Sample records for nucleolar protein recognized

  1. PNAC: a protein nucleolar association classifier

    PubMed Central

    2011-01-01

    Background Although primarily known as the site of ribosome subunit production, the nucleolus is involved in numerous and diverse cellular processes. Recent large-scale proteomics projects have identified thousands of human proteins that associate with the nucleolus. However, in most cases, we know neither the fraction of each protein pool that is nucleolus-associated nor whether their association is permanent or conditional. Results To describe the dynamic localisation of proteins in the nucleolus, we investigated the extent of nucleolar association of proteins by first collating an extensively curated literature-derived dataset. This dataset then served to train a probabilistic predictor which integrates gene and protein characteristics. Unlike most previous experimental and computational studies of the nucleolar proteome that produce large static lists of nucleolar proteins regardless of their extent of nucleolar association, our predictor models the fluidity of the nucleolus by considering different classes of nucleolar-associated proteins. The new method predicts all human proteins as either nucleolar-enriched, nucleolar-nucleoplasmic, nucleolar-cytoplasmic or non-nucleolar. Leave-one-out cross validation tests reveal sensitivity values for these four classes ranging from 0.72 to 0.90 and positive predictive values ranging from 0.63 to 0.94. The overall accuracy of the classifier was measured to be 0.85 on an independent literature-based test set and 0.74 using a large independent quantitative proteomics dataset. While the three nucleolar-association groups display vastly different Gene Ontology biological process signatures and evolutionary characteristics, they collectively represent the most well characterised nucleolar functions. Conclusions Our proteome-wide classification of nucleolar association provides a novel representation of the dynamic content of the nucleolus. This model of nucleolar localisation thus increases the coverage while providing

  2. Mapping a nucleolar targeting sequence of an RNA binding nucleolar protein, Nop25

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, Takashi; Suzuki, Shunji; Kanno, Motoko

    2006-06-10

    Nop25 is a putative RNA binding nucleolar protein associated with rRNA transcription. The present study was undertaken to determine the mechanism of Nop25 localization in the nucleolus. Deletion experiments of Nop25 amino acid sequence showed Nop25 to contain a nuclear targeting sequence in the N-terminal and a nucleolar targeting sequence in the C-terminal. By expressing derivative peptides from the C-terminal as GFP-fusion proteins in the cells, a lysine and arginine residue-enriched peptide (KRKHPRRAQDSTKKPPSATRTSKTQRRRR) allowed a GFP-fusion protein to be transported and fully retained in the nucleolus. When the peptide was fused with cMyc epitope and expressed in the cells, amore » cMyc epitope was then detected in the nucleolus. Nop25 did not localize in the nucleolus by deletion of the peptide from Nop25. Furthermore, deletion of a subdomain (KRKHPRRAQ) in the peptide or amino acid substitution of lysine and arginine residues in the subdomain resulted in the loss of Nop25 nucleolar localization. These results suggest that the lysine and arginine residue-enriched peptide is the most prominent nucleolar targeting sequence of Nop25 and that the long stretch of basic residues might play an important role in the nucleolar localization of Nop25. Although Nop25 contained putative SUMOylation, phosphorylation and glycosylation sites, the amino acid substitution in these sites had no effect on the nucleolar localization, thus suggesting that these post-translational modifications did not contribute to the localization of Nop25 in the nucleolus. The treatment of the cells, which expressed a GFP-fusion protein with a nucleolar targeting sequence of Nop25, with RNase A resulted in a complete dislocation of the protein from the nucleolus. These data suggested that the nucleolar targeting sequence might therefore play an important role in the binding of Nop25 to RNA molecules and that the RNA binding of Nop25 might be essential for the nucleolar localization of Nop25.« less

  3. Nucleolar Trafficking of Nucleostemin Family Proteins: Common versus Protein-Specific Mechanisms▿ §

    PubMed Central

    Meng, Lingjun; Zhu, Qubo; Tsai, Robert Y. L.

    2007-01-01

    The nucleolus has begun to emerge as a subnuclear organelle capable of modulating the activities of nuclear proteins in a dynamic and cell type-dependent manner. It remains unclear whether one can extrapolate a rule that predicts the nucleolar localization of multiple proteins based on protein sequence. Here, we address this issue by determining the shared and unique mechanisms that regulate the static and dynamic distributions of a family of nucleolar GTP-binding proteins, consisting of nucleostemin (NS), guanine nucleotide binding protein-like 3 (GNL3L), and Ngp1. The nucleolar residence of GNL3L is short and primarily controlled by its basic-coiled-coil domain, whereas the nucleolar residence of NS and Ngp1 is long and requires the basic and the GTP-binding domains, the latter of which functions as a retention signal. All three proteins contain a nucleoplasmic localization signal (NpLS) that prevents their nucleolar accumulation. Unlike that of the basic domain, the activity of NpLS is dynamically controlled by the GTP-binding domain. The nucleolar retention and the NpLS-regulating functions of the G domain involve specific residues that cannot be predicted by overall protein homology. This work reveals common and protein-specific mechanisms underlying the nucleolar movement of NS family proteins. PMID:17923687

  4. Effects of altered gravity on a distribution of rDNA and nucleolar proteins and the expression of nucleolar proteins in plants

    NASA Astrophysics Data System (ADS)

    Sobol, Margaryta; Kordyum, Elizabeth; Medina, Francisco Javier

    predominantly in FCs in the form of condensed chromatin inclusions and internal non condensed fibrils, redistributing from the DFC and the transition zone between FCs and the DFC, recognized as the site of rDNA transcription. Regarding nucleolar proteins, a general decrease in the levels of fibrillarin and the nucleolin homologues, evaluated by estimating the density of immunogold labeling on the nucleolus, was recorded firstly in clinorotated samples, compared to controls. Furthermore, the intranucleolar location of the investigated proteins was also observed to change in response to the growth in altered gravity conditions. In particular, a decrease in the quantity of these proteins in the transition zone FCs-DFC as well as in the bulk of the DFC was observed in the experimental samples, compared to controls, whereas the content of the proteins was much higher in the inner space of FCs. Concerning the two-dimensional nuclear proteome, we revealed a decrease in the isoelectric point (pI) range of soluble proteins, which are known to be actively engaged in RNA (including rRNA) metabolism, and a shortening in the molecular weight range of them under clinorotation. Besides, minor and major protein spots in clinorotated samples showed decreased optical densities in comparison to control ones. Moreover, we showed the shortening of both the pI and the molecular weight ranges of the spots corresponding to the major nucleolin homologue NhL90 (detected by cross-reaction with anti-onion NopA100) in the fraction of soluble proteins in altered gravity. Based on these data, an effect of altered gravity in lowering the level of rDNA transcription as well as rRNA processing, that could be the evidence of a decrease in the level of nucleolar functional activity, is suggested.

  5. Association of nonribosomal nucleolar proteins in ribonucleoprotein complexes during interphase and mitosis.

    PubMed

    Piñol-Roma, S

    1999-01-01

    rRNA precursors are bound throughout their length by specific proteins, as the pre-rRNAs emerge from the transcription machinery. The association of pre-rRNA with proteins as ribonucleoprotein (RNP) complexes persists during maturation of 18S, 5.8S, and 28S rRNA, and through assembly of ribosomal subunits in the nucleolus. Preribosomal RNP complexes contain, in addition to ribosomal proteins, an unknown number of nonribosomal nucleolar proteins, as well as small nucleolar RNA-ribonucleoproteins (sno-RNPs). This report describes the use of a specific, rapid, and mild immunopurification approach to isolate and analyze human RNP complexes that contain nonribosomal nucleolar proteins, as well as ribosomal proteins and rRNA. Complexes immunopurified with antibodies to nucleolin-a major nucleolar RNA-binding protein-contain several distinct specific polypeptides that include, in addition to nucleolin, the previously identified nucleolar proteins B23 and fibrillarin, proteins with electrophoretic mobilities characteristic of ribosomal proteins including ribosomal protein S6, and a number of additional unidentified proteins. The physical association of these proteins with one another is mediated largely by RNA, in that the complexes dissociate upon digestion with RNase. Complexes isolated from M-phase cells are similar in protein composition to those isolated from interphase cell nuclear extracts. Therefore, the predominant proteins that associate with nucleolin in interphase remain in RNP complexes during mitosis, despite the cessation of rRNA synthesis and processing in M-phase. In addition, precursor rRNA, as well as processed 18S and 28S rRNA and candidate rRNA processing intermediates, is found associated with the immunopurified complexes. The characteristics of the rRNP complexes described here, therefore, indicate that they represent bona fide precursors of mature cytoplasmic ribosomal subunits.

  6. Evidence for nucleolar subcompartments in Dictyostelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catalano, Andrew, E-mail: acatalano@ccny.cuny.edu; O’Day, Danton H., E-mail: danton.oday@utoronto.ca; Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario M5S 3G5

    2015-01-24

    Highlights: • Two nucleolar subcompartments (NoSC1, NoSC2) were found in Dictyostelium. • Specific nucleolar proteins localize to different nucleolar subcompartments. • Specific proteins exit NoSC1 and NoSC2 differently upon Actinomycin D treatment. • KRKR appears to function as an NoSC2 nucleolar subcompartment localization signal. - Abstract: The nucleolus is a multifunctional nuclear compartment usually consisting of two to three subcompartments which represent stages of ribosomal biogenesis. It is linked to several human diseases including viral infections, cancer, and neurodegeneration. Dictyostelium is a model eukaryote for the study of fundamental biological processes as well as several human diseases however comparatively littlemore » is known about its nucleolus. Unlike most nucleoli it does not possess visible subcompartments at the ultrastructural level. Several recently identified nucleolar proteins in Dictyostelium leave the nucleolus after treatment with the rDNA transcription inhibitor actinomycin-D (AM-D). Different proteins exit in different ways, suggesting that previously unidentified nucleolar subcompartments may exist. The identification of nucleolar subcompartments would help to better understand the nucleolus in this model eukaryote. Here, we show that Dictyostelium nucleolar proteins nucleomorphin isoform NumA1 and Bud31 localize throughout the entire nucleolus while calcium-binding protein 4a localizes to only a portion, representing nucleolar subcompartment 1 (NoSC1). SWI/SNF complex member Snf12 localizes to a smaller area within NoSC1 representing a second nucleolar subcompartment, NoSC2. The nuclear/nucleolar localization signal KRKR from Snf12 localized GFP to NoSC2, and thus also appears to function as a nucleolar subcompartment localization signal. FhkA localizes to the nucleolar periphery displaying a similar pattern to that of Hsp32. Similarities between the redistribution patterns of Dictyostelium nucleolar proteins

  7. In nucleoli, the steady state of nucleolar proteins is leptomycin B-sensitive.

    PubMed

    Muro, Eleonora; Hoang, Thang Q; Jobart-Malfait, Aude; Hernandez-Verdun, Danièle

    2008-05-01

    The nucleolus is a dynamic structure. It has been demonstrated that nucleolar proteins rapidly associate with and dissociate from nucleolar components in continuous exchanges with the nucleoplasm using GFP (green fluorescent protein)-tagged proteins. However, how the exchanges within one nucleolus and between nucleoli within the nuclear volume occurred is still poorly understood. The movement of PAGFP (photoactivatable GFP)-tagged proteins that become visible after photoactivation can be followed. In the present study, we establish the protocol allowing quantification of the traffic of PAGFP-tagged nucleolar proteins in nuclei containing two nucleoli. The traffic in the activated area, at the periphery of the activated area and to the neighbouring nucleolus is measured. Protein B23 is rapidly replaced in the activated area, and at the periphery of the activated area the steady state suggests intranucleolar recycling of B23; this recycling is LMB (leptomycin B)-sensitive. The pool of activated B23 is equally distributed in the volume of the two nucleoli within 2 min. The three-dimensional distribution of the proteins Nop52 and fibrillarin is less rapid than that of B23 but is also LMB-sensitive. In contrast, traffic of fibrillarin from the nucleoli to the CB (Cajal body) was not modified by LMB. We propose that the steady state of nucleolar proteins in nucleoli depends on the affinity of the proteins for their partners and on intranucleolar recycling. This steady state can be impaired by LMB but not the uptake in the neighbouring nucleolus or the CB.

  8. NC-Mediated Nucleolar Localization of Retroviral Gag Proteins

    PubMed Central

    Lochmann, Timothy L.; Bann, Darrin V.; Ryan, Eileen P.; Beyer, Andrea R.; Mao, Annie; Cochrane, Alan

    2012-01-01

    The assembly and release of retrovirus particles from the cell membrane is directed by the Gag polyprotein. The Gag protein of Rous sarcoma virus (RSV) traffics through the nucleus prior to plasma membrane localization. We previously reported that nuclear localization of RSV Gag is linked to efficient packaging of viral genomic RNA, however the intranuclear activities of RSV Gag are not well understood. To gain insight into the properties of the RSV Gag protein within the nucleus, we examined the subnuclear localization and dynamic trafficking of RSV Gag. Restriction of RSV Gag to the nucleus by mutating its nuclear export signal (NES) in the p10 domain or interfering with CRM1-mediated nuclear export of Gag by leptomycin B (LMB) treatment led to the accumulation of Gag in nucleoli and discrete nucleoplasmic foci. Retention of RSV Gag in nucleoli was reduced with cis-expression of the 5′ untranslated RU5 region of the viral RNA genome, suggesting the psi (ψ packaging signal may alter the subnuclear localization of Gag. Fluorescence recovery after photobleaching (FRAP) demonstrated that the nucleolar fraction of Gag was highly mobile, indicating that the there was rapid exchange with Gag proteins in the nucleoplasm. RSV Gag is targeted to nucleoli by a nucleolar localization signal (NoLS) in the NC domain, and similarly, the human immunodeficiency virus type 1 (HIV-1) NC protein also contains an NoLS consisting of basic residues. Interestingly, co-expression of HIV-1 NC or Rev with HIV-1 Gag resulted in accumulation of Gag in nucleoli. Moreover, a subpopulation of HIV-1 Gag was detected in the nucleoli of HeLa cells stably expressing the entire HIV-1 genome in a Rev-dependent fashion. These findings suggest that the RSV and HIV-1 Gag proteins undergo nucleolar trafficking in the setting of viral infection. PMID:23036987

  9. Nucleolar protein trafficking in response to HIV-1 Tat: rewiring the nucleolus.

    PubMed

    Jarboui, Mohamed Ali; Bidoia, Carlo; Woods, Elena; Roe, Barbara; Wynne, Kieran; Elia, Giuliano; Hall, William W; Gautier, Virginie W

    2012-01-01

    The trans-activator Tat protein is a viral regulatory protein essential for HIV-1 replication. Tat trafficks to the nucleoplasm and the nucleolus. The nucleolus, a highly dynamic and structured membrane-less sub-nuclear compartment, is the site of rRNA and ribosome biogenesis and is involved in numerous cellular functions including transcriptional regulation, cell cycle control and viral infection. Importantly, transient nucleolar trafficking of both Tat and HIV-1 viral transcripts are critical in HIV-1 replication, however, the role(s) of the nucleolus in HIV-1 replication remains unclear. To better understand how the interaction of Tat with the nucleolar machinery contributes to HIV-1 pathogenesis, we investigated the quantitative changes in the composition of the nucleolar proteome of Jurkat T-cells stably expressing HIV-1 Tat fused to a TAP tag. Using an organellar proteomic approach based on mass spectrometry, coupled with Stable Isotope Labelling in Cell culture (SILAC), we quantified 520 proteins, including 49 proteins showing significant changes in abundance in Jurkat T-cell nucleolus upon Tat expression. Numerous proteins exhibiting a fold change were well characterised Tat interactors and/or known to be critical for HIV-1 replication. This suggests that the spatial control and subcellular compartimentaliation of these cellular cofactors by Tat provide an additional layer of control for regulating cellular machinery involved in HIV-1 pathogenesis. Pathway analysis and network reconstruction revealed that Tat expression specifically resulted in the nucleolar enrichment of proteins collectively participating in ribosomal biogenesis, protein homeostasis, metabolic pathways including glycolytic, pentose phosphate, nucleotides and amino acids biosynthetic pathways, stress response, T-cell signaling pathways and genome integrity. We present here the first differential profiling of the nucleolar proteome of T-cells expressing HIV-1 Tat. We discuss how these

  10. Nucleolar Protein Trafficking in Response to HIV-1 Tat: Rewiring the Nucleolus

    PubMed Central

    Jarboui, Mohamed Ali; Bidoia, Carlo; Woods, Elena; Roe, Barbara; Wynne, Kieran; Elia, Giuliano; Hall, William W.; Gautier, Virginie W.

    2012-01-01

    The trans-activator Tat protein is a viral regulatory protein essential for HIV-1 replication. Tat trafficks to the nucleoplasm and the nucleolus. The nucleolus, a highly dynamic and structured membrane-less sub-nuclear compartment, is the site of rRNA and ribosome biogenesis and is involved in numerous cellular functions including transcriptional regulation, cell cycle control and viral infection. Importantly, transient nucleolar trafficking of both Tat and HIV-1 viral transcripts are critical in HIV-1 replication, however, the role(s) of the nucleolus in HIV-1 replication remains unclear. To better understand how the interaction of Tat with the nucleolar machinery contributes to HIV-1 pathogenesis, we investigated the quantitative changes in the composition of the nucleolar proteome of Jurkat T-cells stably expressing HIV-1 Tat fused to a TAP tag. Using an organellar proteomic approach based on mass spectrometry, coupled with Stable Isotope Labelling in Cell culture (SILAC), we quantified 520 proteins, including 49 proteins showing significant changes in abundance in Jurkat T-cell nucleolus upon Tat expression. Numerous proteins exhibiting a fold change were well characterised Tat interactors and/or known to be critical for HIV-1 replication. This suggests that the spatial control and subcellular compartimentaliation of these cellular cofactors by Tat provide an additional layer of control for regulating cellular machinery involved in HIV-1 pathogenesis. Pathway analysis and network reconstruction revealed that Tat expression specifically resulted in the nucleolar enrichment of proteins collectively participating in ribosomal biogenesis, protein homeostasis, metabolic pathways including glycolytic, pentose phosphate, nucleotides and amino acids biosynthetic pathways, stress response, T-cell signaling pathways and genome integrity. We present here the first differential profiling of the nucleolar proteome of T-cells expressing HIV-1 Tat. We discuss how these

  11. Proteomics Analysis of Nucleolar SUMO-1 Target Proteins upon Proteasome Inhibition*

    PubMed Central

    Matafora, Vittoria; D'Amato, Alfonsina; Mori, Silvia; Blasi, Francesco; Bachi, Angela

    2009-01-01

    Many cellular processes are regulated by the coordination of several post-translational modifications that allow a very fine modulation of substrates. Recently it has been reported that there is a relationship between sumoylation and ubiquitination. Here we propose that the nucleolus is the key organelle in which SUMO-1 conjugates accumulate in response to proteasome inhibition. We demonstrated that, upon proteasome inhibition, the SUMO-1 nuclear dot localization is redirected to nucleolar structures. To better understand this process we investigated, by quantitative proteomics, the effect of proteasome activity on endogenous nucleolar SUMO-1 targets. 193 potential SUMO-1 substrates were identified, and interestingly in several purified SUMO-1 conjugates ubiquitin chains were found to be present, confirming the coordination of these two modifications. 23 SUMO-1 targets were confirmed by an in vitro sumoylation reaction performed on nuclear substrates. They belong to protein families such as small nuclear ribonucleoproteins, heterogeneous nuclear ribonucleoproteins, ribosomal proteins, histones, RNA-binding proteins, and transcription factor regulators. Among these, histone H1, histone H3, and p160 Myb-binding protein 1A were further characterized as novel SUMO-1 substrates. The analysis of the nature of the SUMO-1 targets identified in this study strongly indicates that sumoylation, acting in coordination with the ubiquitin-proteasome system, regulates the maintenance of nucleolar integrity. PMID:19596686

  12. Determinants of Mammalian Nucleolar Architecture

    PubMed Central

    Farley, Katherine I.; Surovtseva, Yulia; Merkel, Janie; Baserga, Susan J.

    2015-01-01

    The nucleolus is responsible for the production of ribosomes, essential machines which synthesize all proteins needed by the cell. The structure of human nucleoli is highly dynamic and is directly related to its functions in ribosome biogenesis. Despite the importance of this organelle, the intricate relationship between nucleolar structure and function remains largely unexplored. How do cells control nucleolar formation and function? What are the minimal requirements for making a functional nucleolus? Here we review what is currently known regarding mammalian nucleolar formation at nucleolar organizer regions (NORs), which can be studied by observing the dissolution and reformation of the nucleolus during each cell division. Additionally, the nucleolus can be examined by analyzing how alterations in nucleolar function manifest in differences in nucleolar architecture. Furthermore, changes in nucleolar structure and function are correlated with cancer, highlighting the importance of studying the determinants of nucleolar formation. PMID:25670395

  13. Immunocytochemical localisation of the nucleolar protein fibrillarin and RNA polymerase I during mouse early embryogenesis.

    PubMed

    Cuadros-Fernández, J M; Esponda, P

    1996-02-01

    We have employed immunocytochemical procedures to localise the nucleolar protein fibrillarin and the enzyme RNA polymerase I in the numerous dense fibrillar bodies (nucleolar precursor bodies) which appear in the nuclei of mammalian early embryos. The aim of this study was to search for relationships between the localisation of these proteins, the changes in the structure of the nucleolar precursor bodies and the resumption of rRNA gene transcription during mouse early embryogenesis. Three human autoimmune sera which recognised fibrillarin and a rabbit antiserum created against RNA polymerase I were employed for fluorescence and electron microscopic immunocytochemical assays. A statistical analysis was also applied. Immunocytochemistry revealed that fibrillarin and RNA polymerase I showed the same localisation in the nucleolar precursor bodies. These proteins were immunolocalised only from the late 2-cell stage onward. Fibrillarin was initially detected at the periphery of the nucleolar precursor bodies and the labelling gradually increased until the morula and blastocyst stages, where normally active nucleoli are found. The pattern of increase of fibrillarin during early embryogenesis shows a parallelism with the rise in rRNA gene transcription occurring during these embryonic stages, and a possible correlation between these two phenomena is suggested. Results demonstrated that nucleolar precursor bodies differ in their biochemical composition from the nucleolus and also from the prenucleolar bodies which appear during mitosis. When anti-fibrillarin antibodies were microinjected into the male pronucleus of mouse embryos to analyse the functions of fibrillarin during early development, they partially blocked the early development of mouse embryos and only 23.8% of injected embryos reach the blastocyst stage.

  14. Elucidation of Motifs in Ribosomal Protein S9 That Mediate Its Nucleolar Localization and Binding to NPM1/Nucleophosmin

    PubMed Central

    Lindström, Mikael S.

    2012-01-01

    Biogenesis of eukaryotic ribosomes occurs mainly in a specific subnuclear compartment, the nucleolus, and involves the coordinated assembly of ribosomal RNA and ribosomal proteins. Identification of amino acid sequences mediating nucleolar localization of ribosomal proteins may provide important clues to understand the early steps in ribosome biogenesis. Human ribosomal protein S9 (RPS9), known in prokaryotes as RPS4, plays a critical role in ribosome biogenesis and directly binds to ribosomal RNA. RPS9 is targeted to the nucleolus but the regions in the protein that determine its localization remains unknown. Cellular expression of RPS9 deletion mutants revealed that it has three regions capable of driving nuclear localization of a fused enhanced green fluorescent protein (EGFP). The first region was mapped to the RPS9 N-terminus while the second one was located in the proteins C-terminus. The central and third region in RPS9 also behaved as a strong nucleolar localization signal and was hence sufficient to cause accumulation of EGFP in the nucleolus. RPS9 was previously shown to interact with the abundant nucleolar chaperone NPM1 (nucleophosmin). Evaluating different RPS9 fragments for their ability to bind NPM1 indicated that there are two binding sites for NPM1 on RPS9. Enforced expression of NPM1 resulted in nucleolar accumulation of a predominantly nucleoplasmic RPS9 mutant. Moreover, it was found that expression of a subset of RPS9 deletion mutants resulted in altered nucleolar morphology as evidenced by changes in the localization patterns of NPM1, fibrillarin and the silver stained nucleolar organizer regions. In conclusion, RPS9 has three regions that each are competent for nuclear localization, but only the central region acted as a potent nucleolar localization signal. Interestingly, the RPS9 nucleolar localization signal is residing in a highly conserved domain corresponding to a ribosomal RNA binding site. PMID:23285058

  15. Nonstructural Protein NSs of Schmallenberg Virus Is Targeted to the Nucleolus and Induces Nucleolar Disorganization

    PubMed Central

    Gouzil, Julie; Fablet, Aurore; Lara, Estelle; Caignard, Grégory; Cochet, Marielle; Kundlacz, Cindy; Palmarini, Massimo; Varela, Mariana; Breard, Emmanuel; Sailleau, Corinne; Viarouge, Cyril; Coulpier, Muriel; Zientara, Stéphan

    2016-01-01

    ABSTRACT Schmallenberg virus (SBV) was discovered in Germany in late 2011 and then spread rapidly to many European countries. SBV is an orthobunyavirus that causes abortion and congenital abnormalities in ruminants. A virus-encoded nonstructural protein, termed NSs, is a major virulence factor of SBV, and it is known to promote the degradation of Rpb1, a subunit of the RNA polymerase II (Pol II) complex, and therefore hampers global cellular transcription. In this study, we found that NSs is mainly localized in the nucleus of infected cells and specifically appears to target the nucleolus through a nucleolar localization signal (NoLS) localized between residues 33 and 51 of the protein. NSs colocalizes with nucleolar markers such as B23 (nucleophosmin) and fibrillarin. We observed that in SBV-infected cells, B23 undergoes a nucleolus-to-nucleoplasm redistribution, evocative of virus-induced nucleolar disruption. In contrast, the nucleolar pattern of B23 was unchanged upon infection with an SBV recombinant mutant with NSs lacking the NoLS motif (SBVΔNoLS). Interestingly, unlike wild-type SBV, the inhibitory activity of SBVΔNoLS toward RNA Pol II transcription is impaired. Overall, our results suggest that a putative link exists between NSs-induced nucleolar disruption and its inhibitory function on cellular transcription, which consequently precludes the cellular antiviral response and/or induces cell death. IMPORTANCE Schmallenberg virus (SBV) is an emerging arbovirus of ruminants that spread in Europe between 2011 and 2013. SBV induces fetal abnormalities during gestation, with the central nervous system being one of the most affected organs. The virus-encoded NSs protein acts as a virulence factor by impairing host cell transcription. Here, we show that NSs contains a nucleolar localization signal (NoLS) and induces disorganization of the nucleolus. The NoLS motif in the SBV NSs is absolutely necessary for virus-induced inhibition of cellular transcription. To

  16. Nonstructural Protein NSs of Schmallenberg Virus Is Targeted to the Nucleolus and Induces Nucleolar Disorganization.

    PubMed

    Gouzil, Julie; Fablet, Aurore; Lara, Estelle; Caignard, Grégory; Cochet, Marielle; Kundlacz, Cindy; Palmarini, Massimo; Varela, Mariana; Breard, Emmanuel; Sailleau, Corinne; Viarouge, Cyril; Coulpier, Muriel; Zientara, Stéphan; Vitour, Damien

    2017-01-01

    Schmallenberg virus (SBV) was discovered in Germany in late 2011 and then spread rapidly to many European countries. SBV is an orthobunyavirus that causes abortion and congenital abnormalities in ruminants. A virus-encoded nonstructural protein, termed NSs, is a major virulence factor of SBV, and it is known to promote the degradation of Rpb1, a subunit of the RNA polymerase II (Pol II) complex, and therefore hampers global cellular transcription. In this study, we found that NSs is mainly localized in the nucleus of infected cells and specifically appears to target the nucleolus through a nucleolar localization signal (NoLS) localized between residues 33 and 51 of the protein. NSs colocalizes with nucleolar markers such as B23 (nucleophosmin) and fibrillarin. We observed that in SBV-infected cells, B23 undergoes a nucleolus-to-nucleoplasm redistribution, evocative of virus-induced nucleolar disruption. In contrast, the nucleolar pattern of B23 was unchanged upon infection with an SBV recombinant mutant with NSs lacking the NoLS motif (SBVΔNoLS). Interestingly, unlike wild-type SBV, the inhibitory activity of SBVΔNoLS toward RNA Pol II transcription is impaired. Overall, our results suggest that a putative link exists between NSs-induced nucleolar disruption and its inhibitory function on cellular transcription, which consequently precludes the cellular antiviral response and/or induces cell death. Schmallenberg virus (SBV) is an emerging arbovirus of ruminants that spread in Europe between 2011 and 2013. SBV induces fetal abnormalities during gestation, with the central nervous system being one of the most affected organs. The virus-encoded NSs protein acts as a virulence factor by impairing host cell transcription. Here, we show that NSs contains a nucleolar localization signal (NoLS) and induces disorganization of the nucleolus. The NoLS motif in the SBV NSs is absolutely necessary for virus-induced inhibition of cellular transcription. To our knowledge, this

  17. SmgGDS is a transient nucleolar protein that protects cells from nucleolar stress and promotes the cell cycle by regulating DREAM complex gene expression.

    PubMed

    Gonyo, P; Bergom, C; Brandt, A C; Tsaih, S-W; Sun, Y; Bigley, T M; Lorimer, E L; Terhune, S S; Rui, H; Flister, M J; Long, R M; Williams, C L

    2017-12-14

    The chaperone protein and guanine nucleotide exchange factor SmgGDS (RAP1GDS1) is a key promoter of cancer cell proliferation and tumorigenesis. SmgGDS undergoes nucleocytoplasmic shuttling, suggesting that it has both cytoplasmic and nuclear functions that promote cancer. Previous studies indicate that SmgGDS binds cytoplasmic small GTPases and promotes their trafficking to the plasma membrane. In contrast, little is known about the functions of SmgGDS in the nucleus, or how these nuclear functions might benefit cancer cells. Here we show unique nuclear localization and regulation of gene transcription pathways by SmgGDS. Strikingly, SmgGDS depletion significantly reduces expression of over 600 gene products that are targets of the DREAM complex, which is a transcription factor complex that regulates expression of proteins controlling the cell cycle. The cell cycle regulators E2F1, MYC, MYBL2 (B-Myb) and FOXM1 are among the DREAM targets that are diminished by SmgGDS depletion. E2F1 is well known to promote G1 cell cycle progression, and the loss of E2F1 in SmgGDS-depleted cells provides an explanation for previous reports that SmgGDS depletion characteristically causes a G1 cell cycle arrest. We show that SmgGDS localizes in nucleoli, and that RNAi-mediated depletion of SmgGDS in cancer cells disrupts nucleolar morphology, signifying nucleolar stress. We show that nucleolar SmgGDS interacts with the RNA polymerase I transcription factor upstream binding factor (UBF). The RNAi-mediated depletion of UBF diminishes nucleolar localization of SmgGDS and promotes proteasome-mediated degradation of SmgGDS, indicating that nucleolar sequestration of SmgGDS by UBF stabilizes SmgGDS protein. The ability of SmgGDS to interact with UBF and localize in the nucleolus is diminished by expressing DiRas1 or DiRas2, which are small GTPases that bind SmgGDS and act as tumor suppressors. Taken together, our results support a novel nuclear role for SmgGDS in protecting malignant

  18. The Relationship Between Human Nucleolar Organizer Regions and Nucleoli, Probed by 3D-ImmunoFISH.

    PubMed

    van Sluis, Marjolein; van Vuuren, Chelly; McStay, Brian

    2016-01-01

    3D-immunoFISH is a valuable technique to compare the localization of DNA sequences and proteins in cells where three-dimensional structure has been preserved. As nucleoli contain a multitude of protein factors dedicated to ribosome biogenesis and form around specific chromosomal loci, 3D-immunoFISH is a particularly relevant technique for their study. In human cells, nucleoli form around transcriptionally active ribosomal gene (rDNA) arrays termed nucleolar organizer regions (NORs) positioned on the p-arms of each of the acrocentric chromosomes. Here, we provide a protocol for fixing and permeabilizing human cells grown on microscope slides such that nucleolar proteins can be visualized using antibodies and NORs visualized by DNA FISH. Antibodies against UBF recognize transcriptionally active rDNA/NORs and NOP52 antibodies provide a convenient way of visualizing the nucleolar volume. We describe a probe designed to visualize rDNA and introduce a probe comprised of NOR distal sequences, which can be used to identify or count individual NORs.

  19. C1q Protein Binds to the Apoptotic Nucleolus and Causes C1 Protease Degradation of Nucleolar Proteins*

    PubMed Central

    Cai, Yitian; Teo, Boon Heng Dennis; Yeo, Joo Guan; Lu, Jinhua

    2015-01-01

    In infection, complement C1q recognizes pathogen-congregated antibodies and elicits complement activation. Among endogenous ligands, C1q binds to DNA and apoptotic cells, but whether C1q binds to nuclear DNA in apoptotic cells remains to be investigated. With UV irradiation-induced apoptosis, C1q initially bound to peripheral cellular regions in early apoptotic cells. By 6 h, binding concentrated in the nuclei to the nucleolus but not the chromatins. When nucleoli were isolated from non-apoptotic cells, C1q also bound to these structures. In vivo, C1q exists as the C1 complex (C1qC1r2C1s2), and C1q binding to ligands activates the C1r/C1s proteases. Incubation of nucleoli with C1 caused degradation of the nucleolar proteins nucleolin and nucleophosmin 1. This was inhibited by the C1 inhibitor. The nucleoli are abundant with autoantigens. C1q binding and C1r/C1s degradation of nucleolar antigens during cell apoptosis potentially reduces autoimmunity. These findings help us to understand why genetic C1q and C1r/C1s deficiencies cause systemic lupus erythematosus. PMID:26231209

  20. C1q protein binds to the apoptotic nucleolus and causes C1 protease degradation of nucleolar proteins.

    PubMed

    Cai, Yitian; Teo, Boon Heng Dennis; Yeo, Joo Guan; Lu, Jinhua

    2015-09-11

    In infection, complement C1q recognizes pathogen-congregated antibodies and elicits complement activation. Among endogenous ligands, C1q binds to DNA and apoptotic cells, but whether C1q binds to nuclear DNA in apoptotic cells remains to be investigated. With UV irradiation-induced apoptosis, C1q initially bound to peripheral cellular regions in early apoptotic cells. By 6 h, binding concentrated in the nuclei to the nucleolus but not the chromatins. When nucleoli were isolated from non-apoptotic cells, C1q also bound to these structures. In vivo, C1q exists as the C1 complex (C1qC1r2C1s2), and C1q binding to ligands activates the C1r/C1s proteases. Incubation of nucleoli with C1 caused degradation of the nucleolar proteins nucleolin and nucleophosmin 1. This was inhibited by the C1 inhibitor. The nucleoli are abundant with autoantigens. C1q binding and C1r/C1s degradation of nucleolar antigens during cell apoptosis potentially reduces autoimmunity. These findings help us to understand why genetic C1q and C1r/C1s deficiencies cause systemic lupus erythematosus. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. A nucleolar protein RRS1 contributes to chromosome congression.

    PubMed

    Gambe, Arni E; Matsunaga, Sachihiro; Takata, Hideaki; Ono-Maniwa, Rika; Baba, Akiko; Uchiyama, Susumu; Fukui, Kiichi

    2009-06-18

    We report here the functional analysis of human Regulator of Ribosome Synthesis 1 (RRS1) protein during mitosis. We demonstrate that RRS1 localizes in the nucleolus during interphase and is distributed at the chromosome periphery during mitosis. RNA interference experiments revealed that RRS1-depleted cells show abnormalities in chromosome alignment and spindle organization, which result in mitotic delay. RRS1 knockdown also perturbs the centromeric localization of Shugoshin 1 and results in premature separation of sister chromatids. Our results suggest that a nucleolar protein RRS1 contributes to chromosome congression.

  2. NOA36 Protein Contains a Highly Conserved Nucleolar Localization Signal Capable of Directing Functional Proteins to the Nucleolus, in Mammalian Cells

    PubMed Central

    de Melo, Ivan S.; Jimenez-Nuñez, Maria D.; Iglesias, Concepción; Campos-Caro, Antonio; Moreno-Sanchez, David; Ruiz, Felix A.; Bolívar, Jorge

    2013-01-01

    NOA36/ZNF330 is an evolutionarily well-preserved protein present in the nucleolus and mitochondria of mammalian cells. We have previously reported that the pro-apoptotic activity of this protein is mediated by a characteristic cysteine-rich domain. We now demonstrate that the nucleolar localization of NOA36 is due to a highly-conserved nucleolar localization signal (NoLS) present in residues 1–33. This NoLS is a sequence containing three clusters of two or three basic amino acids. We fused the amino terminal of NOA36 to eGFP in order to characterize this putative NoLS. We show that a cluster of three lysine residues at positions 3 to 5 within this sequence is critical for the nucleolar localization. We also demonstrate that the sequence as found in human is capable of directing eGFP to the nucleolus in several mammal, fish and insect cells. Moreover, this NoLS is capable of specifically directing the cytosolic yeast enzyme polyphosphatase to the target of the nucleolus of HeLa cells, wherein its enzymatic activity was detected. This NoLS could therefore serve as a very useful tool as a nucleolar marker and for directing particular proteins to the nucleolus in distant animal species. PMID:23516598

  3. A nucleolar targeting signal in PML-I addresses PML to nucleolar caps in stressed or senescent cells.

    PubMed

    Condemine, Wilfried; Takahashi, Yuki; Le Bras, Morgane; de Thé, Hugues

    2007-09-15

    The promyelocytic leukemia (PML) tumour suppressor is the organiser of PML nuclear bodies, which are domains the precise functions of which are still disputed. We show that upon several types of stress, endogenous PML proteins form nucleolar caps and eventually engulf nucleolar components. Only two specific PML splice variants (PML-I and PML-IV) are efficiently targeted to the nucleolus and the abundant PML-I isoform is required for the targeting of endogenous PML proteins to this organelle. We identified a nucleolar targeting domain within the evolutionarily conserved C-terminus of PML-I. This domain contains a predicted exonuclease III fold essential for the targeting of the PML-I C-terminus to nucleolar fibrillar centres. Furthermore, spontaneous or oncogene retrieval-induced senescence is associated with the formation of very large PML nuclear bodies that initially contain nucleolar components. Later, poly-ubiquitin conjugates are found on the outer shell or within most of these senescence-associated PML bodies. Thus, unexpectedly, the scarcely studied PML-I isoform links PML bodies, nucleolus, senescence and proteolysis.

  4. Mutations in the Treacher Collins syndrome gene lead to mislocalization of the nucleolar protein treacle.

    PubMed

    Marsh, K L; Dixon, J; Dixon, M J

    1998-10-01

    Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, the features of which include conductive hearing loss and cleft palate. The TCS gene ( TCOF1 ), which is localized to chromosome 5q32-q33.1, recently has been identified by positional cloning. Analysis of TCOF1 revealed that the majority of TCS mutations result in the creation of a premature termination codon. The function of the predicted protein, treacle, is unknown, although indirect evidence from database analyses suggests that it may function as a shuttling nucleolar phosphoprotein. In the current study, we provide the first direct evidence that treacle is a nucleolar protein. An antibody generated against treacle shows that it localizes to the nucleolus. Fusion proteins tagged to a green fluorescent protein reporter were shown to localize to different compartments of the cell when putative nuclear localization signals were deleted. Parallel experiments using conserved regions of the murine homologue of TCOF1 confirmed these results. Site-directed mutagenesis has been used to recreate mutations observed in individuals with TCS. The resulting truncated proteins are mislocalized within the cell, which further supports the hypothesis that an integral part of treacle's function involves shuttling between the nucleolus and the cytoplasm. TCS is, therefore, the first Mendelian disorder resulting from mutations which lead to aberrant expression of a nucleolar protein.

  5. p53 -Dependent and -Independent Nucleolar Stress Responses

    PubMed Central

    Olausson, Karl Holmberg; Nistér, Monica; Lindström, Mikael S.

    2012-01-01

    The nucleolus has emerged as a cellular stress sensor and key regulator of p53-dependent and -independent stress responses. A variety of abnormal metabolic conditions, cytotoxic compounds, and physical insults induce alterations in nucleolar structure and function, a situation known as nucleolar or ribosomal stress. Ribosomal proteins, including RPL11 and RPL5, become increasingly bound to the p53 regulatory protein MDM2 following nucleolar stress. Ribosomal protein binding to MDM2 blocks its E3 ligase function leading to stabilization and activation of p53. In this review we focus on a number of novel regulators of the RPL5/RPL11-MDM2-p53 complex including PICT1 (GLTSCR2), MYBBP1A, PML and NEDD8. p53-independent pathways mediating the nucleolar stress response are also emerging and in particular the negative control that RPL11 exerts on Myc oncoprotein is of importance, given the role of Myc as a master regulator of ribosome biogenesis. We also briefly discuss the potential of chemotherapeutic drugs that specifically target RNA polymerase I to induce nucleolar stress. PMID:24710530

  6. Proteomic characterization of the nucleolar linker histone H1 interaction network

    PubMed Central

    Szerlong, Heather J.; Herman, Jacob A.; Krause, Christine M.; DeLuca, Jennifer G.; Skoultchi, Arthur; Winger, Quinton A.; Prenni, Jessica E.; Hansen, Jeffrey C.

    2015-01-01

    To investigate the relationship between linker histone H1 and protein-protein interactions in the nucleolus, biochemical and proteomics approaches were used to characterize nucleoli purified from cultured human and mouse cells. Mass spectrometry identified 175 proteins in human T-cell nucleolar extracts that bound to sepharose-immobilized H1 in vitro. Gene ontology analysis found significant enrichment for H1 binding proteins with functions related to nucleolar chromatin structure and RNA polymerase I transcription regulation, rRNA processing, and mRNA splicing. Consistent with the affinity binding results, H1 existed in large (400 to >650 kDa) macromolecular complexes in human T cell nucleolar extracts. To complement the biochemical experiments, the effects of in vivo H1 depletion on protein content and structural integrity of the nucleolus were investigated using the H1 triple isoform knock out (H1ΔTKO) mouse embryonic stem cell (mESC) model system. Proteomic profiling of purified wild type mESC nucleoli identified a total of 613 proteins, only ~60% of which were detected in the H1 mutant nucleoli. Within the affected group, spectral counting analysis quantitated 135 specific nucleolar proteins whose levels were significantly altered in H1ΔTKO mESC. Importantly, the functions of the affected proteins in mESC closely overlapped with those of the human T cell nucleolar H1 binding proteins. Immunofluorescence microscopy of intact H1ΔTKO mESC demonstrated both a loss of nucleolar RNA content and altered nucleolar morphology resulting from in vivo H1 depletion. We conclude that H1 organizes and maintains an extensive protein-protein interaction network in the nucleolus required for nucleolar structure and integrity. PMID:25584861

  7. The nucleolar phosphoprotein B23 targets Newcastle disease virus matrix protein to the nucleoli and facilitates viral replication.

    PubMed

    Duan, Zhiqiang; Chen, Jian; Xu, Haixu; Zhu, Jie; Li, Qunhui; He, Liang; Liu, Huimou; Hu, Shunlin; Liu, Xiufan

    2014-03-01

    The cellular nucleolar proteins are reported to facilitate the replication cycles of some human and animal viruses by interaction with viral proteins. In this study, a nucleolar phosphoprotein B23 was identified to interact with Newcastle disease virus (NDV) matrix (M) protein. We found that NDV M protein accumulated in the nucleolus by binding B23 early in infection, but resulted in the redistribution of B23 from the nucleoli to the nucleoplasm later in infection. In vitro binding studies utilizing deletion mutants indicated that amino acids 30-60 of M and amino acids 188-245 of B23 were required for binding. Furthermore, knockdown of B23 by siRNA or overexpression of B23 or M-binding B23-derived polypeptides remarkably reduced cytopathic effect and inhibited NDV replication. Collectively, we show that B23 facilitates NDV replication by targeting M to the nucleolus, demonstrating for the first time a direct role for nucleolar protein B23 in a paramyxovirus replication process. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. In situ localization of nucleolin in the plant nucleolar matrix.

    PubMed

    Minguez, A; Moreno Diaz de la Espina, S

    1996-01-10

    The analysis of isolated nucleolar matrices from onion cells by light and electron microscopy, 2-D separation of proteins, and confocal microscopy has confirmed the existence of an organized nucleolar matrix with a complex protein composition to which are attached the insoluble processing complexes. In the present work, we present evidence from immunoblotting, immunofluorescence, immunogold labeling, and preferential cytochemical staining with bismuth salts that an insoluble fraction of the multifunctional protein nucleolin, is a component of the onion nucleolar matrix, and analyse its ultrastructural distribution in the described domains of the matrix.

  9. Immunodetection of nucleolar proteins and ultrastructure of nucleoli of soybean root meristematic cells treated with chilling stress and after recovery.

    PubMed

    Stepiński, Dariusz

    2009-03-01

    The nucleolar proteins, fibrillarin and nucleophosmin, have been identified immunofluorescently in the root meristematic cells of soybean seedlings under varying experimental conditions: at 25 degrees C (control), chilling at 10 degrees C for 3 h and 4 days and recovery from the chilling stress at 25 degrees C. In each experimental variant, the immunofluorescence signals were present solely at the nucleolar territories. Fluorescent staining for both proteins was mainly in the shape of circular domains that are assumed to correspond to the dense fibrillar component of the nucleoli. The fewest fluorescent domains were observed in the nucleoli of chilled plants, and the highest number was observed in the plants recovered after chilling. This difference in the number of circular domains in the nucleoli of each variant may indicate various levels of these proteins in each variant. Both the number of circular domains and the level of these nucleolar proteins changed with changes in the transcriptional activity of the nucleoli, with the more metabolically active cell having higher numbers of active areas in the nucleolus and higher levels of nucleolar proteins, and conversely. Electron microscopic studies revealed differences in the ultrastructure of the nucleoli in all experimental variants and confirmed that the number of fibrillar centres surrounded by dense fibrillar component was the lowest in the nucleoli of chilled plants, and the highest in the nucleoli of recovered seedlings.

  10. Dynamic Nucleolar Targeting of Dengue Virus Polymerase NS5 in Response to Extracellular pH

    PubMed Central

    Fraser, Johanna E.; Rawlinson, Stephen M.; Heaton, Steven M.

    2016-01-01

    ABSTRACT The nucleolar subcompartment of the nucleus is increasingly recognized as an important target of RNA viruses. Here we document for the first time the ability of dengue virus (DENV) polymerase, nonstructural protein 5 (NS5), to accumulate within the nucleolus of infected cells and to target green fluorescent protein (GFP) to the nucleolus of live transfected cells. Intriguingly, NS5 exchange between the nucleus and nucleolus is dynamically modulated by extracellular pH, responding rapidly and reversibly to pH change, in contrast to GFP alone or other nucleolar and non-nucleolar targeted protein controls. The minimal pH-sensitive nucleolar targeting region (pHNTR), sufficient to target GFP to the nucleolus in a pH-sensitive fashion, was mapped to NS5 residues 1 to 244, with mutation of key hydrophobic residues, Leu-165, Leu-167, and Val-168, abolishing pHNTR function in NS5-transfected cells, and severely attenuating DENV growth in infected cells. This is the first report of a viral protein whose nucleolar targeting ability is rapidly modulated by extracellular stimuli, suggesting that DENV has the ability to detect and respond dynamically to the extracellular environment. IMPORTANCE Infections by dengue virus (DENV) threaten 40% of the world's population yet there is no approved vaccine or antiviral therapeutic to treat infections. Understanding the molecular details that govern effective viral replication is key for the development of novel antiviral strategies. Here, we describe for the first time dynamic trafficking of DENV nonstructural protein 5 (NS5) to the subnuclear compartment, the nucleolus. We demonstrate that NS5's targeting to the nucleolus occurs in response to acidic pH, identify the key amino acid residues within NS5 that are responsible, and demonstrate that their mutation severely impairs production of infectious DENV. Overall, this study identifies a unique subcellular trafficking event and suggests that DENV is able to detect and respond

  11. Nucleolar localization of cirhin, the protein mutated in North American Indian childhood cirrhosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Bin; Mitchell, Grant A.; Richter, Andrea

    2005-12-10

    Cirhin (NP{sub 1}16219), the product of the CIRH1A gene is mutated in North American Indian childhood cirrhosis (NAIC/CIRH1A, OMIM 604901), a severe autosomal recessive intrahepatic cholestasis. It is a 686-amino-acid WD40-repeat containing protein of unknown function that is predicted to contain multiple targeting signals, including an N-terminal mitochondrial targeting signal, a C-terminal monopartite nuclear localization signal (NLS) and a bipartite nuclear localization signal (BNLS). We performed the direct determination of subcellular localization of cirhin as a crucial first step in unraveling its biological function. Using EGFP and His-tagged cirhin fusion proteins expressed in HeLa and HepG2, cells we show thatmore » cirhin is a nucleolar protein and that the R565W mutation, for which all NAIC patients are homozygous, has no effect on subcellular localization. Cirhin has an active C-terminal monopartite nuclear localization signal (NLS) and a unique nucleolar localization signal (NrLS) between residues 315 and 432. The nucleolus is not known to be important specifically for intrahepatic cholestasis. These observations provide a new dimension in the study of hereditary cholestasis.« less

  12. Three major nucleolar proteins migrate from nucleolus to nucleoplasm and cytoplasm in root tip cells of Vicia faba L. exposed to aluminum.

    PubMed

    Qin, Rong; Zhang, Huaning; Li, Shaoshan; Jiang, Wusheng; Liu, Donghua

    2014-09-01

    Results from our previous investigation indicated that Al could affect the nucleolus and induce extrusion of silver-staining nucleolar particles containing argyrophilic proteins from the nucleolus into the cytoplasm in root tip cells of Vicia faba L. So far, the nucleolar proteins involved have not been identified. It is well known that nucleophosmin (B23), nucleolin (C23), and fibrillarin are three major and multifunctional nucleolar proteins. Therefore, effects of Al on B23, C23, and fibrillarin in root tip cells of V. faba exposed to 100 μM Al for 48 h were observed and analyzed using indirect immunofluorescence microscopy and Western blotting. The results from this work demonstrated that after 100 μM of Al treatment for 48 h, B23 and C23 migrated from the nucleolus to the cytoplasm and fibrillarin from the nucleolus to the nucleoplasm. In some cells, fibrillarin was present only in the cytoplasm. Western blotting data revealed higher expression of the three major nucleolar proteins in Al-treated roots compared with the control and that the B23 content increased markedly. These findings confirmed our previous observations.

  13. Nucleolar proteins change in altered gravity

    NASA Astrophysics Data System (ADS)

    Sobol, M. A.; Kordyum, E. L.; Gonzalez-Camacho, F.; Medina, F. J.

    Discovery of gravisensitivity of cells no specified to gravity perception focused continuous attention on an elucidation of mechanisms involved in altered gravity effects at the different levels of cellular organization A nucleolus is the nuclear domain in which the major portion of ribosome biogenesis takes place This is a basic process for cell vitality beginning with the transcription of rDNA followed by processing newly synthesized pre-rRNA molecules A wide range of nucleolar proteins plays a highly significant role in all stages of biosynthesis of ribosomes Different steps of ribosome biogenesis should respond to various external factors affecting generally the cell metabolism Nevertheless a nucleolus remains not enough studied under the influence of altered environmental conditions For this reason we studied root apices from 2-day old Lepidium sativum seedlings germinated and grown under slow horizontal clinorotation and stationary conditions in darkness The extraction of cell nuclei followed by sequential fractionation of nuclear proteins according to their solubility in buffers of increasing ionic strength was carried out This procedure gave rise to 5 distinct fractions We analyzed nuclear subproteomes of the most soluble fraction called S2 It is actually a functionally significant fraction consisting of ribonucleoproteins actively engaged in pre-rRNA synthesis and processing 2D-electrophoresis of S2 fraction proteins was carried out The gels were silver stained and stained gels were scanned and analyzed

  14. Nucleolar Reorganization Upon Site-Specific Double-Strand Break Induction.

    PubMed

    Franek, Michal; Kovaříková, Alena; Bártová, Eva; Kozubek, Stanislav

    2016-11-01

    DNA damage response (DDR) in ribosomal genes and mechanisms of DNA repair in embryonic stem cells (ESCs) are less explored nuclear events. DDR in ESCs should be unique due to their high proliferation rate, expression of pluripotency factors, and specific chromatin signature. Given short population doubling time and fast progress through G1 phase, ESCs require a sustained production of rRNA, which leads to the formation of large and prominent nucleoli. Although transcription of rRNA in the nucleolus is relatively well understood, little is known about DDR in this nuclear compartment. Here, we directed formation of double-strand breaks in rRNA genes with I- PpoI endonuclease, and we studied nucleolar morphology, DDR, and chromatin modifications. We observed a pronounced formation of I- PpoI-induced nucleolar caps, positive on BRCA1, NBS1, MDC1, γH2AX, and UBF1 proteins. We showed interaction of nucleolar protein TCOF1 with HDAC1 and TCOF1 with CARM1 after DNA injury. Moreover, H3R17me2a modification mediated by CARM1 was found in I- PpoI-induced nucleolar caps. Finally, we report that heterochromatin protein 1 is not involved in DNA repair of nucleolar caps.

  15. Nucleolar Reorganization Upon Site-Specific Double-Strand Break Induction

    PubMed Central

    Franek, Michal; Kovaříková, Alena; Bártová, Eva; Kozubek, Stanislav

    2016-01-01

    DNA damage response (DDR) in ribosomal genes and mechanisms of DNA repair in embryonic stem cells (ESCs) are less explored nuclear events. DDR in ESCs should be unique due to their high proliferation rate, expression of pluripotency factors, and specific chromatin signature. Given short population doubling time and fast progress through G1 phase, ESCs require a sustained production of rRNA, which leads to the formation of large and prominent nucleoli. Although transcription of rRNA in the nucleolus is relatively well understood, little is known about DDR in this nuclear compartment. Here, we directed formation of double-strand breaks in rRNA genes with I-PpoI endonuclease, and we studied nucleolar morphology, DDR, and chromatin modifications. We observed a pronounced formation of I-PpoI-induced nucleolar caps, positive on BRCA1, NBS1, MDC1, γH2AX, and UBF1 proteins. We showed interaction of nucleolar protein TCOF1 with HDAC1 and TCOF1 with CARM1 after DNA injury. Moreover, H3R17me2a modification mediated by CARM1 was found in I-PpoI-induced nucleolar caps. Finally, we report that heterochromatin protein 1 is not involved in DNA repair of nucleolar caps. PMID:27680669

  16. Bidirectional nucleolar dysfunction in C9orf72 frontotemporal lobar degeneration.

    PubMed

    Mizielinska, Sarah; Ridler, Charlotte E; Balendra, Rubika; Thoeng, Annora; Woodling, Nathan S; Grässer, Friedrich A; Plagnol, Vincent; Lashley, Tammaryn; Partridge, Linda; Isaacs, Adrian M

    2017-04-18

    An intronic GGGGCC expansion in C9orf72 is the most common known cause of both frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The repeat expansion leads to the generation of sense and antisense repeat RNA aggregates and dipeptide repeat (DPR) proteins, generated by repeat-associated non-ATG translation. The arginine-rich DPR proteins poly(glycine-arginine or GR) and poly(proline-arginine or PR) are potently neurotoxic and can localise to the nucleolus when expressed in cells, resulting in enlarged nucleoli with disrupted functionality. Furthermore, GGGGCC repeat RNA can bind nucleolar proteins in vitro. However, the relevance of nucleolar stress is unclear, as the arginine-rich DPR proteins do not localise to the nucleolus in C9orf72-associated FTLD/ALS (C9FTLD/ALS) patient brain. We measured nucleolar size in C9FTLD frontal cortex neurons using a three-dimensional, volumetric approach. Intriguingly, we found that C9FTLD brain exhibited bidirectional nucleolar stress. C9FTLD neuronal nucleoli were significantly smaller than control neuronal nucleoli. However, within C9FTLD brains, neurons containing poly(GR) inclusions had significantly larger nucleolar volumes than neurons without poly(GR) inclusions. In addition, expression of poly(GR) in adult Drosophila neurons led to significantly enlarged nucleoli. A small but significant increase in nucleolar volume was also observed in C9FTLD frontal cortex neurons containing GGGGCC repeat-containing RNA foci. These data show that nucleolar abnormalities are a consistent feature of C9FTLD brain, but that diverse pathomechanisms are at play, involving both DPR protein and repeat RNA toxicity.

  17. Nucleolar molecular signature of pluripotent stem cells.

    PubMed

    Pliss, Artem; Kuzmin, Andrey N; Kachynski, Aliaksandr V; Jiang, Houbo; Hu, Zhixing; Ren, Yong; Feng, Jian; Prasad, Paras N

    2013-04-02

    Induced pluripotent stem cells (iPSC) are generated by reprogramming somatic cells to the pluripotent state. Identification and quantitative characterization of changes in the molecular organization of the cell during the process of cellular reprogramming is valuable for stem cell research and advancement of its therapeutic applications. Here we employ quantitative Raman microspectroscopy and biomolecular component analysis (BCA) for a comparative analysis of the molecular composition of nucleoli in skin fibroblasts and iPSC derived from them. We report that the cultured fibroblasts obtained from different human subjects, share comparable concentrations of proteins, RNA, DNA, and lipids in the molecular composition of nucleoli. The nucleolar molecular environment is drastically changed in the corresponding iPSC. We measured that the transition from skin fibroblasts to iPSC is accompanied by a statistically significant increase in protein concentrations ~1.3-fold, RNA concentrations ~1.3-fold, and DNA concentrations ~1.4-fold, while no statistically significant difference was found for the lipid concentrations. The analysis of molecular vibrations associated with diverse aminoacids and protein conformations indicates that nucleoli of skin fibroblasts contain similar subsets of proteins, with prevalence of tyrosine. In iPSC, we observed a higher signal from tryptophan with an increase in the random coil and α helix protein conformations, indicating changes in the subset of nucleolar proteins during cell reprogramming. At the same time, the concentrations of major types of macromolecules and protein conformations in the nucleoli of iPSC and human embryonic stem cells (hESC) were found to be similar. We discuss these results in the context of nucleolar function and conclude that the nucleolar molecular content is correlated with the cellular differentiation status. The approach described here shows the potential for spectroscopically monitoring changes in

  18. Nucleolar changes in response to dietary protein malnutrition in the neurons of the motor cerebral cortex and cerebellum of squirrel moneky Saimiri sciureus.

    PubMed

    Manocha, S L; Sharma, S P

    1978-01-01

    Nucleolo-cytoplasmic relationships have been studied in healthy squirrel monkeys and those subjected to a known degree of protein malnutrition. In the latter group, thirty-two pregnant animals starting from 35 days of gestation and 24 young adult animals were given a diet containing 7.5% and 2.0% protein content, respectively, compared to a diet with 25% protein for the controls. The motor cortex and the cerebellum removed from neonates as well as young adult animals sacrificed after 9, 11, 13 and 15 weeks of feeding schedules were investigated. Four animals after 15 weeks of dietary protein deprivation were rehabilitated with a balanced diet over a year's period. Formaldehyde-fixed as well as fresh frozen tissues were used for the histological study and to employ histochemical techniques for the demonstration of lipids, carbohydrates, nucleic acids and enzymes of various metabolic cycles. As a result of protein malnutrition, the nucleolus in a majority of the neurons from the motor cortex and the Purkinje cells of the cerebellum undergoes a series of morphological and cytochemical transformations in response to cytoplasmic changes related to impaired protein metabolism. The greater the level of protein deprivation, the greater is the degree of cytoplasmic chromatolysis and more pronounced are the nucleolar transformation in terms of enlarged size, secretory activity and transfer of nucleolar material in the cytoplasm. The nucleolar buds located close to the periphery of the nuclear membrane and the nucleolar material in the cytoplasm show identical cytochemical nature except for the presence of DNA in the former. It appears that during migration through the nuclear membrane the nucleolar material loses its DNA component and only aggregates of ribosomes and protein pass into cytoplasm, which aid in the synthesis of specific proteins lost as a result of catabolic processes initiated by protein malnutrition. Most of the observed changes in the adult squirrel monkeys

  19. Subcellular distribution of human RDM1 protein isoforms and their nucleolar accumulation in response to heat shock and proteotoxic stress.

    PubMed

    Messaoudi, Lydia; Yang, Yun-Gui; Kinomura, Aiko; Stavreva, Diana A; Yan, Gonghong; Bortolin-Cavaillé, Marie-Line; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Hainaut, Pierre; Cavaillé, Jérome; Takata, Minoru; Van Dyck, Eric

    2007-01-01

    The RDM1 gene encodes a RNA recognition motif (RRM)-containing protein involved in the cellular response to the anti-cancer drug cisplatin in vertebrates. We previously reported a cDNA encoding the full-length human RDM1 protein. Here, we describe the identification of 11 human cDNAs encoding RDM1 protein isoforms. This repertoire is generated by alternative pre-mRNA splicing and differential usage of two translational start sites, resulting in proteins with long or short N-terminus and a great diversity in the exonic composition of their C-terminus. By using tagged proteins and fluorescent microscopy, we examined the subcellular distribution of full-length RDM1 (renamed RDM1alpha), and other RDM1 isoforms. We show that RDM1alpha undergoes subcellular redistribution and nucleolar accumulation in response to proteotoxic stress and mild heat shock. In unstressed cells, the long N-terminal isoforms displayed distinct subcellular distribution patterns, ranging from a predominantly cytoplasmic to almost exclusive nuclear localization, suggesting functional differences among the RDM1 proteins. However, all isoforms underwent stress-induced nucleolar accumulation. We identified nuclear and nucleolar localization determinants as well as domains conferring cytoplasmic retention to the RDM1 proteins. Finally, RDM1 null chicken DT40 cells displayed an increased sensitivity to heat shock, compared to wild-type (wt) cells, suggesting a function for RDM1 in the heat-shock response.

  20. Identification of novel proteins associated with yeast snR30 small nucleolar RNA

    PubMed Central

    Lemay, Vincent; Hossain, Ahmed; Osheim, Yvonne N.; Beyer, Ann L.; Dragon, François

    2011-01-01

    H/ACA small nucleolar RNPs (snoRNPs) that guide pseudouridylation reactions are comprised of one small nucleolar RNA (snoRNA) and four common proteins (Cbf5, Gar1, Nhp2 and Nop10). Unlike other H/ACA snoRNPs, snR30 is essential for the early processing reactions that lead to the production of 18S ribosomal RNA in the yeast Saccharomyces cerevisiae. To determine whether snR30 RNP contains specific proteins that contribute to its unique functional properties, we devised an affinity purification strategy using TAP-tagged Gar1 and an RNA aptamer inserted in snR30 snoRNA to selectively purify the RNP. Northern blotting and pCp labeling experiments showed that S1-tagged snR30 snoRNA can be selectively purified with streptavidin beads. Protein analysis revealed that aptamer-tagged snR30 RNA was associated with the four H/ACA proteins and a number of additional proteins: Nop6, ribosomal proteins S9 and S18 and histones H2B and H4. Using antibodies raised against Nop6 we show that endogenous Nop6 localizes to the nucleolus and that it cosediments with snR30 snoRNA in sucrose density gradients. We demonstrate through primer extension experiments that snR30 snoRNA is required for cleavages at site A0, A1 and A2, and that the absence of Nop6 decreases the efficiency of cleavage at site A2. Finally, electron microscopy analyses of chromatin spreads from cells depleted of snR30 snoRNA show that it is required for SSU processome assembly. PMID:21893585

  1. The TORMOZ Gene Encodes a Nucleolar Protein Required for Regulated Division Planes and Embryo Development in Arabidopsis[W

    PubMed Central

    Griffith, Megan E.; Mayer, Ulrike; Capron, Arnaud; Ngo, Quy A.; Surendrarao, Anandkumar; McClinton, Regina; Jürgens, Gerd; Sundaresan, Venkatesan

    2007-01-01

    Embryogenesis in Arabidopsis thaliana is marked by a predictable sequence of oriented cell divisions, which precede cell fate determination. We show that mutation of the TORMOZ (TOZ) gene yields embryos with aberrant cell division planes and arrested embryos that appear not to have established normal patterning. The defects in toz mutants differ from previously described mutations that affect embryonic cell division patterns. Longitudinal division planes of the proembryo are frequently replaced by transverse divisions and less frequently by oblique divisions, while divisions of the suspensor cells, which divide only transversely, appear generally unaffected. Expression patterns of selected embryo patterning genes are altered in the mutant embryos, implying that the positional cues required for their proper expression are perturbed by the misoriented divisions. The TOZ gene encodes a nucleolar protein containing WD repeats. Putative TOZ orthologs exist in other eukaryotes including Saccharomyces cerevisiae, where the protein is predicted to function in 18S rRNA biogenesis. We find that disruption of the Sp TOZ gene results in cell division defects in Schizosaccharomyces pombe. Previous studies in yeast and animal cells have identified nucleolar proteins that regulate the exit from M phase and cytokinesis, including factors involved in pre-rRNA processing. Our study suggests that in plant cells, nucleolar functions might interact with the processes of regulated cell divisions and influence the selection of longitudinal division planes during embryogenesis. PMID:17616738

  2. SSB-1 of the yeast Saccharomyces cerevisiae is a nucleolar-specific, silver-binding protein that is associated with the snR10 and snR11 small nuclear RNAs

    PubMed Central

    1990-01-01

    SSB-1, the yeast single-strand RNA-binding protein, is demonstrated to be a yeast nucleolar-specific, silver-binding protein. In double-label immunofluorescence microscopy experiments antibodies to two other nucleolar proteins, RNA Pol I 190-kD and fibrillarin, were used to reveal the site of rRNA transcription; i.e., the fibrillar region of the nucleolus. SSB-1 colocalized with fibrillarin in a double-label immunofluorescence mapping experiment to the yeast nucleolus. SSB-1 is located, though, over a wider region of the nucleolus than the transcription site marker. Immunoprecipitations of yeast cell extracts with the SSB-1 antibody reveal that in 150 mM NaCl SSB-1 is bound to two small nuclear RNAs (snRNAs). These yeast snRNAs are snR10 and snR11, with snR10 being predominant. Since snR10 has been implicated in pre-rRNA processing, the association of SSB-1 and snR10 into a nucleolar snRNP particle indicates SSB-1 involvement in rRNA processing as well. Also, another yeast protein, SSB-36-kD, isolated by single- strand DNA chromatography, is shown to bind silver under the conditions used for nucleolar-specific staining. It is, most likely, another yeast nucleolar protein. PMID:2121740

  3. Nucleolus-like bodies of fully-grown mouse oocytes contain key nucleolar proteins but are impoverished for rRNA.

    PubMed

    Shishova, Kseniya V; Lavrentyeva, Elena A; Dobrucki, Jurek W; Zatsepina, Olga V

    2015-01-15

    It is well known that fully-grown mammalian oocytes, rather than typical nucleoli, contain prominent but structurally homogenous bodies called "nucleolus-like bodies" (NLBs). NLBs accumulate a vast amount of material, but their biochemical composition and functions remain uncertain. To clarify the composition of the NLB material in mouse GV oocytes, we devised an assay to detect internal oocyte proteins with fluorescein-5-isothiocyanate (FITC) and applied the fluorescent RNA-binding dye acridine orange to examine whether NLBs contain RNA. Our results unequivocally show that, similarly to typical nucleoli, proteins and RNA are major constituents of transcriptionally active (or non-surrounded) NLBs as well as of transcriptionally silent (or surrounded) NLBs. We also show, by exposing fixed oocytes to a mild proteinase K treatment, that the NLB mass in oocytes of both types contains nucleolar proteins that are involved in all major steps of ribosome biogenesis, including rDNA transcription (UBF), early rRNA processing (fibrillarin), and late rRNA processing (NPM1/nucleophosmin/B23, nucleolin/C23), but none of the nuclear proteins tested, including SC35, NOBOX, topoisomerase II beta, HP1α, and H3. The ribosomal RPL26 protein was detected within the NLBs of NSN-type oocytes but is virtually absent from NLBs of SN-type oocytes. Taking into account that the major class of nucleolar RNA is ribosomal RNA (rRNA), we applied fluorescence in situ hybridization with oligonucleotide probes targeting 18S and 28S rRNAs. The results show that, in contrast to active nucleoli, NLBs of fully-grown oocytes are impoverished for the rRNAs, which is consistent with the absence of transcribed ribosomal genes in the NLB mass. Overall, the results of this study suggest that NLBs of fully-grown mammalian oocytes serve for storing major nucleolar proteins but not rRNA. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Proteomic Analysis of the Arabidopsis Nucleolus Suggests Novel Nucleolar FunctionsD⃞

    PubMed Central

    Pendle, Alison F.; Clark, Gillian P.; Boon, Reinier; Lewandowska, Dominika; Lam, Yun Wah; Andersen, Jens; Mann, Matthias; Lamond, Angus I.; Brown, John W. S.; Shaw, Peter J.

    2005-01-01

    The eukaryotic nucleolus is involved in ribosome biogenesis and a wide range of other RNA metabolism and cellular functions. An important step in the functional analysis of the nucleolus is to determine the complement of proteins of this nuclear compartment. Here, we describe the first proteomic analysis of plant (Arabidopsis thaliana) nucleoli, in which we have identified 217 proteins. This allows a direct comparison of the proteomes of an important nuclear structure between two widely divergent species: human and Arabidopsis. The comparison identified many common proteins, plant-specific proteins, proteins of unknown function found in both proteomes, and proteins that were nucleolar in plants but nonnucleolar in human. Seventy-two proteins were expressed as GFP fusions and 87% showed nucleolar or nucleolar-associated localization. In a striking and unexpected finding, we have identified six components of the postsplicing exon-junction complex (EJC) involved in mRNA export and nonsense-mediated decay (NMD)/mRNA surveillance. This association was confirmed by GFP-fusion protein localization. These results raise the possibility that in plants, nucleoli may have additional functions in mRNA export or surveillance. PMID:15496452

  5. Autoantigenicity of nucleolar complexes.

    PubMed

    Welting, Tim J M; Raijmakers, Reinout; Pruijn, Ger J M

    2003-10-01

    Autoantibodies targeting nucleolar autoantigens (ANoA) are most frequently found in sera from patients with systemic sclerosis (SSc, also designated scleroderma) or with SSc overlap syndromes. During the last decade an extensive number of nucleolar components have been identified and this allowed a more detailed analysis of the identity of nucleolar autoantigens. This review intends to give an overview of the molecular composition of the major (families of) autoantigenic nucleolar complexes, to provide some insight into their functions and to summarise the data concerning their autoantigenicity.

  6. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    PubMed

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-08-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded.

  7. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    PubMed Central

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-01-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded. Images PMID:2823109

  8. Computer-based fluorescence quantification: a novel approach to study nucleolar biology

    PubMed Central

    2011-01-01

    Background Nucleoli are composed of possibly several thousand different proteins and represent the most conspicuous compartments in the nucleus; they play a crucial role in the proper execution of many cellular processes. As such, nucleoli carry out ribosome biogenesis and sequester or associate with key molecules that regulate cell cycle progression, tumorigenesis, apoptosis and the stress response. Nucleoli are dynamic compartments that are characterized by a constant flux of macromolecules. Given the complex and dynamic composition of the nucleolar proteome, it is challenging to link modifications in nucleolar composition to downstream effects. Results In this contribution, we present quantitative immunofluorescence methods that rely on computer-based image analysis. We demonstrate the effectiveness of these techniques by monitoring the dynamic association of proteins and RNA with nucleoli under different physiological conditions. Thus, the protocols described by us were employed to study stress-dependent changes in the nucleolar concentration of endogenous and GFP-tagged proteins. Furthermore, our methods were applied to measure de novo RNA synthesis that is associated with nucleoli. We show that the techniques described here can be easily combined with automated high throughput screening (HTS) platforms, making it possible to obtain large data sets and analyze many of the biological processes that are located in nucleoli. Conclusions Our protocols set the stage to analyze in a quantitative fashion the kinetics of shuttling nucleolar proteins, both at the single cell level as well as for a large number of cells. Moreover, the procedures described here are compatible with high throughput image acquisition and analysis using HTS automated platforms, thereby providing the basis to quantify nucleolar components and activities for numerous samples and experimental conditions. Together with the growing amount of information obtained for the nucleolar proteome

  9. GLTSCR2 promotes the nucleoplasmic translocation and subsequent degradation of nucleolar ARF.

    PubMed

    Lee, Sun; Cho, Young-Eun; Kim, Sang-Hoon; Kim, Yong-Jun; Park, Jae-Hoon

    2017-03-07

    The alternative reading frame protein (p14ARF/ARF) is a key determinant of cell fate, acting as a potent tumor suppressor through a p53/MDM2-dependent pathway or promoting apoptosis in a p53-independent manner. The ARF protein is mainly expressed in the nucleolus and sequestered by nucleophosmin (NPM), whereas ARF-binding proteins, including p53 and MDM2, predominantly reside in the nucleoplasm. This raises the question of how nucleolar ARF binds nucleoplasmic signaling proteins to suppress tumor growth or inhibit cell cycle progression. GLTSCR2 (also known as PICT-1) is a nucleolar protein involved in both tumor suppression and oncogenesis in concert with p53, NPM, and/or MYC. Here, we show that GLTSCR2 increases nucleoplasmic ARF translocation and its degradation. Specifically, GLTSCR2 bound to ARF, and GLTSCR2-ARF complexes were released to the nucleoplasm, where GLTSCR2 increased the binding affinity of ARF for ULF/TRIP12 (a nucleoplasmic E3-ubiquitin ligase of ARF) and enhanced ARF degradation through the polyubiquitination pathway. Our results demonstrate that nucleolar/nucleoplasmic GLTSCR2 is a strong candidate for promoting the subcellular localization and protein stability of ARF.

  10. New insights into the nucleolar localization of a plant RNA virus-encoded protein that acts in both RNA packaging and RNA silencing suppression: involvement of importins alpha and relevance for viral infection.

    PubMed

    Pérez-Cañamás, Miryam; Hernández, Carmen

    2018-05-21

    Despite replication of plus strand RNA viruses takes place in the cytoplasm of host cells, different proteins encoded by these infectious agents have been shown to localize in the nucleus, with high accumulation at the nucleolus. In most cases, the molecular determinants and/or biological significance of such subcellular localization remain elusive. Recently, we reported that protein p37 encoded by Pelargonium line pattern virus (family Tombusviridae) acts in both RNA packaging and RNA silencing suppression. Connsistently with these functions, p37 was detected in the cytoplasm of plant cells though it was also present in the nucleus and, particularly, in the nucleolus. Here, we have aimed to gain further insights into factors influencing p37 nucleolar localization and into its potential relevance for viral infection. Besides mapping the protein region containing the nucleolar localization signal, we have found that p37 interacts with distinct members of the importin alpha family -main cellular transporters for nucleo-cytoplasmic traffic of proteins-, and that these interactions are crucial for nucleolar targeting of p37. Impairment of p37 nucleolar localization through down-regulation of importin alpha expression resulted in a reduction of viral accumulation, suggesting that sorting of the protein to the major subnuclear compartment is advantageous for the infection process.

  11. A plant virus movement protein forms ringlike complexes with the major nucleolar protein, fibrillarin, in vitro.

    PubMed

    Canetta, Elisabetta; Kim, Sang Hyon; Kalinina, Natalia O; Shaw, Jane; Adya, Ashok K; Gillespie, Trudi; Brown, John W S; Taliansky, Michael

    2008-02-29

    Fibrillarin, one of the major proteins of the nucleolus, has methyltransferase activity directing 2'-O-ribose methylation of rRNA and snRNAs and is required for rRNA processing. The ability of the plant umbravirus, groundnut rosette virus, to move long distances through the phloem, the specialized plant vascular system, has been shown to strictly depend on the interaction of one of its proteins, the ORF3 protein (protein encoded by open reading frame 3), with fibrillarin. This interaction is essential for several stages in the groundnut rosette virus life cycle such as nucleolar import of the ORF3 protein via Cajal bodies, relocalization of some fibrillarin from the nucleolus to cytoplasm, and assembly of cytoplasmic umbraviral ribonucleoprotein particles that are themselves required for the long-distance spread of the virus and systemic infection. Here, using atomic force microscopy, we determine the architecture of these complexes as single-layered ringlike structures with a diameter of 18-22 nm and a height of 2.0+/-0.4 nm, which consist of several (n=6-8) distinct protein granules. We also estimate the molar ratio of fibrillarin to ORF3 protein in the complexes as approximately 1:1. Based on these data, we propose a model of the structural organization of fibrillarin-ORF3 protein complexes and discuss potential mechanistic and functional implications that may also apply to other viruses.

  12. Pharmacological AMP Kinase Activators Target the Nucleolar Organization and Control Cell Proliferation

    PubMed Central

    Kodiha, Mohamed; Salimi, Ali; Wang, Yi Meng; Stochaj, Ursula

    2014-01-01

    Aims Phenformin, resveratrol and AICAR stimulate the energy sensor 5′-AMP activated kinase (AMPK) and inhibit the first step of ribosome biogenesis, de novo RNA synthesis in nucleoli. Nucleolar activities are relevant to human health, because ribosome production is crucial to the development of diabetic complications. Although the function of nucleoli relies on their organization, the impact of AMPK activators on nucleolar structures is not known. Here, we addressed this question by examining four nucleolar proteins that are essential for ribosome biogenesis. Methods Kidney cells were selected as model system, because diabetic nephropathy is one of the complications associated with diabetes mellitus. To determine the impact of pharmacological agents on nucleoli, we focused on the subcellular and subnuclear distribution of B23/nucleophosmin, fibrillarin, nucleolin and RPA194. This was achieved by quantitative confocal microscopy at the single-cell level in combination with cell fractionation and quantitative Western blotting. Results AMPK activators induced the re-organization of nucleoli, which was accompanied by changes in cell proliferation. Among the compounds tested, phenformin and resveratrol had the most pronounced impact on nucleolar organization. For B23, fibrillarin, nucleolin and RPA194, both agents (i) altered the nucleocytoplasmic distribution and nucleolar association and (ii) reduced significantly the retention in the nucleus. (iii) Phenformin and resveratrol also increased significantly the total concentration of B23 and nucleolin. Conclusions AMPK activators have unique effects on the subcellular localization, nuclear retention and abundance of nucleolar proteins. We propose that the combination of these events inhibits de novo ribosomal RNA synthesis and modulates cell proliferation. Our studies identified nucleolin as a target that is especially sensitive to pharmacological AMPK activators. Because of its response to pharmacological agents

  13. Pharmacological AMP kinase activators target the nucleolar organization and control cell proliferation.

    PubMed

    Kodiha, Mohamed; Salimi, Ali; Wang, Yi Meng; Stochaj, Ursula

    2014-01-01

    Phenformin, resveratrol and AICAR stimulate the energy sensor 5'-AMP activated kinase (AMPK) and inhibit the first step of ribosome biogenesis, de novo RNA synthesis in nucleoli. Nucleolar activities are relevant to human health, because ribosome production is crucial to the development of diabetic complications. Although the function of nucleoli relies on their organization, the impact of AMPK activators on nucleolar structures is not known. Here, we addressed this question by examining four nucleolar proteins that are essential for ribosome biogenesis. Kidney cells were selected as model system, because diabetic nephropathy is one of the complications associated with diabetes mellitus. To determine the impact of pharmacological agents on nucleoli, we focused on the subcellular and subnuclear distribution of B23/nucleophosmin, fibrillarin, nucleolin and RPA194. This was achieved by quantitative confocal microscopy at the single-cell level in combination with cell fractionation and quantitative Western blotting. AMPK activators induced the re-organization of nucleoli, which was accompanied by changes in cell proliferation. Among the compounds tested, phenformin and resveratrol had the most pronounced impact on nucleolar organization. For B23, fibrillarin, nucleolin and RPA194, both agents (i) altered the nucleocytoplasmic distribution and nucleolar association and (ii) reduced significantly the retention in the nucleus. (iii) Phenformin and resveratrol also increased significantly the total concentration of B23 and nucleolin. AMPK activators have unique effects on the subcellular localization, nuclear retention and abundance of nucleolar proteins. We propose that the combination of these events inhibits de novo ribosomal RNA synthesis and modulates cell proliferation. Our studies identified nucleolin as a target that is especially sensitive to pharmacological AMPK activators. Because of its response to pharmacological agents, nucleolin represents a potential

  14. Nucleolar changes after microinjection of antibodies to RNA polymerase I into the nucleus of mammalian cells.

    PubMed

    Benavente, R; Reimer, G; Rose, K M; Hügle-Dörr, B; Scheer, U

    1988-01-01

    After microinjection of antibodies against RNA polymerase I into the nuclei of cultured rat kangaroo (PtK2) and rat (RVF-SMC) cells alterations in nucleolar structure and composition were observed. These were detected by electron microscopy and double-label immunofluorescence microscopy using antibodies to proteins representative of the three major components of the nucleolus. The microinjected antibodies produced a progressive loss of the material of the dense fibrillar component (DFC) from the nucleoli which, at 4 h after injection, were transformed into bodies with purely granular component (GC) structure with attached fibrillar centers (FCs). Concomitantly, numerous extranucleolar aggregates appeared in the nucleoplasm which morphologically resembled fragments of the DFC and contained a protein (fibrillarin) diagnostic for this nucleolar structure. These observations indicate that the topological distribution of the material constituting the DFC can be experimentally influenced in interphase cells, apparently by modulating the transcriptional activity of the rRNA genes. These effects are different from nucleolar lesions induced by inhibitory drugs such as actinomycin D-dependent "nucleolar segregation". The structural alterations induced by antibodies to RNA polymerase I resemble, however, the initial events of nucleolar disintegration during mitotic prophase.

  15. A Genetic Cascade of let-7-ncl-1-fib-1 Modulates Nucleolar Size and rRNA Pool in Caenorhabditis elegans

    PubMed Central

    Chiou, Pey-Tsyr; Chen, Po-Hsiang; Lee, Ching-Ming; Chu, Yu-De; Yu, Hsiang; Hsiung, Kuei-Ching; Tsai, Yi-Tzang; Lee, Chi-Chang; Chang, Yu-Sun; Chan, Shih-Peng; Tan, Bertrand Chin-Ming; Lo, Szecheng J.

    2015-01-01

    Ribosome biogenesis takes place in the nucleolus, the size of which is often coordinated with cell growth and development. However, how metazoans control nucleolar size remains largely unknown. Caenorhabditis elegans provides a good model to address this question owing to distinct tissue distribution of nucleolar sizes and a mutant, ncl-1, which exhibits larger nucleoli than wild-type worms. Here, through a series of loss-of-function analyses, we report that the nucleolar size is regulated by a circuitry composed of microRNA let-7, translation repressor NCL-1, and a major nucleolar pre-rRNA processing protein FIB-1/fibrillarin. In cooperation with RNA binding proteins PUF and NOS, NCL-1 suppressed the translation of FIB-1/fibrillarin, while let-7 targeted the 3’UTR of ncl-1 and inhibited its expression. Consequently, the abundance of FIB-1 is tightly controlled and correlated with the nucleolar size. Together, our findings highlight a novel genetic cascade by which post-transcriptional regulators interplay in developmental control of nucleolar size and function. PMID:26492166

  16. Comparison of mitochondrial and nucleolar RNase MRP reveals identical RNA components with distinct enzymatic activities and protein components.

    PubMed

    Lu, Qiaosheng; Wierzbicki, Sara; Krasilnikov, Andrey S; Schmitt, Mark E

    2010-03-01

    RNase MRP is a ribonucleoprotein endoribonuclease found in three cellular locations where distinct substrates are processed: the mitochondria, the nucleolus, and the cytoplasm. Cytoplasmic RNase MRP is the nucleolar enzyme that is transiently relocalized during mitosis. Nucleolar RNase MRP (NuMRP) was purified to homogeneity, and we extensively purified the mitochondrial RNase MRP (MtMRP) to a single RNA component identical to the NuMRP RNA. Although the protein components of the NuMRP were identified by mass spectrometry successfully, none of the known NuMRP proteins were found in the MtMRP preparation. Only trace amounts of the core NuMRP protein, Pop4, were detected in MtMRP by Western blot. In vitro activity of the two enzymes was compared. MtMRP cleaved only mitochondrial ORI5 substrate, while NuMRP cleaved all three substrates. However, the NuMRP enzyme cleaved the ORI5 substrate at sites different than the MtMRP enzyme. In addition, enzymatic differences in preferred ionic strength confirm these enzymes as distinct entities. Magnesium was found to be essential to both enzymes. We tested a number of reported inhibitors including puromycin, pentamidine, lithium, and pAp. Puromycin inhibition suggested that it binds directly to the MRP RNA, reaffirming the role of the RNA component in catalysis. In conclusion, our study confirms that the NuMRP and MtMRP enzymes are distinct entities with differing activities and protein components but a common RNA subunit, suggesting that the RNA must be playing a crucial role in catalytic activity.

  17. TCOF1 gene encodes a putative nucleolar phosphoprotein that exhibits mutations in Treacher Collins Syndrome throughout its coding region.

    PubMed

    Wise, C A; Chiang, L C; Paznekas, W A; Sharma, M; Musy, M M; Ashley, J A; Lovett, M; Jabs, E W

    1997-04-01

    Treacher Collins Syndrome (TCS) is the most common of the human mandibulofacial dysostosis disorders. Recently, a partial TCOF1 cDNA was identified and shown to contain mutations in TCS families. Here we present the entire exon/intron genomic structure and the complete coding sequence of TCOF1. TCOF1 encodes a low complexity protein of 1,411 amino acids, whose predicted protein structure reveals repeated motifs that mirror the organization of its exons. These motifs are shared with nucleolar trafficking proteins in other species and are predicted to be highly phosphorylated by casein kinase. Consistent with this, the full-length TCOF1 protein sequence also contains putative nuclear and nucleolar localization signals. Throughout the open reading frame, we detected an additional eight mutations in TCS families and several polymorphisms. We postulate that TCS results from defects in a nucleolar trafficking protein that is critically required during human craniofacial development.

  18. Identification of a novel TIF-IA-NF-κB nucleolar stress response pathway.

    PubMed

    Chen, Jingyu; Lobb, Ian T; Morin, Pierre; Novo, Sonia M; Simpson, James; Kennerknecht, Kathrin; von Kriegsheim, Alex; Batchelor, Emily E; Oakley, Fiona; Stark, Lesley A

    2018-06-05

    p53 as an effector of nucleolar stress is well defined, but p53 independent mechanisms are largely unknown. Like p53, the NF-κB transcription factor plays a critical role in maintaining cellular homeostasis under stress. Many stresses that stimulate NF-κB also disrupt nucleoli. However, the link between nucleolar function and activation of the NF-κB pathway is as yet unknown. Here we demonstrate that artificial disruption of the PolI complex stimulates NF-κB signalling. Unlike p53 nucleolar stress response, this effect does not appear to be linked to inhibition of rDNA transcription. We show that specific stress stimuli of NF-κB induce degradation of a critical component of the PolI complex, TIF-IA. This degradation precedes activation of NF-κB and is associated with increased nucleolar size. It is mimicked by CDK4 inhibition and is dependent upon a novel pathway involving UBF/p14ARF and S44 of the protein. We show that blocking TIF-IA degradation blocks stress effects on nucleolar size and NF-κB signalling. Finally, using ex vivo culture, we show a strong correlation between degradation of TIF-IA and activation of NF-κB in freshly resected, human colorectal tumours exposed to the chemopreventative agent, aspirin. Together, our study provides compelling evidence for a new, TIF-IA-NF-κB nucleolar stress response pathway that has in vivo relevance and therapeutic implications.

  19. The Role of a Novel Nucleolar Protein in Regulation of E2F1 in Breast Cancer

    DTIC Science & Technology

    2009-09-01

    publication and successful defense of a PhD. 8 References 1. Paik JC, Wang B, Liu K, Lue J , Lin WC. Regulation of E2F1-induced apoptosis by...the nucleolar protein RRP1B. J Biol Chem. 2009 Dec 29. [E-pub ahead of print] 2. Hsieh SM, Look MP, Sieuwerts AM, Foekens JA, Hunter KW. Distinct...factor. J Biol Chem. 2009 Oct 16;284(42):28660-73. 4. Crawford NP, Walker RC, Lukes L, Officewala JS, Williams RW, Hunter KW. The Diasporin Pathway: a

  20. TCOF1 gene encodes a putative nucleolar phosphoprotein that exhibits mutations in Treacher Collins Syndrome throughout its coding region

    PubMed Central

    Wise, Carol A.; Chiang, Lydia C.; Paznekas, William A.; Sharma, Mridula; Musy, Maurice M.; Ashley, Jennifer A.; Lovett, Michael; Jabs, Ethylin W.

    1997-01-01

    Treacher Collins Syndrome (TCS) is the most common of the human mandibulofacial dysostosis disorders. Recently, a partial TCOF1 cDNA was identified and shown to contain mutations in TCS families. Here we present the entire exon/intron genomic structure and the complete coding sequence of TCOF1. TCOF1 encodes a low complexity protein of 1,411 amino acids, whose predicted protein structure reveals repeated motifs that mirror the organization of its exons. These motifs are shared with nucleolar trafficking proteins in other species and are predicted to be highly phosphorylated by casein kinase. Consistent with this, the full-length TCOF1 protein sequence also contains putative nuclear and nucleolar localization signals. Throughout the open reading frame, we detected an additional eight mutations in TCS families and several polymorphisms. We postulate that TCS results from defects in a nucleolar trafficking protein that is critically required during human craniofacial development. PMID:9096354

  1. Expression of argyrophilic proteins in the nucleolar organizer regions of human thymocytes and thymic epitheliocytes under conditions of coculturing with vilon and epithalon peptides.

    PubMed

    Raikhlin, N T; Bukaeva, I A; Smirnova, E A; Yarilin, A A; Sharova, N I; Mitneva, M M; Khavinson, V Kh; Polyakova, V O; Trofimov, A V; Kvetnoi, I M

    2004-06-01

    Vilon stimulated and Epithalon suppressed the expression of argyrophilic proteins in nucleolar organizer regions of thymocytes and epithelial cells, stimulating or reducing, respectively, the formation, assembly, and transport of ribosomes into the cytoplasm and thus determining the intensity of protein synthesis in these cells. A direct mitogenic effect of Vilon was also revealed: this peptide promoted thymocyte transformation into proliferating blast cells.

  2. Identification of genes that function in the biogenesis and localization of small nucleolar RNAs in Saccharomyces cerevisiae.

    PubMed

    Qiu, Hui; Eifert, Julia; Wacheul, Ludivine; Thiry, Marc; Berger, Adam C; Jakovljevic, Jelena; Woolford, John L; Corbett, Anita H; Lafontaine, Denis L J; Terns, Rebecca M; Terns, Michael P

    2008-06-01

    Small nucleolar RNAs (snoRNAs) orchestrate the modification and cleavage of pre-rRNA and are essential for ribosome biogenesis. Recent data suggest that after nucleoplasmic synthesis, snoRNAs transiently localize to the Cajal body (in plant and animal cells) or the homologous nucleolar body (in budding yeast) for maturation and assembly into snoRNPs prior to accumulation in their primary functional site, the nucleolus. However, little is known about the trans-acting factors important for the intranuclear trafficking and nucleolar localization of snoRNAs. Here, we describe a large-scale genetic screen to identify proteins important for snoRNA transport in Saccharomyces cerevisiae. We performed fluorescence in situ hybridization analysis to visualize U3 snoRNA localization in a collection of temperature-sensitive yeast mutants. We have identified Nop4, Prp21, Tao3, Sec14, and Htl1 as proteins important for the proper localization of U3 snoRNA. Mutations in genes encoding these proteins lead to specific defects in the targeting or retention of the snoRNA to either the nucleolar body or the nucleolus. Additional characterization of the mutants revealed impairment in specific steps of U3 snoRNA processing, demonstrating that snoRNA maturation and trafficking are linked processes.

  3. The tumor suppressor SHIP1 colocalizes in nucleolar cavities with p53 and components of PML nuclear bodies.

    PubMed

    Ehm, Patrick; Nalaskowski, Marcus M; Wundenberg, Torsten; Jücker, Manfred

    2015-01-01

    The inositol 5-phosphatase SHIP1 is a negative regulator of signaling processes in haematopoietic cells. By converting PI(3,4,5)P3 to PtdIns(3,4)P2 at the plasma membrane, SHIP1 modifies PI3-kinase mediated signaling. We have recently demonstrated that SHIP1 is a nucleo-cytoplasmic shuttling protein and SHIP1 nuclear puncta partially colocalize with FLASH, a component of nuclear bodies. In this study, we demonstrate that endogenous SHIP1 localizes to intranucleolar regions of both normal and leukemic haematopoietic cells. In addition, we report that ectopically expressed SHIP1 accumulates in nucleolar cavities and colocalizes with the tumor suppressor protein p53 and components of PML nuclear bodies (e.g. SP100, SUMO-1 and CK2). Moreover, SHIP1 also colocalizes in nucleolar cavities with components of the ubiquitin-proteasome pathway. By using confocal microscopy data, we generated 3D-models revealing the enormous extent of the SHIP1 aggresomes in the nucleolus. Furthermore, treatment of cells with the proteasome inhibitor MG132 causes an enlargement of nucleolar SHIP1 containing structures. Unexpectedly, this accumulation can be partially prevented by treatment with the inhibitor of nuclear protein export Leptomycin B. In recent years, several proteins aggregating in nucleolar cavities were shown to be key factors of neurodegenerative diseases and cancerogenesis. Our findings support current relevance of nuclear localized SHIP1.

  4. Nuclear Retention Elements of U3 Small Nucleolar RNA

    PubMed Central

    Speckmann, Wayne; Narayanan, Aarthi; Terns, Rebecca; Terns, Michael P.

    1999-01-01

    The processing and methylation of precursor rRNA is mediated by the box C/D small nucleolar RNAs (snoRNAs). These snoRNAs differ from most cellular RNAs in that they are not exported to the cytoplasm. Instead, these RNAs are actively retained in the nucleus where they assemble with proteins into mature small nucleolar ribonucleoprotein particles and are targeted to their intranuclear site of action, the nucleolus. In this study, we have identified the cis-acting sequences responsible for the nuclear retention of U3 box C/D snoRNA by analyzing the nucleocytoplasmic distributions of an extensive panel of U3 RNA variants after injection of the RNAs into Xenopus oocyte nuclei. Our data indicate the importance of two conserved sequence motifs in retaining U3 RNA in the nucleus. The first motif is comprised of the conserved box C′ and box D sequences that characterize the box C/D family. The second motif contains conserved box sequences B and C. Either motif is sufficient for nuclear retention, but disruption of both motifs leads to mislocalization of the RNAs to the cytoplasm. Variant RNAs that are not retained also lack 5′ cap hypermethylation and fail to associate with fibrillarin. Furthermore, our results indicate that nuclear retention of U3 RNA does not simply reflect its nucleolar localization. A fragment of U3 containing the box B/C motif is not localized to nucleoli but retained in coiled bodies. Thus, nuclear retention and nucleolar localization are distinct processes with differing sequence requirements. PMID:10567566

  5. Importin-α-mediated nucleolar localization of potato mop-top virus TRIPLE GENE BLOCK1 (TGB1) protein facilitates virus systemic movement, whereas TGB1 self-interaction is required for cell-to-cell movement in Nicotiana benthamiana.

    PubMed

    Lukhovitskaya, Nina I; Cowan, Graham H; Vetukuri, Ramesh R; Tilsner, Jens; Torrance, Lesley; Savenkov, Eugene I

    2015-03-01

    Recently, it has become evident that nucleolar passage of movement proteins occurs commonly in a number of plant RNA viruses that replicate in the cytoplasm. Systemic movement of Potato mop-top virus (PMTV) involves two viral transport forms represented by a complex of viral RNA and TRIPLE GENE BLOCK1 (TGB1) movement protein and by polar virions that contain the minor coat protein and TGB1 attached to one extremity. The integrity of polar virions ensures the efficient movement of RNA-CP, which encodes the virus coat protein. Here, we report the involvement of nuclear transport receptors belonging to the importin-α family in nucleolar accumulation of the PMTV TGB1 protein and, subsequently, in the systemic movement of the virus. Virus-induced gene silencing of two importin-α paralogs in Nicotiana benthamiana resulted in significant reduction of TGB1 accumulation in the nucleus, decreasing the accumulation of the virus progeny in upper leaves and the loss of systemic movement of RNA-CP. PMTV TGB1 interacted with importin-α in N. benthamiana, which was detected by bimolecular fluorescence complementation in the nucleoplasm and nucleolus. The interaction was mediated by two nucleolar localization signals identified by bioinformatics and mutagenesis in the TGB1 amino-terminal domain. Our results showed that while TGB1 self-interaction is needed for cell-to-cell movement, importin-α-mediated nucleolar targeting of TGB1 is an essential step in establishing the efficient systemic infection of the entire plant. These results enabled the identification of two separate domains in TGB1: an internal domain required for TGB1 self-interaction and cell-to-cell movement and the amino-terminal domain required for importin-α interaction in plants, nucleolar targeting, and long-distance movement. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Nucleolar TRF2 attenuated nucleolus stress-induced HCC cell-cycle arrest by altering rRNA synthesis.

    PubMed

    Yuan, Fuwen; Xu, Chenzhong; Li, Guodong; Tong, Tanjun

    2018-05-03

    The nucleolus is an important organelle that is responsible for the biogenesis of ribosome RNA (rRNA) and ribosomal subunits assembly. It is also deemed to be the center of metabolic control, considering the critical role of ribosomes in protein translation. Perturbations of rRNA synthesis are closely related to cell proliferation and tumor progression. Telomeric repeat-binding factor 2 (TRF2) is a member of shelterin complex that is responsible for telomere DNA protection. Interestingly, it was recently reported to localize in the nucleolus of human cells in a cell-cycle-dependent manner, while the underlying mechanism and its role on the nucleolus remained unclear. In this study, we found that nucleolar and coiled-body phosphoprotein 1 (NOLC1), a nucleolar protein that is responsible for the nucleolus construction and rRNA synthesis, interacted with TRF2 and mediated the shuttle of TRF2 between the nucleolus and nucleus. Abating the expression of NOLC1 decreased the nucleolar-resident TRF2. Besides, the nucleolar TRF2 could bind rDNA and promoted rRNA transcription. Furthermore, in hepatocellular carcinoma (HCC) cell lines HepG2 and SMMC7721, TRF2 overexpression participated in the nucleolus stress-induced rRNA inhibition and cell-cycle arrest.

  7. The tumor suppressor SHIP1 colocalizes in nucleolar cavities with p53 and components of PML nuclear bodies

    PubMed Central

    Ehm, Patrick; Nalaskowski, Marcus M; Wundenberg, Torsten; Jücker, Manfred

    2015-01-01

    The inositol 5-phosphatase SHIP1 is a negative regulator of signaling processes in haematopoietic cells. By converting PI(3,4,5)P3 to PtdIns(3,4)P2 at the plasma membrane, SHIP1 modifies PI3-kinase mediated signaling. We have recently demonstrated that SHIP1 is a nucleo-cytoplasmic shuttling protein and SHIP1 nuclear puncta partially colocalize with FLASH, a component of nuclear bodies. In this study, we demonstrate that endogenous SHIP1 localizes to intranucleolar regions of both normal and leukemic haematopoietic cells. In addition, we report that ectopically expressed SHIP1 accumulates in nucleolar cavities and colocalizes with the tumor suppressor protein p53 and components of PML nuclear bodies (e.g. SP100, SUMO-1 and CK2). Moreover, SHIP1 also colocalizes in nucleolar cavities with components of the ubiquitin-proteasome pathway. By using confocal microscopy data, we generated 3D-models revealing the enormous extent of the SHIP1 aggresomes in the nucleolus. Furthermore, treatment of cells with the proteasome inhibitor MG132 causes an enlargement of nucleolar SHIP1 containing structures. Unexpectedly, this accumulation can be partially prevented by treatment with the inhibitor of nuclear protein export Leptomycin B. In recent years, several proteins aggregating in nucleolar cavities were shown to be key factors of neurodegenerative diseases and cancerogenesis. Our findings support current relevance of nuclear localized SHIP1. PMID:25723258

  8. Identification of a silver binding protein associated with the cytological silver staining of actively transcribing nucleolar regions.

    PubMed

    Hubbell, H R; Rothblum, L I; Hsu, T C

    1979-10-01

    Nucleoli isolated from Novikoff hepatoma cells were stained with AgNO3 to demonstrate the typical staining of active ribosomal cistrons. Pre-treatment of the nucleoli with 80 mM Tris-HCl (pH 7.5) -- 2.0 M NaCl did not interfere with silver staining. Treatment of the nucleoli with 80 mM Tris-HCl (pH 7.5) -- 0.15 M NaCl did, however, eliminate silver binding. Serial extraction of nucleoli with 2.0 M NaCl buffer followed by 0.15 M NaCl buffer also abolished silver staining. Analysis of the supernatant fraction of these extracts by polyacrylamide gel electrophoresis indicates that, although more than one nucleolar protein can bind silver, only one protein is associated with the staining of active ribosomal cistrons.

  9. L-Ilf3 and L-NF90 Traffic to the Nucleolus Granular Component: Alternatively-Spliced Exon 3 Encodes a Nucleolar Localization Motif

    PubMed Central

    Viranaicken, Wildriss; Gasmi, Laila; Chaumet, Alexandre; Durieux, Christiane; Georget, Virginie; Denoulet, Philippe; Larcher, Jean-Christophe

    2011-01-01

    Ilf3 and NF90, two proteins containing double-stranded RNA-binding domains, are generated by alternative splicing and involved in several functions. Their heterogeneity results from posttranscriptional and posttranslational modifications. Alternative splicing of exon 3, coding for a 13 aa N-terminal motif, generates for each protein a long and short isoforms. Subcellular fractionation and localization of recombinant proteins showed that this motif acts as a nucleolar localization signal. Deletion and substitution mutants identified four arginines, essential for nucleolar targeting, and three histidines to stabilize the proteins within the nucleolus. The short isoforms are never found in the nucleoli, whereas the long isoforms are present in the nucleoplasm and the nucleoli. For Ilf3, only the posttranslationally-unmodified long isoform is nucleolar, suggesting that this nucleolar targeting is abrogated by posttranslational modifications. Confocal microscopy and FRAP experiments have shown that the long Ilf3 isoform localizes to the granular component of the nucleolus, and that L-Ilf3 and L-NF90 exchange rapidly between nucleoli. The presence of this 13 aminoacid motif, combined with posttranslational modifications, is responsible for the differences in Ilf3 and NF90 isoforms subcellular localizations. The protein polymorphism of Ilf3/NF90 and the various subcellular localizations of their isoforms may partially explain the various functions previously reported for these proteins. PMID:21811582

  10. The nucleolar protein SURF-6 is essential for viability in mouse NIH/3T3 cells.

    PubMed

    Polzikov, Mikhail; Magoulas, Charalambos; Zatsepina, Olga

    2007-09-01

    SURF-6 is a bona fide nucleolar protein comprising an evolutionary conserved family that extends from human to yeast. The expression of the mammalian SURF-6 has been recently found to be regulated during the cell cycle. In order to determine the importance of SURF-6 in mammalian cells, we applied the Tet-On system to regulate conditionally, in response to tetracycline, the expression of an antisense RNA (asRNA) that targets Surf-6 mRNA in mouse NIH/3T3 cells. Induced Surf-6 asRNA caused an effective depletion of SURF-6 protein resulted in cell death and in an apparent arrest in the G1 phase of the cell cycle. These results provide for the first time evidence that expression of SURF-6 is essential for mammalian cell viability, and suggest that SURF-6 might participate in the progression of cell cycle.

  11. An ancillary method in urine cytology: Nucleolar/nuclear volume ratio for discrimination between benign and malignant urothelial cells.

    PubMed

    Tone, Kiyoshi; Kojima, Keiko; Hoshiai, Keita; Kumagai, Naoya; Kijima, Hiroshi; Kurose, Akira

    2016-06-01

    The essential of urine cytology for the diagnosis and the follow-up of urothelial neoplasia has been widely recognized. However, there are some cases in which a definitive diagnosis cannot be made due to difficulty in discriminating between benign and malignant. This study evaluated the practicality of nucleolar/nuclear volume ratio (%) for the discrimination. Using Papanicolaou-stained slides, 253 benign urothelial cells and 282 malignant urothelial cells were selected and divided into a benign urothelial cell and an urothelial carcinoma (UC) cell groups. Three suspicious cases and four cases in which discrimination between benign and malignant was difficult were prepared for verification test. Subject cells were decolorized and stained with 4',6-diamidino-2-phenylindole for detection of the nuclei and the nucleoli. Z-stack method was performed to analyze. When the cutoff point of 1.514% discriminating benign urothelial cells and UC cells from nucleolar/nuclear volume ratio (%) was utilized, the sensitivity was 56.0%, the specificity was 88.5%, the positive predictive value was 84.5%, and the negative predictive value was 64.4%. Nuclear and nucleolar volume, number of the nucleoli, and nucleolar/nuclear volume ratio (%) were significantly higher in the UC cell group than in the benign urothelial cell group (P <0.001). In the verification test using the nucleolar/nuclear ratio (%), four of the seven cases were concordant with the final diagnosis. This study analyzed the nuclear and nucleolar volume to establish an index for discrimination of benign and malignant urothelial cells, providing possible additional information in urine cytology. Diagn. Cytopathol. 2016;44:483-491. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. All Small Nuclear RNAs (snRNAs) of the [U4/U6.U5] Tri-snRNP Localize to Nucleoli; Identification of the Nucleolar Localization Element of U6 snRNA

    PubMed Central

    Gerbi, Susan A.; Lange, Thilo Sascha

    2002-01-01

    Previously, we showed that spliceosomal U6 small nuclear RNA (snRNA) transiently passes through the nucleolus. Herein, we report that all individual snRNAs of the [U4/U6.U5] tri-snRNP localize to nucleoli, demonstrated by fluorescence microscopy of nucleolar preparations after injection of fluorescein-labeled snRNA into Xenopus oocyte nuclei. Nucleolar localization of U6 is independent from [U4/U6] snRNP formation since sites of direct interaction of U6 snRNA with U4 snRNA are not nucleolar localization elements. Among all regions in U6, the only one required for nucleolar localization is its 3′ end, which associates with the La protein and subsequently during maturation of U6 is bound by Lsm proteins. This 3′-nucleolar localization element of U6 is both essential and sufficient for nucleolar localization and also required for localization to Cajal bodies. Conversion of the 3′ hydroxyl of U6 snRNA to a 3′ phosphate prevents association with the La protein but does not affect U6 localization to nucleoli or Cajal bodies. PMID:12221120

  13. A human monoclonal autoantibody to a nucleolar structure.

    PubMed Central

    Gonzalez, M F; Wichmann, I; Yelamos, J; Melero, J; Magariño, R; Sanchez-Roman, J; Nuñez-Roldan, A; Sanchez, B

    1992-01-01

    Peripheral blood lymphocytes from a scleroderma patient (CDC) were isolated, transformed with Epstein-Barr virus and fused to the heteromyeloma SHM-D33. Supernatants from cultures were screened for autoantibody production against nucleoprotamine by ELISA. Positive wells were cloned by limiting dilution. After cloning, supernatants from two wells were positive for the nucleoprotamine assay. One named CDC-1 has been studied in our laboratory. CDC-1 recognized a nucleolar antigen by indirect immunofluorescence. By using an ELISA with purified recombinant antigens, CDC-1 reacted against Ro/SS-A, U1 (RNP) and Sm. By immunoblotting using a lysate of MOLT-4 cell line, CDC-1 was able to react against a structure of 60 kD. When the antigen recognized by CDC-1 was purified, SDS-PAGE under reducing conditions with purified antigen and subsequent silver staining of the gel allowed us to detect three bands at 60, 55 and 39 kD, respectively. A screening by ELISA with previously characterized antisera against our purified antigen demonstrated reactivity of the CDC-1 antigen with those antisera able to recognize Ro/SS-A. Images Fig. 1 Fig. 2 Fig. 3 PMID:1572098

  14. Nucleolar sub-compartments in motion during rRNA synthesis inhibition: Contraction of nucleolar condensed chromatin and gathering of fibrillar centers are concomitant

    PubMed Central

    Tchelidze, Pavel; Benassarou, Aassif; Kaplan, Hervé; O’Donohue, Marie-Françoise; Lucas, Laurent; Terryn, Christine; Rusishvili, Levan; Mosidze, Giorgi; Lalun, Nathalie

    2017-01-01

    The nucleolus produces the large polycistronic transcript (47S precursor) containing the 18S, 5.8S and 28S rRNA sequences and hosts most of the nuclear steps of pre-rRNA processing. Among numerous components it contains condensed chromatin and active rRNA genes which adopt a more accessible conformation. For this reason, it is a paradigm of chromosome territory organization. Active rRNA genes are clustered within several fibrillar centers (FCs), in which they are maintained in an open configuration by Upstream Binding Factor (UBF) molecules. Here, we used the reproducible reorganization of nucleolar components induced by the inhibition of rRNA synthesis by Actinomycin D (AMD) to address the steps of the spatiotemporal reorganization of FCs and nucleolar condensed chromatin. To reach that goal, we used two complementary approaches: i) time-lapse confocal imaging of cells expressing one or several GFP-tagged proteins (fibrillarin, UBF, histone H2B) and ii) ultrastructural identification of nucleolar components involved in the reorganization. Data obtained by time lapse confocal microscopy were analyzed through detailed 3D imaging. This allowed us to demonstrate that AMD treatment induces no fusion and no change in the relative position of the different nucleoli contained in one nucleus. In contrast, for each nucleolus, we observed step by step gathering and fusion of both FCs and nucleolar condensed chromatin. To analyze the reorganization of FCs and condensed chromatin at a higher resolution, we performed correlative light and electron microscopy electron microscopy (CLEM) imaging of the same cells. We demonstrated that threads of intranucleolar condensed chromatin are localized in a complex 3D network of vacuoles. Upon AMD treatment, these structures coalesce before migrating toward the perinucleolar condensed chromatin, to which they finally fuse. During their migration, FCs, which are all linked to ICC, are pulled by the latter to gather as caps disposed at the

  15. mTOR inhibitors blunt the p53 response to nucleolar stress by regulating RPL11 and MDM2 levels

    PubMed Central

    Goudarzi, Kaveh M; Nistér, Monica; Lindström, Mikael S

    2014-01-01

    Mechanistic target of rapamycin (mTOR) is a master regulator of cell growth through its ability to stimulate ribosome biogenesis and mRNA translation. In contrast, the p53 tumor suppressor negatively controls cell growth and is activated by a wide range of insults to the cell. The mTOR and p53 signaling pathways are connected by a number of different mechanisms. Chemotherapeutics that inhibit ribosome biogenesis often induce nucleolar stress and activation of p53. Here we have investigated how the p53 response to nucleolar stress is affected by simultaneous mTOR inhibition in osteosarcoma and glioma cell lines. We found that inhibitors of the mTOR pathway including rapamycin, wortmannin, and caffeine blunted the p53 response to nucleolar stress induced by actinomycin D. Synthetic inhibitors of mTOR (temsirolimus, LY294.002 and PP242) also impaired actinomycin D triggered p53 stabilization and induction of p21. Ribosomal protein (RPL11) is known to be required for p53 protein stabilization following nucleolar stress. Treatment of cells with mTOR inhibitors may lead to reduced synthesis of RPL11 and thereby destabilize p53. We found that rapamycin mimicked the effect of RPL11 depletion in terms of blunting the p53 response to nucleolar stress. However, the extent to which the levels of p53 and RPL11 were reduced by rapamycin varied between cell lines. Additional mechanisms whereby rapamycin blunts the p53 response to nucleolar stress are likely to be involved. Indeed, rapamycin increased the levels of endogenous MDM2 despite inhibition of its phosphorylation at Ser-166. Our findings may have implications for the design of combinatorial cancer treatments with mTOR pathway inhibitors. PMID:25482947

  16. A polybasic motif in ErbB3-binding protein 1 (EBP1) has key functions in nucleolar localization and polyphosphoinositide interaction

    PubMed Central

    Karlsson, Thomas; Altankhuyag, Altanchimeg; Dobrovolska, Olena; Turcu, Diana C.; Lewis, Aurélia E.

    2016-01-01

    Polyphosphoinositides (PPIns) are present in the nucleus where they participate in crucial nuclear processes, such as chromatin remodelling, transcription and mRNA processing. In a previous interactomics study, aimed to gain further insight into nuclear PPIns functions, we identified ErbB3 binding protein 1 (EBP1) as a potential nuclear PPIn-binding protein in a lipid pull-down screen. EBP1 is a ubiquitous and conserved protein, located in both the cytoplasm and nucleolus, and associated with cell proliferation and survival. In the present study, we show that EBP1 binds directly to several PPIns via two distinct PPIn-binding sites consisting of clusters of lysine residues and positioned at the N- and C-termini of the protein. Using interaction mutants, we show that the C-terminal PPIn-binding motif contributes the most to the localization of EBP1 in the nucleolus. Importantly, a K372N point mutation, located within the C-terminal motif and found in endometrial tumours, is sufficient to alter the nucleolar targeting of EBP1. Our study reveals also the presence of the class I phosphoinositide 3-kinase (PI3K) catalytic subunit p110β and its product PtdIns(3,4,5)P3 together with EBP1 in the nucleolus. Using NMR, we further demonstrate an association between EBP1 and PtdIns(3,4,5)P3 via both electrostatic and hydrophobic interactions. Taken together, these results show that EBP1 interacts directly with PPIns and associate with PtdIns(3,4,5)P3 in the nucleolus. The presence of p110β and PtdIns(3,4,5)P3 in the nucleolus indicates their potential role in regulating nucleolar processes, at least via EBP1. PMID:27118868

  17. The nucleolar ubiquitin-specific protease USP36 deubiquitinates and stabilizes c-Myc

    PubMed Central

    Sun, Xiao-Xin; He, Xia; Yin, Li; Komada, Masayuki; Sears, Rosalie C.; Dai, Mu-Shui

    2015-01-01

    c-Myc protein stability and activity are tightly regulated by the ubiquitin-proteasome system. Aberrant stabilization of c-Myc contributes to many human cancers. c-Myc is ubiquitinated by SCFFbw7 (a SKP1-cullin-1-F-box complex that contains the F-box and WD repeat domain-containing 7, Fbw7, as the F-box protein) and several other ubiquitin ligases, whereas it is deubiquitinated and stabilized by ubiquitin-specific protease (USP) 28. The bulk of c-Myc degradation appears to occur in the nucleolus. However, whether c-Myc is regulated by deubiquitination in the nucleolus is not known. Here, we report that the nucleolar deubiquitinating enzyme USP36 is a novel c-Myc deubiquitinase. USP36 interacts with and deubiquitinates c-Myc in cells and in vitro, leading to the stabilization of c-Myc. This USP36 regulation of c-Myc occurs in the nucleolus. Interestingly, USP36 interacts with the nucleolar Fbw7γ but not the nucleoplasmic Fbw7α. However, it abolished c-Myc degradation mediated both by Fbw7γ and by Fbw7α. Consistently, knockdown of USP36 reduces the levels of c-Myc and suppresses cell proliferation. We further show that USP36 itself is a c-Myc target gene, suggesting that USP36 and c-Myc form a positive feedback regulatory loop. High expression levels of USP36 are found in a subset of human breast and lung cancers. Altogether, these results identified USP36 as a crucial and bono fide deubiquitinating enzyme controlling c-Myc’s nucleolar degradation pathway. PMID:25775507

  18. Quantitative analysis of Argyrophilic Nucleolar organizer regions in odontogenic cysts and tumor - A comparative study.

    PubMed

    Gupta, Bhavana; Chandra, Shaleen; Raj, Vineet; Gupta, Vivek

    2018-01-01

    The nucleolar organizer region (NOR) is by definition part of a chromosome, and nucleolus is a structure containing this chromosomal part and in addition the material which accumulate around the NOR, mostly rRNAs and their precursors as well as specific ribosomal proteins. Argyrophilic Nucleolar organizing region (AgNOR) are silver binding NORs often used to study cell proliferation in various types of tumors. Quantitative assessment of Argyrophilic Nucleolar organizing region count and its comparison among dentigerous cyst, keratocystic odontogenic tumor and ameloblastoma. Forty-five histologically confirmed cases, 15 cases each of keratocystic odontogenic tumor, dentigerous cysts and ameloblastomas were examined for Argyrophilic Nucleolar organizing region. The sections were obtained and Argyrophilic Nucleolar organizer regions staining was done for comparing the proliferative capacity among these lesions. Post hoc analysis for inter-group comparison and one way ANOVA were done in all three groups in this study. P  < 0.001 was considered significant. The results of AgNOR counts were higher in KCOTs as compared to ameloblastoma and least in dentigerous cysts. The mean AgNOR counts between the study groups were compared using one way ANOVA test and the differences were found to be significant ( P  < 0.001). AgNOR counts were significantly higher in KCOT and ameloblastoma as compared to dentigerous cyst suggesting that these lesions have a higher proliferative capacity than dentigerous cyst. The finding of a significantly higher AgNOR counts in KCOT as compared to ameloblastoma represent a difference in proliferative activity and greater growth potential between these two lesions.

  19. Nucleolar proteins Bfr2 and Enp2 interact with DEAD-box RNA helicase Dbp4 in two different complexes

    PubMed Central

    Soltanieh, Sahar; Lapensée, Martin; Dragon, François

    2014-01-01

    Different pre-ribosomal complexes are formed during ribosome biogenesis, and the composition of these complexes is highly dynamic. Dbp4, a conserved DEAD-box RNA helicase implicated in ribosome biogenesis, interacts with nucleolar proteins Bfr2 and Enp2. We show that, like Dbp4, Bfr2 and Enp2 are required for the early processing steps leading to the production of 18S ribosomal RNA. We also found that Bfr2 and Enp2 associate with the U3 small nucleolar RNA (snoRNA), the U3-specific protein Mpp10 and various pre-18S ribosomal RNA species. Thus, we propose that Bfr2, Dbp4 and Enp2 are components of the small subunit (SSU) processome, a large complex of ∼80S. Sucrose gradient sedimentation analyses indicated that Dbp4, Bfr2 and Enp2 sediment in a peak of ∼50S and in a peak of ∼80S. Bfr2, Dbp4 and Enp2 associate together in the 50S complex, which does not include the U3 snoRNA; however, they associate with U3 snoRNA in the 80S complex (SSU processome). Immunoprecipitation experiments revealed that U14 snoRNA associates with Dbp4 in the 50S complex, but not with Bfr2 or Enp2. The assembly factor Tsr1 is not part of the ‘50S’ complex, indicating this complex is not a pre-40S ribosome. A combination of experiments leads us to propose that Bfr2, Enp2 and Dbp4 are recruited at late steps during assembly of the SSU processome. PMID:24357410

  20. Immunocytochemical localization of a histone H2A variant in the mammalian nucleolar chromatin.

    PubMed

    Bhatnagar, Y M; McCullar, M K; Chronister, R B

    1984-11-01

    The distribution of protein "A", a minor variant of H2A present in the mouse testis, was studied in the liver and brain nuclei using peroxidase-antiperoxidase technique. The data presented here suggest that nucleolar-associated chromatin is highly enriched in protein "A". Microspectrophotometric measurements corroborate the immunocytochemical data. The regional differentiation in the eukaryotic chromatin, therefore, may involve qualitative changes in the histone composition.

  1. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses.

    PubMed

    Ohbayashi, Iwai; Sugiyama, Munetaka

    2017-01-01

    The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.

  2. SRY, like HMG1, recognizes sharp angles in DNA.

    PubMed Central

    Ferrari, S; Harley, V R; Pontiggia, A; Goodfellow, P N; Lovell-Badge, R; Bianchi, M E

    1992-01-01

    HMG boxes are DNA binding domains present in chromatin proteins, general transcription factors for nucleolar and mitochondrial RNA polymerases, and gene- and tissue-specific transcriptional regulators. The HMG boxes of HMG1, an abundant component of chromatin, interact specifically with four-way junctions, DNA structures that are cross-shaped and contain angles of approximately 60 and 120 degrees between their arms. We show here also that the HMG box of SRY, the protein that determines the expression of male-specific genes in humans, recognizes four-way junction DNAs irrespective of their sequence. In addition, when SRY binds to linear duplex DNA containing its specific target AACAAAG, it produces a sharp bend. Therefore, the interaction between HMG boxes and DNA appears to be predominantly structure-specific. The production of the recognition of a kink in DNA can serve several distinct functions, such as the repair of DNA lesions, the folding of DNA segments with bound transcriptional factors into productive complexes or the wrapping of DNA in chromatin. Images PMID:1425584

  3. Increased functional load on mouse kidney proximal tubule epithelial cells causes changes in nucleolar 3-D architecture.

    PubMed

    Chelidze, P V; Dzidziguri, D V; Tumanishvili, G D

    1998-05-01

    Ultrastructural 3-D analysis of nucleolar architecture and Ag-NOR protein distribution in mouse kidney-cortex proximal-tubule epithelium has been performed. A principal scheme of structural changes of the nucleolus and organization of its components during the intensification of pre-rRNA synthesis (dynamic model of a nucleolus) based on computer spatial modelling has been advanced. According to the nucleolar composition, three groups of cells, which differ from each other by rRNA synthesis, are defined in normal kidney. Most nephron proximal-section cells (about 52%) are characterized by lower activity of RNA synthesis. Such kind of cells are defined as group I (nucleolar diameter 0.7-1.5 microm) and always contain resting, ring-shaped or close to ring-shaped dense nucleoli, which have 2 or 3 fibrillar centers. Nucleoli of group II cells (about 37%, nucleolar diameter 1.5-2.5 microm) have a higher level of activity, contain 4-7 fibrillar centers, and their structural organization is close to reticulated forms due to the first indications of vacuolar network (identified as prereticulated nucleoli). The most active cells of group III (about 11%, nucleolar diameter 2.5-3.5 microm) include cells with typical reticulated nucleoli with a well expressed vacuolar network and numerous fibrillar centers (18-22). Increased functional load of the epithelium caused by unilateral nephrectomy and diuretic (4-chlor-H [2-furylmethyl] 5-sulphamyl-antranic acid) injection changed the proportion of the different cell groups: group I decreased (about 25%), whereas groups II and III increased (about 8% and 17%, respectively). The increase of nucleolar activity first causes a deformation of the individual fibrillar centers as well as complication and growth of their surface. Further, a progressive fragmentation of the fibrillar centers and the growth of their total volume is observed. The complication and growth of the total volume of Ag-positive zones is another indication of the

  4. A model for the dynamic nuclear/nucleolar/cytoplasmic trafficking of the porcine reproductive and respiratory syndrome virus (PRRSV) nucleocapsid protein based on live cell imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Jae-Hwan; Howell, Gareth; Pattnaik, Asit K.

    2008-08-15

    Porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus, in common with many other positive strand RNA viruses, encodes a nucleocapsid (N) protein which can localise not only to the cytoplasm but also to the nucleolus in virus-infected cells and cells over-expressing N protein. The dynamic trafficking of positive strand RNA virus nucleocapsid proteins and PRRSV N protein in particular between the cytoplasm and nucleolus is unknown. In this study live imaging of permissive and non-permissive cell lines, in conjunction with photo-bleaching (FRAP and FLIP), was used to investigate the trafficking of fluorescent labeled (EGFP) PRRSV-N protein. The data indicatedmore » that EGFP-PRRSV-N protein was not permanently sequestered to the nucleolus and had equivalent mobility to cellular nucleolar proteins. Further the nuclear import of N protein appeared to occur faster than nuclear export, which may account for the observed relative distribution of N protein between the cytoplasm and the nucleolus.« less

  5. Internal Associations of the Acidic Region of Upstream Binding Factor Control Its Nucleolar Localization.

    PubMed

    Ueshima, Shuhei; Nagata, Kyosuke; Okuwaki, Mitsuru

    2017-11-15

    Upstream binding factor (UBF) is a member of the high-mobility group (HMG) box protein family, characterized by multiple HMG boxes and a C-terminal acidic region (AR). UBF is an essential transcription factor for rRNA genes and mediates the formation of transcriptionally active chromatin in the nucleolus. However, it remains unknown how UBF is specifically localized to the nucleolus. Here, we examined the molecular mechanisms that localize UBF to the nucleolus. We found that the first HMG box (HMG box 1), the linker region (LR), and the AR cooperatively regulate the nucleolar localization of UBF1. We demonstrated that the AR intramolecularly associates with and attenuates the DNA binding activity of HMG boxes and confers the structured DNA preference to HMG box 1. In contrast, the LR was found to serve as a nuclear localization signal and compete with HMG boxes to bind the AR, permitting nucleolar localization of UBF1. The LR sequence binds DNA and assists the stable chromatin binding of UBF. We also showed that the phosphorylation status of the AR does not clearly affect the localization of UBF1. Our results strongly suggest that associations of the AR with HMG boxes and the LR regulate UBF nucleolar localization. Copyright © 2017 American Society for Microbiology.

  6. Conserved Regulators of Nucleolar Size Revealed by Global Phenotypic Analyses

    PubMed Central

    Neumüller, Ralph A.; Gross, Thomas; Samsonova, Anastasia A.; Vinayagam, Arunachalam; Buckner, Michael; Founk, Karen; Hu, Yanhui; Sharifpoor, Sara; Rosebrock, Adam P.; Andrews, Brenda; Winston, Fred; Perrimon, Norbert

    2014-01-01

    Regulation of cell growth is a fundamental process in development and disease that integrates a vast array of extra- and intracellular information. A central player in this process is RNA polymerase I (Pol I), which transcribes ribosomal RNA (rRNA) genes in the nucleolus. Rapidly growing cancer cells are characterized by increased Pol I–mediated transcription and, consequently, nucleolar hypertrophy. To map the genetic network underlying the regulation of nucleolar size and of Pol I–mediated transcription, we performed comparative, genome-wide loss-of-function analyses of nucleolar size in Saccharomyces cerevisiae and Drosophila melanogaster coupled with mass spectrometry–based analyses of the ribosomal DNA (rDNA) promoter. With this approach, we identified a set of conserved and nonconserved molecular complexes that control nucleolar size. Furthermore, we characterized a direct role of the histone information regulator (HIR) complex in repressing rRNA transcription in yeast. Our study provides a full-genome, cross-species analysis of a nuclear subcompartment and shows that this approach can identify conserved molecular modules. PMID:23962978

  7. Nucleolar Persistence: Peculiar Characteristic of Spermatogenesis of the Vectors of Chagas Disease (Hemiptera, Triatominae)

    PubMed Central

    Madeira, Fernanda Fernandez; Borsatto, Kelly Cristine; Lima, Anna Claudia Campaner; Ravazi, Amanda; de Oliveira, Jader; da Rosa, João Aristeu; de Azeredo-Oliveira, Maria Tercília Vilela; Alevi, Kaio Cesar Chaboli

    2016-01-01

    All species of triatomines are considered potential vectors of Chagas disease and the reproductive biology of these bugs has been studied by different approaches. In 1999, nucleolar persistence during meiosis was observed in the subfamily for the first time. Recently, it has been observed that all species within the genus Rhodnius exhibit the same phenomenon, suggesting that it may be a synapomorphy of the triatomines. Thus, this article aims to analyze the nucleolar behavior during spermatogenesis of 59 triatomine species. All analyzed species exhibited nucleolar persistence during meiosis. Recently, it has been suggested that nucleolar persistence may be fundamental for the spermatogenesis of these vectors, since it is related to the formation of the chromatoid body. Therefore, we emphasize that this phenomenon is a peculiarity of the Triatominae subfamily and that further studies are required to analyze whether the nucleolar material that persists is active. PMID:27645782

  8. Quantitative analysis of nucleolar chromatin distribution in the complex convoluted nucleoli of Didinium nasutum (Ciliophora).

    PubMed

    Leonova, Olga G; Karajan, Bella P; Ivlev, Yuri F; Ivanova, Julia L; Skarlato, Sergei O; Popenko, Vladimir I

    2013-01-01

    We have earlier shown that the typical Didinium nasutum nucleolus is a complex convoluted branched domain, comprising a dense fibrillar component located at the periphery of the nucleolus and a granular component located in the central part. Here our main interest was to study quantitatively the spatial distribution of nucleolar chromatin structures in these convoluted nucleoli. There are no "classical" fibrillar centers in D.nasutum nucleoli. The spatial distribution of nucleolar chromatin bodies, which play the role of nucleolar organizers in the macronucleus of D.nasutum, was studied using 3D reconstructions based on serial ultrathin sections. The relative number of nucleolar chromatin bodies was determined in macronuclei of recently fed, starved D.nasutum cells and in resting cysts. This parameter is shown to correlate with the activity of the nucleolus. However, the relative number of nucleolar chromatin bodies in different regions of the same convoluted nucleolus is approximately the same. This finding suggests equal activity in different parts of the nucleolar domain and indicates the existence of some molecular mechanism enabling it to synchronize this activity in D. nasutum nucleoli. Our data show that D. nasutum nucleoli display bipartite structure. All nucleolar chromatin bodies are shown to be located outside of nucleoli, at the periphery of the fibrillar component.

  9. Nucleolar Proteome Analysis and Proteasomal Activity Assays Reveal a Link between Nucleolus and 26S Proteasome in A. thaliana

    PubMed Central

    Montacié, Charlotte; Durut, Nathalie; Opsomer, Alison; Palm, Denise; Comella, Pascale; Picart, Claire; Carpentier, Marie-Christine; Pontvianne, Frederic; Carapito, Christine; Schleiff, Enrico; Sáez-Vásquez, Julio

    2017-01-01

    In all eukaryotic cells, the nucleolus is functionally and structurally linked to rRNA synthesis and ribosome biogenesis. This compartment contains as well factors involved in other cellular activities, but the functional interconnection between non-ribosomal activities and the nucleolus (structure and function) still remains an open question. Here, we report a novel mass spectrometry analysis of isolated nucleoli from Arabidopsis thaliana plants using the FANoS (Fluorescence Assisted Nucleolus Sorting) strategy. We identified many ribosome biogenesis factors (RBF) and proteins non-related with ribosome biogenesis, in agreement with the recognized multi-functionality of the nucleolus. Interestingly, we found that 26S proteasome subunits localize in the nucleolus and demonstrated that proteasome activity and nucleolus organization are intimately linked to each other. Proteasome subunits form discrete foci in the disorganized nucleolus of nuc1.2 plants. Nuc1.2 protein extracts display reduced proteasome activity in vitro compared to WT protein extracts. Remarkably, proteasome activity in nuc1.2 is similar to proteasome activity in WT plants treated with proteasome inhibitors (MG132 or ALLN). Finally, we show that MG132 treatment induces disruption of nucleolar structures in WT but not in nuc1.2 plants. Altogether, our data suggest a functional interconnection between nucleolus structure and proteasome activity. PMID:29104584

  10. A charge-dependent mechanism is responsible for the dynamic accumulation of proteins inside nucleoli.

    PubMed

    Musinova, Yana R; Kananykhina, Eugenia Y; Potashnikova, Daria M; Lisitsyna, Olga M; Sheval, Eugene V

    2015-01-01

    The majority of known nucleolar proteins are freely exchanged between the nucleolus and the surrounding nucleoplasm. One way proteins are retained in the nucleoli is by the presence of specific amino acid sequences, namely nucleolar localization signals (NoLSs). The mechanism by which NoLSs retain proteins inside the nucleoli is still unclear. Here, we present data showing that the charge-dependent (electrostatic) interactions of NoLSs with nucleolar components lead to nucleolar accumulation as follows: (i) known NoLSs are enriched in positively charged amino acids, but the NoLS structure is highly heterogeneous, and it is not possible to identify a consensus sequence for this type of signal; (ii) in two analyzed proteins (NF-κB-inducing kinase and HIV-1 Tat), the NoLS corresponds to a region that is enriched for positively charged amino acid residues; substituting charged amino acids with non-charged ones reduced the nucleolar accumulation in proportion to the charge reduction, and nucleolar accumulation efficiency was strongly correlated with the predicted charge of the tested sequences; and (iii) sequences containing only lysine or arginine residues (which were referred to as imitative NoLSs, or iNoLSs) are accumulated in the nucleoli in a charge-dependent manner. The results of experiments with iNoLSs suggested that charge-dependent accumulation inside the nucleoli was dependent on interactions with nucleolar RNAs. The results of this work are consistent with the hypothesis that nucleolar protein accumulation by NoLSs can be determined by the electrostatic interaction of positively charged regions with nucleolar RNAs rather than by any sequence-specific mechanism. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Deep-Red Fluorescent Gold Nanoclusters for Nucleoli Staining: Real-Time Monitoring of the Nucleolar Dynamics in Reverse Transformation of Malignant Cells.

    PubMed

    Wang, Xiaojuan; Wang, Yanan; He, Hua; Ma, Xiqi; Chen, Qi; Zhang, Shuai; Ge, Baosheng; Wang, Shengjie; Nau, Werner M; Huang, Fang

    2017-05-31

    Nucleoli are important subnuclear structures inside cells. We report novel fluorescent gold nanoclusters (K-AuNCs) that are able to stain the nucleoli selectively and make it possible to explore the nucleolar morphology with fluorescence imaging technique. This novel probe is prepared through an easy synthesis method by employing a tripeptide (Lys-Cys-Lys) as the surface ligand. The properties, including deep-red fluorescence emission (680 nm), large Stocks shift, broad excitation band, low cytotoxicity, and good photostability, endow this probe with potential for bioanalytical applications. Because of their small size and their positively charged surface, K-AuNCs are able to accumulate efficiently at the nucleolar regions and provide precise morphological information. K-AuNCs are also used to monitor the nucleolar dynamics along the reverse-transformation process of malignant cells, induced by the agonist of protein A, 8-chloro-cyclic adenosine monophosphate. This gives a novel approach for investigating the working mechanism of antitumor drugs.

  12. Links between nucleolar activity, rDNA stability, aneuploidy and chronological aging in the yeast Saccharomyces cerevisiae.

    PubMed

    Lewinska, Anna; Miedziak, Beata; Kulak, Klaudia; Molon, Mateusz; Wnuk, Maciej

    2014-06-01

    The nucleolus is speculated to be a regulator of cellular senescence in numerous biological systems (Guarente, Genes Dev 11(19):2449-2455, 1997; Johnson et al., Curr Opin Cell Biol 10(3):332-338, 1998). In the budding yeast Saccharomyces cerevisiae, alterations in nucleolar architecture, the redistribution of nucleolar protein and the accumulation of extrachromosomal ribosomal DNA circles (ERCs) during replicative aging have been reported. However, little is known regarding rDNA stability and changes in nucleolar activity during chronological aging (CA), which is another yeast aging model used. In the present study, the impact of aberrant cell cycle checkpoint control (knock-out of BUB1, BUB2, MAD1 and TEL1 genes in haploid and diploid hemizygous states) on CA-mediated changes in the nucleolus was studied. Nucleolus fragmentation, changes in the nucleolus size and the nucleolus/nucleus ratio, ERC accumulation, expression pattern changes and the relocation of protein involved in transcriptional silencing during CA were revealed. All strains examined were affected by oxidative stress, aneuploidy (numerical rather than structural aberrations) and DNA damage. However, the bub1 cells were the most prone to aneuploidy events, which may contribute to observed decrease in chronological lifespan. We postulate that chronological aging may be affected by redox imbalance-mediated chromosome XII instability leading to both rDNA instability and whole chromosome aneuploidy. CA-mediated nucleolus fragmentation may be a consequence of nucleolus enlargement and/or Nop2p upregulation. Moreover, the rDNA content of chronologically aging cells may be a factor determining the subsequent replicative lifespan. Taken together, we demonstrated that the nucleolus state is also affected during CA in yeast.

  13. The Fragile X Mental Retardation Protein, FMRP, Recognizes G-Quartets

    ERIC Educational Resources Information Center

    Darnell, Jennifer C.; Warren, Stephen T.; Darnell, Robert B.

    2004-01-01

    Fragile X mental retardation is a disease caused by the loss of function of a single RNA-binding protein, FMRP. Identifying the RNA targets recognized by FMRP is likely to reveal much about its functions in controlling some aspects of memory and behavior. Recent evidence suggests that one of the predominant RNA motifs recognized by the FMRP…

  14. Small nucleolar RNAs that guide modification in trypanosomatids: repertoire, targets, genome organisation, and unique functions.

    PubMed

    Uliel, Shai; Liang, Xue-hai; Unger, Ron; Michaeli, Shulamit

    2004-03-29

    Small nucleolar RNAs constitute a family of newly discovered non-coding small RNAs, most of which function in guiding RNA modifications. Two prevalent types of modifications are 2'-O-methylation and pseudouridylation. The modification is directed by the formation of a canonical small nucleolar RNA-target duplex. Initially, RNA-guided modification was shown to take place on rRNA, but recent studies suggest that small nuclear RNA, mRNA, tRNA, and the trypanosome spliced leader RNA also undergo guided modifications. Trypanosomes contain more modifications and potentially more small nucleolar RNAs than yeast, and the increased number of modifications may help to preserve ribosome function under adverse environmental conditions during the cycling between the insect and mammalian host. The genome organisation in clusters carrying the two types of small nucleolar RNAs, C/D and H/ACA-like RNAs, resembles that in plants. However, the trypanosomatid H/ACA RNAs are similar to those found in Archaea and are composed of a single hairpin that may represent the primordial H/ACA RNA. In this review we summarise this new field of trypanosome small nucleolar RNAs, emphasising the open questions regarding the number of small nucleolar RNAs, the repertoire, genome organisation, and the unique function of guided modifications in these protozoan parasites.

  15. Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes.

    PubMed

    Gaspin, C; Cavaillé, J; Erauso, G; Bachellerie, J P

    2000-04-07

    Ribose methylation is a prevalent type of nucleotide modification in rRNA. Eukaryotic rRNAs display a complex pattern of ribose methylations, amounting to 55 in yeast Saccharomyces cerevisiae and about 100 in vertebrates. Ribose methylations of eukaryotic rRNAs are each guided by a cognate small RNA, belonging to the family of box C/D antisense snoRNAs, through transient formation of a specific base-pairing at the rRNA modification site. In prokaryotes, the pattern of rRNA ribose methylations has been fully characterized in a single species so far, Escherichia coli, which contains only four ribose methylated rRNA nucleotides. However, the hyperthermophile archaeon Sulfolobus solfataricus contains, like eukaryotes, a large number of (yet unmapped) rRNA ribose methylations and homologs of eukaryotic box C/D small nucleolar ribonuclear proteins have been identified in archaeal genomes. We have therefore searched archaeal genomes for potential homologs of eukaryotic methylation guide small nucleolar RNAs, by combining searches for structured motifs with homology searches. We have identified a family of 46 small RNAs, conserved in the genomes of three hyperthermophile Pyrococcus species, which we have experimentally characterized in Pyrococcus abyssi. The Pyrococcus small RNAs, the first reported homologs of methylation guide small nucleolar RNAs in organisms devoid of a nucleus, appear as a paradigm of minimalist box C/D antisense RNAs. They differ from their eukaryotic homologs by their outstanding structural homogeneity, extended consensus box motifs and the quasi-systematic presence of two (instead of one) rRNA antisense elements. Remarkably, for each small RNA the two antisense elements always match rRNA sequences close to each other in rRNA structure, suggesting an important role in rRNA folding. Only a few of the predicted P. abyssi rRNA ribose methylations have been detected so far. Further analysis of these archaeal small RNAs could provide new insights into

  16. Human H/ACA Small Nucleolar RNPs and Telomerase Share Evolutionarily Conserved Proteins NHP2 and NOP10

    PubMed Central

    Pogacic, Vanda; Dragon, François; Filipowicz, Witold

    2000-01-01

    The H/ACA small nucleolar RNAs (snoRNAs) are involved in pseudouridylation of pre-rRNAs. In the yeast Saccharomyces cerevisiae, four common proteins are associated with H/ACA snoRNAs: Gar1p, Cbf5p, Nhp2p, and Nop10p. In vitro reconstitution studies showed that four proteins also specifically interact with H/ACA snoRNAs in mammalian cell extracts. Two mammalian proteins, NAP57/dyskerin (the ortholog of Cbf5p) and hGAR1, have been characterized. In this work we describe properties of hNOP10 and hNHP2, human orthologs of yeast Nop10p and Nhp2p, respectively, and further characterize hGAR1. hNOP10 and hNHP2 complement yeast cells depleted of Nhp2p and Nop10p, respectively. Immunoprecipitation experiments with extracts from transfected HeLa cells indicated that epitope-tagged hNOP10 and hNHP2 specifically associate with hGAR1 and H/ACA RNAs; they also interact with the RNA subunit of telomerase, which contains an H/ACA-like domain in its 3′ moiety. Immunofluorescence microscopy experiments showed that hGAR1, hNOP10, and hNHP2 are localized in the dense fibrillar component of the nucleolus and in Cajal (coiled) bodies. Deletion analysis of hGAR1 indicated that its evolutionarily conserved core domain contains all the signals required for localization, but progressive deletions from either the N or the C terminus of the core domain abolish localization in the nucleolus and/or the Cajal bodies. PMID:11074001

  17. To the nucleolar bodies (nucleoli) in cells of the lymphocytic lineage in patients suffering from B - chronic lymphocytic leukemia.

    PubMed

    Smetana, K; Karban, J; Trneny, M

    2010-01-01

    The present study was undertaken to provide more information on nucleoli in lymphocytes of B - chronic lymphocytic leukemia. The computer assisted nucleolar and cytoplasmic RNA image densitometry, reflecting the nucleolar and cytoplasmic RNA concentration at the single cell level, demonstrated a remarkable stability during the differentiation and maturation of B- lymphocytes. In contrast, as it was expected, the nucleolar diameter during the lymphocytic development markedly decreased. Thus the nucleolar RNA content of leukemic B-lymphocytes was apparently related to the nucleolar size. In both immature and mature lymphocytes, the cytostatic treatment increased the incidence of micronucleoli, which represent the "inactive" type of nucleoli. However, the decreased values of the nucleolar diameter were statistically significant only in mature lymphocytes of treated patients. On the other hand, despite such observation, it must be mentioned that "large active" and "ring shaped resting" nucleoli were still present in immature and mature lymphocytes after the cytostatic therapy and such cells might represent a potential pool of proliferating cells. As it is generally accepted "large active nucleoli" with multiple fibrillar centers are known to be characteristic for proliferating cells. "Ring shaped resting nucleoli" are present in sleeping cells, which may be stimulated to return to the cell cycle and to proliferate again. In addition, the nucleolar RNA distribution also indicated that Gumprecht ghosts mostly originated from mature lymphocytes. Increased ratio of the nucleolar to cytoplasmic RNA density in Gumprecht ghosts or apoptotic cells and apoptotic bodies of the lymphocytic origin was related to the decreased cytoplasmic RNA concentration. The increased nucleolar size together with the markedly decreased cytoplasmic RNA concentration characteristic for Gumprecht ghosts just reflected the spreading of lymphocytes during smear preparations. In apoptotic cells or

  18. Nucleolar-nucleoplasmic shuttling of TARG1 and its control by DNA damage-induced poly-ADP-ribosylation and by nucleolar transcription.

    PubMed

    Bütepage, Mareike; Preisinger, Christian; von Kriegsheim, Alexander; Scheufen, Anja; Lausberg, Eva; Li, Jinyu; Kappes, Ferdinand; Feederle, Regina; Ernst, Sabrina; Eckei, Laura; Krieg, Sarah; Müller-Newen, Gerhard; Rossetti, Giulia; Feijs, Karla L H; Verheugd, Patricia; Lüscher, Bernhard

    2018-04-30

    Macrodomains are conserved protein folds associated with ADP-ribose binding and turnover. ADP-ribosylation is a posttranslational modification catalyzed primarily by ARTD (aka PARP) enzymes in cells. ARTDs transfer either single or multiple ADP-ribose units to substrates, resulting in mono- or poly-ADP-ribosylation. TARG1/C6orf130 is a macrodomain protein that hydrolyzes mono-ADP-ribosylation and interacts with poly-ADP-ribose chains. Interactome analyses revealed that TARG1 binds strongly to ribosomes and proteins associated with rRNA processing and ribosomal assembly factors. TARG1 localized to transcriptionally active nucleoli, which occurred independently of ADP-ribose binding. TARG1 shuttled continuously between nucleoli and nucleoplasm. In response to DNA damage, which activates ARTD1/2 (PARP1/2) and promotes synthesis of poly-ADP-ribose chains, TARG1 re-localized to the nucleoplasm. This was dependent on the ability of TARG1 to bind to poly-ADP-ribose. These findings are consistent with the observed ability of TARG1 to competitively interact with RNA and PAR chains. We propose a nucleolar role of TARG1 in ribosome assembly or quality control that is stalled when TARG1 is re-located to sites of DNA damage.

  19. The Nucleolar Fibrillarin Protein Is Required for Helper Virus-Independent Long-Distance Trafficking of a Subviral Satellite RNA in Plants[OPEN

    PubMed Central

    Chang, Chih-Hao; Lee, Shu-Chuan; Lo, Yih-Shan; Wang, Jiun-Da; Shaw, Jane; Chang, Ban-Yang

    2016-01-01

    RNA trafficking plays pivotal roles in regulating plant development, gene silencing, and adaptation to environmental stress. Satellite RNAs (satRNAs), parasites of viruses, depend on their helper viruses (HVs) for replication, encapsidation, and efficient spread. However, it remains largely unknown how satRNAs interact with viruses and the cellular machinery to undergo trafficking. Here, we show that the P20 protein of Bamboo mosaic potexvirus satRNA (satBaMV) can functionally complement in trans the systemic trafficking of P20-defective satBaMV in infected Nicotiana benthamiana. The transgene-derived satBaMV, uncoupled from HV replication, was able to move autonomously across a graft union identified by RT-qPCR, RNA gel blot, and in situ RT-PCR analyses. Coimmunoprecipitation experiments revealed that the major nucleolar protein fibrillarin is coprecipitated in the P20 protein complex. Notably, silencing fibrillarin suppressed satBaMV-, but not HV-, phloem-based movement following grafting or coinoculation with HV. Confocal microscopy revealed that the P20 protein colocalized with fibrillarin in the nucleoli and formed punctate structures associated with plasmodesmata. The mobile satBaMV RNA appears to exist as ribonucleoprotein (RNP) complex composed of P20 and fibrillarin, whereas BaMV movement proteins, capsid protein, and BaMV RNA are recruited with HV coinfection. Taken together, our findings provide insight into movement of satBaMV via the fibrillarin-satBaMV-P20 RNP complex in phloem-mediated systemic trafficking. PMID:27702772

  20. Immunofluorescent localization of ubiquitin and proteasomes in nucleolar vacuoles of soybean root meristematic cells

    PubMed Central

    Stępiński, D.

    2012-01-01

    In this study, using the immunofluorescent method, the immunopositive signals to ubiquitin and proteasomes in nucleoli of root meristematic cells of soybean seedlings have been observed. In fact, those signals were present exclusively in nucleolar vacuoles. No signals were observed in the nucleolar territory out of the nucleolar vacuoles or in the nucleoli without vacuoles. The ubiquitin-proteasome system (UPS) may act within the nucleoli of plants with high metabolic activities and may provide an additional level of regulation of intracellular proteolysis via compartment-specific activities of their components. It is suggested that the presence of the UPS solely in vacuolated nucleoli serves as a mechanism that enhances the speed of ribosome subunit production in very actively transcribing nucleoli. On the other hand, nucleolar vacuoles in a cell/nucleus could play additional roles associated with temporary sequestration or storage of some cellular factors, including components of the ubiquitin-proteasome system. PMID:22688294

  1. Conserved composition of mammalian box H/ACA and box C/D small nucleolar ribonucleoprotein particles and their interaction with the common factor Nopp140.

    PubMed

    Yang, Y; Isaac, C; Wang, C; Dragon, F; Pogacic, V; Meier, U T

    2000-02-01

    Small nucleolar ribonucleoprotein particles (snoRNPs) mainly catalyze the modification of rRNA. The two major classes of snoRNPs, box H/ACA and box C/D, function in the pseudouridylation and 2'-O-methylation, respectively, of specific nucleotides. The emerging view based on studies in yeast is that each class of snoRNPs is composed of a unique set of proteins. Here we present a characterization of mammalian snoRNPs. We show that the previously characterized NAP57 is specific for box H/ACA snoRNPs, whereas the newly identified NAP65, the rat homologue of yeast Nop5/58p, is a component of the box C/D class. Using coimmunoprecipitation experiments, we show that the nucleolar and coiled-body protein Nopp140 interacts with both classes of snoRNPs. This interaction is corroborated in vivo by the exclusive depletion of snoRNP proteins from nucleoli in cells transfected with a dominant negative Nopp140 construct. Interestingly, RNA polymerase I transcription is arrested in nucleoli depleted of snoRNPs, raising the possibility of a feedback mechanism between rRNA modification and transcription. Moreover, the Nopp140-snoRNP interaction appears to be conserved in yeast, because depletion of Srp40p, the yeast Nopp140 homologue, in a conditional lethal strain induces the loss of box H/ACA small nucleolar RNAs. We propose that Nopp140 functions as a chaperone of snoRNPs in yeast and vertebrate cells.

  2. Conserved Composition of Mammalian Box H/ACA and Box C/D Small Nucleolar Ribonucleoprotein Particles and Their Interaction with the Common Factor Nopp140

    PubMed Central

    Yang, Yunfeng; Isaac, Cynthia; Wang, Chen; Dragon, François; Pogac̆ić, Vanda; Meier, U. Thomas

    2000-01-01

    Small nucleolar ribonucleoprotein particles (snoRNPs) mainly catalyze the modification of rRNA. The two major classes of snoRNPs, box H/ACA and box C/D, function in the pseudouridylation and 2′-O-methylation, respectively, of specific nucleotides. The emerging view based on studies in yeast is that each class of snoRNPs is composed of a unique set of proteins. Here we present a characterization of mammalian snoRNPs. We show that the previously characterized NAP57 is specific for box H/ACA snoRNPs, whereas the newly identified NAP65, the rat homologue of yeast Nop5/58p, is a component of the box C/D class. Using coimmunoprecipitation experiments, we show that the nucleolar and coiled-body protein Nopp140 interacts with both classes of snoRNPs. This interaction is corroborated in vivo by the exclusive depletion of snoRNP proteins from nucleoli in cells transfected with a dominant negative Nopp140 construct. Interestingly, RNA polymerase I transcription is arrested in nucleoli depleted of snoRNPs, raising the possibility of a feedback mechanism between rRNA modification and transcription. Moreover, the Nopp140-snoRNP interaction appears to be conserved in yeast, because depletion of Srp40p, the yeast Nopp140 homologue, in a conditional lethal strain induces the loss of box H/ACA small nucleolar RNAs. We propose that Nopp140 functions as a chaperone of snoRNPs in yeast and vertebrate cells. PMID:10679015

  3. Nucleolar chromatin organization at different activities of soybean root meristematic cell nucleoli.

    PubMed

    Stępiński, Dariusz

    2013-06-01

    Nucleolar chromatin, including nucleolus-associated chromatin as well as active and inactive condensed ribosomal DNA (rDNA) chromatin, derives mostly from secondary constrictions known as nucleolus organizer regions containing rDNA genes on nucleolus-forming chromosomes. This chromatin may occupy different nucleolar positions being in various condensation states which may imply different rDNA transcriptional competence. Sections of nucleoli originating from root meristematic cells of soybean seedlings grown at 25 °C (the control), then subjected to chilling stress (10 °C), and next transferred again to 25 °C (the recovery) were used to measure profile areas occupied by nucleolar condensed chromatin disclosed with sodium hydroxide methylation-acetylation plus uranyl acetate technique. The biggest total area of condensed chromatin was found in the nucleoli of chilled plants, while the smallest was found in those of recovered plants in relation to the amounts of chromatin in the control nucleoli. The condensed nucleolar chromatin, in the form of different-sized and different-shaped clumps, was mainly located in fibrillar centers. One can suppose that changes of condensed rDNA chromatin amounts might be a mechanism controlling the number of transcriptionally active rDNA genes as the nucleoli of plants grown under these experimental conditions show different transcriptional activity and morphology.

  4. Deficient brain RNA polymerase and altered nucleolar structure persists until day 8 after perinatal asphyxia of the rat.

    PubMed

    Kastner, Philomena; Mosgoeller, Wilhelm; Fang-Kircher, Susanne; Kitzmueller, Erwin; Kirchner, Liselotte; Hoeger, Harald; Seither, Peter; Lubec, Gert; Lubec, Barbara

    2003-01-01

    RNA polymerases (POL) are integral constituents of the protein synthesis machinery, with POL I and POL III coding for ribosomal RNA and POL II coding for protein. POL I is located in the nucleolus and transcribes class I genes, those that code for large ribosomal RNA. It has been reported that the POL system is seriously affected in perinatal asphyxia (PA) immediately after birth. Because POL I is necessary for protein synthesis and brain protein synthesis was shown to be deranged after hypoxic-ischemic conditions, we aimed to study whether POL derangement persists in a simple, well-documented animal model of graded global PA at the activity, mRNA, protein, and morphologic level until 8 d after the asphyctic insult. Nuclear POL I activity was determined according to a radiochemical method; mRNA steady state and protein levels of RPA4O-an essential subunit of POL I and III-were evaluated by blotting methods; and the POL I subunit polymerase activating factor-53 was evaluated using immunohistochemistry. Silver staining and transmission electron microscopy were used to examine the nucleolus. At the eighth day after PA, nuclear POL I decreased with the length of the asphyctic period, whereas mRNA and protein levels for RPA4O were unchanged. The subunit polymerase activating factor-53, however, was unambiguously reduced in several brain regions. Dramatic changes of nucleolar morphology were observed, the main finding being nucleolar disintegration at the electron microscopy level. We suggest that severe acidosis and/or deficient protein kinase C in the brain during the asphyctic period may be responsible for disintegration of the nucleolus as well as for decreased POL activity persisting until the eighth day after PA. The biologic effect may be that PA causes impaired RNA and protein synthesis, which has been already observed in hypoxic-ischemic states.

  5. [Heterosis, macromolecular composition and several physico-chemical properties of the nucleolar-chromatic complex].

    PubMed

    Shereshevskaia, Ts M; Krasnopol'skiĭ, Iu M; Verkhovskiĭ, B A

    1977-01-01

    The nucleolar-chromatin complex of the hybrids liver cells is shown to contain a larger amount of RNA and phospholipids. When teeated with 1.0 M NaCl nucleoproteins of hybrid organisms display greater dissociation. A large number of free loci was determined in the matrix when titrating nucleolar chromatin complex with actinomycin "D". The effect of heterosis might be connected with a specific physiochemical state of chromosome in hybrid organisms.

  6. A Novel Helicase-Type Protein in the Nucleolus: Protein NOH61

    PubMed Central

    Zirwes, Rudolf F.; Eilbracht, Jens; Kneissel, Sandra; Schmidt-Zachmann, Marion S.

    2000-01-01

    We report the identification, cDNA cloning, and molecular characterization of a novel, constitutive nucleolar protein. The cDNA-deduced amino acid sequence of the human protein defines a polypeptide of a calculated mass of 61.5 kDa and an isoelectric point of 9.9. Inspection of the primary sequence disclosed that the protein is a member of the family of “DEAD-box” proteins, representing a subgroup of putative ATP-dependent RNA helicases. ATPase activity of the recombinant protein is evident and stimulated by a variety of polynucleotides tested. Immunolocalization studies revealed that protein NOH61 (nucleolar helicase of 61 kDa) is highly conserved during evolution and shows a strong accumulation in nucleoli. Biochemical experiments have shown that protein NOH61 synthesized in vitro sediments with ∼11.5 S, i.e., apparently as homo-oligomeric structures. By contrast, sucrose gradient centrifugation analysis of cellular extracts obtained with buffers of elevated ionic strength (600 mM NaCl) revealed that the solubilized native protein sediments with ∼4 S, suggestive of the monomeric form. Interestingly, protein NOH61 has also been identified as a specific constituent of free nucleoplasmic 65S preribosomal particles but is absent from cytoplasmic ribosomes. Treatment of cultured cells with 1) the transcription inhibitor actinomycin D and 2) RNase A results in a complete dissociation of NOH61 from nucleolar structures. The specific intracellular localization and its striking sequence homology to other known RNA helicases lead to the hypothesis that protein NOH61 might be involved in ribosome synthesis, most likely during the assembly process of the large (60S) ribosomal subunit. PMID:10749921

  7. Integrating the genomic architecture of human nucleolar organizer regions with the biophysical properties of nucleoli.

    PubMed

    Mangan, Hazel; Gailín, Michael Ó; McStay, Brian

    2017-12-01

    Nucleoli are the sites of ribosome biogenesis and the largest membraneless subnuclear structures. They are intimately linked with growth and proliferation control and function as sensors of cellular stress. Nucleoli form around arrays of ribosomal gene (rDNA) repeats also called nucleolar organizer regions (NORs). In humans, NORs are located on the short arms of all five human acrocentric chromosomes. Multiple NORs contribute to the formation of large heterochromatin-surrounded nucleoli observed in most human cells. Here we will review recent findings about their genomic architecture. The dynamic nature of nucleoli began to be appreciated with the advent of photodynamic experiments using fluorescent protein fusions. We review more recent data on nucleoli in Xenopus germinal vesicles (GVs) which has revealed a liquid droplet-like behavior that facilitates nucleolar fusion. Further analysis in both XenopusGVs and Drosophila embryos indicates that the internal organization of nucleoli is generated by a combination of liquid-liquid phase separation and active processes involving rDNA. We will attempt to integrate these recent findings with the genomic architecture of human NORs to advance our understanding of how nucleoli form and respond to stress in human cells. © 2017 Federation of European Biochemical Societies.

  8. The nucleolar protein NIFK promotes cancer progression via CK1α/β-catenin in metastasis and Ki-67-dependent cell proliferation

    PubMed Central

    Lin, Tsung-Chieh; Su, Chia-Yi; Wu, Pei-Yu; Lai, Tsung-Ching; Pan, Wen-An; Jan, Yi-Hua; Chang, Yu-Chang; Yeh, Chi-Tai; Chen, Chi-Long; Ger, Luo-Ping; Chang, Hong-Tai; Yang, Chih-Jen; Huang, Ming-Shyan; Liu, Yu-Peng; Lin, Yuan-Feng; Shyy, John Y-J; Tsai, Ming-Daw; Hsiao, Michael

    2016-01-01

    Nucleolar protein interacting with the FHA domain of pKi-67 (NIFK) is a Ki-67-interacting protein. However, its precise function in cancer remains largely uninvestigated. Here we show the clinical significance and metastatic mechanism of NIFK in lung cancer. NIFK expression is clinically associated with poor prognosis and metastasis. Furthermore, NIFK enhances Ki-67-dependent proliferation, and promotes migration, invasion in vitro and metastasis in vivo via downregulation of casein kinase 1α (CK1α), a suppressor of pro-metastatic TCF4/β-catenin signaling. Inversely, CK1α is upregulated upon NIFK knockdown. The silencing of CK1α expression in NIFK-silenced cells restores TCF4/β-catenin transcriptional activity, cell migration, and metastasis. Furthermore, RUNX1 is identified as a transcription factor of CSNK1A1 (CK1α) that is negatively regulated by NIFK. Our results demonstrate the prognostic value of NIFK, and suggest that NIFK is required for lung cancer progression via the RUNX1-dependent CK1α repression, which activates TCF4/β-catenin signaling in metastasis and the Ki-67-dependent regulation in cell proliferation. DOI: http://dx.doi.org/10.7554/eLife.11288.001 PMID:26984280

  9. [Peculiarities of mitosis and nucleolar characteristics of the birch plantlets under antropogenous pollution].

    PubMed

    Butorina, A K; Kalaev, V N; Karpova, S S

    2002-01-01

    A study was made of some cytogenetic characteristics (mitotic activity, the level and spectrum of pathological mitosis, nucleolar features in root tip cells) in birch plantlets. The seeds were collected in four districts of Voronezh and in the ecologically clean territory. The index of mitotic activity has a considerable resistance to anthropogenous pollution. In the experimental areas, the level and spectrum of pathological mitosis increase. In contaminated areas we observed changes of nucleolar characteristics (the increased surface area of nucleoli and their higher number in cells, the increased number of cells with highly active types of nucleoli, the appearance of residual nucleoli). These changes can be considered as possible mechanisms of adaptation to stress due to antropogenous pollution. It is suggested that the use of such indices as single nucleolar surface area or the level of pathological mitosis may be perspective for cytogenetic monitoring of the environment, and for prognostification of environmental conditions suitable or unsuitable for the human health.

  10. NUCLEIC ACID AND PROTEIN METABOLISM DURING THE MITOTIC CYCLE IN VICIA FABA

    PubMed Central

    Woodard, John; Rasch, Ellen; Swift, Hewson

    1961-01-01

    In order to investigate some of the cytochemical processes involved in interphase growth and culminating in cell division, a combined autoradiographic and microphotometric study of nucleic acids and proteins was undertaken on statistically seriated cells of Vicia faba root meristems. Adenine-8-C14 and uridine-H3 were used as ribonucleic acid (RNA) precursors, thymidine-H3 as a deoxyribonucleic acid (DNA) precursor, and phenylalanine-3-C14 as a protein precursor. Stains used in microphotometry were Feulgen (DNA), azure B (RNA), pH 2.0 fast green (total protein), and pH 8.1 fast green (histone). The autoradiographic data (representing rate of incorporation per organelle) and the microphotometric data (representing changes in amounts of the various components) indicate that the mitotic cycle may be divided into several metabolic phases, three predominantly anabolic (net increase), and a fourth phase predominantly catabolic (net decrease). The anabolic periods are: 1. Telophase to post-telophase during which there are high rates of accumulation of cytoplasmic and nucleolar RNA and nucleolar and chromosomal total protein. 2. Post-telophase to preprophase characterized by histone synthesis and a diphasic synthesis of DNA with the peak of synthesis at mid-interphase and a minor peak just preceding prophase. The minor peak is coincident with a relatively localized DNA synthesis in several chromosomal regions. This period is also characterized by minimal accumulations of cytoplasmic RNA and chromosomal and nucleolar total protein and RNA. 3. Preprophase to prophase in which there are again high rates of accumulation of cytoplasmic RNA, and nucleolar and chromosomal total protein and RNA. The catabolic phase is: 4. The mitotic division during which there are marked losses of cytoplasmic RNA and chromosomal and nucleolar total protein and RNA. PMID:13786522

  11. A Nonribosomal Landscape in the Nucleolus Revealed by the Stem Cell Protein Nucleostemin

    PubMed Central

    Politz, Joan C. Ritland; Polena, Ilvin; Trask, Ian; Bazett-Jones, David P.; Pederson, Thoru

    2005-01-01

    Nucleostemin is a p53-interactive cell cycle progression factor that shuttles between the nucleolus and nucleoplasm, but it has no known involvement in ribosome synthesis. We found the dynamic properties of nucleostemin differed strikingly from fibrillarin (a protein directly involved in rRNA processing) both in response to rRNA transcription inhibition and in the schedule of reentry into daughter nuclei and the nucleolus during late telophase/early G1. Furthermore, nucleostemin was excluded from the nucleolar domains in which ribosomes are born—the fibrillar centers and dense fibrillar component. Instead it was concentrated in rRNA-deficient sites within the nucleolar granular component. This finding suggests that the nucleolus may be more subcompartmentalized than previously thought. In support of this concept, electron spectroscopic imaging studies of the nitrogen and phosphorus distribution in the nucleolar granular component revealed regions that are very rich in protein and yet devoid of nucleic acid. Together, these results suggest that the ultrastructural texture of the nucleolar granular component represents not only ribosomal particles but also RNA-free zones populated by proteins or protein complexes that likely serve other functions. PMID:15857956

  12. To the Large Nucleolar Bodies in Apoptotic Leukaemic Granulocytic Progenitors without Further Differentiation. Are Large Nucleoli Always Present in Proliferating Cells?

    PubMed

    Smetana, K; Kuželová, K; Zápotocký, M; Hrkal, Z

    2017-01-01

    Large nucleoli have generally been believed to be present in less differentiated and proliferating cells including the malignant ones. Such nucleoli have also been considered to be active in the biosynthetic process and major cell developmental activities. In contrast, after cytostatic treatment, apoptotic leukaemic progenitors still containing nuclei did not exhibit substantial reduction of the nucleolar size but displayed decreased nucleolar biosynthetic activity. The present study was undertaken to provide more information on the large nucleoli in spontaneously occurring apoptotic leukaemic progenitors without further differentiation. Leukaemic progenitors of established cell lineages originating from leukaemic patients represented a very convenient model for such study. Some of them exhibit morphological signs of the spontaneously occurring apoptotic process. Since such signs are expressed by nuclear and cytoplasmic morphological variability, the present study dealt with spontaneously occurring apoptotic progenitors with preserved nuclei characterized by heavy chromatin condensation and occasional fragmentation. Based of nucleolar body and nuclear maximal diameter measurements it seems to be clear that the nucleolar size in these cells was not substantially reduced, contrary to that of the nucleus. However, large nucleolar bodies in spontaneously occurring apoptotic cells were characterized by markedly reduced biosynthetic activity, as expressed by the decreased number of nucleolar transcription markers such as nucleolar fibrillar centres. In conclusion, large nucleoli may be present not only in proliferating, but also in spontaneously occurring apoptotic cells.

  13. A separable domain of the p150 subunit of human chromatin assembly factor-1 promotes protein and chromosome associations with nucleoli.

    PubMed

    Smith, Corey L; Matheson, Timothy D; Trombly, Daniel J; Sun, Xiaoming; Campeau, Eric; Han, Xuemei; Yates, John R; Kaufman, Paul D

    2014-09-15

    Chromatin assembly factor-1 (CAF-1) is a three-subunit protein complex conserved throughout eukaryotes that deposits histones during DNA synthesis. Here we present a novel role for the human p150 subunit in regulating nucleolar macromolecular interactions. Acute depletion of p150 causes redistribution of multiple nucleolar proteins and reduces nucleolar association with several repetitive element-containing loci. Of note, a point mutation in a SUMO-interacting motif (SIM) within p150 abolishes nucleolar associations, whereas PCNA or HP1 interaction sites within p150 are not required for these interactions. In addition, acute depletion of SUMO-2 or the SUMO E2 ligase Ubc9 reduces α-satellite DNA association with nucleoli. The nucleolar functions of p150 are separable from its interactions with the other subunits of the CAF-1 complex because an N-terminal fragment of p150 (p150N) that cannot interact with other CAF-1 subunits is sufficient for maintaining nucleolar chromosome and protein associations. Therefore these data define novel functions for a separable domain of the p150 protein, regulating protein and DNA interactions at the nucleolus. © 2014 Smith et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Amino acid signature enables proteins to recognize modified tRNA.

    PubMed

    Spears, Jessica L; Xiao, Xingqing; Hall, Carol K; Agris, Paul F

    2014-02-25

    Human tRNA(Lys3)UUU is the primer for HIV replication. The HIV-1 nucleocapsid protein, NCp7, facilitates htRNA(Lys3)UUU recruitment from the host cell by binding to and remodeling the tRNA structure. Human tRNA(Lys3)UUU is post-transcriptionally modified, but until recently, the importance of those modifications in tRNA recognition by NCp7 was unknown. Modifications such as the 5-methoxycarbonylmethyl-2-thiouridine at anticodon wobble position-34 and 2-methylthio-N(6)-threonylcarbamoyladenosine, adjacent to the anticodon at position-37, are important to the recognition of htRNA(Lys3)UUU by NCp7. Several short peptides selected from phage display libraries were found to also preferentially recognize these modifications. Evolutionary algorithms (Monte Carlo and self-consistent mean field) and assisted model building with energy refinement were used to optimize the peptide sequence in silico, while fluorescence assays were developed and conducted to verify the in silico results and elucidate a 15-amino acid signature sequence (R-W-Q/N-H-X2-F-Pho-X-G/A-W-R-X2-G, where X can be most amino acids, and Pho is hydrophobic) that recognized the tRNA's fully modified anticodon stem and loop domain, hASL(Lys3)UUU. Peptides of this sequence specifically recognized and bound modified htRNA(Lys3)UUU with an affinity 10-fold higher than that of the starting sequence. Thus, this approach provides an effective means of predicting sequences of RNA binding peptides that have better binding properties. Such peptides can be used in cell and molecular biology as well as biochemistry to explore RNA binding proteins and to inhibit those protein functions.

  15. NAT10, a nucleolar protein, localizes to the midbody and regulates cytokinesis and acetylation of microtubules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Qi; Zheng, Xingzheng; McNutt, Michael A.

    2009-06-10

    The midbody is a structural organelle formed in late phase mitosis which is responsible for completion of cytokinesis. Although various kinds of proteins have been found to distribute or immigrate to this organelle, their functions have still not been completely worked out. In this study, we demonstrated that NAT10 (N-acetyltransferase 10, NAT10) is not only predominantly distributed in the nucleolus in interphase, but is also concentrated in the mitotic midbody during telophase. The domain in N-terminal residues 549-834 of NAT10 specifically mediated its subcellular localization. Treatment with genotoxic agents or irradiation increased concentration of NAT10 in both the nucleolus andmore » midbody. Moreover, DNA damage induced increase of NAT10 in the midbody apparently accompanied by in situ elevation of the level of acetylated {alpha}-tubulin, suggesting that it plays a role in maintaining or enhancing stability of {alpha}-tubulin. The depletion of NAT10 induced defects in nucleolar assembly, cytokinesis and decreased acetylated {alpha}-tubulin, leading to G2/M cell cycle arrest or delay of mitotic exit. In addition, over-expression of NAT10 was found in a variety of soft tissue sarcomas, and correlated with tumor histological grading. These results indicate that NAT10 may play an important role in cell division through facilitating reformation of the nucleolus and midbody in the late phase of cell mitosis, and stabilization of microtubules.« less

  16. Early effects of altered gravity environments on plant cell growth and cell proliferation: Characterization of morphofunctional nucleolar types in an Arabidopsis cell culture system

    NASA Astrophysics Data System (ADS)

    Manzano, Ana Isabel; Herranz, Raul; Manzano, Aránzazu; Van Loon, Jack; Medina, Francisco Javier

    2016-02-01

    Changes in the cell growth rate of an in vitro cellular system in Arabidopsis thaliana induced by short exposure to an altered gravity environment have been estimated by a novel approach. The method consisted of defining three structural nucleolar types which are easy and reliable indicators of the ribosome biogenesis activity and, consequently, of protein biosynthesis, a parameter strictly correlated to cell growth in this cellular system. The relative abundance of each nucleolar type was statistically assessed in different conditions of gravity. Samples exposed to simulated microgravity for 200 min showed a significant decrease in nucleolar activity compared to 1g controls, whereas samples exposed to hypergravity (2g) for the same period showed nucleolar activity slightly increased,. These effects could be considered as an early cellular response to the environmental alteration, given the short duration of the treatment. The functional significance of the structural data was validated by a combination of several different well-known parameters, using microscopical, flow cytometry, qPCR and proteomic approaches, which showed that the decreased cell growth rate was decoupled from an increased cell proliferation rate under simulated microgravity, and the opposite trend was observed under hypergravity. Actually, not all parameters tested showed the same quantitative changes, indicating that the response to the environmental alteration is time-dependent. These results are in agreement with previous observations in root meristematic cells and they show the ability of plant cells to produce a response to gravity changes, independently of their integration into plant organs.

  17. Rpl13a small nucleolar RNAs regulate systemic glucose metabolism

    PubMed Central

    Lee, Jiyeon; Harris, Alexis N.; Holley, Christopher L.; Mahadevan, Jana; Pyles, Kelly D.; Lavagnino, Zeno; Scherrer, David E.; Fujiwara, Hideji; Sidhu, Rohini; Zhang, Jessie; Huang, Stanley Ching-Cheng; Piston, David W.; Remedi, Maria S.; Urano, Fumihiko; Ory, Daniel S.

    2016-01-01

    Small nucleolar RNAs (snoRNAs) are non-coding RNAs that form ribonucleoproteins to guide covalent modifications of ribosomal and small nuclear RNAs in the nucleus. Recent studies have also uncovered additional non-canonical roles for snoRNAs. However, the physiological contributions of these small RNAs are largely unknown. Here, we selectively deleted four snoRNAs encoded within the introns of the ribosomal protein L13a (Rpl13a) locus in a mouse model. Loss of Rpl13a snoRNAs altered mitochondrial metabolism and lowered reactive oxygen species tone, leading to increased glucose-stimulated insulin secretion from pancreatic islets and enhanced systemic glucose tolerance. Islets from mice lacking Rpl13a snoRNAs demonstrated blunted oxidative stress responses. Furthermore, these mice were protected against diabetogenic stimuli that cause oxidative stress damage to islets. Our study illuminates a previously unrecognized role for snoRNAs in metabolic regulation. PMID:27820699

  18. In Vitro Assembly of Human H/ACA Small Nucleolar RNPs Reveals Unique Features of U17 and Telomerase RNAs

    PubMed Central

    Dragon, François; Pogačić, Vanda; Filipowicz, Witold

    2000-01-01

    The H/ACA small nucleolar RNAs (snoRNAs) are involved in pseudouridylation of pre-rRNAs. They usually fold into a two-domain hairpin-hinge-hairpin-tail structure, with the conserved motifs H and ACA located in the hinge and tail, respectively. Synthetic RNA transcripts and extracts from HeLa cells were used to reconstitute human U17 and other H/ACA ribonucleoproteins (RNPs) in vitro. Competition and UV cross-linking experiments showed that proteins of about 60, 29, 23, and 14 kDa interact specifically with U17 RNA. Except for U17, RNPs could be reconstituted only with full-length H/ACA snoRNAs. For U17, the 3′-terminal stem-loop followed by box ACA (U17/3′st) was sufficient to form an RNP, and U17/3′st could compete other full-length H/ACA snoRNAs for assembly. The H/ACA-like domain that constitutes the 3′ moiety of human telomerase RNA (hTR), and its 3′-terminal stem-loop (hTR/3′st), also could form an RNP by binding H/ACA proteins. Hence, the 3′-terminal stem-loops of U17 and hTR have some specific features that distinguish them from other H/ACA RNAs. Antibodies that specifically recognize the human GAR1 (hGAR1) protein could immunoprecipitate H/ACA snoRNAs and hTR from HeLa cell extracts, which demonstrates that hGAR1 is a component of H/ACA snoRNPs and telomerase in vivo. Moreover, we show that in vitro-reconstituted RNPs contain hGAR1 and that binding of hGAR1 does not appear to be a prerequisite for the assembly of the other H/ACA proteins. PMID:10757788

  19. The Stability of the Small Nucleolar Ribonucleoprotein (snoRNP) Assembly Protein Pih1 in Saccharomyces cerevisiae Is Modulated by Its C Terminus*

    PubMed Central

    Paci, Alexandr; Liu, Xiao Hu; Huang, Hao; Lim, Abelyn; Houry, Walid A.; Zhao, Rongmin

    2012-01-01

    Pih1 is an unstable protein and a subunit of the R2TP complex that, in yeast Saccharomyces cerevisiae, also contains the helicases Rvb1, Rvb2, and the Hsp90 cofactor Tah1. Pih1 and the R2TP complex are required for the box C/D small nucleolar ribonucleoprotein (snoRNP) assembly and ribosomal RNA processing. Purified Pih1 tends to aggregate in vitro. Molecular chaperone Hsp90 and its cochaperone Tah1 are required for the stability of Pih1 in vivo. We had shown earlier that the C terminus of Pih1 destabilizes the protein and that the C terminus of Tah1 binds to the Pih1 C terminus to form a stable complex. Here, we analyzed the secondary structure of the Pih1 C terminus and identified two intrinsically disordered regions and five hydrophobic clusters. Site-directed mutagenesis indicated that one predicted intrinsically disordered region IDR2 is involved in Tah1 binding, and that the C terminus of Pih1 contains multiple destabilization or degron elements. Additionally, the Pih1 N-terminal domain, Pih11–230, was found to be able to complement the physiological role of full-length Pih1 at 37 °C. Pih11–230 as well as a shorter Pih1 N-terminal fragment Pih11–195 is able to bind Rvb1/Rvb2 heterocomplex. However, the sequence between the two disordered regions in Pih1 significantly enhances the Pih1 N-terminal domain binding to Rvb1/Rvb2. Based on these data, a model of protein-protein interactions within the R2TP complex is proposed. PMID:23139418

  20. Myc-induced anchorage of the rDNA IGS region to nucleolar matrix modulates growth-stimulated changes in higher-order rDNA architecture

    PubMed Central

    Shiue, Chiou-Nan; Nematollahi-Mahani, Amir; Wright, Anthony P.H.

    2014-01-01

    Chromatin domain organization and the compartmentalized distribution of chromosomal regions are essential for packaging of deoxyribonucleic acid (DNA) in the eukaryotic nucleus as well as regulated gene expression. Nucleoli are the most prominent morphological structures of cell nuclei and nucleolar organization is coupled to cell growth. It has been shown that nuclear scaffold/matrix attachment regions often define the base of looped chromosomal domains in vivo and that they are thereby critical for correct chromosome architecture and gene expression. Here, we show regulated organization of mammalian ribosomal ribonucleic acid genes into distinct chromatin loops by tethering to nucleolar matrix via the non-transcribed inter-genic spacer region of the ribosomal DNA (rDNA). The rDNA gene loop structures are induced specifically upon growth stimulation and are dependent on the activity of the c-Myc protein. Matrix-attached rDNA genes are hypomethylated at the promoter and are thus available for transcriptional activation. rDNA genes silenced by methylation are not recruited to the matrix. c-Myc, which has been shown to induce rDNA transcription directly, is physically associated with rDNA gene looping structures and the intergenic spacer sequence in growing cells. Such a role of Myc proteins in gene activation has not been reported previously. PMID:24609384

  1. Proteomic profiling reveals DNA damage, nucleolar and ribosomal stress are the main responses to oxaliplatin treatment in cancer cells.

    PubMed

    Ozdian, Tomas; Holub, Dusan; Maceckova, Zuzana; Varanasi, Lakshman; Rylova, Gabriela; Rehulka, Jiri; Vaclavkova, Jana; Slavik, Hanus; Moudry, Pavel; Znojek, Pawel; Stankova, Jarmila; de Sanctis, Juan Bautista; Hajduch, Marian; Dzubak, Petr

    2017-06-06

    Oxaliplatin is widely used to treat colorectal cancer in both palliative and adjuvant settings. It is also being tested for use in treating hematological, esophageal, biliary tract, pancreatic, gastric, and hepatocellular cancers. Despite its routine clinical use, little is known about the responses it induces in cancer cells. Therefore the whole-cell proteomics study was conducted to characterize the cellular response induced by oxaliplatin. Chemosensitive CCRF-CEM cells were treated with oxaliplatin at 29.3μM (5×IC 50 ) for 240min (half-time to caspase activation). The proteomes of un-/treated cells were then compared by high-resolution mass spectrometry, revealing 4049 proteins expressed over 3 biological replicates. Among these proteins, 76 were significantly downregulated and 31 significantly upregulated in at least two replicates. In agreement with the DNA-damaging effects of platinum drugs, proteins involved in DNA damage responses were present in both the upregulated and downregulated groups. The downregulated proteins were divided into three subgroups; i) centrosomal proteins, ii) RNA processing and iii) ribosomal proteins, which indicates nucleolar and ribosomal stress. In conclusion, our data supported by further validation experiments indicate the initial cellular response to oxaliplatin is the activation of DNA damage response, which in turn or in parallel triggers nucleolar and ribosomal stress. We have performed a whole-cell proteomic study of cellular response to oxaliplatin treatment, which is the drug predominantly used in the treatment of colorectal cancer. Compared to its predecessors, cisplatin and carboplatin, there is only a small fraction of studies dedicated to oxaliplatin. From those studies, most of them are focused on modification of treatment regimens or study of oxaliplatin in new cancer diagnoses. Cellular response hasn't been studied deeply and to our best knowledge, this is the first whole-cell proteomics study focused exclusively

  2. Principles of protein targeting to the nucleolus.

    PubMed

    Martin, Robert M; Ter-Avetisyan, Gohar; Herce, Henry D; Ludwig, Anne K; Lättig-Tünnemann, Gisela; Cardoso, M Cristina

    2015-01-01

    The nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of rRNA synthesis and assembly of ribosomes. Nucleolar proteins dynamically localize and accumulate in this nuclear compartment relative to the surrounding nucleoplasm. In this study, we have assessed the molecular requirements that are necessary and sufficient for the localization and accumulation of peptides and proteins inside the nucleoli of living cells. The data showed that positively charged peptide entities composed of arginines alone and with an isoelectric point at and above 12.6 are necessary and sufficient for mediating significant nucleolar accumulation. A threshold of 6 arginines is necessary for peptides to accumulate in nucleoli, but already 4 arginines are sufficient when fused within 15 amino acid residues of a nuclear localization signal of a protein. Using a pH sensitive dye, we found that the nucleolar compartment is particularly acidic when compared to the surrounding nucleoplasm and, hence, provides the ideal electrochemical environment to bind poly-arginine containing proteins. In fact, we found that oligo-arginine peptides and GFP fusions bind RNA in vitro. Consistent with RNA being the main binding partner for arginines in the nucleolus, we found that the same principles apply to cells from insects to man, indicating that this mechanism is highly conserved throughout evolution.

  3. Tissue–selective effects of nucleolar stress and rDNA damage in developmental disorders

    PubMed Central

    Calo, Eliezer; Gu, Bo; Bowen, Margot E.; Aryan, Fardin; Zalc, Antoine; Liang, Jialiang; Flynn, Ryan A.; Swigut, Tomek; Chang, Howard Y.; Attardi, Laura D.; Wysocka, Joanna

    2018-01-01

    Many craniofacial disorders are caused by heterozygous mutations in general regulators of housekeeping cellular functions such as transcription or ribosome biogenesis1,2. Although it is understood that many of these malformations are a consequence of defects in cranial neural crest cells, a cell type that gives rise to most of the facial structures during embryogenesis3,4, the mechanism underlying cell-type selectivity of these defects remains largely unknown. By exploring molecular functions of DDX21, a DEAD-box RNA helicase involved in control of both RNA polymerase (Pol) I- and II-dependent transcriptional arms of ribosome biogenesis5, we uncovered a previously unappreciated mechanism linking nucleolar dysfunction, ribosomal DNA (rDNA) damage, and craniofacial malformations. Here we demonstrate that genetic perturbations associated with Treacher Collins syndrome, a craniofacial disorder caused by heterozygous mutations in components of the Pol I transcriptional machinery or its cofactor TCOF1 (ref. 1), lead to relocalization of DDX21 from the nucleolus to the nucleoplasm, its loss from the chromatin targets, as well as inhibition of rRNA processing and downregulation of ribosomal protein gene transcription. These effects are cell-type-selective, cell-autonomous, and involve activation of p53 tumour-suppressor protein. We further show that cranial neural crest cells are sensitized to p53-mediated apoptosis, but blocking DDX21 loss from the nucleolus and chromatin rescues both the susceptibility to apoptosis and the craniofacial phenotypes associated with Treacher Collins syndrome. This mechanism is not restricted to cranial neural crest cells, as blood formation is also hypersensitive to loss of DDX21 functions. Accordingly, ribosomal gene perturbations associated with Diamond-Blackfan anaemia disrupt DDX21 localization. At the molecular level, we demonstrate that impaired rRNA synthesis elicits a DNA damage response, and that rDNA damage results in tissue

  4. Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders.

    PubMed

    Calo, Eliezer; Gu, Bo; Bowen, Margot E; Aryan, Fardin; Zalc, Antoine; Liang, Jialiang; Flynn, Ryan A; Swigut, Tomek; Chang, Howard Y; Attardi, Laura D; Wysocka, Joanna

    2018-02-01

    Many craniofacial disorders are caused by heterozygous mutations in general regulators of housekeeping cellular functions such as transcription or ribosome biogenesis. Although it is understood that many of these malformations are a consequence of defects in cranial neural crest cells, a cell type that gives rise to most of the facial structures during embryogenesis, the mechanism underlying cell-type selectivity of these defects remains largely unknown. By exploring molecular functions of DDX21, a DEAD-box RNA helicase involved in control of both RNA polymerase (Pol) I- and II-dependent transcriptional arms of ribosome biogenesis, we uncovered a previously unappreciated mechanism linking nucleolar dysfunction, ribosomal DNA (rDNA) damage, and craniofacial malformations. Here we demonstrate that genetic perturbations associated with Treacher Collins syndrome, a craniofacial disorder caused by heterozygous mutations in components of the Pol I transcriptional machinery or its cofactor TCOF1 (ref. 1), lead to relocalization of DDX21 from the nucleolus to the nucleoplasm, its loss from the chromatin targets, as well as inhibition of rRNA processing and downregulation of ribosomal protein gene transcription. These effects are cell-type-selective, cell-autonomous, and involve activation of p53 tumour-suppressor protein. We further show that cranial neural crest cells are sensitized to p53-mediated apoptosis, but blocking DDX21 loss from the nucleolus and chromatin rescues both the susceptibility to apoptosis and the craniofacial phenotypes associated with Treacher Collins syndrome. This mechanism is not restricted to cranial neural crest cells, as blood formation is also hypersensitive to loss of DDX21 functions. Accordingly, ribosomal gene perturbations associated with Diamond-Blackfan anaemia disrupt DDX21 localization. At the molecular level, we demonstrate that impaired rRNA synthesis elicits a DNA damage response, and that rDNA damage results in tissue-selective and

  5. Bioinformatic analysis of the nucleolus.

    PubMed

    Leung, Anthony K L; Andersen, Jens S; Mann, Matthias; Lamond, Angus I

    2003-12-15

    The nucleolus is a plurifunctional, nuclear organelle, which is responsible for ribosome biogenesis and many other functions in eukaryotes, including RNA processing, viral replication and tumour suppression. Our knowledge of the human nucleolar proteome has been expanded dramatically by the two recent MS studies on isolated nucleoli from HeLa cells [Andersen, Lyon, Fox, Leung, Lam, Steen, Mann and Lamond (2002) Curr. Biol. 12, 1-11; Scherl, Coute, Deon, Calle, Kindbeiter, Sanchez, Greco, Hochstrasser and Diaz (2002) Mol. Biol. Cell 13, 4100-4109]. Nearly 400 proteins were identified within the nucleolar proteome so far in humans. Approx. 12% of the identified proteins were previously shown to be nucleolar in human cells and, as expected, nearly all of the known housekeeping proteins required for ribosome biogenesis were identified in these analyses. Surprisingly, approx. 30% represented either novel or uncharacterized proteins. This review focuses on how to apply the derived knowledge of this newly recognized nucleolar proteome, such as their amino acid/peptide composition and their homologies across species, to explore the function and dynamics of the nucleolus, and suggests ways to identify, in silico, possible functions of the novel/uncharacterized proteins and potential interaction networks within the human nucleolus, or between the nucleolus and other nuclear organelles, by drawing resources from the public domain.

  6. Insulin/IGF1-PI3K-dependent nucleolar localization of a glycolytic enzyme--phosphoglycerate mutase 2, is necessary for proper structure of nucleolus and RNA synthesis.

    PubMed

    Gizak, Agnieszka; Grenda, Marcin; Mamczur, Piotr; Wisniewski, Janusz; Sucharski, Filip; Silberring, Jerzy; McCubrey, James A; Wisniewski, Jacek R; Rakus, Dariusz

    2015-07-10

    Phosphoglycerate mutase (PGAM), a conserved, glycolytic enzyme has been found in nucleoli of cancer cells. Here, we present evidence that accumulation of PGAM in the nucleolus is a universal phenomenon concerning not only neoplastically transformed but also non-malignant cells. Nucleolar localization of the enzyme is dependent on the presence of the PGAM2 (muscle) subunit and is regulated by insulin/IGF-1-PI3K signaling pathway as well as drugs influencing ribosomal biogenesis. We document that PGAM interacts with several 40S and 60S ribosomal proteins and that silencing of PGAM2 expression results in disturbance of nucleolar structure, inhibition of RNA synthesis and decrease of the mitotic index of squamous cell carcinoma cells. We conclude that presence of PGAM in the nucleolus is a prerequisite for synthesis and initial assembly of new pre-ribosome subunits.

  7. A new link between stress response and nucleolar function during pollen development in Arabidopsis mediated by AtREN1 protein.

    PubMed

    Reňák, David; Gibalová, Antónia; Solcová, Katarzyna; Honys, David

    2014-03-01

    Heat shock transcription factors (Hsfs) are involved in multiple aspects of stress response and plant growth. However, their role during male gametophyte development is largely unknown, although the generative phase is the most sensitive and critical period in the plant life cycle. Based on a wide screen of T-DNA mutant lines, we identified the atren1 mutation (restricted to nucleolus1) in early male gametophytic gene At1g77570, which has the closest homology to HSFA5 gene, the member of a heat shock transcription factor (HSF) gene family. The mutation causes multiple defects in male gametophyte development in both structure and function. Because the mutation disrupts an early acting (AtREN1) gene, these pollen phenotype abnormalities appear from bicellular pollen stage to pollen maturation. Moreover, the consequent progamic phase is compromised as well as documented by pollen germination defects and limited transmission via male gametophyte. In addition, atren1/- plants are defective in heat stress (HS) response and produce notably higher proportion of aberrant pollen grains. AtREN1 protein is targeted specifically to the nucleolus that, together with the increased size of the nucleolus in atren1 pollen, suggests that it is likely to be involved in ribosomal RNA biogenesis or other nucleolar functions. © 2013 John Wiley & Sons Ltd.

  8. Plant nucleolar DNA: Green light shed on the role of Nucleolin in genome organization

    PubMed Central

    Picart, Claire

    2017-01-01

    ABSTRACT The nucleolus forms as a consequence of ribosome biogenesis, but it is also implicated in other cell functions. The identification of nucleolus-associated chromatin domains (NADs) in animal and plant cells revealed the presence of DNA sequences other than rRNA genes in and around the nucleolus. NADs display repressive chromatin signatures and harbour repetitive DNA, but also tRNA genes and RNA polymerase II-transcribed genes. Furthermore, the identification of NADs revealed a specific function of the nucleolus and the protein Nucleolin 1 (NUC1) in telomere biology. Here, we discuss the significance of these data with regard to nucleolar structure and to the role of the nucleolus and NUC1 in global genome organization and stability. PMID:27644794

  9. Ultrastructural and Molecular Analyses Reveal Enhanced Nucleolar Activity in Medicago truncatula Cells Overexpressing the MtTdp2α Gene

    PubMed Central

    Macovei, Anca; Faè, Matteo; Biggiogera, Marco; de Sousa Araújo, Susana; Carbonera, Daniela; Balestrazzi, Alma

    2018-01-01

    The role of tyrosyl-DNA phosphodiesterase 2 (Tdp2) involved in the repair of 5′-end-blocking DNA lesions is still poorly explored in plants. To gain novel insights, Medicago truncatula suspension cultures overexpressing the MtTdp2α gene (Tdp2α-13C and Tdp2α-28 lines, respectively) and a control (CTRL) line carrying the empty vector were investigated. Transmission electron microscopy (TEM) revealed enlarged nucleoli (up to 44% expansion of the area, compared to CTRL), the presence of nucleolar vacuoles, increased frequency of multinucleolate cells (up to 4.3-fold compared to CTRL) and reduced number of ring-shaped nucleoli in Tdp2α-13C and Tdp2α-28 lines. Ultrastructural data suggesting for enhanced nucleolar activity in MtTdp2α-overexpressing lines were integrated with results from bromouridine incorporation. The latter revealed an increase of labeled transcripts in both Tdp2α-13C and Tdp2α-28 cells, within the nucleolus and in the extra-nucleolar region. MtTdp2α-overexpressing cells showed tolerance to etoposide, a selective inhibitor of DNA topoisomerase II, as evidenced by DNA diffusion assay. TEM analysis revealed etoposide-induced rearrangements within the nucleolus, resembling the nucleolar caps observed in animal cells under transcription impairment. Based on these findings it is evident that MtTdp2α-overexpression enhances nucleolar activity in plant cells. PMID:29868059

  10. Identification of "tumor-associated" nucleolar antigens in human urothelial cancer.

    PubMed

    Yu, D; Pietro, T; Jurco, S; Scardino, P T

    1987-09-01

    Nucleoli isolated from HeLa S3 cells were used to produce rabbit antisera capable of binding nucleoli of transitional cell carcinomas (TCCa) of the bladder. Cross-reactivity of the rabbit antiserum with normal nucleoli was reduced by absorption with fetal calf serum, normal human serum, and human placental nucleoli. This antinucleolar antiserum exhibited strong reactivity in immunoperoxidase assays performed on specimens of human bladder cancer. In frozen tissue sections of 24 patients with TCCa and eight individuals without tumor, nucleolar staining was observed in all malignant specimens, but was not observed in seven of the normal specimens. Cytologic examination of bladder washing specimens from 47 normal individuals showed absence of nucleolar staining in 43 (91%) of 47 normal specimens while 12 (86%) of 14 specimens from patients with TCCa were positive. These results suggest that there are antigens associated with the nucleoli of HeLa cells and transitional cell carcinomas which are generally absent (or in low concentration) in normal human urothelial cells, and that antisera to these antigens may be useful in the cytologic diagnosis of human transitional cell carcinoma.

  11. Comparative ultrastructure of CRM1-Nucleolar bodies (CNoBs), Intranucleolar bodies (INBs) and hybrid PML/p62 bodies uncovers new facets of nuclear body dynamic and diversity

    PubMed Central

    Souquere, Sylvie; Weil, Dominique; Pierron, Gérard

    2015-01-01

    In order to gain insights on the nuclear organization in mammalian cells, we characterized ultrastructurally nuclear bodies (NBs) previously described as fluorescent foci. Using high resolution immunoelectron microscopy (I-EM), we provide evidence that CNoBs (CRM1-Nucleolar bodies) and INBs (Intranucleolar bodies) are distinct genuine nucleolar structures in untreated HeLa cells. INBs are fibrillar and concentrate the post-translational modifiers SUMO1 and SUMO-2/3 as strongly as PML bodies. In contrast, the smallest CRM1-labeled CNoBs are vitreous, preferentially located at the periphery of the nucleolus and, intricately linked to the chromatin network. Upon blockage of the CRM1-dependent nuclear export by leptomycin B (LMB), CNoBs disappear while p62/SQSTM1-containing fibrillar nuclear bodies are induced. These p62 bodies are enriched in ubiquitinated proteins. They progressively associate with PML bodies to form hybrid bodies of which PML decorates the periphery while p62/SQSTM1 is centrally-located. Our study is expanding the repertoire of nuclear bodies; revealing a previously unrecognized composite nucleolar landscape and a new mode of interactions between ubiquitous (PML) and stress-induced (p62) nuclear bodies, resulting in the formation of hybrid bodies. PMID:26275159

  12. Nucleolar cycle and chromatoid body formation: is there a relationship between these two processes during spermatogenesis of Dendropsophus minutus (Amphibia, Anura)?

    PubMed

    Peruquetti, Rita Luiza; Taboga, Sebastião Roberto; Santos, Lia Raquel de Souza; Oliveira, Classius de; Azeredo-Oliveira, Maria Tercília Vilela de

    2011-01-01

    The goals of this study were to monitor the nucleolar material distribution during Dendropsophus minutus spermatogenesis using cytological and cytochemical techniques and ultrastructural analysis, as well as to compare the nucleolar material distribution to the formation of the chromatoid body (CB) in the germ epithelium of this amphibian species. Nucleolar fragmentation occurred during the pachytene of prophase I and nucleolus reorganization occurred in the early spermatid nucleus. The area of the spermatogonia nucleolus was significantly larger than that of the earlier spermatid nucleolus. Ultrastructural analysis showed an accumulation of nuages in the spermatogonia cytoplasm, which form the CB before nucleolar fragmentation. The CB was observed in association with mitochondrial clusters in the cytoplasm of primary spermatocytes, as well as in those of earlier spermatids. In conclusion, the nucleolus seems to be related to CB formation during spermatogenesis of D. minutus, because, at the moment of nucleolus fragmentation in the primary spermatocytes, the CB area reaches a considerable size and is able to execute its important functions during spermatogenesis. The reorganized nucleolus of the earlier spermatids has a smaller area due to several factors, among them the probable migration of nucleolar fragments from the nucleus to the cytoplasm, and plays a part in the CB chemical composition. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Plasmodium vivax: a monoclonal antibody recognizes a circumsporozoite protein precursor on the sporozoite surface.

    PubMed

    Gonzalez-Ceron, L; Rodriguez, M H; Wirtz, R A; Sina, B J; Palomeque, O L; Nettel, J A; Tsutsumi, V

    1998-11-01

    The major surface circumsporozoite (CS) proteins are known to play a role in malaria sporozoite development and invasion of invertebrate and vertebrate host cells. Plasmodium vivax CS protein processing during mosquito midgut oocyst and salivary gland sporozoite development was studied using monoclonal antibodies which recognize different CS protein epitopes. Monoclonal antibodies which react with the CS amino acid repeat sequences by ELISA recognized a 50-kDa precursor protein in immature oocyst and additional 47- and 42-kDa proteins in older oocysts. A 42-kDa CS protein was detected after initial sporozoite invasion of mosquito salivary glands and an additional 50-kDa precursor CS protein observed later in infected salivary glands. These data confirm previous results with other Plasmodium species, in which more CS protein precursors were detected in oocysts than in salivary gland sporozoites. A monoclonal antibody (PvPCS) was characterized which reacts with an epitope found only in the 50-kDa precursor CS protein. PvPCS reacted with all P. vivax sporozoite strains tested by indirect immunofluorescent assay, homogeneously staining the sporozoite periphery with much lower intensity than that produced by anti-CS repeat antibodies. Immunoelectron microscopy using PvPCS showed that the CS protein precursor was associated with peripheral cytoplasmic vacuoles and membranes of sporoblast and budding sporozoites in development oocysts. In salivary gland sporozoites, the CS protein precursor was primarily associated with micronemes and sporozoite membranes. Our results suggest that the 50-kDa CS protein precursor is synthesized intracellularly and secreted on the membrane surface, where it is proteolytically processed to form the 42-kDa mature CS protein. These data indicate that differences in CS protein processing in oocyst and salivary gland sporozoites development may occur. Copyright 1998 Academic Press.

  14. Phase Transitions in the Nucleus: the functional implications of concentration-dependent assembly of a Liquid-like RNA/Protein Body

    NASA Astrophysics Data System (ADS)

    Zhu, Lian; Weber, Stephanie; Berry, Joel; Vaidya, Nilesh; Haataja, Mikko; Brangwynne, Clifford

    2015-03-01

    The nucleolus is a liquid-like membrane-less nuclear body which plays an important role in cell growth and size control. By modulating nucleolar component concentration through RNAi conditions that change C. elegans cell size, we find that nucleoli only assemble above a threshold concentration; moreover, the ripening dynamics of nucleated droplets are consistent with the hypothesis that the assembly of the nucleolus represents an intracellular liquid-liquid phase transition. A key question is how this phase-transition is linked to the primary function of the nucleolus, in transcribing and processing ribosomal RNA. To address this, we characterize the localization of RNA Polymerase I, a key transcriptional enzyme, into nucleolar foci as a function of nucleolar component concentration. Our results suggest that there are a small number of key disordered phosphoproteins that may serve as a link between transcription and assembly. Finally, we present preliminary results using a reduced model system consisting of purified nucleolar proteins to assess the ability of nucleolar proteins to drive liquid-liquid phase separation in vitro. These results lay the foundation for a quantitative understanding of intracellular phase transitions and their impact on biomedically-critical RNA-processing steps.

  15. Myc-induced anchorage of the rDNA IGS region to nucleolar matrix modulates growth-stimulated changes in higher-order rDNA architecture.

    PubMed

    Shiue, Chiou-Nan; Nematollahi-Mahani, Amir; Wright, Anthony P H

    2014-05-01

    Chromatin domain organization and the compartmentalized distribution of chromosomal regions are essential for packaging of deoxyribonucleic acid (DNA) in the eukaryotic nucleus as well as regulated gene expression. Nucleoli are the most prominent morphological structures of cell nuclei and nucleolar organization is coupled to cell growth. It has been shown that nuclear scaffold/matrix attachment regions often define the base of looped chromosomal domains in vivo and that they are thereby critical for correct chromosome architecture and gene expression. Here, we show regulated organization of mammalian ribosomal ribonucleic acid genes into distinct chromatin loops by tethering to nucleolar matrix via the non-transcribed inter-genic spacer region of the ribosomal DNA (rDNA). The rDNA gene loop structures are induced specifically upon growth stimulation and are dependent on the activity of the c-Myc protein. Matrix-attached rDNA genes are hypomethylated at the promoter and are thus available for transcriptional activation. rDNA genes silenced by methylation are not recruited to the matrix. c-Myc, which has been shown to induce rDNA transcription directly, is physically associated with rDNA gene looping structures and the intergenic spacer sequence in growing cells. Such a role of Myc proteins in gene activation has not been reported previously. © 2014 The Author(s). Published by Oxford University Press [on behalf of Nucleic Acids Research].

  16. Influenza A H3N2 subtype virus NS1 protein targets into the nucleus and binds primarily via its C-terminal NLS2/NoLS to nucleolin and fibrillarin

    PubMed Central

    2012-01-01

    Background Influenza A virus non-structural protein 1 (NS1) is a virulence factor, which is targeted into the cell cytoplasm, nucleus and nucleolus. NS1 is a multi-functional protein that inhibits host cell pre-mRNA processing and counteracts host cell antiviral responses. Previously, we have shown that the NS1 protein of the H3N2 subtype influenza viruses possesses a C-terminal nuclear localization signal (NLS) that also functions as a nucleolar localization signal (NoLS) and targets the protein into the nucleolus. Results Here, we show that the NS1 protein of the human H3N2 virus subtype interacts in vitro primarily via its C-terminal NLS2/NoLS and to a minor extent via its N-terminal NLS1 with the nucleolar proteins, nucleolin and fibrillarin. Using chimeric green fluorescence protein (GFP)-NS1 fusion constructs, we show that the nucleolar retention of the NS1 protein is determined by its C-terminal NLS2/NoLS in vivo. Confocal laser microscopy analysis shows that the NS1 protein colocalizes with nucleolin in nucleoplasm and nucleolus and with B23 and fibrillarin in the nucleolus of influenza A/Udorn/72 virus-infected A549 cells. Since some viral proteins contain NoLSs, it is likely that viruses have evolved specific nucleolar functions. Conclusion NS1 protein of the human H3N2 virus interacts primarily via the C-terminal NLS2/NoLS and to a minor extent via the N-terminal NLS1 with the main nucleolar proteins, nucleolin, B23 and fibrillarin. PMID:22909121

  17. Loss of Nucleolar Histone Chaperone NPM1 Triggers Rearrangement of Heterochromatin and Synergizes with a Deficiency in DNA Methyltransferase DNMT3A to Drive Ribosomal DNA Transcription*

    PubMed Central

    Holmberg Olausson, Karl; Nistér, Monica; Lindström, Mikael S.

    2014-01-01

    Nucleoli are prominent nuclear structures assembled and organized around actively transcribed ribosomal DNA (rDNA). The nucleolus has emerged as a platform for the organization of chromatin enriched for repressive histone modifications associated with repetitive DNA. NPM1 is a nucleolar protein required for the maintenance of genome stability. However, the role of NPM1 in nucleolar chromatin dynamics and ribosome biogenesis remains unclear. We found that normal fibroblasts and cancer cells depleted of NPM1 displayed deformed nucleoli and a striking rearrangement of perinucleolar heterochromatin, as identified by immunofluorescence staining of trimethylated H3K9, trimethylated H3K27, and heterochromatin protein 1γ (HP1γ/CBX3). By co-immunoprecipitation we found NPM1 associated with HP1γ and core and linker histones. Moreover, NPM1 was required for efficient tethering of HP1γ-enriched chromatin to the nucleolus. We next tested whether the alterations in perinucleolar heterochromatin architecture correlated with a difference in the regulation of rDNA. U1242MG glioma cells depleted of NPM1 presented with altered silver staining of nucleolar organizer regions, coupled to a modest decrease in H3K9 di- and trimethylation at the rDNA promoter. rDNA transcription and cell proliferation were sustained in these cells, indicating that altered organization of heterochromatin was not secondary to inhibition of rDNA transcription. Furthermore, knockdown of DNA methyltransferase DNMT3A markedly enhanced rDNA transcription in NPM1-depleted U1242MG cells. In summary, this study highlights a function of NPM1 in the spatial organization of nucleolus-associated heterochromatin. PMID:25349213

  18. Direct visualization of nucleolar G-quadruplexes in live cells by using a fluorescent light-up probe.

    PubMed

    Zhang, Suge; Sun, Hongxia; Chen, Hongbo; Li, Qian; Guan, Aijiao; Wang, Lixia; Shi, Yunhua; Xu, Shujuan; Liu, Meirong; Tang, Yalin

    2018-05-01

    Direct detection of G-quadruplexes in human cells has become an important issue due to the vital role of G-quadruplex related to biological functions. Despite several probes have been developed for detection of the G-quadruplexes in cytoplasm or whole cells, the probe being used to monitor the nucleolar G-quadruplexes is still lacking. Formation of the nucleolar G-quadruplex structures was confirmed by using circular dichroism (CD) spectroscopy. The binding affinity and selectivity of Thioflavin T (ThT) towards various DNA/RNA motifs in solution and gel system were measured by using fluorescence spectroscopy and polyacrylamide gel electrophoresis (PAGE), respectively. G-quadruplex imaging in live cells was directly captured by using confocal laser scanning microscopy (CLSM). Formation of the rDNA and rRNA G-quadruplex structures is demonstrated in vitro. ThT is found to show much higher affinity and selectivity towards these G-quadruplex structures versus other nucleic acid motifs either in solution or in gel system. The nucleolar G-quadruplexes in living cells are visualized by using ThT as a fluorescent probe. G-quadruplex-ligand treatments in live cells lead to sharp decrease of ThT signal. The natural existence of the G-quadruplexes structure in the nucleoli of living cells is directly visualized by using ThT as an indicator. The research provides substantive evidence for formation of the rRNA G-quadruplex structures, and also offers an effective probe for direct visualization of the nucleolar G-quadruplexes in living cells. Copyright © 2018. Published by Elsevier B.V.

  19. Altered gravity causes the changes in the proteins NoA100 in plant cell nucleoli

    NASA Astrophysics Data System (ADS)

    Sobol, Margarita A.; Gonzalez-Camacho, Fernando; Kordyum, Elizabeth L.; Medina, Francisco Javier

    2005-08-01

    A nucleolar protein homologous to the mammalian nucleolin and to the onion nucleolin-like protein NopA100 was detected in nuclear soluble protein fraction from Lepidium sativum root meristematic cells, using the specific silver staining method and the cross-reaction with the anti-NopA100 antibody. In 2D Western blots of soluble nuclear fraction, NopA100 was revealed as a smear extending through a certain range of pI. In extracts obtained from seedlings grown under clinorotation, the extension of the pI range was shorter than in the stationary control indicating a lower phosphorylation of the protein. This suggests that altered gravity causes a decrease in the rate of nucleolar activity.

  20. SAP-like domain in nucleolar spindle associated protein mediates mitotic chromosome loading as well as interphase chromatin interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verbakel, Werner, E-mail: werner.verbakel@chem.kuleuven.be; Carmeliet, Geert, E-mail: geert.carmeliet@med.kuleuven.be; Engelborghs, Yves, E-mail: yves.engelborghs@fys.kuleuven.be

    2011-08-12

    Highlights: {yields} The SAP-like domain in NuSAP is a functional DNA-binding domain with preference for dsDNA. {yields} This SAP-like domain is essential for chromosome loading during early mitosis. {yields} NuSAP is highly dynamic on mitotic chromatin, as evident from photobleaching experiments. {yields} The SAP-like domain also mediates NuSAP-chromatin interaction in interphase nucleoplasm. -- Abstract: Nucleolar spindle associated protein (NuSAP) is a microtubule-stabilizing protein that localizes to chromosome arms and chromosome-proximal microtubules during mitosis and to the nucleus, with enrichment in the nucleoli, during interphase. The critical function of NuSAP is underscored by the finding that its depletion in HeLa cellsmore » results in various mitotic defects. Moreover, NuSAP is found overexpressed in multiple cancers and its expression levels often correlate with the aggressiveness of cancer. Due to its localization on chromosome arms and combination of microtubule-stabilizing and DNA-binding properties, NuSAP takes a special place within the extensive group of spindle assembly factors. In this study, we identify a SAP-like domain that shows DNA binding in vitro with a preference for dsDNA. Deletion of the SAP-like domain abolishes chromosome arm binding of NuSAP during mitosis, but is not sufficient to abrogate its chromosome-proximal localization after anaphase onset. Fluorescence recovery after photobleaching experiments revealed the highly dynamic nature of this NuSAP-chromatin interaction during mitosis. In interphase cells, NuSAP also interacts with chromatin through its SAP-like domain, as evident from its enrichment on dense chromatin regions and intranuclear mobility, measured by fluorescence correlation spectroscopy. The obtained results are in agreement with a model where NuSAP dynamically stabilizes newly formed microtubules on mitotic chromosomes to enhance chromosome positioning without immobilizing these microtubules. Interphase Nu

  1. The nucleolar helicase DDX56 redistributes to West Nile virus assembly sites.

    PubMed

    Reid, Colleen R; Hobman, Tom C

    2017-01-01

    Flaviviruses, including the human pathogen, West Nile virus (WNV), are known to co-opt many host factors for their replication and propagation. To this end, we previously reported that the nucleolar DEAD-box RNA helicase, DDX56, is important for production of infectious WNV virions. In this study, we show that WNV infection results in relocalization of DDX56 from nucleoli to virus assembly sites on the endoplasmic reticululm (ER), an observation that is consistent with a role for DDX56 in WNV virion assembly. Super-resolution microscopy revealed that capsid and DDX56 localized to the same subcompartment of the ER, however, unexpectedly, stable interaction between these two proteins was only detected in the nucleus. Together, these data suggest that DDX56 relocalizes to the site of virus assembly during WNV infection and that its interaction with WNV capsid in the cytoplasm may occur transiently during virion morphogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Nucleolar organizer regions activity in lymphocytes of patients with laryngeal carcinoma.

    PubMed

    Maione, S; Lamberti, L

    1993-12-01

    The activity of nucleolar organizer regions (Ag-NORs) and the frequency of NOR associations in chromosomes of phytohemagglutinin-stimulated lymphocytes from 12 patients with laryngeal carcinoma and 12 healthy subjects were studied using the gelatine silver staining technique. This study was undertaken to examine whether any disease associated changes occur in NOR activity. A lower mean number of Ag-NORs per metaphase (t test, 0.05 > p > 0.02) was found in patients compared to controls. This difference was not due to any specific group of acrocentric chromosomes (D or G). The mean number of NOR associations per metaphase was also found to be markedly lower (t test, 0.01 > p > 0.001) in patients than in controls. This difference was principally due to the significant decrease in the associations between 2 chromosomes (t test, 0.02 > p > 0.01), and in particular to the decrease in the D-G type associations (t test, 0.05 > p > 0.02). These findings are discussed in relation to existing data on the nucleolar activity of lymphocytes in a variety of solid tumours and leukemias.

  3. Meiotic nucleolar cycle and chromatoid body formation during the rat (Rattus novergicus) and mouse (Mus musculus) spermiogenesis.

    PubMed

    Peruquetti, Rita Luiza; Assis, Isabella Mariana; Taboga, Sebastião Roberto; de Azeredo-Oliveira, Maria Tercília Vilela

    2008-06-01

    The aims of the present study were to follow the nucleolar cycle in spermiogenesis of the laboratory rodents Rattus novergicus and Mus musculus, to verify the relationship between the nucleolar component and chromatoid body (CB) formation and to investigate the function of this cytoplasmic supramolecular structure in spermatogenic haploid cells. Histological sections of adult seminiferous tubules were analyzed cytochemically by light microscopy and ultrastructural procedures by transmission electron microscopy. The results reveal that in early spermatids, the CB was visualized in association with the Golgi cisterns indicating that this structure may participate in the acrosome formation process. In late spermatids, the CB was observed near the axonema, a fact suggesting that this structure may support the formation of the spermatozoon tail. In conclusion, our data showed that there is disintegration of spermatid nucleoli at the beginning of spermatogenesis and a fraction of this nucleolar material migrates to the cytoplasm, where a specific structure is formed, known as the "chromatoid body", which, apparently, participates in some parts of the rodent spermiogenesis process.

  4. The Cytoplasmic Zinc Finger Protein ZPR1 Accumulates in the Nucleolus of Proliferating Cells

    PubMed Central

    Galcheva-Gargova, Zoya; Gangwani, Laxman; Konstantinov, Konstantin N.; Mikrut, Monique; Theroux, Steven J.; Enoch, Tamar; Davis, Roger J.

    1998-01-01

    The zinc finger protein ZPR1 translocates from the cytoplasm to the nucleus after treatment of cells with mitogens. The function of nuclear ZPR1 has not been defined. Here we demonstrate that ZPR1 accumulates in the nucleolus of proliferating cells. The role of ZPR1 was examined using a gene disruption strategy. Cells lacking ZPR1 are not viable. Biochemical analysis demonstrated that the loss of ZPR1 caused disruption of nucleolar function, including preribosomal RNA expression. These data establish ZPR1 as an essential protein that is required for normal nucleolar function in proliferating cells. PMID:9763455

  5. Data on the association of the nuclear envelope protein Sun1 with nucleoli.

    PubMed

    Moujaber, Ossama; Omran, Nawal; Kodiha, Mohamed; Pié, Brigitte; Cooper, Ellis; Presley, John F; Stochaj, Ursula

    2017-08-01

    SUN proteins participate in diverse cellular activities, many of which are connected to the nuclear envelope. Recently, the family member SUN1 has been linked to novel biological activities. These include the regulation of nucleoli, intranuclear compartments that assemble ribosomal subunits. We show that SUN1 associates with nucleoli in several mammalian epithelial cell lines. This nucleolar localization is not shared by all cell types, as SUN1 concentrates at the nuclear envelope in ganglionic neurons and non-neuronal satellite cells. Database analyses and Western blotting emphasize the complexity of SUN1 protein profiles in different mammalian cells. We constructed a STRING network which identifies SUN1-related proteins as part of a larger network that includes several nucleolar proteins. Taken together, the current data highlight the diversity of SUN1 proteins and emphasize the possible links between SUN1 and nucleoli.

  6. Quantitative nucleolar proteomics reveals nuclear re-organization during stress- induced senescence in mouse fibroblast

    PubMed Central

    2011-01-01

    Background Nucleolus is the most prominent mammalian organelle within the nucleus which is also the site for ribosomal biogenesis. There have been many reports indicating the involvement of nucleolus in the process of aging. Several proteins related to aging have been shown to localize in the nucleolus, which suggests the role of this organelle in senescence. Results In this study, we used quantitative mass spectrometry to map the flux of proteins into and out of the nucleolus during the induction of senescence in cultured mammalian cells. Changes in the abundance of 344 nucleolar proteins in sodium butyrate-induced senescence in NIH3T3 cells were studied by SILAC (stable isotope labeling by amino acids in cell culture)-based mass spectrometry. Biochemically, we have validated the proteomic results and confirmed that B23 (nucleophosmin) protein was down-regulated, while poly (ADP-ribose) polymerase (PARP) and nuclear DNA helicase II (NDH II/DHX9/RHA) were up-regulated in the nucleolus upon treatment with sodium butyrate. Accumulation of chromatin in the nucleolus was also observed, by both proteomics and microscopy, in sodium butyrate-treated cells. Similar observations were found in other models of senescence, namely, in mitoxantrone- (MTX) treated cells and primary fibroblasts from the Lamin A knockout mice. Conclusion Our data indicate an extensive nuclear organization during senescence and suggest that the redistribution of B23 protein and chromatin can be used as an important marker for senescence. PMID:21835027

  7. Role of the Box C/D Motif in Localization of Small Nucleolar RNAs to Coiled Bodies and Nucleoli

    PubMed Central

    Narayanan, Aarthi; Speckmann, Wayne; Terns, Rebecca; Terns, Michael P.

    1999-01-01

    Small nucleolar RNAs (snoRNAs) are a large family of eukaryotic RNAs that function within the nucleolus in the biogenesis of ribosomes. One major class of snoRNAs is the box C/D snoRNAs named for their conserved box C and box D sequence elements. We have investigated the involvement of cis-acting sequences and intranuclear structures in the localization of box C/D snoRNAs to the nucleolus by assaying the intranuclear distribution of fluorescently labeled U3, U8, and U14 snoRNAs injected into Xenopus oocyte nuclei. Analysis of an extensive panel of U3 RNA variants showed that the box C/D motif, comprised of box C′, box D, and the 3′ terminal stem of U3, is necessary and sufficient for the nucleolar localization of U3 snoRNA. Disruption of the elements of the box C/D motif of U8 and U14 snoRNAs also prevented nucleolar localization, indicating that all box C/D snoRNAs use a common nucleolar-targeting mechanism. Finally, we found that wild-type box C/D snoRNAs transiently associate with coiled bodies before they localize to nucleoli and that variant RNAs that lack an intact box C/D motif are detained within coiled bodies. These results suggest that coiled bodies play a role in the biogenesis and/or intranuclear transport of box C/D snoRNAs. PMID:10397754

  8. Nucleolar Organizer Regions in Oral Squamous Cell Carcinoma

    PubMed Central

    Moradzadeh Khiavi, Monir; Vosoughhosseini, Sepideh; Halimi, Monire; Mahmoudi, Seyyed Mostafa; Yarahmadi, Asghar

    2012-01-01

    Background and aims Several diagnostic methods are being employed to detect benign and malignant lesions, one of which is silver nitrate staining for organizer regions. The number of nucleolar organizing regions (NORs) can be used to show the degree of cell activity or metabolism in pathologic lesions. This study was designed to evaluate NORs as determi-nants of precancerous and squamous cell carcinoma. Materials and methods A silver colloid technique was applied on paraffin sections of 40 cases of oral squamous cell carcinoma and 25 cases of precancerous lesions; 15 specimens of normal epithelium were selected for the control group. After staining with silver nitrate, argyrophilic nucleolar organizer regions (AgNORs) were counted in 100 epithelial cells in three groups with the use of an oil immersion and ×1000 objective lens. One-way ANOVA and a post hoc Tukey test were used for statistical analysis. Results The mean numbers and standard deviations of AgNORs were 1.58 ± 0.76 in normal epithelium, 2.1 ± 1.05 in pre-cancerous lesions and 2.43 ±1.33 in squamous cell carcinoma (SCC). There were statistically significant differences in Ag-NORs numbers between the groups (P<0.001) and significant differences in precancerous lesions between dysplastic and non-dysplastic epithelia (P<0.001). The mean AgNORs count per nucleus increased from healthy epithelium to precancer-ous lesion to SCC. Conclusion This study suggests that the silver staining technique for the detection of NORs (AgNOR) can be used to distinguish precancerous lesions and benign and malignant lesions. PMID:22991629

  9. Conserved patterns hidden within group A Streptococcus M protein hypervariability recognize human C4b-binding protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buffalo, Cosmo Z.; Bahn-Suh, Adrian J.; Hirakis, Sophia P.

    No vaccine exists against group A Streptococcus (GAS), a leading cause of worldwide morbidity and mortality. A severe hurdle is the hypervariability of its major antigen, the M protein, with >200 different M types known. Neutralizing antibodies typically recognize M protein hypervariable regions (HVRs) and confer narrow protection. In stark contrast, human C4b-binding protein (C4BP), which is recruited to the GAS surface to block phagocytic killing, interacts with a remarkably large number of M protein HVRs (apparently ~90%). Such broad recognition is rare, and we discovered a unique mechanism for this through the structure determination of four sequence-diverse M proteinsmore » in complexes with C4BP. The structures revealed a uniform and tolerant ‘reading head’ in C4BP, which detected conserved sequence patterns hidden within hypervariability. Our results open up possibilities for rational therapies that target the M–C4BP interaction, and also inform a path towards vaccine design.« less

  10. How human IgGs against myelin basic protein (MBP) recognize oligopeptides and MBP.

    PubMed

    Belov, Sergey; Buneva, Valentina N; Nevinsky, Georgy A

    2017-10-01

    Myelin basic protein (MBP) is a major protein of myelin-proteolipid shell of axons, and it plays an important role in pathogenesis of multiple sclerosis. In the literature, there are no data on how antibodies recognize different protein antigens including MBP. A stepwise increase in ligand complexity was used to estimate the relative contributions of virtually every amino acid residue (AA) of a specific 12-mer LSRFSWGAEGQK oligopeptide corresponding to immunodominant sequence of MBP to the light chains and to intact anti-MBP IgGs from sera of patients with multiple sclerosis. It was shown that the minimal ligands of the light chains of IgGs are many different free AAs (K d  = 0.51-0.016 M), and each free AA interacts with the specific subsite of the light chain intended for recognition of this AA in specific LSRFSW oligopeptide. A gradual transition from Leu to LSRFSWGAEGQK leads to an increase in the affinity from 10 -1 to 2.3 × 10 -4  M because of additive interactions of the light chain with 6 AAs of this oligopeptide and then the affinity reaches plateau. The contributions of 6 various AAs to the affinity of the oligopeptide are different (K d , M): 0.71 (S), 0.44 (R), 0.14 (F), 0.17 (S), and 0.62 (W). Affinity of nonspecific oligopeptides to the light chains of IgGs is significantly lower. Intact MBP interacts with both light and heavy chains of IgGs demonstrating 192-fold higher affinity than the specific oligopeptide. It is a first quantitative analysis of the mechanism of proteins recognition by antibodies. The thermodynamic model was constructed to describe the interactions of IgGs with MBP. The data obtained can be very useful for understanding how antibodies against many different proteins can recognize these proteins. Copyright © 2017 John Wiley & Sons, Ltd.

  11. An abundant nucleolar phosphoprotein is associated with ribosomal DNA in Tetrahymena macronuclei.

    PubMed Central

    McGrath, K E; Smothers, J F; Dadd, C A; Madireddi, M T; Gorovsky, M A; Allis, C D

    1997-01-01

    An abundant 52-kDa phosphoprotein was identified and characterized from macronuclei of the ciliated protozoan Tetrahymena thermophila. Immunoblot analyses combined with light and electron microscopic immunocytochemistry demonstrate that this polypeptide, termed Nopp52, is enriched in the nucleoli of transcriptionally active macronuclei and missing altogether from transcriptionally inert micronuclei. The cDNA sequence encoding Nopp52 predicts a polypeptide whose amino-terminal half consists of multiple acidic/serine-rich regions alternating with basic/proline-rich regions. Multiple serines located in these acidic stretches lie within casein kinase II consensus motifs, and Nopp52 is an excellent substrate for casein kinase II in vitro. The carboxyl-terminal half of Nopp52 contains two RNA recognition motifs and an extreme carboxyl-terminal domain rich in glycine, arginine, and phenylalanine, motifs common in many RNA processing proteins. A similar combination and order of motifs is found in vertebrate nucleolin and yeast NSR1, suggesting that Nopp52 is a member of a family of related nucleolar proteins. NSR1 and nucleolin have been implicated in transcriptional regulation of rDNA and rRNA processing. Consistent with a role in ribosomal gene metabolism, rDNA and Nopp52 colocalize in situ, as well as by cross-linking and immunoprecipitation experiments, demonstrating an association between Nopp52 and rDNA in vivo. Images PMID:9017598

  12. Transcriptional analysis of nucleolar dominance in polyploid plants: Biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica

    PubMed Central

    Chen, Z. Jeffrey; Pikaard, Craig S.

    1997-01-01

    Nucleolar dominance is an epigenetic phenomenon that describes the formation of nucleoli around rRNA genes inherited from only one parent in the progeny of an interspecific hybrid. Despite numerous cytogenetic studies, little is known about nucleolar dominance at the level of rRNA gene expression in plants. We used S1 nuclease protection and primer extension assays to define nucleolar dominance at a molecular level in the plant genus Brassica. rRNA transcription start sites were mapped in three diploids and in three allotetraploids (amphidiploids) and one allohexaploid species derived from these diploid progenitors. rRNA transcripts of only one progenitor were detected in vegetative tissues of each polyploid. Dominance was independent of maternal effect, ploidy, or rRNA gene dosage. Natural and newly synthesized amphidiploids yielded the same results, arguing against substantial evolutionary effects. The hypothesis that nucleolar dominance in plants is correlated with physical characteristics of rRNA gene intergenic spacers is not supported in Brassica. Furthermore, in Brassica napus, rRNA genes silenced in vegetative tissues were found to be expressed in all floral organs, including sepals and petals, arguing against the hypothesis that passage through meiosis is needed to reactivate suppressed genes. Instead, the transition of inflorescence to floral meristem appears to be a developmental stage when silenced genes can be derepressed. PMID:9096413

  13. Nucleolar Association and Transcriptional Inhibition through 5S rDNA in Mammals

    PubMed Central

    Fedoriw, Andrew M.; Starmer, Joshua; Yee, Della; Magnuson, Terry

    2012-01-01

    Changes in the spatial positioning of genes within the mammalian nucleus have been associated with transcriptional differences and thus have been hypothesized as a mode of regulation. In particular, the localization of genes to the nuclear and nucleolar peripheries is associated with transcriptional repression. However, the mechanistic basis, including the pertinent cis- elements, for such associations remains largely unknown. Here, we provide evidence that demonstrates a 119 bp 5S rDNA can influence nucleolar association in mammals. We found that integration of transgenes with 5S rDNA significantly increases the association of the host region with the nucleolus, and their degree of association correlates strongly with repression of a linked reporter gene. We further show that this mechanism may be functional in endogenous contexts: pseudogenes derived from 5S rDNA show biased conservation of their internal transcription factor binding sites and, in some cases, are frequently associated with the nucleolus. These results demonstrate that 5S rDNA sequence can significantly contribute to the positioning of a locus and suggest a novel, endogenous mechanism for nuclear organization in mammals. PMID:22275877

  14. Localized movement and morphology of UBF1-positive nucleolar regions are changed by γ-irradiation in G2 phase of the cell cycle

    PubMed Central

    Sorokin, Dmitry V; Stixová, Lenka; Sehnalová, Petra; Legartová, Soňa; Suchánková, Jana; Šimara, Pavel; Kozubek, Stanislav; Matula, Pavel; Skalníková, Magdalena; Raška, Ivan; Bártová, Eva

    2015-01-01

    The nucleolus is a well-organized site of ribosomal gene transcription. Moreover, many DNA repair pathway proteins, including ATM, ATR kinases, MRE11, PARP1 and Ku70/80, localize to the nucleolus (Moore et al., 2011). We analyzed the consequences of DNA damage in nucleoli following ultraviolet A (UVA), C (UVC), or γ-irradiation in order to test whether and how radiation-mediated genome injury affects local motion and morphology of nucleoli. Because exposure to radiation sources can induce changes in the pattern of UBF1-positive nucleolar regions, we visualized nucleoli in living cells by GFP-UBF1 expression for subsequent morphological analyses and local motion studies. UVA radiation, but not 5 Gy of γ-rays, induced apoptosis as analyzed by an advanced computational method. In non-apoptotic cells, we observed that γ-radiation caused nucleolar re-positioning over time and changed several morphological parameters, including the size of the nucleolus and the area of individual UBF1-positive foci. Radiation-induced nucleoli re-arrangement was observed particularly in G2 phase of the cell cycle, indicating repair of ribosomal genes in G2 phase and implying that nucleoli are less stable, thus sensitive to radiation, in G2 phase. PMID:26208041

  15. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA.

    PubMed

    Mitrea, Diana M; Cika, Jaclyn A; Guy, Clifford S; Ban, David; Banerjee, Priya R; Stanley, Christopher B; Nourse, Amanda; Deniz, Ashok A; Kriwacki, Richard W

    2016-02-02

    The nucleolus is a membrane-less organelle formed through liquid-liquid phase separation of its components from the surrounding nucleoplasm. Here, we show that nucleophosmin (NPM1) integrates within the nucleolus via a multi-modal mechanism involving multivalent interactions with proteins containing arginine-rich linear motifs (R-motifs) and ribosomal RNA (rRNA). Importantly, these R-motifs are found in canonical nucleolar localization signals. Based on a novel combination of biophysical approaches, we propose a model for the molecular organization within liquid-like droplets formed by the N-terminal domain of NPM1 and R-motif peptides, thus providing insights into the structural organization of the nucleolus. We identify multivalency of acidic tracts and folded nucleic acid binding domains, mediated by N-terminal domain oligomerization, as structural features required for phase separation of NPM1 with other nucleolar components in vitro and for localization within mammalian nucleoli. We propose that one mechanism of nucleolar localization involves phase separation of proteins within the nucleolus.

  16. Nuclear-cytoplasmic partitioning of cucumber mosaic virus protein 2b determines the balance between its roles as a virulence determinant and an RNA-silencing suppressor.

    PubMed

    Du, Zhiyou; Chen, Aizhong; Chen, Wenhu; Liao, Qiansheng; Zhang, Hengmu; Bao, Yiming; Roossinck, Marilyn J; Carr, John P

    2014-05-01

    The Cucumber Mosaic Virus (CMV) 2b protein is an RNA-silencing suppressor that plays roles in CMV accumulation and virulence. The 2b proteins of subgroup IA CMV strains partition between the nucleus and cytoplasm, but the biological significance of this is uncertain. We fused an additional nuclear localization signal (NLS) to the 2b protein of subgroup IA strain Fny-CMV to create 2b-NLS and tested its effects on subcellular distribution, silencing, and virulence. The additional NLS enhanced 2b protein nuclear and nucleolar accumulation, but nuclear and nucleolar enrichment correlated with markedly diminished silencing suppressor activity in patch assays and abolished 2b protein-mediated disruption of microRNA activity in transgenic Arabidopsis. Nucleus/nucleolus-localized 2b protein possesses at least some ability to inhibit antiviral silencing, but this was not sufficient to prevent recovery from disease in younger, developing leaves in Arabidopsis. However, enhanced nuclear and nucleolar accumulation of 2b increased virulence and accelerated symptom appearance in older leaves. Experiments with Arabidopsis lines carrying mutant Dicer-like alleles demonstrated that compromised suppressor activity explained the diminished ability of 2b-NLS to enhance virus accumulation. Remarkably, the increased virulence that 2b-NLS engendered was unrelated to effects on microRNA- or short interfering RNA-regulated host functions. Thus, although nucleus- and nucleolus-localized 2b protein is less efficient at silencing suppression than cytoplasm-localized 2b, it enhances CMV virulence. We propose that partitioning of the 2b protein between the cytoplasmic and nuclear/nucleolar compartments allows CMV to regulate the balance between virus accumulation and damage to the host, presumably to maximize the benefit for the virus. In this work, the main finding is that nucleus/nucleolus-localized 2b protein is strongly associated with CMV virulence, which is independent of its effect on

  17. Leptospiral Proteins Recognized during the Humoral Immune Response to Leptospirosis in Humans

    PubMed Central

    Guerreiro, Hygia; Croda, Júlio; Flannery, Brendan; Mazel, Mary; Matsunaga, James; Reis, Mitermayer Galvão; Levett, Paul N.; Ko, Albert I.; Haake, David A.

    2001-01-01

    Leptospirosis is an emerging zoonosis caused by pathogenic spirochetes belonging to the genus Leptospira. An understanding of leptospiral protein expression regulation is needed to develop new immunoprotective and serodiagnostic strategies. We used the humoral immune response during human leptospirosis as a reporter of protein antigens expressed during infection. Qualitative and quantitative immunoblot analysis was performed using sera from 105 patients from Brazil and Barbados. Sera from patients with other diseases and healthy individuals were evaluated as controls. Seven proteins, p76, p62, p48, p45, p41, p37, and p32, were identified as targets of the humoral response during natural infection. In both acute and convalescent phases of illness, antibodies to lipopolysaccharide were predominantly immunoglobulin M (IgM) while antibodies to proteins were exclusively IgG. Anti-p32 reactivity had the greatest sensitivity and specificity: positive reactions were observed in 37 and 84% of acute- and convalescent-phase sera, respectively, while only 5% of community control individuals demonstrated positive reactions. Six immunodominant antigens were expressed by all pathogenic leptospiral strains tested; only p37 was inconsistently expressed. Two-dimensional immunoblots identified four of the seven infection-associated antigens as being previously characterized proteins: LipL32 (the major outer membrane lipoprotein), LipL41 (a surface-exposed outer membrane lipoprotein), and heat shock proteins GroEL and DnaK. Fractionation studies demonstrated LipL32 and LipL41 reactivity in the outer membrane fraction and GroEL and DnaK in the cytoplasmic fraction, while p37 appeared to be a soluble periplasmic protein. Most of the other immunodominant proteins, including p48 and p45, were localized to the inner membrane. These findings indicate that leptospiral proteins recognized during natural infection are potentially useful for serodiagnosis and may serve as targets for vaccine

  18. Leptospiral proteins recognized during the humoral immune response to leptospirosis in humans.

    PubMed

    Guerreiro, H; Croda, J; Flannery, B; Mazel, M; Matsunaga, J; Galvão Reis, M; Levett, P N; Ko, A I; Haake, D A

    2001-08-01

    Leptospirosis is an emerging zoonosis caused by pathogenic spirochetes belonging to the genus Leptospira. An understanding of leptospiral protein expression regulation is needed to develop new immunoprotective and serodiagnostic strategies. We used the humoral immune response during human leptospirosis as a reporter of protein antigens expressed during infection. Qualitative and quantitative immunoblot analysis was performed using sera from 105 patients from Brazil and Barbados. Sera from patients with other diseases and healthy individuals were evaluated as controls. Seven proteins, p76, p62, p48, p45, p41, p37, and p32, were identified as targets of the humoral response during natural infection. In both acute and convalescent phases of illness, antibodies to lipopolysaccharide were predominantly immunoglobulin M (IgM) while antibodies to proteins were exclusively IgG. Anti-p32 reactivity had the greatest sensitivity and specificity: positive reactions were observed in 37 and 84% of acute- and convalescent-phase sera, respectively, while only 5% of community control individuals demonstrated positive reactions. Six immunodominant antigens were expressed by all pathogenic leptospiral strains tested; only p37 was inconsistently expressed. Two-dimensional immunoblots identified four of the seven infection-associated antigens as being previously characterized proteins: LipL32 (the major outer membrane lipoprotein), LipL41 (a surface-exposed outer membrane lipoprotein), and heat shock proteins GroEL and DnaK. Fractionation studies demonstrated LipL32 and LipL41 reactivity in the outer membrane fraction and GroEL and DnaK in the cytoplasmic fraction, while p37 appeared to be a soluble periplasmic protein. Most of the other immunodominant proteins, including p48 and p45, were localized to the inner membrane. These findings indicate that leptospiral proteins recognized during natural infection are potentially useful for serodiagnosis and may serve as targets for vaccine

  19. The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes.

    PubMed

    Schäfer, Thorsten; Strauss, Daniela; Petfalski, Elisabeth; Tollervey, David; Hurt, Ed

    2003-03-17

    Recent reports have increased our knowledge of the consecutive steps during 60S ribosome biogenesis substantially, but 40S subunit formation is less well understood. Here, we investigate the maturation of nucleolar 90S pre-ribosomes into cytoplasmic 40S pre-ribosomes. During the transition from 90S to 40S particles, the majority of non-ribosomal proteins (approximately 30 species) dissociate, and significantly fewer factors associate with 40S pre-ribosomes. Notably, some of these components are part of both early 90S and intermediate 40S pre-particles in the nucleolus (e.g. Enp1p, Dim1p and Rrp12p), whereas others (e.g. Rio2p and Nob1p) are found mainly on late cytoplasmic pre-40S subunits. Finally, temperature-sensitive mutants mapping either in earlier (enp1-1) or later (rio2-1) components exhibit defects in the formation and nuclear export of pre-40S subunits. Our data provide an initial biochemical map of the pre-40S ribosomal subunit on its path from the nucleolus to the cytoplasm. This pathway involves fewer changes in composition than seen during 60S biogenesis.

  20. Genetic background has a major effect on the penetrance and severity of craniofacial defects in mice heterozygous for the gene encoding the nucleolar protein Treacle.

    PubMed

    Dixon, Jill; Dixon, Michael James

    2004-04-01

    Treacher Collins syndrome (TCS) is a craniofacial disorder that results from mutations in TCOF1, which encodes the nucleolar protein Treacle. The severity of the clinical features exhibits wide variation and includes hypoplasia of the mandible and maxilla, abnormalities of the external ears and middle ear ossicles, and cleft palate. To determine the in vivo function of Treacle, we previously generated Tcof1 heterozygous mice on a mixed C57BL/6 and 129 background. These mice exhibited a lethal phenotype, which included abnormal development of the maxilla, absence of the eyes and nasal passages, and neural tube defects. Here, we show that placing the mutation onto different genetic backgrounds has a major effect on the penetrance and severity of the craniofacial and other defects. The offspring exhibit markedly variable strain-dependent phenotypes that range from extremely severe and lethal in a mixed CBA/Ca and 129 background, to apparently normal and viable in a mixed BALB/c and 129 background. In the former case, in addition to a profoundly severe craniofacial phenotype, CBA-derived heterozygous mice also exhibited delayed ossification of the long bones, rib fusions, and digit anomalies. The results of our studies indicate that factors in the different genetic backgrounds contribute extensively to the Tcof1 phenotype. Copyright 2004 Wiley-Liss, Inc.

  1. Localization of nucleolar chromatin by immunocytochemistry and in situ hybridization at the electron microscopic level.

    PubMed

    Thiry, M; Scheer, U; Goessens, G

    1991-01-01

    Nucleoli are the morphological expression of the activity of a defined set of chromosomal segments bearing rRNA genes. The topological distribution and composition of the intranucleolar chromatin as well as the definition of nucleolar structures in which enzymes of the rDNA transcription machinery reside have been investigated in mammalian cells by various immunogold labelling approaches at the ultrastructural level. The precise intranucleolar location of rRNA genes has been further specified by electron microscopic in situ hybridization with a non-autoradiographic procedure. Our results indicate that the fibrillar centers are the sole nucleolar structures where rDNA, core histones, RNA polymerase I and DNA topoisomerase I are located together. Taking into account the potential value and limitations of immunoelectron microscopic techniques, we propose that transcription of the rRNA genes takes place within the confines of the fibrillar centers, probably close to the boundary regions to the surrounding dense fibrillar component.

  2. La protein and its associated small nuclear and nucleolar precursor RNAs.

    PubMed

    Maraia, Richard J; Intine, Robert V

    2002-01-01

    After transcription by RNA polymerase (pol) III, nascent Pol III transcripts pass through RNA processing, modification, and transport machineries as part of their posttranscriptional maturation process. The first factor to interact with Pol III transcripts is La protein, which binds principally via its conserved N-terminal domain (NTD), to the UUU-OH motif that results from transcription termination. This review includes a sequence Logo of the most conserved region of La and its refined modeling as an RNA recognition motif (RRM). La protects RNAs from 3' exonucleolytic digestion and also contributes to their nuclear retention. The variety of modifications found on La-associated RNAs is reviewed in detail and considered in the contexts of how La may bind the termini of structured RNAs without interfering with recognition by modification enzymes, and its ability to chaperone RNAs through multiple parts of their maturation pathways. The CTD of human La recognizes the 5' end region of nascent RNA in a manner that is sensitive to serine 366 phosphorylation. Although the CTD can control pre-tRNA cleavage by RNase P, a rate-limiting step in tRNASerUGA maturation, the extent to which it acts in the maturation pathway(s) of other transcripts is unknown but considered here. Evidence that a fraction of La resides in the nucleolus together with recent findings that several Pol III transcripts pass through the nucleolus is also reviewed. An imminent goal is to understand how the bipartite RNA binding, intracellular trafficking, and signal transduction activities of La are integrated with the maturation pathways of the various RNAs with which it associates.

  3. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA

    PubMed Central

    Mitrea, Diana M; Cika, Jaclyn A; Guy, Clifford S; Ban, David; Banerjee, Priya R; Stanley, Christopher B; Nourse, Amanda; Deniz, Ashok A; Kriwacki, Richard W

    2016-01-01

    The nucleolus is a membrane-less organelle formed through liquid-liquid phase separation of its components from the surrounding nucleoplasm. Here, we show that nucleophosmin (NPM1) integrates within the nucleolus via a multi-modal mechanism involving multivalent interactions with proteins containing arginine-rich linear motifs (R-motifs) and ribosomal RNA (rRNA). Importantly, these R-motifs are found in canonical nucleolar localization signals. Based on a novel combination of biophysical approaches, we propose a model for the molecular organization within liquid-like droplets formed by the N-terminal domain of NPM1 and R-motif peptides, thus providing insights into the structural organization of the nucleolus. We identify multivalency of acidic tracts and folded nucleic acid binding domains, mediated by N-terminal domain oligomerization, as structural features required for phase separation of NPM1 with other nucleolar components in vitro and for localization within mammalian nucleoli. We propose that one mechanism of nucleolar localization involves phase separation of proteins within the nucleolus. DOI: http://dx.doi.org/10.7554/eLife.13571.001 PMID:26836305

  4. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA

    DOE PAGES

    Mitrea, Diana M.; Cika, Jaclyn A.; Guy, Clifford S.; ...

    2016-02-02

    In this study, the nucleolus is a membrane-less organelle formed through liquid-liquid phase separation of its components from the surrounding nucleoplasm. Here, we show that nucleophosmin (NPM1) integrates within the nucleolus via a multi-modal mechanism involving multivalent interactions with proteins containing arginine-rich linear motifs (R-motifs) and ribosomal RNA (rRNA). Importantly, these R-motifs are found in canonical nucleolar localization signals. Based on a novel combination of biophysical approaches, we propose a model for the molecular organization within liquid-like droplets formed by the N-terminal domain of NPM1 and R-motif peptides, thus providing insights into the structural organization of the nucleolus. We identifymore » multivalency of acidic tracts and folded nucleic acid binding domains, mediated by N-terminal domain oligomerization, as structural features required for phase separation of NPM1 with other nucleolar components in vitro and for localization within mammalian nucleoli. We propose that one mechanism of nucleolar localization involves phase separation of proteins within the nucleolus.« less

  5. Mercuric chloride induces autoantibodies against U3 small nuclear ribonucleoprotein in susceptible mice.

    PubMed Central

    Reuter, R; Tessars, G; Vohr, H W; Gleichmann, E; Lührmann, R

    1989-01-01

    Autoantibodies to nucleolar components are a common serological feature of patients suffering from scleroderma, a collagen vascular autoimmune disease. While animal models, which spontaneously develop abundant anti-nucleolar antibodies, have not yet been described, high titers of such antibodies may be induced by treating susceptible strains of mice with mercuric chloride. We have identified the nucleolar autoantigen against which the HgCl2-induced IgG autoantibodies from mice of strain B10.S are directed. It is a protein with an apparent molecular mass of 36 kDa and a pI value of approximately 8.6, which is associated with the nucleolar small nuclear RNA U3, and by these criteria must be identical with a polypeptide called fibrillarin. It is striking that scleroderma patients spontaneously produce autoantibodies against the same U3 ribonucleoprotein (RNP). The HgCl2-induced murine and the scleroderma-specific human anti-U3 RNP autoantibodies were indistinguishable in their reactivities toward fibrillarin. They further resemble each other insofar as both recognize epitopes on the 36-kDa protein, which have been highly conserved throughout evolution. Our results provide a basis to investigate at the molecular level whether similar immunoregulatory dysfunctions may lead to the preferential anti-U3 RNP autoantibody production in the animal model and in scleroderma patients. Images PMID:2521387

  6. Small nucleolar RNA U2_19 promotes hepatocellular carcinoma progression by regulating Wnt/β-catenin signaling.

    PubMed

    Wang, Haitao; Ma, Pei; Liu, Pengpeng; Chen, Baiyang; Liu, Zhisu

    2018-06-02

    Emerging evidence suggests that small nucleolar RNAs (snoRNAs) have malfunctioning roles in oncogenesis. In the present study, we investigated the role of box C/D small nucleolar RNA U2_19 (snoU2_19) in the tumorigenesis of hepatocellular carcinoma (HCC). Recently, we screened snoRNAs differential signatures by performing high-throughput small RNA sequence in HCC tissues and validated that upregulated snoU2_19 was associated with aggressive phenotypes in HCC patients. Aberrant snoU2_19 facilitated HCC cell proliferation, inhibited apoptosis and induced cell cycle progression in vitro analyses. We globally investigated the molecular mechanisms of snoU2_19 in HCC and found that snoU2_19 knockdown inhibited Wnt/β-catenin signaling pathway through inducing the translocation of β-catenin in cytoplasm. We concluded that snoU2_19 plays a pathological role in the development and progression of HCC, and is a potential therapeutic target for HCC. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Development of Monoclonal Antibodies Recognizing Linear Epitope: Illustration by Three Bacillus thuringiensis Crystal Proteins of Genetically Modified Cotton, Maize, and Tobacco.

    PubMed

    Cao, Zhen; Zhang, Wei; Ning, Xiangxue; Wang, Baomin; Liu, Yunjun; Li, Qing X

    2017-11-22

    Bacillus thuringiensis Cry1Ac, Cry1Ia1, and Cry1Ie are δ-endotoxin insecticidal proteins widely implemented in genetically modified organisms (GMO), such as cotton, maize, and potato. Western blot assay integrates electrophoresis separation power and antibody high specificity for monitoring specific exogenous proteins expressed in GMO. Procedures for evoking monoclonal antibody (mAb) for Western blot were poorly documented. In the present study, Cry1Ac partially denatured at 100 °C for 5 min was used as an immunogen to develop mAbs selectively recognizing a linear epitope of Cry1Ac for Western blot. mAb 5E9C6 and 3E6E2 selected with sandwich ELISA strongly recognized the heat semidenatured Cry1Ac. Particularly, 3E6E2 recognized both E. coli and cotton seed expressed Cry1Ac in Western blot. Such strategy of using partially denatured proteins as immunogens and using sandwich ELISA for mAb screening was also successfully demonstrated with production of mAbs against Cry1Ie for Western blot assay in maize.

  8. B23/nucleophosmin interacts with bovine immunodeficiency virus Rev protein and facilitates viral replication.

    PubMed

    Passos-Castilho, Ana Maria; Marchand, Claude; Archambault, Denis

    2018-02-01

    The bovine immunodeficiency virus (BIV) Rev shuttling protein contains nuclear/nucleolar localization signals and nuclear import/export mechanisms that are novel among lentivirus Rev proteins. Several viral proteins localize to the nucleolus, which may play a role in processes that are essential to the outcome of viral replication. Although BIV Rev localizes to the nucleoli of transfected/infected cells and colocalizes with one of its major proteins, nucleophosmin (NPM1, also known as B23), the role of the nucleolus and B23 in BIV replication remains to be determined. Here, we demonstrate for the first time that BIV Rev interacts with nucleolar phosphoprotein B23 in cells. Using small interfering RNA (siRNA) technology, we show that depletion of B23 expression inhibits virus production by BIV-infected cells, indicating that B23 plays an important role in BIV replication. The interaction between Rev and B23 may represent a potential new target for the development of antiviral drugs against lentiviruses. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Potent neutralization of botulinum neurotoxin/B by synergistic action of antibodies recognizing protein and ganglioside receptor binding domain.

    PubMed

    Chen, Changchun; Wang, Shuhui; Wang, Huajing; Mao, Xiaoyan; Zhang, Tiancheng; Ji, Guanghui; Shi, Xin; Xia, Tian; Lu, Weijia; Zhang, Dapeng; Dai, Jianxin; Guo, Yajun

    2012-01-01

    Botulinum neurotoxins (BoNTs), the causative agents for life-threatening human disease botulism, have been recognized as biological warfare agents. Monoclonal antibody (mAb) therapeutics hold considerable promise as BoNT therapeutics, but the potencies of mAbs against BoNTs are usually less than that of polyclonal antibodies (or oligoclonal antibodies). The confirmation of key epitopes with development of effective mAb is urgently needed. We selected 3 neutralizing mAbs which recognize different non-overlapping epitopes of BoNT/B from a panel of neutralizing antibodies against BoNT/B. By comparing the neutralizing effects among different combination groups, we found that 8E10, response to ganglioside receptor binding site, could synergy with 5G10 and 2F4, recognizing non-overlapping epitopes within Syt II binding sites. However, the combination of 5G10 with 2F4 blocking protein receptor binding sites did not achieve synergistical effects. Moreover, we found that the binding epitope of 8E10 was conserved among BoNT A, B, E, and F, which might cross-protect the challenge of different serotypes of BoNTs in vivo. The combination of two mAbs recognizing different receptors' binding domain in BoNTs has a synergistic effect. 8E10 is a potential universal partner for the synergistical combination with other mAb against protein receptor binding domain in BoNTs of other serotypes.

  10. Nucleolar Targeting by Platinum: p53-Independent Apoptosis Follows rRNA Inhibition, Cell-Cycle Arrest, and DNA Compaction

    PubMed Central

    2015-01-01

    TriplatinNC is a highly positively charged, substitution-inert derivative of the phase II clinical anticancer drug, BBR3464. Such substitution-inert complexes form a distinct subset of polynuclear platinum complexes (PPCs) interacting with DNA and other biomolecules through noncovalent interactions. Rapid cellular entry is facilitated via interaction with cell surface glycosoaminoglycans and is a mechanism unique to PPCs. Nanoscale secondary ion mass spectrometry (nanoSIMS) showed rapid distribution within cytoplasmic and nucleolar compartments, but not the nucleus. In this article, the downstream effects of nucleolar localization are described. In human colon carcinoma cells, HCT116, the production rate of 47S rRNA precursor transcripts was dramatically reduced as an early event after drug treatment. Transcriptional inhibition of rRNA was followed by a robust G1 arrest, and activation of apoptotic proteins caspase-8, -9, and -3 and PARP-1 in a p53-independent manner. Using cell synchronization and flow cytometry, it was determined that cells treated while in G1 arrest immediately, but cells treated in S or G2 successfully complete mitosis. Twenty-four hours after treatment, the majority of cells finally arrest in G1, but nearly one-third contained highly compacted DNA; a distinct biological feature that cannot be associated with mitosis, senescence, or apoptosis. This unique effect mirrored the efficient condensation of tRNA and DNA in cell-free systems. The combination of DNA compaction and apoptosis by TriplatinNC treatment conferred striking activity in platinum-resistant and/or p53 mutant or null cell lines. Taken together, our results support that the biological activity of TriplatinNC reflects reduced metabolic deactivation (substitution-inert compound not reactive to sulfur nucleophiles), high cellular accumulation, and novel consequences of high-affinity noncovalent DNA binding, producing a new profile and a further shift in the structure

  11. Curcumin-mediated decrease in the expression of nucleolar organizer regions in cervical cancer (HeLa) cells.

    PubMed

    Lewinska, Anna; Adamczyk, Jagoda; Pajak, Justyna; Stoklosa, Sylwia; Kubis, Barbara; Pastuszek, Paulina; Slota, Ewa; Wnuk, Maciej

    2014-09-01

    Curcumin, the major yellow-orange pigment of turmeric derived from the rhizome of Curcuma longa, is a highly pleiotropic molecule with the potential to modulate inflammation, oxidative stress, cell survival, cell secretion, homeostasis and proliferation. Curcumin, at relatively high concentrations, was repeatedly reported to be a potent inducer of apoptosis in cancer cells and thus considered a promising anticancer agent. In the present paper, the effects of low concentrations of curcumin on human cervical cancer (HeLa) cells were studied. We found curcumin-mediated decrease in the cell number and viability, and increase in apoptotic events and superoxide level. In contrast to previously shown curcumin cytotoxicity toward different cervical cancer lines, we observed toxic effects when even as low as 1 μM concentration of curcumin was used. Curcumin was not genotoxic to HeLa cells. Because argyrophilic nucleolar protein (AgNOR protein) expression is elevated in malignant cells compared to normal cells reflecting the rapidity of cancer cell proliferation, we evaluated curcumin-associated changes in size (area) and number of silver deposits. We showed curcumin-induced decrease in AgNOR protein pools, which may be mediated by global DNA hypermethylation observed after low concentration curcumin treatment. In summary, we have shown for the first time that curcumin at low micromolar range may be effective against HeLa cells, which may have implications for curcumin-based treatment of cervical cancer in humans. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. LIM domain protein TES changes its conformational states in different cellular compartments.

    PubMed

    Zhong, Yingli; Zhu, Jiaolian; Wang, Yan; Zhou, Jianlin; Ren, Kaiqun; Ding, Xiaofeng; Zhang, Jian

    2009-01-01

    The human TESTIN (TES) is a putative tumor suppressor and localizes to the cytoplasm as a component of focal adhesions and cell contacts. TES contains a PET domain in the NH(2)-terminus and three tandem LIM domains in the COOH-terminus. It has been hypothesized that interactions between two termini of TES might lead to a "closed" conformational state of the protein. Here, we provide evidence for different conformational states of TES. We confirmed that the NH(2)-terminus of TES can interact with its third LIM domain in the COOH-terminus by GST pull-down assays. In addition, antisera against the full-length or two truncations of TES were prepared to examine the relationship between the conformation and cellular distribution of the protein. We found that these antisera recognize different regions of TES and showed that TES is co-localised with the marker protein B23 in nucleolus, in addition to its localization in endoplasmic reticulum (ER). Furthermore, our co-immunoprecipitation (co-IP) analysis of TES and B23 demonstrated their co-existence in the same complex. Taken together, our results suggest that TES has different conformational states in different cellular compartments, and a "closed" conformational state of TES may be involved in nucleolar localization.

  13. STUDIES ON ISOLATED NUCLEI. II. ISOLATION AND CHEMICAL CHARACTERIZATION OF NUCLEOLAR AND NUCLEOPLASMIC SUBFRACTIONS.

    PubMed

    MAGGIO, R; SIEKEVITZ, P; PALADE, G E

    1963-08-01

    This paper describes the subfractionation of nuclei isolated from guinea pig liver by the procedure presented in the first article of the series (8). Centrifugation in a density gradient system of nuclear fractions disrupted by sonication permits the isolation of the following subfractions: (a) a nucleolar subfraction which consists mainly of nucleoli surrounded by a variable amount of nucleolus-associated chromatin and contaminated by chromatin blocks derived primarily from von Kupffer cell nuclei; (b) and (c), two nucleoplasmic subfractions (I and II) which consist mainly of chromatin threads in a coarser (I) or finer (II) degree of fragmentation. The protein, RNA, and DNA content of these subfractions was determined, and their RNA's characterized in terms of NaCl-solubility, nucleotide composition, and in vivo nucleotide turnover, using inorganic (32)P as a marker. The results indicate that there are at least three types of RNA in the nucleus (one in the nucleolus and two in the nucleoplasm or chromatin), which differ from one another in NaCl-solubility, nucleotide composition, turnover, and possibly sequence. Possible relations among these RNA's and those of the cytoplasm are discussed.

  14. FRAN and RBF-PSO as two components of a hyper framework to recognize protein folds.

    PubMed

    Abbasi, Elham; Ghatee, Mehdi; Shiri, M E

    2013-09-01

    In this paper, an intelligent hyper framework is proposed to recognize protein folds from its amino acid sequence which is a fundamental problem in bioinformatics. This framework includes some statistical and intelligent algorithms for proteins classification. The main components of the proposed framework are the Fuzzy Resource-Allocating Network (FRAN) and the Radial Bases Function based on Particle Swarm Optimization (RBF-PSO). FRAN applies a dynamic method to tune up the RBF network parameters. Due to the patterns complexity captured in protein dataset, FRAN classifies the proteins under fuzzy conditions. Also, RBF-PSO applies PSO to tune up the RBF classifier. Experimental results demonstrate that FRAN improves prediction accuracy up to 51% and achieves acceptable multi-class results for protein fold prediction. Although RBF-PSO provides reasonable results for protein fold recognition up to 48%, it is weaker than FRAN in some cases. However the proposed hyper framework provides an opportunity to use a great range of intelligent methods and can learn from previous experiences. Thus it can avoid the weakness of some intelligent methods in terms of memory, computational time and static structure. Furthermore, the performance of this system can be enhanced throughout the system life-cycle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Identification of a novel box C/D snoRNA from mouse nucleolar cDNA library.

    PubMed

    Zhou, Hui; Zhao, Jin; Yu, Chuan-He; Luo, Qing-Jun; Chen, Yue-Qin; Xiao, Yu; Qu, Liang-Hu

    2004-02-18

    By construction and screen of mouse nucleolar cDNA library, a novel mammalian small nucleolar RNAs (snoRNA) was identified. The novel snoRNA, 70 nt in length, displays structural features typical of C/D box snoRNA family. The snoRNA possesses an 11-nt-long rRNA antisense element and is predicted to guide the 2'-O-methylation of mouse 28S rRNA at G4043, a site unknown so far to be modified in vertebrates. The comparison of functional element of snoRNA guides among eukaryotes reveals that the novel snoRNA is a mammalian counterpart of yeast snR38 despite highly divergent sequence between them. Mouse and human snR38 and other cognates in distant vertebrates were positively detected with slight length variability. As expected, the rRNA ribose-methylation site predicted by mouse snR38 was precisely mapped by specific-primer extension assay. Furthermore, our analyses show that mouse and human snR38 gene have multiple variants and are nested in the introns of different host genes with unknown function. Thus, snR38 is a phylogenetically conserved methylation guide but exhibits different genomic organization in eukaryotes.

  16. Mapping of the antigenic determinants of the T. cruzi kinetoplastid membrane protein-11. Identification of a linear epitope specifically recognized by human Chagasic sera.

    PubMed

    Thomas, M C; Longobardo, M V; Carmelo, E; Marañón, C; Planelles, L; Patarroyo, M E; Alonso, C; López, M C

    2001-03-01

    The high variability among strains and isolates of Trypanosoma cruzi and the existence of shared antigenic determinants with other pathogens, particularly with members of the Leishmania genus make difficult the specific diagnosis of Chagas' disease. The data reported in this paper show that the T. cruzi KMP11 protein is an immunodominant antigen highly recognized by the sera from chagasic and leishmaniasis patients. By the use of amino- and carboxyl-terminal truncated KMP11 recombinant proteins and synthetic peptides, evidence is provided that while the sera from chagasic patients recognize linear peptides the sera from patients with visceral leishmaniasis must be predominantly directed against conformational epitopes. We found that a particular linear determinant, located in the carboxyl-terminal region of the protein, is recognized with high specificity and sensitivity only by sera from Chagas' disease patients, suggesting it could be a good candidate for differential serodiagnosis of Chagas' disease.

  17. Mapping of the antigenic determinants of the T. cruzi kinetoplastid membrane protein-11. Identification of a linear epitope specifically recognized by human Chagasic sera

    PubMed Central

    Thomas, M C; Longobardo, M V; Carmelo, E; Marañón, C; Planelles, L; Patarroyo, M E; Alonso, C; López, M C

    2001-01-01

    The high variability among strains and isolates of Trypanosoma cruzi and the existence of shared antigenic determinants with other pathogens, particularly with members of the Leishmania genus make difficult the specific diagnosis of Chagas' disease. The data reported in this paper show that the T. cruzi KMP11 protein is an immunodominant antigen highly recognized by the sera from chagasic and leishmaniasis patients. By the use of amino- and carboxyl-terminal truncated KMP11 recombinant proteins and synthetic peptides, evidence is provided that while the sera from chagasic patients recognize linear peptides the sera from patients with visceral leishmaniasis must be predominantly directed against conformational epitopes. We found that a particular linear determinant, located in the carboxyl-terminal region of the protein, is recognized with high specificity and sensitivity only by sera from Chagas' disease patients, suggesting it could be a good candidate for differential serodiagnosis of Chagas' disease. PMID:11298135

  18. TIR-only protein RBA1 recognizes a pathogen effector to regulate cell death in Arabidopsis

    PubMed Central

    Anderson, Ryan G.; Cherkis, Karen A.; Law, Terry F.; Liu, Qingli L.; Machius, Mischa; Nimchuk, Zachary L.; Yang, Li; Chung, Eui-Hwan; El Kasmi, Farid; Hyunh, Michael; Sondek, John E.; Dangl, Jeffery L.

    2017-01-01

    Detection of pathogens by plants is mediated by intracellular nucleotide-binding site leucine-rich repeat (NLR) receptor proteins. NLR proteins are defined by their stereotypical multidomain structure: an N-terminal Toll–interleukin receptor (TIR) or coiled-coil (CC) domain, a central nucleotide-binding (NB) domain, and a C-terminal leucine-rich repeat (LRR). The plant innate immune system contains a limited NLR repertoire that functions to recognize all potential pathogens. We isolated Response to the bacterial type III effector protein HopBA1 (RBA1), a gene that encodes a TIR-only protein lacking all other canonical NLR domains. RBA1 is sufficient to trigger cell death in response to HopBA1. We generated a crystal structure for HopBA1 and found that it has similarity to a class of proteins that includes esterases, the heme-binding protein ChaN, and an uncharacterized domain of Pasteurella multocida toxin. Self-association, coimmunoprecipitation with HopBA1, and function of RBA1 require two previously identified TIR–TIR dimerization interfaces. Although previously described as distinct in other TIR proteins, in RBA1 neither of these interfaces is sufficient when the other is disrupted. These data suggest that oligomerization of RBA1 is required for function. Our identification of RBA1 demonstrates that “truncated” NLRs can function as pathogen sensors, expanding our understanding of both receptor architecture and the mechanism of activation in the plant immune system. PMID:28137883

  19. Exploration of gated ligand binding recognizes an allosteric site for blocking FABP4-protein interaction.

    PubMed

    Li, Yan; Li, Xiang; Dong, Zigang

    2015-12-28

    Fatty acid binding protein 4 (FABP4), reversibly binding to fatty acids and other lipids with high affinities, is a potential target for treatment of cancers. The binding site of FABP4 is buried in an interior cavity and thereby ligand binding/unbinding is coupled with opening/closing of FABP4. It is a difficult task both experimentally and computationally to illuminate the entry or exit pathway, especially with the conformational gating. In this report we combine extensive computer simulations, clustering analysis, and the Markov state model to investigate the binding mechanism of FABP4 and troglitazone. Our simulations capture spontaneous binding and unbinding events as well as the conformational transition of FABP4 between the open and closed states. An allosteric binding site on the protein surface is recognized for the development of novel FABP4 inhibitors. The binding affinity is calculated and compared with the experimental value. The kinetic analysis suggests that ligand residence on the protein surface may delay the binding process. Overall, our results provide a comprehensive picture of ligand diffusion on the protein surface, ligand migration into the buried cavity, and the conformational change of FABP4 at an atomic level.

  20. Evidence for a bacterial lipopolysaccharide-recognizing G-protein-coupled receptor in the bacterial engulfment by Entamoeba histolytica.

    PubMed

    Brewer, Matthew T; Agbedanu, Prince N; Zamanian, Mostafa; Day, Tim A; Carlson, Steve A

    2013-11-01

    Entamoeba histolytica is the causative agent of amoebic dysentery, a worldwide protozoal disease that results in approximately 100,000 deaths annually. The virulence of E. histolytica may be due to interactions with the host bacterial flora, whereby trophozoites engulf colonic bacteria as a nutrient source. The engulfment process depends on trophozoite recognition of bacterial epitopes that activate phagocytosis pathways. E. histolytica GPCR-1 (EhGPCR-1) was previously recognized as a putative G-protein-coupled receptor (GPCR) used by Entamoeba histolytica during phagocytosis. In the present study, we attempted to characterize EhGPCR-1 by using heterologous GPCR expression in Saccharomyces cerevisiae. We discovered that bacterial lipopolysaccharide (LPS) is an activator of EhGPCR-1 and that LPS stimulates EhGPCR-1 in a concentration-dependent manner. Additionally, we demonstrated that Entamoeba histolytica prefers to engulf bacteria with intact LPS and that this engulfment process is sensitive to suramin, which prevents the interactions of GPCRs and G-proteins. Thus, EhGPCR-1 is an LPS-recognizing GPCR that is a potential drug target for treatment of amoebiasis, especially considering the well-established drug targeting to GPCRs.

  1. The relationship between the nucleolus and cancer: Current evidence and emerging paradigms.

    PubMed

    Orsolic, Ines; Jurada, Deana; Pullen, Nick; Oren, Moshe; Eliopoulos, Aristides G; Volarevic, Sinisa

    2016-06-01

    The nucleolus is the most prominent nuclear substructure assigned to produce ribosomes; molecular machines that are responsible for carrying out protein synthesis. To meet the increased demand for proteins during cell growth and proliferation the cell must increase protein synthetic capacity by upregulating ribosome biogenesis. While larger nucleolar size and number have been recognized as hallmark features of many tumor types, recent evidence has suggested that, in addition to overproduction of ribosomes, decreased ribosome biogenesis as well as qualitative changes in this process could also contribute to tumor initiation and cancer progression. Furthermore, the nucleolus has become the focus of intense attention for its involvement in processes that are clearly unrelated to ribosome biogenesis such as sensing and responding to endogenous and exogenous stressors, maintenance of genome stability, regulation of cell-cycle progression, cellular senescence, telomere function, chromatin structure, establishment of nuclear architecture, global regulation of gene expression and biogenesis of multiple ribonucleoprotein particles. The fact that dysregulation of many of these fundamental cellular processes may contribute to the malignant phenotype suggests that normal functioning of the nucleolus safeguards against the development of cancer and indicates its potential as a therapeutic approach. Here we review the recent advances made toward understanding these newly-recognized nucleolar functions and their roles in normal and cancer cells, and discuss possible future research directions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Subcellular Fractionation and Localization Studies Reveal a Direct Interaction of the Fragile X Mental Retardation Protein (FMRP) with Nucleolin

    PubMed Central

    Taha, Mohamed S.; Nouri, Kazem; Milroy, Lech G.; Moll, Jens M.; Herrmann, Christian; Brunsveld, Luc; Piekorz, Roland P.; Ahmadian, Mohammad R.

    2014-01-01

    Fragile X mental Retardation Protein (FMRP) is a well-known regulator of local translation of its mRNA targets in neurons. However, despite its ubiquitous expression, the role of FMRP remains ill-defined in other cell types. In this study we investigated the subcellular distribution of FMRP and its protein complexes in HeLa cells using confocal imaging as well as detergent-free fractionation and size exclusion protocols. We found FMRP localized exclusively to solid compartments, including cytosolic heavy and light membranes, mitochondria, nuclear membrane and nucleoli. Interestingly, FMRP was associated with nucleolin in both a high molecular weight ribosomal and translation-associated complex (≥6 MDa) in the cytosol, and a low molecular weight complex (∼200 kDa) in the nucleoli. Consistently, we identified two functional nucleolar localization signals (NoLSs) in FMRP that are responsible for a strong nucleolar colocalization of the C-terminus of FMRP with nucleolin, and a direct interaction of the N-terminus of FMRP with the arginine-glycine-glycine (RGG) domain of nucleolin. Taken together, we propose a novel mechanism by which a transient nucleolar localization of FMRP underlies a strong nucleocytoplasmic translocation, most likely in a complex with nucleolin and possibly ribosomes, in order to regulate translation of its target mRNAs. PMID:24658146

  3. Immune Cells in Blood Recognize Tumors

    Cancer.gov

    NCI scientists have developed a novel strategy for identifying immune cells circulating in the blood that recognize specific proteins on tumor cells, a finding they believe may have potential implications for immune-based therapies.

  4. Ligation site in proteins recognized in silico

    PubMed Central

    Brylinski, Michal; Konieczny, Leszek; Roterman, Irena

    2006-01-01

    Recognition of a ligation site in a protein molecule is important for identifying its biological activity. The model for in silico recognition of ligation sites in proteins is presented. The idealized hydrophobic core stabilizing protein structure is represented by a three-dimensional Gaussian function. The experimentally observed distribution of hydrophobicity compared with the theoretical distribution reveals differences. The area of high differences indicates the ligation site. Availability http://bioinformatics.cm-uj.krakow.pl/activesite PMID:17597871

  5. Dynamic nucleoplasmic and nucleolar localization of mammalian RNase H1 in response to RNAP I transcriptional R-loops

    PubMed Central

    Sun, Hong; De Hoyos, Cheryl L.; Bailey, Jeffrey K.; Liang, Xue-hai; Crooke, Stanley T.

    2017-01-01

    Abstract An R-loop is a DNA:RNA hybrid formed during transcription when a DNA duplex is invaded by a nascent RNA transcript. R-loops accumulate in nucleoli during RNA polymerase I (RNAP I) transcription. Here, we report that mammalian RNase H1 enriches in nucleoli and co-localizes with R-loops in cultured human cells. Co-migration of RNase H1 and R-loops from nucleoli to perinucleolar ring structures was observed upon inhibition of RNAP I transcription. Treatment with camptothecin which transiently stabilized nucleolar R-loops recruited RNase H1 to the nucleoli. It has been reported that the absence of Topoisomerase and RNase H activity in Escherichia coli or Saccharomyces cerevisiae caused R-loop accumulation along rDNA. We found that the distribution of RNase H1 and Top1 along rDNA coincided at sites where R-loops accumulated in mammalian cells. Loss of either RNase H1 or Top1 caused R-loop accumulation, and the accumulation of R-loops was exacerbated when both proteins were depleted. Importantly, we observed that protein levels of Top1 were negatively correlated with the abundance of RNase H1. We conclude that Top1 and RNase H1 are partially functionally redundant in mammalian cells to suppress RNAP I transcription-associate R-loops. PMID:28977560

  6. Two proteins modulating transendothelial migration of leukocytes recognize novel carboxylated glycans on endothelial cells.

    PubMed

    Srikrishna, G; Panneerselvam, K; Westphal, V; Abraham, V; Varki, A; Freeze, H H

    2001-04-01

    We recently showed that a class of novel carboxylated N:-glycans was constitutively expressed on endothelial cells. Activated, but not resting, neutrophils expressed binding sites for the novel glycans. We also showed that a mAb against these novel glycans (mAbGB3.1) inhibited leukocyte extravasation in a murine model of peritoneal inflammation. To identify molecules that mediated these interactions, we isolated binding proteins from bovine lung by their differential affinity for carboxylated or neutralized glycans. Two leukocyte calcium-binding proteins that bound in a carboxylate-dependent manner were identified as S100A8 and annexin I. An intact N terminus of annexin I and heteromeric assembly of S100A8 with S100A9 (another member of the S100 family) appeared necessary for this interaction. A mAb to S100A9 blocked neutrophil binding to immobilized carboxylated glycans. Purified human S100A8/A9 complex and recombinant human annexin I showed carboxylate-dependent binding to immobilized bovine lung carboxylated glycans and recognized a subset of mannose-labeled endothelial glycoproteins immunoprecipitated by mAbGB3.1. Saturable binding of S100A8/A9 complex to endothelial cells was also blocked by mAbGB3.1. These results suggest that the carboxylated glycans play important roles in leukocyte trafficking by interacting with proteins known to modulate extravasation.

  7. Analysis of Epitopes on Dengue Virus Envelope Protein Recognized by Monoclonal Antibodies and Polyclonal Human Sera by a High Throughput Assay

    PubMed Central

    Lin, Hong-En; Tsai, Wen-Yang; Liu, I-Ju; Li, Pi-Chun; Liao, Mei-Ying; Tsai, Jih-Jin; Wu, Yi-Chieh; Lai, Chih-Yun; Lu, Chih-Hsuan; Huang, Jyh-Hsiung; Chang, Gwong-Jen; Wu, Han-Chung; Wang, Wei-Kung

    2012-01-01

    Background The envelope (E) protein of dengue virus (DENV) is the major target of neutralizing antibodies and vaccine development. While previous studies on domain III or domain I/II alone have reported several epitopes of monoclonal antibodies (mAbs) against DENV E protein, the possibility of interdomain epitopes and the relationship between epitopes and neutralizing potency remain largely unexplored. Methodology/Principal Findings We developed a dot blot assay by using 67 alanine mutants of predicted surface-exposed E residues as a systematic approach to identify epitopes recognized by mAbs and polyclonal sera, and confirmed our findings using a capture-ELISA assay. Of the 12 mouse mAbs tested, three recognized a novel epitope involving residues (Q211, D215, P217) at the central interface of domain II, and three recognized residues at both domain III and the lateral ridge of domain II, suggesting a more frequent presence of interdomain epitopes than previously appreciated. Compared with mAbs generated by traditional protocols, the potent neutralizing mAbs generated by a new protocol recognized multiple residues in A strand or residues in C strand/CC′ loop of DENV2 and DENV1, and multiple residues in BC loop and residues in DE loop, EF loop/F strand or G strand of DENV1. The predominant epitopes of anti-E antibodies in polyclonal sera were found to include both fusion loop and non-fusion residues in the same or adjacent monomer. Conclusions/Significance Our analyses have implications for epitope-specific diagnostics and epitope-based dengue vaccines. This high throughput method has tremendous application for mapping both intra and interdomain epitopes recognized by human mAbs and polyclonal sera, which would further our understanding of humoral immune responses to DENV at the epitope level. PMID:22235356

  8. Nucleolar organizer region variants as a risk factor for Down syndrome.

    PubMed Central

    Jackson-Cook, C K; Flannery, D B; Corey, L A; Nance, W E; Brown, J A

    1985-01-01

    An unusual nucleolar organizer region (NOR) heteromorphism was noted among 13 of 41 parents in whom nondisjunction leading to trisomy 21 was known to have occurred. In contrast, only one of these double NOR (dNOR) variants was found among the 41 normal spouses and none were seen among 50 control individuals. In two dNOR(+) families, a second child with trisomy 21 was conceived. In both families, the extra chromosome in each child was contributed by the parent who carried the dNOR variant and resulted from a recurrent meiosis I error. Our data suggest that the dNOR heteromorphism may play a role in meiotic nondisjunction and could be associated with as much as a 20-fold increased risk for having offspring with trisomy 21. Images Fig. 1 PMID:2934977

  9. Platelet cytosolic 44-kDa protein is a substrate of cholera toxin-induced ADP-ribosylation and is not recognized by antisera against the. alpha. subunit of the stimulatory guanine nucleotide-binding regulatory protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molina Y Vedia, L.M.; Reep, B.R.; Lapetina, E.G.

    1988-08-01

    ADP-ribosylation induced by cholera toxin and pertussis toxin was studied in particulate and cytosolic fractions of human platelets. Platelets were disrupted by a cycle of freezing and thawing in the presence of a hyposmotic buffer containing protease inhibitors. In both fractions, the A subunit of cholera toxin ADP-ribosylates two proteins with molecular masses of 42 and 44 kDa, whereas pertussis toxin ADP-ribosylates a 41-kDa polypeptide. Two antisera against the {alpha} subunit of the stimulatory guanine nucleotide-binding regulatory protein recognize only the 42-kDa polypeptide. Cholera toxin-induced ADP-ribosylation of the 42- and 44-kDa proteins is reduced by pretreatment of platelets with iloprost,more » a prostacyclin analog. The 44-kDa protein, which is substrate of cholera toxin, could be extracted completely from the membrane and recovered in the cytosolic fraction when the cells were disrupted by Dounce homogenization and the pellet was extensively washed. A 44-kDa protein can also be labeled with 8-azidoguanosine 5{prime}-({alpha}-{sup 32}P)triphosphate in the cytosol and membranes. These finding indicate that cholera and pertussis toxins produced covalent modifications of proteins present in particulate and cytosolic platelet fractions. Moreover, the 44-kDa protein might be an {alpha} subunit of a guanine nucleotide-binding regulatory protein that is not recognized by available antisera.« less

  10. Ankyrin repeats of ANKRA2 recognize a PxLPxL motif on the 3M syndrome protein CCDC8.

    PubMed

    Nie, Jianyun; Xu, Chao; Jin, Jing; Aka, Juliette A; Tempel, Wolfram; Nguyen, Vivian; You, Linya; Weist, Ryan; Min, Jinrong; Pawson, Tony; Yang, Xiang-Jiao

    2015-04-07

    Peptide motifs are often used for protein-protein interactions. We have recently demonstrated that ankyrin repeats of ANKRA2 and the paralogous bare lymphocyte syndrome transcription factor RFXANK recognize PxLPxL/I motifs shared by megalin, three histone deacetylases, and RFX5. We show here that that CCDC8 is a major partner of ANKRA2 but not RFXANK in cells. The CCDC8 gene is mutated in 3M syndrome, a short-stature disorder with additional facial and skeletal abnormalities. Two other genes mutated in this syndrome encode CUL7 and OBSL1. While CUL7 is a ubiquitin ligase and OBSL1 associates with the cytoskeleton, little is known about CCDC8. Binding and structural analyses reveal that the ankyrin repeats of ANKRA2 recognize a PxLPxL motif at the C-terminal region of CCDC8. The N-terminal part interacts with OBSL1 to form a CUL7 ligase complex. These results link ANKRA2 unexpectedly to 3M syndrome and suggest novel regulatory mechanisms for histone deacetylases and RFX7. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Fly versus man: evolutionary impairment of nucleolar targeting affects the degradome of Drosophila's Taspase1.

    PubMed

    Wünsch, Désirée; Hahlbrock, Angelina; Heiselmayer, Christina; Bäcker, Sandra; Heun, Patrick; Goesswein, Dorothee; Stöcker, Walter; Schirmeister, Tanja; Schneider, Günter; Krämer, Oliver H; Knauer, Shirley K; Stauber, Roland H

    2015-05-01

    Human Taspase1 is essential for development and cancer by processing critical regulators, such as the mixed-lineage leukemia protein. Likewise, its ortholog, trithorax, is cleaved by Drosophila Taspase1 (dTaspase1), implementing a functional coevolution. To uncover novel mechanism regulating protease function, we performed a functional analysis of dTaspase1 and its comparison to the human ortholog. dTaspase1 contains an essential nucleophile threonine(195), catalyzing cis cleavage into its α- and β-subunits. A cell-based assay combined with alanine scanning mutagenesis demonstrated that the target cleavage motif for dTaspase1 (Q(3)[F/I/L/M](2)D(1)↓G(1')X(2')X(3')) differs significantly from the human ortholog (Q(3)[F,I,L,V](2)D(1)↓G(1')x(2')D(3')D(4')), predicting an enlarged degradome containing 70 substrates for Drosophila. In contrast to human Taspase1, dTaspase1 shows no discrete localization to the nucleus/nucleolus due to the lack of the importin-α/nucleophosmin1 interaction domain (NoLS) conserved in all vertebrates. Consequently, dTaspase1 interacts with neither the Drosophila nucleoplasmin-like protein nor human nucleophosmin1. The impact of localization on the protease's degradome was confirmed by demonstrating that dTaspase1 did not efficiently process nuclear substrates, such as upstream stimulatory factor 2. However, genetic introduction of the NoLS into dTaspase1 restored its nucleolar localization, nucleophosmin1 interaction, and efficient cleavage of nuclear substrates. We report that evolutionary functional divergence separating vertebrates from invertebrates can be achieved for proteases by a transport/localization-regulated mechanism. © FASEB.

  12. Improved silver staining of nucleolar organiser regions in paraffin wax sections using an inverted incubation technique.

    PubMed Central

    Coghill, G; Grant, A; Orrell, J M; Jankowski, J; Evans, A T

    1990-01-01

    A new simple modification to the silver staining of nucleolar organiser regions (AgNORs) was devised which, by performing the incubation with the slide inverted, results in minimal undesirable background staining, a persistent problem. Inverted incubation is facilitated by the use of a commercially available plastic coverplate. This technique has several additional advantages over other published staining protocols. In particular, the method is straightforward, fast, and maintains a high degree of contrast between the background and the AgNORs. Images PMID:1702451

  13. Isolation and characterization of a carrot nucleolar protein with structural and sequence similarity to the vertebrate PESCADILLO protein.

    PubMed

    Ueda, Kenji; Xu, Zheng-Jun; Miyagi, Nobuaki; Ono, Michiyuki; Wabiko, Hiroetsu; Masuda, Kiyoshi; Inoue, Masayasu

    2013-07-01

    The nuclear matrix is involved in many nuclear events, but its protein architecture in plants is still not fully understood. A cDNA clone was isolated by immunoscreening with a monoclonal antibody raised against nuclear matrix proteins of Daucus carota L. Its deduced amino acid sequence showed about 40% identity with the PESCADILLO protein of zebrafish and humans. Primary structure analysis of the protein revealed a Pescadillo N-terminus domain, a single breast cancer C-terminal domain, two nuclear localization signals, and a potential coiled-coil region as also found in animal PESCADILLO proteins. Therefore, we designated this gene DcPES1. Although DcPES1 mRNA was detected in all tissues examined, its levels were highest in tissues with proliferating cells. Immunofluorescence using specific antiserum against the recombinant protein revealed that DcPES1 localized exclusively in the nucleolus. Examination of fusion proteins with green fluorescent protein revealed that the N-terminal portion was important for localization to the nucleoli of tobacco and onion cells. Moreover, when the nuclear matrix of carrot cells was immunostained with an anti-DcPES1 serum, the signal was detected in the nucleolus. Therefore, the DcPES1 protein appears to be a component of or tightly bound to components of the nuclear matrix. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. The Treacher Collins syndrome (TCOF1) gene product, treacle, is targeted to the nucleolus by signals in its C-terminus.

    PubMed

    Winokur, S T; Shiang, R

    1998-11-01

    The TCOF1 gene product, treacle, responsible for the craniofacial disorder Treacher Collins syndrome, has been predicted to be a member of a class of nucleolar phosphoproteins based on its primary amino acid sequence. Treacle is a low complexity protein with ten repeating units of acidic and basic residues, each of which contains a large number of putative casein kinase 2 and protein kinase C phosphorylation sites. In addition, the C-terminus of treacle contains multiple putative nuclear localization signals. The overall structure of treacle, as well as sequence similarity to several nucleolar phosphoproteins, predicts that treacle is a member of this class of proteins. Using green fluorescent protein fusion constructs with the full-length and deleted domains of the murine homolog of treacle, we demonstrate that the cellular localization of treacle is nucleolar. This localization is mediated by the last 41 residues of the C-terminus (residues 1262-1302). At least two functional nuclear localization signals have been identified in the protein, one between residues 1176 and 1270 and the second within the last 32 residues of the protein (1271-1302). The nucleolar localization signal is disrupted by two constructs that split the C-terminal region between residues 1270 and 1271. This study provides the first direct analysis of treacle and demonstrates that the protein involved in TCOF1 is a nucleolar protein.

  15. Genetic inactivation of the transcription factor TIF-IA leads to nucleolar disruption, cell cycle arrest, and p53-mediated apoptosis.

    PubMed

    Yuan, Xuejun; Zhou, Yonggang; Casanova, Emilio; Chai, Minqiang; Kiss, Eva; Gröne, Hermann-Josef; Schütz, Günter; Grummt, Ingrid

    2005-07-01

    Growth-dependent regulation of rRNA synthesis is mediated by TIF-IA, a basal transcription initiation factor for RNA polymerase I. We inactivated the murine TIF-IA gene by homologous recombination in mice and embryonic fibroblasts (MEFs). TIF-IA-/- embryos die before or at embryonic day 9.5 (E9.5), displaying retardation of growth and development. In MEFs, Cre-mediated depletion of TIF-IA leads to disruption of nucleoli, cell cycle arrest, upregulation of p53, and induction of apoptosis. Elevated levels of p53 after TIF-IA depletion are due to increased binding of ribosomal proteins, such as L11, to MDM2 and decreased interaction of MDM2 with p53 and p19(ARF). RNAi-induced loss of p53 overcomes proliferation arrest and apoptosis in response to TIF-IA ablation. The striking correlation between perturbation of nucleolar function, elevated levels of p53, and induction of cell suicide supports the view that the nucleolus is a stress sensor that regulates p53 activity.

  16. Characterization of monoclonal antibodies that specifically recognize the palm subdomain of hepatitis C virus nonstructural protein 5B polymerase.

    PubMed

    Ingravallo, P; Lahser, F; Xia, E; Sodowich, B; Lai, V C; Hong, Z; Zhong, W

    2001-06-01

    The nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) is an RNA-dependent RNA polymerase (RdRp) which plays an essential role in viral RNA replication. Antibodies that specifically recognize NS5B will have utilities in monitoring NS5B production and subcellular localization, as well as in structure-function studies. In this report, three mouse monoclonal antibodies (mAbs), 16A9C9, 16D9A4 and 20A12C7, against a recombinant NS5B protein (genotype 1a, H-77 strain) were produced. These mAbs specifically recognize HCV NS5B, but not RdRps of polivirus (PV), bovine viral diarrhea virus (BVDV) or GB virus B (GBV-B). The mAbs can readily detect NS5B in cellular lysates of human osteosarcoma Saos2 cells constitutively expressing the nonstructural region of HCV (NS3-NS4A-NS4B-NS5A-NS5B). NS5B proteins of different HCV genotypes/subtypes (1a, 1b, 2a, 2c, 5a) showed varied affinity for these mAbs. Interestingly, the epitopes for the mAbs were mapped to the palm subdomain (amino acid 188-370) of the HCV RdRp as determined by immunoblotting analysis of a panel of HCV/GBV-B chimeric NS5B proteins. The binding site was mapped between amino acid 231 and 267 of NS5B for 16A9C9, and between 282 and 372 for 16D9A4 and 20A12C7. Furthermore, these mAbs showed no inhibitory effect on the NS5B polymerase activity in vitro.

  17. Fuzzy cluster analysis of simple physicochemical properties of amino acids for recognizing secondary structure in proteins.

    PubMed Central

    Mocz, G.

    1995-01-01

    Fuzzy cluster analysis has been applied to the 20 amino acids by using 65 physicochemical properties as a basis for classification. The clustering products, the fuzzy sets (i.e., classical sets with associated membership functions), have provided a new measure of amino acid similarities for use in protein folding studies. This work demonstrates that fuzzy sets of simple molecular attributes, when assigned to amino acid residues in a protein's sequence, can predict the secondary structure of the sequence with reasonable accuracy. An approach is presented for discriminating standard folding states, using near-optimum information splitting in half-overlapping segments of the sequence of assigned membership functions. The method is applied to a nonredundant set of 252 proteins and yields approximately 73% matching for correctly predicted and correctly rejected residues with approximately 60% overall success rate for the correctly recognized ones in three folding states: alpha-helix, beta-strand, and coil. The most useful attributes for discriminating these states appear to be related to size, polarity, and thermodynamic factors. Van der Waals volume, apparent average thickness of surrounding molecular free volume, and a measure of dimensionless surface electron density can explain approximately 95% of prediction results. hydrogen bonding and hydrophobicity induces do not yet enable clear clustering and prediction. PMID:7549882

  18. Mutation of the N-Terminal Region of Chikungunya Virus Capsid Protein: Implications for Vaccine Design.

    PubMed

    Taylor, Adam; Liu, Xiang; Zaid, Ali; Goh, Lucas Y H; Hobson-Peters, Jody; Hall, Roy A; Merits, Andres; Mahalingam, Suresh

    2017-02-21

    Mosquito-transmitted chikungunya virus (CHIKV) is an arthritogenic alphavirus of the Togaviridae family responsible for frequent outbreaks of arthritic disease in humans. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleolus. In encephalitic alphaviruses, nuclear translocation induces host cell transcriptional shutoff; however, the role of capsid protein nucleolar localization in arthritogenic alphaviruses remains unclear. Using recombinant enhanced green fluorescent protein (EGFP)-tagged expression constructs and CHIKV infectious clones, we describe a nucleolar localization sequence (NoLS) in the N-terminal region of capsid protein, previously uncharacterized in CHIKV. Mutation of the NoLS by site-directed mutagenesis reduced efficiency of nuclear import of CHIKV capsid protein. In the virus, mutation of the capsid protein NoLS (CHIKV-NoLS) attenuated replication in mammalian and mosquito cells, producing a small-plaque phenotype. Attenuation of CHIKV-NoLS is likely due to disruption of the viral replication cycle downstream of viral RNA synthesis. In mice, CHIKV-NoLS infection caused no disease signs compared to wild-type CHIKV (CHIKV-WT)-infected mice; lack of disease signs correlated with significantly reduced viremia and decreased expression of proinflammatory factors. Mice immunized with CHIKV-NoLS, challenged with CHIKV-WT at 30 days postimmunization, develop no disease signs and no detectable viremia. Serum from CHIKV-NoLS-immunized mice is able to efficiently neutralize CHIKV infection in vitro Additionally, CHIKV-NoLS-immunized mice challenged with the related alphavirus Ross River virus showed reduced early and peak viremia postchallenge, indicating a cross-protective effect. The high degree of CHIKV-NoLS attenuation may improve CHIKV antiviral and rational vaccine design. IMPORTANCE CHIKV is a mosquito-borne pathogen capable of causing explosive epidemics of incapacitating joint pain

  19. Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation.

    PubMed

    Moore, Henna M; Bai, Baoyan; Boisvert, François-Michel; Latonen, Leena; Rantanen, Ville; Simpson, Jeremy C; Pepperkok, Rainer; Lamond, Angus I; Laiho, Marikki

    2011-10-01

    The nucleolus is a nuclear organelle that coordinates rRNA transcription and ribosome subunit biogenesis. Recent proteomic analyses have shown that the nucleolus contains proteins involved in cell cycle control, DNA processing and DNA damage response and repair, in addition to the many proteins connected with ribosome subunit production. Here we study the dynamics of nucleolar protein responses in cells exposed to stress and DNA damage caused by ionizing and ultraviolet (UV) radiation in diploid human fibroblasts. We show using a combination of imaging and quantitative proteomics methods that nucleolar substructure and the nucleolar proteome undergo selective reorganization in response to UV damage. The proteomic responses to UV include alterations of functional protein complexes such as the SSU processome and exosome, and paraspeckle proteins, involving both decreases and increases in steady state protein ratios, respectively. Several nonhomologous end-joining proteins (NHEJ), such as Ku70/80, display similar fast responses to UV. In contrast, nucleolar proteomic responses to IR are both temporally and spatially distinct from those caused by UV, and more limited in terms of magnitude. With the exception of the NHEJ and paraspeckle proteins, where IR induces rapid and transient changes within 15 min of the damage, IR does not alter the ratios of most other functional nucleolar protein complexes. The rapid transient decrease of NHEJ proteins in the nucleolus indicates that it may reflect a response to DNA damage. Our results underline that the nucleolus is a specific stress response organelle that responds to different damage and stress agents in a unique, damage-specific manner.

  20. Identification of a nuclear localization signal in the retinitis pigmentosa-mutated RP26 protein, ceramide kinase-like protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inagaki, Yuichi; Mitsutake, Susumu; Igarashi, Yasuyuki

    2006-05-12

    Retinitis pigmentosa (RP) is a genetically heterogeneous disease characterized by degeneration of the retina. A mutation in a new ceramide kinase (CERK) homologous gene, named CERK-like protein (CERKL), was found to cause autosomal recessive retinitis pigmentosa (RP26). Here, we show a point mutation of one of two putative nuclear localization signal (NLS) sequences inhibited the nuclear localization of the protein. Furthermore, the tetra-GFP-tagged NLS, which cannot passively enter the nucleus, was observed not only in the nucleus but also in the nucleolus. Our results provide First evidence of the active nuclear import of CERKL and suggest that the identified NLSmore » might be responsible for nucleolar retention of the protein. As recent studies have shown other RP-related proteins are localized in the nucleus or the nucleolus, our identification of NLS in CERKL suggests that CERKL likely plays important roles for retinal functions in the nucleus and the nucleolus.« less

  1. Involvement of the UL24 protein in herpes simplex virus 1-induced dispersal of B23 and in nuclear egress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lymberopoulos, Maria H.; Bourget, Amelie; Abdeljelil, Nawel Ben

    2011-04-10

    UL24 of herpes simplex virus 1 (HSV-1) is widely conserved within the Herpesviridae family. Herein, we tested the hypothesis that UL24, which we have previously shown to induce the redistribution of nucleolin, also affects the localization of the nucleolar protein B23. We found that HSV-1-induced dispersal of B23 was dependent on UL24. The conserved N-terminal portion of UL24 was sufficient to induce the redistribution of B23 in transient transfection assays. Mutational analysis revealed that the endonuclease motif of UL24 was important for B23 dispersal in both transfected and infected cells. Nucleolar protein relocalization during HSV-1 infection was also observed inmore » non-immortalized cells. Analysis of infected cells by electron microscopy revealed a decrease in the ratio of cytoplasmic versus nuclear viral particles in cells infected with a UL24-deficient strain compared to KOS-infected cells. Our results suggest that UL24 promotes nuclear egress of nucleocapsids during HSV-1 infection, possibly though effects on nucleoli.« less

  2. Identification of Novel Markers That Demarcate the Nucleolus during Severe Stress and Chemotherapeutic Treatment

    PubMed Central

    Lee, Sunghoon; Stochaj, Ursula

    2013-01-01

    The nucleolus, the ribosomal factory of the cell, has emerged as a key player that regulates many aspects of cell biology. Several thousand proteins associate at least transiently with nucleoli, thereby generating a highly dynamic compartment with a protein profile which is sensitive to changes in cell physiology and pharmacological agents. Powerful tools that reliably demarcate the nucleoli are a prerequisite to measure their composition and activities. Previously, we developed quantitative methods to measure fluorescently labeled molecules in nucleoli. While these tools identify nucleoli under control and mild stress conditions, the accurate detection of nucleolar boundaries under harsh experimental conditions is complicated by the lack of appropriate markers for the nucleolar compartment. Using fluorescence microscopy we have now identified new marker proteins to detect nucleoli upon (a) severe stress and (b) drug treatments that trigger a pronounced reorganization of nucleoli. Our results demonstrate that nucleolin is an ideal marker to delimit nucleoli when cells are exposed to heat or oxidative stress. Furthermore, we show for the first time that cellular apoptosis susceptibility protein (CAS) and human antigen R protein (HuR) are excluded from nucleoli and can be employed to delimit these compartments under severe conditions that redistribute major nucleolar proteins. As proof-of-principle, we used these markers to demarcate nucleoli in cells treated with pharmacological compounds that disrupt the nucleolar organization. Furthermore, to gain new insights into the biology of the nucleolus, we applied our protocols and quantified stress- and drug-induced changes in nucleolar organization and function. Finally, we show that CAS, HuR and nucleolin not only identify nucleoli in optical sections, but are also suitable to demarcate the nucleolar border following 3D reconstruction. Taken together, our studies present novel marker proteins that delimit nucleoli with

  3. Identification of novel markers that demarcate the nucleolus during severe stress and chemotherapeutic treatment.

    PubMed

    Su, Haitong; Kodiha, Mohamed; Lee, Sunghoon; Stochaj, Ursula

    2013-01-01

    The nucleolus, the ribosomal factory of the cell, has emerged as a key player that regulates many aspects of cell biology. Several thousand proteins associate at least transiently with nucleoli, thereby generating a highly dynamic compartment with a protein profile which is sensitive to changes in cell physiology and pharmacological agents. Powerful tools that reliably demarcate the nucleoli are a prerequisite to measure their composition and activities. Previously, we developed quantitative methods to measure fluorescently labeled molecules in nucleoli. While these tools identify nucleoli under control and mild stress conditions, the accurate detection of nucleolar boundaries under harsh experimental conditions is complicated by the lack of appropriate markers for the nucleolar compartment. Using fluorescence microscopy we have now identified new marker proteins to detect nucleoli upon (a) severe stress and (b) drug treatments that trigger a pronounced reorganization of nucleoli. Our results demonstrate that nucleolin is an ideal marker to delimit nucleoli when cells are exposed to heat or oxidative stress. Furthermore, we show for the first time that cellular apoptosis susceptibility protein (CAS) and human antigen R protein (HuR) are excluded from nucleoli and can be employed to delimit these compartments under severe conditions that redistribute major nucleolar proteins. As proof-of-principle, we used these markers to demarcate nucleoli in cells treated with pharmacological compounds that disrupt the nucleolar organization. Furthermore, to gain new insights into the biology of the nucleolus, we applied our protocols and quantified stress- and drug-induced changes in nucleolar organization and function. Finally, we show that CAS, HuR and nucleolin not only identify nucleoli in optical sections, but are also suitable to demarcate the nucleolar border following 3D reconstruction. Taken together, our studies present novel marker proteins that delimit nucleoli with

  4. Poly(ADP-Ribose) Polymerase 1 (PARP-1) Regulates Ribosomal Biogenesis in Drosophila Nucleoli

    PubMed Central

    Boamah, Ernest K.; Kotova, Elena; Garabedian, Mikael; Jarnik, Michael; Tulin, Alexei V.

    2012-01-01

    Poly(ADP-ribose) polymerase 1 (PARP1), a nuclear protein, utilizes NAD to synthesize poly(AD-Pribose) (pADPr), resulting in both automodification and the modification of acceptor proteins. Substantial amounts of PARP1 and pADPr (up to 50%) are localized to the nucleolus, a subnuclear organelle known as a region for ribosome biogenesis and maturation. At present, the functional significance of PARP1 protein inside the nucleolus remains unclear. Using PARP1 mutants, we investigated the function of PARP1, pADPr, and PARP1-interacting proteins in the maintenance of nucleolus structure and functions. Our analysis shows that disruption of PARP1 enzymatic activity caused nucleolar disintegration and aberrant localization of nucleolar-specific proteins. Additionally, PARP1 mutants have increased accumulation of rRNA intermediates and a decrease in ribosome levels. Together, our data suggests that PARP1 enzymatic activity is required for targeting nucleolar proteins to the proximity of precursor rRNA; hence, PARP1 controls precursor rRNA processing, post-transcriptional modification, and pre-ribosome assembly. Based on these findings, we propose a model that explains how PARP1 activity impacts nucleolar functions and, consequently, ribosomal biogenesis. PMID:22242017

  5. Kinetics of the association of dengue virus capsid protein with the granular component of nucleolus.

    PubMed

    Tiwary, Ashish Kumar; Cecilia, D

    2017-02-01

    Dengue virus (DENV) replicates in the cytoplasm but translocation of the capsid protein (C) to the nucleoli of infected cells has been shown to facilitate virus multiplication for DENV-2. This study demonstrates that the nucleolar localization of C occurs with all four serotypes of DENV. The interaction of C with the nucleolus was found to be dynamic with a mobile fraction of 66% by FRAP. That the C shuttled between the nucleus and cytoplasm was suggested by FLIP and translation inhibition experiments. Colocalization with B23 indicated that DENV C targeted the granular component (GC) of the nucleolus. Presence of DENV C in the nucleolus affected the recovery kinetics of B23 in infected and transfected cells. Sub-nucleolar localization of DENV C of all serotypes to the GC, its mobility in and out of the nucleolus and its affect on the dynamics of B23 is being shown for the first time. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Nucleophosmin/B23 regulates ubiquitin dynamics in nucleoli by recruiting deubiquitylating enzyme USP36.

    PubMed

    Endo, Akinori; Kitamura, Naomi; Komada, Masayuki

    2009-10-09

    The nucleolus is a subnuclear compartment with multiple cellular functions, including ribosome biogenesis. USP36 is a deubiquitylating enzyme that localizes to nucleoli and plays an essential role in regulating the structure and function of the organelle. However, how the localization of USP36 is regulated remains unknown. Here, we identified a short stretch of basic amino acids (RGKEKKIKKFKREKRR) that resides in the C-terminal region of USP36 and serves as a nucleolar localization signal for the protein. We found that this motif interacts with a central acidic region of nucleophosmin/B23, a major nucleolar protein involved in various nucleolar functions. Knockdown of nucleophosmin/B23 resulted in a significant reduction in the amount of USP36 in nucleoli, without affecting the cellular USP36 level. This was associated with elevated ubiquitylation levels of fibrillarin, a USP36 substrate protein in nucleoli. We conclude that nucleophosmin/B23 recruits USP36 to nucleoli, thereby serving as a platform for the regulation of nucleolar protein functions through ubiquitylation/deubiquitylation.

  7. RPG: the Ribosomal Protein Gene database.

    PubMed

    Nakao, Akihiro; Yoshihama, Maki; Kenmochi, Naoya

    2004-01-01

    RPG (http://ribosome.miyazaki-med.ac.jp/) is a new database that provides detailed information about ribosomal protein (RP) genes. It contains data from humans and other organisms, including Drosophila melanogaster, Caenorhabditis elegans, Saccharo myces cerevisiae, Methanococcus jannaschii and Escherichia coli. Users can search the database by gene name and organism. Each record includes sequences (genomic, cDNA and amino acid sequences), intron/exon structures, genomic locations and information about orthologs. In addition, users can view and compare the gene structures of the above organisms and make multiple amino acid sequence alignments. RPG also provides information on small nucleolar RNAs (snoRNAs) that are encoded in the introns of RP genes.

  8. Induction of the cellular stress response in Chironomus (Diptera)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pardalis, G.; Hudson, L.A.; Ciborowski, J.J.H.

    1995-12-31

    The accumulation of stress or heat shock proteins is involved in the protection and defense of a cell from environmentally induced damage. Under stressful conditions, cytoplasmic stress protein 70 migrates to the nucleus where it assists in the restoration of the nucleolar function. The authors have demonstrated a dose-response relationship between incidence of decreased nucleolar size in chironomid salivary glands and degree of sediment contamination. Reduced nucleolar size is indicative of reduced nucleolar function. The relationship between nucleolus size and stress protein accumulation is being explored. They are conducting experiments on chironomids to characterize the response elicited by heat shockmore » and PAH exposure in the laboratory to determine if the simultaneous action of more than one stressor can significantly alter the stress response. Simultaneous studies are being conducted to validate these biomarkers in mesocosm caging experiments. Aspects of the response will be useful as biomarkers of general stress.« less

  9. RNA content in the nucleolus alters p53 acetylation via MYBBP1A

    PubMed Central

    Kuroda, Takao; Murayama, Akiko; Katagiri, Naohiro; Ohta, Yu-mi; Fujita, Etsuko; Masumoto, Hiroshi; Ema, Masatsugu; Takahashi, Satoru; Kimura, Keiji; Yanagisawa, Junn

    2011-01-01

    A number of external and internal insults disrupt nucleolar structure, and the resulting nucleolar stress stabilizes and activates p53. We show here that nucleolar disruption induces acetylation and accumulation of p53 without phosphorylation. We identified three nucleolar proteins, MYBBP1A, RPL5, and RPL11, involved in p53 acetylation and accumulation. MYBBP1A was tethered to the nucleolus through nucleolar RNA. When rRNA transcription was suppressed by nucleolar stress, MYBBP1A translocated to the nucleoplasm and facilitated p53–p300 interaction to enhance p53 acetylation. We also found that RPL5 and RPL11 were required for rRNA export from the nucleolus. Depletion of RPL5 or RPL11 blocked rRNA export and counteracted reduction of nucleolar RNA levels caused by inhibition of rRNA transcription. As a result, RPL5 or RPL11 depletion inhibited MYBBP1A translocation and p53 activation. Our observations indicated that a dynamic equilibrium between RNA generation and export regulated nucleolar RNA content. Perturbation of this balance by nucleolar stress altered the nucleolar RNA content and modulated p53 activity. PMID:21297583

  10. ATM-dependent E2F1 accumulation in the nucleolus is an indicator of ribosomal stress in early response to DNA damage.

    PubMed

    Jin, Ya-Qiong; An, Guo-Shun; Ni, Ju-Hua; Li, Shu-Yan; Jia, Hong-Ti

    2014-01-01

    The nucleolus plays a major role in ribosome biogenesis. Most genotoxic agents disrupt nucleolar structure and function, which results in the stabilization/activation of p53, inducing cell cycle arrest or apoptosis. Likewise, transcription factor E2F1 as a DNA damage responsive protein also plays roles in cell cycle arrest, DNA repair, or apoptosis in response to DNA damage through transcriptional response and protein-protein interaction. Furthermore, E2F1 is known to be involved in regulating rRNA transcription. However, how E2F1 displays in coordinating DNA damage and nucleolar stress is unclear. In this study, we demonstrate that ATM-dependent E2F1 accumulation in the nucleolus is a characteristic feature of nucleolar stress in early response to DNA damage. We found that at the early stage of DNA damage, E2F1 accumulation in the nucleolus was an ATM-dependent and a common event in p53-suficient and -deficient cells. Increased nucleolar E2F1 was sequestered by the nucleolar protein p14ARF, which repressed E2F1-dependent rRNA transcription initiation, and was coupled with S phase. Our data indicate that early accumulation of E2F1 in the nucleolus is an indicator for nucleolar stress and a component of ATM pathway, which presumably buffers elevation of E2F1 in the nucleoplasm and coordinates the diversifying mechanisms of E2F1 acts in cell cycle progression and apoptosis in early response to DNA damage.

  11. Conformation-dependent epitopes recognized by prion protein antibodies probed using mutational scanning and deep sequencing.

    PubMed

    Doolan, Kyle M; Colby, David W

    2015-01-30

    Prion diseases are caused by a structural rearrangement of the cellular prion protein, PrP(C), into a disease-associated conformation, PrP(Sc), which may be distinguished from one another using conformation-specific antibodies. We used mutational scanning by cell-surface display to screen 1341 PrP single point mutants for attenuated interaction with four anti-PrP antibodies, including several with conformational specificity. Single-molecule real-time gene sequencing was used to quantify enrichment of mutants, returning 26,000 high-quality full-length reads for each screened population on average. Relative enrichment of mutants correlated to the magnitude of the change in binding affinity. Mutations that diminished binding of the antibody ICSM18 represented the core of contact residues in the published crystal structure of its complex. A similarly located binding site was identified for D18, comprising discontinuous residues in helix 1 of PrP, brought into close proximity to one another only when the alpha helix is intact. The specificity of these antibodies for the normal form of PrP likely arises from loss of this conformational feature after conversion to the disease-associated form. Intriguingly, 6H4 binding was found to depend on interaction with the same residues, among others, suggesting that its ability to recognize both forms of PrP depends on a structural rearrangement of the antigen. The application of mutational scanning and deep sequencing provides residue-level resolution of positions in the protein-protein interaction interface that are critical for binding, as well as a quantitative measure of the impact of mutations on binding affinity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Epstein-Barr virus-encoded EBNA-5 binds to Epstein-Barr virus-induced Fte1/S3a protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashuba, Elena; Yurchenko, Mariya; Szirak, Krisztina

    Epstein-Barr virus (EBV) transforms resting human B cells into immortalized immunoblasts. EBV-encoded nuclear antigens EBNA-5 (also called EBNA-LP) is one of the earliest viral proteins expressed in freshly infected B cells. We have recently shown that EBNA-5 binds p14ARF, a nucleolar protein that regulates the p53 pathway. Here, we report the identification of another protein with partially nucleolar localization, the v-fos transformation effector Fte-1 (Fte-1/S3a), as an EBNA-5 binding partner. In transfected cells, Fte-1/S3a and EBNA-5 proteins showed high levels of colocalization in extranucleolar inclusions. Fte-1/S3a has multiple biological functions. It enhances v-fos-mediated cellular transformation and is part of themore » small ribosomal subunit. It also interacts with the transcriptional factor CHOP and apoptosis regulator poly(ADP-ribose) polymerase (PARP). Fte-1/S3a is regularly expressed at high levels in both tumors and cancer cell lines. Its high expression favors the maintenance of malignant phenotype and undifferentiated state, whereas its down-regulation is associated with cellular differentiation and growth arrest. Here, we show that EBV-induced B cell transformation leads to the up-regulation of Fte-1/S3a. We suggest that EBNA-5 through binding may influence the growth promoting, differentiation inhibiting, or apoptosis regulating functions of Fte-1/S3a.« less

  13. Analysis of silver stained nucleolar organizing regions in odontogenic cysts and tumors.

    PubMed

    Prasanna, Md; Charan, Cr; Reddy Ealla, Kranti Kiran; Surekha, V; Kulkarni, Ganesh; Gokavarapu, Sandhya

    2014-09-01

    The present study aimed to investigate the probable differences in cell proliferation index of odontogenic cysts and tumors by means of a comparative silver stained nucleolar organizing region (AgNOR) quantification. This descriptive cross-sectional study was done on archival paraffin blocks (n = 62), consisting of 10 odontogenic keratocysts, 10 dentigerous cysts, 10 radicular cysts, 10 conventional ameloblastomas, 10 adenomatoid odontogenic tumors, 10 calcifying epithelial odontogenic tumors and 2 ameloblasic carcinomas. The mean AgNOR count of odontogenic cysts was 1.709 and the benign odontogenic tumors was 1.862. Highest AgNOR count was recorded in odontogenic keratocyst and lowest was seen in radicular cyst. Statistically significant difference in AgNOR counts of ameloblastoma and adenomatoid odontogenic tumor, amelobalastoma and calcifying epithelial odontogenic tumor, benign odontogenic tumors and ameloblastic carcinoma were seen. AgNORs in ameloblastic carcinoma were more in number and more widely spread. AgNOR technique may be considered a good indicator of cell proliferation in odontogenic cysts and tumors.

  14. HIV-1 nucleocapsid protein localizes efficiently to the nucleus and nucleolus.

    PubMed

    Yu, Kyung Lee; Lee, Sun Hee; Lee, Eun Soo; You, Ji Chang

    2016-05-01

    The HIV-1 nucleocapsid (NC) is an essential viral protein containing two highly conserved retroviral-type zinc finger (ZF) motifs, which functions in multiple stages of the HIV-1 life cycle. Although a number of functions for NC either in its mature form or as a domain of Gag have been revealed, little is known about the intracellular localization of NC and, moreover, its role in Gag protein trafficking. Here, we have investigated various forms of HIV-1 NC protein for its cellular localization and found that the NC has a strong nuclear and nucleolar localization activity. The linker region, composed of a stretch of basic amino acids between the two ZF motifs, was necessary and sufficient for the activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Chimeras of human complement C9 reveal the site recognized by complement regulatory protein CD59.

    PubMed

    Hüsler, T; Lockert, D H; Kaufman, K M; Sodetz, J M; Sims, P J

    1995-02-24

    CD59 antigen is a membrane glycoprotein that inhibits the activity of the C9 component of the C5b-9 membrane attack complex, thereby protecting human cells from lysis by human complement. The complement-inhibitory activity of CD59 is species-selective and is most effective toward C9 derived from human or other primate plasma. By contrast, rabbit C9, which can substitute for human C9 in the membrane attack complex, mediates unrestricted lysis of human cells. To identify the peptide segment of human C9 that is recognized by CD59, rabbit C9 cDNA clones were isolated, characterized, and used to construct hybrid cDNAs for expression of full-length human/rabbit C9 chimeras in COS-7 cells. All resulting chimeras were hemolytically active, when tested against chicken erythrocytes bearing C5b-8 complexes. Assays performed in the presence or absence of CD59 revealed that this inhibitor reduced the hemolytic activity of those chimeras containing human C9 sequence between residues 334-415, irrespective of whether the remainder of the protein contained human or rabbit sequence. By contrast, when this segment of C9 contained rabbit sequence, lytic activity was unaffected by CD59. These data establish that human C9 residues 334-415 contain the site recognized by CD59, and they suggest that sequence variability within this segment of C9 is responsible for the observed species-selective inhibitory activity of CD59.

  16. Chaperonin-containing T-complex Protein 1 Subunit ζ Serves as an Autoantigen Recognized by Human Vδ2 γδ T Cells in Autoimmune Diseases.

    PubMed

    Chen, Hui; You, Hongqin; Wang, Lifang; Zhang, Xuan; Zhang, Jianmin; He, Wei

    2016-09-16

    Human γδ T cells recognize conserved endogenous and stress-induced antigens typically associated with autoimmune diseases. However, the role of γδ T cells in autoimmune diseases is not clear. Few autoimmune disease-related antigens recognized by T cell receptor (TCR) γδ have been defined. In this study, we compared Vδ2 TCR complementarity-determining region 3 (CDR3) between systemic lupus erythematosus (SLE) patients and healthy donors. Results show that CDR3 length distribution differed significantly and displayed oligoclonal characteristics in SLE patients when compared with healthy donors. We found no difference in the frequency of Jδ gene fragment usage between these two groups. According to the dominant CDR3δ sequences in SLE patients, synthesized SL2 peptides specifically bound to human renal proximal tubular epithelial cell line HK-2; SL2-Vm, a mutant V sequence of SL2, did not bind. We identified the putative protein ligand chaperonin-containing T-complex protein 1 subunit ζ (CCT6A) using SL2 as a probe in HK-2 cell protein extracts by affinity chromatography and liquid chromatography-electrospray ionization-tandem mass spectrometry analysis. We found CCT6A expression on the surface of HK-2 cells. Cytotoxicity of only Vδ2 γδ T cells to HK-2 cells was blocked by anti-CCT6A antibody. Finally, we note that CCT6A concentration was significantly increased in plasma of SLE and rheumatoid arthritis patients. These data suggest that CCT6A is a novel autoantigen recognized by Vδ2 γδ T cells, which deepens our understanding of mechanisms in autoimmune diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. [The use of nucleolar morphological characteristics of birch seedlings for the assessment of environmental pollution].

    PubMed

    Karpova, S S; Kalaev, V N; Artiukov, V G; Trofimova, V A; OstashkovaL G, A D; Savko

    2006-01-01

    Micronucleus frequency in buccal mucosa from the oral cavity of children as well as nucleolar structural characteristics (surface area of single nucleoli as well as their number and type) in the root meristem of seed progeny of birch (Betula pendula Roth) were studied in some districts of Voronezh City and Voronezh Region (Novovoronezh Town, Zemlyansk Village). Similar trends of changes in cytogenetic parameters have been revealed for both subjects. Regression analysis allowed us to generate an equation relating the cytogenetic parameters of birch seed progeny (surface area of single nucleoli) and humans (frequency of micronuclei in buccal mucosa of children). This study can be considered as a result of cytogenetic monitoring of environmental pollution in some areas of Voronezh City and Voronezh Region.

  18. Identity of the segment of human complement C8 recognized by complement regulatory protein CD59.

    PubMed

    Lockert, D H; Kaufman, K M; Chang, C P; Hüsler, T; Sodetz, J M; Sims, P J

    1995-08-25

    CD59 antigen is a membrane glycoprotein that inhibits the activity of the C5b-9 membrane attack complex (MAC), thereby protecting human cells from lysis by human complement. The inhibitory function of CD59 derives from its capacity to interact with both the C8 and C9 components of MAC, preventing assembly of membrane-inserted C9 polymer. MAC-inhibitory activity of CD59 is species-selective and is most effective when both C8 and C9 derive from human or other primate plasma. Rabbit C8 and C9, which can substitute for human C8 and C9 in MAC, mediate virtually unrestricted lysis of human cells expressing CD59. In order to identify the segment of human C8 that is recognized by CD59, recombinant peptides containing human or rabbit C8 sequence were expressed in Escherichia coli and purified. CD59 was found to specifically bind to a peptide corresponding to residues 334-385 of the human C8 alpha-subunit, and to require a disulfide bond between Cys345 and Cys369. No specific binding was observed to the corresponding sequence from rabbit C8 alpha (residues 334-386). To obtain functional evidence that this segment of human C8 alpha is selectively recognized by CD59, recombinant C8 proteins were prepared by co-transfecting COS-7 cells with human/rabbit chimeras of the C8 alpha cDNA, and cDNAs encoding the C8 beta and C8 gamma chains. Hemolytic activity of MAC formed with chimeric C8 was analyzed using target cells reconstituted with CD59. These experiments confirmed that CD59 recognizes a conformationally sensitive epitope that is within a segment of human C8 alpha internal to residues 320-415. Our data also suggest that optimal interaction of CD59 with this segment of human C8 alpha is influenced by N-terminal flanking sequence in C8 alpha and by human C8 beta, but is unaffected by C8 gamma.

  19. Proteomic profiling of the human T-cell nucleolus.

    PubMed

    Jarboui, Mohamed Ali; Wynne, Kieran; Elia, Giuliano; Hall, William W; Gautier, Virginie W

    2011-12-01

    The nucleolus, site of ribosome biogenesis, is a dynamic subnuclear organelle involved in diverse cellular functions. The size, number and organisation of nucleoli are cell-specific and while it remains to be established, the nucleolar protein composition would be expected to reflect lineage-specific transcriptional regulation of rDNA genes and have cell-type functional components. Here, we describe the first characterisation of the human T-cell nucleolar proteome. Using the Jurkat T-cell line and a reproducible organellar proteomic approach, we identified 872 nucleolar proteins. In addition to ribosome biogenesis and RNA processing networks, network modeling and topological analysis of nucleolar proteome revealed distinct macromolecular complexes known to orchestrate chromatin structure and to contribute to the regulation of gene expression, replication, recombination and repair, and chromosome segregation. Furthermore, among our dataset, we identified proteins known to functionally participate in T-cell biology, including RUNX1, ILF3, ILF2, STAT3, LSH, TCF-1, SATB1, CTCF, HMGB3, BCLAF1, FX4L1, ZAP70, TIAM1, RAC2, THEMIS, LCP1, RPL22, TOPK, RETN, IFI-16, MCT-1, ISG15, and 14-3-3τ, which support cell-specific composition of the Jurkat nucleolus. Subsequently, the nucleolar localisation of RUNX1, ILF3, STAT3, ZAP70 and RAC2 was further validated by Western Blot analysis and immunofluorescence microscopy. Overall, our T-cell nucleolar proteome dataset not only further expands the existing repertoire of the human nucleolar proteome but support a cell type-specific composition of the nucleolus in T cell and highlights the potential roles of the nucleoli in lymphocyte biology. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. A dimer of the lymphoid protein RAG1 recognizes the recombination signal sequence and the complex stably incorporates the high mobility group protein HMG2.

    PubMed

    Rodgers, K K; Villey, I J; Ptaszek, L; Corbett, E; Schatz, D G; Coleman, J E

    1999-07-15

    RAG1 and RAG2 are the two lymphoid-specific proteins required for the cleavage of DNA sequences known as the recombination signal sequences (RSSs) flanking V, D or J regions of the antigen-binding genes. Previous studies have shown that RAG1 alone is capable of binding to the RSS, whereas RAG2 only binds as a RAG1/RAG2 complex. We have expressed recombinant core RAG1 (amino acids 384-1008) in Escherichia coli and demonstrated catalytic activity when combined with RAG2. This protein was then used to determine its oligomeric forms and the dissociation constant of binding to the RSS. Electrophoretic mobility shift assays show that up to three oligomeric complexes of core RAG1 form with a single RSS. Core RAG1 was found to exist as a dimer both when free in solution and as the minimal species bound to the RSS. Competition assays show that RAG1 recognizes both the conserved nonamer and heptamer sequences of the RSS. Zinc analysis shows the core to contain two zinc ions. The purified RAG1 protein overexpressed in E.coli exhibited the expected cleavage activity when combined with RAG2 purified from transfected 293T cells. The high mobility group protein HMG2 is stably incorporated into the recombinant RAG1/RSS complex and can increase the affinity of RAG1 for the RSS in the absence of RAG2.

  1. Hierarchical recruitment of ribosomal proteins and assembly factors remodels nucleolar pre-60S ribosomes.

    PubMed

    Biedka, Stephanie; Micic, Jelena; Wilson, Daniel; Brown, Hailey; Diorio-Toth, Luke; Woolford, John L

    2018-04-24

    Ribosome biogenesis involves numerous preribosomal RNA (pre-rRNA) processing events to remove internal and external transcribed spacer sequences, ultimately yielding three mature rRNAs. Removal of the internal transcribed spacer 2 spacer RNA is the final step in large subunit pre-rRNA processing and begins with endonucleolytic cleavage at the C 2 site of 27SB pre-rRNA. C 2 cleavage requires the hierarchical recruitment of 11 ribosomal proteins and 14 ribosome assembly factors. However, the function of these proteins in C 2 cleavage remained unclear. In this study, we have performed a detailed analysis of the effects of depleting proteins required for C 2 cleavage and interpreted these results using cryo-electron microscopy structures of assembling 60S subunits. This work revealed that these proteins are required for remodeling of several neighborhoods, including two major functional centers of the 60S subunit, suggesting that these remodeling events form a checkpoint leading to C 2 cleavage. Interestingly, when C 2 cleavage is directly blocked by depleting or inactivating the C 2 endonuclease, assembly progresses through all other subsequent steps. © 2018 Biedka et al.

  2. Three human chromosomal autoantigens are recognized by sera from patients with anti-centromere antibodies.

    PubMed

    Earnshaw, W; Bordwell, B; Marino, C; Rothfield, N

    1986-02-01

    We have identified 39 individuals with anti-centromere antibodies (ACA) in our patient population, all of whom have Raynaud's syndrome or disease. We have used sera from the ACA-positive patients and from 123 controls (22 normal individuals and 101 additional patients with either Raynaud's disease or Raynaud's syndrome plus an associated connective tissue disease) to screen the proteins of highly purified human (HeLa) mitotic chromosomes by sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblotting. Three antigens were recognized by the sera from the ACA-positive patients. These were centromere protein (CENP)-B (80,000 mol wt--recognized by all ACA-positive sera), CENP-A (17,000 mol wt--recognized by 38 of 39 ACA-positive sera), and CENP-C (140,000 mol wt--recognized by 37 of 39 ACA-positive sera). None of these antigens were recognized by any of the 123 control sera, although binding was occasionally seen to other chromosomal antigens. Therefore the ACA response is highly uniform in our patient population. Antibody to CENP-B shows a 100% correlation with anti-centromere staining by indirect immunofluorescence.

  3. [High-resolution GTG-banding and nucleolar organizer regions of chromosomes of two vole species: Microtus rossiaemeridonionalis and M. transcaspicus (Rodentia, Arvicolidae)].

    PubMed

    Mazurok, N A; Rubtsova, N V; Isaenko, A A; Nesterova, T B; Meĭer, M N; Zakiian, S M

    1998-08-01

    With the use of the GTG-banding of prometaphase chromosomes, 503 and 402 segments were revealed in haploid chromosome sets of voles Microtus rossiaemeridionalis and M. transcaspicus, respectively. Based on a detailed study of chromosomes at different condensation levels, idiograms of M. rossiaemeridionalis and M. transcaspicus chromosomes were constructed. Sequential Ag-staining and GTG-banding allowed nucleolar organizer regions (NORs) to be localized in 16 and 11 chromosome pairs of M. rossiaemeridionalis and M. transcaspicus, respectively.

  4. RPG: the Ribosomal Protein Gene database

    PubMed Central

    Nakao, Akihiro; Yoshihama, Maki; Kenmochi, Naoya

    2004-01-01

    RPG (http://ribosome.miyazaki-med.ac.jp/) is a new database that provides detailed information about ribosomal protein (RP) genes. It contains data from humans and other organisms, including Drosophila melanogaster, Caenorhabditis elegans, Saccharo myces cerevisiae, Methanococcus jannaschii and Escherichia coli. Users can search the database by gene name and organism. Each record includes sequences (genomic, cDNA and amino acid sequences), intron/exon structures, genomic locations and information about orthologs. In addition, users can view and compare the gene structures of the above organisms and make multiple amino acid sequence alignments. RPG also provides information on small nucleolar RNAs (snoRNAs) that are encoded in the introns of RP genes. PMID:14681386

  5. Mapping of the antigenic determinants of the Leishmania infantum gp63 protein recognized by antibodies elicited during canine visceral leishmaniasis.

    PubMed

    Morales, G; Carrillo, G; Requena, J M; Guzman, F; Gomez, L C; Patarroyo, M E; Alonso, C

    1997-06-01

    The gp63 gene encoding the major surface antigen of Leishmania infantum has been cloned and sequenced. In spite of the overall sequence homology with the gp63 genes from other Leishmania species, particularly with the constitutively expressed Leishmania chagasi Gp63 gene, the carboxy-terminal ends of these genes are clearly divergent (62% homology). To study the prevalence of anti-gp63 antibodies in the sera from dogs with visceral leishmaniasis, a recombinant L. infantum gp63 protein was expressed in Escherichia coli. It was found that 100% of the sera from these dogs recognized the recombinant gp63 protein, suggesting that it must function as a potent B cell immunogen during natural canine visceral leishmaniasis. However, heterogeneity in the level of response was observed. Fine mapping of the antigenic determinants was performed by means of 6 overlapping subfragments of the gp63 protein and by the use of a library of synthetic peptides. The data showed that there is some degree of immunological restriction in the recognition of the protein since reactivity was observed preferentially against the most divergent region. The epitope mapping of this region showed 2 immunodominant peptides the response to which seems to be preferentially of the IgG2 type.

  6. Stressing on the nucleolus in cardiovascular disease.

    PubMed

    Hariharan, Nirmala; Sussman, Mark A

    2014-06-01

    The nucleolus is a multifunctional organelle with multiple roles involving cell proliferation, growth, survival, ribosome biogenesis and stress response signaling. Alteration of nucleolar morphology and architecture signifies an early response to increased cellular stress. This review briefly summarizes nucleolar response to cardiac stress signals and details the role played by nucleolar proteins in cardiovascular pathophysiology. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease. © 2013.

  7. Dynamic nucleolar activity in wheat × Aegilops hybrids: evidence of C-genome dominance.

    PubMed

    Mirzaghaderi, Ghader; Abdolmalaki, Zinat; Zohouri, Mohsen; Moradi, Zeinab; Mason, Annaliese S

    2017-08-01

    NOR loci of C-subgenome are dominant in wheat × Aegilops interspecific hybrids, which may have evolutionary implications for wheat group genome dynamics and evolution. After interspecific hybridisation, some genes are often expressed from only one of the progenitor species, shaping subsequent allopolyploid genome evolution processes. A well-known example is nucleolar dominance, i.e. the formation of cell nucleoli from chromosomes of only one parental species. We studied nucleolar organizing regions (NORs) in diploid Aegilops markgrafii (syn: Ae. caudata; CC), Ae. umbellulata (UU), allotetraploids Aegilops cylindrica (C c C c D c D c ) and Ae. triuncialis (C t C t U t U t ), synthetic interspecific F 1 hybrids between these two allotetraploids and bread wheat (Triticum aestivum, AABBDD) and in F 3 generation hybrids with genome composition AABBDDC t C t U t U t using silver staining and fluorescence in situ hybridization (FISH). In Ae. markgrafii (CC), NORs of both 1C and 5C or only 5C chromosome pairs were active in different individual cells, while only NORs on 1U chromosomes were active in Ae. umbellulata (UU). Although all 35S rDNA loci of the C t subgenome (located on 1C t and 5C t ) were active in Ae. triuncialis, only one pair (occupying either 1C c or 5C c ) was active in Ae. cylindrica, depending on the genotype studied. These C-genome expression patterns were transmitted to the F 1 and F 3 generations. Wheat chromosome NOR activity was variable in Ae. triuncialis × T. aestivum F 1 seeds, but silenced by the F 3 generation. No effect of maternal or paternal cross direction was observed. These results indicate that C-subgenome NOR loci are dominant in wheat × Aegilops interspecific hybrids, which may have evolutionary implications for wheat group genome dynamics and allopolyploid evolution.

  8. Recognizing Faces

    ERIC Educational Resources Information Center

    Ellis, Hadyn D.

    1975-01-01

    The proposition that the mechanisms underlying facial recognition are different from those involved in recognizing other classes of pictorial material was assessed following a general review of the literature concerned with recognizing faces. (Author/RK)

  9. Analysis of silver stained nucleolar organizing regions in odontogenic cysts and tumors

    PubMed Central

    Prasanna, MD; Charan, CR; Reddy Ealla, Kranti Kiran; Surekha, V; Kulkarni, Ganesh; Gokavarapu, Sandhya

    2014-01-01

    Objective: The present study aimed to investigate the probable differences in cell proliferation index of odontogenic cysts and tumors by means of a comparative silver stained nucleolar organizing region (AgNOR) quantification. Study Design: This descriptive cross-sectional study was done on archival paraffin blocks (n = 62), consisting of 10 odontogenic keratocysts, 10 dentigerous cysts, 10 radicular cysts, 10 conventional ameloblastomas, 10 adenomatoid odontogenic tumors, 10 calcifying epithelial odontogenic tumors and 2 ameloblasic carcinomas. Results: The mean AgNOR count of odontogenic cysts was 1.709 and the benign odontogenic tumors was 1.862. Highest AgNOR count was recorded in odontogenic keratocyst and lowest was seen in radicular cyst. Statistically significant difference in AgNOR counts of ameloblastoma and adenomatoid odontogenic tumor, amelobalastoma and calcifying epithelial odontogenic tumor, benign odontogenic tumors and ameloblastic carcinoma were seen. AgNORs in ameloblastic carcinoma were more in number and more widely spread. Conclusion: AgNOR technique may be considered a good indicator of cell proliferation in odontogenic cysts and tumors. PMID:25364178

  10. Role of cytoskeleton in regulating fusion of nucleoli: a study using the activated mouse oocyte model.

    PubMed

    Lian, Hua-Yu; Jiao, Guang-Zhong; Wang, Hui-Li; Tan, Xiu-Wen; Wang, Tian-Yang; Zheng, Liang-Liang; Kong, Qiao-Qiao; Tan, Jing-He

    2014-09-01

    Although fusion of nucleoli was observed during pronuclear development of zygotes and the behavior of nucleoli in pronuclei has been suggested as an indicator of embryonic developmental potential, the mechanism for nucleolar fusion is unclear. Although both cytoskeleton and the nucleolus are important cellular entities, there are no special reports on the relationship between the two. Role of cytoskeleton in regulating fusion of nucleoli was studied using the activated mouse oocyte model. Mouse oocytes were cultured for 6 h in activating medium (Ca²⁺-free CZB medium containing 10 mM SrCl₂) supplemented with or without inhibitors for cytoskeleton or protein synthesis before pronuclear formation, nucleolar fusion, and the activity of maturation-promoting factor (MPF) were examined. Whereas treatment with microfilament inhibitor cytochalasin D or B or intermediate filament inhibitor acrylamide suppressed nucleolar fusion efficiently, treatment with microtubule inhibitor demecolcine or nocodazole or protein synthesis inhibitor cycloheximide had no effect. The cytochalasin D- or acrylamide-sensitive temporal window coincided well with the reported temporal window for nucleolar fusion in activated oocytes. Whereas a continuous incubation with demecolcine prevented pronuclear formation, pronuclei formed normally when demecolcine was excluded during the first hour of activation treatment when the MPF activity dropped dramatically. The results suggest that 1) microfilaments and intermediate filaments but not microtubules support nucleolar fusion, 2) proteins required for nucleolar fusion including microfilaments and intermediate filaments are not de novo synthesized, and 3) microtubule disruption prevents pronuclear formation by activating MPF. © 2014 by the Society for the Study of Reproduction, Inc.

  11. ATM-dependent E2F1 accumulation in the nucleolus is an indicator of ribosomal stress in early response to DNA damage

    PubMed Central

    Jin, Ya-Qiong; An, Guo-Shun; Ni, Ju-Hua; Li, Shu-Yan; Jia, Hong-Ti

    2014-01-01

    The nucleolus plays a major role in ribosome biogenesis. Most genotoxic agents disrupt nucleolar structure and function, which results in the stabilization/activation of p53, inducing cell cycle arrest or apoptosis. Likewise, transcription factor E2F1 as a DNA damage responsive protein also plays roles in cell cycle arrest, DNA repair, or apoptosis in response to DNA damage through transcriptional response and protein–protein interaction. Furthermore, E2F1 is known to be involved in regulating rRNA transcription. However, how E2F1 displays in coordinating DNA damage and nucleolar stress is unclear. In this study, we demonstrate that ATM-dependent E2F1 accumulation in the nucleolus is a characteristic feature of nucleolar stress in early response to DNA damage. We found that at the early stage of DNA damage, E2F1 accumulation in the nucleolus was an ATM-dependent and a common event in p53-suficient and -deficient cells. Increased nucleolar E2F1 was sequestered by the nucleolar protein p14ARF, which repressed E2F1-dependent rRNA transcription initiation, and was coupled with S phase. Our data indicate that early accumulation of E2F1 in the nucleolus is an indicator for nucleolar stress and a component of ATM pathway, which presumably buffers elevation of E2F1 in the nucleoplasm and coordinates the diversifying mechanisms of E2F1 acts in cell cycle progression and apoptosis in early response to DNA damage. PMID:24675884

  12. The cellular RNA-binding protein EAP recognizes a conserved stem-loop in the Epstein-Barr virus small RNA EBER 1.

    PubMed Central

    Toczyski, D P; Steitz, J A

    1993-01-01

    EAP (EBER-associated protein) is an abundant, 15-kDa cellular RNA-binding protein which associates with certain herpesvirus small RNAs. We have raised polyclonal anti-EAP antibodies against a glutathione S-transferase-EAP fusion protein. Analysis of the RNA precipitated by these antibodies from Epstein-Barr virus (EBV)- or herpesvirus papio (HVP)-infected cells shows that > 95% of EBER 1 (EBV-encoded RNA 1) and the majority of HVP 1 (an HVP small RNA homologous to EBER 1) are associated with EAP. RNase protection experiments performed on native EBER 1 particles with affinity-purified anti-EAP antibodies demonstrate that EAP binds a stem-loop structure (stem-loop 3) of EBER 1. Since bacterially expressed glutathione S-transferase-EAP fusion protein binds EBER 1, we conclude that EAP binding is independent of any other cellular or viral protein. Detailed mutational analyses of stem-loop 3 suggest that EAP recognizes the majority of the nucleotides in this hairpin, interacting with both single-stranded and double-stranded regions in a sequence-specific manner. Binding studies utilizing EBER 1 deletion mutants suggest that there may also be a second, weaker EAP-binding site on stem-loop 4 of EBER 1. These data and the fact that stem-loop 3 represents the most highly conserved region between EBER 1 and HVP 1 suggest that EAP binding is a critical aspect of EBER 1 and HVP 1 function. Images PMID:8380232

  13. Investigation of cell cycle-associated structural reorganization in nucleolar FC/DFCs from mouse MFC cells by electron microscopy.

    PubMed

    Chen, Lingling; Jiao, Yang; Guan, Xin; Li, Xiliang; Feng, Yunpeng; Jiao, Mingda

    2018-05-01

    Nucleolus structure alters as the cell cycle is progressing. It is established in telophase, maintained throughout the entire interphase and disassembled in metaphase. Fibrillar centers (FCs), dense fibrillar components (DFCs) and granular components (GCs) are essential nucleolar organizations where rRNA transcription and processing and ribosome assembly take place. Hitherto, little is known about the cell cycle-dependent reorganization of these structures. In this study, we followed the nucleolus structure during the cell cycle by electron microscopy (EM). We found the nucleolus experienced multiple rounds of structural reorganization within a single cell cycle: (1) when nucleoli are formed during the transition from late M to G1 phase, FCs, DFCs and GCs are constructed, leading to the establishment of tripartite nucleolus; (2) as FC/DFCs are disrupted at mid-G1, tripartite nucleolus is gradually changed into a bipartite organization; (3) at late G1, the reassembly of FC/DFCs results in a structural transition from bipartite nucleolus towards tripartite nucleolus; (4) as cells enter S phase, FC/DFCs are disassembled again and tripartite nucleolus is thus changed into a bipartite organization. Of note, FC/DFCs were not observed until late S phase; (5) FC/DFCs experience structural disruption and restoration during G2 and (6) when cells are at mitotic stage, FC/DFCs disappear before nucleolus structure is disassembled. These results also suggest that bipartite nucleolus can exist in higher eukaryotes at certain period of the cell cycle. As structures are the fundamental basis of diverse cell activities, unveiling the structural reorganization of nucleolar FCs and DFCs may bring insights into the spatial-temporal compartmentalization of relevant cellular functions.

  14. Three human chromosomal autoantigens are recognized by sera from patients with anti-centromere antibodies.

    PubMed Central

    Earnshaw, W; Bordwell, B; Marino, C; Rothfield, N

    1986-01-01

    We have identified 39 individuals with anti-centromere antibodies (ACA) in our patient population, all of whom have Raynaud's syndrome or disease. We have used sera from the ACA-positive patients and from 123 controls (22 normal individuals and 101 additional patients with either Raynaud's disease or Raynaud's syndrome plus an associated connective tissue disease) to screen the proteins of highly purified human (HeLa) mitotic chromosomes by sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblotting. Three antigens were recognized by the sera from the ACA-positive patients. These were centromere protein (CENP)-B (80,000 mol wt--recognized by all ACA-positive sera), CENP-A (17,000 mol wt--recognized by 38 of 39 ACA-positive sera), and CENP-C (140,000 mol wt--recognized by 37 of 39 ACA-positive sera). None of these antigens were recognized by any of the 123 control sera, although binding was occasionally seen to other chromosomal antigens. Therefore the ACA response is highly uniform in our patient population. Antibody to CENP-B shows a 100% correlation with anti-centromere staining by indirect immunofluorescence. Images PMID:3511098

  15. Ellagic Acid-Changed Epigenome of Ribosomal Genes and Condensed RPA194-Positive Regions of Nucleoli in Tumour Cells.

    PubMed

    Legartová, S; Sbardella, G; Kozubek, S; Bártová, E

    2015-01-01

    We studied the effect of ellagic acid (EA) on the morphology of nucleoli and on the pattern of major proteins of the nucleolus. After EA treatment of HeLa cells, we observed condensation of nucleoli as documented by the pattern of argyrophilic nucleolar organizer regions (AgNORs). EA also induced condensation of RPA194-positive nucleolar regions, but no morphological changes were observed in nucleolar compartments positive for UBF1/2 proteins or fibrillarin. Studied morphological changes induced by EA were compared with the morphology of control, non-treated cells and with pronounced condensation of all nucleolar domains caused by actinomycin D (ACT-D) treatment. Similarly as ACT-D, but in a lesser extent, EA induced an increased number of 53BP1-positive DNA lesions. However, the main marker of DNA lesions, γH2AX, was not accumulated in body-like nuclear structures. An increased level of γH2AX was found by immunofluorescence and Western blots only after EA treatment. Intriguingly, the levels of fibrillarin, UBF1/2 and γH2AX were increased at the promoters of ribosomal genes, while 53BP1 and CARM1 levels were decreased by EA treatment at these genomic regions. In the entire genome, EA reduced H3R17 dimethylation. Taken together, ellagic acid is capable of significantly changing the nucleolar morphology and protein levels inside the nucleolus.

  16. Analysis of the internal nuclear matrix. Oligomers of a 38 kD nucleolar polypeptide stabilized by disulfide bonds.

    PubMed

    Fields, A P; Kaufmann, S H; Shaper, J H

    1986-05-01

    When rat liver nuclei are treated with the sulfhydryl cross-linking reagent sodium tetrathionate (NaTT) prior to nuclease treatment and extraction with 1.6 M NaCl, residual nucleoli and an extensive non-chromatin intranuclear network remain associated with the nuclear envelope. Subsequent treatment of this structure with 1 M NaCl containing 20 mM dithiothreitol (DTT) solubilizes the intranuclear material, while the nuclear envelope remains structurally intact. We have isolated and partially characterized a major polypeptide of the disulfide-stabilized internal nuclear matrix. The polypeptide, which has an apparent molecular mass 38 kD and isoelectric point 5.3, has been localized to the nucleolus of rat liver nuclei by indirect immunofluorescence using a specific polyclonal chicken antiserum. Based on its molecular mass, isoelectric point, intracellular localization and amino acid composition, the 38 kD polypeptide appears to be analogous to the nucleolar phosphoprotein B23 described by Prestayko et al. (Biochemistry 13 (1974) 1945) [20]. Immunologically related polypeptides have likewise been localized to the nucleoli of both hamster and human tissue culture cell lines as well as the cellular slime mold Physarum polycephalum. By immunoblotting, a single 38 kD polypeptide is recognized by the antiserum in rat, mouse, hamster and human cell lines. The antiserum has been utilized to investigate the oligomeric structure of the 38 kD polypeptide and the nature of its association with the rat liver nuclear matrix. By introducing varying numbers of disulfide bonds, we have found that the 38 kD polypeptide becomes incorporated into the internal nuclear matrix in a two-step process. Soluble disulfide-bonded homodimers of the polypeptide are first formed and then are rendered salt-insoluble by more extensive disulfide cross-linking.

  17. UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity

    PubMed Central

    Sobol, Margarita; Yildirim, Sukriye; Philimonenko, Vlada V; Marášek, Pavel; Castaño, Enrique; Hozák, Pavel

    2013-01-01

    To maintain growth and division, cells require a large-scale production of rRNAs which occurs in the nucleolus. Recently, we have shown the interaction of nucleolar phosphatidylinositol 4,5-bisphosphate (PIP2) with proteins involved in rRNA transcription and processing, namely RNA polymerase I (Pol I), UBF, and fibrillarin. Here we extend the study by investigating transcription-related localization of PIP2 in regards to transcription and processing complexes of Pol I. To achieve this, we used either physiological inhibition of transcription during mitosis or inhibition by treatment the cells with actinomycin D (AMD) or 5,6-dichloro-1β-d-ribofuranosyl-benzimidazole (DRB). We show that PIP2 is associated with Pol I subunits and UBF in a transcription-independent manner. On the other hand, PIP2/fibrillarin colocalization is dependent on the production of rRNA. These results indicate that PIP2 is required not only during rRNA production and biogenesis, as we have shown before, but also plays a structural role as an anchor for the Pol I pre-initiation complex during the cell cycle. We suggest that throughout mitosis, PIP2 together with UBF is involved in forming and maintaining the core platform of the rDNA helix structure. Thus we introduce PIP2 as a novel component of the NOR complex, which is further engaged in the renewed rRNA synthesis upon exit from mitosis. PMID:24513678

  18. Aurora-B Regulates RNA Methyltransferase NSUN2

    PubMed Central

    Sakita-Suto, Shiho; Kanda, Akifumi; Suzuki, Fumio; Sato, Sunao; Takata, Takashi

    2007-01-01

    Disassembly of the nucleolus during mitosis is driven by phosphorylation of nucleolar proteins. RNA processing stops until completion of nucleolar reformation in G1 phase. Here, we describe the RNA methyltransferase NSUN2, a novel substrate of Aurora-B that contains an NOL1/NOP2/sun domain. NSUN2 was concentrated in the nucleolus during interphase and was distributed in the perichromosome and cytoplasm during mitosis. Aurora-B phosphorylated NSUN2 at Ser139. Nucleolar proteins NPM1/nucleophosmin/B23 and nucleolin/C23 were associated with NSUN2 during interphase. In mitotic cells, association between NPM1 and NSUN2 was inhibited, but NSUN2-S139A was constitutively associated with NPM1. The Aurora inhibitor Hesperadin induced association of NSUN2 with NPM1 even in mitosis, despite the silver staining nucleolar organizer region disassembly. In vitro methylation experiments revealed that the Aurora-B-phosphorylation and the phosphorylation-mimic mutation (S139E) suppressed methyltransferase activities of NSUN2. These results indicate that Aurora-B participates to regulate the assembly of nucleolar RNA-processing machinery and the RNA methyltransferase activity of NSUN2 via phosphorylation at Ser139 during mitosis. PMID:17215513

  19. A high-throughput and rapid computational method for screening of RNA post-transcriptional modifications that can be recognized by target proteins.

    PubMed

    Orr, Asuka A; Gonzalez-Rivera, Juan C; Wilson, Mark; Bhikha, P Reena; Wang, Daiqi; Contreras, Lydia M; Tamamis, Phanourios

    2018-02-01

    There are over 150 currently known, highly diverse chemically modified RNAs, which are dynamic, reversible, and can modulate RNA-protein interactions. Yet, little is known about the wealth of such interactions. This can be attributed to the lack of tools that allow the rapid study of all the potential RNA modifications that might mediate RNA-protein interactions. As a promising step toward this direction, here we present a computational protocol for the characterization of interactions between proteins and RNA containing post-transcriptional modifications. Given an RNA-protein complex structure, potential RNA modified ribonucleoside positions, and molecular mechanics parameters for capturing energetics of RNA modifications, our protocol operates in two stages. In the first stage, a decision-making tool, comprising short simulations and interaction energy calculations, performs a fast and efficient search in a high-throughput fashion, through a list of different types of RNA modifications categorized into trees according to their structural and physicochemical properties, and selects a subset of RNA modifications prone to interact with the target protein. In the second stage, RNA modifications that are selected as recognized by the protein are examined in-detail using all-atom simulations and free energy calculations. We implement and experimentally validate this protocol in a test case involving the study of RNA modifications in complex with Escherichia coli (E. coli) protein Polynucleotide Phosphorylase (PNPase), depicting the favorable interaction between 8-oxo-7,8-dihydroguanosine (8-oxoG) RNA modification and PNPase. Further advancement of the protocol can broaden our understanding of protein interactions with all known RNA modifications in several systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Chromatin tethering effects of hNopp140 are involved in the spatial organization of nucleolus and the rRNA gene transcription

    PubMed Central

    Tsai, Yi-Tzang; Lin, Chen-I; Chen, Hung-Kai; Lee, Kuo-Ming; Hsu, Chia-Yi; Yang, Shun-Jen

    2008-01-01

    The short arms of five human acrocentric chromosomes contain ribosomal gene (rDNA) clusters where numerous mini-nucleoli arise at the exit of mitosis. These small nucleoli tend to coalesce into one or a few large nucleoli during interphase by unknown mechanisms. Here, we demonstrate that the N- and C-terminal domains of a nucleolar protein, hNopp140, bound respectively to α-satellite arrays and rDNA clusters of acrocentric chromosomes for nucleolar formation. The central acidic-and-basic repeated domain of hNopp140, possessing a weak self-self interacting ability, was indispensable for hNopp140 to build up a nucleolar round-shaped structure. The N- or the C-terminally truncated hNopp140 caused nucleolar segregation and was able to alter locations of the rDNA transcription, as mediated by detaching the rDNA repeats from the acrocentric α-satellite arrays. Interestingly, an hNopp140 mutant, made by joining the N- and C-terminal domains but excluding the entire central repeated region, induced nucleolar disruption and global chromatin condensation. Furthermore, RNAi knockdown of hNopp140 resulted in dispersion of the rDNA and acrocentric α-satellite sequences away from nucleolus that was accompanied by rDNA transcriptional silence. Our findings indicate that hNopp140, a scaffold protein, is involved in the nucleolar assembly, fusion, and maintenance. PMID:18253863

  1. Sub-cellular localisation studies may spuriously detect the Yes-associated protein, YAP, in nucleoli leading to potentially invalid conclusions of its function.

    PubMed

    Finch, Megan L; Passman, Adam M; Strauss, Robyn P; Yeoh, George C; Callus, Bernard A

    2015-01-01

    The Yes-associated protein (YAP) is a potent transcriptional co-activator that functions as a nuclear effector of the Hippo signaling pathway. YAP is oncogenic and its activity is linked to its cellular abundance and nuclear localisation. Activation of the Hippo pathway restricts YAP nuclear entry via its phosphorylation by Lats kinases and consequent cytoplasmic retention bound to 14-3-3 proteins. We examined YAP expression in liver progenitor cells (LPCs) and surprisingly found that transformed LPCs did not show an increase in YAP abundance compared to the non-transformed LPCs from which they were derived. We then sought to ascertain whether nuclear YAP was more abundant in transformed LPCs. We used an antibody that we confirmed was specific for YAP by immunoblotting to determine YAP's sub-cellular localisation by immunofluorescence. This antibody showed diffuse staining for YAP within the cytosol and nuclei, but, noticeably, it showed intense staining of the nucleoli of LPCs. This staining was non-specific, as shRNA treatment of cells abolished YAP expression to undetectable levels by Western blot yet the nucleolar staining remained. Similar spurious YAP nucleolar staining was also seen in mouse embryonic fibroblasts and mouse liver tissue, indicating that this antibody is unsuitable for immunological applications to determine YAP sub-cellular localisation in mouse cells or tissues. Interestingly nucleolar staining was not evident in D645 cells suggesting the antibody may be suitable for use in human cells. Given the large body of published work on YAP in recent years, many of which utilise this antibody, this study raises concerns regarding its use for determining sub-cellular localisation. From a broader perspective, it serves as a timely reminder of the need to perform appropriate controls to ensure the validity of published data.

  2. Sub-Cellular Localisation Studies May Spuriously Detect the Yes-Associated Protein, YAP, in Nucleoli Leading to Potentially Invalid Conclusions of Its Function

    PubMed Central

    Finch, Megan L.; Passman, Adam M.; Strauss, Robyn P.; Yeoh, George C.; Callus, Bernard A.

    2015-01-01

    The Yes-associated protein (YAP) is a potent transcriptional co-activator that functions as a nuclear effector of the Hippo signaling pathway. YAP is oncogenic and its activity is linked to its cellular abundance and nuclear localisation. Activation of the Hippo pathway restricts YAP nuclear entry via its phosphorylation by Lats kinases and consequent cytoplasmic retention bound to 14-3-3 proteins. We examined YAP expression in liver progenitor cells (LPCs) and surprisingly found that transformed LPCs did not show an increase in YAP abundance compared to the non-transformed LPCs from which they were derived. We then sought to ascertain whether nuclear YAP was more abundant in transformed LPCs. We used an antibody that we confirmed was specific for YAP by immunoblotting to determine YAP’s sub-cellular localisation by immunofluorescence. This antibody showed diffuse staining for YAP within the cytosol and nuclei, but, noticeably, it showed intense staining of the nucleoli of LPCs. This staining was non-specific, as shRNA treatment of cells abolished YAP expression to undetectable levels by Western blot yet the nucleolar staining remained. Similar spurious YAP nucleolar staining was also seen in mouse embryonic fibroblasts and mouse liver tissue, indicating that this antibody is unsuitable for immunological applications to determine YAP sub-cellular localisation in mouse cells or tissues. Interestingly nucleolar staining was not evident in D645 cells suggesting the antibody may be suitable for use in human cells. Given the large body of published work on YAP in recent years, many of which utilise this antibody, this study raises concerns regarding its use for determining sub-cellular localisation. From a broader perspective, it serves as a timely reminder of the need to perform appropriate controls to ensure the validity of published data. PMID:25658431

  3. Evolution of Src Homology 2 (SH2) Domain to Recognize Sulfotyrosine.

    PubMed

    Ju, Tong; Niu, Wei; Guo, Jiantao

    2016-09-16

    Protein tyrosine O-sulfation is considered as the most common type of post-translational tyrosine modification in nature and plays important roles in extracellular biomolecular interactions. To facilitate the mapping, biological study, and medicinal application of this type of post-translational modification, we seek to evolve a small protein scaffold that recognizes sulfotyrosine with high affinity. We focused our efforts on the engineering of the Src Homology 2 (SH2) domain, which represents the largest class of known phosphotyrosine-recognition domain in nature and has a highly evolvable binding pocket. By using phage display, we successfully engineered the SH2 domain to recognize sulfotyrosine with high affinity. The best mutant, SH2-60.1, displayed more than 1700 fold higher sulfotyrosine-binding affinity than that of the wild-type SH2 domain. We also demonstrated that the evolved SH2 domain mutants could be used to detect sulfoprotein levels on the cell surface. These evolved SH2 domain mutants can be potentially applied to the study of protein tyrosine O-sulfation with proper experimental designs.

  4. Fusion loop peptide of the West Nile virus envelope protein is essential for pathogenesis and is recognized by a therapeutic cross-reactive human monoclonal antibody.

    PubMed

    Sultana, Hameeda; Foellmer, Harald G; Neelakanta, Girish; Oliphant, Theodore; Engle, Michael; Ledizet, Michel; Krishnan, Manoj N; Bonafé, Nathalie; Anthony, Karen G; Marasco, Wayne A; Kaplan, Paul; Montgomery, Ruth R; Diamond, Michael S; Koski, Raymond A; Fikrig, Erol

    2009-07-01

    West Nile virus is an emerging pathogen that can cause fatal neurological disease. A recombinant human mAb, mAb11, has been described as a candidate for the prevention and treatment of West Nile disease. Using a yeast surface display epitope mapping assay and neutralization escape mutant, we show that mAb11 recognizes the fusion loop, at the distal end of domain II of the West Nile virus envelope protein. Ab mAb11 cross-reacts with all four dengue viruses and provides protection against dengue (serotypes 2 and 4) viruses. In contrast to the parental West Nile virus, a neutralization escape variant failed to cause lethal encephalitis (at higher infectious doses) or induce the inflammatory responses associated with blood-brain barrier permeability in mice, suggesting an important role for the fusion loop in viral pathogenesis. Our data demonstrate that an intact West Nile virus fusion loop is critical for virulence, and that human mAb11 targeting this region is efficacious against West Nile virus infection. These experiments define the molecular determinant on the envelope protein recognized by mAb11 and demonstrate the importance of this region in causing West Nile encephalitis.

  5. Nucleolar organizer regions in Sittasomus griseicapillus and Lepidocolaptes angustirostris (Aves, Dendrocolaptidae): Evidence of a chromosome inversion.

    PubMed

    de Oliveira Barbosa, Marcelo; da Silva, Rubens Rodrigues; de Sena Correia, Vanessa Carolina; Dos Santos, Luana Pereira; Garnero, Analía Del Valle; Gunski, Ricardo José

    2013-03-01

    Cytogenetic studies in birds are still scarce compared to other vertebrates. Woodcreepers (Dendrocolaptidae) are part of a highly specialized group within the Suboscines of the New World. They are forest birds exclusive to the Neotropical region and similar to woodpeckers, at a comparable evolutionary stage. This paper describes for the first time the karyotypes of the Olivaceous and the Narrow-billed Woodcreeper using conventional staining with Giemsa and silver nitrate staining of the nucleolar organizer regions (Ag-NORs). Metaphases were obtained by fibular bone marrow culture. The chromosome number of the Olivaceous Woodcreeper was 2n = 82 and of the Narrow-billed Woodcreeper, 2n = 82. Ag-NORs in the largest macrochromosome pair and evidence of a chromosome inversion are described herein for the first time for this group.

  6. Anti-liver-kidney microsome antibody type 1 recognizes human cytochrome P450 db1.

    PubMed

    Gueguen, M; Yamamoto, A M; Bernard, O; Alvarez, F

    1989-03-15

    Anti-liver-kidney microsome antibody type 1 (LKM1), present in the sera of a group of children with autoimmune hepatitis, was recently shown to recognize a 50 kDa protein identified as rat liver cytochromes P450 db1 and db2. High homology between these two members of the rat P450 IID subfamily and human P450 db1 suggested that anti-LKM1 antibody is directed against this human protein. To test this hypothesis, a human liver cDNA expression library in phage lambda GT-11 was screened using rat P450 db1 cDNA as a probe. Two human cDNA clones were found to be identical to human P450 db1 by restriction mapping. Immunoblot analysis using as antigen, the purified fusion protein from one of the human cDNA clones showed that only anti-LKM1 with anti-50 kDa reactivity recognized the fusion protein. This fusion protein was further used to develop an ELISA test that was shown to be specific for sera of children with this disease. These results: 1) identify the human liver antigen recognized by anti-LKM1 auto-antibodies as cytochrome P450 db1, 2) allow to speculate that mutation on the human P450 db1 gene could alter its expression in the hepatocyte and make it auto-antigenic, 3) provide a simple and specific diagnostic test for this disease.

  7. Nucleolar Organizer Regions of Oral Epithelial Cells in Crack Cocaine Users

    PubMed Central

    Carvalho de M. Thiele, Magna; Carlos Bohn, Joslei; Lima Chaiben, Cassiano; Trindade Grégio, Ana Maria; Ângela Naval Machado, Maria; Adilson Soares de Lima, Antonio

    2013-01-01

    Background: The health risks of crack cocaine smoking on the oral mucosa has not been widely researched and documented. Objective: The purpose of this study was to analyze the proliferative activity of oral epithelial cells exposed to crack cocaine smoke using silver nucleolar organizer region (AgNOR) staining. Methods: Oral smears were collected from clinically normal-appearing buccal mucosa by liquid-based exfoliative cytology of 60 individuals (30 crack cocaine users and 30 healthy controls matched for age and gender) and analyzed for cytomorphologic and cytomorphometric techniques. Results: Crack cocaine users consumed about 13.3 heat-stable rocks per day and the time consumption of the drug was of 5.2 (± 3.3) years. Mean values of AgNOR counting for case and control groups were 5.18 ± 1.83 and 3.38 ± 1.02 (P<0.05), respectively. AgNOR area and percentage of AgNOR-occupied nuclear area were increased in comparison with the control (P<0.05). There was no statistically significant difference in the mean values of the nuclear area between the groups (P>0.05). Conclusion: This study revealed that crack cocaine smoke increases the rate of cellular proliferation in cells of normal buccal mucosa. PMID:23567853

  8. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster.

    PubMed

    Sahoo, Trilochan; del Gaudio, Daniela; German, Jennifer R; Shinawi, Marwan; Peters, Sarika U; Person, Richard E; Garnica, Adolfo; Cheung, Sau Wai; Beaudet, Arthur L

    2008-06-01

    Prader-Willi syndrome (PWS) is caused by deficiency for one or more paternally expressed imprinted transcripts within chromosome 15q11-q13, including SNURF-SNRPN and multiple small nucleolar RNAs (snoRNAs). Balanced chromosomal translocations that preserve expression of SNURF-SNRPN and centromeric genes but separate the snoRNA HBII-85 cluster from its promoter cause PWS. A microdeletion of the HBII-85 snoRNAs in a child with PWS provides, in combination with previous data, effectively conclusive evidence that deficiency of HBII-85 snoRNAs causes the key characteristics of the PWS phenotype, although some atypical features suggest that other genes in the region may make more subtle phenotypic contributions.

  9. Crosstalk between the nucleolus and the DNA damage response.

    PubMed

    Ogawa, L M; Baserga, S J

    2017-02-28

    Nucleolar function and the cellular response to DNA damage have long been studied as distinct disciplines. New research and a new appreciation for proteins holding multiple functional roles, however, is beginning to change the way we think about the crosstalk among distinct cellular processes. Here, we focus on the crosstalk between the DNA damage response and the nucleolus, including a comprehensive review of the literature that reveals a role for conventional DNA repair proteins in ribosome biogenesis, and conversely, ribosome biogenesis proteins in DNA repair. Furthermore, with recent advances in nucleolar proteomics and a growing list of proteins that localize to the nucleolus, it is likely that we will continue to identify new DNA repair proteins with a nucleolar-specific role. Given the importance of ribosome biogenesis and DNA repair in essential cellular processes and the role that they play in diverse pathologies, continued elucidation of the overlap between these two disciplines will be essential to the advancement of both fields and to the development of novel therapeutics.

  10. Proteomics Analysis of the Nucleolus in Adenovirus-infected Cells

    PubMed Central

    Lam, Yun W.; Evans, Vanessa C.; Heesom, Kate J.; Lamond, Angus I.; Matthews, David A.

    2010-01-01

    Adenoviruses replicate primarily in the host cell nucleus, and it is well established that adenovirus infection affects the structure and function of host cell nucleoli in addition to coding for a number of nucleolar targeted viral proteins. Here we used unbiased proteomics methods, including high throughput mass spectrometry coupled with stable isotope labeling by amino acids in cell culture (SILAC) and traditional two-dimensional gel electrophoresis, to identify quantitative changes in the protein composition of the nucleolus during adenovirus infection. Two-dimensional gel analysis revealed changes in six proteins. By contrast, SILAC-based approaches identified 351 proteins with 24 proteins showing at least a 2-fold change after infection. Of those, four were previously reported to have aberrant localization and/or functional relevance during adenovirus infection. In total, 15 proteins identified as changing in amount by proteomics methods were examined in infected cells using confocal microscopy. Eleven of these proteins showed altered patterns of localization in adenovirus-infected cells. Comparing our data with the effects of actinomycin D on the nucleolar proteome revealed that adenovirus infection apparently specifically targets a relatively small subset of nucleolar antigens at the time point examined. PMID:19812395

  11. Proteomics analysis of the nucleolus in adenovirus-infected cells.

    PubMed

    Lam, Yun W; Evans, Vanessa C; Heesom, Kate J; Lamond, Angus I; Matthews, David A

    2010-01-01

    Adenoviruses replicate primarily in the host cell nucleus, and it is well established that adenovirus infection affects the structure and function of host cell nucleoli in addition to coding for a number of nucleolar targeted viral proteins. Here we used unbiased proteomics methods, including high throughput mass spectrometry coupled with stable isotope labeling by amino acids in cell culture (SILAC) and traditional two-dimensional gel electrophoresis, to identify quantitative changes in the protein composition of the nucleolus during adenovirus infection. Two-dimensional gel analysis revealed changes in six proteins. By contrast, SILAC-based approaches identified 351 proteins with 24 proteins showing at least a 2-fold change after infection. Of those, four were previously reported to have aberrant localization and/or functional relevance during adenovirus infection. In total, 15 proteins identified as changing in amount by proteomics methods were examined in infected cells using confocal microscopy. Eleven of these proteins showed altered patterns of localization in adenovirus-infected cells. Comparing our data with the effects of actinomycin D on the nucleolar proteome revealed that adenovirus infection apparently specifically targets a relatively small subset of nucleolar antigens at the time point examined.

  12. A cytochemical note on nucleoli of granulocytic precursors and granulocytes in patients suffering from the refractory anemia with excess blasts (RAEB) of the myelodysplastic syndrome (MDS).

    PubMed

    Smetana, K; Jirásková, I; Malasková, V; Cermák, J

    2002-01-01

    Nucleoli were studied in the proliferation as well as maturation granulopoietic compartment in patients suffering from refractory anemia with excess blasts (RAEB) of the myelodysplastic syndrome (MDS) by means of simple cytochemical procedures for the demonstration of nucleolar RNA and silver stained proteins of nucleolus organizer regions. Regardless of the procedure used for the nucleolar visualization, early stages of the granulopoietic compartment and particularly myeloblasts of RAEB patients were characterized by reduction of the nucleolar number expressed by the nucleolar coefficient the values of which resembled those described previously in acute myeloid leukemias. The reduced values of the nucleolar coefficient of these cells in silver stained specimens of RAEB patients were accompanied by a decreased number of clusters of silver stained particles representing interphasic silver stained nucleolus organizer regions (AgNORs). The reduction of these clusters was also described previously in leukemic cells. In addition, the differences in the values of the nucleolar coefficient of granulocytic precursors between specimens stained for RNA and those stained with the silver reaction might reflect changing composition and proportions of nucleolar components in the course of the granulocytic development.

  13. AFFINITY OF ANIMAL CELL NUCLEOLI FOR NORMAL SERUM

    PubMed Central

    Maisel, John C.; Lytle, Ralph I.

    1966-01-01

    Nucleoli of animal cells cultured in vitro are modified by a component of "nonimmune" animal serum. Modified nucleoli bind fluorescein-conjugated nonimmune serum proteins, as shown by calcium ion-dependent fluorescence. Analysis of serum indicates that the nucleolar-binding component is a globulin, with an electrophoretic mobility in the same region as the slow alpha-1 component in pH 8.6 Veronal buffer. The component has a low sedimentation constant (2.4S), and appears to contain glycoprotein with relatively high sialic acid content (8.5%); the latter moiety may be essential to reaction with nucleoli. The nucleolar component reacting with this alpha globulin fraction appears to be a histonelike basic protein. Primary cultures of animal cells have been supported for 1 wk through attachment, spreading, and outgrowth from colonies to confluent monolayers in medium containing a nucleolar-reactive serum fraction as the only protein supplement. PMID:4164214

  14. Exploring the recognized bio-mimicry materials for gas sensing.

    PubMed

    Wu, T Z; Lo, Y R; Chan, E C

    2001-12-01

    This study was undertaken to synthesize peptides that are partially similar to the binding sites of human olfactory receptor protein. First, a putative 3-D model structure of human olfactory receptor protein (P30953) was modeled using a molecular simulation method. The computer docking simulation was then performed to determine the most plausible binding sites between the model structure and target gases, trimethylamine, ammonia, acetic acid, and o-xylene. According to the simulation result, a series of polypeptide sequences, horp61 for TMA, horp103 for o-xylene, horp109 for ammonia, and horp193 for acetic acid as recognized molecules were designed for gas sensing purposes. Preparing these peptides as corresponding gas sensing probes, the results showed a high relative sensitivity response of 6.7 for TMA (probe horp61), 5.1 for o-xylene (probe horp103), 11 for ammonia (probe horp109), and 28 for acetic acid (probe horp193), respectively. These results indicate that peptide mimicking of binding domain on olfactory receptor opens a new window and offers a novel strategy for the further development of recognized materials for gas sensing.

  15. HIV-1 nucleocapsid protein localizes efficiently to the nucleus and nucleolus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Kyung Lee; Lee, Sun Hee; Lee, Eun Soo

    The HIV-1 nucleocapsid (NC) is an essential viral protein containing two highly conserved retroviral-type zinc finger (ZF) motifs, which functions in multiple stages of the HIV-1 life cycle. Although a number of functions for NC either in its mature form or as a domain of Gag have been revealed, little is known about the intracellular localization of NC and, moreover, its role in Gag protein trafficking. Here, we have investigated various forms of HIV-1 NC protein for its cellular localization and found that the NC has a strong nuclear and nucleolar localization activity. The linker region, composed of a stretchmore » of basic amino acids between the two ZF motifs, was necessary and sufficient for the activity. - Highlights: • HIV-1 NC possess a NLS and leads to nuclear and nucleolus localization. • Mutations in basic residues between two ZFs in NC decrease the nucleus localization. • ZFs of NC affect cytoplasmic organelles localization rather than nucleus localization.« less

  16. Quantitative time-resolved chemoproteomics reveals that stable O-GlcNAc regulates box C/D snoRNP biogenesis

    PubMed Central

    Qin, Wei; Lv, Pinou; Fan, Xinqi; Quan, Baiyi; Zhu, Yuntao; Qin, Ke; Chen, Ying; Wang, Chu

    2017-01-01

    O-linked GlcNAcylation (O-GlcNAcylation), a ubiquitous posttranslational modification on intracellular proteins, is dynamically regulated in cells. To analyze the turnover dynamics of O-GlcNAcylated proteins, we developed a quantitative time-resolved O-linked GlcNAc proteomics (qTOP) strategy based on metabolic pulse-chase labeling with an O-GlcNAc chemical reporter and stable isotope labeling with amino acids in cell culture (SILAC). Applying qTOP, we quantified the turnover rates of 533 O-GlcNAcylated proteins in NIH 3T3 cells and discovered that about 14% exhibited minimal removal of O-GlcNAc or degradation of protein backbones. The stability of those hyperstable O-GlcNAcylated proteins was more sensitive to O-GlcNAcylation inhibition compared with the more dynamic populations. Among the hyperstable population were three core proteins of box C/D small nucleolar ribonucleoprotein complexes (snoRNPs): fibrillarin (FBL), nucleolar protein 5A (NOP56), and nucleolar protein 5 (NOP58). We showed that O-GlcNAcylation stabilized these proteins and was essential for snoRNP assembly. Blocking O-GlcNAcylation on FBL altered the 2′-O-methylation of rRNAs and impaired cancer cell proliferation and tumor formation in vivo. PMID:28760965

  17. Changes in biomolecular profile in a single nucleolus during cell fixation.

    PubMed

    Kuzmin, Andrey N; Pliss, Artem; Prasad, Paras N

    2014-11-04

    Fixation of biological sample is an essential technique applied in order to "freeze" in time the intracellular molecular content. However, fixation induces changes of the cellular molecular structure, which mask physiological distribution of biomolecules and bias interpretation of results. Accurate, sensitive, and comprehensive characterization of changes in biomolecular composition, occurring during fixation, is crucial for proper analysis of experimental data. Here we apply biomolecular component analysis for Raman spectra measured in the same nucleoli of HeLa cells before and after fixation by either formaldehyde solution or by chilled ethanol. It is found that fixation in formaldehyde does not strongly affect the Raman spectra of nucleolar biomolecular components, but may significantly decrease the nucleolar RNA concentration. At the same time, ethanol fixation leads to a proportional increase (up to 40%) in concentrations of nucleolar proteins and RNA, most likely due to cell shrinkage occurring in the presence of coagulant fixative. Ethanol fixation also triggers changes in composition of nucleolar proteome, as indicated by an overall reduction of the α-helical structure of proteins and increase in the concentration of proteins containing the β-sheet conformation. We conclude that cross-linking fixation is a more appropriate protocol for mapping of proteins in situ. At the same time, ethanol fixation is preferential for studies of RNA-containing macromolecules. We supplemented our quantitative Raman spectroscopic measurements with mapping of the protein and lipid macromolecular groups in live and fixed cells using coherent anti-Stokes Raman scattering nonlinear optical imaging.

  18. Biophysical characterization of the structural change of Nopp140, an intrinsically disordered protein, in the interaction with CK2α

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Na, Jung-Hyun; Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792; Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760

    2016-08-19

    Nucleolar phosphoprotein 140 (Nopp140) is a nucleolar protein, more than 80% of which is disordered. Previous studies have shown that the C-terminal region of Nopp140 (residues 568–596) interacts with protein kinase CK2α, and inhibits the catalytic activity of CK2. Although the region of Nopp140 responsible for the interaction with CK2α was identified, the structural features and the effect of this interaction on the structure of Nopp140 have not been defined due to the difficulty of structural characterization of disordered protein. In this study, the disordered feature of Nopp140 and the effect of CK2α on the structure of Nopp140 were examinedmore » using single-molecule fluorescence resonance energy transfer (smFRET) and electron paramagnetic resonance (EPR). The interaction with CK2α was increased conformational rigidity of the CK2α-interacting region of Nopp140 (Nopp140C), suggesting that the disordered and flexible conformation of Nopp140C became more rigid conformation as it binds to CK2α. In addition, site specific spin labeling and EPR analysis confirmed that the residues 574–589 of Nopp140 are critical for binding to CK2α. Similar technical approaches can be applied to analyze the conformational changes in other IDPs during their interactions with binding partners. - Highlights: • Nopp140 is intrinsically disordered protein (IDP). • Conformation of Nopp140 became more rigid conformation due to interaction with CK2α. • smFRET and EPR could be applied to analyze the structural changes of IDPs.« less

  19. TRALI ASSOCIATED HNA-3a ANTIBODIES RECOGNIZE COMPLEX DETERMINANTS ON CHOLINE TRANSPORTER-LIKE PROTEIN 2 (CTL2)

    PubMed Central

    Bougie, Daniel W; Peterson, Julie A; Kanack, Adam J; Curtis, Brian R; Aster, Richard H

    2014-01-01

    Background HNA-3a specific antibodies can cause severe, sometimes fatal, transfusion related acute lung injury (TRALI) when present in transfused blood. The HNA3-a/b antigens are determined by an R154Q polymorphism in the first of five extracellular loops of the 10-membrane spanning choline transporter-like protein 2 (CTL2) expressed on neutrophils, lymphocytes and other tissues. About 50% of HNA-3a antibodies (Type 1) can be detected using CTL2 Loop 1 peptides containing R154; the remaining 50% (Type 2) fail to recognize this target. Understanding the basis for this difference could guide efforts to develop practical assays to screen blood donors for HNA-3 antibodies. Study design and methods Reactions of HNA-3a antibodies against recombinant versions of human, mouse, and human/mouse (chimeric) CTL2 were characterized using flow cytometry and various solid phase assays. Results Findings made show that, for binding to CTL2, Type 2 HNA-3a antibodies require non-polymorphic amino acid residues in the third, and possibly the second, extracellular loops of CTL2 to be in a configuration comparable to that found naturally in the cell membrane. In contrast, Type 1 antibodies require only peptides from the first extracellular loop that contain R154 for recognition. Conclusion Although Type 1 HNA-3a antibodies can readily be detected in solid phase assays that use a CTL2 peptide containing R154 as a target, development of a practical test to screen blood donors for Type 2 antibodies will pose a serious technical challenge because of the complex nature of the epitope(s) recognized by this antibody sub-group. PMID:24846273

  20. Protein Sub-Nuclear Localization Prediction Using SVM and Pfam Domain Information

    PubMed Central

    Kumar, Ravindra; Jain, Sohni; Kumari, Bandana; Kumar, Manish

    2014-01-01

    The nucleus is the largest and the highly organized organelle of eukaryotic cells. Within nucleus exist a number of pseudo-compartments, which are not separated by any membrane, yet each of them contains only a specific set of proteins. Understanding protein sub-nuclear localization can hence be an important step towards understanding biological functions of the nucleus. Here we have described a method, SubNucPred developed by us for predicting the sub-nuclear localization of proteins. This method predicts protein localization for 10 different sub-nuclear locations sequentially by combining presence or absence of unique Pfam domain and amino acid composition based SVM model. The prediction accuracy during leave-one-out cross-validation for centromeric proteins was 85.05%, for chromosomal proteins 76.85%, for nuclear speckle proteins 81.27%, for nucleolar proteins 81.79%, for nuclear envelope proteins 79.37%, for nuclear matrix proteins 77.78%, for nucleoplasm proteins 76.98%, for nuclear pore complex proteins 88.89%, for PML body proteins 75.40% and for telomeric proteins it was 83.33%. Comparison with other reported methods showed that SubNucPred performs better than existing methods. A web-server for predicting protein sub-nuclear localization named SubNucPred has been established at http://14.139.227.92/mkumar/subnucpred/. Standalone version of SubNucPred can also be downloaded from the web-server. PMID:24897370

  1. Small nucleoli are a cellular hallmark of longevity

    PubMed Central

    Tiku, Varnesh; Jain, Chirag; Raz, Yotam; Nakamura, Shuhei; Heestand, Bree; Liu, Wei; Späth, Martin; Suchiman, H. Eka. D.; Müller, Roman-Ulrich; Slagboom, P. Eline; Partridge, Linda; Antebi, Adam

    2017-01-01

    Animal lifespan is regulated by conserved metabolic signalling pathways and specific transcription factors, but whether these pathways affect common downstream mechanisms remains largely elusive. Here we show that NCL-1/TRIM2/Brat tumour suppressor extends lifespan and limits nucleolar size in the major C. elegans longevity pathways, as part of a convergent mechanism focused on the nucleolus. Long-lived animals representing distinct longevity pathways exhibit small nucleoli, and decreased expression of rRNA, ribosomal proteins, and the nucleolar protein fibrillarin, dependent on NCL-1. Knockdown of fibrillarin also reduces nucleolar size and extends lifespan. Among wildtype C. elegans, individual nucleolar size varies, but is highly predictive for longevity. Long-lived dietary restricted fruit flies and insulin-like-peptide mutants exhibit small nucleoli and fibrillarin expression, as do long-lived dietary restricted and IRS1 knockout mice. Furthermore, human muscle biopsies from individuals who underwent modest dietary restriction coupled with exercise also display small nucleoli. We suggest that small nucleoli are a cellular hallmark of longevity and metabolic health conserved across taxa. PMID:28853436

  2. Small nucleoli are a cellular hallmark of longevity.

    PubMed

    Tiku, Varnesh; Jain, Chirag; Raz, Yotam; Nakamura, Shuhei; Heestand, Bree; Liu, Wei; Späth, Martin; Suchiman, H Eka D; Müller, Roman-Ulrich; Slagboom, P Eline; Partridge, Linda; Antebi, Adam

    2016-08-30

    Animal lifespan is regulated by conserved metabolic signalling pathways and specific transcription factors, but whether these pathways affect common downstream mechanisms remains largely elusive. Here we show that NCL-1/TRIM2/Brat tumour suppressor extends lifespan and limits nucleolar size in the major C. elegans longevity pathways, as part of a convergent mechanism focused on the nucleolus. Long-lived animals representing distinct longevity pathways exhibit small nucleoli, and decreased expression of rRNA, ribosomal proteins, and the nucleolar protein fibrillarin, dependent on NCL-1. Knockdown of fibrillarin also reduces nucleolar size and extends lifespan. Among wildtype C. elegans, individual nucleolar size varies, but is highly predictive for longevity. Long-lived dietary restricted fruit flies and insulin-like-peptide mutants exhibit small nucleoli and fibrillarin expression, as do long-lived dietary restricted and IRS1 knockout mice. Furthermore, human muscle biopsies from individuals who underwent modest dietary restriction coupled with exercise also display small nucleoli. We suggest that small nucleoli are a cellular hallmark of longevity and metabolic health conserved across taxa.

  3. Brachyspira hyodysenteriae and B. pilosicoli Proteins Recognized by Sera of Challenged Pigs.

    PubMed

    Casas, Vanessa; Rodríguez-Asiain, Arantza; Pinto-Llorente, Roberto; Vadillo, Santiago; Carrascal, Montserrat; Abian, Joaquin

    2017-01-01

    The spirochetes Brachyspira hyodysenteriae and B. pilosicoli are pig intestinal pathogens that are the causative agents of swine dysentery (SD) and porcine intestinal spirochaetosis (PIS), respectively. Although some inactivated bacterin and recombinant vaccines have been explored as prophylactic treatments against these species, no effective vaccine is yet available. Immunoproteomics approaches hold the potential for the identification of new, suitable candidates for subunit vaccines against SD and PIS. These strategies take into account the gene products actually expressed and present in the cells, and thus susceptible of being targets of immune recognition. In this context, we have analyzed the immunogenic pattern of two B. pilosicoli porcine isolates (the Spanish farm isolate OLA9 and the commercial P43/6/78 strain) and one B. hyodysenteriae isolate (the Spanish farm V1). The proteins from the Brachyspira lysates were fractionated by preparative isoelectric focusing, and the fractions were analyzed by Western blot with hyperimmune sera from challenged pigs. Of the 28 challenge-specific immunoreactive bands detected, 21 were identified as single proteins by MS, while the other 7 were shown to contain several major proteins. None of these proteins were detected in the control immunoreactive bands. The proteins identified included 11 from B. hyodysenteriae and 28 from the two B. pilosicoli strains. Eight proteins were common to the B. pilosicoli strains (i.e., elongation factor G, aspartyl-tRNA synthase, biotin lipoyl, TmpB outer membrane protein, flagellar protein FlaA, enolase, PEPCK, and VspD), and enolase and PEPCK were common to both species . Many of the identified proteins were flagellar proteins or predicted to be located on the cell surface and some of them had been previously described as antigenic or as bacterial virulence factors. Here we report on the identification and semiquantitative data of these immunoreactive proteins which constitute a unique

  4. Age-dependent change in the morphology of nucleoli and methylation of genes of the Nucleolar Organizer Region in Japanese quail Coturnix japonica) model (Temminck and Schlegel, 1849) (Galliformes: Aves).

    PubMed

    Andraszek, Katarzyna; Gryzińska, Magdalena; Wójcik, Ewa; Knaga, Sebastian; Smalec, Elżbieta

    2014-01-01

    Nucleoli are the product of the activity of nucleolar organizer regions (NOR) in certain chromosomes. Their main functions are the formation of ribosomal subunits from ribosomal protein molecules and the transcription of genes encoding rRNA. The aim of the study was to determine the shape of nucleoli and analyse methylation in the gene RN28S in the spermatocytes of male Japanese quail (Coturnixjaponica) in two age groups. Nucleoli were analysed in cells of the first meiotic prophase. Their number and shape were determined and they were classified as regular, irregular or defragmented. In the cells of the young birds no defragmented nucleoli were observed, with regular and irregular nucleoli accounting for 97% and 3%, respectively. In the cells of older birds no regular nucleoli were observed, while irregular and defragmented nucleoli accounted for 37% and 67%, respectively. MSP (methylation-specific PCR) showed that the gene RN28S is methylated in both 15-week-old and 52-week-old quails. In recent years an association has been established between nucleolus morphology and cellular ageing processes.

  5. Determination and application of immunodominant regions of SARS coronavirus spike and nucleocapsid proteins recognized by sera from different animal species.

    PubMed

    Yu, Meng; Stevens, Vicky; Berry, Jody D; Crameri, Gary; McEachern, Jennifer; Tu, Changchun; Shi, Zhengli; Liang, Guodong; Weingartl, Hana; Cardosa, Jane; Eaton, Bryan T; Wang, Lin-Fa

    2008-02-29

    Knowledge of immunodominant regions in major viral antigens is important for rational design of effective vaccines and diagnostic tests. Although there have been many reports of such work done for SARS-CoV, these were mainly focused on the immune responses of humans and mice. In this study, we aim to search for and compare immunodominant regions of the spike (S) and nucleocapsid (N) proteins which are recognized by sera from different animal species, including mouse, rat, rabbit, civet, pig and horse. Twelve overlapping recombinant protein fragments were produced in Escherichia coli, six each for the S and N proteins, which covered the entire coding region of the two proteins. Using a membrane-strip based Western blot approach, the reactivity of each antigen fragment against a panel of animal sera was determined. Immunodominant regions containing linear epitopes, which reacted with sera from all the species tested, were identified for both proteins. The S3 fragment (aa 402-622) and the N4 fragment (aa 220-336) were the most immunodominant among the six S and N fragments, respectively. Antibodies raised against the S3 fragment were able to block the binding of a panel of S-specific monoclonal antibodies (mAb) to SARS-CoV in ELISA, further demonstrating the immunodominance of this region. Based on these findings, one-step competition ELISAs were established which were able to detect SARS-CoV antibodies from human and at least seven different animal species. Considering that a large number of animal species are known to be susceptible to SARS-CoV, these assays will be a useful tool to trace the origin and transmission of SARS-CoV and to minimise the risk of animal-to-human transmission.

  6. A human cytochrome P-450 is recognized by anti-liver/kidney microsome antibodies in autoimmune chronic hepatitis.

    PubMed

    Kiffel, L; Loeper, J; Homberg, J C; Leroux, J P

    1989-02-28

    1- Anti-liver/kidney microsome autoantibodies type 1 (anti-LKM1), observed in some children with chronic active hepatitis, were used to isolate their antigen in human liver microsomes. A protein, called P-LKM1 was thus purified. This protein was recognized by a rabbit antiserum directed against the related human cytochromes P-450 bufI and P-450 bufII. 2- A human liver microsomal protein immunoprecipitated with anti-LKM1 sera was also recognized by anti cytochromes P-450 bufI/II antibodies. 3- Anti-LKM1 antibodies potently inhibited microsomal bufuralol 1'-hydroxylation. These results displayed the possible identity between cytochrome P-450 bufI/II and LKM1 antigen.

  7. Interdependence of Pes1, Bop1, and WDR12 controls nucleolar localization and assembly of the PeBoW complex required for maturation of the 60S ribosomal subunit.

    PubMed

    Rohrmoser, Michaela; Hölzel, Michael; Grimm, Thomas; Malamoussi, Anastassia; Harasim, Thomas; Orban, Mathias; Pfisterer, Iris; Gruber-Eber, Anita; Kremmer, Elisabeth; Eick, Dirk

    2007-05-01

    The PeBoW complex is essential for cell proliferation and maturation of the large ribosomal subunit in mammalian cells. Here we examined the role of PeBoW-specific proteins Pes1, Bop1, and WDR12 in complex assembly and stability, nucleolar transport, and pre-ribosome association. Recombinant expression of the three subunits is sufficient for complex formation. The stability of all three subunits strongly increases upon incorporation into the complex. Only overexpression of Bop1 inhibits cell proliferation and rRNA processing, and its negative effects could be rescued by coexpression of WDR12, but not Pes1. Elevated levels of Bop1 induce Bop1/WDR12 and Bop1/Pes1 subcomplexes. Knockdown of Bop1 abolishes the copurification of Pes1 with WDR12, demonstrating Bop1 as the integral component of the complex. Overexpressed Bop1 substitutes for endogenous Bop1 in PeBoW complex assembly, leading to the instability of endogenous Bop1. Finally, indirect immunofluorescence, cell fractionation, and sucrose gradient centrifugation experiments indicate that transport of Bop1 from the cytoplasm to the nucleolus is Pes1 dependent, while Pes1 can migrate to the nucleolus and bind to preribosomal particles independently of Bop1. We conclude that the assembly and integrity of the PeBoW complex are highly sensitive to changes in Bop1 protein levels.

  8. U14 small nucleolar RNA makes multiple contacts with the pre-ribosomal RNA.

    PubMed

    Morrissey, J P; Tollervey, D

    1997-06-01

    The small nucleolar RNA (snoRNA) U14 has two regions of extended primary sequence complementarity to the 18S rRNA. The 3' region (domain B) shows the consensus structure for the methylation guide class of snoRNAs, whereas base-pairing between the 5' region (domain A) and the 18S rRNA sequence is required for the formation of functional ribosomes. Between domains A and B lies another essential region (domain Y). Here we report that yeast U14 can be cross-linked in vivo to the pre-rRNA; cross-linking is detected exclusively with the 35S primary transcript. Many nucleotides in U14 that lie outside of domains A and B are cross-linked to the pre-rRNA; in particular the essential domain Y region is cross-linked at several sites. U14 is, therefore, in far more extensive contact with the pre-rRNA than predicted from simple base-pairing models. Moreover, U14 can be cross-linked to other small RNA species. The functional interactions made by U14 during ribosome synthesis are likely to be very complex.

  9. Mapping and Engineering Functional Domains of the Assembly Activating Protein of Adeno-Associated Viruses.

    PubMed

    Tse, Longping V; Moller-Tank, Sven; Meganck, Rita M; Asokan, Aravind

    2018-04-25

    Adeno-associated viruses (AAV) encode a unique assembly activating protein (AAP) within their genome that is essential for capsid assembly. Studies to date have focused on establishing the role of AAP as a chaperone that mediates stability, nucleolar transport, and assembly of AAV capsid proteins. Here, we map structure-function correlates of AAP using secondary structure analysis followed by deletion and substitutional mutagenesis of specific domains, namely, the hydrophobic N-terminal domain (HR), conserved core (CC), proline-rich region (PRR), threonine/serine rich region (T/S) and basic region (BR). First, we establish that the centrally located PRR and T/S regions are flexible linker domains that can either be deleted completely or replaced by heterologous functional domains that enable ancillary functions such as fluorescent imaging or increased AAP stability. We also demonstrate that the C-terminal BR domains can be substituted with heterologous nuclear or nucleolar localization sequences that display varying ability to support AAV capsid assembly. Further, by replacing the BR domain with immunoglobulin (IgG) Fc domains, we assessed AAP complexation with AAV capsid subunits and demonstrate that the hydrophobic region (HR) and the conserved core (CC) in the AAP N-terminus are the sole determinants for viral protein (VP) recognition. However, VP recognition alone is not sufficient for capsid assembly. Our study sheds light on the modular structure-function correlates of AAP and provides multiple approaches to engineer AAP that might prove useful towards understanding and controlling AAV capsid assembly. Importance: Adeno-associated viruses (AAV) encode a unique assembly activating protein (AAP) within their genome that is essential for capsid assembly. Understanding how AAP acts as a chaperone for viral assembly could help improve efficiency and potentially control this process. Our studies reveal that AAP has a modular architecture, with each module playing a

  10. Conformation-dependent recognition of a protein by T-lymphocytes: apomyoglobin-specific T-cell clone recognizes conformational changes between apomyoglobin and myoglobin

    NASA Technical Reports Server (NTRS)

    Cohly, H. H.; Morrison, D. R.; Atassi, M. Z.

    1988-01-01

    A T-cell clone specific to apomyoglobin was generated. It was prepared from a T-cell culture obtained by in vitro driving of lymph node cells with apomyoglobin from SJL mice that have been primed in vivo with apomyoglobin. In proliferative assays, the T-cell clone responded to apomyoglobin but did not recognize native myoglobin or any of the synthetic peptides corresponding to the six T sites of myoglobin. The demonstration that a T-cell clone can be isolated, whose specificity is directed entirely to apomyoglobin and not to its counterpart myoglobin, with an identical amino acid composition, indicates the importance of the three-dimensional structure in the presentation of the protein to T cells.

  11. Identification of immunogenic proteins from ovarian tissue and recognized in larval extracts of Rhipicephalus (Boophilus) microplus, through an immunoproteomic approach.

    PubMed

    Ramírez Rodríguez, Patricia Berenice; Rosario Cruz, Rodrigo; Domínguez García, Delia Inés; Hernández Gutiérrez, Rodolfo; Lagunes Quintanilla, Rodolfo Esteban; Ortuño Sahagún, Daniel; González Castillo, Celia; Gutiérrez Ortega, Abel; Herrera Rodríguez, Sara Elisa; Vallejo Cardona, Adriana; Martínez Velázquez, Moisés

    2016-11-01

    Rhipicephalus (Boophilus) microplus ticks are obligatory hematophagous ectoparasites of cattle and act as vectors for disease-causing microorganisms. Conventional tick control is based on the use of chemical acaricides; however, their uncontrolled use has increased tSresistant tick populations, as well as food and environmental contamination. Alternative immunological tick control has shown to be partially effective. The only anti-tick vaccine commercially available at present in the world is based on intestinal Bm86 protein, and shows a variable effectiveness depending on tick strains or geographic isolates. Therefore, there is a need to characterize new antigens in order to improve immunological protection. The aim of this work was to identify immunogenic proteins from ovarian tissue extracts of R. microplus, after cattle immunization. Results showed that ovarian proteins complexed with the adjuvant Montanide ISA 50 V generated a strong humoral response on vaccinated cattle. IgG levels peaked at fourth post-immunization week and remained high until the end of the experiment. 1D and 2D SDS-PAGE-Western blot assays with sera from immunized cattle recognized several ovarian proteins. Reactive bands were cut and analyzed by LC-MS/MS. They were identified as Vitellogenin, Vitellogenin-2 precursor and Yolk Cathepsin. Our findings along with bioinformatic analysis indicate that R. microplus has several Vitellogenin members, which are proteolytically processed to generate multiple polypeptide fragments. This apparent complexity of vitellogenic tick molecular targets gives the opportunity to explore their potential usefulness as vaccine candidates but, at the same time, imposes a challenge on the selection of the appropriate set of antigens. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Adenovirus core protein VII contains distinct sequences that mediate targeting to the nucleus and nucleolus, and colocalization with human chromosomes.

    PubMed

    Lee, Tim W R; Blair, G Eric; Matthews, David A

    2003-12-01

    During adenovirus infection, following capsid dissociation, core protein VII enters the host cell nucleus complexed with adenovirus DNA. In order to determine whether protein VII may have an active role in this nuclear import, regions of the preVII gene were amplified by PCR, and further oligonucleotide mutants were designed with site-directed mutation of codons for the basic amino acids arginine and lysine. Fragments were cloned into a mammalian expression plasmid to express the peptides as N-terminal fusions to enhanced green fluorescent protein. Results demonstrate that preVII protein contains both nuclear and nucleolar targeting sequences. Such signals may be important in the delivery of adenovirus DNA to the host cell nucleus during adenovirus infection. Furthermore, the data suggest that protein VII may bind to human chromosomes by means of two distinct domains, one sharing homology with the N-terminal regulatory tail of histone H3.

  13. Fn3 proteins engineered to recognize tumor biomarker mesothelin internalize upon binding

    PubMed Central

    Sirois, Allison R.; Deny, Daniela A.; Baierl, Samantha R.; George, Katia S.

    2018-01-01

    Mesothelin is a cell surface protein that is overexpressed in numerous cancers, including breast, ovarian, lung, liver, and pancreatic tumors. Aberrant expression of mesothelin has been shown to promote tumor progression and metastasis through interaction with established tumor biomarker CA125. Therefore, molecules that specifically bind to mesothelin have potential therapeutic and diagnostic applications. However, no mesothelin-targeting molecules are currently approved for routine clinical use. While antibodies that target mesothelin are in development, some clinical applications may require a targeting molecule with an alternative protein fold. For example, non-antibody proteins are more suitable for molecular imaging and may facilitate diverse chemical conjugation strategies to create drug delivery complexes. In this work, we engineered variants of the fibronectin type III domain (Fn3) non-antibody protein scaffold to bind to mesothelin with high affinity, using directed evolution and yeast surface display. Lead engineered Fn3 variants were solubly produced and purified from bacterial culture at high yield. Upon specific binding to mesothelin on human cancer cell lines, the engineered Fn3 proteins internalized and co-localized to early endosomes. To our knowledge, this is the first report of non-antibody proteins engineered to bind mesothelin. The results validate that non-antibody proteins can be engineered to bind to tumor biomarker mesothelin, and encourage the continued development of engineered variants for applications such as targeted diagnostics and therapeutics. PMID:29738555

  14. The Rice Resistance Protein Pair RGA4/RGA5 Recognizes the Magnaporthe oryzae Effectors AVR-Pia and AVR1-CO39 by Direct Binding[W][OA

    PubMed Central

    Cesari, Stella; Thilliez, Gaëtan; Ribot, Cécile; Chalvon, Véronique; Michel, Corinne; Jauneau, Alain; Rivas, Susana; Alaux, Ludovic; Kanzaki, Hiroyuki; Okuyama, Yudai; Morel, Jean-Benoit; Fournier, Elisabeth; Tharreau, Didier; Terauchi, Ryohei; Kroj, Thomas

    2013-01-01

    Resistance (R) proteins recognize pathogen avirulence (Avr) proteins by direct or indirect binding and are multidomain proteins generally carrying a nucleotide binding (NB) and a leucine-rich repeat (LRR) domain. Two NB-LRR protein-coding genes from rice (Oryza sativa), RGA4 and RGA5, were found to be required for the recognition of the Magnaporthe oryzae effector AVR1-CO39. RGA4 and RGA5 also mediate recognition of the unrelated M. oryzae effector AVR-Pia, indicating that the corresponding R proteins possess dual recognition specificity. For RGA5, two alternative transcripts, RGA5-A and RGA5-B, were identified. Genetic analysis showed that only RGA5-A confers resistance, while RGA5-B is inactive. Yeast two-hybrid, coimmunoprecipitation, and fluorescence resonance energy transfer–fluorescence lifetime imaging experiments revealed direct binding of AVR-Pia and AVR1-CO39 to RGA5-A, providing evidence for the recognition of multiple Avr proteins by direct binding to a single R protein. Direct binding seems to be required for resistance as an inactive AVR-Pia allele did not bind RGA5-A. A small Avr interaction domain with homology to the Avr recognition domain in the rice R protein Pik-1 was identified in the C terminus of RGA5-A. This reveals a mode of Avr protein recognition through direct binding to a novel, non-LRR interaction domain. PMID:23548743

  15. Directed proteomic analysis of the human nucleolus.

    PubMed

    Andersen, Jens S; Lyon, Carol E; Fox, Archa H; Leung, Anthony K L; Lam, Yun Wah; Steen, Hanno; Mann, Matthias; Lamond, Angus I

    2002-01-08

    The nucleolus is a subnuclear organelle containing the ribosomal RNA gene clusters and ribosome biogenesis factors. Recent studies suggest it may also have roles in RNA transport, RNA modification, and cell cycle regulation. Despite over 150 years of research into nucleoli, many aspects of their structure and function remain uncharacterized. We report a proteomic analysis of human nucleoli. Using a combination of mass spectrometry (MS) and sequence database searches, including online analysis of the draft human genome sequence, 271 proteins were identified. Over 30% of the nucleolar proteins were encoded by novel or uncharacterized genes, while the known proteins included several unexpected factors with no previously known nucleolar functions. MS analysis of nucleoli isolated from HeLa cells in which transcription had been inhibited showed that a subset of proteins was enriched. These data highlight the dynamic nature of the nucleolar proteome and show that proteins can either associate with nucleoli transiently or accumulate only under specific metabolic conditions. This extensive proteomic analysis shows that nucleoli have a surprisingly large protein complexity. The many novel factors and separate classes of proteins identified support the view that the nucleolus may perform additional functions beyond its known role in ribosome subunit biogenesis. The data also show that the protein composition of nucleoli is not static and can alter significantly in response to the metabolic state of the cell.

  16. Viruses and the nucleolus: the fatal attraction.

    PubMed

    Salvetti, Anna; Greco, Anna

    2014-06-01

    Viruses are small obligatory parasites and as a consequence, they have developed sophisticated strategies to exploit the host cell's functions to create an environment that favors their own replication. A common feature of most - if not all - families of human and non-human viruses concerns their interaction with the nucleolus. The nucleolus is a multifunctional nuclear domain, which, in addition to its well-known role in ribosome biogenesis, plays several crucial other functions. Viral infection induces important nucleolar alterations. Indeed, during viral infection numerous viral components localize in nucleoli, while various host nucleolar proteins are redistributed in other cell compartments or are modified, and non-nucleolar cellular proteins reach the nucleolus. This review highlights the interactions reported between the nucleolus and some human or animal viral families able to establish a latent or productive infection, selected on the basis of their known interactions with the nucleolus and the nucleolar activities, and their links with virus replication and/or pathogenesis. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Loss of the integral nuclear envelope protein SUN1 induces alteration of nucleoli

    PubMed Central

    Matsumoto, Ayaka; Sakamoto, Chiyomi; Matsumori, Haruka; Katahira, Jun; Yasuda, Yoko; Yoshidome, Katsuhide; Tsujimoto, Masahiko; Goldberg, Ilya G; Matsuura, Nariaki; Nakao, Mitsuyoshi; Saitoh, Noriko; Hieda, Miki

    2016-01-01

    ABSTRACT A supervised machine learning algorithm, which is qualified for image classification and analyzing similarities, is based on multiple discriminative morphological features that are automatically assembled during the learning processes. The algorithm is suitable for population-based analysis of images of biological materials that are generally complex and heterogeneous. Here we used the algorithm wndchrm to quantify the effects on nucleolar morphology of the loss of the components of nuclear envelope in a human mammary epithelial cell line. The linker of nucleoskeleton and cytoskeleton (LINC) complex, an assembly of nuclear envelope proteins comprising mainly members of the SUN and nesprin families, connects the nuclear lamina and cytoskeletal filaments. The components of the LINC complex are markedly deficient in breast cancer tissues. We found that a reduction in the levels of SUN1, SUN2, and lamin A/C led to significant changes in morphologies that were computationally classified using wndchrm with approximately 100% accuracy. In particular, depletion of SUN1 caused nucleolar hypertrophy and reduced rRNA synthesis. Further, wndchrm revealed a consistent negative correlation between SUN1 expression and the size of nucleoli in human breast cancer tissues. Our unbiased morphological quantitation strategies using wndchrm revealed an unexpected link between the components of the LINC complex and the morphologies of nucleoli that serves as an indicator of the malignant phenotype of breast cancer cells. PMID:26962703

  18. Loss of the integral nuclear envelope protein SUN1 induces alteration of nucleoli.

    PubMed

    Matsumoto, Ayaka; Sakamoto, Chiyomi; Matsumori, Haruka; Katahira, Jun; Yasuda, Yoko; Yoshidome, Katsuhide; Tsujimoto, Masahiko; Goldberg, Ilya G; Matsuura, Nariaki; Nakao, Mitsuyoshi; Saitoh, Noriko; Hieda, Miki

    2016-01-01

    A supervised machine learning algorithm, which is qualified for image classification and analyzing similarities, is based on multiple discriminative morphological features that are automatically assembled during the learning processes. The algorithm is suitable for population-based analysis of images of biological materials that are generally complex and heterogeneous. Here we used the algorithm wndchrm to quantify the effects on nucleolar morphology of the loss of the components of nuclear envelope in a human mammary epithelial cell line. The linker of nucleoskeleton and cytoskeleton (LINC) complex, an assembly of nuclear envelope proteins comprising mainly members of the SUN and nesprin families, connects the nuclear lamina and cytoskeletal filaments. The components of the LINC complex are markedly deficient in breast cancer tissues. We found that a reduction in the levels of SUN1, SUN2, and lamin A/C led to significant changes in morphologies that were computationally classified using wndchrm with approximately 100% accuracy. In particular, depletion of SUN1 caused nucleolar hypertrophy and reduced rRNA synthesis. Further, wndchrm revealed a consistent negative correlation between SUN1 expression and the size of nucleoli in human breast cancer tissues. Our unbiased morphological quantitation strategies using wndchrm revealed an unexpected link between the components of the LINC complex and the morphologies of nucleoli that serves as an indicator of the malignant phenotype of breast cancer cells.

  19. Fragile X mental retardation protein recognizes a G quadruplex structure within the survival motor neuron domain containing 1 mRNA 5'-UTR.

    PubMed

    McAninch, Damian S; Heinaman, Ashley M; Lang, Cara N; Moss, Kathryn R; Bassell, Gary J; Rita Mihailescu, Mihaela; Evans, Timothy L

    2017-07-25

    G quadruplex structures have been predicted by bioinformatics to form in the 5'- and 3'-untranslated regions (UTRs) of several thousand mature mRNAs and are believed to play a role in translation regulation. Elucidation of these roles has primarily been focused on the 3'-UTR, with limited focus on characterizing the G quadruplex structures and functions in the 5'-UTR. Investigation of the affinity and specificity of RNA binding proteins for 5'-UTR G quadruplexes and the resulting regulatory effects have also been limited. Among the mRNAs predicted to form a G quadruplex structure within the 5'-UTR is the survival motor neuron domain containing 1 (SMNDC1) mRNA, encoding a protein that is critical to the spliceosome. Additionally, this mRNA has been identified as a potential target of the fragile X mental retardation protein (FMRP), whose loss of expression leads to fragile X syndrome. FMRP is an RNA binding protein involved in translation regulation that has been shown to bind mRNA targets that form G quadruplex structures. In this study we have used biophysical methods to investigate G quadruplex formation in the 5'-UTR of SMNDC1 mRNA and analyzed its interactions with FMRP. Our results show that SMNDC1 mRNA 5'-UTR forms an intramolecular, parallel G quadruplex structure comprised of three G quartet planes, which is bound specifically by FMRP both in vitro and in mouse brain lysates. These findings suggest a model by which FMRP might regulate the translation of a subset of its mRNA targets by recognizing the G quadruplex structure present in their 5'-UTR, and affecting their accessibility by the protein synthesis machinery.

  20. Location of rRNA transcription to the nucleolar components: disappearance of the fibrillar centers in nucleoli of regenerating rat hepatocytes.

    PubMed

    Montanaro, Lorenzo; Govoni, Marzia; Orrico, Catia; Treré, Davide; Derenzini, Massimo

    2011-01-01

    The precise location of rDNA transcription to the components of mammalian cell nucleolus is still debated. This was due to the fact that all the molecules necessary for rRNA synthesis are located in two of the three components, the fibrillar centers (FCs) and the dense fibrillar component (DFC), which together with the granular component (GC) are considered to be constantly present in mammalian cell nucleoli. In the present study we demonstrated that in nucleoli of many regenerating rat hepatocytes at 15 h after partial hepatectomy the FCs were no longer present, only the DFC and the GC being detected. At this time of regeneration the rRNA transcriptional activity was three fold that of resting hepatocytes, while the synthesis of DNA was not yet significantly increased, indicating that these nucleolar changes were due to the rRNA synthesis up-regulation. The DFC appeared to be organized in numerous, small, roundish tufts of fibrils. The silver staining procedure for AgNOR proteins, which are associated with the ribosomal genes, selectively and homogeneously stained these fibrillar tufts. Immuno-gold visualization of the Upstream Binding Factor (UBF), which is associated with the promoter region and the transcribed portion of the rRNA 45S gene, demonstrated that UBF was selectively located in the fibrillar tufts. We concluded that in proliferating rat hepatocytes the increased synthesis of rRNA induced an activation of the rRNA transcription machinery located in the fibrillar centers which, by becoming associated with the ribonucleoprotein transcripts, assumed the morphological pattern of the DFC.

  1. Glycan Reader is improved to recognize most sugar types and chemical modifications in the Protein Data Bank.

    PubMed

    Park, Sang-Jun; Lee, Jumin; Patel, Dhilon S; Ma, Hongjing; Lee, Hui Sun; Jo, Sunhwan; Im, Wonpil

    2017-10-01

    Glycans play a central role in many essential biological processes. Glycan Reader was originally developed to simplify the reading of Protein Data Bank (PDB) files containing glycans through the automatic detection and annotation of sugars and glycosidic linkages between sugar units and to proteins, all based on atomic coordinates and connectivity information. Carbohydrates can have various chemical modifications at different positions, making their chemical space much diverse. Unfortunately, current PDB files do not provide exact annotations for most carbohydrate derivatives and more than 50% of PDB glycan chains have at least one carbohydrate derivative that could not be correctly recognized by the original Glycan Reader. Glycan Reader has been improved and now identifies most sugar types and chemical modifications (including various glycolipids) in the PDB, and both PDB and PDBx/mmCIF formats are supported. CHARMM-GUI Glycan Reader is updated to generate the simulation system and input of various glycoconjugates with most sugar types and chemical modifications. It also offers a new functionality to edit the glycan structures through addition/deletion/modification of glycosylation types, sugar types, chemical modifications, glycosidic linkages, and anomeric states. The simulation system and input files can be used for CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Glycan Fragment Database in GlycanStructure.Org is also updated to provide an intuitive glycan sequence search tool for complex glycan structures with various chemical modifications in the PDB. http://www.charmm-gui.org/input/glycan and http://www.glycanstructure.org. wonpil@lehigh.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. The nucleolus directly regulates p53 export and degradation.

    PubMed

    Boyd, Mark T; Vlatkovic, Nikolina; Rubbi, Carlos P

    2011-09-05

    The correlation between stress-induced nucleolar disruption and abrogation of p53 degradation is evident after a wide variety of cellular stresses. This link may be caused by steps in p53 regulation occurring in nucleoli, as suggested by some biochemical evidence. Alternatively, nucleolar disruption also causes redistribution of nucleolar proteins, potentially altering their interactions with p53 and/or MDM2. This raises the fundamental question of whether the nucleolus controls p53 directly, i.e., as a site where p53 regulatory processes occur, or indirectly, i.e., by determining the cellular localization of p53/MDM2-interacting factors. In this work, transport experiments based on heterokaryons, photobleaching, and micronucleation demonstrate that p53 regulatory events are directly regulated by nucleoli and are dependent on intact nucleolar structure and function. Subcellular fractionation and nucleolar isolation revealed a distribution of ubiquitylated p53 that supports these findings. In addition, our results indicate that p53 is exported by two pathways: one stress sensitive and one stress insensitive, the latter being regulated by activities present in the nucleolus.

  3. Nucleolus-derived mediators in oncogenic stress response and activation of p53-dependent pathways.

    PubMed

    Stępiński, Dariusz

    2016-08-01

    Rapid growth and division of cells, including tumor ones, is correlated with intensive protein biosynthesis. The output of nucleoli, organelles where translational machineries are formed, depends on a rate of particular stages of ribosome production and on accessibility of elements crucial for their effective functioning, including substrates, enzymes as well as energy resources. Different factors that induce cellular stress also often lead to nucleolar dysfunction which results in ribosome biogenesis impairment. Such nucleolar disorders, called nucleolar or ribosomal stress, usually affect cellular functioning which in fact is a result of p53-dependent pathway activation, elicited as a response to stress. These pathways direct cells to new destinations such as cell cycle arrest, damage repair, differentiation, autophagy, programmed cell death or aging. In the case of impaired nucleolar functioning, nucleolar and ribosomal proteins mediate activation of the p53 pathways. They are also triggered as a response to oncogenic factor overexpression to protect tissues and organs against extensive proliferation of abnormal cells. Intentional impairment of any step of ribosome biosynthesis which would direct the cells to these destinations could be a strategy used in anticancer therapy. This review presents current knowledge on a nucleolus, mainly in relation to cancer biology, which is an important and extremely sensitive element of the mechanism participating in cellular stress reaction mediating activation of the p53 pathways in order to counteract stress effects, especially cancer development.

  4. Altered Mitochondria, Protein Synthesis Machinery, and Purine Metabolism Are Molecular Contributors to the Pathogenesis of Creutzfeldt-Jakob Disease.

    PubMed

    Ansoleaga, Belén; Garcia-Esparcia, Paula; Llorens, Franc; Hernández-Ortega, Karina; Carmona Tech, Margarita; Antonio Del Rio, José; Zerr, Inga; Ferrer, Isidro

    2016-06-12

    Neuron loss, synaptic decline, and spongiform change are the hallmarks of sporadic Creutzfeldt-Jakob disease (sCJD), and may be related to deficiencies in mitochondria, energy metabolism, and protein synthesis. To investigate these relationships, we determined the expression levels of genes encoding subunits of the 5 protein complexes of the electron transport chain, proteins involved in energy metabolism, nucleolar and ribosomal proteins, and enzymes of purine metabolism in frontal cortex samples from 15 cases of sCJD MM1 and age-matched controls. We also assessed the protein expression levels of subunits of the respiratory chain, initiation and elongation translation factors of protein synthesis, and localization of selected mitochondrial components. We identified marked, generalized alterations of mRNA and protein expression of most subunits of all 5 mitochondrial respiratory chain complexes in sCJD cases. Expression of molecules involved in protein synthesis and purine metabolism were also altered in sCJD. These findings point to altered mRNA and protein expression of components of mitochondria, protein synthesis machinery, and purine metabolism as components of the pathogenesis of CJD. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  5. Dual Role of a SAS10/C1D Family Protein in Ribosomal RNA Gene Expression and Processing Is Essential for Reproduction in Arabidopsis thaliana

    PubMed Central

    Chen, Ying-Jiun C.; Wang, Huei-Jing

    2016-01-01

    In eukaryotic cells, ribosomal RNAs (rRNAs) are transcribed, processed, and assembled with ribosomal proteins in the nucleolus. Regulatory mechanisms of rRNA gene (rDNA) transcription and processing remain elusive in plants, especially their connection to nucleolar organization. We performed an in silico screen for essential genes of unknown function in Arabidopsis thaliana and identified Thallo (THAL) encoding a SAS10/C1D family protein. THAL disruption caused enlarged nucleoli in arrested embryos, aberrant processing of precursor rRNAs at the 5’ External Transcribed Spacer, and repression of the major rDNA variant (VAR1). THAL overexpression lines showed de-repression of VAR1 and overall reversed effects on rRNA processing sites. Strikingly, THAL overexpression also induced formation of multiple nucleoli per nucleus phenotypic of mutants of heterochromatin factors. THAL physically associated with histone chaperone Nucleolin 1 (NUC1), histone-binding NUC2, and histone demethylase Jumonji 14 (JMJ14) in bimolecular fluorescence complementation assay, suggesting that it participates in chromatin regulation. Furthermore, investigation of truncated THAL proteins revealed that the SAS10 C-terminal domain is likely important for its function in chromatin configuration. THAL also interacted with putative Small Subunit processome components, including previously unreported Arabidopsis homologue of yeast M Phase Phosphoprotein 10 (MPP10). Our results uncovering the dual role of THAL in transcription and processing events critical for proper rRNA biogenesis and nucleolar organization during reproduction are the first to define the function of SAS10/C1D family members in plants. PMID:27792779

  6. Activation of T cells recognizing self 60-kD heat shock protein can protect against experimental arthritis

    PubMed Central

    1995-01-01

    Lewis rats are susceptible to several forms of experimental arthritis- induced using heat-killed Mycobacterium tuberculosis (adjuvant arthritis, or AA), streptococcal cell walls, collagen type II, and the lipoidal amine CP20961. Prior immunization with the mycobacterial 65-kD heat shock protein (hsp65) was reported to protect against AA, and other athritis models not using M. tuberculosis, via a T cell-mediated mechanism. Hsp65 shares 48% amino acid identity with mammalian hsp60, which is expressed at elevated levels in inflamed synovia. Several studies have reported cross-reactive T cell recognition of mycobacterial hsp65 and self hsp60 in arthritic and normal individuals. We previously described nine major histocompatibility complex class II- restricted epitopes in mycobacterial hsp65 recognized by Lewis rat T cells. Of these only one, covering the 256-270 sequence, primed for cross-reactive T cell responses to the corresponding region of rat hsp60. Here we have tested each hsp65 epitope for protective activity by immunizing rats with synthetic peptides. A peptide containing the 256-270 epitope, which induced cross-reactive T cells, was the only one able to confer protection against AA. Similarly, administration of a T cell line specific for this epitope protected against AA. Preimmunization with the 256-270 epitope induced T cells that responded to heat-shocked syngeneic antigen-presenting cells, and also protected against CP20961-induced arthritis, indicating that activation of T cells, recognizing an epitope in self hsp60 can protect against arthritis induced without mycobacteria. Therefore, in contrast to the accepted concept that cross-reactive T cell recognition of foreign and self antigens might induce aggressive autoimmune disease, we propose that cross-reactivity between bacterial and self hsp60 might also be used to maintain a protective self-reactive T cell population. This discovery might have important implications for understanding T cell- mediated

  7. Sequence analysis, identification of evolutionary conserved motifs and expression analysis of murine tcof1 provide further evidence for a potential function for the gene and its human homologue, TCOF1.

    PubMed

    Dixon, J; Hovanes, K; Shiang, R; Dixon, M J

    1997-05-01

    The gene mutated in Treacher Collins syndrome, an autosomal dominant disorder of facial development, has recently been cloned. While the function of the predicted protein, Treacle, is unknown, it has been shown to share a number of features with the highly phosphorylated nucleolar phosphoproteins, which play a role in nucleolar-cytoplasmic transport. In the current study, the murine homologue of the Treacher Collins syndrome gene has been isolated and shown to encode a low complexity, serine/alanine-rich protein of 133 kDa. Interspecies comparison indicates that the proteins display 61.5% identity, with the level of conservation being greatest in the regions of acidic/basic amino acid repeats and nuclear localization signals. These features are shared with the nucleolar phosphoproteins. Confirmation that the gene isolated in the current study is orthologous with the Treacher Collins syndrome gene was provided by the demonstration that it mapped to central mouse chromosome 18 in a conserved syntenic region with human chromosome 5q21-q33. Expression analysis in the mouse indicated that the gene was expressed in a wide variety of embryonic and adult tissues. Peak levels of expression in the developing embryo were observed at the edges of the neural folds immediately prior to fusion, and also in the developing branchial arches at the times of critical morphogenetic events. These observations support a role for the gene in the development of the craniofacial complex and provide further evidence that the gene encodes a protein which may be involved in nucleolar-cytoplasmic transport.

  8. The structure of the mitotic spindle and nucleolus during mitosis in the amebo-flagellate Naegleria.

    PubMed

    Walsh, Charles J

    2012-01-01

    Mitosis in the amebo-flagellate Naegleria pringsheimi is acentrosomal and closed (the nuclear membrane does not break down). The large central nucleolus, which occupies about 20% of the nuclear volume, persists throughout the cell cycle. At mitosis, the nucleolus divides and moves to the poles in association with the chromosomes. The structure of the mitotic spindle and its relationship to the nucleolus are unknown. To identify the origin and structure of the mitotic spindle, its relationship to the nucleolus and to further understand the influence of persistent nucleoli on cellular division in acentriolar organisms like Naegleria, three-dimensional reconstructions of the mitotic spindle and nucleolus were carried out using confocal microscopy. Monoclonal antibodies against three different nucleolar regions and α-tubulin were used to image the nucleolus and mitotic spindle. Microtubules were restricted to the nucleolus beginning with the earliest prophase spindle microtubules. Early spindle microtubules were seen as short rods on the surface of the nucleolus. Elongation of the spindle microtubules resulted in a rough cage of microtubules surrounding the nucleolus. At metaphase, the mitotic spindle formed a broad band completely embedded within the nucleolus. The nucleolus separated into two discreet masses connected by a dense band of microtubules as the spindle elongated. At telophase, the distal ends of the mitotic spindle were still completely embedded within the daughter nucleoli. Pixel by pixel comparison of tubulin and nucleolar protein fluorescence showed 70% or more of tubulin co-localized with nucleolar proteins by early prophase. These observations suggest a model in which specific nucleolar binding sites for microtubules allow mitotic spindle formation and attachment. The fact that a significant mass of nucleolar material precedes the chromosomes as the mitotic spindle elongates suggests that spindle elongation drives nucleolar division.

  9. Nucleolar accumulation of APE1 depends on charged lysine residues that undergo acetylation upon genotoxic stress and modulate its BER activity in cells

    PubMed Central

    Lirussi, Lisa; Antoniali, Giulia; Vascotto, Carlo; D'Ambrosio, Chiara; Poletto, Mattia; Romanello, Milena; Marasco, Daniela; Leone, Marilisa; Quadrifoglio, Franco; Bhakat, Kishor K.; Scaloni, Andrea; Tell, Gianluca

    2012-01-01

    Apurinic/apyrimidinic endonuclease 1 (APE1) is the main abasic endonuclease in the base excision repair (BER) pathway of DNA lesions caused by oxidation/alkylation in mammalian cells; within nucleoli it interacts with nucleophosmin and rRNA through N-terminal Lys residues, some of which (K27/K31/K32/K35) may undergo acetylation in vivo. Here we study the functional role of these modifications during genotoxic damage and their in vivo relevance. We demonstrate that cells expressing a specific K-to-A multiple mutant are APE1 nucleolar deficient and are more resistant to genotoxic treatment than those expressing the wild type, although they show impaired proliferation. Of interest, we find that genotoxic treatment induces acetylation at these K residues. We also find that the charged status of K27/K31/K32/K35 modulates acetylation at K6/K7 residues that are known to be involved in the coordination of BER activity through a mechanism regulated by the sirtuin 1 deacetylase. Of note, structural studies show that acetylation at K27/K31/K32/K35 may account for local conformational changes on APE1 protein structure. These results highlight the emerging role of acetylation of critical Lys residues in regulating APE1 functions. They also suggest the existence of cross-talk between different Lys residues of APE1 occurring upon genotoxic damage, which may modulate APE1 subnuclear distribution and enzymatic activity in vivo. PMID:22918947

  10. QUANTIFICATION OF NUCLEOLAR CHANNEL SYSTEMS: UNIFORM PRESENCE THROUGHOUT THE UPPER ENDOMETRIAL CAVITY

    PubMed Central

    Szmyga, Michael J.; Rybak, Eli A.; Nejat, Edward J.; Banks, Erika H.; Whitney, Kathleen D.; Polotsky, Alex J.; Heller, Debra S.; Meier, U. Thomas

    2014-01-01

    Objective To determine the prevalence of nucleolar channel systems (NCSs) by uterine region applying continuous quantification. Design Prospective clinical study. Setting Tertiary care academic medical center. Patients 42 naturally cycling women who underwent hysterectomy for benign indications. Intervention NCS presence was quantified by a novel method in six uterine regions, fundus, left cornu, right cornu, anterior body, posterior body, and lower uterine segment (LUS), using indirect immunofluorescence. Main Outcome Measures Percent of endometrial epithelial cells (EECs) with NCSs per uterine region. Results NCS quantification was observer-independent (intraclass correlation coefficient [ICC] = 0.96) and its intra-sample variability low (coefficient of variability [CV] = 0.06). 11/42 hysterectomy specimens were midluteal, 10 of which were analyzable with 9 containing over 5% EECs with NCSs in at least one region. The percent of EECs with NCSs varied significantly between the lower uterine segment (6.1%; IQR = 3.0-9.9) and the upper five regions (16.9%; IQR = 12.7-23.4) with fewer NCSs in the basal layer of the endometrium (17% +/−6%) versus the middle (46% +/−9%) and luminal layers (38% +/−9%) of all six regions). Conclusions NCS quantification during the midluteal phase demonstrates uniform presence throughout the endometrial cavity, excluding the LUS, with a preference for the functional, luminal layers. Our quantitative NCS evaluation provides a benchmark for future studies and further supports NCS presence as a potential marker for the window of implantation. PMID:23137760

  11. Incorporation of albumin fusion proteins into fibrin clots in vitro and in vivo: comparison of different fusion motifs recognized by factor XIIIa.

    PubMed

    Sheffield, William P; Eltringham-Smith, Louise J

    2011-12-20

    The transglutaminase activated factor XIII (FXIIIa) acts to strengthen pathological fibrin clots and to slow their dissolution, in part by crosslinking active α(2)-antiplasmin (α(2)AP) to fibrin. We previously reported that a yeast-derived recombinant fusion protein comprising α(2)AP residues 13-42 linked to human serum albumin (HSA) weakened in vitro clots but failed to become specifically incorporated into in vivo clots. In this study, our aims were to improve both the stability and clot localization of the HSA fusion protein by replacing α(2)AP residues 13-42 with shorter sequences recognized more effectively by FXIIIa. Expression plasmids were prepared encoding recombinant HSA with the following N-terminal 23 residue extensions: H(6)NQEQVSPLTLLAG(4)Y (designated XL1); H(6)DQMMLPWAVTLG(4)Y (XL2); H(6)WQHKIDLPYNGAG(4)Y (XL3); and their 17 residue non-His-tagged equivalents (XL4, XL5, and XL6). The HSA moiety of XL4- to XL6-HSA proteins was C-terminally His-tagged. All chimerae were efficiently secreted from transformed Pichia pastoris yeast except XL3-HSA, and following nickel chelate affinity purification were found to be intact by amino acid sequencing, as was an N-terminally His-tagged version of α(2)AP(13-42)-HSA. Of the proteins tested, XL5-HSA was cross-linked to biotin pentylamine (BPA) most rapidly by FXIIIa, and was the most effective competitor of α(2)AP crosslinking not only to BPA but also to plasma fibrin clots. In the mouse ferric chloride vena cava thrombosis model, radiolabeled XL5-HSA was retained in the clot to a greater extent than recombinant HSA. In the rabbit jugular vein stasis thrombosis model, XL5-HSA was also retained in the clot, in a urea-insensitive manner indicative of crosslinking to fibrin, to a greater extent than recombinant HSA. Fusion protein XL5-HSA (DQMMLPWAVTLG4Y-HSAH6) was found to be more active as a substrate for FXIIIa-mediated transamidation than seven other candidate fusion proteins in vitro. The improved

  12. Relationship between interphasic nucleolar organizer regions and growth rate in two neuroblastoma cell lines.

    PubMed Central

    Derenzini, M.; Pession, A.; Farabegoli, F.; Trerè, D.; Badiali, M.; Dehan, P.

    1989-01-01

    The relationship between the quantity of silver-stained interphasic nucleolar organizer regions (NORs) and nuclear synthetic activity, caryotype, and growth rate was studied in two established neuroblastoma cell lines (CHP 212 and HTB 10). Statistical analysis of silver-stained NORs revealed four times as many in CHP 212 cells compared with HTB 10 cells. No difference was observed in the ribosomal RNA synthesis between the two cell lines. The caryotype index was 1.2 for CHP 212 and 1.0 for HTB 10 cells. The number of chromosomes carrying NORs and the quantity of ribosomal genes was found to be the same for the two cell lines. Doubling time of CHP 212 cells was 20 hours compared with 54 hours for HTB 10 cells. In CHP 212 cells bindering of cell duplication by serum deprivation induced a progressive lowering (calculated at 48, 72, and 96 hours) of the quantity of silver-stained interphasic NORs. Recovery of duplication by new serum addition induced, after 24 hours, an increase of the quantity of silver-stained interphasic NORs up to control levels. In the light of available data, these results indicate that the quantity of interphasic NORs is strictly correlated only to the growth rate of the cell. Images Figure 2 Figure 3 Figure 4 PMID:2705511

  13. Morphometric Analysis of Recognized Genes for Autism Spectrum Disorders and Obesity in Relationship to the Distribution of Protein-Coding Genes on Human Chromosomes.

    PubMed

    McGuire, Austen B; Rafi, Syed K; Manzardo, Ann M; Butler, Merlin G

    2016-05-05

    Mammalian chromosomes are comprised of complex chromatin architecture with the specific assembly and configuration of each chromosome influencing gene expression and function in yet undefined ways by varying degrees of heterochromatinization that result in Giemsa (G) negative euchromatic (light) bands and G-positive heterochromatic (dark) bands. We carried out morphometric measurements of high-resolution chromosome ideograms for the first time to characterize the total euchromatic and heterochromatic chromosome band length, distribution and localization of 20,145 known protein-coding genes, 790 recognized autism spectrum disorder (ASD) genes and 365 obesity genes. The individual lengths of G-negative euchromatin and G-positive heterochromatin chromosome bands were measured in millimeters and recorded from scaled and stacked digital images of 850-band high-resolution ideograms supplied by the International Society of Chromosome Nomenclature (ISCN) 2013. Our overall measurements followed established banding patterns based on chromosome size. G-negative euchromatic band regions contained 60% of protein-coding genes while the remaining 40% were distributed across the four heterochromatic dark band sub-types. ASD genes were disproportionately overrepresented in the darker heterochromatic sub-bands, while the obesity gene distribution pattern did not significantly differ from protein-coding genes. Our study supports recent trends implicating genes located in heterochromatin regions playing a role in biological processes including neurodevelopment and function, specifically genes associated with ASD.

  14. [Identification of cyst and trophozoite antigens from Colombian Giardia duodenalis isolates recognized by IgA].

    PubMed

    Olmos, Rosana Natalia; Duque, Sofía; López, Myriam Consuelo; Arévalo, Adriana; Guerrero, Rafael; Velandia, Martha Patricia; Nicholls, Ruben Santiago

    2003-09-01

    Little is known about the role of IgA in the immune response against Giardia duodenalis infection. The current study identified the antigens of Colombian G. duodenalis isolates which stimulate the production of IgA anti-G. dudoenalis. Cyst and trophozoite stage proteins were separated by SDS-PAGE and their antigenicity was determined by Western blot. Without 2-mercapto ethanol (2-ME), the protein profile of the cyst stage showed 24 proteins within a molecular weight range of 23-270 kDa; with 2-ME, 35 polypeptides ranging from 22 to 241 kDa were distinguished. The trophozoite stage protein profile without 2-ME was formed by 16 proteins within the range of 24-270 kDa; with 2-ME, 45 proteins were present between 18 and 241 kDa. The identification of 20 and 29 antigens from the cyst and trophozoite stage, respectively, suggested that G. duodenalis stimulates a specific humoral immune response in the human host. The antigens of 31, 57, 110, 133, and 170 kDa recognized by anti-G duodenalis IgA in both cysts and trophozoites corresponded with G. duodenalis isolates from other geographic regions, whereas those of 35, 38, 43, 45, 49, 52, 60, 62, 65, 72, 82, 99, 145, 155, and 185 kDa seemed specific to Colombian isolates. This indicated that antigens of 57, 65, 145, and 170 kDa, recognized by anti-G. duodenalis IgA antibodies in cysts (with frequencies between 82% and 96%) and trophozoites (with frequencies between 86% and 97%) can be considered identification markers for G. duodenalis infections.

  15. Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes.

    PubMed Central

    Schmidt, R J; Ketudat, M; Aukerman, M J; Hoschek, G

    1992-01-01

    opaque-2 (o2) is a regulatory locus in maize that plays an essential role in controlling the expression of genes encoding the 22-kD zein proteins. Through DNase I footprinting and DNA binding analyses, we have identified the binding site for the O2 protein (O2) in the promoter of 22-kD zein genes. The sequence in the 22-kD zein gene promoter that is recognized by O2 is similar to the target site recognized by other "basic/leucine zipper" (bZIP) proteins in that it contains an ACGT core that is necessary for DNA binding. The site is located in the -300 region relative to the translation start and lies about 20 bp downstream of the highly conserved zein gene sequence motif known as the "prolamin box." Employing gel mobility shift assays, we used O2 antibodies and nuclear extracts from an o2 null mutant to demonstrate that the O2 protein in maize endosperm nuclei recognizes the target site in the zein gene promoter. Mobility shift assays using nuclear proteins from an o2 null mutant indicated that other endosperm proteins in addition to O2 can bind the O2 target site and that O2 may be associated with one of these proteins. We also demonstrated that in yeast cells the O2 protein can activate expression of a lacZ gene containing a multimer of the O2 target sequence as part of its promoter, thus confirming its role as a transcriptional activator. A computer-assisted search indicated that the O2 target site is not present in the promoters of zein genes other than those of the 22-kD class. These data suggest a likely explanation at the molecular level for the differential effect of o2 mutations on expression of certain members of the zein gene family. PMID:1392590

  16. Mitochondrial and Nucleolar Localization of Cysteine Desulfurase Nfs and the Scaffold Protein Isu in Trypanosoma brucei

    PubMed Central

    Kovářová, Julie; Horáková, Eva; Changmai, Piya; Vancová, Marie

    2014-01-01

    Trypanosoma brucei has a complex life cycle during which its single mitochondrion is subjected to major metabolic and morphological changes. While the procyclic stage (PS) of the insect vector contains a large and reticulated mitochondrion, its counterpart in the bloodstream stage (BS) parasitizing mammals is highly reduced and seems to be devoid of most functions. We show here that key Fe-S cluster assembly proteins are still present and active in this organelle and that produced clusters are incorporated into overexpressed enzymes. Importantly, the cysteine desulfurase Nfs, equipped with the nuclear localization signal, was detected in the nucleolus of both T. brucei life stages. The scaffold protein Isu, an interacting partner of Nfs, was also found to have a dual localization in the mitochondrion and the nucleolus, while frataxin and both ferredoxins are confined to the mitochondrion. Moreover, upon depletion of Isu, cytosolic tRNA thiolation dropped in the PS but not BS parasites. PMID:24243795

  17. Mitochondrial and nucleolar localization of cysteine desulfurase Nfs and the scaffold protein Isu in Trypanosoma brucei.

    PubMed

    Kovárová, Julie; Horáková, Eva; Changmai, Piya; Vancová, Marie; Lukeš, Julius

    2014-03-01

    Trypanosoma brucei has a complex life cycle during which its single mitochondrion is subjected to major metabolic and morphological changes. While the procyclic stage (PS) of the insect vector contains a large and reticulated mitochondrion, its counterpart in the bloodstream stage (BS) parasitizing mammals is highly reduced and seems to be devoid of most functions. We show here that key Fe-S cluster assembly proteins are still present and active in this organelle and that produced clusters are incorporated into overexpressed enzymes. Importantly, the cysteine desulfurase Nfs, equipped with the nuclear localization signal, was detected in the nucleolus of both T. brucei life stages. The scaffold protein Isu, an interacting partner of Nfs, was also found to have a dual localization in the mitochondrion and the nucleolus, while frataxin and both ferredoxins are confined to the mitochondrion. Moreover, upon depletion of Isu, cytosolic tRNA thiolation dropped in the PS but not BS parasites.

  18. Human recombinant Fab fragment from combinatorial libraries of a B-cell lymphoma patient recognizes core protein of chondroitin sulphate proteoglycan 4.

    PubMed

    Egami, Yoko; Narushima, Yuta; Ohshima, Motohiro; Yoshida, Akira; Yoneta, Naruki; Masaki, Yasufumi; Itoh, Kunihiko

    2018-01-01

    CD antigens are well known as therapeutic targets of B-cell lymphoma. To isolate therapeutic antibodies that recognize novel targets other than CD antigens, we constructed a phage display combinatorial antibody Fab library from bone marrow lymphocytes of B-cell lymphoma patient. To eliminate antibodies reactive with known B-cell lymphoma antigen, non-hematopoietic and patient's sera reactive HeLaS3 cells was selected as a target of whole cell panning. Five rounds of panning against live HeLaS3 cells retrieved single Fab clone, termed AHSA (Antibody to HeLa Surface Antigen). Using phage display random peptide library, LSYLEP was identified as an epitope sequence of AHSA. LC-MS/MS analysis of AHSA-precipitated HeLaS3 cell lysates detected several fragments corresponding to the sequence of chondroitin sulphate proteoglycan 4 (CSPG4) core protein. Since LSYLEP sequence was at the position of 313-318 of CSPG4, we considered that CSPG4 was AHSA-associated antigen. Double staining of CSPG4-postive MDA-MB-435S cells with AHSA and anti-CSPG4 rabbit antibody showed identical staining position, and reduced AHSA reactivity was observed in CSPG4-siRNA treated MDA-MB-435S cells. In conclusion, we retrieved a human Fab from antibody library of B-cell lymphoma patient, and identified CSPG4 as a recognizing antigen. AHSA may have potential benefits for development of CSPG4-targeting theranostics for B-cell lymphoma. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  19. The conserved N-terminal domain of herpes simplex virus 1 UL24 protein is sufficient to induce the spatial redistribution of nucleolin.

    PubMed

    Bertrand, Luc; Pearson, Angela

    2008-05-01

    UL24 is widely conserved among herpesviruses but its function during infection is poorly understood. Previously, we discovered a genetic link between UL24 and the herpes simplex virus 1-induced dispersal of the nucleolar protein nucleolin. Here, we report that in the absence of viral infection, transiently expressed UL24 accumulated in both the nucleus and the Golgi apparatus. In the majority of transfected cells, nuclear staining for UL24 was diffuse, but a minor staining pattern, whereby UL24 was present in nuclear foci corresponding to nucleoli, was also observed. Expression of UL24 correlated with the dispersal of nucleolin. This dispersal did not appear to be a consequence of a general disaggregation of nucleoli, as foci of fibrillarin staining persisted in cells expressing UL24. The conserved N-terminal region of UL24 was sufficient to cause this change in subcellular distribution of nucleolin. Interestingly, a bipartite nuclear localization signal predicted within the C terminus of UL24 was dispensable for nuclear localization. None of the five individual UL24 homology domains was required for nuclear or Golgi localization, but deletion of these domains resulted in the loss of nucleolin-dispersal activity. We determined that a nucleolar-targeting signal was contained within the first 60 aa of UL24. Our results show that the conserved N-terminal domain of UL24 is sufficient to specifically induce dispersal of nucleolin in the absence of other viral proteins or virus-induced cellular modifications. These results suggest that UL24 directly targets cellular factors that affect the composition of nucleoli.

  20. Association of herpes simplex virus regulatory protein ICP22 with transcriptional complexes containing EAP, ICP4, RNA polymerase II, and viral DNA requires posttranslational modification by the U(L)13 proteinkinase.

    PubMed Central

    Leopardi, R; Ward, P L; Ogle, W O; Roizman, B

    1997-01-01

    The expression of herpes simplex virus 1 gamma (late) genes requires functional alpha proteins (gamma1 genes) and the onset of viral DNA synthesis (gamma2 genes). We report that late in infection after the onset of viral DNA synthesis, cell nuclei exhibit defined structures which contain two viral regulatory proteins (infected cell proteins 4 and 22) required for gamma gene expression, RNA polymerase II, a host nucleolar protein (EAP or L22) known to be associated with ribosomes and to bind small RNAs, including the Epstein-Barr virus small nuclear RNAs, and newly synthesized progeny DNA. The formation of these complexes required the onset of viral DNA synthesis. The association of infected cell protein 22, a highly posttranslationally processed protein, with these structures did not occur in cells infected with a viral mutant deleted in the genes U(L)13 and U(S)3, each of which specifies a protein kinase known to phosphorylate the protein. PMID:8995634

  1. Human snoRNA-93 is processed into a microRNA-like RNA that promotes breast cancer cell invasion.

    PubMed

    Patterson, Dillon G; Roberts, Justin T; King, Valeria M; Houserova, Dominika; Barnhill, Emmaline C; Crucello, Aline; Polska, Caroline J; Brantley, Lucas W; Kaufman, Garrett C; Nguyen, Michael; Santana, Megann W; Schiller, Ian A; Spicciani, Julius S; Zapata, Anastasia K; Miller, Molly M; Sherman, Timothy D; Ma, Ruixia; Zhao, Hongyou; Arora, Ritu; Coley, Alexander B; Zeidan, Melody M; Tan, Ming; Xi, Yaguang; Borchert, Glen M

    2017-01-01

    Genetic searches for tumor suppressors have recently linked small nucleolar RNA misregulations with tumorigenesis. In addition to their classically defined functions, several small nucleolar RNAs are now known to be processed into short microRNA-like fragments called small nucleolar RNA-derived RNAs. To determine if any small nucleolar RNA-derived RNAs contribute to breast malignancy, we recently performed a RNA-seq-based comparison of the small nucleolar RNA-derived RNAs of two breast cancer cell lines (MCF-7 and MDA-MB-231) and identified small nucleolar RNA-derived RNAs derived from 13 small nucleolar RNAs overexpressed in MDA-MB-231s. Importantly, we find that inhibiting the most differentially expressed of these small nucleolar RNA-derived RNAs (sdRNA-93) in MDA-MB-231 cells results primarily in a loss of invasiveness, whereas increased sdRNA-93 expression in either cell line conversely results in strikingly enhanced invasion. Excitingly, we recently determined sdRNA-93 expressions in small RNA-seq data corresponding to 116 patient tumors and normal breast controls, and while we find little sdRNA-93 expression in any of the controls and only sporadic expression in most subtypes, we find robust expression of sdRNA-93 in 92.8% of Luminal B Her2+tumors. Of note, our analyses also indicate that at least one of sdRNA-93's endogenous roles is to regulate the expression of Pipox, a sarcosine metabolism-related protein whose expression significantly correlates with distinct molecular subtypes of breast cancer. We find sdRNA-93 can regulate the Pipox 3'UTR via standard reporter assays and that manipulating endogenous sdRNA-93 levels inversely correlates with altered Pipox expression. In summary, our results strongly indicate that sdRNA-93 expression actively contributes to the malignant phenotype of breast cancer through participating in microRNA-like regulation.

  2. System and methods for predicting transmembrane domains in membrane proteins and mining the genome for recognizing G-protein coupled receptors

    DOEpatents

    Trabanino, Rene J; Vaidehi, Nagarajan; Hall, Spencer E; Goddard, William A; Floriano, Wely

    2013-02-05

    The invention provides computer-implemented methods and apparatus implementing a hierarchical protocol using multiscale molecular dynamics and molecular modeling methods to predict the presence of transmembrane regions in proteins, such as G-Protein Coupled Receptors (GPCR), and protein structural models generated according to the protocol. The protocol features a coarse grain sampling method, such as hydrophobicity analysis, to provide a fast and accurate procedure for predicting transmembrane regions. Methods and apparatus of the invention are useful to screen protein or polynucleotide databases for encoded proteins with transmembrane regions, such as GPCRs.

  3. Feasibility of protein turnover studies in prototroph Saccharomyces cerevisiae strains.

    PubMed

    Martin-Perez, Miguel; Villén, Judit

    2015-04-07

    Quantitative proteomics studies of yeast that use metabolic labeling with amino acids rely on auxotrophic mutations of one or more genes on the amino acid biosynthesis pathways. These mutations affect yeast metabolism and preclude the study of some biological processes. Overcoming this limitation, it has recently been described that proteins in a yeast prototrophic strain can also be metabolically labeled with heavy amino acids. However, the temporal profiles of label incorporation under the different phases of the prototroph's growth have not been examined. Labeling trajectories are important in the study of protein turnover and dynamics, in which label incorporation into proteins is monitored across many time points. Here we monitored protein labeling trajectories for 48 h after a pulse with heavy lysine in a yeast prototrophic strain and compared them with those of a lysine auxotrophic yeast. Labeling was successful in prototroph yeast during exponential growth phase but not in stationary phase. Furthermore, we were able to determine the half-lives of more than 1700 proteins during exponential phase of growth with high accuracy and reproducibility. We found a median half-life of 2 h in both strains, which corresponds with the cellular doubling time. Nucleolar and ribosomal proteins showed short half-lives, whereas mitochondrial proteins and other energy production enzymes presented longer half-lives. Except for some proteins involved in lysine biosynthesis, we observed a high correlation in protein half-lives between prototroph and auxotroph strains. Overall, our results demonstrate the feasibility of using prototrophs for proteomic turnover studies and provide a reliable data set of protein half-lives in exponentially growing yeast.

  4. Multiple Controls Regulate Nucleostemin Partitioning Between Nucleolus and Nucleoplasm

    PubMed Central

    Meng, Lingjun; Yasumoto, Hiroaki; Tsai, Robert Y.L.

    2010-01-01

    Summary Nucleostemin plays an essential role in maintaining the continuous proliferation of stem cells and cancer cells. The movement of nucleostemin between the nucleolus and the nucleoplasm provides a dynamic way to partition the nucleostemin protein between these two compartments. Here, we showed that nucleostemin contained two nucleolus-targeting regions, the basic and the GTP-binding domains, which exhibited a short and a long nucleolar retention time, respectively. In a GTP-unbound state, the nucleolus-targeting activity of nucleostemin was blocked by a mechanism that trapped its intermediate domain in the nucleoplasm. A nucleostemin-interacting protein, RSL1D1, was identified that contained a ribosomal L1-domain, co-resided with nucleostemin in the same subnucleolar compartment non-identical to the B23 and fibrillarin distributions, and displayed a longer nucleolar residence time than nucleostemin. RSL1D1 interacted with both the basic and the GTP-binding domains of nucleostemin through a non-nucleolus-targeting region. Overexpression of the nucleolus-targeting domain of RSL1D1 alone dispersed the nucleolar nucleostemin. Loss of RSL1D1 expression reduced the compartmental size and amount of nucleostemin in the nucleolus. This work reveals that the partitioning of nucleostemin employs complex mechanisms involving both nucleolar and nucleoplasmic components, and provides insight into the post-translational regulation of its activity. PMID:17158916

  5. Role for the Silencing Protein Dot1 in Meiotic Checkpoint Control

    PubMed Central

    San-Segundo, Pedro A.; Roeder, G. Shirleen

    2000-01-01

    During the meiotic cell cycle, a surveillance mechanism called the “pachytene checkpoint” ensures proper chromosome segregation by preventing meiotic progression when recombination and chromosome synapsis are defective. The silencing protein Dot1 (also known as Pch1) is required for checkpoint-mediated pachytene arrest of the zip1 and dmc1 mutants of Saccharomyces cerevisiae. In the absence of DOT1, the zip1 and dmc1 mutants inappropriately progress through meiosis, generating inviable meiotic products. Other components of the pachytene checkpoint include the nucleolar protein Pch2 and the heterochromatin component Sir2. In dot1, disruption of the checkpoint correlates with the loss of concentration of Pch2 and Sir2 in the nucleolus. In addition to its checkpoint function, Dot1 blocks the repair of meiotic double-strand breaks by a Rad54-dependent pathway of recombination between sister chromatids. In vegetative cells, mutation of DOT1 results in delocalization of Sir3 from telomeres, accounting for the impaired telomeric silencing in dot1. PMID:11029058

  6. Base Pairing between U3 Small Nucleolar RNA and the 5′ End of 18S rRNA Is Required for Pre-rRNA Processing

    PubMed Central

    Sharma, Kishor; Tollervey, David

    1999-01-01

    The loop of a stem structure close to the 5′ end of the 18S rRNA is complementary to the box A region of the U3 small nucleolar RNA (snoRNA). Substitution of the 18S loop nucleotides inhibited pre-rRNA cleavage at site A1, the 5′ end of the 18S rRNA, and at site A2, located 1.9 kb away in internal transcribed spacer 1. This inhibition was largely suppressed by a compensatory mutation in U3, demonstrating functional base pairing. The U3–pre-rRNA base pairing is incompatible with the structure that forms in the mature 18S rRNA and may prevent premature folding of the pre-rRNA. In the Escherichia coli pre-rRNA the homologous region of the 16S rRNA is also sequestered, in that case by base pairing to the 5′ external transcribed spacer (5′ ETS). Cleavage at site A0 in the yeast 5′ ETS strictly requires base pairing between U3 and a sequence within the 5′ ETS. In contrast, the U3-18S interaction is not required for A0 cleavage. U3 therefore carries out at least two functionally distinct base pair interactions with the pre-rRNA. The nucleotide at the site of A1 cleavage was shown to be specified by two distinct signals; one of these is the stem-loop structure within the 18S rRNA. However, in contrast to the efficiency of cleavage, the position of A1 cleavage is not dependent on the U3-loop interaction. We conclude that the 18S stem-loop structure is recognized at least twice during pre-rRNA processing. PMID:10454548

  7. 46 CFR 160.077-9 - Recognized laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Recognized laboratory. 160.077-9 Section 160.077-9... Recognized laboratory. (a) A manufacturer seeking Coast Guard approval of a product under this subpart shall... to a recognized independent laboratory. The following laboratories are recognized under § 159.010-7...

  8. 46 CFR 160.048-8 - Recognized laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Recognized laboratory. 160.048-8 Section 160.048-8... Recognized laboratory. (a) A manufacturer seeking Coast Guard approval of a product under this subpart shall... to a recognized independent laboratory. The following laboratories are recognized under § 159.010-7...

  9. 46 CFR 160.048-8 - Recognized laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Recognized laboratory. 160.048-8 Section 160.048-8... Recognized laboratory. (a) A manufacturer seeking Coast Guard approval of a product under this subpart shall... to a recognized independent laboratory. The following laboratories are recognized under § 159.010-7...

  10. 46 CFR 160.077-9 - Recognized laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Recognized laboratory. 160.077-9 Section 160.077-9... Recognized laboratory. (a) A manufacturer seeking Coast Guard approval of a product under this subpart shall... to a recognized independent laboratory. The following laboratories are recognized under § 159.010-7...

  11. Karyotype Plasticity in Crickets: Numerical, Morphological, and Nucleolar Organizer Region Distribution Pattern of Anurogryllus sp.

    PubMed Central

    Cristina Schneider, Marielle; Ariza Zacaro, Adilson; Ferreira, Amilton; Maria Cella, Doralice

    2010-01-01

    Within the Orthopteran species, those of the suborder Ensifera have been rarely studied from the cytogenetic point of view, mainly due to the difficulties for taxonomic identification of its species. The Gryllidae is the second largest family of this suborder and possesses some genera, such as Anurogryllus, that occur only on the American continents. The aim of this work was to determine the karyotype characteristics, the meiotic chromosome behaviour, and the nucleolar organizer region (NOR) pattern of Anurogryllus sp (Orthoptera: Gryllidae). In the analyzed sample, high levels of numerical, morphological, and NORs polymorphisms were detected. Within five distinct karyotypes that were found, the basic karyotype of Anurogryllus sp. showed 2n(♂) = 22 + X0 with acrocentric autosomes and a metacentric X sex chromosome; furthermore, a conspicuous secondary constriction related to the NOR was present along the entire short arm on pair 5. The other four types of karyotypes arose from centric fusions between elements of pairs 1/3, 2/6, 4/7 and a NOR partial translocation from pair 5 onto the long arm terminal region of one element of the fused pair 2/6. Such intraspecific variability and the consequences of high levels of polymorphism are discussed, leading to conjectures about the mechanisms that led to these chromosome rearrangements. PMID:20673072

  12. REFORMATION OF NUCLEOLI AFTER ETHIONE-INDUCED FRAGMENTATION IN THE ABSENCE OF SIGNIFICANT PROTEIN SYNTHESIS

    PubMed Central

    Shinozuka, Hisashi; Farber, Emmanuel

    1969-01-01

    The rat liver nucleolus, after fragmentation induced by ethionine treatment, has been found to undergo complete reformation by adenine in the presence of a dose of cycloheximide sufficient to cause inhibition of protein synthesis by 90–95%. In contrast, actinomycin D given along with adenine was followed by the appearance of a small compact mass containing only the fibrillar component with no evident granules. This structure resembled pseudonucleoli seen in the anucleolate mutant of Xenopus laevis or in certain early stages of amphibian oocytes. Actinomycin D administered 2 hr after adenine induced a segregation of the fibrillar and granular components of nucleoli similar to that induced in the normal nucleolus. The implications of these findings in relation to nucleolar organization are briefly discussed. PMID:5775789

  13. Construction of proteins with molecular recognition capabilities using α3β3 de novo protein scaffolds.

    PubMed

    Okura, Hiromichi; Mihara, Hisakazu; Takahashi, Tsuyoshi

    2013-10-01

    The molecular recognition ability of proteins is essential in biological systems, and therefore a considerable amount of effort has been devoted to constructing desired target-binding proteins using a variety of naturally occurring proteins as scaffolds. However, since generating a binding site in a native protein can often affect its structural properties, highly stable de novo protein scaffolds may be more amenable than the native proteins. We previously reported the generation of de novo proteins comprising three α-helices and three β-strands (α3β3) from a genetic library coding simplified amino acid sets. Two α3β3 de novo proteins, vTAJ13 and vTAJ36, fold into a native-like stable and molten globule-like structures, respectively, even though the proteins have similar amino acid compositions. Here, we attempted to create binding sites for the vTAJ13 and vTAJ36 proteins to prove the utility of de novo designed artificial proteins as a molecular recognition tool. Randomization of six amino acids at two linker sites of vTAJ13 and vTAJ36 followed by biopanning generated binding proteins that recognize the target molecules, fluorescein and green fluorescent protein, with affinities of 10(-7)-10(-8) M. Of note, the selected proteins from the vTAJ13-based library tended to recognize the target molecules with high specificity, probably due to the native-like stable structure of vTAJ13. Our studies provide an example of the potential of de novo protein scaffolds, which are composed of a simplified amino acid set, to recognize a variety of target compounds.

  14. Large-scale purification and crystallization of the endoribonuclease XendoU: troubleshooting with His-tagged proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renzi, Fabiana; Panetta, Gianna; Vallone, Beatrice

    Recombinant His-tagged XendoU, a eukaryotic endoribonuclease, appeared to aggregate in the presence of divalent cations. Monodisperse protein which yielded crystals diffracting to 2.2 Å was obtained by addition of EDTA. XendoU is the first endoribonuclease described in higher eukaryotes as being involved in the endonucleolytic processing of intron-encoded small nucleolar RNAs. It is conserved among eukaryotes and its viral homologue is essential in SARS replication and transcription. The large-scale purification and crystallization of recombinant XendoU are reported. The tendency of the recombinant enzyme to aggregate could be reversed upon the addition of chelating agents (EDTA, imidazole): aggregation is a potentialmore » drawback when purifying and crystallizing His-tagged proteins, which are widely used, especially in high-throughput structural studies. Purified monodisperse XendoU crystallized in two different space groups: trigonal P3{sub 1}21, diffracting to low resolution, and monoclinic C2, diffracting to higher resolution.« less

  15. Marker-assisted selection for recognizing wheat mutant genotypes carrying HMW glutenin alleles related to baking quality.

    PubMed

    Zamani, Mohammad Javad; Bihamta, Mohammad Reza; Naserian Khiabani, Behnam; Tahernezhad, Zahra; Hallajian, Mohammad Taher; Shamsi, Marzieh Varasteh

    2014-01-01

    Allelic diversity of HMW glutenin loci in several studies revealed that allelic combinations affect dough quality. Dx5 + Dy10 subunits are related to good baking quality and Dx2 + Dy12 are related to undesirable baking quality. One of the most regular methods to evaluate the baking quality is SDS-PAGE which is used to improve baking quality labs. Marker-assisted selection is the method which can recognize the alleles related to baking quality and this method is based on polymerase chain reaction. 10 pairs of specific primers related to Dx2, Dx2.1, Dx5, Dy10, and Dy12 subunits were used for recognizing baking quality of some wheat varieties and some mutant genotypes. Only 5 pairs of them could show the specific bands. All subunits were recognized by the primers except Dx2.1. Some of the primers were extracted from previous studies and the others were designed based on D genome subunits of wheat. SDS-PAGE method accomplished having confidence in these marker's results. To realize the effect of mutation, seed storage proteins were measured. It showed that mutation had effect on the amount of seed storage protein on the mutant seeds (which showed polymorphism).

  16. Structures of ribonucleoprotein particle modification enzymes

    PubMed Central

    Liang, Bo; Li, Hong

    2016-01-01

    Small nucleolar and Cajal body ribonucleoprotein particles (RNPs) are required for the maturation of ribosomes and spliceosomes. They consist of small nucleolar RNA or Cajal body RNA combined with partner proteins and represent the most complex RNA modification enzymes. Recent advances in structure and function studies have revealed detailed information regarding ribonucleoprotein assembly and substrate binding. These enzymes form intertwined RNA–protein assemblies that facilitate reversible binding of the large ribosomal RNA or small nuclear RNA. These revelations explain the specificity among the components in enzyme assembly and substrate modification. The multiple conformations of individual components and those of complete RNPs suggest a dynamic assembly process and justify the requirement of many assembly factors in vivo. PMID:21108865

  17. Apocrine Secretion in Drosophila Salivary Glands: Subcellular Origin, Dynamics, and Identification of Secretory Proteins

    PubMed Central

    Farkaš, Robert; Ďatková, Zuzana; Mentelová, Lucia; Löw, Péter; Beňová-Liszeková, Denisa; Beňo, Milan; Sass, Miklós; Řehulka, Pavel; Řehulková, Helena; Raška, Otakar; Kováčik, Lubomír; Šmigová, Jana; Raška, Ivan; Mechler, Bernard M.

    2014-01-01

    In contrast to the well defined mechanism of merocrine exocytosis, the mechanism of apocrine secretion, which was first described over 180 years ago, remains relatively uncharacterized. We identified apocrine secretory activity in the late prepupal salivary glands of Drosophila melanogaster just prior to the execution of programmed cell death (PCD). The excellent genetic tools available in Drosophila provide an opportunity to dissect for the first time the molecular and mechanistic aspects of this process. A prerequisite for such an analysis is to have pivotal immunohistochemical, ultrastructural, biochemical and proteomic data that fully characterize the process. Here we present data showing that the Drosophila salivary glands release all kinds of cellular proteins by an apocrine mechanism including cytoskeletal, cytosolic, mitochondrial, nuclear and nucleolar components. Surprisingly, the apocrine release of these proteins displays a temporal pattern with the sequential release of some proteins (e.g. transcription factor BR-C, tumor suppressor p127, cytoskeletal β-tubulin, non-muscle myosin) earlier than others (e.g. filamentous actin, nuclear lamin, mitochondrial pyruvate dehydrogenase). Although the apocrine release of proteins takes place just prior to the execution of an apoptotic program, the nuclear DNA is never released. Western blotting indicates that the secreted proteins remain undegraded in the lumen. Following apocrine secretion, the salivary gland cells remain quite vital, as they retain highly active transcriptional and protein synthetic activity. PMID:24732043

  18. The nucleolus as a fundamental regulator of the p53 response and a new target for cancer therapy.

    PubMed

    Woods, Simone J; Hannan, Katherine M; Pearson, Richard B; Hannan, Ross D

    2015-07-01

    Recent studies have highlighted the fundamental role that key oncogenes such as MYC, RAS and PI3K occupy in driving RNA Polymerase I transcription in the nucleolus. In addition to maintaining essential levels of protein synthesis, hyperactivated ribosome biogenesis and nucleolar function plays a central role in suppressing p53 activation in response to oncogenic stress. Consequently, disruption of ribosome biogenesis by agents such as the small molecule inhibitor of RNA Polymerase I transcription, CX-5461, has shown unexpected, potent, and selective effects in killing tumour cells via disruption of nucleolar function leading to activation of p53, independent of DNA damage. This review will explore the mechanism of DNA damage-independent activation of p53 via the nucleolar surveillance pathway and how this can be utilised to design novel cancer therapies. Non-genotoxic targeting of nucleolar function may provide a new paradigm for treatment of a broad range of oncogene-driven malignancies with improved therapeutic windows. This article is part of a Special Issue entitled: Translation and Cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Quantitative assessment of silver-stained nucleolar organizer region in odontogenic cysts to correlate the growth and malignant potentiality.

    PubMed

    Biswas, Sailendra Nath; Paul, R R; Ray, Jay Gopal; Majumdar, Sumit; Uppala, Divya

    2017-01-01

    The most common and important odontogenic cyst involving jaws is the odontogenic keratocyst (OKC) or primordial cyst, the dentigerous cyst and the radicular cyst. These cysts all though do not show similar behavior, they all have the potentiality to recur. Silver nitrate staining of the nucleolar organizer regions (AgNORs) of the benign and malignant lesions is becoming very useful as a diagnostic indicator. Thus, the aim of this study is to assess the diagnostic potential of AgNORs in the cystic epithelium of common odontogenic cysts. Archived specimens of odontogenic cysts were stained with hematoxylin and eosin stain and AgNOR stain. The comparative evaluation of the AgNOR counts was done among the three varieties of odontogenic cysts, i.e., radicular cysts, dentigerous cysts and OKC and were observed that the mean for OKC was significantly higher than that of radicular cyst. Therefore, AgNor could be used as an efficient tool for comparative evaluation of microscopic features such as epithelial thickness, surface keratinization and mural proliferation in dentigerous cyst to that of the AgNOR count.

  20. Grow-ING, Age-ING and Die-ING: ING proteins link cancer, senescence and apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Michael; Berardi, Philip; Gong Wei

    The INhibitor of Growth (ING) family of plant homeodomain (PHD) proteins induce apoptosis and regulate gene expression through stress-inducible binding of phospholipids with subsequent nuclear and nucleolar localization. Relocalization occurs concomitantly with interaction with a subset of nuclear proteins, including PCNA, p53 and several regulators of acetylation such as the p300/CBP and PCAF histone acetyltransferases (HATs), as well as the histone deacetylases HDAC1 and hSir2. These interactions alter the localized state of chromatin compaction, subsequently affecting the expression of subsets of genes, including those associated with the stress response (Hsp70), apoptosis (Bax, MDM2) and cell cycle regulation (p21{sup WAF1}, cyclinmore » B) in a cell- and tissue-specific manner. The expression levels and subcellular localization of ING proteins are altered in a significant number of human cancer types, while the expression of ING isoforms changes during cellular aging, suggesting that ING proteins may play a role in linking cellular transformation and replicative senescence. The variety of functions attributed to ING proteins suggest that this tumor suppressor serves to link the disparate processes of cell cycle regulation, cell suicide and cellular aging through epigenetic regulation of gene expression. This review examines recent findings in the ING field with a focus on the functions of protein-protein interactions involving ING family members and the mechanisms by which these interactions facilitate the various roles that ING proteins play in tumorigenesis, apoptosis and senescence.« less

  1. Recognizing the Incestuous Family

    PubMed Central

    Johnson, Mark S.

    1983-01-01

    Family physicians are in the best position to diagnose incest because of the nature of their practice. Yet many cases of incest are not recognized by the medical community and many incest victims are thus untreated. There are several behavioral and medical clues to incest, which the family physician needs to know in order to recognize incest early and improve the prognosis. Treatment is directed at the whole family, rather than just the active participants. Further research is needed to improve the application of various treatment modalities. PMID:6631984

  2. Nom1 Mediates Pancreas Development by Regulating Ribosome Biogenesis in Zebrafish

    PubMed Central

    Qin, Wei; Chen, Zelin; Zhang, Yihan; Yan, Ruibin; Yan, Guanrong; Li, Song; Zhong, Hanbing; Lin, Shuo

    2014-01-01

    Ribosome biogenesis is an important biological process for proper cellular function and development. Defects leading to improper ribosome biogenesis can cause diseases such as Diamond-Blackfan anemia and Shwachman-Bodian-Diamond syndrome. Nucleolar proteins are a large family of proteins and are involved in many cellular processes, including the regulation of ribosome biogenesis. Through a forward genetic screen and positional cloning, we identified and characterized a zebrafish line carrying mutation in nucleolar protein with MIF4G domain 1 (nom1), which encodes a conserved nulceolar protein with a role in pre-rRNA processing. Zebrafish nom1 mutants exhibit major defects in endoderm development, especially in exocrine pancreas. Further studies revealed that impaired proliferation of ptf1a-expressing pancreatic progenitor cells mainly contributed to the phenotype. RNA-seq and molecular analysis showed that ribosome biogenesis and pre-mRNA splicing were both affected in the mutant embryos. Several defects of ribosome assembly have been shown to have a p53-dependent mechanism. In the nom1 mutant, loss of p53 did not rescue the pancreatic defect, suggesting a p53-independent role. Further studies indicate that protein phosphatase 1 alpha, an interacting protein to Nom1, could partially rescue the pancreatic defect in nom1 morphants if a human nucleolar localization signal sequence was artificially added. This suggests that targeting Pp1α into the nucleolus by Nom1 is important for pancreatic proliferation. Altogether, our studies revealed a new mechanism involving Nom1 in controlling vertebrate exocrine pancreas formation. PMID:24967912

  3. Identical IgM antibodies recognizing a glycine-alanine epitope are induced during acute infection with Epstein-Barr virus and cytomegalovirus.

    PubMed

    Rhodes, G; Smith, R S; Rubin, R E; Vaughan, J; Horwitz, C A

    1990-01-01

    We studied antibody production in serial serum samples from patients with acute Epstein-Barr virus (EBV) and cytomegalovirus (CMV) infections. Sera were analyzed both by enzyme-linked immunosorbent assay (ELISA) using a synthetic peptide (P62) derived from the glycine-alanine repeating region of the Epstein-Barr nuclear antigen (EBNA-1) and by immunoblotting. In prior studies, we have shown that patients with acute EBV infection make IgM antibodies that react with this peptide, that recognize a viral-specific protein (EBNA-1), and that bind with a number of proteins present in uninfected cells; however, antibody binding to these autoantigens was inhibited by the peptide. IgG antibodies reactive with the peptide did not appear until months after the disease and were specific for the EBNA-1 protein. We now find that patients with acute CMV infection but not those with acute infections from a variety of other nonherpes organisms also produce IgM antibodies that recognize the EBV-derived peptide P62. These antibodies also appear to recognize the same cellular proteins as the EBV-induced IgM antibodies. The IgM antibodies appeared in all acutely infected CMV patients studied and occurred both in patients with previous EBV infections and in one patient studied who had not previously been exposed to EBV. It appears that infection with EBV or CMV can induce the synthesis of a very similar or identical set of IgM antibodies.

  4. Functional Proteomic Analysis of Human NucleolusD⃞

    PubMed Central

    Scherl, Alexander; Couté, Yohann; Déon, Catherine; Callé, Aleth; Kindbeiter, Karine; Sanchez, Jean-Charles; Greco, Anna; Hochstrasser, Denis; Diaz, Jean-Jacques

    2002-01-01

    The notion of a “plurifunctional” nucleolus is now well established. However, molecular mechanisms underlying the biological processes occurring within this nuclear domain remain only partially understood. As a first step in elucidating these mechanisms we have carried out a proteomic analysis to draw up a list of proteins present within nucleoli of HeLa cells. This analysis allowed the identification of 213 different nucleolar proteins. This catalog complements that of the 271 proteins obtained recently by others, giving a total of ∼350 different nucleolar proteins. Functional classification of these proteins allowed outlining several biological processes taking place within nucleoli. Bioinformatic analyses permitted the assignment of hypothetical functions for 43 proteins for which no functional information is available. Notably, a role in ribosome biogenesis was proposed for 31 proteins. More generally, this functional classification reinforces the plurifunctional nature of nucleoli and provides convincing evidence that nucleoli may play a central role in the control of gene expression. Finally, this analysis supports the recent demonstration of a coupling of transcription and translation in higher eukaryotes. PMID:12429849

  5. [PIWI protein as a nucleolus visitor in Drosophila melanogaster].

    PubMed

    Mikhaleva, E A; Iakushev, E Iu; Stoliarenko, A D; Klenov, M S; Pozovskiĭ, Ia M; Gvozdev, V A

    2015-01-01

    The evolutionarily conserved nuclear Piwi protein of Drosophila melanogaster is a representative of the Argonaute small RNA binding protein family. Guided by small piRNAs, Piwi functions in transposon silencing in somatic and germ cells of the gonad. We found that in ovarian somatic and germ cells, as well as in the established ovarian somatic cell line, Piwi is concentrated predominantly in the nucleolus--the main nuclear compartment, participating not only in rRNA synthesis, but also in various cell stress responses. We demonstrated the colocalization of Piwi with nucleolar marker proteins--fibrillarin and Nopp140. A mutation preventing Piwi transport to the nucleus and disturbing transposon silencing (piwi(Nt)) leads to 6-8-fold upregulation of rRNA genes expression, as evaluated by the level of transcripts of transposon insertions in 28S rRNA genes. RNase treatment of live cultured ovarian somatic cells depletes Piwi from the nucleolus. The same effect is observed upon inhibiting RNA polymerase I which transcribes rRNA, but not RNA polymerase II. In contrast, upon heat shock Piwi is concentrated in the nucleolus and is depleted from the nucleoplasm. These results implicate Piwi in RNA polymerase activity modulation and stress response in the nucleolus. We discuss possible noncanonical Piwi functions along with its canonical role in transposon silencing by piRNAs.

  6. Functional Roles of Pattern Recognition Receptors That Recognize Virus Nucleic Acids in Human Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Wang, Fangchao; Yang, Can; Liu, Guoyan; Song, Xiangfeng

    2016-01-01

    Human adipose-derived mesenchymal stem cells (hAD-MSCs) are mesenchymal stem cells with the capability to modulate immune responses. Evidence showing that hAD-MSCs could mediate innate immune responses through pattern recognition receptors (PRRs) is increasing. However, the roles of PRRs in regulating the innate sensing of virus nucleic acids (RNA and DNA) in hAD-MSCs have not yet been investigated. This study focused on the abundant expression of PRRs, including Toll-like receptor 3 (TLR3) and retinoic acid-inducible gene I (RIG-I), which recognize viral RNA, and gamma-interferon inducible protein 16 (IFI16), which recognizes viral DNA in hAD-MSCs. Poly(I:C), a synthetic dsRNA analogy, activated TLR3 and RIG-I and induced the expression of type I interferons (IFN-α/β) and antivirus proteins, including IFN-stimulating gene 15, 2′5′-oligoadenylate synthetase, and Mx GTPase 1 in hAD-MSCs, which were attenuated by the knockdown of each TLR3 or RIG-I. Synthetic herpes simplex viral DNA (HSV60) activated IFI16 and induced the expression of IFN-α/β and antivirus proteins in hAD-MSCs, which were inhibited by the knockdown of IFI16. Both poly(I:C) and HSV60 induced the expression of IFN-α/β through the phosphorylation of IFN-regulatory factor 3. All these results indicated that PRRs recognizing virus nucleic acids were expressed and can mediate antivirus responses in hAD-MSCs. PMID:28105439

  7. Excystation of Eimeria tenella sporozoites impaired by antibody recognizing gametocyte/oocyst antigens GAM22 and GAM56.

    PubMed

    Krücken, Jürgen; Hosse, Ralf J; Mouafo, Aimdip N; Entzeroth, Rolf; Bierbaum, Stefan; Marinovski, Predrag; Hain, Karolina; Greif, Gisela; Wunderlich, Frank

    2008-02-01

    Eimeria tenella is the causative agent of coccidiosis in poultry. Infection of the chicken intestine begins with ingestion of sporulated oocysts releasing sporocysts, which in turn release invasive sporozoites. The monoclonal antibody E2E5 recognizes wall-forming body type II (WFBII) in gametocytes and the WFBII-derived inner wall of oocysts. Here we describe that this antibody also binds to the stieda body of sporocysts and significantly impairs in vitro excystation of sporozoites. Using affinity chromatography and protein sequence analysis, E2E5 is shown to recognize EtGAM56, the E. tenella ortholog of the Eimeria maxima gametocyte-specific GAM56 protein. In addition, this antibody was used to screen a genomic phage display library presenting E. tenella antigens as fusion proteins with the gene VIII product on the surfaces of phagemid particles and identified the novel 22-kDa histidine- and proline-rich protein EtGAM22. The Etgam22 mRNA is expressed predominantly at the gametocyte stage, as detected by Northern blotting. Southern blot analysis in combination with data from the E. tenella genome project revealed that Etgam22 is an intronless multicopy gene, with approximately 12 to 22 copies in head-to-tail arrangement. Conspicuously, Etgam56 is also intronless and is localized adjacent to another gam56-like gene, Etgam59. Our data suggest that amplification is common for genes encoding oocyst wall proteins.

  8. Box C/D small nucleolar RNA (snoRNA) U60 regulates intracellular cholesterol trafficking.

    PubMed

    Brandis, Katrina A; Gale, Sarah; Jinn, Sarah; Langmade, Stephen J; Dudley-Rucker, Nicole; Jiang, Hui; Sidhu, Rohini; Ren, Aileen; Goldberg, Anna; Schaffer, Jean E; Ory, Daniel S

    2013-12-13

    Mobilization of plasma membrane (PM) cholesterol to the endoplasmic reticulum is essential for cellular cholesterol homeostasis. The mechanisms regulating this retrograde, intermembrane cholesterol transfer are not well understood. Because mutant cells with defects in PM to endoplasmic reticulum cholesterol trafficking can be isolated on the basis of resistance to amphotericin B, we conducted an amphotericin B loss-of-function screen in Chinese hamster ovary (CHO) cells using insertional mutagenesis to identify genes that regulate this trafficking mechanism. Mutant line A1 displayed reduced cholesteryl ester formation from PM-derived cholesterol and increased de novo cholesterol synthesis, indicating a deficiency in retrograde cholesterol transport. Genotypic analysis revealed that the A1 cell line contained one disrupted allele of the U60 small nucleolar RNA (snoRNA) host gene, resulting in haploinsufficiency of the box C/D snoRNA U60. Complementation and mutational studies revealed the U60 snoRNA to be the essential feature from this locus that affects cholesterol trafficking. Lack of alteration in predicted U60-mediated site-directed methylation of 28 S rRNA in the A1 mutant suggests that the U60 snoRNA modulates cholesterol trafficking by a mechanism that is independent of this canonical function. Our study adds to a growing body of evidence for participation of small noncoding RNAs in cholesterol homeostasis and is the first to implicate a snoRNA in this cellular function.

  9. How does the nucleolar number involve in muscle fiber atrophy? Response to Beta-guanidinopropionic acid supplementation

    NASA Astrophysics Data System (ADS)

    Matsuoka, Yoshikazu; Kawano, Fuminori; Oke, Yoshihiko; Higo, Yoko; Umemoto, Shiori; Kawabe, Naoko; Wang, Xiaodong; Terada, Masahiro; Shinoda, Yo; Lan, Yongbo; Ogura, Akihiko; Ohira, Yoshinobu

    2005-08-01

    To investigate the relationship between the myonuclear capability and the number of nucleolus during muscle remodeling, oral supplementation of β-guanidinopropionic acid (β-GPA) on the characteristics of plantaris muscle fibers was performed for 2 weeks in adult male Wistar rats. Effects of β-GPA supply in culture medium on mouse myoblast cell line C2C12 was also studied. The mean fiber cross-sectional area was less in β-GPA-fed than control rats (35%, p<0.05). And the myonuclear number per mm of fiber length was significantly greater (35%, p<0.05). Thus, the cytoplasmic volume per myonucleus was less (52%) in β-GPA-fed rats (p<0.05). The number of nucleolar organizer regions (NORs) per myonucleus was also less (17%) in β-GPA-fed group (p<0.05). The number of NORs was greater (14%) in the myoblasts cultured with creatine phosphate compared with non-supplemented control, but it was less (10%) in the myoblasts cultured with β-GPA (p<0.05). Further, the number of NORs was also greater (26%) in the differentiated myotubes cultured with creatine phosphate (p<0.05). The results suggested that the nucleoli may play some role(s) in the regulation of muscle fiber size and its number may be influenced by creatine content.

  10. 46 CFR 164.012-12 - Recognized laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Recognized laboratory. 164.012-12 Section 164.012-12...: SPECIFICATIONS AND APPROVAL MATERIALS Interior Finishes for Merchant Vessels § 164.012-12 Recognized laboratory. A recognized laboratory is one which is operated as a nonprofit public service and is regularly...

  11. 40 CFR 745.88 - Recognized test kits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Recognized test kits. 745.88 Section... Renovation § 745.88 Recognized test kits. (a) Effective June 23, 2008, EPA recognizes the test kits that have been determined by National Institute of Standards and Technology research to meet the negative...

  12. 40 CFR 745.88 - Recognized test kits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Recognized test kits. 745.88 Section... Renovation § 745.88 Recognized test kits. (a) Effective June 23, 2008, EPA recognizes the test kits that have been determined by National Institute of Standards and Technology research to meet the negative...

  13. 40 CFR 745.88 - Recognized test kits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Recognized test kits. 745.88 Section... Renovation § 745.88 Recognized test kits. (a) Effective June 23, 2008, EPA recognizes the test kits that have been determined by National Institute of Standards and Technology research to meet the negative...

  14. 40 CFR 745.88 - Recognized test kits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Recognized test kits. 745.88 Section... Renovation § 745.88 Recognized test kits. (a) Effective June 23, 2008, EPA recognizes the test kits that have been determined by National Institute of Standards and Technology research to meet the negative...

  15. 46 CFR 164.012-12 - Recognized laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Recognized laboratory. 164.012-12 Section 164.012-12...: SPECIFICATIONS AND APPROVAL MATERIALS Interior Finishes for Merchant Vessels § 164.012-12 Recognized laboratory. A recognized laboratory is one which is operated as a nonprofit public service and is regularly...

  16. 46 CFR 164.019-17 - Recognized laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Recognized laboratory. 164.019-17 Section 164.019-17...: SPECIFICATIONS AND APPROVAL MATERIALS Personal Flotation Device Components § 164.019-17 Recognized laboratory. (a) General. A laboratory may be designated as a recognized laboratory under this subpart if it is— (1...

  17. 46 CFR 164.019-17 - Recognized laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Recognized laboratory. 164.019-17 Section 164.019-17...: SPECIFICATIONS AND APPROVAL MATERIALS Personal Flotation Device Components § 164.019-17 Recognized laboratory. (a) General. A laboratory may be designated as a recognized laboratory under this subpart if it is— (1...

  18. Different intracellular distribution of avian reovirus core protein sigmaA in cells of avian and mammalian origin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vazquez-Iglesias, Lorena; Lostale-Seijo, Irene; Martinez-Costas, Jose

    2012-10-25

    A comparative analysis of the intracellular distribution of avian reovirus (ARV) core protein sigmaA in cells of avian and mammalian origin revealed that, whereas the viral protein accumulates in the cytoplasm and nucleolus of avian cells, most sigmaA concentrates in the nucleoplasm of mammalian cells in tight association with the insoluble nuclear matrix fraction. Our results further showed that sigmaA becomes arrested in the nucleoplasm of mammalian cells via association with mammalian cell-specific factors and that this association prevents nucleolar targeting. Inhibition of RNA polymerase II activity, but not of RNA polymerase I activity, in infected mammalian cells induces nucleus-to-cytoplasmmore » sigmaA translocation through a CRM1- and RanGTP-dependent mechanism, yet a heterokaryon assay suggests that sigmaA does not shuttle between the nucleus and cytoplasm. The scarcity of sigmaA in cytoplasmic viral factories of infected mammalian cells could be one of the factors contributing to limited ARV replication in mammalian cells.« less

  19. Bifidobacterium breve C50 secretes lipoprotein with CHAP domain recognized in aggregated form by TLR2.

    PubMed

    Scuotto, Angelo; Djorie, Serge; Colavizza, Michel; Romond, Pierre-Charles; Romond, Marie-Bénédicte

    2014-12-01

    Extracellular components secreted by Bifidobacterium breve C50 can induce maturation, high IL-10 production and prolonged survival of dendritic cells via a TLR2 pathway. In this study, the components were isolated from the supernatant by gel filtration chromatography. Antibodies raised against the major compounds with molecular weight above 600 kDa (Bb C50BC) also recognized compounds of lower molecular weight (200–600 kDa). TLR2 and TLR6 bound to the components already recognized by the antibodies. Trypsin digestion of Bb C50BC released three major peptides whose sequences displayed close similarities to a putative secreted protein with a CHAP amidase domain from B. breve. The 1300-bp genomic region corresponding to the hypothetical protein was amplified by PCR. The deduced polypeptide started with an N-terminal signal sequence of 45 amino acids, containing the lipobox motif (LAAC) with the cysteine in position 25, and 2 positively charged residues within the first 14 residues of the signal sequence. Lipid detection in Bb C50BC by GC/MS further supported the implication of a lipoprotein. Sugars were also detected in Bb C50BC. Close similarity with the glucan-binding protein B from Bifidobacterium animalis of two released peptides from Bb C50BC protein suggested that glucose moieties, possibly in glucan form, could be bound to the lipoprotein. Finally, heating at 100 °C for 5 min led to the breakdown of Bb C50BC in compounds of molecular weight below 67 kDa, which suggested that Bb C50BC was an aggregate. One might assume that a basic unit was formed by the lipoprotein bound putatively to glucan. Besides the other sugars and hexosamines recognized by galectin 1 were localized at the surface of the Bb C50BC aggregate. In conclusion, the extracellular components secreted by B. breve C50 were constituted of a lipoprotein putatively associated with glucose moieties and acting in an aggregating form as an agonist of TLR2/TLR6.

  20. CdiA Effectors from Uropathogenic Escherichia coli Use Heterotrimeric Osmoporins as Receptors to Recognize Target Bacteria

    PubMed Central

    Beck, Christina M.; Willett, Julia L. E.; Kim, Jeff J.; Low, David A.; Hayes, Christopher S.

    2016-01-01

    Many Gram-negative bacterial pathogens express contact-dependent growth inhibition (CDI) systems that promote cell-cell interaction. CDI+ bacteria express surface CdiA effector proteins, which transfer their C-terminal toxin domains into susceptible target cells upon binding to specific receptors. CDI+ cells also produce immunity proteins that neutralize the toxin domains delivered from neighboring siblings. Here, we show that CdiAEC536 from uropathogenic Escherichia coli 536 (EC536) uses OmpC and OmpF as receptors to recognize target bacteria. E. coli mutants lacking either ompF or ompC are resistant to CDIEC536-mediated growth inhibition, and both porins are required for target-cell adhesion to inhibitors that express CdiAEC536. Experiments with single-chain OmpF fusions indicate that the CdiAEC536 receptor is heterotrimeric OmpC-OmpF. Because the OmpC and OmpF porins are under selective pressure from bacteriophages and host immune systems, their surface-exposed loops vary between E. coli isolates. OmpC polymorphism has a significant impact on CDIEC536 mediated competition, with many E. coli isolates expressing alleles that are not recognized by CdiAEC536. Analyses of recombinant OmpC chimeras suggest that extracellular loops L4 and L5 are important recognition epitopes for CdiAEC536. Loops L4 and L5 also account for much of the sequence variability between E. coli OmpC proteins, raising the possibility that CDI contributes to the selective pressure driving OmpC diversification. We find that the most efficient CdiAEC536 receptors are encoded by isolates that carry the same cdi gene cluster as E. coli 536. Thus, it appears that CdiA effectors often bind preferentially to "self" receptors, thereby promoting interactions between sibling cells. As a consequence, these effector proteins cannot recognize nor suppress the growth of many potential competitors. These findings suggest that self-recognition and kin selection are important functions of CDI. PMID:27723824

  1. 46 CFR 160.064-7 - Recognized laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Recognized laboratory. 160.064-7 Section 160.064-7...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Marine Buoyant Devices § 160.064-7 Recognized laboratory. (a) A... laboratory. The following laboratories are recognized under § 159.010-7 of this part, to perform testing and...

  2. 46 CFR 160.076-19 - Recognized laboratories.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Recognized laboratories. 160.076-19 Section 160.076-19... Recognized laboratories. (a) PFDs. The following laboratories are recognized under § 159.010-9 of this... Laboratories, Inc., 12 Laboratory Drive, P.O. Box 13995, Research Triangle Park, NC 27709-3995, (919) 549-1400...

  3. 46 CFR 160.064-7 - Recognized laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Recognized laboratory. 160.064-7 Section 160.064-7...: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Marine Buoyant Devices § 160.064-7 Recognized laboratory. (a) A... laboratory. The following laboratories are recognized under § 159.010-7 of this part, to perform testing and...

  4. 46 CFR 160.076-19 - Recognized laboratories.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Recognized laboratories. 160.076-19 Section 160.076-19... Recognized laboratories. (a) PFDs. The following laboratories are recognized under § 159.010-9 of this... Laboratories, Inc., 12 Laboratory Drive, P.O. Box 13995, Research Triangle Park, NC 27709-3995, (919) 549-1400...

  5. The conservation pattern of short linear motifs is highly correlated with the function of interacting protein domains.

    PubMed

    Ren, Siyuan; Yang, Guang; He, Youyu; Wang, Yiguo; Li, Yixue; Chen, Zhengjun

    2008-10-01

    Many well-represented domains recognize primary sequences usually less than 10 amino acids in length, called Short Linear Motifs (SLiMs). Accurate prediction of SLiMs has been difficult because they are short (often < 10 amino acids) and highly degenerate. In this study, we combined scoring matrixes derived from peptide library and conservation analysis to identify protein classes enriched of functional SLiMs recognized by SH2, SH3, PDZ and S/T kinase domains. Our combined approach revealed that SLiMs are highly conserved in proteins from functional classes that are known to interact with a specific domain, but that they are not conserved in most other protein groups. We found that SLiMs recognized by SH2 domains were highly conserved in receptor kinases/phosphatases, adaptor molecules, and tyrosine kinases/phosphatases, that SLiMs recognized by SH3 domains were highly conserved in cytoskeletal and cytoskeletal-associated proteins, that SLiMs recognized by PDZ domains were highly conserved in membrane proteins such as channels and receptors, and that SLiMs recognized by S/T kinase domains were highly conserved in adaptor molecules, S/T kinases/phosphatases, and proteins involved in transcription or cell cycle control. We studied Tyr-SLiMs recognized by SH2 domains in more detail, and found that SH2-recognized Tyr-SLiMs on the cytoplasmic side of membrane proteins are more highly conserved than those on the extra-cellular side. Also, we found that SH2-recognized Tyr-SLiMs that are associated with SH3 motifs and a tyrosine kinase phosphorylation motif are more highly conserved. The interactome of protein domains is reflected by the evolutionary conservation of SLiMs recognized by these domains. Combining scoring matrixes derived from peptide libraries and conservation analysis, we would be able to find those protein groups that are more likely to interact with specific domains.

  6. 40 CFR 745.88 - Recognized test kits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Recognized test kits. 745.88 Section... Renovation § 745.88 Recognized test kits. (a) Effective June 23, 2008, EPA recognizes the test kits that have... publicizes its recognition of the first test kit that meets both the negative response and positive response...

  7. Protein degradation and protection against misfolded or damaged proteins

    NASA Astrophysics Data System (ADS)

    Goldberg, Alfred L.

    2003-12-01

    The ultimate mechanism that cells use to ensure the quality of intracellular proteins is the selective destruction of misfolded or damaged polypeptides. In eukaryotic cells, the large ATP-dependent proteolytic machine, the 26S proteasome, prevents the accumulation of non-functional, potentially toxic proteins. This process is of particular importance in protecting cells against harsh conditions (for example, heat shock or oxidative stress) and in a variety of diseases (for example, cystic fibrosis and the major neurodegenerative diseases). A full understanding of the pathogenesis of the protein-folding diseases will require greater knowledge of how misfolded proteins are recognized and selectively degraded.

  8. Structure of a rare non-standard sequence k-turn bound by L7Ae protein

    PubMed Central

    Huang, Lin; Lilley, David M.J.

    2014-01-01

    Kt-23 from Thelohania solenopsae is a rare RNA kink turn (k-turn) where an adenine replaces the normal guanine at the 2n position. L7Ae is a member of a strongly conserved family of proteins that bind a range of k-turn structures in the ribosome, box C/D and H/ACA small nucleolar RNAs and U4 small nuclear RNA. We have solved the crystal structure of T. solenopsae Kt-23 RNA bound to Archeoglobus fulgidus L7Ae protein at a resolution of 2.95 Å. The protein binds in the major groove displayed on the outer face of the k-turn, in a manner similar to complexes with standard k-turn structures. The k-turn adopts a standard N3 class conformation, with a single hydrogen bond from A2b N6 to A2n N3. This contrasts with the structure of the same sequence located in the SAM-I riboswitch, where it adopts an N1 structure, showing the inherent plasticity of k-turn structure. This potentially can affect any tertiary interactions in which the RNA participates. PMID:24482444

  9. Limonene inhibits Candida albicans growth by inducing apoptosis.

    PubMed

    Thakre, Archana; Zore, Gajanan; Kodgire, Santosh; Kazi, Rubina; Mulange, Shradha; Patil, Rajendra; Shelar, Amruta; Santhakumari, Bayitigeri; Kulkarni, Mahesh; Kharat, Kiran; Karuppayil, Sankunny Mohan

    2018-07-01

    Anti-Candida potential of limonene was evaluated against planktonic growth, biofilm (adhesion, development and maturation) and morphogenesis of Candida albicans in this study. Limonene is a major constituent of citrus oil and most frequently used terpene in food and beverage industry due to its pleasant fragrance, nontoxic, and is generally recognized as safe (GRAS) flavoring agent as well as treatment option in many gastrointestinal diseases.Limonene exhibited excellent anti-Candida activity and was equally effective against planktonic growth of C. albicans isolates differentially susceptible to FLC (N = 35). Limonene inhibited morphogenesis significantly at low concentration. However, it showed stage dependent activity against biofilm formation, that is, it was more effective against adhesion followed by development and maturation. Limonene also exhibited excellent synergy with FLC against planktonic and biofilm growth. SWATH-MS analysis led to identification of limonene responsive proteins that provided molecular insight of its anti-Candida activity. Proteomic analysis revealed upregulation of proteins involved in cell wall glucan synthesis (Kre6); oxidative stress (Rhr2, Adh7 and Ebp1); DNA damage stress (Mbf1 and Npl3); nucleolar stress (Rpl11, Rpl7, Rpl29, Rpl15) and down regulation of cytoskeleton organization (Crn1, Pin3, Cct8, Rbl2), and so forth, in response to limonene. Limonene mediated down regulation of Tps3 indicates activation of caspase (CaMca1) and induction of apoptosis in C. albicans. These results suggest that limonene inhibits C. albicans growth by cell wall/membrane damage induced oxidative stress that leads to DNA damage resulting into modulation of cell cycle and induction of apoptosis through nucleolar stress and metacaspase dependent pathway.

  10. Detection on immunoblot of new proteins from the soluble fraction of the cell recognized either by anti-liver-kidney microsome antibodies type 1 or by anti-liver cytosol antibodies type 1--relationship with hepatitis C virus infection.

    PubMed

    Ballot, E; Desbos, A; Monier, J C

    1996-09-01

    Antibodies directed against liver cytosol protein, called anti-liver cytosol type 1 (LC1 Ab), have been described by both immunofluorescence (IF) and immunodiffusion techniques in sera from patients with autoimmune hepatitis (AIH). They have never been found in association with antibodies directed against the hepatitis C virus (HCV), unlike the anti-liver-kidney microsome antibodies type 1 (LKM1 Ab), the serological marker of AIH type 2. This suggests that there are two subgroups of AIH type 2, i.e., HCV-related and non-HCV-related. In this study, immunoblotting experiments were performed using proteins from the soluble phase of the rat liver cell; 141 sera which tested positive for LKM1 Ab by IF, 24 identified as having LC1 Ab by IF, and 50 from blood donors as controls were analyzed. Three bands were stained by LC1 Ab sera more often than by the control sera, and with a statistically significant frequency. These 3 proteins were located at apparent Mr 50,000, 55,000, and 60,000. The LKM1 Ab-positive sera as defined by IF stained six bands with a statistically significant frequency compared to the controls. Their apparent Mr were 35,000, 39,000, 47,000, 50,000, 55,000, and 60,000. LKM1 Ab-positive sera which were anti-HCV negative recognized a 60,000 protein belonging to the soluble phase of the cell, with a statistically significant frequency compared to LKM1 Ab-positive sera which were anti-HCV positive. This 60,000 protein was also recognized by LC1 Ab-positive sera, which were almost always anti-HCV negative. The presence of antibodies against a 60,000 protein from the soluble phase of the cell is discussed in terms of the anti-HCV serological markers found in the sera from patients with AIH.

  11. Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity.

    PubMed

    Jin, Rongsheng; Rummel, Andreas; Binz, Thomas; Brunger, Axel T

    2006-12-21

    Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and cause the neuroparalytic syndrome of botulism. With a lethal dose of 1 ng kg(-1), they pose a biological hazard to humans and a serious potential bioweapon threat. BoNTs bind with high specificity at neuromuscular junctions and they impair exocytosis of synaptic vesicles containing acetylcholine through specific proteolysis of SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors), which constitute part of the synaptic vesicle fusion machinery. The molecular details of the toxin-cell recognition have been elusive. Here we report the structure of a BoNT in complex with its protein receptor: the receptor-binding domain of botulinum neurotoxin serotype B (BoNT/B) bound to the luminal domain of synaptotagmin II, determined at 2.15 A resolution. On binding, a helix is induced in the luminal domain which binds to a saddle-shaped crevice on a distal tip of BoNT/B. This crevice is adjacent to the non-overlapping ganglioside-binding site of BoNT/B. Synaptotagmin II interacts with BoNT/B with nanomolar affinity, at both neutral and acidic endosomal pH. Biochemical and neuronal ex vivo studies of structure-based mutations indicate high specificity and affinity of the interaction, and high selectivity of BoNT/B among synaptotagmin I and II isoforms. Synergistic binding of both synaptotagmin and ganglioside imposes geometric restrictions on the initiation of BoNT/B translocation after endocytosis. Our results provide the basis for the rational development of preventive vaccines or inhibitors against these neurotoxins.

  12. Dynamic localization of two tobamovirus ORF6 proteins involves distinct organellar compartments.

    PubMed

    Gushchin, Vladimir A; Lukhovitskaya, Nina I; Andreev, Dmitri E; Wright, Kathryn M; Taliansky, Michael E; Solovyev, Andrey G; Morozov, Sergey Y; MacFarlane, Stuart A

    2013-01-01

    ORF6 is a small gene that overlaps the movement and coat protein genes of subgroup 1a tobamoviruses. The ORF6 protein of tomato mosaic virus (ToMV) strain L (L-ORF6), interacts in vitro with eukaryotic elongation factor 1α, and mutation of the ORF6 gene of tobacco mosaic virus (TMV) strain U1 (U1-ORF6) reduces the pathogenicity in vivo of TMV, whereas expression of this gene from two other viruses, tobacco rattle virus (TRV) and potato virus X (PVX), increases their pathogenicity. In this work, the in vivo properties of the L-ORF6 and U1-ORF6 proteins were compared to identify sequences that direct the proteins to different subcellular locations and also influence virus pathogenicity. Site-specific mutations in the ORF6 protein were made, hybrid ORF6 proteins were created in which the N-terminal and C-terminal parts were derived from the two proteins, and different subregions of the protein were examined, using expression either from a recombinant TRV vector or as a yellow fluorescent protein fusion from a binary plasmid in Agrobacterium tumefaciens. L-ORF6 caused mild necrotic symptoms in Nicotiana benthamiana when expressed from TRV, whereas U1-ORF6 caused severe symptoms including death of the plant apex. The difference in symptoms was associated with the C-terminal region of L-ORF6, which directed the protein to the endoplasmic reticulum (ER), whereas U1-ORF6 was directed initially to the nucleolus and later to the mitochondria. Positively charged residues at the N terminus allowed nucleolar entry of both U1-ORF6 and L-ORF6, but hydrophobic residues at the C terminus of L-ORF6 directed this protein to the ER.

  13. Higher-Order Neural Networks Recognize Patterns

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Spirkovska, Lilly; Ochoa, Ellen

    1996-01-01

    Networks of higher order have enhanced capabilities to distinguish between different two-dimensional patterns and to recognize those patterns. Also enhanced capabilities to "learn" patterns to be recognized: "trained" with far fewer examples and, therefore, in less time than necessary to train comparable first-order neural networks.

  14. Protein interference applications in cellular and developmental biology using DARPins that recognize GFP and mCherry

    PubMed Central

    Brauchle, Michael; Hansen, Simon; Caussinus, Emmanuel; Lenard, Anna; Ochoa-Espinosa, Amanda; Scholz, Oliver; Sprecher, Simon G.; Plückthun, Andreas; Affolter, Markus

    2014-01-01

    ABSTRACT Protein–protein interactions are crucial for cellular homeostasis and play important roles in the dynamic execution of biological processes. While antibodies represent a well-established tool to study protein interactions of extracellular domains and secreted proteins, as well as in fixed and permeabilized cells, they usually cannot be functionally expressed in the cytoplasm of living cells. Non-immunoglobulin protein-binding scaffolds have been identified that also function intracellularly and are now being engineered for synthetic biology applications. Here we used the Designed Ankyrin Repeat Protein (DARPin) scaffold to generate binders to fluorescent proteins and used them to modify biological systems directly at the protein level. DARPins binding to GFP or mCherry were selected by ribosome display. For GFP, binders with KD as low as 160 pM were obtained, while for mCherry the best affinity was 6 nM. We then verified in cell culture their specific binding in a complex cellular environment and found an affinity cut-off in the mid-nanomolar region, above which binding is no longer detectable in the cell. Next, their binding properties were employed to change the localization of the respective fluorescent proteins within cells. Finally, we performed experiments in Drosophila melanogaster and Danio rerio and utilized these DARPins to either degrade or delocalize fluorescently tagged fusion proteins in developing organisms, and to phenocopy loss-of-function mutations. Specific protein binders can thus be selected in vitro and used to reprogram developmental systems in vivo directly at the protein level, thereby bypassing some limitations of approaches that function at the DNA or the RNA level. PMID:25416061

  15. Excystation of Eimeria tenella Sporozoites Impaired by Antibody Recognizing Gametocyte/Oocyst Antigens GAM22 and GAM56▿

    PubMed Central

    Krücken, Jürgen; Hosse, Ralf J.; Mouafo, Aimdip N.; Entzeroth, Rolf; Bierbaum, Stefan; Marinovski, Predrag; Hain, Karolina; Greif, Gisela; Wunderlich, Frank

    2008-01-01

    Eimeria tenella is the causative agent of coccidiosis in poultry. Infection of the chicken intestine begins with ingestion of sporulated oocysts releasing sporocysts, which in turn release invasive sporozoites. The monoclonal antibody E2E5 recognizes wall-forming body type II (WFBII) in gametocytes and the WFBII-derived inner wall of oocysts. Here we describe that this antibody also binds to the stieda body of sporocysts and significantly impairs in vitro excystation of sporozoites. Using affinity chromatography and protein sequence analysis, E2E5 is shown to recognize EtGAM56, the E. tenella ortholog of the Eimeria maxima gametocyte-specific GAM56 protein. In addition, this antibody was used to screen a genomic phage display library presenting E. tenella antigens as fusion proteins with the gene VIII product on the surfaces of phagemid particles and identified the novel 22-kDa histidine- and proline-rich protein EtGAM22. The Etgam22 mRNA is expressed predominantly at the gametocyte stage, as detected by Northern blotting. Southern blot analysis in combination with data from the E. tenella genome project revealed that Etgam22 is an intronless multicopy gene, with approximately 12 to 22 copies in head-to-tail arrangement. Conspicuously, Etgam56 is also intronless and is localized adjacent to another gam56-like gene, Etgam59. Our data suggest that amplification is common for genes encoding oocyst wall proteins. PMID:18083827

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosello-Lleti, Esther; Rivera, Miguel; Cortes, Raquel

    Highlights: Black-Right-Pointing-Pointer Heart failure alters nucleolar morphology and organization. Black-Right-Pointing-Pointer Nucleolin expression is significant increased in ischemic and dilated cardiomyopathy. Black-Right-Pointing-Pointer Ventricular function of heart failure patients was related with nucleolin levels. -- Abstract: We investigate for the first time the influence of heart failure (HF) on nucleolar organization and proteins in patients with ischemic (ICM) or dilated cardiomyopathy (DCM). A total of 71 human hearts from ICM (n = 38) and DCM (n = 27) patients, undergoing heart transplantation and control donors (n = 6), were analysed by western-blotting, RT-PCR and cell biology methods. When we compared protein levelsmore » according to HF etiology, nucleolin was increased in both ICM (117%, p < 0.05) and DCM (141%, p < 0.01). Moreover, mRNA expression were also upregulated in ICM (1.46-fold, p < 0.05) and DCM (1.70-fold, p < 0.05. Immunofluorescence studies showed that the highest intensity of nucleolin was into nucleolus (p < 0.0001), and it was increased in pathological hearts (p < 0.0001). Ultrastructure analysis by electron microscopy showed an increase in the nucleus and nucleolus size in ICM (17%, p < 0.05 and 131%, p < 0.001) and DCM (56%, p < 0.01 and 69%, p < 0.01). Nucleolar organization was influenced by HF irrespective of etiology, increasing fibrillar centers (p < 0.001), perinucleolar chromatin (p < 0.01) and dense fibrillar components (p < 0.01). Finally, left ventricular function parameters were related with nucleolin levels in ischemic hearts (p < 0.0001). The present study demonstrates that HF influences on morphology and organization of nucleolar components, revealing changes in the expression and in the levels of nucleolin protein.« less

  17. BLM helicase facilitates RNA polymerase I-mediated ribosomal RNA transcription

    PubMed Central

    Grierson, Patrick M.; Lillard, Kate; Behbehani, Gregory K.; Combs, Kelly A.; Bhattacharyya, Saumitri; Acharya, Samir; Groden, Joanna

    2012-01-01

    Bloom's syndrome (BS) is an autosomal recessive disorder that is invariably characterized by severe growth retardation and cancer predisposition. The Bloom's syndrome helicase (BLM), mutations of which lead to BS, localizes to promyelocytic leukemia protein bodies and to the nucleolus of the cell, the site of RNA polymerase I-mediated ribosomal RNA (rRNA) transcription. rRNA transcription is fundamental for ribosome biogenesis and therefore protein synthesis, cellular growth and proliferation; its inhibition limits cellular growth and proliferation as well as bodily growth. We report that nucleolar BLM facilitates RNA polymerase I-mediated rRNA transcription. Immunofluorescence studies demonstrate the dependance of BLM nucleolar localization upon ongoing RNA polymerase I-mediated rRNA transcription. In vivo protein co-immunoprecipitation demonstrates that BLM interacts with RPA194, a subunit of RNA polymerase I. 3H-uridine pulse-chase assays demonstrate that BLM expression is required for efficient rRNA transcription. In vitro helicase assays demonstrate that BLM unwinds GC-rich rDNA-like substrates that form in the nucleolus and normally inhibit progression of the RNA polymerase I transcription complex. These studies suggest that nucleolar BLM modulates rDNA structures in association with RNA polymerase I to facilitate RNA polymerase I-mediated rRNA transcription. Given the intricate relationship between rDNA metabolism and growth, our data may help in understanding the etiology of proportional dwarfism in BS. PMID:22106380

  18. BLM helicase facilitates RNA polymerase I-mediated ribosomal RNA transcription.

    PubMed

    Grierson, Patrick M; Lillard, Kate; Behbehani, Gregory K; Combs, Kelly A; Bhattacharyya, Saumitri; Acharya, Samir; Groden, Joanna

    2012-03-01

    Bloom's syndrome (BS) is an autosomal recessive disorder that is invariably characterized by severe growth retardation and cancer predisposition. The Bloom's syndrome helicase (BLM), mutations of which lead to BS, localizes to promyelocytic leukemia protein bodies and to the nucleolus of the cell, the site of RNA polymerase I-mediated ribosomal RNA (rRNA) transcription. rRNA transcription is fundamental for ribosome biogenesis and therefore protein synthesis, cellular growth and proliferation; its inhibition limits cellular growth and proliferation as well as bodily growth. We report that nucleolar BLM facilitates RNA polymerase I-mediated rRNA transcription. Immunofluorescence studies demonstrate the dependance of BLM nucleolar localization upon ongoing RNA polymerase I-mediated rRNA transcription. In vivo protein co-immunoprecipitation demonstrates that BLM interacts with RPA194, a subunit of RNA polymerase I. (3)H-uridine pulse-chase assays demonstrate that BLM expression is required for efficient rRNA transcription. In vitro helicase assays demonstrate that BLM unwinds GC-rich rDNA-like substrates that form in the nucleolus and normally inhibit progression of the RNA polymerase I transcription complex. These studies suggest that nucleolar BLM modulates rDNA structures in association with RNA polymerase I to facilitate RNA polymerase I-mediated rRNA transcription. Given the intricate relationship between rDNA metabolism and growth, our data may help in understanding the etiology of proportional dwarfism in BS.

  19. Recognizing Bedside Events Using Thermal and Ultrasonic Readings

    PubMed Central

    Asbjørn, Danielsen; Jim, Torresen

    2017-01-01

    Falls in homes of the elderly, in residential care facilities and in hospitals commonly occur in close proximity to the bed. Most approaches for recognizing falls use cameras, which challenge privacy, or sensor devices attached to the bed or the body to recognize bedside events and bedside falls. We use data collected from a ceiling mounted 80 × 60 thermal array combined with an ultrasonic sensor device. This approach makes it possible to monitor activity while preserving privacy in a non-intrusive manner. We evaluate three different approaches towards recognizing location and posture of an individual. Bedside events are recognized using a 10-second floating image rule/filter-based approach, recognizing bedside falls with 98.62% accuracy. Bed-entry and exit events are recognized with 98.66% and 96.73% accuracy, respectively. PMID:28598394

  20. Quantitative assessment of silver-stained nucleolar organizer region in odontogenic cysts to correlate the growth and malignant potentiality

    PubMed Central

    Biswas, Sailendra Nath; Paul, R R; Ray, Jay Gopal; Majumdar, Sumit; Uppala, Divya

    2017-01-01

    Context: The most common and important odontogenic cyst involving jaws is the odontogenic keratocyst (OKC) or primordial cyst, the dentigerous cyst and the radicular cyst. These cysts all though do not show similar behavior, they all have the potentiality to recur. Silver nitrate staining of the nucleolar organizer regions (AgNORs) of the benign and malignant lesions is becoming very useful as a diagnostic indicator. Thus, the aim of this study is to assess the diagnostic potential of AgNORs in the cystic epithelium of common odontogenic cysts. Materials and Methods: Archived specimens of odontogenic cysts were stained with hematoxylin and eosin stain and AgNOR stain. Results: The comparative evaluation of the AgNOR counts was done among the three varieties of odontogenic cysts, i.e., radicular cysts, dentigerous cysts and OKC and were observed that the mean for OKC was significantly higher than that of radicular cyst. Conclusion: Therefore, AgNor could be used as an efficient tool for comparative evaluation of microscopic features such as epithelial thickness, surface keratinization and mural proliferation in dentigerous cyst to that of the AgNOR count. PMID:29391734

  1. Roles of the nucleolus in the CAG RNA-mediated toxicity.

    PubMed

    Tsoi, Ho; Chan, Ho Yin Edwin

    2014-06-01

    The nucleolus is a subnuclear compartment within the cell nucleus that serves as the site for ribosomal RNA (rRNA) transcription and the assembly of ribosome subunits. Apart from its classical role in ribosomal biogenesis, a number of cellular regulatory roles have recently been assigned to the nucleolus, including governing the induction of apoptosis. "Nucleolar stress" is a term that is used to describe a signaling pathway through which the nucleolus communicates with other subcellular compartments, including the mitochondria, to induce apoptosis. It is an effective mechanism for eliminating cells that are incapable of performing protein synthesis efficiently due to ribosome biogenesis defects. The down-regulation of rRNA transcription is a common cause of nucleolar function disruption that subsequently triggers nucleolar stress, and has been associated with the pathogenesis of neurological disorders such as spinocerebellar ataxias (SCAs) and Huntington's diseases (HD). This article discusses recent advances in mechanistic studies of how expanded CAG trinucleotide repeat RNA transcripts trigger nucleolar stress in SCAs, HD and other trinucleotide repeat disorders. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Altered Machinery of Protein Synthesis in Alzheimer's: From the Nucleolus to the Ribosome.

    PubMed

    Hernández-Ortega, Karina; Garcia-Esparcia, Paula; Gil, Laura; Lucas, José J; Ferrer, Isidre

    2016-09-01

    Ribosomes and protein synthesis have been reported to be altered in the cerebral cortex at advanced stages of Alzheimer's disease (AD). Modifications in the hippocampus with disease progression have not been assessed. Sixty-seven cases including middle-aged (MA) and AD stages I-VI were analyzed. Nucleolar chaperones nucleolin, nucleophosmin and nucleoplasmin 3, and upstream binding transcription factor RNA polymerase I gene (UBTF) mRNAs are abnormally regulated and their protein levels reduced in AD. Histone modifications dimethylated histone H3K9 (H3K9me2) and acetylated histone H3K12 (H3K12ac) are decreased in CA1. Nuclear tau declines in CA1 and dentate gyrus (DG), and practically disappears in neurons with neurofibrillary tangles. Subunit 28 ribosomal RNA (28S rRNA) expression is altered in CA1 and DG in AD. Several genes encoding ribosomal proteins are abnormally regulated and protein levels of translation initiation factors eIF2α, eIF3η and eIF5, and elongation factor eEF2, are altered in the CA1 region in AD. These findings show alterations in the protein synthesis machinery in AD involving the nucleolus, nucleus and ribosomes in the hippocampus in AD some of them starting at first stages (I-II) preceding neuron loss. These changes may lie behind reduced numbers of dendritic branches and reduced synapses of CA1 and DG neurons which cause hippocampal atrophy. © 2015 International Society of Neuropathology.

  3. 46 CFR 90.10-35 - Recognized classification society.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Recognized classification society. 90.10-35 Section 90... classification society. The term recognized classification society means the American Bureau of Shipping or other classification society recognized by the Commandant. ...

  4. The conservation pattern of short linear motifs is highly correlated with the function of interacting protein domains

    PubMed Central

    Ren, Siyuan; Yang, Guang; He, Youyu; Wang, Yiguo; Li, Yixue; Chen, Zhengjun

    2008-01-01

    Background Many well-represented domains recognize primary sequences usually less than 10 amino acids in length, called Short Linear Motifs (SLiMs). Accurate prediction of SLiMs has been difficult because they are short (often < 10 amino acids) and highly degenerate. In this study, we combined scoring matrixes derived from peptide library and conservation analysis to identify protein classes enriched of functional SLiMs recognized by SH2, SH3, PDZ and S/T kinase domains. Results Our combined approach revealed that SLiMs are highly conserved in proteins from functional classes that are known to interact with a specific domain, but that they are not conserved in most other protein groups. We found that SLiMs recognized by SH2 domains were highly conserved in receptor kinases/phosphatases, adaptor molecules, and tyrosine kinases/phosphatases, that SLiMs recognized by SH3 domains were highly conserved in cytoskeletal and cytoskeletal-associated proteins, that SLiMs recognized by PDZ domains were highly conserved in membrane proteins such as channels and receptors, and that SLiMs recognized by S/T kinase domains were highly conserved in adaptor molecules, S/T kinases/phosphatases, and proteins involved in transcription or cell cycle control. We studied Tyr-SLiMs recognized by SH2 domains in more detail, and found that SH2-recognized Tyr-SLiMs on the cytoplasmic side of membrane proteins are more highly conserved than those on the extra-cellular side. Also, we found that SH2-recognized Tyr-SLiMs that are associated with SH3 motifs and a tyrosine kinase phosphorylation motif are more highly conserved. Conclusion The interactome of protein domains is reflected by the evolutionary conservation of SLiMs recognized by these domains. Combining scoring matrixes derived from peptide libraries and conservation analysis, we would be able to find those protein groups that are more likely to interact with specific domains. PMID:18828911

  5. CRM1 and its ribosome export adaptor NMD3 localize to the nucleolus and affect rRNA synthesis.

    PubMed

    Bai, Baoyan; Moore, Henna M; Laiho, Marikki

    2013-01-01

    CRM1 is an export factor that together with its adaptor NMD3 transports numerous cargo molecules from the nucleus to cytoplasm through the nuclear pore. Previous studies have suggested that CRM1 and NMD3 are detected in the nucleolus. However, their localization with subnucleolar domains or participation in the activities of the nucleolus are unclear. We demonstrate here biochemically and using imaging analyses that CRM1 and NMD3 co-localize with nucleolar marker proteins in the nucleolus. In particular, their nucleolar localization is markedly increased by inhibition of RNA polymerase I (Pol I) transcription by actinomycin D or by silencing Pol I catalytic subunit, RPA194. We show that CRM1 nucleolar localization is dependent on its activity and the expression of NMD3, whereas NMD3 nucleolar localization is independent of CRM1. This suggests that NMD3 provides nucleolar tethering of CRM1. While inhibition of CRM1 by leptomycin B inhibited processing of 28S ribosomal (r) RNA, depletion of NMD3 did not, suggesting that their effects on 28S rRNA processing are distinct. Markedly, depletion of NMD3 and inhibition of CRM1 reduced the rate of pre-47S rRNA synthesis. However, their inactivation did not lead to nucleolar disintegration, a hallmark of Pol I transcription stress, suggesting that they do not directly regulate transcription. These results indicate that CRM1 and NMD3 have complex functions in pathways that couple rRNA synthetic and processing engines and that the rRNA synthesis rate may be adjusted according to proficiency in rRNA processing and export.

  6. Nuclease-resistant c-di-AMP derivatives that differentially recognize RNA and protein receptors

    PubMed Central

    Meehan, Robert E.; Torgerson, Chad D.; Gaffney, Barbara L.; Jones, Roger A.; Strobel, Scott A.

    2016-01-01

    The ability of bacteria to sense environmental cues and adapt is essential for their survival. The use of second-messenger signaling molecules to translate these cues into a physiological response is a common mechanism employed by bacteria. The second messenger 3’-5’-cyclic diadenosine monophosphate (c-di-AMP) has been linked to a diverse set of biological processes involved in maintaining cell viability and homeostasis, as well as pathogenicity. A complex network of both protein and RNA receptors inside the cell activate specific pathways and mediate phenotypic outputs in response to c-di-AMP. Structural analysis of these RNA and protein receptors has revealed the different recognition elements employed by these effectors to bind the same small molecule. Herein, using a series of c-di-AMP analogs, we probed the interactions made with a riboswitch and a phosphodiesterase protein to identify the features important for c-di-AMP binding and recognition. We found that the ydaO riboswitch binds c-di-AMP in two discrete sites with near identical affinity and a Hill coefficient of 1.6. The ydaO riboswitch distinguishes between c-di-AMP and structurally related second messengers by discriminating against an amine at the C2 position, more than a carbonyl at the C6 position. We also identified phosphate-modified analogs that bind both the ydaO RNA and GdpP protein with high affinity, while symmetrically-modified ribose analogs exhibited a substantial decrease in ydaO affinity, but retained high affinity for GdpP. These ligand modifications resulted in increased resistance to enzyme-catalyzed hydrolysis by the GdpP enzyme. Together, these data suggest that these c-di-AMP analogs could be useful as chemical tools to specifically target subsections of the second-messenger signaling pathways. PMID:26789423

  7. A Method for Predicting Protein Complexes from Dynamic Weighted Protein-Protein Interaction Networks.

    PubMed

    Liu, Lizhen; Sun, Xiaowu; Song, Wei; Du, Chao

    2018-06-01

    Predicting protein complexes from protein-protein interaction (PPI) network is of great significance to recognize the structure and function of cells. A protein may interact with different proteins under different time or conditions. Existing approaches only utilize static PPI network data that may lose much temporal biological information. First, this article proposed a novel method that combines gene expression data at different time points with traditional static PPI network to construct different dynamic subnetworks. Second, to further filter out the data noise, the semantic similarity based on gene ontology is regarded as the network weight together with the principal component analysis, which is introduced to deal with the weight computing by three traditional methods. Third, after building a dynamic PPI network, a predicting protein complexes algorithm based on "core-attachment" structural feature is applied to detect complexes from each dynamic subnetworks. Finally, it is revealed from the experimental results that our method proposed in this article performs well on detecting protein complexes from dynamic weighted PPI networks.

  8. Mammalian Fe-S proteins: definition of a consensus motif recognized by the co-chaperone HSC20.

    PubMed

    Maio, N; Rouault, T A

    2016-10-01

    Iron-sulfur (Fe-S) clusters are inorganic cofactors that are fundamental to several biological processes in all three kingdoms of life. In most organisms, Fe-S clusters are initially assembled on a scaffold protein, ISCU, and subsequently transferred to target proteins or to intermediate carriers by a dedicated chaperone/co-chaperone system. The delivery of assembled Fe-S clusters to recipient proteins is a crucial step in the biogenesis of Fe-S proteins, and, in mammals, it relies on the activity of a multiprotein transfer complex that contains the chaperone HSPA9, the co-chaperone HSC20 and the scaffold ISCU. How the transfer complex efficiently engages recipient Fe-S target proteins involves specific protein interactions that are not fully understood. This mini review focuses on recent insights into the molecular mechanism of amino acid motif recognition and discrimination by the co-chaperone HSC20, which guides Fe-S cluster delivery.

  9. 46 CFR 162.039-5 - Recognized laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Recognized laboratory. (a) A recognized laboratory is one which is regularly engaged in the examination...' Laboratories, Inc., mailing address: Post Office Box 247, Northbrook, Ill., 60062. (2) [Reserved] (b) [Reserved] ...

  10. 46 CFR 162.039-5 - Recognized laboratory.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Recognized laboratory. (a) A recognized laboratory is one which is regularly engaged in the examination...' Laboratories, Inc., mailing address: Post Office Box 247, Northbrook, Ill., 60062. (2) [Reserved] (b) [Reserved] ...

  11. 46 CFR 162.039-5 - Recognized laboratory.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Recognized laboratory. (a) A recognized laboratory is one which is regularly engaged in the examination...' Laboratories, Inc., mailing address: Post Office Box 247, Northbrook, Ill., 60062. (2) [Reserved] (b) [Reserved] ...

  12. 46 CFR 162.039-5 - Recognized laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Recognized laboratory. (a) A recognized laboratory is one which is regularly engaged in the examination...' Laboratories, Inc., mailing address: Post Office Box 247, Northbrook, Ill., 60062. (2) [Reserved] (b) [Reserved] ...

  13. 46 CFR 162.039-5 - Recognized laboratory.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Recognized laboratory. (a) A recognized laboratory is one which is regularly engaged in the examination...' Laboratories, Inc., mailing address: Post Office Box 247, Northbrook, Ill., 60062. (2) [Reserved] (b) [Reserved] ...

  14. Actual Proliferating Index and p53 protein expression as prognostic marker in odontogenic cysts.

    PubMed

    Gadbail, A R; Chaudhary, M; Patil, S; Gawande, M

    2009-10-01

    The purpose of this study was to evaluate the biological aggressiveness of odontogenic keratocyst/keratocystic odontogenic tumour (KCOT), radicular cyst (RC) and dentigerous cyst (DC) by observing the actual proliferative activity of epithelium, and p53 protein expression. The actual proliferative activity was measured by Ki-67 Labelling Index and argyrophilic nucleolar organizing regions (AgNOR) count per nucleus. The p53 protein expression was also evaluated. Ki-67 positive cells were observed higher in suprabasal cell layers of KCOT with uniform distribution, a few of them were predominantly observed in basal cell layer in RC and DC. The AgNOR count was significantly higher in suprabasal cell layers of KCOT. The actual proliferative activity was noted to be higher in suprabasal cell layers of KCOT. The p53 immunolabelling was dense and scattered in basal and suprabasal cell layers in KCOT. The weakly stained p53 positive cells were observed diffusely distributed in KCOT, whereas they were mainly seen in basal cell layer of RC and DC. The quantitative and qualitative differences of the proliferative activity and the p53 protein expression in sporadic KCOT may be associated with intrinsic growth potential that could play a role in its development and explain locally aggressive biological behaviour. AgNOR count and p53 protein detection in odontogenic lesions can be of great consequence to predict the biological behaviour and prognosis.

  15. Mammalian Fe-S proteins: definition of a consensus motif recognized by the co-chaperone HSC20

    PubMed Central

    Maio, N.; Rouault, T. A.

    2017-01-01

    Iron-sulfur (Fe-S) clusters are inorganic cofactors that are fundamental to several biological processes in all three kingdoms of life. In most organisms, Fe-S clusters are initially assembled on a scaffold protein, ISCU, and subsequently transferred to target proteins or to intermediate carriers by a dedicated chaperone/co-chaperone system. The delivery of assembled Fe-S clusters to recipient proteins is a crucial step in the biogenesis of Fe-S proteins, and, in mammals, it relies on the activity of a multiprotein transfer complex that contains the chaperone HSPA9, the co-chaperone HSC20 and the scaffold ISCU. How the transfer complex efficiently engages recipient Fe-S target proteins involves specific protein interactions that are not fully understood. This mini review focuses on recent insights into the molecular mechanism of amino acid motif recognition and discrimination by the co-chaperone HSC20, which guides Fe-S cluster delivery. PMID:27714045

  16. Variant surface glycoproteins from Venezuelan trypanosome isolates are recognized by sera from animals infected with either Trypanosoma evansi or Trypanosoma vivax.

    PubMed

    Camargo, Rocío; Izquier, Adriana; Uzcanga, Graciela L; Perrone, Trina; Acosta-Serrano, Alvaro; Carrasquel, Liomary; Arias, Laura P; Escalona, José L; Cardozo, Vanessa; Bubis, José

    2015-01-15

    Salivarian trypanosomes sequentially express only one variant surface glycoprotein (VSG) on their cell surface from a large repertoire of VSG genes. Seven cryopreserved animal trypanosome isolates known as TeAp-ElFrio01, TEVA1 (or TeAp-N/D1), TeGu-N/D1, TeAp-Mantecal01, TeGu-TerecayTrino, TeGu-Terecay03 and TeGu-Terecay323, which had been isolated from different hosts identified in several geographical areas of Venezuela were expanded using adult albino rats. Soluble forms of predominant VSGs expressed during the early infection stages were purified and corresponded to concanavalin A-binding proteins with molecular masses of 48-67 kDa by sodium dodecyl sulfate-polyacrylamide gel electropohoresis, and pI values between 6.1 and 7.5. The biochemical characterization of all purified soluble VSGs revealed that they were dimers in their native form and represented different gene products. Sequencing of some of these proteins yielded peptides homologous to VSGs from Trypanosoma (Trypanozoon) brucei and Trypanosoma (Trypanozoon) evansi and established that they most likely are mosaics generated by homologous recombination. Western blot analysis showed that all purified VSGs were cross-reacting antigens that were recognized by sera from animals infected with either T. evansi or Trypanosoma (Dutonella) vivax. The VSG glycosyl-phosphatidylinositol cross-reacting determinant epitope was only partially responsible for the cross-reactivity of the purified proteins, and antibodies appeared to recognize cross-reacting conformational epitopes from the various soluble VSGs. ELISA experiments were performed using infected bovine sera collected from cattle in a Venezuelan trypanosome-endemic area. In particular, soluble VSGs from two trypanosome isolates, TeGu-N/D1 and TeGu-TeracayTrino, were recognized by 93.38% and 73.55% of naturally T. vivax-infected bovine sera, respectively. However, approximately 70% of the sera samples did not recognize all seven purified proteins. Hence, the

  17. Variant surface glycoproteins from Venezuelan trypanosome isolates are recognized by sera from animals infected with either Trypanosoma evansi or Trypanosoma vivax

    PubMed Central

    Camargo, Rocío; Izquier, Adriana; Uzcanga, Graciela L.; Perrone, Trina; Acosta-Serrano, Alvaro; Carrasquel, Liomary; Arias, Laura P.; Escalona, José L.; Cardozo, Vanessa; Bubis, José

    2015-01-01

    Salivarian trypanosomes sequentially express only one variant surface glycoprotein (VSG) on their cell surface from a large repertoire of VSG genes. Seven cryopreserved animal trypanosome isolates known as TeAp-ElFrio01, TEVA1 (or TeAp-N/D1), TeGu-N/D1, TeAp-Mantecal01, TeGu-TerecayTrino, TeGu-Terecay03 and TeGu-Terecay323, which had been isolated from different hosts identified in several geographical areas of Venezuela were expanded using adult albino rats. Soluble forms of predominant VSGs expressed during the early infection stages were purified and corresponded to concanavalin A-binding proteins with molecular masses of 48–67 kDa by sodium dodecyl sulfate-polyacrylamide gel electropohoresis, and pI values between 6.1 and 7.5. The biochemical characterization of all purified soluble VSGs revealed that they were dimers in their native form and represented different gene products. Sequencing of some of these proteins yielded peptides homologous to VSGs from Trypanosoma (Trypanozoon) brucei and Trypanosoma (Trypanozoon) evansi and established that they most likely are mosaics generated by homologous recombination. Western blot analysis showed that all purified VSGs were cross-reacting antigens that were recognized by sera from animals infected with either T. evansi or Trypanosoma (Dutonella) vivax. The VSG glycosyl-phosphatidylinositol cross-reacting determinant epitope was only partially responsible for the cross-reactivity of the purified proteins, and antibodies appeared to recognize cross-reacting conformational epitopes from the various soluble VSGs. ELISA experiments were performed using infected bovine sera collected from cattle in a Venezuelan trypanosome-endemic area. In particular, soluble VSGs from two trypanosome isolates, TeGu-N/D1 and TeGu-TeracayTrino, were recognized by 93.38% and 73.55% of naturally T. vivax-infected bovine sera, respectively. However, approximately 70% of the sera samples did not recognize all seven purified proteins. Hence

  18. GNL3L Inhibits Estrogen Receptor-Related Protein Activities by Competing for Coactivator Binding

    PubMed Central

    Yasumoto, Hiroaki; Meng, Lingjun; Lin, Tao; Zhu, Qubo; Tsai, Robert Y.L.

    2010-01-01

    Summary Guanine-nucleotide binding protein 3-like (GNL3L) is the closest homologue of a stem cell-enriched factor nucleostemin in vertebrates. They share the same yeast orthologue, Grn1p, but only GNL3L can rescue the growth-deficient phenotype in Grn1p-null yeasts. To determine the unique function of GNL3L, we identified estrogen receptor-related protein-γ (ERRγ) as a GNL3L-specific binding protein. GNL3L and ERRγ are coexpressed in the eye, kidney and muscle, and co-reside in the nucleoplasm. The interaction between GNL3L and ERRγ requires the intermediate domain of GNL3L and the AF2-domain of ERRγ. Gain- and loss-of-function experiments show that GNL3L can inhibit the transcriptional activities of ERR genes in a cell-based reporter system, which does not require the nucleolar localization of GNL3L. We further demonstrate that GNL3L is able to reduce the steroid receptor coactivator (SRC) binding and the SRC-mediated transcriptional coactivation of ERRγ. This work reveals a novel mechanism that negatively regulates the transcriptional function of ERRγ by GNL3L through coactivator competition. PMID:17623774

  19. The octamer-binding proteins form multi-protein--DNA complexes with the HSV alpha TIF regulatory protein.

    PubMed Central

    Kristie, T M; LeBowitz, J H; Sharp, P A

    1989-01-01

    The herpes simplex virus transactivator, alpha TIF, stimulates transcription of the alpha/immediate early genes via a cis-acting site containing an octamer element and a conserved flanking sequence. The alpha TIF protein, produced in a baculovirus expression system, nucleates the formation of at least two DNA--protein complexes on this regulatory element. Both of these complexes contain the ubiquitous Oct-1 protein, whose POU domain alone is sufficient to allow assembly of the alpha TIF-dependent complexes. A second member of the POU domain family, the lymphoid specific Oct-2 protein, can also be assembled into similar complexes at high concentrations of alpha TIF protein. These complexes contain at least two cellular proteins in addition to Oct-1. One of these proteins is present in both insect and HeLa cells and probably recognizes sequences in the cis element. The second cellular protein, only present in HeLa cells, probably binds by protein-protein interactions. Images PMID:2556266

  20. The octamer-binding proteins form multi-protein--DNA complexes with the HSV alpha TIF regulatory protein.

    PubMed

    Kristie, T M; LeBowitz, J H; Sharp, P A

    1989-12-20

    The herpes simplex virus transactivator, alpha TIF, stimulates transcription of the alpha/immediate early genes via a cis-acting site containing an octamer element and a conserved flanking sequence. The alpha TIF protein, produced in a baculovirus expression system, nucleates the formation of at least two DNA--protein complexes on this regulatory element. Both of these complexes contain the ubiquitous Oct-1 protein, whose POU domain alone is sufficient to allow assembly of the alpha TIF-dependent complexes. A second member of the POU domain family, the lymphoid specific Oct-2 protein, can also be assembled into similar complexes at high concentrations of alpha TIF protein. These complexes contain at least two cellular proteins in addition to Oct-1. One of these proteins is present in both insect and HeLa cells and probably recognizes sequences in the cis element. The second cellular protein, only present in HeLa cells, probably binds by protein-protein interactions.

  1. 46 CFR 42.05-60 - Recognized classification society.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Recognized classification society. 42.05-60 Section 42... FOREIGN VOYAGES BY SEA Definition of Terms Used in This Subchapter § 42.05-60 Recognized classification society. The term recognized classification society means the American Bureau of Shipping or other...

  2. 46 CFR 42.05-60 - Recognized classification society.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Recognized classification society. 42.05-60 Section 42... FOREIGN VOYAGES BY SEA Definition of Terms Used in This Subchapter § 42.05-60 Recognized classification society. The term recognized classification society means the American Bureau of Shipping or other...

  3. 46 CFR 42.05-60 - Recognized classification society.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Recognized classification society. 42.05-60 Section 42... FOREIGN VOYAGES BY SEA Definition of Terms Used in This Subchapter § 42.05-60 Recognized classification society. The term recognized classification society means the American Bureau of Shipping or other...

  4. 46 CFR 42.05-60 - Recognized classification society.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Recognized classification society. 42.05-60 Section 42... FOREIGN VOYAGES BY SEA Definition of Terms Used in This Subchapter § 42.05-60 Recognized classification society. The term recognized classification society means the American Bureau of Shipping or other...

  5. 46 CFR 90.10-35 - Recognized classification society.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Recognized classification society. 90.10-35 Section 90... VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 90.10-35 Recognized classification society. The term recognized classification society means the American Bureau of Shipping or other...

  6. ULTRASTRUCTURE OF THE NUCLEOLUS DURING THE CHINESE HAMSTER CELL CYCLE

    PubMed Central

    Noel, J. S.; Dewey, W. C.; Abel, J. H.; Thompson, R. P.

    1971-01-01

    Changes in the structure of the nucleolus during the cell cycle of the Chinese hamster cell in vitro were studied. Quantitative electron microscopic techniques were used to establish the size and volume changes in nucleolar structures. In mitosis, nucleolar remnants, "persistent nucleoli," consisting predominantly of ribosome-like granular material, and a granular coating on the chromosomes were observed. Persistent nucleoli were also observed in some daughter nuclei as they were leaving telophase and entering G1. During very early G1, a dense, fibrous material characteristic of interphase nucleoli was noted in the nucleoplasm of the cells. As the cells progressed through G1, a granular component appeared which was intimately associated with the fibrous material. By the middle of G1, complete, mature nucleoli were present. The nucleolar volume enlarged by a factor of two from the beginning of G1 to the middle of S primarily due to the accumulation of the granular component. During the G2 period, there was a dissolution or breakdown of the nucleolus prior to the entry of the cells into mitosis. Correlations between the quantitative aspects of this study and biochemical and cytochemical data available in the literature suggest the following: nucleolar reformation following division results from the activation of the nucleolar organizer regions which transcribe for RNA first appearing in association with protein as a fibrous component (45S RNA) and then later as a granular component (28S and 32S RNA). PMID:4933472

  7. Recognizing simple polyhedron from a perspective drawing

    NASA Astrophysics Data System (ADS)

    Zhang, Guimei; Chu, Jun; Miao, Jun

    2009-10-01

    Existed methods can't be used for recognizing simple polyhedron. In this paper, three problems are researched. First, a method for recognizing triangle and quadrilateral is introduced based on geometry and angle constraint. Then Attribute Relation Graph (ARG) is employed to describe simple polyhedron and line drawing. Last, a new method is presented to recognize simple polyhedron from a line drawing. The method filters the candidate database before matching line drawing and model, thus the recognition efficiency is improved greatly. We introduced the geometrical characteristics and topological characteristics to describe each node of ARG, so the algorithm can not only recognize polyhedrons with different shape but also distinguish between polyhedrons with the same shape but with different sizes and proportions. Computer simulations demonstrate the effectiveness of the method preliminarily.

  8. 21 CFR 862.1630 - Protein (fractionation) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... body fluids. Protein fractionations are used as an aid in recognizing abnormal proteins in body fluids...

  9. 21 CFR 862.1630 - Protein (fractionation) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... body fluids. Protein fractionations are used as an aid in recognizing abnormal proteins in body fluids...

  10. 21 CFR 862.1630 - Protein (fractionation) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... body fluids. Protein fractionations are used as an aid in recognizing abnormal proteins in body fluids...

  11. 21 CFR 862.1630 - Protein (fractionation) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... body fluids. Protein fractionations are used as an aid in recognizing abnormal proteins in body fluids...

  12. Yeast proteins Gar1p, Nop1p, Npl3p, Nsr1p, and Rps2p are natively methylated and are substrates of the arginine methyltransferase Hmt1p.

    PubMed

    Yagoub, Daniel; Hart-Smith, Gene; Moecking, Jonas; Erce, Melissa A; Wilkins, Marc R

    2015-09-01

    The Hmt1 methyltransferase is the predominant arginine methyltransferase in Saccharomyces cerevisiae. There are 18 substrate proteins described for this methyltransferase, however native sites of methylation have only been identified on two of these proteins. Here we used peptide immunoaffinity enrichment, followed by LC-ETD-MS/MS, to discover 21 native sites of arginine methylation on five putative Hmt1 substrate proteins, namely Gar1p (H/ACA ribonucleoprotein complex subunit 1), Nop1p (rRNA 2'-O-methyltransferase fibrillarin), Npl3p (nucleolar protein 3), Nsr1p (nuclear localization sequence-binding protein), and Rps2p (40S ribosomal protein S2). The sites, many of which were found to be mono- or di-methylated, were predominantly found in RGG (Arg-Gly-Gly) motifs. Heavy methyl-SILAC validated the majority of these peptides. The above proteins, and relevant sites of methylation, were subsequently validated by in vitro methylation with recombinant Hmt1. This brings the total of Hmt1 substrate proteins for which native methylation sites have been identified to five. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Pathogenic Natural Antibodies Recognizing Annexin IV Are Required to Develop Intestinal Ischemia-Reperfusion Injury1

    PubMed Central

    Kulik, Liudmila; Fleming, Sherry D.; Moratz, Chantal; Reuter, Jason W.; Novikov, Aleksey; Chen, Kuan; Andrews, Kathy A.; Markaryan, Adam; Quigg, Richard J.; Silverman, Gregg J.; Tsokos, George C.; Holers, V. Michael

    2010-01-01

    Intestinal ischemia-reperfusion (IR)3 injury is initiated when natural IgM antibodies recognize neo-epitopes that are revealed on ischemic cells. The target molecules and mechanisms whereby these neo-epitopes become accessible to recognition are not well understood. Proposing that isolated intestinal epithelial cells (IEC) may carry IR-related neo-epitopes, we used in vitro IEC binding assays to screen hybridomas created from B cells of unmanipulated wild type C57BL/6 mice. We identified a novel IgM monoclonal antibody (mAb B4) that reacted with the surface of IEC by flow cytometric analysis and was alone capable of causing complement activation, neutrophil recruitment and intestinal injury in otherwise IR-resistant Rag1−/− mice. Monoclonal Ab B4 was found to specifically recognize mouse annexin IV. Pre-injection of recombinant annexin IV blocked IR injury in wild type C57BL/6 mice, demonstrating the requirement for recognition of this protein in order to develop IR injury in the context of a complex natural antibody repertoire. Humans were also found to exhibit IgM natural antibodies that recognize annexin IV. These data in toto identify annexin IV as a key ischemia-related target antigen that is recognized by natural Abs in a pathologic process required in vivo to develop intestinal IR injury. PMID:19380783

  14. Nucleostemin Delays Cellular Senescence and Negatively Regulates TRF1 Protein Stability▿ †

    PubMed Central

    Zhu, Qubo; Yasumoto, Hiroaki; Tsai, Robert Y. L.

    2006-01-01

    Nucleostemin (NS) encodes a nucleolar GTP-binding protein highly enriched in the stem cells and cancer cells. To determine its biological activity in vivo, we generated NS loss- and gain-of-function mouse models. The embryogenesis of homozygous NS-null (NS−/−) mice was aborted before the blastula stage. Although the growth and fertility of heterozygous NS-null (NS+/−) mice appeared normal, NS+/− mouse embryonic fibroblasts (MEFs) had fewer NS proteins, a lower population growth rate, and higher percentages of senescent cells from passage 5 (P5) to P7 than their wild-type littermates. Conversely, transgenic overexpression of NS could rescue the NS−/− embryo in a dose-dependent manner, increase the population growth rate, and reduce the senescent percentage of MEFs. Cell cycle analyses revealed increased pre-G1 percentages in the late-passage NS+/− MEF cultures compared to the wild-type cultures. We demonstrated that NS could interact with telomeric repeat-binding factor 1 (TRF1) and enhance the degradation but not the ubiquitination of the TRF1 protein, which negatively regulates telomere length and is essential for early embryogenesis. This work demonstrates the roles of NS in establishing early embryogenesis and delaying cellular senescence of MEFs and reveals a mechanism of a NS-regulated degradation of TRF1. PMID:17000763

  15. Sensitivity of tumor cells towards CIGB-300 anticancer peptide relies on its nucleolar localization.

    PubMed

    Perera, Yasser; Costales, Heydi C; Diaz, Yakelin; Reyes, Osvaldo; Farina, Hernan G; Mendez, Lissandra; Gómez, Roberto E; Acevedo, Boris E; Gomez, Daniel E; Alonso, Daniel F; Perea, Silvio E

    2012-04-01

    CIGB-300 is a novel anticancer peptide that impairs the casein kinase 2-mediated phosphorylation by direct binding to the conserved phosphoacceptor site on their substrates. Previous findings indicated that CIGB-300 inhibits tumor cell proliferation in vitro and induces tumor growth delay in vivo in cancer animal models. Interestingly, we had previously demonstrated that the putative oncogene B23/nucleophosmin (NPM) is the major intracellular target for CIGB-300 in a sensitive human lung cancer cell line. However, the ability of this peptide to target B23/NPM in cancer cells with differential CIGB-300 response phenotype remained to be determined. Interestingly, in this work, we evidenced that CIGB-300's antiproliferative activity on tumor cells strongly correlates with its nucleolar localization, the main subcellular localization of the previously identified B23/NPM target. Likewise, using CIGB-300 equipotent doses (concentration that inhibits 50% of proliferation), we demonstrated that this peptide interacts and inhibits B23/NPM phosphorylation in different cancer cell lines as evidenced by in vivo pull-down and metabolic labeling experiments. Moreover, such inhibition was followed by a fast apoptosis on CIGB-300-treated cells and also an impairment of cell cycle progression mainly after 5 h of treatment. Altogether, our data not only validates B23/NPM as a main target for CIGB-300 in cancer cells but also provides the first experimental clues to explain their differential antiproliferative response. Importantly, our findings suggest that further improvements to this cell penetrating peptide-based drug should entail its more efficient intracellular delivery at such subcellular localization. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  16. Functional protein-based nanomaterial produced in microorganisms recognized as safe: A new platform for biotechnology.

    PubMed

    Cano-Garrido, Olivia; Sánchez-Chardi, Alejandro; Parés, Sílvia; Giró, Irene; Tatkiewicz, Witold I; Ferrer-Miralles, Neus; Ratera, Imma; Natalello, Antonino; Cubarsi, Rafael; Veciana, Jaume; Bach, Àlex; Villaverde, Antonio; Arís, Anna; Garcia-Fruitós, Elena

    2016-10-01

    Inclusion bodies (IBs) are protein-based nanoparticles formed in Escherichia coli through stereospecific aggregation processes during the overexpression of recombinant proteins. In the last years, it has been shown that IBs can be used as nanostructured biomaterials to stimulate mammalian cell attachment, proliferation, and differentiation. In addition, these nanoparticles have also been explored as natural delivery systems for protein replacement therapies. Although the production of these protein-based nanomaterials in E. coli is economically viable, important safety concerns related to the presence of endotoxins in the products derived from this microorganism need to be addressed. Lactic acid bacteria (LAB) are a group of food-grade microorganisms that have been classified as safe by biologically regulatory agencies. In this context, we have demonstrated herein, for the first time, the production of fully functional, IB-like protein nanoparticles in LAB. These nanoparticles have been fully characterized using a wide range of techniques, including field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transform infrared (FTIR) spectroscopy, zymography, cytometry, confocal microscopy, and wettability and cell coverage measurements. Our results allow us to conclude that these materials share the main physico-chemical characteristics with IBs from E. coli and moreover are devoid of any harmful endotoxin contaminant. These findings reveal a new platform for the production of protein-based safe products with high pharmaceutical interest. The development of both natural and synthetic biomaterials for biomedical applications is a field in constant development. In this context, E. coli is a bacteria that has been widely studied for its ability to naturally produce functional biomaterials with broad biomedical uses. Despite being effective, products derived from this species contain membrane

  17. Exploring the mechanism how AF9 recognizes and binds H3K9ac by molecular dynamics simulations and free energy calculations.

    PubMed

    Wang, Quan; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2016-11-01

    Histone acetylation is a very important regulatory mechanism in gene expression in the chromatin context. A new protein family-YEATS domains have been found as a novel histone acetylation reader, which could specific recognize the histone lysine acetylation. AF9 is an important one in the YEATS family. Focused on the AF9-H3K9ac (K9 acetylation) complex (ALY) (PDB code: 4TMP) and a serials of mutants, MUT (the acetyllsine of H3K9ac was mutated to lysine), F59A, G77A, and D103A, we applied molecular dynamics simulation and molecular mechanics Poisson-Boltzmann (MM-PBSA) free energy calculations to examine the role of AF9 protein in recognition interaction. The simulation results and analysis indicate that some residues of the protein have significant influence on recognition and binding to H3K9ac peptides and hydrophobic surface show the hydrophobic interactions play an important role in the binding. Our work can give important information to understand how the protein AF9 recognizes the peptides H3K9ac. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 779-786, 2016. © 2016 Wiley Periodicals, Inc.

  18. Different intracellular distribution of avian reovirus core protein sigmaA in cells of avian and mammalian origin.

    PubMed

    Vázquez-Iglesias, Lorena; Lostalé-Seijo, Irene; Martínez-Costas, José; Benavente, Javier

    2012-10-25

    A comparative analysis of the intracellular distribution of avian reovirus (ARV) core protein sigmaA in cells of avian and mammalian origin revealed that, whereas the viral protein accumulates in the cytoplasm and nucleolus of avian cells, most sigmaA concentrates in the nucleoplasm of mammalian cells in tight association with the insoluble nuclear matrix fraction. Our results further showed that sigmaA becomes arrested in the nucleoplasm of mammalian cells via association with mammalian cell-specific factors and that this association prevents nucleolar targeting. Inhibition of RNA polymerase II activity, but not of RNA polymerase I activity, in infected mammalian cells induces nucleus-to-cytoplasm sigmaA translocation through a CRM1- and RanGTP-dependent mechanism, yet a heterokaryon assay suggests that sigmaA does not shuttle between the nucleus and cytoplasm. The scarcity of sigmaA in cytoplasmic viral factories of infected mammalian cells could be one of the factors contributing to limited ARV replication in mammalian cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Probing the stiffness of isolated nucleoli by atomic force microscopy.

    PubMed

    Louvet, Emilie; Yoshida, Aiko; Kumeta, Masahiro; Takeyasu, Kunio

    2014-04-01

    In eukaryotic cells, ribosome biogenesis occurs in the nucleolus, a membraneless nuclear compartment. Noticeably, the nucleolus is also involved in several nuclear functions, such as cell cycle regulation, non-ribosomal ribonucleoprotein complex assembly, aggresome formation and some virus assembly. The most intriguing question about the nucleolus is how such dynamics processes can occur in such a compact compartment. We hypothesized that its structure may be rather flexible. To investigate this, we used atomic force microscopy (AFM) on isolated nucleoli. Surface topography imaging revealed the beaded structure of the nucleolar surface. With the AFM's ability to measure forces, we were able to determine the stiffness of isolated nucleoli. We could establish that the nucleolar stiffness varies upon drastic morphological changes induced by transcription and proteasome inhibition. Furthermore, upon ribosomal proteins and LaminB1 knockdowns, the nucleolar stiffness was increased. This led us to propose a model where the nucleolus has steady-state stiffness dependent on ribosome biogenesis activity and requires LaminB1 for its flexibility.

  20. Conditional Inactivation of Upstream Binding Factor Reveals Its Epigenetic Functions and the Existence of a Somatic Nucleolar Precursor Body

    PubMed Central

    Hamdane, Nourdine; Stefanovsky, Victor Y.; Tremblay, Michel G.; Németh, Attila; Paquet, Eric; Lessard, Frédéric; Sanij, Elaine; Hannan, Ross; Moss, Tom

    2014-01-01

    Upstream Binding Factor (UBF) is a unique multi-HMGB-box protein first identified as a co-factor in RNA polymerase I (RPI/PolI) transcription. However, its poor DNA sequence selectivity and its ability to generate nucleosome-like nucleoprotein complexes suggest a more generalized role in chromatin structure. We previously showed that extensive depletion of UBF reduced the number of actively transcribed ribosomal RNA (rRNA) genes, but had little effect on rRNA synthesis rates or cell proliferation, leaving open the question of its requirement for RPI transcription. Using gene deletion in mouse, we now show that UBF is essential for embryo development beyond morula. Conditional deletion in cell cultures reveals that UBF is also essential for transcription of the rRNA genes and that it defines the active chromatin conformation of both gene and enhancer sequences. Loss of UBF prevents formation of the SL1/TIF1B pre-initiation complex and recruitment of the RPI-Rrn3/TIF1A complex. It is also accompanied by recruitment of H3K9me3, canonical histone H1 and HP1α, but not by de novo DNA methylation. Further, genes retain penta-acetyl H4 and H2A.Z, suggesting that even in the absence of UBF the rRNA genes can maintain a potentially active state. In contrast to canonical histone H1, binding of H1.4 is dependent on UBF, strongly suggesting that it plays a positive role in gene activity. Unexpectedly, arrest of rRNA synthesis does not suppress transcription of the 5S, tRNA or snRNA genes, nor expression of the several hundred mRNA genes implicated in ribosome biogenesis. Thus, rRNA gene activity does not coordinate global gene expression for ribosome biogenesis. Loss of UBF also unexpectedly induced the formation in cells of a large sub-nuclear structure resembling the nucleolar precursor body (NPB) of oocytes and early embryos. These somatic NPBs contain rRNA synthesis and processing factors but do not associate with the rRNA gene loci (NORs). PMID:25121932

  1. Altered machinery of protein synthesis is region- and stage-dependent and is associated with α-synuclein oligomers in Parkinson's disease.

    PubMed

    Garcia-Esparcia, Paula; Hernández-Ortega, Karina; Koneti, Anusha; Gil, Laura; Delgado-Morales, Raul; Castaño, Ester; Carmona, Margarita; Ferrer, Isidre

    2015-12-01

    Parkinson's disease (PD) is characterized by the accumulation of abnormal α-synuclein in selected regions of the brain following a gradient of severity with disease progression. Whether this is accompanied by globally altered protein synthesis is poorly documented. The present study was carried out in PD stages 1-6 of Braak and middle-aged (MA) individuals without alterations in brain in the substantia nigra, frontal cortex area 8, angular gyrus, precuneus and putamen. Reduced mRNA expression of nucleolar proteins nucleolin (NCL), nucleophosmin (NPM1), nucleoplasmin 3 (NPM3) and upstream binding transcription factor (UBF), decreased NPM1 but not NPM3 nucleolar protein immunostaining in remaining neurons; diminished 18S rRNA, 28S rRNA; reduced expression of several mRNAs encoding ribosomal protein (RP) subunits; and altered protein levels of initiation factor eIF3 and elongation factor eEF2 of protein synthesis was found in the substantia nigra in PD along with disease progression. Although many of these changes can be related to neuron loss in the substantia nigra, selective alteration of certain factors indicates variable degree of vulnerability of mRNAs, rRNAs and proteins in degenerating sustantia nigra. NPM1 mRNA and 18S rRNA was increased in the frontal cortex area 8 at stage 5-6; modifications were less marked and region-dependent in the angular gyrus and precuneus. Several RPs were abnormally regulated in the frontal cortex area 8 and precuneus, but only one RP in the angular gyrus, in PD. Altered levels of eIF3 and eIF1, and decrease eEF1A and eEF2 protein levels were observed in the frontal cortex in PD. No modifications were found in the putamen at any time of the study except transient modifications in 28S rRNA and only one RP mRNA at stages 5-6. These observations further indicate marked region-dependent and stage-dependent alterations in the cerebral cortex in PD. Altered solubility and α-synuclein oligomer formation, assessed in total homogenate

  2. Characterisation of the nucleolar organising regions during the cell cycle in two varieties of Petunia hybrida as visualised by fluorescence in situ hybridisation and silver staining.

    PubMed

    Montijn, M B; ten Hoopen, R; Fransz, P F; Oud, J L; Nanninga, N

    1998-05-01

    The cell cycle-dependent spatial position, morphology and activity of the four nucleolar organising regions (NORs) of the Petunia hybrida cultivar Mitchell and the inbred line V26 have been analysed. Application of the silver staining technique and fluorescence in situ hybridisation on fixed root-tip material revealed that these interspecific hybrids possess four NORs of which only those of chromosome 2 are active during interphase, which implies that the NOR activity is not of parental origin. However, at the end of mitosis, activity of all NOR regions could be detected, suggesting that the high demand for ribosomes at this stage of the cell cycle requires temporal activity of all NORs. Using actin DNA probes as markers in fluorescence in situ hybridisation experiments enabled the identification of the individual petunia chromosomes.

  3. Nucleolus in clinostat-grown plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen-Miller, J.; Dannenhoffer, J.; Hinchman, R.

    1991-05-01

    The clinostat is an apparatus that is used to mimic zero gravity in studies of plant growth in the absence of gravitropic response. Clinostat-grown tissue cultures of carrot exhibit significant increases both in the number of nuclei containing more than one nucleolus and in nucleolar volume. Oat seedlings germinated and grown on clinostats exhibit a decreased rate of shoot elongation, increased tissue sensitivity to applied auxin, and an increased response to gravitropic stimulation. Clinostat treatment clearly affects plant metabolism. The nucleolus is the region in the nucleus where ribosome synthesis and assembly take place. The 18S, 5.8S, and 25S ribosomalmore » genes, in tandem units, are located in the nucleolus. Ribosomes orchestrate the production of all proteins that are necessary for the maintenance of cell growth, development, and survival. A full study of the effects of nullification of gravitropism, by clinostat rotation, on nucleolar development in barley has been initiated. The authors study developmental changes of nucleolar number and diameter in clinostat-grown root tissues. Preliminary results show that barley roots exhibit changes in nucleolar number and diameter. Growth rates of barley root and shoot also appear to be reduced, in measurements of both length and weight.« less

  4. Nucleolar structure across evolution: the transition between bi- and tri-compartmentalized nucleoli lies within the class Reptilia.

    PubMed

    Lamaye, Françoise; Galliot, Sonia; Alibardi, Lorenzo; Lafontaine, Denis L J; Thiry, Marc

    2011-05-01

    Two types of nucleolus can be distinguished among eukaryotic cells: a tri-compartmentalized nucleolus in amniotes and a bi-compartmentalized nucleolus in all the others. However, though the nucleolus' ultrastructure is well characterized in mammals and birds, it has been so far much less studied in reptiles. In this work, we examined the ultrastructural organization of the nucleolus in various tissues from different reptilian species (three turtles, three lizards, two crocodiles, and three snakes). Using cytochemical and immunocytological methods, we showed that in reptiles both types of nucleolus are present: a bi-compartmentalized nucleolus in turtles and a tri-compartmentalized nucleolus in the other species examined in this study. Furthermore, in a given species, the same type of nucleolus is present in all the tissues, however, the importance and the repartition of those nucleolar components could vary from one tissue to another. We also reveal that, contrary to the mammalian nucleolus, the reptilian fibrillar centers contain small clumps of condensed chromatin and that their surrounding dense fibrillar component is thicker. Finally, we also report that Cajal bodies are detected in reptiles. Altogether, we believe that these results have profound evolutionarily implications since they indicate that the point of transition between bipartite and tripartite nucleoli lies at the emergence of the amniotes within the class Reptilia. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Protein-protein interaction studies reveal the Plasmodium falciparum merozoite surface protein-1 region involved in a complex formation that binds to human erythrocytes.

    PubMed

    Paul, Gourab; Deshmukh, Arunaditya; Kumar Chourasia, Bishwanath; Kalamuddin, Md; Panda, Ashutosh; Kumar Singh, Susheel; Gupta, Puneet K; Mohmmed, Asif; Chauhan, Virender S; Theisen, Michael; Malhotra, Pawan

    2018-03-29

    Plasmodium falciparum merozoite surface protein (PfMSP) 1 has been studied extensively as a vaccine candidate antigen. PfMSP-1 undergoes proteolytic processing into four major products, such as p83, p30, p38, and p42, that are associated in the form of non-covalent complex(s) with other MSPs. To delineate MSP1 regions involved in the interaction with other MSPs, here we expressed recombinant proteins (PfMSP-1 65 ) encompassing part of p38 and p42 regions and PfMSP-1 19 PfMSP-1 65 interacted strongly with PfMSP-3, PfMSP-6, PfMSP-7, and PfMSP-9, whereas PfMSP-1 19 did not interact with any of these proteins. Since MSP-1 complex binds human erythrocytes, we examined the ability of these proteins to bind human erythrocyte. Among the proteins of MSP-1 complex, PfMSP-6 and PfMSP-9 bound to human erythrocytes. Serological studies showed that PfMSP-1 65 was frequently recognized by sera from malaria endemic regions, whereas this was not the case for PfMSP-1 19 In contrast, antibodies against PfMSP-1 19 showed much higher inhibition of merozoite invasion compared with antibodies against the larger PfMSP-1 65 fragment. Importantly, anti-PfMSP-1 19 antibodies recognized both recombinant proteins, PfMSP-1 19 and PfMSP-1 65 ; however, anti-PfMSP-1 65 antibody failed to recognize the PfMSP-1 19 protein. Taken together, these results demonstrate that PfMSP-1 sequences upstream of the 19 kDa C-terminal region are involved in molecular interactions with other MSPs, and these sequences may probably serve as a smoke screen to evade antibody response to the membrane-bound C-terminal 19 kDa region. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  6. 46 CFR 160.052-9 - Recognized laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Recognized laboratory. 160.052-9 Section 160.052-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS..., Adult and Child § 160.052-9 Recognized laboratory. (a) A manufacturer seeking Coast Guard approval of a...

  7. 46 CFR 160.060-9 - Recognized laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Recognized laboratory. 160.060-9 Section 160.060-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS..., Adult and Child § 160.060-9 Recognized laboratory. (a) A manufacturer seeking Coast Guard approval of a...

  8. 46 CFR 160.047-7 - Recognized laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Recognized laboratory. 160.047-7 Section 160.047-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT, CONSTRUCTION, AND MATERIALS... and Child § 160.047-7 Recognized laboratory. (a) A manufacturer seeking Coast Guard approval of a...

  9. A photoreceptor calcium binding protein is recognized by autoantibodies obtained from patients with cancer-associated retinopathy

    PubMed Central

    1991-01-01

    Cancer-associated retinopathy (CAR), a paraneoplastic syndrome, is characterized by the degeneration of retinal photoreceptors under conditions where the tumor and its metastases have not invaded the eye. The retinopathy often is apparent before the diagnosis of cancer and may be associated with autoantibodies that react with specific sites in the retina. We have examined the sera from patients with CAR to further characterize the retinal antigen. Western blot analysis of human retinal proteins reveals a prominent band at 26 kD that is labeled by the CAR antisera. Antibodies to the 26-kD protein were affinity- purified from complex CAR antisera and used for EM-immunocytochemical localization of the protein to the nuclei, inner and outer segments of both rod and cone cells. Other antibodies obtained from the CAR sera did not label photoreceptors. Using the affinity-purified antibodies for detection, the 26-kD protein, designated p26, was purified to homogeneity from the outer segments of bovine rod photoreceptor cells by Phenyl-Sepharose and ion exchange chromatography. Partial amino acid sequence of p26 was determined by gas phase Edman degradation and revealed extensive homology with a cone-specific protein, visinin. Based upon structural relatedness, both the p26 rod protein and visinin are members of the calmodulin family and contain calcium binding domains of the E-F hand structure. PMID:1999465

  10. Split luciferase complementation assay to detect regulated protein-protein interactions in rice protoplasts in a large-scale format

    PubMed Central

    2014-01-01

    Background The rice interactome, in which a network of protein-protein interactions has been elucidated in rice, is a useful resource to identify functional modules of rice signal transduction pathways. Protein-protein interactions occur in cells in two ways, constitutive and regulative. While a yeast-based high-throughput method has been widely used to identify the constitutive interactions, a method to detect the regulated interactions is rarely developed for a large-scale analysis. Results A split luciferase complementation assay was applied to detect the regulated interactions in rice. A transformation method of rice protoplasts in a 96-well plate was first established for a large-scale analysis. In addition, an antibody that specifically recognizes a carboxyl-terminal fragment of Renilla luciferase was newly developed. A pair of antibodies that recognize amino- and carboxyl- terminal fragments of Renilla luciferase, respectively, was then used to monitor quality and quantity of interacting recombinant-proteins accumulated in the cells. For a proof-of-concept, the method was applied to detect the gibberellin-dependent interaction between GIBBERELLIN INSENSITIVE DWARF1 and SLENDER RICE 1. Conclusions A method to detect regulated protein-protein interactions was developed towards establishment of the rice interactome. PMID:24987490

  11. MLF1-interacting protein is mainly localized in nucleolus through N-terminal bipartite nuclear localization signal.

    PubMed

    Suzuki, Hideaki; Arakawa, Yasuhiro; Ito, Masaki; Saito, Shinobu; Takeda, Nobuakira; Yamada, Hisashi; Horiguchi-Yamada, Junko

    2007-01-01

    The myelodysplasia/myeloid leukemia factor 1-interacting protein (MLF1LP, also called KLIP1 and CENP-50) is reported to localize in both the nucleus and the cytoplasm. To investigate the functions of MLF1IP, its subnuclear localization was studied. MLF1IP was tagged with green fluorescent protein (EGFP). Fibrillarin was tagged with red fluorescent protein (DsRed). EGFP-tagged MLF1IP deletion vectors were also constructed. Plasmid-constructs were transfected into human cervical adenocarcinoma HeLa cells or monkey kidney fibroblast COS-7 cells, and the localization was studied by either confocal fluorescence microscopy or fluorescence microscopy. Ectopically expressed MLF1IP was localized mainly in the nucleolus. In some cells, small dot-like particles of MLF1IP fluorescence were observed in the nucleoplasm. Co-staining of fibrillarin disclosed that MLF1IP was co-localized with fibrillarin in the nucleolus. Deletion mutants of MLF1IP revealed that the N-terminal bipartite nuclear localization signal (NLS) was responsible for nucleolar targeting. MLF1IP was localized mainly in the nucleolus through the N-terminal bipartite NLS and partly in the nucleoplasm featuring small dot-like particles. These findings suggest that MLF1IP may have multi-functions and its different localizations may contribute to carcinogenesis.

  12. Optimization of protein-protein docking for predicting Fc-protein interactions.

    PubMed

    Agostino, Mark; Mancera, Ricardo L; Ramsland, Paul A; Fernández-Recio, Juan

    2016-11-01

    The antibody crystallizable fragment (Fc) is recognized by effector proteins as part of the immune system. Pathogens produce proteins that bind Fc in order to subvert or evade the immune response. The structural characterization of the determinants of Fc-protein association is essential to improve our understanding of the immune system at the molecular level and to develop new therapeutic agents. Furthermore, Fc-binding peptides and proteins are frequently used to purify therapeutic antibodies. Although several structures of Fc-protein complexes are available, numerous others have not yet been determined. Protein-protein docking could be used to investigate Fc-protein complexes; however, improved approaches are necessary to efficiently model such cases. In this study, a docking-based structural bioinformatics approach is developed for predicting the structures of Fc-protein complexes. Based on the available set of X-ray structures of Fc-protein complexes, three regions of the Fc, loosely corresponding to three turns within the structure, were defined as containing the essential features for protein recognition and used as restraints to filter the initial docking search. Rescoring the filtered poses with an optimal scoring strategy provided a success rate of approximately 80% of the test cases examined within the top ranked 20 poses, compared to approximately 20% by the initial unrestrained docking. The developed docking protocol provides a significant improvement over the initial unrestrained docking and will be valuable for predicting the structures of currently undetermined Fc-protein complexes, as well as in the design of peptides and proteins that target Fc. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Identification of immunodominant epitopes of alpha-crystallins recognized by antibodies in sera of patients with uveitis.

    PubMed

    Doycheva, Deshka; Preuss, Beate; Deuter, Christoph; Zierhut, Manfred; Klein, Reinhild

    2012-02-01

    A high incidence of autoantibodies to lens proteins has been found in sera of patients with uveitis. We showed previously that the anti-lens antibodies reacted predominantly with α-crystallins. The aim of the present study was to identify immunodominant epitopes within the protein chains of human αA- and αB-crystallin. Epitope specificities of antibodies to αA- and αB-crystallin were examined by ELISA using synthetic overlapping peptides, spanning the entire length of both α-crystallins. The peptides consisted of 25 amino acid residues, with an overlap of at least eight amino acids each. The synthetic peptides were tested against sera of 110 patients with different uveitis forms, classified according to anatomical location of intraocular inflammation. Four immunodominant regions within the protein chains of αA- and αB-crystallin could be identified. These regions were recognized by antibodies in sera of 56% of uveitis patients. Anti-lens antibodies of IgG-type reacted preferentially with regions located at amino acid (aa) residues aa:69-93 and aa:137-161 of αA-crystallin as well as aa:69-110 and aa:137-161 of αB-crystallin. IgM antibodies recognized predominantly region aa:149-173 of αA-crystallin, and aa:69-110 and aa:151-175 of αB-crystallin. IgM antibodies directed to peptide aa:69-93 of αB-crystallin were found in sera of 30% of patients with intermediate uveitis. Four immunodominant B-cell epitopes within the protein chains of αA- and αB-crystallin have been identified; however, no clear correlation with the anatomically defined uveitis subtypes has been found except for intermediate uveitis. Whether there may be a correlation with uveitis forms with similar etiopathogenesis has to be evaluated in further studies.

  14. How should a speech recognizer work?

    PubMed

    Scharenborg, Odette; Norris, Dennis; Bosch, Louis; McQueen, James M

    2005-11-12

    Although researchers studying human speech recognition (HSR) and automatic speech recognition (ASR) share a common interest in how information processing systems (human or machine) recognize spoken language, there is little communication between the two disciplines. We suggest that this lack of communication follows largely from the fact that research in these related fields has focused on the mechanics of how speech can be recognized. In Marr's (1982) terms, emphasis has been on the algorithmic and implementational levels rather than on the computational level. In this article, we provide a computational-level analysis of the task of speech recognition, which reveals the close parallels between research concerned with HSR and ASR. We illustrate this relation by presenting a new computational model of human spoken-word recognition, built using techniques from the field of ASR that, in contrast to current existing models of HSR, recognizes words from real speech input. 2005 Lawrence Erlbaum Associates, Inc.

  15. Phosphoglycerate kinase and fructose bisphosphate aldolase of Candida albicans as new antigens recognized by human salivary IgA.

    PubMed

    Calcedo, Roberto; Ramirez-Garcia, Andoni; Abad, Ana; Rementeria, Aitor; Pontón, José; Hernando, Fernando Luis

    2012-01-01

    Candida albicans is an opportunistic dimorphic fungus commonly present in the human oral cavity that causes infections in immunocompromised patients. The antigen variability, influenced by growth conditions, is a pathogenicity factor. To determine the effect of nutritional and heat stress on the antigen expression of C. albicans, and to identify major antigens recognized by human salivary secretory immunoglobulin A (sIgA). Under various different nutritional conditions, heat shock was induced in C. albicans cells in stationary and exponential growth phases. The expression of protein determinants of C. albicans was assessed by Western blot analysis against human saliva. The antigens were purified and characterized by two-dimensional electrophoresis and identified by protein microsequencing. Five antigens recognized by salivary IgA were characterized as mannoproteins due to their reactivity with concanavalin A. They did not show reactivity with anti-heat shock protein monoclonal antibodies. Two of them (42 and 36 kDa) were found to be regulated by heat shock and by nutritional stress and they were identified as phosphoglycerate kinase and fructose bisphosphate aldolase, respectively. These glycolytic enzymes are major antigens of C. albicans, and their differential expression and recognition by the mucosal immune response system could be involved in protection against oral infection. Copyright © 2011 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  16. 46 CFR 30.10-57 - Recognized classification society-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Recognized classification society-TB/ALL. 30.10-57... Definitions § 30.10-57 Recognized classification society—TB/ALL. The term recognized classification society means the American Bureau of Shipping or other classification society recognized by the Commandant. ...

  17. 46 CFR 30.10-57 - Recognized classification society-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Recognized classification society-TB/ALL. 30.10-57... Definitions § 30.10-57 Recognized classification society—TB/ALL. The term recognized classification society means the American Bureau of Shipping or other classification society recognized by the Commandant. ...

  18. SH2 Domains Recognize Contextual Peptide Sequence Information to Determine Selectivity*

    PubMed Central

    Liu, Bernard A.; Jablonowski, Karl; Shah, Eshana E.; Engelmann, Brett W.; Jones, Richard B.; Nash, Piers D.

    2010-01-01

    Selective ligand recognition by modular protein interaction domains is a primary determinant of specificity in signaling pathways. Src homology 2 (SH2) domains fulfill this capacity immediately downstream of tyrosine kinases, acting to recruit their host polypeptides to ligand proteins harboring phosphorylated tyrosine residues. The degree to which SH2 domains are selective and the mechanisms underlying selectivity are fundamental to understanding phosphotyrosine signaling networks. An examination of interactions between 50 SH2 domains and a set of 192 phosphotyrosine peptides corresponding to physiological motifs within FGF, insulin, and IGF-1 receptor pathways indicates that individual SH2 domains have distinct recognition properties and exhibit a remarkable degree of selectivity beyond that predicted by previously described binding motifs. The underlying basis for such selectivity is the ability of SH2 domains to recognize both permissive amino acid residues that enhance binding and non-permissive amino acid residues that oppose binding in the vicinity of the essential phosphotyrosine. Neighboring positions affect one another so local sequence context matters to SH2 domains. This complex linguistics allows SH2 domains to distinguish subtle differences in peptide ligands. This newly appreciated contextual dependence substantially increases the accessible information content embedded in the peptide ligands that can be effectively integrated to determine binding. This concept may serve more broadly as a paradigm for subtle recognition of physiological ligands by protein interaction domains. PMID:20627867

  19. Apoptosis and Tumor Progression in Prostate Cancer

    DTIC Science & Technology

    2006-02-01

    KLIP1; FLJ23468 MLF1 interacting protein NM_001071 0.248 TS; TMS; TSase; HsT422; MGC88736 thymidylate synthetase NM_001255 0.24 p55CDC; MGC102824...repeat-containing 5 (survivin) NM_016359 0.0747 LNP; ANKT; SAPL; BM037; Q0310; FLJ13421; PRO0310p1 nucleolar and spindle associated protein 1 NM_024629 0.0569 KLIP1; FLJ23468 MLF1 interacting protein

  20. Protein-targeted corona phase molecular recognition

    PubMed Central

    Bisker, Gili; Dong, Juyao; Park, Hoyoung D.; Iverson, Nicole M.; Ahn, Jiyoung; Nelson, Justin T.; Landry, Markita P.; Kruss, Sebastian; Strano, Michael S.

    2016-01-01

    Corona phase molecular recognition (CoPhMoRe) uses a heteropolymer adsorbed onto and templated by a nanoparticle surface to recognize a specific target analyte. This method has not yet been extended to macromolecular analytes, including proteins. Herein we develop a variant of a CoPhMoRe screening procedure of single-walled carbon nanotubes (SWCNT) and use it against a panel of human blood proteins, revealing a specific corona phase that recognizes fibrinogen with high selectivity. In response to fibrinogen binding, SWCNT fluorescence decreases by >80% at saturation. Sequential binding of the three fibrinogen nodules is suggested by selective fluorescence quenching by isolated sub-domains and validated by the quenching kinetics. The fibrinogen recognition also occurs in serum environment, at the clinically relevant fibrinogen concentrations in the human blood. These results open new avenues for synthetic, non-biological antibody analogues that recognize biological macromolecules, and hold great promise for medical and clinical applications. PMID:26742890

  1. A non-catalytic role for inositol 1,3,4,5,6-pentakisphosphate 2-kinase in the synthesis of ribosomal RNA

    PubMed Central

    Brehm, Maria A.; Wundenberg, Torsten; Williams, Jason; Mayr, Georg W.; Shears, Stephen B.

    2013-01-01

    Summary Fundamental to the life and destiny of every cell is the regulation of protein synthesis through ribosome biogenesis, which begins in the nucleolus with the production of ribosomal RNA (rRNA). Nucleolar organization is a highly dynamic and tightly regulated process; the structural factors that direct nucleolar assembly and disassembly are just as important in controlling rRNA synthesis as are the catalytic activities that synthesize rRNA. Here, we report that a signaling enzyme, inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP5K) is also a structural component in the nucleolus. We demonstrate that IP5K has functionally significant interactions with three proteins that regulate rRNA synthesis: protein kinase CK2, TCOF1 and upstream-binding-factor (UBF). Through molecular modeling and mutagenic studies, we identified an Arg-Lys-Lys tripeptide located on the surface of IP5K that mediates its association with UBF. Nucleolar IP5K spatial dynamics were sensitive to experimental procedures (serum starvation or addition of actinomycin D) that inhibited rRNA production. We show that IP5K makes stoichiometrically sensitive contributions to the architecture of the nucleoli in intact cells, thereby influencing the degree of rRNA synthesis. Our study adds significantly to the biological significance of IP5K; previously, it was the kinase activity of this protein that had attracted attention. Our demonstration that IP5K ‘moonlights’ as a molecular scaffold offers an unexpected new example of how the biological sophistication of higher organisms can arise from gene products acquiring multiple functions, rather than by an increase in gene number. PMID:23203802

  2. A non-catalytic role for inositol 1,3,4,5,6-pentakisphosphate 2-kinase in the synthesis of ribosomal RNA.

    PubMed

    Brehm, Maria A; Wundenberg, Torsten; Williams, Jason; Mayr, Georg W; Shears, Stephen B

    2013-01-15

    Fundamental to the life and destiny of every cell is the regulation of protein synthesis through ribosome biogenesis, which begins in the nucleolus with the production of ribosomal RNA (rRNA). Nucleolar organization is a highly dynamic and tightly regulated process; the structural factors that direct nucleolar assembly and disassembly are just as important in controlling rRNA synthesis as are the catalytic activities that synthesize rRNA. Here, we report that a signaling enzyme, inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP5K) is also a structural component in the nucleolus. We demonstrate that IP5K has functionally significant interactions with three proteins that regulate rRNA synthesis: protein kinase CK2, TCOF1 and upstream-binding-factor (UBF). Through molecular modeling and mutagenic studies, we identified an Arg-Lys-Lys tripeptide located on the surface of IP5K that mediates its association with UBF. Nucleolar IP5K spatial dynamics were sensitive to experimental procedures (serum starvation or addition of actinomycin D) that inhibited rRNA production. We show that IP5K makes stoichiometrically sensitive contributions to the architecture of the nucleoli in intact cells, thereby influencing the degree of rRNA synthesis. Our study adds significantly to the biological significance of IP5K; previously, it was the kinase activity of this protein that had attracted attention. Our demonstration that IP5K 'moonlights' as a molecular scaffold offers an unexpected new example of how the biological sophistication of higher organisms can arise from gene products acquiring multiple functions, rather than by an increase in gene number.

  3. Legume Lectins: Proteins with Diverse Applications

    PubMed Central

    Lagarda-Diaz, Irlanda; Guzman-Partida, Ana Maria; Vazquez-Moreno, Luz

    2017-01-01

    Lectins are a diverse class of proteins distributed extensively in nature. Among these proteins; legume lectins display a variety of interesting features including antimicrobial; insecticidal and antitumor activities. Because lectins recognize and bind to specific glycoconjugates present on the surface of cells and intracellular structures; they can serve as potential target molecules for developing practical applications in the fields of food; agriculture; health and pharmaceutical research. This review presents the current knowledge of the main structural characteristics of legume lectins and the relationship of structure to the exhibited specificities; provides an overview of their particular antimicrobial; insecticidal and antitumor biological activities and describes possible applications based on the pattern of recognized glyco-targets. PMID:28604616

  4. Children's ability to recognize other children's faces.

    PubMed

    Feinman, S; Entwisle, D R

    1976-06-01

    Facial recognition ability was studied with 288 children from 4 grades--first, second, third, and sixth--who also varied by sex race, and school type, the last being segregated or integrated. Children judged whether each of 40 pictures of children's faces had been present in a set of 20 pictures viewed earlier. Facial recognition ability increased significantly with each grade but leveled off between ages 8 and 11. Blacks' performance is significantly better than whites', and blacks are better at recognizing faces of whites than whites are at recognizing blacks. Children from an integrated school show smaller differences recognizing black or white faces than children from segregated schools, but the effect appears only for children of the integrated school who also live in mixed-race neighborhoods.

  5. Single-Cell Protein Analysis

    PubMed Central

    Wu, Meiye; Singh, Anup K

    2012-01-01

    Heterogeneity of cellular systems has been widely recognized but only recently have tools become available that allow probing of genes and proteins in single cells to understand it. While the advancement in single cell genomic analysis has been greatly aided by the power of amplification techniques (e.g., PCR), analysis of proteins in single cells has proven to be more challenging. However, recent advances in multi-parameter flow cytometry, microfluidics and other techniques have made it possible to measure wide variety of proteins in single cells. In this review, we highlight key recent developments in analysis of proteins in a single cell, and discuss their significance in biological research. PMID:22189001

  6. Identification of UQCRB as an oxymatrine recognizing protein using a T7 phage display screen.

    PubMed

    Sun, Yan-Hui; Zhang, Xiao-Yuan; Xie, Wei-Qun; Liu, Guang-Jian; He, Xi-Xin; Huang, Ya-Li; Zhang, Guang-Xian; Wang, Jian; Kuang, Zao-Yuan; Zhang, Ren

    2016-12-04

    Sophora flavescens Aiton (Radix Sophorae Flavescentis, Kushen) is used in traditional Chinese medicine to treat chronic hepatitis B (CHB), and has the ability to clear heat and dampness from the body. Oxymatrine is one of the major bioactive compounds extracted from Sophora flavescens Aiton and constitutes more than 90% of the oxymatrine injection commonly used for CHB treatment in clinics in China. We aim to analyze the protein binding target of oxymatrine in treating CHB by screening a T7 phage display cDNA library of human CHB and examine the biochemistry of protein-ligand binding between oxymatrine and its ligands. A T7 phage cDNA library of human CHB was biopanned by affinity selection using oxymatrine as bait. The interaction of oxymatrine with its candidate binding protein was investigated by affinity assay, molecular docking, Isothermal Titration Calorimetry (ITC) and Surface Plasmon Resonance (SPR). A library of potential oxymatrine binding peptides was generated. Ubiquinol-cytochrome c reductase binding protein (UQCRB) was one of the candidate binding proteins of oxymatrine. UQCRB-displaying T7 phage binding numbers in the oxymatrine group were significantly higher than that in the control group, biotin group, and matrine group (p<0.05 or p<0.01). Three-dimensional structure modeling of the UQCRB with oxymatrine showed that their binding interfaces matched and oxymatrine inserted into a deeper pocket of UQCRB, which mainly involved amino acid residues Tyr21, Arg33, Tyr83, Glu84, Asp86, Pro88, and Glu91. The binding affinity constant (Kb) from SPR was 4.2mM. The Kb from ITC experiment was 3.9mM and stoichiometry was fixed as 1, which fit very well with the result of SPR. The binding of oxymatrine to UQCRB was driven by strong enthalpy forces such as hydrogen bonds and polar interactions as the heat released was about 157kcal/mol and ΔG was less than zero. In this study, using the T7 phage display system, we have identified UQCRB as a direct binding

  7. Quantitative and qualitative assessment of argyrophilic nucleolar organizer regions in normal, premalignant and malignant oral lesions.

    PubMed

    Khushbu, Buddhdev P; Chalishazar, Monali; Kale, Hemant; Baranwal, Malay; Modi, Tapan

    2017-01-01

    The aim of the study was to assess the cell proliferation and biologic aggressiveness of the lesions by evaluating the significance of number and dispersal pattern of Argyrophillic Nucleolar organizing Regions (AgNORs) using silver colloid technique in normal mucosa, premalignant and malignant lesions. In-vitro study, lab setting. The study sample consisted of five groups each with a sample size of 10 and a control group. Group I (Control), Group II (Oral Submucous Fibrosis - Mild dysplasia), Group III (Oral Submucous Fibrosis - Moderate dysplasia), Group IV (Leukoplakia - Mild dysplasia), Group V (Leukoplakia - Moderate dysplasia) and Group VI (Squamous cell carcinoma). Two sections were cut, of which one was stained with H/E stain for histopathological analysis and the second one with Silver nitrate for AgNOR counting and grading. The data obtained were analyzed both qualitatively and qualititavely. Student's Unpaired T test and One- way ANOVA. The Mean AgNOR count increased in the following ascending order: i.e OSMF with mild dysplasia, leukoplakia with mild dysplasia, OSMF with moderate dysplasia, leukoplakia with moderate dysplasia and squamous cell carcinoma. Qualititatively, Type II AgNOR pattern was found to be the predominant one in all the samples. Type III AgNOR pattern was found to be increasing with the increase in the grade of dysplasia. AgNOR quantity is proportional to the proliferative activity of the cell and does not necessarily always indicate malignancy. It is the qualitative characteristics of AgNOR that help to differentiate the premalignant and malignant lesions.

  8. Drosophila Spag is the homolog of RNA polymerase II-associated protein 3 (RPAP3) and recruits the heat shock proteins 70 and 90 (Hsp70 and Hsp90) during the assembly of cellular machineries.

    PubMed

    Benbahouche, Nour El Houda; Iliopoulos, Ioannis; Török, István; Marhold, Joachim; Henri, Julien; Kajava, Andrey V; Farkaš, Robert; Kempf, Tore; Schnölzer, Martina; Meyer, Philippe; Kiss, István; Bertrand, Edouard; Mechler, Bernard M; Pradet-Balade, Bérengère

    2014-02-28

    The R2TP is a recently identified Hsp90 co-chaperone, composed of four proteins as follows: Pih1D1, RPAP3, and the AAA(+)-ATPases RUVBL1 and RUVBL2. In mammals, the R2TP is involved in the biogenesis of cellular machineries such as RNA polymerases, small nucleolar ribonucleoparticles and phosphatidylinositol 3-kinase-related kinases. Here, we characterize the spaghetti (spag) gene of Drosophila, the homolog of human RPAP3. This gene plays an essential function during Drosophila development. We show that Spag protein binds Drosophila orthologs of R2TP components and Hsp90, like its yeast counterpart. Unexpectedly, Spag also interacts and stimulates the chaperone activity of Hsp70. Using null mutants and flies with inducible RNAi, we show that spaghetti is necessary for the stabilization of snoRNP core proteins and target of rapamycin activity and likely the assembly of RNA polymerase II. This work highlights the strong conservation of both the HSP90/R2TP system and its clients and further shows that Spag, unlike Saccharomyces cerevisiae Tah1, performs essential functions in metazoans. Interaction of Spag with both Hsp70 and Hsp90 suggests a model whereby R2TP would accompany clients from Hsp70 to Hsp90 to facilitate their assembly into macromolecular complexes.

  9. CRISPR/Cas9 Allows Efficient and Complete Knock-In of a Destabilization Domain-Tagged Essential Protein in a Human Cell Line, Allowing Rapid Knockdown of Protein Function

    PubMed Central

    Park, Arnold; Won, Sohui T.; Pentecost, Mickey; Bartkowski, Wojciech; Lee, Benhur

    2014-01-01

    Although modulation of protein levels is an important tool for study of protein function, it is difficult or impossible to knockdown or knockout genes that are critical for cell growth or viability. For such genes, a conditional knockdown approach would be valuable. The FKBP protein-based destabilization domain (DD)-tagging approach, which confers instability to the tagged protein in the absence of the compound Shield-1, has been shown to provide rapid control of protein levels determined by Shield-1 concentration. Although a strategy to knock-in DD-tagged protein at the endogenous loci has been employed in certain parasite studies, partly due to the relative ease of knock-in as a result of their mostly haploid lifecycles, this strategy has not been demonstrated in diploid or hyperploid mammalian cells due to the relative difficulty of achieving complete knock-in in all alleles. The recent advent of CRISPR/Cas9 homing endonuclease-mediated targeted genome cleavage has been shown to allow highly efficient homologous recombination at the targeted locus. We therefore assessed the feasibility of using CRISPR/Cas9 to achieve complete knock-in to DD-tag the essential gene Treacher Collins-Franceschetti syndrome 1 (TCOF1) in human 293T cells. Using a double antibiotic selection strategy to select clones with at least two knock-in alleles, we obtained numerous complete knock-in clones within three weeks of initial transfection. DD-TCOF1 expression in the knock-in cells was Shield-1 concentration-dependent, and removal of Shield-1 resulted in destabilization of DD-TCOF1 over the course of hours. We further confirmed that the tagged TCOF1 retained the nucleolar localization of the wild-type untagged protein, and that destabilization of DD-TCOF1 resulted in impaired cell growth, as expected for a gene implicated in ribosome biogenesis. CRISPR/Cas9-mediated homologous recombination to completely knock-in a DD tag likely represents a generalizable and efficient strategy to

  10. CRISPR/Cas9 allows efficient and complete knock-in of a destabilization domain-tagged essential protein in a human cell line, allowing rapid knockdown of protein function.

    PubMed

    Park, Arnold; Won, Sohui T; Pentecost, Mickey; Bartkowski, Wojciech; Lee, Benhur

    2014-01-01

    Although modulation of protein levels is an important tool for study of protein function, it is difficult or impossible to knockdown or knockout genes that are critical for cell growth or viability. For such genes, a conditional knockdown approach would be valuable. The FKBP protein-based destabilization domain (DD)-tagging approach, which confers instability to the tagged protein in the absence of the compound Shield-1, has been shown to provide rapid control of protein levels determined by Shield-1 concentration. Although a strategy to knock-in DD-tagged protein at the endogenous loci has been employed in certain parasite studies, partly due to the relative ease of knock-in as a result of their mostly haploid lifecycles, this strategy has not been demonstrated in diploid or hyperploid mammalian cells due to the relative difficulty of achieving complete knock-in in all alleles. The recent advent of CRISPR/Cas9 homing endonuclease-mediated targeted genome cleavage has been shown to allow highly efficient homologous recombination at the targeted locus. We therefore assessed the feasibility of using CRISPR/Cas9 to achieve complete knock-in to DD-tag the essential gene Treacher Collins-Franceschetti syndrome 1 (TCOF1) in human 293T cells. Using a double antibiotic selection strategy to select clones with at least two knock-in alleles, we obtained numerous complete knock-in clones within three weeks of initial transfection. DD-TCOF1 expression in the knock-in cells was Shield-1 concentration-dependent, and removal of Shield-1 resulted in destabilization of DD-TCOF1 over the course of hours. We further confirmed that the tagged TCOF1 retained the nucleolar localization of the wild-type untagged protein, and that destabilization of DD-TCOF1 resulted in impaired cell growth, as expected for a gene implicated in ribosome biogenesis. CRISPR/Cas9-mediated homologous recombination to completely knock-in a DD tag likely represents a generalizable and efficient strategy to

  11. The 14.6 kd rubber elongation factor (Hev b 1) and 24 kd (Hev b 3) rubber particle proteins are recognized by IgE from patients with spina bifida and latex allergy.

    PubMed

    Yeang, H Y; Cheong, K F; Sunderasan, E; Hamzah, S; Chew, N P; Hamid, S; Hamilton, R G; Cardosa, M J

    1996-09-01

    Two major water-insoluble proteins are located on the surface of rubber particles in Hevea brasiliensis latex. A 14.6 kd protein (Hev b 1), found mainly on large rubber particles (> 350 mm in diameter), and a 24 kd protein (Hev b 3), found mainly on small rubber particles (average diameter, 70 nm), are recognized by IgE from patients with spina bifida and latex allergy. Although Hev b 1 (also called the rubber elongation factor [REF]) has previously been reported as a major latex allergen, this conclusion has been disputed on the basis of results from other studies. The allergenicity of Hev b 1 is verified in this study by testing the recombinant protein generated from its gene. Because allergenicity is confined to patients with spina bifida and not observed in adults sensitive to latex, it is not a major latex allergen. The identification of Hev b 3 as another allergen originating from rubber particles is confirmed by immunogold labeling and electron microscopy. Observations with the monoclonal antibody USM/RC2 developed against Hev b 3 show that the protein has a tendency to fragment into several polypeptides of lower molecular weight (from 24 kd to about 5 kd) when stored at -20 degrees C. There is also indication of protein aggregation from the appearance of proteins with molecular weights greater than 24 kd. Fragmentation of Hev b 3 is induced immediately on he addition of latex B-serum, which is normally compartmentalized in the lutoids in fresh latex. In the preparation of ammoniated latex (used for the manufacture of latex products), the lutoids are ruptured, and the released B-serum reacts with Hev b 3 on the rubber particles to give rise to an array of low molecular weight polypeptides that are allergenic to patients with spina bifida.

  12. Deletion and site-specific mutagenesis of nucleolin's carboxy GAR domain.

    PubMed

    Pellar, Gregory J; DiMario, Patrick J

    2003-04-01

    Vertebrate nucleolin is an abundant RNA-binding protein in the dense fibrillar component of active nucleoli. Nucleolin is modular in composition. Its amino-terminal third contains alternating acidic and basic domains, its middle section contains four consensus RNA-binding domains (cRBDs), and its carboxy-terminus contains a distinctive glycine/arginine-rich (GAR) domain with several RGG motifs. The arginines within these motifs are asymmetrically dimethylated. Several laboratories have shown that the GAR domain is necessary but not sufficient for the efficient localization of nucleolin to nucleoli. We examined the distribution of endogenous fibrillarin, Nopp140, and B23 when full-length and DeltaGAR nucleolin were expressed exogenously as enhanced green fluorescent protein (EGFP)-tagged fusions. Only B23 redistributed when DeltaGAR-EGFP was expressed at moderate to high levels, suggesting an in vivo interaction between nucleolin and B23. Next we substituted all ten arginines within the GAR domain of Chinese hamster ovary (CHO) nucleolin with lysines to test the hypothesis that methylation of the carboxy GAR domain is necessary for the nucleolar association of nucleolin. The lysine-substituted mutant was not an in vitro substrate for the yeast protein methyltransferase, Hmt1p/Rmt1. It was, however, able to associate properly with interphase nucleoli and with interphase pre-nucleolar bodies upon recovery from hypotonic shock. We conclude, therefore, that although the GAR domain is necessary for the efficient localization of nucleolin to nucleoli, methylation of this domain is not required for proper nucleolar localization.

  13. Chromophore-assisted light inactivation of pKi-67 leads to inhibition of ribosomal RNA synthesis.

    PubMed

    Rahmanzadeh, R; Hüttmann, G; Gerdes, J; Scholzen, T

    2007-06-01

    Expression of the nuclear Ki-67 protein (pKi-67) is strongly associated with cell proliferation. For this reason, antibodies against this protein are widely used as prognostic tools for the assessment of cell proliferation in biopsies from cancer patients. Despite this broad application in histopathology, functional evidence for the physiological role of pKi-67 is still missing. Recently, we proposed a function of pKi-67 in the early steps of ribosomal RNA (rRNA) synthesis. Here, we have examined the involvement of pKi-67 in this process by photochemical inhibition using chromophore-assisted light inactivation (CALI). Anti-pKi-67 antibodies were labelled with the fluorochrome fluorescein 5(6)-isothiocyanate and were irradiated after binding to their target protein. Performing CALI in vitro on cell lysates led to specific cross-linking of pKi-67. Moreover, the upstream binding factor (UBF) necessary for rRNA transcription was also partly subjected to cross-link formation, indicating a close spatial proximity of UBF and pKi-67. CALI in living cells, using micro-injected antibody, caused a striking relocalization of UBF from foci within the nucleoli to spots located at the nucleolar rim or within the nucleoplasm. pKi-67-CALI resulted in dramatic inhibition of RNA polymerase I-dependent nucleolar rRNA synthesis, whereas RNA polymerase II-dependent nucleoplasmic RNA synthesis remained almost unaltered. Our data presented here argue for a crucial role of pKi-67 in RNA polymerase I-dependent nucleolar rRNA synthesis.

  14. Characterization of a 29.4-kilodalton structural protein of Giardia lamblia and localization to the ventral disk [corrected

    PubMed Central

    Aggarwal, A; Adam, R D; Nash, T E

    1989-01-01

    The amino acid sequence of a 29.4-kilodalton [corrected] structural protein located in the ventral disk and axostyle of Giardia lamblia was determined. Clone lambda M16 from a mung bean expression library in lambda gt11 expressed a fusion protein recognized by three different isolate-specific antisera and sera from G. lamblia-infected gerbils. One of the three EcoRI fragments (M16; 1.26 kilobases) encoded the recognized protein. Sequence analysis revealed a single open reading frame of 813 base pairs. Two areas showed conservation of the positions of some amino acids. The abundance of arginine, glutamic acid, and threonine was increased. Two potential alpha-helical regions were deduced in the regions of repeats. Antisera to the M16 fusion protein reacted specifically with internal components of the ventral disk and axostyle, as well as Giardia fractions enriched for ventral disk structural proteins. An identical protein was recognized in different isolates by anti-M16, and a single identical band was recognized in Southern blots using the M16 1.26-kilobase fragment as a probe. Therefore, the 29.4-kilodaltion [corrected] protein appears to be highly conserved compared with variant surface proteins. Images PMID:2925253

  15. Receptor binding proteins of Listeria monocytogenes bacteriophages A118 and P35 recognize serovar-specific teichoic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bielmann, Regula; Habann, Matthias; Eugster, Marcel R.

    Adsorption of a bacteriophage to the host requires recognition of a cell wall-associated receptor by a receptor binding protein (RBP). This recognition is specific, and high affinity binding is essential for efficient virus attachment. The molecular details of phage adsorption to the Gram-positive cell are poorly understood. We present the first description of receptor binding proteins and a tail tip structure for the siphovirus group infecting Listeria monocytogenes. The host-range determining factors in two phages, A118 and P35 specific for L. monocytogenes serovar 1/2 have been determined. Two proteins were identified as RBPs in phage A118. Rhamnose residues in wallmore » teichoic acids represent the binding ligands for both proteins. In phage P35, protein gp16 could be identified as RBP and the role of both rhamnose and N-acetylglucosamine in phage adsorption was confirmed. Immunogold-labeling and transmission electron microscopy allowed the creation of a topological model of the A118 phage tail. - Highlights: • We present the first description of receptor binding proteins and a tail tip structure for the Siphovirus group infecting Listeria monocytogenes. • The host-range determining factors in two phages, A118 and P35 specific for L. monocytogenes serovar 1/2 have been determined. • Rhamnose residues in wall teichoic acids represent the binding ligands for both receptor binding proteins in phage A118. • Rhamnose and N-acetylglucosamine are required for adsorption of phage P35. • We preset a topological model of the A118 phage tail.« less

  16. Raptor, a positive regulatory subunit of mTOR complex 1, is a novel phosphoprotein of the rDNA transcription machinery in nucleoli and chromosomal nucleolus organizer regions (NORs).

    PubMed

    Vazquez-Martin, Alejandro; Cufí, Sílvia; Oliveras-Ferraros, Cristina; Menendez, Javier A

    2011-09-15

    Raptor is the key scaffolding protein that recruits mTOR substrates to rapamycin-sensitive mTOR complex 1 (mTORC1), a molecular integrator of mitogenic and nutrient/energy environmental inputs into protein translation and cell growth. Although Raptor phosphorylation on various sites is pivotal in the regulation of mTORC1 activity, it remains to be elucidated whether site-specific phosphorylation differentially distributes Raptor to unique subcellular compartments. When exploring the spatiotemporal cell cycle dynamics of six different phospho (P)-Raptor isoforms (Thr ( 706) , Ser ( 722) , Ser ( 863) , Ser ( 792) and Ser ( 877) ), a number of remarkable events differentially defined a topological resetting of P-RaptorThr706 on interphasic and mitotic chromosomes. In interphase nuclei, P-Raptor (Thr706) co-localized with fibrillarin, a component of the nucleolar small nuclear ribonucleoprotein particle, as well as with RNA polymerase I, the enzyme that transcribes nucleolar rRNA. Upon Actinomycin D-induced nucleolar segregation and disaggregation, P-RaptorThr706 was excluded from the nucleolus to accumulate at discrete nucleoplasmic bodies. During mitosis, CDK1 inhibition-induced premature assembly of nucleoli relocated fibrillarin to the surrounding regions of chromosomal-associated P-Raptor (Thr706) , suggesting that a subpopulation of mitotic P-Raptor (Thr706) remained targeted at chromosomal loops of rDNA or nuclear organizer regions (NORs). At the end of mitosis and cytokinesis, when reassembly of incipient nucleoli begins upon NORs activation of rDNA transcription, fibrillarin spatially reorganized with P-Raptor (Thr706) to give rise to daughter nucleoli. Treatment with IGF1 exclusively hyperactivated nuclear P-Raptor (Ser706) and concomitantly promoted Ser ( 2481) autophosphorylation of mTOR, which monitors mTORC1-associated catalytic activity. Nucleolar- and NOR-associated P-Raptor (Ser706) may physically link mTORC1 signaling to ever-growing nucleolus

  17. Herpes simplex virus DNA packaging sequences adopt novel structures that are specifically recognized by a component of the cleavage and packaging machinery.

    PubMed

    Adelman, K; Salmon, B; Baines, J D

    2001-03-13

    The product of the herpes simplex virus type 1 U(L)28 gene is essential for cleavage of concatemeric viral DNA into genome-length units and packaging of this DNA into viral procapsids. To address the role of U(L)28 in this process, purified U(L)28 protein was assayed for the ability to recognize conserved herpesvirus DNA packaging sequences. We report that DNA fragments containing the pac1 DNA packaging motif can be induced by heat treatment to adopt novel DNA conformations that migrate faster than the corresponding duplex in nondenaturing gels. Surprisingly, these novel DNA structures are high-affinity substrates for U(L)28 protein binding, whereas double-stranded DNA of identical sequence composition is not recognized by U(L)28 protein. We demonstrate that only one strand of the pac1 motif is responsible for the formation of novel DNA structures that are bound tightly and specifically by U(L)28 protein. To determine the relevance of the observed U(L)28 protein-pac1 interaction to the cleavage and packaging process, we have analyzed the binding affinity of U(L)28 protein for pac1 mutants previously shown to be deficient in cleavage and packaging in vivo. Each of the pac1 mutants exhibited a decrease in DNA binding by U(L)28 protein that correlated directly with the reported reduction in cleavage and packaging efficiency, thereby supporting a role for the U(L)28 protein-pac1 interaction in vivo. These data therefore suggest that the formation of novel DNA structures by the pac1 motif confers added specificity on recognition of DNA packaging sequences by the U(L)28-encoded component of the herpesvirus cleavage and packaging machinery.

  18. The Detection of Protein via ZnO Resonant Raman Scattering Signal

    NASA Astrophysics Data System (ADS)

    Shan, Guiye; Yang, Guoliang; Wang, Shuang; Liu, Yichun

    2008-03-01

    Detecting protein with high sensitivity and specificity is essential for disease diagnostics, drug screening and other application. Semiconductor nanoparticles show better properties than organic dye molecules when used as markers for optical measurements. We used ZnO nanoparticles as markers for detecting protein in resonant Raman scattering measurements. The highly sensitive detection of proteins was achieved by an antibody-based sandwich assay. A probe for the target protein was constructed by binding the ZnO/Au nanoparticles to a primary antibody by eletrostatic interaction between Au and the antibody. A secondary antibody, which could be specifically recognized by target protein, was attached to a solid surface. The ZnO/Au-antibody probe could specifically recognize and bind to the complex of the target protein and secondary antibody. Our measurements using the resonant Raman scattering signal of ZnO nanoparticles showed good selectivity and sensitivity for the target protein.

  19. Energy design for protein-protein interactions

    PubMed Central

    Ravikant, D. V. S.; Elber, Ron

    2011-01-01

    Proteins bind to other proteins efficiently and specifically to carry on many cell functions such as signaling, activation, transport, enzymatic reactions, and more. To determine the geometry and strength of binding of a protein pair, an energy function is required. An algorithm to design an optimal energy function, based on empirical data of protein complexes, is proposed and applied. Emphasis is made on negative design in which incorrect geometries are presented to the algorithm that learns to avoid them. For the docking problem the search for plausible geometries can be performed exhaustively. The possible geometries of the complex are generated on a grid with the help of a fast Fourier transform algorithm. A novel formulation of negative design makes it possible to investigate iteratively hundreds of millions of negative examples while monotonically improving the quality of the potential. Experimental structures for 640 protein complexes are used to generate positive and negative examples for learning parameters. The algorithm designed in this work finds the correct binding structure as the lowest energy minimum in 318 cases of the 640 examples. Further benchmarks on independent sets confirm the significant capacity of the scoring function to recognize correct modes of interactions. PMID:21842951

  20. 46 CFR 188.10-59 - Recognized classification society.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Recognized classification society. 188.10-59 Section 188.10-59 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-59 Recognized...

  1. 46 CFR 188.10-59 - Recognized classification society.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Recognized classification society. 188.10-59 Section 188.10-59 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-59 Recognized...

  2. 46 CFR 188.10-59 - Recognized classification society.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Recognized classification society. 188.10-59 Section 188.10-59 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Definition of Terms Used in This Subchapter § 188.10-59 Recognized...

  3. Visualization of the Nucleolus in Living Cells with Cell-Penetrating Fluorescent Peptides.

    PubMed

    Martin, Robert M; Herce, Henry D; Ludwig, Anne K; Cardoso, M Cristina

    2016-01-01

    The nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of ribosomal RNA synthesis and assembly of ribosomes. The nucleolus plays also a major role in nuclear organization as the largest compartment within the nucleus. The prominent structure of the nucleolus can be detected using contrast light microscopy providing an approximate localization of the nucleolus, but this approach does not allow to determine accurately the three-dimensional structure of the nucleolus in cells and tissues. Immunofluorescence staining with antibodies specific to nucleolar proteins albeit very useful is time consuming, normally antibodies recognize their epitopes only within a small range of species and is applicable only in fixed cells. Here, we present a simple method to selectively and accurately label this ubiquitous subnuclear compartment in living cells of a large range of species using a fluorescently labeled cell-penetrating peptide.

  4. Recognizing Body Dysmorphic Disorder (Dysmorphophobia)

    PubMed Central

    Varma, Anukriti; Rastogi, Rajesh

    2015-01-01

    Dysmorphophobia is a psychiatric condition which frequently presents in the clinics of dermatologists and plastic surgeons. This disorder (also called body dysmorphic disorder) is troublesome to the patient whilst being confusing for the doctor. This commonly undiagnosed condition can be detected by a few simple steps. Timely referral to a psychiatrist benefits most patients suffering from it. This article describes with a case vignette, how to recognize body dysmorphic disorder presenting in the dermatological or aesthetic surgery set up. Diagnostic criteria, eitiology, approach to patient, management strategy and when to refer are important learning points. The importance of recognizing this disorder timely and referring the patient to the psychiatrist for appropriate treatment is crucial. This article covers all aspects of body dysmorphic disorder relevant to dermatologists and plastic surgeons and hopes to be useful in a better understanding of this disorder. PMID:26644741

  5. Cell-cycle-dependent localization of human cytomegalovirus UL83 phosphoprotein in the nucleolus and modulation of viral gene expression in human embryo fibroblasts in vitro.

    PubMed

    Arcangeletti, Maria-Cristina; Rodighiero, Isabella; Mirandola, Prisco; De Conto, Flora; Covan, Silvia; Germini, Diego; Razin, Sergey; Dettori, Giuseppe; Chezzi, Carlo

    2011-01-01

    The nucleolus is a multifunctional nuclear compartment widely known to be involved in several cellular processes, including mRNA maturation and shuttling to cytoplasmic sites, control of the cell cycle, cell proliferation, and apoptosis; thus, it is logical that many viruses, including herpesvirus, target the nucleolus in order to exploit at least one of the above-mentioned functions. Recent studies from our group demonstrated the early accumulation of the incoming ppUL83 (pp65), the major tegument protein of human cytomegalovirus (HCMV), in the nucleolus. The obtained results also suggested that a functional relationship might exist between the nucleolar localization of pp65, rRNA synthesis, and the development of the lytic program of viral gene expression. Here we present new data which support the hypothesis of a potentially relevant role of HCMV pp65 and its nucleolar localization for the control of the cell cycle by HCMV (arrest of cell proliferation in G1-G1/S), and for the promotion of viral infection. We demonstrated that, although the incoming pp65 amount in the infected cells appears to be constant irrespective of the cell-cycle phase, its nucleolar accumulation is prominent in G1 and G1/S, but very poor in S or G2/M. This correlates with the observation that only cells in G1 and G1/S support an efficient development of the HCMV lytic cycle. We propose that HCMV pp65 might be involved in regulatory/signaling pathways related to nucleolar functions, such as the cell-cycle control. Co-immunoprecipitation experiments have permitted to identify nucleolin as one of the nucleolar partners of pp65.

  6. Prospective Teacher Learning: Recognizing Evidence of Conceptual Understanding

    ERIC Educational Resources Information Center

    Bartell, Tonya Gau; Webel, Corey; Bowen, Brian; Dyson, Nancy

    2013-01-01

    This study examined prospective teachers' (PSTs) ability to recognize evidence of children's conceptual understanding of mathematics in three content areas before and after an instructional intervention designed to support this ability. It also investigates the role PSTs' content knowledge plays in their ability to recognize children's…

  7. Teaching resources. Protein phosphatases.

    PubMed

    Salton, Stephen R

    2005-03-01

    This Teaching Resource provides lecture notes and slides for a class covering the structure and function of protein phosphatases and is part of the course "Cell Signaling Systems: A Course for Graduate Students." The lecture begins with a discussion of the importance of phosphatases in physiology, recognized by the award of a Nobel Prize in 1992, and then proceeds to describe the two types of protein phosphatases: serine/threonine and tyrosine phosphatases. The information covered includes the structure, regulation, and substrate specificity of protein phosphatases, with an emphasis on their importance in disease and clinical settings.

  8. The actin family protein ARP6 contributes to the structure and the function of the nucleolus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitamura, Hiroshi; Matsumori, Haruka; Kalendova, Alzbeta

    2015-08-21

    The actin family members, consisting of actin and actin-related proteins (ARPs), are essential components of chromatin remodeling complexes. ARP6, one of the nuclear ARPs, is part of the Snf-2-related CREB-binding protein activator protein (SRCAP) chromatin remodeling complex, which promotes the deposition of the histone variant H2A.Z into the chromatin. In this study, we showed that ARP6 influences the structure and the function of the nucleolus. ARP6 is localized in the central region of the nucleolus, and its knockdown induced a morphological change in the nucleolus. We also found that in the presence of high concentrations of glucose ARP6 contributed tomore » the maintenance of active ribosomal DNA (rDNA) transcription by placing H2A.Z into the chromatin. In contrast, under starvation, ARP6 was required for cell survival through the repression of rDNA transcription independently of H2A.Z. These findings reveal novel pleiotropic roles for the actin family in nuclear organization and metabolic homeostasis. - Highlights: • ARP6, an actin related protein, is important for nucleolar function and structure. • A population of ARP6 is localized in the center of nucleolus. • Depletion of ARP6 resulted in aberrant shape of the nucleolus. • ARP6 maintains the active rDNA transcription under high glucose. • ARP6 is required for the repression of rDNA transcription under starvation.« less

  9. RNA polymerase I transcription in a Brassica interspecific hybrid and its progenitors: Tests of transcription factor involvement in nucleolar dominance.

    PubMed Central

    Frieman, M; Chen, Z J; Saez-Vasquez, J; Shen, L A; Pikaard, C S

    1999-01-01

    In interspecific hybrids or allopolyploids, often one parental set of ribosomal RNA genes is transcribed and the other is silent, an epigenetic phenomenon known as nucleolar dominance. Silencing is enforced by cytosine methylation and histone deacetylation, but the initial discrimination mechanism is unknown. One hypothesis is that a species-specific transcription factor is inactivated, thereby silencing one set of rRNA genes. Another is that dominant rRNA genes have higher binding affinities for limiting transcription factors. A third suggests that selective methylation of underdominant rRNA genes blocks transcription factor binding. We tested these hypotheses using Brassica napus (canola), an allotetraploid derived from B. rapa and B. oleracea in which only B. rapa rRNA genes are transcribed. B. oleracea and B. rapa rRNA genes were active when transfected into protoplasts of the other species, which argues against the species-specific transcription factor model. B. oleracea and B. rapa rRNA genes also competed equally for the pol I transcription machinery in vitro and in vivo. Cytosine methylation had no effect on rRNA gene transcription in vitro, which suggests that transcription factor binding was unimpaired. These data are inconsistent with the prevailing models and point to discrimination mechanisms that are likely to act at a chromosomal level. PMID:10224274

  10. Recognizing dying in terminal illness.

    PubMed

    Taylor, Paul M; Johnson, Miriam

    2011-08-01

    Recognizing dying in terminally ill patients is a complex clinical skill. This article outlines the approach to the decision, common difficulties encountered in patients with both malignant and non-malignant disease, and a simple approach to considering the question 'Is this patient dying?'

  11. Recognizing Facial Slivers.

    PubMed

    Gilad-Gutnick, Sharon; Harmatz, Elia Samuel; Tsourides, Kleovoulos; Yovel, Galit; Sinha, Pawan

    2018-07-01

    We report here an unexpectedly robust ability of healthy human individuals ( n = 40) to recognize extremely distorted needle-like facial images, challenging the well-entrenched notion that veridical spatial configuration is necessary for extracting facial identity. In face identification tasks of parametrically compressed internal and external features, we found that the sum of performances on each cue falls significantly short of performance on full faces, despite the equal visual information available from both measures (with full faces essentially being a superposition of internal and external features). We hypothesize that this large deficit stems from the use of positional information about how the internal features are positioned relative to the external features. To test this, we systematically changed the relations between internal and external features and found preferential encoding of vertical but not horizontal spatial relationships in facial representations ( n = 20). Finally, we employ magnetoencephalography imaging ( n = 20) to demonstrate a close mapping between the behavioral psychometric curve and the amplitude of the M250 face familiarity, but not M170 face-sensitive evoked response field component, providing evidence that the M250 can be modulated by faces that are perceptually identifiable, irrespective of extreme distortions to the face's veridical configuration. We theorize that the tolerance to compressive distortions has evolved from the need to recognize faces across varying viewpoints. Our findings help clarify the important, but poorly defined, concept of facial configuration and also enable an association between behavioral performance and previously reported neural correlates of face perception.

  12. Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization

    PubMed Central

    Cavaillé, Jérôme; Buiting, Karin; Kiefmann, Martin; Lalande, Marc; Brannan, Camilynn I.; Horsthemke, Bernhard; Bachellerie, Jean-Pierre; Brosius, Jürgen; Hüttenhofer, Alexander

    2000-01-01

    We have identified three C/D-box small nucleolar RNAs (snoRNAs) and one H/ACA-box snoRNA in mouse and human. In mice, all four snoRNAs (MBII-13, MBII-52, MBII-85, and MBI-36) are exclusively expressed in the brain, unlike all other known snoRNAs. Two of the human RNA orthologues (HBII-52 and HBI-36) share this expression pattern, and the remainder, HBII-13 and HBII-85, are prevalently expressed in that tissue. In mice and humans, the brain-specific H/ACA box snoRNA (MBI-36 and HBI-36, respectively) is intron-encoded in the brain-specific serotonin 2C receptor gene. The three human C/D box snoRNAs map to chromosome 15q11–q13, within a region implicated in the Prader–Willi syndrome (PWS), which is a neurogenetic disease resulting from a deficiency of paternal gene expression. Unlike other C/D box snoRNAs, two snoRNAs, HBII-52 and HBII-85, are encoded in a tandemly repeated array of 47 or 24 units, respectively. In mouse the homologue of HBII-52 is processed from intronic portions of the tandem repeats. Interestingly, these snoRNAs were absent from the cortex of a patient with PWS and from a PWS mouse model, demonstrating their paternal imprinting status and pointing to their potential role in the etiology of PWS. Despite displaying hallmarks of the two families of ubiquitous snoRNAs that guide 2′-O-ribose methylation and pseudouridylation of rRNA, respectively, they lack any telltale rRNA complementarity. Instead, brain-specific C/D box snoRNA HBII-52 has an 18-nt phylogenetically conserved complementarity to a critical segment of serotonin 2C receptor mRNA, pointing to a potential role in the processing of this mRNA. PMID:11106375

  13. 46 CFR 30.10-57 - Recognized classification society-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Recognized classification society-TB/ALL. 30.10-57 Section 30.10-57 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-57 Recognized classification society—TB/ALL. The term recognized classification society...

  14. 46 CFR 30.10-57 - Recognized classification society-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Recognized classification society-TB/ALL. 30.10-57 Section 30.10-57 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-57 Recognized classification society—TB/ALL. The term recognized classification society...

  15. 46 CFR 30.10-57 - Recognized classification society-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Recognized classification society-TB/ALL. 30.10-57 Section 30.10-57 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-57 Recognized classification society—TB/ALL. The term recognized classification society...

  16. 21 CFR 172.340 - Fish protein isolate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Special Dietary and Nutritional Additives § 172.340 Fish protein isolate. (a) The food additive fish... accordance with recognized good manufacturing practice for fish to be used as human food. (4) The additive... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Fish protein isolate. 172.340 Section 172.340 Food...

  17. Physiological functions of MTA family of proteins.

    PubMed

    Sen, Nirmalya; Gui, Bin; Kumar, Rakesh

    2014-12-01

    Although the functional significance of the metastasic tumor antigen (MTA) family of chromatin remodeling proteins in the pathobiology of cancer is fairly well recognized, the physiological role of MTA proteins continues to be an understudied research area and is just beginning to be recognized. Similar to cancer cells, MTA1 also modulates the expression of target genes in normal cells either by acting as a corepressor or coactivator. In addition, physiological functions of MTA proteins are likely to be influenced by its differential expression, subcellular localization, and regulation by upstream modulators and extracellular signals. This review summarizes our current understanding of the physiological functions of the MTA proteins in model systems. In particular, we highlight recent advances of the role MTA proteins play in the brain, eye, circadian rhythm, mammary gland biology, spermatogenesis, liver, immunomodulation and inflammation, cellular radio-sensitivity, and hematopoiesis and differentiation. Based on the growth of knowledge regarding the exciting new facets of the MTA family of proteins in biology and medicine, we speculate that the next burst of findings in this field may reveal further molecular regulatory insights of non-redundant functions of MTA coregulators in the normal physiology as well as in pathological conditions outside cancer.

  18. Self-interaction of NPM1 modulates multiple mechanisms of liquid-liquid phase separation.

    PubMed

    Mitrea, Diana M; Cika, Jaclyn A; Stanley, Christopher B; Nourse, Amanda; Onuchic, Paulo L; Banerjee, Priya R; Phillips, Aaron H; Park, Cheon-Gil; Deniz, Ashok A; Kriwacki, Richard W

    2018-02-26

    Nucleophosmin (NPM1) is an abundant, oligomeric protein in the granular component of the nucleolus with roles in ribosome biogenesis. Pentameric NPM1 undergoes liquid-liquid phase separation (LLPS) via heterotypic interactions with nucleolar components, including ribosomal RNA (rRNA) and proteins which display multivalent arginine-rich linear motifs (R-motifs), and is integral to the liquid-like nucleolar matrix. Here we show that NPM1 can also undergo LLPS via homotypic interactions between its polyampholytic intrinsically disordered regions, a mechanism that opposes LLPS via heterotypic interactions. Using a combination of biophysical techniques, including confocal microscopy, SAXS, analytical ultracentrifugation, and single-molecule fluorescence, we describe how conformational changes within NPM1 control valency and switching between the different LLPS mechanisms. We propose that this newly discovered interplay between multiple LLPS mechanisms may influence the direction of vectorial pre-ribosomal particle assembly within, and exit from the nucleolus as part of the ribosome biogenesis process.

  19. Self-interaction of NPM1 modulates multiple mechanisms of liquid–liquid phase separation

    DOE PAGES

    Mitrea, Diana M.; Cika, Jaclyn A.; Stanley, Christopher B.; ...

    2018-02-26

    Nucleophosmin (NPM1) is an abundant, oligomeric protein in the granular component of the nucleolus with roles in ribosome biogenesis. Pentameric NPM1 undergoes liquid–liquid phase separation (LLPS) via heterotypic interactions with nucleolar components, including ribosomal RNA (rRNA) and proteins which display multivalent arginine-rich linear motifs (R-motifs), and is integral to the liquid-like nucleolar matrix. Here we show that NPM1 can also undergo LLPS via homotypic interactions between its polyampholytic intrinsically disordered regions, a mechanism that opposes LLPS via heterotypic interactions. Using a combination of biophysical techniques, including confocal microscopy, SAXS, analytical ultracentrifugation, and single-molecule fluorescence, we describe how conformational changes withinmore » NPM1 control valency and switching between the different LLPS mechanisms. We propose that this newly discovered interplay between multiple LLPS mechanisms may influence the direction of vectorial pre-ribosomal particle assembly within, and exit from the nucleolus as part of the ribosome biogenesis process.« less

  20. Identification of nucleolus-associated chromatin domains reveals the role of the nucleolus in the 3D organisation of the A. thaliana genome

    PubMed Central

    Pontvianne, Frédéric; Carpentier, Marie-Christine; Durut, Nathalie; Pavlištová, Veronika; Jaške, Karin; Schořová, Šárka; Parrinello, Hugues; Rohmer, Marine; Pikaard, Craig S; Fojtová, Miloslava; Fajkus, Jiří; Saez-Vasquez, Julio

    2017-01-01

    The nucleolus is the site of ribosomal RNA (rRNA) gene transcription, rRNA processing and ribosome biogenesis. However, the nucleolus also plays additional roles in the cell. We isolated nucleoli by Fluorescence Activated Cell Sorting (FACS) and identified Nucleolus-Associated Chromatin Domains (NADs) by deep sequencing, comparing wild-type plants and null mutants for the nucleolar protein, NUCLEOLIN 1 (NUC1). NADs are primarily genomic regions with heterochromatic signatures and include transposable elements (TEs), sub-telomeric regions and mostly inactive protein-coding genes. However, NADs also include active ribosomal RNA genes, and the entire short arm of chromosome 4 adjacent to them. In nuc1 null mutants, which alter rRNA gene expression and overall nucleolar structure, NADs are altered, telomere association with the nucleolus is decreased and telomeres become shorter. Collectively, our studies reveal roles for NUC1 and the nucleolus in the spatial organization of chromosomes as well as telomere maintenance. PMID:27477271

  1. Identification of Nucleolus-Associated Chromatin Domains Reveals a Role for the Nucleolus in 3D Organization of the A. thaliana Genome.

    PubMed

    Pontvianne, Frédéric; Carpentier, Marie-Christine; Durut, Nathalie; Pavlištová, Veronika; Jaške, Karin; Schořová, Šárka; Parrinello, Hugues; Rohmer, Marine; Pikaard, Craig S; Fojtová, Miloslava; Fajkus, Jiří; Sáez-Vásquez, Julio

    2016-08-09

    The nucleolus is the site of rRNA gene transcription, rRNA processing, and ribosome biogenesis. However, the nucleolus also plays additional roles in the cell. We isolated nucleoli using fluorescence-activated cell sorting (FACS) and identified nucleolus-associated chromatin domains (NADs) by deep sequencing, comparing wild-type plants and null mutants for the nucleolar protein NUCLEOLIN 1 (NUC1). NADs are primarily genomic regions with heterochromatic signatures and include transposable elements (TEs), sub-telomeric regions, and mostly inactive protein-coding genes. However, NADs also include active rRNA genes and the entire short arm of chromosome 4 adjacent to them. In nuc1 null mutants, which alter rRNA gene expression and overall nucleolar structure, NADs are altered, telomere association with the nucleolus is decreased, and telomeres become shorter. Collectively, our studies reveal roles for NUC1 and the nucleolus in the spatial organization of chromosomes as well as telomere maintenance. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Self-interaction of NPM1 modulates multiple mechanisms of liquid–liquid phase separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrea, Diana M.; Cika, Jaclyn A.; Stanley, Christopher B.

    Nucleophosmin (NPM1) is an abundant, oligomeric protein in the granular component of the nucleolus with roles in ribosome biogenesis. Pentameric NPM1 undergoes liquid–liquid phase separation (LLPS) via heterotypic interactions with nucleolar components, including ribosomal RNA (rRNA) and proteins which display multivalent arginine-rich linear motifs (R-motifs), and is integral to the liquid-like nucleolar matrix. Here we show that NPM1 can also undergo LLPS via homotypic interactions between its polyampholytic intrinsically disordered regions, a mechanism that opposes LLPS via heterotypic interactions. Using a combination of biophysical techniques, including confocal microscopy, SAXS, analytical ultracentrifugation, and single-molecule fluorescence, we describe how conformational changes withinmore » NPM1 control valency and switching between the different LLPS mechanisms. We propose that this newly discovered interplay between multiple LLPS mechanisms may influence the direction of vectorial pre-ribosomal particle assembly within, and exit from the nucleolus as part of the ribosome biogenesis process.« less

  3. DAISY Nurses-Recognizing Clinical Expertise Through Certification.

    PubMed

    Sweeney, Cynthia Divens

    2018-04-01

    The DAISY Foundation is dedicated to recognizing nurses who provide compassionate, skilled, and extraordinary nursing care. Nominations for The DAISY Award are typically submitted in the form of a story. Stories are an opportunity to share with others what compassionate and extraordinary nursing care looks like and to recognize the individual nurses who provide that care. Clinical competence delivered with compassion is a hallmark of DAISY Award recipients. Professional certification provides an additional form of recognition of a nurse's clinical competence.

  4. 46 CFR 31.10-1 - Recognized classification society-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Recognized classification society-TB/ALL. 31.10-1... CERTIFICATION Inspections § 31.10-1 Recognized classification society—TB/ALL. (a) In the inspection of hulls... Shipping, or other recognized classification society for classed vessels, may be accepted by the Coast...

  5. 46 CFR 31.10-1 - Recognized classification society-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Recognized classification society-TB/ALL. 31.10-1... CERTIFICATION Inspections § 31.10-1 Recognized classification society—TB/ALL. (a) In the inspection of hulls... Shipping, or other recognized classification society for classed vessels, may be accepted by the Coast...

  6. Definition of epitopes and antigens recognized by vaccinia specific immune responses: their conservation in variola virus sequences, and use as a model system to study complex pathogens.

    PubMed

    Sette, Alessandro; Grey, Howard; Oseroff, Carla; Peters, Bjoern; Moutaftsi, Magdalini; Crotty, Shane; Assarsson, Erika; Greenbaum, Jay; Kim, Yohan; Kolla, Ravi; Tscharke, David; Koelle, David; Johnson, R Paul; Blum, Janice; Head, Steven; Sidney, John

    2009-12-30

    In the last few years, a wealth of information has become available relating to the targets of vaccinia virus (VACV)-specific CD4(+) T cell, CD8(+) T cell and antibody responses. Due to the large size of its genome, encoding more than 200 different proteins, VACV represents a useful model system to study immunity to complex pathogens. Our data demonstrate that both cellular and humoral responses target a large number of antigens and epitopes. This broad spectrum of targets is detected in both mice and humans. CD4(+) T cell responses target late and structural antigens, while CD8(+) T cells preferentially recognize early antigens. While both CD4(+) and CD8(+) T cell responses target different types of antigens, the antigens recognized by T(H) cells are highly correlated with those recognized by antibody responses. We further show that protein abundance and antibody recognition can be used to predict antigens recognized by CD4(+) T cell responses, while early expression at the mRNA level predicts antigens targeted by CD8(+) T cells. Finally, we find that the vast majority of VACV epitopes are conserved in variola virus (VARV), thus suggesting that the epitopes defined herein also have relevance for the efficacy of VACV as a smallpox vaccine.

  7. Problem-Solving Test: Analysis of DNA Damage Recognizing Proteins in Yeast and Human Cells

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2013-01-01

    The experiment described in this test was aimed at identifying DNA repair proteins in human and yeast cells. Terms to be familiar with before you start to solve the test: DNA repair, germline mutation, somatic mutation, inherited disease, cancer, restriction endonuclease, radioactive labeling, [alpha-[superscript 32]P]ATP, [gamma-[superscript…

  8. Topographic antigenic determinants recognized by monoclonal antibodies on human choriogonadotropin beta-subunit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bidart, J.M.; Troalen, F.; Salesse, R.

    1987-06-25

    We describe a first attempt to study the antibody-combining sites recognized by monoclonal antibodies raised against the beta-subunit of human choriogonadotropin (hCG). Two groups of antibodies were first defined by their ability to recognize only the free beta-subunit or the free and combined subunit. Antibodies FBT-11 and FBT-11-L bind only to hCG beta-subunit but not to hCG, whereas antibodies FBT-10 and D1E8 bind to both the beta-subunit and the hormone. In both cases, the antigenic determinants were localized to the core of the protein (residues 1-112), indicating the weak immunogenicity of the specific carboxyl-terminal extension of hCG-beta. Nine synthetic peptidesmore » spanning different regions of hCG-beta and lutropin-beta were assessed for their capacity to inhibit antibody binding. A synthetic peptide inclusive of the NH2-terminal region (residues 1-7) of the hCG beta-subunit was found to inhibit binding to the radiolabeled subunit of a monoclonal antibody specific for free hCG-beta (FBT-11). Further delineation of the antigenic site recognized by this antibody provided evidence for the involvement of fragment 82-92. Moreover, monoclonal antibody FBT-11 inhibited the recombination of hCG-beta to hCG-alpha, indicating that its antigenic determinant might be located nearby or in the hCG-beta portion interacting with the alpha-subunit. Binding of monoclonal antibody FBT-10, corresponding to the second antigenic determinant, was weakly inhibited by fragment 82-105 and did not impair the recombination of the hCG beta-subunit to the hCG alpha-subunit. Its combining site appeared to be located in a region of the intact native choriogonadotropin present at the surface of the hormone-receptor complex.« less

  9. Recognizing the Presidents: Was Alexander Hamilton President?

    PubMed

    Roediger, Henry L; DeSoto, K Andrew

    2016-05-01

    Studies over the past 40 years have shown that Americans can recall about half the U.S. presidents. Do people know the presidents even though they are unable to access them for recall? We investigated this question using the powerful cues of a recognition test. Specifically, we tested the ability of 326 online subjects to recognize U.S. presidents when presented with their full names among various types of lures. The hit rate for presidential recognition was .88, well above the proportion produced in free recall but far from perfect. Presidents Franklin Pierce and Chester Arthur were recognized less than 60% of the time. Interestingly, four nonpresidents were falsely recognized at relatively high rates, and Alexander Hamilton was more frequently identified as president than were several actual presidents. Even on a recognition test, knowledge of American presidents is imperfect and prone to error. The false alarm data support the theory that false fame can arise from contextual familiarity. © The Author(s) 2016.

  10. Biological significance of 5S rRNA import into human mitochondria: role of ribosomal protein MRP-L18

    PubMed Central

    Smirnov, Alexandre; Entelis, Nina; Martin, Robert P.; Tarassov, Ivan

    2011-01-01

    5S rRNA is an essential component of ribosomes of all living organisms, the only known exceptions being mitochondrial ribosomes of fungi, animals, and some protists. An intriguing situation distinguishes mammalian cells: Although the mitochondrial genome contains no 5S rRNA genes, abundant import of the nuclear DNA-encoded 5S rRNA into mitochondria was reported. Neither the detailed mechanism of this pathway nor its rationale was clarified to date. In this study, we describe an elegant molecular conveyor composed of a previously identified human 5S rRNA import factor, rhodanese, and mitochondrial ribosomal protein L18, thanks to which 5S rRNA molecules can be specifically withdrawn from the cytosolic pool and redirected to mitochondria, bypassing the classic nucleolar reimport pathway. Inside mitochondria, the cytosolic 5S rRNA is shown to be associated with mitochondrial ribosomes. PMID:21685364

  11. Murine T-Cell Response to Native and Recombinant Protein Antigens of Rickettsia Tsutsugamushi

    DTIC Science & Technology

    1993-02-01

    Wright, and J. Sadoff. 1985. 18-kilodalton protein of Mycobacterium leprae recognized by Immunoenzymatic analysis by monoclonal antibodies of bacte- Vo...determinants and closely resembles T-cell antigenic determinants, Rothbard and Taylor, by the GroEL homolog (65 kDa) of Mycobacterium tuberculo- analysis of...not be completely present in protein that is recognized by 20% of the mycobacterium - peptide 91-110. If this were the core of the antigenic deter

  12. Do You Recognize This Parent?

    ERIC Educational Resources Information Center

    Wallace, Edna

    1997-01-01

    Suggests effective ways to work with parents who may be permissive, busy, detached, overprotective, or negative. Recommends that child care professionals be sensitive and understanding, recognize other demands on parents' time and communicate competitively with them, use terms parents understand, accept various levels of parental involvement, be…

  13. Immunodominant IgM and IgG Epitopes Recognized by Antibodies Induced in Enterovirus A71-Associated Hand, Foot and Mouth Disease Patients

    PubMed Central

    Aw-Yong, Kam Leng; Sam, I-Ching; Koh, Mia Tuang

    2016-01-01

    Enterovirus A71 (EV-A71) is one of the main causative agents of hand, foot and mouth disease (HFMD). Unlike other enteroviruses that cause HFMD, EV-A71 is more frequently associated with severe neurological complications and fatality. To date, no effective licensed antivirals are available to combat EV-A71 infection. Little is known about the immunogenicity of viral non-structural proteins in humans. Previous studies have mainly focused on characterization of epitopes of EV-A71 structural proteins by using immunized animal antisera. In this study, we have characterized human antibody responses against the structural and non-structural proteins of EV-A71. Each viral protein was cloned and expressed in either bacterial or mammalian systems, and tested with antisera by western blot. Results revealed that all structural proteins (VP1-4), and non-structural proteins 2A, 3C and 3D were targets of EV-A71 IgM, whereas EV-A71 IgG recognized all the structural and non-structural proteins. Sixty three synthetic peptides predicted to be immunogenic in silico were synthesized and used for the characterization of EV-A71 linear B-cell epitopes. In total, we identified 22 IgM and four IgG dominant epitopes. Synthetic peptide PEP27, corresponding to residues 142–156 of VP1, was identified as the EV-A71 IgM-specific immunodominant epitope. PEP23, mapped to VP1 41–55, was recognized as the EV-A71 IgG cross-reactive immunodominant epitope. The structural protein VP1 is the major immunodominant site targeted by anti-EV-A71 IgM and IgG antibodies, but epitopes against non-structural proteins were also detected. These data provide new understanding of the immune response to EV-A71 infection, which benefits the development of diagnostic tools, potential therapeutics and subunit vaccine candidates. PMID:27806091

  14. Mapping of the linear antigenic determinants from the Leishmania infantum histone H2A recognized by sera from dogs with leishmaniasis.

    PubMed

    Soto, M; Requena, J M; Quijada, L; García, M; Guzman, F; Patarroyo, M E; Alonso, C

    1995-12-01

    Antibodies reacting against the H2A histone protein were frequently observed in the sera from dogs naturally infected with the protozoan parasite Leishmania infantum. Using synthetic peptides covering the complete sequence of the protein we have identified the amino terminal region, comprising from amino acids 1 to 20, and the carboxyl terminal region, comprising from amino acids 106 to 132, as conforming the antigenic determinants of the protein. Those regions, exposed in the nucleosome surface, are highly divergent in sequence relative to the mammalian H2A histones. The anti-H2A histone antibodies present in the sera of these dogs specifically recognize the L. infantum H2A histone and they do not react with mammalian histones. The present data indicate that, in spite of the evolutionary conservation of the H2A histone protein among eukaryotic organisms, the humoral response against this protein during natural infection is specifically triggered by the parasite protein antigenic determinants.

  15. Recognizing Prefixes in Scientific Quantities

    NASA Astrophysics Data System (ADS)

    Sokolowski, Andrzej

    2015-09-01

    Although recognizing prefixes in physical quantities is inherent for practitioners, it might not be inherent for students, who do not use prefixes in their everyday life experiences. This deficiency surfaces in AP Physics exams. For example, readers of an AP Physics exam reported "a common mistake of incorrectly converting nanometers to meters." Similar students' mistakes were reported also by AP Chemistry readers "as in previous years, students still had difficulty converting kJ to J." While traditional teaching focuses on memorizing the symbols of prefixes, little attention is given to helping learners recognize a prefix in a given quantity. I noticed in my teaching practice that by making the processes of identifying prefixes more explicit, students make fewer mistakes on unit conversion. Thus, this paper presents an outline of a lesson that focuses on prefix recognition. It is designed for a first-year college physics class; however, its key points can be addressed to any group of physics students.

  16. Nuclear AgNOR protein enhancement in nucleoplasms of peripheral blood lymphocytes of babies/children with Down syndrome.

    PubMed

    Imamoglu, Nalan; Eroz, Recep; Canatan, Halit; Demirtas, Halil; Saatci, Çetin

    2016-03-01

    Down syndrome (DS) is one of the most common chromosomal disorders. The factors contributing to the mental retardation together with other defects in this syndrome have not been fully explained. Individuals with DS have extra rRNA gene family since they carry an extra chromosome 21. The few reports available are on the relationship between the nucleolus organizer regions (NORs) and DS phenotype. The in vivo regulation of NORs expression on the extra chromosome 21 is not completely understood. Previous studies have shown that nucleoli of lymphocytes from infants (mostly neonates) with DS contain more in vivo and in vitro nucleolar AgNOR proteins when compared with healthy infants. The objective of this study is to compare the in vivo nuclear AgNOR protein level in nucleoplasms (also called as karyoplasm) of nonstimulated peripheral blood lymphocytes from babies/children with DS and healthy controls. Peripheral blood samples obtained from 20 babies/children with DS and 20 matched healthy controls were smeared on clean glass slides and then AgNOR staining was performed. The AgNOR protein level in nucleoplasms of lymphocytes from both groups was calculated using a computer program. Nearly 100 interphase nuclei per individual were analysed. Average nuclear AgNOR protein levels in nucleoplasms of lymphocytes from babies/children with DS were found to be significantly higher than those of the controls (P < 0.001). On the basis of our present results, we propose that the increase of nuclear AgNOR protein in in vivo conditions may contribute to the formation of DS phenotypes. © 2016 Wiley Periodicals, Inc.

  17. Striated fibers in trichomonads: costa proteins represent a new class of proteins forming striated roots.

    PubMed

    Viscogliosi, E; Brugerolle, G

    1994-01-01

    The production of monoclonal antibodies and the use of biochemical techniques revealed that B-type costa proteins in trichomonads are composed of several major polypeptides with molecular weight detected between 100 and 135 kDa similar to those found in the A-type costae. Although differences were observed between the two types in their fine structure, we tested whether proteins composing the two costa types belong to the same protein family. A polyclonal antibody produced against the 118 kDa costa protein of Trichomonas vaginalis also recognized a 118 kDa costa protein in all other trichomonad genera studied so far whether they have A- or B-type costae. Moreover biochemical characteristics of costa proteins indicated that these proteins might represent a novel class of striated root-forming proteins in addition to centrin, giardin, and assemblin.

  18. Equipping African American Clergy to Recognize Depression.

    PubMed

    Anthony, Jean Spann; Morris, Edith; Collins, Charles W; Watson, Albert; Williams, Jennifer E; Ferguson, Bʼnai; Ruhlman, Deborah L

    2016-01-01

    Many African Americans (AAs) use clergy as their primary source of help for depression, with few being referred to mental health providers. This study used face-to-face workshops to train AA clergy to recognize the symptoms and levels of severity of depression. A pretest/posttest format was used to test knowledge (N = 42) about depression symptoms. Results showed that the participation improved the clergy's ability to recognize depression symptoms. Faith community nurses can develop workshops for clergy to improve recognition and treatment of depression.

  19. Nuclear γ-tubulin associates with nucleoli and interacts with tumor suppressor protein C53.

    PubMed

    Hořejší, Barbora; Vinopal, Stanislav; Sládková, Vladimíra; Dráberová, Eduarda; Sulimenko, Vadym; Sulimenko, Tetyana; Vosecká, Věra; Philimonenko, Anatoly; Hozák, Pavel; Katsetos, Christos D; Dráber, Pavel

    2012-01-01

    γ-Tubulin is assumed to be a typical cytosolic protein necessary for nucleation of microtubules from microtubule organizing centers. Using immunolocalization and cell fractionation techniques in combination with siRNAi and expression of FLAG-tagged constructs, we have obtained evidence that γ-tubulin is also present in nucleoli of mammalian interphase cells of diverse cellular origins. Immunoelectron microscopy has revealed γ-tubulin localization outside fibrillar centers where transcription of ribosomal DNA takes place. γ-Tubulin was associated with nucleolar remnants after nuclear envelope breakdown and could be translocated to nucleoli during mitosis. Pretreatment of cells with leptomycin B did not affect the distribution of nuclear γ-tubulin, making it unlikely that rapid active transport via nuclear pores participates in the transport of γ-tubulin into the nucleus. This finding was confirmed by heterokaryon assay and time-lapse imaging of photoconvertible protein Dendra2 tagged to γ-tubulin. Immunoprecipitation from nuclear extracts combined with mass spectrometry revealed an association of γ-tubulin with tumor suppressor protein C53 located at multiple subcellular compartments including nucleoli. The notion of an interaction between γ-tubulin and C53 was corroborated by pull-down and co-immunoprecipitation experiments. Overexpression of γ-tubulin antagonized the inhibitory effect of C53 on DNA damage G(2) /M checkpoint activation. The combined results indicate that aside from its known role in microtubule nucleation, γ-tubulin may also have nuclear-specific function(s). Copyright © 2011 Wiley Periodicals, Inc.

  20. The brain-specific double-stranded RNA-binding protein Staufen2: nucleolar accumulation and isoform-specific exportin-5-dependent export.

    PubMed

    Macchi, Paolo; Brownawell, Amy M; Grunewald, Barbara; DesGroseillers, Luc; Macara, Ian G; Kiebler, Michael A

    2004-07-23

    The mammalian double-stranded RNA-binding proteins Staufen (Stau1 and Stau2) are involved in RNA localization in polarized neurons. In contrast to the more ubiquitously expressed Stau1, Stau2 is mainly expressed in the nervous system. In Drosophila, the third double-stranded RNA-binding domain (RBD3) of Staufen is essential for RNA interaction. When conserved amino acids within the RBD3 of Stau2 were mutated to render Stau2 defective for RNA binding, the mutant Stau2 proteins accumulate predominantly in the nucleolus. This is in contrast to wild type Stau2 that mostly localizes in the cytosol. The nuclear import is dependent on a nuclear localization signal in close proximity to the RBD3. The nuclear export of Stau2 is not dependent on CRM1 but rather on Exportin-5. We show that Exportin-5 interacts with the RBD3 of wild type Stau2 in an RNA-dependent manner in vitro but not with mutant Stau2. When Exportin-5 is down-regulated by RNA interference, only the largest isoform of Stau2 (Stau2(62)) preferentially accumulates in the nucleolus. It is tempting to speculate that Stau2(62) binds RNA in the nucleus and assembles into ribonucleoparticles, which are then exported via the Exportin-5 pathway to their final destination.

  1. [The characteristic of protein biosynthesis in brain neurons with chronic alcohol intoxication].

    PubMed

    Morozov, Yu E; Velenko, P S

    2018-01-01

    The objective of the present study was to evaluate the possibilities for the use of the changes in the AgNOR staining patterns in the neurons of the dorsal raphe nucleus (DRN) for the purposes of the medical differential diagnostics of the cases of death from chronic alcohol intoxication. We elucidated the characteristics of the activity of protein biosynthesis including the number and the area of the nucleoli in the nuclei of the neurons of the individuals who had died from chronic alcohol intoxication (n=20) in comparison with the subjects of the control group (n=13). To reveal the morphological structures associated with protein biosynthesis in the nucleoli of the serotoninergic neurons of the dorsal raphe nucleus in the brain, the histological preparations were stained with the use of the silver-staining technique for nucleolar organizer regions (AgNOR). The comparative statistical analysis of the results thus obtained with the calculated confidence coefficients was carried out. The aggregated analysis of all the dorsal raphe subnuclei revealed the impairment of the AgNOR staining characteristics in the neurons of the subjects who had died from chronic alcohol intoxication in comparison with those of the subjects comprising the control group. It is concluded that the results of the study can be used for differential diagnostics of deaths from chronic alcohol intoxication and other causes.

  2. 26 CFR 1.1374-2 - Net recognized built-in gain.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 11 2010-04-01 2010-04-01 true Net recognized built-in gain. 1.1374-2 Section 1... (CONTINUED) INCOME TAXES Small Business Corporations and Their Shareholders § 1.1374-2 Net recognized built-in gain. (a) In general. An S corporation's net recognized built-in gain for any taxable year is the...

  3. Identification of antigenic Sarcoptes scabiei proteins for use in a diagnostic test and of non-antigenic proteins that may be immunomodulatory

    PubMed Central

    Morgan, Marjorie S.; Rider, S. Dean; Arlian, Larry G.

    2017-01-01

    Background Scabies, caused by the mite, Sarcoptes scabiei, infects millions of humans, and many wild and domestic mammals. Scabies mites burrow in the lower stratum corneum of the epidermis of the skin and are the source of substances that are antigenic or modulate aspects of the protective response of the host. Ordinary scabies is a difficult disease to diagnose. Objective The goal of this project was to identify S. scabiei proteins that may be candidate antigens for use in a diagnostic test or may be used by the mite to modulate the host’s protective response. Methods An aqueous extract of S. scabiei was separated by 2-dimensional electrophoresis and proteins were identified by mass spectrometry. A parallel immunoblot was probed with serum from patients with ordinary scabies to identify IgM and/or IgG-binding antigens. The genes coding for 23 selected proteins were cloned into E. coli and the expressed recombinant proteins were screened with serum from patients with confirmed ordinary scabies. Results We identified 50 different proteins produced by S. scabiei, 34 of which were not previously identified, and determined that 66% were recognized by patient IgM and/or IgG. Fourteen proteins were screened for use in a diagnostic test but none possessed enough sensitivity and specificity to be useful. Six of the 9 proteins selected for the possibility that they may be immunomodulatory were not recognized by antibodies in patient serum. Conclusions Thirty-three proteins that bound IgM and/or IgG from the serum of patients with ordinary scabies were identified. None of the 14 tested were useful for inclusion in a diagnostic test. The identities of 16 proteins that are not recognized as antigens by infected patients were also determined. These could be among the molecules that are responsible for this mite’s ability to modulate its host’s innate and adaptive immune responses. PMID:28604804

  4. Nucleophosmin/B23 is a proliferate shuttle protein associated with nuclear matrix.

    PubMed

    Yun, Jing-Ping; Chew, Eng Ching; Liew, Choong-Tsek; Chan, John Y H; Jin, Mei-Lin; Ding, Ming-Xiao; Fai, Yam Hin; Li, H K Richard; Liang, Xiao-Man; Wu, Qiu-Liang

    2003-12-15

    It has become obvious that a better understanding and potential elucidation of the nucleolar phosphoprotein B23 involving in functional interrelationship between nuclear organization and gene expression. In present study, protein B23 expression were investigated in the regenerative hepatocytes at different periods (at days 0, 1, 2, 3, 4, 7) during liver regeneration after partial hepatectomy on the rats with immunohistochemistry and Western blot analysis. Another experiment was done with immunolabeling methods and two-dimensional (2-D) gel electrophoresis for identification of B23 in the regenerating hepatocytes and HepG2 cells (hepatoblastoma cell line) after sequential extraction with detergents, nuclease, and salt. The results showed that its expression in the hepatocytes had a locative move and quantitative change during the process of liver regeneration post-operation. Its immunochemical localization in the hepatocytes during the process showed that it moved from nucleoli of the hepatocytes in the stationary stage to nucleoplasm, cytoplasm, mitotic spindles, and mitotic chromosomes of the hepatocytes in the regenerating livers. It was quantitatively increased progressively to peak level at day 3 post-operation and declined gradually to normal level at day 7. It was detected in nuclear matrix protein (NMP) composition extracted from the regenerating hepatocytes and HepG2 cells and identified with isoelectric point (pI) value of 5.1 and molecular weight of 40 kDa. These results indicated that B23 was a proliferate shuttle protein involving in cell cycle and cell proliferation associated with nuclear matrix. Copyright 2003 Wiley-Liss, Inc.

  5. Ribosomal DNA status inferred from DNA cloud assays and mass spectrometry identification of agarose-squeezed proteins interacting with chromatin (ASPIC-MS).

    PubMed

    Krol, Kamil; Jendrysek, Justyna; Debski, Janusz; Skoneczny, Marek; Kurlandzka, Anna; Kaminska, Joanna; Dadlez, Michal; Skoneczna, Adrianna

    2017-04-11

    Ribosomal RNA-encoding genes (rDNA) are the most abundant genes in eukaryotic genomes. To meet the high demand for rRNA, rDNA genes are present in multiple tandem repeats clustered on a single or several chromosomes and are vastly transcribed. To facilitate intensive transcription and prevent rDNA destabilization, the rDNA-encoding portion of the chromosome is confined in the nucleolus. However, the rDNA region is susceptible to recombination and DNA damage, accumulating mutations, rearrangements and atypical DNA structures. Various sophisticated techniques have been applied to detect these abnormalities. Here, we present a simple method for the evaluation of the activity and integrity of an rDNA region called a "DNA cloud assay". We verified the efficacy of this method using yeast mutants lacking genes important for nucleolus function and maintenance (RAD52, SGS1, RRM3, PIF1, FOB1 and RPA12). The DNA cloud assay permits the evaluation of nucleolus status and is compatible with downstream analyses, such as the chromosome comet assay to identify DNA structures present in the cloud and mass spectrometry of agarose squeezed proteins (ASPIC-MS) to detect nucleolar DNA-bound proteins, including Las17, the homolog of human Wiskott-Aldrich Syndrome Protein (WASP).

  6. Ribosomal DNA status inferred from DNA cloud assays and mass spectrometry identification of agarose-squeezed proteins interacting with chromatin (ASPIC-MS)

    PubMed Central

    Krol, Kamil; Jendrysek, Justyna; Debski, Janusz; Skoneczny, Marek; Kurlandzka, Anna; Kaminska, Joanna; Dadlez, Michal; Skoneczna, Adrianna

    2017-01-01

    Ribosomal RNA-encoding genes (rDNA) are the most abundant genes in eukaryotic genomes. To meet the high demand for rRNA, rDNA genes are present in multiple tandem repeats clustered on a single or several chromosomes and are vastly transcribed. To facilitate intensive transcription and prevent rDNA destabilization, the rDNA-encoding portion of the chromosome is confined in the nucleolus. However, the rDNA region is susceptible to recombination and DNA damage, accumulating mutations, rearrangements and atypical DNA structures. Various sophisticated techniques have been applied to detect these abnormalities. Here, we present a simple method for the evaluation of the activity and integrity of an rDNA region called a “DNA cloud assay”. We verified the efficacy of this method using yeast mutants lacking genes important for nucleolus function and maintenance (RAD52, SGS1, RRM3, PIF1, FOB1 and RPA12). The DNA cloud assay permits the evaluation of nucleolus status and is compatible with downstream analyses, such as the chromosome comet assay to identify DNA structures present in the cloud and mass spectrometry of agarose squeezed proteins (ASPIC-MS) to detect nucleolar DNA-bound proteins, including Las17, the homolog of human Wiskott-Aldrich Syndrome Protein (WASP). PMID:28212567

  7. Recognizing and Managing Interpersonal Conflict.

    ERIC Educational Resources Information Center

    Deane, Nancy; Hovland, Michael

    1993-01-01

    Practical advice is offered, to managers and supervisors at any level, on recognizing and analyzing interpersonal conflicts, managing such conflicts and making them productive, and ensuring that performance reviews result in progress for both supervisor and employee. Conflict is seen as inevitable, an opportunity to take action, and manageable.…

  8. Recognizing Prefixes in Scientific Quantities

    ERIC Educational Resources Information Center

    Sokolowski, Andrzej

    2015-01-01

    Although recognizing prefixes in physical quantities is inherent for practitioners, it might not be inherent for students, who do not use prefixes in their everyday life experiences. This deficiency surfaces in AP Physics exams. For example, readers of an AP Physics exam reported "a common mistake of incorrectly converting nanometers to…

  9. Antibodies in Cerebrospinal Fluid of Some Alzheimer Disease Patients Recognize Cholinergic Neurons in the Rat Central Nervous System

    NASA Astrophysics Data System (ADS)

    McRae-Degueurce, Amanda; Booj, Serney; Haglid, Kenneth; Rosengren, Lars; Karlsson, Jan Erik; Karlsson, Ingvar; Wallin, Anders; Svennerholm, Lars; Gottfries, Carl-Gerhard; Dahlstrom, Annica

    1987-12-01

    The etiology of Alzheimer disease is unclear. However, immunological aberrations have been suggested to be critical factors in the pathogenesis of this neurodegenerative disease. This study was carried out to investigate if cerebrospinal fluid (CSF) from Alzheimer disease patients contains antibodies that recognize specific neuronal populations in the rat central nervous system. The results indicate that in a subgroup of patients this is indeed the case. The antibodies reported in this study have the following properties: (i) they recognize neuronal populations and components in the medial septum and spinal motor neurons in rats perfused with a mixture that fixes small neurotransmitter molecules; (ii) adsorption of the patient CSF with staphylococcal protein A-Sepharose and using a polyclonal antiserum against human IgG3 indicates that the immunocytochemical reaction in these brain regions is mainly due to the subclass IgG3; and (iii) the CSF immunocytochemical reaction is blocked by preincubation of the sections with a rabbit anti-acetylcholine antiserum. These results provide evidence that antibodies in the CSF of some, but not all, Alzheimer disease patients recognize acetylcholine-like epitopes in cholinergic neurons in the rat central nervous system.

  10. Computer Program Recognizes Patterns in Time-Series Data

    NASA Technical Reports Server (NTRS)

    Hand, Charles

    2003-01-01

    A computer program recognizes selected patterns in time-series data like digitized samples of seismic or electrophysiological signals. The program implements an artificial neural network (ANN) and a set of N clocks for the purpose of determining whether N or more instances of a certain waveform, W, occur within a given time interval, T. The ANN must be trained to recognize W in the incoming stream of data. The first time the ANN recognizes W, it sets clock 1 to count down from T to zero; the second time it recognizes W, it sets clock 2 to count down from T to zero, and so forth through the Nth instance. On the N + 1st instance, the cycle is repeated, starting with clock 1. If any clock has not reached zero when it is reset, then N instances of W have been detected within time T, and the program so indicates. The program can readily be encoded in a field-programmable gate array or an application-specific integrated circuit that could be used, for example, to detect electroencephalographic or electrocardiographic waveforms indicative of epileptic seizures or heart attacks, respectively.

  11. Moonlighting proteins in cancer.

    PubMed

    Min, Kyung-Won; Lee, Seong-Ho; Baek, Seung Joon

    2016-01-01

    Since the 1980s, growing evidence suggested that the cellular localization of proteins determined their activity and biological functions. In a classical view, a protein is characterized by the single cellular compartment where it primarily resides and functions. It is now believed that when proteins appear in different subcellular locations, the cells surpass the expected activity of proteins given the same genomic information to fulfill complex biological behavior. Many proteins are recognized for having the potential to exist in multiple locations in cells. Dysregulation of translocation may cause cancer or contribute to poorer cancer prognosis. Thus, quantitative and comprehensive assessment of dynamic proteins and associated protein movements could be a promising indicator in determining cancer prognosis and efficiency of cancer treatment and therapy. This review will summarize these so-called moonlighting proteins, in terms of a coupled intracellular cancer signaling pathway. Determination of the detailed biological intracellular and extracellular transit and regulatory activity of moonlighting proteins permits a better understanding of cancer and identification of potential means of molecular intervention. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Recognizing Materials using Perceptually Inspired Features

    PubMed Central

    Sharan, Lavanya; Liu, Ce; Rosenholtz, Ruth; Adelson, Edward H.

    2013-01-01

    Our world consists not only of objects and scenes but also of materials of various kinds. Being able to recognize the materials that surround us (e.g., plastic, glass, concrete) is important for humans as well as for computer vision systems. Unfortunately, materials have received little attention in the visual recognition literature, and very few computer vision systems have been designed specifically to recognize materials. In this paper, we present a system for recognizing material categories from single images. We propose a set of low and mid-level image features that are based on studies of human material recognition, and we combine these features using an SVM classifier. Our system outperforms a state-of-the-art system [Varma and Zisserman, 2009] on a challenging database of real-world material categories [Sharan et al., 2009]. When the performance of our system is compared directly to that of human observers, humans outperform our system quite easily. However, when we account for the local nature of our image features and the surface properties they measure (e.g., color, texture, local shape), our system rivals human performance. We suggest that future progress in material recognition will come from: (1) a deeper understanding of the role of non-local surface properties (e.g., extended highlights, object identity); and (2) efforts to model such non-local surface properties in images. PMID:23914070

  13. Identification and analysis of cytochrome P450IID6 antigenic sites recognized by anti-liver-kidney microsome type-1 antibodies (LKM1).

    PubMed

    Yamamoto, A M; Cresteil, D; Boniface, O; Clerc, F F; Alvarez, F

    1993-05-01

    Anti-liver-kidney microsome type-1 antibodies (LKM1), present in sera from a group of patients with autoimmune hepatitis, are directed against P450IID6. Previous work, using cDNA constructions spanning most of the P450IID6 protein defined the main immunogenic site between the amino acids (aa), 254-271 and predicted the presence of other putative immunogenic sites in the molecule. Fusion proteins from new cDNA constructions, spanning so-far-untested regions between aa 1-125 and 431-522, were not recognized by LKM1-positive sera. Synthetic peptides, representing sequences from putative immunogenic regions or previously untested regions, allowed a precise definition of four antigenic sites located between peptides 257-269, 321-351, 373-389 and 410-429, which were recognized, respectively, by 14, 8, 1 and 2 out of 15 LKM1-positive sera tested. The minimal sequence of the main antigenic site (peptide 257-269) recognized by the autoantibody was established to be WDPAQPPRD (peptide 262-270). In addition, deletion and replacement experiments showed that aa 263 (Asp) was essential for the binding of the autoantibody to peptide 262-270. Analysis of the second most frequently recognized peptide between aa 321-351, was performed using peptides 321-339 and 340-351 in competitive inhibition studies. Complete elimination of antibody binding to peptide 321-351 obtained by absorption of both shorter peptides indicated that peptide 321-351 is a discontinuous antigenic site. LKM1-positive sera reacting against peptide 321-351 recognized either both the shorter peptides or just one of them preferentially. Results of the present study suggest that the production of LKM1 antibodies is an antigen-driven, poly- or oligoclonal B cell response. The identification of antigenic sites will allow: (i) the development of specific diagnostic tests and (ii) further studies on the pathogenic value of LKM1 antibodies in autoimmune hepatitis.

  14. Sera of children with hepatitis C infection and anti-liver-kidney microsome-1 antibodies recognize different CYP2D6 epitopes than adults with LKM+/HCV+ sera.

    PubMed

    Herzog, D; Yamamoto, A M; Jara, P; Maggiore, G; Sarles, J; Alvarez, F

    1999-11-01

    Liver-kidney microsome type 1 (LKM1) antibodies are specific markers of autoimmune hepatitis (AIH) type 2. Antibodies to LKM1 have been found in 2% to 3% of adults infected with hepatitis C virus (HCV) without AIH. Thirty percent of these antibodies are directed against linear sequences of CYP2D6 protein. LKM1 antibodies in HCV+/LKM1+ sera and in sera of AIH patients do not recognize the same CYP2D6 epitopes. The current study was conducted to determine whether LKM1 antibodies in HCV+/LKM1+ children's sera are the result of the same immune response as the antibodies described in AIH type 2 and in HCV+/LKM1+ adult patients. Sera from 10 HCV+/LKM1+ children were tested against human liver microsomal and cytosolic proteins by Western blot analysis and against synthetic peptides of the CYP2D6 sequence between amino acids 200 and 429 by dot blot. The same sera were tested against radiolabeled CYP2D6 by immunoprecipitation. Four of 10 sera tested by Western blot analysis showed immunoglobulin (Ig) G-type antibodies against CYP2D6, and 2 had antibodies against proteins of 58, 66, and 84 kDa. One of the sera also contained IgM-type anti-66-kDa and 84-kDa proteins. The radioligand test detected anti-CYP2D6 antibodies in 9 of 10 patients. Five of the anti-CYP2D6-positive sera recognized a peptide between amino acids 200 and 429 including amino acids 254-271. Most HCV+/LKM1+ sera from children recognize conformational epitopes of the CYP2D6 antigen, and half recognize linear epitopes. Some HCV+/LKM1+ sera demonstrated antibodies against the AIH type 2 main antigenic site of the CYP2D6. Screening of HCV RNA should be performed before starting treatment of presumed autoimmune hepatitis associated with LKM1.

  15. Identification of the DNA-Binding Domains of Human Replication Protein A That Recognize G-Quadruplex DNA

    PubMed Central

    Prakash, Aishwarya; Natarajan, Amarnath; Marky, Luis A.; Ouellette, Michel M.; Borgstahl, Gloria E. O.

    2011-01-01

    Replication protein A (RPA), a key player in DNA metabolism, has 6 single-stranded DNA-(ssDNA-) binding domains (DBDs) A-F. SELEX experiments with the DBDs-C, -D, and -E retrieve a 20-nt G-quadruplex forming sequence. Binding studies show that RPA-DE binds preferentially to the G-quadruplex DNA, a unique preference not observed with other RPA constructs. Circular dichroism experiments show that RPA-CDE-core can unfold the G-quadruplex while RPA-DE stabilizes it. Binding studies show that RPA-C binds pyrimidine- and purine-rich sequences similarly. This difference between RPA-C and RPA-DE binding was also indicated by the inability of RPA-CDE-core to unfold an oligonucleotide containing a TC-region 5′ to the G-quadruplex. Molecular modeling studies of RPA-DE and telomere-binding proteins Pot1 and Stn1 reveal structural similarities between the proteins and illuminate potential DNA-binding sites for RPA-DE and Stn1. These data indicate that DBDs of RPA have different ssDNA recognition properties. PMID:21772997

  16. Mapping monomeric threading to protein-protein structure prediction.

    PubMed

    Guerler, Aysam; Govindarajoo, Brandon; Zhang, Yang

    2013-03-25

    The key step of template-based protein-protein structure prediction is the recognition of complexes from experimental structure libraries that have similar quaternary fold. Maintaining two monomer and dimer structure libraries is however laborious, and inappropriate library construction can degrade template recognition coverage. We propose a novel strategy SPRING to identify complexes by mapping monomeric threading alignments to protein-protein interactions based on the original oligomer entries in the PDB, which does not rely on library construction and increases the efficiency and quality of complex template recognitions. SPRING is tested on 1838 nonhomologous protein complexes which can recognize correct quaternary template structures with a TM score >0.5 in 1115 cases after excluding homologous proteins. The average TM score of the first model is 60% and 17% higher than that by HHsearch and COTH, respectively, while the number of targets with an interface RMSD <2.5 Å by SPRING is 134% and 167% higher than these competing methods. SPRING is controlled with ZDOCK on 77 docking benchmark proteins. Although the relative performance of SPRING and ZDOCK depends on the level of homology filters, a combination of the two methods can result in a significantly higher model quality than ZDOCK at all homology thresholds. These data demonstrate a new efficient approach to quaternary structure recognition that is ready to use for genome-scale modeling of protein-protein interactions due to the high speed and accuracy.

  17. Functional base-pairing interaction between highly conserved elements of U3 small nucleolar RNA and the small ribosomal subunit RNA.

    PubMed

    Hughes, J M

    1996-06-21

    The U3 nucleolar RNA has a remarkably wide phyletic distribution extending from the Eukarya to the Archaea. It functions in maturation of the small subunit (SSU) rRNA through a mechanism which is as yet unknown but which involves base-pairing with pre-rRNA. The most conserved part of U3 is within 30 nucleotides of the 5' end, but as yet no function for this domain has been proposed. Elements within this domain are complementary to highly conserved sequences in the SSU rRNA which, in the mature form, fold into a universally conserved pseudoknot. The nature of the complementarity suggests a novel mechanism for U3 function whereby U3 facilitates correct folding of the pseudoknot. Wide phylogenetic comparison provides compelling evidence in support of the interaction in that significant complementary changes have taken place, particularly in the archaeon Sulfolobus, which maintain the base-pairing. Base-substitution mutations in yeast U3 designed to disrupt the base-pairing indicate that the interaction is probably essential. These include cold-sensitivity mutations which exhibit phenotypes similar to U3-depletion, but without impairment of the AO processing step, which occurs within the 5' ETS. These phenotypes are consistent with the destabilization of SSU precursors and partial impairment of the processing steps A1, at the 5' ETS/18 S boundary, and A2, within the ITS1.

  18. Protein Surface Mimetics: Understanding How Ruthenium Tris(Bipyridines) Interact with Proteins.

    PubMed

    Hewitt, Sarah H; Filby, Maria H; Hayes, Ed; Kuhn, Lars T; Kalverda, Arnout P; Webb, Michael E; Wilson, Andrew J

    2017-01-17

    Protein surface mimetics achieve high-affinity binding by exploiting a scaffold to project binding groups over a large area of solvent-exposed protein surface to make multiple cooperative noncovalent interactions. Such recognition is a prerequisite for competitive/orthosteric inhibition of protein-protein interactions (PPIs). This paper describes biophysical and structural studies on ruthenium(II) tris(bipyridine) surface mimetics that recognize cytochrome (cyt) c and inhibit the cyt c/cyt c peroxidase (CCP) PPI. Binding is electrostatically driven, with enhanced affinity achieved through enthalpic contributions thought to arise from the ability of the surface mimetics to make a greater number of noncovalent interactions than CCP with surface-exposed basic residues on cyt c. High-field natural abundance 1 H, 15 N HSQC NMR experiments are consistent with surface mimetics binding to cyt c in similar manner to CCP. This provides a framework for understanding recognition of proteins by supramolecular receptors and informing the design of ligands superior to the protein partners upon which they are inspired. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A new rapid method for isolating nucleoli.

    PubMed

    Li, Zhou Fang; Lam, Yun Wah

    2015-01-01

    The nucleolus was one of the first subcellular organelles to be isolated from the cell. The advent of modern proteomic techniques has resulted in the identification of thousands of proteins in this organelle, and live cell imaging technology has allowed the study of the dynamics of these proteins. However, the limitations of current nucleolar isolation methods hinder the further exploration of this structure. In particular, these methods require the use of a large number of cells and tedious procedures. In this chapter we describe a new and improved nucleolar isolation method for cultured adherent cells. In this method cells are snap-frozen before direct sonication and centrifugation onto a sucrose cushion. The nucleoli can be obtained within a time as short as 20 min, and the high yield allows the use of less starting material. As a result, this method can capture rapid biochemical changes in nucleoli by freezing the cells at a precise time, hence faithfully reflecting the protein composition of nucleoli at the specified time point. This protocol will be useful for proteomic studies of dynamic events in the nucleolus and for better understanding of the biology of mammalian cells.

  20. Recognizing asymmetry in pseudo-symmetry; structural insights into the interaction between amphipathic α-helices and X-bundle proteins.

    PubMed

    Haddad, John Faissal; Yang, Yidai; Yeung, Sylvain; Couture, Jean-François

    2017-11-01

    An α-helix bundle is a small and compact protein fold always composed of more than 2 α-helices that typically run nearly parallel or antiparallel to each other. The repertoire of arrangements of α-helix bundle is such that these domains bind to a myriad of molecular entities including DNA, RNA, proteins and small molecules. A special instance of α-helical bundle is the X-type in which the arrangement of two α-helices interact at 45° to form an X. Among those, some X-helix bundle proteins bind to the hydrophobic section of an amphipathic α-helix in a seemingly orientation and sequence specific manner. In this review, we will compare the binding mode of amphipathic α-helices to X-helix bundle and α-helical bundle proteins. From these structures, we will highlight potential regulatory paradigms that may control the specific interactions of X-helix bundle proteins to amphipathic α-helices. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.