlling the interactions between ultracold atoms is crucial for quantum simulation and computation purposes. Highly excited Rydberg atoms are considered in this prospect for their strong and controllable interactions known in the dipole-dipole case to induce non-radiative energy transfers between atom pairs, similarly to fluorescence resonance energy transfer (FRET) in biological systems. Here we predict few-body FRET processes in Rydberg atoms and observe the first three-body resonance energy transfer in cold Rydberg atoms using cold caesium atoms. In these resonances, additional relay atoms carry away an energy excess preventing the two-body resonance, leading thus to a Borromean type of energy transfer. These few-body processes present strong similarities with multistep FRET between chromophores sometimes called donor-bridge-acceptor or superexchange. Most importantly, they generalize to any Rydberg atom and could lead to new implementations of few-body quantum gates or entanglement.

  8. Phosphatidylethanolamine-lactose permease interaction: a comparative study based on FRET.

    PubMed

    Suárez-Germà, Carme; Loura, Luís M S; Domènech, Oscar; Montero, M Teresa; Vázquez-Ibar, José Luís; Hernández-Borrell, Jordi

    2012-12-06

    In this work we have investigated the selectivity of lactose permease (LacY) of Escherichia coli (E. coli) for its surrounding phospholipids when reconstituted in binary mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), 1,2-Palmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) with 1-palmitoyl-2-oleoyl-sn-glycero-3-(phospho-rac-(1-glycerol)) (POPG). Förster resonance energy transfer (FRET) measurements have been performed to investigate the selectivity between a single tryptophan mutant of LacY used as donor (D), and two analogues of POPE and POPG labeled with pyrene in the acyl chains (Pyr-PE and Pyr-PG) used as acceptors. As a difference from previous works, now the donor has been single-W151/C154G/D68C LacY. It has been reported that the replacement of the aspartic acid in position 68 by cysteine inhibits active transport in LacY. The objectives of this work were to elucidate the phospholipid composition of the annular region of this mutant and to determine whether the mutation performed, D68C, induced changes in the protein-lipid selectivity. FRET efficiencies for Pyr-PE were always higher than for Pyr-PG. The values of the probability of each site in the annular ring being occupied by a label (μ) were similar at the studied temperatures (24 °C and 37 °C), suggesting that the lipid environment is not significantly affected when increasing the temperature. By comparing the results with those obtained for single-W151/C154G LacY, we observe that the mutation in the 68 residue indeed changes the selectivity of the protein for the phospholipids. This might be probably due to a change in the conformational dynamics of LacY.

  9. Characterizing 3D RNA structure by single molecule FRET.

    PubMed

    Stephenson, James D; Kenyon, Julia C; Symmons, Martyn F; Lever, Andrew M L

    2016-07-01

    The importance of elucidating the three dimensional structures of RNA molecules is becoming increasingly clear. However, traditional protein structural techniques such as NMR and X-ray crystallography have several important drawbacks when probing long RNA molecules. Single molecule Förster resonance energy transfer (smFRET) has emerged as a useful alternative as it allows native sequences to be probed in physiological conditions and allows multiple conformations to be probed simultaneously. This review serves to describe the method of generating a three dimensional RNA structure from smFRET data from the biochemical probing of the secondary structure to the computational refinement of the final model.

  10. Fretting Stresses in Single Crystal Superalloy Turbine Blade Attachments

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Swanson, Gregory

    2000-01-01

    Single crystal nickel base superalloy turbine blades are being utilized in rocket engine turbopumps and turbine engines because of their superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal nickel base turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. High Cycle Fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Blade attachment regions are prone to fretting fatigue failures. Single crystal nickel base superalloy turbine blades are especially prone to fretting damage because the subsurface shear stresses induced by fretting action at the attachment regions can result in crystallographic initiation and crack growth along octahedral planes. Furthermore, crystallographic crack growth on octahedral planes under fretting induced mixed mode loading can be an order of magnitude faster than under pure mode I loading. This paper presents contact stress evaluation in the attachment region for single crystal turbine blades used in the NASA alternate Advanced High Pressure Fuel Turbo Pump (HPFTP/AT) for the Space Shuttle Main Engine (SSME). Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Blades and the attachment region are modeled using a large-scale 3D finite element (FE) model capable of accounting for contact friction, material orthotrophy, and variation in primary and secondary crystal orientation. Contact stress analysis in the blade attachment regions is presented as a function of coefficient of friction and primary and secondary crystal orientation, Stress results are used to discuss fretting fatigue failure analysis of SSME blades. Attachment stresses are seen to reach

  11. Structure-activity relationships of β-hydroxyphosphonate nucleoside analogues as cytosolic 5'-nucleotidase II potential inhibitors: synthesis, in vitro evaluation and molecular modeling studies.

    PubMed

    Meurillon, Maïa; Marton, Zsuzsanna; Hospital, Audrey; Jordheim, Lars Petter; Béjaud, Jérôme; Lionne, Corinne; Dumontet, Charles; Périgaud, Christian; Chaloin, Laurent; Peyrottes, Suzanne

    2014-04-22

    The cytosolic 5'-nucleotidase II (cN-II) has been proposed as an attractive molecular target for the development of novel drugs circumventing resistance to cytotoxic nucleoside analogues currently used for treating leukemia and other malignant hemopathies. In the present work, synthesis of β-hydroxyphosphonate nucleoside analogues incorporating modifications either on the sugar residue or the nucleobase, and their in vitro evaluation towards the purified enzyme were carried out in order to determine their potency towards the inhibition of cN-II. In addition to the biochemical investigations, molecular modeling studies revealed important structural features for binding affinities towards the target enzyme.

  12. The Photochemistry of Pyrimidine in Realistic Astrophysical Ices and the Production of Nucleobases

    NASA Astrophysics Data System (ADS)

    Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A.

    2014-10-01

    Nucleobases, together with deoxyribose/ribose and phosphoric acid, are the building blocks of DNA and RNA for all known life. The presence of nucleobase-like compounds in carbonaceous chondrites delivered to the Earth raises the question of an extraterrestrial origin for the molecules that triggered life on our planet. Whether these molecules are formed in interstellar/protostellar environments, in small parent bodies in the solar system, or both, is currently unclear. Recent experiments show that the UV irradiation of pyrimidine (C4H4N2) in H2O-rich ice mixtures that contain NH3, CH3OH, or CH4 leads to the formation of the pyrimidine-based nucleobases uracil, cytosine, and thymine. In this work, we discuss the low-temperature UV irradiation of pyrimidine in realistic astrophysical ice mixtures containing H2O, CH3OH, and NH3, with or without CH4, to search for the production of nucleobases and other prebiotic compounds. These experiments show the presence of uracil, urea, glycerol, hexamethylenetetramine, small amino acids, and small carboxylic acids in all samples. Cytosine was only found in one sample produced from ices irradiated with a higher UV dose, while thymine was not found in any sample, even after irradiation with a higher UV dose. Results are discussed to evaluate the role of the photochemistry of pyrimidine in the inventory of organic molecules detected in meteorites and their astrophysical/astrobiological implications.

  13. Optical properties of organically functionalized silicon surfaces: Uracil-like nucleobases on Si(001)

    NASA Astrophysics Data System (ADS)

    Molteni, Elena; Cappellini, Giancarlo; Onida, Giovanni; Fratesi, Guido

    2017-02-01

    We predict UV reflectance anisotropy spectra (RAS) of the organically functionalized silicon (001) surface covered by pyrimidinic uracil-like nucleobases. First-principles results based on density functional theory show characteristic spectral features appearing in the UV range between 3 and 7 eV, besides the expected quench in the well-known two-minima RAS signal of clean Si(001). Nucleobase adsorption in the energetically favored "dimer bridge" configuration gives rise to a characteristic RAS line shape, common to thymine, uracil, and 5-fluorouracil. We trace back the origin of such spectral features by singling out RAS structures induced by relaxation and passivation effects on the Si surface, and those directly associated with molecular excitations. The former turn out to be the same for the three nucleobases, and are totally unaffected by molecular tilting. The sign and position of the latter RAS peaks at higher energy exhibit a moderate nucleobase dependence, and can be fully rationalized in terms of the molecular orbitals involved. The present theoretical results call for a RAS experimental study in the UV region extending up to ≃6 -7 eV.

  14. Macrocyclic Metal Complex-DNA Conjugates for Electrochemical Sensing of Single Nucleobase Changes in DNA.

    PubMed

    Duprey, Jean-Louis H A; Carr-Smith, James; Horswell, Sarah L; Kowalski, Jarosław; Tucker, James H R

    2016-01-27

    The direct incorporation of macrocyclic cyclidene complexes into DNA via automated synthesis results in a new family of metal-functionalized DNA derivatives that readily demonstrate their utility through the ability of one redox-active copper(II)-containing strand to distinguish electrochemically between all four canonical DNA nucleobases at a single site within a target sequence of DNA.

  15. 6-Pyrazolylpurine as an Artificial Nucleobase for Metal-Mediated Base Pairing in DNA Duplexes

    PubMed Central

    Léon, J. Christian; Sinha, Indranil; Müller, Jens

    2016-01-01

    The artificial nucleobase 6-pyrazol-1-yl-purine (6PP) has been investigated with respect to its usability in metal-mediated base pairing. As was shown by temperature-dependent UV spectroscopy, 6PP may form weakly stabilizing 6PP–Ag(I)–6PP homo base pairs. Interestingly, 6PP can be used to selectively recognize a complementary pyrimidine nucleobase. The addition of Ag(I) to a DNA duplex comprising a central 6PP:C mispair (C = cytosine) leads to a slight destabilization of the duplex. In contrast, a stabilizing 6PP–Ag(I)–T base pair is formed with a complementary thymine (T) residue. It is interesting to note that 6PP is capable of differentiating between the pyrimidine moieties despite the fact that it is not as sterically crowded as 6-(3,5-dimethylpyrazol-1-yl)purine, an artificial nucleobase that had previously been suggested for the recognition of nucleic acid sequences via the formation of a metal-mediated base pair. Hence, the additional methyl groups of 6-(3,5-dimethylpyrazol-1-yl)purine may not be required for the specific recognition of the complementary nucleobase. PMID:27089326

  16. Hartree-Fock Cluster Study of Electronic Structures and Nuclear Quadrupole Interactions in Solid Nucleobases.

    NASA Astrophysics Data System (ADS)

    Scheicher, R. H.; Dubey, Archana; Badu, S. R.; Saha, H. P.; Pink, R. H.; Nagamine, K.; Torikai, E.; Chow, Lee; Das, T. P.

    2008-03-01

    In recent work [1] we have studied nucleobases attached to a CH3 group to simulate the influence of their binding to the sugar rings and the phosphate groups in DNA and RNA and the effect of this binding on the nuclear quadrupole interactions of ^14N, ^17O and ^2H nuclei. Our results from this work have indicated that for ^17O, the binding to the CH3 group moves our results from the free nucleobases closer to the experimentally observed data [2] in the solid nucleobases. We are now investigating the solid nucleobases by the first --principles Hartree-Fock cluster procedure that we have employed earlier for the halogen molecular solids [3]. Our results for the binding energy of an imidazole molecule in the molecular solid system and the ^14N, ^17O and ^2H nuclear quadrupole interaction parameters will be presented. [1] T.P. Das et al (at this APS meeting), [2] Gang Wu et al, J. Am.Chem. Soc. 124, 1768(2002). [3] M.M. Aryal et al Hyperfine Interactions (to be published).

  17. Photochemistry of Pyrimidine in Astrophysical Ices: Formation of Nucleobases and Other Prebiotic Species

    NASA Technical Reports Server (NTRS)

    Nuevo, Michel; Sandford, Scott A.; Materese, Christopher K.; Milam, Stefanie N.

    2012-01-01

    Nucleobases are N-heterocycles that are the informational subunits of DNA and RNA. They are divided into two molecular groups: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites, and their extraterrestrial origin confirmed by isotopic measurements. Although no N-heterocycles have ever been observed in the ISM, the positions of the 6.2- m interstellar emission features suggest a population of such molecules is likely to be present. However, laboratory experiments have shown that the ultraviolet (UV) irradiation of pyrimidine in ices of astrophysical relevance such as H2O, NH3, CH3OH, CH4, CO, or combinations of these at low temperature (less than or equal to 20 K) leads to the formation of several pyrimidine derivatives including the nucleobases uracil and cytosine, as well as precursors such as 4(3H)-pyrimidone and 4-aminopyrimidine. Quantum calculations on the formation of 4(3H)-pyrimidone and uracil from the irradiation of pyrimidine in pure H2O ices are in agreement with their experimental formation pathways.10 In those residues, other species of prebiotic interest such as urea as well as the amino acids glycine and alanine could also be identified. However, only very small amounts of pyrimidine derivatives containing CH3 groups could be detected, suggesting that the addition of methyl groups to pyrimidine is not an efficient process. For this reason, the nucleobase thymine was not observed in any of the samples. In this work, we study the formation of nucleobases and other photo-products of prebiotic interest from the UV irradiation of pyrimidine in ices containing H2O, NH3, CH3OH, and CO, mixed in astrophysical proportions.

  18. Identification and Functional Characterization of the First Nucleobase Transporter in Mammals

    PubMed Central

    Yamamoto, Syunsuke; Inoue, Katsuhisa; Murata, Tomoaki; Kamigaso, Syunsuke; Yasujima, Tomoya; Maeda, Jun-ya; Yoshida, Yukihiro; Ohta, Kin-ya; Yuasa, Hiroaki

    2010-01-01

    Nucleobases are important compounds that constitute nucleosides and nucleic acids. Although it has long been suggested that specific transporters are involved in their intestinal absorption and uptake in other tissues, none of their molecular entities have been identified in mammals to date. Here we describe identification of rat Slc23a4 as the first sodium-dependent nucleobase transporter (rSNBT1). The mRNA of rSNBT1 was expressed highly and only in the small intestine. When transiently expressed in HEK293 cells, rSNBT1 could transport uracil most efficiently. The transport of uracil mediated by rSNBT1 was sodium-dependent and saturable with a Michaelis constant of 21.2 μm. Thymine, guanine, hypoxanthine, and xanthine were also transported, but adenine was not. It was also suggested by studies of the inhibitory effect on rSNBT1-mediated uracil transport that several nucleobase analogs such as 5-fluorouracil are recognized by rSNBT1, but cytosine and nucleosides are not or only poorly recognized. Furthermore, rSNBT1 fused with green fluorescent protein was mainly localized at the apical membrane, when stably expressed in polarized Madin-Darby canine kidney II cells. These characteristics of rSNBT1 were almost fully in agreement with those of the carrier-mediated transport system involved in intestinal uracil uptake. Therefore, it is likely that rSNBT1 is its molecular entity or at least in part responsible for that. It was also found that the gene orthologous to the rSNBT1 gene is genetically defective in humans. This may have a biological and evolutional meaning in the transport and metabolism of nucleobases. The present study provides novel insights into the specific transport and metabolism of nucleobases and their analogs for therapeutic use. PMID:20042597

  19. Mapping the UV Photophysics of Platinum Metal Complexes Bound to Nucleobases

    NASA Astrophysics Data System (ADS)

    Sen, Ananya; Dessent, Caroline

    2015-03-01

    We report the first UV laser spectroscopic study of isolated gas-phase complexes of Platinum metal complex anions bound to a nucleobase as model systems for exploring at the molecular level the key photophysical processes involved in photodynamic therapy. Spectra of the PtIV CN 6 2 - • Uracil and PtII CN 4 2 - • Uracil complexes were acquired across the 220 -320 nm range using mass-selective photodepletion and photofragment action spectroscopy. The spectra of both complexes reveal prominent UV absorption bands that we assign primarily to excitation of the Uracil π - π * localized chromophore. Distinctive UV photofragments are observed for the complexes, with PtIV CN 6 2 - • Uracil photoexcitation resulting in complex fission, while PtII CN 4 2 - • Uracil photoexcitation initiates a nucleobase proton-transfer reaction across 4.4 -5.2 eV and electron detachment above 5.2 eV. The observed photofragments are consistent with ultrafast decay of a Uracil localized excited state back to the electronic ground state followed by intramolecular vibrational relaxation and ergodic complex fragmentation. In addition, we present recent results to explore how the photophysics of the Platinum complex-nucleobase clusters evolves as a function of nucleobase. Results are presented for PtII CN 4 2 - • Uracil complexed to Cytosine, Thymine and Adenine, reveal distinctive decay dynamics which we attribute to the intrinsic decay dynamics of the nucleobase. JPC. Lett. 2014, 5, 3281 to 3285 and PCCP 2014, 16, 15490 to 15500.

  20. Survey of Analogue Spacetimes

    NASA Astrophysics Data System (ADS)

    Visser, Matt

    Analogue spacetimes (and more boldly, analogue models both of and for gravity), have attracted significant and increasing attention over the last decade and a half. Perhaps the most straightforward physical example, which serves as a template for most of the others, is Bill Unruh's model for a dumb hole,(mute black hole, acoustic black hole), wherein sound is dragged along by a moving fluid—and can even be trapped behind an acoustic horizon. This and related analogue models for curved spacetimes are useful in many ways: analogue spacetimes provide general relativists with extremely concrete physical models to help focus their thinking, and conversely the techniques of curved spacetime can sometimes help improve our understanding of condensed matter and/or optical systems by providing an unexpected and countervailing viewpoint. In this chapter, I shall provide a few simple examples of analogue spacetimes as general background for the rest of the contributions.

  1. Fretting of Nickel-Chromium-Aluminum Alloys at Temperatures to 816 C

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1974-01-01

    A series of four nickel-based alloys containing 10 percent and 20 percent chromium in combination with 2 percent and 5 percent aluminum were fretted in dry air at temperatures to 816 C. At all temperatures, the alloys showed far less fretting wear than did high-purity nickel. This was attributed to the formation of protective oxide films on the alloys, the result of the selective oxidation of the alloy constituents. Increasing the aluminum concentration reduced fretting wear at all temperatures. Increasing the chromium concentration from 10 percent to 20 percent resulted in decreased fretting wear at 23 and 540 C, but increased fretting wear at 650 and 816 C.

  2. Application of FRET probes in the analysis of neuronal plasticity.

    PubMed

    Ueda, Yoshibumi; Kwok, Showming; Hayashi, Yasunori

    2013-01-01

    Breakthroughs in imaging techniques and optical probes in recent years have revolutionized the field of life sciences in ways that traditional methods could never match. The spatial and temporal regulation of molecular events can now be studied with great precision. There have been several key discoveries that have made this possible. Since green fluorescent protein (GFP) was cloned in 1992, it has become the dominant tracer of proteins in living cells. Then the evolution of color variants of GFP opened the door to the application of Förster resonance energy transfer (FRET), which is now widely recognized as a powerful tool to study complicated signal transduction events and interactions between molecules. Employment of fluorescent lifetime imaging microscopy (FLIM) allows the precise detection of FRET in small subcellular structures such as dendritic spines. In this review, we provide an overview of the basic and practical aspects of FRET imaging and discuss how different FRET probes have revealed insights into the molecular mechanisms of synaptic plasticity and enabled visualization of neuronal network activity both in vitro and in vivo.

  3. Application of FRET probes in the analysis of neuronal plasticity

    PubMed Central

    Ueda, Yoshibumi; Kwok, Showming; Hayashi, Yasunori

    2013-01-01

    Breakthroughs in imaging techniques and optical probes in recent years have revolutionized the field of life sciences in ways that traditional methods could never match. The spatial and temporal regulation of molecular events can now be studied with great precision. There have been several key discoveries that have made this possible. Since green fluorescent protein (GFP) was cloned in 1992, it has become the dominant tracer of proteins in living cells. Then the evolution of color variants of GFP opened the door to the application of Förster resonance energy transfer (FRET), which is now widely recognized as a powerful tool to study complicated signal transduction events and interactions between molecules. Employment of fluorescent lifetime imaging microscopy (FLIM) allows the precise detection of FRET in small subcellular structures such as dendritic spines. In this review, we provide an overview of the basic and practical aspects of FRET imaging and discuss how different FRET probes have revealed insights into the molecular mechanisms of synaptic plasticity and enabled visualization of neuronal network activity both in vitro and in vivo. PMID:24133415

  4. Plant-based FRET biosensor discriminates enviornmental zinc levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heavy metal accumulation in the environment poses great risks to flora and fauna. However, monitoring sites prone to accumulation poses scale and economic challenges. In this study, we present and test a method for monitoring these sites using fluorescent resonance energy transfer (FRET) change in r...

  5. FRET-based optical assay for monitoring riboswitch activation.

    PubMed

    Harbaugh, Svetlana; Kelley-Loughnane, Nancy; Davidson, Molly; Narayanan, Latha; Trott, Sandra; Chushak, Yaroslav G; Stone, Morley O

    2009-05-11

    Riboswitches are regulatory RNAs located in the 5'-untranslated region of mRNA sequences that recognize and bind to small molecules and regulate the expression of downstream genes. Creation of synthetic riboswitches to novel ligands depends on the ability to monitor riboswitch activation in the presence of analyte. In our work, we have coupled a synthetic riboswitch to an optical reporter assay based on fluorescence resonance energy transfer (FRET) between two genetically encoded fluorescent proteins. The theophylline-sensitive riboswitch was placed upstream of the Tobacco Etch Virus (TEV) protease coding sequence. Our FRET construct was composed of eGFP and a nonfluorescent yellow fluorescent protein mutant called REACh (for resonance energy-accepting chromoprotein) connected with a peptide linker containing a TEV protease cleavage site. Addition of theophylline to the E. coli cells activates the riboswitch and initiates the translation of mRNA. Synthesized protease cleaves the linker in the FRET-based fusion protein causing a change in the fluorescence signal. By this method, we observed an 11-fold increase in cellular extract fluorescence in the presence of theophylline. The advantage of using an eGFP-REACh pair is the elimination of acceptor fluorescence. This leads to an improved detection of FRET via better signal-to-noise ratio, allowing us to monitor riboswitch activation in a wide range of analyte concentrations from 0.01 to 2.5 mM.

  6. Optimizing methods to recover absolute FRET efficiency from immobilized single molecules.

    PubMed

    McCann, James J; Choi, Ucheor B; Zheng, Liqiang; Weninger, Keith; Bowen, Mark E

    2010-08-04

    Microscopy-based fluorescence resonance energy transfer (FRET) experiments measure donor and acceptor intensities by isolating these signals with a series of optical elements. Because this filtering discards portions of the spectrum, the observed FRET efficiency is dependent on the set of filters in use. Similarly, observed FRET efficiency is also affected by differences in fluorophore quantum yield. Recovering the absolute FRET efficiency requires normalization for these effects to account for differences between the donor and acceptor fluorophores in their quantum yield and detection efficiency. Without this correction, FRET is consistent across multiple experiments only if the photophysical and instrument properties remain unchanged. Here we present what is, to our knowledge, the first systematic study of methods to recover the true FRET efficiency using DNA rulers with known fluorophore separations. We varied optical elements to purposefully alter observed FRET and examined protein samples to achieve quantum yields distinct from those in the DNA samples. Correction for calculated instrument transmission reduced FRET deviations, which can facilitate comparison of results from different instruments. Empirical normalization was more effective but required significant effort. Normalization based on single-molecule photobleaching was the most effective depending on how it is applied. Surprisingly, per-molecule gamma-normalization reduced the peak width in the DNA FRET distribution because anomalous gamma-values correspond to FRET outliers. Thus, molecule-to-molecule variation in gamma has an unrecognized effect on the FRET distribution that must be considered to extract information on sample dynamics from the distribution width.

  7. Molecular signaling in live cells studied by FRET

    NASA Astrophysics Data System (ADS)

    Chien, Shu; Wang, Yingxiao

    2011-11-01

    Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) enables visualization of signaling events in live cells with high spatiotemporal resolution. We have used FRET to assess temporal and spatial characteristics for signaling molecules, including tyrosine kinases Src and FAK, small GTPase Rac, calcium, and a membrane-bound matrix metalloproteinase MT1-MMP. Activations of Src and Rac by platelet derived growth factor (PDGF) led to distinct subcellular patterns during cell migration on micropatterned surface, and these two enzymes interact with each other to form a feedback loop with differential regulations at different subcellular locations. We have developed FRET biosensors to monitor FAK activities at rafts vs. non-raft regions of plasma membrane in live cells. In response to cell adhesion on matrix proteins or stimulation by PDGF, the raft-targeting FAK biosensor showed a stronger FRET response than that at non-rafts. The FAK activation at rafts induced by PDGF is mediated by Src. In contrast, the FAK activation at rafts induced by adhesion is independent of Src activity, but rather is essential for Src activation. Thus, Src is upstream to FAK in response to chemical stimulation (PDGF), but FAK is upstream to Src in response to mechanical stimulation (adhesion). A novel biosensor has been developed to dynamically visualize the activity of membrane type-1-matrix metalloproteinase (MT1-MMP), which proteolytically remodels the extracellular matrix. Epidermal growth factor (EGF) directed active MT1-MMP to the leading edge of migrating live cancer cells with local accumulation of EGF receptor via a process dependent on an intact cytoskeletal network. In summary, FRET-based biosensors enable the elucidation of molecular processes and hierarchies underlying spatiotemporal regulation of biological and pathological processes, thus advancing our knowledge on how cells perceive mechanical/chemical cues in space and time to coordinate

  8. Molecular signaling in live cells studied by FRET

    NASA Astrophysics Data System (ADS)

    Chien, Shu; Wang, Yingxiao

    2012-03-01

    Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET) enables visualization of signaling events in live cells with high spatiotemporal resolution. We have used FRET to assess temporal and spatial characteristics for signaling molecules, including tyrosine kinases Src and FAK, small GTPase Rac, calcium, and a membrane-bound matrix metalloproteinase MT1-MMP. Activations of Src and Rac by platelet derived growth factor (PDGF) led to distinct subcellular patterns during cell migration on micropatterned surface, and these two enzymes interact with each other to form a feedback loop with differential regulations at different subcellular locations. We have developed FRET biosensors to monitor FAK activities at rafts vs. non-raft regions of plasma membrane in live cells. In response to cell adhesion on matrix proteins or stimulation by PDGF, the raft-targeting FAK biosensor showed a stronger FRET response than that at non-rafts. The FAK activation at rafts induced by PDGF is mediated by Src. In contrast, the FAK activation at rafts induced by adhesion is independent of Src activity, but rather is essential for Src activation. Thus, Src is upstream to FAK in response to chemical stimulation (PDGF), but FAK is upstream to Src in response to mechanical stimulation (adhesion). A novel biosensor has been developed to dynamically visualize the activity of membrane type-1-matrix metalloproteinase (MT1-MMP), which proteolytically remodels the extracellular matrix. Epidermal growth factor (EGF) directed active MT1-MMP to the leading edge of migrating live cancer cells with local accumulation of EGF receptor via a process dependent on an intact cytoskeletal network. In summary, FRET-based biosensors enable the elucidation of molecular processes and hierarchies underlying spatiotemporal regulation of biological and pathological processes, thus advancing our knowledge on how cells perceive mechanical/chemical cues in space and time to coordinate

  9. Single-Molecule Pull-down FRET (SiMPull-FRET) to dissect the mechanisms of biomolecular machines

    PubMed Central

    Kahlscheuer, Matthew L.; Widom, Julia; Walter, Nils G.

    2016-01-01

    Spliceosomes are multi-megadalton RNA-protein complexes responsible for the faithful removal of non-coding segments (introns) from pre-messenger RNAs (pre-mRNAs), a process critical for the maturation of eukaryotic mRNAs for subsequent translation by the ribosome. Both the spliceosome and ribosome, as well as many other RNA and DNA processing machineries, contain central RNA components that endow biomolecular complexes with precise, sequence-specific nucleic acid recognition and versatile structural dynamics. Single molecule fluorescence (or Förster) resonance energy transfer (smFRET) microscopy is a powerful tool for the study of local and global conformational changes of both simple and complex biomolecular systems involving RNA. The integration of biochemical tools such as immunoprecipitation with advanced methods in smFRET microscopy and data analysis has opened up entirely new avenues towards studying the mechanisms of biomolecular machines isolated directly from complex biological specimens such as cell extracts. Here we detail the general steps for using prism-based total internal reflection fluorescence (TIRF) microscopy in exemplary single molecule pull-down FRET (SiMPull-FRET) studies of the yeast spliceosome and discuss the broad application potential of this technique. PMID:26068753

  10. Role of Achiral Nucleobases in Multicomponent Chiral Self-Assembly: Purine-Triggered Helix and Chirality Transfer.

    PubMed

    Deng, Ming; Zhang, Li; Jiang, Yuqian; Liu, Minghua

    2016-11-21

    Chiral self-assembly is a basic process in biological systems, where many chiral biomolecules such as amino acids and sugars play important roles. Achiral nucleobases usually covalently bond to saccharides and play a significant role in the formation of the double helix structure. However, it remains unclear how the achiral nucleobases can function in chiral self-assembly without the sugar modification. Herein, we have clarified that purine nucleobases could trigger N-(9-fluorenylmethox-ycarbonyl) (Fmoc)-protected glutamic acid to self-assemble into helical nanostructures. Moreover, the helical nanostructure could serve as a matrix and transfer the chirality to an achiral fluorescence probe, thioflavin T (ThT). Upon chirality transfer, the ThT showed not only supramolecular chirality but also circular polarized fluorescence (CPL). Without the nucleobase, the self-assembly processes cannot happen, thus providing an example where achiral molecules played an essential role in the expression and transfer of the chirality.

  11. rFRET: A comprehensive, Matlab-based program for analyzing intensity-based ratiometric microscopic FRET experiments.

    PubMed

    Nagy, Peter; Szabó, Ágnes; Váradi, Tímea; Kovács, Tamás; Batta, Gyula; Szöllősi, János

    2016-04-01

    Fluorescence or Förster resonance energy transfer (FRET) remains one of the most widely used methods for assessing protein clustering and conformation. Although it is a method with solid physical foundations, many applications of FRET fall short of providing quantitative results due to inappropriate calibration and controls. This shortcoming is especially valid for microscopy where currently available tools have limited or no capability at all to display parameter distributions or to perform gating. Since users of multiparameter flow cytometry usually apply these tools, the absence of these features in applications developed for microscopic FRET analysis is a significant limitation. Therefore, we developed a graphical user interface-controlled Matlab application for the evaluation of ratiometric, intensity-based microscopic FRET measurements. The program can calculate all the necessary overspill and spectroscopic correction factors and the FRET efficiency and it displays the results on histograms and dot plots. Gating on plots and mask images can be used to limit the calculation to certain parts of the image. It is an important feature of the program that the calculated parameters can be determined by regression methods, maximum likelihood estimation (MLE) and from summed intensities in addition to pixel-by-pixel evaluation. The confidence interval of calculated parameters can be estimated using parameter simulations if the approximate average number of detected photons is known. The program is not only user-friendly, but it provides rich output, it gives the user freedom to choose from different calculation modes and it gives insight into the reliability and distribution of the calculated parameters. © 2016 International Society for Advancement of Cytometry.

  12. Exciton energy transfer-based quantum dot fluorescence sensing array: "chemical noses" for discrimination of different nucleobases.

    PubMed

    Liu, Jianbo; Li, Gui; Yang, Xiaohai; Wang, Kemin; Li, Li; Liu, Wei; Shi, Xing; Guo, Yali

    2015-01-20

    A novel exciton energy transfer-based fluorescence sensing array for the discrimination of different nucleobases was developed through target nucleobase-triggered self-assembly of quantum dots (QDs). Four QD nanoprobes with different ligand receptors, including mercaptoethylamine, N-acetyl-l-cysteine, 2-dimethyl-aminethanethiol, and thioglycolic acid, were created to detect and identify nucleobase targets. These QDs served as both selective recognition scaffolds and signal transduction elements for a biomolecule target. The extent of particle assembly, induced by the analyte-triggered self-assembly of QDs, led to an exciton energy transfer effect between interparticles that gave a readily detectable fluorescence quenching and distinct fluorescence response patterns. These patterns are characteristic for each nucleobase and can be quantitatively differentiated by linear discriminate analysis. Furthermore, a fingerprint-based barcode was established to conveniently discriminate the nucleobases. This pattern sensing was successfully used to identify nucleobase samples at unknown concentrations and five rare bases. In this "chemical noses" strategy, the robust characteristics of QD nanoprobes, coupled with the diversity of surface functionality that can be readily obtained using nanoparticles, provides a simple and label-free biosensing approach that shows great promise for biomedical applications.

  13. Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging.

    PubMed

    Afsari, Hamid Samareh; Cardoso Dos Santos, Marcelina; Lindén, Stina; Chen, Ting; Qiu, Xue; van Bergen En Henegouwen, Paul M P; Jennings, Travis L; Susumu, Kimihiro; Medintz, Igor L; Hildebrandt, Niko; Miller, Lawrence W

    2016-06-01

    Time-gated Förster resonance energy transfer (FRET) using the unique material combination of long-lifetime terbium complexes (Tb) and semiconductor quantum dots (QDs) provides many advantages for highly sensitive and multiplexed biosensing. Although time-gated detection can efficiently suppress sample autofluorescence and background fluorescence from directly excited FRET acceptors, Tb-to-QD FRET has rarely been exploited for biomolecular imaging. We demonstrate Tb-to-QD time-gated FRET nanoassemblies that can be applied for intra- and extracellular imaging. Immunostaining of different epitopes of the epidermal growth factor receptor (EGFR) with Tb- and QD-conjugated antibodies and nanobodies allowed for efficient Tb-to-QD FRET on A431 cell membranes. The broad usability of Tb-to-QD FRET was further demonstrated by intracellular Tb-to-QD FRET and Tb-to-QD-to-dye FRET using microinjection as well as cell-penetrating peptide-mediated endocytosis with HeLa cells. Effective brightness enhancement by FRET from several Tb to the same QD, the use of low nanomolar concentrations, and the quick and sensitive detection void of FRET acceptor background fluorescence are important advantages for advanced intra- and extracellular imaging of biomolecular interactions.

  14. Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging

    PubMed Central

    Afsari, Hamid Samareh; Cardoso Dos Santos, Marcelina; Lindén, Stina; Chen, Ting; Qiu, Xue; van Bergen en Henegouwen, Paul M. P.; Jennings, Travis L.; Susumu, Kimihiro; Medintz, Igor L.; Hildebrandt, Niko; Miller, Lawrence W.

    2016-01-01

    Time-gated Förster resonance energy transfer (FRET) using the unique material combination of long-lifetime terbium complexes (Tb) and semiconductor quantum dots (QDs) provides many advantages for highly sensitive and multiplexed biosensing. Although time-gated detection can efficiently suppress sample autofluorescence and background fluorescence from directly excited FRET acceptors, Tb-to-QD FRET has rarely been exploited for biomolecular imaging. We demonstrate Tb-to-QD time-gated FRET nanoassemblies that can be applied for intra- and extracellular imaging. Immunostaining of different epitopes of the epidermal growth factor receptor (EGFR) with Tb- and QD-conjugated antibodies and nanobodies allowed for efficient Tb-to-QD FRET on A431 cell membranes. The broad usability of Tb-to-QD FRET was further demonstrated by intracellular Tb-to-QD FRET and Tb-to-QD-to-dye FRET using microinjection as well as cell-penetrating peptide–mediated endocytosis with HeLa cells. Effective brightness enhancement by FRET from several Tb to the same QD, the use of low nanomolar concentrations, and the quick and sensitive detection void of FRET acceptor background fluorescence are important advantages for advanced intra- and extracellular imaging of biomolecular interactions. PMID:27386579

  15. Formation of Nucleobases from the UV Irradiation of Pyrimidine in Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Nuevo, Michel; Sandford, Scott A.; Elsila, Jamie E.; Dworkin, Jason P.

    2010-01-01

    Previous laboratory simulations showed that complex molecules, including prebiotic compounds/can be formed under interstellar conditions from the vacuum UV irradiation of interstellar ice analogs containing H2O, CO, NH3 etc. Although some complex prebiotic species have not been confirmed In the interstellar medium, they are known to be present in meteorites. Nucleobases, the building blocks of DNA and RNA, have also been detected in meteorites. Here, we present a study of the formation of pyrimidine-based compounds from the UV irradiation of pyrimidine in H2O- and/or NH3-ices at 20-30 K, Our results show that various derivatives, induding the nucleobases uracil and cytosine, are formed under these conditions.

  16. Important factors stabilizing stacking interaction between 3-nitropyrrole and natural nucleobases revealed by ab initio calculations.

    PubMed

    Seio, Kohji; Ukawa, Hisashi; Shohda, Koh-ichiro; Sekine, Mitsuo

    2003-01-01

    Stacking energies between canonical nucleobases and a universal base, 3-nitropyrrole (3-NP), were estimated by use of molecular orbital (MO) and molecular mechanics (MM) calculations. The detailed analysis of the energy profiles revealed the importance of the London dispersion energy to stabilize the stacked dimers and electrostatic interactions to determine the orientation of 3-NP to the nucleobases in the dimers. Although the energy profiles of 3-NP/natural base dimers obtained by the MO and MM calculations were qualitatively correlated with each other, the correlations were poorer than those obtained for the stacking between natural bases. The origin of the difference between 3-NP and natural bases will be discussed to understand the possibility and limitation of the current MM calculations for the simulation and design of other universal bases.

  17. Terahertz spectra of DNA nucleobase crystals: A joint experimental and computational study.

    PubMed

    Wang, Fang; Zhao, Dongbo; Dong, Hao; Jiang, Ling; Liu, Yunfei; Li, Shuhua

    2017-02-21

    Terahertz (THz) spectra of DNA nucleobase crystals were experimentally studied by terahertz time domain spectroscopy (THz-TDS), Fourier transform infrared spectroscopy (FTIR), and computationally studied by the generalized energy-based fragmentation approach under periodic boundary conditions (denoted as PBC-GEBF). We analyzed the vibrational spectra of solid-state DNA nucleobases and assigned the corresponding vibrational modes to the main peaks in the experimental spectra with the PBC-GEBF results. The computational results were verified to be in good accordance with the experimental data. Harmonic vibrational frequency results revealed that all the vibrational modes belong to collective vibrational modes, which involve complicated mixtures of inter- and intramolecular displacements, somewhere in the vicinity of 0.5-9THz.

  18. Time-resolved homo-FRET studies of biotin-streptavidin complexes.

    PubMed

    Andreoni, Alessandra; Nardo, Luca; Rigler, Rudolf

    2016-09-01

    Förster resonance energy transfer is a mechanism of fluorescence quenching that is notably useful for characterizing properties of biomolecules and/or their interactions. Here we study water-solutions of Biotin-Streptavidin complexes, in which Biotin is labeled with a rigidly-bound fluorophore that can interact by Förster resonance energy transfer with the fluorophores labeling the other, up to three, Biotins of the same complex. The fluorophore, Atto550, is a Rhodamine analogue. We detect the time-resolved fluorescence decay of the fluorophores with an apparatus endowed with single-photon sensitivity and temporal resolution of ~30ps. The decay profiles we observe for samples containing constant Biotin-Atto550 conjugates and varying Streptavidin concentrations are multi-exponential. Each decay component can be associated with the rate of quenching exerted on each donor by each of the acceptors that label the other Biotin molecules, depending on the binding site they occupy. The main features that lead to this result are that (i) the transition dipole moments of the up-to-four Atto550 fluorophores that label the complexes are fixed as to both relative positions and mutual orientations; (ii) the fluorophores are identical and the role of donor in each Biotin-Streptavidin complex is randomly attributed to the one that has absorbed the excitation light (homo-FRET). Obviously the high-temporal resolution of the excitation-detection apparatus is necessary to discriminate among the fluorescence decay components.

  19. The photochemistry of pyrimidine in realistic astrophysical ices and the production of nucleobases

    SciTech Connect

    Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A.

    2014-10-01

    Nucleobases, together with deoxyribose/ribose and phosphoric acid, are the building blocks of DNA and RNA for all known life. The presence of nucleobase-like compounds in carbonaceous chondrites delivered to the Earth raises the question of an extraterrestrial origin for the molecules that triggered life on our planet. Whether these molecules are formed in interstellar/protostellar environments, in small parent bodies in the solar system, or both, is currently unclear. Recent experiments show that the UV irradiation of pyrimidine (C{sub 4}H{sub 4}N{sub 2}) in H{sub 2}O-rich ice mixtures that contain NH{sub 3}, CH{sub 3}OH, or CH{sub 4} leads to the formation of the pyrimidine-based nucleobases uracil, cytosine, and thymine. In this work, we discuss the low-temperature UV irradiation of pyrimidine in realistic astrophysical ice mixtures containing H{sub 2}O, CH{sub 3}OH, and NH{sub 3}, with or without CH{sub 4}, to search for the production of nucleobases and other prebiotic compounds. These experiments show the presence of uracil, urea, glycerol, hexamethylenetetramine, small amino acids, and small carboxylic acids in all samples. Cytosine was only found in one sample produced from ices irradiated with a higher UV dose, while thymine was not found in any sample, even after irradiation with a higher UV dose. Results are discussed to evaluate the role of the photochemistry of pyrimidine in the inventory of organic molecules detected in meteorites and their astrophysical/astrobiological implications.

  20. Synthesis of rigid homo- and heteroditopic nucleobase-terminated molecules incorporating adenine and/or thymine.

    PubMed

    Jacobsen, Mikkel F; Andersen, Casper S; Knudsen, Martin M; Gothelf, Kurt V

    2007-07-19

    A series of homo- and heteroditopic thymine- and/or adenine-terminated molecules incorporating rigid aryl or oligo(phenylene ethynylene) linkers has been efficiently synthesized. The key steps involved in the synthesis are the construction of the N-arylated nucleobases using the Chan-Lam-Evans-modified Ullman coupling and their further elaboration using the Sonogashira coupling. Furthermore, the synthesis of a rigid tripodal thymine derivative is reported.

  1. Molecularly resolved label-free sensing of single nucleobase mismatches by interfacial LNA probes

    PubMed Central

    Mishra, Sourav; Lahiri, Hiya; Banerjee, Siddhartha; Mukhopadhyay, Rupa

    2016-01-01

    So far, there has been no report on molecularly resolved discrimination of single nucleobase mismatches using surface-confined single stranded locked nucleic acid (ssLNA) probes. Herein, it is exemplified using a label-independent force-sensing approach that an optimal coverage of 12-mer ssLNA sensor probes formed onto gold(111) surface allows recognition of ssDNA targets with twice stronger force sensitivity than 12-mer ssDNA sensor probes. The force distributions are reproducible and the molecule-by-molecule force measurements are largely in agreement with ensemble on-surface melting temperature data. Importantly, the molecularly resolved detection is responsive to the presence of single nucleobase mismatches in target sequences. Since the labelling steps can be eliminated from protocol, and each force-based detection event occurs within milliseconds' time scale, the force-sensing assay is potentially capable of rapid detection. The LNA probe performance is indicative of versatility in terms of substrate choice - be it gold (for basic research and array-based applications) or silicon (for ‘lab-on-a-chip’ type devices). The nucleic acid microarray technologies could therefore be generally benefited by adopting the LNA films, in place of DNA. Since LNA is nuclease-resistant, unlike DNA, and the LNA-based assay is sensitive to single nucleobase mismatches, the possibilities for label-free in vitro rapid diagnostics based on the LNA probes may be explored. PMID:27025649

  2. Formation of Nucleobases from the UV Irradiation of Pyrimidine in Astrophysical Ice Analogs

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Nuevo, Michel; Materese, Christopher K.

    2014-01-01

    Nucleobases are the informational subunits of DNA and RNA. They consist of Nheterocycles that belong to either the pyrimidine-base group (uracil, cytosine, and thymine) or the purinebase group (adenine and guanine). Several nucleobases, mostly purine bases, have been detected in meteorites [1-3], with isotopic signatures consistent with an extraterrestrial origin [4]. Uracil is the only pyrimidine-base compound formally reported in meteorites [2], though the presence of cytosine cannot be ruled out [5,6]. However, the actual process by which the uracil was made and the reasons for the non-detection of thymine in meteorites have yet to be fully explained. Although no N-heterocycles have ever been observed in the ISM [7,8], the positions of the 6.2-µm interstellar emission features suggest a population of such molecules is likely to be present [9]. In this work we study the formation of pyrimidine-based molecules, including the three nucleobases uracil, cytosine, and thymine from the ultraviolet (UV) irradiation of pyrimidine in ices consisting of several combinations of H(sub2)O, NH(sub3), CH(sub3)OH, and CH(sub4) at low temperature, in order to simulate the astrophysical conditions under which prebiotic species may be formed in the interstellar medium, in the protosolar nebula, and on icy bodies of the Solar System.

  3. Determination of HDV ribozyme N(-1) nucleobase and functional group specificity using internal competition kinetics

    PubMed Central

    Kellerman, Daniel L; Simmons, Kandice S; Pedraza, Mayra; Piccirilli, Joseph A; York, Darrin M; Harris, Michael E

    2015-01-01

    Biological catalysis involves interactions distant from the site of chemistry that can position the substrate for reaction. Catalysis of RNA 2′-O-transphosphorylation by the HDV ribozyme is sensitive to the identity of the N(-1) nucleotide flanking the reactive phosphoryl group. However, the interactions that affect the conformation of this position, and in turn the 2′O nucleophile, are unclear. Here, we describe the application of multiple substrate internal competition kinetic analyses to understand how the N(-1) nucleobase contributes to HDV catalysis, and to test the utility of this approach for RNA structure-function studies. Internal competition reactions containing all four substrate sequence variants at the N(-1) position in reactions using ribozyme active site mutations at A77 and A78 were used to test a proposed basepairing interaction. Mutants A78U, A78G and A79G retain significant catalytic activity, but do not alter the specificity for the N(-1) nucleobase. Effects of nucleobase analog substitutions at N(-1) indicate that U is preferred due to the ability to donate an H-bond in the Watson-Crick face and avoid minor groove steric clash. The results provide information essential for evaluating models of the HDV active site, and illustrate multiple-substrate kinetic analyses as a practical approach for characterizing structure-function relationships in RNA reactions. PMID:25937290

  4. Nucleobase and amino acid formation through impacts of meteorites on the early ocean

    NASA Astrophysics Data System (ADS)

    Furukawa, Yoshihiro; Nakazawa, Hiromoto; Sekine, Toshimori; Kobayashi, Takamichi; Kakegawa, Takeshi

    2015-11-01

    The emergence of life's building blocks on the prebiotic Earth was the first crucial step for the origins of life. Extraterrestrial delivery of intact amino acids and nucleobases is the prevailing hypothesis for their availability on prebiotic Earth because of the difficulties associated with the production of these organics from terrestrial carbon and nitrogen sources under plausible prebiotic conditions. However, the variety and amounts of these intact organics delivered by meteorites would have been limited. Previous shock-recovery experiments have demonstrated that meteorite impact reactions could have generated organics on the prebiotic Earth. Here, we report on the simultaneous formation of nucleobases (cytosine and uracil) found in DNA and/or RNA, various proteinogenic amino acids (glycine, alanine, serine, aspartic acid, glutamic acid, valine, leucine, isoleucine, and proline), non-proteinogenic amino acids, and aliphatic amines in experiments simulating reactions induced by extraterrestrial objects impacting on the early oceans. To the best of our knowledge, this is the first report of the formation of nucleobases from inorganic materials by shock conditions. In these experiments, bicarbonate was used as the carbon source. Bicarbonate, which is a common dissolved carbon species in CO2-rich atmospheric conditions, was presumably the most abundant carbon species in the early oceans and in post-impact plumes. Thus, the present results expand the possibility that impact-induced reactions generated various building blocks for life on prebiotic Earth in large quantities through the use of terrestrial carbon reservoirs.

  5. Studies on effective atomic numbers and electron densities of nucleobases in DNA

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok

    2016-10-01

    Various parameters of dosimetric importance such as effective atomic numbers (Zeff) and electron densities (Nel) of nucleobases in DNA have been calculated for the total and partial photon interaction processes in the wide energy range of 1 keV-100 GeV. The variations of Zeff and Nel with energy are shown graphically for all partial and total interaction processes and are found to be similar. Up to 10 keV, Zeff and Nel show a sharp increase for cytosine-guanine and thymine-adenine whereas for all the other nucleobases, it is almost constant. Then there is sharp decrease in Zeff and Nel with energy up to 100 keV for all the nucleobases. From 100 keV to 6 MeV, Zeff and Nel are almost independent of energy. From 6 MeV to 100 MeV, there is regular increase in Zeff and Nel with photon energy. Above 400 MeV, Zeff and Nel remain almost constant. The obtained results are due to the dominance of photoelectric absorption, Compton scattering and pair production in different energy regions as respectively stated above and their dependences on the chemical compositions of the interacting media.

  6. The origin of efficient triplet state population in sulfur-substituted nucleobases

    PubMed Central

    Mai, Sebastian; Pollum, Marvin; Martínez-Fernández, Lara; Dunn, Nicholas; Marquetand, Philipp; Corral, Inés; Crespo-Hernández, Carlos E.; González, Leticia

    2016-01-01

    Elucidating the photophysical mechanisms in sulfur-substituted nucleobases (thiobases) is essential for designing prospective drugs for photo- and chemotherapeutic applications. Although it has long been established that the phototherapeutic activity of thiobases is intimately linked to efficient intersystem crossing into reactive triplet states, the molecular factors underlying this efficiency are poorly understood. Herein we combine femtosecond transient absorption experiments with quantum chemistry and nonadiabatic dynamics simulations to investigate 2-thiocytosine as a necessary step to unravel the electronic and structural elements that lead to ultrafast and near-unity triplet-state population in thiobases in general. We show that different parts of the potential energy surfaces are stabilized to different extents via thionation, quenching the intrinsic photostability of canonical DNA and RNA nucleobases. These findings satisfactorily explain why thiobases exhibit the fastest intersystem crossing lifetimes measured to date among bio-organic molecules and have near-unity triplet yields, whereas the triplet yields of canonical nucleobases are nearly zero. PMID:27703148

  7. Detecting Organic Compounds in Martian Soil Analogues Using Gas Chromatography Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Buch, A.; Mahaffy, P. R.

    2004-01-01

    One of the primary objectives of the 1976 Viking missions was to determine whether organic compounds, possibly of biological origin, were present in the Martian surface soils. The Viking gas chromatography mass spectrometry (GCMS) instruments found no evidence for any organic compounds of Martian origin above a few parts per billion in the upper 10 cm of surface soil [l], suggesting the absence of a widely distributed Martian biota. However, Benner et d. have suggested that significant amounts of non-volatile organic compounds, possibly including oxidation products of bioorganic molecules (e.g. carboxylic acids) would not have been detected by the Viking GCMS [2]. Moreover, other key organic compounds important to biology, such as amino acids and nucleobases, would also likely have been missed by the Viking GCMS as these compounds require chemical derivatization to be stable in a GC column [3]. Recent pyrolysis experiments with a Mars soil analogue that had been innoculated with Escherichia coli bacteria have shown that amino acid decomposition products (amines) and nucleobases are among the most abundant products generated after pyrolysis of the bacterial cells [4,5]. At the part per billion level (Viking GCMS detection limit), these pyrolysis products generated from several million bacterial cells per gram of Martian soil would not have been detected by the Viking GCMS instruments [4]. Analytical protocols are under development for upcoming in situ lander opportunities to target several important biological compounds including amino acids and nucleobases. For example, extraction and chemical derivatization techniques [3] are being adapted for space flight use to transform reactive or fragile molecules that would not have been detected by the Viking GCMS instruments, into species that are sufficiently volatile to be detected by GCMS. Recent experiments carried out at NASA Goddard have shown that using this derivatization technique all of the targeted compounds

  8. Detecting stoichiometry of macromolecular complexes in live cells using FRET

    PubMed Central

    Ben-Johny, Manu; Yue, Daniel N.; Yue, David T.

    2016-01-01

    The stoichiometry of macromolecular interactions is fundamental to cellular signalling yet challenging to detect from living cells. Fluorescence resonance energy transfer (FRET) is a powerful phenomenon for characterizing close-range interactions whereby a donor fluorophore transfers energy to a closely juxtaposed acceptor. Recognizing that FRET measured from the acceptor's perspective reports a related but distinct quantity versus the donor, we utilize the ratiometric comparison of the two to obtain the stoichiometry of a complex. Applying this principle to the long-standing controversy of calmodulin binding to ion channels, we find a surprising Ca2+-induced switch in calmodulin stoichiometry with Ca2+ channels—one calmodulin binds at basal cytosolic Ca2+ levels while two calmodulins interact following Ca2+ elevation. This feature is curiously absent for the related Na channels, also potently regulated by calmodulin. Overall, our assay adds to a burgeoning toolkit to pursue quantitative biochemistry of dynamic signalling complexes in living cells. PMID:27922011

  9. FRET in a Synthetic Flavin- and Bilin-binding Protein.

    PubMed

    Simon, Julian; Losi, Aba; Zhao, Kai-Hong; Gärtner, Wolfgang

    2017-01-05

    The last decade has seen development and application of a large number of novel fluorescence-based techniques that have revolutionized fluorescence microscopy in life sciences. Preferred tags for such applications are genetically encoded fluorescent proteins (FP), mostly derivatives of the green fluorescent protein (GFP). Combinations of FPs with wavelength-separated absorption/fluorescence properties serve as excellent tools for molecular interaction studies, for example, protein-protein complexes or enzyme-substrate interactions, based on the FRET phenomenon (Förster resonance energy transfer). However, alternatives are requested for experimental conditions where FP proteins or FP couples are not or less efficiently applicable. We here report as a "proof of principle" a specially designed, non-naturally occurring protein (LG1) carrying a combination of a flavin-binding LOV- and a photochromic bilin-binding GAF domain and demonstrate a FRET process between both chromophores.

  10. Detecting stoichiometry of macromolecular complexes in live cells using FRET.

    PubMed

    Ben-Johny, Manu; Yue, Daniel N; Yue, David T

    2016-12-06

    The stoichiometry of macromolecular interactions is fundamental to cellular signalling yet challenging to detect from living cells. Fluorescence resonance energy transfer (FRET) is a powerful phenomenon for characterizing close-range interactions whereby a donor fluorophore transfers energy to a closely juxtaposed acceptor. Recognizing that FRET measured from the acceptor's perspective reports a related but distinct quantity versus the donor, we utilize the ratiometric comparison of the two to obtain the stoichiometry of a complex. Applying this principle to the long-standing controversy of calmodulin binding to ion channels, we find a surprising Ca(2+)-induced switch in calmodulin stoichiometry with Ca(2+) channels-one calmodulin binds at basal cytosolic Ca(2+) levels while two calmodulins interact following Ca(2+) elevation. This feature is curiously absent for the related Na channels, also potently regulated by calmodulin. Overall, our assay adds to a burgeoning toolkit to pursue quantitative biochemistry of dynamic signalling complexes in living cells.

  11. Single Cell FRET Analysis for the Identification of Optimal FRET-Pairs in Bacillus subtilis Using a Prototype MEM-FLIM System

    PubMed Central

    Detert Oude Weme, Ruud G. J.; Kovács, Ákos T.; de Jong, Sander J. G.; Veening, Jan-Willem; Siebring, Jeroen; Kuipers, Oscar P.

    2015-01-01

    Protein-protein interactions can be studied in vitro, e.g. with bacterial or yeast two-hybrid systems or surface plasmon resonance. In contrast to in vitro techniques, in vivo studies of protein-protein interactions allow examination of spatial and temporal behavior of such interactions in their native environment. One approach to study protein-protein interactions in vivo is via Förster Resonance Energy Transfer (FRET). Here, FRET efficiency of selected FRET-pairs was studied at the single cell level using sensitized emission and Frequency Domain-Fluorescence Lifetime Imaging Microscopy (FD-FLIM). For FRET-FLIM, a prototype Modulated Electron-Multiplied FLIM system was used, which is, to the best of our knowledge, the first account of Frequency Domain FLIM to analyze FRET in single bacterial cells. To perform FRET-FLIM, we first determined and benchmarked the best fluorescent protein-pair for FRET in Bacillus subtilis using a novel BglBrick-compatible integration vector. We show that GFP-tagRFP is an excellent donor-acceptor pair for B. subtilis in vivo FRET studies. As a proof of concept, selected donor and acceptor fluorescent proteins were fused using a linker that contained a tobacco etch virus (TEV)-protease recognition sequence. Induction of TEV-protease results in loss of FRET efficiency and increase in fluorescence lifetime. The loss of FRET efficiency after TEV induction can be followed in time in single cells via time-lapse microscopy. This work will facilitate future studies of in vivo dynamics of protein complexes in single B. subtilis cells. PMID:25886351

  12. Dual Readout BRET/FRET Sensors for Measuring Intracellular Zinc

    PubMed Central

    2016-01-01

    Genetically encoded FRET-based sensor proteins have significantly contributed to our current understanding of the intracellular functions of Zn2+. However, the external excitation required for these fluorescent sensors can give rise to photobleaching and phototoxicity during long-term imaging, limits applications that suffer from autofluorescence and light scattering, and is not compatible with light-sensitive cells. For these applications, sensor proteins based on Bioluminescence Resonance Energy Transfer (BRET) would provide an attractive alternative. In this work, we used the bright and stable luciferase NanoLuc to create the first genetically encoded BRET sensors for measuring intracellular Zn2+. Using a new sensor approach, the NanoLuc domain was fused to the Cerulean donor domain of two previously developed FRET sensors, eCALWY and eZinCh-2. In addition to preserving the excellent Zn2+ affinity and specificity of their predecessors, these newly developed sensors enable both BRET- and FRET-based detection. While the dynamic range of the BRET signal for the eCALWY-based BLCALWY-1 sensor was limited by the presence of two competing BRET pathways, BRET/FRET sensors based on the eZinCh-2 scaffold (BLZinCh-1 and -2) yielded robust 25–30% changes in BRET ratio. In addition, introduction of a chromophore-silencing mutation resulted in a BRET-only sensor (BLZinCh-3) with increased BRET response (50%) and an unexpected 10-fold increase in Zn2+ affinity. The combination of robust ratiometric response, physiologically relevant Zn2+ affinities, and stable and bright luminescence signal offered by the BLZinCh sensors allowed monitoring of intracellular Zn2+ in plate-based assays as well as intracellular BRET-based imaging in single living cells in real time. PMID:27547982

  13. EPR Assembly of Microgel for FRET Imaging of Breast Cancer

    DTIC Science & Technology

    2007-04-01

    AD_________________ Award Number: W81XWH-05-1-0342 TITLE: EPR Assembly of Microgel for FRET...The selection of polymer with optimum molecular size/weight is crucial in accomplishing our aim of forming intermolecular polymer network ( microgel ) of...chemoselectivity) and spontaneously form a network ( microgel ) in the tumors (Figure 1). The host and guest copolymer will each have a donor and an acceptor

  14. Improving membrane voltage measurements using FRET with new fluorescent proteins.

    PubMed

    Tsutsui, Hidekazu; Karasawa, Satoshi; Okamura, Yasushi; Miyawaki, Atsushi

    2008-08-01

    We used two new coral fluorescent proteins as fluorescence resonance energy transfer (FRET) donor and acceptor to develop a voltage sensor, named Mermaid, that displays approximately 40% changes in emission ratio per 100 mV, allowing for direct visualization of electrical activities in cultured excitable cells. Notably, Mermaid has fast on-off kinetics at warm (approximately 33 degrees C) temperatures and can report voltage spikes comparable to action potentials.

  15. Plant-based FRET biosensor discriminates environmental zinc levels.

    PubMed

    Adams, Joshua P; Adeli, Ardeshir; Hsu, Chuan-Yu; Harkess, Richard L; Page, Grier P; Depamphilis, Claude W; Schultz, Emily B; Yuceer, Cetin

    2012-02-01

    Heavy metal accumulation in the environment poses great risks to flora and fauna. However, monitoring sites prone to accumulation poses scale and economic challenges. In this study, we present and test a method for monitoring these sites using fluorescent resonance energy transfer (FRET) change in response to zinc (Zn) accumulation in plants as a proxy for environmental health. We modified a plant Zn transport protein by adding flanking fluorescent proteins (FPs) and deploying the construct into two different species. In Arabidopsis thaliana, FRET was monitored by a confocal microscope and had a 1.4-fold increase in intensity as the metal concentration increased. This led to a 16.7% overall error-rate when discriminating between a control (1μm Zn) and high (10mm Zn) treatment after 96h. The second host plant (Populus tremula×Populu salba) also had greater FRET values (1.3-fold increase) when exposed to the higher concentration of Zn, while overall error-rates were greater at 22.4%. These results indicate that as plants accumulate Zn, protein conformational changes occur in response to Zn causing differing interaction between FPs. This results in greater FRET values when exposed to greater amounts of Zn and monitored with appropriate light sources and filters. We also demonstrate how this construct can be moved into different host plants effectively including one tree species. This chimeric protein potentially offers a method for monitoring large areas of land for Zn accumulation, is transferable among species, and could be modified to monitor other specific heavy metals that pose environmental risks.

  16. Sensitive Detection of Proteopathic Seeding Activity with FRET Flow Cytometry.

    PubMed

    Furman, Jennifer L; Holmes, Brandon B; Diamond, Marc I

    2015-12-08

    Increasing evidence supports transcellular propagation of toxic protein aggregates, or proteopathic seeds, as a mechanism for the initiation and progression of pathology in several neurodegenerative diseases, including Alzheimer's disease and the related tauopathies. The potentially critical role of tau seeds in disease progression strongly supports the need for a sensitive assay that readily detects seeding activity in biological samples. By combining the specificity of fluorescence resonance energy transfer (FRET), the sensitivity of flow cytometry, and the stability of a monoclonal cell line, an ultra-sensitive seeding assay has been engineered and is compatible with seed detection from recombinant or biological samples, including human and mouse brain homogenates. The assay employs monoclonal HEK 293T cells that stably express the aggregation-prone repeat domain (RD) of tau harboring the disease-associated P301S mutation fused to either CFP or YFP, which produce a FRET signal upon protein aggregation. The uptake of proteopathic tau seeds (but not other proteins) into the biosensor cells stimulates aggregation of RD-CFP and RD-YFP, and flow cytometry sensitively and quantitatively monitors this aggregation-induced FRET. The assay detects femtomolar concentrations (monomer equivalent) of recombinant tau seeds, has a dynamic range spanning three orders of magnitude, and is compatible with brain homogenates from tauopathy transgenic mice and human tauopathy subjects. With slight modifications, the assay can also detect seeding activity of other proteopathic seeds, such as α-synuclein, and is also compatible with primary neuronal cultures. The ease, sensitivity, and broad applicability of FRET flow cytometry makes it useful to study a wide range of protein aggregation disorders.

  17. Fretting Fatigue Behavior of Nickel Alloy IN-100

    DTIC Science & Technology

    2006-03-01

    system 20 τb resolved shear stress related to ultimate tensile strength . 20 N the number of cycles . . . . . . . . . . . . . . . . . . . . . 21 SCN...size was about 100 µm. The material at hand has a modulus of elasticity of 126 GPa and ultimate tensile strength of up to 1520 MPa (at room...different pad geometries was also explored. It was observed that fretting reduced the fatigue strength of IN-100, and that increasing cylindrical pad

  18. Fretting wear of iron, nickel, and titanium under varied environmental conditions

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1978-01-01

    Fretting wear experiments were conducted on high purity iron, nickel and titanium in air under conditions of varied humidity and temperature, and in nitrogen. For iron and titanium, maximum fretting occurred at 10 and 30 percent relative humidity respectively. Nickel showed a minimum in fretting wear at about 10 percent relative humidity. With increasing temperature, all three metals initially showed reduced fretting wear, with increasing wear observed as temperatures increased beyond 200-300 C. For titanium, dramatically reduced fretting wear was observed at temperatures above 500 C, relatable to a change in oxidation kinetics. All three metals showed much less fretting wear in N2 with the presence of moisture in N2 having a proportionally stronger effect than in air.

  19. Rise-Time of FRET-Acceptor Fluorescence Tracks Protein Folding

    PubMed Central

    Lindhoud, Simon; Westphal, Adrie H.; van Mierlo, Carlo P. M.; Visser, Antonie J. W. G.; Borst, Jan Willem

    2014-01-01

    Uniform labeling of proteins with fluorescent donor and acceptor dyes with an equimolar ratio is paramount for accurate determination of Förster resonance energy transfer (FRET) efficiencies. In practice, however, the labeled protein population contains donor-labeled molecules that have no corresponding acceptor. These FRET-inactive donors contaminate the donor fluorescence signal, which leads to underestimation of FRET efficiencies in conventional fluorescence intensity and lifetime-based FRET experiments. Such contamination is avoided if FRET efficiencies are extracted from the rise time of acceptor fluorescence upon donor excitation. The reciprocal value of the rise time of acceptor fluorescence is equal to the decay rate of the FRET-active donor fluorescence. Here, we have determined rise times of sensitized acceptor fluorescence to study the folding of double-labeled apoflavodoxin molecules and show that this approach tracks the characteristics of apoflavodoxinʼs complex folding pathway. PMID:25535076

  20. Multiphoton FLIM: a reliable FRET detection tool in cell biological applications

    NASA Astrophysics Data System (ADS)

    Krishnan, Ramanujan V.; Biener, Eva; Centonze, Victoria E.; Gertler, Arieh; Herman, Brian A.

    2004-06-01

    Fluorescence lifetime imaging microscopy (FLIM) using multiphoton excitation is emerging as a reliable quantitative tool for measuring fluorescence resonance energy transfer (FRET) in living cells. By virtue of being free from spectroscopic artifacts encountered in conventional FRET detection methods, multiphoton FLIM methods offer the advantages of high spatial and temporal resolution, faster data acquisition and data analysis. We compare the FRET results obtained by two different methods namely (i) multiphoton excitation lifetime-based FRET and (ii) single photon excitation intensity-based acceptor photobleaching FRET. Using the same biological samples, we apply these two different methods in understanding the growth hormone receptor dimerization kinetics at the cell surface of human embryonic kidney cells. We conclude that the multiphoton FLIM using the streak-camera approach provides the best ability to monitor FRET in dynamic situations where high temporal and spatial resolution are required with minimal photodamage/phototoxicity.

  1. Fretting fatigue of anisotropic materials at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Haradanahalli, Murthy N.

    The purpose of this research is to develop an experimental procedure to characterize the contact between blade and disk in aircraft turbo-machinery and to develop a model to predict the life of components based on contact conditions. An experimental setup has been developed to conduct fretting fatigue tests at 610°C. Fretting fatigue lives are characterized for the contacting pair of IN100 and single crystal nickel subjected to a range of loading conditions. A well characterized set of experiments has been conducted to obtain the friction coefficient in the slip zone. Material principal axes and the crystallographic plane of fracture were determined. A robust quasi-analytical approach, based on solution to singular integral equations, has been used to analyze the contact stresses. Different multi-axial fatigue parameters have been investigated for their ability to predict the initiation life of the specimens, after applying a stressed area correction factor using weakest link approach. Multiaxial fatigue parameters also predicted crack nucleation at the edge of contact, consistent with observations of the fractured specimens. Crack propagation lives were evaluated using conventional fracture mechanics, after making certain assumptions to simplify the problem. Total life was estimated as the sum of nucleation life and propagation life. These predicted lives were compared with experimentally observed failure lives. The quality of the comparison provides confidence in the notion that conventional life prediction tools can be used to assess fretting fatigue at elevated temperatures.

  2. Fretting Wear of Ti-48Al-2Cr-2Nb

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2001-01-01

    An investigation was conducted to examine the wear behavior of gamma titanium aluminide (Ti-48Al-2Cr-2Nb in atomic percent) in contact with a typical nickel-base superalloy under repeated microscopic vibratory motion in air at temperatures from 296-823 K. The surface damage observed on the interacting surfaces of both Ti-48Al-2Cr-2Nb and superalloy consisted of fracture pits, oxides, metallic debris, scratches, craters, plastic deformation, and cracks. The Ti-48Al-2Cr-2Nb transferred to the superalloy at all fretting conditions and caused scuffing or galling. The increasing rate of oxidation at elevated temperatures led to a drop in Ti-48Al-2Cr-2Nb wear at 473 K. Mild oxidative wear was observed at 473 K. However, fretting wear increased as the temperature was increased from 473-823 K. At 723 and 823 K, oxide disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Ti-48Al-2Cr-2Nb wear generally decreased with increasing fretting frequency. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals. Keywords

  3. Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions

    PubMed Central

    Sung, Uhna; Sepehri-Rad, Masoud; Piao, Hong Hua; Jin, Lei; Hughes, Thomas; Cohen, Lawrence B.; Baker, Bradley J.

    2015-01-01

    FRET (Förster Resonance Energy Transfer)-based protein voltage sensors can be useful for monitoring neuronal activity in vivo because the ratio of signals between the donor and acceptor pair reduces common sources of noise such as heart beat artifacts. We improved the performance of FRET based genetically encoded Fluorescent Protein (FP) voltage sensors by optimizing the location of donor and acceptor FPs flanking the voltage sensitive domain of the Ciona intestinalis voltage sensitive phosphatase. First, we created 39 different “Nabi1” constructs by positioning the donor FP, UKG, at 8 different locations downstream of the voltage-sensing domain and the acceptor FP, mKO, at 6 positions upstream. Several of these combinations resulted in large voltage dependent signals and relatively fast kinetics. Nabi1 probes responded with signal size up to 11% ΔF/F for a 100 mV depolarization and fast response time constants both for signal activation (~2 ms) and signal decay (~3 ms). We improved expression in neuronal cells by replacing the mKO and UKG FRET pair with Clover (donor FP) and mRuby2 (acceptor FP) to create Nabi2 probes. Nabi2 probes also had large signals and relatively fast time constants in HEK293 cells. In primary neuronal culture, a Nabi2 probe was able to differentiate individual action potentials at 45 Hz. PMID:26587834

  4. Conformational Dynamics of Titin PEVK Explored with FRET Spectroscopy

    PubMed Central

    Huber, Tamás; Grama, László; Hetényi, Csaba; Schay, Gusztáv; Fülöp, Lívia; Penke, Botond; Kellermayer, Miklós S.Z.

    2012-01-01

    The proline-, glutamate-, valine-, and lysine-rich (PEVK) domain of the giant muscle protein titin is thought to be an intrinsically unstructured random-coil segment. Various observations suggest, however, that the domain may not be completely devoid of internal interactions and structural features. To test the validity of random polymer models for PEVK, we determined the mean end-to-end distances of an 11- and a 21-residue synthetic PEVK peptide, calculated from the efficiency of the fluorescence resonance energy transfer (FRET) between an N-terminal intrinsic tryptophan donor and a synthetically added C-terminal IAEDANS acceptor obtained in steady-state and time-resolved experiments. We find that the contour-length scaling of mean end-to-end distance deviates from predictions of a purely statistical polymer chain. Furthermore, the addition of guanidine hydrochloride decreased, whereas the addition of salt increased the FRET efficiency, pointing at the disruption of structure-stabilizing interactions. Increasing temperature between 10 and 50°C increased the normalized FRET efficiency in both peptides but with different trajectories, indicating that their elasticity and conformational stability are different. Simulations suggest that whereas the short PEVK peptide displays an overall random structure, the long PEVK peptide retains residual, loose helical configurations. Transitions in the local structure and dynamics of the PEVK domain may play a role in the modulation of passive muscle mechanics. PMID:23062340

  5. General FRET-based coding for application in multiplexing methods.

    PubMed

    Giestas, Letícia; Petrov, Vesselin; Baptista, Pedro V; Lima, João Carlos

    2009-08-01

    FRET can be used as a strategy to assign different simultaneous events in the same sample but "cross-talk" problems are a limitation. Here we present a contribution for the better understanding of the "cross-talk" in FRET experiments that include several pairs in the same sample. Using oligonucleotide probes labeled with fluorescent dyes which can be selectively excited at a specific wavelength, and using target oligonucleotides tagged with a fluorescent dye with specific characteristics that allow only it to emit light upon selective excitation of a specific probe by energy transfer (FRET), we aim to identify the exact probe-target hybridized pair. When using three donors to probe the presence of complementary targets, only 20% of possible donor/acceptor combinations give straightforward signals readily identifiable with the sample composition, while in the remaining cases severe cross-excitation prevents the direct identification of the sample composition. To correctly resolve the samples identity, we developed a theoretical model that enables the unequivocal attribution of a sample composition to a given set of fluorescence signals, in the presence of three donors.

  6. Nucleobases and other Prebiotic Species from the Ultraviolet Irradiation of Pyrimidine in Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Nuevo, M.; Materese, C. K.; Milam, S. N.

    2012-01-01

    Nucleobases are N-heterocycles that are the informational subunits of DNA and RNA, and are divided into two families: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites and their extraterrestrial origin confirmed by isotope measurement. Although no Nheterocycles have ever been observed in the ISM, the positions of the 6.2-m interstellar emission features suggest a population of such molecules is likely to be present. In this work we study the formation of pyrimidine-based molecules, including nucleobases, as well as other species of prebiotic interest, from the ultraviolet (UV) irradiation of pyrimidine in combinations of H2O, NH3, CH3OH, and CH4 ices at low temperature, in order to simulate the astrophysical conditions under which prebiotic species may be formed in the interstellar medium and icy bodies of the Solar System. Experimental: Gas mixtures are prepared in a glass mixing line (background pressure approx. 10(exp -6)-10(exp -5) mbar). Relative proportions between mixture components are determined by their partial pressures. Gas mixtures are then deposited on an aluminum foil attached to a cold finger (15-20 K) and simultaneously irradiated with an H2 lamp emitting UV photons (Lyman and a continuum at approx.160 nm). After irradiation samples are warmed to room temperature, at which time the remaining residues are recovered to be analyzed with liquid and gas chromatographies. Results: These experiments showed that the UV irradiation of pyrimidine mixed in these ices at low temperature leads to the formation of several photoproducts derived from pyrimidine, including the nucleobases uracil and cytosine, as well as their precursors 4(3H)-pyrimidone and 4-aminopyrimidine (Fig. 1). Theoretical quantum calculations on the formation of 4(3H)-pyrimidone and uracil from the irradiation of pyrimidine in pure H2O ices are in agreement with their experimental formation pathways. In

  7. A microenvironment-sensitive fluorescent pyrimidine ribonucleoside analogue: synthesis, enzymatic incorporation, and fluorescence detection of a DNA abasic site.

    PubMed

    Tanpure, Arun A; Srivatsan, Seergazhi G

    2011-11-04

    Base-modified fluorescent ribonucleoside-analogue probes are valuable tools in monitoring RNA structure and function because they closely resemble the structure of natural nucleobases. Especially, 2-aminopurine, a highly environment-sensitive adenosine analogue, is the most extensively utilized fluorescent nucleoside analogue. However, only a few isosteric pyrimidine ribonucleoside analogues that are suitable for probing the structure and recognition properties of RNA molecules are available. Herein, we describe the synthesis and photophysical characterization of a small series of base-modified pyrimidine ribonucleoside analogues derived from tagging indole, N-methylindole, and benzofuran onto the 5-position of uracil. One of the analogues, based on a 5-(benzofuran-2-yl)pyrimidine core, shows emission in the visible region with a reasonable quantum yield and, importantly, displays excellent solvatochromism. The corresponding triphosphate substrate is effectively incorporated into oligoribonucleotides by T7 RNA polymerase to produce fluorescent oligoribonucleotide constructs. Steady-state and time-resolved spectroscopic studies with fluorescent oligoribonucleotide constructs demonstrate that the fluorescent ribonucleoside photophysically responds to subtle changes in its environment brought about by the interaction of the chromophore with neighboring bases. In particular, the emissive ribonucleoside, if incorporated into an oligoribonucleotide, positively reports the presence of a DNA abasic site with an appreciable enhancement in fluorescence intensity. The straightforward synthesis, amicability to enzymatic incorporation, and sensitivity to changes in the microenvironment highlight the potential of the benzofuran-conjugated pyrimidine ribonucleoside as an efficient fluorescent probe to investigate nucleic acid structure, dynamics, and recognition events.

  8. Considerations for sensitivity analysis, uncertainty quantification, and data assimilation for grid-to-rod fretting

    SciTech Connect

    Michael Pernice

    2012-10-01

    Grid-to-rod fretting is the leading cause of fuel failures in pressurized water reactors, and is one of the challenge problems being addressed by the Consortium for Advanced Simulation of Light Water Reactors to guide its efforts to develop a virtual reactor environment. Prior and current efforts in modeling and simulation of grid-to-rod fretting are discussed. Sources of uncertainty in grid-to-rod fretting are also described.

  9. Fretting Wear Mechanisms in A216 Plain Carbon Steel

    NASA Astrophysics Data System (ADS)

    Maich, Alyssa Anne

    The subsurface and surface microstructures during pin-on-disk fretting wear of A216 steel disks under various loading conditions and times are investigated. The corresponding pins are fabricated from 410 stainless steel to simulate in-service conditions found in such engineering components as the Siemens W501FD engine row-2 diaphragm of a Siemens turbine engine, which is known to be prone to failure by fretting wear. Loading conditions range from 2N to 15N and times from 1 hour to a maximum of 69 hours, when steady state is confirmed. Wear track depth is quantitatively determined by optical profilometry, and found to range from 3 to 11 microns dependent upon load. Wear depth increases from 2N to 10N load, but decreases when increased to 15N load, due to heavier transfer of pin material to disk, as can be seen by EDS images of chromium transfer on A216 disk. Microstructures are evaluated by transmission electron microscopy of samples prepared by focused ion beam machining to pinpoint wear tracks and expose them in cross-section. EDS is used, in conjunction with TEM, to elucidate primary wear mechanisms at each stage of fretting wear. Microstructures in the subsurface of wear tracks are found to be heavily dislocated and layered, features that vary with both applied load and time. The microstructure eventually evolves into stable dislocation cells with cell walls aligned parallel to the surface. Penetration depth of the damaged layers increases with applied load, associated with a non-uniform maximum shear stress distribution that varies with depth. Primary oxide appears to evolve from Fe2O3 to Fe3O4, with increasing fretting time, leading to a uniform oxide on the surface of the A216 disk. Oxidation rate may be increased with the evolution of this subsurface dislocation cell structure. It is concluded that fretting wear failure is likely associated with a synergy between oxidative wear and crack initiation and propagation along dislocation cell walls under high

  10. A communication theoretical analysis of FRET-based mobile ad hoc molecular nanonetworks.

    PubMed

    Kuscu, Murat; Akan, Ozgur B

    2014-09-01

    Nanonetworks refer to a group of nanosized machines with very basic operational capabilities communicating to each other in order to accomplish more complex tasks such as in-body drug delivery, or chemical defense. Realizing reliable and high-rate communication between these nanomachines is a fundamental problem for the practicality of these nanonetworks. Recently, we have proposed a molecular communication method based on Förster Resonance Energy Transfer (FRET) which is a nonradiative excited state energy transfer phenomenon observed among fluorescent molecules, i.e., fluorophores. We have modeled the FRET-based communication channel considering the fluorophores as single-molecular immobile nanomachines, and shown its reliability at high rates, and practicality at the current stage of nanotechnology. In this study, for the first time in the literature, we investigate the network of mobile nanomachines communicating through FRET. We introduce two novel mobile molecular nanonetworks: FRET-based mobile molecular sensor/actor nanonetwork (FRET-MSAN) which is a distributed system of mobile fluorophores acting as sensor or actor node; and FRET-based mobile ad hoc molecular nanonetwork (FRET-MAMNET) which consists of fluorophore-based nanotransmitter, nanoreceivers and nanorelays. We model the single message propagation based on birth-death processes with continuous time Markov chains. We evaluate the performance of FRET-MSAN and FRET-MAMNET in terms of successful transmission probability and mean extinction time of the messages, system throughput, channel capacity and achievable communication rates.

  11. Influence of plasma molybdenizing and shot-peening on fretting damage behavior of titanium alloy

    NASA Astrophysics Data System (ADS)

    Tang, Chang-bin; Liu, Dao-xin; Tang, Bin; Zhang, Xiao-hua; Qin, Lin; Liu, Cheng-song

    2016-12-01

    Effect of plasma molybdenizing and shot-peening on fretting wear and fretting fatigue behaviors of Ti6Al4V alloy was investigated. The plasma molybdenized layer composed of a dense molybdenum deposition layer and a Mo-Ti solid-solution layer can increase surface hardness by 2.8 times and cause its volume loss by fretting wear to decrease to 1/14 compared with that of the substrate. Plasma molybdenized treatment results in a significant decrease in resistance of the substrate to fretting fatigue. It is ascribed that the molybdenized layer with high hardness yields a low toughness, and its high surface roughness leads to a micro-notched effect. However, proper combination plasma molybdenizing and subsequent shot-peening may enhance the simultaneous fretting fatigue and fretting wear resistance of Ti6Al4V significantly, which can decrease the fretting wear volume loss to 1/27, and may increase the fretting fatigue life by more than 69 times. A synergistic improvement in fretting fatigue of the titanium alloy by combining surface alloying with shot-peening can be achieved. The results indicate that a beneficial residual compressive stress distribution, high surface hardness with suitable hardness gradient distribution, good apparent toughness, relatively low surface roughness, and excellent surface integrity are achieved.

  12. Etude de la transition tribologique entre le fretting et le meso-fretting pour des materiaux de contact electrique

    NASA Astrophysics Data System (ADS)

    Gagnon, Daniel

    Dans les installations electriques, les contacts sont toujours soumis a des contraintes alternees ou a des micro-deplacements. Il en resulte une corrosion par fretting, phenomene defini comme un type de deterioration de la surface qui se produit lorsque deux materiaux en contact sont soumis a des mouvements microscopiques d'oscillations de tres faible amplitude (0 a 100 mum). Ceci a pour effet de provoquer une degradation de la resistance de contact et une interruption du passage du courant. Ce phenomene a des repercussions considerables sur le plan pratique puisque les micro-deplacements de pieces en contact peuvent etre causes par la dilatation thermique differentielle des metaux, par des vibrations mecaniques, par la relaxation des contraintes ou par l'echauffement des contacts lorsqu'on interrompt et retablit le courant. Nous avons donc dans le cadre de cette these etudie plusieurs aspects du fretting (0--100 mum) et du meso-fretting (100 a 1000 mum) pour differents materiaux de contact electrique. Des travaux experimentaux ont ete realises a partir de deux montages reproduisant divers aspects de la degradation par le fretting. Un premier montage de fretting de type bille-plaque a ete entierement developpe a l'ETS et un second montage, de type fil-plaque a ete utilise en collaboration avec Hydro Quebec IREQ a Varennes. Plusieurs techniques de mesures et d'analyse relevant tant du domaine de la mecanique du contact que de la metallurgie ont ete utilisees pour traiter les resultats. L'influence du courant sur le taux d'usure et la force de friction a ete examinee pour divers materiaux de contacts. Des essais de fatigue thermique et electrique ont ete realises sur divers materiaux et lubrifiants de contact. Il a ete demontre que pour le domaine entre 100 mum et 1000 mum, le taux d'usure n'est pas le meme de 0 a 100 mum et au dela de 1000 mum. La plupart des materiaux evalues montrent un stade de comportement intermediaire dont le debut se situe entre 100 mum et

  13. The mechanics and tribology of fretting fatigue with application to riveted lap joints

    NASA Astrophysics Data System (ADS)

    Szolwinski, Matthew Paul

    Fretting is the synergistic combination of wear, corrosion, and fatigue damage mechanisms driven by the partial slip of contacting surfaces. The surface microslip and near-surface contact stresses associated with fretting can lead to severe reduction in service lifetimes of contacting components as diversified as bearings, turbine blades and mechanically-fastened joints, both structural and biological. This tribologically induced degradation has come under close scrutiny by those responsible for maintaining aging fleets of both commercial and military aircraft. Thus a critical need exists for predicting fretting crack nucleation in riveted aluminum. aircraft joints. Fulfilling this need requires characterizing both the near-surface mechanics and intimately-related tribology of fretting. To this end, a well characterized experimental setup has been developed to generate carefully controlled and monitored fretting contacts to investigate the nature of the near-surface conditions. Included in this investigation were in-situ observations of the fretting contact stress field via a non-invasive thermal imaging technique and a characterization of the evolution of friction under partial slip conditions. With specific qualitative and quantitative understanding of these near-surface conditions, a series of fretting fatigue experiments have been conducted to validate a mechanics-based model for predicting fretting fatigue crack nucleation. Finally, efforts have been directed toward extending this understanding of fretting crack nucleation to riveted aircraft structure through modeling of the riveting process and a related experimental program designed to link riveting process parameters and fretting damage in single-lap joint structures. This work focuses specifically on determination of the residual stresses induced during rivet installation and the morphological characterization of fretting fatigue damage in the riveted test specimens manufactured under controlled

  14. Probing Nucleobase Interactions and Predicting Mechanisms of Synthetic Interest Using Computational Chemistry, and Furthering the Development of BVI Education in Chemistry

    ERIC Educational Resources Information Center

    Harrison, Jason Gordon

    2013-01-01

    Quantum mechanical (QM) and molecular docking methods are used to probe systems of biological and synthetic interest. Probing interactions of nucleobases within proteins, and properly modeling said interactions toward novel nucleobase development, is extremely difficult, and of great utility in RNA interference (RNAi) therapeutics. The issues in…

  15. Ab Initio Inverstagation of the Excited States of Nucleobases and Nucleosides

    NASA Astrophysics Data System (ADS)

    Szalay, Péter G.; Fogarasi, Géza; Watson, Thomas; Perera, Ajith; Lotrich, Victor; Bartlett, Rod J.

    2011-06-01

    Most living bodies are exposed to sunlight, essential life sustaining processes are using this natural radiation. Sunlight has, however, several components (has a broad "spectrum") and in particular the invisible component (UV, ultraviolet) is harmful for living organisms. Scientists around the word are busy to understand what happens in the cell when it is exposed to light: it seems that the building blocks of cells and in particular those carrying the genetic information (DNA and RNA) are highly protected against this exposition. Our research focuses on the spectral properties of the building blocks of DNA and RNA, the so called nucleobases and nucleosides, in order to understand this mechanism. Due to improvement in computer technology both at hardware and software side we are now able to use the most accurate methods of ab initio quantum chemistry to investigate the spectroscopic properties of these building blocks. These calculations provide direct information on the properties of these molecules but also provide important benchmarks for cheaper methods which can be used for even larger systems. We have calculated the excited state properties for the nucleobases (cytosine, guanine and adenine), their complexes with water and with each other (Watson-Crick base pairs and stacks) as well as corresponding nucleosides at the EOM-CCSD(T)/aug-cc-pVDZ level of theory and try to answer the following questions: (1) how the order of excited states varies in different nucleobases; (2) how hydration influences the excitation energy and order of excited states; (3) is there any effect of the sugar substituent; (4) how do close lying other bases change the spectrum. The calculations involve over hundred correlated electrons and up to thousand basis functions. Such calculations are now routinely available with the recently developed ACESIII code and can make use of hundreds or even several thousand of processors. V. Lotrich, N. Flocke, M. Ponton, A. Yau, A. Perera, E. Deumens

  16. Prediction of Fretting Crack Location and Orientation in a Single Crystal Nickel Alloy

    NASA Technical Reports Server (NTRS)

    Matlik, J. F.; Farris, T. N.; Haynes, J.; Swanson, G. R.; Ham-Battista, G.

    2005-01-01

    Fretting is a structural damage mechanism arising between two nominally clamped surfaces subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high- temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact that could potentially foster crack growth leading to component failure. These contact stresses drive crack nucleation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). Recently, a high-frequency, high-temperature load frame has been designed for experimentally investigating fretting damage of single crystal nickel materials employed in aircraft and spacecraft turbomachinery. A modeling method for characterizing the fretting stresses of the spherical fretting contact stress behavior in this experiment is developed and described. The calculated fretting stresses for a series of experiments are then correlated to the observed fretting damage. Results show that knowledge of the normal stresses and resolved shear stresses on each crystal plane can aid in predicting crack locations and orientations.

  17. Multifunctional Concentric FRET-Quantum Dot Probes for Tracking and Imaging of Proteolytic Activity.

    PubMed

    Massey, Melissa; Li, Jia Jun; Algar, W Russ

    2017-01-01

    Proteolysis has many important roles in physiological regulation. It is involved in numerous cell signaling processes and the pathogenesis of many diseases, including cancers. Methods of visualizing and assaying proteolytic activity are therefore in demand. Förster resonance energy transfer (FRET) probes offer several advantages in this respect. FRET supports end-point or real-time measurements, does not require washing or separation steps, and can be implemented in various assay or imaging formats. In this chapter, we describe methodology for preparing self-assembled concentric FRET (cFRET) probes for multiplexed tracking and imaging of proteolytic activity. The cFRET probe comprises a green-emitting semiconductor quantum dot (QD) conjugated with multiple copies of two different peptide substrates for two target proteases. The peptide substrates are labeled with different fluorescent dyes, Alexa Fluor 555 and Alexa Fluor 647, and FRET occurs between the QD and both dyes, as well as between the two dyes. This design enables a single QD probe to track the activity of two proteases simultaneously. Fundamental cFRET theory is presented, and procedures for using the cFRET probe for quantitative measurement of the activity of two model proteases are given, including calibration, fluorescence plate reader or microscope imaging assays, and data analysis. Sufficient detail is provided for other researchers to adapt this method to their specific requirements and proteolytic systems of interest.

  18. Lateral diffusion contributes to FRET from lanthanide-tagged membrane proteins

    SciTech Connect

    Lan, Tien-Hung; Wu, Guangyu; Lambert, Nevin A.

    2015-08-14

    Diffusion can enhance Förster resonance energy transfer (FRET) when donors or acceptors diffuse distances that are similar to the distances separating them during the donor's excited state lifetime. Lanthanide donors remain in the excited state for milliseconds, which makes them useful for time-resolved FRET applications but also allows time for diffusion to enhance energy transfer. Here we show that diffusion dramatically enhances FRET between membrane proteins labeled with lanthanide donors. This phenomenon complicates interpretation of experiments that use long-lived donors to infer association or proximity of mobile membrane proteins, but also offers a method of monitoring diffusion in membrane domains in real time in living cells. - Highlights: • Diffusion enhances TR-FRET from membrane proteins labeled with lanthanide donors. • Diffusion-dependent FRET can overshadow FRET due to oligomerization or clustering. • FRET studies using lanthanide-tagged membrane proteins should consider diffusion. • FRET from lanthanide donors can be used to monitor membrane protein diffusion.

  19. Effect of wire fretting on the corrosion resistance of common medical alloys.

    PubMed

    Siddiqui, Danyal A; Sivan, Shiril; Weaver, Jason D; Di Prima, Matthew

    2016-09-23

    Metallic medical devices such as intravascular stents can undergo fretting damage in vivo that might increase their susceptibility to pitting corrosion. As a result, the US Food and Drug Administration has recommended that such devices be evaluated for corrosion resistance after the devices have been fatigue tested in situations where significant micromotion can lead to fretting damage. Three common alloys that cardiovascular implants are made from [MP35N cobalt chromium (MP35N), electropolished nitinol (EP NiTi), and 316LVM stainless steel (316LVM)] were selected for this study. In order to evaluate the effect of wire fretting on the pitting corrosion susceptibility of these medical alloys, small and large fretting scar conditions of each alloy fretting against itself, and the other alloys in phosphate buffered saline (PBS) at 37°C were tested per ASTM F2129 and compared against as received or PBS immersed control specimens. Although the general trend observed was that fretting damage significantly lowered the rest potential (Er ) of these specimens (p < 0.01), fretting damage had no significant effect on the breakdown potential (Eb , p > 0.05) and hence did not affect the susceptibility to pitting corrosion. In summary, our results demonstrate that fretting damage in PBS alone is not sufficient to cause increased susceptibility to pitting corrosion in the three common alloys investigated. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  20. Evaluating the Relationship between FRET Changes and Distance Changes Using DNA Length and Restriction Enzyme Specificity

    ERIC Educational Resources Information Center

    Pazhani, Yogitha; Horn, Abigail E.; Grado, Lizbeth; Kugel, Jennifer F.

    2016-01-01

    FRET (Fo¨rster resonance energy transfer) involves the transfer of energy from an excited donor fluorophore to an acceptor molecule in a manner that is dependent on the distance between the two. A biochemistry laboratory experiment is described that teaches students how to use FRET to evaluate distance changes in biological molecules. Students…

  1. Cerulean, Venus, and VenusY67C FRET reference standards.

    PubMed

    Koushik, Srinagesh V; Chen, Huanmian; Thaler, Christopher; Puhl, Henry L; Vogel, Steven S

    2006-12-15

    Förster's resonance energy transfer (FRET) can be used to study protein-protein interactions in living cells. Numerous methods to measure FRET have been devised and implemented; however, the accuracy of these methods is unknown, which makes interpretation of FRET efficiency values difficult if not impossible. This problem exists due to the lack of standards with known FRET efficiencies that can be used to validate FRET measurements. The advent of spectral variants of green fluorescent protein and easy access to cell transfection technology suggests a simple solution to this problem: the development of genetic constructs with known FRET efficiencies that can be replicated with high fidelity and freely distributed. In this study, fluorescent protein constructs with progressively larger separation distances between donors and acceptors were generated and FRET efficiencies were measured using fluorescence lifetime spectroscopy, sensitized acceptor emission, and spectral imaging. Since the results from each method were in good agreement, the FRET efficiency value of each construct could be determined with high accuracy and precision, thereby justifying their use as standards.

  2. Investigating State Restriction in Fluorescent Protein FRET Using Time-Resolved Fluorescence and Anisotropy

    PubMed Central

    2016-01-01

    Most fluorescent proteins exhibit multiexponential fluorescence decays, indicating a heterogeneous excited state population. FRET between fluorescent proteins should therefore involve multiple energy transfer pathways. We recently demonstrated the FRET pathways between EGFP and mCherry (mC), upon the dimerization of 3-phosphoinositide dependent protein kinase 1 (PDK1), to be highly restricted. A mechanism for FRET restriction based on a highly unfavorable κ2 orientation factor arising from differences in donor–acceptor transition dipole moment angles in a far from coplanar and near static interaction geometry was proposed. Here this is tested via FRET to mC arising from the association of glutathione (GSH) and glutathione S-transferase (GST) with an intrinsically homogeneous and more mobile donor Oregon Green 488 (OG). A new analysis of the acceptor window intensity, based on the turnover point of the sensitized fluorescence, is combined with donor window intensity and anisotropy measurements which show that unrestricted FRET to mC takes place. However, a long-lived anisotropy decay component in the donor window reveals a GST-GSH population in which FRET does not occur, explaining previous discrepancies between quantitative FRET measurements of GST-GSH association and their accepted values. This reinforces the importance of the local donor–acceptor environment in mediating energy transfer and the need to perform spectrally resolved intensity and anisotropy decay measurements in the accurate quantification of fluorescent protein FRET. PMID:28217242

  3. Characterization of fretting fatigue damage using nondestructive approaches

    NASA Astrophysics Data System (ADS)

    Matikas, Theodore E.; Shell, Eric B.; Nicolaou, Perikles D.

    1999-02-01

    Ti-6Al-4V alloy specimens cut form a forged plate with a duplex microstructure, similar to the microstructure used in fan blades were tested under conditions of high-cycle fretting fatigue. The contact geometry, the normal stress, as well as the cyclic stress were selectee such that the mixed, slip-stick regime prevails during the experiments. Following testing, the specimens as well as the fretting pads were characterized by a variety of techniques including white light interference profilometry, scanning electron microscopy, ultrasonic force microscopy, microhardness testing, and electron dispersive spectroscopy (EDS). The results revealed that the surface roughness of the slip region increases compared to the roughness of the stick, and non-contact ones. In addition, at the higher spatial frequencies, the power spectral density (PSD) of the slip region increases compared to the PSD of the stick and non- contact regions, thus revealing that an increase of the population of the smaller size asperities occurs. The microstructure of the material below the slip zone was found to be transformed to a finer one; and the percentage of the transformed beta phase has been decreased substantially. The elastic property variation of this region was determined by ultrasonic force microscopy; the results revealed that in contrast to what found for the bulk of the material, there are significant local differences of the elastic properties inside the fretting-affected zone. In addition, the changes in the plastic behavior of the region below the slip zone, was determined using microhardness measurements. It was found that this transformed microstructure area, has also a higher hardness compared to the hardness of the bulk structure. Booth elastic and plastic property variations were attributed to the increased percent of alpha phase and the decreased amount of beta in the transformed zone, since the former phase exhibits higher elastic moduli as well as flow stresses.In addition

  4. FRET-based optical assay for selection of artificial riboswitches.

    PubMed

    Harbaugh, Svetlana V; Chapleau, Molly E; Chushak, Yaroslav G; Stone, Morley O; Kelley-Loughnane, Nancy

    2014-01-01

    Artificial riboswitches are engineered to regulate gene expression in response to a variety of non-endogenous small molecules and, therefore, can be useful tools to reprogram cellular behavior for different applications. A new synthetic riboswitch can be created by linking an in vitro-selected aptamer with a randomized expression platform followed by in vivo selection and screening. Here, we describe an in vivo selection and screening technique to discover artificial riboswitches in E. coli cells that is based on TEV protease-FRET substrate reporter system.

  5. The role of intramolecular hydrogen bonding on nucleobase acidification following metal coordination: possible implications of an "indirect" role of metals in acid-base catalysis of nucleic acids.

    PubMed

    Roitzsch, Michael; Añorbe, Marta Garijo; Miguel, Pablo J Sanz; Müller, Barbara; Lippert, Bernhard

    2005-11-01

    The acidifying effect of Pt(II) on nucleobase -NH and -NH2 groups depends both on the site of metal coordination and on the efficiency of stabilization of the deprotonated nucleobase via intracomplex hydrogen bonding. Weakly acidic nucleobase protons with pK (a) values between 9 and 17 can be acidified by a single Pt(II) to have pK (a) values which are well within the physiological pH range. This could open the possibility of an acid-base catalysis occurring at pH 7, with the metal-nucleobase entity functioning either as an acid or a base. Examples of Pt(II) complexes studied here include, among others, mixed nucleobase systems of 1-methylcytosine and 1,9-dimethyladenine as well as a complex of the rare iminooxo tautomer of 1-methylcytosine having the metal bonded at N4.

  6. Role of pKa of Nucleobases in the Origins of Chemical Evolution

    PubMed Central

    2012-01-01

    The formation of canonical base pairs through Watson–Crick hydrogen bonding sits at the heart of the genetic apparatus. The specificity of the base pairing of adenine with thymine/uracil and guanine with cytosine preserves accurate information for the biochemical blueprint and replicates the instructions necessary for carrying out biological function. The chemical evolution question of how these five canonical nucleobases were selected over various other possibilities remains intriguing. Since these and alternative nucleobases would have been available for chemical evolution, the reasons for the emergence of this system appear to be primarily functional. While investigating the base-pairing properties of structural nucleic acid analogs, we encountered a relationship between the pKa of a series of nonstandard (and canonical) nucleobases and the pH of the aqueous medium. This relationship appeared to correspond with the propensity of these molecules to self-assemble via Watson–Crick-type base-pairing interactions. A simple correlation of the “magnitude of the difference between the pKa and pH” (pKa–pH correlation) enables a general prediction of which types of heterocyclic recognition elements form hydrogen-bonded base pairs in aqueous media. Using the pKa–pH relationship, we can rationalize why nature chose the canonical nucleobases in terms of hydrophobic and hydrophilic interactions, and further extrapolate its significance within the context of chemical evolution. The connection between the physicochemical properties of bioorganic compounds and the interactions with their aqueous environment directly affects structure and function, at both a molecular and a supramolecular level. A general structure–function pattern emerges in biomolecules and biopolymers in aqueous media near neutral pH. A pKa – pH < 2 generally prompts catalytic functions, central to metabolism, but a difference in pKa – pH > 2 seems to result in the emergence of structure

  7. FRET-based small-molecule fluorescent probes: rational design and bioimaging applications.

    PubMed

    Yuan, Lin; Lin, Weiying; Zheng, Kaibo; Zhu, Sasa

    2013-07-16

    Fluorescence imaging has emerged as a powerful tool for monitoring biomolecules within the context of living systems with high spatial and temporal resolution. Researchers have constructed a large number of synthetic intensity-based fluorescent probes for bio-imaging. However, intensity-based fluorescent probes have some limitations: variations in probe concentration, probe environment, and excitation intensity may influence the fluorescence intensity measurements. In principle, the use of ratiometric fluorescent probes can alleviate this shortcoming. Förster resonance energy transfer (FRET) is one of the most widely used sensing mechanisms for ratiometric fluorescent probes. However, the development of synthetic FRET probes with favorable photophysical properties that are also suitable for biological imaging applications remains challenging. In this Account, we review the rational design and biological applications of synthetic FRET probes, focusing primarily on studies from our laboratory. To construct useful FRET probes, it is a pre-requisite to develop a FRET platform with favorable photophysical properties. The design criteria of a FRET platform include (1) well-resolved absorption spectra of the donor and acceptor, (2) well-separated emission spectra of the donor and acceptor, (3) donors and acceptors with comparable brightness, (4) rigid linkers, and (5) near-perfect efficiency in energy transfer. With an efficient FRET platform in hand, it is then necessary to modulate the donor-acceptor distance or spectral overlap integral in an analyte-dependent fashion for development of FRET probes. Herein, we emphasize our most recent progress on the development of FRET probes by spectral overlap integral, in particular by changing the molar absorption coefficient of the donor dyes such as rhodamine dyes, which undergo unique changes in the absorption profiles during the ring-opening and -closing processes. Although partial success has been obtained in design of

  8. Crack propagation analysis of surface enhanced titanium alloys with fretting induced damage

    NASA Astrophysics Data System (ADS)

    Garcia, Daniel Benjamin

    2005-11-01

    The objectives of this research project were to analyze, characterize, and predict the influences that surface treatments have on crack propagation in the presence of fretting fatigue damage. The titanium alloys, Ti-6Al-4V and Ti-17, were implemented for this research, and the surface enhancement methods consisted of shot peening and laser shock peening. The approach was to incorporate methods of contact mechanics, fractography, and fracture mechanics so that the influence of surface enhancements on fretting fatigue could be better understood. The specimens were obtained from prior fretting fatigue experiments that consisted of dog-bones and contact pads with both surface enhanced and bare conditions. The dog-bone specimens had fretting fatigue damage, which is a combination of a cyclic bulk load and the fretting induced damage. These specimens were incorporated in life prediction analyses in which a procedure for calculating fretting fatigue life by correlating nucleation and propagation through a non-arbitrary crack initiation criterion was introduced. The life prediction results show that the fretting fatigue life can be determined with knowledge of the fretting stress field and nature of the fretting cracks. The results also show that surface enhancements do not stop fretting fatigue cracks from forming, do slow the propagation and increase the fretting fatigue life. The contact pads had what is known as 'pure fretting' damage, which consists of the damage from the contact stresses but no cyclic bulk load. The contact pads are the basis for the development of the C-specimen experiment. The contact pads were machined into C-specimens that help measure the threshold stress intensity factor. The objective of the C-specimen experiment is to increase the cyclically applied load of the specimen through step testing until a fatigue crack propagates from the existing fretting induced crack. The testing technique provides for the threshold stress intensity factor to be

  9. Application of FRET Technology to the In Vivo Evaluation of Therapeutic Nucleic Acids (ANTs)

    NASA Astrophysics Data System (ADS)

    Benítez-Hess, María Luisa; Alvarez-Salas, Luis Marat

    2007-02-01

    Developing applications for therapeutic nucleic acids (TNAs) (i.e. ribozymes, antisense oligodeoxynucleotides (AS-ODNs), siRNA and aptamers) requires a reporter system designed to rapidly evaluate their in vivo effect. To this end we designed a reporter system based on the fluorescence resonance energy transfer (FRET) engineered to release the FRET effect produced by two green fluorescent protein (GFP) variants linked by a TNA target site. Because the FRET effect occurs instantaneously when two fluorophores are very close to each other (>100nm) stimulating emission of the acceptor fluorophore by the excitation of the donor fluorophore it has been widely use to reveal interactions between molecules. The present system (FRET2) correlates the FRET effect with the in vivo activity of distinct types of TNAs based on a model consisting of RNA from human papillomavirus type 16 (HPV-16) previously shown accessible to TNAs. HPV-16 is the most common papillomavirus associated with cervical cancer, the leading cause of death by cancer in México. The FRET2 system was first tested in vitro and then used in bacteria in which transcription is linked to translation allowing controlled expression and rapid evaluation of the FRET2 protein. To assure accessibility of the target mRNA to TNAs, the FRET2 mRNA was probed by RNaseH assays prior FRET testing. The fluorescence features of the FRET2 system was tested with different FRET-producing GFP donor-acceptor pairs leading to selection of green (donor) and yellow (acceptor) variants of GFP as the most efficient. Modifications in aminoacid composition and linker length of the target sequence did not affect FRET efficiency. In vivo AS-ODN-mediated destruction of the chimerical FRET2 reporter mRNA resulted in the recovery of GFP fluorescent spectrum in a concentration and time dependent manner. Reported anti-HPV ribozymes were also tested with similar results. Therefore, we conclude that the FRET effect can be a useful tool in the

  10. The design of Förster (fluorescence) resonance energy transfer (FRET)-based molecular sensors for Ran GTPase

    PubMed Central

    Kalab, Petr; Soderholm, Jon

    2010-01-01

    The application of FRET-based molecular bio-sensors provided confirmation of the central model of Ran GTPase function and led to important new insights into its physiological role. In many fields of cell biology, methods employing FRET are a standard approach that is becoming increasingly accessible due to advances in instrumentation and available fluorophores. However, the optimal design of a FRET sensor remains to be the cornerstone of any successful FRET application. Utilizing the recent literature on FRET applications and our studies on Ran, we outline the basic considerations involved in designing molecular FRET sensors. We point to several broadly applicable principles that were used in many different FRET sensors that can detect a wide range of molecular events. Using the FRET sensors for Ran that we created as examples, we then focus on the practical aspects of FRET assays. We describe the preparation of a bipartite FRET sensor consisting of ECFP-Ran and EYFP-importin β and its validation as a reporter for FRET-based high throughput screening in small molecule libraries. Finally, we review the design and optimization of monomolecular FRET sensors that monitor the RanGTP-RanBP1 interaction, and of sensors detecting the RanGTP-regulated importin β cargo release. PMID:20096786

  11. Imaging of Metabolic Status in 3D Cultures with an Improved AMPK FRET Biosensor for FLIM

    PubMed Central

    Chennell, George; Willows, Robin J. W.; Warren, Sean C.; Carling, David; French, Paul M. W.; Dunsby, Chris; Sardini, Alessandro

    2016-01-01

    We describe an approach to non-invasively map spatiotemporal biochemical and physiological changes in 3D cell culture using Forster Resonance Energy Transfer (FRET) biosensors expressed in tumour spheroids. In particular, we present an improved Adenosine Monophosphate (AMP) Activated Protein Kinase (AMPK) FRET biosensor, mTurquoise2 AMPK Activity Reporter (T2AMPKAR), for fluorescence lifetime imaging (FLIM) readouts that we have evaluated in 2D and 3D cultures. Our results in 2D cell culture indicate that replacing the FRET donor, enhanced Cyan Fluorescent Protein (ECFP), in the original FRET biosensor, AMPK activity reporter (AMPKAR), with mTurquoise2 (mTq2FP), increases the dynamic range of the response to activation of AMPK, as demonstrated using the direct AMPK activator, 991. We demonstrated 3D FLIM of this T2AMPKAR FRET biosensor expressed in tumour spheroids using two-photon excitation. PMID:27548185

  12. The effect of surface modification on fretting fatigue in Ti Alloy turbine components

    NASA Astrophysics Data System (ADS)

    Chakravarty, S.; Andrews, R. G.; Painaik, P. C.; Koul, A. K.

    1995-04-01

    Severe fretting damage has been observed on the pressure surfaces of fan and compressor blade dovetails/disks in an aerospace gas turbine engine. A study has been carried out to evaluate the effect of an ion implantation technique in combination with the presently used surface treatments, such as shot peening and coating, on the fretting fatigue life of titanium alloy gas turbine engine components. The results from fretting fatigue tests, residual stress measurements, and nanoindentation tests were used to quantitatively evaluate the effect of various surface treatments on the fretting fatigue life of the fan blade and disk materials. Results from microstructural characterization and analyses of elemental and phase distributions within the implanted region are used to understand the effect of ion implantation on the surface properties of the alloys. Finally, an attempt has been made to evaluate the potential for improving the fretting fatigue life of the engine components using various surface modification techniques.

  13. Aspartame and Its Analogues

    NASA Astrophysics Data System (ADS)

    Pavlova, L. A.; Komarova, T. V.; Davidovich, Yurii A.; Rogozhin, S. V.

    1981-04-01

    The results of studies on the biochemistry of the sweet taste are briefly reviewed. The methods of synthesis of "aspartame" — a sweet dipeptide — are considered, its structural analogues are described, and quantitative estimates are made of the degree of sweetness relative to sucrose. Attention is concentrated mainly on problems of the relation between the structure of the substance and its taste in the series of aspartyl derivatives. The bibliography includes 118 references.

  14. An experimental study of GFP-based FRET, with application to intrinsically unstructured proteins

    PubMed Central

    Ohashi, Tomoo; Galiacy, Stephane D.; Briscoe, Gina; Erickson, Harold P.

    2007-01-01

    We have experimentally studied the fluorescence resonance energy transfer (FRET) between green fluorescent protein (GFP) molecules by inserting folded or intrinsically unstructured proteins between CyPet and Ypet. We discovered that most of the enhanced FRET signal previously reported for this pair was due to enhanced dimerization, so we engineered a monomerizing mutation into each. An insert containing a single fibronectin type III domain (3.7 nm end-to-end) gave a moderate FRET signal while a two-domain insert (7.0 nm) gave no FRET. We then tested unstructured proteins of various lengths, including the charged-plus-PQ domain of ZipA, the tail domain of α-adducin, and the C-terminal tail domain of FtsZ. The structures of these FRET constructs were also studied by electron microscopy and sedimentation. A 12 amino acid linker and the N-terminal 33 amino acids of the charged domain of the ZipA gave strong FRET signals. The C-terminal 33 amino acids of the PQ domain of the ZipA and several unstructured proteins with 66–68 amino acids gave moderate FRET signals. The 150 amino acid charged-plus-PQ construct gave a barely detectable FRET signal. FRET efficiency was calculated from the decreased donor emission to estimate the distance between donor and acceptor. The donor–acceptor distance varied for unstructured inserts of the same length, suggesting that they had variable stiffness (persistence length). We conclude that GFP-based FRET can be useful for studying intrinsically unstructured proteins, and we present a range of calibrated protein inserts to experimentally determine the distances that can be studied. PMID:17586775

  15. Quantum analogue computing.

    PubMed

    Kendon, Vivien M; Nemoto, Kae; Munro, William J

    2010-08-13

    We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.

  16. Ligament Rupture Pressure of Fretted SG Tubes of PWRs

    SciTech Connect

    Seong Sik Hwang; Man Kyo Jung; Hong Pyo Kim; Joung Soo Kim

    2006-07-01

    A fretting/wear degradation at the tube support in the U-bend region of a steam generator (SG) of a pressurized water reactor (PWR) has been reported. Simulated fretted flaws were machined on SG tubes of 195 mm in length. A pressure test was carried out with the tubes at room temperature by using a high pressure test facility which consisted of a water pressurizing pump, a test specimen section and a control unit. Water leak rates just after a ligament rupture or a burst were measured. Tubes degraded by up to 70% of the tube wall (TW) showed a high safety margin in terms of the burst pressure during normal operating conditions. Tubes degraded by up to 50% of the TW did not show a burst. Burst pressure depended on the defect depths rather than on the wrap angles. The tube with a wrap angle of 0 deg. showed a fish mouth fracture, whereas the tube with a 45 deg. wrap angle showed a three way fracture. (authors)

  17. Studying DNA Looping by Single-Molecule FRET

    PubMed Central

    Le, Tung T.; Kim, Harold D.

    2014-01-01

    Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA. PMID:24998459

  18. Engineering Dark Chromoprotein Reporters for Photoacoustic Microscopy and FRET Imaging

    PubMed Central

    Li, Yan; Forbrich, Alex; Wu, Jiahui; Shao, Peng; Campbell, Robert E.; Zemp, Roger

    2016-01-01

    A subset of the family of fluorescent proteins are the non-fluorescent chromoproteins which are promising probe molecules for use in photoacoustic imaging and as acceptor chromophores in Förster resonance energy transfer (FRET)-based biosensors. Typical approaches for fluorescent protein optimization by screening of large libraries of variants cannot be effectively applied to chromoproteins due to their characteristic lack of fluorescence. To address this challenge, we have developed a directed evolution method to iteratively screen large libraries of protein variants on the basis of their photoacoustic signal levels. By applying this procedure to the promising Ultramarine and cjBlue chromoprotein templates, we were able to identify improved variants with a 02–04 fold increase in photoacoustic signal-to-noise ratio after only a few evolutionary steps. These improved variants enable more accurate spectral de-mixing and localization of protein-producing bacteria in vivo and serve as effective FRET acceptors for both fluorescence- and photoacoustic-based detection of protease activity. PMID:26926390

  19. Paths to Förster's resonance energy transfer (FRET) theory

    NASA Astrophysics Data System (ADS)

    Masters, B. R.

    2014-02-01

    Theodor Förster (1910-1974) developed a phenomenological theory of nonradiative resonance energy transfer which proved to be transformative in the fields of chemistry, biochemistry, and biology. This paper explores the experimental and the theoretical antecedents of Förster's theory of resonance energy transfer (FRET). Early studies of sensitized fluorescence, fluorescence depolarization, and photosynthesis demonstrated the phenomena of long-range energy transfer. At the same time physicists developed theoretical models which contained common physical mechanisms and parameters: oscillating dipoles as models for the atoms or molecules, dipole-dipole coupling for the interaction, and a distance R0 that is optimal for resonance energy transfer. Early theories predicted R0 that was too large as compared to experiments. Finally, in 1946 Förster developed a classical theory and in 1948 he developed a quantum mechanical theory; both theories predicted an inverse sixth power dependence of the rate of energy transfer and a R0 that agreed with experiments. This paper attempts to determine why Förster succeeded when the other theoreticians failed to develop the correct theory. The putative roles of interdisciplinary education and collaborative research are discussed. Furthermore, I explore the role of science journals and their specific audiences in the popularization of FRET to a broad interdisciplinary community.

  20. Engineering Dark Chromoprotein Reporters for Photoacoustic Microscopy and FRET Imaging

    NASA Astrophysics Data System (ADS)

    Li, Yan; Forbrich, Alex; Wu, Jiahui; Shao, Peng; Campbell, Robert E.; Zemp, Roger

    2016-03-01

    A subset of the family of fluorescent proteins are the non-fluorescent chromoproteins which are promising probe molecules for use in photoacoustic imaging and as acceptor chromophores in Förster resonance energy transfer (FRET)-based biosensors. Typical approaches for fluorescent protein optimization by screening of large libraries of variants cannot be effectively applied to chromoproteins due to their characteristic lack of fluorescence. To address this challenge, we have developed a directed evolution method to iteratively screen large libraries of protein variants on the basis of their photoacoustic signal levels. By applying this procedure to the promising Ultramarine and cjBlue chromoprotein templates, we were able to identify improved variants with a 02–04 fold increase in photoacoustic signal-to-noise ratio after only a few evolutionary steps. These improved variants enable more accurate spectral de-mixing and localization of protein-producing bacteria in vivo and serve as effective FRET acceptors for both fluorescence- and photoacoustic-based detection of protease activity.

  1. Identification of the distribution of adenosine phosphates, nucleosides and nucleobases in royal jelly.

    PubMed

    Wu, Liming; Chen, Lanzhen; Selvaraj, Jonathan Nimal; Wei, Yue; Wang, Yong; Li, Yi; Zhao, Jing; Xue, Xiaofeng

    2015-04-15

    Nucleotides, nucleosides and nucleobases play a greater role in the physiological activity of organisms which are highly present in royal jelly (RJ). The objective of the present study is to develop a HPLC method to simultaneous determine nucleotides, nucleosides and nucleobases in RJ and access them in fresh and commercial RJ samples. The LOD and LOQ were 12.2-99.6 μg/L and 40.8-289.4 μg/L, respectively with nearly 100.9% recoveries. Except uric acid, all other compounds were found in RJ samples. Significant difference in the average content of compounds in fresh (2682.93 mg/kg) and commercial samples (3152.78 mg/kg) were observed. AMP, adenosine and adenine were found predominant in all the samples. Significant higher levels of ATP, ADP and AMP was seen in fresh RJ samples, and IMP, uridine, guanosine, and thymidine was seen in commercial RJ samples. The investigated compounds can be used as indexes for assessment RJ freshness and quality.

  2. Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites.

    PubMed

    Burton, Aaron S; Stern, Jennifer C; Elsila, Jamie E; Glavin, Daniel P; Dworkin, Jason P

    2012-08-21

    The discoveries of amino acids of extraterrestrial origin in many meteorites over the last 50 years have revolutionized the Astrobiology field. A variety of non-terrestrial amino acids similar to those found in life on Earth have been detected in meteorites. A few amino acids have even been found with chiral excesses, suggesting that meteorites could have contributed to the origin of homochirality in life on Earth. In addition to amino acids, which have been productively studied for years, sugar-like molecules, activated phosphates, and nucleobases have also been determined to be indigenous to numerous meteorites. Because these molecules are essential for life as we know it, and meteorites have been delivering them to the Earth since accretion, it is plausible that the origin(s) of life on Earth were aided by extraterrestrially-synthesized molecules. Understanding the origins of life on Earth guides our search for life elsewhere, helping to answer the question of whether biology is unique to Earth. This tutorial review focuses on meteoritic amino acids and nucleobases, exploring modern analytical methods and possible formation mechanisms. We will also discuss the unique window that meteorites provide into the chemistry that preceded life on Earth, a chemical record we do not have access to on Earth due to geologic recycling of rocks and the pervasiveness of biology across the planet. Finally, we will address the future of meteorite research, including asteroid sample return missions.

  3. Catalytic Role of Manganese Oxides in Prebiotic Nucleobases Synthesis from Formamide.

    PubMed

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2016-06-01

    Origin of life processes might have begun with the formation of important biomonomers, such as amino acids and nucleotides, from simple molecules present in the prebiotic environment and their subsequent condensation to biopolymers. While studying the prebiotic synthesis of naturally occurring purine and pyrimidine derivatives from formamide, the manganese oxides demonstrated not only good binding for formamide but demonstrated novel catalytic activity. A novel one pot manganese oxide catalyzed synthesis of pyrimidine nucleobases like thymine is reported along with the formation of other nucleobases like purine, 9-(hydroxyacetyl) purine, cytosine, 4(3 H)-pyrimidinone and adenine in acceptable amounts. The work reported is significant in the sense that the synthesis of thymine has exhibited difficulties especially under one pot conditions and also such has been reported only under the catalytic activity of TiO2. The lower oxides of manganese were reported to show higher potential as catalysts and their existence were favored by the reducing atmospheric conditions prevalent on early Earth; thereby confirming the hypothesis that mineral having metals in reduced form might have been more active during the course of chemical evolution. Our results further confirm the role of formamide as a probable precursor for the formation of purine and pyrimidine bases during the course of chemical evolution and origin of life.

  4. Infrared spectral investigations of UV irradiated nucleobases adsorbed on mineral surfaces

    NASA Astrophysics Data System (ADS)

    Brucato, J. R.; Fornaro, T.

    2014-04-01

    Spectroscopic studies of the effects of UV radiation on biomolecules such as nucleobases in heterogeneous environments are particularly relevant in prebiotic chemistry to unravel the role of minerals in the transformation/preservation of biomolecules in abiotic environments. Minerals may have a pivotal role in the prebiotic evolution of complex chemical systems, mediating the effects of electromagnetic radiation, influencing the photostability of biomolecules, catalyzing important chemical reactions and/or protecting molecules against degradation. Studies on the photodegradation of biomolecules adsorbed on minerals have applications also in the life detection context to identify potential biomarkers for future space mission and hence to develop suitable sample-extraction protocols for bioanalytical instruments [1]. Moreover, the characterization of the spectroscopic features of biomolecules-mineral complexes provides a support in remote sensing spectroscopy for detecting organic compounds on planetary surfaces or cometary grains and asteroid surfaces. In this context we will present laboratory results on UV photostability of nucleobases adsorbed on magnesium oxide and forsterite minerals and analysed with infrared spectroscopic [2,3].

  5. Nucleobase-functionalized graphene nanoribbons for accurate high-speed DNA sequencing

    NASA Astrophysics Data System (ADS)

    Paulechka, Eugene; Wassenaar, Tsjerk A.; Kroenlein, Kenneth; Kazakov, Andrei; Smolyanitsky, Alex

    2016-01-01

    We propose a water-immersed nucleobase-functionalized suspended graphene nanoribbon as an intrinsically selective device for nucleotide detection. The proposed sensing method combines Watson-Crick selective base pairing with graphene's capacity for converting anisotropic lattice strain to changes in an electrical current at the nanoscale. Using detailed atomistic molecular dynamics (MD) simulations, we study sensor operation at ambient conditions. We combine simulated data with theoretical arguments to estimate the levels of measurable electrical signal variation in response to strains and determine that the proposed sensing mechanism shows significant promise for realistic DNA sensing devices without the need for advanced data processing, or highly restrictive operational conditions.We propose a water-immersed nucleobase-functionalized suspended graphene nanoribbon as an intrinsically selective device for nucleotide detection. The proposed sensing method combines Watson-Crick selective base pairing with graphene's capacity for converting anisotropic lattice strain to changes in an electrical current at the nanoscale. Using detailed atomistic molecular dynamics (MD) simulations, we study sensor operation at ambient conditions. We combine simulated data with theoretical arguments to estimate the levels of measurable electrical signal variation in response to strains and determine that the proposed sensing mechanism shows significant promise for realistic DNA sensing devices without the need for advanced data processing, or highly restrictive operational conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07061a

  6. The search for and identification of amino acids, nucleobases and nucleosides in samples returned from Mars

    NASA Technical Reports Server (NTRS)

    Gehrke, Charles W.; Ponnamperuma, Cyril; Kuo, Kenneth C.; Stalling, David L.; Zumwalt, Robert W.

    1989-01-01

    An investigation of the returned Mars samples for biologically important organic compounds, with emphasis on amino acid, the puring and pyrimidine bases, and nucleosides is proposed. These studies would be conducted on subsurface samples obtained by drilling past the surface oxidizing layer with emphasis on samples containing the larges quantities of organic carbon as determined by the rover gas chromatographic mass spectrometer (GCMS). Extraction of these molecules from the returned samples will be performed using the hydrothermal extraction technique described by Cheng and Ponnamperuma. More rigorous extraction methods will be developed and evaluated. For analysis of the extract for free amino acids or amino acids present in a bound or peptidic form, aliquots will be analyzed by capillary GCMS both before and after hydrolysis with 6N hydrochloric acid. Establishment of the presence of amino acids would then lead to the next logical step which would be the use of chiral stationary gas chromatography phases to determine the enatiomeic composition of the amino acids present, and thus potentially establish their biotic or abiotic origin. Confirmational analyses for amino acids would include ion-exchange and reversed-phase liquid chromatographic analysis. For analyses of the returned Mars samples for nucleobases and nucleosides, affinity and reversed-phase liquid chromatography would be utilized. This technology coupled with scanning UV detection for identification, presents a powerful tool for nucleobase and nucleoside analysis. Mass spectrometric analysis of these compounds would confirm their presence in samples returned form Mars.

  7. Interaction of nucleobases with silicon doped and defective silicon doped graphene and optical properties.

    PubMed

    Mudedla, Sathish Kumar; Balamurugan, Kanagasabai; Kamaraj, Manoharan; Subramanian, Venkatesan

    2016-01-07

    The interaction of nucleobases (NBs) with the surface of silicon doped graphene (SiGr) and defective silicon doped graphene (dSiGr) has been studied using electronic structure methods. A systematic comparison of the calculated interaction energies (adsorption strength) of NBs with the surface of SiGr and dSiGr with those of pristine graphene (Gr) has also been made. The doping of graphene with silicon increases the adsorption strength of NBs. The introduction of defects in SiGr further enhances the strength of interaction with NBs. The appreciable stability of complexes (SiGr-NBs and dSiGr-NBs) arises due to the partial electrostatic and covalent (Si···O(N)) interaction in addition to π-π stacking. The interaction energy increases with the size of graphene models. The strong interaction between dSiGr-NBs and concomitant charge transfer causes significant changes in the electronic structure of dSiGr in contrast to Gr and SiGr. Further, the calculated optical properties of all the model systems using time dependent density functional theory (TD-DFT) reveal that absorption spectra of SiGr and dSiGr undergo appreciable changes after adsorption of NBs. Thus, the significant variations in the HOMO-LUMO gap and absorption spectra of dSiGr after interaction with the NBs can be exploited for possible applications in the sensing of DNA nucleobases.

  8. Supramolecular copolymer micelles based on the complementary multiple hydrogen bonds of nucleobases for drug delivery.

    PubMed

    Wang, Dali; Su, Yue; Jin, Chengyu; Zhu, Bangshang; Pang, Yan; Zhu, Lijuan; Liu, Jinyao; Tu, Chunlai; Yan, Deyue; Zhu, Xinyuan

    2011-04-11

    Novel supramolecular copolymer micelles with stimuli-responsive abilities were successfully prepared through the complementary multiple hydrogen bonds of nucleobases and then applied for rapid intracellular release of drugs. First, both adenine-terminated poly(ε-caprolactone) (PCL-A) and uracil-terminated poly(ethylene glycol) (PEG-U) were synthesized. The supramolecular amphiphilic block copolymers (PCL-A:U-PEG) were formed based on multiple hydrogen bonding interactions between PCL-A and PEG-U. The micelles self-assembled from PCL-A:U-PEG were sufficiently stable in water but prone to fast aggregation in acidic condition due to the dynamic and sensitive nature of noncovalent interactions. The low cytotoxicity of supramolecular copolymer micelles was confirmed by MTT assay against NIH/3T3 normal cells. As a hydrophobic anticancer model drug, doxorubicin (DOX) was encapsulated into these supramolecular copolymer micelles. In vitro release studies demonstrated that the release of DOX from micelles was significantly faster at mildly acid pH of 5.0 compared to physiological pH. MTT assay against HeLa cancer cells showed DOX-loaded micelles had high anticancer efficacy. Hence, these supramolecular copolymer micelles based on the complementary multiple hydrogen bonds of nucleobases are very promising candidates for rapid controlled release of drugs.

  9. Ultraviolet Irradiation of Pyrimidine in Interstellar Ice Analogs: Formation and Photo-Stability of Nucleobases

    NASA Technical Reports Server (NTRS)

    Nuevo, Michel; Milam, Stefanie N.; Sandford, Scott A.; Elsila, Jamie E.; Dworkin, Jason P.

    2010-01-01

    Astrochemistry laboratory experiments recently showed that molecules of prebiotic interest can potentially form in space, as supported by the detection of amino acids in organic residues formed by the UV photolysis of ices simulating interstellar and cometary environments (H2O, CO, CO2, CH3OH, NH3, etc.). Although the presence of amino acids in the interstellar medium (ISM) is still under debate, experiments and the detection of amino acids in meteorites both support a scenario in which prebiotic molecules could be of extraterrestrial origin, before they are delivered to planets by comets, asteroids, and interplanetary dust particles. Nucleobases, the informational subunits of DNA and RNA, have also been detected in meteorites, although they have not yet been observed in the ISM. Thus, these molecules constitute another family of prebiotic compounds that can possibly form via abiotical processes in astrophysical environments. Nucleobases are nitrogen-bearing cyclic aromatic species with various functional groups attached, which are divided into two classes: pyrimidines (uracil, cytosine, and thymine) and purines (adenine and guanine). In this work, we study how UV irradiation affects pyrimidine mixed in interstellar ice analogs (H2O, NH3, CH3OH). In particular, we show that the UV irradiation of H2O:pyrimidine mixtures leads to the production of oxidized compounds including uracil, and show that both uracil and cytosine are formed upon irradiation of H2O:NH3:pyrimidine mixtures. We also study the photostability of pyrimidine and its photoproducts formed during these experiments.

  10. New approach for designing single-chain magnets: organization of chains via hydrogen bonding between nucleobases.

    PubMed

    Zhang, Wei-Xiong; Shiga, Takuya; Miyasaka, Hitoshi; Yamashita, Masahiro

    2012-04-25

    Two one-dimensional (1D) manganese complexes, [Mn(2)(naphtmen)(2)(L)](ClO(4))·2Et(2)O·2MeOH·H(2)O (1) and [Mn(2)(naphtmen)(2)(HL)](ClO(4))(2)·MeOH (2), were synthesized by using a bridging ligand with a nucleobase moiety, 6-amino-9-β-carboxyethylpurine, and a salen-type manganese(III) dinuclear complex, [Mn(2)(naphtmen)(2)(H(2)O)(2)](ClO(4))(2) (naphtmen(2-) = N,N'-(1,1,2,2-tetramethylethylene)bis(naphthylideneiminato) dianion). In 1 and 2, the carboxylate-bridged Mn(III) dinuclear units are alternately linked by two kinds of weak Mn···O interactions into 1D chains. As a result, canted antiferromagnetic and ferromagnetic interactions are alternately present along the chains, leading to a 1D chain with non-cancellation of anisotropic spins. Since the chains connected via H-bonds between nucleobase moieties are magnetically isolated, both 1 and 2 act as single-chain magnets (SCMs). More importantly, this result shows the smaller canting angles hinder long-range ordering in favor of SCM dynamics.

  11. First-principles study of interaction of serine with nucleobases of DNA and RNA.

    PubMed

    Abbas, Haider

    2017-03-01

    The nature of interaction between serine-a vital molecule for cancer cell proliferation and nucleic acid bases-adenine (A), guanine (G), cytosine (C), thymine (T), and uracil (U) is investigated within the framework of Møller-Plesset perturbation theory (MP2) and density functional theory (DFT). To quantify the interaction strength between serine and nucleobases, the corresponding binding energies were computed, showing energetic ordering such that G > C > T > A > U. This shows that the interaction energy of serine with guanine is the highest, while with uracil it is the lowest. The amount of charge transferred is the lowest in case of the serine-guanine complex and highest in case of the serine-uracil complex. The results show the serine-guanine complex to be more stable and to have a salt bridge structure involving the -COOH group. Theoretical analysis based on MP2 and DFT shows that the interaction between the serine and nucleobases is mainly determined by hydrogen bonding.

  12. Biochemical retrosynthesis of 2'-deoxyribonucleosides from glucose, acetaldehyde, and a nucleobase.

    PubMed

    Horinouchi, Nobuyuki; Ogawa, Jun; Kawano, Takako; Sakai, Takafumi; Saito, Kyota; Matsumoto, Seiichiro; Sasaki, Mie; Mikami, Yoichi; Shimizu, Sakayu

    2006-08-01

    2'-Deoxyribonucleosides are important as building blocks for the synthesis of antisense drugs, antiviral nucleosides, and 2'-deoxyribonucleotides for polymerase chain reaction. The microbial production of 2'-deoxyribonucleosides from simple materials, glucose, acetaldehyde, and a nucleobase, through the reverse reactions of 2'-deoxyribonucleoside degradation and the glycolytic pathway, was investigated. The glycolytic pathway of baker's yeast yielded fructose 1,6-diphosphate from glucose using the energy of adenosine 5'-triphosphate generated from adenosine 5'-monophosphate through alcoholic fermentation with the yeast. Fructose 1,6-diphosphate was further transformed to 2-deoxyribose 5-phosphate in the presence of acetaldehyde by deoxyriboaldolase-expressing Escherichia coli cells via D-glyceraldehyde 3-phosphate. E. coli transformants expressing phosphopentomutase and nucleoside phosphorylase produced 2'-deoxyribonucleosides from 2-deoxyribose 5-phosphate and a nucleobase via 2-deoxyribose 1-phosphate through the reverse reactions of 2'-deoxyribonucleoside degradation. Coupling of the glycolytic pathway and deoxyriboaldolase-catalyzing reaction efficiently supplied 2-deoxyribose 5-phosphate, which is a key intermediate for 2'-deoxyribonucleoside synthesis. 2'-Deoxyinosine (9.9 mM) was produced from glucose, acetaldehyde, and adenine through three-step reactions via fructose 1,6-diphosphate and then 2-deoxyribose 5-phosphate, the molar yield as to glucose being 17.8%.

  13. Catalytic Role of Manganese Oxides in Prebiotic Nucleobases Synthesis from Formamide

    NASA Astrophysics Data System (ADS)

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2016-06-01

    Origin of life processes might have begun with the formation of important biomonomers, such as amino acids and nucleotides, from simple molecules present in the prebiotic environment and their subsequent condensation to biopolymers. While studying the prebiotic synthesis of naturally occurring purine and pyrimidine derivatives from formamide, the manganese oxides demonstrated not only good binding for formamide but demonstrated novel catalytic activity. A novel one pot manganese oxide catalyzed synthesis of pyrimidine nucleobases like thymine is reported along with the formation of other nucleobases like purine, 9-(hydroxyacetyl) purine, cytosine, 4(3 H)-pyrimidinone and adenine in acceptable amounts. The work reported is significant in the sense that the synthesis of thymine has exhibited difficulties especially under one pot conditions and also such has been reported only under the catalytic activity of TiO2. The lower oxides of manganese were reported to show higher potential as catalysts and their existence were favored by the reducing atmospheric conditions prevalent on early Earth; thereby confirming the hypothesis that mineral having metals in reduced form might have been more active during the course of chemical evolution. Our results further confirm the role of formamide as a probable precursor for the formation of purine and pyrimidine bases during the course of chemical evolution and origin of life.

  14. Enthalpy-Entropy Tuning in the Adsorption of Nucleobases at the Au(111) Surface.

    PubMed

    Rosa, Marta; Corni, Stefano; Di Felice, Rosa

    2014-04-08

    The interaction of DNA molecules with hard substrates is of paramount importance both for the study of DNA itself and for the variety of possible technological applications. Interaction with inorganic surfaces strongly modifies the helical shape of DNA. Hence, an accurate understanding of DNA structure and function at interfaces is a fundamental question with enormous impact in science and society. This work sets the fundamentals for the simulation of entire DNA oligomers on gold surfaces in dry and wet conditions. Thanks to the new GolDNA-AMBER force field, which was derived from first principles and includes dispersion interactions and polarization effects, we simulated self-assembled guanine and adenine monolayers on Au(111) in vacuo and the adsorption of all nucleobases on the same substrate in aqueous conditions. The periodic monolayers obtained from classical simulations match very well those from first principle calculations and experiments, assessing the robustness of the force field and motivating the application to more complex systems for which quantum calculations are not affordable and experiments are elusive. The energetics of nucleobases on Au(111) in solution reveal fundamental physicochemical effects: we find that the adsorption paradigm shifts from purely enthalpic to dominantly entropic by changing the environment and aggregation phase.

  15. Meteoritic Input of Amino Acids and Nucleobases: Methodology and Implications for the Origins of Life

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Stern, Jennifer C.; Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    The discoveries of amino acids of extraterrestrial origin in many meteorites over the last 40 years have revolutionized the Astrobiology field. A variety of non-terrestrial amino acids similar to those found in life on Earth have been detected in meteorites. A few amino acids have even been found with chiral excesses, suggesting that meteorites could have contributed to the origin of homochirality in life on Earth. In addition to amino acids, which have been productively studied for years, sugar-like molecules, activated phosphates, and nucleobases have also been determined to be indigenous to numerous meteorites. Because these molecules are essential for life as we know it, and meteorites have been delivering them to the Earth since accretion, it is plausible that the origin(s) of life on Earth were aided by extraterrestrially-synthesized molecules. Understanding the origins of life on Earth guides our search for life elsewhere, helping to answer the question of whether biology is unique to Earth. This tutorial review focuses on meteoritic amino acids and nucleobases, exploring modern analytical methods and possible formation mechanisms. We will also discuss the unique window that meteorites provide into the chemistry that preceded life on Earth, a chemical record we do not have access to on Earth due to geologic recycling of rocks and the pervasiveness of biology across the planet. Finally, we will address the future of meteorite research, including asteroid sample return mIssIons.

  16. Understanding Prebiotic Chemistry Through the Analysis of Extraterrestrial Amino Acids and Nucleobases in Meteorites

    NASA Technical Reports Server (NTRS)

    Burton, Aaron S.; Stern, Jennifer C.; Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    The discoveries of amino acids of extraterrestrial origin in many meteorites over the last 50 years have revolutionized the Astrobiology field. A variety of non-terrestrial amino acids similar to those found in life on Earth have been detected in meteorites. A few amino acids have even been found with chiral excesses, suggesting that meteorites could have contributed to the origin of homochirality in life on Earth. In addition to amino acids, which have been productively studied for years, sugar-like molecules, activated phosphates, and nucleobases have also been determined to be indigenous to numerous meteorites. Because these molecules are essential for life as we know it, and meteorites have been delivering them to the Earth since accretion, it is plausible that the origines) of life on Earth were aided by extrataterrestrially-synthesized molecules. Understanding the origins of life on Earth guides our search for life elsewhere, helping to answer the question of whether biology is unique to Earth. This tutorial focuses on meteoritic amino acids and nucleobases, exploring modern analytical methods and possible formation mechanisms. We will also discuss the unique window that meteorites provide into the chemistry that preceded life on Earth, a chemical record we do not have access to on Earth due to geologic recycling of rocks and the pervasiveness of biology across the planet. Finally. we will address the future of meteorite research, including asteroid sample return missions.

  17. N-way FRET microscopy of multiple protein-protein interactions in live cells.

    PubMed

    Hoppe, Adam D; Scott, Brandon L; Welliver, Timothy P; Straight, Samuel W; Swanson, Joel A

    2013-01-01

    Fluorescence Resonance Energy Transfer (FRET) microscopy has emerged as a powerful tool to visualize nanoscale protein-protein interactions while capturing their microscale organization and millisecond dynamics. Recently, FRET microscopy was extended to imaging of multiple donor-acceptor pairs, thereby enabling visualization of multiple biochemical events within a single living cell. These methods require numerous equations that must be defined on a case-by-case basis. Here, we present a universal multispectral microscopy method (N-Way FRET) to enable quantitative imaging for any number of interacting and non-interacting FRET pairs. This approach redefines linear unmixing to incorporate the excitation and emission couplings created by FRET, which cannot be accounted for in conventional linear unmixing. Experiments on a three-fluorophore system using blue, yellow and red fluorescent proteins validate the method in living cells. In addition, we propose a simple linear algebra scheme for error propagation from input data to estimate the uncertainty in the computed FRET images. We demonstrate the strength of this approach by monitoring the oligomerization of three FP-tagged HIV Gag proteins whose tight association in the viral capsid is readily observed. Replacement of one FP-Gag molecule with a lipid raft-targeted FP allowed direct observation of Gag oligomerization with no association between FP-Gag and raft-targeted FP. The N-Way FRET method provides a new toolbox for capturing multiple molecular processes with high spatial and temporal resolution in living cells.

  18. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection

    NASA Astrophysics Data System (ADS)

    Yao, B. C.; Wu, Y.; Yu, C. B.; He, J. R.; Rao, Y. J.; Gong, Y.; Fu, F.; Chen, Y. F.; Li, Y. R.

    2016-03-01

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel ‘FRET on Fiber’ concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based ‘FRET on fiber’ configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated ‘FRET on Fiber’ sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response

  19. Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection.

    PubMed

    Yao, B C; Wu, Y; Yu, C B; He, J R; Rao, Y J; Gong, Y; Fu, F; Chen, Y F; Li, Y R

    2016-03-24

    Fluorescent resonance energy transfer (FRET) with naturally exceptional selectivity is a powerful technique and widely used in chemical and biomedical analysis. However, it is still challenging for conventional FRET to perform as a high sensitivity compact sensor. Here we propose a novel 'FRET on Fiber' concept, in which a partially reduced graphene oxide (prGO) film is deposited on a fiber-optic modal interferometer, acting as both the fluorescent quencher for the FRET and the sensitive cladding for optical phase measurement due to refractive index changes in biochemical detection. The target analytes induced fluorescence recovery with good selectivity and optical phase shift with high sensitivity are measured simultaneously. The functionalized prGO film coated on the fiber-optic interferometer shows high sensitivities for the detections of metal ion, dopamine and single-stranded DNA (ssDNA), with detection limits of 1.2 nM, 1.3 μM and 1 pM, respectively. Such a prGO based 'FRET on fiber' configuration, bridging the FRET and the fiber-optic sensing technology, may serve as a platform for the realization of series of integrated 'FRET on Fiber' sensors for on-line environmental, chemical, and biomedical detection, with excellent compactness, high sensitivity, good selectivity and fast response.

  20. Mixed-metal fretting corrosion of Ti6Al4V and wrought cobalt alloy.

    PubMed

    Kawalec, J S; Brown, S A; Payer, J H; Merritt, K

    1995-07-01

    Corrosion has been reported at the modular interfaces of total joint replacement implants, but with conflicting theories as to the cause of such damage. The modular design itself leaves the interface susceptible to galvanic, crevice, or fretting corrosion, or a combination of the three. The purpose of this study was to quantify the effect of material combination on fretting corrosion of orthopedic alloys. Each test specimen consisted of a two-hole plate with spherical countersinks and two cortical bone screws. The plates and screws were made of either Ti6Al4V or wrought cobalt-chromium-molybdenum (CCM), and were tested in all mixed-metal and similar-alloy combinations. Fretting corrosion experiments were conducted for 14 days in 10% calf serum, according to ASTM F897. Corrosion damage was evaluated by weight-loss measurements, atomic absorption spectrophotometry and scanning electron microscopy analyses. The results indicated that Ti6Al4V suffered relatively severe damage when fretted against itself, as a result of adhesive galling. The extent of titanium damage was reduced considerably, however, when Ti6Al4V was fretted against wrought CCM. In contrast, there was essentially no difference in wrought CCM damage when the alloys was fretted against itself compared to fretting against Ti6Al4V. Finally, in similar-alloy combinations, Ti6Al4V suffered more severe damage than wrought CCM.

  1. Simultaneous Live Cell Imaging Using Dual FRET Sensors with a Single Excitation Light

    PubMed Central

    Niino, Yusuke; Hotta, Kohji; Oka, Kotaro

    2009-01-01

    Fluorescence resonance energy transfer (FRET) between fluorescent proteins is a powerful tool for visualization of signal transduction in living cells, and recently, some strategies for imaging of dual FRET pairs in a single cell have been reported. However, these necessitate alteration of excitation light between two different wavelengths to avoid the spectral overlap, resulting in sequential detection with a lag time. Thus, to follow fast signal dynamics or signal changes in highly motile cells, a single-excitation dual-FRET method should be required. Here we reported this by using four-color imaging with a single excitation light and subsequent linear unmixing to distinguish fluorescent proteins. We constructed new FRET sensors with Sapphire/RFP to combine with CFP/YFP, and accomplished simultaneous imaging of cAMP and cGMP in single cells. We confirmed that signal amplitude of our dual FRET measurement is comparable to of conventional single FRET measurement. Finally, we demonstrated to monitor both intracellular Ca2+ and cAMP in highly motile cardiac myocytes. To cancel out artifacts caused by the movement of the cell, this method expands the applicability of the combined use of dual FRET sensors for cell samples with high motility. PMID:19551140

  2. Construction of peptides with nucleobase amino acids: design and synthesis of the nucleobase-conjugated peptides derived from HIV-1 Rev and their binding properties to HIV-1 RRE RNA.

    PubMed

    Takahashi, T; Hamasaki, K; Ueno, A; Mihara, H

    2001-04-01

    In order to develop a novel molecule that recognizes a specific structure of RNA, we have attempted to design peptides having L-alpha-amino acids with a nucleobase at the side chain (nucleobase amino acid (NBA)), expecting that the function of a nucleobase which can specifically recognize a base in RNA is regulated in a peptide conformation. In this study, to demonstrate the applicability of the NBA units in the peptide to RNA recognition, we designed and synthesized a variety of NBA-conjugated peptides, derived from HIV-1 Rev. Circular dichroism study revealed that the conjugation of the Rev peptide with an NBA unit did not disturb the peptide conformation. RNA-binding affinities of the designed peptides with RRE IIB RNA were dependent on the structure of the nucleobase moieties in the peptides. The peptide having the cytosine NBA at the position of the Asn40 site in the Rev showed a higher binding ability for RRE IIB RNA, despite the diminishing the Asn40 function. Furthermore, the peptide having the guanine NBA at the position of the Arg44 site, which is the most important residue for the RNA binding in the Rev, bound to RRE IIB RNA in an ability similar to Rev34-50 with native sequence. These results demonstrate that an appropriate NBA unit in the peptide plays an important role in the RNA binding with a specific contact such as hydrogen bonding, and the interaction between the nucleobase in the peptide and the base in the RNA can enhance the RNA-binding affinity and specificity.

  3. Absolute binding-free energies between standard RNA/DNA nucleobases and amino-acid sidechain analogs in different environments.

    PubMed

    de Ruiter, Anita; Zagrovic, Bojan

    2015-01-01

    Despite the great importance of nucleic acid-protein interactions in the cell, our understanding of their physico-chemical basis remains incomplete. In order to address this challenge, we have for the first time determined potentials of mean force and the associated absolute binding free energies between all standard RNA/DNA nucleobases and amino-acid sidechain analogs in high- and low-dielectric environments using molecular dynamics simulations and umbrella sampling. A comparison against a limited set of available experimental values for analogous systems attests to the quality of the computational approach and the force field used. Overall, our analysis provides a microscopic picture behind nucleobase/sidechain interaction preferences and creates a unified framework for understanding and sculpting nucleic acid-protein interactions in different contexts. Here, we use this framework to demonstrate a strong relationship between nucleobase density profiles of mRNAs and nucleobase affinity profiles of their cognate proteins and critically analyze a recent hypothesis that the two may be capable of direct, complementary interactions.

  4. On the Origin of the Canonical Nucleobases: An Assessment of Selection Pressures across Chemical and Early Biological Evolution.

    PubMed

    Rios, Andro C; Tor, Yitzhak

    2013-06-01

    The native bases of RNA and DNA are prominent examples of the narrow selection of organic molecules upon which life is based. How did nature "decide" upon these specific heterocycles? Evidence suggests that many types of heterocycles could have been present on the early Earth. It is therefore likely that the contemporary composition of nucleobases is a result of multiple selection pressures that operated during early chemical and biological evolution. The persistence of the fittest heterocycles in the prebiotic environment towards, for example, hydrolytic and photochemical assaults, may have given some nucleobases a selective advantage for incorporation into the first informational polymers. The prebiotic formation of polymeric nucleic acids employing the native bases remains, however, a challenging problem to reconcile. Hypotheses have proposed that the emerging RNA world may have included many types of nucleobases. This is supported by the extensive utilization of non-canonical nucleobases in extant RNA and the resemblance of many of the modified bases to heterocycles generated in simulated prebiotic chemistry experiments. Selection pressures in the RNA world could have therefore narrowed the composition of the nucleic acid bases. Two such selection pressures may have been related to genetic fidelity and duplex stability. Considering these possible selection criteria, the native bases along with other related heterocycles seem to exhibit a certain level of fitness. We end by discussing the strength of the N-glycosidic bond as a potential fitness parameter in the early DNA world, which may have played a part in the refinement of the alphabetic bases.

  5. Laser-Induced Shockwave Paired with FRET: A Method to Study Cell Signaling

    PubMed Central

    GOMEZ-GODINEZ, VERONICA; PREECE, DARYL; SHI, LINDA; KHATIBZADEH, NIMA; ROSALES, DERRICK; PAN, YIJIA; LEI, LIE; WANG, YINGXIAO; BERNS, MICHAEL W.

    2015-01-01

    Cells within the body are subject to various forces; however, the details concerning the way in which cells respond to mechanical stimuli are not well understood. We demonstrate that laser-induced shockwaves (LIS) combined with biosensors based on fluorescence resonance energy transfer (FRET) is a promising new approach to study biological processes in single live cells. As “proof-of-concept,” using a FRET biosensor, we show that in response to LIS, cells release intracellular calcium. With the parameters used, cells retain their morphology and remain viable. LIS combined with FRET permits observation of the cells immediate response to a sudden shear force. PMID:25639252

  6. Fretting friction and wear characteristics of magnetorheological fluid under different magnetic field strengths

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Lee, K. H.; Lee, C. H.

    2017-01-01

    A magnetorheological fluid (MRF) performs differently under different magnetic field strength. This study examined the fretting friction and wear characteristics of MRFs under a range of magnetic field strengths and oscillation frequencies. The fretting friction and wear behaviors of MRF are investigated using a fretting friction and wear tester. The surfaces of specimen are examined by optical microscopy and 3D surface profilometer before and after the tests and wear surface profiles, the wear volume loss and wear coefficient for each magnetic field strength are evaluated. The results show that the friction and wear properties of MRF change according to the magnetic field strength and oscillation frequency.

  7. Fretting corrosion of CoCrMo and Ti6Al4V interfaces.

    PubMed

    Swaminathan, Viswanathan; Gilbert, Jeremy L

    2012-08-01

    Mechanically assisted corrosion (fretting corrosion, tribocorrosion etc.,) of metallic biomaterials is a primary concern for numerous implant applications, particularly in the performance of highly-loaded medical devices. While the basic underlying concepts of fretting corrosion or tribocorrosion and fretting crevice corrosion are well known, there remains a need to develop an integrated systematic method for the analysis of fretting corrosion involving metal-on-metal contacts. Such a method can provide detailed and quantitative information on the processes present and explore variations in surfaces, alloys, voltages, loadings, motion and solution conditions. This study reports on development of a fretting corrosion test system and presents elements of an in-depth theoretical fretting corrosion model that incorporates both the mechanical and the electrochemical aspects of fretting corrosion. To demonstrate the capabilities of the new system and validate the proposed model, experiments were performed to understand the effect of applied normal load on fretting corrosion performance of Ti6Al4V/Ti6Al4V, CoCrMo/Ti6Al4V, and CoCrMo/CoCrMo material couples under potentiostatic conditions with a fixed starting surface roughness. The results of this study show that fretting corrosion is affected by material couples, normal load and the motion conditions at the interface. In particular, fretting currents and coefficient of friction (COF) vary with load and are higher for Ti6Al4V/Ti6Al4V couple reaching 3 mA/cm(2) and 0.63 at about 73 MPa nominal contact stress, respectively. Ti6Al4V coupled with CoCrMo displayed lower currents (0.6 mA/cm(2)) and COF (0.3), and the fretting corrosion behavior was comparable to CoCrMo/CoCrMo couple (1.2 mA/cm(2) and 0.3, respectively). Information on the mechanical energy dissipated at the interface, the sticking behavior, and the load dependence of the inter-asperity distance calculated using the model elucidated the influence of

  8. Metallurgical Changes in the High Temperature Fretting of Ni and Ti Alloys.

    DTIC Science & Technology

    1977-10-01

    200 and 600 C was observed. Fatigue and fretting fatigue curves have been determined on Inconel 718 at 20, 280, and 540 C, together with isolated...Ti-6Al-4V specimens subjected to fretting fatigue at 400 C have been examined in SEM. Layer formation similar to that obtained on specimens tested at...observations at 700 C where creep becomes excessive. Raising the temperature has little effect on fatigue strength but improves the fretting fatigue strength. The improvement is thought to be due to glaze formation. (Author)

  9. Lateral diffusion contributes to FRET from lanthanide-tagged membrane proteins.

    PubMed

    Lan, Tien-Hung; Wu, Guangyu; Lambert, Nevin A

    2015-08-14

    Diffusion can enhance Förster resonance energy transfer (FRET) when donors or acceptors diffuse distances that are similar to the distances separating them during the donor's excited state lifetime. Lanthanide donors remain in the excited state for milliseconds, which makes them useful for time-resolved FRET applications but also allows time for diffusion to enhance energy transfer. Here we show that diffusion dramatically enhances FRET between membrane proteins labeled with lanthanide donors. This phenomenon complicates interpretation of experiments that use long-lived donors to infer association or proximity of mobile membrane proteins, but also offers a method of monitoring diffusion in membrane domains in real time in living cells.

  10. The Effect of Elevated Temperature on the Fretting Fatigue Behavior of Nickel Alloy IN-100

    DTIC Science & Technology

    2008-04-01

    Saladin S-N data points for plain fatigue 86 4.16 Comparison of Ownby and Saladin S-N data points for fretting fatigue 87 4.17 Comparison of Ownby...and Saladin S-N data for all tests 88 4.18 Plot comparing ΔQ vs Nf from Ownby, Saladin & Madhi data points 89 4.19 Plot from Kawagoishi et al. [21...in this study 93 4.3 Madhi fretting and plain fatigue testing data 94 4.4 Saladin fretting and plain fatigue testing data 94 4.5 Comparison of

  11. Micro-Structural Study of Fretting Contact Caused by the Difference of the Tin Plating Thickness

    NASA Astrophysics Data System (ADS)

    Ito, Tetsuya; Sawada, Shigeru; Hattori, Yasuhiro; Saitoh, Yasushi; Tamai, Terutaka; Iida, Kazuo

    In recent years, there has been increasing demand to miniaturize wiring harness connectors in automobiles due to the increasing volume of electronic equipment and the reduction of the installation space allocated for the electronic equipment in automobiles for the comfort of the passengers. With this demand, contact failure caused by the fretting corrosion is expected to become a serious problem. In this report, we examined micro-structural observations of fretting contacts of two different tin plating thicknesses using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) and so on. Based on the results, we compared the microstructure difference of fretting contact caused by the difference of the tin plating thickness.

  12. Synthesis of oligonucleotides containing N,N-disubstituted 3-deazacytosine nucleobases by post-elongation modification and their triplex-forming ability with double-stranded DNA.

    PubMed

    Akabane-Nakata, Masaaki; Obika, Satoshi; Hari, Yoshiyuki

    2014-11-28

    A phosphoramidite of a 2'-O,4'-C-methylene-bridged nucleoside, bearing 4-(2,4,6-triisopropylbenzenesulfonyloxy)pyridin-2-one as a nucleobase precursor, was synthesized and introduced into an oligonucleotide. Treatment with various secondary amines after elongating the oligonucleotide on an automated DNA synthesizer enabled facile and mild conversion of the precursor into the corresponding N,N-disubstituted 3-deazacytosine nucleobases. The evaluation of the triplex-forming ability of the synthesized oligonucleotides with double-stranded DNA showed that the nucleobase possessing the (3S)-3-guanidinopyrrolidine moiety can recognize a CG base pair with high sequence-selectivity and binding-affinity.

  13. Alpha-beta chimeric oligo-DNA bearing intercalator-conjugated nucleobase inside the linker sequence remarkably improves thermal stability of an alternate-stranded triple helix.

    PubMed

    Zafrul Azam, A T M; Hasegawa, Minoru; Moriguchi, Tomohisa; Shinozuka, Kazuo

    2004-12-06

    Novel alpha-beta chimeric oligodeoxynucleotides bearing an intercalator-conjugated nucleobase located at the internal 4-nt linker region were synthesized, and their triplex-stabilizing property was examined. The triple helical DNA formed between the modified chimera DNA and double-stranded DNA exhibited remarkable thermal stability; however, the position of the intercalator-conjugated nucleobase had little influence on the stability. Among the examined, modified chimera DNA bearing the two intercalator-conjugated nucleobases at adjacent positions exhibited the highest stability.

  14. FRET based characterization of DNA-based assemblies

    NASA Astrophysics Data System (ADS)

    Buckhout-White, Susan; Gray, Rochester; Ancona, Mario; Goldman, Ellen R.; Medintz, Igor L.

    2014-05-01

    The "spectroscopic ruler" based on fluorescence resonance energy transfer (FRET) is explored as a method for detailed structural characterization of DNA nanostructures in solution. The approach is most directly useful for assessing the positional relationships among chromophores organized by the DNA, but it can also be used to characterize the geometry and kinematics of the DNA scaffold itself. By accumulating data for the distances separating various donor-acceptor pairs, and correlating them with the expected distances, one can quantify the shape and deformability of the structure. A 8x16nm "mini-origami" rectangle is used as the model test structure and the dye-pairs are chosen to investigate anisotropy in the origami's mechanical properties. Not unexpectedly, our analysis finds a strong anisotropy in the stiffness, with the measured spacing across the origami weave deviating much more from expectation than the spacing aligned along the weave pattern.

  15. Correlating Calmodulin Landscapes with Chemical Catalysis in Neuronal Nitric Oxide Synthase using Time-Resolved FRET and a 5-Deazaflavin Thermodynamic Trap

    PubMed Central

    2016-01-01

    A major challenge in enzymology is the need to correlate the dynamic properties of enzymes with, and understand the impact on, their catalytic cycles. This is especially the case with large, multicenter enzymes such as the nitric oxide synthases (NOSs), where the importance of dynamics has been inferred from a variety of structural, single-molecule, and ensemble spectroscopic approaches but where motions have not been correlated experimentally with mechanistic steps in the reaction cycle. Here we take such an approach. Using time-resolved spectroscopy employing absorbance and Förster resonance energy transfer (FRET) and exploiting the properties of a flavin analogue (5-deazaflavin mononucleotide (5-dFMN)) and isotopically labeled nicotinamide coenzymes, we correlate the timing of CaM structural changes when bound to neuronal nitric oxide synthase (nNOS) with the nNOS catalytic cycle. We show that remodeling of CaM occurs early in the electron transfer sequence (FAD reduction), not at later points in the reaction cycle (e.g., FMN reduction). Conformational changes are tightly correlated with FAD reduction kinetics and reflect a transient “opening” and then “closure” of the bound CaM molecule. We infer that displacement of the C-terminal tail on binding NADPH and subsequent FAD reduction are the likely triggers of conformational change. By combining the use of cofactor/coenzyme analogues and time-resolved FRET/absorbance spectrophotometry, we show how the reaction cycles of complex enzymes can be simplified, enabling a detailed study of the relationship between protein dynamics and reaction cycle chemistry—an approach that can also be used with other complex multicenter enzymes. PMID:27563493

  16. Analogue-to-Digital and Digital-to-Analogue Conversion.

    ERIC Educational Resources Information Center

    Gregory, Martin

    1997-01-01

    Discusses circuits for three-bit and four-bit analogue digital converters and digital analogue converters. These circuits feature slow operating speeds that enable the circuitry to be used to demonstrate the mode of operation using oscilloscopes and signal generators. (DDR)

  17. Mars Global Surveyor observations of Martian fretted terrain

    USGS Publications Warehouse

    Carr, M.H.

    2001-01-01

    The Martian fretted terrain between latitudes 30?? and 50?? N and between 315?? and 360?? W has been reexamined in light of new Mars Orbiter Camera (MOC) and Mars Orbiter Laser Altimeter (MOLA) data from Mars Global Surveyor. Much of the terrain in the 30??-50?? latitude belt in both hemispheres has a characteristic stippled or pitted texture at MOC (1.5 m) scale. The texture appears to result from partial removal of a formerly smooth, thin deposit as a result of sublimation and deflation. A complex history of deposition and exhumation is indicated by remnants of a former, thicker cover of layered deposits. In some hollows and on some slopes, particularly those facing the pole, are smooth textured deposits outlined by an outward facing escarpment. Throughout the study area are numerous escarpments with debris flows at their base. The escarpments typically have slopes in the 20??-30?? range. At the base of the escarpment is commonly a deposit with striae oriented at right angles to the escarpment. Outside this deposit is the main debris apron with a surface that typically slopes 2??-3?? and complex surface textures suggestive of compression, sublimation, and deflation. The presence of undeformed impact craters indicates that the debris flows are no longer forming. Fretted valleys contain lineated fill and are poorly graded. They likely form from fluvial valleys that were initially like those elsewhere on the planet but were subsequently widened and filled by the same mass-wasting processes that formed the debris aprons. Slope reversals indicate that downvalley flow of the lineated fill is minor. The ubiquitous presence of breaks in slope formed by mass wasting and the complex surface textures that result from mass wasting, deflation, and sublimation decreases the recognizability of the shorelines formerly proposed for this area.

  18. Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers.

    PubMed

    Liu, Yun; Lehn, Jean-Marie; Hirsch, Anna K H

    2017-02-21

    biodynamers are commonly produced in aqueous media under mild or even physiological conditions to suit their biorelated applications. In contrast to static biopolymers emphasizing structural stability and unity by using irreversible covalent bonds, molecular biodynamers are seeking relative structural adaptability and diversity through the formation of reversible covalent bonds. Based on these considerations, molecular biodynamers are capable of reorganizing their monomers, generating, identifying, and amplifying the fittest structures in response to environmental factors. Hence, molecular biodynamers have received considerable research attention over the past decades. Accordingly, the construction of molecular biodynamers through equilibrium polymerization of nucleobase-, carbohydrate- or amino-acid-based monomers can lead to the fabrication of dynamic analogues of nucleic acids (DyNAs), polysaccharides (glycodynamers), or proteins (dynamic proteoids), respectively. In this Account, we summarize recent advances in developing different types of molecular biodynamers as structural or functional biomimetics of biopolymers, including DyNAs, glycodynamers, and dynamic proteoids. We introduce how chemists utilize various reversible reactions to generate molecular biodynamers with specific sequences and well-ordered structures in aqueous medium. We also discuss and list their potential applications in various research fields, such as drug delivery, drug discovery, gene sensing, cancer diagnosis, and treatment.

  19. Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers

    PubMed Central

    2017-01-01

    , molecular biodynamers are commonly produced in aqueous media under mild or even physiological conditions to suit their biorelated applications. In contrast to static biopolymers emphasizing structural stability and unity by using irreversible covalent bonds, molecular biodynamers are seeking relative structural adaptability and diversity through the formation of reversible covalent bonds. Based on these considerations, molecular biodynamers are capable of reorganizing their monomers, generating, identifying, and amplifying the fittest structures in response to environmental factors. Hence, molecular biodynamers have received considerable research attention over the past decades. Accordingly, the construction of molecular biodynamers through equilibrium polymerization of nucleobase-, carbohydrate- or amino-acid-based monomers can lead to the fabrication of dynamic analogues of nucleic acids (DyNAs), polysaccharides (glycodynamers), or proteins (dynamic proteoids), respectively. In this Account, we summarize recent advances in developing different types of molecular biodynamers as structural or functional biomimetics of biopolymers, including DyNAs, glycodynamers, and dynamic proteoids. We introduce how chemists utilize various reversible reactions to generate molecular biodynamers with specific sequences and well-ordered structures in aqueous medium. We also discuss and list their potential applications in various research fields, such as drug delivery, drug discovery, gene sensing, cancer diagnosis, and treatment. PMID:28169527

  20. The UV absorption of nucleobases: semi-classical ab initio spectra simulations.

    PubMed

    Barbatti, Mario; Aquino, Adelia J A; Lischka, Hans

    2010-05-21

    Semi-classical simulations of the UV-photoabsorption cross sections of adenine, guanine, cytosine, thymine, and uracil in gas phase were performed at the resolution-of-identity coupled cluster to the second-order (RI-CC2) level. With the exception of cytosine, the spectra of the other four nucleobases show a two band pattern separated by a low intensity region. The spectrum of cytosine is shaped by a sequence of three bands of increasing intensity. The first band of guanine is composed by two pipi* transitions of similar intensities. The analysis of individual contributions to the spectra allows a detailed assignment of bands. It is shown that the semi-classical simulations are able to predict general features of the experimental spectra, including their absolute intensities.

  1. Content variations of triterpenic acid, nucleoside, nucleobase, and sugar in jujube (Ziziphus jujuba) fruit during ripening.

    PubMed

    Guo, Sheng; Duan, Jin-Ao; Qian, Dawei; Tang, Yuping; Wu, Dawei; Su, Shulan; Wang, Hanqing; Zhao, Yunan

    2015-01-15

    Jujube (Ziziphus jujuba) fruit is widely consumed as food and traditional Chinese medicine in Asian countries due to its potential effects for human health. To facilitate selection of the maturity stage providing optimum health benefits, jujube fruits were analysed at six stages of growth (S1-6) for triterpenic acids, nucleosides, nucleobases, and sugars by UHPLC-MS/MS or HPLC-ELSD methods. The content levels of most triterpenic acids and sugars increased with ripening, and reached the highest at S5 and S6, respectively. The accumulation of the cyclic nucleotides (cAMP and cGMP) was mainly in the later stage of ripening (S5-6). Therefore, if taking triterpenic acids as the major quality indicator, S5 should be the ideal time to harvest jujube fruit, and the full ripen stage (S6) maybe the best choice when taking sugars and cyclic nucleotides as the most important components.

  2. Intersystem Crossing Pathways in the Noncanonical Nucleobase 2-Thiouracil: A Time-Dependent Picture

    PubMed Central

    2016-01-01

    The deactivation mechanism after ultraviolet irradiation of 2-thiouracil has been investigated using nonadiabatic dynamics simulations at the MS-CASPT2 level of theory. It is found that after excitation the S2 quickly relaxes to S1, and from there intersystem crossing takes place to both T2 and T1 with a time constant of 400 fs and a triplet yield above 80%, in very good agreement with recent femtosecond experiments in solution. Both indirect S1 → T2 → T1 and direct S1 → T1 pathways contribute to intersystem crossing, with the former being predominant. The results contribute to the understanding of how some noncanonical nucleobases respond to harmful ultraviolet light, which could be relevant for prospective photochemotherapeutic applications. PMID:27167106

  3. Novel bead-based platform for direct detection of unlabelled nucleic acids through Single Nucleobase Labelling.

    PubMed

    Venkateswaran, Seshasailam; Luque-González, Maria Angélica; Tabraue-Chávez, Mavys; Fara, Mario Antonio; López-Longarela, Barbara; Cano-Cortes, Victoria; López-Delgado, Francisco Javier; Sánchez-Martín, Rosario María; Ilyine, Hugh; Bradley, Mark; Pernagallo, Salvatore; Díaz-Mochón, Juan José

    2016-12-01

    Over the last decade, circulating microRNAs have received attention as diagnostic and prognostic biomarkers. In particular, microRNA122 has been demonstrated to be an early and more sensitive indicator of drug-induced liver injury than the widely used biomarkers such as alanine aminotransferase and aspartate aminotransferase. Recently, microRNA122 has been used in vitro to assess the cellular toxicity of new drugs and as a biomarker for the development of a rapid test for drug overdose/liver damage. In this proof-of-concept study, we report a PCR-free and label-free detection method that has a limit of detection (3 standard deviations) of 15 fmoles of microRNA122, by integrating a dynamic chemical approach for "Single Nucleobase Labelling" with a bead-based platform (Luminex(®)) thereby, in principle, demonstrating the exciting prospect of rapid and accurate profiling of any microRNAs related to diseases and toxicology.

  4. Synthesis Structure and Imaging of Oligodeoxyribonucleotides with Tellurium-nucleobase Derivatization

    SciTech Connect

    J Sheng; A Hassan; W Zhang; J Zhou; B Xu; A Soares; Z Huang

    2011-12-31

    We report here the first synthesis of 5-phenyl-telluride-thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNA duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation.

  5. Synthesis, structure and imaging of oligodeoxyribonucleotides with tellurium-nucleobase derivatization

    SciTech Connect

    Sheng, J.; Soares, A.; Hassan, A. E. A.; Zhang, W.; Zhou, J.; Xu, B.; Huang, Z.

    2011-05-01

    We report here the first synthesis of 5-phenyl-telluride-thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNA duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation.

  6. Synthesis, structure and imaging of oligodeoxyribonucleotides with tellurium-nucleobase derivatization.

    PubMed

    Sheng, Jia; Hassan, Abdalla E A; Zhang, Wen; Zhou, Jianfeng; Xu, Bingqian; Soares, Alexei S; Huang, Zhen

    2011-05-01

    We report here the first synthesis of 5-phenyl-telluride-thymidine derivatives and the Te-phosphoramidite. We also report here the synthesis, structure and STM current-imaging studies of DNA oligonucleotides containing the nucleobases (thymine) derivatized with 5-phenyl-telluride functionality (5-Te). Our results show that the 5-Te-DNA is stable, and that the Te-DNA duplex has the thermo-stability similar to the corresponding native duplex. The crystal structure indicates that the 5-Te-DNA duplex structure is virtually identical to the native one, and that the Te-modified T and native A interact similarly to the native T and A pair. Furthermore, while the corresponding native showed weak signals, the DNA duplex modified with electron-rich tellurium functionality showed strong topographic and current peaks by STM imaging, suggesting a potential strategy to directly image DNA without structural perturbation.

  7. Intersystem Crossing Pathways in the Noncanonical Nucleobase 2-Thiouracil: A Time-Dependent Picture.

    PubMed

    Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2016-06-02

    The deactivation mechanism after ultraviolet irradiation of 2-thiouracil has been investigated using nonadiabatic dynamics simulations at the MS-CASPT2 level of theory. It is found that after excitation the S2 quickly relaxes to S1, and from there intersystem crossing takes place to both T2 and T1 with a time constant of 400 fs and a triplet yield above 80%, in very good agreement with recent femtosecond experiments in solution. Both indirect S1 → T2 → T1 and direct S1 → T1 pathways contribute to intersystem crossing, with the former being predominant. The results contribute to the understanding of how some noncanonical nucleobases respond to harmful ultraviolet light, which could be relevant for prospective photochemotherapeutic applications.

  8. New size-expanded RNA nucleobase analogs: a detailed theoretical study.

    PubMed

    Zhang, Laibin; Zhang, Zhenwei; Ren, Tingqi; Tian, Jianxiang; Wang, Mei

    2015-04-05

    Fluorescent nucleobase analogs have attracted much attention in recent years due to their potential applications in nucleic acids research. In this work, four new size-expanded RNA base analogs were computationally designed and their structural, electronic, and optical properties are investigated by means of DFT calculations. The results indicate that these analogs can form stable Watson-Crick base pairs with natural counterparts and they have smaller ionization potentials and HOMO-LUMO gaps than natural ones. Particularly, the electronic absorption spectra and fluorescent emission spectra are calculated. The calculated excitation maxima are greatly red-shifted compared with their parental and natural bases, allowing them to be selectively excited. In gas phase, the fluorescence from them would be expected to occur around 526, 489, 510, and 462 nm, respectively. The influences of water solution and base pairing on the relevant absorption spectra of these base analogs are also examined.

  9. Cellular Delivery and Photochemical Activation of Antisense Agents through a Nucleobase Caging Strategy

    PubMed Central

    Govan, Jeane M.; Uprety, Rajendra; Thomas, Meryl; Lusic, Hrvoje; Lively, Mark O.; Deiters, Alexander

    2013-01-01

    Antisense oligonucleotides are powerful tools to regulate gene expression in cells and model organisms. However, a transfection or microinjection is needed for efficient delivery of the antisense agent. We report the conjugation of multiple HIV TAT peptides to a hairpin-protected antisense agent through a light-cleavable nucleobase caging group. This conjugation allows for the facile delivery of the antisense agent without a transfection reagent and photochemical activation offers precise control over gene expression. The developed approach is highly modular, as demonstrated by the conjugation of folic acid to the caged antisense agent. This enabled targeted cell delivery through cell-surface folate receptors followed by photochemical triggering of antisense activity. Importantly, the presented strategy delivers native oligonucleotides after light-activation, devoid of any delivery functionalities or modifications that could otherwise impair their antisense activity. PMID:23915424

  10. New size-expanded RNA nucleobase analogs: A detailed theoretical study

    NASA Astrophysics Data System (ADS)

    Zhang, Laibin; Zhang, Zhenwei; Ren, Tingqi; Tian, Jianxiang; Wang, Mei

    2015-04-01

    Fluorescent nucleobase analogs have attracted much attention in recent years due to their potential applications in nucleic acids research. In this work, four new size-expanded RNA base analogs were computationally designed and their structural, electronic, and optical properties are investigated by means of DFT calculations. The results indicate that these analogs can form stable Watson-Crick base pairs with natural counterparts and they have smaller ionization potentials and HOMO-LUMO gaps than natural ones. Particularly, the electronic absorption spectra and fluorescent emission spectra are calculated. The calculated excitation maxima are greatly red-shifted compared with their parental and natural bases, allowing them to be selectively excited. In gas phase, the fluorescence from them would be expected to occur around 526, 489, 510, and 462 nm, respectively. The influences of water solution and base pairing on the relevant absorption spectra of these base analogs are also examined.

  11. Interaction of Nucleobases with Semiconducting Nanotubes and Nanocages: Does the Solvent Matter?

    NASA Astrophysics Data System (ADS)

    Wang, Zhoufei; Slough, William; He, Haiying; Pandey, Ravindra; Karna, Shashi

    2013-03-01

    The tremendous advancement in nanotechnology has brought great promise in the area of bio-applications. Nanoscale materials and structures have attracted a lot of interest for their potential applications in biosensing, biorecognition, luminescent probes for DNA, biomedical labeling, drug delivery etc. Gaining fundamental understanding of the interaction of bio-systems with nanomaterials is critical in putting all these applications into full play. Despite the fact that most of these interactions appear in aqueous environment, the solvent effect has often been neglected in previous computational studies. In this talk, we will report our comparison study of nucleobases interacting with BN nanotubes and chalcogenide nanocages with/without considering the aqueous solution, based on first-principles calculations. The results reveal a significant effect from the water solution, which may largely reduce the interaction energy due to the polarization of the dielectric solvent medium.

  12. Direct Oxidative Damage of Naked DNA Generated upon Absorption of UV Radiation by Nucleobases.

    PubMed

    Gomez-Mendoza, Miguel; Banyasz, Akos; Douki, Thierry; Markovitsi, Dimitra; Ravanat, Jean-Luc

    2016-10-06

    It has been shown that in addition to formation of pyrimidine dimers, UV irradiation of DNA in the absence of photosensitizer also induces formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine, but the mechanism of formation of that oxidized base has not been clearly established. In the present study, we provide an unambiguous demonstration that absorption of UVC and UVB radiation by the nucleobases induces DNA oxidation via a direct process (one-electron oxidation) and not singlet oxygen. Evidence arose from the fact that polyamine-guanine adducts that are specifically produced through the transient formation of guanine radical cation are generated following UV irradiation of DNA in the presence of a polyamine even in the absence of any photosensitizer.

  13. Carbon nanotube-nucleobase hybrids: nanorings from uracil-modified single-walled carbon nanotubes.

    PubMed

    Singh, Prabhpreet; Toma, Francesca Maria; Kumar, Jitendra; Venkatesh, V; Raya, Jesus; Prato, Maurizio; Verma, Sandeep; Bianco, Alberto

    2011-06-06

    Single-walled carbon nanotubes (SWCNTs) have been covalently functionalized with uracil nucleobase. The hybrids have been characterized by using complementary spectroscopic and microscopic techniques including solid-state NMR spectroscopy. The uracil-functionalized SWCNTs are able to self-assemble into regular nanorings with a diameter of 50-70 nm, as observed by AFM and TEM. AFM shows that the rings do not have a consistent height and thickness, which indicates that they may be formed by separate bundles of CNTs. The simplest model for the nanoring formation likely involves two bundles of CNTs interacting with each other via uracil-uracil base-pairing at both CNT ends. These nanorings can be envisaged for the development of advanced electronic circuits.

  14. Identification and quantification of nucleosides and nucleobases in Geosaurus and Leech by hydrophilic-interaction chromatography.

    PubMed

    Chen, Pei; Li, Wei; Li, Qin; Wang, Yinghua; Li, Zhenguo; Ni, Yefeng; Koike, Kazuo

    2011-09-15

    A simple hydrophilic-interaction chromatography (HILIC) method was developed for the identification and quantification of 14 nucleosides and nucleobases, namely cytosine, uracil, cytidine, guanine, hypoxanthine, xanthine, uridine, thymine, inosine, guanosine, thymidine, 2'-deoxyadenosine, 2'-deoxyinosine and 2'-deoxyuridine in two traditional Chinese medicines, Geosaurus and Leech. The separation was achieved on a TSKgel Amide-80 column (150 mm × 2.0 mm, 3.0 μm) with a mixture of acetonitrile and 10 mM aqueous ammonium acetate as the mobile phase at a flow rate of 0.2 mL/min. The temperature was set at 30°C and UV detection wavelength was set at 260 nm. All calibration curves showed good linearity (R(2)>0.9957) within the test ranges. The overall intra- and inter-day RSD ranged from 0.4 to 3.4% and from 0.7 to 3.3%, respectively. The LOD and LOQ were in the range of 0.07-30.49 ng/mL and 0.26-60.98 ng/mL, respectively. The repeatability of the method was in the range of 2.2-5.8% for Geosaurus and 1.4-5.5% for Leech. The recoveries of the samples were in the range of 91.4-100.9% for Geosaurus, and 91.9-99.3% for Leech. The established method was applied successfully for the analysis of nucleosides and nucleobases in 22 commercially available samples collected from different regions in China and Japan. Our data showed that HILIC had advantages as a useful tool for the study of the bioactive components in Geosaurus and Leech as well as their quality control, and could therefore be used for the determination of the analytes in pharmaceutical products and biological fluids.

  15. Mechanisms of Damage to DNA Labeled with Electrophilic Nucleobases Induced by Ionizing or UV Radiation.

    PubMed

    Rak, Janusz; Chomicz, Lidia; Wiczk, Justyna; Westphal, Kinga; Zdrowowicz, Magdalena; Wityk, Paweł; Żyndul, Michał; Makurat, Samanta; Golon, Łukasz

    2015-07-02

    Hypoxia--a hallmark of solid tumors--makes hypoxic cells radioresistant. On the other hand, DNA, the main target of anticancer therapy, is not sensitive to the near UV photons and hydrated electrons, one of the major products of water radiolysis under hypoxic conditions. A possible way to overcome these obstacles to the efficient radio- and photodynamic therapy of cancer is to sensitize the cellular DNA to electrons and/or ultraviolet radiation. While incorporated into genomic DNA, modified nucleosides, 5-bromo-2'-deoxyuridine in particular, sensitize cells to both near-ultraviolet photons and γ rays. It is believed that, in both sensitization modes, the reactive nucleobase radical is formed as a primary product which swiftly stabilizes, leading to serious DNA damage, like strand breaks or cross-links. However, despite the apparent similarity, such radio- and photosensitization of DNA seems to be ruled by fundamentally different mechanisms. In this review, we demonstrate that the most important factors deciding on radiodamage to the labeled DNA are (i) the electron affinity (EA) of modified nucleoside (mNZ), (ii) the local surroundings of the label that significantly influences the EA of mNZ, and (iii) the strength of the chemical bond holding together the substituent and a nucleobase. On the other hand, we show that the UV damage to sensitized DNA is governed by long-range photoinduced electron transfer, the efficiency of which is controlled by local DNA sequences. A critical review of the literature mechanisms concerning both types of damage to the labeled biopolymer is presented. Ultimately, the perspectives of studies on DNA sensitization in the context of cancer therapy are discussed.

  16. Automated image analysis of FRET signals for subcellular cAMP quantification.

    PubMed

    Leavesley, Silas J; Nakhmani, Arie; Gao, Yi; Rich, Thomas C

    2015-01-01

    A variety of FRET probes have been developed to examine cAMP localization and dynamics in single cells. These probes offer a readily accessible approach to measure localized cAMP signals. However, given the low signal-to-noise ratio of most FRET probes and the dynamic nature of the intracellular environment, there have been marked limitations in the ability to use FRET probes to study localized signaling events within the same cell. Here, we outline a methodology to dissect kinetics of cAMP-mediated FRET signals in single cells using automated image analysis approaches. We additionally extend these approaches to the analysis of subcellular regions. These approaches offer an unique opportunity to assess localized cAMP kinetics in an unbiased, quantitative fashion.

  17. Fretting wear in titanium, Monel-400, and cobalt 25-percent-molybdenum using scanning electron microscopy

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1972-01-01

    Damage scar volume measurements taken from like metal fretting pairs combined with scanning electron microscopy observations showed that three sequentially operating mechanisms result in the fretting of titanium, Monel-400, and cobalt - 25-percent molybdenum. Initially, adhesion and plastic deformation of the surface played an important role. This was followed after a few hundred cycles by a fatigue mechanism which produced spall-like pits in the damage scar. Finally, a combination of oxidation and abrasion by debris particles became most significant. Damage scar measurements made on several elemental metals after 600,000 fretting cycles suggested that the ratio of oxide hardness to metal hardness was a measure of the susceptibility of a metal to progressive damage by fretting.

  18. Zn(II)-Coordinated Quantum Dot-FRET Nanosensors for the Detection of Protein Kinase Activity

    PubMed Central

    Lim, Butaek; Park, Ji-In; Lee, Kyung Jin; Lee, Jin-Won; Kim, Tae-Wuk; Kim, Young-Pil

    2015-01-01

    We report a simple detection of protein kinase activity using Zn(II)-mediated fluorescent resonance energy transfer (FRET) between quantum dots (QDs) and dye-tethered peptides. With neither complex chemical ligands nor surface modification of QDs, Zn(II) was the only metal ion that enabled the phosphorylated peptides to be strongly attached on the carboxyl groups of the QD surface via metal coordination, thus leading to a significant FRET efficiency. As a result, protein kinase activity in intermixed solution was efficiently detected by QD-FRET via Zn(II) coordination, especially when the peptide substrate was combined with affinity-based purification. We also found that mono- and di-phosphorylation in the peptide substrate could be discriminated by the Zn(II)-mediated QD-FRET. Our approach is expected to find applications for studying physiological function and signal transduction with respect to protein kinase activity. PMID:26213934

  19. Methodological considerations for global analysis of cellular FLIM/FRET measurements

    NASA Astrophysics Data System (ADS)

    Adbul Rahim, Nur Aida; Pelet, Serge; Kamm, Roger D.; So, Peter T. C.

    2012-02-01

    Global algorithms can improve the analysis of fluorescence energy transfer (FRET) measurement based on fluorescence lifetime microscopy. However, global analysis of FRET data is also susceptible to experimental artifacts. This work examines several common artifacts and suggests remedial experimental protocols. Specifically, we examined the accuracy of different methods for instrument response extraction and propose an adaptive method based on the mean lifetime of fluorescent proteins. We further examined the effects of image segmentation and a priori constraints on the accuracy of lifetime extraction. Methods to test the applicability of global analysis on cellular data are proposed and demonstrated. The accuracy of global fitting degrades with lower photon count. By systematically tracking the effect of the minimum photon count on lifetime and FRET prefactors when carrying out global analysis, we demonstrate a correction procedure to recover the correct FRET parameters, allowing us to obtain protein interaction information even in dim cellular regions with photon counts as low as 100 per decay curve.

  20. AAV Vectors for FRET-Based Analysis of Protein-Protein Interactions in Photoreceptor Outer Segments

    PubMed Central

    Becirovic, Elvir; Böhm, Sybille; Nguyen, Ong N. P.; Riedmayr, Lisa M.; Hammelmann, Verena; Schön, Christian; Butz, Elisabeth S.; Wahl-Schott, Christian; Biel, Martin; Michalakis, Stylianos

    2016-01-01

    Fluorescence resonance energy transfer (FRET) is a powerful method for the detection and quantification of stationary and dynamic protein-protein interactions. Technical limitations have hampered systematic in vivo FRET experiments to study protein-protein interactions in their native environment. Here, we describe a rapid and robust protocol that combines adeno-associated virus (AAV) vector-mediated in vivo delivery of genetically encoded FRET partners with ex vivo FRET measurements. The method was established on acutely isolated outer segments of murine rod and cone photoreceptors and relies on the high co-transduction efficiency of retinal photoreceptors by co-delivered AAV vectors. The procedure can be used for the systematic analysis of protein-protein interactions of wild type or mutant outer segment proteins in their native environment. Conclusively, our protocol can help to characterize the physiological and pathophysiological relevance of photoreceptor specific proteins and, in principle, should also be transferable to other cell types. PMID:27516733

  1. Electron Detachment as a Probe of Intrinsic Nucleobase Dynamics in Dianion-Nucleobase Clusters: Photoelectron Spectroscopy of the Platinum II Cyanide Dianion Bound to Uracil, Thymine, Cytosine, and Adenine.

    PubMed

    Sen, Ananya; Hou, Gao-Lei; Wang, Xue-Bin; Dessent, Caroline E H

    2015-09-03

    We report the first low-temperature photoelectron spectra of isolated gas-phase complexes of the platinum II cyanide dianion bound to nucleobases. These systems are models for understanding platinum-complex photodynamic therapies, and a knowledge of the intrinsic photodetachment properties is crucial for characterizing their broader photophysical properties. Well-resolved, distinct peaks are observed in the spectra, consistent with complexes where the Pt(CN)4(2-) moiety is largely intact. Adiabatic electron detachment energies for the dianion-nucleobase complexes are measured to be 2.39-2.46 eV. The magnitudes of the repulsive Coulomb barriers of the complexes are estimated to be between 1.9 and 2.1 eV, values that are lower than for the bare Pt(CN)4(2-) dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four dianion-nucleobase complexes and also in the 266 nm spectra of the Pt(CN)4(2-)·thymine and Pt(CN)4(2-)·adenine complexes. The selective excitation of these features in the 266 nm spectra is attributed to one-photon excitation of [Pt(CN)4(2-)·thymine]* and [Pt(CN)4(2-)·adenine]* long-lived excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment signals. We attribute the delayed electron detachment bands observed here for Pt(CN)4(2-)·thymine and Pt(CN)4(2-)·adenine but not for Pt(CN)4(2-)·uracil and Pt(CN)4(2-)·cytosine to fundamental differences in the individual nucleobase photophysics following 266 nm excitation. This indicates that the Pt(CN)4(2-) dianion in the clusters can be viewed as a "dynamic tag" which has the propensity to emit electrons when the attached nucleobase displays a long-lived excited state.

  2. Electron Detachment as a Probe of Intrinsic Nucleobase Dynamics in Dianion-Nucleobase Clusters: Photoelectron Spectroscopy of the Platinum II Cyanide Dianion Bound to Uracil, Thymine, Cytosine and Adenine

    SciTech Connect

    Sen, Ananya; Hou, Gao-Lei; Wang, Xue B.; Dessent, Caroline

    2015-08-05

    We report the first low-temperature photodetachment photoelectron spectra of isolated gas-phase complexes of the platinum II cyanide dianion bound to nucleobases. These systems are model systems for understanding platinum-complex photodynamic therapies, and knowledge of the intrinsic photodetachment properties is crucial for understanding their broader photophysical properties. Well-resolved, distinct peaks are observed in the spectra consistent with the complexes where the Pt(CN)42- moiety is largely intact. The adiabatic electron detachment energies for the dianion-nucleobase complexes are measured to be between 2.39-2.46 eV. The magnitudes of the repulsive Coulomb barriers of the complexes are estimated to be between 1.9 and 2.1 eV, values that are lower than for the bare Pt(CN)42- dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photodetachment spectra of the four nucleobase-dianion complexes, and also in the 266 nm spectra of the Pt(CN)42-∙thymine and Pt(CN)42-∙adenine complexes. The selective excitation of these features in the 266 nm spectra is attributed to one-photon excitation of [Pt(CN)42-∙T]* and [Pt(CN)42-∙A]* long-lived excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment signals. We attribute the resonant electron detachment bands observed here for Pt(CN)42-∙T and Pt(CN)42-∙A but not for Pt(CN)42-∙U and Pt(CN)42-∙C to fundamental differences in the individual nucleobase photophysics following 266 nm excitation. This indicates that the Pt(CN)42- dianion in the Pt(CN)42-∙M clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase disaplys a long-lived excited state.

  3. Quantitative study of fretting fatigue damage in shot peened titanium-aluminum-vanadium

    NASA Astrophysics Data System (ADS)

    Martinez, Sonia A.

    Fretting fatigue damage has been known to be the origin of premature failure in some of the aerospace engine components. The blade/disk assemblies, for example have been particularly susceptible to fretting induced failure. Several nondestructive evaluation techniques are being used to detect the cracks due to fretting fatigue damage. Although partial success has been achieved in detection of cracks, research is lacking in the area of detection of precursors to the development of cracks due fretting fatigue damage. The goal of the research presented in this thesis is to develop a methodology based on x-ray diffraction residual stress measurements for quantitative nondestructive characterization of accumulated fretting fatigue damage. To achieve the goal a systematic experimental study of the characteristics of the residual stress due to surface treatments of shot peening (SP), Laser Shock Peening (LSP) and Low Plasticity Burnishing (LPB), used in the aerospace industry was conducted. The residual stress in LSP and LPB was found to be complex involving shear stress and spatial non-uniformity. On the other hand in shot peening it was found to be least complex. More over it is the most cost effective and hence often used surface treatment in the industry. In order to gain an understanding of the effect of shot peening parameters on the fretting fatigue life, experiments were conducted on samples with four different peening intensities (0, 4, 7 and 10 A) and two surface coverage (100% and 400%). It was observed that the fretting fatigue life increases with the increasing peening intensity, and increase in surface coverage beyond 100% has virtually no effect. Scanning Electron Microscopic (SEM) observation of fractured surface was utilized to identify crack initiation. On all of the fretting fatigued specimens relaxation of residual stress was observed and it increased with increasing number of cycles. A complete relaxation was observed before failure. To obtain an

  4. Mammary Analogue Secretory Carcinoma.

    PubMed

    Stevens, Todd M; Parekh, Vishwas

    2016-09-01

    Mammary analogue secretory carcinoma (MASC) is a recently described salivary gland tumor that shares the same histologic appearance and ETV6 gene (12p13) rearrangement as secretory carcinoma of the breast. Prior to its recognition, MASC cases were commonly labeled acinic cell carcinoma and adenocarcinoma, not otherwise specified. Despite distinctive histologic features, MASC may be difficult to distinguish from other salivary gland tumors, in particular zymogen-poor acinic cell carcinoma and low-grade salivary duct carcinoma. Although characteristic morphologic and immunohistochemical features form the basis of a diagnosis of MASC, the presence of an ETV6-NTRK3 gene fusion is confirmatory. Given its recent recognition the true prognostic import of MASC is not yet clearly defined.

  5. A new pair for inter- and intra-molecular FRET measurement

    SciTech Connect

    Yang Xiaofei; Xu Pingyong; Xu Tao . E-mail: xutao@sun5.ibp.ac.cn

    2005-05-13

    Fluorescence resonance energy transfer between mutant green fluorescent proteins provides powerful means to monitor in vivo protein-protein proximity and intracellular signaling. However, the current widely applied FRET pair of this class (CFP/YFP) requires excitation by expensive UV lasers, thereby hindering FRET imaging on many confocal microscopes. Further challenges arise from the large spectral overlap of CFP/YFP emission. Another FRET pair GFP/DsRed could obviate such limitations. However, the use of DsRed as a FRET acceptor is hampered by several critical problems, including a slow and incomplete maturation and obligate tetramerization. A tandem dimer mutant of DsRed (TDimer2) has similar spectral properties as those of DsRed. The rapid maturation and non-oligomerization make TDimer2 a promising substitute for DsRed in FRET experiments. Here, we have explored the possibility of using TDimer2 as a FRET acceptor for the donor EGFP. FRET was demonstrated between the EGFP-TDimer2 chimeric fusion protein. By substituting CFP/YFP in the Ca{sup 2+}-sensor cameleon with EGFP/TDimer2, dynamic changes in cytosolic free Ca{sup 2+} concentrations were observed with 488 nm excitation under conventional wide-field microscopy. The EGFP/TDimer2 pair was further successfully employed to monitor inter-molecular interaction between Syntaxin and SNAP25. These results reveal EGFP/TDimer2 as a promising FRET pair in monitoring intra-molecular conformation change as well as inter-molecular interaction.

  6. Comparison of different fluorescence fluctuation methods for their use in FRET assays: monitoring a protease reaction.

    PubMed

    Eggeling, C; Jäger, S; Winkler, D; Kask, Peet

    2005-10-01

    We compare the accuracy of a variety of Fluorescence Fluctuation Spectroscopy (FFS) methods for the study of Förster Resonance Energy Transfer (FRET) assays. As an example, the cleavage of a doubly labeled, FRET-active peptide substrate by the protease Trypsin is monitored and analyzed using methods based on fluorescence intensity, Fluorescence Correlation Spectroscopy (FCS) and Fluorescence Intensity Distribution Analysis (FIDA). The presented fluorescence data are compared to High-Pressure Liquid Chromatography (HPLC) data obtained from the same assay. The HPLC analysis discloses general disadvantages of the FRET approach, such as incomplete labeling and the need for aliquots. However, the simultaneous use of two photon detectors monitoring the fluorescence signal of both labels significantly improves the analysis. In particular, the two global analysis tools Two-Dimensional Fluorescence Intensity Distribution Analysis (2D-FIDA) and Two-Color Global Fluorescence Correlation Spectroscopy (2CG-FCS) highlight the potential of a combination of FFS and FRET. While conventional FIDA and FCS auto- or cross-correlation analysis leaves the user with drawbacks inherent in two-color and FRET applications, these effects are overcome by the global analysis on the molecular level. Furthermore, it is advantageous to analyze the unnormalized as opposed to the normalized correlation data when combining any fluorescence correlation method with FRET, since the analysis of the unnormalized data introduces more accuracy and is less sensitive to the experimental drawbacks.

  7. A Sensitized Emission Based Calibration of FRET Efficiency for Probing the Architecture of Macromolecular Machines.

    PubMed

    Joglekar, Ajit; Chen, Renjie; Lawrimore, Joshua

    2013-01-01

    Macromolecular machines participate in almost every cell biological function. These machines can take the form of well-defined protein structures such as the kinetochore, or more loosely organized protein assemblies like the endocytic coat. The protein architecture of these machines-the arrangement of multiple copies of protein subunits at the nanoscale, is necessary for understanding their cell biological function and biophysical mechanism. Defining this architecture in vivo presents a major challenge. High density of protein molecules within macromolecular machines severely limits the effectiveness of super-resolution microscopy. However, this density is ideal for Forster Resonance Energy Transfer (FRET), which can determine the proximity between neighboring molecules. Here, we present a simple FRET quantitation scheme that calibrates a standard epifluorescence microscope for measuring donor-acceptor separations. This calibration can be used to deduce FRET efficiency fluorescence intensity measurements. This method will allow accurate determination of FRET efficiency over a wide range of values and FRET pair number. It will also allow dynamic FRET measurements with high spatiotemporal resolution under cell biological conditions. Although the poor maturation efficiency of genetically encoded fluorescent proteins presents a challenge, we show that its effects can be alleviated. To demonstrate this methodology, we probe the in vivo architecture of the γ-Tubulin Ring. Our technique can be applied to study the architecture and dynamics of a wide range of macromolecular machines.

  8. The fretting corrosion resistance of PVD surface-modified orthopedic implant alloys.

    PubMed

    Hendry, J A; Pilliar, R M

    2001-01-01

    The objective of this study was to evaluate the fretting corrosion resistance of both modified and unmodified Ti6Al4V flats fretted against CoCr-alloy spheres in a buffered Hank's solution at 37 degrees C using an original fretting apparatus. A physical vapor deposition (PVD) cathodic arc evaporation technique was used to deposit 3-4 microm thick titanium nitride (TiN), zirconium nitride (ZrN), or amorphous carbon (AC) coatings onto the Ti6Al4V substrates. The fretting behavior of the nitride films (TiN and ZrN) was characterized by the absence of surface damage and the deposition of a Cr-rich oxide transferred from the CoCr-alloy spheres to the modified surfaces. This oxide led to a slight increase in surface roughness. Three of the six multilayered AC coatings tested exhibited extensive fretting damage and generated large, deep, wear scars. Cohesive failure of the AC coating was observed in the low contact stress areas of the fretting scars. The remaining AC-coated specimens experienced only slight polishing wear. The reason for the different behavior within the AC-coated specimens is not clear at the present time. The unmodified Ti6Al4V surfaces experienced severe surface damage consistent with the adhesive galling mechanism to which these alloys are susceptible.

  9. The effect of surface treatments on the fretting behavior of Ti-6Al-4V alloy.

    PubMed

    Dalmiglio, Matteo; Schaaff, Petra; Holzwarth, Uwe; Chiesa, Roberto; Rondelli, Gianni

    2008-08-01

    Stem modularity in total hip replacement introduces an additional taper joint between Ti-6Al-4V stem components with the potential for fretting corrosion processes. One possible way to reduce the susceptibility of the Ti-6Al-4V/Ti-6Al-4V interface to fretting is the surface modification of the Ti-6Al-4V alloy. Among the tested, industrially available surface treatments, a combination of two deep anodic spark deposition treatments followed by barrel polishing resulted in a four times lower material release with respect to untreated, machined fretting pad surfaces. The fretting release has been quantified by means of radiotracers introduced in the alloy surface by proton irradiation. In a simple sphere on flat geometry, the semispherical fretting pads were pressed against flat, dog-bone shaped Ti-6Al-4V fatigue samples cyclically loaded at 4 Hz. In this way a cyclic displacement amplitude along the surfaces of 20 mum has been achieved. A further simplification consisted in the use of deionized water as lubricant. A comparison of the radiotracer results with an electrochemical material characterization after selected treatments by potentiostatic tests of modular stems in 0.9% NaCl at 40 degrees C for 10 days confirmed the benefit of deep anodic spark deposition and subsequent barrel polishing for improving the fretting behavior of Ti-6Al-4V.

  10. NASA/ESMD Analogue Mission Plans

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2007-01-01

    A viewgraph presentation exploring Earth and its analogues is shown. The topics include: 1) ESMD Goals for the Use of Earth Analogues; 2) Stakeholders Summary; 3) Issues with Current Analogue Situation; 4) Current state of Analogues; 5) External Implementation Plan (Second Step); 6) Recent Progress in Utilizing Analogues; 7) Website Layout Example-Home Page; 8) Website Layout Example-Analogue Site; 9) Website Layout Example-Analogue Mission; 10) Objectives of ARDIG Analog Initiatives; 11) Future Plans; 12) Example: Cold-Trap Sample Return; 13) Example: Site Characterization Matrix; 14) Integrated Analogue Studies-Prerequisites for Human Exploration; and 15) Rating Scale Definitions.

  11. Role of plasticity on fretting fatigue behavior of titanium-aluminum-vanadium

    NASA Astrophysics Data System (ADS)

    Shin, Kisu

    Fretting fatigue leads to the degradation of the fatigue strength of a material due to cyclic micro-slip between two contacting materials. Since fatigue life reduction caused by fretting fatigue occurs in various mechanical components, such as bolted connections and blade/disk dovetail joints etc., fretting fatigue is regarded as an important issue in the design of aerospace structures. Consequently, a number of studies have been performed to predict the behavior of fretting fatigue. However, while many studies have evaluated fretting fatigue behavior under elastic deformation conditions, few studies have focused on fretting fatigue behavior under elastic-plastic deformation conditions. Due to the fact that plastic deformation is an integral part of crack nucleation, the role of plastic deformation in crack initiation should be considered, especially when a large plastic zone is presented. The primary goal of this study was to characterize the fretting fatigue crack initiation behavior in the presence of plasticity. Experimental tests were performed using pad configurations involving elastic-plastic deformations. A total of eight different configurations of fretting pads were used for this dissertation. Five of the eight geometries were intended to generate the elastic deformation, i.e. 50.8 mm, 101.6 mm and 304.8 mm radius pads with normal contact load of 1.334 N, 2.224, and 4.003 kN respectively and two flat with rounded edge pads with normal contact load of 1.334 and 4.003 kN. In order to replicate the elastic-plastic deformation conditions, the smaller radii of the cylindrical pads, i.e. 5.08 mm radius pads, and flat pad type3 (FP3) with smaller edge radius, were included in this study. Two different contact loads were applied with the 5.08 mm radius cylindrical pad, i.e. 1.334 and 1.779 kN, while one contact load was applied with the flat pad type3, i.e. 4.003 kN. The crack initiation location was found near the trailing edge under both elastic and elastic

  12. Automated quantum chemistry based molecular dynamics simulations of electron ionization induced fragmentations of the nucleobases Uracil, Thymine, Cytosine, and Guanine.

    PubMed

    Grimme, Stefan; Bauer, Christopher Alexander

    2015-01-01

    The gas-phase decomposition pathways of electron ionization (EI)-induced radical cations of the nucleobases uracil, thymine, cytosine, and guanine are investigated by means of mixed quantum-classical molecular dynamics. No preconceived fragmentation channels are used in the calculations. The results compare well to a plethora of experimental and theoretical data for these important biomolecules. With our combined stochastic and dynamic approach, one can access in an unbiased way the energetically available decomposition mechanisms. Additionally, we are able to separate the EI mass spectra of different tautomers of cytosine and guanine. Our method (previously termed quantum chemistry electron ionization mass spectra) reproduces free nucleobase experimental mass spectra well and provides detailed mechanistic in-sight into high-energy unimolecular decomposition processes.

  13. Activatable and Cell-Penetrable Multiplex FRET Nanosensor for Profiling MT1-MMP Activity in Single Cancer Cells

    PubMed Central

    Chung, Eddie Y.; Ochs, Christopher J.; Wang, Yi; Lei, Lei; Qin, Qin; Smith, Andrew M.; Strongin, Alex Y.; Kamm, Roger; Qi, Ying-Xin; Lu, Shaoying; Wang, Yingxiao

    2015-01-01

    We developed a quantum-dot-based fluorescence resonance energy transfer (QD-FRET) nanosensor to visualize the activity of matrix metalloproteinase (MT1-MMP) at cell membrane. A bended peptide with multiple motifs was engineered to position the FRET pair at a close proximity to allow energy transfer, which can be cleaved by active MT1-MMP to result in FRET changes and the exposure of cell penetrating sequence. Via FRET and penetrated QD signals, the nanosensor can profile cancer cells. PMID:26203778

  14. A search for amino acids and nucleobases in the Martian meteorite Roberts Massif 04262 using liquid chromatography-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Callahan, Michael P.; Burton, Aaron S.; Elsila, Jamie E.; Baker, Eleni M.; Smith, Karen E.; Glavin, Daniel P.; Dworkin, Jason P.

    2013-05-01

    The investigation into whether Mars contains signatures of past or present life is of great interest to science and society. Amino acids and nucleobases are compounds that are essential for all known life on Earth and are excellent target molecules in the search for potential Martian biomarkers or prebiotic chemistry. Martian meteorites represent the only samples from Mars that can be studied directly in the laboratory on Earth. Here, we analyzed the amino acid and nucleobase content of the shergottite Roberts Massif (RBT) 04262 using liquid chromatography-mass spectrometry. We did not detect any nucleobases above our detection limit in formic acid extracts; however, we did measure a suite of protein and nonprotein amino acids in hot-water extracts with high relative abundances of β-alanine and γ-amino-n-butyric acid. The presence of only low (to absent) levels of several proteinogenic amino acids and a lack of nucleobases suggest that this meteorite fragment is fairly uncontaminated with respect to these common biological compounds. The distribution of straight-chained amine-terminal n-ω-amino acids in RBT 04262 resembled those previously measured in thermally altered carbonaceous meteorites (Burton et al. 2012; Chan et al. 2012). A carbon isotope ratio of -24‰ ± 6‰ for β-alanine in RBT 04262 is in the range of reduced organic carbon previously measured in Martian meteorites (Steele et al. 2012). The presence of n-ω-amino acids may be due to a high temperature Fischer-Tropsch-type synthesis during igneous processing on Mars or impact ejection of the meteorites from Mars, but more experimental data are needed to support these hypotheses.

  15. Real-time analysis of self-assembled nucleobases by Venturi easy ambient sonic-spray ionization mass spectrometry.

    PubMed

    Na, Na; Shi, Ruixia; Long, Zi; Lu, Xin; Jiang, Fubin; Ouyang, Jin

    2014-10-01

    In this study, the real-time analysis of self-assembled nucleobases was employed by Venturi easy ambient sonic-spray ionization mass spectrometry (V-EASI-MS). With the analysis of three nucleobases including 6-methyluracil (6MU), uracil (U) and thymine (T) as examples, different orders of clusters centered with different metal ions were recorded in both positive and negative modes. Compared with the results obtained by traditional electrospray ionization mass spectrometry (ESI-MS) under the same condition, more clusters with high orders, such as [6MU7+Na](+), [6MU15+2NH4](2+), [6MU10+Na](+), [T7+Na](+), and [T15+2NH4](2+) were detected by V-EASI-MS, which demonstrated the soft ionization ability of V-EASI for studying the non-covalent interaction in a self-assembly process. Furthermore, with the injection of K(+) to the system by a syringe pumping, the real-time monitoring of the formation of nucleobases clusters was achieved by the direct extraction of samples from the system under the Venturi effect. Therefore, the effect of cations on the formation of clusters during self-assembly of nucleobases was demonstrated, which was in accordance with the reports. Free of high voltage, heating or radiation during the ionization, this technique is much soft and suitable for obtaining the real-time information of the self-assembly system, which also makes it quite convenient for extraction samples from the reaction system. This "easy and soft" ionization technique has provided a potential pathway for monitoring and controlling the self-assembly processes.

  16. A Search for Amino Acids and Nucleobases in the Martian Meteorite Roberts Massif 04262 Using Liquid Chromatography-Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Callahan, Michael P.; Burton, Aaron S.; Elsila, Jamie E.; Baker, Eleni M.; Smith, Karen E.; Glavin, Daniel P.; Dworkin, Jason P.

    2013-01-01

    The investigation into whether Mars contains signatures of past or present life is of great interest to science and society. Amino acids and nucleobases are compounds that are essential for all known life on Earth and are excellent target molecules in the search for potential Martian biomarkers or prebiotic chemistry. Martian meteorites represent the only samples from Mars that can be studied directly in the laboratory on Earth. Here, we analyzed the amino acid and nucleobase content of the shergottite Roberts Massif (RBT) 04262 using liquid chromatography-mass spectrometry. We did not detect any nucleobases above our detection limit in formic acid extracts; however, we did measure a suite of protein and nonprotein amino acids in hot-water extracts with high relative abundances of beta-alanine and gamma-amino-eta-butyric acid. The presence of only low (to absent) levels of several proteinogenic amino acids and a lack of nucleobases suggest that this meteorite fragment is fairly uncontaminated with respect to these common biological compounds. The distribution of straight-chained amine-terminal eta-omega-amino acids in RBT 04262 resembled those previously measured in thermally altered carbonaceous meteorites. A carbon isotope ratio of -24(0/00) +/- 6(0/00) for beta-alanine in RBT 04262 is in the range of reduced organic carbon previously measured in Martian meteorites (Steele et al. 2012). The presence of eta-omega-amino acids may be due to a high temperature Fischer-Tropschtype synthesis during igneous processing on Mars or impact ejection of the meteorites from Mars, but more experimental data are needed to support these hypotheses.

  17. FRETsg: Biomolecular structure model building from multiple FRET experiments

    NASA Astrophysics Data System (ADS)

    Schröder, G. F.; Grubmüller, H.

    2004-04-01

    Fluorescence energy transfer (FRET) experiments of site-specifically labelled proteins allow one to determine distances between residues at the single molecule level, which provide information on the three-dimensional structural dynamics of the biomolecule. To systematically extract this information from the experimental data, we describe a program that generates an ensemble of configurations of residues in space that agree with the experimental distances between these positions. Furthermore, a fluctuation analysis allows to determine the structural accuracy from the experimental error. Program summaryTitle of program: FRETsg Catalogue identifier: ADTU Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTU Computer: SGI Octane, Pentium II/III, Athlon MP, DEC Alpha Operating system: Unix, Linux, Windows98/NT/XP Programming language used: ANSI C No. of bits in a word: 32 or 64 No. of processors used: 1 No. of bytes in distributed program, including test data, etc.: 11407 No. of lines in distributed program, including test data, etc.: 1647 Distribution format: gzipped tar file Nature of the physical problem: Given an arbitrary number of distance distributions between an arbitrary number of points in three-dimensional space, find all configurations (set of coordinates) that obey the given distances. Method of solution: Each distance is described by a harmonic potential. Starting from random initial configurations, their total energy is minimized by steepest descent. Fluctuations of positions are chosen to generate distance distribution widths that best fit the given values.

  18. Fretting and Corrosion in Modular Shoulder Arthroplasty: A Retrieval Analysis.

    PubMed

    Eckert, Johannes A; Mueller, Ulrike; Jaeger, Sebastian; Panzram, Benjamin; Kretzer, J Philippe

    2016-01-01

    Tribocorrosion in taper junctions of retrieved anatomic shoulder arthroplasty implants was evaluated. A comparison of the tribocorrosion between cobalt-chromium and titanium alloy stems was conducted and the observations were correlated with the individual's clinical data. Adverse effects caused by metal debris and subsequent elevated serum metal ion levels are frequently reported in total hip arthroplasty. In total shoulder arthroplasty, to date only a small number of retrieval analyses are available and even fewer address the issue of tribocorrosion at the taper junctions. A total of 36 retrieved hemiarthroplasties and total shoulder arthroplasties were assessed using the modified Goldberg score. The prevalence of fretting and corrosion was confirmed in this cohort. Titanium stems seem to be more susceptible to damage caused by tribocorrosion than cobalt-chromium stems. Furthermore, stemless designs offered less tribocorrosion at the taper junction than stemmed designs. A weak correlation between time to revision and increased levels of tribocorrosion was seen. Whether or not tribocorrosion can lead to adverse clinical reactions and causes failure of shoulder arthroplasties remains to be examined.

  19. Determination of DNA adducts by combining acid-catalyzed hydrolysis and chromatographic analysis of the carcinogen-modified nucleobases.

    PubMed

    Leung, Elvis M K; Deng, Kailin; Wong, Tin-Yan; Chan, Wan

    2016-01-01

    The commonly used method of analyzing carcinogen-induced DNA adducts involves the hydrolysis of carcinogen-modified DNA samples by using a mixture of enzymes, followed by (32)P-postlabeling or liquid chromatography (LC)-based analyses of carcinogen-modified mononucleotides/nucleosides. In the present study, we report the development and application of a new approach to DNA adduct analysis by combining the H(+)/heat-catalyzed release of carcinogen-modified nucleobases and the use of LC-based methods to analyze DNA adducts. Results showed that heating the carcinogen-modified DNA samples at 70 °C for an extended period of 4 to 6 h in the presence of 0.05% HCl can efficiently induce DNA depurination, releasing the intact carcinogen-modified nucleobases for LC analyses. After optimizing the hydrolysis conditions, DNA samples with C8- and N (2) -modified 2'-deoxyguanosine, as well as N (6) -modified 2'-deoxyadenosine, were synthesized by reacting DNA with 1-nitropyrene, acetaldehyde, and aristolochic acids, respectively. These samples were then hydrolyzed, and the released nucleobase adducts were analyzed using LC-based analytical methods. Analysis results demonstrated a dose-dependent release of target DNA adducts from carcinogen-modified DNA samples, indicating that the developed H(+)/heat-catalyzed hydrolysis method was quantitative. Comparative studies with enzymatic digestion method on carcinogen-modified DNA samples revealed that the two hydrolysis methods did not yield systematically different results.

  20. Effect of mixed alloy combinations on fretting corrosion performance of spinal screw and rod implants.

    PubMed

    Mali, Sachin A; Singh, Vaneet; Gilbert, Jeremy L

    2016-04-01

    Spinal implants are made from a variety of materials to meet the unique mechanical demands of each application. However, the medical device community has raised concern about mixing dissimilar metals in an implant because of fear of inducing corrosion. There is a lack of systematic studies on the effects of mixing metals on performance of spinal implants, especially in fretting corrosion conditions. Hence, the goal was to determine whether mixing stainless steel (SS316L), titanium alloy (Ti6Al4V) and cobalt chromium (CoCrMo) alloy components in a spinal implant leads to any increased risk of corrosion degradation. Spinal constructs consisting of single assembly screw-connector-rod components were tested using a novel short-term cyclic fretting corrosion test method. A total of 17 alloy component combinations (comprised of SS316L, Ti6Al4V-anodized and CoCrMo alloy for rod, screws and connectors) were tested under three anatomic orientations. Spinal constructs having all SS316L were most susceptible to fretting-initiated crevice corrosion attack and showed higher average fretting currents (∼25 - 30 µA), whereas constructs containing all Ti6Al4V components were less susceptible to fretting corrosion with average fretting currents in the range of 1 - 6 µA. Mixed groups showed evidence of fretting corrosion but they were not as severe as all SS316L group. SEM results showed evidence of severe corrosion attack in constructs having SS316L components. There also did not appear to be any galvanic effects of combining alloys together. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  1. Single color FRET based measurements of conformational changes of proteins resulting from translocation inside cells.

    PubMed

    Gahl, Robert F; Tekle, Ephrem; Tjandra, Nico

    2014-03-15

    Translocation of proteins to different parts of the cell is necessary for many cellular mechanisms as a means for regulation and a variety of other functions. Identifying how these proteins undergo conformational changes or interact with various partners during these events is critical to understanding how these mechanisms are executed. A protocol is presented that identifies conformational changes in a protein that occur during translocation while overcoming challenges in extracting distance information in very different environments of a living cell. Only two samples are required to be prepared and are observed with one optical setup. Live-cell FRET imaging has been applied to identify conformational changes between two native cysteines in Bax, a member of the Bcl-2 family of proteins that regulates apoptosis. Bax exists in the cytosol and translocates to the mitochondria outer membrane upon apoptosis induction. The distance, r, between the two native cysteines in the cytosolic structure of Bax necessitates the use of a FRET donor-accepter pair with R0~r as the most sensitive probe for identifying structural changes at these positions. Alexa Fluor 546 and Dabcyl, a dark acceptor, were used as FRET pairs - resulting in single color intensity variations of Alexa-546 as a measure of FRET efficiency. An internal reference, conjugated to Bax, was employed to normalize changes in fluorescence intensity of Alexa Fluor 546 due to inherent inhomogeneities in the living cell. This correction allowed the true FRET effects to be measured with increased precision during translocation. Normalization of intensities to the internal reference identified a FRET efficiency of 0.45±0.14 in the cytosol and 0.11±0.20 in the mitochondria. The procedure for the conjugation of the internal reference and FRET probes as well as the data analysis is presented.

  2. Thermus thermophilus Nucleoside Phosphorylases Active in the Synthesis of Nucleoside Analogues

    PubMed Central

    Almendros, Marcos; Sinisterra, Jose-Vicente

    2012-01-01

    Cells extracts from Thermus thermophilus HB27 express phosphorolytic activities on purines and pyrimidine nucleosides. Five putative encoding genes were cloned and expressed in Escherichia coli, and the corresponding recombinant proteins were purified and studied. Two of these showed phosphorolytic activities against purine nucleosides, and third one showed phosphorolytic activity against pyrimidine nucleosides in vitro, and the three were named TtPNPI, TtPNPII, and TtPyNP, respectively. The optimal temperature for the activity of the three enzymes was beyond the water boiling point and could not be measured accurately, whereas all of them exhibited a wide plateau of optimal pHs that ranged from 5.0 to 7.0. Analytical ultracentrifugation experiments revealed that TtPNPI was a homohexamer, TtPNPII was a monomer, and TtPyNP was a homodimer. Kinetic constants were determined for the phosphorolysis of the natural substrates of each enzyme. Reaction tests with nucleoside analogues revealed critical positions in the nucleoside for its recognition. Activities with synthetic nucleobase analogues, such as 5-iodouracil or 2,6-diaminopurine, and arabinosides were detected, supporting that these enzymes could be applied for the synthesis of new nucleoside analogs with pharmacological activities. PMID:22344645

  3. Environment influences on the aromatic character of nucleobases and amino acids

    PubMed Central

    Szefler, Beata

    2010-01-01

    Geometric (HOMA) and magnetic (NICS) indices of aromaticity were estimated for aromatic rings of amino acids and nucleobases. Cartesian coordinates were taken directly either from PDB files deposited in public databases at the finest resolution available (≤1.5 Å), or from structures resulting from full gradient geometry optimization in a hybrid QM/MM approach. Significant environmental effects imposing alterations of HOMA values were noted for all aromatic rings analysed. Furthermore, even extra fine resolution (≤1.0 Å) is not sufficient for direct estimation of HOMA values based on Cartesian coordinates provided by PDB files. The values of mean bond errors seem to be much higher than the 0.05 Å often reported for PDB files. The use of quantum chemistry geometry optimization is strongly advised; even a simple QM/MM model comprising only the aromatic substructure within the QM region and the rest of biomolecule treated classically within the MM framework proved to be a promising means of describing aromaticity inside native environments. According to the results presented, three consequences of the interaction with the environment can be observed that induce changes in structural and magnetic indices of aromaticity. First, broad ranges of HOMA or NICS values are usually obtained for different conformations of nearest neighborhood. Next, these values and their means can differ significantly from those characterising isolated monomers. The most significant increase in aromaticities is expected for the six-membered rings of guanine, thymine and cytosine. The same trend was also noticed for all amino acids inside proteins but this effect was much smaller, reaching the highest value for the five-membered ring of tryptophan. Explicit water solutions impose similar changes on HOMA and NICS distributions. Thus, environment effects of protein, DNA and even explicit water molecules are non-negligible sources of aromaticity changes appearing in the rings of

  4. Nucleoside Analogue Triphosphates Allosterically Regulate Human Ribonucleotide Reductase and Identify Chemical Determinants That Drive Substrate Specificity.

    PubMed

    Knappenberger, Andrew J; Ahmad, Md Faiz; Viswanathan, Rajesh; Dealwis, Chris G; Harris, Michael E

    2016-10-18

    Class I ribonucleotide reductase (RR) maintains balanced pools of deoxyribonucleotide substrates for DNA replication by converting ribonucleoside diphosphates (NDPs) to 2'-deoxyribonucleoside diphosphates (dNDPs). Binding of deoxynucleoside triphosphate (dNTP) effectors (ATP/dATP, dGTP, and dTTP) modulates the specificity of class I RR for CDP, UDP, ADP, and GDP substrates. Crystal structures of bacterial and eukaryotic RRs show that dNTP effectors and NDP substrates bind on either side of a flexible nine-amino acid loop (loop 2). Interactions with the effector nucleobase alter loop 2 geometry, resulting in changes in specificity among the four NDP substrates of RR. However, the functional groups proposed to drive specificity remain untested. Here, we use deoxynucleoside analogue triphosphates to determine the nucleobase functional groups that drive human RR (hRR) specificity. The results demonstrate that the 5-methyl, O4, and N3 groups of dTTP contribute to specificity for GDP. The O6 and protonated N1 of dGTP direct specificity for ADP. In contrast, the unprotonated N1 of adenosine is the primary determinant of ATP/dATP-directed specificity for CDP. Structural models from X-ray crystallography of eukaryotic RR suggest that the side chain of D287 in loop 2 is involved in binding of dGTP and dTTP, but not dATP/ATP. This feature is consistent with experimental results showing that a D287A mutant of hRR is deficient in allosteric regulation by dGTP and dTTP, but not ATP/dATP. Together, these data define the effector functional groups that are the drivers of human RR specificity and provide constraints for evaluating models of allosteric regulation.

  5. Potential and frequency effects on fretting corrosion of Ti6Al4V and CoCrMo surfaces.

    PubMed

    Swaminathan, Viswanathan; Gilbert, Jeremy L

    2013-09-01

    Fretting corrosion has been reported at the metal-metal interfaces of a wide range of medical devices, including total joint replacements, spinal devices, and overlapping cardiovascular stents. Currently, the fretting corrosion phenomenon associated with metal-on-metal contacts is not fully understood. This study investigated the effect of potential and fretting frequency on the fretting corrosion performance of Ti6Al4V/Ti6Al4V, Ti6Al4V/CoCrMo, and CoCrMo/CoCrMo alloy combinations at fixed normal load and displacement conditions using a custom built fretting corrosion test system. The results showed that the fretting current densities increased with increases in potential and were highest for Ti6Al4V/Ti6Al4V couple (1.5 mA/cm(2) at 0 V vs. Ag/AgCl). The coefficient of friction varied with potential and was about two times higher for Ti6Al4V/Ti6Al4V (0.71 V at 0 V vs. Ag/AgCl). In most of the potential range tested, the fretting corrosion behavior of CoCrMo/Ti6Al4V and CoCrMo/CoCrMo was similar and dominated by the CoCrMo surface. Increase in applied fretting frequency linearly increased the fretting current densities in the regions where the passive film is stable. Also, the model-based fretting current densities were in excellent agreement with the experimental results. Overall, Ti6Al4V/Ti6Al4V couple was more susceptible to fretting corrosion compared with other couples. However, the effects of these processes on the biological system were not assessed.

  6. A FRET Biosensor for ROCK Based on a Consensus Substrate Sequence Identified by KISS Technology.

    PubMed

    Li, Chunjie; Imanishi, Ayako; Komatsu, Naoki; Terai, Kenta; Amano, Mutsuki; Kaibuchi, Kozo; Matsuda, Michiyuki

    2017-01-11

    Genetically-encoded biosensors based on Förster/fluorescence resonance energy transfer (FRET) are versatile tools for studying the spatio-temporal regulation of signaling molecules within not only the cells but also tissues. Perhaps the hardest task in the development of a FRET biosensor for protein kinases is to identify the kinase-specific substrate peptide to be used in the FRET biosensor. To solve this problem, we took advantage of kinase-interacting substrate screening (KISS) technology, which deduces a consensus substrate sequence for the protein kinase of interest. Here, we show that a consensus substrate sequence for ROCK identified by KISS yielded a FRET biosensor for ROCK, named Eevee-ROCK, with high sensitivity and specificity. By treating HeLa cells with inhibitors or siRNAs against ROCK, we show that a substantial part of the basal FRET signal of Eevee-ROCK was derived from the activities of ROCK1 and ROCK2. Eevee-ROCK readily detected ROCK activation by epidermal growth factor, lysophosphatidic acid, and serum. When cells stably-expressing Eevee-ROCK were time-lapse imaged for three days, ROCK activity was found to increase after the completion of cytokinesis, concomitant with the spreading of cells. Eevee-ROCK also revealed a gradual increase in ROCK activity during apoptosis. Thus, Eevee-ROCK, which was developed from a substrate sequence predicted by the KISS technology, will pave the way to a better understanding of the function of ROCK in a physiological context.

  7. Construction, imaging and analysis of FRET-based tension sensors in living cells

    PubMed Central

    LaCroix, Andrew S.; Rothenberg, Katheryn E.; Berginski, Matthew E.; Urs, Aarti N.; Hoffman, Brenton D.

    2015-01-01

    Due to an increased appreciation for the importance of mechanical stimuli in many biological contexts, an interest in measuring the forces experienced by specific proteins in living cells has recently emerged. The development and use of Forster resonance energy transfer (FRET)-based molecular tension sensors has enabled these types of studies and led to important insights into the mechanisms those cells utilize to probe and respond to the mechanical nature of their surrounding environment. The process for creating and utilizing FRET-based tension sensors can be divided into three main parts: construction, imaging, and analysis. First we review several methods for the construction of genetically encoded FRET-based tension sensors, including restriction enzyme-based methods as well as the more recently developed overlap extension or Gibson Assembly protocols. Next, we discuss the intricacies associated with imaging tension sensors, including optimizing imaging parameters as well as common techniques for estimating artifacts within standard imaging systems. Then, we detail the analysis of such data and describe how to extract useful information from a FRET experiment. Finally, we provide a discussion on identifying and correcting common artifacts in the imaging of FRET-based tension sensors. PMID:25640429

  8. Random coil negative control reproduces the discrepancy between scattering and FRET measurements of denatured protein dimensions

    PubMed Central

    Watkins, Herschel M.; Simon, Anna J.; Sosnick, Tobin R.; Lipman, Everett A.; Hjelm, Rex P.; Plaxco, Kevin W.

    2015-01-01

    Small-angle scattering studies generally indicate that the dimensions of unfolded single-domain proteins are independent (to within experimental uncertainty of a few percent) of denaturant concentration. In contrast, single-molecule FRET (smFRET) studies invariably suggest that protein unfolded states contract significantly as the denaturant concentration falls from high (∼6 M) to low (∼1 M). Here, we explore this discrepancy by using PEG to perform a hitherto absent negative control. This uncharged, highly hydrophilic polymer has been shown by multiple independent techniques to behave as a random coil in water, suggesting that it is unlikely to expand further on the addition of denaturant. Consistent with this observation, small-angle neutron scattering indicates that the dimensions of PEG are not significantly altered by the presence of either guanidine hydrochloride or urea. smFRET measurements on a PEG construct modified with the most commonly used FRET dye pair, however, produce denaturant-dependent changes in transfer efficiency similar to those seen for a number of unfolded proteins. Given the vastly different chemistries of PEG and unfolded proteins and the significant evidence that dye-free PEG is well-described as a denaturant-independent random coil, this similarity raises questions regarding the interpretation of smFRET data in terms of the hydrogen bond- or hydrophobically driven contraction of the unfolded state at low denaturant. PMID:25964362

  9. In vivo reconstruction of NIR FRET using full-field time resolved optical tomography

    NASA Astrophysics Data System (ADS)

    Venugopal, Vivek; Chen, Jin; Barroso, Margarida; Intes, Xavier

    2011-03-01

    We investigate the feasibility of 3-D localization of Foerster resonance energy transfer (FRET) between two NIR fluorophores (Alexa Fluor 700 and Alexa Fluor 750) in small animal models. Specifically, the decrease in donor lifetime upon FRET is used as the contrast mechanism to isolate donor-acceptor pairs undergoing FRET. The optical tomography system uses a femtosecond tunable laser coupled with a micro-mirror device based digital light processor as the source to generate wide-field patterns. The time-resolved detection is achieved using a gated intensified CCD camera. The wide-field excitation scheme described herein provides an experimental advantage by reducing the time of acquisition of temporally dense datasets. In this study, anatomical information obtained using MR imaging is used in the computation of the Monte Carlo (MC) based forward model. The MC model reconstructs the 3D distribution of the quantum yield of the donor fluorophore and the FRET complex using the time-gate data type allowing the estimation of fractional distribution (?D) of donor molecules undergoing FRET and unquenched donor molecules. The performance of this approach in the estimation of ?D using the position of fluorophores obtained using the MRI is investigated.

  10. Competitive FRET-aptamer-based detection of methylphosphonic acid, a common nerve agent metabolite.

    PubMed

    Bruno, John G; Carrillo, Maria P; Phillips, Taylor; Vail, Neal K; Hanson, Douglas

    2008-09-01

    Competitive fluorescence resonance energy transfer (FRET)-aptamer-based assay formats are described for one-step detection of methylphosphonic acid (MPA; a metabolite of several organophosphorus (OP) nerve agents). AminoMPA was attached to tosyl-magnetic beads and used for DNA aptamer selection from which one dominant aptamer sequence emerged. Two different FRET approaches were attempted. In one approach, the complementary DNA sequence was used as a template for labeling the aptamer with Alexa Fluor 546 (AF 546)-14-dUTP by asymmetric PCR. Following 3-dimensional (3-D), molecular modeling of the aptamer-MPA complex, a series of three fluoresceinated aptamers labeled at positions 50, 51, and 52 in the putative optimal binding pocket were synthesized. In both FRET formats, aminoMPA was linked to Black Hole Quencher (BHQ-1 or BHQ-2)-succinimides and allowed to bind the fluorescein or AF 546-labeled MPA aptamer. Following gel filtration to purify the labeled MPA aptamer-BHQ-aminoMPA FRET complexes, the complexes were competed against various concentrations of unlabeled MPA, MPA derivatives, and unrelated compounds in titration and cross-reactivity studies. Both approaches yielded low microgram per milliliter detection limits for MPA with generally low levels of cross-reactivity for unrelated compounds. However, the data suggest a pattern of traits that may effect the direction (lights on or off) and intensity of the FRET.

  11. Construction, imaging, and analysis of FRET-based tension sensors in living cells.

    PubMed

    LaCroix, Andrew S; Rothenberg, Katheryn E; Berginski, Matthew E; Urs, Aarti N; Hoffman, Brenton D

    2015-01-01

    Due to an increased appreciation for the importance of mechanical stimuli in many biological contexts, an interest in measuring the forces experienced by specific proteins in living cells has recently emerged. The development and use of Förster resonance energy transfer (FRET)-based molecular tension sensors has enabled these types of studies and led to important insights into the mechanisms those cells utilize to probe and respond to the mechanical nature of their surrounding environment. The process for creating and utilizing FRET-based tension sensors can be divided into three main parts: construction, imaging, and analysis. First we review several methods for the construction of genetically encoded FRET-based tension sensors, including restriction enzyme-based methods as well as the more recently developed overlap extension or Gibson Assembly protocols. Next, we discuss the intricacies associated with imaging tension sensors, including optimizing imaging parameters as well as common techniques for estimating artifacts within standard imaging systems. Then, we detail the analysis of such data and describe how to extract useful information from a FRET experiment. Finally, we provide a discussion on identifying and correcting common artifacts in the imaging of FRET-based tension sensors.

  12. Significant FRET between SWNT/DNA and rare earth ions: a signature of their spatial correlations.

    PubMed

    Ignatova, Tetyana; Najafov, Hikmat; Ryasnyanskiy, Aleksandr; Biaggio, Ivan; Zheng, Ming; Rotkin, Slava V

    2011-07-26

    Significant acceleration of the photoluminescence (PL) decay rate was observed in water solutions of two rare earth ions (REIs), Tb and Eu. We propose that the time-resolved PL spectroscopy data are explained by a fluorescence resonance energy transfer (FRET) between the REIs. FRET was directly confirmed by detecting the induced PL of the energy acceptor, Eu ion, under the PL excitation of the donor ion, Tb, with FRET efficiency reaching 7% in the most saturated solution, where the distance between the unlike REIs is the shortest. Using this as a calibration experiment, a comparable FRET was measured in the mixed solution of REIs with single-wall nanotubes (SWNTs) wrapped with DNA. From the FRET efficiency of 10% and 7% for Tb and Eu, respectively, the characteristic distance between the REI and SWNT/DNA was obtained as 15.9 ± 1.3 Å, suggesting that the complexes are formed because of Coulomb attraction between the REI and the ionized phosphate groups of the DNA.

  13. Gate-width impact on NIR FRET lifetime fitting using gated ICCD

    NASA Astrophysics Data System (ADS)

    Chen, Sez-Jade; Intes, Xavier

    2016-03-01

    Förster Resonance Energy Transfer (FRET) is widely used to sense molecular interactions occurring at the nanoscale. In vitro and ex vivo protocols for visualizing FRET are already well-established, but in vivo studies have proven to be more challenging. One issue that hinders in vivo visualization of FRET is the higher absorption and scattering of visible light within tissues. In this case, light in the near-infrared (NIR) spectral window is required for increased depth sensing. Moreover, due to spectral variation in optical properties as well as heterogeneous spatial distribution, lifetime-based FRET imaging is preferred. Herein, we investigate the effect of temporal acquisition settings on the lifetime-based estimation of the fraction of quenched donor molecules (A1) as well as the quenched donor lifetime (τ1). We performed in silico, in vitro, and in vivo experiments under gate widths of 300ps to 1000ps in 100ps intervals to determine the effect on quantification of A1 and τ1. Even though the NIR fluorescent dyes have shorter lifetimes then visible fluorophores, we were still able to accurately quantify FRET under all tested system gate widths and experimental conditions.

  14. Live cell monitoring of glycine betaine by FRET-based genetically encoded nanosensor.

    PubMed

    Ahmad, Mohammad; Ameen, Seema; Siddiqi, Tariq Omar; Khan, Parvez; Ahmad, Altaf

    2016-12-15

    Glycine betaine (GB) is one of the key compatible solutes that accumulate in the cell at exceedingly high level under the conditions of high salinity. It plays a crucial role in the maintenance of osmolarity of the cell without affecting the physiological processes. Analysis of stress-induced physiological conditions in living cells, therefore, requires real-time monitoring of cellular GB level. Glycine Betaine Optical Sensor (GBOS), a genetically-encoded FRET-based nanosensor developed in this study, allows the real-time monitoring of GB levels inside living cells. This nanosensor has been developed by sandwiching GB binding protein (ProX) between the Förster resonance energy transfer (FRET) pair, the cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). Conformational change in ProX, which was used as sensory domain, reported the change in the level of this compatible solute in in vitro and in vivo conditions. Binding of the GB to the sensory domain fetches close to both the fluorescent moieties that result in the form of increased FRET ratio. So, any change in the concentration of GB is correlated with change in FRET ratio. This sensor also reported the GB cellular dynamics in real-time in Escherichia coli cells after the addition of its precursor, choline. The GBOS was also expressed in yeast and mammalian cells to monitor the intracellular GB. Therefore, the GBOS represents a unique FRET-based nanosensor which allows the non-invasive ratiometric analysis of the GB in living cells.

  15. Assembling programmable FRET-based photonic networks using designer DNA scaffolds

    PubMed Central

    Buckhout-White, Susan; Spillmann, Christopher M; Algar, W. Russ; Khachatrian, Ani; Melinger, Joseph S.; Goldman, Ellen R.; Ancona, Mario G.; Medintz, Igor L.

    2014-01-01

    DNA demonstrates a remarkable capacity for creating designer nanostructures and devices. A growing number of these structures utilize Förster resonance energy transfer (FRET) as part of the device's functionality, readout or characterization, and, as device sophistication increases so do the concomitant FRET requirements. Here we create multi-dye FRET cascades and assess how well DNA can marshal organic dyes into nanoantennae that focus excitonic energy. We evaluate 36 increasingly complex designs including linear, bifurcated, Holliday junction, 8-arm star and dendrimers involving up to five different dyes engaging in four-consecutive FRET steps, while systematically varying fluorophore spacing by Förster distance (R0). Decreasing R0 while augmenting cross-sectional collection area with multiple donors significantly increases terminal exciton delivery efficiency within dendrimers compared with the first linear constructs. Förster modelling confirms that best results are obtained when there are multiple interacting FRET pathways rather than independent channels by which excitons travel from initial donor(s) to final acceptor. PMID:25504073

  16. FRET-based protein-DNA binding assay for detection of active NF-kappa B

    SciTech Connect

    Giannetti, Ambra; Baldini, Francesco; Wabuyele, Musundi B; Vo Dinh, Tuan

    2006-01-01

    A novel method to detect the active form of NF-{kappa}B, a transcription factor regulating a battery of inflammatory genes and playing a fundamental role in the development of numerous pathological states, has been developed. In the present work, we used fluorescence resonance energy transfer (FRET) to study DNA-protein binding interaction taking place between double-strand (ds) DNA immobilized in a glass capillary wall and p50 proteins. For this purpose, we developed a regenerable FRET-based system comprising of a single-strand (ss) DNA with auto-complementary sequence that is end-labeled with Cy5 dye and is highly specific for p50 proteins. The proteins were labeled with a Black Hole Quencher (BHQ-3) to be used as FRET pair. The interaction of p50/p50 homodimer active form with its DNA binding site was demonstrated by both electrophoretic mobility shift assays and FRET studies. These preliminary results demonstrated the feasibility of the FRET-based DNA technique to detect the active form of NF-{kappa}B protein with 90% detection efficiency. In addition, we show that the system is stable and highly regenerable.

  17. Preliminary studies on unusual polymorphs of thymine: Structural comparison with other nucleobases

    NASA Astrophysics Data System (ADS)

    Chennuru, Ramanaiah; Muthudoss, Prakash; Ramakrishnan, Srividya; Mohammad, Amjad Basha; Ravi Chandra Babu, R.; Mahapatra, Sudarshan; Nayak, Susanta K.

    2016-09-01

    Two polymorphs Form-R2 and Form-R4 of anhydrous thymine, one of the four nucleobases in the nucleic acid of DNA were obtained via sublimation crystallization and desolvation technique respectively. Form-R2 crystallizes in monoclinic C 2/c with a = 25.107(7) Å, b = 6.846(2) Å, c = 6.715(2) Å, β = 90.529(6)⁰ and V = 1154.1(5) Å3. The supramolecular assembly in Form-R2 is a sheet of hydrogen bonded network similar to that found in the crystal structures of other reported anhydrous form of thymine (Form-R1). Interestingly the thermal behavior is similar for these two forms with a minor difference in powder X-ray diffraction pattern. Further thymine Form-R2 closely matches with one of the predicted form of thymine using Polymorph module of Accelrys. Form-R4 is obtained by the dehydration of the mono hydrated form (Form-R3) and characterized by powder X-ray diffraction, FTIR spectroscopic techniques and thermal analysis.

  18. High-energy chemistry of formamide: A unified mechanism of nucleobase formation

    PubMed Central

    Ferus, Martin; Nesvorný, David; Šponer, Jiří; Kubelík, Petr; Michalčíková, Regina; Shestivská, Violetta; Šponer, Judit E.; Civiš, Svatopluk

    2015-01-01

    The coincidence of the Late Heavy Bombardment (LHB) period and the emergence of terrestrial life about 4 billion years ago suggest that extraterrestrial impacts could contribute to the synthesis of the building blocks of the first life-giving molecules. We simulated the high-energy synthesis of nucleobases from formamide during the impact of an extraterrestrial body. A high-power laser has been used to induce the dielectric breakdown of the plasma produced by the impact. The results demonstrate that the initial dissociation of the formamide molecule could produce a large amount of highly reactive CN and NH radicals, which could further react with formamide to produce adenine, guanine, cytosine, and uracil. Based on GC-MS, high-resolution FTIR spectroscopic results, as well as theoretical calculations, we present a comprehensive mechanistic model, which accounts for all steps taking place in the studied impact chemistry. Our findings thus demonstrate that extraterrestrial impacts, which were one order of magnitude more abundant during the LHB period than before and after, could not only destroy the existing ancient life forms, but could also contribute to the creation of biogenic molecules. PMID:25489115

  19. A general method for quantifying sequence effects on nucleobase oxidation in DNA.

    PubMed

    Margolin, Yelena; Dedon, Peter C

    2010-01-01

    Oxidative damage to DNA has long been associated with aging and disease, with guanine serving as the primary target for oxidation owing to its low ionization potential. Emerging evidence points to a critical role for sequence context as a determinant of the guanine ionization potential and the associated chemical reactivity of the guanine, as well as the spectrum of damage products that arise from oxidation. Recent studies also suggest that the generally accepted model of oxidation hotspots in runs of guanine bases may not hold for biologically relevant oxidants. One of the primary methods used to address these important problems of sequence context utilizes gel electrophoresis to identify the location and quantity of base damage arising in model oligonucleotides. However, this approach has limited study to those agents that produce few strand breaks arising from deoxyribose oxidation, while ionizing radiation, Fenton chemistry and other biologically relevant oxidants produce sizeable proportions of both base and sugar damage. To this end, we have developed a universal method to quantify sequence context effects on nucleobase damage without interference by strand breaks from deoxyribose oxidation.

  20. Formation of Nucleobases from the UV Photo-Irradiation of Pyrimidine in Astrophysical Ice Analogs

    NASA Technical Reports Server (NTRS)

    Milam, S. N.; Nuevo, M.; Sandford, S. A.; Elsila, J. E.; Dworkin, J. P.

    2010-01-01

    Astrochemistry laboratory simulations have shown that complex organic molecules including compounds of astrobiological interest can be formed under interstellarl/circumstellar conditions from the vacuum UV irradiation of astrophysical ice analogs containing H2O, CO, CO2, CH3OH, NH13, etc. Of all prebiotic compounds, the formation of amino acids under such experimental conditions has been the most extensively studied. Although the presence of amino acids in the interstellar medium (ISM) has yet to be confirmed, they have been detected in meteorites, indicating that biomolecules and/or their precursors can be formed under extraterrestrial, abiotic conditions. Nucleobases, the building blocks of DNA and RNA, as well as other 1V-heterocycles, have also been detected in meteorites, but like amino acids, they have yet to be observed in the ISM. In this work, we present an experimental study of the formation of pyrimidine-based compounds from the UV photo-irradiation of pyrimidine in ice mixtures containing H2O, NH3, and/or CH3OH at low temperature and pressure.

  1. Ranking of Molecular Biomarker Interaction with Targeted DNA Nucleobases via Full Atomistic Molecular Dynamics

    PubMed Central

    Zhang, Wenjun; Wang, Ming L.; Cranford, Steven W.

    2016-01-01

    DNA-based sensors can detect disease biomarkers, including acetone and ethanol for diabetes and H2S for cardiovascular diseases. Before experimenting on thousands of potential DNA segments, we conduct full atomistic steered molecular dynamics (SMD) simulations to screen the interactions between different DNA sequences with targeted molecules to rank the nucleobase sensing performance. We study and rank the strength of interaction between four single DNA nucleotides (Adenine (A), Guanine (G), Cytosine (C), and Thymine (T)) on single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) with acetone, ethanol, H2S and HCl. By sampling forward and reverse interaction paths, we compute the free-energy profiles of eight systems for the four targeted molecules. We find that dsDNA react differently than ssDNA to the targeted molecules, requiring more energy to move the molecule close to DNA as indicated by the potential of mean force (PMF). Comparing the PMF values of different systems, we obtain a relative ranking of DNA base for the detection of each molecule. Via the same procedure, we could generate a library of DNA sequences for the detection of a wide range of chemicals. A DNA sensor array built with selected sequences differentiating many disease biomarkers can be used in disease diagnosis and monitoring. PMID:26750747

  2. High-resolution photoelectron spectra of the pyrimidine-type nucleobases

    NASA Astrophysics Data System (ADS)

    Fulfer, K. D.; Hardy, D.; Aguilar, A. A.; Poliakoff, E. D.

    2015-06-01

    High-resolution photoelectron spectra of the gas phase pyrimidine-type nucleobases, thymine, uracil, and cytosine, were collected using synchrotron radiation over the photon energy range 17 ≤ hν ≤ 150 eV. These data provide the highest resolution photoelectron spectra of thymine, uracil, and cytosine published to date. By comparing integrated regions of the energy dependent photoelectron spectra of thymine, the ionization potentials of the first four ionic states of thymine were estimated to be 8.8, 9.8, 10.3, and 10.8 eV. The thymine data also show evidence for low energy shape resonances in three of the outermost valence electronic states. Comparing the uracil spectrum with the thymine spectrum, the four outermost valence electronic states of uracil likely begin at binding energies 9.3, 9.9, 10.5, and 11.0 eV. High-resolution spectra indicate only one tautomeric form of cytosine contributes significantly to the spectrum with the four outermost valence electronic states beginning at binding energies 8.9, 9.9, 10.4, and 10.85 eV.

  3. Low-energy positron scattering from DNA nucleobases: the effects from permanent dipoles

    NASA Astrophysics Data System (ADS)

    Franz, Jan; Gianturco, Francesco Antonio

    2014-10-01

    Ab initio quantum calculations for low-energy positron scattering from gas-phase isolated molecular nucleobases which are part of the DNA structure are presented and discussed over the range of 1 eV to 25 eV. The calculations report the integral cross sections (ICSs) and the momentum-transfer cross sections (MTCSs) for Adenine, Guanine, Thymine and Cytosine. The calculations show very clearly the important role of the dominant long-range interaction between the positron projectile and the permanent dipole-moments of the target molecules in deciding the relative sizes of the ICSs and MTCSs for the present series of molecules. Such results confirm the largely repulsive interaction between positron and DNA bases, which is nevertheless producing very large cross sections and marked deflection functions from the latter molecules. Contribution to the Topical Issue "Nano-scale Insights into Ion-beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Paulo Limão-Vieira and Malgorzata Smialek-Telega.

  4. An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies.

    PubMed

    Chawla, Mohit; Oliva, Romina; Bujnicki, Janusz M; Cavallo, Luigi

    2015-08-18

    Posttranscriptional modifications greatly enhance the chemical information of RNA molecules, contributing to explain the diversity of their structures and functions. A significant fraction of RNA experimental structures available to date present modified nucleobases, with half of them being involved in H-bonding interactions with other bases, i.e. 'modified base pairs'. Herein we present a systematic investigation of modified base pairs, in the context of experimental RNA structures. To this end, we first compiled an atlas of experimentally observed modified base pairs, for which we recorded occurrences and structural context. Then, for each base pair, we selected a representative for subsequent quantum mechanics calculations, to find out its optimal geometry and interaction energy. Our structural analyses show that most of the modified base pairs are non Watson-Crick like and are involved in RNA tertiary structure motifs. In addition, quantum mechanics calculations quantify and provide a rationale for the impact of the different modifications on the geometry and stability of the base pairs they participate in.

  5. A Crystal Structure of a Functional RNA Molecule Containing an Artificial Nucleobase Pair.

    PubMed

    Hernandez, Armando R; Shao, Yaming; Hoshika, Shuichi; Yang, Zunyi; Shelke, Sandip A; Herrou, Julien; Kim, Hyo-Joong; Kim, Myong-Jung; Piccirilli, Joseph A; Benner, Steven A

    2015-08-17

    As one of its goals, synthetic biology seeks to increase the number of building blocks in nucleic acids. While efforts towards this goal are well advanced for DNA, they have hardly begun for RNA. Herein, we present a crystal structure for an RNA riboswitch where a stem C:G pair has been replaced by a pair between two components of an artificially expanded genetic-information system (AEGIS), Z and P, (6-amino-5-nitro-2(1H)-pyridone and 2-amino-imidazo[1,2-a]-1,3,5-triazin-4-(8H)-one). The structure shows that the Z:P pair does not greatly change the conformation of the RNA molecule nor the details of its interaction with a hypoxanthine ligand. This was confirmed in solution by in-line probing, which also measured a 3.7 nM affinity of the riboswitch for guanine. These data show that the Z:P pair mimics the natural Watson-Crick geometry in RNA in the first example of a crystal structure of an RNA molecule that contains an orthogonal added nucleobase pair.

  6. Binding energies of nucleobase complexes: Relevance to homology recognition of DNA

    NASA Astrophysics Data System (ADS)

    León, Sergio Cruz; Prentiss, Mara; Fyta, Maria

    2016-06-01

    The binding energies of complexes of DNA nucleobase pairs are evaluated using quantum mechanical calculations at the level of dispersion corrected density functional theory. We begin with Watson-Crick base pairs of singlets, duplets, and triplets and calculate their binding energies. At a second step, mismatches are incorporated into the Watson-Crick complexes in order to evaluate the variation in the binding energy with respect to the canonical Watson-Crick pairs. A linear variation of this binding energy with the degree of mismatching is observed. The binding energies for the duplets and triplets containing mismatches are further compared to the energies of the respective singlets in order to assess the degree of collectivity in these complexes. This study also suggests that mismatches do not considerably affect the energetics of canonical base pairs. Our work is highly relevant to the recognition process in DNA promoted through the RecA protein and suggests a clear distinction between recognition in singlets, and recognition in duplets or triplets. Our work assesses the importance of collectivity in the homology recognition of DNA.

  7. High-energy chemistry of formamide: a unified mechanism of nucleobase formation.

    PubMed

    Ferus, Martin; Nesvorný, David; Šponer, Jiří; Kubelík, Petr; Michalčíková, Regina; Shestivská, Violetta; Šponer, Judit E; Civiš, Svatopluk

    2015-01-20

    The coincidence of the Late Heavy Bombardment (LHB) period and the emergence of terrestrial life about 4 billion years ago suggest that extraterrestrial impacts could contribute to the synthesis of the building blocks of the first life-giving molecules. We simulated the high-energy synthesis of nucleobases from formamide during the impact of an extraterrestrial body. A high-power laser has been used to induce the dielectric breakdown of the plasma produced by the impact. The results demonstrate that the initial dissociation of the formamide molecule could produce a large amount of highly reactive CN and NH radicals, which could further react with formamide to produce adenine, guanine, cytosine, and uracil. Based on GC-MS, high-resolution FTIR spectroscopic results, as well as theoretical calculations, we present a comprehensive mechanistic model, which accounts for all steps taking place in the studied impact chemistry. Our findings thus demonstrate that extraterrestrial impacts, which were one order of magnitude more abundant during the LHB period than before and after, could not only destroy the existing ancient life forms, but could also contribute to the creation of biogenic molecules.

  8. High-resolution photoelectron spectra of the pyrimidine-type nucleobases.

    PubMed

    Fulfer, K D; Hardy, D; Aguilar, A A; Poliakoff, E D

    2015-06-14

    High-resolution photoelectron spectra of the gas phase pyrimidine-type nucleobases, thymine, uracil, and cytosine, were collected using synchrotron radiation over the photon energy range 17 ≤ hν ≤ 150 eV. These data provide the highest resolution photoelectron spectra of thymine, uracil, and cytosine published to date. By comparing integrated regions of the energy dependent photoelectron spectra of thymine, the ionization potentials of the first four ionic states of thymine were estimated to be 8.8, 9.8, 10.3, and 10.8 eV. The thymine data also show evidence for low energy shape resonances in three of the outermost valence electronic states. Comparing the uracil spectrum with the thymine spectrum, the four outermost valence electronic states of uracil likely begin at binding energies 9.3, 9.9, 10.5, and 11.0 eV. High-resolution spectra indicate only one tautomeric form of cytosine contributes significantly to the spectrum with the four outermost valence electronic states beginning at binding energies 8.9, 9.9, 10.4, and 10.85 eV.

  9. Ranking of Molecular Biomarker Interaction with Targeted DNA Nucleobases via Full Atomistic Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjun; Wang, Ming L.; Cranford, Steven W.

    2016-01-01

    DNA-based sensors can detect disease biomarkers, including acetone and ethanol for diabetes and H2S for cardiovascular diseases. Before experimenting on thousands of potential DNA segments, we conduct full atomistic steered molecular dynamics (SMD) simulations to screen the interactions between different DNA sequences with targeted molecules to rank the nucleobase sensing performance. We study and rank the strength of interaction between four single DNA nucleotides (Adenine (A), Guanine (G), Cytosine (C), and Thymine (T)) on single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) with acetone, ethanol, H2S and HCl. By sampling forward and reverse interaction paths, we compute the free-energy profiles of eight systems for the four targeted molecules. We find that dsDNA react differently than ssDNA to the targeted molecules, requiring more energy to move the molecule close to DNA as indicated by the potential of mean force (PMF). Comparing the PMF values of different systems, we obtain a relative ranking of DNA base for the detection of each molecule. Via the same procedure, we could generate a library of DNA sequences for the detection of a wide range of chemicals. A DNA sensor array built with selected sequences differentiating many disease biomarkers can be used in disease diagnosis and monitoring.

  10. Role of surface roughness on corrosion and fretting corrosion behaviour of commercially pure titanium in Ringer's solution for bio-implant application

    NASA Astrophysics Data System (ADS)

    Sivakumar, Bose; Pathak, Lokesh Chandra; Singh, Raghuvir

    2017-04-01

    Influence of roughness (ra) from 43 to 474 nm on corrosion and fretting corrosion of commercially pure titanium (CpTi) was studied in the Ringer's solution. The anodic polarization and electrochemical impedance spectroscopy (EIS) revealed the highest corrosion resistance of CpTi with ra 43 nm and correlated well with the surface energy (SE). The highest potential drop associated with the fretting corrosion is observed for CpTi with ra 43 nm followed by 474 nm; this is found to correspond with the worn out area. The fretting current density (ifretting) is several order higher than obtained during the potentiodynamic polarization (without fretting) study. Fretting corrosion manifested by the drop in electrochemical potential is simulated with high accuracy using fretting current density and an initial contact area. Fretting corrosion at an applied potential (+250 mV(SCE)) is produced much larger fretting corrosion current density than during the open circuit potential (OCP).

  11. Synthesis of fluorophosphate nucleotide analogues and their characterization as tools for ¹⁹F NMR studies.

    PubMed

    Baranowski, Marek R; Nowicka, Anna; Rydzik, Anna M; Warminski, Marcin; Kasprzyk, Renata; Wojtczak, Blazej A; Wojcik, Jacek; Claridge, Timothy D W; Kowalska, Joanna; Jemielity, Jacek

    2015-04-17

    To broaden the scope of existing methods based on (19)F nucleotide labeling, we developed a new method for the synthesis of fluorophosphate (oligo)nucleotide analogues containing an O to F substitution at the terminal position of the (oligo)phosphate moiety and evaluated them as tools for (19)F NMR studies. Using three efficient and comprehensive synthetic approaches based on phosphorimidazolide chemistry and tetra-n-butylammonium fluoride, fluoromonophosphate, or fluorophosphate imidazolide as fluorine sources, we prepared over 30 fluorophosphate-containing nucleotides, varying in nucleobase type (A, G, C, U, m(7)G), phosphate chain length (from mono to tetra), and presence of additional phosphate modifications (thio, borano, imido, methylene). Using fluorophosphate imidazolide as fluorophosphorylating reagent for 5'-phosphorylated oligos we also synthesized oligonucleotide 5'-(2-fluorodiphosphates), which are potentially useful as (19)F NMR hybridization probes. The compounds were characterized by (19)F NMR and evaluated as (19)F NMR molecular probes. We found that fluorophosphate nucleotide analogues can be used to monitor activity of enzymes with various specificities and metal ion requirements, including human DcpS enzyme, a therapeutic target for spinal muscular atrophy. The compounds can also serve as reporter ligands for protein binding studies, as exemplified by studying interaction of fluorophosphate mRNA cap analogues with eukaryotic translation initiation factor (eIF4E).

  12. Carbon dots based FRET for the detection of DNA damage.

    PubMed

    Kudr, Jiri; Richtera, Lukas; Xhaxhiu, Kledi; Hynek, David; Heger, Zbynek; Zitka, Ondrej; Adam, Vojtech

    2017-02-09

    Here, we aimed our attention at the synthesis of carbon dots (C-dots) with the ability to interact with DNA to suggest an approach for the detection of DNA damage. Primarily, C-dots modified with amine moieties were synthesized using the one-step microwave pyrolysis of citric acid in the presence of diethylenetriamine. The C-dots showed strong photoluminescence with a quantum yield of 4%. In addition, the C-dots (2.8±0.8nm) possessed a good colloidal stability and exhibited a positive surface charge (ζ=36mV) at a neutral pH. An interaction study of the C-dots and the DNA fragment of λ bacteriophage was performed, and the DNA binding resulted in changes to the photoluminescent and absorption properties of the C-dots. A binding of the C-dots to DNA was also observed as a change to DNA electrophoretic mobility and a decreased ability to intercalate ethidium bromide (EtBr). Moreover, the Förster (or fluorescence) resonance energy transfer (FRET) between the C-dots and EtBr was studied, in which the C-dots serve as an excitation energy donor and the EtBr serves as an acceptor. When DNA was damaged using ultraviolet (UV) radiation (λ=254nm) and hydroxyl radicals, the intensity of the emitted photoluminescence at 612nm significantly decreased. The concept was proved on analysis of the genomic DNA from PC-3 cells and DNA isolated from melanoma tissues.

  13. Fretting fatigue behaviour of Ni-free high-nitrogen stainless steel in a simulated body fluid.

    PubMed

    Maruyama, Norio; Hiromoto, Sachiko; Akiyama, Eiji; Nakamura, Morihiko

    2013-04-01

    Fretting fatigue behaviour of Ni-free high-nitrogen steel (HNS) with a yield strength of about 800 MPa, which was prepared by nitrogen gas pressurized electroslag remelting, was studied in air and in phosphate-buffered saline (PBS(-)). For comparison, fretting fatigue behaviour of cold-rolled SUS316L steel (SUS316L(CR)) with similar yield strength was examined. The plain fatigue limit of HNS was slightly lower than that of SUS316L(CR) although the former had a higher tensile strength than the latter. The fretting fatigue limit of HNS was higher than that of SUS316L(CR) both in air and in PBS(-). A decrease in fatigue limit of HNS by fretting was significantly smaller than that of SUS316L(CR) in both environments, indicating that HNS has better fretting fatigue resistance than SUS316L(CR). The decrease in fatigue limit by fretting is discussed taking into account the effect of friction stress due to fretting and the additional influences of wear, tribocorrosion and plastic deformation in the fretted area.

  14. The influence of contact conditions and micromotions on the fretting behavior of modular titanium alloy taper connections.

    PubMed

    Baxmann, M; Jauch, S Y; Schilling, C; Blömer, W; Grupp, T M; Morlock, M M

    2013-05-01

    Modularity of femoral stems and neck components has become a more frequently used tool for an optimized restoration of the hip joint center and improvement of patient biomechanics. The additional taper interface increases the risk of mechanical failure due to fretting and crevice corrosion. Several failures of titanium alloy neck adapters have been documented in case-reports. An experimental fretting device was developed in this study to systematically investigate the effect of micromotion and contact pressure on fretting damage in contact situations similar to taper interfaces of modular hip prostheses under cyclic loading representative of in vivo load conditions. As a first application, the fretting behavior of Ti-6Al-4V titanium alloy components was investigated. Micromotions were varied between 10μm and 50μm, maximum contact pressures between 400 and 860N/mm(2). All modes of fretting damage were observed: Fretting wear was found for high micromotions in combination with low contact pressures. Fretting fatigue occurred with reduced movement or increased contact pressures. With small micromotions or high normal pressures, low fretting damage was observed. The developed device can be used to evaluate taper design (and especially contact geometry) as well as different materials prior to clinical use.

  15. Plasmonic Nanoantennas Enable Forbidden Förster Dipole-Dipole Energy Transfer and Enhance the FRET Efficiency.

    PubMed

    de Torres, Juan; Mivelle, Mathieu; Moparthi, Satish Babu; Rigneault, Hervé; Van Hulst, Niek F; García-Parajó, María F; Margeat, Emmanuel; Wenger, Jérôme

    2016-10-12

    Förster resonance energy transfer (FRET) plays a key role in biochemistry, organic photovoltaics, and lighting sources. FRET is commonly used as a nanoruler for the short (nanometer) distance between donor and acceptor dyes, yet FRET is equally sensitive to the mutual dipole orientation. The orientation dependence complicates the FRET analysis in biological samples and may even lead to the absence of FRET for perpendicularly oriented donor and acceptor dipoles. Here, we exploit the strongly inhomogeneous and localized fields in plasmonic nanoantennas to open new energy transfer routes, overcoming the limitations from the mutual dipole orientation to ultimately enhance the FRET efficiency. We demonstrate that the simultaneous presence of perpendicular near-field components in the nanoantenna sets favorable energy transfer routes that increase the FRET efficiency up to 50% for nearly perpendicular donor and acceptor dipoles. This new facet of plasmonic nanoantennas enables dipole-dipole energy transfer that would otherwise be forbidden in a homogeneous environment. As such, our approach further increases the applicability of single-molecule FRET over diffraction-limited approaches, with the additional benefits of higher sensitivities and higher concentration ranges toward physiological levels.

  16. A method to quantify FRET stoichiometry with phasor plot analysis and acceptor lifetime ingrowth.

    PubMed

    Chen, WeiYue; Avezov, Edward; Schlachter, Simon C; Gielen, Fabrice; Laine, Romain F; Harding, Heather P; Hollfelder, Florian; Ron, David; Kaminski, Clemens F

    2015-03-10

    FRET is widely used for the study of protein-protein interactions in biological samples. However, it is difficult to quantify both the FRET efficiency (E) and the affinity (Kd) of the molecular interaction from intermolecular FRET signals in samples of unknown stoichiometry. Here, we present a method for the simultaneous quantification of the complete set of interaction parameters, including fractions of bound donors and acceptors, local protein concentrations, and dissociation constants, in each image pixel. The method makes use of fluorescence lifetime information from both donor and acceptor molecules and takes advantage of the linear properties of the phasor plot approach. We demonstrate the capability of our method in vitro in a microfluidic device and also in cells, via the determination of the binding affinity between tagged versions of glutathione and glutathione S-transferase, and via the determination of competitor concentration. The potential of the method is explored with simulations.

  17. Fretting of Secondary-Seal-Ring Candidate Materials in Air at Temperatures to 816 C

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1972-01-01

    Superalloys containing chromium showed decreasing fretting damage with increasing temperature of 816 C. This trend was related to the ability of the alloys to generate self-protecting oxide films. The damage at 816 C was one-third to one-tenth of that at 23 C. Osmium, chromium, and chromium carbide platings were fretted at 23 and 450 C. Osmium was extremely protective at 23 C but oxidized excessively at 450 C. Chromium and chromium carbide gave about the same protection at 450 C as the oxide films that formed on the superalloys. High graphite and low graphite carbons were fretted at 23 and 327 C. High graphite carbon was superior at 327 C, but low graphite carbon was the best material examined at 23 C.

  18. The fretting damage and effect of temperature in typical joint of aircraft construction

    NASA Astrophysics Data System (ADS)

    Tian, T. Z.

    The fatigue test results and the fatigue fracture for three types of joints, i.e., bolted joints, set-head rivet joints and countersunk rivet joints of the aluminum alloy, have been studied on the basis of more than 200 joints test at both elevated temperature and room temperature. It is revealed that the cracks initiated in the places where fretting had taken place and led to the failure of fretting fatigue. Different types of joints cause different modes of transmitting loads so that the places of cracks changed, which result in difference of fatigue strength. In this paper, the effect of fretting damage on fatigue strength and the effect of elevated temperature on fatigue strength and fracture appearance are also presented.

  19. Multiplexed 3D FRET imaging in deep tissue of live embryos

    PubMed Central

    Zhao, Ming; Wan, Xiaoyang; Li, Yu; Zhou, Weibin; Peng, Leilei

    2015-01-01

    Current deep tissue microscopy techniques are mostly restricted to intensity mapping of fluorophores, which significantly limit their applications in investigating biochemical processes in vivo. We present a deep tissue multiplexed functional imaging method that probes multiple Förster resonant energy transfer (FRET) sensors in live embryos with high spatial resolution. The method simultaneously images fluorescence lifetimes in 3D with multiple excitation lasers. Through quantitative analysis of triple-channel intensity and lifetime images, we demonstrated that Ca2+ and cAMP levels of live embryos expressing dual FRET sensors can be monitored simultaneously at microscopic resolution. The method is compatible with a broad range of FRET sensors currently available for probing various cellular biochemical functions. It opens the door to imaging complex cellular circuitries in whole live organisms. PMID:26387920

  20. Analysis of Fretting Fatigue Strength of Integral Shroud Blade for Steam Turbine

    NASA Astrophysics Data System (ADS)

    Kaneko, Yasutomo; Tomii, Masayuki; Ohyama, Hiroharu; Kurimura, Takayuki

    To improve the reliability and the thermal efficiency of LP (Low Pressure) end blades of steam turbine, new standard series of LP end blades have been developed. The new LP end blades are characterized by the ISB (Integral Shroud Blade) structure. In the ISB structure, blades are continuously coupled by blade untwist due to centrifugal force when the blades rotate at high speed. One of the probable failure modes of the ISB structure seems to be fretting fatigue, because the ISB utilizes friction damping between adjacent shrouds and stubs. Therefore, in order to design a blade with high reliability, the design procedure for evaluating the fretting fatigue strength was established by the model test and the nonlinear contact analysis. This paper presents the practical design method for predicting the fretting fatigue strength of the ISB structure, and the some applications are explained.

  1. Quantitative FRET Analysis by Fast Acquisition Time Domain FLIM at High Spatial Resolution in Living Cells

    PubMed Central

    Padilla-Parra, Sergi; Audugé, Nicolas; Coppey-Moisan, Maïté; Tramier, Marc

    2008-01-01

    Quantitative analysis in Förster resonance energy transfer (FRET) experiments in live cells for protein interaction studies is still a challenging issue. In a two-component system (FRET and no FRET donor species), fitting of fluorescence lifetime imaging microscopy (FLIM) data gives the fraction of donor molecules involved in FRET (fD) and the intrinsic transfer efficiency. But when fast FLIM acquisitions are used to monitor dynamic changes in protein-protein interactions at high spatial and temporal resolutions in living cells, photon statistics and time resolution are limited. In this case, fitting procedures are not reliable, even for single lifetime donors. We introduce the new concept of a minimal fraction of donor molecules involved in FRET (mfD), coming from the mathematical minimization of fD. We find particular advantage in the use of mfD because it can be obtained without fitting procedures and it is derived directly from FLIM data. mfD constitutes an interesting quantitative parameter for live cell studies because it is related to the minimal relative concentration of interacting proteins. For multi-lifetime donors, the process of fitting complex fluorescence decays to find at least four reliable lifetimes is a near impossible task. Here, mfD extension for multi-lifetime donors is the only quantitative determinant. We applied this methodology for imaging the interaction between the bromodomains of TAFII250 and acetylated histones H4 in living cells at high resolution. We show the existence of discrete acetylated chromatin domains where the minimal fraction of bromodomain interacting with acetylated H4 oscillates from 0.26 to 0.36 and whose size is smaller than half of one micron cube. We demonstrate that mfD by itself is a useful tool to investigate quantitatively protein interactions in live cells, especially when using fast FRET-FLIM acquisition times. PMID:18539634

  2. Experimental verification of the kinetic theory of FRET using optical microspectroscopy and obligate oligomers.

    PubMed

    Patowary, Suparna; Pisterzi, Luca F; Biener, Gabriel; Holz, Jessica D; Oliver, Julie A; Wells, James W; Raicu, Valerică

    2015-04-07

    Förster resonance energy transfer (FRET) is a nonradiative process for the transfer of energy from an optically excited donor molecule (D) to an acceptor molecule (A) in the ground state. The underlying theory predicting the dependence of the FRET efficiency on the sixth power of the distance between D and A has stood the test of time. In contrast, a comprehensive kinetic-based theory developed recently for FRET efficiencies among multiple donors and acceptors in multimeric arrays has waited for further testing. That theory has been tested in the work described in this article using linked fluorescent proteins located in the cytoplasm and at the plasma membrane of living cells. The cytoplasmic constructs were fused combinations of Cerulean as donor (D), Venus as acceptor (A), and a photo-insensitive molecule (Amber) as a nonfluorescent (N) place holder: namely, NDAN, NDNA, and ADNN duplexes, and the fully fluorescent quadruplex ADAA. The membrane-bound constructs were fused combinations of GFP2 as donor (D) and eYFP as acceptor (A): namely, two fluorescent duplexes (i.e., DA and AD) and a fluorescent triplex (ADA). According to the theory, the FRET efficiency of a multiplex such as ADAA or ADA can be predicted from that of analogs containing a single acceptor (e.g., NDAN, NDNA, and ADNN, or DA and AD, respectively). Relatively small but statistically significant differences were observed between the measured and predicted FRET efficiencies of the two multiplexes. While elucidation of the cause of this mismatch could be a worthy endeavor, the discrepancy does not appear to question the theoretical underpinnings of a large family of FRET-based methods for determining the stoichiometry and quaternary structure of complexes of macromolecules in living cells.

  3. FRETBursts: An Open Source Toolkit for Analysis of Freely-Diffusing Single-Molecule FRET

    PubMed Central

    Lerner, Eitan; Chung, SangYoon; Weiss, Shimon; Michalet, Xavier

    2016-01-01

    Single-molecule Förster Resonance Energy Transfer (smFRET) allows probing intermolecular interactions and conformational changes in biomacromolecules, and represents an invaluable tool for studying cellular processes at the molecular scale. smFRET experiments can detect the distance between two fluorescent labels (donor and acceptor) in the 3-10 nm range. In the commonly employed confocal geometry, molecules are free to diffuse in solution. When a molecule traverses the excitation volume, it emits a burst of photons, which can be detected by single-photon avalanche diode (SPAD) detectors. The intensities of donor and acceptor fluorescence can then be related to the distance between the two fluorophores. While recent years have seen a growing number of contributions proposing improvements or new techniques in smFRET data analysis, rarely have those publications been accompanied by software implementation. In particular, despite the widespread application of smFRET, no complete software package for smFRET burst analysis is freely available to date. In this paper, we introduce FRETBursts, an open source software for analysis of freely-diffusing smFRET data. FRETBursts allows executing all the fundamental steps of smFRET bursts analysis using state-of-the-art as well as novel techniques, while providing an open, robust and well-documented implementation. Therefore, FRETBursts represents an ideal platform for comparison and development of new methods in burst analysis. We employ modern software engineering principles in order to minimize bugs and facilitate long-term maintainability. Furthermore, we place a strong focus on reproducibility by relying on Jupyter notebooks for FRETBursts execution. Notebooks are executable documents capturing all the steps of the analysis (including data files, input parameters, and results) and can be easily shared to replicate complete smFRET analyzes. Notebooks allow beginners to execute complex workflows and advanced users to

  4. Tuning FÖRESTER Resonance Energy Transfer (fret) in Dna-Fluorophore Constructs

    NASA Astrophysics Data System (ADS)

    Pollum, Marvin; Hernandez, Carlos E. Crespo

    2012-06-01

    According to Förester's equations, the efficiency (EFRET) of resonance energy transfer between fluorophores is governed by three factors: separation distance, relative orientation of transition dipole moments, and the spectral overlap integral. We've designed an ideal architecture for controlling each of these parameters by covalently linking FRET fluorophore pairs into complementary DNA helices. Steady-state absorption and emission spectroscopies are used to determine EFRET in a range of environments, while time-resolved techniques are used to reveal any decreases in FRET due to competing electronic relaxation pathways.

  5. Rational design of FRET sensor proteins based on mutually exclusive domain interactions.

    PubMed

    Merkx, Maarten; Golynskiy, Misha V; Lindenburg, Laurens H; Vinkenborg, Jan L

    2013-10-01

    Proteins that switch between distinct conformational states are ideal to monitor and control molecular processes within the complexity of biological systems. Inspired by the modular architecture of natural signalling proteins, our group explores generic design strategies for the construction of FRET-based sensor proteins and other protein switches. In the present article, I show that designing FRET sensors based on mutually exclusive domain interactions provides a robust method to engineer sensors with predictable properties and an inherently large change in emission ratio. The modularity of this approach should make it easily transferable to other applications of protein switches in fields ranging from synthetic biology, optogenetics and molecular diagnostics.

  6. CASL Virtual Reactor Predictive Simulation: Grid-to-Rod Fretting Wear

    SciTech Connect

    Roger, Lu Y.; Karoutas, Zeses; Sham, Sam

    2011-01-01

    Grid-to-Rod Fretting (GTRF) wear is currently one of the main causes of fuel rod leaking in pressurized water reactors. The Consortium for Advanced Simulation of Light Water Reactors (CASL) has identified GTRF as one of the Challenge Problems that drive the requirement for the development and application of a modeling and simulation computational environment for predictive simulation of light water reactors. This paper presents fretting wear simulation methodology currently employed by Westinghouse, a CASL industrial partner, to address GTRF. The required advancements in the computational and materials science modeling areas to develop a predictive simulation environment by CASL to address GTRF are outlined.

  7. Collaborative Research and Development (CR&D). Delivery Order 0014: Anti-Fretting Coatings Research Development

    DTIC Science & Technology

    2006-12-01

    PVD coatings (TiAlN and CrCN) to protect the Ti6Al4V worn against the CuNiIn and Ni thermal sprayed coatings. 2. Effect of High Temperature on...fretting at high temperatures in Ti6Al4V contacts. At 450°C the Ti6Al4V specimens experience approximately a 50% reduction in tensile strength, a 40...interface softening that occurs at high temperature . 25 3. Gross Slip Fretting Wear Analysis of Aluminum Bronze Coatings for Ti6Al4V Aerospace

  8. CASL virtual reactor predictive simulation: Grid-to-Rod Fretting wear

    NASA Astrophysics Data System (ADS)

    Lu, Roger Y.; Karoutas, Zeses; Sham, T.-L.

    2011-08-01

    Grid-to-Rod Fretting (GTRF) wear is currently one of the main causes of fuel rod leaking in pressurized water reactors. The Consortium for Advanced Simulation of Light Water Reactors (CASL) has identified GTRF as one of the Challenge Problems that drive the requirement for the development and application of a modeling and simulation computational environment for predictive simulation of light water reactors. This paper presents fretting wear simulation methodology currently employed by Westinghouse, a CASL industrial partner, to address GTRF. The required advancements in the computational and materials science modeling areas to develop a predictive simulation environment by CASL to address GTRF are outlined.

  9. FRETBursts: An Open Source Toolkit for Analysis of Freely-Diffusing Single-Molecule FRET.

    PubMed

    Ingargiola, Antonino; Lerner, Eitan; Chung, SangYoon; Weiss, Shimon; Michalet, Xavier

    2016-01-01

    Single-molecule Förster Resonance Energy Transfer (smFRET) allows probing intermolecular interactions and conformational changes in biomacromolecules, and represents an invaluable tool for studying cellular processes at the molecular scale. smFRET experiments can detect the distance between two fluorescent labels (donor and acceptor) in the 3-10 nm range. In the commonly employed confocal geometry, molecules are free to diffuse in solution. When a molecule traverses the excitation volume, it emits a burst of photons, which can be detected by single-photon avalanche diode (SPAD) detectors. The intensities of donor and acceptor fluorescence can then be related to the distance between the two fluorophores. While recent years have seen a growing number of contributions proposing improvements or new techniques in smFRET data analysis, rarely have those publications been accompanied by software implementation. In particular, despite the widespread application of smFRET, no complete software package for smFRET burst analysis is freely available to date. In this paper, we introduce FRETBursts, an open source software for analysis of freely-diffusing smFRET data. FRETBursts allows executing all the fundamental steps of smFRET bursts analysis using state-of-the-art as well as novel techniques, while providing an open, robust and well-documented implementation. Therefore, FRETBursts represents an ideal platform for comparison and development of new methods in burst analysis. We employ modern software engineering principles in order to minimize bugs and facilitate long-term maintainability. Furthermore, we place a strong focus on reproducibility by relying on Jupyter notebooks for FRETBursts execution. Notebooks are executable documents capturing all the steps of the analysis (including data files, input parameters, and results) and can be easily shared to replicate complete smFRET analyzes. Notebooks allow beginners to execute complex workflows and advanced users to

  10. Photochemistry of nucleic acid bases and their thio- and aza-analogues in solution.

    PubMed

    Pollum, Marvin; Martínez-Fernández, Lara; Crespo-Hernández, Carlos E

    2015-01-01

    The steady-state and time-resolved photochemistry of the natural nucleic acid bases and their sulfur- and nitrogen-substituted analogues in solution is reviewed. Emphasis is given to the experimental studies performed over the last 3-5 years that showcase topical areas of scientific inquiry and those that require further scrutiny. Significant progress has been made toward mapping the radiative and nonradiative decay pathways of nucleic acid bases. There is a consensus that ultrafast internal conversion to the ground state is the primary relaxation pathway in the nucleic acid bases, whereas the mechanism of this relaxation and the level of participation of the (1)πσ*, (1) nπ*, and (3)ππ* states are still matters of debate. Although impressive research has been performed in recent years, the microscopic mechanism(s) by which the nucleic acid bases dissipate excess vibrational energy to their environment, and the role of the N-glycosidic group in this and in other nonradiative decay pathways, are still poorly understood. The simple replacement of a single atom in a nucleobase with a sulfur or nitrogen atom severely restricts access to the conical intersections responsible for the intrinsic internal conversion pathways to the ground state in the nucleic acid bases. It also enhances access to ultrafast and efficient inter-system crossing pathways that populate the triplet manifold in yields close to unity. Determining the coupled nuclear and electronic pathways responsible for the significantly different photochemistry in these nucleic acid base analogues serves as a convenient platform to examine the current state of knowledge regarding the photodynamic properties of the DNA and RNA bases from both experimental and computational perspectives. Further investigations should also aid in forecasting the prospective use of sulfur- and nitrogen-substituted base analogues in photochemotherapeutic applications.

  11. Hydrated Electron Transfer to Nucleobases in Aqueous Solutions Revealed by Ab Initio Molecular Dynamics Simulations.

    PubMed

    Zhao, Jing; Wang, Mei; Fu, Aiyun; Yang, Hongfang; Bu, Yuxiang

    2015-08-03

    We present an ab initio molecular dynamics (AIMD) simulation study into the transfer dynamics of an excess electron from its cavity-shaped hydrated electron state to a hydrated nucleobase (NB)-bound state. In contrast to the traditional view that electron localization at NBs (G/A/C/T), which is the first step for electron-induced DNA damage, is related only to dry or prehydrated electrons, and a fully hydrated electron no longer transfers to NBs, our AIMD simulations indicate that a fully hydrated electron can still transfer to NBs. We monitored the transfer dynamics of fully hydrated electrons towards hydrated NBs in aqueous solutions by using AIMD simulations and found that due to solution-structure fluctuation and attraction of NBs, a fully hydrated electron can transfer to a NB gradually over time. Concurrently, the hydrated electron cavity gradually reorganizes, distorts, and even breaks. The transfer could be completed in about 120-200 fs in four aqueous NB solutions, depending on the electron-binding ability of hydrated NBs and the structural fluctuation of the solution. The transferring electron resides in the π*-type lowest unoccupied molecular orbital of the NB, which leads to a hydrated NB anion. Clearly, the observed transfer of hydrated electrons can be attributed to the strong electron-binding ability of hydrated NBs over the hydrated electron cavity, which is the driving force, and the transfer dynamics is structure-fluctuation controlled. This work provides new insights into the evolution dynamics of hydrated electrons and provides some helpful information for understanding the DNA-damage mechanism in solution.

  12. Structural, Dynamical, and Electronic Transport Properties of Modified DNA Duplexes Containing Size-Expanded Nucleobases

    SciTech Connect

    Fuentes-Cabrera, Miguel A; Orozco, Modesto; Luque, Javier; Sumpter, Bobby G; Blas, Jose; Ordejon, Pablo J; Huertas, Oscar; Tabares, Carolina

    2011-01-01

    Among the distinct strategies proposed to expand the genetic alphabet, sizeexpanded nucleobases are promising for the development of modified DNA duplexes with improved biotechnological properties. In particular, duplexes built up by replacing canonical bases with the corresponding benzo-fused counterparts could be valuable as molecular nanowires. In this context, this study reports the results of classical molecular dynamics simulations carried out to examine the structural and dynamical features of size-expanded DNAs, including both hybrid duplexes containing mixed pairs of natural and benzo-fused bases (xDNA) and pure size-expanded (xxDNA) duplexes. Furthermore, the electronic structure of both natural and size-expanded duplexes is examined by means of density functional computations. The results confirm that the structural and flexibility properties of the canonical DNA are globally little affected by the presence of benzo-fused bases. Themost relevant differences are found in the enhanced size of the grooves, and the reduction in the twist. However, the analysis also reveals subtle structural effects related to the nature and sequence of benzo-fused bases in the duplex. On the other hand, electronic structure calculations performed for xxDNAs confirm the reduction in the HOMOLUMO gap predicted from the analysis of the natural bases and their size-expanded counterparts, which suggests that pure size-expanded DNAs can be good conductors. A more complex situation is found for xDNAs, where fluctuations in the electrostatic interaction between base pairs exerts a decisive influence on the modulation of the energy gap.

  13. Electron ionization of the nucleobases adenine and hypoxanthine near the threshold: a combined experimental and theoretical study.

    PubMed

    Dawley, M Michele; Tanzer, Katrin; Cantrell, William A; Plattner, Peter; Brinkmann, Nicole R; Scheier, Paul; Denifl, Stephan; Ptasińska, Sylwia

    2014-12-07

    Electron ionization of the DNA nucleobase, adenine, and the tRNA nucleobase, hypoxanthine, was investigated near the threshold region (∼5-20 eV) using a high-resolution hemispherical electron monochromator and a quadrupole mass spectrometer. Ion efficiency curves of the threshold regions and the corresponding appearance energies (AEs) are presented for the parent cations and the five most abundant fragment cations of each molecule. The experimental ionization energies (IEs) of adenine and hypoxanthine were determined to be 8.70 ± 0.3 eV and 8.88 ± 0.5 eV, respectively. Quantum chemical calculations (B3LYP/6-311+G(2d,p)) yielded a vertical IE of 8.08 eV and an adiabatic IE of 8.07 eV for adenine and a vertical IE of 8.51 eV and an adiabatic IE of 8.36 eV for hypoxanthine, and the lowest energy optimized structures of the fragment cations and their respective neutral species were calculated. The enthalpies of the possible reactions from the adenine and hypoxanthine cations were also obtained computationally, which assisted in determining the most likely electron ionization pathways leading to the major fragment cations. Our results suggest that the imidazole ring is more stable than the pyrimidine ring in several of the fragmentation reactions from both adenine and hypoxanthine. This electron ionization study contributes to the understanding of the biological effects of electrons on nucleobases and to the database of the electronic properties of biomolecules, which is necessary for modeling the damage of DNA in living cells that is induced by ionizing radiation.

  14. Solvation of nucleobases in 1,3-dialkylimidazolium acetate ionic liquids: NMR spectroscopy insights into the dissolution mechanism.

    PubMed

    Araújo, João M M; Ferreira, Rui; Marrucho, Isabel M; Rebelo, Luís P N

    2011-09-15

    NMR studies of uracil, thymine, and adenine dissolved in 1-ethyl-3-methyl-imidazolium acetate ([C(2)mim][CH(3)COO]) and 1-butyl-3-methyl-imidazolium acetate ([C(4)mim][CH(3)COO]) show that hydrogen bonds (HB) dictate the dissolution mechanism and that both cations and anions participate in the solvation process. For that, the 1,3-dialkylimidazolium acetate ionic liquids (ILs) were considered to be bifunctional solvation ionic liquids. In the solvation of uracil and thymine, the [CH(3)COO](-) anion favors the formation of hydrogen bonds with the hydrogen atoms of the N1-H and N3-H groups of the nucleobases, while the aromatic protons in the bulky cations ([C(2)mim](+) and [C(4)mim](+)), especially the most acidic H2, interact with the oxygen atoms of the carbonyl groups. In the adenine solvation, while the [CH(3)COO](-) anion favors the formation of hydrogen bonds with the hydrogen atoms of the amino and N9-H groups of adenine, the aromatic protons in the bulky cations ([C(2)mim](+) and [C(4)mim](+)), especially the most acidic H2, prefer to interact with the unprotonated nitrogen atoms (N1, N3, and N7) of adenine. It is clearly demonstrated that hydrogen bonding is the major driving force in the dissolution of nucleobases in 1,3-dialkylimidazolium acetate ILs. Our results show that the ionic liquid must be a good hydrogen bond acceptor and a moderate hydrogen bond donor to dissolve nucleic acid bases. To strengthen the evidence of the proposed mechanism, NMR studies in the absence of deuterated cosolvents have been used, because the use of deuterated solvents could seriously hinder the dissolving capability of the IL for nucleobases.

  15. Natural versus artificial creation of base pairs in DNA: origin of nucleobases from the perspectives of unnatural base pair studies.

    PubMed

    Hirao, Ichiro; Kimoto, Michiko; Yamashige, Rie

    2012-12-18

    Since life began on Earth, the four types of bases (A, G, C, and T(U)) that form two sets of base pairs have remained unchanged as the components of nucleic acids that replicate and transfer genetic information. Throughout evolution, except for the U to T modification, the four base structures have not changed. This constancy within the genetic code raises the question of how these complicated nucleotides were generated from the molecules in a primordial soup on the early Earth. At some prebiotic stage, the complementarity of base pairs might have accelerated the generation and accumulation of nucleotides or oligonucleotides. We have no clues whether one pair of nucleobases initially appeared on the early Earth during this process or a set of two base pairs appeared simultaneously. Recently, researchers have developed new artificial pairs of nucleobases (unnatural base pairs) that function alongside the natural base pairs. Some unnatural base pairs in duplex DNA can be efficiently and faithfully amplified in a polymerase chain reaction (PCR) using thermostable DNA polymerases. The addition of unnatural base pair systems could expand the genetic alphabet of DNA, thus providing a new mechanism for the generation novel biopolymers by the site-specific incorporation of functional components into nucleic acids and proteins. Furthermore, the process of unnatural base pair development might provide clues to the origin of the natural base pairs in a primordial soup on the early Earth. In this Account, we describe the development of three representative types of unnatural base pairs that function as a third pair of nucleobases in PCR and reconsider the origin of the natural nucleic acids. As researchers developing unnatural base pairs, they use repeated "proof of concept" experiments. As researchers design new base pairs, they improve the structures that function in PCR and eliminate those that do not. We expect that this process is similar to the one functioning in the

  16. Absolute total and partial cross sections for ionization of nucleobases by proton impact in the Bragg peak velocity range

    SciTech Connect

    Tabet, J.; Eden, S.; Feil, S.; Abdoul-Carime, H.; Farizon, B.; Farizon, M.; Ouaskit, S.; Maerk, T. D.

    2010-08-15

    We present experimental results for proton ionization of nucleobases (adenine, cytosine, thymine, and uracil) based on an event-by-event analysis of the different ions produced combined with an absolute target density determination. We are able to disentangle in detail the various proton ionization channels from mass-analyzed product ion signals in coincidence with the charge-analyzed projectile. In addition we are able to determine a complete set of cross sections for the ionization of these molecular targets by 20-150 keV protons including the total and partial cross sections and the direct-ionization and electron-capture cross sections.

  17. Nucleobase-mediated, photocatalytic production of amphiphiles to promote the self-assembly of a simple self-replicating protocell.

    NASA Astrophysics Data System (ADS)

    Monnard, Pierre-Alain; Maurer, Sarah, E.; Albertsen, Anders, N.; Boncella, James, M.; Cape, Jonathan, L.

    replaced by a single nucleobase, 8-oxoguanine, which is tethered to one bipyridine ligand of the metal center. We report here the following major steps towards this chemical protocell: 1) the spontaneous formation of chemical structures consisting of decanoic acid, its precursor, and the simplified NA-ruthenium complexes. 2) the metabolism mediation by a nucleobase to effectively promote the photochemical amphiphile synthesis. 3) the demonstration of reaction selectivity dependent on the nature of the information molecule since only one specific nucleobase that has the required redox potential allows the metabolism to function. Finally, 4) the photochemical formation of amphiphiles can occur efficiently within a preformed membrane, i.e., the protocell compartment. The next step is the integration of short nucleic acid oligomers as opposed to a single nucleobase as the information material to study their photocatalytic activity mediation and polymerization.

  18. Solvent evaporation versus proton transfer in nucleobase-Pt(CN)(4,6)²⁻ dianion clusters: a collisional excitation and electronic laser photodissociation spectroscopy study.

    PubMed

    Sen, Ananya; Luxford, Thomas F M; Yoshikawa, Naruo; Dessent, Caroline E H

    2014-08-07

    Isolated molecular clusters of adenine, cytosine, thymine and uracil with Pt(CN)6(2-) and Pt(CN)4(2-) were studied for the first time to characterize the binding and reactivity of isolated transition metal complex ions with nucleobases. These clusters represent model systems for understanding metal complex-DNA adducts, as a function of individual nucleobases. Collisional excitation revealed that the clusters decay on the ground electronic surface by either solvent evaporation (i.e. loss of a nucleobase unit from the cluster) or via proton transfer from the nucleobase to the dianion. The Pt(CN)6(2-)-nucleobase clusters decay only by solvent evaporation, while the Pt(CN)4(2-) clusters fragment by both pathways. The enhanced proton-transfer reactivity of Pt(CN)4(2-) is attributed to the higher charge-density of the ligands in this transition metal anion. % fragmentation curves of the clusters reveal that the adenine clusters display distinctively higher fragmentation onsets, which are traced to the propensity of adenine to form the shortest intercluster H-bond. We also present laser electronic photodissociation measurements for the Pt(CN)6(2-)·Ur, Pt(CN)4(2-)·Ur and Pt(CN)4(2-)·Ur2 clusters to illustrate the potential of exploring metal complex DNA photophysics as a function of nucleobase within well-defined gaseous clusters. The spectra reported herein represent the first such measurements. We find that the electronic excited states decay with production of the same fragments (associated with solvent evaporation and proton transfer) observed upon collisional excitation of the electronic ground state, indicating ultrafast deactivation of the excited-state uracil-localized chromophore followed by vibrational predissociation.

  19. Triplex-forming ability of oligonucleotides containing 1-aryl-1,2,3-triazole nucleobases linked via a two atom-length spacer.

    PubMed

    Hari, Yoshiyuki; Nakahara, Motoi; Obika, Satoshi

    2013-09-01

    Phosphoramidites containing 2-propynyloxy or 1-butyn-4-yl as nucleobase precursors were synthesized and introduced into oligonucleotides using an automated DNA synthesizer. Copper-catalyzed alkyne-azide 1,3-dipolar cycloaddition of the oligonucleotides with various azides gave the corresponding triazolylated oligonucleotides, triplex-forming ability of these synthetic oligonucleotides with double-stranded DNA targets was evaluated by UV melting experiments. It was found that nucleobases containing 2-(1-m-carbonylaminophenyl-1,2,3-triazol-4-yl)ethyl units likely interacted with A of a TA base pair in a parallel triplex DNA.

  20. Energy level alignment at the interfaces between typical electrodes and nucleobases: Al/adenine/indium-tin-oxide and Al/thymine/indium-tin-oxide

    SciTech Connect

    Lee, Younjoo; Lee, Hyunbok; Park, Soohyung; Yi, Yeonjin

    2012-12-03

    We investigated the interfacial electronic structures of Al/adenine/indium-tin-oxide (ITO) and Al/thymine/ITO using in situ ultraviolet and x-ray photoemission spectroscopy and density functional theory calculations. Adenine shows both an interface dipole and level bending, whereas thymine shows only an interface dipole in contact with ITO. In addition, thymine possesses a larger ionization energy than adenine. These are understood with delocalized {pi} states confirmed with theoretical calculations. For the interface between nucleobases and Al, both nucleobases show a prominent reduction of the electron injection barrier from Al to each base in accordance with a downward level shift.

  1. An FITC-BODIPY FRET couple: application to selective, ratiometric detection and bioimaging of cysteine.

    PubMed

    Ma, Dong Hee; Kim, Dokyoung; Akisawa, Takuya; Lee, Kyung-Ha; Kim, Kyong-Tai; Ahn, Kyo Han

    2015-04-01

    A novel FRET couple of fluorescein is disclosed, and it was readily constructed by conjugating an amino-BODIPY dye, a new FRET donor, with fluorescein isocyanate. Its potential was demonstrated by a fluorescence sensing system for cysteine, which was prepared by introducing acryloyl groups to the fluorescein moiety. The FRET probe exhibited promising ratiometric response to cysteine with high selectivity and sensitivity in a buffer solution containing acetonitrile at a physiological pH of 7.4, but showed slow reactivity. This slow response was solved by addition of a surfactant, thus allowing ratiometric imaging and determination of the endogenous level of cysteine in cells in HEPES buffer, by confocal fluorescence microscopy. Imaging experiments toward various cells suggested that such aryl acrylate type probes are vulnerable to the ubiquitous esterase activity. For the selected C6 cell line, in which the esterase activity was minimal, the ratiometric quantification of cysteine level was demonstrated. The FRET probe was also applied to determine the level of cysteine in human blood plasma.

  2. Spectral Unmixing Plate Reader: High-Throughput, High-Precision FRET Assays in Living Cells.

    PubMed

    Schaaf, Tory M; Peterson, Kurt C; Grant, Benjamin D; Thomas, David D; Gillispie, Gregory D

    2017-03-01

    We have developed a microplate reader that records a complete high-quality fluorescence emission spectrum on a well-by-well basis under true high-throughput screening (HTS) conditions. The read time for an entire 384-well plate is less than 3 min. This instrument is particularly well suited for assays based on fluorescence resonance energy transfer (FRET). Intramolecular protein biosensors with genetically encoded green fluorescent protein (GFP) donor and red fluorescent protein (RFP) acceptor tags at positions sensitive to structural changes were stably expressed and studied in living HEK cells. Accurate quantitation of FRET was achieved by decomposing each observed spectrum into a linear combination of four component (basis) spectra (GFP emission, RFP emission, water Raman, and cell autofluorescence). Excitation and detection are both conducted from the top, allowing for thermoelectric control of the sample temperature from below. This spectral unmixing plate reader (SUPR) delivers an unprecedented combination of speed, precision, and accuracy for studying ensemble-averaged FRET in living cells. It complements our previously reported fluorescence lifetime plate reader, which offers the feature of resolving multiple FRET populations within the ensemble. The combination of these two direct waveform-recording technologies greatly enhances the precision and information content for HTS in drug discovery.

  3. Closing the gap between single molecule and bulk FRET analysis of nucleosomes.

    PubMed

    Gansen, Alexander; Hieb, Aaron R; Böhm, Vera; Tóth, Katalin; Langowski, Jörg

    2013-01-01

    Nucleosome structure and stability affect genetic accessibility by altering the local chromatin morphology. Recent FRET experiments on nucleosomes have given valuable insight into the structural transformations they can adopt. Yet, even if performed under seemingly identical conditions, experiments performed in bulk and at the single molecule level have given mixed answers due to the limitations of each technique. To compare such experiments, however, they must be performed under identical conditions. Here we develop an experimental framework that overcomes the conventional limitations of each method: single molecule FRET experiments are carried out at bulk concentrations by adding unlabeled nucleosomes, while bulk FRET experiments are performed in microplates at concentrations near those used for single molecule detection. Additionally, the microplate can probe many conditions simultaneously before expending valuable instrument time for single molecule experiments. We highlight this experimental strategy by exploring the role of selective acetylation of histone H3 on nucleosome structure and stability; in bulk, H3-acetylated nucleosomes were significantly less stable than non-acetylated nucleosomes. Single molecule FRET analysis further revealed that acetylation of histone H3 promoted the formation of an additional conformational state, which is suppressed at higher nucleosome concentrations and which could be an important structural intermediate in nucleosome regulation.

  4. Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection.

    PubMed

    Jin, Birui; Wang, Shurui; Lin, Min; Jin, Ying; Zhang, Shujing; Cui, Xingye; Gong, Yan; Li, Ang; Xu, Feng; Lu, Tian Jian

    2017-04-15

    Pathogenic bacteria cause serious harm to human health, which calls for the development of advanced detection methods. Herein, we developed a novel detection platform based on fluorescence resonance energy transfer (FRET) for rapid, ultrasensitive and specific bacteria detection, where gold nanoparticles (AuNPs, acceptor) were conjugated with aptamers while upconversion nanoparticles (UCNPs, donor) were functionalized with corresponding complementary DNA (cDNA). The spectral overlap between UCNPs fluorescence emission and AuNPs absorption enables the occurrence of FRET when hybridizing the targeted aptamer and cDNA, causing upconversion fluorescence quenching. In the presence of target bacteria, the aptamers preferentially bind to bacteria forming a three-dimensional structure and thereby dissociate UCNPs-cDNA from AuNPs-aptamers, resulting in the recovery of upconversion fluorescence. Using the UCNPs based FRET aptasensor, we successfully detected Escherichia coli ATCC 8739 (as a model analyte) with a detection range of 5-10(6)cfu/mL and detection limit of 3cfu/mL. The aptasensor was further used to detect E. coli in real food and water samples (e.g., tap/pond water, milk) within 20min. The novel UCNPs based FRET aptasensor could be used to detect a broad range of targets from whole cells to metal ions by using different aptamer sequences, holding great potential in environmental monitoring, medical diagnostics and food safety analysis.

  5. Metal ion induced FRET OFF-ON in tren/dansyl-appended rhodamine.

    PubMed

    Lee, Min Hee; Kim, Hyun Jung; Yoon, Sangwoon; Park, Noejung; Kim, Jong Seung

    2008-01-17

    A series of new fluorescent probes bearing tren-spaced rhodamine B and dansyl groups have been synthesized. Compound 1 exhibits selective changes in the absorption and the emission spectra toward Cu2+ ion over miscellaneous metal cations. Among 1-3, 1 shows the best FRET efficiency through dansyl emission to rhodamine absorption for the Cu2+ ion.

  6. Single-Molecule FRET Measurements in Additive-Enriched Aqueous Solutions.

    PubMed

    Kempe, Daryan; Cerminara, Michele; Poblete, Simón; Schöne, Antonie; Gabba, Matteo; Fitter, Jörg

    2017-01-03

    The addition of high amounts of chemical denaturants, salts, viscosity enhancers or macro-molecular crowding agents has an impact on the physical properties of buffer solutions. Among others, the (microscopic) viscosity, the refractive index, the dielectric constant, and the ionic strength can be affected. Here, we systematically evaluate the importance of solvent characteristics with respect to single-molecule FRET (smFRET) data. First, we present a confocal based method for the determination of fluorescence quantum yields to facilitate a fast characterization of smFRET-samples at sub-nM-concentrations. As a case study, we analyze smFRET data of structurally rigid, double-stranded DNA-oligonucleotides in aqueous buffer and in buffers with specific amounts of glycerol, guanidine hydrochloride (GdnHCl), and sodium chloride (NaCl) added. We show that the calculation of interdye distances, without taking into account solvent-induced spectral and photophysical changes of the labels, leads to deviations of up to 4 Å from the real interdye distances. Additionally, we demonstrate that electrostatic dye-dye repulsions are negligible for the interdye distance regime considered here (>50 Å). Finally, we use our approach to validate the further compaction of the already unfolded state of phosphoglycerate kinase (PGK) with decreasing denaturant concentrations, a mechanism known as coil-globule transition.

  7. Real-time submillisecond single-molecule FRET dynamics of freely diffusing molecules with liposome tethering

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Yeol; Kim, Cheolhee; Lee, Nam Ki

    2015-04-01

    Single-molecule fluorescence resonance energy transfer (smFRET) is one of the powerful techniques for deciphering the dynamics of unsynchronized biomolecules. However, smFRET is limited in its temporal resolution for observing dynamics. Here, we report a novel method for observing real-time dynamics with submillisecond resolution by tethering molecules to freely diffusing 100-nm-sized liposomes. The observation time for a diffusing molecule is extended to 100 ms with a submillisecond resolution, which allows for direct analysis of the transition states from the FRET time trace using hidden Markov modelling. We measure transition rates of up to 1,500 s-1 between two conformers of a Holliday junction. The rapid diffusional migration of Deinococcus radiodurans single-stranded DNA-binding protein (SSB) on single-stranded DNA is resolved by FRET, faster than that of Escherichia coli SSB by an order of magnitude. Our approach is a powerful method for studying the dynamics and movements of biomolecules at submillisecond resolution.

  8. Titanium carbide nanoparticles reinforcing nickel matrix for improving nanohardness and fretting wear properties in wet conditions

    NASA Astrophysics Data System (ADS)

    Dănăilă, Eliza; Benea, Lidia; Caron, Nadège; Raquet, Olivier

    2016-09-01

    In this study Ni/nano-TiC functional composite coatings were produced by electro-codeposition of TiC nanoparticles (50 nm mean diameter) with nickel on 304L stainless steel support. Coatings were obtained from a Watts classical solution in which TiC nanoparticles were added. The surface morphology, chemical composition, structure, roughness and thickness, were evaluated in relation to the effect of TiC nanoparticles incorporation into Ni matrix. It was found that incorporation of TiC nanoparticles into the nickel matrix produces morphological changes in the deposit and increases the roughness. The fretting wear behavior in wet conditions of the obtained coatings was evaluated on a ball-on-plate configuration. To evaluate the wet fretting wear (tribocorrosion) behavior the open circuit potential was measured before, during and after the fretting tests at room temperature in the solution that simulates the primary water circuit of Pressurized Water Reactors. The results show that Ni/nano-TiC composite coatings exhibited a low friction coefficient, high nanohardness and fretting wear resistance in wet conditions compared with pure Ni coatings.

  9. Analysis of FRET Signals in the Presence of Free Donors and Acceptors☆

    PubMed Central

    Wlodarczyk, Jakub; Woehler, Andrew; Kobe, Fritz; Ponimaskin, Evgeni; Zeug, Andre; Neher, Erwin

    2008-01-01

    Abstract A method for spectral analysis of Förster resonance energy transfer (FRET) signals is presented, taking into consideration both the contributions of unpaired donor and acceptor fluorophores and the influence of incomplete labeling of the interacting partners. It is shown that spectral analysis of intermolecular FRET cannot yield accurate values of the Förster energy transfer efficiency E, unless one of the interactors is in large excess and perfectly labeled. Instead, analysis of donor quenching yields a product of the form Efdpa, where fd is the fraction of donor-type molecules participating in donor-acceptor complexes and pa is the labeling probability of the acceptor. Similarly, analysis of sensitized emission yields a product involving Efa. The analysis of intramolecular FRET (e.g., of tandem constructs) yields the product Epa. We use our method to determine these values for a tandem construct of cyan fluorescent protein and yellow fluorescent protein and compare them with those obtained by standard acceptor photobleaching and fluorescence lifetime measurements. We call the method lux-FRET, since it relies on linear unmixing of spectral components. PMID:17921223

  10. Tracing the conformational changes in BSA using FRET with environmentally-sensitive squaraine probes

    NASA Astrophysics Data System (ADS)

    Govor, Iryna V.; Tatarets, Anatoliy L.; Obukhova, Olena M.; Terpetschnig, Ewald A.; Gellerman, Gary; Patsenker, Leonid D.

    2016-06-01

    A new potential method of detecting the conformational changes in hydrophobic proteins such as bovine serum albumin (BSA) is introduced. The method is based on the change in the Förster resonance energy transfer (FRET) efficiency between protein-sensitive fluorescent probes. As compared to conventional FRET based methods, in this new approach the donor and acceptor dyes are not covalently linked to protein molecules. Performance of the new method is demonstrated using the protein-sensitive squaraine probes Square-634 (donor) and Square-685 (acceptor) to detect the urea-induced conformational changes of BSA. The FRET efficiency between these probes can be considered a more sensitive parameter to trace protein unfolding as compared to the changes in fluorescence intensity of each of these probes. Addition of urea followed by BSA unfolding causes a noticeable decrease in the emission intensities of these probes (factor of 5.6 for Square-634 and 3.0 for Square-685), and the FRET efficiency changes by a factor of up to 17. Compared to the conventional method the new approach therefore demonstrates to be a more sensitive way to detect the conformational changes in BSA.

  11. Highly Sensitive Homogeneous Immunoassays Based on Construction of Silver Triangular Nanoplates-Quantum Dots FRET System

    NASA Astrophysics Data System (ADS)

    Zeng, Qinghui; Li, Qin; Ji, Wenyu; Bin, Xue; Song, Jie

    2016-05-01

    With growing concerns about health issues worldwide, elegant sensors with high sensitivity and specificity for virus/antigens (Ag) detection are urgent to be developed. Homogeneous immunoassays (HIA) are an important technique with the advantages of small sample volumes requirement and pretreatment-free process. HIA are becoming more favorable for the medical diagnosis and disease surveillance than heterogeneous immunoassays. An important subset of HIA relies on the effect of fluorescence resonance energy transfer (FRET) via a donor-acceptor (D–A) platform, e.g., quantum dots (QDs) donor based FRET system. Being an excellent plasmonic material, silver triangular nanoplates (STNPs) have unique advantages in displaying surface plasmon resonance in the visible to near infrared spectral region, which make them a better acceptor for pairing with QDs in a FRET-based sensing system. However, the reported STNPs generally exhibited broad size distributions, which would greatly restrict their application as HIA acceptor for high detection sensitivity and specificity purpose. In this work, uniform STNPs and red-emitting QDs are firstly applied to construct FRET nanoplatform in the advanced HIA and further be exploited for analyzing virus Ag. The uniform STNPs/QDs nanoplatform based medical sensor provides a straightforward and highly sensitive method for Ag analysis in homogeneous form.

  12. Fretting Fatigue Behavior of a Titanium Alloy Ti-6AL-4V at Elevated Temperature

    DTIC Science & Technology

    2002-03-01

    Displacement w Specimen width β Dundar’s parameter δ Slip in the x...direction δ∆ Slip range at the crack location axialσ∆ Change in the axial stress υ...life under fretting conditions that was a function of slip amplitude, contact pressure, and materials. They also observed that the cracks initiate

  13. Evaluation of Ti-48Al-2Cr-2Nb Under Fretting Conditions

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.; Raj, Sai V.

    2001-01-01

    The fretting behavior of Ti-48Al-2Cr-2Nb (y-TiAl) in contact with the nickel-base superalloy 718 was examined in air at temperatures from 296 to 823 K (23 to 550 C). The interfacial adhesive bonds between Ti-48Al-2Cr-2Nb and superalloy 718 were generally stronger than the cohesive bonds within Ti-48Al-2Cr-2Nb. The failed Ti-48Al-2Cr-2Nb debris subsequently transferred to the superalloy 718. In reference experiments conducted with Ti-6Al-4V against superalloy 718 under identical fretting conditions, the degree of transfer was greater for Ti-6A1-4V than for Ti-48Al-2Cr-2Nb. Wear of Ti-48Al-2Cr-2Nb generally decreased with increasing fretting frequency. The increasing rate of oxidation at elevated temperatures led to a drop in wear at 473 K. However, fretting wear increased as the temperature was increased from 473 to 823 K. At 723 and 823 K, oxide film disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals.

  14. Fretting corrosion and associated metal fatigue. (Latest citations from METADEX). Published Search

    SciTech Connect

    Not Available

    1994-02-01

    The bibliography contains citations concerning the conditions leading to fretting corrosion of metals. The resulting wear and metal fatigue are explained relative to a combination of electrochemical and mechanical factors acting simultaneously. The citations also examine surface treatments and lubricants used to reduce wear and corrosion. (Contains 250 citations and includes a subject term index and title list.)

  15. Corrosion and Fretting of a Modular Hip System: A Retrieval Analysis of 60 Rejuvenate Stems.

    PubMed

    De Martino, Ivan; Assini, Joseph B; Elpers, Marcella E; Wright, Timothy M; Westrich, Geoffrey H

    2015-08-01

    Femoral stems with dual-taper modularity were introduced to allow independent control of length, offset, and version. Corrosion and fretting related to micromotion at the neck-stem junction are thought to stimulate an adverse local tissue reaction (ALTR). Analysis of 60 consecutively retrieved modular-neck stem implants (Rejuvenate, Stryker) revised primarily for ALTR was done to determine the variables influencing corrosion and fretting patterns at the neck-stem interface. Taper damage evaluation was performed with stereomicrocopic analysis with two observers. Evidence of fretting and corrosion was seen at the neck-stem taper in all implants, including three implants revised for periprosthetic fractures within four weeks of the index surgery indicating that this process starts early. Femoral stems paired with the long overall neck lengths had significantly higher corrosion scores. Correlation of the corrosion severity at particular locations with the length of implantation suggests that the neck-stem junction experiences cyclic cantilever bending in vivo. The positive correlation between the length of implantation and fretting/corrosion scores bodes poorly for patients who still have this implant. Scanning electron microscopy on a subset of specimens was also performed to evaluate the black corrosion material. We strongly urge frequent follow-up exams for every patient with this particular modular hip stem.

  16. Single-molecule FRET-Rosetta reveals RNA structural rearrangements during human telomerase catalysis.

    PubMed

    Parks, Joseph W; Kappel, Kalli; Das, Rhiju; Stone, Michael D

    2017-02-01

    Maintenance of telomeres by telomerase permits continuous proliferation of rapidly dividing cells, including the majority of human cancers. Despite its direct biomedical significance, the architecture of the human telomerase complex remains unknown. Generating homogeneous telomerase samples has presented a significant barrier to developing improved structural models. Here we pair single-molecule Förster resonance energy transfer (smFRET) measurements with Rosetta modeling to map the conformations of the essential telomerase RNA core domain within the active ribonucleoprotein. FRET-guided modeling places the essential pseudoknot fold distal to the active site on a protein surface comprising the C-terminal element, a domain that shares structural homology with canonical polymerase thumb domains. An independently solved medium-resolution structure of Tetrahymena telomerase provides a blind test of our modeling methodology and sheds light on the structural homology of this domain across diverse organisms. Our smFRET-Rosetta models reveal nanometer-scale rearrangements within the RNA core domain during catalysis. Taken together, our FRET data and pseudoatomic molecular models permit us to propose a possible mechanism for how RNA core domain rearrangement is coupled to template hybrid elongation.

  17. TR-FRET-Based High-Throughput Screening Assay for Identification of UBC13 Inhibitors

    PubMed Central

    Madiraju, Charitha; Welsh, Kate; Cuddy, Michael P.; Godoi, Paulo; Pass, Ian; Ngo, Tram; Vasile, Stefan; Sergienko, Eduard A.; Diaz, Paul; Matsuzawa, Shu-Ichi; Reed, John C.

    2014-01-01

    UBC13 is a non-canonical Ubiquitin Conjugating Enzyme (E2) that has been implicated in a variety of cellular signaling processes due to its ability to catalyze formation of Lysine 63-linked polyubiquitin chains on various substrates. In particular, UBC13 is required for signaling by a variety of receptors important in immune regulation, making it a candidate target for inflammatory diseases. UBC13 is also critical for double-strand DNA repair, and thus a potential radiosensitizer and chemosensitizer target for oncology. We developed a high-throughput screening (HTS) assay for UBC13 based on the method of time-resolved fluorescence resonance energy transfer (TR-FRET). The TR-FRET assay combines fluorochrome (Fl)-conjugated ubiquitin (fluorescence acceptor) with terbium (Tb)-conjugated ubiquitin (fluorescence donor), such that the assembly of mixed chains of Fl- and Tb-ubiquitin creates a robust TR-FRET signal. We defined conditions for optimized performance of the TR-FRET assay in both 384 and 1536-well formats. Chemical library screens (total 456,865 compounds) were conducted in high-throughput mode using various compound collections, affording superb Z' scores (typically > 0.7) and thus validating the performance of the assays. Altogether, the HTS assays described here are suitable for large-scale, automated screening of chemical libraries in search of compounds with inhibitory activity against UBC13. PMID:22034497

  18. FRET Studies Between CdTe Capped by Small-Molecule Ligands and Fluorescent Protein

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Zhou, Dejian; He, Junhui

    2014-12-01

    Water-soluble luminescent semiconductor nanocrystals also known as quantum dots (QDs) that have prominent photostability, wide absorption cross sections and tunable narrow emission, have been shown as promising probes in immunoassays. QDs are often used as donors in fluorescence resonance energy transfer (FRET) based sensors using organic dyes or fluorescent proteins as acceptors. Here, the FRET between a QD donor and fluorescent protein acceptors has been studied. The fluorescent protein (FP)mCherry appended with a hexa-histidine-tag could effectively self-assemble onto CdTe to produce small donor-acceptor distances and hence highly efficient FRET (efficiency > 80%) at relatively low FP:CdTe copy numbers (ca.1). Using the Förster dipole-dipole interaction formula, the Förster radius (R0) and respective donor-acceptor distances for the CdTe-FP FRET systems have been calculated. The binding constants (Kd) of the QD-FP systems have also been evaluated by the emission spectra.

  19. Sequential data assimilation for single-molecule FRET photon-counting data

    SciTech Connect

    Matsunaga, Yasuhiro; Kidera, Akinori; Sugita, Yuji

    2015-06-07

    Data assimilation is a statistical method designed to improve the quality of numerical simulations in combination with real observations. Here, we develop a sequential data assimilation method that incorporates one-dimensional time-series data of smFRET (single-molecule Förster resonance energy transfer) photon-counting into conformational ensembles of biomolecules derived from “replicated” molecular dynamics (MD) simulations. A particle filter using a large number of “replicated” MD simulations with a likelihood function for smFRET photon-counting data is employed to screen the conformational ensembles that match the experimental data. We examine the performance of the method using emulated smFRET data and coarse-grained (CG) MD simulations of a dye-labeled polyproline-20. The method estimates the dynamics of the end-to-end distance from smFRET data as well as revealing that of latent conformational variables. The particle filter is also able to correct model parameter dependence in CG MD simulations. We discuss the applicability of the method to real experimental data for conformational dynamics of biomolecules.

  20. System-level mapping of Escherichia coli response regulator dimerization with FRET hybrids

    PubMed Central

    Gao, Rong; Tao, Yuan; Stock, Ann M

    2008-01-01

    Two-component signal transduction, featuring highly conserved histidine kinases (HKs) and response regulators (RRs), is one of the most prevalent signalling schemes in prokaryotes. RRs function as phosphorylation-activated switches to mediate diverse output responses, mostly via transcription regulation. As bacterial genomes typically encode multiple two-component proteins for distinct signalling pathways, the sequence and structural similarities of RR receiver domains create significant challenges to maintain interaction specificity. It is especially demanding for members of the OmpR/PhoB subfamily, the largest RR subfamily, which share a conserved dimerization interface for phosphorylation-mediated transcription regulation. We developed a strategy to investigate RR interaction by analysing Förster resonance energy transfer (FRET) between cyan fluorescent protein (CFP)- and yellow fluorescent protein (YFP)-fused RRs in vitro. Using the Escherichia coli RR PhoB as a model system, we were able to observe phosphorylation-dependent FRET between fluorescent protein (FP)–PhoB proteins and validated the FRET method by determining dimerization affinity and dimerization-coupled phosphorylation kinetics that recapitulated values determined by alternative methods. Further application of the FRET method to all E. coli OmpR/PhoB subfamily RRs revealed that phosphorylation–activated RR interaction is indeed a common theme for OmpR/PhoB subfamily RRs and these RRs display significant interaction specificity. Weak hetero-pair interactions were also identified between several different RRs, suggesting potential cross-regulation between distinct pathways. PMID:18631241

  1. Measuring TCR-pMHC Binding In Situ using a FRET-based Microscopy Assay

    PubMed Central

    Axmann, Markus; Schütz, Gerhard J.; Huppa, Johannes B.

    2015-01-01

    T-cells are remarkably specific and effective when recognizing antigens in the form of peptides embedded in MHC molecules (pMHC) on the surface of Antigen Presenting Cells (APCs). This is despite T-cell antigen receptors (TCRs) exerting usually a moderate affinity (µM range) to antigen when binding is measured in vitro1. In view of the molecular and cellular parameters contributing to T-cell antigen sensitivity, a microscopy-based methodology has been developed as a means to monitor TCR-pMHC binding in situ, as it occurs within the synapse of a live T-cell and an artificial and functionalized glass-supported planar lipid bilayer (SLB), which mimics the cell membrane of an Antigen presenting Cell (APC) 2. Measurements are based on Förster Resonance Energy Transfer (FRET) between a blue- and red-shifted fluorescent dye attached to the TCR and the pMHC. Because the efficiency of FRET is inversely proportional to the sixth power of the inter-dye distance, one can employ FRET signals to visualize synaptic TCR-pMHC binding. The sensitive of the microscopy approach supports detection of single molecule FRET events. This allows to determine the affinity and off-rate of synaptic TCR-pMHC interactions and in turn to interpolate the on-rate of binding. Analogous assays could be applied to measure other receptor-ligand interactions in their native environment. PMID:26555227

  2. Newly engineered cyan fluorescent proteins with enhanced performances for live cell FRET imaging.

    PubMed

    Mérola, Fabienne; Fredj, Asma; Betolngar, Dahdjim-Benoît; Ziegler, Cornelia; Erard, Marie; Pasquier, Hélène

    2014-02-01

    Cyan fluorescent proteins (CFPs) derived from Aequorea victoria green fluorescent protein are the most widely used Förster resonant energy transfer (FRET) donors in genetically encoded biosensors for live-cell imaging and bioassays. However, the weak and complex fluorescence emission of cyan variants, such as enhanced cyan fluorescent protein (ECFP) or Cerulean, has long remained a major bottleneck in these FRET techniques. Recently, several CFPs with greatly improved performances, including mTurquoise, mTurquoise2, mCerulean3, and Aquamarine, have been engineered through a mixture of site-directed and large-scale random mutagenesis. This review summarizes the engineering and relative merits of these new cyan donors, which can readily replace popular CFPs in FRET imaging protocols, while reaching fluorescence quantum yields close to 90%, and unprecedented long, near-single fluorescence lifetimes of about 4 ns. These variants display an increased general photostability and much reduced environmental sensitivity, notably towards acid pH. These new, bright, and robust CFPs now open up exciting outlooks for fluorescence lifetime imaging microscopy and advanced quantitative FRET analyses in living cells. In addition, the stepwise engineering of Aquamarine shows that only two critical mutations in ECFP, and one in Cerulean, are required to achieve these performances, which brings new insights into the structural bases of their photophysical properties.

  3. Reversible dimerization of Aequorea victoria fluorescent proteins increases the dynamic range of FRET-based indicators.

    PubMed

    Kotera, Ippei; Iwasaki, Takuya; Imamura, Hiromi; Noji, Hiroyuki; Nagai, Takeharu

    2010-02-19

    Fluorescent protein (FP)-based Forster resonance energy transfer (FRET) technology is useful for development of functional indicators to visualize second messenger molecules and activation of signaling components in living cells. However, the design and construction of the functional indicators require careful optimization of their structure at the atomic level. Therefore, routine procedures for constructing FRET-based indicators currently include the adjustment of the linker length between the FPs and the sensor domain and relative dipole orientation of the FP chromophore. Here we report that, in addition to these techniques, optimization of the dimerization interface of Aequorea FPs is essential to achieve the highest possible dynamic range of signal change by FRET-based indicators. We performed spectroscopic analyses of various indicators (cameleon, TN-XL, and ATeam) and their variants. We chose variants containing mutant FPs with different dimerization properties, i.e., no, weak, or enhanced dimerization of the donor or acceptor FP. Our findings revealed that the FPs that dimerized weakly yielded high-performance FRET-based indicators with the greatest dynamic range.

  4. F1-ATPase conformational cycle from simultaneous single-molecule FRET and rotation measurements

    PubMed Central

    Sugawa, Mitsuhiro; Okazaki, Kei-ichi; Kobayashi, Masaru; Matsui, Takashi; Hummer, Gerhard; Masaike, Tomoko; Nishizaka, Takayuki

    2016-01-01

    Despite extensive studies, the structural basis for the mechanochemical coupling in the rotary molecular motor F1-ATPase (F1) is still incomplete. We performed single-molecule FRET measurements to monitor conformational changes in the stator ring-α3β3, while simultaneously monitoring rotations of the central shaft-γ. In the ATP waiting dwell, two of three β-subunits simultaneously adopt low FRET nonclosed forms. By contrast, in the catalytic intermediate dwell, two β-subunits are simultaneously in a high FRET closed form. These differences allow us to assign crystal structures directly to both major dwell states, thus resolving a long-standing issue and establishing a firm connection between F1 structure and the rotation angle of the motor. Remarkably, a structure of F1 in an ε-inhibited state is consistent with the unique FRET signature of the ATP waiting dwell, while most crystal structures capture the structure in the catalytic dwell. Principal component analysis of the available crystal structures further clarifies the five-step conformational transitions of the αβ-dimer in the ATPase cycle, highlighting the two dominant modes: the opening/closing motions of β and the loosening/tightening motions at the αβ-interface. These results provide a new view of tripartite coupling among chemical reactions, stator conformations, and rotary angles in F1-ATPase. PMID:27166420

  5. Molecular design for enhanced sensitivity of a FRET aptasensor built on the graphene oxide surface.

    PubMed

    Ueno, Yuko; Furukawa, Kazuaki; Matsuo, Kota; Inoue, Suzuyo; Hayashi, Katsuyoshi; Hibino, Hiroki

    2013-11-14

    We designed a biomolecular probe for highly sensitive protein detection by modifying an aptamer with a DNA spacer. The spacer controls the distance between a fluorescence dye and a quencher, which is crucial for FRET-based sensors. We successfully demonstrated an improvement in the sensitivity of an on-chip graphene oxide aptasensor.

  6. Paramagnetic Nanoparticles as a Platform for FRET-Based Sarcosine Picomolar Detection

    PubMed Central

    Heger, Zbynek; Cernei, Natalia; Krizkova, Sona; Masarik, Michal; Kopel, Pavel; Hodek, Petr; Zitka, Ondrej; Adam, Vojtech; Kizek, Rene

    2015-01-01

    Herein, we describe an ultrasensitive specific biosensing system for detection of sarcosine as a potential biomarker of prostate carcinoma based on Förster resonance energy transfer (FRET). The FRET biosensor employs anti-sarcosine antibodies immobilized on paramagnetic nanoparticles surface for specific antigen binding. Successful binding of sarcosine leads to assembly of a sandwich construct composed of anti-sarcosine antibodies keeping the Förster distance (Ro) of FRET pair in required proximity. The detection is based on spectral overlap between gold-functionalized green fluorescent protein and antibodies@quantum dots bioconjugate (λex 400 nm). The saturation curve of sarcosine based on FRET efficiency (F604/F510 ratio) was tested within linear dynamic range from 5 to 50 nM with detection limit down to 50 pM. Assembled biosensor was then successfully employed for sarcosine quantification in prostatic cell lines (PC3, 22Rv1, PNT1A), and urinary samples of prostate adenocarcinoma patients. PMID:25746688

  7. Voltage-dependent Dynamic FRET Signals from the Transverse Tubules in Mammalian Skeletal Muscle Fibers

    PubMed Central

    DiFranco, Marino; Capote, Joana; Quiñonez, Marbella; Vergara, Julio L.

    2007-01-01

    Two hybrid voltage-sensing systems based on fluorescence resonance energy transfer (FRET) were used to record membrane potential changes in the transverse tubular system (TTS) and surface membranes of adult mice skeletal muscle fibers. Farnesylated EGFP or ECFP (EGFP-F and ECFP-F) were used as immobile FRET donors, and either non-fluorescent (dipicrylamine [DPA]) or fluorescent (oxonol dye DiBAC4(5)) lipophilic anions were used as mobile energy acceptors. Flexor digitorum brevis (FDB) muscles were transfected by in vivo electroporation with pEGFP-F and pECFP-F. Farnesylated fluorescent proteins were efficiently expressed in the TTS and surface membranes. Voltage-dependent optical signals resulting from resonance energy transfer from fluorescent proteins to DPA were named QRET transients, to distinguish them from FRET transients recorded using DiBAC4(5). The peak ΔF/F of QRET transients elicited by action potential stimulation is twice larger in fibers expressing ECFP-F as those with EGFP-F (7.1% vs. 3.6%). These data provide a unique experimental demonstration of the importance of the spectral overlap in FRET. The voltage sensitivity of QRET and FRET signals was demonstrated to correspond to the voltage-dependent translocation of the charged acceptors, which manifest as nonlinear components in current records. For DPA, both electrical and QRET data were predicted by radial cable model simulations in which the maximal time constant of charge translocation was 0.6 ms. FRET signals recorded in response to action potentials in fibers stained with DiBAC4(5) exhibit ΔF/F amplitudes as large as 28%, but their rising phase was slower than those of QRET signals. Model simulations require a time constant for charge translocation of 1.6 ms in order to predict current and FRET data. Our results provide the basis for the potential use of lipophilic ions as tools to test for fast voltage-dependent conformational changes of membrane proteins in the TTS. PMID:18040060

  8. A practical method for monitoring FRET-based biosensors in living animals using two-photon microscopy

    PubMed Central

    Tao, Wen; Rubart, Michael; Ryan, Jennifer; Xiao, Xiao; Qiao, Chunping; Hato, Takashi; Davidson, Michael W.; Dunn, Kenneth W.

    2015-01-01

    The commercial availability of multiphoton microscope systems has nurtured the growth of intravital microscopy as a powerful technique for evaluating cell biology in the relevant context of living animals. In parallel, new fluorescent protein (FP) biosensors have become available that enable studies of the function of a wide range of proteins in living cells. Biosensor probes that exploit Förster resonance energy transfer (FRET) are among the most sensitive indicators of an array of cellular processes. However, differences between one-photon and two-photon excitation (2PE) microscopy are such that measuring FRET by 2PE in the intravital setting remains challenging. Here, we describe an approach that simplifies the use of FRET-based biosensors in intravital 2PE microscopy. Based on a systematic comparison of many different FPs, we identified the monomeric (m) FPs mTurquoise and mVenus as particularly well suited for intravital 2PE FRET studies, enabling the ratiometric measurements from linked FRET probes using a pair of experimental images collected simultaneously. The behavior of the FPs is validated by fluorescence lifetime and sensitized emission measurements of a set of FRET standards. The approach is demonstrated using a modified version of the AKAR protein kinase A biosensor, first in cells in culture, and then in hepatocytes in the liver of living mice. The approach is compatible with the most common 2PE microscope configurations and should be applicable to a variety of different FRET probes. PMID:26333599

  9. A long-wavelength quantum dot-concentric FRET configuration: characterization and application in a multiplexed hybridization assay.

    PubMed

    Li, Jia Jun; Algar, W Russ

    2016-06-21

    Quantum dot-based concentric Förster resonance energy transfer (cFRET) is a promising modality for the development of multifunctional fluorescent probes for bioanalysis and bioimaging. To date, the scope of cFRET has been largely limited to a prototypical configuration with a particular combination of quantum dot (QD) and fluorescent dyes linked through peptides. Expansion of the scope of cFRET is critical for its further development. Here, we expand the scope of cFRET in two capacities. First, we design and characterize a new long-wavelength cFRET configuration that combines red- and deep-red fluorescent dyes, Alexa Fluor 633 and Alexa Fluor 680, with an orange-emitting QD. Sequential and competitive energy transfer pathways are characterized through a rate analysis, where the balance of these rates more strongly favours competitive energy transfer in the new long-wavelength configuration versus sequential energy transfer in the previous prototypical configuration. Although the new cFRET configuration is more susceptible to photobleaching, its superior brightness and longer-wavelength excitation and emission provide an order of magnitude higher signal-to-background ratios in biological matrices (e.g., serum, blood) than the previous prototypical configuration. Second, we demonstrate that an oligonucleotide-linked, long-wavelength cFRET configuration has energy transfer similar to an analogous peptide-linked configuration, where the oligonucleotide-linked cFRET configuration can be combined with toehold-mediated strand displacement for the multiplexed detection of unlabeled nucleic acid targets as a single vector. Overall, this work establishes the general applicability of cFRET and introduces new strategies for its bioanalytical application.

  10. Intracellular cascade FRET for temperature imaging of living cells with polymeric ratiometric fluorescent thermometers.

    PubMed

    Hu, Xianglong; Li, Yang; Liu, Tao; Zhang, Guoying; Liu, Shiyong

    2015-07-22

    Intracellular temperature plays a prominent role in cellular functions and biochemical activities inside living cells, but effective intracellular temperature sensing and imaging is still in its infancy. Herein, thermoresponsive double hydrophilic block copolymers (DHBCs)-based fluorescent thermometers were fabricated to investigate their application in intracellular temperature imaging. Blue-emitting coumarin monomer, CMA, green-emitting 7-nitro-2,1,3-benzoxadiazole (NBD) monomer, NBDAE, and red-emitting rhodamine B monomer, RhBEA, were copolymerized separately with N-isopropylacrylamide (NIPAM) to afford dye-labeled PEG-b-P(NIPAM-co-CMA), PEG-b-P(NIPAM-co-NBDAE), and PEG-b-P(NIPAM-co-RhBEA). Because of the favorable fluorescence resonance energy transfer (FRET) potentials between CMA and NBDAE, NBDAE and RhBEA, as well as the slight tendency between CMA and RhBEA fluorophore pairs, three polymeric thermometers based on traditional one-step FRET were fabricated by facile mixing two of these three fluorescent DHBCs, whereas exhibiting limited advantages. Thus, two-step cascade FRET among three polymeric fluorophores was further interrogated, in which NBD acted as a bridging dye by transferring energy from CMA to RhBEA. Through the delicate optimization of the molar contents of three polymeric components, a ∼8.4-fold ratio change occurred in the temperature range of 20-44 °C, and the detection sensitivity improved significantly, reached as low as ∼0.4 °C, which definitely outperformed other one-step FRET thermometers in the intracellular temperature imaging of living cells. To our knowledge, this work represents the first example of polymeric ratiometric thermometer employing thermoresponsive polymer-based cascade FRET mechanism.

  11. Analysis of fretting fatigue in aircraft structures: Stresses, stress intensity factors, and life predictions

    NASA Astrophysics Data System (ADS)

    McVeigh, Pamela Alison

    Clamped contacts subjected to cyclic loading are prone to fretting fatigue, a mechanism of crack nucleation and propagation. In aircraft, fretting fatigue occurs at the rivet/hole interface on the fuselage skin and at the dovetail joint in engine hardware where disk and blade meet. The ability to predict the lives of such components would be a great aid in preventing failures. Finite element models appropriate for the calculation of fretting fatigue stresses and stress intensity factors are developed for two different contact geometries. In addition, several less computationally expensive numerical methods are also studied. Agreement between the various solutions is good. A severe increase in the mode I stress intensity factor near the surface is discovered in both geometries. Mode II stress intensity factors are also detailed, illustrating the complex non-proportional loading of fretting-induced cracks. A comparison is made between results obtained from actual surface profiles and those generated from prescribed surface profiles; the differences are significant. Equivalent initial flaw sizes are calculated for two different metals using an approach which ignores the effect of mode II stress intensity factors. Life predictions based on the equivalent initial flaw size approach are found to agree reasonably well with those measured in the laboratory for contact geometries similar to the rivet/hole interface. More data is needed before a judgment can be made about life correlations for the dovetail joint contact geometry. The analysis methods described throughout can be easily implemented and integrated into a system aimed at designing against fretting fatigue.

  12. Simple Estimation of Förster Resonance Energy Transfer (FRET) Orientation Factor Distribution in Membranes

    PubMed Central

    Loura, Luís M. S.

    2012-01-01

    Because of its acute sensitivity to distance in the nanometer scale, Förster resonance energy transfer (FRET) has found a large variety of applications in many fields of chemistry, physics, and biology. One important issue regarding the correct usage of FRET is its dependence on the donor-acceptor relative orientation, expressed as the orientation factor κ2. Different donor/acceptor conformations can lead to κ2 values in the 0 ≤ κ2 ≤ 4 range. Because the characteristic distance for FRET, R0, is proportional to (κ2)1/6, uncertainties in the orientation factor are reflected in the quality of information that can be retrieved from a FRET experiment. In most cases, the average value of κ2 corresponding to the dynamic isotropic limit (<κ2> = 2/3) is used for computation of R0 and hence donor-acceptor distances and acceptor concentrations. However, this can lead to significant error in unfavorable cases. This issue is more critical in membrane systems, because of their intrinsically anisotropic nature and their reduced fluidity in comparison to most common solvents. Here, a simple numerical simulation method for estimation of the probability density function of κ2 for membrane-embedded donor and acceptor fluorophores in the dynamic regime is presented. In the simplest form, the proposed procedure uses as input the most probable orientations of the donor and acceptor transition dipoles, obtained by experimental (including linear dichroism) or theoretical (such as molecular dynamics simulation) techniques. Optionally, information about the widths of the donor and/or acceptor angular distributions may be incorporated. The methodology is illustrated for special limiting cases and common membrane FRET pairs. PMID:23203123

  13. Preliminary Study on Fatigue Strengths of Fretted Ti-48Al-2Cr-2Nb

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Lerch, Bradley A.; Draper, Susan L.

    2002-01-01

    The fatigue behavior (stress-life curve) of gamma titanium aluminide (Ti-48Al-2Cr-2Nb, atomic percent) was examined by conducting two tests: first, a fretting wear test with a fatigue specimen in contact with a typical nickel-based superalloy contact pad in air at temperatures of 296 and 823 K and second, a high-cycle fatigue test of the prefretted Ti-48Al-2Cr-2Nb fatigue specimen at 923 K. Reference high-cycle fatigue tests were also conducted with unfretted Ti-48Al-2Cr-2Nb specimens at 923 K. All Ti-48Al-2Cr-2Nb fatigue specimens were machined from cast slabs. The results indicate that the stress-life results for the fretted Ti-48Al-2Cr-2Nb specimens exhibited a behavior similar to those of the unfretted Ti-48Al-2Cr-2Nb specimens. The values of maximum stress and life for the fretted specimens were almost the same as those for the unfretted specimens. The resultant stress-life curve for the unfretted fatigue specimens was very flat. The flat appearance in the stress-life curve of the unfretted specimens is attributed to the presence of a high density of casting pores. The fatigue strengths of both the fretted and unfretted specimens can be significantly affected by the presence of this porosity, which can decrease the fatigue life of Ti-48Al-2Cr-2Nb. The presence of the porosity made discerning the effect of fretting damage on fatigue strength and life of the specimens difficult.

  14. FRET Imaging of Diatoms Expressing a Biosilica-Localized Ribose Sensor

    SciTech Connect

    Marshall, Kathryn E.; Robinson, E. W.; Hengel, Shawna M.; Pasa-Tolic, Ljiljana; Roesijadi, Guritno

    2012-03-21

    Future materials are envisioned to include bio-assembled, hybrid, three-dimensional nanosystems that incorporate functional proteins. Diatoms are amenable to genetic modification that enables localization of recombinant proteins in the biosilica cell wall. Our objective was to functionalize diatom biosilica with a reagent-less biosensor with FRET-based imaging capabilities for signaling. The design of the fusion protein conferring these properties included a bacterial periplasmic ribose binding protein (R) flanked by CyPet (C) and YPet (Y), cyan and yellow fluorescent proteins that act as a FRET pair. The structure and function of the recombinant chimeric protein was first confirmed in E. coli-expressed proteins, prior to transformation of the diatom Thalassiosira pseudonana. Mass spectrometry of CRY showed 95% identity with the deduced amino acid sequence. CRY with and without an N-terminal Sil3 tag for biosilica targeting exhibited characteristic ribose-dependent changes in FRET, with similar dissociation constants of 123.3 {mu}M and 142.8 {mu}M, respectively. The addition of the silaffin tag for biosilica localization did not influence the affinity of CRY for the ribose substrate. Subsequent transformation of T. pseudonana with a vector encoding Sil3-CRY resulted in fluorescence localization in the biosilica and changes in FRET in both living cells and isolated biosilica in response to ribose. This work demonstrated that the nano-architecture of the genetically modified biosilica cell wall was able to support the functionality of the relatively complex Sil3-CyPet-RBP-YPet fusion protein with its requirement for ligand binding and conformational change for FRET-signal generation.

  15. Probing Nucleic Acid Interactions and Pre-mRNA Splicing by Förster Resonance Energy Transfer (FRET) Microscopy

    PubMed Central

    Šimková, Eva; Staněk, David

    2012-01-01

    Förster resonance energy transfer (FRET) microscopy is a powerful technique routinely used to monitor interactions between biomolecules. Here, we focus on the techniques that are used for investigating the structure and interactions of nucleic acids (NAs). We present a brief overview of the most commonly used FRET microscopy techniques, their advantages and drawbacks. We list experimental approaches recently used for either in vitro or in vivo studies. Next, we summarize how FRET contributed to the understanding of pre-mRNA splicing and spliceosome assembly. PMID:23203103

  16. COLLABORATIVE RESEARCH AND DEVELOPMENT (CR&D) Delivery Order 0068: Anti-fretting Coatings Research and Development

    DTIC Science & Technology

    2008-02-01

    anti-fretting coating, Ti6Al4V , gross slip, nickel, graphite, high temperature 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR... temperature and 450C respectively, when mated with the Ti6Al4V ellipsoids. However, the high graphite content and high porosity of the NiG-A coatings...fretting wear degradation. Given this behavior, the focus of this study was to mitigate fretting wear within Ti6Al4V contacts at room temperature and

  17. The solute specificity profiles of nucleobase cation symporter 1 (NCS1) from Zea mays and Setaria viridis illustrate functional flexibility.

    PubMed

    Rapp, Micah; Schein, Jessica; Hunt, Kevin A; Nalam, Vamsi; Mourad, George S; Schultes, Neil P

    2016-03-01

    The solute specificity profiles (transport and binding) for the nucleobase cation symporter 1 (NCS1) proteins, from the closely related C4 grasses Zea mays and Setaria viridis, differ from that of Arabidopsis thaliana and Chlamydomonas reinhardtii NCS1. Solute specificity profiles for NCS1 from Z. mays (ZmNCS1) and S. viridis (SvNCS1) were determined through heterologous complementation studies in NCS1-deficient Saccharomyces cerevisiae strains. The four Viridiplantae NCS1 proteins transport the purines adenine and guanine, but unlike the dicot and algal NCS1, grass NCS1 proteins fail to transport the pyrimidine uracil. Despite the high level of amino acid sequence similarity, ZmNCS1 and SvNCS1 display distinct solute transport and recognition profiles. SvNCS1 transports adenine, guanine, hypoxanthine, cytosine, and allantoin and competitively binds xanthine and uric acid. ZmNCS1 transports adenine, guanine, and cytosine and competitively binds, 5-fluorocytosine, hypoxanthine, xanthine, and uric acid. The differences in grass NCS1 profiles are due to a limited number of amino acid alterations. These amino acid residues do not correspond to amino acids essential for overall solute and cation binding or solute transport, as previously identified in bacterial and fungal NCS1, but rather may represent residues involved in subtle solute discrimination. The data presented here reveal that within Viridiplantae, NCS1 proteins transport a broad range of nucleobase compounds and that the solute specificity profile varies with species.

  18. Fast Simultaneous Determination of 13 Nucleosides and Nucleobases in Cordyceps sinensis by UHPLC-ESI-MS/MS.

    PubMed

    Zong, Shi-Yu; Han, Han; Wang, Bing; Li, Ning; Dong, Tina Ting-Xia; Zhang, Tong; Tsim, Karl W K

    2015-12-04

    A reliable ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) method for the fast simultaneous determination of 13 nucleosides and nucleobases in Cordyceps sinensis (C. sinensis) with 2-chloroadenosine as internal standard was developed and validated. Samples were ultrasonically extracted in an ice bath thrice, and the optimum analyte separation was performed on an ACQUITY UPLC(TM) HSS C18 column (100 mm × 2.1 mm, 1.8 μm) with gradient elution. All targeted analytes were separated in 5.5 min. Furthermore, all calibration curves showed good linear regression (r > 0.9970) within the test ranges, and the limits of quantitation and detection of the 13 analytes were less than 150 and 75 ng/mL, respectively. The relative standard deviations (RSDs) of intra- and inter-day precisions were <6.23%. Recoveries of the quantified analytes ranged within 85.3%-117.3%, with RSD < 6.18%. The developed UHPLC-ESI-MS/MS method was successfully applied to determine nucleosides and nucleobases in 11 batches of C. sinensis samples from different regions in China. The range for the total content in the analyzed samples was 1329-2057 µg/g.

  19. Connectivity patterns and rotamer states of nucleobases determine acid-base properties of metalated purine quartets.

    PubMed

    Lüth, Marc Sven; Freisinger, Eva; Kampf, Gunnar; Garijo Anorbe, Marta; Griesser, Rolf; Operschall, Bert P; Sigel, Helmut; Lippert, Bernhard

    2015-07-01

    Potentiometric pH titrations and pD dependent (1)H NMR spectroscopy have been applied to study the acidification of the exocyclic amino group of adenine (A) model nucleobases (N9 position blocked by alkyl groups) when carrying trans-a2Pt(II) (with a=NH3 or CH3NH2) entities both at N1 and N7 positions. As demonstrated, in trinuclear complexes containing central A-Pt-A units, it depends on the connectivity pattern of the adenine bases (N7/N7 or N1/N1) and their rotamer states (head-head or head-tail), how large the acidifying effect is. Specifically, a series of trinuclear complexes with (A-N7)-Pt-(N7-A) and (A-N1)-Pt-(N1-A) cross-linking patterns and terminal 9-alkylguanine ligands (9MeGH, 9EtGH) have been analyzed in this respect, and it is shown that, for example, the 9MeA ligands in trans-,trans-,trans-[Pt(NH3)2(N7-9MeA-N1)2{Pt(NH3)2(9EtGH-N7)}2](ClO4)6·6H2O (4a) and trans-,trans-,trans-[Pt(NH3)2(N7-9EtA-N1)2{Pt(CH3NH2)2(9-MeGH-N7)}2](ClO4)6·3H2O (4b) are more acidic, by ca. 1.3 units (first pKa), than the linkage isomer trans-,trans-,trans-[Pt(CH3NH2)2(N1-9MeA-N7)2{Pt(NH3)2(9MeGH-N7)}2](NO3)6·6.25H2O (1b). Overall, acidifications in these types of complexes amount to 7-9 units, bringing the pKa values of such adenine ligands in the best case close to the physiological pH range. Comparison with pKa values of related trinuclear Pt(II) complexes having different co-ligands at the Pt ions, confirms this picture and supports our earlier proposal that the close proximity of the exocyclic amino groups in a head-head arrangement of (A-N7)-Pt-(N7-A), and the stabilization of the resulting N6H(-)⋯H2N6 unit, is key to this difference.

  20. Neuronal Analogues of Conditioning Paradigms

    DTIC Science & Technology

    1984-04-24

    Although the mechanisms of interneuronal communication have been well established, the changes underlying most forms of learning have thus far eluded...stimulating electrodes on one of the connectives was adjusted so as to produce a small excitatory postsynaptic potential ( EPSP ) in the impaled cell...two stimuli would constitute a neuronal analogue of conditioning by producing an increased EPSP in response to the test stimulus alone. If so, then

  1. Substrate analogues for isoprenoid enzymes

    SciTech Connect

    Stremler, K.E.

    1987-01-01

    Diphosphonate analogues of geranyl diphosphate, resistant to degradation by phosphatases, were found to be alternate substrates for the reaction with farnesyl diphosphate synthetase isolated from avian liver. The difluoromethane analogue was shown to be the better alternate substrate, in agreement with solvolysis results which indicate that the electronegativity of the difluoromethylene unit more closely approximates that of the normal bridging oxygen. The usefulness of the C/sub 10/ difluoro analogue, for detecting low levels of isoprenoid enzymes in the presence of high levels of phosphatase activity, was demonstrated with a cell-free preparation from lemon peel. A series of C/sub 5/ through C/sub 15/ homoallylic and allylic diphosphonates, as well as two 5'-nucleotide diphosphonates, was prepared in high overall yield using the activation-displacement sequence. Radiolabeled samples of several of the allylic diphosphonates were prepared with tritium located at C1. A series of geraniols, stereospecifically deuterated at C1, was prepared. The enantiomeric purities and absolute configurations were determined by derivatization as the mandelate esters for analysis by /sup 1/H NMR. The stereochemistry of the activation-displacement sequence was examined using C1-deuterated substrates.

  2. Highly sensitive detection of DNA methylation levels by using a quantum dot-based FRET method

    NASA Astrophysics Data System (ADS)

    Ma, Yunfei; Zhang, Honglian; Liu, Fangming; Wu, Zhenhua; Lu, Shaohua; Jin, Qinghui; Zhao, Jianlong; Zhong, Xinhua; Mao, Hongju

    2015-10-01

    DNA methylation is the most frequently studied epigenetic modification that is strongly involved in genomic stability and cellular plasticity. Aberrant changes in DNA methylation status are ubiquitous in human cancer and the detection of these changes can be informative for cancer diagnosis. Herein, we reported a facile quantum dot-based (QD-based) fluorescence resonance energy transfer (FRET) technique for the detection of DNA methylation. The method relies on methylation-sensitive restriction enzymes for the differential digestion of genomic DNA based on its methylation status. Digested DNA is then subjected to PCR amplification for the incorporation of Alexa Fluor-647 (A647) fluorophores. DNA methylation levels can be detected qualitatively through gel analysis and quantitatively by the signal amplification from QDs to A647 during FRET. Furthermore, the methylation levels of three tumor suppressor genes, PCDHGB6, HOXA9 and RASSF1A, in 20 lung adenocarcinoma and 20 corresponding adjacent nontumorous tissue (NT) samples were measured to verify the feasibility of the QD-based FRET method and a high sensitivity for cancer detection (up to 90%) was achieved. Our QD-based FRET method is a convenient, continuous and high-throughput method, and is expected to be an alternative for detecting DNA methylation as a biomarker for certain human cancers.DNA methylation is the most frequently studied epigenetic modification that is strongly involved in genomic stability and cellular plasticity. Aberrant changes in DNA methylation status are ubiquitous in human cancer and the detection of these changes can be informative for cancer diagnosis. Herein, we reported a facile quantum dot-based (QD-based) fluorescence resonance energy transfer (FRET) technique for the detection of DNA methylation. The method relies on methylation-sensitive restriction enzymes for the differential digestion of genomic DNA based on its methylation status. Digested DNA is then subjected to PCR

  3. HILIC-UPLC-MS/MS combined with hierarchical clustering analysis to rapidly analyze and evaluate nucleobases and nucleosides in Ginkgo biloba leaves.

    PubMed

    Yao, Xin; Zhou, Guisheng; Tang, Yuping; Guo, Sheng; Qian, Dawei; Duan, Jin-Ao

    2015-02-01

    Ginkgo biloba leaf extract has been widely used in dietary supplements and more recently in some foods and beverages. In addition to the well-known flavonol glycosides and terpene lactones, G. biloba leaves are also rich in nucleobases and nucleosides. To determine the content of nucleobases and nucleosides in G. biloba leaves at trace levels, a reliable method has been established by using hydrophilic interaction ultra performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (HILIC-UPLC-TQ-MS/MS) working in multiple reaction monitoring mode. Eleven nucleobases and nucleosides were simultaneously determined in seven min. The proposed method was fully validated in terms of linearity, sensitivity, and repeatability, as well as recovery. Furthermore, hierarchical clustering analysis (HCA) was performed to evaluate and classify the samples according to the contents of the eleven chemical constituents. The established approach could be helpful for evaluation of the potential values as dietary supplements and the quality control of G. biloba leaves, which might also be utilized for the investigation of other medicinal herbs containing nucleobases and nucleosides.

  4. Double-coding nucleic acids: introduction of a nucleobase sequence in the major groove of the DNA duplex using double-headed nucleotides.

    PubMed

    Kumar, Pawan; Sorinas, Antoni Figueras; Nielsen, Lise J; Slot, Maria; Skytte, Kirstine; Nielsen, Annie S; Jensen, Michael D; Sharma, Pawan K; Vester, Birte; Petersen, Michael; Nielsen, Poul

    2014-09-05

    A series of double-headed nucleosides were synthesized using the Sonogashira cross-coupling reaction. In the reactions, additional nucleobases (thymine, cytosine, adenine, or guanine) were attached to the 5-position of 2'-deoxyuridine or 2'-deoxycytidine through a propyne linker. The modified nucleosides were incorporated into oligonucleotides, and these were combined in different duplexes that were analyzed by thermal denaturation studies. All of the monomers were well tolerated in the DNA duplexes and induced only small changes in the thermal stability. Consecutive incorporations of the monomers led to increases in duplex stability owing to increased stacking interactions. The modified nucleotide monomers maintained the Watson-Crick base pair fidelity. Stable duplexes were observed with heavily modified oligonucleotides featuring 14 consecutive incorporations of different double-headed nucleotide monomers. Thus, modified duplexes with an array of nucleobases on the exterior of the duplex were designed. Molecular dynamics simulations demonstrated that the additional nucleobases could expose their Watson-Crick and/or Hoogsteen faces for recognition in the major groove. This presentation of nucleobases may find applications in providing molecular information without unwinding the duplex.

  5. Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design

    PubMed Central

    Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S.; Lawson, Christopher P.; Preus, Søren; Bood, Mattias; Gradén, Henrik; Marcus Wilhelmsson, L.; Grøtli, Morten

    2015-01-01

    Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (εΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs. PMID:26227585

  6. Development of bright fluorescent quadracyclic adenine analogues: TDDFT-calculation supported rational design.

    PubMed

    Foller Larsen, Anders; Dumat, Blaise; Wranne, Moa S; Lawson, Christopher P; Preus, Søren; Bood, Mattias; Gradén, Henrik; Wilhelmsson, L Marcus; Grøtli, Morten

    2015-07-31

    Fluorescent base analogues (FBAs) comprise a family of increasingly important molecules for the investigation of nucleic acid structure and dynamics. We recently reported the quantum chemical calculation supported development of four microenvironment sensitive analogues of the quadracyclic adenine (qA) scaffold, the qANs, with highly promising absorptive and fluorescence properties that were very well predicted by TDDFT calculations. Herein, we report on the efficient synthesis, experimental and theoretical characterization of nine novel quadracyclic adenine derivatives. The brightest derivative, 2-CNqA, displays a 13-fold increased brightness (εΦF = 4500) compared with the parent compound qA and has the additional benefit of being a virtually microenvironment-insensitive fluorophore, making it a suitable candidate for nucleic acid incorporation and use in quantitative FRET and anisotropy experiments. TDDFT calculations, conducted on the nine novel qAs a posteriori, successfully describe the relative fluorescence quantum yield and brightness of all qA derivatives. This observation suggests that the TDDFT-based rational design strategy may be employed for the development of bright fluorophores built up from a common scaffold to reduce the otherwise costly and time-consuming screening process usually required to obtain useful and bright FBAs.

  7. Homo-FRET Based Biosensors and Their Application to Multiplexed Imaging of Signalling Events in Live Cells

    PubMed Central

    Warren, Sean C.; Margineanu, Anca; Katan, Matilda; Dunsby, Chris; French, Paul M. W.

    2015-01-01

    Multiplexed imaging of Förster Resonance Energy Transfer (FRET)-based biosensors potentially presents a powerful approach to monitoring the spatio-temporal correlation of signalling pathways within a single live cell. Here, we discuss the potential of homo-FRET based biosensors to facilitate multiplexed imaging. We demonstrate that the homo-FRET between pleckstrin homology domains of Akt (Akt-PH) labelled with mCherry may be used to monitor 3′-phosphoinositide accumulation in live cells and show how global analysis of time resolved fluorescence anisotropy measurements can be used to quantify this accumulation. We further present multiplexed imaging readouts of calcium concentration, using fluorescence lifetime measurements of TN-L15-a CFP/YFP based hetero-FRET calcium biosensor-with 3′-phosphoinositide accumulation. PMID:26133241

  8. Study of fretting wear in titanium, Monel-400, and cobalt-25 percent molybdenum using scanning electron microscopy.

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1973-01-01

    Damage scar volume measurements taken from like metal fretting pairs, combined with scanning electron microscopy observations, showed that three sequentially operating mechanisms result in the fretting of titanium, Monel-400, and cobalt-25% molybdenum. Initially, adhesion and plastic deformation on the surface played an important role. This was followed after a few hundred cycles by a fatigue mechanism, producing spall-like pits in the damage scar. Finally, an oxidation-related mechanism became most significant. Damage scar measurements made on several elemental metals after 600,000 fretting cycles suggested that the ratio of oxide hardness to metal hardness was a measure of the susceptibility of a metal to progressive damage by fretting.

  9. Graphene and graphene-like two-denominational materials based fluorescence resonance energy transfer (FRET) assays for biological applications.

    PubMed

    Tian, Feng; Lyu, Jing; Shi, Jingyu; Yang, Mo

    2017-03-15

    In the past decades, Förster resonance energy transfer (FRET) has been applied in many biological applications to reveal the biological information at the nanoscale. Recently, graphene and graphene-like two-dimensional (2D) nanomaterials started to be used in FRET assays as donors or acceptors including graphene oxide (GO), graphene quantum dot (GQD), graphitic-carbon nitride nanosheets (g-C3N4) and transition metal dichalcogenides (e.g. MoS2, MnO2, and WS2). Due to the remarkable properties such as large surface to volume ratio, tunable energy band, photoluminescence and excellent biocompatibility, these 2D nanomaterials based FRET assays have shown great potential in various biological applications. This review summarizes the recent development of graphene and graphene-like 2D nanomaterials based FRET assays in applications of biosensing, bioimaging, and drug delivery monitoring.

  10. Fretting corrosion behavior of nitinol spinal rods in conjunction with titanium pedicle screws.

    PubMed

    Lukina, Elena; Kollerov, Mikhail; Meswania, Jay; Khon, Alla; Panin, Pavel; Blunn, Gordon W

    2017-03-01

    Untypical corrosion damage including erosions combined with the build-up of titanium oxide as a corrosion product on the surface of explanted Nitinol spinal rods in the areas where it was in contact with titanium pedicle screw head is reported. It was suggested that Nitinol rods might have inferior fretting corrosion resistance compared with that made of titanium or CoCr. Fretting corrosion of Nitinol spinal rods with titanium (Ti6Al4V) pedicle screws were tested in-vitro by conducting a series of potentiostatic measurements of the peak-to-peak values of fretting corrosion current under bending in a 10% solution of calf serum in PBS. The test included Nitinol rods locked in titanium pedicle screws of different designs. Performance of commercially available titanium (Ti6Al4V) and CoCr spinal rods was also investigated for a comparison. Corrosion damage observed after the in-vitro tests was studied using SEM and EDAX analysis and was compared with patterns on Nitinol rods retrieved 12months after initial surgery. Metal ions level was measured in the test media after in-vitro experiments and in the blood and tissues of the patients who had the rods explanted. The results of this study revealed that Nitinol spinal rods locked in Ti pedicle screws are susceptible to fretting corrosion demonstrating higher fretting corrosion current compared with commercially used Ti6Al4V and CoCr rods. On the surface of Nitinol rods after in-vitro tests and on those retrieved from the patients similar corrosion patterns were observed. Improved resistance to fretting corrosion was observed with Nitinol rods in the in-vitro tests where pedicle screws were used with a stiffer locking mechanism. Since the development of the localized corrosion damage might increase the risk of premature fatigue failure of the rods and result in leaching of Ni ions, it is concluded that Nitinol rods should not be used in conjunction with Ti pedicle screws without special protection especially where the

  11. The combination of analytical-scale HPLC separation with a TR-FRET assay to investigate JAK2 inhibitory compounds in a Boysenberry drink.

    PubMed

    McGhie, Tony K; Martin, Harry; Lunken, Rona C M

    2012-11-01

    We report the detection of JAK2 inhibitory activity in a Boysenberry (Rubus loganbaccus x R. baileyanus Britt.) drink using a combination of analytical-scale high performance liquid chromatography (HPLC) with a high-sensitivity time-resolved fluorescence coupled with fluorescence resonance energy transfer (TR-FRET) method. Phytochemical components of a Boysenberry drink were separated by reversed phase HPLC , and 84 separate fractions were collected. HPLC fractions corresponding to the ellagitannin and ellagic acid peaks observed in the chromatogram inhibited JAK2 activity. Anthocyanins, while they were the major phytochemical components of the Boysenberry drink, had no JAK2 inhibitory activity even though anthocyanins have previously been shown to be anti-inflammatory. This study demonstrates the usefulness of combining rapid analytical-scale HPLC separation with a highly sensitive fluorescence bioassay for characterising bioactivity in complex plant extracts. Ellagic acid was found to have an IC(50) of 92 nM against JAK2 and complete inhibition of JAK2 activity was observed in HPLC fractions of Boysenberry extract which had been diluted several hundred fold. To the best of our knowledge, this is the first demonstration that ellagitannins and other natural ellagic acid analogues are potent inhibitors of JAK2. Thus a drink containing Boysenberry juice concentrate may have anti-inflammatory properties.

  12. Theoretical Study of the Photophysics of 8-Vinylguanine, an Isomorphic Fluorescent Analogue of Guanine.

    PubMed

    Kochman, Michał A; Pola, Martina; Miller, R J Dwayne

    2016-08-11

    Paving the way for the application of the algebraic-diagrammatic construction scheme of second-order (ADC(2)) to systems based on the guanine chromophore, we demonstrate the this excited-state electronic structure method provides a realistic description of the photochemistry of 9H-guanine, in close agreement with the benchmark provided by the CASPT2 method. We then proceed to apply the ADC(2) method to the photochemistry of 8-vinylguanine (8vG), a minimally modified analogue of guanine which, unlike the naturally occurring nucleobase, displays intense fluorescence, indicative of a much longer-lived excited electronic state. The emissive electronic state of 8vG is identified as an ππ*-type intramolecular charge transfer (ICT) state, in which a charge of roughly -0.2 e is transferred from the guanine moiety onto the vinyl substituent. The main radiationless deactivation pathway competing with fluorescence is predicted to involve the molecule leaving the minimum on the ICT ππ* state, and reaching a region of the S1 adiabatic state where it resembles the La ππ* state of unmodified 9H-guanine. The topology of the La ππ* region of the S1 state favors subsequent internal conversion at a crossing seam with the ground electronic state. The sensitivity of this process to environment polarity may explain the experimentally observed fluorescence quenching of 8vG upon incorporation in single- and double-stranded DNA.

  13. High-Content FRET-FLIM Screening in Inhibitors of Oncogenic Transcription by c-myc in Breast Cancer

    DTIC Science & Technology

    2008-06-01

    need for novel anti-breast cancer therapeutics. Our hypothesis is that by identifying small molecules that target the Myc oncogene, we will develop an...To this end, we aim to 1) develop a novel high content screen to identify inhibitors that block Myc:TRRAP interaction; 2) determine the...resonance energy transfer (FRET) in vivo. We have identified FRET pairs that are functional and established methodology using novel instrumentation

  14. Controlled synthesis of Pt nanoparticles array through electroreduction of cisplatin bound at nucleobases terminated surface and application into H2O2 sensing.

    PubMed

    Ji, Shujun; Guo, Qingqing; Yue, Qiaoli; Wang, Lei; Wang, Huaisheng; Zhao, Jinsheng; Dong, Ruixin; Liu, Jifeng; Jia, Jianbo

    2011-01-15

    Fabrication of sub-monolayer array of Pt nanoparticles (PtNPs) assembled at nucleobases terminated layers and their application into H(2)O(2) and glucose sensing were reported. To prepare such a PtNPs assembly, 3-mercaptopropionic acid (MPA), Zr(4+), nucleotide-5'-monophosphate (NTMP including guanosine, adenosine, cytidine, uridine-5'-monophosphate, and abbreviations were GMP, AMP, CMP, UMP, respectively) were adsorbed onto Au substrate sequentially to form nucleobases terminated surface and Zr(4+) acted as binder to link carboxylic and phosphoric groups (NTMP/Zr(4+)/MPA/Au). Complexation of cisplatin, cis-Pt(NH(3))(2)Cl(2), with terminated nucleobases and following electrochemical reduction of surface-bound cisplatin gave PtNPs attached surface. Different PtNPs coverage or particle density was obtained depending on the NTMP used and decreased in the order: PtNPs/GMP/Zr(4+)/MPA/Au>PtNPs/AMP/Zr(4+)/MPA/Au>PtNPs/CMP/Zr(4+)/MPA/Au>PtNPs/UMP/Zr(4+)/MPA/Au. The surface loading of Pt was between 160 and 16 ng/cm(2). The as prepared PtNPs can be used as electrocatalysts for H(2)O(2) sensing (detection limit of H(2)O(2)<100 nM) and the sensitivity increased with decreasing PtNPs density. After adsorption of glucose oxidase, the modified electrode can be used as enzymatic electrode for glucose sensing and a detection limit of 38.5 μM was achieved. This study provided an example of fabricating PtNP arrays utilising surface complexation of cisplatin with nucleobases. The advantage of this method is that the NP density can be controlled through changing nucleobases or Pt complexes used to obtain suitable kinetics of the complexation reactions. Additionally, the PtNPs sub-monolayer as prepared has high sensitivity for H(2)O(2) sensing even at a very low loading of Pt.

  15. Evaluation of quantum dot-based concentric FRET configurations with a fluorescent dye and dark quencher for multiplexed bioanalyses

    NASA Astrophysics Data System (ADS)

    Conroy, Erin M.; Algar, W. Russ

    2014-03-01

    Semiconductor quantum dots (QDs) continue to emerge as a highly advantageous platform for bioanalysis. Their unique physical and optical properties are especially well suited for Förster resonance energy transfer (FRET)-based bioprobes. Concentric FRET configurations are a recent development in this area of research and are best described as QD bioconjugates where multiple energy transfer pathways have been assembled around the central QD. Concentric FRET configurations permit multiplexed bioanalysis using one type of QD vector, but require more sophisticated analyses than conventional FRET pairs. In this paper, we describe the design and characterization of a new concentric FRET configuration that assembles both a fluorescent dye, Alexa Fluor 555 or Alexa Fluor 647, and a dark quencher, QSY9, at different ratios around a central CdSeS/ZnS QD. It was found that the magnitudes of the total photoluminescence (PL) intensity and either the A555/QD or A647/QD PL ratio can be related to the number of QSY9 and A555 or A647 per QD. The trends in these parameters with changes in the number of each dye molecule per QD have both similarities and differences between configurations with A555 and A647. In each case, a system of equations can be defined to permit calculation of the number of each dye molecule per QD from PL measurements. Both of these dark quencher-based concentric FRET configurations are therefore good candidates for quantitative, multiplexed bioanalysis.

  16. The Impact of Heterogeneity and Dark Acceptor States on FRET: Implications for Using Fluorescent Protein Donors and Acceptors

    PubMed Central

    Vogel, Steven S.; Nguyen, Tuan A.; van der Meer, B. Wieb; Blank, Paul S.

    2012-01-01

    Förster resonance energy transfer (FRET) microscopy is widely used to study protein interactions in living cells. Typically, spectral variants of the Green Fluorescent Protein (FPs) are incorporated into proteins expressed in cells, and FRET between donor and acceptor FPs is assayed. As appreciable FRET occurs only when donors and acceptors are within 10 nm of each other, the presence of FRET can be indicative of aggregation that may denote association of interacting species. By monitoring the excited-state (fluorescence) decay of the donor in the presence and absence of acceptors, dual-component decay analysis has been used to reveal the fraction of donors that are FRET positive (i.e., in aggregates)._However, control experiments using constructs containing both a donor and an acceptor FP on the same protein repeatedly indicate that a large fraction of these donors are FRET negative, thus rendering the interpretation of dual-component analysis for aggregates between separately donor-containing and acceptor-containing proteins problematic. Using Monte-Carlo simulations and analytical expressions, two possible sources for such anomalous behavior are explored: 1) conformational heterogeneity of the proteins, such that variations in the distance separating donor and acceptor FPs and/or their relative orientations persist on time-scales long in comparison with the excited-state lifetime, and 2) FP dark states. PMID:23152925

  17. Terbium to quantum dot FRET bioconjugates for clinical diagnostics: influence of human plasma on optical and assembly properties.

    PubMed

    Morgner, Frank; Stufler, Stefan; Geissler, Daniel; Medintz, Igor L; Algar, W Russ; Susumu, Kimihiro; Stewart, Michael H; Blanco-Canosa, Juan B; Dawson, Philip E; Hildebrandt, Niko

    2011-01-01

    Förster resonance energy transfer (FRET) from luminescent terbium complexes (LTC) as donors to semiconductor quantum dots (QDs) as acceptors allows extraordinary large FRET efficiencies due to the long Förster distances afforded. Moreover, time-gated detection permits an efficient suppression of autofluorescent background leading to sub-picomolar detection limits even within multiplexed detection formats. These characteristics make FRET-systems with LTC and QDs excellent candidates for clinical diagnostics. So far, such proofs of principle for highly sensitive multiplexed biosensing have only been performed under optimized buffer conditions and interactions between real-life clinical media such as human serum or plasma and LTC-QD-FRET-systems have not yet been taken into account. Here we present an extensive spectroscopic analysis of absorption, excitation and emission spectra along with the luminescence decay times of both the single components as well as the assembled FRET-systems in TRIS-buffer, TRIS-buffer with 2% bovine serum albumin, and fresh human plasma. Moreover, we evaluated homogeneous LTC-QD FRET assays in QD conjugates assembled with either the well-known, specific biotin-streptavidin biological interaction or, alternatively, the metal-affinity coordination of histidine to zinc. In the case of conjugates assembled with biotin-streptavidin no significant interference with the optical and binding properties occurs whereas the histidine-zinc system appears to be affected by human plasma.

  18. Fretting properties of biodegradable Mg-Nd-Zn-Zr alloy in air and in Hank’s solution

    NASA Astrophysics Data System (ADS)

    Li, Wenting; Li, Nan; Zheng, Yufeng; Yuan, Guangyin

    2016-11-01

    Fretting is a significant cause for the failure of orthopedic implants. Currently, since magnesium and its alloys have been developed as promising biodegradable implant materials, the fretting behavior of the Mg alloys is of great research significance. In this study, a Mg-Nd-Zn-Zr alloy (hereafter, denoted as JDBM alloy) was selected as experimental material, and its fretting behaviors were evaluated under 5 N, 10 N and 20 N normal loads with a displacement of 200 μm under the frequency of 10 Hz at 37 °C in air and in Hank’s solution, respectively. The results indicated that while the friction coefficient decreased with the increment of the normal load, the wear volume of the alloy increased with the increment of the normal load both in air and in Hank’s solution. Both the friction coefficients and the wear volume of the fretting in Hank’s solution were much lower than those in air environment. The evolution trend of friction coefficients with time had different performance in air environment and the Hank’s solution group. Although oxidation occurred during the fretting tests in Hank’s solution, the damage of JDBM alloy was still reduced due to the lubrication effects of Hank’s solution. Moreover, the addition of Fetal bovine serum (FBS) could act as lubrication and result in the reduction of the fretting damage.

  19. Fretting properties of biodegradable Mg-Nd-Zn-Zr alloy in air and in Hank’s solution

    PubMed Central

    Li, Wenting; Li, Nan; Zheng, Yufeng; Yuan, Guangyin

    2016-01-01

    Fretting is a significant cause for the failure of orthopedic implants. Currently, since magnesium and its alloys have been developed as promising biodegradable implant materials, the fretting behavior of the Mg alloys is of great research significance. In this study, a Mg-Nd-Zn-Zr alloy (hereafter, denoted as JDBM alloy) was selected as experimental material, and its fretting behaviors were evaluated under 5 N, 10 N and 20 N normal loads with a displacement of 200 μm under the frequency of 10 Hz at 37 °C in air and in Hank’s solution, respectively. The results indicated that while the friction coefficient decreased with the increment of the normal load, the wear volume of the alloy increased with the increment of the normal load both in air and in Hank’s solution. Both the friction coefficients and the wear volume of the fretting in Hank’s solution were much lower than those in air environment. The evolution trend of friction coefficients with time had different performance in air environment and the Hank’s solution group. Although oxidation occurred during the fretting tests in Hank’s solution, the damage of JDBM alloy was still reduced due to the lubrication effects of Hank’s solution. Moreover, the addition of Fetal bovine serum (FBS) could act as lubrication and result in the reduction of the fretting damage. PMID:27812007

  20. Conformations of a Metastable SH3 Domain Characterized by smFRET and an Excluded-Volume Polymer Model

    PubMed Central

    Mazouchi, Amir; Zhang, Zhenfu; Bahram, Abdullah; Gomes, Gregory-Neal; Lin, Hong; Song, Jianhui; Chan, Hue Sun; Forman-Kay, Julie D.; Gradinaru, Claudiu C.

    2016-01-01

    Conformational states of the metastable drkN SH3 domain were characterized using single-molecule fluorescence techniques. Under nondenaturing conditions, two Förster resonance energy transfer (FRET) populations were observed that corresponded to a folded and an unfolded state. FRET-estimated radii of gyration and hydrodynamic radii estimated by fluorescence correlation spectroscopy of the two coexisting conformations are in agreement with previous ensemble x-ray scattering and NMR measurements. Surprisingly, when exposed to high concentrations of urea and GdmCl denaturants, the protein still exhibits two distinct FRET populations. The dominant conformation is expanded, showing a low FRET efficiency, consistent with the expected behavior of a random chain with excluded volume. However, approximately one-third of the drkN SH3 conformations showed high, nearly 100%, FRET efficiency, which is shown to correspond to denaturation-induced looped conformations that remain stable on a timescale of at least 100 μs. These loops may contain interconverting conformations that are more globally collapsed, hairpin-like, or circular, giving rise to the observed heterogeneous broadening of this population. Although the underlying mechanism of chain looping remains elusive, FRET experiments in formamide and dimethyl sulfoxide suggest that interactions between hydrophobic groups in the distal regions may play a significant role in the formation of the looped state. PMID:27074677

  1. Terbium to Quantum Dot FRET Bioconjugates for Clinical Diagnostics: Influence of Human Plasma on Optical and Assembly Properties

    PubMed Central

    Morgner, Frank; Stufler, Stefan; Geißler, Daniel; Medintz, Igor L.; Algar, W. Russ; Susumu, Kimihiro; Stewart, Michael H.; Blanco-Canosa, Juan B.; Dawson, Philip E.; Hildebrandt, Niko

    2011-01-01

    Förster resonance energy transfer (FRET) from luminescent terbium complexes (LTC) as donors to semiconductor quantum dots (QDs) as acceptors allows extraordinary large FRET efficiencies due to the long Förster distances afforded. Moreover, time-gated detection permits an efficient suppression of autofluorescent background leading to sub-picomolar detection limits even within multiplexed detection formats. These characteristics make FRET-systems with LTC and QDs excellent candidates for clinical diagnostics. So far, such proofs of principle for highly sensitive multiplexed biosensing have only been performed under optimized buffer conditions and interactions between real-life clinical media such as human serum or plasma and LTC-QD-FRET-systems have not yet been taken into account. Here we present an extensive spectroscopic analysis of absorption, excitation and emission spectra along with the luminescence decay times of both the single components as well as the assembled FRET-systems in TRIS-buffer, TRIS-buffer with 2% bovine serum albumin, and fresh human plasma. Moreover, we evaluated homogeneous LTC-QD FRET assays in QD conjugates assembled with either the well-known, specific biotin-streptavidin biological interaction or, alternatively, the metal-affinity coordination of histidine to zinc. In the case of conjugates assembled with biotin-streptavidin no significant interference with the optical and binding properties occurs whereas the histidine-zinc system appears to be affected by human plasma. PMID:22163719

  2. FRET-based nanoscale point-to-point and broadcast communications with multi-exciton transmission and channel routing.

    PubMed

    Kuscu, Murat; Akan, Ozgur B

    2014-09-01

    Nanoscale communication based on Förster Resonance Energy Transfer (FRET) enables nanoscale single molecular devices to communicate with each other utilizing excitons generated on fluorescent molecules as information carriers. Based on the point-to-point single-exciton FRET-based nanocommunication model, we investigate the multiple-exciton case for point-to-point and broadcast communications following an information theoretical approach and conducting simulations through Monte Carlo approach. We demonstrate that the multi-exciton transmission significantly improves the channel reliability and the range of the communication up to tens of nanometers for immobile nanonodes providing high data transmission rates. Furthermore, our analyses indicate that multi-exciton transmission enables broadcasting of information from a transmitter nanonode to many receiver nanonodes pointing out the potential of FRET-based communication to extend over nanonetworks. In this study, we also propose electrically and chemically controllable routing mechanisms exploiting the strong dependence of FRET rate on spectral and spatial characteristics of fluorescent molecules. We show that the proposed routing mechanisms enable the remote control of information flow in FRET-based nanonetworks. The high transmission rates obtained by multi-exciton scheme for point-to-point and broadcast communications, as well as the routing opportunities make FRET-based communication promising for future molecular computers.

  3. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting

    PubMed Central

    Bajar, Bryce T.; Wang, Emily S.; Lam, Amy J.; Kim, Bongjae B.; Jacobs, Conor L.; Howe, Elizabeth S.; Davidson, Michael W.; Lin, Michael Z.; Chu, Jun

    2016-01-01

    Many genetically encoded biosensors use Förster resonance energy transfer (FRET) to dynamically report biomolecular activities. While pairs of cyan and yellow fluorescent proteins (FPs) are most commonly used as FRET partner fluorophores, respectively, green and red FPs offer distinct advantages for FRET, such as greater spectral separation, less phototoxicity, and lower autofluorescence. We previously developed the green-red FRET pair Clover and mRuby2, which improves responsiveness in intramolecular FRET reporters with different designs. Here we report the engineering of brighter and more photostable variants, mClover3 and mRuby3. mClover3 improves photostability by 60% and mRuby3 by 200% over the previous generation of fluorophores. Notably, mRuby3 is also 35% brighter than mRuby2, making it both the brightest and most photostable monomeric red FP yet characterized. Furthermore, we developed a standardized methodology for assessing FP performance in mammalian cells as stand-alone markers and as FRET partners. We found that mClover3 or mRuby3 expression in mammalian cells provides the highest fluorescence signals of all jellyfish GFP or coral RFP derivatives, respectively. Finally, using mClover3 and mRuby3, we engineered an improved version of the CaMKIIα reporter Camuiα with a larger response amplitude. PMID:26879144

  4. The character of fracture of iron based thermal coating during fretting

    NASA Astrophysics Data System (ADS)

    Kovalevskaya, Zh G.; Kovalevskiy, E. A.; Khimich, M. A.

    2016-04-01

    The character of destruction of thermal coatings during fretting has been investigated. An iron based plasma coating has been tested with oscillation amplitude from 30 to 200 microns. The tests were conducted in air. It has been determined that the main factor influencing the rate of the wear of the coating during fretting corrosion is the size of the coating area involved into the wear process. The coating exhibits high wear resistance when the amplitude of the oscillation is commensurate with the size of the sprayed particles. During destruction of the coating the leading role belongs to fatigue-oxidation processes. The wear of the coating acquires a catastrophic character when coating macro defects - pores and interlayer boundaries - are involved into the wear process.

  5. Probing oxygen consumption in epileptic brain slices with QDs-based FRET sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Chunfeng; Ingram, Justin; Schiff, Steven; Xu, Jian; Xiao, Min

    2011-02-01

    We developed ratiometric optical oxygen sensors to probe the oxygen consumption during epileptic events in rat brain slices. The oxygen sensors consist of the sensing part of phosphorescence dyes (Platinum (II) octaethylporphine ketone) and reference part of nanocystal quantum dots (NQDs) embedded in polymer blends, with pre-designed excitation through fluorescence resonance energy transfer (FRET) from NQDs to the oxygen sensitive dyes (OSDs). The ratiometric FRET sensors with fast temporal response and excellent bio-compatibility are suitable for real time quantitative dissolved oxygen (D.O.) probes in biological microenvironment. Coating the sensors onto the micro-pipettes, we performed simultaneous oxygen probes at pyramidal and oriens layers in rat hippocampal CA1. Different spatiotemporal patterns with maximum D.O. decreases of 9.9+/-1.1 mg/L and 4.9+/-0.7 mg/L during seizure events were observed in pyramidal and oriens layers, respectively.

  6. High-efficiency FRET-enhanced photoacoustic probes for in vivo tumor imaging

    NASA Astrophysics Data System (ADS)

    Qin, Huan; Liu, Liming

    2017-01-01

    Photoacoustic imaging can provide high-resolution and high-contrast image under unprecedented depth compared with pure optical imaging techniques by making use of laser-induced ultrasound waves. Although a series of absorption-enhanced optical contrast agents for photoacoustic imaging were developed, the probe with fully conversion from absorbed light energy to acoustic energy has not been achieved so far. Here we develop a high-efficiency photoacoustic probes with fluorescence resonance energy transfer (FRET) effect for enhancement of nonradiative energy. Graphene oxide (GO) binding optical dyes (GO-dyes) were achieved to show highly fluorescence quenching and violently increased photoacoustic signal intensity. GO-dyes were constructed and testified for multi-spectral photoacoustic imaging. As a representative probe, GO-Cy7 nanoparticles were used to validate the feasibility of photoacoustic tumor molecular imaging in vivo. Our work demonstrated a new approach to construct high-efficiency FRET-enhanced multi-spectrum probes for photoacoustic molecular imaging.

  7. Cold-Sprayed Cu-MoS2 and Its Fretting Wear Behavior

    NASA Astrophysics Data System (ADS)

    Zhang, Yinyin; Descartes, Sylvie; Vo, Phuong; Chromik, Richard R.

    2016-02-01

    Cu and Cu-MoS2 coatings were fabricated by cold spray, and the fretting wear performance of the two coatings was compared. A mixture (95 wt.% Cu + 5 wt.% MoS2) was used as feedstock for the composite coating. Coatings were sprayed with identical gas flow conditions on the substrates pre-heated to approximately 170 °C. The morphology of coating top surface and polished cross sections was analyzed by scanning electron microscopy (SEM) and light optical microscopy (LOM). The influence of MoS2 on Cu deposition was examined. The local MoS2 concentration within the coating was found to affect the hardness. Fretting tests were carried out at two different normal loads, and the influence of MoS2 on friction and wear was studied. The morphology and elemental compositions of the wear scars and wear debris were observed by SEM and energy dispersive x-ray spectroscopy (EDS), respectively.

  8. Universal limiting shape of worn profile under multiple-mode fretting conditions: theory and experimental evidence

    NASA Astrophysics Data System (ADS)

    Dmitriev, Andrey I.; Voll, Lars B.; Psakhie, Sergey G.; Popov, Valentin L.

    2016-03-01

    We consider multiple-mode fretting wear in a frictional contact of elastic bodies subjected to a small-amplitude oscillation, which may include in-plane and out-of-plane translation, torsion and tilting (“periodic rolling”). While the detailed kinetics of wear depends on the particular loading history and wear mechanism, the final worn shape, under some additional conditions, occurs to be universal for all types and loading and wear mechanisms. This universal form is determined solely by the radius of the permanent stick region and the maximum indentation depth during the loading cycle. We provide experimental evidence for the correctness of the theoretically predicted limiting shape. The existence of the universal limiting shape can be used for designing joints which are resistant to fretting wear.

  9. Universal limiting shape of worn profile under multiple-mode fretting conditions: theory and experimental evidence

    PubMed Central

    Dmitriev, Andrey I.; Voll, Lars B.; Psakhie, Sergey G.; Popov, Valentin L.

    2016-01-01

    We consider multiple-mode fretting wear in a frictional contact of elastic bodies subjected to a small-amplitude oscillation, which may include in-plane and out-of-plane translation, torsion and tilting (“periodic rolling”). While the detailed kinetics of wear depends on the particular loading history and wear mechanism, the final worn shape, under some additional conditions, occurs to be universal for all types and loading and wear mechanisms. This universal form is determined solely by the radius of the permanent stick region and the maximum indentation depth during the loading cycle. We provide experimental evidence for the correctness of the theoretically predicted limiting shape. The existence of the universal limiting shape can be used for designing joints which are resistant to fretting wear. PMID:26979092

  10. Development of Diubiquitin‐Based FRET Probes To Quantify Ubiquitin Linkage Specificity of Deubiquitinating Enzymes

    PubMed Central

    van Tol, Bianca D. M.; van Dalen, Duco; Brundel, Paul J. G.; Mevissen, Tycho E. T.; Pruneda, Jonathan N.; Elliott, Paul R.; van Tilburg, Gabriëlle B. A.; Komander, David

    2016-01-01

    Abstract Deubiquitinating enzymes (DUBs) are proteases that fulfill crucial roles in the ubiquitin (Ub) system, by deconjugation of Ub from its targets and disassembly of polyUb chains. The specificity of a DUB towards one of the polyUb chain linkages largely determines the ultimate signaling function. We present a novel set of diubiquitin FRET probes, comprising all seven isopeptide linkages, for the absolute quantification of chain cleavage specificity of DUBs by means of Michaelis–Menten kinetics. Each probe is equipped with a FRET pair consisting of Rhodamine110 and tetramethylrhodamine to allow the fully synthetic preparation of the probes by SPPS and NCL. Our synthetic strategy includes the introduction of N,N′‐Boc‐protected 5‐carboxyrhodamine as a convenient building block in peptide chemistry. We demonstrate the value of our probes by quantifying the linkage specificities of a panel of nine DUBs in a high‐throughput manner. PMID:26996281

  11. Photodynamic therapy via FRET following bioorthogonal click reaction in cancer cells.

    PubMed

    Bio, Moses; Rajaputra, Pallavi; You, Youngjae

    2016-01-01

    Longer wavelength light (650-800nm) is desired to treat large tumors in photodynamic therapy (PDT). However, shorter wavelength light is needed in PDT for thin tumors, not to cause undesirable local side effects. We proposed a strategy for stepwise optical imaging and PDT using a bioorthogonal click chemistry and fluorescence resonance energy transfer (FRET). We prepared azidyl rhodamine (Rh-N3, clickable FD) and cyclooctynyl phthalocyanine [Pc-(DIBAC), clickable PS], with which, here, we demonstrate that the non-catalytic click chemistry is rapid and efficient in cancer cells and FRET from a fluorescence dye (FD) to a photosensitizer (PS) is sufficient to generate enough singlet oxygen killing cancer cells by using shorter wavelength light.

  12. Near infrared FRET using wide-field fluorescence lifetime imaging in live animals

    NASA Astrophysics Data System (ADS)

    Zhao, Lingling; Abe, Ken; Barroso, Margarida; Intes, Xavier

    2013-06-01

    One of the challenges in anti-cancer drug delivery systems is to quantitatively discriminate non-specific receptorindependent tumor accumulation from receptor-mediated uptake into the tumor cells. To overcome this challenge, we develop a new near infrared fluorescence resonance energy transfer fluorescence lifetime imaging (NIR FRET FLIM) technique with wide-field illumination strategies to validate and characterize cellular uptake in both cancer cells and normal cells with different donor-acceptor ratios in vitro and in vivo. Our results demonstrate that NIR FRET FLIM can quantitatively distinguish receptor-bound from unbound donor in live animals with high sensitivity and high accuracy. Thus, it has a great potential for the quantitative detection of targeted delivery systems for diagnostic and therapeutic use.

  13. HTS-compatible FRET-based conformational sensors clarify membrane receptor activation.

    PubMed

    Scholler, Pauline; Moreno-Delgado, David; Lecat-Guillet, Nathalie; Doumazane, Etienne; Monnier, Carine; Charrier-Savournin, Fabienne; Fabre, Ludovic; Chouvet, Cédric; Soldevila, Stéphanie; Lamarque, Laurent; Donsimoni, Geoffrey; Roux, Thomas; Zwier, Jurriaan M; Trinquet, Eric; Rondard, Philippe; Pin, Jean-Philippe

    2017-01-30

    Cell surface receptors represent a vast majority of drug targets. Efforts have been conducted to develop biosensors reporting their conformational changes in live cells for pharmacological and functional studies. Although Förster resonance energy transfer (FRET) appears to be an ideal approach, its use is limited by the low signal-to-noise ratio. Here we report a toolbox composed of a combination of labeling technologies, specific fluorophores compatible with time-resolved FRET and a novel method to quantify signals. This approach enables the development of receptor biosensors with a large signal-to-noise ratio. We illustrate the usefulness of this toolbox through the development of biosensors for various G-protein-coupled receptors and receptor tyrosine kinases. These receptors include mGlu, GABAB, LH, PTH, EGF and insulin receptors among others. These biosensors can be used for high-throughput studies and also revealed new information on the activation process of these receptors in their cellular environment.

  14. Selected fretting-wear-resistant coatings for Ti-6 pct Al-4 pct V alloy

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1985-01-01

    The ability of several wear-resistant coatings to reduce fretting in the Ti-6Al-4V alloy is investigated. The experimental apparatus and procedures for evaluating fretting in uncoated Ti-6Al-4V alloy and in the alloy with plasma-sprayed coatings, polymer-bonded coating, and surface treatments are described. The wear volume and wear rate for the alloys are measured and compared. It is concluded that Al2O3 with 13 percent TiO2, preoxidation and nitride surface treatments, and MoS2 sputtering result in wear-resistant surfaces; however, the polyimide coating is the most wear resistant coating in both dry and moist air, and it causes the least wear to the uncoated alloy surface.

  15. FRET enhancement close to gold nanoparticles positioned in DNA origami constructs.

    PubMed

    Aissaoui, Nesrine; Moth-Poulsen, Kasper; Käll, Mikael; Johansson, Peter; Wilhelmsson, L Marcus; Albinsson, Bo

    2017-01-05

    Here we investigate the energy transfer rates of a Förster resonance energy transfer (FRET) pair positioned in close proximity to a 5 nm gold nanoparticle (AuNP) on a DNA origami construct. We study the distance dependence of the FRET rate by varying the location of the donor molecule, D, relative to the AuNP while maintaining a fixed location of the acceptor molecule, A. The presence of the AuNP induces an alteration in the spontaneous emission of the donor (including radiative and non-radiative rates) which is strongly dependent on the distance between the donor and AuNP surface. Simultaneously, the energy transfer rates are enhanced at shorter D-A (and D-AuNP) distances. Overall, in addition to the direct influence of the acceptor and AuNP on the donor decay there is also a significant increase in decay rate not explained by the sum of the two interactions. This leads to enhanced energy transfer between donor and acceptor in the presence of a 5 nm AuNP. We also demonstrate that the transfer rate in the three "particle" geometry (D + A + AuNP) depends approximately linearly on the transfer rate in the donor-AuNP system, suggesting the possibility to control FRET process with electric field induced by 5 nm AuNPs close to the donor fluorophore. It is concluded that DNA origami is a very versatile platform for studying interactions between molecules and plasmonic nanoparticles in general and FRET enhancement in particular.

  16. Fretting Fatigue Behavior of the Titanium Alloy Ti-6AL-4V Under Seawater Conditions

    DTIC Science & Technology

    2004-03-01

    continuously broken up by the mechanical action. The oxide debris piles up and can become trapped in a valley between two contacting asperities. Pits...element analysis used in this study was similar to the one utilized by Lykins [42] and Yuksel [40]. A commercially available finite element code, ABAQUS ...Strip (With Particular Reference to Fretting Experiments),” Wear, 185: 235-238 (1995). 113 51. ABAQUS Standard User’s Manual. Vol. 2. Hibbit

  17. Genetically-encoded FRET-based sensors for monitoring Zn(2+) in living cells.

    PubMed

    Hessels, Anne M; Merkx, Maarten

    2015-02-01

    Genetically-encoded fluorescent sensor proteins are attractive tools for studying intracellular Zn(2+) homeostasis and signaling. Here we provide an overview of recently developed sensors based on Förster Resonance Energy Transfer (FRET). The pros and cons of the various sensors are discussed with respect to Zn(2+) affinity, dynamic range, intracellular targeting and multicolor imaging. Recent applications of these sensors are described, as well as some of the challenges that remain to be addressed in future research.

  18. Handheld Fluorescence Resonance Energy Transfer (FRET)-Aptamer Sensor for Bone Markers

    NASA Technical Reports Server (NTRS)

    Bruno, John G.

    2015-01-01

    Astronauts lose significant bone mass during lengthy space flights. NASA wishes to monitor this bone loss in order to develop nutritional and exercise countermeasures. Operational Technologies Corporation (OpTech) has developed a handheld device that quantifies bone loss in a spacecraft environment. The innovation works by adding fluorescent dyes and quenchers to aptamers to enable pushbutton, one-step bind-and-detect FRET assays that can be freeze-dried, rehydrated with body fluids, and used to quantify bone loss.

  19. Accuracy of maximum likelihood estimates of a two-state model in single-molecule FRET

    SciTech Connect

    Gopich, Irina V.

    2015-01-21

    Photon sequences from single-molecule Förster resonance energy transfer (FRET) experiments can be analyzed using a maximum likelihood method. Parameters of the underlying kinetic model (FRET efficiencies of the states and transition rates between conformational states) are obtained by maximizing the appropriate likelihood function. In addition, the errors (uncertainties) of the extracted parameters can be obtained from the curvature of the likelihood function at the maximum. We study the standard deviations of the parameters of a two-state model obtained from photon sequences with recorded colors and arrival times. The standard deviations can be obtained analytically in a special case when the FRET efficiencies of the states are 0 and 1 and in the limiting cases of fast and slow conformational dynamics. These results are compared with the results of numerical simulations. The accuracy and, therefore, the ability to predict model parameters depend on how fast the transition rates are compared to the photon count rate. In the limit of slow transitions, the key parameters that determine the accuracy are the number of transitions between the states and the number of independent photon sequences. In the fast transition limit, the accuracy is determined by the small fraction of photons that are correlated with their neighbors. The relative standard deviation of the relaxation rate has a “chevron” shape as a function of the transition rate in the log-log scale. The location of the minimum of this function dramatically depends on how well the FRET efficiencies of the states are separated.

  20. Coverage-dependent changes of cytochrome c transverse location in phospholipid membranes revealed by FRET.

    PubMed

    Domanov, Yegor A; Molotkovsky, Julian G; Gorbenko, Galyna P

    2005-10-01

    The method of fluorescence resonance energy transfer (FRET) has been employed to monitor cytochrome c interaction with bilayer phospholipid membranes. Liposomes composed of phosphatidylcholine and varying amounts of anionic lipid cardiolipin (CL) were used as model membranes. Trace amount of fluorescent lipid derivative, anthrylvinyl-phosphatidylcholine was incorporated into the membranes to serve energy donor for heme moiety of cytochrome c. Energy transfer efficiency was measured at different lipid and protein concentrations to obtain extensive set of data, which were further analyzed globally in terms of adequate models of protein adsorption and energy transfer on the membrane surface. It has been found that the cytochrome c association with membranes containing 10 mol% CL can be described in terms of equilibrium binding model (yielding dissociation constant Kd = 0.2-0.4 microM and stoichiometry n = 11-13 lipid molecules per protein binding site) combined with FRET model assuming uniform acceptor distribution with the distance of 3.5-3.6 nm between the bilayer midplane and heme moiety of cytochrome c. However, increasing the CL content to 20 or 40 mol% (at low ionic strength) resulted in a different behavior of FRET profiles, inconsistent with the concepts of equilibrium adsorption of cytochrome c at the membrane surface and/or uniform acceptor distribution. To explain this fact, several possibilities are analyzed, including cytochrome c-induced formation of non-bilayer structures and clusters of charged lipids, or changes in the depth of cytochrome c penetration into the bilayer depending on the protein surface density. Additional control experiments have shown that only the latter process can explain the peculiar concentration dependences of FRET at high CL content.

  1. FRET Imaging Trackable Long Circulating Biodegradable Nanomedicines for Ovarian Cancer Therapy

    DTIC Science & Technology

    2015-11-01

    crucial need to develop better therapeutic agents and strategies. The purpose of this project is to draw on the recent advances in polymer science ...Channels Analyzed Channel Excitation (nm) Emission (nm) Interpretation Cy3 546 567 Emission from the Cy3 dye resulting from its direct excitation...Cy5 646 669 Emission from the Cy5 dye resulting from its direct excitation FRET 546 669 Emission from the Cy5 dye arising from direct excitation

  2. Ecstasy analogues found in cacti.

    PubMed

    Bruhn, Jan G; El-Seedi, Hesham R; Stephanson, Nikolai; Beck, Olof; Shulgin, Alexander T

    2008-06-01

    Human interest in psychoactive phenethylamines is known from the use of mescaline-containing cacti and designer drugs such as Ecstasy. From the alkaloid composition of cacti we hypothesized that substances resembling Ecstasy might occur naturally. In this article we show that lophophine, homopiperonylamine and lobivine are new minor constituents of two cactus species, Lophophora williamsii (peyote) and Trichocereus pachanoi (San Pedro). This is the first report of putatively psychoactive phenethylamines besides mescaline in these cacti. A search for further biosynthetic analogues may provide new insights into the structure-activity relationships of mescaline. An intriguing question is whether the new natural compounds can be called "designer drugs."

  3. FUNCTION GENERATOR FOR ANALOGUE COMPUTERS

    DOEpatents

    Skramstad, H.K.; Wright, J.H.; Taback, L.

    1961-12-12

    An improved analogue computer is designed which can be used to determine the final ground position of radioactive fallout particles in an atomic cloud. The computer determines the fallout pattern on the basis of known wind velocity and direction at various altitudes, and intensity of radioactivity in the mushroom cloud as a function of particle size and initial height in the cloud. The output is then displayed on a cathode-ray tube so that the average or total luminance of the tube screen at any point represents the intensity of radioactive fallout at the geographical location represented by that point. (AEC)

  4. Template polymerization of nucleotide analogues

    NASA Technical Reports Server (NTRS)

    Orgel, L. E.

    1991-01-01

    Recent work on the template-directed reactions of the natural D-nucleotides has made it clear that l-nucleotides and nucleotide-like derivatives of other sugars would strongly inhibit the formation of long oligonucleotides. Consequently, attention is focusing on molecules simpler than nucleotides that might have acted as monomers of an information transfer system. We have begun a general exploration of the template directed reactions of diverse peptide analogues. I will present work by Dr. Taifeng Wu on oxidative oligomerization of phosphorothioates and of Dr. Mary Tohidi on the cyclic polymerization of nucleoside and related cyclic pyrophosphates.

  5. Choline Analogues in Malaria Chemotherapy

    PubMed Central

    Peyrottes, Suzanne; Caldarelli, Sergio; Wein, Sharon; Périgaud, Christian; Pellet, Alain; Vial, Henri

    2012-01-01

    Emerging resistance against well-established anti-malaria drugs warrants the introduction of new therapeutic agents with original mechanisms of action. Inhibition of membrane-based phospholipid biosynthesis, which is crucial for the parasite, has thus been proposed as a novel and promising therapeutic strategy. This review compiles literature concerning the design and study of choline analogues and related cation derivatives as potential anti-malarials. It covers advances achieved over the last two decades and describes: the concept validation, the design and selection of a clinical candidate (Albitiazolium), back-up derivatives while also providing insight into the development of prodrug approaches. PMID:22607139

  6. Single-Molecule FRET Reveals Hidden Complexity in a Protein Energy Landscape

    PubMed Central

    Tsytlonok, Maksym; Ibrahim, Shehu M.; Rowling, Pamela J.E.; Xu, Wenshu; Ruedas-Rama, Maria J.; Orte, Angel; Klenerman, David; Itzhaki, Laura S.

    2015-01-01

    Summary Here, using single-molecule FRET, we reveal previously hidden conformations of the ankyrin-repeat domain of AnkyrinR, a giant adaptor molecule that anchors integral membrane proteins to the spectrin-actin cytoskeleton through simultaneous binding of multiple partner proteins. We show that the ankyrin repeats switch between high-FRET and low-FRET states, controlled by an unstructured “safety pin” or “staple” from the adjacent domain of AnkyrinR. Opening of the safety pin leads to unravelling of the ankyrin repeat stack, a process that will dramatically affect the relative orientations of AnkyrinR binding partners and, hence, the anchoring of the spectrin-actin cytoskeleton to the membrane. Ankyrin repeats are one of the most ubiquitous molecular recognition platforms in nature, and it is therefore important to understand how their structures are adapted for function. Our results point to a striking mechanism by which the order-disorder transition and, thereby, the activity of repeat proteins can be regulated. PMID:25565106

  7. Single-molecule FRET reveals hidden complexity in a protein energy landscape.

    PubMed

    Tsytlonok, Maksym; Ibrahim, Shehu M; Rowling, Pamela J E; Xu, Wenshu; Ruedas-Rama, Maria J; Orte, Angel; Klenerman, David; Itzhaki, Laura S

    2015-01-06

    Here, using single-molecule FRET, we reveal previously hidden conformations of the ankyrin-repeat domain of AnkyrinR, a giant adaptor molecule that anchors integral membrane proteins to the spectrin-actin cytoskeleton through simultaneous binding of multiple partner proteins. We show that the ankyrin repeats switch between high-FRET and low-FRET states, controlled by an unstructured "safety pin" or "staple" from the adjacent domain of AnkyrinR. Opening of the safety pin leads to unravelling of the ankyrin repeat stack, a process that will dramatically affect the relative orientations of AnkyrinR binding partners and, hence, the anchoring of the spectrin-actin cytoskeleton to the membrane. Ankyrin repeats are one of the most ubiquitous molecular recognition platforms in nature, and it is therefore important to understand how their structures are adapted for function. Our results point to a striking mechanism by which the order-disorder transition and, thereby, the activity of repeat proteins can be regulated.

  8. Dance of the SNAREs: Assembly and rearrangements detected with FRET at neuronal synapses

    PubMed Central

    Degtyar, Vadim; Hafez, Ismail M.; Bray, Christopher; Zucker, Robert S.

    2013-01-01

    Soluble NSF Attachment Protein Receptors (SNAREs) mediate vesicle fusion with the plasma membrane on activation by calcium binding to synaptotagmin. We used fluorescence resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) between fluorescently-labeled SNARE proteins expressed in cultured rat hippocampal neurons to detect resting SNARE complexes, their conformational rearrangement on exocytosis, their disassembly prior to endocytosis of vesicular proteins, and SNARE assembly at newly docked vesicles. Assembled SNAREs are not only in docked vesicles; unexpected residual “orphan SNARE complexes” also reside in para-active zone regions. Real-time changes in FRET between N-terminally labeled SNAP-25 and VAMP reported a reorientation of the SNARE motif upon exocytosis, SNARE disassembly in the active zone periphery, and SNARE reassembly in newly docked vesicles. With VAMP labeled C-terminally, decreased fluorescence in C-terminally labeled syntaxin (extracellular) reported trans-cis conformational changes in SNAREs on vesicle fusion. After fusion SNAP-25 and syntaxin disperse along with VAMP, as well as the FRET signal itself, indicating diffusion of intact SNAREs after vesicle fusion but before their peripheral disassembly. Our measurements of spatio-temporal dynamics of SNARE conformational changes and movements refine models of SNARE function. Technical advances required to detect tiny changes in fluorescence in small fractions of labeled proteins in presynaptic boutons on a time scale of seconds permit the detection of rapid inter-molecular interactions between small proportions of protein partners in cellular sub-compartments. PMID:23536066

  9. Picosecond-hetero-FRET microscopy to probe protein-protein interactions in live cells.

    PubMed Central

    Tramier, Marc; Gautier, Isabelle; Piolot, Tristan; Ravalet, Sylvie; Kemnitz, Klaus; Coppey, Jacques; Durieux, Christiane; Mignotte, Vincent; Coppey-Moisan, Maïté

    2002-01-01

    By using a novel time- and space-correlated single-photon counting detector, we show that fluorescence resonance energy transfer (FRET) between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) fused to herpes simplex virus thymidine kinase (TK) monomers can be used to reveal homodimerization of TK in the nucleus and cytoplasm of live cells. However, the quantification of energy transfer was limited by the intrinsic biexponential fluorescence decay of the donor CFP (lifetimes of 1.3 +/- 0.2 ns and 3.8 +/- 0.4 ns) and by the possibility of homodimer formation between two TK-CFP. In contrast, the heterodimerization of the transcriptional factor NF-E2 in the nucleus of live cells was quantified from the analysis of the fluorescence decays of GFP in terms of 1) FRET efficiency between GFP and DsRed chromophores fused to p45 and MafG, respectively, the two subunits of NF-E2 (which corresponds to an interchromophoric distance of 39 +/- 1 A); and 2) fractions of GFP-p45 bound to DsRed-MafG (constant in the nucleus, varying in the range of 20% to 70% from cell to cell). The picosecond resolution of the fluorescence kinetics allowed us to discriminate between very short lifetimes of immature green species of DsRed-MafG and that of GFP-p45 involved in FRET with DsRed-MafG. PMID:12496124

  10. Single-Molecule Pull-Down FRET to Dissect the Mechanisms of Biomolecular Machines.

    PubMed

    Kahlscheuer, Matthew L; Widom, Julia; Walter, Nils G

    2015-01-01

    Spliceosomes are multimegadalton RNA-protein complexes responsible for the faithful removal of noncoding segments (introns) from pre-messenger RNAs (pre-mRNAs), a process critical for the maturation of eukaryotic mRNAs for subsequent translation by the ribosome. Both the spliceosome and ribosome, as well as many other RNA and DNA processing machineries, contain central RNA components that endow biomolecular complexes with precise, sequence-specific nucleic acid recognition, and versatile structural dynamics. Single-molecule fluorescence (or Förster) resonance energy transfer (smFRET) microscopy is a powerful tool for the study of local and global conformational changes of both simple and complex biomolecular systems involving RNA. The integration of biochemical tools such as immunoprecipitation with advanced methods in smFRET microscopy and data analysis has opened up entirely new avenues toward studying the mechanisms of biomolecular machines isolated directly from complex biological specimens, such as cell extracts. Here, we detail the general steps for using prism-based total internal reflection fluorescence microscopy in exemplary single-molecule pull-down FRET studies of the yeast spliceosome and discuss the broad application potential of this technique.

  11. IQGAP1 Interactome Analysis by In Vitro Reconstitution and Live Cell 3-Color FRET Microscopy

    PubMed Central

    Wallrabe, Horst; Cai, Ying; Sun, Yuansheng; Periasamy, A.; Luzes, R.; Fang, Xiaolan; Kan, Ho-Man; Cameron, L. C.; Schafer, Dorothy A.; Bloom, George S.

    2014-01-01

    IQGAP1 stimulates branched actin filament nucleation by activating N-WASP, which then activates the Arp2/3 complex. N-WASP can be activated by other factors, including GTP-bound Cdc42 or Rac1, which also bind IQGAP1. Here we report the use of purified proteins for in vitro binding and actin polymerization assays, and Förster (or fluorescence) resonance energy transfer (FRET) microscopy of cultured cells to illuminate functional interactions among IQGAP1, N-WASP, actin, and either Cdc42 or Rac1. In pyrene-actin assembly assays containing N-WASP and Arp2/3 complex, IQGAP1 plus either small G protein cooperatively stimulated actin filament nucleation by reducing the lag time before 50% maximum actin polymerization was reached. Similarly, Cdc42 and Rac1 modulated the binding of IQGAP1 to N-WASP in a dose-dependent manner, with Cdc42 enhancing the interaction and Rac1 reducing the interaction. These in vitro reconstitution results suggested that IQGAP1 interacts by similar, yet distinct mechanisms with Cdc42 versus Rac1 to regulate actin filament assembly through N-WASP in vivo. The physiological relevance of these multi-protein interactions was substantiated by 3-color FRET microscopy of live MDCK cells expressing various combinations of fluorescent N-WASP, IQGAP1, Cdc42, Rac1 and actin. This study also establishes 3-color FRET microscopy as a powerful tool for studying dynamic intermolecular interactions in live cells. PMID:24124181

  12. Single molecule FRET shows uniformity in TBP-induced DNA bending and heterogeneity in bending kinetics†

    PubMed Central

    Blair, Rebecca H.; Goodrich, James A.; Kugel, Jennifer F.

    2012-01-01

    TATA binding protein (TBP) is a key component of the eukaryotic RNA polymerase II (Pol II) transcription machinery that binds to TATA boxes located in the core promoter regions of many genes. Structural and biochemical studies have shown that when TBP binds DNA, it sharply bends the DNA. We used single-molecule FRET (smFRET) to study DNA bending by human TBP on consensus and mutant TATA boxes in the absence and presence of TFIIA. We found that the state of the bent DNA within populations of TBP/DNA complexes is homogeneous; partially bent intermediates were not observed. In contrast to previous ensemble studies, TBP was found to bend a mutant TATA box to the same extent as the consensus TATA box. Moreover, in the presence of TFIIA the extent of DNA bending was not significantly changed, although TFIIA did increase the fraction of DNA molecules bound by TBP. Analysis of the kinetics of DNA bending and unbending revealed that on the consensus TATA box two kinetically distinct populations of TBP/DNA complexes exist, however, the bent state of the DNA is the same in the two populations. Our smFRET studies reveal that human TBP bends DNA in a largely uniform manner under a variety of different conditions, which was unexpected given previous ensemble biochemical studies. Our new observations lead to us to revise the model for the mechanism of DNA binding by TBP and for how DNA bending is affected by TATA sequence and TFIIA. PMID:22934924

  13. Measurement of caspase-2 activation during different anti-tumor drugs induced apoptosis by FRET technique

    NASA Astrophysics Data System (ADS)

    Lin, Juqiang; Zeng, Shaoqun; Luo, Qingming; Rong, Chen; Zhang, Zhihong

    2007-11-01

    Caspase-2 is important for the engagement of the mitochondrial apoptotic pathway, in the presence of DNA-damaging agents, such as cisplatin; however, the mechanism by which caspase-2 executes apoptosis remains obscure. In this study, we carried out the measurements of the dynamics of caspase-2 activation in a single living cell by a FRET (fluorescence resonance energy transfer) probe. A FRET probe was constructed that encoded a CRS (caspase-2 recognition site) fused with a cyan fluorescent protein (CFP) and a red fluorescent protein (DsRed) (CFP-CRS-DsRed). Using this probe, we found that during TRAIL-induced apoptosis, caspase-2 was not activated, and caspase-2 activation occurred in etoposide and cisplatin treated cells. However, during cisplatin-induced apoptosis caspase-2 activation was initiated much earlier than that of etoposide. Cisplatin and etoposide is one of the most broadly used drugs in the Clinical applications of cancer chemotherapy, and TRAIL, which belongs to the TNF family proteins, can selectively induce apoptosis in many transformed cells but not in normal cells. Most of anticancer drugs can induce apoptosis mediated by the activation of caspase pathway. Thus, the perfect synergistic effect group of multi-drug can be selected by using our FRET probe.

  14. Investigation of quantum dot FRET in the far-red spectral region

    NASA Astrophysics Data System (ADS)

    Chong, E. Z.; Matthews, D. R.; Summers, H. D.; Njoh, K. L.; Errington, R. J.; Smith, P. J.

    2007-02-01

    Colloidal quantum dots (QDs) are now commercially available in a bio-functionalized form and Förster resonance energy transfer (FRET) between bioconjugated dots and fluorophores within the visible range has been observed by several groups of researchers. We are particularly interested in the far-red region, as from a biological perspective, there are benefits in pushing to ~700 nm to minimize optical absorption (ABS) within tissue and avoiding cell autofluorescence. We report on FRET between streptavidin (STV) conjugated CdTe quantum dots, Qdot705-STV, with biotinylated Dy731-Bio fluorescent molecules in a donor-acceptor assay. We also highlight an unusual change in Dy731-Bio absorptivity during the streptavidin-biotin binding process that can be attributed to the structural reorientation. In moving to wavelengths beyond 700 nm, different alloy compositions are required for the quantum dot core and these introduce associated changes in the physical shape. These changes directly affect the fluorescence decay dynamics producing a marked biexponential decay with an extremely long lifetime component, a lifetime in excess of 100 ns. We compare and contrast the influence of the two QD relaxation processes upon the FRET dynamics in the presence of Dy731-Bio.

  15. Dance of the SNAREs: assembly and rearrangements detected with FRET at neuronal synapses.

    PubMed

    Degtyar, Vadim; Hafez, Ismail M; Bray, Christopher; Zucker, Robert S

    2013-03-27

    Soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) mediate vesicle fusion with the plasma membrane on activation by calcium binding to synaptotagmin. In the present study, we used fluorescence resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy between fluorescently labeled SNARE proteins expressed in cultured rat hippocampal neurons to detect resting SNARE complexes, their conformational rearrangement on exocytosis, their disassembly before endocytosis of vesicular proteins, and SNARE assembly at newly docked vesicles. Assembled SNAREs are not only present in docked vesicles; unexpected residual "orphan SNARE complexes" also reside in para-active zone regions. Real-time changes in FRET between N-terminally labeled SNAP-25 and VAMP reported a reorientation of the SNARE motif upon exocytosis, SNARE disassembly in the active zone periphery, and SNARE reassembly in newly docked vesicles. With VAMP labeled C-terminally, decreased fluorescence in C-terminally labeled syntaxin (extracellular) reported trans-cis-conformational changes in SNAREs on vesicle fusion. After fusion SNAP-25 and syntaxin disperse along with VAMP, as well as the FRET signal itself, indicating diffusion of intact SNAREs after vesicle fusion but before their peripheral disassembly. Our measurements of spatiotemporal dynamics of SNARE conformational changes and movements refine models of SNARE function. Technical advances required to detect tiny changes in fluorescence in small fractions of labeled proteins in presynaptic boutons on a time scale of seconds permit the detection of rapid intermolecular interactions between small proportions of protein partners in cellular subcompartments.

  16. A Toolbox of Genetically Encoded FRET-Based Biosensors for Rapid l-Lysine Analysis.

    PubMed

    Steffen, Victoria; Otten, Julia; Engelmann, Susann; Radek, Andreas; Limberg, Michael; Koenig, Bernd W; Noack, Stephan; Wiechert, Wolfgang; Pohl, Martina

    2016-09-28

    Background: The fast development of microbial production strains for basic and fine chemicals is increasingly carried out in small scale cultivation systems to allow for higher throughput. Such parallelized systems create a need for new rapid online detection systems to quantify the respective target compound. In this regard, biosensors, especially genetically encoded Förster resonance energy transfer (FRET)-based biosensors, offer tremendous opportunities. As a proof-of-concept, we have created a toolbox of FRET-based biosensors for the ratiometric determination of l-lysine in fermentation broth. Methods: The sensor toolbox was constructed based on a sensor that consists of an optimized central lysine-/arginine-/ornithine-binding protein (LAO-BP) flanked by two fluorescent proteins (enhanced cyan fluorescent protein (ECFP), Citrine). Further sensor variants with altered affinity and sensitivity were obtained by circular permutation of the binding protein as well as the introduction of flexible and rigid linkers between the fluorescent proteins and the LAO-BP, respectively. Results: The sensor prototype was applied to monitor the extracellular l-lysine concentration of the l-lysine producing Corynebacterium glutamicum (C. glutamicum) strain DM1933 in a BioLector(®) microscale cultivation device. The results matched well with data obtained by HPLC analysis and the Ninhydrin assay, demonstrating the high potential of FRET-based biosensors for high-throughput microbial bioprocess optimization.

  17. Real-time detecting gelatinases activity in living cells by FRET imaging

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Zhang, Zhihong; Liu, Bifeng; Luo, Qingming

    2006-01-01

    Degradation of the extracellular matrix by Matrix metalloproteinases (MMPs) not only enhances tumor invasion, but also affects tumor cell behaviour and leads to cancer progression. To monitor gelatinases (contain MMP2 and MMP9) activity in living cells, we constructed a vector that encoded a gelatinases recognition site (GRS) between citrine (mutation of EYFP Q69M) in N terminal and ECFP in C terminal. Because Gelatinases are secretory proteins and act outside of cell, an expressing vector displayed the fusion protein on cellular surface was used for this FRET gene probe. On expression of YFP-GRS-ECFP in MCF-7 cells that expressed no gelatinases, we were able to observe the efficient transfer of energy from excited ECFP to YFP within the YFP-GRS-ECFP molecule. However, the fusion protein YFP-GRS-ECFP was expressed in MDA-MB 453s cell line with high secretory gelatinases, so YFP-GRS-ECFP was cleaved by gelatinases, no such transfer of energy was detected and fluorescence signal disappeared in YFP channel since YFP protein was cut down. Moreover, Doxycycline, a MMP inhibitor, could make FRET signal increase and fluorescence signal appeared in YFP channel. Thus, the FRET probe YFP-GRS-ECFP can sensitively and reliably monitor gelatinases activation in living cells and can be used for screening MMP inhibitors.

  18. FRET-based detection and genotyping of HPV-6 and HPV-11 causing recurrent respiratory papillomatosis.

    PubMed

    Combrinck, Catharina E; Seedat, Riaz Y; Burt, Felicity J

    2013-05-01

    Recurrent respiratory papillomatosis (RRP) is a potentially life-threatening disease caused by human papillomavirus (HPV), usually HPV types 6 and 11. The conventional method used for detection and typing the RRP isolates in our laboratory is the polymerase chain reaction (PCR) and DNA sequencing method. A real-time PCR assay based on fluorescence resonance energy transfer (FRET) probe technology was developed for the detection and rapid genotyping of HPV-6 and-11 isolates from biopsy material. The primers and probes were designed using multiple alignments of HPV-6 and HPV-11 partial E6 and E7 sequences that included prototypic and non-prototypic variants. Real-time PCR followed by probe-specific melting-curve analysis allowed differentiation of HPV-6 and HPV-11. HPV-6 and HPV-11 amplicons were used to determine detection limits and inter- and intra-assay variability. The detection limit of the assay was 12.8 DNA copies for HPV-6 and 22.5 DNA copies for HPV-11. A total of 60 isolates were genotyped using the FRET real-time PCR assay and a 100% concordance was obtained when results were compared with genotyping based on conventional DNA sequencing. The real-time PCR assay based on FRET technology was able to detect and rapidly genotype HPV from tissue biopsy obtained from patients with RRP. The assay reduces the time required for genotyping from three working days to less than a day.

  19. A Toolbox of Genetically Encoded FRET-Based Biosensors for Rapid l-Lysine Analysis

    PubMed Central

    Steffen, Victoria; Otten, Julia; Engelmann, Susann; Radek, Andreas; Limberg, Michael; Koenig, Bernd W.; Noack, Stephan; Wiechert, Wolfgang; Pohl, Martina

    2016-01-01

    Background: The fast development of microbial production strains for basic and fine chemicals is increasingly carried out in small scale cultivation systems to allow for higher throughput. Such parallelized systems create a need for new rapid online detection systems to quantify the respective target compound. In this regard, biosensors, especially genetically encoded Förster resonance energy transfer (FRET)-based biosensors, offer tremendous opportunities. As a proof-of-concept, we have created a toolbox of FRET-based biosensors for the ratiometric determination of l-lysine in fermentation broth. Methods: The sensor toolbox was constructed based on a sensor that consists of an optimized central lysine-/arginine-/ornithine-binding protein (LAO-BP) flanked by two fluorescent proteins (enhanced cyan fluorescent protein (ECFP), Citrine). Further sensor variants with altered affinity and sensitivity were obtained by circular permutation of the binding protein as well as the introduction of flexible and rigid linkers between the fluorescent proteins and the LAO-BP, respectively. Results: The sensor prototype was applied to monitor the extracellular l-lysine concentration of the l-lysine producing Corynebacterium glutamicum (C. glutamicum) strain DM1933 in a BioLector® microscale cultivation device. The results matched well with data obtained by HPLC analysis and the Ninhydrin assay, demonstrating the high potential of FRET-based biosensors for high-throughput microbial bioprocess optimization. PMID:27690044

  20. FRET evidence for untwisting of amyloid fibrils on the surface of model membranes.

    PubMed

    Gorbenko, Galyna; Trusova, Valeriya; Girych, Mykhailo; Adachi, Emi; Mizuguchi, Chiharu; Akaji, Kenichi; Saito, Hiroyuki

    2015-08-21

    Apolipoprotein A-I (apoA-I) is an amyloid-forming protein whose amyloidogenic properties are attributed mainly to its N-terminal fragment. Cell membranes are thought to be the primary target for the toxic amyloid aggregates. In the present study Förster resonance energy transfer (FRET) between the membrane fluorescent probe Laurdan as a donor and amyloid-specific dye Thioflavin T (ThT) as an acceptor was employed to explore the interactions of amyloid fibrils from apoA-I variants 1-83/G26R and 1-83/G26R/W@8 with the model membranes composed of phosphatidylcholine and its mixture with cholesterol. The changes in FRET efficiency upon fibril-lipid binding were found to correlate with the extent of protein fibrillization. AFM imaging revealed the presence of two polymorphic states of fibrillar 1-83/G26R/W@8 with the helical and twisted ribbon morphologies. The simulation-based analysis of the experimental FRET profiles provided the arguments in favor of untwisting of fibrillar assemblies upon their interaction with the model membranes. Evidence for the face-on orientation and superficial bilayer location of the membrane-bound fragments of 1-83/G26R/W@8 fibrils was obtained.

  1. Fluorescent protein pair emit intracellular FRET signal suitable for FACS screening

    SciTech Connect

    Johansson, Daniel X.; Brismar, Hjalmar . E-mail: mats.persson@ki.se

    2007-01-12

    The fluorescent proteins ECFP and HcRed were shown to give an easily resolved FRET-signal when expressed as a fusion inside mammalian cells. HeLa-tat cells expressing ECFP, pHcRed, or the fusion protein pHcRed-ECFP were analyzed by flow cytometry after excitation of ECFP. Cells expressing HcRed-ECFP, or ECFP and HcRed, were mixed and FACS-sorted for FRET positive cells: HcRed-ECFP cells were greatly enriched (72 times). Next, cloned human antibodies were fused with ECFP and expressed anchored to the ER membrane. Their cognate antigens (HIV-1 gp120 or gp41) were fused to HcRed and co-expressed in the ER. An increase of 13.5 {+-} 1.5% (mean {+-} SEM) and 8.0 {+-} 0.7% in ECFP fluorescence for the specific antibodies reacting with gp120 or gp41, respectively, was noted after photobleaching. A positive control (HcRed-ECFP) gave a 14.8 {+-} 2.6% increase. Surprisingly, the unspecific antibody (anti-TT) showed 12.1 {+-} 1.1% increase, possibly because overexpression in the limited ER compartment gave false FRET signals.

  2. Mapping of DDR1 Distribution and Oligomerization on the Cell Surface by FRET Microscopy

    PubMed Central

    Mihai, Cosmin; Chotani, Maqsood; Elton, Terry S.; Agarwal, Gunjan

    2009-01-01

    Activation of discoidin domain receptor (DDR) 1 by collagen is reported to regulate cell migration and survival processes. While the oligomeric state of DDR1 is reported to play a significant role in collagen binding, not much is known about the effect of collagen binding on DDR1 oligomerization and cellular distribution. Using fluorescence resonance energy transfer (FRET) microscopy, we monitored the interaction between DDR1 tagged with cyan fluorescent protein and DDR1 tagged with yellow fluorescent protein in live cells. Significant FRET signal indicative of receptor dimerization was found even in the absence of collagen stimulation. Collagen stimulation induced aggregation of DDR1, followed by a sharp increase in FRET signal, localized in the regions of aggregated receptor. Further analysis of DDR1 aggregation revealed that DDR1 undergoes cytoplasmic internalization and incorporation into the early endosome. We found the kinetics of DDR1 internalization to be fast, with a significant percentage of the receptor population being internalized in the first few minutes of collagen stimulation. Our results indicate that collagen stimulation induces the aggregation and internalization of DDR1 dimers at timescales much before receptor activation. These findings provide new insights into the cellular redistribution of DDR1 following its interaction with collagen type I. PMID:19007791

  3. GAS PHASE SYNTHESIS OF (ISO)QUINOLINE AND ITS ROLE IN THE FORMATION OF NUCLEOBASES IN THE INTERSTELLAR MEDIUM

    SciTech Connect

    Parker, Dorian S. N.; Kaiser, Ralf I.; Kostko, Oleg; Troy, Tyler P.; Ahmed, Musahid; Mebel, Alexander M.; Tielens, Alexander G. G. M.

    2015-04-20

    Nitrogen-substituted polycyclic aromatic hydrocarbons (NPAHs) have been proposed to play a key role in the astrochemical evolution of the interstellar medium, yet the formation mechanisms of even their simplest prototypes—quinoline and isoquinoline—remain elusive. Here, we reveal a novel concept that under high temperature conditions representing circumstellar envelopes of carbon stars, (iso)quinoline can be synthesized via the reaction of pyridyl radicals with two acetylene molecules. The facile gas phase formation of (iso)quinoline in circumstellar envelopes defines a hitherto elusive reaction class synthesizing aromatic structures with embedded nitrogen atoms that are essential building blocks in contemporary biological-structural motifs. Once ejected from circumstellar shells and incorporated into icy interstellar grains in cold molecular clouds, these NPAHs can be functionalized by photo processing forming nucleobase-type structures as sampled in the Murchison meteorite.

  4. Cytosine Nucleobase Ligand: A Suitable Choice for Modulating Magnetic Anisotropy in Tetrahedrally Coordinated Mononuclear Co(II) Compounds.

    PubMed

    Bruno, Rosaria; Vallejo, Julia; Marino, Nadia; De Munno, Giovanni; Krzystek, J; Cano, Joan; Pardo, Emilio; Armentano, Donatella

    2017-02-20

    A family of tetrahedral mononuclear Co(II) complexes with the cytosine nucleobase ligand is used as the playground for an in-depth study of the effects that the nature of the ligand, as well as their noninnocent distortions on the Co(II) environment, may have on the slow magnetic relaxation effects. Hence, those compounds with greater distortion from the ideal tetrahedral geometry showed a larger-magnitude axial magnetic anisotropy (D) together with a high rhombicity factor (E/D), and thus, slow magnetic relaxation effects also appear. In turn, the more symmetric compound possesses a much smaller value of the D parameter and, consequently, lacks single-ion magnet behavior.

  5. Contents Variation Analysis of Free Amino Acids, Nucleosides and Nucleobases in Semen sojae praeparatum Fermentation Using UFLC-QTRAP MS.

    PubMed

    Chai, Chuan; Cui, Xiaobing; Shan, Chenxiao; Yu, Sheng; Wen, Hongmei

    2017-03-31

    UFLC-QTRAP MS was used to develop a sensitive and rapid method of evaluating content variation during Semen sojae praeparatum (SSP) fermentation. It did this through the simultaneous quantification of 22 free amino acids (FAAs) and 16 nucleosides and nucleobases (Ns) in the raw materials and processed products of SSP. The method was shown to be reproducible and accurate. The limits of detection (LOD) and quantity (LOQ) values were between 0.09-168.75 and 0.31-562.50 ng/mL for the 38 analytes, respectively. The data was examined through Principal Component Analysis (PCA) to compare the content variations. The quantitative results showed that the ingredients were properly determined in most of the samples and were converted regularly throughout the SSP fermentation process. These results correspond to the morphologic changes and PCA results.

  6. Theoretical study of physisorption of nucleobases on boron nitride nanotubes: a new class of hybrid nano-biomaterials.

    PubMed

    Mukhopadhyay, Saikat; Gowtham, S; Scheicher, Ralph H; Pandey, Ravindra; Karna, Shashi P

    2010-04-23

    We investigate the adsorption of the nucleic acid bases-adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U)-on the outer wall of a high curvature semiconducting single-walled boron nitride nanotube (BNNT) by first-principles density functional theory calculations. The calculated binding energy shows the order: G > A approximately C approximately T approximately U, implying that the interaction strength of the high curvature BNNT with the nucleobases, G being an exception, is nearly the same. A higher binding energy for the G-BNNT conjugate appears to result from hybridization of the molecular orbitals of G and the BNNT. A smaller energy gap predicted for the G-BNNT conjugate relative to that of the pristine BNNT may be useful in the application of this class of biofunctional materials to the design of next-generation sensing devices.

  7. On modeling biomolecular-surface nonbonded interactions: application to nucleobase adsorption on single-wall carbon nanotube surfaces

    NASA Astrophysics Data System (ADS)

    Akdim, B.; Pachter, R.; Day, P. N.; Kim, S. S.; Naik, R. R.

    2012-04-01

    In this work we explored the selectivity of single nucleobases towards adsorption on chiral single-wall carbon nanotubes (SWCNTs) by density functional theory calculations. Specifically, the adsorption of molecular models of guanine (G), adenine (A), thymine (T), and cytosine (C), as well as of AT and GC Watson-Crick (WC) base pairs on chiral SWCNT C(6, 5), C(9, 1) and C(8, 3) model structures, was analyzed in detail. The importance of correcting the exchange-correlation functional for London dispersion was clearly demonstrated, yet limitations in modeling such interactions by considering the SWCNT as a molecular model may mask subtle effects in a molecular-macroscopic material system. The trend in the calculated adsorption energies of the nucleobases on same diameter C(6, 5) and C(9, 1) SWCNT surfaces, i.e. G > A > T > C, was consistent with related computations and experimental work on graphitic surfaces, however contradicting experimental data on the adsorption of single-strand short homo-oligonucleotides on SWCNTs that demonstrated a trend of G > C > A > T (Albertorio et al 2009 Nanotechnology 20 395101). A possible role of electrostatic interactions in this case was partially captured by applying the effective fragment potential method, emphasizing that the interplay of the various contributions in modeling nonbonded interactions is complicated by theoretical limitations. Finally, because the calculated adsorption energies for Watson-Crick base pairs have shown little effect upon adsorption of the base pair farther from the surface, the results on SWCNT sorting by salmon genomic DNA could be indicative of partial unfolding of the double helix upon adsorption on the SWCNT surface.

  8. Electrostatic evaluation of isosteric analogues

    NASA Astrophysics Data System (ADS)

    Sayle, Roger; Nicholls, Anthony

    2006-04-01

    A method is presented for enumerating a large number of isosteric analogues of a ligand from a known protein-ligand complex structure and then rapidly calculating an estimate of their binding energies. This approach takes full advantage of the observed crystal structure, by reusing the atomic co-ordinates determined experimentally for one ligand, to approximate those of similar compounds that have approximately the same shape. By assuming that compounds with similar shapes adopt similar binding poses, and that entropic and protein flexibility effects are approximately constant across such an isosteric series ("the frozen ligand approximation"), it is possible to order their binding affinities relatively accurately. Additionally, the constraint that the atomic coordinates are invariant allows for a dramatic simplification in the Poisson-Boltzmann method used to calculation the electrostatic component of the binding energy. This algorithmic improvement allows for the calculation of tens of thousands of binding energies per second for drug-like molecules, enabling this technique to be used in screening large virtual libraries of isosteric analogues. Most significantly, this procedure is shown to be able to reproduce SAR effects of subtle medicinal chemistry substitutions. Finally, this paper reports the results of the proposed methodology on␣seven model systems; dihydrofolate reductase, Lck␣kinase, ribosome inactivating protein, l-arabinose binding protein, neuraminidase, HIV-1 reverse transcriptase and COX-2.

  9. The Valles natural analogue project

    SciTech Connect

    Stockman, H.; Krumhansl, J.; Ho, C.; McConnell, V.

    1994-12-01

    The contact between an obsidian flow and a steep-walled tuff canyon was examined as an analogue for a highlevel waste repository. The analogue site is located in the Valles Caldera in New Mexico, where a massive obsidian flow filled a paleocanyon in the Battleship Rock tuff. The obsidian flow provided a heat source, analogous to waste panels or an igneous intrusion in a repository, and caused evaporation and migration of water. The tuff and obsidian samples were analyzed for major and trace elements and mineralogy by INAA, XRF, X-ray diffraction; and scanning electron microscopy and electron microprobe. Samples were also analyzed for D/H and {sup 39}Ar/{sup 4O} isotopic composition. Overall,the effects of the heating event seem to have been slight and limited to the tuff nearest the contact. There is some evidence of devitrification and migration of volatiles in the tuff within 10 meters of the contact, but variations in major and trace element chemistry are small and difficult to distinguish from the natural (pre-heating) variability of the rocks.

  10. Heteroatom-Containing Porphyrin Analogues.

    PubMed

    Chatterjee, Tamal; Shetti, Vijayendra S; Sharma, Ritambhara; Ravikanth, Mangalampalli

    2017-02-22

    The heteroatom-containing porphyrin analogues or core-modified porphyrins that resulted from the replacement of one or two pyrrole rings with other five-membered heterocycles such as furan, thiophene, selenophene, tellurophene, indene, phosphole, and silole are highly promising macrocycles and exhibit quite different physicochemical properties compared to regular azaporphyrins. The properties of heteroporphyrins depend on the nature and number of different heterocycle(s) present in place of pyrrole ring(s). The heteroporphyrins provide unique and unprecedented coordination environments for metals. Unlike regular porphyrins, the monoheteroporphyrins are known to stabilize metals in unusual oxidation states such as Cu and Ni in +1 oxidation states. The diheteroporphyrins, which are neutral macrocycles without ionizable protons, also showed interesting coordination chemistry. Thus, significant progress has been made in last few decades on core-modified porphyrins in terms of their synthesis, their use in building multiporphyrin arrays for light-harvesting applications, their use as ligands to form interesting metal complexes, and also their use for several other studies. The synthetic methods available in the literature allow one to prepare mono- and diheteroporphyrins and their functionalized derivatives, which were used extensively to prepare several covalent and noncovalent heteroporphyrin-based multiporphyrin arrays. The methods are also developed to synthesize different hetero analogues of porphyrin derivatives such as heterocorroles, heterochlorins, heterocarbaporphyrinoids, heteroatom-substituted confused porphyrins, and so on. This Review summarizes the key developments that have occurred in heteroporphyrin chemistry over the last four decades.

  11. FRET-Aptamer Assays for Bone Marker Assessment, C-Telopeptide, Creatinine, and Vitamin D

    NASA Technical Reports Server (NTRS)

    Bruno, John G.

    2013-01-01

    Astronauts lose 1.0 to 1.5% of their bone mass per month on long-duration spaceflights. NASA wishes to monitor the bone loss onboard spacecraft to develop nutritional and exercise countermeasures, and make adjustments during long space missions. On Earth, the same technology could be used to monitor osteoporosis and its therapy. Aptamers bind to targets against which they are developed, much like antibodies. However, aptamers do not require animal hosts or cell culture and are therefore easier, faster, and less expensive to produce. In addition, aptamers sometimes exhibit greater affinity and specificity vs. comparable antibodies. In this work, fluorescent dyes and quenchers were added to the aptamers to enable pushbutton, one-step, bind-and-detect fluorescence resonance energy transfer (FRET) assays or tests that can be freeze-dried, rehydrated with body fluids, and used to quantitate bone loss of vitamin D levels with a handheld fluorometer in the spacecraft environment. This work generated specific, rapid, one-step FRET assays for the bone loss marker C-telopeptide (CTx) when extracted from urine, creatinine from urine, and vitamin D congeners in diluted serum. The assays were quantified in nanograms/mL using a handheld fluorometer connected to a laptop computer to convert the raw fluorescence values into concentrations of each analyte according to linear standard curves. DNA aptamers were selected and amplified for several rounds against a 26- amino acid form of CTx, creatinine, and vitamin D. The commonalities between loop structures were studied, and several common loop structures were converted into aptamer beacons with a fluorophore and quencher on each end. In theory, when the aptamer beacon binds its cognate target (CTx bone peptide, creatinine, or vitamin D), it is forced open and no longer quenched, so it gives off fluorescent light (when excited) in proportion to the amount of target present in a sample. This proportional increase in fluorescence is

  12. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.

    PubMed

    Mahajan, Prasad G; Bhopate, Dhanaji P; Kolekar, Govind B; Patil, Shivajirao R

    2016-07-01

    An aqueous suspension of fluorescent nanoparticles (PHNNPs) of naphthol based fluorescent organic compound 1-[(Z)-(2-phenylhydrazinylidene) methyl] naphthalene -2-ol (PHN) were prepared using reprecipitation method shows bathochromically shifted aggregation induced enhanced emission (AIEE) in the spectral region where erythrosine (ETS) food dye absorbs strongly. The average size of 72.6 nm of aqueous suspension of PHNNPs obtained by Dynamic light scattering results shows a narrow particle size distribution. The negative zeta potential of nano probe (-22.6 mV) responsible to adsorb oppositely charged analyte on its surface and further permit to bind nano probe and analyte within the close distance proximity required for efficient fluorescence resonance energy transfer (FRET) to take place from donor (PHNNPs) to acceptor (ETS). Systematic FRET experiments performed by measuring fluorescence quenching of PHNNPs with successive addition of ETS solution exploited the use of the PHNNPs as a novel nano probe for the detection of ETS in aqueous solution with extremely lower limit of detection equal to 3.6 nM (3.1 ng/mL). The estimation of photo kinetic and thermodynamic parameters such as quenching rate constant, enthalpy change (∆H), Gibbs free energy change (∆G) and entropy change (∆S) was obtained by the quenching results obtained at different constant temperatures which were found to fit the well-known Stern-Volmer relation. The mechanism of binding and fluorescence quenching of PHNNPs by ETS food dye is proposed on the basis of results obtained in photophysical studies, thermodynamic parameter, energy transfer efficiency, critical energy transfer distance (R0) and distance of approach between donor-acceptor molecules (r). The proposed FRET method based on fluorescence quenching of PHNNPs was successfully applied to develop an analytical method for estimation of ETS from food stuffs without interference of other complex ingredients. Graphical Abstract A

  13. Classic maximum entropy recovery of the average joint distribution of apparent FRET efficiency and fluorescence photons for single-molecule burst measurements.

    PubMed

    DeVore, Matthew S; Gull, Stephen F; Johnson, Carey K

    2012-04-05

    We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. The most probable joint distribution can be marginalized to obtain both the overall distribution of fluorescence photons and the apparent FRET efficiency distribution. This method proves to be ideal for determining the distance distribution of FRET-labeled biomolecules, and it successfully predicts the shape of the recovered distributions.

  14. ETP-0474: Evaluation of Electroless Nickel Coatings to Achieve Interference Fit in the RSRM Without Fretting

    NASA Technical Reports Server (NTRS)

    Schaffnit, William O.

    1997-01-01

    Part of the redesign of the SRMs for the Space Shuttle involved the substitution of three new capture cylinders for three of the previously used cylinders. These new cylinders mate with the old standard case segments in each of the three field joints. The new capture cylinders contain an integral capture latch on the tang end which mates with a case clevis during stackup at KSC. The capture cylinders also contain a groove in the capture latch to provide for a third 0-ring in the joint and are designed to achieve a metal-to- metal interference fit between the capture latch and the mating clevis. An unexpected fretting problem has occurred on the tang capture feature and the inner clevis leg interference fit surfaces on flight hardware since STS-26. Varying degrees of fretting damage have been found on the case segments from different flight motors. Fretting is a wear phenomena that occurs when two tightly fitting metal surfaces are subject to cyclic relative motion of extremely small amplitudes (generally less than 0.010-inch) in the absence of adequate lubrication. It is adhesive ("cold" - welding) in nature and vibration is its essential causative factor. This problem has manifested itself on the flight motors as a series of pits and axial gouges on the inside diameter (ID) surfaces of the inner clevis legs and the outside diameter (OD) surfaces of the tang capture features. The problem occurs in varying degrees of severity in all of the field joints. It is not believed that fretting is a flight safety issue. However, it could become a reusability issue if left unattended. Fretting has been encountered in other industries for many years and measures that will prevent or reduce it have been devised. These include: elimination or reduction of vibration (amplitudes and/or frequencies), elimination of slip, improved lubrication between parts, increased surface separation, increased interference, inducing residual compressive stresses in the surfaces of the mating

  15. FRETS-VWF73 rather than CBA assay reflects ADAMTS13 proteolytic activity in acquired thrombotic thrombocytopenic purpura patients.

    PubMed

    Mancini, I; Valsecchi, C; Lotta, L A; Deforche, L; Pontiggia, S; Bajetta, M; Palla, R; Vanhoorelbeke, K; Peyvandi, F

    2014-08-01

    Collagen-binding activity (CBA) and FRETS-VWF73 assays are widely adopted methods for the measurement of the plasmatic activity of ADAMTS13, the von Willebrand factor (VWF) cleaving-protease. Accurately assessing the severe deficiency of ADAMTS13 is important in the management of thrombotic thrombocytopenic purpura (TTP). However, non-concordant results between the two assays have been reported in a small but relevant percentage of TTP cases. We investigated whether CBA or FRETS-VWF73 assay reflects ADAMTS13 proteolytic activity in acquired TTP patients with non-concordant measurements. Twenty plasma samples with non-concordant ADAMTS13 activity results, <10% using FRETS-VWF73 and ≥20% using CBA, and 11 samples with concordant results, <10% using either FRETS-VWF73 and CBA assays, were analysed. FRETS-VWF73 was performed in the presence of 1.5 M urea. ADAMTS13 activities were also measured under flow conditions and the VWF multimer pattern was defined in order to verify the presence of ultra-large VWF due to ADAMTS13 deficiency. In FRETS-VWF73 assay with 1.5 M urea, ADAMTS13 activity significantly increased in roughly 50% of the samples with non-concordant results, whereas it remained undetectable in all samples with concordant measurements. Under flow conditions, all tested samples showed reduced ADAMTS13 activity. Finally, samples with non-concordant results showed a ratio of high molecular weight VWF multimers higher than normal. Our results support the use of FRETS-VWF73 over CBA assay for the assessment of ADAMTS13 severe deficiency and indicate urea as one cause of the observed differences.

  16. CO2 Capture with Enzyme Synthetic Analogue

    SciTech Connect

    Cordatos, Harry

    2010-11-08

    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  17. Macrolactam analogues of macrolide natural products.

    PubMed

    Hügel, Helmut M; Smith, Andrew T; Rizzacasa, Mark A

    2016-12-07

    The chemical modification of macrolide natural products into aza- or lactam analogues is a strategy employed to improve their metabolic stability and biological activity. The methods for the synthesis of several lactam analogues of macrolide natural products are highlighted and aspects of their biological properties presented.

  18. The future of somatostatin analogue therapy.

    PubMed

    Stewart, P M; James, R A

    1999-10-01

    Since its discovery almost 30 years ago, the mode of action and therapeutic applications of somatostatin have been defined. In particular the cloning and characterization of somatostatin receptor subtypes has facilitated the development of high affinity analogues. In the context of pituitary disease, long-acting somatostatin analogues (octreotide, lanreotide) have been used to treat a variety of pituitary tumours but are most efficacious for the treatment of GH and TSH-secreting adenomas. In patients with acromegaly, depot preparations of these analogues are administered intramuscularly every 10-28 days and provide consistent suppression of GH levels to < 5 mU/l in approximately 50-65% of all cases. Even more specific somatostatin receptor analogues are under development. Finally, radiolabelled somatostatin analogue scintigraphy and, in larger doses, therapy, are now established tools in the evaluation and treatment of neuroendocrine tumours.

  19. Continuous analogues of matrix factorizations

    PubMed Central

    Townsend, Alex; Trefethen, Lloyd N.

    2015-01-01

    Analogues of singular value decomposition (SVD), QR, LU and Cholesky factorizations are presented for problems in which the usual discrete matrix is replaced by a ‘quasimatrix’, continuous in one dimension, or a ‘cmatrix’, continuous in both dimensions. Two challenges arise: the generalization of the notions of triangular structure and row and column pivoting to continuous variables (required in all cases except the SVD, and far from obvious), and the convergence of the infinite series that define the cmatrix factorizations. Our generalizations of triangularity and pivoting are based on a new notion of a ‘triangular quasimatrix’. Concerning convergence of the series, we prove theorems asserting convergence provided the functions involved are sufficiently smooth. PMID:25568618

  20. Fully analogue photonic reservoir computer.

    PubMed

    Duport, François; Smerieri, Anteo; Akrout, Akram; Haelterman, Marc; Massar, Serge

    2016-03-03

    Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers.