Science.gov

Sample records for nucleoside triphosphatase activity

  1. RNA 5'-triphosphatase, nucleoside triphosphatase, and guanylyltransferase activities of baculovirus LEF-4 protein.

    PubMed

    Gross, C H; Shuman, S

    1998-12-01

    Autographa californica nuclear polyhedrosis virus late and very late mRNAs are transcribed by an RNA polymerase consisting of four virus-encoded polypeptides: LEF-8, LEF-9, LEF-4, and p47. The 464-amino-acid LEF-4 subunit contains the signature motifs of GTP:RNA guanylyltransferases (capping enzymes). Here, we show that the purified recombinant LEF-4 protein catalyzes two reactions involved in RNA cap formation. LEF-4 is an RNA 5'-triphosphatase that hydrolyzes the gamma phosphate of triphosphate-terminated RNA and a guanylyltransferase that reacts with GTP to form a covalent protein-guanylate adduct. The RNA triphosphatase activity depends absolutely on a divalent cation; the cofactor requirement is satisfied by either magnesium or manganese. LEF-4 also hydrolyzes ATP to ADP and Pi (Km = 43 microM ATP; Vmax = 30 s-1) and GTP to GDP and Pi. The LEF-4 nucleoside triphosphatase (NTPase) is activated by manganese or cobalt but not by magnesium. The RNA triphosphatase and NTPase activities of baculovirus LEF-4 resemble those of the vaccinia virus and Saccharomyces cerevisiae mRNA capping enzymes. We suggest that these proteins comprise a novel family of metal-dependent triphosphatases. PMID:9811740

  2. Characterization of nucleoside triphosphatase activity in isolated pea nuclei and its photoreversible regulation by light

    NASA Technical Reports Server (NTRS)

    Chen, Y. R.; Roux, S. J.

    1986-01-01

    A nucleoside triphosphatase (NTPase) present in highly purified preparations of pea nuclei was partially characterized. The activity of this enzyme was stimulated by divalent cations (Mg2+ = Mn2+ > Ca2+), but was not affected by the monovalent cations, Na+ and K+. The Mg(2+)-dependent activity was further stimulated by concentrations of Ca2+ in the low micromolar range. It could catalyze the hydrolysis of ATP, GTP, UTP, and CTP, all with a pH optimum of 7.5. The nuclear NTPase activity was not inhibited by vanadate, oligomycin, or nitrate, but was inhibited by relatively low concentrations of quercetin and the calmodulin inhibitor, compound 48/80. The NTPase was stimulated more than 50% by red light, and this effect was reversed by subsequent irradiation with far-red light. The photoreversibility of the stimulation indicated that the photoreceptor for this response was phytochrome, an important regulator of photomorphogenesis and gene expression in plants.

  3. Nucleoside triphosphatase and RNA helicase activities associated with GB virus B nonstructural protein 3.

    PubMed

    Zhong, W; Ingravallo, P; Wright-Minogue, J; Skelton, A; Uss, A S; Chase, R; Yao, N; Lau, J Y; Hong, Z

    1999-09-01

    GB virus B (GBV-B) is a positive-stranded RNA virus that belongs to the Flaviviridae family. This virus is closely related to hepatitis C virus (HCV) and causes acute hepatitis in tamarins (Saguinus species). Nonstructural protein 3 (NS3) of GBV-B contains sequence motifs predictive of three enzymatic activities: serine protease, nucleoside triphosphatase (NTPase), and RNA helicase. The N-terminal serine protease has been characterized and shown to share similar substrate specificity with the HCV NS3 protease. In this report, a full-length GBV-B NS3 protein was expressed in Escherichia coli and purified to homogeneity. This recombinant protein was shown to possess polynucleotide-stimulated NTPase and double-stranded RNA (dsRNA) unwinding activities. Both activities were abolished by a single amino acid substitution, from the Lys (K) residue in the conserved walker motif A (or Ia) "AXXXXGK(210)S" to an Ala (A), confirming that they are intrinsic to GBV-B NS3. Kinetic parameters (K(m) and k(cat)) for hydrolysis of various NTPs or dNTPs were obtained. The dsRNA unwinding activity depends on the presence of divalent metal ions and ATP and requires an RNA duplex substrate with 3' unpaired regions (RNAs with 5' unpaired regions only or with blunt ends are not suitable substrates for this enzyme). This indicates that GBV-B NS3 RNA helicase unwinds dsRNA in the 3' to 5' direction. Direct interaction of the GBV-B NS3 protein with a single-stranded RNA was established using a gel-based RNA bandshift assay. Finally, a homology model of GBV-B NS3 RNA helicase domain based on the 3-dimensional structure of the HCV NS3 helicase that shows a great similarity in overall structure and surface charge distribution between the two proteins was proposed. PMID:10497107

  4. Properties of mammalian nuclear-envelope nucleoside triphosphatase.

    PubMed Central

    Agutter, P S; Cockrill, J B; Lavine, J E; McCaldin, B; Sim, R B

    1979-01-01

    The nucleoside triphosphatase activities of the nuclear envelopes from rat liver, pig liver and simian-virus-40-transformed mouse-embryo 3T3 cells were shown to exhibit similar parperties. All three preparations hydrolyse ATP, 2'-dATP, 3'-dATP, GTP, CTP and UTP in the presence of Mg2+, Ca2+, Mn2+ and Co2+ with a pH optimum of 8.0, are sensitive to inhibition by mercurials, arsenicals, quercetin, proflavin and adenosine 5'-[gamma-thio]triphosphate and are partially inactivated by exposure to high ionic strength. The kinetic behaviour is similar for all substrates irrespective of the source of material. The typical Eadie-Hofstee plot, which is concave upwards at pH 8.0 when the ionic strength is 20mM, becomes linear when the pH is increased to 8.5 or the ionic strength to 160mM. The overall evidence, particularly the labelling of only one polypeptide by [gamma-32P]ATP, suggests that under the conditions of preparation and assay used only one class of nucleoside triphosphatase active sites is detectable in nuclear envelopes. The importance of these results for an understanding of the role of the enzyme in vivo is discussed. PMID:229821

  5. Properties of mammalian nuclear-envelope nucleoside triphosphatase.

    PubMed

    Agutter, P S; Cockrill, J B; Lavine, J E; McCaldin, B; Sim, R B

    1979-09-01

    The nucleoside triphosphatase activities of the nuclear envelopes from rat liver, pig liver and simian-virus-40-transformed mouse-embryo 3T3 cells were shown to exhibit similar parperties. All three preparations hydrolyse ATP, 2'-dATP, 3'-dATP, GTP, CTP and UTP in the presence of Mg2+, Ca2+, Mn2+ and Co2+ with a pH optimum of 8.0, are sensitive to inhibition by mercurials, arsenicals, quercetin, proflavin and adenosine 5'-[gamma-thio]triphosphate and are partially inactivated by exposure to high ionic strength. The kinetic behaviour is similar for all substrates irrespective of the source of material. The typical Eadie-Hofstee plot, which is concave upwards at pH 8.0 when the ionic strength is 20mM, becomes linear when the pH is increased to 8.5 or the ionic strength to 160mM. The overall evidence, particularly the labelling of only one polypeptide by [gamma-32P]ATP, suggests that under the conditions of preparation and assay used only one class of nucleoside triphosphatase active sites is detectable in nuclear envelopes. The importance of these results for an understanding of the role of the enzyme in vivo is discussed.

  6. Importance of mammalian nuclear-envelope nucleoside triphosphatase in nucleo-cytoplasmic transport of ribonucleoproteins.

    PubMed Central

    Agutter, P S; McCaldin, B; McArdle, H J

    1979-01-01

    The nucleoside triphosphate-stimulated efflux of RNA from isolated nuclei was studied under a range of conditions, and the effects of these conditions on the process were compared with the properties of the nucleoside triphosphatase located in the pore complex. A marked similarity between the rate of efflux and the rate of nucleoside triphosphate hydrolysis was apparent, in terms of substrate specificity, sensitivity to treatment with insolubilized trypsin, kinetics and the effects of increased ionic strength and of many inhibitors. These results are taken, in view of earlier evidence, to suggest that the activity of the nucleoside triphosphatase is a prerequisite for nucleo-cytoplasmic RNA transport in vivo. There are some indications that the nuclear-envelope lipid is also involved in regulating the efflux process. PMID:229828

  7. Importance of mammalian nuclear-envelope nucleoside triphosphatase in nucleo-cytoplasmic transport of ribonucleoproteins.

    PubMed

    Agutter, P S; McCaldin, B; McArdle, H J

    1979-09-15

    The nucleoside triphosphate-stimulated efflux of RNA from isolated nuclei was studied under a range of conditions, and the effects of these conditions on the process were compared with the properties of the nucleoside triphosphatase located in the pore complex. A marked similarity between the rate of efflux and the rate of nucleoside triphosphate hydrolysis was apparent, in terms of substrate specificity, sensitivity to treatment with insolubilized trypsin, kinetics and the effects of increased ionic strength and of many inhibitors. These results are taken, in view of earlier evidence, to suggest that the activity of the nucleoside triphosphatase is a prerequisite for nucleo-cytoplasmic RNA transport in vivo. There are some indications that the nuclear-envelope lipid is also involved in regulating the efflux process.

  8. Purification and Characterization of West Nile Virus Nucleoside Triphosphatase (NTPase)/Helicase: Evidence for Dissociation of the NTPase and Helicase Activities of the Enzyme

    PubMed Central

    Borowski, Peter; Niebuhr, Andreas; Mueller, Oliver; Bretner, Maria; Felczak, Krzysztof; Kulikowski, Tadeusz; Schmitz, Herbert

    2001-01-01

    The nucleoside triphosphatase (NTPase)/helicase associated with nonstructural protein 3 of West Nile (WN) virus was purified from cell culture medium harvested from virus-infected Vero cells. The purification procedure included sequential chromatography on Superdex-200 and Reactive Red 120 columns, followed by a concentration step on an Ultrogel hydroxyapatite column. The nature of the purified protein was confirmed by immunoblot analysis using a WN virus-positive antiserum, determination of its NH2 terminus by microsequencing, and a binding assay with 5′-[14C]fluorosulfonylbenzoyladenosine. Under optimized reaction conditions the enzyme catalyzed the hydrolysis of ATP and the unwinding of the DNA duplex with kcat values of 133 and 5.5 × 10−3 s−1, respectively. Characterization of the NTPase activity of the WN virus enzyme revealed that optimum conditions with respect to the Mg2+ requirement and the monovalent salt or polynucleotide response differed from those of other flavivirus NTPases. Initial kinetic studies demonstrated that the inhibition (or activation) of ATPase activity by ribavirin-5′-triphosphate is not directly related to changes in the helicase activity of the enzyme. Further analysis using guanine and O6-benzoylguanine derivatives revealed that the ATPase activity of WN virus NTPase/helicase may be modulated, i.e., increased or reduced, with no effect on the helicase activity of the enzyme. On the other hand the helicase activity could be modulated without changing the ATPase activity. Our observations show that the number of ATP hydrolysis events per unwinding cycle is not a constant value. PMID:11238848

  9. Ribonucleic acid stimulation of mammalian liver nuclear-envelope nucleoside triphosphatase. A possible enzymic marker for the nuclear envelope.

    PubMed Central

    Agutter, P S; Harris, J R; Stevenson, I

    1977-01-01

    1. The specific activity of rat and pig liver nuclear-envelope nucleoside triphosphatase (EC 3.6.1.3) decreases when the system is depleted of RNA. The activity can be restored by adding high concentrations of yeast RNA to the assay medium. 2. Exogenous RNA also increases the activity of the enzyme in control envelopes (not RNA-depleted). The effect appears to be largely specific for poly(A) and poly(G); it is not stimulated by rRNA or tRNA preparations, ribonuclease-hydrolysed RNA, AMP, or double- or single-stranded DNA. 3. Inhibitors of the enzyme, in concentrations at which half-maximal inhibition of the enzyme is achieved, do not affect the percentage stimulation of the enzyme by yeast RNA. 4. The simulation is abolished by the inclusion of 150 mM-KCl or -NaCl in the assay medium, but not by increasing the assay pH to 8.5. 5. The results are discussed in the light of the possible role of the nucleoside triphosphatase in vivo in nucleo-cytoplasmic ribonucleoprotein translocation. 6. It is proposed that poly(G)-stimulated Mg2+-activated adenosine triphosphatase activity should be adopted as an enzymic marker for the nuclear envelope. Images PLATE 1 PMID:141276

  10. Ribonucleic acid stimulation of mammalian liver nuclear-envelope nucleoside triphosphatase. A possible enzymic marker for the nuclear envelope.

    PubMed

    Agutter, P S; Harris, J R; Stevenson, I

    1977-03-15

    1. The specific activity of rat and pig liver nuclear-envelope nucleoside triphosphatase (EC 3.6.1.3) decreases when the system is depleted of RNA. The activity can be restored by adding high concentrations of yeast RNA to the assay medium. 2. Exogenous RNA also increases the activity of the enzyme in control envelopes (not RNA-depleted). The effect appears to be largely specific for poly(A) and poly(G); it is not stimulated by rRNA or tRNA preparations, ribonuclease-hydrolysed RNA, AMP, or double- or single-stranded DNA. 3. Inhibitors of the enzyme, in concentrations at which half-maximal inhibition of the enzyme is achieved, do not affect the percentage stimulation of the enzyme by yeast RNA. 4. The simulation is abolished by the inclusion of 150 mM-KCl or -NaCl in the assay medium, but not by increasing the assay pH to 8.5. 5. The results are discussed in the light of the possible role of the nucleoside triphosphatase in vivo in nucleo-cytoplasmic ribonucleoprotein translocation. 6. It is proposed that poly(G)-stimulated Mg2+-activated adenosine triphosphatase activity should be adopted as an enzymic marker for the nuclear envelope.

  11. Molecular cloning, encoding sequence, and expression of vaccinia virus nucleic acid-dependent nucleoside triphosphatase gene.

    PubMed Central

    Rodriguez, J F; Kahn, J S; Esteban, M

    1986-01-01

    A rabbit poxvirus genomic library contained within the expression vector lambda gt11 was screened with polyclonal antiserum prepared against vaccinia virus nucleic acid-dependent nucleoside triphosphatase (NTPase)-I enzyme. Five positive phage clones containing from 0.72- to 2.5-kilobase-pair (kbp) inserts expressed a beta-galactosidase fusion protein that was reactive by immunoblotting with the NTPase-I antibody. Hybridization analysis allowed the location of this gene within the vaccinia HindIIID restriction fragment. From the known nucleotide sequence of the 16-kbp vaccinia HindIIID fragment, we identified a region that contains a 1896-base open reading frame coding for a 631-amino acid protein. Analysis of the complete sequence revealed a highly basic protein, with hydrophilic COOH and NH2 termini, various hydrophobic domains, and no significant homology to other known proteins. Translational studies demonstrate that NTPase-I belongs to a late class of viral genes. This protein is highly conserved among Orthopoxviruses. Images PMID:3025846

  12. Molecular cloning, encoding sequence, and expression of vaccinia virus nucleic acid-dependent nucleoside triphosphatase gene.

    PubMed

    Rodriguez, J F; Kahn, J S; Esteban, M

    1986-12-01

    A rabbit poxvirus genomic library contained within the expression vector lambda gt11 was screened with polyclonal antiserum prepared against vaccinia virus nucleic acid-dependent nucleoside triphosphatase (NTPase)-I enzyme. Five positive phage clones containing from 0.72- to 2.5-kilobase-pair (kbp) inserts expressed a beta-galactosidase fusion protein that was reactive by immunoblotting with the NTPase-I antibody. Hybridization analysis allowed the location of this gene within the vaccinia HindIIID restriction fragment. From the known nucleotide sequence of the 16-kbp vaccinia HindIIID fragment, we identified a region that contains a 1896-base open reading frame coding for a 631-amino acid protein. Analysis of the complete sequence revealed a highly basic protein, with hydrophilic COOH and NH2 termini, various hydrophobic domains, and no significant homology to other known proteins. Translational studies demonstrate that NTPase-I belongs to a late class of viral genes. This protein is highly conserved among Orthopoxviruses.

  13. Influence of nucleotides, cations and nucleoside triphosphatase inhibitors on the release of ribonucleic acid from isolated rat liver nuclei.

    PubMed Central

    Agutter, P S

    1980-01-01

    The reasons underlying reported discrepancies in the effects of ATP, ADP, adenosine 5'-[beta gamma-methylene]triphosphate, AMP + PPi, P-chloromercuribenzoate and F- on RNA efflux from isolated rat liver nuclei and on nuclear envelope nucleoside triphosphatase activity were investigated. The stimulatory effect of ADP was attributed to myokinase activity associated with the nuclei; this activity was eluted on repeated washing with nuclear incubation medium. In the absence of Ca2+ and Mn2+, ATP, adenosine 5'[beta gamma-methylene]triphosphate and AMP +PPi were found to promote release of both DNA and RNA. In the presence of 0.5 mM-Ca2+ and 9.3 mM-Mn2+, only ATP promoted RNA efflux to a significant extent. In the absence of spermidine, Ca2+ and Mn2+, nuclei released large quantities of DNA and RNA into the medium; this effect was promoted by p-chloromereuribenzoate. In the presence of the three cations, however, p-chloromercuribenzoate inhibited RNA efflux. F- caused a slight leakage of DNA from nuclei. The results are discussed in terms of models for the effects of ATP and analogues on RNA efflux and nuclear stability. PMID:6157391

  14. Influence of nucleotides, cations and nucleoside triphosphatase inhibitors on the release of ribonucleic acid from isolated rat liver nuclei.

    PubMed

    Agutter, P S

    1980-04-15

    The reasons underlying reported discrepancies in the effects of ATP, ADP, adenosine 5'-[beta gamma-methylene]triphosphate, AMP + PPi, P-chloromercuribenzoate and F- on RNA efflux from isolated rat liver nuclei and on nuclear envelope nucleoside triphosphatase activity were investigated. The stimulatory effect of ADP was attributed to myokinase activity associated with the nuclei; this activity was eluted on repeated washing with nuclear incubation medium. In the absence of Ca2+ and Mn2+, ATP, adenosine 5'[beta gamma-methylene]triphosphate and AMP +PPi were found to promote release of both DNA and RNA. In the presence of 0.5 mM-Ca2+ and 9.3 mM-Mn2+, only ATP promoted RNA efflux to a significant extent. In the absence of spermidine, Ca2+ and Mn2+, nuclei released large quantities of DNA and RNA into the medium; this effect was promoted by p-chloromereuribenzoate. In the presence of the three cations, however, p-chloromercuribenzoate inhibited RNA efflux. F- caused a slight leakage of DNA from nuclei. The results are discussed in terms of models for the effects of ATP and analogues on RNA efflux and nuclear stability.

  15. Brome Mosaic Virus 1a Nucleoside Triphosphatase/Helicase Domain Plays Crucial Roles in Recruiting RNA Replication Templates

    PubMed Central

    Wang, Xiaofeng; Lee, Wai-Ming; Watanabe, Tokiko; Schwartz, Michael; Janda, Michael; Ahlquist, Paul

    2005-01-01

    Positive-strand RNA virus RNA replication is invariably membrane associated and frequently involves viral proteins with nucleoside triphosphatase (NTPase)/helicase motifs or activities. Brome mosaic virus (BMV) encodes two RNA replication factors: 1a has a C-terminal NTPase/helicase-like domain, and 2apol has a central polymerase domain. 1a accumulates on endoplasmic reticulum membranes, recruits 2apol, and induces 50- to 70-nm membrane invaginations (spherules) serving as RNA replication compartments. 1a also recruits BMV replication templates such as genomic RNA3. In the absence of 2apol, 1a dramatically stabilizes RNA3 by transferring RNA3 to a membrane-associated, nuclease-resistant state that appears to correspond to the interior of the 1a-induced spherules. Prior results show that the 1a NTPase/helicase-like domain contributes to RNA recruitment. Here, we tested mutations in the conserved helicase motifs of 1a to further define the roles of this domain in RNA template recruitment. All 1a helicase mutations tested showed normal 1a accumulation, localization to perinuclear endoplasmic reticulum membranes, and recruitment of 2apol. Most 1a helicase mutants also supported normal spherule formation. Nevertheless, these mutations severely inhibited RNA replication and 1a-induced stabilization of RNA3 in vivo. For such 1a mutants, the membrane-associated RNA3 pool was both reduced and highly susceptible to added nuclease. Thus, 1a recruitment of viral RNA templates to a membrane-associated, nuclease-resistant state requires additional functions beyond forming spherules and recruiting RNA to membranes, and these functions depend on the 1a helicase motifs. The possibility that, similar to some double-stranded RNA viruses, the 1a NTPase/helicase-like domain may be involved in importing viral RNAs into a preformed replication compartment is discussed. PMID:16227294

  16. The major nucleoside triphosphatase in pea (Pisum sativum L.) nuclei and in rat liver nuclei share common epitopes also present in nuclear lamins

    NASA Technical Reports Server (NTRS)

    Tong, C. G.; Dauwalder, M.; Clawson, G. A.; Hatem, C. L.; Roux, S. J.

    1993-01-01

    The major nucleoside triphosphatase (NTPase) activities in mammalian and pea (Pisum sativum L.) nuclei are associated with enzymes that are very similar both biochemically and immunochemically. The major NTPase from rat liver nuclei appears to be a 46-kD enzyme that represents the N-terminal portion of lamins A and C, two lamina proteins that apparently arise from the same gene by alternate splicing. Monoclonal antibody (MAb) G2, raised to human lamin C, both immunoprecipitates the major (47 kD) NTPase in pea nuclei and recognizes it in western blot analyses. A polyclonal antibody preparation raised to the 47-kD pea NTPase (pc480) reacts with the same lamin bands that are recognized by MAb G2 in mammalian nuclei. The pc480 antibodies also bind to the same lamin-like bands in pea nuclear envelope-matrix preparations that are recognized by G2 and three other MAbs known to bind to mammalian lamins. In immunofluorescence assays, pc480 and anti-lamin antibodies stain both cytoplasmic and nuclear antigens in plant cells, with slightly enhanced staining along the periphery of the nuclei. These results indicate that the pea and rat liver NTPases are structurally similar and that, in pea nuclei as in rat liver nuclei, the major NTPase is probably derived from a lamin precursor by proteolysis.

  17. The Helicase-Like Domain of Plant Potexvirus Replicase Participates in Formation of RNA 5′ Cap Structure by Exhibiting RNA 5′-Triphosphatase Activity

    PubMed Central

    Li, Yi-Ija; Shih, Ting-Wan; Hsu, Yau-Heiu; Han, Yu-Tsung; Huang, Yih-Leh; Meng, Menghsiao

    2001-01-01

    Open reading frame 1 (ORF1) of potexviruses encodes a viral replicase comprising three functional domains: a capping enzyme at the N terminus, a putative helicase in the middle, and a polymerase at the C terminus. To verify the enzymatic activities associated with the putative helicase domain, the corresponding cDNA fragment from bamboo mosaic virus (BaMV) was cloned into vector pET32 and the protein was expressed in Escherichia coli and purified by metal affinity chromatography. An activity assay confirmed that the putative helicase domain has nucleoside triphosphatase activity. We found that it also possesses an RNA 5′-triphosphatase activity that specifically removes the γ phosphate from the 5′ end of RNA. Both enzymatic activities were abolished by the mutation of the nucleoside triphosphate-binding motif (GKS), suggesting that they have a common catalytic site. A typical m7GpppG cap structure was formed at the 5′ end of the RNA substrate when the substrate was treated sequentially with the putative helicase domain and the N-terminal capping enzyme, indicating that the putative helicase domain is truly involved in the process of cap formation by exhibiting its RNA 5′-triphosphatase activity. PMID:11711602

  18. The LEF-4 subunit of baculovirus RNA polymerase has RNA 5'-triphosphatase and ATPase activities.

    PubMed

    Jin, J; Dong, W; Guarino, L A

    1998-12-01

    The baculovirus Autographa californica nuclear polyhedrosis virus encodes a DNA-dependent RNA polymerase that is required for transcription of viral late genes. This polymerase is composed of four equimolar subunits, LEF-8, LEF-4, LEF-9, and p47. The LEF-4 subunit has guanylyltransferase activity, suggesting that baculoviruses may encode a full complement of capping enzymes. Here we show that LEF-4 is a bifunctional enzyme that hydrolyzes the gamma phosphates of triphosphate-terminated RNA and also hydrolyzes ATP and GTP to the respective diphosphate forms. Alanine substitution of five residues previously shown to be essential for vaccinia virus RNA triphosphatase activity inactivated the triphosphatase component of LEF-4 but not the guanylyltransferase domain. Conversely, mutation of the invariant lysine in the guanylyltransferase domain abolished the guanylyltransferase activity without affecting triphosphatase function. We also investigated the effects of substituting phenylalanine for leucine at position 105, a mutation that results in a virus that is temperature sensitive for late gene expression. We found that this mutation had no significant effect on the ATPase or guanylyltransferase activity of LEF-4 but resulted in a modest decrease in RNA triphosphatase activity. PMID:9811739

  19. New hypoxanthine nucleosides with RNA antiviral activity.

    PubMed

    Nair, V; Ussery, M A

    1992-08-01

    A series of novel C-2 functionalized hypoxanthine and purine ribonucleosides have been synthesized and evaluated against exotic RNA viruses of the family or genus alpha, arena, flavi, and rhabdo. Both specific and broad-spectrum antiviral activities were discovered but only with hypoxanthine nucleosides. PMID:1444325

  20. A protein tyrosine phosphatase-like protein from baculovirus has RNA 5'-triphosphatase and diphosphatase activities.

    PubMed

    Takagi, T; Taylor, G S; Kusakabe, T; Charbonneau, H; Buratowski, S

    1998-08-18

    The superfamily of protein tyrosine phosphatases (PTPs) includes at least one enzyme with an RNA substrate. We recently showed that the RNA triphosphatase domain of the Caenorhabditis elegans mRNA capping enzyme is related to the PTP enzyme family by sequence similarity and mechanism. The PTP most similar in sequence to the capping enzyme triphosphatase is BVP, a dual-specificity PTP encoded by the Autographa californica nuclear polyhedrosis virus. Although BVP previously has been shown to have modest tyrosine and serine/threonine phosphatase activity, we find that it is much more potent as an RNA 5'-phosphatase. BVP sequentially removes gamma and beta phosphates from the 5' end of triphosphate-terminated RNA, leaving a 5'-monophosphate end. The activity was specific for polynucleotides; nucleotide triphosphates were not hydrolyzed. A mutant protein in which the active site cysteine was replaced with serine was inactive. Three other dual-specificity PTPs (VH1, VHR, and Cdc14) did not exhibit detectable RNA phosphatase activity. Therefore, capping enzyme and BVP are members of a distinct PTP-like subfamily that can remove phosphates from RNA. PMID:9707557

  1. NUCLEOSIDE PHOSPHATASE ACTIVITIES IN RAT CARDIAC MUSCLE.

    PubMed

    ESSNER, E; NOVIKOFF, A B; QUINTANA, N

    1965-05-01

    Localizations of aldehyde-resistant nucleoside phosphatase activities in frozen sections of rat cardiac muscle have been studied by electron microscopy. Activities are higher after fixation with formaldehyde than with glutaraldehyde. After incubation with adenosine triphosphate or inosine diphosphate at pH 7.2, reaction product is found in the "terminal cisternae" or "transverse sacs" of the sarcoplasmic reticulum, which, together with the "intermediary vesicles" (T system), constitute the "dyads" or "triads". Reaction product is also present at the membranes of micropinocytotic vacuoles which apparently form from the plasma membrane of capillary endothelial cells and from the sarcolemma. In certain regions of the intercalated discs, reaction product is found within the narrow spaces between sarcolemmas of adjacent cells and within micropinocytotic vacuoles that seem to form from the sarcolemma. With inosine diphosphate, reaction product is also found in other parts of the sarcoplasmic reticulum. After incubation with cytidine monophosphate at pH 5, reaction product is present in the transverse sacs of sarcoplasmic reticulum, in micropinocytotic vacuoles in capillary endothelium, and in lysosomes of muscle fibers and capillaries. The possible significance of the sarcoplasmic reticulum phosphatases is discussed in relation to the role the reticulum probably plays in moving calcium ions and thereby controlling contraction and relaxation of the muscle fiber.

  2. High Inorganic Triphosphatase Activities in Bacteria and Mammalian Cells: Identification of the Enzymes Involved

    PubMed Central

    Lakaye, Bernard; Servais, Anne-Catherine; Scholer, Georges; Fillet, Marianne; Elias, Benjamin; Derochette, Jean-Michel; Crommen, Jacques; Wins, Pierre; Bettendorff, Lucien

    2012-01-01

    Background We recently characterized a specific inorganic triphosphatase (PPPase) from Nitrosomonas europaea. This enzyme belongs to the CYTH superfamily of proteins. Many bacterial members of this family are annotated as predicted adenylate cyclases, because one of the founding members is CyaB adenylate cyclase from A. hydrophila. The aim of the present study is to determine whether other members of the CYTH protein family also have a PPPase activity, if there are PPPase activities in animal tissues and what enzymes are responsible for these activities. Methodology/Principal Findings Recombinant enzymes were expressed and purified as GST- or His-tagged fusion proteins and the enzyme activities were determined by measuring the release of inorganic phosphate. We show that the hitherto uncharacterized E. coli CYTH protein ygiF is a specific PPPase, but it contributes only marginally to the total PPPase activity in this organism, where the main enzyme responsible for hydrolysis of inorganic triphosphate (PPPi) is inorganic pyrophosphatase. We further show that CyaB hydrolyzes PPPi but this activity is low compared to its adenylate cyclase activity. Finally we demonstrate a high PPPase activity in mammalian and quail tissue, particularly in the brain. We show that this activity is mainly due to Prune, an exopolyphosphatase overexpressed in metastatic tumors where it promotes cell motility. Conclusions and General Significance We show for the first time that PPPase activities are widespread in bacteria and animals. We identified the enzymes responsible for these activities but we were unable to detect significant amounts of PPPi in E. coli or brain extracts using ion chromatography and capillary electrophoresis. The role of these enzymes may be to hydrolyze PPPi, which could be cytotoxic because of its high affinity for Ca2+, thereby interfering with Ca2+ signaling. PMID:22984449

  3. Ultrastructural localization of the membrane-bound Mg-adenosine triphosphatase activity in rat meninges.

    PubMed

    Angelov, D N; Vasilev, V A

    1989-01-01

    The distribution of the membrane-bound magnesium ions-dependent adenosine triphosphatase (Mg-ATPase) activity has been studied ultracytochemically in rat meninges by the method of Wachstein and Meisel (1957). A device specially constructed to avoid preparation artefacts has been used to obtain sections from the parietal region of the head. The meninges display an intense though irregularly distributed ATPase activity marked by depositions of electron-dense reaction product (RP) which is almost absent in the outer and middle dural layers. In the borderline zone between dura mater and the arachnoid the RP deposits are found at the outer surface of the inner dural cells and at the contact sites between these cells and the dural neurothelium. The intercellular cleft(s) between the neurothelium and the outer arachnoidal layer, occupied by an "electron-dense band", remains free of RP. The strongest accumulations of reactions granules are observed on the surface of the leptomeningeal cells of the arachnoidal space. In the contact region between the inner arachnoidal and the outer pial layers the distribution of the RP is similar to the one observed in the interface zone dura mater/arachnoid, while the pial cells themselves are definitely reaction-positive. In all meningeal vessels RP is found at the lumenal and abluminal aspects of the endothelium as well as at the cell membranes of the perivascular cells. These results emphasize the importance of the dural neurothelium for the functions of the blood-cerebrospinal fluid (CSF)-barrier between the dural blood vessels and the CSF.

  4. Purification of an Ion-Stimulated Adenosine Triphosphatase from Plant Roots: Association with Plasma Membranes

    PubMed Central

    Hodges, T. K.; Leonard, R. T.; Bracker, C. E.; Keenan, T. W.

    1972-01-01

    A membrane-bound adenosine triphosphatase (EC 3.6.1.3) that requires Mg++ and that is stimulated by monovalent ions has been purified 7- to 8-fold from homogenates of oat (Avena sativa L. Cult. Goodfield) roots by discontinuous sucrose-gradient centrifugation. The enzyme was substrate specific; adenosine triphosphate was hydrolyzed 25 times more rapidly than other nucleoside triphosphates. The membrane fraction containing adenosine triphosphatase was enriched in plasma membranes, which were identified by the presence of a glucan synthetase (EC 2.4.1.12), a high sterol to phospholipid ratio, and by a stain consisting of periodic acid, chromic acid, and phosphotungstic acid that is specific for plant plasma membranes. Oat-root plasma membranes and the associated adenosine triphosphatase were purified on either a 6-layer discontinuous sucrose gradient or on a simplified gradient consisting of only two sucrose layers. These results represent the first demonstration that plant plasma membranes contain an adenosine triphosphatase that is activated by monovalent ions, and this finding further implicates the enzyme in the absorption of inorganic ions by plant roots. Images PMID:16592027

  5. Synthesis and Anti-HIV Activity of Novel 4'-Trifluoromethylated 5'-Deoxycarbocyclic Nucleoside Phosphonic Acids.

    PubMed

    Jee, Jun-Pil; Kim, Seyeon; Hong, Joon Hee

    2015-01-01

    Efficient synthetic route to novel 4'-trifluoromethylated 5'-deoxycarbocyclic nucleoside phosphonic acids was described from α-trifluoromethyl-α,β-unsaturated ester. Coupling of purine nucleosidic bases with cyclopentanol using a Mitsunobu reaction gave the nucleoside intermediates which were further phosphonated and hydrolyzed to reach desired nucleoside analogs. Synthesized nucleoside analogs were tested for anti-HIV activity as well as cytotoxicity. Adenine analog 22 shows significant anti-HIV activity (EC50 = 8.3 μM) up to 100 μM.

  6. Distribution of activity of alkaline phosphatase and Mg-dependent adenosine triphosphatase in the cranial dura mater-arachnoid interface zone of the rat.

    PubMed

    Angelov, D N

    1990-05-01

    The distribution of the activity of alkaline phosphatase and Mg-dependent adenosine triphosphatase was studied in the encephalic dura mater-arachnoid borderline (interface) zone of albino Wistar rats. Intense clustering of electron-dense granules that indicated alkaline phosphatase activity was observed in the inner dural cells, the neurothelial cells, the outermost row of the outer arachnoidal cells and in the intercellular cleft between the latter two (the so-called electron-dense band). The remainder of the outer arachnoidal cells contained almost no reaction product. Mg-adenosine triphosphatase activity was distributed differently; a lack of reaction product was observed not only in the outer arachnoidal cells, but also in the zone occupied by the electron-dense band. The data confirm histochemically the barrier properties of the dura mater-arachnoid interface zone.

  7. [Ultrastructural localization of adenosine triphosphatase activity in the proximal kidney tubules of white rats].

    PubMed

    Panasiuk, E N; Birov, V V; Nazar, P S; Saĭ, V G; Kavalishin, V I

    1977-10-01

    In white rats, the ferment topography of Mg+2 and (Na+ + K+)-activated ATPh-ses in proximal canaliculi was studied with the aid of the ultrastructural cytochemistry. The final product of the fermentative reaction (PhHPO4) in the form of small dense granuli is positioned on the duplicate folds of epithelial cells, the cells limiting the brush border micropiles, and on invaginations of the apical plasmalemme at the micropiles base. For (Na+ %K+)-activated ATPh-ses a localisation of the reaction product was determined in the canaliculi vessels.

  8. Localization of calcium stimulated adenosine triphosphatase activity in blood vessels of the skeleton

    NASA Technical Reports Server (NTRS)

    Doty, S. B.

    1985-01-01

    Alkaline phosphatase is an enzyme found in bone forming cells which decreases in certain bones as a result of hypogravity or non-weight bearing. This enzyme can also hydrolyze adenosine triphosphate. Therefore, an effort was made to localize calcium-stimulated ATPase by cytochemistry to determine whether altered bone cell activity might be related to changing calcium levels which occur during hypogravity. The results indicate that Ca(++)-ATPase is largely found along the endothelium and basal lamina of blood vessels, and not found in bone forming cells. This suggests that calcium regulation in the vicinity of bone formation may be modulated by the vasculature of the area.

  9. Modification of purine and pyrimidine nucleosides by direct C-H bond activation.

    PubMed

    Liang, Yong; Wnuk, Stanislaw F

    2015-03-17

    Transition metal-catalyzed modifications of the activated heterocyclic bases of nucleosides as well as DNA or RNA fragments employing traditional cross-coupling methods have been well-established in nucleic acid chemistry. This review covers advances in the area of cross-coupling reactions in which nucleosides are functionalized via direct activation of the C8-H bond in purine and the C5-H or C6-H bond in uracil bases. The review focuses on Pd/Cu-catalyzed couplings between unactivated nucleoside bases with aryl halides. It also discusses cross-dehydrogenative arylations and alkenylations as well as other reactions used for modification of nucleoside bases that avoid the use of organometallic precursors and involve direct C-H bond activation in at least one substrate. The scope and efficiency of these coupling reactions along with some mechanistic considerations are discussed.

  10. Halobacterial adenosine triphosphatases and the adenosine triphosphatase from Halobacterium saccharovorum

    NASA Technical Reports Server (NTRS)

    Kristjansson, Hordur; Sadler, Martha H.; Hochstein, Lawrence I.

    1986-01-01

    Membranes prepared from various members of the genus Halobacterium contained a Triton X-l00 activated adenosine triphosphatase. The enzyme from Halobacterium saccharovorum was unstable in solutions of low ionic strength and maximally active in the presence of 3.5 M NaCl. A variety of nucleotide triphosphates was hydrolyzed. MgADP, the product of ATP hydrolysis, was not hydrolyzed and was a competitive inhibitor with respect to MgATP. The enzyme from H. saccharovorum was composed of at least 2 and possibly 4 subunits. The 83-kDa and 60-kDa subunits represented about 90 percent of total protein. The 60-kDa subunit reacted with dicyclohexyl-carbodiimide when inhibition was carried out in an acidic medium. The enzyme from H. saccharovorum, possesses properties of an F(1)F(0) as well as an E(1)E(2) ATPase.

  11. Synthesis of nucleoside tetraphosphates and dinucleoside pentaphosphates via activation of cyclic trimetaphosphate.

    PubMed

    Mohamady, Samy; Taylor, Scott D

    2013-06-01

    A procedure for the synthesis of dinucleoside 5'-pentaphosphates (Np5N) and nucleoside 5'-tetraphosphates (Np4) is described. The procedure relies on the activation of cyclic trimetaphosphate followed by a reaction with a nucleoside 5'-monophosphate (NMP) to give intermediates of type 3. Reaction of 3 with water or an NMP gives the desired products in yields ranging from 77 to 86%. PMID:23668391

  12. Structural and functional characterization of a noncanonical nucleoside triphosphate pyrophosphatase from Thermotoga maritima

    SciTech Connect

    Awwad, Khaldeyah; Desai, Anna; Smith, Clyde; Sommerhalter, Monika

    2013-02-01

    A 2.15 Å resolution crystal structure of TM0159 with bound IMP and enzyme-kinetic data are presented. This noncanonical nucleoside triphosphatase from T. maritima helps to maintain a correct pool of DNA and RNA precursor molecules. The hyperthermophilic bacterium Thermotoga maritima has a noncanonical nucleoside triphosphatase that catalyzes the conversion of inosine triphosphate (ITP), deoxyinosine triphosphate (dITP) and xanthosine triphosphate (XTP) into inosine monophosphate (IMP), deoxyinosine monophosphate (IMP) and xanthosine monophosphate (XMP), respectively. The k{sub cat}/K{sub m} values determined at 323 and 353 K fall between 1.31 × 10{sup 4} and 7.80 × 10{sup 4} M{sup −1} s{sup −1}. ITP and dITP are slightly preferred over XTP. Activity towards canonical nucleoside triphosphates (ATP and GTP) was not detected. The enzyme has an absolute requirement for Mg{sup 2+} as a cofactor and has a preference for alkaline conditions. A protein X-ray structure of the enzyme with bound IMP was obtained at 2.15 Å resolution. The active site houses a well conserved network of residues that are critical for substrate recognition and catalysis. The crystal structure shows a tetramer with two possible dimer interfaces. One of these interfaces strongly resembles the dimer interface that is found in the structures of other noncanonical nucleoside pyrophosphatases from human (human ITPase) and archaea (Mj0226 and PhNTPase)

  13. Synthesis of optically pure dioxolane nucleosides and their anti-HIV activity

    SciTech Connect

    Siddigui, M.A.; Evans, C.; Jin, H.L.; Tse, A.; Brown, W.; Nguyen-Ba, N.; Mansour, T.S.; Cameron, J.M.

    1993-12-31

    The clinical candidate 3TC, 1, possessing non-natural absolute stereochemistry is a potent and non-toxic inhibitor of a key enzyme, reverse transcriptase, involved in the replicative cycle of the HIV. Selective inhibition of both HIV and HBV is seen. In view of the authors` interest in finding correlation between stereochemistry and antiviral activity, several enantiomerically pure dioxolane nucleosides, 2, were synthesized and assayed. The discussion will focus on (a) the synthesis of optically pure dioxolane sugars from L-ascorbic acid, (b) enzymatic resolution of purine dioxolane nucleosides, (c) anti HIV-1 activity in MT-4 cells.

  14. Dideoxy nucleoside triphosphate (ddNTP) analogues: Synthesis and polymerase substrate activities of pyrrolidinyl nucleoside triphosphates (prNTPs).

    PubMed

    Gade, Chandrasekhar Reddy; Dixit, Manjusha; Sharma, Nagendra K

    2016-09-15

    The dideoxynucleoside triphosphates (ddNTPs) terminate the bio-polymerization of DNA and become essential chemical component of DNA sequencing technology which is now basic tool for molecular biology research. In this method the radiolabeled or fluorescent dye labeled ddNTP analogues are being used for DNA sequencing by detection of the terminated DNA fragment after single labeled ddNTP incorporation into DNA under PCR conditions. This report describes the syntheses of rationally designed novel amino-functionalized ddNTP analogue such as Pyrrolidine nucleoside triphosphates (prNTPs), and their polymerase activities with DNA polymerase by LC-MS and Gel-electrophoretic techniques. The Mass and PAGE analyses strongly support the incorporation of prNTPs into DNA oligonucleotide with Therminator DNA polymerase as like control substrate ddNTP. As resultant the DNA oligonucleotide are functionalized as amine group by prNTP incorporation with polymerase. Hence prNTPs provide opportunities to prepare demandable conjugated DNA with other biomolecules/dyes/fluorescence molecule without modifying nucleobase structure. PMID:27377861

  15. Hydrogen potassium adenosine triphosphatase activity inhibition and downregulation of its expression by bioactive fraction DLBS2411 from Cinnamomum burmannii in gastric parietal cells

    PubMed Central

    Tjandrawinata, Raymond R; Nailufar, Florensia; Arifin, Poppy F

    2013-01-01

    This study assessed the gastric acid antisecretory effect of DLBS2411 fractionated from Cinnamomum burmannii. Hydrogen potassium adenosine triphosphatase (H+/K+ ATPase) activity and its gene expression were observed, and the antioxidant activity of DLBS2411 was also investigated. Treatment of DLBS2411 decreased the level of H+/K+ ATPase messenger RNA expression on human embryonic kidney 293 cells and rat gastric parietal cells in a dose-dependent manner, in vitro and ex vivo. DLBS2411 also acted as a competitive inhibitor by showing inhibition in gastric H+/K+ ATPase activity at various pHs. In gastric ulcer animal models induced with indomethacin and ethanol, DLBS2411showed a reduction in the number of petechiae, suggesting that the fraction also confers gastroprotective activity. Moreover, DLBS2411 was also found to have potent antioxidant activity. Taken together, DLBS2411 is a promising novel agent for the management of dyspepsia, a condition of hyperacidity and diseases in the stomach requiring gastroprotection. PMID:24101879

  16. [Synthesis, conformation, and spectroscopy of nucleoside analogues concerning their antiviral activity].

    PubMed

    Kuśmierek, Jarosław T; Stolarski, Ryszard

    2015-01-01

    Chemically modified analogues of nucleosides and nucleotides, have been thoroughly investigated since the discovery of DNA double helix by Watson and Crick in 1953 (Nature 171: 737). Chemical structures, first of all tautomerism, of the nucleic acid bases, as well as the conformations of the nucleic acids constituents, determine the secondary and tertiary structures of DNA and RNA polymers. Similarly, structural and dynamic parameters of nucleoside derivatives determine their biological activity in mutagenesis, neoplastic transformation, as well as antiviral or anticancer properties. In this review, a multidisciplinary approach of Prof. David Shugar's group is presented in the studies on nucleosides and nucleotides. It consists in chemical syntheses of suitable analogues, measurements of physicochemical and spectral parameters, conformational analysis by means of nuclear magnetic resonance (NMR) and X-ray diffraction, as well as characteristics of the nucleoside analogues as inhibitors of some selected, target enzymes, crucial in respect to antiviral activity of the analogues. These long-lasting studies follows upon the line of the main paradigm of molecular biophysics, i. e. structure-activity relationship. PMID:26677575

  17. Antiproliferative activity of bicyclic benzimidazole nucleosides: synthesis, DNA-binding and cell cycle analysis.

    PubMed

    Sontakke, Vyankat A; Lawande, Pravin P; Kate, Anup N; Khan, Ayesha; Joshi, Rakesh; Kumbhar, Anupa A; Shinde, Vaishali S

    2016-04-26

    An efficient route was developed for synthesis of bicyclic benzimidazole nucleosides from readily available d-glucose. The key reactions were Vörbruggen glycosylation and ring closing metathesis (RCM). Primarily, to understand the mode of DNA binding, we performed a molecular docking study and the binding was found to be in the minor groove region. Based on the proposed binding model, UV-visible and fluorescence spectroscopic techniques using calf thymus DNA (CT-DNA) demonstrated a non-intercalative mode of binding. Antiproliferative activity of nucleosides was tested against MCF-7 and MDA-MB-231 breast cancer cell lines and found to be active at low micromolar concentrations. Compounds and displayed significant antiproliferative activity as compared to and with the reference anticancer drug, doxorubicin. Cell cycle analysis showed that nucleoside induced cell cycle arrest at the S-phase. Confocal microscopy has been performed to validate the induction of cellular apoptosis. Based on these findings, such modified bicyclic benzimidazole nucleosides will make a significant contribution to the development of anticancer drugs. PMID:27074628

  18. Effects of magnesium chloride on smooth muscle actomyosin adenosine-5'-triphosphatase activity, myosin conformation, and tension development in glycerinated smooth muscle fibers.

    PubMed

    Ikebe, M; Barsotti, R J; Hinkins, S; Hartshorne, D J

    1984-10-01

    The contractile system of smooth muscle exhibits distinctive responses to varying Mg2+ concentrations in that maximum adenosine-5'-triphosphatase (ATPase) activity of actomyosin requires relatively high concentrations of Mg2+ and also that tension in skinned smooth muscle fibers can be induced in the absence of Ca2+ by high Mg2+ concentrations. We have examined the effects of MgCl2 on actomyosin ATPase activity and on tension development in skinned gizzard fibers and suggest that the MgCl2-induced changes may be correlated to shifts in myosin conformation. At low concentrations of free Mg2+ (less than or equal to 1 mM) the actin-activated ATPase activity of phosphorylated turkey gizzard myosin is reduced and is increased as the Mg2+ concentration is raised. The increase in Mg2+ (over a range of 1-10 mM added MgCl2) induces the conversion of 10S phosphorylated myosin to the 6S form, and it was found that the proportion of myosin as 10S is inversely related to the level of actin-activated ATPase activity. Activation of the actin-activated ATPase activity also occurs with dephosphorylated myosin but at higher MgCl2 concentrations, between 10 and 40 mM added MgCl2. Viscosity and fluorescence measurements indicate that increasing Mg2+ levels over this concentration range favor the formation of the 6S conformation of dephosphorylated myosin, and it is proposed that the 10S to 6S transition is a prerequisite for the observed activation of ATPase activity. With glycerinated chicken gizzard fibers high MgCl2 concentrations (6-20 mM) promote tension in the absence of Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Mitochondrial adenosine triphosphatase of the fission yeast, Schizosaccharomyces pombe 972h-. Changes in activity and inhibitor-sensitivity in response to catabolite repression.

    PubMed Central

    Lloyd, D; Edwards, S W

    1976-01-01

    1. The specific activity of mitochondrial ATPase (adenosine triphosphatase) in extracts of Schizosaccharomyces pombe decreased 2.5-fold as the glucose concentration in the growth medium decreased from 50mM to 15mM. 2. During the late exponential phase of growth, ATPase activity doubled. 3. Sensitivity to oligomycin and Dio-9 as measured by values for I50(mug of inhibitor/mg of protein giving 50% inhibition) at pH 6.8 increased sixfold and ninefold respectively during the initial decrease in ATPase activity, and this degree of sensitivity was maintained for the remainder of the growth cycle. 4. Increased sensitivity to NN'-dicyclohexylcarbodi-imide, triethyltin and venturicidin was also observed during the early stage of glucose de-repression. 5. Smaller increases in sensitivity to efrapeptin, aurovertin, 7-chloro-4-nitrobenzo-2-oxa-1,3-diaz-le, quercetin and spegazzinine also occurred. 6. The ATPase of glycerol-grown cells was less sensitive to inhibitors than that of glucose-repressed cells; change in values for I50 were not so marked during the growth cycle of cells growing with glycerol. 7. When submitochondrial particles from glycerol-grown cells were tested by passage through Sephadex G-50, a fourfold increase in activity was accompanied by increased inhibitor resistance. 8. Gel filtration of submitochondrial particles from glucose-de-repressed cells gave similar results, whereas loss of ATPase occurred in submitochondrial particles from glucose-repressed cells. 9. It is proposed that alterations in sensitivity to inhibitors at different stages of glucose derepression may be partly controlled by a naturally occuring inhibitor of ATPase. 10. The inhibitors tested may be classififed into two groups on the basis of alterations of sensitivity of the ATPase during physiological modification: (a) oligomycin, Dio-9, NN'-dicyclohexylcarbodi-imide, venturicidin and triethyltin, and (b) efrapeptin, aurovertin, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, quercetin and

  20. Activities of adenine nucleotide and nucleoside degradation enzymes in platelets of rats infected by Trypanosoma evansi.

    PubMed

    Oliveira, Camila B; Da Silva, Aleksandro S; Vargas, Lara B; Bitencourt, Paula E R; Souza, Viviane C G; Costa, Marcio M; Leal, Claudio A M; Moretto, Maria B; Leal, Daniela B R; Lopes, Sonia T A; Monteiro, Silvia G

    2011-05-31

    Nucleotide and nucleoside-degrading enzymes, such as nucleoside triphosphate diphosphohydrose (NTPDase), 5'-nucleotidase and adenosine deaminase (ADA) are present in the surface membranes of platelets, involved in clotting disturbances of Trypanosoma evansi-infected animals. Thus, this study was aimed at evaluating the activities of these enzymes in platelets of rats experimentally infected with T. evansi. Animals were divided into four groups, according to the level of parasitemia. Blood samples were collected on days 3 (group A: at the beginning of parasitemia), 5 (group B: high parasitemia) and 15 (group C: chronic infection), post-infection. Group D (control group) was composed of non-infected animals for platelet count, separation and enzymatic assays. Animals from groups A and B showed marked thrombocytopenia, but platelet count was not affected in chronically infected rats. NTPDase, 5'-nucleotidase and ADA activities decreased (p<0.05) in platelets from rats of groups A and B, when compared to the control group. In group C, only NTPDase and 5'-nucleoside activities decreased (p<0.001). The correlations between platelet count and nucleotide/nucleoside hydrolysis were positive and statistically significant (p<0.05) in groups A and B. Platelet aggregation was decreased in all infected groups, in comparison to the control group (p<0.05). It is concluded that the alterations observed in the activities of NTPDase, 5'-nucleotidase and ADA in platelets of T. evansi-infected animals might be related to thrombocytopenia, that by reducing the number of platelets, there was less release of ATP and ADP. Another possibility being suggested is that changes have occurred in the membrane of these cells, decreasing the expression of these enzymes in the cell membrane.

  1. Oxidative Stress Parameters and Erythrocyte Membrane Adenosine Triphosphatase Activities in Streptozotocin-induced Diabetic Rats Administered Aqueous Preparation of Kalanchoe Pinnata Leaves

    PubMed Central

    Menon, Nikhil; Sparks, Jean; Omoruyi, Felix O.

    2016-01-01

    Background: Diabetes mellitus is a chronic metabolic disease that according to the World Health Organization affects more than 382 million people. The rise in diabetes mellitus coupled with the lack of an effective treatment has led many to investigate medicinal plants to identify a viable alternative. Objective: To evaluate red blood cell (RBC) membrane adenosine triphosphatase (ATPase) activities and antioxidant levels in streptozotocin-induced diabetic rats administered aqueous preparation of Kalanchoe pinnata leaves. Materials and Methods: Diabetes mellitus was induced in rats by a single administration of streptozotocin (60 mg/kg). Diabetic rats were then treated with aqueous K. pinnata preparation (three mature leaves ~ 9.96 g/70 kg body weight or about 0.14 g/kg body weight/day) for 30 days. Serum glucose, RBC membrane ATPase activities, and antioxidant levels were determined. Results: We noted weight loss and reduced food consumption in the treated diabetic group. Serum glucose levels were reduced in the treated diabetic group compared to the other groups. Superoxide dismutase activity and glutathione levels were not significantly elevated in the treated group compared to the diabetic group. However, serum catalase activity was significantly (P < 0.05) increased in the treated diabetic group compared to the other groups. Serum thiobarbituric acid reactive substances were not significantly altered among the groups. There was a significant (P < 0.05) increase in Mg2+ ATPase activity and a nonsignificant increase in Na+/K+ ATPase activity in the RBC membrane of the treated diabetic group compared to the diabetic group. Conclusion: The consumption of aqueous preparation of K. pinnata may accrue benefits in the management of diabetes by lowering oxidative stress often associated with the disease and improving the availability of cellular magnesium through an increase in the magnesium ATPase pump in the RBC membrane for increased cellular metabolism of glucose

  2. The crystal structure and activity of a putative trypanosomal nucleoside phosphorylase reveal it to be a homodimeric uridine phosphorylase

    PubMed Central

    Larson, Eric T.; Mudeppa, Devaraja G.; Gillespie, J. Robert; Mueller, Natascha; Napuli, Alberto J.; Arif, Jennifer A.; Ross, Jenni; Arakaki, Tracy L.; Lauricella, Angela; DeTitta, George; Luft, Joseph; Zucker, Frank; Verlinde, Christophe L. M. J.; Fan, Erkang; Van Voorhis, Wesley C.; Buckner, Frederick S.; Rathod, Pradipsinh K.; Hol, Wim G. J.; Merritt, Ethan A.

    2010-01-01

    Purine nucleoside phosphorylases and uridine phosphorylases are closely related enzymes involved in purine and pyrimidine salvage, respectively, which catalyze the removal of the ribosyl moiety from nucleosides so that the nucleotide base may be recycled. Parasitic protozoa generally are incapable of de novo purine biosynthesis so the purine salvage pathway is of potential therapeutic interest. Information about pyrimidine biosynthesis in these organisms is much more limited. Though all seem to carry at least a subset of enzymes from each pathway, the dependency on de novo pyrimidine synthesis versus salvage varies from organism to organism and even from one growth stage to another. We have structurally and biochemically characterized a putative nucleoside phosphorylase from the pathogenic protozoan Trypanosoma brucei and find that it is a homodimeric uridine phosphorylase. This is the first characterization of a uridine phosphorylase from a trypanosomal source despite this activity being observed decades ago. Although this gene was broadly annotated as a putative nucleoside phosphorylase, it was widely inferred to be a purine nucleoside phosphorylase. Our characterization of this trypanosomal enzyme shows that it is possible to distinguish between purine and uridine phosphorylase activity at the sequence level based on the absence or presence of a characteristic uridine phosphorylase-specificity insert. We suggest that this recognizable feature may aid in proper annotation of the substrate specificity of enzymes in the nucleoside phosphorylase family. PMID:20070944

  3. Effects of vaccinia virus uracil DNA glycosylase catalytic site and deoxyuridine triphosphatase deletion mutations individually and together on replication in active and quiescent cells and pathogenesis in mice

    PubMed Central

    De Silva, Frank S; Moss, Bernard

    2008-01-01

    Background Low levels of uracil in DNA result from misincorporation of dUMP or cytosine deamination. Vaccinia virus (VACV), the prototype poxvirus, encodes two enzymes that can potentially reduce the amount of uracil in DNA. Deoxyuridine triphosphatase (dUTPase) hydrolyzes dUTP, generating dUMP for biosynthesis of thymidine nucleotides while decreasing the availability of dUTP for misincorporation; uracil DNA glycosylase (UNG) cleaves uracil N-glycosylic bonds in DNA initiating base excision repair. Studies with actively dividing cells showed that the VACV UNG protein is required for DNA replication but the UNG catalytic site is not, whereas the dUTPase gene can be deleted without impairing virus replication. Recombinant VACV with an UNG catalytic site mutation was attenuated in vivo, while a dUTPase deletion mutant was not. However, the importance of the two enzymes for replication in quiescent cells, their possible synergy and roles in virulence have not been fully assessed. Results VACV mutants lacking the gene encoding dUTPase or with catalytic site mutations in UNG and double UNG/dUTPase mutants were constructed. Replication of UNG and UNG/dUTPase mutants were slightly reduced compared to wild type or the dUTPase mutant in actively dividing cells. Viral DNA replication was reduced about one-third under these conditions. After high multiplicity infection of quiescent fibroblasts, yields of wild type and mutant viruses were decreased by 2-logs with relative differences similar to those observed in active fibroblasts. However, under low multiplicity multi-step growth conditions in quiescent fibroblasts, replication of the dUTPase/UNG mutant was delayed and 5-fold lower than that of either single mutant or parental virus. This difference was exacerbated by 1-day serial passages on quiescent fibroblasts, resulting in 2- to 3-logs lower titer of the double mutant compared to the parental and single mutant viruses. Each mutant was more attenuated than a revertant

  4. [Adenosine triphosphatase activity in the organs of the crab Hemigrapsus sanguineus, acclimated to sea water of different salinity].

    PubMed

    Busev, V M

    1977-01-01

    In crabs acclimated to low salinity, the activity of Na, K-ATPase from the gills increases; the activity also increases in the antennal glands after acclimation of the animals to high salinity. The activity of Na, K-ATPase in the abdominal ganglion and in the heart does not depend on the salinity to which crabs had been acclimated. Changes in the activity of Mg-ATPase in the gills and antennal glands associated with acclimation of crabs to sea water with different salinity correspond to those in the activity of Na, K-ATPase.

  5. Anti‐flavivirus Activity of Different Tritylated Pyrimidine and Purine Nucleoside Analogues

    PubMed Central

    Serpi, Michaela; Slusarczyk, Magdalena; Ferrari, Valentina; Pertusati, Fabrizio; Meneghesso, Silvia; Derudas, Marco; Farleigh, Laura; Zanetta, Paola; Bugert, Joachim

    2016-01-01

    Abstract A series of tritylated and dimethoxytritylated analogues of selected pyrimidine and purine nucleosides were synthesized and evaluated for their in vitro inhibitory activity against two important members of the genus Flavivirus in the Flaviviridae family, the yellow fever (YFV) and dengue viruses (DENV). Among all compounds tested, the 5′‐O‐tritylated and the 5′‐O‐dimethoxytritylated 5‐fluorouridine derivatives exerted potency against YFV. Interestingly in the series of purine analogues, the 5′O, N‐bis‐tritylated fludarabine derivative revealed strong inhibitory activity against DENV at μm concentrations, however significantly weaker potency against YFV. PMID:27551659

  6. Anti-flavivirus Activity of Different Tritylated Pyrimidine and Purine Nucleoside Analogues.

    PubMed

    McGuigan, Christopher; Serpi, Michaela; Slusarczyk, Magdalena; Ferrari, Valentina; Pertusati, Fabrizio; Meneghesso, Silvia; Derudas, Marco; Farleigh, Laura; Zanetta, Paola; Bugert, Joachim

    2016-06-01

    A series of tritylated and dimethoxytritylated analogues of selected pyrimidine and purine nucleosides were synthesized and evaluated for their in vitro inhibitory activity against two important members of the genus Flavivirus in the Flaviviridae family, the yellow fever (YFV) and dengue viruses (DENV). Among all compounds tested, the 5'-O-tritylated and the 5'-O-dimethoxytritylated 5-fluorouridine derivatives exerted potency against YFV. Interestingly in the series of purine analogues, the 5'O, N-bis-tritylated fludarabine derivative revealed strong inhibitory activity against DENV at μm concentrations, however significantly weaker potency against YFV. PMID:27551659

  7. Crystal Structure of Baculovirus RNA Triphosphatase Complexed with Phosphate

    SciTech Connect

    Changela, Anita; Martin, Alexandra; Shuman, Stewart; Mondragon, Alfonso

    2010-03-05

    Baculovirus RNA 5'-triphosphatase (BVP) exemplifies a family of RNA-specific cysteine phosphatases that includes the RNA triphosphatase domains of metazoan and plant mRNA capping enzymes. Here we report the crystal structure of BVP in a phosphate-bound state at 1.5 {angstrom} resolution. BVP adopts the characteristic cysteine-phosphatase {alpha}/{beta} fold and binds two phosphate ions in the active site region, one of which is proposed to mimic the phosphate of the product complex after hydrolysis of the covalent phosphoenzyme intermediate. The crystal structure highlights the role of backbone amides and side chains of the P-loop motif {sup 118}HCTHGXNRT{sup 126} in binding the cleavable phosphate and stabilizing the transition state. Comparison of the BVP structure to the apoenzyme of mammalian RNA triphosphatase reveals a concerted movement of the Arg-125 side chain (to engage the phosphate directly) and closure of an associated surface loop over the phosphate in the active site. The structure highlights a direct catalytic role of Asn-124, which is the signature P-loop residue of the RNA triphosphatase family and a likely determinant of the specificity of BVP for hydrolysis of phosphoanhydride linkages.

  8. Absorption of water and sodium and activity of adenosine triphosphatases in the rectal mucosa in tropical sprue.

    PubMed Central

    Ramakrishna, B S; Mathan, V I

    1988-01-01

    In 10 southern Indian patients with tropical sprue, in vivo dialysis showed a defect of absorption of water and sodium from the rectum, when compared with 11 healthy volunteers. Sodium-potassium-ATPase activity, measured in homogenates of rectal biopsies, was significantly diminished in patients with sprue. Magnesium-ATPase and alkaline phosphatase were normal in biopsy homogenates. Decreased activity of colonic sodium-potassium-ATPase may contribute to diarrhoea in some patients with tropical sprue. PMID:2840363

  9. Simultaneous quantification and splenocyte-proliferating activities of nucleosides and bases in Cervi cornu Pantotrichum

    PubMed Central

    Zong, Ying; Wang, Yu; Li, Hang; Li, Na; Zhang, Hui; Sun, Jiaming; Niu, Xiaohui; Gao, Xiaochen

    2014-01-01

    Background: Cervi Cornu Pantotrichum has been a well known traditional Chinese medicine, which is young horn of Cervus Nippon Temminck (Hualurong: HLR). At present, the methods used for the quality control of Cervi Cornu Pantotrichum show low specificity. Objective: To describe a holistic method based on chemical characteristics and splenocyte-proliferating activities to evaluate the quality of HLR. Materials and Methods: The nucleosides and bases from HLR were identified by high performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI-MS), and six of them were chosen to be used for simultaneous HPLC quantification according to the results of proliferation of mouse splenocytes in vitro. Results: In this study, eight nucleosides and bases have been identified. In addition, uracil, hypoxanthine, uridine, inosine, guanosine, and adenosine were chosen to be used for simultaneous HPLC quantification. Simultaneous quantification of these six substances was performed on ten groups of HLR under the condition of a TIANHE Kromasil C18 column (5 μm, 4.6 mm × 250 mm i.d.) and a gradient elution of water and acetonitrile. Of the ten groups, HLR displayed the highest total nucleoside contents (TNC, sum of adenosine and uracil, 0.412 mg/g) with the strongest splenocyte-proliferating activities. Conclusion: These results suggest that TNC (such as particularly highly contained adenosine and uracil) in HLR has a certain correlation with the activity of splenocyte-proliferating, and it may be used as a quality control for HLR. This comprehensive method could be applied to other traditional Chinese medicines to ameliorate their quality control. PMID:25422536

  10. Thyroid thermogenesis. Relationships between Na+-dependent respiration and Na+ + K+-adenosine triphosphatase activity in rat skeletal muscle.

    PubMed Central

    Asano, Y; Liberman, U A; Edelman, I S

    1976-01-01

    The effect of thyroid status on QO2, QO2 (t) and NaK-ATPase activity was examined in rat skeletal muscle. QO2(t) (i.e. Na+-transport-dependent respiration) was estimated with ouabain or Na+-free media supplemented with K+. In contrast to the effects of ouabain on ion composition, intracellular K+ was maintained at about 125 meq/liter, and intracellular Na+ was almost nil in the Na+-free media. The estimates of QO2(t) were independent of the considerable differences in tissue ion concentrations. The increase in QO2(t) account for 47% of the increase in QO2 in the transition from the hypothyroid to the euthyroid state and 84% of the increase in the transition from the euthyroid to the hyperthyroid state. Surgical thyroidectomy lowered NaK-ATPase activity of the microsomal fraction (expressed per milligram protein) 32%; injections of triodothyronine (T3) increased this activity 75% in initially hypothyroid rats and 26% in initially euthyroid rats. Thyroidectomy was attended by significant falls in serum Ca and Pi concentrations. Administration of T3 resulted in further declines in serum Ca and marked increases in serum Ps concentrations. Similar effects were seen in 131I-treated rats, but the magnitude of the declines in serum Ca were less. The effects of T3 on QO2, QO2(t), and NaK-ATPase activity of skeletal muscle were indistinguishable in the 131I-ablated and surgically thyroidectomized rats. In thyroidectomized or euthyroid rats given repeated doses of T3, QO2(t) and NaA-ATPase activity increased proportionately. In thyroidectomized rats injected with single doses of T3, either 10, 50, or 250 mug/100 g body wt, QO2(t) increased linearly with NaK-ATPase activity. The kinetics of the NaK-ATPase activity was assessed with an ATP-generating system. T3 elicited a significant increase in Vmax with no change in Km for ATP. PMID:130385

  11. Chlorination of guanosine and other nucleosides by hypochlorous acid and myeloperoxidase of activated human neutrophils. Catalysis by nicotine and trimethylamine.

    PubMed

    Masuda, M; Suzuki, T; Friesen, M D; Ravanat, J L; Cadet, J; Pignatelli, B; Nishino, H; Ohshima, H

    2001-11-01

    Activated human neutrophils secrete myeloperoxidase, which generates HOCl from H2O2 and Cl(-). We have found that various (2'-deoxy)nucleosides react with HOCl to form chlorinated (2'-deoxy)nucleosides, including novel 8-chloro(2'-deoxy)guanosine, 5-chloro(2'-deoxy)cytidine, and 8-chloro(2'-deoxy)adenosine formed in yields of 1.6, 1.6, and 0.2%, respectively, when 0.5 mM nucleoside reacted with 0.5 mM HOCl at pH 7.4. The relative chlorination, oxidation, and nitration activities of HOCl, myeloperoxidase, and activated human neutrophils in the presence and absence of nitrite were studied by analyzing 8-chloro-, 8-oxo-7,8-dihydro-, and 8-nitro-guanosine, respectively, using guanosine as a probe. 8-Chloroguanosine was always more easily formed than 8-oxo-7,8-dihydro- or 8-nitro-guanosine. Using electrospray ionization tandem mass spectrometry, we show that several chlorinated nucleosides including 8-chloro(2'-deoxy)guanosine are formed following exposure of isolated DNA or RNA to HOCl. Micromolar concentrations of tertiary amines such as nicotine and trimethylamine dramatically enhanced chlorination of free (2'-deoxy)nucleosides and nucleosides in RNA by HOCl. As the G-463A polymorphism of the MPO gene, which strongly reduces myeloperoxidase mRNA expression, is associated with a reduced risk of lung cancer, chlorination damage of DNA /RNA and nucleosides by myeloperoxidase and its enhancement by nicotine may be important in the pathophysiology of human diseases associated with tobacco habits. PMID:11533049

  12. Synthesis of nucleoside 5'-tetraphosphates containing terminal fluorescent labels via activated cyclic trimetaphosphate.

    PubMed

    Mohamady, Samy; Taylor, Scott D

    2014-03-01

    2'-Deoxynucleotide 5'-tetraphosphates in which a fluorescent label is attached to the terminal phosphate are used as key reagents in high-throughput DNA sequencing techniques and in single nucleotide polymorphism typing assays. We demonstrate that this class of compounds can be prepared by reacting fluorophores such as 7-hydroxy-4-methylcoumarin, methylfluorescein, fluorescein and resorufin with an activated form of cyclic trimetaphosphate to give intermediate 11. Reaction of 11 with 2'-deoxynucleoside 5'-monophosphates or a nucleoside 5'-monophosphate gave the target compounds in good yield. PMID:24552623

  13. Nucleoside Inhibitors of Zika Virus.

    PubMed

    Eyer, Luděk; Nencka, Radim; Huvarová, Ivana; Palus, Martin; Joao Alves, Maria; Gould, Ernest A; De Clercq, Erik; Růžek, Daniel

    2016-09-01

    There is growing evidence that Zika virus (ZIKV) can cause devastating infant brain defects and other neurological disorders in humans. However, no specific antiviral therapy is available at present. We tested a series of 2'-C- or 2'-O-methyl-substituted nucleosides, 2'-C-fluoro-2'-C-methyl-substituted nucleosides, 3'-O-methyl-substituted nucleosides, 3'-deoxynucleosides, derivatives with 4'-C-azido substitution, heterobase-modified nucleosides, and neplanocins for their ability to inhibit ZIKV replication in cell culture. Antiviral activity was identified when 2'-C-methylated nucleosides were tested, suggesting that these compounds might represent promising lead candidates for further development of specific antivirals against ZIKV.

  14. Broad-spectrum antiviral and cytocidal activity of cyclopentenylcytosine, a carbocyclic nucleoside targeted at CTP synthetase.

    PubMed

    De Clercq, E; Murase, J; Marquez, V E

    1991-06-15

    Cyclopentenylcytosine (Ce-Cyd) is a broad-spectrum antiviral agent active against DNA viruses [herpes (cytomegalo), pox (vaccinia)], (+)RNA viruses [picorna (polio, Coxsackie, rhino), toga (Sindbis, Semliki forest), corona], (-)RNA viruses [orthomyxo (influenza), paramyxo (parainfluenza, measles), arena (Junin, Tacaribe), rhabdo (vesicular stomatitis)] and (+/-)RNA viruses (reo). Ce-Cyd is a more potent antiviral agent than its saturated counterpart, cyclopentylcytosine (carbodine, C-Cyd). Ce-Cyd also has potent cytocidal activity against a number of tumor cell lines. The putative target enzyme for both the antiviral and antitumor action of Ce-Cyd is assumed to be the CTP synthetase that converts UTP to CTP. In keeping with this hypothesis was the finding that the antiviral and cytocidal effects of Ce-Cyd are readily reversed by Cyd and, to a lesser extent, Urd, but not by other nucleosides such as dThd or dCyd. In contrast, pyrazofurin and 6-azauridine, two nucleoside analogues that are assumed to interfere with OMP decarboxylase, another enzyme involved in the biosynthesis of pyrimidine ribonucleotides, potentiate the cytocidal activity of Ce-Cyd. Ce-Cyd should be further pursued, as such and in combination with OMP decarboxylase inhibitors, for its therapeutic potential in the treatment of both viral and neoplastic diseases. PMID:1710119

  15. Antihyperalgesic activity of nucleoside transport inhibitors in models of inflammatory pain in guinea pigs

    PubMed Central

    Maes, Sabine S; Pype, Stefan; Hoffmann, Vincent LH; Biermans, Maria; Meert, Theo F

    2012-01-01

    Background and methods The role of the endogenous purine nucleoside, adenosine, in nociception is well established. Inhibition of the equilibrative nucleoside transporter (ENT1) prevents adenosine uptake into cells, and could therefore enhance the antinociceptive properties of adenosine. The effects of ENT1 inhibition were studied in two animal models of inflammatory pain. Analgesic activity was assessed in a complete Freund’s adjuvant (CFA)-induced and carrageenan-induced mechanical and thermal hyperalgesia model in the guinea pig. Results Draflazine, dipyridamole, dilazep, lidoflazine, soluflazine, and KF24345 showed efficacy in the CFA thermal hyperalgesia model. Draflazine, the most potent compound in this test, was further characterized in the CFA model of mechanical hyperalgesia and the carrageenan inflammation model of thermal and mechanical hyperalgesia, where it completely reversed the hypersensitivity. The antihyperalgesic effects of draflazine (10 mg/kg, administered subcutaneously) were attenuated by the A1 receptor antagonist, cyclopentyltheophylline (5–40 mg/kg, administered intraperitoneally), by the nonselective adenosine antagonist, caffeine (10–40 mg/kg intraperitoneally), and by the A2 antagonist, DMPX (10 mg/kg administered intraperitoneally). Conclusion ENT1 inhibition is an effective way of reversing mechanical and thermal inflammatory hyperalgesia in the guinea pig, and these effects are mediated by enhancement of endogenous adenosine levels. Both A1 and A2 adenosine receptor subtypes are likely to be involved. PMID:23091396

  16. Versatile synthesis of oxime-containing acyclic nucleoside phosphonates--synthetic solutions and antiviral activity.

    PubMed

    Solyev, Pavel N; Jasko, Maxim V; Kleymenova, Alla A; Kukhanova, Marina K; Kochetkov, Sergey N

    2015-11-28

    New oxime-containing acyclic nucleoside phosphonates 9-{2-[(phosphonomethyl)oximino]ethyl}adenine (1), -guanine (2) and 9-{2-[(phosphonomethyl)oximino]propyl}adenine (3) with wide spectrum activity against different types of viruses were synthesized. The key intermediate, diethyl aminooxymethylphosphonate, was obtained by the Mitsunobu reaction. Modified conditions for the by-product separation (without chromatography and distillation) allowed us to obtain 85% yield of the aminooxy intermediate. The impact of DBU and Cs2CO3 on the N(9)/N(7) product ratio for adenine and guanine alkylation was studied. A convenient procedure for aminooxy group detection was found. The synthesized phosphonates were tested and they appeared to display moderate activity against different types of viruses (HIV, herpes viruses in cell cultures, and hepatitis C virus in the replicon system) without toxicity up to 1000 μM. PMID:26383895

  17. E-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase) of Leishmania amazonensis inhibits macrophage activation.

    PubMed

    Gomes, Rodrigo Saar; de Carvalho, Luana Cristina Faria; de Souza Vasconcellos, Raphael; Fietto, Juliana Lopes Rangel; Afonso, Luís Carlos Crocco

    2015-04-01

    Leishmania amazonensis, the causal agent of diffuse cutaneous leishmaniasis, is known for its ability to modulate the host immune response. Because a relationship between ectonucleotidase activity and the ability of Leishmania to generate injury in C57BL/6 mice has been demonstrated, in this study we evaluated the involvement of ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) activity of L. amazonensis in the process of infection of J774-macrophages. Our results show that high-activity parasites show increased survival rate in LPS/IFN-γ-activated cells, by inhibiting the host-cell NO production. Conversely, inhibition of E-NTPDase activity reduces the parasite survival rates, an effect associated with increased macrophage NO production. E-NTPDase activity generates substrate for the production of extracellular adenosine, which binds to A2B receptors and reduces IL-12 and TNF-α produced by activated macrophages, thus inhibiting NO production. These results indicate that E-NTPDase activity is important for survival of L. amazonensis within macrophages, showing the role of the enzyme in modulating macrophage response and lower NO production, which ultimately favors infection. Our results point to a new mechanism of L. amazonensis infection that may pave the way for the development of new treatments for this neglected disease. PMID:25554487

  18. Structural and functional characterization of a noncanonical nucleoside triphosphate pyrophosphatase from Thermotoga maritima

    PubMed Central

    Awwad, Khaldeyah; Desai, Anna; Smith, Clyde; Sommerhalter, Monika

    2013-01-01

    The hyperthermophilic bacterium Thermotoga maritima has a noncanonical nucleoside triphosphatase that catalyzes the conversion of inosine triphosphate (ITP), deoxyinosine triphosphate (dITP) and xanthosine triphosphate (XTP) into inosine monophosphate (IMP), deoxyinosine monophosphate (IMP) and xanthosine monophosphate (XMP), respectively. The k cat/K m values determined at 323 and 353 K fall between 1.31 × 104 and 7.80 × 104  M −1 s−1. ITP and dITP are slightly preferred over XTP. Activity towards canonical nucleoside triphosphates (ATP and GTP) was not detected. The enzyme has an absolute requirement for Mg2+ as a cofactor and has a preference for alkaline conditions. A protein X-ray structure of the enzyme with bound IMP was obtained at 2.15 Å resolution. The active site houses a well conserved network of residues that are critical for substrate recognition and catalysis. The crystal structure shows a tetramer with two possible dimer interfaces. One of these interfaces strongly resembles the dimer interface that is found in the structures of other noncanonical nucleoside pyrophosphatases from human (human ITPase) and archaea (Mj0226 and PhNTPase). PMID:23385455

  19. Leishmania amazonensis: Biological and biochemical characterization of ecto-nucleoside triphosphate diphosphohydrolase activities.

    PubMed

    Pinheiro, Carla M; Martins-Duarte, Erica S; Ferraro, Rodrigo B; Fonseca de Souza, André Luíz; Gomes, Marta T; Lopes, Angela H C S; Vannier-Santos, Marcos A; Santos, André L S; Meyer-Fernandes, José R

    2006-09-01

    The presence of Leishmania amazonensis ecto-nucleoside triphosphate triphosphohydrolase activities was demonstrated using antibodies against different NTPDase members by Western blotting, flow cytometry, and immunoelectron microscopy analysis. Living promastigote cells sequentially hydrolyzed the ATP molecule generating ADP, AMP, and adenosine, indicating that this surface enzyme may play a role in the salvage of purines from the extracellular medium. The L. amazonensis ecto-NTPDase activities were insensitive to Triton X-100, but they were enhanced by divalent cations, such as Mg(2+). In addition, the ecto-NTPDase activities decreased with time for 96 h when promastigotes were grown in vitro. On the other hand, these activities increased considerably when measured in living amastigote forms. Furthermore, the treatment with adenosine, a mediator of several relevant biological phenomena, induced a decrease in the reactivity with anti-CD39 antibody, raised against mammalian E-NTPDase, probably because of down regulation in the L. amazonensis ecto-NTPDase expression. Also, adenosine and anti-NTPDase antibodies induced a significant diminishing in the interaction between promastigotes of L. amazonensis and mouse peritoneal macrophages. PMID:16603157

  20. Ester prodrugs of acyclic nucleoside thiophosphonates compared to phosphonates: synthesis, antiviral activity and decomposition study.

    PubMed

    Roux, Loïc; Priet, Stéphane; Payrot, Nadine; Weck, Clément; Fournier, Maëlenn; Zoulim, Fabien; Balzarini, Jan; Canard, Bruno; Alvarez, Karine

    2013-05-01

    9-[2-(Thiophosphonomethoxy)ethyl]adenine [S-PMEA, 8] and (R)-9-[2-(Thiophosphonomethoxy)propyl]adenine [S-PMPA, 9] are acyclic nucleoside thiophosphonates we described recently that display the same antiviral spectrum (DNA viruses) as approved and potent phosphonates PMEA and (R)-PMPA. Here, we describe the synthesis, antiviral activities in infected cell cultures and decomposition study of bis(pivaloyloxymethoxy)-S-PMEA [Bis-POM-S-PMEA, 13] and bis(isopropyloxymethylcarbonyl)-S-PMPA [Bis-POC-S-PMPA, 14] as orally bioavailable prodrugs of the S-PMEA 8 and S-PMPA 9, in comparison to the equivalent "non-thio" derivatives [Bis-POM-PMEA, 11] and [Bis-POC-PMPA, 12]. Compounds 11, 12, 13 and 14 were evaluated for their in vitro antiviral activity against HIV-1-, HIV-2-, HBV- and a broad panel of DNA viruses, and found to exhibit moderate to potent antiviral activity. In order to determine the decomposition pathway of the prodrugs 11, 12, 13 and 14 into parent compounds PMEA, PMPA, 8 and 9, kinetic data and decomposition pathways in several media are presented. As expected, bis-POM-S-PMEA 13 and bis-POC-S-PMPA 14 behaved as prodrugs of S-PMEA 8 and S-PMPA 9. However, thiophosphonates 8 and 9 were released very smoothly in cell extracts, in contrast to the release of PMEA and PMPA from "non-thio" prodrugs 11 and 12. PMID:23603046

  1. Amphiphilic cationic nanogels as brain-targeted carriers for activated nucleoside reverse transcriptase inhibitors

    PubMed Central

    Warren, G; Makarov, E; Lu, Y; Senanayake, T; Rivera, K; Gorantla, S; Poluektova, LY; Vinogradov, SV

    2015-01-01

    Progress in AIDS treatment shifted emphasis towards limiting adverse effects of antiviral drugs while improving the treatment of hard-to-reach viral reservoirs. Many therapeutic nucleoside reverse transcriptase inhibitors (NRTI) have a limited access to the central nervous system (CNS). Increased NRTI levels induced various complications during the therapy, including neurotoxicity, due to the NRTI toxicity to mitochondria. Here, we describe an innovative design of biodegradable cationic cholesterol-ε-polylysine nanogel carriers for delivery of triphosphorylated NRTIs that demonstrated high anti-HIV activity along with low neurotoxicity, warranting minimal side effects following systemic administration. Efficient CNS targeting was achieved by nanogel modification with brain-specific peptide vectors. Novel dual and triple-drug nanoformulations, analogous to therapeutic NRTI cocktails, displayed equal or higher antiviral activity in HIV-infected macrophages compared to free drugs. Our results suggest potential alternative approach to HIV-1 treatment focused on the effective nanodrug delivery to viral reservoirs in the CNS and reduced neurotoxicity. PMID:25559020

  2. 6-Methylpurine derived sugar modified nucleosides: Synthesis and in vivo antitumor activity in D54 tumor expressing M64V-Escherichia coli purine nucleoside phosphorylase.

    PubMed

    Hassan, Abdalla E A; Abou-Elkhair, Reham A I; Parker, William B; Allan, Paula W; Secrist, John A

    2016-01-27

    Impressive antitumor activity has been observed with fludarabine phosphate against tumors that express Escherichia coli purine nucleoside phosphorylase (PNP) due to the liberation of 2-fluoroadenine in the tumor tissue. 6-Methylpurine (MeP) is another cytotoxic adenine analog that does not exhibit selectivity when administered systemically, and could be very useful in a gene therapy approach to cancer treatment involving E. coli PNP. The prototype MeP releasing prodrug 9-(2-deoxy-β-d-ribofuranosyl)-6-methylpurine (1) [MeP-dR] has demonstrated good activity against tumors expressing E. coli PNP, but its antitumor activity is limited due to toxicity resulting from the generation of MeP from gut bacteria. Therefore, we have embarked on a medicinal chemistry program to identify a combination of non-toxic MeP prodrugs and non-human adenosine glycosidic bond cleaving enzymes. The two best MeP-based substrates with M64V-E coli PNP, a mutant which was engineered to tolerate modification at the 5'-position of adenosine and its analogs, were 9-(6-deoxy-α-l-talofuranosyl)-6-methylpurine (3) [methyl(talo)-MeP-R] and 9-(α-l-lyxofuranosyl)6-methylpurine (4) [lyxo-MeP-R]. The detailed synthesis methyl(talo)-MeP-R and lyxo-MeP-R, and the evaluation of their substrate activity with 4 enzymes not normally associated with cancer patients is described. In addition, we have determined the intraperitoneal pharmacokinetic (ip-PK) properties of methyl(talo)-MeP-R and have determined its in vivo bystander activity in mice bearing D54 tumors that express M64V PNP. The observed good in vivo bystander activity of [methyl(talo)-MeP-R/M64V-E coli PNP combination suggests that these agents could be useful for the treatment of cancer.

  3. Nanomolar Inhibitors of Trypanosoma brucei RNA Triphosphatase

    PubMed Central

    Smith, Paul; Ho, C. Kiong; Takagi, Yuko; Djaballah, Hakim

    2016-01-01

    ABSTRACT Eukaryal taxa differ with respect to the structure and mechanism of the RNA triphosphatase (RTPase) component of the mRNA capping apparatus. Protozoa, fungi, and certain DNA viruses have a metal-dependent RTPase that belongs to the triphosphate tunnel metalloenzyme (TTM) superfamily. Because the structures, active sites, and chemical mechanisms of the TTM-type RTPases differ from those of mammalian RTPases, the TTM RTPases are potential targets for antiprotozoal, antifungal, and antiviral drug discovery. Here, we employed RNA interference (RNAi) knockdown methods to show that Trypanosoma brucei RTPase Cet1 (TbCet1) is necessary for proliferation of procyclic cells in culture. We then conducted a high-throughput biochemical screen for small-molecule inhibitors of the phosphohydrolase activity of TbCet1. We identified several classes of chemicals—including chlorogenic acids, phenolic glycopyranosides, flavonoids, and other phenolics—that inhibit TbCet1 with nanomolar to low-micromolar 50% inhibitory concentrations (IC50s). We confirmed the activity of these compounds, and tested various analogs thereof, by direct manual assays of TbCet1 phosphohydrolase activity. The most potent nanomolar inhibitors included tetracaffeoylquinic acid, 5-galloylgalloylquinic acid, pentagalloylglucose, rosmarinic acid, and miquelianin. TbCet1 inhibitors were less active (or inactive) against the orthologous TTM-type RTPases of mimivirus, baculovirus, and budding yeast (Saccharomyces cerevisiae). Our results affirm that a TTM RTPase is subject to potent inhibition by small molecules, with the caveat that parallel screens against TTM RTPases from multiple different pathogens may be required to fully probe the chemical space of TTM inhibition. PMID:26908574

  4. Purine nucleoside phosphorylase and xanthine oxidase activities in erythrocytes and plasma from marine, semiaquatic and terrestrial mammals.

    PubMed

    López-Cruz, Roberto I; Pérez-Milicua, Myrna Barjau; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal-Vertiz, Jaime A; de la Rosa, Alejandro; Vázquez-Medina, José P; Zenteno-Savín, Tania

    2014-05-01

    Purine nucleoside phosphorylase (PNP) and xanthine oxidase (XO) are key enzymes involved in the purine salvage pathway. PNP metabolizes purine bases to synthetize purine nucleotides whereas XO catalyzes the oxidation of purines to uric acid. In humans, PNP activity is reported to be high in erythrocytes and XO activity to be low in plasma; however, XO activity increases after ischemic events. XO activity in plasma of northern elephant seals has been reported during prolonged fasting and rest and voluntary associated apneas. The objective of this study was to analyze circulating PNP and XO activities in marine mammals adapted to tolerate repeated cycles of ischemia/reperfusion associated with diving (bottlenose dolphin, northern elephant seal) in comparison with semiaquatic (river otter) and terrestrial mammals (human, pig). PNP activities in plasma and erythrocytes, as well as XO activity in plasma, from all species were quantified by spectrophotometry. No clear relationship in circulating PNP or XO activity could be established between marine, semiaquatic and terrestrial mammals. Erythrocytes from bottlenose dolphins and humans are highly permeable to nucleosides and glucose, intraerythrocyte PNP activity may be related to a release of purine nucleotides from the liver. High-energy costs will probably mean a higher ATP degradation rate in river otters, as compared to northern elephant seals or dolphins. Lower erythrocyte PNP activity and elevated plasma XO activity in northern elephant seal could be associated with fasting and/or sleep- and dive-associated apneas.

  5. Purine nucleoside phosphorylase and xanthine oxidase activities in erythrocytes and plasma from marine, semiaquatic and terrestrial mammals.

    PubMed

    López-Cruz, Roberto I; Pérez-Milicua, Myrna Barjau; Crocker, Daniel E; Gaxiola-Robles, Ramón; Bernal-Vertiz, Jaime A; de la Rosa, Alejandro; Vázquez-Medina, José P; Zenteno-Savín, Tania

    2014-05-01

    Purine nucleoside phosphorylase (PNP) and xanthine oxidase (XO) are key enzymes involved in the purine salvage pathway. PNP metabolizes purine bases to synthetize purine nucleotides whereas XO catalyzes the oxidation of purines to uric acid. In humans, PNP activity is reported to be high in erythrocytes and XO activity to be low in plasma; however, XO activity increases after ischemic events. XO activity in plasma of northern elephant seals has been reported during prolonged fasting and rest and voluntary associated apneas. The objective of this study was to analyze circulating PNP and XO activities in marine mammals adapted to tolerate repeated cycles of ischemia/reperfusion associated with diving (bottlenose dolphin, northern elephant seal) in comparison with semiaquatic (river otter) and terrestrial mammals (human, pig). PNP activities in plasma and erythrocytes, as well as XO activity in plasma, from all species were quantified by spectrophotometry. No clear relationship in circulating PNP or XO activity could be established between marine, semiaquatic and terrestrial mammals. Erythrocytes from bottlenose dolphins and humans are highly permeable to nucleosides and glucose, intraerythrocyte PNP activity may be related to a release of purine nucleotides from the liver. High-energy costs will probably mean a higher ATP degradation rate in river otters, as compared to northern elephant seals or dolphins. Lower erythrocyte PNP activity and elevated plasma XO activity in northern elephant seal could be associated with fasting and/or sleep- and dive-associated apneas. PMID:24530799

  6. Silicon(IV) phthalocyanines substituted axially with different nucleoside moieties. Effects of nucleoside type on the photosensitizing efficiencies and in vitro photodynamic activities.

    PubMed

    Zheng, Bi-Yuan; Shen, Xiao-Min; Zhao, Dong-Mei; Cai, Yi-Bin; Ke, Mei-Rong; Huang, Jian-Dong

    2016-06-01

    A series of new silicon(IV) phthalocyanines (SiPcs) di-substituted axially with different nucleoside moieties have been synthesized and evaluated for their singlet oxygen quantum yields (ΦΔ) and in vitro photodynamic activities. The adenosine-substituted SiPc shows a lower photosensitizing efficiency (ΦΔ=0.35) than the uridine- and cytidine-substituted analogs (ΦΔ=0.42-0.44), while the guanosine-substituted SiPc exhibits a weakest singlet oxygen generation efficiency with a ΦΔ value down to 0.03. On the other hand, replacing axial adenosines with chloro-modified adenosines and purines can result in the increase of photogenerating singlet oxygen efficiencies of SiPcs. The formed SiPcs 1 and 2, which contain monochloro-modified adenosines and dichloro-modified purines respectively, appear as efficient photosensitizers with ΦΔ of 0.42-0.44. Both compounds 1 and 2 present high photocytotoxicities against HepG2 and BGC823 cancer cells with IC50 values ranging from 9nM to 33nM. The photocytotoxicities of these two compounds are remarkably higher than the well-known anticancer photosensitizer, chlorin e6 (IC50=752nM against HepG2 cells) in the same condition. As revealed by confocal microscopy, for both cell lines, compound 1 can essentially bind to mitochondria, while compound 2 is just partially localized in mitochondria. In addition, the two compounds induce cell death of HepG2 cells likely through apoptosis.

  7. Adenosine triphosphatases of thermophilic archaeal double-stranded DNA viruses

    PubMed Central

    2014-01-01

    Adenosine triphosphatases (ATPases) of double-stranded (ds) DNA archaeal viruses are structurally related to the AAA+ hexameric helicases and translocases. These ATPases have been implicated in viral life cycle functions such as DNA entry into the host, and viral genome packaging into preformed procapsids. We summarize bioinformatical analyses of a wide range of archaeal ATPases, and review the biochemical and structural properties of those archaeal ATPases that have measurable ATPase activity. We discuss their potential roles in genome delivery into the host, virus assembly and genome packaging in comparison to hexameric helicases and packaging motors from bacteriophages. PMID:25105011

  8. Characterization of a baculovirus-encoded RNA 5'-triphosphatase.

    PubMed

    Gross, C H; Shuman, S

    1998-09-01

    Autographa californica nuclear polyhedrosis virus (AcNPV) encodes a 168-amino-acid polypeptide that contains the signature motif of the superfamily of protein phosphatases that act via a covalent cysteinyl phosphate intermediate. The sequence of the AcNPV phosphatase is similar to that of the RNA triphosphatase domain of the metazoan cellular mRNA capping enzyme. Here, we show that the purified recombinant AcNPV protein is an RNA 5'-triphosphatase that hydrolyzes the gamma-phosphate of triphosphate-terminated poly(A); it also hydrolyzes ATP to ADP and GTP to GDP. The phosphatase sediments as two discrete components in a glycerol gradient: a 9.5S oligomer and 2.5S putative monomer. The 2.5S form of the enzyme releases 32Pi from 1 microM gamma-32P-labeled triphosphate-terminated poly(A) with a turnover number of 52 min-1 and converts ATP to ADP with Vmax of 8 min-1 and Km of 25 microM ATP. The 9.5S oligomeric form of the enzyme displays an initial pre-steady-state burst of ADP and Pi formation, which is proportional to and stoichiometric with the enzyme, followed by a slower steady-state rate of product formation (approximately 1/10 of the steady-state rate of the 2.5S enzyme). We surmise that the oligomeric enzyme is subject to a rate-limiting step other than reaction chemistry and that this step is either distinct from or slower than the rate-limiting step for the 2.5S enzyme. Replacing the presumptive active site nucleophile Cys-119 by alanine abrogates RNA triphosphatase and ATPase activity. Our findings raise the possibility that baculoviruses encode enzymes that cap the 5' ends of viral transcripts synthesized at late times postinfection by a virus-encoded RNA polymerase. PMID:9696798

  9. Interferon-gamma regulates nucleoside transport systems in macrophages through signal transduction and activator of transduction factor 1 (STAT1)-dependent and -independent signalling pathways.

    PubMed Central

    Soler, Concepció; Felipe, Antonio; García-Manteiga, José; Serra, Maria; Guillén-Gómez, Elena; Casado, F Javier; MacLeod, Carol; Modolell, Manuel; Pastor-Anglada, Marçal; Celada, Antonio

    2003-01-01

    The expressions of CNT and ENT (concentrative and equilibrative nucleoside transporters) in macrophages are differentially regulated by IFN-gamma (interferon-gamma). This cytokine controls gene expression through STAT1-dependent and/or -independent pathways (where STAT1 stands for signal transduction and activator of transcription 1). In the present study, the role of STAT1 in the response of nucleoside transporters to IFN-gamma was studied using macrophages from STAT1 knockout mice. IFN-gamma triggered an inhibition of ENT1-related nucleoside transport activity through STAT1-dependent mechanisms. Such inhibition of macrophage growth and ENT1 activity by IFN-gamma is required for DNA synthesis. Interestingly, IFN-gamma led to an induction of the CNT1- and CNT2-related nucleoside transport activities independent of STAT1, thus ensuring the supply of extracellular nucleosides for the STAT1-independent RNA synthesis. IFN-gamma up-regulated CNT2 mRNA and CNT1 protein levels and down-regulated ENT1 mRNA in both wild-type and STAT1 knockout macrophages. This is consistent with a STAT1-independent, long-term-mediated, probably transcription-dependent, regulation of nucleoside transporter genes. Moreover, STAT1-dependent post-transcriptional mechanisms are implicated in the regulation of ENT1 activity. Although nitric oxide is involved in the regulation of ENT1 activity in B-cells at a post-transcriptional level, our results show that STAT1-dependent induction of nitric oxide by IFN-gamma is not implicated in the regulation of ENT1 activity in macrophages. Our results indicate that both STAT1-dependent and -independent pathways are involved in the regulation of nucleoside transporters by IFN-gamma in macrophages. PMID:12868960

  10. Biocatalytic approaches applied to the synthesis of nucleoside prodrugs.

    PubMed

    Iglesias, Luis E; Lewkowicz, Elizabeth S; Medici, Rosario; Bianchi, Paola; Iribarren, Adolfo M

    2015-01-01

    Nucleosides are valuable bioactive molecules, which display antiviral and antitumour activities. Diverse types of prodrugs are designed to enhance their therapeutic efficacy, however this strategy faces the troublesome selectivity issues of nucleoside chemistry. In this context, the aim of this review is to give an overview of the opportunities provided by biocatalytic procedures in the preparation of nucleoside prodrugs. The potential of biocatalysis in this research area will be presented through examples covering the different types of nucleoside prodrugs: nucleoside analogues as prodrugs, nucleoside lipophilic prodrugs and nucleoside hydrophilic prodrugs.

  11. Adenosine Diphosphate (ADP)-Ribosylation of the Guanosine Triphosphatase (GTPase) Rho in Resting Peripheral Blood Human T Lymphocytes Results in Pseudopodial Extension and the Inhibition of  T Cell Activation

    PubMed Central

    Woodside, Darren G.; Wooten, David K.; McIntyre, Bradley W.

    1998-01-01

    Scrape loading Clostridium botulinum C3 exoenzyme into primary peripheral blood human T lymphocytes (PB T cells) efficiently adenosine diphosphate (ADP)-ribosylates and thus inactivates the guanosine triphosphatase (GTPase) Rho. Basal adhesion of PB T cells to the β1 integrin substrate fibronectin (Fn) was not inhibited by inactivation of Rho, nor was upregulation of adhesion using phorbol myristate acetate (PMA; 10 ng/ml) or Mn++ (1 mM) affected. Whereas untreated PB T cells adherent to Fn remain spherical, C3-treated PB T cells extend F-actin–containing pseudopodia. Inactivation of Rho delayed the kinetics of PMA-dependent PB T cell homotypic aggregation, a process involving integrin αLβ2. Although C3 treatment of PB T cells did not prevent adhesion to the β1 integrin substrate Fn, it did inhibit β1 integrin/CD3-mediated costimulation of proliferation. Analysis of intracellular cytokine production at the single cell level demonstrated that ADP-ribosylation of Rho inhibited β1 integrin/ CD3 and CD28/CD3 costimulation of IL-2 production within 6 h of activation. Strikingly, IL-2 production induced by PMA and ionomycin was unaffected by C3 treatment. Thus, the GTPase Rho is a novel regulator of T lymphocyte cytoarchitecture, and functional Rho is required for very early events regulating costimulation of IL-2 production in PB T cells. PMID:9763600

  12. The phage T4-coded DNA replication helicase (gp41) forms a hexamer upon activation by nucleoside triphosphate.

    PubMed

    Dong, F; Gogol, E P; von Hippel, P H

    1995-03-31

    Sedimentation and high performance liquid chromatography studies show that the functional DNA replication helicase of bacteriophage T4 (gp41) exists primarily as a dimer at physiological protein concentrations, assembling from gp41 monomers with an association constant of approximately 10(6) M-1. Cryoelectron microscopy, analytical ultracentrifugation, and protein-protein cross-linking studies demonstrate that the binding of ATP or GTP drives the assembly of these dimers into monodisperse hexameric complexes, which redissociate following depletion of the purine nucleotide triphosphatase (PuTP) substrates by the DNA-stimulated PuTPase activity of the helicase. The hexameric state of gp41 can be stabilized for detailed study by the addition of the nonhydrolyzable PuTP analogs ATP gamma S and GTP gamma S and is not significantly affected by the presence of ADP, GDP, or single-stranded or forked DNA template constructs, although some structural details of the hexameric complex may be altered by DNA binding. Our results also indicate that the active gp41 helicase exists as a hexagonal trimer of asymmetric dimers, and that the hexamer is probably characterized by D3 symmetry. The assembly pathway of the gp41 helicase has been analyzed, and its structure and properties compared with those of other helicases involved in a variety of cellular processes. Functional implications of such structural organization are also considered. PMID:7706292

  13. Enzymatic synthesis of acyclic nucleoside thiophosphonate diphosphates: effect of the α-phosphorus configuration on HIV-1 RT activity.

    PubMed

    Priet, Stéphane; Roux, Loic; Saez-Ayala, Magali; Ferron, François; Canard, Bruno; Alvarez, Karine

    2015-05-01

    The acyclic nucleosides thiophosphonates (9-[2-(thiophosphonomethoxy)ethyl]adenine (S-PMEA) and (R)-9-[2-(thiophosphonomethoxy)propyl]adenine (S-PMPA), exhibit antiviral activity against HIV-1, -2 and HBV. Their diphosphate forms S-PMEApp and S-PMPApp, synthesized as stereoisomeric mixture, are potent inhibitors of wild-type (WT) HIV-1 RT. Understanding HIV-1 RT stereoselectivity, however, awaits resolution of the diphosphate forms into defined stereoisomers. To this aim, thiophosphonate monophosphates S-PMEAp and S-PMPAp were synthesized and used in a stereocontrolled enzyme-catalyzed phosphoryl transfer reaction involving either nucleoside diphosphate kinase (NDPK) or creatine kinase (CK) to obtain thiophosphonate diphosphates as separated isomers. We then quantified substrate preference of recombinant WT HIV-1 RT toward pure stereoisomers using in vitro steady-state kinetic analyses. The crystal structure of a complex between Dictyostelium NDPK and S-PMPApp at 2.32Å allowed to determine the absolute configuration at the α-phosphorus atom in relation to the stereo-preference of studied enzymes. The RP isomer of S-PMPApp and S-PMEApp are the preferred substrate over SP for both NDPK and HIV-1 RT. PMID:25766862

  14. Base-modified nucleosides: etheno derivatives

    NASA Astrophysics Data System (ADS)

    Jahnz-Wechmann, Zofia; Framski, Grzegorz; Januszczyk, Piotr; Boryski, Jerzy

    2016-04-01

    This review presents synthesis and chemistry of nucleoside analogs, possessing an additional fused, heterocyclic ring of the “etheno” type, such as 1,N6-ethenoadenosine, 1,N4-ethenocytidine, 1,N2-ethenoguanosine, and other related derivatives. Formation of ethenonucleosides, in the presence of α-halocarbonyl reagents and their mechanism, stability and degradation, reactions of substitution and transglycosylation, as well as their application in the nucleoside synthesis, have been described. Some of the discussed compounds may be applied as chemotherapeutic agents in antiviral and anticancer treatment, acting as pro-nucleosides of already known, biologically active nucleoside analogs..

  15. Base-Modified Nucleosides: Etheno Derivatives

    PubMed Central

    Jahnz-Wechmann, Zofia; Framski, Grzegorz R.; Januszczyk, Piotr A.; Boryski, Jerzy

    2016-01-01

    This review presents synthesis and chemistry of nucleoside analogs, possessing an additional fused, heterocyclic ring of the “etheno” type, such as 1,N6-ethenoadenosine, 1,N4-ethenocytidine, 1,N2-ethenoguanosine, and other related derivatives. Formation of ethenonucleosides, in the presence of α-halocarbonyl reagents and their mechanism, stability, and degradation, reactions of substitution and transglycosylation, as well as their application in the nucleoside synthesis, have been described. Some of the discussed compounds may be applied as chemotherapeutic agents in antiviral and anticancer treatment, acting as pro-nucleosides of already known, biologically active nucleoside analogs. PMID:27200341

  16. Direct synthesis of imino-C-nucleoside analogues and other biologically active iminosugars

    PubMed Central

    Bergeron-Brlek, Milan; Meanwell, Michael; Britton, Robert

    2015-01-01

    Iminosugars have attracted increasing attention as chemical probes, chaperones and leads for drug discovery. Despite several clinical successes, their de novo synthesis remains a significant challenge that also limits their integration with modern high-throughput screening technologies. Herein, we describe a unique synthetic strategy that converts a wide range of acetaldehyde derivatives into iminosugars and imino-C-nucleoside analogues in two or three straightforward transformations. We also show that this strategy can be readily applied to the rapid production of indolizidine and pyrrolizidine iminosugars. The high levels of enantio- and diastereoselectivity, excellent overall yields, convenience and broad substrate scope make this an appealing process for diversity-oriented synthesis, and should enable drug discovery efforts. PMID:25903019

  17. The Nucleoside Analog BMS-986001 Shows Greater In Vitro Activity against HIV-2 than against HIV-1.

    PubMed

    Smith, Robert A; Raugi, Dana N; Wu, Vincent H; Leong, Sally S; Parker, Kate M; Oakes, Mariah K; Sow, Papa Salif; Ba, Selly; Seydi, Moussa; Gottlieb, Geoffrey S

    2015-12-01

    Treatment options for individuals infected with human immunodeficiency virus type 2 (HIV-2) are restricted by the intrinsic resistance of the virus to nonnucleoside reverse transcriptase inhibitors (NNRTIs) and the reduced susceptibility of HIV-2 to several protease inhibitors (PIs) used in antiretroviral therapy (ART). In an effort to identify new antiretrovirals for HIV-2 treatment, we evaluated the in vitro activity of the investigational nucleoside analog BMS-986001 (2',3'-didehydro-3'-deoxy-4'-ethynylthymidine; also known as censavudine, festinavir, OBP-601, 4'-ethynyl stavudine, or 4'-ethynyl-d4T). In single-cycle assays, BMS-986001 inhibited HIV-2 isolates from treatment-naive individuals, with 50% effective concentrations (EC50s) ranging from 30 to 81 nM. In contrast, EC50s for group M and O isolates of HIV-1 ranged from 450 to 890 nM. Across all isolates tested, the average EC50 for HIV-2 was 9.5-fold lower than that for HIV-1 (64 ± 18 nM versus 610 ± 200 nM, respectively; mean ± standard deviation). BMS-986001 also exhibited full activity against HIV-2 variants whose genomes encoded the single amino acid changes K65R and Q151M in reverse transcriptase, whereas the M184V mutant was 15-fold more resistant to the drug than the parental HIV-2ROD9 strain. Taken together, our findings show that BMS-986001 is an effective inhibitor of HIV-2 replication. To our knowledge, BMS-986001 is the first nucleoside analog that, when tested against a diverse collection of HIV-1 and HIV-2 isolates, exhibits more potent activity against HIV-2 than against HIV-1 in culture. PMID:26392486

  18. The Nucleoside Analog BMS-986001 Shows Greater In Vitro Activity against HIV-2 than against HIV-1

    PubMed Central

    Raugi, Dana N.; Wu, Vincent H.; Leong, Sally S.; Parker, Kate M.; Oakes, Mariah K.; Sow, Papa Salif; Ba, Selly; Seydi, Moussa; Gottlieb, Geoffrey S.

    2015-01-01

    Treatment options for individuals infected with human immunodeficiency virus type 2 (HIV-2) are restricted by the intrinsic resistance of the virus to nonnucleoside reverse transcriptase inhibitors (NNRTIs) and the reduced susceptibility of HIV-2 to several protease inhibitors (PIs) used in antiretroviral therapy (ART). In an effort to identify new antiretrovirals for HIV-2 treatment, we evaluated the in vitro activity of the investigational nucleoside analog BMS-986001 (2′,3′-didehydro-3′-deoxy-4′-ethynylthymidine; also known as censavudine, festinavir, OBP-601, 4′-ethynyl stavudine, or 4′-ethynyl-d4T). In single-cycle assays, BMS-986001 inhibited HIV-2 isolates from treatment-naive individuals, with 50% effective concentrations (EC50s) ranging from 30 to 81 nM. In contrast, EC50s for group M and O isolates of HIV-1 ranged from 450 to 890 nM. Across all isolates tested, the average EC50 for HIV-2 was 9.5-fold lower than that for HIV-1 (64 ± 18 nM versus 610 ± 200 nM, respectively; mean ± standard deviation). BMS-986001 also exhibited full activity against HIV-2 variants whose genomes encoded the single amino acid changes K65R and Q151M in reverse transcriptase, whereas the M184V mutant was 15-fold more resistant to the drug than the parental HIV-2ROD9 strain. Taken together, our findings show that BMS-986001 is an effective inhibitor of HIV-2 replication. To our knowledge, BMS-986001 is the first nucleoside analog that, when tested against a diverse collection of HIV-1 and HIV-2 isolates, exhibits more potent activity against HIV-2 than against HIV-1 in culture. PMID:26392486

  19. The Nucleoside Analog BMS-986001 Shows Greater In Vitro Activity against HIV-2 than against HIV-1.

    PubMed

    Smith, Robert A; Raugi, Dana N; Wu, Vincent H; Leong, Sally S; Parker, Kate M; Oakes, Mariah K; Sow, Papa Salif; Ba, Selly; Seydi, Moussa; Gottlieb, Geoffrey S

    2015-12-01

    Treatment options for individuals infected with human immunodeficiency virus type 2 (HIV-2) are restricted by the intrinsic resistance of the virus to nonnucleoside reverse transcriptase inhibitors (NNRTIs) and the reduced susceptibility of HIV-2 to several protease inhibitors (PIs) used in antiretroviral therapy (ART). In an effort to identify new antiretrovirals for HIV-2 treatment, we evaluated the in vitro activity of the investigational nucleoside analog BMS-986001 (2',3'-didehydro-3'-deoxy-4'-ethynylthymidine; also known as censavudine, festinavir, OBP-601, 4'-ethynyl stavudine, or 4'-ethynyl-d4T). In single-cycle assays, BMS-986001 inhibited HIV-2 isolates from treatment-naive individuals, with 50% effective concentrations (EC50s) ranging from 30 to 81 nM. In contrast, EC50s for group M and O isolates of HIV-1 ranged from 450 to 890 nM. Across all isolates tested, the average EC50 for HIV-2 was 9.5-fold lower than that for HIV-1 (64 ± 18 nM versus 610 ± 200 nM, respectively; mean ± standard deviation). BMS-986001 also exhibited full activity against HIV-2 variants whose genomes encoded the single amino acid changes K65R and Q151M in reverse transcriptase, whereas the M184V mutant was 15-fold more resistant to the drug than the parental HIV-2ROD9 strain. Taken together, our findings show that BMS-986001 is an effective inhibitor of HIV-2 replication. To our knowledge, BMS-986001 is the first nucleoside analog that, when tested against a diverse collection of HIV-1 and HIV-2 isolates, exhibits more potent activity against HIV-2 than against HIV-1 in culture.

  20. Renal transepithelial transport of nucleosides.

    PubMed

    Nelson, J A; Vidale, E; Enigbokan, M

    1988-01-01

    Previous work from this and other laboratories has suggested that the mammalian kidney has unique mechanisms for handling purine nucleosides. For example, in humans and in mice, adenosine undergoes net renal reabsorption whereas deoxyadenosine is secreted [Kuttesch and Nelson: Cancer Chemother. Pharmacol. 8, 221 (1982)]. The relationships between these renal transport systems and classical renal organic cation and anion, carbohydrate, and cell membrane nucleoside transport carriers are not established. To investigate possible relationships between such carriers, we have tested effects of selected classical transport inhibitors on the renal clearances of adenosine, deoxyadenosine, 5'-deoxy-5-fluorouridine (5'-dFUR), and 5-fluorouracil in mice. The secretion of deoxyadenosine and 5'-dFUR, but not the reabsorption of adenosine or 5-fluorouracil, was prevented by the classical nucleoside transport inhibitors, dipyridamole and nitrobenzylthioinosine. Cimetidine, an inhibitor of the organic cation secretory system, also inhibited the secretion of 5'-dFUR, although it did not inhibit deoxyadenosine secretion in earlier studies [Nelson et al.: Biochem. Pharmacol. 32, 2323 (1983)]. The specific inhibitor of glucose renal reabsorption, phloridzin, failed to inhibit the reabsorption of adenosine or the secretion of deoxyadenosine. Failure of the nucleoside transport inhibitors and phloridzin to prevent adenosine reabsorption suggests that adenosine reabsorption may occur via a unique process. On the other hand, inhibition of the net secretion of deoxyadenosine and 5'-dFUR by dipyridamole and nitrobenzylthioinosine implies a role for the carrier that is sensitive to these compounds in the renal secretion (active transport) of these nucleosides.

  1. Synthesis and quantitative structure-activity relationship (QSAR) analysis of some novel oxadiazolo[3,4-d]pyrimidine nucleosides derivatives as antiviral agents.

    PubMed

    Xu, Xiaojuan; Wang, Jun; Yao, Qizheng

    2015-01-15

    We have synthesized a series of 4H,6H-[1,2,5]oxadiazolo[3,4-d]pyrimidine-5,7-dione 1-oxide nucleoside and their anti-vesicular stomatitis virus (VSV) activities in Wish cell were also investigated in vitro. It was found that most compounds showed obvious anti-VSV activities and compound 9 with ribofuranoside improved the anti-VSV activity by approximately 10 times and 18 times compared to didanosine (DDI) and acyclovir, respectively. A quantitative structure-activity relationship (QSAR) study of these compounds as well as previous reported oxadiazolo[3,4-d]pyrimidine nucleoside derivatives indicated that compounds with high activity should have small values of logP(o/w), vsurf_G and a large logS value. These findings and results provide a base for further investigations.

  2. Porphyromonas gingivalis attenuates ATP-mediated inflammasome activation and HMGB1 release through expression of a nucleoside-diphosphate kinase

    PubMed Central

    Johnson, Larry; Atanasova, Kalina R.; Bui, Phuong Q.; Lee, Jungnam; Hung, Shu-Chen; Yilmaz, Özlem; Ojcius, David M.

    2015-01-01

    Many intracellular pathogens evade the innate immune response in order to survive and proliferate within infected cells. We show that Porphyromonas gingivalis, an intracellular opportunistic pathogen, uses a nucleoside-diphosphate kinase (NDK) homolog to inhibit innate immune responses due to stimulation by extracellular ATP, which acts as a danger signal that binds to P2X7 receptors and induces activation of an inflammasome and caspase-1. Thus, infection of gingival epithelial cells (GECs) with wild-type P. gingivalis results in inhibition of ATP-induced caspase-1 activation. However, ndk-deficient P. gingivalis is less effective than wild-type P. gingivalis in reducing ATP-mediated caspase-1 activation and secretion of the proinflammatory cytokine, IL-1β, from infected GECs. Furthermore, P. gingivalis NDK modulates release of high-mobility group protein B1 (HMGB1), a pro-inflammatory danger signal, which remains associated with chromatin in healthy cells. Unexpectedly, infection with either wild-type or ndk-deficient P. gingivalis causes release of HMGB1 from the nucleus to the cytosol. But HMGB1 is released to the extracellular space when uninfected GECs are further stimulated with ATP, and there is more HMGB1 released from the cells when ATP-treated cells are infected with ndk-deficient mutant than wild-type P. gingivalis. Our results reveal that NDK plays a significant role in inhibiting P2X7-dependent inflammasome activation and HMGB1 release from infected GECs. PMID:25828169

  3. Activities of acyclic nucleoside phosphonates against Orf virus in human and ovine cell monolayers and organotypic ovine raft cultures.

    PubMed

    Dal Pozzo, F; Andrei, G; Holy, A; Van Den Oord, J; Scagliarini, A; De Clercq, E; Snoeck, R

    2005-12-01

    Orf virus, a member of the Parapoxvirus genus, causes a contagious pustular dermatitis in sheep, goats, and humans. Previous studies have demonstrated the activity of (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine (HPMPC; cidofovir; Vistide) against orf virus in cell culture and humans. We have evaluated a broad range of acyclic nucleoside phosphonates (ANPs) against several orf virus strains in primary lamb keratinocytes (PLKs) and human embryonic lung (HEL) monolayers. HPMPC, (S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]-2,6- diaminopurine (HPMPDAP), and (R)-9-[3-hydroxy-2-(phosphonomethoxy)propoxy]-2,4-diaminopyrimidine (HPMPO-DAPy) were three of the most active compounds that were subsequently tested in a virus yield assay with PLK and HEL cells by virus titration and DNA quantification. HPMPC, HPMPDAP, and HPMPO-DAPy were evaluated for their activities against orf virus replication in organotypic epithelial raft cultures from differentiated PLK cells. At the highest concentrations (50 and 20 microg/ml), full protection was provided by the three drugs, while at 5 microg/ml, only HPMPDAP and HPMPC offered partial protection. The activities of the three compounds in the raft culture system were confirmed by quantification of infectious virus and viral DNA. These findings provide a rationale for the use of HPMPC and other ANPs in the treatment of orf (contagious ecthyma) in humans and animals.

  4. Changes in enzymic activities of nucleoside diphosphate sugar interconversions during differentiation of cambium to xylem in sycamore and poplar.

    PubMed

    Dalessandro, G; Northcote, D H

    1977-02-15

    During the transition from primary wall formation to secondary thickening there is a marked shift in the synthesis of pectin, hemicellulose and cellulose. The activities of the enzymes [UDP-D-galactose 4-epimerase (EC 5.1.3.2)8 UDP-l-arabinose 4-epimerase (EC 5.1.3.5), UDP-D-glucose dehydrogenase (EC 1.1.1.22) and UDP-D--glucuronate decarboxylase (EC 4.1.1.35)] were measured in cambial cells, differentiating xylem cells and differentiated xylem cells isolated from sycamore and poplar trees, and phloem cells from poplar. At the final stage of the differentiation of cambium to xylem there was a decrease in activity of the enzymes directly involved in producing the soluble precursors of pectin (DUP-D-galactose 4-epimerase and UDP-L-arabinose 4-epimerase and an increase in those producing the precursors of hemicellulose (UDP-D-glucose dehydrogenase and UDP-D-glucuronate decarboxylase). These results strongly suggest ahat the changes were correlated with the differences observed in the chemical composition of the wall during development. The changes found in the catalytic activity of the enzymes of nucleoside diphosphate sugar interconversion exert a coarse control over the synthesis of pectin and hemicelluloses. The tissues at all stages of development contained the necessary enzyme activities to produce all the precursors of pectin and hemicellulose, even at the final stage of differentiation when no pectin was formed.

  5. NMR characterization of HIV-1 reverse transcriptase binding to various non-nucleoside reverse transcriptase inhibitors with different activities

    PubMed Central

    Thammaporn, Ratsupa; Yagi-Utsumi, Maho; Yamaguchi, Takumi; Boonsri, Pornthip; Saparpakorn, Patchreenart; Choowongkomon, Kiattawee; Techasakul, Supanna; Kato, Koichi; Hannongbua, Supa

    2015-01-01

    Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) is an important target for antiviral therapy against acquired immunodeficiency syndrome. However, the efficiency of available drugs is impaired most typically by drug-resistance mutations in this enzyme. In this study, we applied a nuclear magnetic resonance (NMR) spectroscopic technique to the characterization of the binding of HIV-1 RT to various non-nucleoside reverse transcriptase inhibitors (NNRTIs) with different activities, i.e., nevirapine, delavirdine, efavirenz, dapivirine, etravirine, and rilpivirine. 1H-13C heteronuclear single-quantum coherence (HSQC) spectral data of HIV-1 RT, in which the methionine methyl groups of the p66 subunit were selectively labeled with 13C, were collected in the presence and absence of these NNRTIs. We found that the methyl 13C chemical shifts of the M230 resonance of HIV-1 RT bound to these drugs exhibited a high correlation with their anti-HIV-1 RT activities. This methionine residue is located in proximity to the NNRTI-binding pocket but not directly involved in drug interactions and serves as a conformational probe, indicating that the open conformation of HIV-1 RT was more populated with NNRTIs with higher inhibitory activities. Thus, the NMR approach offers a useful tool to screen for novel NNRTIs in developing anti-HIV drugs. PMID:26510386

  6. Synthesis and Anti-Influenza Activity of Pyridine, Pyridazine, and Pyrimidine C-Nucleosides as Favipiravir (T-705) Analogues.

    PubMed

    Wang, Guangyi; Wan, Jinqiao; Hu, Yujian; Wu, Xiangyang; Prhavc, Marija; Dyatkina, Natalia; Rajwanshi, Vivek K; Smith, David B; Jekle, Andreas; Kinkade, April; Symons, Julian A; Jin, Zhinan; Deval, Jerome; Zhang, Qingling; Tam, Yuen; Chanda, Sushmita; Blatt, Lawrence; Beigelman, Leonid

    2016-05-26

    Influenza viruses are responsible for seasonal epidemics and occasional pandemics which cause significant morbidity and mortality. Despite available vaccines, only partial protection is achieved. Currently, there are two classes of widely approved anti-influenza drugs: M2 ion channel blockers and neuraminidase inhibitors. However, the worldwide spread of drug-resistant influenza strains poses an urgent need for novel antiviral drugs, particularly with a different mechanism of action. Favipiravir (T-705), a broad-spectrum antiviral agent, has shown potent anti-influenza activity in cell-based assays, and its riboside (2) triphosphate inhibited influenza polymerase. In one of our approaches to treat influenza infection, we designed, prepared, and tested a series of C-nucleoside analogues, which have an analogy to 2 and were expected to act by a similar antiviral mechanism as favipiravir. Compound 3c of this report exhibited potent inhibition of influenza virus replication in MDCK cells, and its triphosphate was a substrate of and demonstrated inhibitory activity against influenza A polymerase. Metabolites of 3c are also presented.

  7. Synthesis and Anti-Influenza Activity of Pyridine, Pyridazine, and Pyrimidine C-Nucleosides as Favipiravir (T-705) Analogues.

    PubMed

    Wang, Guangyi; Wan, Jinqiao; Hu, Yujian; Wu, Xiangyang; Prhavc, Marija; Dyatkina, Natalia; Rajwanshi, Vivek K; Smith, David B; Jekle, Andreas; Kinkade, April; Symons, Julian A; Jin, Zhinan; Deval, Jerome; Zhang, Qingling; Tam, Yuen; Chanda, Sushmita; Blatt, Lawrence; Beigelman, Leonid

    2016-05-26

    Influenza viruses are responsible for seasonal epidemics and occasional pandemics which cause significant morbidity and mortality. Despite available vaccines, only partial protection is achieved. Currently, there are two classes of widely approved anti-influenza drugs: M2 ion channel blockers and neuraminidase inhibitors. However, the worldwide spread of drug-resistant influenza strains poses an urgent need for novel antiviral drugs, particularly with a different mechanism of action. Favipiravir (T-705), a broad-spectrum antiviral agent, has shown potent anti-influenza activity in cell-based assays, and its riboside (2) triphosphate inhibited influenza polymerase. In one of our approaches to treat influenza infection, we designed, prepared, and tested a series of C-nucleoside analogues, which have an analogy to 2 and were expected to act by a similar antiviral mechanism as favipiravir. Compound 3c of this report exhibited potent inhibition of influenza virus replication in MDCK cells, and its triphosphate was a substrate of and demonstrated inhibitory activity against influenza A polymerase. Metabolites of 3c are also presented. PMID:27120583

  8. Identification of Highly Promising Antioxidants/Neuroprotectants Based on Nucleoside 5'-Phosphorothioate Scaffold. Synthesis, Activity, and Mechanisms of Action.

    PubMed

    Azran, Sagit; Danino, Ortal; Förster, Daniel; Kenigsberg, Sarah; Reiser, Georg; Dixit, Mudit; Singh, Vijay; Major, Dan T; Fischer, Bilha

    2015-11-12

    With a view to identify novel and biocompatible neuroprotectants, we designed nucleoside 5'-thiophosphate analogues, 6-11. We identified 2-SMe-ADP(α-S), 7A, as a most promising neuroprotectant. 7A reduced ROS production in PC12 cells under oxidizing conditions, IC50 of 0.08 vs 21 μM for ADP. Furthermore, 7A rescued primary neurons subjected to oxidation, EC50 of 0.04 vs 19 μM for ADP. 7A is a most potent P2Y1-R agonist, EC50 of 0.0026 μM. Activity of 7A in cells involved P2Y1/12-R as indicated by blocking P2Y12-R or P2Y1-R. Compound 7A inhibited Fenton reaction better than EDTA, IC50 of 37 vs 54 μM, due to radical scavenging, IC50 of 12.5 vs 30 μM for ADP, and Fe(II)-chelation, IC50 of 80 vs >200 μM for ADP (ferrozine assay). In addition, 7A was stable in human blood serum, t1/2 of 15 vs 1.5 h for ADP, and resisted hydrolysis by NPP1/3, 2-fold vs ADP. Hence, we propose 7A as a highly promising neuroprotectant. PMID:26447940

  9. Identification of Highly Promising Antioxidants/Neuroprotectants Based on Nucleoside 5'-Phosphorothioate Scaffold. Synthesis, Activity, and Mechanisms of Action.

    PubMed

    Azran, Sagit; Danino, Ortal; Förster, Daniel; Kenigsberg, Sarah; Reiser, Georg; Dixit, Mudit; Singh, Vijay; Major, Dan T; Fischer, Bilha

    2015-11-12

    With a view to identify novel and biocompatible neuroprotectants, we designed nucleoside 5'-thiophosphate analogues, 6-11. We identified 2-SMe-ADP(α-S), 7A, as a most promising neuroprotectant. 7A reduced ROS production in PC12 cells under oxidizing conditions, IC50 of 0.08 vs 21 μM for ADP. Furthermore, 7A rescued primary neurons subjected to oxidation, EC50 of 0.04 vs 19 μM for ADP. 7A is a most potent P2Y1-R agonist, EC50 of 0.0026 μM. Activity of 7A in cells involved P2Y1/12-R as indicated by blocking P2Y12-R or P2Y1-R. Compound 7A inhibited Fenton reaction better than EDTA, IC50 of 37 vs 54 μM, due to radical scavenging, IC50 of 12.5 vs 30 μM for ADP, and Fe(II)-chelation, IC50 of 80 vs >200 μM for ADP (ferrozine assay). In addition, 7A was stable in human blood serum, t1/2 of 15 vs 1.5 h for ADP, and resisted hydrolysis by NPP1/3, 2-fold vs ADP. Hence, we propose 7A as a highly promising neuroprotectant.

  10. Label-free offline versus online activity methods for nucleoside diphosphate kinase b using high performance liquid chromatography.

    PubMed

    Lima, Juliana Maria; Salmazo Vieira, Plínio; Cavalcante de Oliveira, Arthur Henrique; Cardoso, Carmen Lúcia

    2016-08-01

    Nucleoside diphosphate kinase from Leishmania spp. (LmNDKb) has recently been described as a potential drug target to treat leishmaniasis disease. Therefore, screening of LmNDKb ligands requires methodologies that mimic the conditions under which LmNDKb acts in biological systems. Here, we compare two label-free methodologies that could help screen LmNDKb ligands and measure NDKb activity: an offline LC-UV assay for soluble LmNDKb and an online two-dimensional LC-UV system based on LmNDKb immobilised on a silica capillary. The target enzyme was immobilised on the silica capillary via Schiff base formation (to give LmNDKb-ICER-Schiff) or affinity attachment (to give LmNDKb-ICER-His). Several aspects of the ICERs resulting from these procedures were compared, namely kinetic parameters, stability, and procedure steps. Both the LmNDKb immobilisation routes minimised the conformational changes and preserved the substrate binding sites. However, considering the number of steps involved in the immobilisation procedure, the cost of reagents, and the stability of the immobilised enzyme, immobilisation via Schiff base formation proved to be the optimal procedure.

  11. Synthesis of potent and broad genotypically active NS5B HCV non-nucleoside inhibitors binding to the thumb domain allosteric site 2 of the viral polymerase.

    PubMed

    Pierra Rouvière, Claire; Amador, Agnès; Badaroux, Eric; Convard, Thierry; Da Costa, Daniel; Dukhan, David; Griffe, Ludovic; Griffon, Jean-François; LaColla, Massimiliano; Leroy, Frédéric; Liuzzi, Michel; Loi, Anna Giulia; McCarville, Joe; Mascia, Valeria; Milhau, Julien; Onidi, Loredana; Paparin, Jean-Laurent; Rahali, Rachid; Sais, Efisio; Seifer, Maria; Surleraux, Dominique; Standring, David; Dousson, Cyril

    2016-09-15

    The hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase (RdRp) plays a central role in virus replication. NS5B has no functional equivalent in mammalian cells and, as a consequence, is an attractive target for selective inhibition. This Letter describes the discovery of a new family of HCV NS5B non-nucleoside inhibitors, based on the bioisosterism between amide and phosphonamidate functions. As part of this program, SAR in this new series led to the identification of IDX17119, a potent non-nucleoside inhibitor, active on the genotypes 1b, 2a, 3a and 4a. The structure and binding domain of IDX17119 were confirmed by X-ray co-crystallization study. PMID:27520942

  12. Synthesis of potent and broad genotypically active NS5B HCV non-nucleoside inhibitors binding to the thumb domain allosteric site 2 of the viral polymerase.

    PubMed

    Pierra Rouvière, Claire; Amador, Agnès; Badaroux, Eric; Convard, Thierry; Da Costa, Daniel; Dukhan, David; Griffe, Ludovic; Griffon, Jean-François; LaColla, Massimiliano; Leroy, Frédéric; Liuzzi, Michel; Loi, Anna Giulia; McCarville, Joe; Mascia, Valeria; Milhau, Julien; Onidi, Loredana; Paparin, Jean-Laurent; Rahali, Rachid; Sais, Efisio; Seifer, Maria; Surleraux, Dominique; Standring, David; Dousson, Cyril

    2016-09-15

    The hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase (RdRp) plays a central role in virus replication. NS5B has no functional equivalent in mammalian cells and, as a consequence, is an attractive target for selective inhibition. This Letter describes the discovery of a new family of HCV NS5B non-nucleoside inhibitors, based on the bioisosterism between amide and phosphonamidate functions. As part of this program, SAR in this new series led to the identification of IDX17119, a potent non-nucleoside inhibitor, active on the genotypes 1b, 2a, 3a and 4a. The structure and binding domain of IDX17119 were confirmed by X-ray co-crystallization study.

  13. Roles of LEF-4 and PTP/BVP RNA Triphosphatases in Processing of Baculovirus Late mRNAs▿

    PubMed Central

    Li, Yi; Guarino, Linda A.

    2008-01-01

    The baculovirus Autographa californica nucleopolyhedrovirus encodes two proteins with RNA triphosphatase activity. Late expression factor LEF-4, which is an essential gene, is a component of the RNA polymerase and also encodes the RNA capping enzyme guanylyltransferase. PTP/BVP is also an RNA triphosphatase, but is not essential for viral replication, possibly because its activity is redundant to that of LEF-4. To elucidate the role of these proteins in mRNA cap formation, a mutant virus that lacked both RNA triphosphatase activities was constructed. Infection studies revealed that the double-mutant virus was viable and normal with respect to the production of budded virus. Pulse-labeling studies and immunoblot analyses showed that late gene expression in the double mutant was equivalent to that in the wild type, while polyhedrin expression was slightly reduced. Direct analysis of the mRNA cap structure indicated no alteration of cap processing in the double mutant. Together, these results reveal that baculoviruses replicate and express their late genes at normal levels in the absence of its two different types of RNA triphosphatases. PMID:18385232

  14. A comparative study on phosphotransferase activity of acid phosphatases from Raoultella planticola and Enterobacter aerogenes on nucleosides, sugars, and related compounds.

    PubMed

    Médici, Rosario; Garaycoechea, Juan I; Valino, Ana L; Pereira, Claudio A; Lewkowicz, Elizabeth S; Iribarren, Adolfo M

    2014-04-01

    Natural and modified nucleoside-5'-monophosphates and their precursors are valuable compounds widely used in biochemical studies. Bacterial nonspecific acid phosphatases (NSAPs) are a group of enzymes involved in the hydrolysis of phosphoester bonds, and some of them exhibit phosphotransferase activity. NSAP containing Enterobacter aerogenes and Raoultella planticola whole cells were evaluated in the phosphorylation of a wide range of nucleosides and nucleoside precursors using pyrophosphate as phosphate donor. To increase the productivity of the process, we developed two genetically modified strains of Escherichia coli which overexpressed NSAPs of E. aerogenes and R. planticola. These new recombinant microorganisms (E. coli BL21 pET22b-phoEa and E. coli BL21 pET22b-phoRp) showed higher activity than the corresponding wild-type strains. Reductions in the reaction times from 21 h to 60 min, from 4 h to 15 min, and from 24 h to 40 min in cases of dihydroxyacetone, inosine, and fludarabine, respectively, were obtained.

  15. Selective Non-nucleoside Inhibitors of Human DNA Methyltransferases Active in Cancer Including in Cancer Stem Cells

    PubMed Central

    2015-01-01

    DNA methyltransferases (DNMTs) are important enzymes involved in epigenetic control of gene expression and represent valuable targets in cancer chemotherapy. A number of nucleoside DNMT inhibitors (DNMTi) have been studied in cancer, including in cancer stem cells, and two of them (azacytidine and decitabine) have been approved for treatment of myelodysplastic syndromes. However, only a few non-nucleoside DNMTi have been identified so far, and even fewer have been validated in cancer. Through a process of hit-to-lead optimization, we report here the discovery of compound 5 as a potent non-nucleoside DNMTi that is also selective toward other AdoMet-dependent protein methyltransferases. Compound 5 was potent at single-digit micromolar concentrations against a panel of cancer cells and was less toxic in peripheral blood mononuclear cells than two other compounds tested. In mouse medulloblastoma stem cells, 5 inhibited cell growth, whereas related compound 2 showed high cell differentiation. To the best of our knowledge, 2 and 5 are the first non-nucleoside DNMTi tested in a cancer stem cell line. PMID:24387159

  16. Persistent Hepatitis C Virus Infection Impairs Ribavirin Antiviral Activity through Clathrin-Mediated Trafficking of Equilibrative Nucleoside Transporter 1

    PubMed Central

    Panigrahi, Rajesh; Chandra, Partha K.; Ferraris, Pauline; Kurt, Ramazan; Song, Kyoungsub; Garry, Robert F.; Reiss, Krzysztof; Coe, Imogen R.; Furihata, Tomomi; Balart, Luis A.; Wu, Tong

    2014-01-01

    ABSTRACT Ribavirin (RBV) continues to be an important component of interferon-free hepatitis C treatment regimens, as RBV alone does not inhibit hepatitis C virus (HCV) replication effectively; the reason for this ineffectiveness has not been established. In this study, we investigated the RBV resistance mechanism using a persistently HCV-infected cell culture system. The antiviral activity of RBV against HCV was progressively impaired in the persistently infected culture, whereas interferon lambda 1 (IFN-λ1), a type III IFN, showed a strong antiviral response and induced viral clearance. We found that HCV replication in persistently infected cultures induces an autophagy response that impairs RBV uptake by preventing the expression of equilibrative nucleoside transporter 1 (ENT1). The Huh-7.5 cell line treated with an autophagy inducer, Torin 1, downregulated membrane expression of ENT1 and terminated RBV uptake. In contrast, the autophagy inhibitors hydroxychloroquine (HCQ), 3-methyladenine (3-MA), and bafilomycin A1 (BafA1) prevented ENT1 degradation and enhanced RBV antiviral activity. The HCV-induced autophagy response, as well as treatment with Torin 1, degrades clathrin heavy chain expression in a hepatoma cell line. Reduced expression of the clathrin heavy chain by HCV prevents ENT1 recycling to the plasma membrane and forces ENT1 to the lysosome for degradation. This study provides a potential mechanism for the impairment of RBV antiviral activity in persistently HCV-infected cell cultures and suggests that inhibition of the HCV-induced autophagy response could be used as a strategy for improving RBV antiviral activity against HCV infection. IMPORTANCE The results from this work will allow a review of the competing theories of antiviral therapy development in the field of HCV virology. Ribavirin (RBV) remains an important component of interferon-free hepatitis C treatment regimens. The reason why RBV alone does not inhibit HCV replication effectively has

  17. Nucleoside Diphosphate Sugar-Starch Glucosyl Transferase Activity of wx Starch Granules 1

    PubMed Central

    Nelson, Oliver E.; Chourey, Prem S.; Chang, Ming Tu

    1978-01-01

    Starch granule preparations from the endosperm tissue of all waxy maize (Zea mays L.) mutants tested have low and approximately equal capability to incorporate glucose from adenosine diphosphate glucose into starch. As the substrate concentration is reduced, however, the activity of waxy preparations relative to nonmutant increases until, at the lowest substrate concentration utilized (0.1 μM), the activity of the waxy preparations is nearly equal to that of the nonmutant preparation. The apparent Km (adenosine diphosphate glucose) for starch granule preparations from wx-C/wx-C/wx-C endosperms was 7.1 × 10−5 M, which is compared to 3 × 10−3 M for preparations from nonwaxy endosperms. Starch granule preparations from three other waxy mutants of independent mutational origin have levels of enzymic activity approximately equal to wx-C at a given substrate concentration giving rise to similar apparent Km estimates. We conclude that there is in maize endosperm starch granules a second starch granule-bound glycosyl transferase, whose presence is revealed when mutation eliminates activity of the more active glucosyl transferase catalyzing the same reaction. PMID:16660522

  18. Multicomponent reactions in nucleoside chemistry

    PubMed Central

    Buchowicz, Włodzimierz

    2014-01-01

    Summary This review covers sixty original publications dealing with the application of multicomponent reactions (MCRs) in the synthesis of novel nucleoside analogs. The reported approaches were employed for modifications of the parent nucleoside core or for de novo construction of a nucleoside scaffold from non-nucleoside substrates. The cited references are grouped according to the usually recognized types of the MCRs. Biochemical properties of the novel nucleoside analogs are also presented (if provided by the authors). PMID:25161730

  19. Crystal structure of a concentrative nucleoside transporter from Vibrio cholerae at 2.4;#8201;Å

    SciTech Connect

    Johnson, Zachary Lee; Cheong, Cheom-Gil; Lee, Seok-Yong

    2012-07-11

    Nucleosides are required for DNA and RNA synthesis, and the nucleoside adenosine has a function in a variety of signalling processes. Transport of nucleosides across cell membranes provides the major source of nucleosides in many cell types and is also responsible for the termination of adenosine signalling. As a result of their hydrophilic nature, nucleosides require a specialized class of integral membrane proteins, known as nucleoside transporters (NTs), for specific transport across cell membranes. In addition to nucleosides, NTs are important determinants for the transport of nucleoside-derived drugs across cell membranes. A wide range of nucleoside-derived drugs, including anticancer drugs (such as Ara-C and gemcitabine) and antiviral drugs (such as zidovudine and ribavirin), have been shown to depend, at least in part, on NTs for transport across cell membranes. Concentrative nucleoside transporters, members of the solute carrier transporter superfamily SLC28, use an ion gradient in the active transport of both nucleosides and nucleoside-derived drugs against their chemical gradients. The structural basis for selective ion-coupled nucleoside transport by concentrative nucleoside transporters is unknown. Here we present the crystal structure of a concentrative nucleoside transporter from Vibrio cholerae in complex with uridine at 2.4 {angstrom}. Our functional data show that, like its human orthologues, the transporter uses a sodium-ion gradient for nucleoside transport. The structure reveals the overall architecture of this class of transporter, unravels the molecular determinants for nucleoside and sodium binding, and provides a framework for understanding the mechanism of nucleoside and nucleoside drug transport across cell membranes.

  20. New in vitro method for evaluating antiviral activity of acyclic nucleoside phosphonates against plant viruses.

    PubMed

    Spak, J; Holý, A; Pavingerová, D; Votruba, I; Spaková, V; Petrzik, K

    2010-12-01

    A new method was developed for testing antiviral compounds against plant viruses based on rapidly growing brassicas in vitro on liquid medium. This method enables exchange of media containing tested chemicals in various concentrations and simultaneous evaluation of their phytotoxicity and antiviral activity. While using ribavirin as a standard for comparison, phytotoxicity and ability of the acyclic nucleotide analogues (R)-PMPA, PMEA, PMEDAP, and (S)-HPMPC to eliminate ssRNA Turnip yellow mosaic virus (TYMV) were evaluated by this method. Double antibody sandwich ELISA and real-time PCR were used for relative quantification of viral protein and nucleic acid in plants. Ribavirin had the most powerful antiviral effect against TYMV. On the other hand, (R)-PMPA and PMEA had no antiviral effect and almost no phytotoxicity compared to the control. (S)-HPMPC and PMEDAP showed moderate antiviral effect, accompanied by higher phytotoxicity. The tested compounds can be screened within 6-9 weeks in contrast to the 6 months for traditionally used explants on solid medium. The method enables large-scale screening of potential antivirals for in vitro elimination of viruses from vegetatively propagated crops and ornamentals.

  1. N-h and N-C bond activation of pyrimidinic nucleobases and nucleosides promoted by an osmium polyhydride.

    PubMed

    Esteruelas, Miguel A; García-Raboso, Jorge; Oliván, Montserrat; Oñate, Enrique

    2012-05-21

    Complex OsH(6)(P(i)Pr(3))(2) (1) reacts with 1-methylthymine and 1-methyluracil to give OsH(3)(P(i)Pr(3))(2)(nucleobase') (2, 3) containing the deprotonated nucleobases (nucleobase') κ(2)-N,O coordinated by the nitrogen atom at position 3 and the oxygen bonded to the carbon atom of the ring at position 4. Similarly, the reactions of 1 with thymidine, 5-methyluridine, deoxyuridine, and uridine lead to OsH(3)(P(i)Pr(3))(2)(nucleoside') (4-7) with the deprotonated nucleoside (nucleoside') κ(2)-N,O coordinated by the nitrogen atom at position 3 and the oxygen bonded to the carbon atom at position 4 of the nucleobases. Treatment of complexes 5 and 7, containing nucleosides derived from ribose, with OsH(2)Cl(2)(P(i)Pr(3))(2) (8) in the presence of Et(3)N affords dinuclear species OsH(3)(P(i)Pr(3))(2)(nucleobase')-(ribose)(P(i)Pr(3))(2)H(2)Os (9, 10) formed by two different metal fragments. Complex 1 also promotes the cleavage of the N-C bond of 2-7 to give the dinuclear species {OsH(3)(P(i)Pr(3))(2)}(2)(nucleobase'') (11, 12) with the nucleobase skeleton (nucleobase'') κ(2)-N,O coordinated to both metal fragments. These compounds can be also prepared by reaction of 1 with 0.5 equiv of thymine and uracil. The use of 1:1 hexahydride:nucleobase molar ratios gives rise to the preferred formation of the mononuclear complexes OsH(3)(P(i)Pr(3))(2)(nucleobase''') (13, 14; nucleobase''' = monodeprotonated thymine or uracil). The X-ray structures of complexes 6, 11, and 14 are also reported.

  2. Large steric effect in the substitution reaction of amines with phosphoimidazolide-activated nucleosides

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Stronach, M. W.; Ketner, R. J.; Hurley, T. B.

    1995-01-01

    Aliphatic amines react with phosphoimidazolide-activated derivatives of guanosine and cytidine (ImpN) by replacing the imidazole group. The kinetics of reaction of guanosine 5'-phospho-2-methylimidazolide (2-MeImpG) with glycine ethyl ester, glycinamide, 2-methoxyethylamine, n-butylamine, morpholine, dimethylamine (Me2NH), ethylmethylamine (EtNHMe), diethylamine (Et2NH), pyrrolidine, and piperidine were determined in water at 37 degrees C. With primary amines, a plot of the logarithm of the rate constant for attack by the amine on the protonated substrate, log kSH(A), versus the pKa of the amine exhibits a good linear correlation with a Bronsted slope, beta nuc = 0.48. Most of the secondary amines tested react with slightly higher reactivity than primary amines of similar pKa. Interestingly, some secondary amines show substantially lower reactivity than might be expected: EtNHMe reacts about eight times, and Et2NH at least 100 times, more slowly than Me2NH although all three amines are of similar basicity. For comparison, the kinetics of reaction of guanosine 5'-phosphoimidazolide (ImpG) and cytidine 5'-phosphoimidazolide (ImpC) were determined with Me2NH, EtNHMe, and Et2NH, and similar results were obtained. These results establish that the increased steric hindrance observed with the successive addition of ethyl groups are not due to any special steric requirements imposed by the guanosine or the methyl on the 2-methylimidazole leaving group of 2-MeImpG. It is concluded that addition of ethyl and, perhaps, groups larger than ethyl dramatically increases the kinetic barrier for addition of aliphatic secondary amines to the P-N bond of ImpN. This study supports the observation that the primary amino groups on the natural polyamines are at least 2 orders of magnitude more reactive than the secondary amino groups in the reaction with ImpN.

  3. Natural competence in Vibrio cholerae is controlled by a nucleoside scavenging response that requires CytR-dependent anti-activation.

    PubMed

    Antonova, Elena S; Bernardy, Eryn E; Hammer, Brian K

    2012-12-01

    Competence for genetic transformation in Vibrio cholerae is triggered by chitin-induced transcription factor TfoX and quorum sensing (QS) regulator HapR. Transformation requires expression of ComEA, described as a DNA receptor in other competent bacteria. A screen for mutants that poorly expressed a comEA-luciferase fusion identified cytR, encoding the nucleoside scavenging cytidine repressor, previously shown in V. cholerae to be a biofilm repressor and positively regulated by TfoX, but not linked to transformation. A ΔcytR mutant was non-transformable and defective in expression of comEA and additional TfoX-induced genes, including pilA (transformation pseudopilus) and chiA-1 (chitinase). In Escherichia coli, 'anti-activation' of nucleoside metabolism genes, via protein-protein interactions between critical residues in CytR and CRP (cAMP receptor protein), is disrupted by exogenous cytidine. Amino acid substitutions of the corresponding V. cholerae CytR residues impaired expression of comEA, pilA and chiA-1, and halted DNA uptake; while exogenous cytidine hampered comEA expression levels and prevented transformation. Our results support a speculative model that when V. cholerae reaches high density on chitin, CytR-CRP interactions 'anti-activate' multiple genes, including a possible factor that negatively controls DNA uptake. Thus, a nucleoside scavenging mechanism couples nutrient stress and cell-cell signalling to natural transformation in V. cholerae as described in other bacterial pathogens.

  4. Protective Mechanisms of S. lycopersicum Aqueous Fraction (Nucleosides and Flavonoids) on Platelet Activation and Thrombus Formation: In Vitro, Ex Vivo and In Vivo Studies

    PubMed Central

    Fuentes, Eduardo; Pereira, Jaime; Alarcón, Marcelo; Valenzuela, Claudio; Pérez, Pablo; Astudillo, Luis; Palomo, Iván

    2013-01-01

    The purpose of this research was to investigate mechanisms of antiplatelet action of bioactive principle from S. lycopersicum. Aqueous fraction had a high content of nucleosides (adenosine, guanosine, and adenosine 5′-monophosphate) by HPLC analysis. Also aqueous fraction presented flavonoids content. Aqueous fraction inhibited platelet activation by 15 ± 6% (P < 0.05). Fully spread of human platelets on collagen in the presence of aqueous fraction was inhibited from 15 ± 1 to 9 ± 1 μm2 (P < 0.001). After incubation of whole blood with aqueous fraction, the platelet coverage was inhibited by 55 ± 12% (P < 0.001). Platelet ATP secretion and aggregation were significantly inhibited by the aqueous fraction. At the same concentrations that aqueous fraction inhibits platelet aggregation, levels of sCD40L significantly decreased and the intraplatelet cAMP levels increased. In addition, SQ22536, an adenylate cyclase inhibitor, attenuated the effect of aqueous fraction toward ADP-induced platelet aggregation and intraplatelet level of cAMP. Platelet aggregation ex vivo (human study) and thrombosis formation in vivo (murine model) were inhibited by aqueous fraction. Finally, aqueous fraction may be used as a functional ingredient adding antiplatelet activities (nucleosides and flavonoids) to processed foods. PMID:24159349

  5. Structural analyses reveal two distinct families of nucleoside phosphorylases.

    PubMed Central

    Pugmire, Matthew J; Ealick, Steven E

    2002-01-01

    The reversible phosphorolysis of purine and pyrimidine nucleosides is an important biochemical reaction in the salvage pathway, which provides an alternative to the de novo purine and pyrimidine biosynthetic pathways. Structural studies in our laboratory and by others have revealed that only two folds exist that catalyse the phosphorolysis of all nucleosides, and provide the basis for defining two families of nucleoside phosphorylases. The first family (nucleoside phosphorylase-I) includes enzymes that share a common single-domain subunit, with either a trimeric or a hexameric quaternary structure, and accept a range of both purine and pyrimidine nucleoside substrates. Despite differences in substrate specificity, amino acid sequence and quaternary structure, all members of this family share a characteristic subunit topology. We have also carried out a sequence motif study that identified regions of the common subunit fold that are functionally significant in differentiating the various members of the nucleoside phosphorylase-I family. Although the substrate-binding sites are arranged similarly for all members of the nucleoside phosphorylase-I family, a comparison of the active sites from the known structures of this family indicates significant differences between the trimeric and hexameric family members. Sequence comparisons also suggest structural identity between the nucleoside phosphorylase-I family and both 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase and AMP nucleosidase. Members of the second family of nucleoside phosphorylases (nucleoside phosphorylase-II) share a common two-domain subunit fold and a dimeric quaternary structure, share a significant level of sequence identity (>30%) and are specific for pyrimidine nucleosides. Members of this second family accept both thymidine and uridine substrates in lower organisms, but are specific for thymidine in mammals and other higher organisms. A possible relationship between nucleoside

  6. Design, synthesis, anticancer, antimicrobial activities and molecular docking studies of theophylline containing acetylenes and theophylline containing 1,2,3-triazoles with variant nucleoside derivatives.

    PubMed

    Ruddarraju, Radhakrishnam Raju; Murugulla, Adharvana Chari; Kotla, Ravindar; Chandra Babu Tirumalasetty, Muni; Wudayagiri, Rajendra; Donthabakthuni, Shobha; Maroju, Ravichandar; Baburao, K; Parasa, Lakshmana Swamy

    2016-11-10

    A new series of theophylline containing acetylene derivatives (6a-6b and 7-13) and theophylline containing 1,2,3-triazoles with variant nucleoside derivatives (20-32) have been designed and synthesized. These compounds were screened for anticancer and antimicrobial activity. Further the computational docking and 2D QSAR were performed using MOE software to identify novel scaffolds. The results showed that compound 29 and 30 exhibit significant cytotoxic effect on all four cancer cells such as lung (A549), colon (HT-29), breast (MCF-7) and melanoma (A375) with IC50 values of 2.56, 2.19, 1.89, 4.89 μM and 3.57, 2.90, 2.10, 5.81 μM respectively. Whereas quite different results were observed for these compounds in antimicrobial studies. Compounds 11, 21 and 26 have exhibited significant minimum inhibitory concentrations (MIC) against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. The docking studies demonstrate that compound 27, 28, 29 and 30 have good dock score and binding affinities with various therapeutic targets in cancer cell proliferation. In addition these compounds have shown acceptable correlation with bioassay results in the regression plots generated in 2D QSAR models. This is the first report to demonstrate the theophylline containing acetylene derivatives and theophylline containing 1,2,3-triazole nucleoside hybrids as potential anticancer and antimicrobial agents with comprehensive in silico analysis.

  7. BCH-1868 [(-)-2-R-dihydroxyphosphinoyl-5-(S)-(guanin-9'-yl-methyl) tetrahydrofuran]: a cyclic nucleoside phosphonate with antitumor activity.

    PubMed

    Leblond, Lorraine; Attardo, Giorgio; Hamelin, Bettina; Bouffard, David Y; Nguyen-Ba, Nghe; Gourdeau, Henriette

    2002-07-01

    Nucleoside phosphonates are widely used therapeutic agents with a broad spectrum of antiviral activity. However, only a few of them are reported to have antitumor activity. In this study, we show that a tetrahydrofuran phosphonate analogue of guanosine, (-)-2-R-dihydroxyphosphinoyl-5-(S)-(guanin-9'-ylmethyl) tetrahydrofuran (BCH-1868), previously reported as having antiviral activity, also displays antitumor activity. In vitro, BCH-1868 inhibited the proliferation of several murine and human cancer cell lines with IC50s in the microM range independently of the tissue type or the presence of multidrug resistance protein MRP/gp190. In vivo, BCH-1868 was active against a variety of human tumor xenograft models (Caki-1, HT-29, DU 145, COLO 205, and CCRF-CEM). In all tumors tested, a significant tumor growth inhibition was noted at 40-50 mg/kg (daily x 5), but no tumor regression was observed in the settings used. To better understand these results, we partially characterized, at the cellular level, the mechanism of action of this new cyclic nucleoside phosphonate and investigated its pharmacokinetic characteristics in mice. We showed that BCH-1868 exerts its antitumor activity by an inhibitory mechanism at the level of DNA polymerase a, resulting in arrest of DNA synthesis and a block of cell division at the S phase of the cell cycle. Low-circulating plasma concentration (Cmax = 87 microM; area under the curve = 1138 micromol x min/liters; after a bolus i.v. injection of 10 mg/kg) and rapid clearance of the drug (terminal half-life, t1/2 = 16 min) may contribute to the modest antitumor efficacy observed in vivo.

  8. Human equilibrative nucleoside transporter (ENT) family of nucleoside and nucleobase transporter proteins.

    PubMed

    Young, J D; Yao, S Y M; Sun, L; Cass, C E; Baldwin, S A

    2008-07-01

    1. The human (h) SLC29 family of integral membrane proteins is represented by four members, designated equilibrative nucleoside transporters (ENTs) because of the properties of the first-characterized family member, hENT1. They belong to the widely distributed eukaryotic ENT family of equilibrative and concentrative nucleoside/nucleobase transporter proteins. 2. A predicted topology of eleven transmembrane helices has been experimentally confirmed for hENT1. The best-characterized members of the family, hENT1 and hENT2, possess similar broad permeant selectivities for purine and pyrimidine nucleosides, but hENT2 also efficiently transports nucleobases. hENT3 has a similar broad permeant selectivity for nucleosides and nucleobases and appears to function in intracellular membranes, including lysosomes. 3. hENT4 is uniquely selective for adenosine, and also transports a variety of organic cations. hENT3 and hENT4 are pH sensitive, and optimally active under acidic conditions. ENTs, including those in parasitic protozoa, function in nucleoside and nucleobase uptake for salvage pathways of nucleotide synthesis and, in humans, are also responsible for the cellular uptake of nucleoside analogues used in the treatment of cancers and viral diseases. 4. By regulating the concentration of adenosine available to cell surface receptors, mammalian ENTs additionally influence physiological processes ranging from cardiovascular activity to neurotransmission.

  9. Chlorella Virus Encoded Deoxyuridine triphosphatases Exhibit different Temperature Optima

    SciTech Connect

    Zhang,Y.; Moriyama, H.; Homma, K.; Van Etten, J.

    2005-01-01

    A putative deoxyuridine triphosphatase (dUTPase) gene from chlorella virus PBCV-1 was cloned, and the recombinant protein was expressed in Escherichia coli. The recombinant protein has dUTPase activity and requires Mg{sup 2+} for optimal activity, while it retains some activity in the presence of other divalent cations. Kinetic studies of the enzyme revealed a K{sub m} of 11.7 {mu}M, a turnover k{sub cat} of 6.8 s{sup -1}, and a catalytic efficiency of k{sub cat}/K{sub m} = 5.8 x 105 M{sup -1} s{sup -1}. dUTPase genes were cloned and expressed from two other chlorella viruses IL-3A and SH-6A. The two dUTPases have similar properties to PBCV-1 dUTPase except that IL-3A dUTPase has a lower temperature optimum (37{sup o}C) than PBCV-1 dUTPase (50{sup o}C). The IL-3A dUTPase differs from the PBCV-1 enzyme by nine amino acids, including two amino acid substitutions, Glu81{yields}Ser81 and Thr84{yields}Arg84, in the highly conserved motif III of the proteins. To investigate the difference in temperature optima between the two enzymes, homology modeling and docking simulations were conducted. The results of the simulation and comparisons of amino acid sequence suggest that adjacent amino acids are important in the temperature optima. To confirm this suggestion, three site-directed amino acid substitutions were made in the IL-3A enzyme: Thr84{yields}Arg84, Glu81{yields}Ser81, and Glu81{yields}Ser81 plus Thr84{yields}Arg84. The single substitutions affected the optimal temperature for enzyme activity. The temperature optimum increased from 37 to 55{sup o}C for the enzyme containing the two amino acid substitutions. We postulate that the change in temperature optimum is due to reduction in charge and balkiness in the active cavity that allows more movement of the ligand and protein before the enzyme and substrate complex is formed.

  10. Modulatory action of α-tocopherol on erythrocyte membrane adenosine triphosphatase against radiation damage in oral cancer.

    PubMed

    Chitra, Subramaniam; Shyamaladevi, Chennam Srinivasulu

    2011-03-01

    To investigate the possible effects of α-tocopherol on erythrocyte membrane adenosine triphosphatases against radiation damage in oral cancer patients. Adenosine triphosphatase activities were analysed in oral cancer patients before and after radiotherapy (at a dosage of 6000 cGY in five fractions per week for a period of six weeks) and after supplemented with α-tocopherol (400 IU per day for entire period of radiotherapy). The membrane bound enzymes such as Na(+)/K(+)-ATPase, Ca(2+)-ATPase, Mg(2+)-ATPase and some trace elements were altered in oral cancer patients before and after radiotherapy. Supplemented with α-tocopherol modulates the erythrocyte membrane which is damaged by radiotherapy which suggests that α-tocopherol protects the erythrocyte membrane from radiation damage in oral cancer patients.

  11. Alpha-carboxy nucleoside phosphonates as universal nucleoside triphosphate mimics.

    PubMed

    Balzarini, Jan; Das, Kalyan; Bernatchez, Jean A; Martinez, Sergio E; Ngure, Marianne; Keane, Sarah; Ford, Alan; Maguire, Nuala; Mullins, Niki; John, Jubi; Kim, Youngju; Dehaen, Wim; Vande Voorde, Johan; Liekens, Sandra; Naesens, Lieve; Götte, Matthias; Maguire, Anita R; Arnold, Eddy

    2015-03-17

    Polymerases have a structurally highly conserved negatively charged amino acid motif that is strictly required for Mg(2+) cation-dependent catalytic incorporation of (d)NTP nucleotides into nucleic acids. Based on these characteristics, a nucleoside monophosphonate scaffold, α-carboxy nucleoside phosphonate (α-CNP), was designed that is recognized by a variety of polymerases. Kinetic, biochemical, and crystallographic studies with HIV-1 reverse transcriptase revealed that α-CNPs mimic the dNTP binding through a carboxylate oxygen, two phosphonate oxygens, and base-pairing with the template. In particular, the carboxyl oxygen of the α-CNP acts as the potential equivalent of the α-phosphate oxygen of dNTPs and two oxygens of the phosphonate group of the α-CNP chelate Mg(2+), mimicking the chelation by the β- and γ-phosphate oxygens of dNTPs. α-CNPs (i) do not require metabolic activation (phosphorylation), (ii) bind directly to the substrate-binding site, (iii) chelate one of the two active site Mg(2+) ions, and (iv) reversibly inhibit the polymerase catalytic activity without being incorporated into nucleic acids. In addition, α-CNPs were also found to selectively interact with regulatory (i.e., allosteric) Mg(2+)-dNTP-binding sites of nucleos(t)ide-metabolizing enzymes susceptible to metabolic regulation. α-CNPs represent an entirely novel and broad technological platform for the development of specific substrate active- or regulatory-site inhibitors with therapeutic potential. PMID:25733891

  12. Synthesis, Anti-HIV Activity, and Metabolic Stability of New Alkenyldiarylmethane (ADAM) HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs)

    PubMed Central

    Deng, Bo-Liang; Hartman, Tracy L.; Buckheit, Robert W.; Pannecouque, Christophe; De Clercq, Erik; Fanwick, Phillip E.; Cushman, Mark

    2008-01-01

    Non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) are part of the combination therapy currently used to treat HIV infection. Based on analogy with known HIV-1 NNRT inhibitors, eighteen novel alkenyldiarylmethanes (ADAMs) containing 5-chloro-2-methoxyphenyl, 3-cyanophenyl or 3-fluoro-5-trifluoromethylphenyl groups were synthesized and evaluated as HIV inhibitors. Their stabilities in rat plasma have also been investigated. Although introducing 5-chloro-2-methoxyphenyl, or 3-fluoro-5-trifluoromethylphenyl groups into alkenyldiarylmethanes does not maintain the antiviral potency, the structural modification of alkenyldiarylmethanes with a 3-cyanophenyl substituent can be made without a large decrease in activity. The oxazolidinonyl group was introduced into the alkenyldiarylmethane framework and found to confer enhanced metabolic stability in rat plasma. PMID:16162014

  13. A Positive Selection for Nucleoside Kinases in E. coli

    PubMed Central

    Shelat, Nirav Y.; Parhi, Sidhartha; Ostermeier, Marc

    2016-01-01

    Engineering heterologous nucleoside kinases inside E. coli is a difficult process due to the integral role nucleosides play in cell division and transcription. Nucleoside analogs are used in many kinase screens that depend on cellular metabolization of the analogs. However, metabolic activation of these analogs can be toxic through disruptions of DNA replication and transcription because of the analogs’ structural similarities to native nucleosides. Furthermore, the activity of engineered kinases can be masked by endogenous kinases in the cytoplasm, which leads to more difficulties in assessing target activity. A positive selection method that can discern a heterologous kinases’ enzymatic activity without significantly influencing the cell’s normal metabolic systems would be beneficial. We have developed a means to select for a nucleoside kinase’s activity by transporting the kinase to the periplasmic space of an E. coli strain that has its PhoA alkaline phosphatase knocked out. Our proof-of-principle studies demonstrate that the herpes simplex virus thymidine kinase (HSV-TK) can be transported to the periplasmic space in functional form by attaching a tat-signal sequence to the N-terminus of the protein. HSV-TK phosphorylates the toxic nucleoside analog 3’-azido-3’-deoxythymidine (AZT), and this charged, monophosphate form of AZT cannot cross the inner membrane. The translocation of HSV-TK provides significant resistance to AZT when compared to bacteria lacking a periplasmic HSV-TK. However, resistance decreased dramatically above 40 μg/ml AZT. We propose that this threshold can be used to select for higher activity variants of HSV-TK and other nucleoside kinases in a manner that overcomes the efficiency and localization issues of previous selection schemes. Furthermore, our selection strategy should be a general strategy to select or evaluate nucleoside kinases that phosphorylate nucleosides such as prodrugs that would otherwise be toxic to E. coli

  14. Mycoplasmas and cancer: focus on nucleoside metabolism

    PubMed Central

    Vande Voorde, Johan; Balzarini, Jan; Liekens, Sandra

    2014-01-01

    The standard of care for patients suffering cancer often includes treatment with nucleoside analogues (NAs). NAs are internalized by cell-specific nucleobase/nucleoside transporters and, after enzymatic activation (often one or more phosphorylation steps), interfere with cellular nucleo(s)(t)ide metabolism and DNA/RNA synthesis. Therefore, their efficacy is highly dependent on the expression and activity of nucleo(s)(t)ide-metabolizing enzymes, and alterations thereof (e.g. by down/upregulated expression or mutations) may change the susceptibility to NA-based therapy and/or confer drug resistance. Apart from host cell factors, several other variables including microbial presence may determine the metabolome (i.e. metabolite concentrations) of human tissues. Studying the diversity of microorganisms that are associated with the human body has already provided new insights in several diseases (e.g. diabetes and inflammatory bowel disease) and the metabolic exchange between tissues and their specific microbiota was found to affect the bioavailability and toxicity of certain anticancer drugs, including NAs. Several studies report a preferential colonization of tumor tissues with some mycoplasma species (mostly Mycoplasma hyorhinis). These prokaryotes are also a common source of cell culture contamination and alter the cytostatic activity of some NAs in vitro due to the expression of nucleoside-catabolizing enzymes. Mycoplasma infection may therefore bias experimental work with NAs, and their presence in the tumor microenvironment could be of significance when optimizing nucleoside-based cancer treatment. PMID:26417262

  15. Oral Cyclosporin A Inhibits CD4 T cell P-glycoprotein Activity in HIV-Infected Adults Initiating Treatment with Nucleoside Reverse Transcriptase Inhibitors

    PubMed Central

    Hulgan, Todd; Donahue, John P.; Smeaton, Laura; Pu, Minya; Wang, Hongying; Lederman, Michael M.; Smith, Kimberly; Valdez, Hernan; Pilcher, Christopher; Haas, David W.

    2010-01-01

    Purpose P-glycoprotein limits tissue penetration of many antiretroviral drugs. We characterized effects of the P-glycoprotein substrate cyclosporin A on T cell P-glycoprotein activity in HIV-infected AIDS Clinical Trials Group study A5138 participants. Methods We studied P-glycoprotein activity on CD4 and CD8 T cells in 16 participants randomized to receive oral cyclosporin A (n=9) or not (n=7) during initiation antiretroviral therapy (ART) that did not include protease or non-nucleoside reverse transcriptase inhibitors. Results CD4 T cell P-glycoprotein activity decreased by a median of 8 percentage points with cyclosporin A/ART (difference between cyclosporin A/ART versus ART only P=0.001). Plasma trough cyclosporin A concentrations correlated with change in P-glycoprotein activity in several T cell subsets. Conclusions Oral cyclosporin A can inhibit peripheral blood CD4 T cell P-glycoprotein activity. Targeted P-glycoprotein inhibition might enhance delivery of ART to T cells. PMID:19779705

  16. Rho and Rap guanosine triphosphatase signaling in B cells and chronic lymphocytic leukemia.

    PubMed

    Mele, Silvia; Devereux, Stephen; Ridley, Anne J

    2014-09-01

    Chronic lymphocytic leukemia (CLL) cells proliferate predominantly in niches in the lymph nodes, where signaling from the B cell receptor (BCR) and the surrounding microenvironment are critical for disease progression. In addition, leukemic cells traffic constantly from the bloodstream into the lymph nodes, migrate within lymphatic tissues and egress back to the bloodstream. These processes are driven by chemokines and their receptors, and depend on changes in cell migration and integrin-mediated adhesion. Here we describe how Rho and Rap guanosine triphosphatases (GTPases) contribute to both BCR signaling and chemokine receptor signaling, particularly by regulating cytoskeletal dynamics and integrin activity. We propose that new inhibitors of BCR-activated kinases are likely to affect CLL cell trafficking via Rho and Rap GTPases, and that upstream regulators or downstream effectors could be good targets for therapeutic intervention in CLL.

  17. New carbocyclic N(6)-substituted adenine and pyrimidine nucleoside analogues with a bicyclo[2.2.1]heptane fragment as sugar moiety; synthesis, antiviral, anticancer activity and X-ray crystallography.

    PubMed

    Tănase, Constantin I; Drăghici, Constantin; Cojocaru, Ana; Galochkina, Anastasia V; Orshanskaya, Jana R; Zarubaev, Vladimir V; Shova, Sergiu; Enache, Cristian; Maganu, Maria

    2015-10-01

    New nucleoside analogues with an optically active bicyclo[2.2.1]heptane skeleton as sugar moiety and 6-substituted adenine were synthesized by alkylation of 6-chloropurine intermediate. Thymine and uracil analogs were synthesized by building the pyrimidine ring on amine 1. X-ray crystallography confirmed an exo-coupling of the thymine to the ring and an L configuration of the nucleoside analogue. The library of compounds was tested for their inhibitory activity against influenza virus A∖California/07/09 (H1N1)pdm09 and coxsackievirus B4 in cell culture. Compounds 13a and 13d are the most promising for their antiviral activity against influenza, and compound 3c against coxsackievirus B4. Compounds 3b and 3g were tested for anticancer activity.

  18. Microwave-assisted synthesis of C-8 aryl and heteroaryl inosines and determination of their inhibitory activities against Plasmodium falciparum purine nucleoside phosphorylase.

    PubMed

    Gigante, Alba; Priego, Eva-María; Sánchez-Carrasco, Paula; Ruiz-Pérez, Luis Miguel; Vande Voorde, Johan; Camarasa, María-José; Balzarini, Jan; González-Pacanowska, Dolores; Pérez-Pérez, María-Jesús

    2014-07-23

    8-Arylinosines have been scarcely studied for therapeutic purposes, probably due to difficulties in their synthesis. The recently described direct arylation reaction at position 8 of purine nucleosides has been employed to synthesize a series of 8-aryl and 8-pyridylinosines. These compounds have been studied for hydrolytic stability and subjected to biological evaluation. Three compounds have shown a pronounced specific inhibition of Plasmodium falciparum-encoded purine nucleoside phosphorylase, an important target for antimalarial chemotherapy. PMID:24929343

  19. Adenosine triphosphatase localization in amphibian epidermis.

    PubMed

    Farquhar, M G; Palade, G E

    1966-08-01

    The localization of ATPase(1) activity has been studied by light and electron microscopy in the epidermis of Rana pipiens, Rana catesbiana, and Bufo marinus. The reaction was carried out on skin (glutaraldehyde-fixed or fresh) sectioned with or without freezing. Best results were obtained with nonfrozen sections of fixed tissue. The incubation mixture was either a Wachstein-Meisel medium, or a modification which approximates assay systems used in biochemical studies of transport ATPases. The reaction product was found localized in contact with the outer leaflet of all cell membranes facing the labyrinth of intercellular spaces of the epidermis. It was absent from: (a) membrane areas involved in cell junctions (desmosomes, zonulae and maculae occludentes); (b) cell membranes facing the external medium (i.e., those on the distal aspect of the ultimate cell layer in s. corneum); (c) cell membranes facing the dermis (those on the proximal aspect of cells in s. germinativum). In the presence of (Na(+) + K(+)) the localization did not change, but the reaction was not appreciably activated. A similar though less intense reaction was obtained with ITP, but not with ADP, AMP, and GP as substrates. The results are discussed in relation to available data on transport ATPases in general, and on the morphology and physiology of amphibian skin in particular. Assuming that the ATPase studied is related to transport ATPase, the findings suggest a series of modifications to the frog skin model proposed by Koefoed-Johnsen and Ussing. The salient feature of this modified model is the localization of the Na(+) pump along all cell membranes facing the intercellular spaces of the epidermis. PMID:4226195

  20. Synergistic activity of amenamevir (ASP2151) with nucleoside analogs against herpes simplex virus types 1 and 2 and varicella-zoster virus.

    PubMed

    Chono, Koji; Katsumata, Kiyomitsu; Suzuki, Hiroshi; Shiraki, Kimiyasu

    2013-02-01

    ASP2151 (amenamevir) is a helicase-primase complex inhibitor with antiviral activity against herpes simplex virus HSV-1, HSV-2, and varicella-zoster virus (VZV). To assess combination therapy of ASP2151 with existing antiherpes agents against HSV-1, HSV-2, and VZV, we conducted in vitro and in vivo studies of two-drug combinations. The combination activity effect of ASP2151 with nucleoside analogs acyclovir (ACV), penciclovir (PCV), or vidarabine (VDB) was tested via plaque-reduction assay and MTS assay, and the data were analyzed using isobolograms and response surface modeling. In vivo combination therapy of ASP2151 with valaciclovir (VACV) was studied in an HSV-1-infected zosteriform spread mouse model. The antiviral activity of ASP2151 combined with ACV and PCV against ACV-susceptible HSV-1, HSV-2, and VZV showed a statistically significant synergistic effect (P<0.05). ASP2151 with VDB was observed to have additive effects against ACV-susceptible HSV-2 and synergistic effects against VZV. In the mouse model of zosteriform spread, the inhibition of disease progression via combination therapy was more potent than that of either drugs as monotherapy (P<0.05). These results indicate that the combination therapies of ASP2151 with ACV and PCV have synergistic antiherpes effects against HSV and VZV infections and may be feasible in case of severe disease, such as herpes encephalitis or in patients with immunosuppression.

  1. Differences in cytosolic and mitochondrial 5'-nucleotidase and deoxynucleoside kinase activities in Sprague-Dawley rat and CD-1 mouse tissues: implication for the toxicity of nucleoside analogs in animal models.

    PubMed

    Mirzaee, Saeedeh; Eriksson, Staffan; Albertioni, Freidoun

    2010-01-12

    Cytosolic and mitochondrial deoxynucleoside kinases (dNKs), as well as 5'deoxynucleotidases (5'-dNTs), control intracellular and intramitochondrial phosphorylation of natural nucleotides and nucleoside analogs used in antiviral and cancer chemotherapy. The balance in the activities of these two groups of enzymes to a large extent determines both the efficacy and side effects of these drugs. Because of the broad and overlapping substrate specificities of the nucleoside kinases and 5'-NTs, their tissue distribution and roles in the metabolism of both natural nucleosides and their analogs are still not fully elucidated. Here, the activity of dNKs: dCK and TK (TK1 and TK2) as well as 5'-dNTs: CN1, CN2 and dNT (dNT1 and dNT2) were determined in 14 different adult mouse and rat tissues. In most cases tissue activities of TK1, TK2 and dCK were 2-3-fold higher in the mouse, a similar pattern was found with CN1 and dNTs although with several exceptions, e.g., TK2 activities in muscle extracts from rats were 2-10-fold higher than in the mouse. Furthermore CN1 activities in hepatic, renal and adipose extracts were 2-3-fold higher in the rat. CN2 had higher levels in the testis, spleen, pancreas and diaphragm and lower level in the lung of mouse compared to rat tissues. The result suggests that a major difference in these activity profiles between mouse and rat may account for discrepancies in pharmacological response of the two animals to certain nucleoside compounds, and may help to improve the usefulness of animal models in future efforts of drug discovery.

  2. d- and l-2′,3′-Didehydro-2′,3′-Dideoxy-3′-Fluoro-Carbocyclic Nucleosides: Synthesis, Anti-HIV Activity and Mechanism of Resistance

    PubMed Central

    Wang, Jianing; Jin, Yunho; Rapp, Kimberly L.; Schinazi, Raymond F.; Chu, Chung K.

    2008-01-01

    Introducing 2′-fluoro substitution on the 2′,3′-double bond in carbocyclic nucleosides has provided biologically interesting compounds with potent anti-HIV activity. As an extension of our previous works in the discovery of anti-HIV agents, d- and l-2′,3′-unsaturated 3′-fluoro carbocyclic nucleosides were synthesized and evaluated against HIV-1 in human peripheral blood mononuclear (PBM) cells. Among the synthesized l-series nucleosides, compounds 18, 19, 26, 28 exhibited moderate antiviral activity (EC50 7.1 μM, 6.4 μM, 10.3 μM and 20.7 μM, respectively), while among the d-series, the guanosine analogue (35, d-3′-F-C-d4G) exhibited the most potent anti-HIV activity (EC50 0.4 μM, EC90 2.8 μM). However, the guanosine analogue 35 was cross-resistant to the lamivudine-resistant variants (HIV-1M184V). Molecular modeling studies suggest that hydrophobic interaction as well as hydrogen bonding stabilize the binding of compound 35 in the active site of wild type HIV reverse transcriptase (HIV-RT). In the case of l-nucleosides, these two effects are opposite which results in a loss of binding affinity. According to the molecular modeling studies, cross-resistance of d-3′-F-C-d4G (35) to M184V mutant may be caused by the realignment of the primer and template in the HIV-RTM184V interaction, which destabilizes the RT-inhibitor triphosphate complex, resulting in a significant reduction in anti-HIV activity of the d-guanine derivative 35. PMID:17373782

  3. Synthesis, structure-activity relationship and molecular docking of cyclohexenone based analogous as potent non-nucleoside reverse-transcriptase inhibitors

    NASA Astrophysics Data System (ADS)

    Nazar, Muhammad Faizan; Abdullah, Muhammad Imran; Badshah, Amir; Mahmood, Asif; Rana, Usman Ali; Khan, Salah Ud-Din

    2015-04-01

    The chalcones core in compounds is advantageously chosen effective synthons, which offer exciting perspectives in biological and pharmacological research. The present study reports the successful development of eight new cyclohexenone based anti-reverse transcriptase analogous using rational drug design synthesis principles. These new cyclohexenone derivatives (CDs) were synthesized by following a convenient route of Robinson annulation, and the molecular structure of these CDs were later confirmed by various analytical techniques such as 1H NMR, 13C NMR, FT-IR, UV-Vis spectroscopy and mass spectrometry. All the synthesized compounds were screened theoretically and experimentally against reverse transcriptase (RT) and found potentially active reverse transcriptase (RT) inhibitors. Of the compounds studied, the compound 2FC4 showed high interaction with RT at non-nucleoside binding site, contributing high free binding energy (ΔG -8.01 Kcal) and IC50 (0.207 μg/ml), respectively. Further results revealed that the compounds bearing more halogen groups, with additional hydrophobic character, offered superior anti-reverse transcriptase activity as compared to rest of compounds. It is anticipate that the present study would be very useful for the selection of potential reverse transcriptase inhibitors featuring inclusive pharmacological profiles.

  4. Nucleoside phosphorylation by phosphate minerals.

    PubMed

    Costanzo, Giovanna; Saladino, Raffaele; Crestini, Claudia; Ciciriello, Fabiana; Di Mauro, Ernesto

    2007-06-01

    In the presence of formamide, crystal phosphate minerals may act as phosphate donors to nucleosides, yielding both 5'- and, to a lesser extent, 3'-phosphorylated forms. With the mineral Libethenite the formation of 5'-AMP can be as high as 6% of the adenosine input and last for at least 10(3) h. At high concentrations, soluble non-mineral phosphate donors (KH(2)PO(4) or 5'-CMP) afford 2'- and 2':3'-cyclic AMP in addition to 5'-and 3'-AMP. The phosphate minerals analyzed were Herderite Ca[BePO(4)F], Hureaulite Mn(2+)(5)(PO(3)(OH)(2)(PO(4))(2)(H(2)O)(4), Libethenite Cu(2+)(2)(PO(4))(OH), Pyromorphite Pb(5)(PO(4))(3)Cl, Turquoise Cu(2+)Al(6)(PO(4))(4)(OH)(8)(H(2)O)(4), Fluorapatite Ca(5)(PO(4))(3)F, Hydroxylapatite Ca(5)(PO(4))(3)OH, Vivianite Fe(2+)(3)(PO(4))(2)(H(2)O)(8), Cornetite Cu(2+)(3)(PO(4))(OH)(3), Pseudomalachite Cu(2+)(5)(PO(4))(2)(OH)(4), Reichenbachite Cu(2+)(5)(PO(4))(2)(OH)(4), and Ludjibaite Cu(2+)(5)(PO(4))(2)(OH)(4)). Based on their behavior in the formamide-driven nucleoside phosphorylation reaction, these minerals can be characterized as: 1) inactive, 2) low level phosphorylating agents, or 3) active phosphorylating agents. Instances were detected (Libethenite and Hydroxylapatite) in which phosphorylation occurs on the mineral surface, followed by release of the phosphorylated compounds. Libethenite and Cornetite markedly protect the beta-glycosidic bond. Thus, activated nucleic monomers can form in a liquid non-aqueous environment in conditions compatible with the thermodynamics of polymerization, providing a solution to the standard-state Gibbs free energy change (DeltaG degrees ') problem, the major obstacle for polymerizations in the liquid phase in plausible prebiotic scenarios.

  5. Extracellular Nm23H1 stimulates neurite outgrowth from dorsal root ganglia neurons in vitro independently of nerve growth factor supplementation or its nucleoside diphosphate kinase activity

    SciTech Connect

    Wright, K.T.; Seabright, R.; Logan, A.; Lilly, A.J.; Khanim, F.; Bunce, C.M.; Johnson, W.E.B.

    2010-07-16

    Research highlights: {yields} Extracellular Nm23H1 stimulates nerve growth. {yields} Extracellular Nm23H1 provides pathfinding cues to growth cones. {yields} The neurotrophic activity of Nm23H1 is independent of NDP kinase activity. {yields} The neurotrophic activity of Nm23H1 is independent of NGF. -- Abstract: The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems.

  6. DNA 3' pp 5' G de-capping activity of aprataxin: effect of cap nucleoside analogs and structural basis for guanosine recognition

    DOE PAGESBeta

    Chauleau, Mathieu; Jacewicz, Agata; Shuman, Stewart

    2015-05-24

    DNA3' pp 5'G caps synthesized by the 3'-PO4/5'-OH ligase RtcB have a strong impact on enzymatic reactions at DNA 3'-OH ends. Aprataxin, an enzyme that repairs A5'pp5'DNA ends formed during abortive ligation by classic 3'-OH/5'-PO4 ligases, is also a DNA 3' de-capping enzyme, converting DNAppG to DNA3'p and GMP. By taking advantage of RtcB's ability to utilize certain GTP analogs to synthesize DNAppN caps, we show that aprataxin hydrolyzes inosine and 6-O-methylguanosine caps, but is not adept at removing a deoxyguanosine cap. We report a 1.5 Å crystal structure of aprataxin in a complex with GMP, which reveals that: (i)more » GMP binds at the same position and in the same anti nucleoside conformation as AMP; and (ii) aprataxin makes more extensive nucleobase contacts with guanine than with adenine, via a hydrogen bonding network to the guanine O6, N1, N2 base edge. Alanine mutations of catalytic residues His147 and His149 abolish DNAppG de-capping activity, suggesting that the 3' de-guanylylation and 5' de-adenylylation reactions follow the same pathway of nucleotidyl transfer through a covalent aprataxin-(His147)–NMP intermediate. Alanine mutation of Asp63, which coordinates the guanosine ribose hydroxyls, impairs DNAppG de-capping.« less

  7. Nucleoside transport and associated metabolism.

    PubMed

    Möhlmann, T; Bernard, C; Hach, S; Ekkehard Neuhaus, H

    2010-09-01

    Nucleosides are intermediates of nucleotide metabolism. Nucleotide de novo synthesis generates the nucleoside monophosphates AMP and UMP, which are further processed to all purine and pyrimidine nucleotides involved in multiple cellular reactions, including the synthesis of nucleic acids. Catabolism of these substances results in the formation of nucleosides, which are further degraded by nucleoside hydrolase to nucleobases. Both nucleosides and nucleobases can be exchanged between cells and tissues through multiple isoforms of corresponding transport proteins. After uptake into a cell, nucleosides and nucleobases can undergo salvage reactions or catabolism. Whereas energy is preserved by salvage pathway reactions, catabolism liberates ammonia, which is then incorporated into amino acids. Keeping the balance between nitrogen consumption during nucleotide de novo synthesis and ammonia liberation by nucleotide catabolism is essential for correct plant development. Senescence and seed germination represent situations in plant development where marked fluctuations in nucleotide pools occur. Furthermore, extracellular nucleotide metabolism has become an immensely interesting research topic. In addition, selected aspects of nucleoside transport in yeast, protists and humans are discussed.

  8. Activity and mechanism of action of HDVD, a novel pyrimidine nucleoside derivative with high levels of selectivity and potency against gammaherpesviruses.

    PubMed

    Coen, N; Singh, U; Vuyyuru, V; Van den Oord, J J; Balzarini, J; Duraffour, S; Snoeck, R; Cheng, Y C; Chu, C K; Andrei, G

    2013-04-01

    A novel nucleoside analogue, 1-[(2S,4S-2-(hydroxymethyl)-1,3-dioxolan-4-yl]5-vinylpyrimidine-2,4(1H,3H)-dione, or HDVD, was evaluated against a wide variety of herpesviruses and was found to be a highly selective inhibitor of replication of the gammaherpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV). HDVD had also a pronounced inhibitory activity against murine herpesvirus 68 (MHV-68) and herpes simplex virus 1 (HSV-1). In contrast, replication of herpesvirus saimiri (HVS), HSV-2, and varicella-zoster virus (VZV) was weakly inhibited by the compound, and no antiviral activity was determined against human cytomegalovirus (HCMV) and rhesus rhadinovirus (RRV). The HDVD-resistant virus phenotype contained point mutations in the viral thymidine kinase (TK) of HSV-1, MHV-68, and HVS isolates. These mutations conferred cross-resistance to other TK-dependent drugs, with the exception of an MHV-68 mutant (E358D) that exhibited resistance only to HDVD. HSV-1 and HVS TK-mutants isolated under selective pressure with bromovinyldeoxyuridine (BVDU) also showed reduced sensitivity to HDVD. Oral treatment with HDVD and BVDU was assessed in an intranasal model of MHV-68 infection in BALB/c mice. In contrast to BVDU treatment, HDVD-treated animals showed a reduction in viral DNA loads and diminished viral gene expression during acute viral replication in the lungs in comparison to levels in untreated controls. The valyl ester prodrug of HDVD (USS-02-71-44) suppressed the latent infection in the spleen to a greater extent than HDVD. In the present study, HDVD emerged as a highly potent antiviral with a unique spectrum of activity against herpesviruses, in particular, gammaherpesviruses, and may be of interest in the treatment of virus-associated diseases.

  9. [Purine nucleoside phosphorylase].

    PubMed

    Pogosian, L G; Akopian, Zh I

    2013-01-01

    Purine nucleoside phosphorylase (PNP) is one of the most important enzymes of the purine metabolism, wich promotes the recycling of purine bases. Nowadays is the actual to search for effective inhibitors of this enzyme which is necessary for creation T-cell immunodeficient status of the organism in the organs and tissues transplantation, and chemotherapy of a number pathologies as well. For their successful practical application necessary to conduct in-depth and comprehensive study of the enzyme, namely a structure, functions, and an affinity of the reaction mechanism. In the review the contemporary achievements in the study of PNP from various biological objects are presented. New data describing the structure of PNP are summarised and analysed. The physiological role of the enzyme is discussed. The enzyme basic reaction mechanisms and actions are considered. The studies on enzyme physicochemical, kinetic, and catalytic research are presented. PMID:24479338

  10. Microbial transformation of nucleosides

    NASA Technical Reports Server (NTRS)

    Lamba, S. S.

    1979-01-01

    A study involving the use of coulter counter in studying the effects of neomycin on E. coli, S. aureus and A. aerogenes was completed. The purpose of this was to establish proper technique for enumeration of cells per ml. It was found that inhibitory effects on growth of E. coli and A. aerogenes, both gram negative organisms, were directly related to the concentration of neomycin used. However, in case S. aureus, a gram positive organism, a decreased inhibition was noted at higher concentrations. A paper entitled, Use of Coulter Counter in Studying Effect of Drugs on Cells in Culture 1 - Effects of Neomycin on E. coli, S. aureus and A. aerogenes, is attached in the appendix. Laboratory procedures were also established to study the effects of nucleoside antibiotic cordycepin on He La cell grown in suspension cultures.

  11. Structural basis of nucleoside and nucleoside drug selectivity by concentrative nucleoside transporters

    PubMed Central

    Johnson, Zachary Lee; Lee, Jun-Ho; Lee, Kiyoun; Lee, Minhee; Kwon, Do-Yeon; Hong, Jiyong; Lee, Seok-Yong

    2014-01-01

    Concentrative nucleoside transporters (CNTs) are responsible for cellular entry of nucleosides, which serve as precursors to nucleic acids and act as signaling molecules. CNTs also play a crucial role in the uptake of nucleoside-derived drugs, including anticancer and antiviral agents. Understanding how CNTs recognize and import their substrates could not only lead to a better understanding of nucleoside-related biological processes but also the design of nucleoside-derived drugs that can better reach their targets. Here, we present a combination of X-ray crystallographic and equilibrium-binding studies probing the molecular origins of nucleoside and nucleoside drug selectivity of a CNT from Vibrio cholerae. We then used this information in chemically modifying an anticancer drug so that it is better transported by and selective for a single human CNT subtype. This work provides proof of principle for utilizing transporter structural and functional information for the design of compounds that enter cells more efficiently and selectively. DOI: http://dx.doi.org/10.7554/eLife.03604.001 PMID:25082345

  12. Aqueous microwaves assisted cross-coupling reactions applied to unprotected nucleosides.

    NASA Astrophysics Data System (ADS)

    Len, Christophe; Hervé, Gwénaelle

    2015-02-01

    Nucleoside analogues have attracted much attention due to their potential biological activities. Amongst all synthetic nucleosides, C5-modified pyrimidines and C7- or C8-modified purines have mostly been prepared using palladium cross-coupling reactions and then studied as antitumoral and antiviral agents. Our objective is to focus this review on the Suzuki-Miyaura and on the Heck cross-couplings of nucleosides using microwave irradiations which are an alternative technology compatible with green chemistry and sustainable development.

  13. Study of the essentiality of the Aspergillus fumigatus triA gene, encoding RNA triphosphatase, using the heterokaryon rescue technique and the conditional gene expression driven by the alcA and niiA promoters.

    PubMed

    Monteiro, M Cândida; De Lucas, J Ramón

    2010-01-01

    The identification of essential genes represents a critical step in the discovery of novel therapeutic targets in Aspergillus fumigatus. Structural analyses of the Saccharomyces cerevisiae RNA triphosphatase pointed out this enzyme as an attractive therapeutic target for fungal infections. In addition, demonstration of the essentiality of the S. cerevisiae RNA triphosphatase encoding gene enhanced the value of this potential therapeutic target. Nevertheless, consideration of a fungal RNA triphosphatase as an ideal therapeutic target needs confirmation of the essentiality of the respective gene in a fungal pathogen. In this work, we analyzed the essentiality of the A. fumigatus triA gene, encoding RNA triphosphatase, by conditional gene expression and heterokaryon deletion. Using the conditional gene expression driven by the alcA promoter (alcA(P)), we found that TriA depletion causes morphological abnormalities that result in a very strong growth inhibition. Nevertheless, since a strict terminal phenotype was not observed, the essentiality of the triA gene could not be ensured. Accordingly, the essentiality of this gene was analyzed by the heterokaryon rescue technique. Results obtained unequivocally demonstrated the essentiality of the A. fumigatus triA gene, indicating the suitability of the RNA triphosphatase as an ideal therapeutic target to treat A. fumigatus infections. Besides, a second conditional gene expression system, based on the niiA promoter (niiA(P)), was utilized in this work. Although the niiA(P)-mediated repression of triA was less severe than that driven by the alcA(P), a strong growth inhibition was also found in niiA(P)-triA strains. Finally, E-tests performed to determine whether triA down-regulated cells became more sensitive to antifungals suggest a synergic effect between amphotericin B and another antifungal inhibiting the A. fumigatus RNA triphosphatase activity.

  14. Flexibility as a Strategy in Nucleoside Antiviral Drug Design.

    PubMed

    Peters, H L; Ku, T C; Seley-Radtke, K L

    2015-01-01

    As far back as Melville Wolfrom's acyclic sugar synthesis in the 1960's, synthesis of flexible nucleoside analogues have been an area of interest. This concept, however, went against years of enzyme-substrate binding theory. Hence, acyclic methodology in antiviral drug design did not take off until the discovery and subsequent FDA approval of such analogues as Acyclovir and Tenofovir. More recently, the observation that flexible nucleosides could overcome drug resistance spawned a renewed interest in the field of nucleoside drug design. The next generation of flexible nucleosides shifted the focus from the sugar moiety to the nucleobase. With analogues such as Seley-Radtke "fleximers", and Herdewijn's C5 substituted 2'-deoxyuridines, the area of base flexibility has seen great expansion. More recently, the marriage of these methodologies with acyclic sugars has resulted in a series of acyclic flex-base nucleosides with a wide range of antiviral properties, including some of the first to exhibit anti-coronavirus activity. Various flexible nucleosides and their corresponding nucleobases will be compared in this review. PMID:26282942

  15. Challenges and solutions in the bioanalysis of BMS-986094 and its metabolites including a highly polar, active nucleoside triphosphate in plasma and tissues using LC-MS/MS.

    PubMed

    Liu, Ang; Lute, John; Gu, Huidong; Wang, Bonnie; Trouba, Kevin J; Arnold, Mark E; Aubry, Anne-Françoise; Wang, Jian

    2015-09-01

    BMS-986094, a nucleotide polymerase inhibitor of the hepatitis C virus, was withdrawn from clinical trials because of a serious safety issue. To investigate a potential association between drug/metabolite exposure and toxicity in evaluations conducted after the termination of the BMS-986094 development program, it was essential to determine the levels of BMS-986094 and its major metabolites INX-08032, INX-08144 and INX-09054 in circulation and the active nucleoside triphosphate INX-09114 in target and non-target tissues. However, there were many challenges in the bioanalysis of these compounds. The chromatography challenge for the extremely polar nucleoside triphosphate was solved by applying mixed-mode chromatography which combined anion exchange and reversed-phase interactions. The LC conditions provided adequate retention and good peak shape of the analyte and showed good robustness. A strategy using simultaneous extraction but separate LC analysis of the prodrug BMS-986094 and its major circulating metabolites was used to overcome a carryover issue of the hydrophobic prodrug while still achieving good chromatography of the polar metabolites. In addition, the nucleotide analytes were not stable in the presence of endogenous enzymes. Low pH and low temperature were required for blood collection and plasma sample processing. However, the use of phosphatase inhibitor and immediate homogenization and extraction were critical for the quantitative analysis of the active triphosphate, INX-09114, in tissue samples. To alleviate the bioanalytical complexity caused by multiple analytes, different matrices, and various species, a fit-for-purpose approach to assay validation was implemented based on the needs of drug safety assessment in non-clinical (GLP or non-GLP) studies. The assay for INX-08032 was fully validated in plasma of toxicology species. The lower limit of quantification was 1.00ng/mL and the linear curve range was 1.00-500.00ng/mL using a weighted (1/x(2

  16. Challenges and solutions in the bioanalysis of BMS-986094 and its metabolites including a highly polar, active nucleoside triphosphate in plasma and tissues using LC-MS/MS.

    PubMed

    Liu, Ang; Lute, John; Gu, Huidong; Wang, Bonnie; Trouba, Kevin J; Arnold, Mark E; Aubry, Anne-Françoise; Wang, Jian

    2015-09-01

    BMS-986094, a nucleotide polymerase inhibitor of the hepatitis C virus, was withdrawn from clinical trials because of a serious safety issue. To investigate a potential association between drug/metabolite exposure and toxicity in evaluations conducted after the termination of the BMS-986094 development program, it was essential to determine the levels of BMS-986094 and its major metabolites INX-08032, INX-08144 and INX-09054 in circulation and the active nucleoside triphosphate INX-09114 in target and non-target tissues. However, there were many challenges in the bioanalysis of these compounds. The chromatography challenge for the extremely polar nucleoside triphosphate was solved by applying mixed-mode chromatography which combined anion exchange and reversed-phase interactions. The LC conditions provided adequate retention and good peak shape of the analyte and showed good robustness. A strategy using simultaneous extraction but separate LC analysis of the prodrug BMS-986094 and its major circulating metabolites was used to overcome a carryover issue of the hydrophobic prodrug while still achieving good chromatography of the polar metabolites. In addition, the nucleotide analytes were not stable in the presence of endogenous enzymes. Low pH and low temperature were required for blood collection and plasma sample processing. However, the use of phosphatase inhibitor and immediate homogenization and extraction were critical for the quantitative analysis of the active triphosphate, INX-09114, in tissue samples. To alleviate the bioanalytical complexity caused by multiple analytes, different matrices, and various species, a fit-for-purpose approach to assay validation was implemented based on the needs of drug safety assessment in non-clinical (GLP or non-GLP) studies. The assay for INX-08032 was fully validated in plasma of toxicology species. The lower limit of quantification was 1.00ng/mL and the linear curve range was 1.00-500.00ng/mL using a weighted (1/x(2

  17. DNA 3' pp 5' G de-capping activity of aprataxin: effect of cap nucleoside analogs and structural basis for guanosine recognition

    SciTech Connect

    Chauleau, Mathieu; Jacewicz, Agata; Shuman, Stewart

    2015-05-24

    DNA3' pp 5'G caps synthesized by the 3'-PO4/5'-OH ligase RtcB have a strong impact on enzymatic reactions at DNA 3'-OH ends. Aprataxin, an enzyme that repairs A5'pp5'DNA ends formed during abortive ligation by classic 3'-OH/5'-PO4 ligases, is also a DNA 3' de-capping enzyme, converting DNAppG to DNA3'p and GMP. By taking advantage of RtcB's ability to utilize certain GTP analogs to synthesize DNAppN caps, we show that aprataxin hydrolyzes inosine and 6-O-methylguanosine caps, but is not adept at removing a deoxyguanosine cap. We report a 1.5 Å crystal structure of aprataxin in a complex with GMP, which reveals that: (i) GMP binds at the same position and in the same anti nucleoside conformation as AMP; and (ii) aprataxin makes more extensive nucleobase contacts with guanine than with adenine, via a hydrogen bonding network to the guanine O6, N1, N2 base edge. Alanine mutations of catalytic residues His147 and His149 abolish DNAppG de-capping activity, suggesting that the 3' de-guanylylation and 5' de-adenylylation reactions follow the same pathway of nucleotidyl transfer through a covalent aprataxin-(His147)–NMP intermediate. Alanine mutation of Asp63, which coordinates the guanosine ribose hydroxyls, impairs DNAppG de-capping.

  18. DNA3′pp5′G de-capping activity of aprataxin: effect of cap nucleoside analogs and structural basis for guanosine recognition

    PubMed Central

    Chauleau, Mathieu; Jacewicz, Agata; Shuman, Stewart

    2015-01-01

    DNA3′pp5′G caps synthesized by the 3′-PO4/5′-OH ligase RtcB have a strong impact on enzymatic reactions at DNA 3′-OH ends. Aprataxin, an enzyme that repairs A5′pp5′DNA ends formed during abortive ligation by classic 3′-OH/5′-PO4 ligases, is also a DNA 3′ de-capping enzyme, converting DNAppG to DNA3′p and GMP. By taking advantage of RtcB's ability to utilize certain GTP analogs to synthesize DNAppN caps, we show that aprataxin hydrolyzes inosine and 6-O-methylguanosine caps, but is not adept at removing a deoxyguanosine cap. We report a 1.5 Å crystal structure of aprataxin in a complex with GMP, which reveals that: (i) GMP binds at the same position and in the same anti nucleoside conformation as AMP; and (ii) aprataxin makes more extensive nucleobase contacts with guanine than with adenine, via a hydrogen bonding network to the guanine O6, N1, N2 base edge. Alanine mutations of catalytic residues His147 and His149 abolish DNAppG de-capping activity, suggesting that the 3′ de-guanylylation and 5′ de-adenylylation reactions follow the same pathway of nucleotidyl transfer through a covalent aprataxin-(His147)–NMP intermediate. Alanine mutation of Asp63, which coordinates the guanosine ribose hydroxyls, impairs DNAppG de-capping. PMID:26007660

  19. Fission yeast RNA triphosphatase reads an Spt5 CTD code.

    PubMed

    Doamekpor, Selom K; Schwer, Beate; Sanchez, Ana M; Shuman, Stewart; Lima, Christopher D

    2015-01-01

    mRNA capping enzymes are directed to nascent RNA polymerase II (Pol2) transcripts via interactions with the carboxy-terminal domains (CTDs) of Pol2 and transcription elongation factor Spt5. Fission yeast RNA triphosphatase binds to the Spt5 CTD, comprising a tandem repeat of nonapeptide motif TPAWNSGSK. Here we report the crystal structure of a Pct1·Spt5-CTD complex, which revealed two CTD docking sites on the Pct1 homodimer that engage TPAWN segments of the motif. Each Spt5 CTD interface, composed of elements from both subunits of the homodimer, is dominated by van der Waals contacts from Pct1 to the tryptophan of the CTD. The bound CTD adopts a distinctive conformation in which the peptide backbone makes a tight U-turn so that the proline stacks over the tryptophan. We show that Pct1 binding to Spt5 CTD is antagonized by threonine phosphorylation. Our results fortify an emerging concept of an "Spt5 CTD code" in which (i) the Spt5 CTD is structurally plastic and can adopt different conformations that are templated by particular cellular Spt5 CTD receptor proteins; and (ii) threonine phosphorylation of the Spt5 CTD repeat inscribes a binary on-off switch that is read by diverse CTD receptors, each in its own distinctive manner. PMID:25414009

  20. Effect of nitration and D/sub 2/O on the kinetics of beef heart mitochondrial adenosine triphosphatase

    SciTech Connect

    Dorgan, L.J.; Schuster, S.M.

    1981-04-25

    The role of tyrosine in the catalytic mechanism of nucleoside triphosphate hydrolysis by beef heart mitochondrial ATPase is explored. Compared are the rates of the ATPase reaction by both nitrated and native F1 at both pH 8 and pH 6. The pH-activity profile of nitrated F1 is compared to the pH-activity profile of the unmodified enzyme. These data indicate that the phenolic group of an active-site tyrosine must be protonated during the hydrolysis reaction. Deuterium oxide is used in the reaction buffer to explore the role of protons in the ATPase reaction. Kinetic constants of the nucleoside triphosphates are obtained at various levels of D20 using both the nitrated and native forms of F1. Several nucleoside diphosphates are used as inhibitors of F1-catalyzed ITP hydrolysis. Dissociation constants of these inhibitors are obtained at both low and high concentrations of D20 for both the nitrated and native F1. We explore the possibility that a tyrosine and an arginine lie in close proximity in the F1 active site by studying the effects of sequential modification of arginine and tyrosine. These results are interpreted in terms of possible ATP hydrolysis mechanisms. Two possible roles for tyrosine in the hydrolysis of nucleoside triphosphates by F1 are suggested.

  1. The pivotal role of uridine-cytidine kinases in pyrimidine metabolism and activation of cytotoxic nucleoside analogues in neuroblastoma.

    PubMed

    van Kuilenburg, André B P; Meinsma, Rutger

    2016-09-01

    Uridine-cytidine kinase (UCK) catalyzes the phosphorylation of uridine and cytidine as well as the pharmacological activation of several cytotoxic pyrimidine ribonucleoside analogues. In this study, we investigated the functional role of two isoforms of UCK in neuroblastoma cell lines. Analysis of mRNA coding for UCK1 and UCK2 showed that UCK2 is the most abundantly expressed UCK in a panel of neuroblastoma cell lines. Transient and stable overexpression of UCK2 in neuroblastoma cells increased the metabolism of uridine and cytidine as well as the cytotoxicity of 3-deazauridine. Knockdown of endogenous UCK2 as well as overexpression of UCK1 resulted in decreased metabolism of uridine and cytidine and protected the neuroblastoma cells from 3-deazauridine-induced toxicity. Subcellular localization studies showed that UCK1-GFP and UCK2-GFP were localized in the cell nucleus and cytosol, respectively. However, co-expression of UCK1 with UCK2 resulted in a nuclear localization of UCK2 instead of its normal cytosolic localization, thereby impairing its normal function. The physical association of UCK1 and UCK2 was further demonstrated through pull-down analysis using his-tagged UCK. The discovery that UCK2 is highly expressed in neuroblastoma opens the possibility for selectively targeting neuroblastoma cells using UCK2-dependent pyrimidine analogues, while sparing normal tissues. PMID:27239701

  2. Nucleosides from the marine sponge Haliclona sp.

    PubMed

    Wang, Bin; Dong, Junde; Zhou, Xuefeng; Lee, Kyung Jin; Huang, Riming; Zhang, Si; Liu, Yonghong

    2009-01-01

    Three known nucleosides were isolated from the sponge Haliclona sp. The structures were established on the basis of NMR data and comparison with those reported, and chemotaxonomic relationships of the sponge nucleosides were discussed.

  3. Novel inhibitors of Mycobacterium tuberculosis growth based on modified pyrimidine nucleosides and their analogues

    NASA Astrophysics Data System (ADS)

    Shmalenyuk, E. R.; Kochetkov, S. N.; Alexandrova, L. A.

    2013-09-01

    The review summarizes data on the synthesis and antituberculosis activity of pyrimidine nucleoside derivatives and their analogues. Enzymes from M. tuberculosis as promising targets for prototypes of new-generation drugs are considered. Nucleosides as inhibitors of drug-resistant M. tuberculosis strains are characterized. The bibliography includes 101 references.

  4. Suramin inhibits helicase activity of NS3 protein of dengue virus in a fluorescence-based high throughput assay format.

    PubMed

    Basavannacharya, Chandrakala; Vasudevan, Subhash G

    2014-10-24

    Dengue fever is a major health concern worldwide. The virus encoded non-structural protein 3 (NS3) is a multifunctional protein endowed with protease, helicase, nucleoside triphosphatase (NTPase) and RNA 5' triphosphatase (RTPase) activities. Helicase activity of NS3 catalyzes the unwinding of double stranded polynucleotides by utilizing the energy released from ATP hydrolysis. As this activity is essential for replication, NS3 helicase represents an attractive drug target for developing a dengue antiviral drug. Here, we report fluorescence based molecular beacon helicase assay using a duplex RNA substrate that contains a fluorophore on the 5' end and a quencher on the 3' end of one of the strands. The assay was optimized with respect to several parameters and adapted to 384-well high-throughput screening format, with an average Z' factor of 0.65. Assay validation with a small diverse set library of 1600 compounds identified, suramin as a significant inhibitor of the helicase activity of NS3. Helicase activity deficient NS3 K199A was used in a counter-screen to identify compounds interfering with the assay. Suramin inhibited DENV (dengue virus) NS3 helicase activity with a Ki of 0.75±0.03μM as a non-competitive inhibitor. The molecular beacon helicase assay together with the counter screen and suramin as a tool compound can be used to identify novel inhibitors of DENV helicase.

  5. Constrained NBMPR Analogue Synthesis, Pharmacophore Mapping and 3D-QSAR Modeling of Equilibrative nucleoside Transporter 1 (ENT1) Inhibitory Activity

    PubMed Central

    Zhu, Zhengxiang; Buolamwini, John K.

    2009-01-01

    Conformationally constrained analogue synthesis was undertaken to aid in pharmacophore mapping and 3D QSAR analysis of nitrobenzylmercaptopurine riboside (NBMPR) congeners as equilibriative nucleoside transporter 1 (ENT1) inhibitors. In our previous study (Zhu et al., J. Med. Chem. 46, 831–837, 2003), novel regioisomeric nitro-1, 2, 3, 4-tetrahydroisoquinoline conformationally constrained analogues of NBMPR were synthesized and evaluated as ENT1 ligands. 7-NO2-1, 2, 3, 4-tetrahydroisoquino-2-yl purine riboside was identified as the analogue with the nitro group in the best orientation at the NBMPR binding site of ENT1. In the present study, further conformational constraining was introduced by synthesizing 5′-O, 8-cyclo derivatives. The flow cytometrically determined binding affinities indicated that the additional 5′-O, 8-cyclo constraining was unfavorable for binding to the ENT1 transporter. The structure-activity relationship (SAR) acquired was applied to pharmacophore mapping using the PHASE program. The best pharmacophore hypothesis obtained embodied an anti-conformation with three H-bond acceptors, one hydrophobic center, and two aromatic rings involving the 3′-OH, 4′-oxygen, the NO2 group, the benzyl phenyl and the imidazole and pyrimidine portions of the purine ring, respectively. A PHASE 3D-QSAR model derived with this pharmacophore yielded an r2 of 0.916 for four (4) PLS components, and an excellent external test set predictive r2 of 0.78 for 39 compounds. This pharmacophore was used for molecular alignment in a comparative molecular field analysis (CoMFA) 3D-QSAR study that also afforded a predictive model with external test set validation predictive r2 of 0.73. Thus, although limited, this study suggests that the bioactive conformation for NBMPR at the ENT1 transporter could be anti. The study has also suggested an ENT1 inhibitory pharmacophore, and established a predictive CoMFA 3D-QSAR model that might be useful for novel ENT1 inhibitor

  6. Second-line protease inhibitor-based highly active antiretroviral therapy after failing non-nucleoside reverse transcriptase inhibitors-based regimens in Asian HIV-infected children

    PubMed Central

    Bunupuradah, Torsak; Puthanakit, Thanyawee; Fahey, Paul; Kariminia, Azar; Yusoff, Nik Khairulddin Nik; Khanh, Truong Huu; Sohn, Annette H.; Chokephaibulkit, Kulkanya; Lumbiganon, Pagakrong; Hansudewechakul, Rawiwan; Razali, Kamarul; Kurniati, Nia; Huy, Bui Vu; Sudjaritruk, Tavitiya; Kumarasamy, Nagalingeswaran; Fong, Siew Moy; Saphonn, Vonthanak; Ananworanich, Jintanat

    2013-01-01

    Background The WHO recommends boosted protease inhibitor (bPI)-based highly active antiretroviral therapy (HAART) after failing non-nucleoside reverse transcriptase inhibitor (NNRTI) treatment. We examined outcomes of this regimen in Asian HIV-infected children. Methods Children from five Asian countries in the TREAT Asia Pediatric HIV Observational Database (TApHOD) with ≥24 weeks of NNRTI-based HAART followed by ≥24 weeks of bPI-based HAART were eligible. Primary outcomes were the proportions with virologic suppression (HIV-RNA <400 copies/ml) and immune recovery (CD4% ≥25% if age <5 years and CD4 count ≥500 cells/mm3 if age ≥5 years) at 48 and 96 weeks. Results Of 3422 children, 153 were eligible; 52% were female. At switch, median age was 10 years, 26% were in WHO stage 4. Median weight-for-age z-score (WAZ) was −1.9 (n=121), CD4% was 12.5% (n=106), CD4 count was 237 (n=112) cells/mm3, and HIV-RNA was 4.6 log10copies/ml (n=61). The most common PI was lopinavir/ritonavir (83%). At 48 weeks, 61% (79/129) had immune recovery, 60% (26/43) had undetectable HIV-RNA and 73% (58/79) had fasting triglycerides ≥130mg/dl. By 96 weeks, 70% (57/82) achieved immune recovery, 65% (17/26) virologic suppression, and hypertriglyceridemia occurred in 66% (33/50). Predictors for virologic suppression at week 48 were longer duration of NNRTI-based HAART (p=0.006), younger age (p=0.007), higher WAZ (p=0.020), and HIV-RNA at switch <10,000 copies/ml (p=0.049). Conclusion In this regional cohort of Asian children on bPI-based second-line HAART, 60% of children tested had immune recovery by one year, and two-thirds had hyperlipidemia, highlighting difficulties in optimizing second-line HAART with limited drug options. PMID:23296119

  7. Bioactive fused heterocycles: Nucleoside analogs with an additional ring.

    PubMed

    Jahnz-Wechmann, Zofia; Framski, Grzegorz; Januszczyk, Piotr; Boryski, Jerzy

    2015-06-01

    The following mini-review summarizes the basic literature data regarding synthesis, biological activity, structure-activity relationship, and discussion of the mechanisms of action of two major classes of nucleoside analogs with fused heterocyclic rings: (i) the ethenonucleosides and their related derivatives of the 5,9-dihydro-3-glycosyl-6-alkyl-9-oxo-5H-imidazo[1,2-a]purine type; (ii) the bicyclic nucleosides of 6-alkyl-2,3-dihydrofurano[2,3-d]-pyrimidin-2(3H)-one and 6-alkyl-2,3-dihydropyrrolo[2,3-d]-pyrimidin-2(3H,7H)-one. PMID:25576500

  8. Visualizing nucleic acid metabolism using non-natural nucleosides and nucleotide analogs.

    PubMed

    Choi, Jung-Suk; Berdis, Anthony J

    2016-01-01

    Nucleosides and their corresponding mono-, di-, and triphosphates play important roles in maintaining cellular homeostasis. In addition, perturbations in this homeostasis can result in dysfunctional cellular processes that cause pathological conditions such as cancer and autoimmune diseases. This review article discusses contemporary research areas applying nucleoside analogs to probe the mechanistic details underlying the complexities of nucleoside metabolism at the molecular and cellular levels. The first area describes classic and contemporary approaches used to quantify the activity of nucleoside transporters, an important class of membrane proteins that mediate the influx and efflux of nucleosides and nucleobases. A focal point of this section is describing how biophotonic nucleosides are replacing conventional assays employing radiolabeled substrates to study the mechanism of these proteins. The second section describes approaches to understand the utilization of nucleoside triphosphates by cellular DNA polymerases during DNA synthesis. Emphasis here is placed on describing how novel nucleoside analogs such as 5-ethynyl-2'-deoxyuridine are being used to quantify DNA synthesis during normal replication as well as during the replication of damaged DNA. In both sections, seminal research articles relevant to these areas are described to highlight how these novel probes are improving our understanding of these biological processes. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. PMID:26004088

  9. Origin, utilization, and recycling of nucleosides in the central nervous system.

    PubMed

    Ipata, Piero Luigi

    2011-12-01

    The brain relies on the salvage of preformed purine and pyrimidine rings, mainly in the form of nucleosides, to maintain its nucleotide pool in the proper qualitative and quantitative balance. The transport of nucleosides from blood into neurons and glia is considered to be an essential prerequisite to enter their metabolic utilization in the brain. Recent lines of evidence have also suggested that local extracellular nucleoside triphosphate (NTP) degradation may contribute to brain nucleosides. Plasma membrane-located ectonucleotidases, with their active sites oriented toward the extracellular space, catalyze the successive hydrolysis of NTPs to their respective nucleosides. Apart from the well-established modulation of ATP, ADP, adenosine (the purinergic agonists), UTP, and UDP (the pyrimidinergic agonists) availability at their respective receptors, ectonucleotidases may also serve the local reutilization of nucleosides in the brain. After their production in the extracellular space by the ectonucleotidase system, nucleosides are transported into neurons and glia and converted back to NTPs via a set of purine and pyrimidine salvage enzymes. Finally, nucleotides are transported into brain cell vescicles or granules and released back into the extracellular space. The key teaching concepts to be included in a two-to three-lecture block on the molecular mechanisms of the local nucleoside recycling process, based on a cross talk between the brain extracellular space and cytosol, are discussed in this article. PMID:22139768

  10. Versatile synthesis and biological evaluation of novel 3’-fluorinated purine nucleosides

    PubMed Central

    Ren, Hang; Hatala, Paul J; Stevens, William C; He, Baicheng

    2015-01-01

    Summary A unified synthetic strategy accessing novel 3'-fluorinated purine nucleoside derivatives and their biological evaluation were achieved. Novel 3’-fluorinated analogues were constructed from a common 3’-deoxy-3’-fluororibofuranose intermediate. Employing Suzuki and Stille cross-coupling reactions, fifteen 3’-fluororibose purine nucleosides 1–15 and eight 3’-fluororibose 2-chloro/2-aminopurine nucleosides 16–23 with various substituents at position 6 of the purine ring were efficiently synthesized. Furthermore, 3’-fluorine analogs of natural products nebularine and 6-methylpurine riboside were constructed via our convergent synthetic strategy. Synthesized nucleosides were tested against HT116 (colon cancer) and 143B (osteosarcoma cancer) tumor cell lines. We have demonstrated 3’-fluorine purine nucleoside analogues display potent tumor cell growth inhibition activity at sub- or low micromolar concentration. PMID:26734098

  11. Characterization of a Partially Purified Adenosine Triphosphatase from a Corn Root Plasma Membrane Fraction 1

    PubMed Central

    Dupont, Frances M.; Burke, Linda L.; Spanswick, Roger M.

    1981-01-01

    The (K+,Mg2+)-ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mol7) and stored in liquid N2 without loss of activity. Specific activity was increased 4-fold over that of the plasma membrane fraction. ATPase activity resembled that of the plasma membrane fraction with certain alterations in cation sensitivity. The enzyme required a divalent cation for activity (Co2+ > Mg2+ > Mn2+ > Zn2+ > Ca2+) when assayed at 3 millimolar ATP and 3 millimolar divalent cation at pH 6.3. When assayed in the presence of 3 millimolar Mg2+, the enzyme was further activated by monovalent cations (K+, NH4+, Rb+ ≫ Na+, Cs+, Li+). The pH optima were 6.5 and 6.3 in the absence and presence of 50 millimolar KCl, respectively. The enzyme showed simple Michaelis-Menten kinetics for the substrate ATP-Mg, with a Km of 1.3 millimolar in the absence and 0.7 millimolar in the presence of 50 millimolar KCl. Stimulation by K+ approached simple Michaelis-Menten kinetics, with a Km of approximately 4 millimolar KCl. ATPase activity was inhibited by sodium orthovanadate. Half-maximal inhibition was at 150 and 35 micromolar in the absence and presence of 50 millimolar KCl. The enzyme required the substrate ATP. The rate of hydrolysis of other substrates, except UDP, IDP, and GDP, was less than 20% of ATP hydrolysis. Nucleoside diphosphatase activity was less than 30% of ATPase activity, was not inhibited by vanadate, was not stimulated by K+, and preferred Mn2+ to Mg2+. The results demonstrate that the (K+,Mg2+)-ATPase can be clearly distinguished from nonspecific phosphohydrolase and nucleoside diphosphatase activities of plasma membrane fractions prepared from corn roots. PMID:16661634

  12. Synthesis of small interfering RNAs containing acetal-type nucleoside analogs at their 3'-ends and analysis of their silencing activity and their ability to bind to the Argonaute2 PAZ domain.

    PubMed

    Inada, Natsumi; Nakamoto, Kosuke; Yokogawa, Takashi; Ueno, Yoshihito

    2015-10-20

    In this study, we aimed to create small interfering RNAs (siRNAs) with increased silencing activities and nuclease resistance properties. Therefore, we designed and synthesized five types of siRNA containing acetal-type nucleoside analogs at their 3'-dangling ends. We found that the siRNA containing 1-O-(2,2,2-trifluoroethyl)-β-D-ribofuranose at the 3'-dangling end was the most potent among the synthesized siRNAs and showed more resistance to nucleolytic degradation by a 3' exonuclease than a natural RNA did. Thus, modification of siRNAs by addition of 1-O-(2,2,2-trifluoroethyl)-β-D-ribofuranose may hold promise as a means of improving the silencing activity and nuclease resistance of siRNAs.

  13. The search for nucleoside/nucleotide analog inhibitors of dengue virus.

    PubMed

    Chen, Yen-Liang; Yokokawa, Fumiaki; Shi, Pei-Yong

    2015-10-01

    Nucleoside analogs represent the largest class of antiviral agents and have been actively pursued for potential therapy of dengue virus (DENV) infection. Early success in the treatment of human immunodeficiency virus (HIV) infection and the recent approval of sofosbuvir for chronic hepatitis C have provided proof of concept for this class of compounds in clinics. Here we review (i) nucleoside analogs with known anti-DENV activity; (ii) challenges of the nucleoside antiviral approach for dengue; and (iii) potential strategies to overcome these challenges. This article forms part of a symposium in Antiviral Research on flavivirus drug discovery.

  14. Genome segment 4 of Antheraea mylitta cytoplasmic polyhedrosis virus encodes RNA triphosphatase and methyltransferases.

    PubMed

    Biswas, Poulomi; Kundu, Anirban; Ghosh, Ananta Kumar

    2015-01-01

    Cloning and sequencing of Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV) genome segment S4 showed that it consists of 3410 nt with a single ORF of 1110 aa which could encode a protein of ~127 kDa (p127). Bioinformatics analysis showed the presence of a 5' RNA triphosphatase (RTPase) domain (LRDR), a S-adenosyl-l-methionine (SAM)-binding (GxGxG) motif and the KDKE tetrad of 2'-O-methyltransferase (MTase), which suggested that S4 may encode RTPase and MTase. The ORF of S4 was expressed in Escherichia coli as a His-tagged fusion protein and purified by nickel-nitrilotriacetic acid affinity chromatography. Biochemical analysis of recombinant p127 showed its RTPase as well as SAM-dependent guanine N(7)-and ribose 2'-O-MTase activities. A MTase assay using in vitro transcribed AmCPV S2 RNA having a 5' G*pppG end showed that guanine N(7) methylation occurred prior to the ribose 2'-O methylation to yield a m(7)GpppG/m(7)GpppGm RNA cap. Mutagenesis of the SAM-binding (GxGxG) motif (G831A) completely abolished N(7)- and 2'-O-MTase activities, indicating the importance of these residues for capping. From the kinetic analysis, the Km values of N(7)-MTase for SAM and RNA were calculated as 4.41 and 0.39 µM, respectively. These results suggested that AmCPV S4-encoded p127 catalyses RTPase and two cap methylation reactions for capping the 5' end of viral RNA. PMID:25228490

  15. Synthesis and anti-HIV activity of some [Nucleoside Reverse Transcriptase Inhibitor]-C5'-linker-[Integrase Inhibitor] heterodimers as inhibitors of HIV replication.

    PubMed

    Sugeac, Elena; Fossey, Christine; Ladurée, Daniel; Schmidt, Sylvie; Laumond, Geraldine; Aubertin, Anne-Marie

    2004-12-01

    Selected for their expected ability to inhibit HIV replication, a series of eight heterodimers containing a Nucleoside Reverse Transcriptase Inhibitor (NRTI) and an Integrase Inhibitor (INI), bound by a linker, were designed and synthesized. For the NRTIs, d4U, d2U and d4T were chosen. For the INIs, 4-[1-(4-fluorobenzyl)-1H-pyrrol-2-yl]-2,4-dioxobutyric acid (6) and 4-(3,5-dibenzyloxyphenyl)-2,4-dioxobutyric acid (9) (belonging to the beta-diketo acids class) were chosen. The conjugation of the two different inhibitors (NRTI and INI) was performed using an amino acid (glycine or beta-alanine) as a cleavable linker.

  16. Novel Nucleoside Diphosphatase Contributes to Staphylococcus aureus Virulence.

    PubMed

    Imae, Kenta; Saito, Yuki; Kizaki, Hayato; Ryuno, Hiroki; Mao, Han; Miyashita, Atsushi; Suzuki, Yutaka; Sekimizu, Kazuhisa; Kaito, Chikara

    2016-09-01

    We identified SA1684 as a Staphylococcus aureus virulence gene using a silkworm infection model. The SA1684 gene product carried the DUF402 domain, which is found in RNA-binding proteins, and had amino acid sequence similarity with a nucleoside diphosphatase, Streptomyces coelicolor SC4828 protein. The SA1684-deletion mutant exhibited drastically decreased virulence, in which the LD50 against silkworms was more than 10 times that of the parent strain. The SA1684-deletion mutant also exhibited decreased exotoxin production and colony-spreading ability. Purified SA1684 protein had Mn(2+)- or Co(2+)-dependent hydrolyzing activity against nucleoside diphosphates. Alanine substitutions of Tyr-88, Asp-106, and Asp-123/Glu-124, which are conserved between SA1684 and SC4828, diminished the nucleoside diphosphatase activity. Introduction of the wild-type SA1684 gene restored the hemolysin production of the SA1684-deletion mutant, whereas none of the alanine-substituted SA1684 mutant genes restored the hemolysin production. RNA sequence analysis revealed that SA1684 is required for the expression of the virulence regulatory genes agr, sarZ, and sarX, as well as metabolic genes involved in glycolysis and fermentation pathways. These findings suggest that the novel nucleoside diphosphatase SA1684 links metabolic pathways and virulence gene expression and plays an important role in S. aureus virulence. PMID:27422825

  17. A broad specificity nucleoside kinase from Thermoplasma acidophilum.

    PubMed

    Elkin, Sarah R; Kumar, Abhinav; Price, Carol W; Columbus, Linda

    2013-04-01

    The crystal structure of Ta0880, determined at 1.91 Å resolution, from Thermoplasma acidophilum revealed a dimer with each monomer composed of an α/β/α sandwich domain and a smaller lid domain. The overall fold belongs to the PfkB family of carbohydrate kinases (a family member of the Ribokinase clan) which include ribokinases, 1-phosphofructokinases, 6-phosphofructo-2-kinase, inosine/guanosine kinases, fructokinases, adenosine kinases, and many more. Based on its general fold, Ta0880 had been annotated as a ribokinase-like protein. Using a coupled pyruvate kinase/lactate dehydrogenase assay, the activity of Ta0880 was assessed against a variety of ribokinase/pfkB-like family substrates; activity was not observed for ribose, fructose-1-phosphate, or fructose-6-phosphate. Based on structural similarity with nucleoside kinases (NK) from Methanocaldococcus jannaschii (MjNK, PDB 2C49, and 2C4E) and Burkholderia thailandensis (BtNK, PDB 3B1O), nucleoside kinase activity was investigated. Ta0880 (TaNK) was confirmed to have nucleoside kinase activity with an apparent KM for guanosine of 0.21 μM and catalytic efficiency of 345,000 M(-1) s(-1) . These three NKs have significantly different substrate, phosphate donor, and cation specificities and comparisons of specificity and structure identified residues likely responsible for the nucleoside substrate selectivity. Phylogenetic analysis identified three clusters within the PfkB family and indicates that TaNK is a member of a new sub-family with broad nucleoside specificities. Proteins 2013. © 2012 Wiley Periodicals, Inc.

  18. Marine Nucleosides: Structure, Bioactivity, Synthesis and Biosynthesis

    PubMed Central

    Huang, Ri-Ming; Chen, Yin-Ning; Zeng, Ziyu; Gao, Cheng-Hai; Su, Xiangdong; Peng, Yan

    2014-01-01

    Nucleosides are glycosylamines that structurally form part of nucleotide molecules, the building block of DNA and RNA. Both nucleosides and nucleotides are vital components of all living cells and involved in several key biological processes. Some of these nucleosides have been obtained from a variety of marine resources. Because of the biological importance of these compounds, this review covers 68 marine originated nucleosides and their synthetic analogs published up to June 2014. The review will focus on the structures, bioactivities, synthesis and biosynthetic processes of these compounds. PMID:25474189

  19. [Bicyclic furano[2,3-D] derivatives of pyrimidine nucleosides--synthesis and antiviral properties].

    PubMed

    Ivanov, M A; Aleksandrova, L A

    2013-01-01

    The methods of synthesis of furano- and pyrrolo[2,3-dlpyrimidine nucleosides as well as structure activity relationship of obtained compounds towards viruses of varicella zoster, hepatitis C, bovine viral diarrhea and some others are reviewed. PMID:23844505

  20. Targeting Na⁺/K⁺ -translocating adenosine triphosphatase in cancer treatment.

    PubMed

    Durlacher, Cameron T; Chow, Kevin; Chen, Xiao-Wu; He, Zhi-Xu; Zhang, Xueji; Yang, Tianxin; Zhou, Shu-Feng

    2015-05-01

    The Na(+) /K(+) -translocating adenosine triphosphatase (ATPase) transports sodium and potassium across the plasma membrane and represents a potential target in cancer chemotherapy. Na(+) /K(+) -ATPase belongs to the P-type ATPase family (also known as E1-E2 ATPase), which is involved in transporting certain ions, metals, and lipids across the plasma membrane of mammalian cells. In humans, the Na(+) /K(+) -ATPase is a binary complex of an α-subunit that has four isoforms (α1 -α4 ) and a β-subunit that has three isoforms (β1 -β3 ). This review aims to update our knowledge on the role of Na(+) /K(+) -ATPase in cancer development and metastasis, as well as on how Na(+) /K(+) -ATPase inhibitors kill tumour cells. The Na(+) /K(+) -ATPase has been found to be associated with cancer initiation, growth, development, and metastasis. Cardiac glycosides have exhibited anticancer effects in cell-based and mouse studies via inhibition of the Na(+) /K(+) -ATPase and other mechanisms. Na(+) /K(+) -ATPase inhibitors may kill cancer cells via induction of apoptosis and autophagy, radical oxygen species production, and cell cycle arrest. They also modulate multiple signalling pathways that regulate cancer cell survival and death, which contributes to their antiproliferative activities in cancer cells. The clinical evidence supporting the use of Na(+) /K(+) -ATPase inhibitors as anticancer drugs is weak. Several phase I and phase II clinical trials with digoxin, Anvirzel, and huachansu (an intravenous formulated extract of the venom of the wild toad), either alone or more often in combination with other anticancer agents, have shown acceptable safety profiles but limited efficacy in cancer patients. Well-designed randomized clinical trials with reasonable sample sizes are certainly warranted to confirm the efficacy and safety of cardiac glycosides for the treatment of cancer.

  1. Substrate specificity of pyrimidine nucleoside phosphorylases of NP-II family probed by X-ray crystallography and molecular modeling

    NASA Astrophysics Data System (ADS)

    Balaev, V. V.; Lashkov, A. A.; Prokofev, I. I.; Gabdulkhakov, A. G.; Seregina, T. A.; Mironov, A. S.; Betzel, C.; Mikhailov, A. M.

    2016-09-01

    Pyrimidine nucleoside phosphorylases, which are widely used in the biotechnological production of nucleosides, have different substrate specificity for pyrimidine nucleosides. An interesting feature of these enzymes is that the three-dimensional structure of thymidine-specific nucleoside phosphorylase is similar to the structure of nonspecific pyrimidine nucleoside phosphorylase. The three-dimensional structures of thymidine phosphorylase from Salmonella typhimurium and nonspecific pyrimidine nucleoside phosphorylase from Bacillus subtilis in complexes with a sulfate anion were determined for the first time by X-ray crystallography. An analysis of the structural differences between these enzymes demonstrated that Lys108, which is involved in the phosphate binding in pyrimidine nucleoside phosphorylase, corresponds to Met111 in thymidine phosphorylases. This difference results in a decrease in the charge on one of the hydroxyl oxygens of the phosphate anion in thymidine phosphorylase and facilitates the catalysis through SN2 nucleophilic substitution. Based on the results of X-ray crystallography, the virtual screening was performed for identifying a potent inhibitor (anticancer agent) of nonspecific pyrimidine nucleoside phosphorylase, which does not bind to thymidine phosphorylase. The molecular dynamics simulation revealed the stable binding of the discovered compound—2-pyrimidin-2-yl-1H-imidazole-4-carboxylic acid—to the active site of pyrimidine nucleoside phosphorylase.

  2. Synthesis of fluorescent nucleoside analogs as probes for 2'-deoxyribonucleoside kinases.

    PubMed

    Li, Yongfeng; Soni, Priti B; Liu, Lingfeng; Zhang, Xiao; Liotta, Dennis C; Lutz, Stefan

    2010-02-01

    We are reporting on the synthesis of fluorescent nucleoside analogs with modified sugar moieties (e.g., sugars other than ribose and 2'-deoxyribose). Four novel derivatives of the fluorescent thymidine analog 6-methyl-3-(beta-D-2'-deoxyribofuranosyl) furano-[2,3-d]pyrimidin-2-one were synthesized via Sonogashira reaction and subsequent copper-catalyzed cycloaddition. These compounds represent promising tools for studying nucleoside metabolism inside living cells, as well as for screening directed evolution libraries of 2'-deoxyribonucleoside kinases with new and improved activity for the corresponding nucleoside analogs. PMID:20060716

  3. Steroid hormones are novel nucleoside transport inhibitors by competition with nucleosides for their transporters.

    PubMed

    Kaneko, Masahiro; Hakuno, Fumihiko; Kamei, Hiroyasu; Yamanaka, Daisuke; Chida, Kazuhiro; Minami, Shiro; Coe, Imogen R; Takahashi, Shin-Ichiro

    2014-01-10

    Nucleoside transport is important for nucleic acid synthesis in cells that cannot synthesize nucleosides de novo, and for entry of many cytotoxic nucleoside analog drugs used in chemotherapy. This study demonstrates that various steroid hormones induce inhibition of nucleoside transport in mammalian cells. We analyzed the inhibitory effects of estradiol (E2) on nucleoside transport using SH-SY5Y human neuroblastoma cells. We observed inhibitory effects after acute treatment with E2, which lasted in the presence of E2. However, when E2 was removed, the effect immediately disappeared, suggesting that E2 effects are not mediated through the canonical regulatory pathway of steroid hormones, such as transcriptional regulation. We also discovered that E2 could competitively inhibit thymidine uptake and binding of the labeled nucleoside transporter inhibitor, S-[4-nitrobenzyl]-6-thioinosine (NBTI), indicating that E2 binds to endogenous nucleoside transporters, leading to inhibition of nucleoside transport. We then tested the effects of various steroids on nucleoside uptake in NBTI-sensitive cells, SH-SY5Y and NBTI-insensitive cells H9c2 rat cardiomyoblasts. We found E2 and progesterone clearly inhibited both NBTI-sensitive and insensitive uptake at micromolar concentrations. Taken together, we concluded that steroid hormones function as novel nucleoside transport inhibitors by competition with nucleosides for their transporters.

  4. Lipophilic prodrugs of nucleoside triphosphates as biochemical probes and potential antivirals

    PubMed Central

    Gollnest, Tristan; de Oliveira, Thiago Dinis; Schols, Dominique; Balzarini, Jan; Meier, Chris

    2015-01-01

    The antiviral activity of nucleoside reverse transcriptase inhibitors is often limited by ineffective phosphorylation. We report on a nucleoside triphosphate (NTP) prodrug approach in which the γ-phosphate of NTPs is bioreversibly modified. A series of TriPPPro-compounds bearing two lipophilic masking units at the γ-phosphate and d4T as a nucleoside analogue are synthesized. Successful delivery of d4TTP is demonstrated in human CD4+ T-lymphocyte cell extracts by an enzyme-triggered mechanism with high selectivity. In antiviral assays, the compounds are potent inhibitors of HIV-1 and HIV-2 in CD4+ T-cell (CEM) cultures. Highly lipophilic acyl residues lead to higher membrane permeability that results in intracellular delivery of phosphorylated metabolites in thymidine kinase-deficient CEM/TK− cells with higher antiviral activity than the parent nucleoside. PMID:26503889

  5. Aberrant Apoptotic Response of Colorectal Cancer Cells to Novel Nucleoside Analogues

    PubMed Central

    Harmse, Leonie; Dahan-Farkas, Nurit; Panayides, Jenny-Lee; van Otterlo, Willem; Penny, Clement

    2015-01-01

    Despite the increased understanding of colorectal cancer and the introduction of targeted drug therapy, the metastatic phase of the disease remains refractory to treatment. Since the deregulation of normal apoptosis contributes to the pathogenesis of colorectal cancer, novel nucleoside analogues were synthesized here and evaluated for their ability to induce apoptosis and cause cell death in two colorectal adeno-carcinoma cell lines, Caco-2 and HT-29. Three novel nucleoside analogues assessed here showed cytotoxic activity, as measured by the MTT assay against both cell lines: the IC50 values ranged between 3 and 37 μM, with Caco-2 cells being more sensitive than HT-29 cells. Compared to camptothecin, the positive control, the nucleoside analogues were significantly less toxic to normal unstimulated leukocytes (p>0.05). Moreover, the nucleosides were able to induce apoptosis as measured by an increase in caspase 8 and caspase 3 activity above that of the control. This was additionally supported by data derived from Annexin V-FITC assays. Despite marginal changes to the mitochondrial membrane potential, all three nucleosides caused a significant increase in cytosolic cytochrome c (p>0.05), with a corresponding decrease in mitochondrial cytochrome c. Morphological analysis of both cell lines showed the rapid appearance of vacuoles following exposure to two of the nucleosides, while a third caused cellular detachment, delayed cytoplasmic vacuolisation and nuclear abnormalities. Preliminary investigations, using the autophagic indicator monodansylcadaverine and chloroquine as positive control, showed that two of the nucleosides induced the formation of autophagic vacuoles. In summary, the novel nucleoside analogues showed selective cytotoxicity towards both cancer cell lines and are effective initiators of an unusual apoptotic response, demonstrating their potential to serve as structural scaffolds for more potent analogues. PMID:26390405

  6. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology.

    PubMed

    Niu, Guoqing; Tan, Huarong

    2015-02-01

    The alarming rise in antibiotic-resistant pathogens has coincided with a decline in the supply of new antibiotics. It is therefore of great importance to find and create new antibiotics. Nucleoside antibiotics are a large family of natural products with diverse biological functions. Their biosynthesis is a complex process through multistep enzymatic reactions and is subject to hierarchical regulation. Genetic and biochemical studies of the biosynthetic machinery have provided the basis for pathway engineering and combinatorial biosynthesis to create new or hybrid nucleoside antibiotics. Dissection of regulatory mechanisms is leading to strategies to increase the titer of bioactive nucleoside antibiotics.

  7. Broad-spectrum non-nucleoside inhibitors of human herpesviruses

    PubMed Central

    McClain, Lora; Zhi, Yun; Cheng, Hoyee; Ghosh, Ayantika; Piazza, Paolo; Yee, Michael B.; Kumar, Santosh; Milosevic, Jadranka; Bloom, David C.; Arav-Boger, Ravit; Kinchington, Paul R.; Yolken, Robert; Nimgaonkar, Vishwajit; D’Aiuto, Leonardo

    2015-01-01

    Herpesvirus infections cause considerable morbidity and mortality through lifelong recurrent cycles of lytic and latent infection in several tissues, including the human nervous system. Acyclovir (ACV) and its prodrug, the current antivirals of choice for herpes simplex virus (HSV) and, to some extent, varicella zoster virus (VZV) infections are nucleoside analogues that inhibit viral DNA replication. Rising viral resistance and the need for more effective second-line drugs have motivated searches for additional antiviral agents, particularly non-nucleoside based agents. We evaluated the antiviral activity of five compounds with predicted lysosomotropic activity using conventional and human induced pluripotent stem cell-derived neuronal (iPSC-neurons) cultures. Their potency and toxicity were compared with ACV and the lysosomotropic agents chloroquine and bafilomycin A1. Out of five compounds tested, micromolar concentrations of 30N12, 16F19, and 4F17 showed antiviral activity comparable to ACV (50μM) during lytic herpes simplex virus type 1 (HSV-1) infections, reduced viral DNA copy number, and reduced selected HSV-1 protein levels. These compounds also inhibited the reactivation of ‘quiescent’ HSV-1 infection established in iPSC-neurons, but did not inhibit viral entry into host cells. The same compounds had greater potency than ACV against lytic VZV infection; they also inhibited replication of human cytomegalovirus. The anti-herpetic effects of these non-nucleoside agents merit further evaluation in vivo. PMID:26079681

  8. Broad-spectrum non-nucleoside inhibitors of human herpesviruses.

    PubMed

    McClain, Lora; Zhi, Yun; Cheng, Hoyee; Ghosh, Ayantika; Piazza, Paolo; Yee, Michael B; Kumar, Santosh; Milosevic, Jadranka; Bloom, David C; Arav-Boger, Ravit; Kinchington, Paul R; Yolken, Robert; Nimgaonkar, Vishwajit; D'Aiuto, Leonardo

    2015-09-01

    Herpesvirus infections cause considerable morbidity and mortality through lifelong recurrent cycles of lytic and latent infection in several tissues, including the human nervous system. Acyclovir (ACV) and its prodrug, the current antivirals of choice for herpes simplex virus (HSV) and, to some extent, varicella zoster virus (VZV) infections are nucleoside analogues that inhibit viral DNA replication. Rising viral resistance and the need for more effective second-line drugs have motivated searches for additional antiviral agents, particularly non-nucleoside based agents. We evaluated the antiviral activity of five compounds with predicted lysosomotropic activity using conventional and human induced pluripotent stem cell-derived neuronal (iPSC-neurons) cultures. Their potency and toxicity were compared with ACV and the lysosomotropic agents chloroquine and bafilomycin A1. Out of five compounds tested, micromolar concentrations of 30N12, 16F19, and 4F17 showed antiviral activity comparable to ACV (50μM) during lytic herpes simplex virus type 1 (HSV-1) infections, reduced viral DNA copy number, and reduced selected HSV-1 protein levels. These compounds also inhibited the reactivation of 'quiescent' HSV-1 infection established in iPSC-neurons, but did not inhibit viral entry into host cells. The same compounds had greater potency than ACV against lytic VZV infection; they also inhibited replication of human cytomegalovirus. The anti-herpetic effects of these non-nucleoside agents merit further evaluation in vivo. PMID:26079681

  9. A Novel and Fast Purification Method for Nucleoside Transporters.

    PubMed

    Hao, Zhenyu; Thomsen, Maren; Postis, Vincent L G; Lesiuk, Amelia; Sharples, David; Wang, Yingying; Bartlam, Mark; Goldman, Adrian

    2016-01-01

    Nucleoside transporters (NTs) play critical biological roles in humans, and to understand the molecular mechanism of nucleoside transport requires high-resolution structural information. However, the main bottleneck for structural analysis of NTs is the production of pure, stable, and high quality native protein for crystallization trials. Here we report a novel membrane protein expression and purification strategy, including construction of a high-yield membrane protein expression vector, and a new and fast purification protocol for NTs. The advantages of this strategy are the improved time efficiency, leading to high quality, active, stable membrane proteins, and the efficient use of reagents and consumables. Our strategy might serve as a useful point of reference for investigating NTs and other membrane proteins by clarifying the technical points of vector construction and improvements of membrane protein expression and purification. PMID:27376071

  10. Shrimp oncoprotein nm23 is a functional nucleoside diphosphate kinase.

    PubMed

    Quintero-Reyes, Idania E; Garcia-Orozco, Karina D; Sugich-Miranda, Rocio; Arvizu-Flores, Aldo A; Velazquez-Contreras, Enrique F; Castillo-Yañez, Francisco J; Sotelo-Mundo, Rogerio R

    2012-06-01

    Biosynthesis of nucleoside triphosphates is critical for bioenergetics and nucleic acid replication, and this is achieved by nucleoside diphosphate kinase (NDK). As an emerging biological model and the global importance of shrimp culture, we have addressed the study of the Pacific whiteleg shrimp (Litopenaeus vannamei) NDK. We demonstrated its activity and affinity towards deoxynucleoside diphosphates. Also, the quaternary structure obtained by gel filtration chromatography showed that shrimp NDK is a trimer. Affinity was in the micro-molar range for dADP, dGDP, dTDP and except for dCDP, which presented no detectable interaction by isothermal titration calorimetry, as described previously for Plasmodium falciparum NDK. This information is particularly important, as this enzyme could be used to test nucleotide analogs that can block white spot syndrome virus (WSSV) viral replication and to study its bioenergetics role during hypoxia and fasting.

  11. A Novel and Fast Purification Method for Nucleoside Transporters

    PubMed Central

    Hao, Zhenyu; Thomsen, Maren; Postis, Vincent L. G.; Lesiuk, Amelia; Sharples, David; Wang, Yingying; Bartlam, Mark; Goldman, Adrian

    2016-01-01

    Nucleoside transporters (NTs) play critical biological roles in humans, and to understand the molecular mechanism of nucleoside transport requires high-resolution structural information. However, the main bottleneck for structural analysis of NTs is the production of pure, stable, and high quality native protein for crystallization trials. Here we report a novel membrane protein expression and purification strategy, including construction of a high-yield membrane protein expression vector, and a new and fast purification protocol for NTs. The advantages of this strategy are the improved time efficiency, leading to high quality, active, stable membrane proteins, and the efficient use of reagents and consumables. Our strategy might serve as a useful point of reference for investigating NTs and other membrane proteins by clarifying the technical points of vector construction and improvements of membrane protein expression and purification. PMID:27376071

  12. Modified Nucleoside Triphosphates for in-vitro Selection Techniques

    NASA Astrophysics Data System (ADS)

    Iribarren, Adolfo; Dellafiore, María; Montserrat, Javier

    2016-05-01

    The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed.

  13. Modified Nucleoside Triphosphates for In-vitro Selection Techniques.

    PubMed

    Dellafiore, María A; Montserrat, Javier M; Iribarren, Adolfo M

    2016-01-01

    The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed.

  14. Modified Nucleoside Triphosphates for In-vitro Selection Techniques

    PubMed Central

    Dellafiore, María A.; Montserrat, Javier M.; Iribarren, Adolfo M.

    2016-01-01

    The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed. PMID:27200340

  15. Mildiomycin: a nucleoside antibiotic that inhibits protein synthesis.

    PubMed

    Feduchi, E; Cosín, M; Carrasco, L

    1985-03-01

    Mildiomycin, a new nucleoside antibiotic, selectively inhibits protein synthesis in HeLa cells, and is less active in the inhibition of RNA or DNA synthesis. An increased inhibition of translation by mildiomycin is observed in cultured HeLa cells when they are permeabilized by encephalomyocarditis virus. This observation suggests that this antibiotic does not easily pass through the cell membrane, as occurs with other nucleoside and aminoglycoside antibiotics. The inhibition of translation is also observed in cell-free systems, such as endogenous protein synthesis in a rabbit reticulocyte lysate or the synthesis of polyphenylalanine directed by poly (U). Finally the mode of action of mildiomycin was investigated and the results suggest that the compound blocks the peptidyl-transferase center.

  16. Modified Nucleoside Triphosphates for In-vitro Selection Techniques.

    PubMed

    Dellafiore, María A; Montserrat, Javier M; Iribarren, Adolfo M

    2016-01-01

    The development of SELEX (Selective Enhancement of Ligands by Exponential Enrichment) provides a powerful tool for the search of functional oligonucleotides with the ability to bind ligands with high affinity and selectivity (aptamers) and for the discovery of nucleic acid sequences with diverse enzymatic activities (ribozymes and DNAzymes). This technique has been extensively applied to the selection of natural DNA or RNA molecules but, in order to improve chemical and structural diversity as well as for particular applications where further chemical or biological stability is necessary, the extension of this strategy to modified oligonucleotides is desirable. Taking into account these needs, this review intends to collect the research carried out during the past years, focusing mainly on the use of modified nucleotides in SELEX and the development of mutant enzymes for broadening nucleoside triphosphates acceptance. In addition, comments regarding the synthesis of modified nucleoside triphosphate will be briefly discussed. PMID:27200340

  17. Overcoming nucleoside analog chemoresistance of pancreatic cancer: A therapeutic challenge

    PubMed Central

    Hung, Sau Wai; Mody, Hardik R.; Govindarajan, Rajgopal

    2013-01-01

    Clinical refractoriness to nucleoside analogs (e.g., gemcitabine, capecitabine) is a major scientific problem and is one of the main reasons underlying the extremely poor prognostic state of pancreatic cancer. The drugs’ effects are suboptimal partly due to cellular mechanisms limiting their transport, activation, and overall efficacy. Nonetheless, novel therapeutic approaches are presently under study to circumvent nucleoside analog resistance in pancreatic cancer. With these new approaches come additional challenges to be addressed. This review describes the determinants of chemoresistance in the gemcitabine cytotoxicity pathways, provides an overview of investigational approaches for overcoming chemoresistance, and discusses new challenges presented. Understanding the future directions of the field may assist in the successful development of novel treatment strategies for enhancing chemotherapeutic efficacy in pancreatic cancer. PMID:22425961

  18. Lipases in green chemistry: acylation and alcoholysis on steroids and nucleosides.

    PubMed

    Baldessari, Alicia; Iglesias, Luis E

    2012-01-01

    In this article, we describe the application of lipases in acylation and alcoholysis reactions on steroids and nucleosides. In the field of steroids, a variety of acetyl and fatty acid derivatives of androstanes, pregnanes, and cholestanes have been prepared through lipase-catalyzed acylation and alcoholysis reactions taking advantage of the high regio- and stereoselectivity of these enzymes. The substrates as well as the products show a high degree of biological activity as neurosteroids, hormones, and glucocorticoids. The regioselective preparation of diacylated nucleosides by means of an enzymatic alcoholysis allowed the synthesis of nucleosides prodrugs or modified nucleosides. The quantitative full deacylation and dealkoxycarbonylation of nucleosides and steroids is a mild synthetic method for the deprotection of these labile compounds. Some of the reported steroid and nucleoside products are novel, and it is not possible to obtain them satisfactorily by following traditional synthetic procedures. The advantages presented by this methodology, such as selectivity, mild reaction conditions, and low environmental impact, make the lipases an important tool in the application of the principles of Green Chemistry, offering a convenient way to prepare derivatives of natural compounds with a great potential in the pharmaceutical industry. PMID:22426734

  19. Lipases in green chemistry: acylation and alcoholysis on steroids and nucleosides.

    PubMed

    Baldessari, Alicia; Iglesias, Luis E

    2012-01-01

    In this article, we describe the application of lipases in acylation and alcoholysis reactions on steroids and nucleosides. In the field of steroids, a variety of acetyl and fatty acid derivatives of androstanes, pregnanes, and cholestanes have been prepared through lipase-catalyzed acylation and alcoholysis reactions taking advantage of the high regio- and stereoselectivity of these enzymes. The substrates as well as the products show a high degree of biological activity as neurosteroids, hormones, and glucocorticoids. The regioselective preparation of diacylated nucleosides by means of an enzymatic alcoholysis allowed the synthesis of nucleosides prodrugs or modified nucleosides. The quantitative full deacylation and dealkoxycarbonylation of nucleosides and steroids is a mild synthetic method for the deprotection of these labile compounds. Some of the reported steroid and nucleoside products are novel, and it is not possible to obtain them satisfactorily by following traditional synthetic procedures. The advantages presented by this methodology, such as selectivity, mild reaction conditions, and low environmental impact, make the lipases an important tool in the application of the principles of Green Chemistry, offering a convenient way to prepare derivatives of natural compounds with a great potential in the pharmaceutical industry.

  20. The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29.

    PubMed

    Young, James D; Yao, Sylvia Y M; Baldwin, Jocelyn M; Cass, Carol E; Baldwin, Stephen A

    2013-01-01

    Nucleoside transport in humans is mediated by members of two unrelated protein families, the SLC28 family of cation-linked concentrative nucleoside transporters (CNTs) and the SLC29 family of energy-independent, equilibrative nucleoside transporters (ENTs). These families contain three and four members, respectively, which differ both in the stoichiometry of cation coupling and in permeant selectivity. Together, they play key roles in nucleoside and nucleobase uptake for salvage pathways of nucleotide synthesis. Moreover, they facilitate cellular uptake of several nucleoside and nucleobase drugs used in cancer chemotherapy and treatment of viral infections. Thus, the transporter content of target cells can represent a key determinant of the response to treatment. In addition, by regulating the concentration of adenosine available to cell surface receptors, nucleoside transporters modulate many physiological processes ranging from neurotransmission to cardiovascular activity. This review describes the molecular and functional properties of the two transporter families, with a particular focus on their physiological roles in humans and relevance to disease treatment.

  1. The maximum activities of hexokinase, phosphorylase, phosphofructokinase, glycerol phosphate dehydrogenases, lactate dehydrogenase, octopine dehydrogenase, phosphoenolpyruvate carboxykinase, nucleoside diphosphatekinase, glutamate-oxaloacetate transaminase and arginine kinase in relation to carbohydrate utilization in muscles from marine invertebrates.

    PubMed Central

    Zammit, V A; Newsholme, E A

    1976-01-01

    suggested that, under anaerobic conditions, muscles of marine invertebrates form lactate and/or octopine or succinate (or similar end product) according to the activities of the enzymes present in the muscles (see above). The muscles investigated possess low activities of cytosolic glycerol 3-phosphate dehydrogenase, which indicates that glycerol phosphate formation is quantitatively unimportant under anaerobic conditions, and low activities of mitochondrial glycerol phosphate dehydrogenase, which indicates that the glycerol phosphate cycle is unimportant in the re-oxidation of glycolytically produced NADH in these muscles under aerobic conditions. Conversely, high activities of glutamate-oxaloacetate transaminase are present in some muscles, which indicates that the malate-aspartate cycle may be important in oxidation of glycolytically produced NADH under aerobic conditions. 3. High activities of nucleoside diphosphate kinase were found in muscles that function for prolonged periods under anaerobic conditions (e.g... PMID:13783

  2. Evaluation of Anti-HIV-1 Mutagenic Nucleoside Analogues*

    PubMed Central

    Vivet-Boudou, Valérie; Isel, Catherine; El Safadi, Yazan; Smyth, Redmond P.; Laumond, Géraldine; Moog, Christiane; Paillart, Jean-Christophe; Marquet, Roland

    2015-01-01

    Because of their high mutation rates, RNA viruses and retroviruses replicate close to the threshold of viability. Their existence as quasi-species has pioneered the concept of “lethal mutagenesis” that prompted us to synthesize pyrimidine nucleoside analogues with antiviral activity in cell culture consistent with an accumulation of deleterious mutations in the HIV-1 genome. However, testing all potentially mutagenic compounds in cell-based assays is tedious and costly. Here, we describe two simple in vitro biophysical/biochemical assays that allow prediction of the mutagenic potential of deoxyribonucleoside analogues. The first assay compares the thermal stabilities of matched and mismatched base pairs in DNA duplexes containing or not the nucleoside analogues as follows. A promising candidate should display a small destabilization of the matched base pair compared with the natural nucleoside and the smallest gap possible between the stabilities of the matched and mismatched base pairs. From this assay, we predicted that two of our compounds, 5-hydroxymethyl-2′-deoxyuridine and 5-hydroxymethyl-2′-deoxycytidine, should be mutagenic. The second in vitro reverse transcription assay assesses DNA synthesis opposite nucleoside analogues inserted into a template strand and subsequent extension of the newly synthesized base pairs. Once again, only 5-hydroxymethyl-2′-deoxyuridine and 5-hydroxymethyl-2′-deoxycytidine are predicted to be efficient mutagens. The predictive potential of our fast and easy first line screens was confirmed by detailed analysis of the mutation spectrum induced by the compounds in cell culture because only compounds 5-hydroxymethyl-2′-deoxyuridine and 5-hydroxymethyl-2′-deoxycytidine were found to increase the mutation frequency by 3.1- and 3.4-fold, respectively. PMID:25398876

  3. Physiological Studies on Pea Tendrils. III. ATPase Activity and Contractility Associated with Coiling

    PubMed Central

    Jaffe, M. J.; Galston, A. W.

    1967-01-01

    Extracts of the tendrils of Pisum sativum, Var. Alaska, exhibit adenosine triphosphatase activity which is inversely proportional to the amount the tendrils have coiled. The specific viscosity of the extract decreases when ATP is added. This evidence indicates a possible role of a contractile adenosine triphosphatase in coiling. PMID:16656580

  4. An adenosine nucleoside analogue NITD008 inhibits EV71 proliferation.

    PubMed

    Shang, Luqing; Wang, Yaxin; Qing, Jie; Shu, Bo; Cao, Lin; Lou, Zhiyong; Gong, Peng; Sun, Yuna; Yin, Zheng

    2014-12-01

    Enterovirus 71 (EV71), one of the major causative agents of Hand-Foot-Mouth Disease (HFMD), causes severe pandemics and hundreds of deaths in the Asia-Pacific region annually and is an enormous public health threat. However, effective therapeutic antiviral drugs against EV71 are rare. Nucleoside analogues have been successfully used in the clinic for the treatment of various viral infections. We evaluated a total of 27 nucleoside analogues and discovered that an adenosine nucleoside analogue NITD008, which has been reported to be an antiviral reagent that specifically inhibits flaviviruses, effectively suppressed the propagation of different strains of EV71 in RD, 293T and Vero cells with a relatively high selectivity index. Triphosphorylated NITD008 (ppp-NITD008) functions as a chain terminator to directly inhibit the RNA-dependent RNA polymerase activity of EV71, and it does not affect the EV71 VPg uridylylation process. A significant synergistic anti-EV71 effect of NITD008 with rupintrivir (AG7088) (a protease inhibitor) was documented, supporting the potential combination therapy of NITD008 with other inhibitors for the treatment of EV71 infections.

  5. Characterization of a Trifunctional Mimivirus mRNA Capping Enzyme and Crystal Structure of the RNA Triphosphatase Domain

    SciTech Connect

    Benarroch,D.; Smith, P.; Shuman, S.

    2008-01-01

    The RNA triphosphatase (RTPase) components of the mRNA capping apparatus are a bellwether of eukaryal taxonomy. Fungal and protozoal RTPases belong to the triphosphate tunnel metalloenzyme (TTM) family, exemplified by yeast Cet1. Several large DNA viruses encode metal-dependent RTPases unrelated to the cysteinyl-phosphatase RTPases of their metazoan host organisms. The origins of DNA virus RTPases are unclear because they are structurally uncharacterized. Mimivirus, a giant virus of amoeba, resembles poxviruses in having a trifunctional capping enzyme composed of a metal-dependent RTPase module fused to guanylyltransferase (GTase) and guanine-N7 methyltransferase domains. The crystal structure of mimivirus RTPase reveals a minimized tunnel fold and an active site strikingly similar to that of Cet1. Unlike homodimeric fungal RTPases, mimivirus RTPase is a monomer. The mimivirus TTM-type RTPase-GTase fusion resembles the capping enzymes of amoebae, providing evidence that the ancestral large DNA virus acquired its capping enzyme from a unicellular host.

  6. Protein sequence comparisons show that the 'pseudoproteases' encoded by poxviruses and certain retroviruses belong to the deoxyuridine triphosphatase family.

    PubMed Central

    McGeoch, D J

    1990-01-01

    Amino acid sequence comparisons show extensive similarities among the deoxyuridine triphosphatases (dUTPases) of Escherichia coli and of herpesviruses, and the 'protease-like' or 'pseudoprotease' sequences encoded by certain retroviruses in the oncovirus and lentivirus families and by poxviruses. These relationships suggest strongly that the 'pseudoproteases' actually are dUTPases, and have not arisen by duplication of an oncovirus protease gene as had been suggested. The herpesvirus dUTPase sequences differ from the others in that they are longer (about 370 residues, against around 140) and one conserved element ('Motif 3') is displaced relative to its position in the other sequences; a model involving internal duplication of the herpesvirus gene can account effectively for these observations. Sequences closely similar to Motif 3 are also found in phosphofructokinases, where they form part of the active site and fructose phosphate binding structure; thus these sequences may represent a class of structural element generally involved in phosphate transfer to and from glycosides. PMID:2165588

  7. A simple statistical approach to the boyer model of the molecular motor adenosine triphosphatase

    SciTech Connect

    Loginov, E. B. Pikin, S. A.

    2006-03-15

    A physical description of the F{sub 0}F{sub 1} adenosine triphosphatase as a rotating motor is proposed. The catalytic center and the ion-conducting membrane are considered within the classical Boyer model for the rotor and the catalytic parts of the motor, thereby allowing application of a simple three-pole model, which decreases the number of parameters significantly. The stochastic character of the processes occurring in motors is described by the Fokker-Planck equations. Various dependences of the rotation speed on the degree of excitation, localization of excitations, and the amplitude of the potential are reported.

  8. Salt-stimulated Adenosine Triphosphatase from Smooth Microsomes of Turnip.

    PubMed

    Rungie, J M; Wiskich, J T

    1973-06-01

    The turnip (Brassica rapa L.) microsome fraction contains both a Mg(2+)-inhibited acid phosphatase and a salt-stimulated Mg(2+)-activated ATPase. However, as the pH optimum of the ATPase was 8.0 to 8.5, the acid phosphatase activity could be eliminated by assaying at or above pH 7.8. The ATPase was concentrated in a fraction equivalent to the smooth microsomal membranes and was not due to fragments of mitochondria. The salt-stimulated activity showed specificity for anions rather than cations. The activity was further stimulated by carbonyl cyanide m-chloro-phenylhydrazone (CCCP), 2,4-dinitrophenol, valinomycin, nigericin, and NH(4)Cl. There was a synergistic effect between CCCP and valinomycin. Activity was insensitive to oligomycin phlorizin, ouabain, and atractylate. Based on similarity to the chloroplast ATPase, it was proposed that this ATPase was situated on the outside of the vesicle.It is suggested that the ATPase is involved in the movement of ions, particularly anions, and may be related to the anion accumulation mechanism, which is known to occur across the tonoplast of such tissues.

  9. Formation of nucleoside 5'-polyphosphates from nucleotides and trimetaphosphate.

    PubMed

    Lohrmann, R

    1975-12-29

    When solutions of nucleoside 5'-phosphates and trimetaphosphate are dried out at room temperature, nucleoside 5'-polyphosphates are formed. The Mg++ ion shows a superior catalytic function in this reaction when compared with other divalent metal ions. Starting with nucleoside 5'-phosphates, Mg++ and trimetaphosphate, the predominant products in the nucleoside 5'-polyphosphate series pnN are p4N, P7N and p10N. Nucleoside 5'-diphosphates yield p5N and p8N, nucleoside 5'-triphosphates give p6N and p9N. The prebiological relevance of these reactions is discussed. PMID:1541

  10. Nucleoside derivatives from the marine-derived fungus Aspergillus versicolor.

    PubMed

    Chen, Min; Fu, Xiu-Mei; Kong, Chui-Jian; Wang, Chang-Yun

    2014-01-01

    Four nucleoside derivatives (1-4) were isolated from the fungus Aspergillus versicolor derived from the gorgonian Dichotella gemmacea collected in the South China Sea. Their structures were elucidated by comprehensive spectroscopic method of NMR and MS analysis. All isolated metabolites were evaluated for their cytotoxicity, antibacterial activity and lethality towards brine shrimp Artemia salina. Compounds 1/2 exhibited selective antibacterial activity against Staphylococcus epidermidis with an MIC value of 12.5 μM. It should be noted that 1 and 2, whose structures were listed in SciFinder Scholar, had no associated reference. This is the first report about their isolation, structure elucidation and biological activities.

  11. [PROPERTIES OF CHICKEN LIVER MEMBRANE-ASSOCIATED THIAMINE TRIPHOSPHATASE].

    PubMed

    Kolas, I K; Makarchikov, A F

    2015-01-01

    The enzymes involved in thiamine triphosphate (ThTP) metabolism in birds are not characterized so far. The aim of the present work was to study some properties of ThTPase in chicken liver. In liver homogenate, ThTPase activity has been found to display a bell-like pH-profile with a maximum of 5.5-6.0. Low activity was observed without divalent metal ions, while the addition of Mg2+ or Ca2+, each at 5 mM concentration, enhanced the rate of ThTP hydrolysis by a factor of 17-20. In the presence of 5 mM Mg2+ an apparent K(m) of the enzyme for ThTP was estimated by the method of non-linear regression as well as from the Hanes plot to be 1.7-2.2 mM. Monovalent anions such as I-, SCN-, NO3-, Br-, Cl- (at 150 mM concentration) showed inhibitory effect decreasing the rate of ThTPase reaction by 20-60%. After the homogenate was centrifuged, more than 85% of ThTPase activity was revealed in the fraction of insoluble particles indicating a membrane localization of the enzyme. The precipitate treatment with 1% sodium deoxycholate caused about 53% solubilization of the activity. During Toyopeal HW-55 chromatography, ThTPase activity was eluted simultaneously with ATPase and ITPase peaks in the void volume of the column. Thus, a non-specific high molecular mass protein complex seems to be involved in ThTP hydrolysis in the chicken liver. The chicken liver phosphatase is clearly distinguishable from all membrane-bound ThTPases reported previously. PMID:26502698

  12. [PROPERTIES OF CHICKEN LIVER MEMBRANE-ASSOCIATED THIAMINE TRIPHOSPHATASE].

    PubMed

    Kolas, I K; Makarchikov, A F

    2015-01-01

    The enzymes involved in thiamine triphosphate (ThTP) metabolism in birds are not characterized so far. The aim of the present work was to study some properties of ThTPase in chicken liver. In liver homogenate, ThTPase activity has been found to display a bell-like pH-profile with a maximum of 5.5-6.0. Low activity was observed without divalent metal ions, while the addition of Mg2+ or Ca2+, each at 5 mM concentration, enhanced the rate of ThTP hydrolysis by a factor of 17-20. In the presence of 5 mM Mg2+ an apparent K(m) of the enzyme for ThTP was estimated by the method of non-linear regression as well as from the Hanes plot to be 1.7-2.2 mM. Monovalent anions such as I-, SCN-, NO3-, Br-, Cl- (at 150 mM concentration) showed inhibitory effect decreasing the rate of ThTPase reaction by 20-60%. After the homogenate was centrifuged, more than 85% of ThTPase activity was revealed in the fraction of insoluble particles indicating a membrane localization of the enzyme. The precipitate treatment with 1% sodium deoxycholate caused about 53% solubilization of the activity. During Toyopeal HW-55 chromatography, ThTPase activity was eluted simultaneously with ATPase and ITPase peaks in the void volume of the column. Thus, a non-specific high molecular mass protein complex seems to be involved in ThTP hydrolysis in the chicken liver. The chicken liver phosphatase is clearly distinguishable from all membrane-bound ThTPases reported previously.

  13. Cladribine Analogues via O6-(Benzotriazolyl) Derivatives of Guanine Nucleosides

    PubMed Central

    Satishkumar, Sakilam; Vuram, Prasanna K.; Relangi, Siva Subrahmanyam; Gurram, Venkateshwarlu; Zhou, Hong; Kreitman, Robert J.; Montemayor, Michelle M. Martínez; Yang, Lijia; Kaliyaperumal, Muralidharan; Sharma, Somesh; Pottabathini, Narender; Lakshman, Mahesh K.

    2016-01-01

    Cladribine, 2-chloro-2′-deoxyadenosine, is a highly efficacious clinically used nucleoside for the treatment of hairy cell leukemia. It is also being evaluated against other lymphoid malignancies and has been a molecule of interest for well over half a century. In continuation of our interest on the amide bond-activation in purine nucleosides via the use of (benzotriazol-1yl-oxy)tris(dimethylamino)phosphonium hexafluorophosphate, we have evaluated the use of O6-(benzotriazol-1-yl)-2′-deoxyguanosine as a potential precursor to cladribine and its analogues. These compounds, after appropriate deprotection, were assessed for their biological activities and the data are presented herein. Against hairy cell leukemia (HCL), T-cell lymphoma (TCL), and chronic lymphocytic leukemia (CLL) cladribine was the most active against all. The bromo analogue of cladribine showed comparable activity to the ribose analogue of cladribine against HCL, but was more active against TCL and CLL. The bromo ribo analogue of cladribine possessed activity, but was least active among the C6-NH2-containing compounds. Substitution with alkyl groups at the exocyclic amino group appears detrimental to activity, and only the C6 piperidinyl cladribine analogue demonstrated any activity. Against adenocarcinoma MDA-MB-231 cells, only cladribine and its ribose analogue were most active. PMID:26556315

  14. Adenosine Triphosphatase from Soybean Callus and Root Cells

    PubMed Central

    Hendrix, Donald L.; Kennedy, Ralph M.

    1977-01-01

    The ATPase activity of a membrane fraction from soybean (Glycine max L.) root and callus cells, presumed to be enriched in plasma membrane, has been characterized with respect to ion stimulation, pH requirement, and nucleotide specificity. The enzyme from both sources was activated by divalent cations (Mg2+ > Mn2+ > Zn2+ > Ca2+ > Sr2+) and further stimulated by monovalent salts. Preparations from root cells were stimulated by monovalent ions according to the sequence: K+ > Rb+ > Choline+ > Na+ > Li+ > NH4+ > Cs+ > tris+. Membrane preparations from callus cells showed similar stimulatory patterns except for a slight preference for Na+ over K+. No synergism between K+ and Na+ was found with preparations from either cell source. The pH optimum for ATP hydrolysis in the presence of 50 mm KCl and 3 mm MgSO4 was 6.5 for both preparations and slightly higher in the presence of 3 mm MgSO4 alone. The order of nucleotide preference was found to be: ATP ≫ ADP > GTP > CTP > UTP. Maximal glucan synthetase activity at high (1 mm), but not at low (1 μm), substrate was found to be coincident with the position of this fraction on the sucrose gradient. PMID:16659830

  15. Nucleoside deaminase: an enzymatic marker for stress erythropoiesis in the mouse

    PubMed Central

    Rothman, Ivan K.; Zanjani, Esmail D.; Gordon, Albert S.; Silber, Robert

    1970-01-01

    The level of nucleoside deaminase was determined in extracts of mouse tissues obtained during a period of accelerated erythropoiesis induced by hypoxia, hemorrhage, or the injection of phenylhydrazine. Under these conditions a striking (10- to 100-fold) elevation of the enzyme activity occurred in the spleen. Similar results were obtained with the injection of purified erythropoietin. In control animals, only a trace of nucleoside deaminase activity was detected in the blood. During the reticulocyte response which followed erythropoietic stimulation, there was a sharp increase in the blood level of nucleoside deaminase, which rose up to 120 times that of control animals. By differential centrifugation, the enzyme was localized to the reticulocyte-rich fraction. Erythrocyte nucleoside deaminase remained elevated even after the reticulocyte count had fallen to normal in the phenylhydrazine-treated mice or to zero after the cessation of hypoxia. There was a very gradual decline in the enzyme activity in the blood which fell to the barely detectable control levels about 45 days after the initial reticulocyte response, a time period which corresponds to the survival of the mouse red blood cell. The persistence of high levels of nucleoside deaminase for the full life span of a generation of erythrocytes formed during stress, viewed in contrast to the virtual absence of the enzyme from normal erythrocytes of all ages, represents an enzymatic difference between the normal red blood cell and the cell produced under conditions of accelerated erythropoiesis. PMID:5475986

  16. Synthesis of Nucleoside Triphosphates from 2'-3'-Protected Nucleosides Using Trimetaphosphate.

    PubMed

    Mohamady, Samy; Taylor, Scott D

    2016-02-01

    Chemists have been attempting to triphosphorylate nucleosides and other alcohols using trimetaphosphate (TriMP) since the 1960s. However, this route appears to have been abandoned due to poor yields. The first practical syntheses of nucleoside triphosphates (NTPs) are reported using TriMP as the key reagent. This was achieved by reacting the tetrabutylammonium salt of TriMP with mesitylenesulfonyl chloride in the presence of DABCO in pyridine followed by the addition of an appropriately protected nucleoside and phthalimide. Quenching the reaction with aqueous buffer followed by hydrolysis of the OH protecting groups gave the NTPs in good yield. PMID:26759914

  17. Amino and carboxy functionalized modified nucleosides: a potential class of inhibitors for angiogenin.

    PubMed

    Debnath, Joy; Dasgupta, Swagata; Pathak, Tanmaya

    2014-02-01

    The 3'-amino and carboxy functionalize thymidines execute their ribonucleolytic inhibition activity for angiogenin. These modified nucleosidic molecules inhibit the ribonucleolytic activity of angiogenin in a competitive manner like the other conventional nucleotidic inhibitors, which have been confirmed from kinetic experiments. The improved inhibition constant (Ki) values 427 ± 7, 775 ± 6 μM clearly indicate modified nucleosides are an obvious option for the designing of inhibitors of angiogenesis process. The chorioallantoic membrane (CAM) assay qualitatively suggests that amino functionalized nucleosides have an effective potency to inhibited angiogenin-induced angiogenesis. Docking studies further demonstrate the interaction of their polar amino group with the P1 site residues of angiogenin, i.e., His-13 and His-114 residues.

  18. The catalytic domains of thiamine triphosphatase and CyaB-like adenylyl cyclase define a novel superfamily of domains that bind organic phosphates

    PubMed Central

    Iyer, Lakshminarayan M; Aravind, L

    2002-01-01

    Background The CyaB protein from Aeromonas hydrophila has been shown to possess adenylyl cyclase activity. While orthologs of this enzyme have been found in some bacteria and archaea, it shows no detectable relationship to the classical nucleotide cyclases. Furthermore, the actual biological functions of these proteins are not clearly understood because they are also present in organisms in which there is no evidence for cyclic nucleotide signaling. Results We show that the CyaB like adenylyl cyclase and the mammalian thiamine triphosphatases define a novel superfamily of catalytic domains called the CYTH domain that is present in all three superkingdoms of life. Using multiple alignments and secondary structure predictions, we define the catalytic core of these enzymes to contain a novel α+β scaffold with 6 conserved acidic residues and 4 basic residues. Using contextual information obtained from the analysis of gene neighborhoods and domain fusions, we predict that members of this superfamily may play a central role in the interface between nucleotide and polyphosphate metabolism. Additionally, based on contextual information, we identify a novel domain (called CHAD) that is predicted to functionally interact with the CYTH domain-containing enzymes in bacteria and archaea. The CHAD is predicted to be an alpha helical domain, and contains conserved histidines that may be critical for its function. Conclusions The phyletic distribution of the CYTH domain suggests that it is an ancient enzymatic domain that was present in the Last Universal Common Ancestor and was involved in nucleotide or organic phosphate metabolism. Based on the conservation of catalytic residues, we predict that CYTH domains are likely to chelate two divalent cations, and exhibit a reaction mechanism that is dependent on two metal ions, analogous to nucleotide cyclases, polymerases and certain phosphoesterases. Our analysis also suggests that the experimentally characterized members of this

  19. Dual-face nucleoside scaffold featuring a stereogenic all-carbon quaternary center. Intramolecular silicon tethered group-transfer reaction.

    PubMed

    Tambutet, Guillaume; Becerril-Jiménez, Fabiola; Dostie, Starr; Simard, Ryan; Prévost, Michel; Mochirian, Philippe; Guindon, Yvan

    2014-11-01

    The design of a novel nucleoside scaffold that exhibits an all-carbon quaternary center is reported. This allows for both α- and β-anomers of a given 2'-deoxy-2',2'-difluoro nucleoside analog (NA) to have potential biological activity. Using an intramolecular atom-transfer reaction, an all-carbon quaternary center was obtained without the use of heavy metals and/or harsh conditions. The chemistry developed is efficient, easily scalable and leads to novel libraries of molecules.

  20. Synthesis and biological evaluation of furopyrimidine N,O-nucleosides.

    PubMed

    Romeo, Roberto; Giofrè, Salvatore V; Garozzo, Adriana; Bisignano, Benedetta; Corsaro, Antonino; Chiacchio, Maria A

    2013-09-15

    A series of modified N,O-nucleosides, characterized by the presence of a furopyrimidine moiety, has been synthesized by exploiting a Sonogashira cross coupling reaction of 1-isoxazolidinyl-5-iodouracil with alkynes, followed by treatment with CuI in refluxing TEA/MeOH mixture. The obtained compounds were screened against both RNA and DNA viruses. None of the compounds were endowed with antiviral activity at subtoxic concentrations. However, some of them were able to inhibit proliferation of MRC-5, Vero, BS-C-1 cells by 50% (CC50) at concentrations ranging from 0.7 to 62.5 mM.

  1. Nucleoside Inhibitors of Tick-Borne Encephalitis Virus

    PubMed Central

    Eyer, Luděk; Valdés, James J.; Gil, Victor A.; Nencka, Radim; Hřebabecký, Hubert; Šála, Michal; Salát, Jiří; Černý, Jiří; Palus, Martin; De Clercq, Erik

    2015-01-01

    Tick-borne encephalitis virus (TBEV) is a leading cause of human neuroinfections in Europe and Northeast Asia. There are no antiviral therapies for treating TBEV infection. A series of nucleoside analogues was tested for the ability to inhibit the replication of TBEV in porcine kidney cells and human neuroblastoma cells. The interactions of three nucleoside analogues with viral polymerase were simulated using advanced computational methods. The nucleoside analogues 7-deaza-2′-C-methyladenosine (7-deaza-2′-CMA), 2′-C-methyladenosine (2′-CMA), and 2′-C-methylcytidine (2′-CMC) inhibited TBEV replication. These compounds showed dose-dependent inhibition of TBEV-induced cytopathic effects, TBEV replication (50% effective concentrations [EC50]of 5.1 ± 0.4 μM for 7-deaza-2′-CMA, 7.1 ± 1.2 μM for 2′-CMA, and 14.2 ± 1.9 μM for 2′-CMC) and viral antigen production. Notably, 2′-CMC was relatively cytotoxic to porcine kidney cells (50% cytotoxic concentration [CC50] of ∼50 μM). The anti-TBEV effect of 2′-CMA in cell culture diminished gradually after day 3 posttreatment. 7-Deaza-2′-CMA showed no detectable cellular toxicity (CC50 > 50 μM), and the antiviral effect in culture was stable for >6 days posttreatment. Computational molecular analyses revealed that compared to the other two compounds, 7-deaza-2′-CMA formed a large cluster near the active site of the TBEV polymerase. High antiviral activity and low cytotoxicity suggest that 7-deaza-2′-CMA is a promising candidate for further investigation as a potential therapeutic agent in treating TBEV infection. PMID:26124166

  2. Nucleoside inhibitors of human immunodeficiency virus type 1 reverse transcriptase.

    PubMed

    Sharma, Prem L; Nurpeisov, Viktoria; Hernandez-Santiago, Brenda; Beltran, Thierry; Schinazi, Raymond F

    2004-01-01

    The development of novel compounds that can effectively inhibit both wild type and the most consensus resistant strains of human immunodeficiency virus type 1 (HIV-1) is the primary focus in HIV disease management. Combination therapy, comprising at least three classes of drugs, has become the standard of care for acquired immunodeficiency syndrome (AIDS) or HIV-infected individuals. The drug cocktail can comprise all three classes of HIV inhibitors, including nucleoside reverse transcriptase inhibitors (NRTI), non-nucleoside reverse transcriptase inhibitors (NNRTI) and protease inhibitors (PI). Due to their competitive mode of inhibition and requirement for metabolic activation, almost all NRTI drugs lack the virological potency of NNRTI or PI drugs. However, data from clinical trials indicate that sustained viral suppression could not be achieved with NRTI, NNRTI or PIs alone. Therefore, the NRTIs will remain essential components of highly active antiretroviral therapy (HAART) for the foreseeable future, because they enhance the virological potency of the regimen, they do not bind excessively to protein and most regimens are small pills/tablets given once a day. It has become apparent in recent years that the prolonged use of certain NRTIs exhibits adverse events as a class, limiting the length of time for which they can be safely used. Of major clinical concern is their association with the potentially fatal lactic acidaemia and hepatic steatosis. These class events, as well as individual drug effects, such as peripheral neuropathy, are linked to delayed mitochondrial destruction. In addition to toxicity, the development of resistance-conferring mutations against exposure to nucleoside analogs currently in use influences long-term therapeutic benefits. Of critical importance for the evaluation of new NRTIs are recent studies showing that the efficiency of discrimination or excision by pyrophosphorolysis in the presence of nucleotides of a given NRTI is a key

  3. Nucleoside inhibitors of tick-borne encephalitis virus.

    PubMed

    Eyer, Luděk; Valdés, James J; Gil, Victor A; Nencka, Radim; Hřebabecký, Hubert; Šála, Michal; Salát, Jiří; Černý, Jiří; Palus, Martin; De Clercq, Erik; Růžek, Daniel

    2015-09-01

    Tick-borne encephalitis virus (TBEV) is a leading cause of human neuroinfections in Europe and Northeast Asia. There are no antiviral therapies for treating TBEV infection. A series of nucleoside analogues was tested for the ability to inhibit the replication of TBEV in porcine kidney cells and human neuroblastoma cells. The interactions of three nucleoside analogues with viral polymerase were simulated using advanced computational methods. The nucleoside analogues 7-deaza-2'-C-methyladenosine (7-deaza-2'-CMA), 2'-C-methyladenosine (2'-CMA), and 2'-C-methylcytidine (2'-CMC) inhibited TBEV replication. These compounds showed dose-dependent inhibition of TBEV-induced cytopathic effects, TBEV replication (50% effective concentrations [EC50]of 5.1 ± 0.4 μM for 7-deaza-2'-CMA, 7.1 ± 1.2 μM for 2'-CMA, and 14.2 ± 1.9 μM for 2'-CMC) and viral antigen production. Notably, 2'-CMC was relatively cytotoxic to porcine kidney cells (50% cytotoxic concentration [CC50] of ∼50 μM). The anti-TBEV effect of 2'-CMA in cell culture diminished gradually after day 3 posttreatment. 7-Deaza-2'-CMA showed no detectable cellular toxicity (CC50 > 50 μM), and the antiviral effect in culture was stable for >6 days posttreatment. Computational molecular analyses revealed that compared to the other two compounds, 7-deaza-2'-CMA formed a large cluster near the active site of the TBEV polymerase. High antiviral activity and low cytotoxicity suggest that 7-deaza-2'-CMA is a promising candidate for further investigation as a potential therapeutic agent in treating TBEV infection. PMID:26124166

  4. Site specific replacements of a single loop nucleoside with a dibenzyl linker may switch the activity of TBA from anticoagulant to antiproliferative.

    PubMed

    Scuotto, Maria; Rivieccio, Elisa; Varone, Alessia; Corda, Daniela; Bucci, Mariarosaria; Vellecco, Valentina; Cirino, Giuseppe; Virgilio, Antonella; Esposito, Veronica; Galeone, Aldo; Borbone, Nicola; Varra, Michela; Mayol, Luciano

    2015-09-18

    Many antiproliferative G-quadruplexes (G4s) arise from the folding of GT-rich strands. Among these, the Thrombin Binding Aptamer (TBA), as a rare example, adopts a monomolecular well-defined G4 structure. Nevertheless, the potential anticancer properties of TBA are severely hampered by its anticoagulant action and, consequently, no related studies have appeared so far in the literature. We wish to report here that suitable chemical modifications in the TBA sequence can preserve its antiproliferative over anticoagulant activity. Particularly, we replaced one residue of the TT or TGT loops with a dibenzyl linker to develop seven new quadruplex-forming TBA based sequences (TBA-bs), which were studied for their structural (CD, CD melting, 1D NMR) and biological (fibrinogen, PT and MTT assays) properties. The three-dimensional structures of the TBA-bs modified at T13 (TBA-bs13) or T12 (TBA-bs12), the former endowed with selective antiproliferative activity, and the latter acting as potently as TBA in both coagulation and MTT assays, were further studied by 2D NMR restrained molecular mechanics. The comparative structural analyses indicated that neither the stability, nor the topology of the G4s, but the different localization of the two benzene rings of the linker was responsible for the loss of the antithrombin activity for TBA-bs13. PMID:26250112

  5. Nucleoside phosphorylation by the mineral schreibersite

    PubMed Central

    Gull, Maheen; Mojica, Mike A.; Fernández, Facundo M.; Gaul, David A.; Orlando, Thomas M.; Liotta, Charles L.; Pasek, Matthew A.

    2015-01-01

    Phosphorylation of the nucleosides adenosine and uridine by the simple mixing and mild heating of aqueous solutions of the organic compounds with synthetic analogs of the meteoritic mineral schreibersite, (Fe,Ni)3P under slightly basic conditions (pH ~9) is reported. These results suggest a potential role for meteoritic phosphorus in the origin and development of early life. PMID:26606901

  6. Nucleoside phosphorylation by the mineral schreibersite.

    PubMed

    Gull, Maheen; Mojica, Mike A; Fernández, Facundo M; Gaul, David A; Orlando, Thomas M; Liotta, Charles L; Pasek, Matthew A

    2015-01-01

    Phosphorylation of the nucleosides adenosine and uridine by the simple mixing and mild heating of aqueous solutions of the organic compounds with synthetic analogs of the meteoritic mineral schreibersite, (Fe,Ni)3P under slightly basic conditions (pH ~9) is reported. These results suggest a potential role for meteoritic phosphorus in the origin and development of early life. PMID:26606901

  7. Adenylate kinase complements nucleoside diphosphate kinase deficiency in nucleotide metabolism.

    PubMed Central

    Lu, Q; Inouye, M

    1996-01-01

    Nucleoside diphosphate (NDP) kinase is a ubiquitous nonspecific enzyme that evidently is designed to catalyze in vivo ATP-dependent synthesis of ribo- and deoxyribonucleoside triphosphates from the corresponding diphosphates. Because Escherichia coli contains only one copy of ndk, the structural gene for this enzyme, we were surprised to find that ndk disruption yields bacteria that are still viable. These mutant cells contain a protein with a small amount NDP kinase activity. The protein responsible for this activity was purified and identified as adenylate kinase. This enzyme, also called myokinase, catalyzes the reversible ATP-dependent synthesis of ADP from AMP. We found that this enzyme from E. coli as well as from higher eukaryotes has a broad substrate specificity displaying dual enzymatic functions. Among the nucleoside monophosphate kinases tested, only adenylate kinase was found to have NDP kinase activity. To our knowledge, this is the first report of NDP kinase activity associated with adenylate kinase. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8650159

  8. Acyclonucleosides, modified seco-nucleosides, and salicyl- or catechol-derived acyclic 5-fluorouracil O,N-acetals: antiproliferative activities, cellular differentiation and apoptosis.

    PubMed

    Marchal, Juan A; Núñez, María C; Aránega, Antonia; Gallo, Miguel A; Espinosa, Antonio; Campos, Joaquín M

    2009-01-01

    The goal of cancer chemotherapy with classical drugs - the destruction of the tumor cells - is often complicated by significant toxicity. As an alternative, induced differentiation modulates the cell programme by transforming malignant cells into mature cells with no proliferative potential. Our data demonstrate that (+/-)-1-{[3-(2-hydroxyethoxy)-1-isopropoxy]propyl}-5-fluorouracil inhibits proliferation, induces myogenic differentiation, increases the expression of proteins specifically present in normally differentiated skeletal muscle cells, and modifies the adhesion capacity of these cells against the rhabdomyosarcoma cell line RD. From a designing point of view, a benzene ring was fused to the side chain in order to increase the lipophilicity and anticancer activity of our molecules. Herein we report the preparation and biological activity of three compounds having the general formula (+/-)-1-[2-(5-substituted-2-hydroxybenzyloxy)-1-methoxyethyl]-5-fluorouracils. A catechol-derived compound such as (+/-)-1-[3-(2-hydroxyphenoxy)-1-methoxypropyl]-5-fluorouracil and two salicyl-derived compounds such as (+/-)-(Z)-1-[4-(2-hydroxyphenyl)-1-methoxy-but-3-enyl]-5-fluorouracil [(Z)-43] and its dihydrogenated derivative (+/-)-1-[4-(2-hydroxyphenyl)-1-methoxybutyl]-5-fluorouracil were prepared to complete the set of six O,N-acetals. The most active compound against the MCF-7 breast cancer cell line was (+/-)-(Z)-43 with an IC(50) = 9.40 +/- 0.64 microM. Differentiated breast cancer cells generate fat deposits within the cytoplasm. The MCF-7 cells trea-ed with (+/-)-(Z)-43 caused an increase in the lipid content over control cells after 3 days of treatment. Our results suggest that there may be significant potential advantages in the use of this new differentiating agent for the treatment of breast cancer.

  9. Nucleoside conjugates. 14. Synthesis and antitumor activity of 1-beta-D-arabinofuranosylcytosine conjugates of ether lipids with improved water solubility.

    PubMed

    Hong, C I; Nechaev, A; Kirisits, A J; Vig, R; Hui, S W; West, C R

    1995-05-12

    A series of ara-CDP-rac-1-O-alkyl-2-O-acylglycerols (9a-f), analogues of highly active ara-CDP-rac-1-O-hexadecyl-2-O-palmitoylglycerol (1) and Cytoros2 (2), was prepared, and solubility, lipophilicity, and structure-activity relationships of these conjugates were investigated. Conjugates 9a-f containing sn-1 alkyl (< C16) and sn-2 fatty acyl (< C14) and sn-1 alkyl (< C14) and sn-2 fatty acyl (< C16) substituents of the glycerol were water-soluble by shaking, while those with the sn-1 alkyl (> C16) and the sn-2 fatty acyl (> C16) such as conjugate 1 were sparingly soluble. Conjugates 9a-c,e were almost completely solubilized in water by shaking. However, a large portion of conjugates 9d and 9f in water by shaking exist in micelles with mean diameters ranging 7.0-55.2 nm. The partition coefficients (1-octanol/PBS) of the water-soluble conjugates were about 9-18 times greater than that of ara-C. A single dose (300 mg/kg) of conjugates 9d and 9f produced a significant increase in life span (ILS 206 to > 543%) with 17-67% long-term survivors (> 45 days) in mice bearing ip-implanted L1210 lymphoid leukemia. These results were comparable to those of the previous conjugate 1 and Cytoros (2). In contrast, conjugates 9a-c,e at single doses were less effective (ILS 69-178% with no long-term survivors). However, two (qd, 1, 7) or three (qd 1, 5, 9) divided doses of these conjugates were found to be as effective as a single dose of the previous conjugates. The three divided doses (150 mg/kg per day) of conjugates 9d, 9e, and 9f produced a remarkable antitumor activity in L1210 leukemic mice (ILS > 350% with > 50% long-term survivors). Because of the convenient formulation and the significant antitumor activities, the water-soluble conjugates 9d, 9e, and 9f warrant further investigation.

  10. Nucleoside conjugates. 13. Synthesis and antitumor activity of 1-beta-D-arabinofuranosylcytosine conjugates of thioether lipids with improved water solubility.

    PubMed

    Hong, C I; Nechaev, A; Kirisits, A J; Vig, R; West, C R

    1993-06-11

    A series of ara-CDP-rac-1-S-alkyl-2-O-acyl-1-thioglycerols (3-12), analogues of highly active Cytoros2 (1), was prepared, and solubility, lipophilicity, and structure-activity relationships of these conjugates were investigated. The conjugates with sn-1 alkyl (< C18) and sn-2 fatty acyl (< C14) substituents of the thioglycerol were water-soluble, while those with the sn-1 alkyl (> C14) and the sn-2 fatty acyl (> C16) were sparingly soluble. The latter formed micelles upon sonication. Conjugate 7 containing the sn-1 tetradecyl and the sn-2 palmitoyl (C16) groups formed micelles by both sonication and shaking. The partition coefficients (1-octanol/PBS) of the water-soluble conjugates were about 20 times greater than that of ara-C. The water-insoluble showed a more than 40 times increase. A single dose of the micelle-forming conjugates 7 and 10 produced a significant increase in life span (ILS > 421%) with 50% long-term survivors (> 45 days) in mice bearing ip-implanted L1210 lymphoid leukemia. These results were comparable to those of previous micelle-forming conjugate 1 (Cytoros). In contrast, the water-soluble conjugates at single doses were less effective (ILS 81-386% with 0-33% long-term survivors). However, three divided doses of the water-soluble conjugates were found to be as effective as a single dose of micellar solution of the water-insoluble. The results indicate that conjugate 7 and most of the water-soluble derivatives warrant further investigation.

  11. Binding of nucleotides to nucleoside diphosphate kinase: a calorimetric study.

    PubMed

    Cervoni, L; Lascu, I; Xu, Y; Gonin, P; Morr, M; Merouani, M; Janin, J; Giartosio, A

    2001-04-17

    The source of affinity for substrates of human nucleoside diphosphate (NDP) kinases is particularly important in that its knowledge could be used to design more effective antiviral nucleoside drugs (e.g., AZT). We carried out a microcalorimetric study of the binding of enzymes from two organisms to various nucleotides. Isothermal titration calorimetry has been used to characterize the binding in terms of Delta G degrees, Delta H degrees and Delta S degrees. Thermodynamic parameters of the interaction of ADP with the hexameric NDP kinase from Dictyostelium discoideum and with the tetrameric enzyme from Myxococcus xanthus, at 20 degrees C, were similar and, in both cases, binding was enthalpy-driven. The interactions of ADP, 2'deoxyADP, GDP, and IDP with the eukaryotic enzyme differed in enthalpic and entropic terms, whereas the Delta G degrees values obtained were similar due to enthalpy--entropy compensation. The binding of the enzyme to nonphysiological nucleotides, such as AMP--PNP, 3'deoxyADP, and 3'-deoxy-3'-amino-ADP, appears to differ in several respects. Crystallography of the protein bound to 3'-deoxy-3'-amino-ADP showed that the drug was in a distorted position, and was unable to interact correctly with active site side chains. The interaction of pyrimidine nucleoside diphosphates with the hexameric enzyme is characterized by a lower affinity than that with purine nucleotides. Titration showed the stoichiometry of the interaction to be abnormal, with 9--12 binding sites/hexamer. The presence of supplementary binding sites might have physiological implications. PMID:11294625

  12. Nucleolipids of Canonical Purine ß‐d‐Ribo‐Nucleosides: Synthesis and Cytostatic/Cytotoxic Activities Toward Human and Rat Glioblastoma Cells

    PubMed Central

    Knies, Christine; Hammerbacher, Katharina; Kinscherf, Ralf

    2015-01-01

    Abstract We report on the synthesis of two series of canonical purine ß‐d‐ribonucleoside nucleolipids derived from inosine and adenosine, which have been characterized by elemental analyses, electrospray ionization mass spectrometry (ESI MS) as well as by 1H and 13C NMR, and pH‐dependent UV/Vis spectroscopy. A selection of the novel nucleolipids with different lipophilic moieties were first tested on their cytotoxic effect toward human macrophages. Compounds without a significant inhibitory effect on the viability of the macrophages were tested on their cytostatic/cytotoxic effect toward human astrocytoma/oligodendroglioma GOS‐3 cells as well as against the rat malignant neuroectodermal BT4Ca cell line. In order to additionally investigate the potential molecular mechanisms involved in the cytotoxic effects of the derivatives on GOS‐3 or BT4Ca cells, we evaluated the induction of apoptosis and observed the particular activity of the nucleolipid ethyl 3‐{4‐hydroxymethyl‐2‐methyl‐6‐[6‐oxo‐1‐(3,7,11‐trimethyl‐dodeca‐2,6,10‐trienyl)‐1,6‐dihydro‐purin‐9‐yl]‐tetrahydro‐furo[3,4‐d][1,3]dioxol‐2‐yl}propionate (8 c) toward both human and rat glioblastoma cell lines in vitro. PMID:27308225

  13. Synthesis and antimicrobial activity of acyclo C-nucleosides: 3-(alditol-1-yl)-7-oxo-5-phenyl-1,2,4-triazolo[4,3-a]pyrimidines.

    PubMed

    Shaban, M A; Nasr, A Z; Morgaan, A E

    2000-02-01

    Condensation of 2-hydrazino-4-oxo-6-phenylpyrimidine (1) with aldopentoses 2a-d or aldohexoses 2e-g gave the corresponding aldehydo-sugar (4-oxo-6-phenylpyrimidin-2-yl)hydrazones 3a-g which were acetylated to the corresponding poly-O-acetyl-aldehydo-sugar (3-acetyl-4-oxo-6-phenylpyrimidin-2-yl)hydrazones 4a-g. The latter compounds underwent oxidative cyclization with bromine in acetic acid and in the presence of sodium acetate to the corresponding 8-acetyl-3- (poly-O-acetyl-alditol-1-yl)-7-oxo-5-phenyl-1,2,4-triazolo[4,3-a]pyrimid ines 6a-g. Compounds 6a-g were also obtained by consecutive one-pot oxidative cyclization/acetylation in which the parent hydrazones 3a-g were treated with bromine/acetic acid/sodium acetate followed by acetic anhydride. Deacetylation of 6a-g with ammonium hydroxide in methanol gave the title compounds 7a-g. The antibacterial and antifungal activities of compounds 3c, 3f, 7c and 7f are reported. PMID:10723764

  14. Nucleolipids of Canonical Purine ß-d-Ribo-Nucleosides: Synthesis and Cytostatic/Cytotoxic Activities Toward Human and Rat Glioblastoma Cells.

    PubMed

    Knies, Christine; Hammerbacher, Katharina; Bonaterra, Gabriel A; Kinscherf, Ralf; Rosemeyer, Helmut

    2016-04-01

    We report on the synthesis of two series of canonical purine ß-d-ribonucleoside nucleolipids derived from inosine and adenosine, which have been characterized by elemental analyses, electrospray ionization mass spectrometry (ESI MS) as well as by (1)H and (13)C NMR, and pH-dependent UV/Vis spectroscopy. A selection of the novel nucleolipids with different lipophilic moieties were first tested on their cytotoxic effect toward human macrophages. Compounds without a significant inhibitory effect on the viability of the macrophages were tested on their cytostatic/cytotoxic effect toward human astrocytoma/oligodendroglioma GOS-3 cells as well as against the rat malignant neuroectodermal BT4Ca cell line. In order to additionally investigate the potential molecular mechanisms involved in the cytotoxic effects of the derivatives on GOS-3 or BT4Ca cells, we evaluated the induction of apoptosis and observed the particular activity of the nucleolipid ethyl 3-{4-hydroxymethyl-2-methyl-6-[6-oxo-1-(3,7,11-trimethyl-dodeca-2,6,10-trienyl)-1,6-dihydro-purin-9-yl]-tetrahydro-furo[3,4-d][1,3]dioxol-2-yl}propionate (8 c) toward both human and rat glioblastoma cell lines in vitro. PMID:27308225

  15. Detection and characterization of a nucleoside transport system in human fibroblast lysosomes.

    PubMed

    Pisoni, R L; Thoene, J G

    1989-03-25

    Lysosomes contain enzymatic activities capable of degrading nucleic acids to their constituent nucleosides, but the manner by which these degradation products are released from the lysosome is unknown. To investigate this process, human fibroblast lysosomes, purified on Percoll density gradients, were incubated with [3H]adenosine at pH 7.0, and the amount of adenosine taken up by the lysosomes was measured. Adenosine uptake by fibroblast lysosomes attained a steady state by 12 min at 37 degrees C and was unaffected by the presence of 2 mM MgATP or changes in pH from 5.0 to 8.0. An Arrhenius plot was linear with an activation energy of 12.9 kcal/mol and a Q10 of 2.0. Lysosomal adenosine uptake is saturable, displaying a Km of 9 mM at pH 7.0 and 37 degrees C. Various nucleosides and the nucleobase, 6-dimethylaminopurine, strongly inhibit lysosomal adenosine uptake, whereas neither D-ribose or nucleotide monophosphates have any significant effect upon lysosomal adenosine uptake. On a molar basis, purines are recognized more strongly than pyrimidines. Changing the nature of the nucleoside sugar from ribose to arabinose or deoxyribose has little effect on reactivity with this transport system. The known plasma membrane nucleoside transport inhibitors, dipyridamole and nitrobenzylthioinosine, inhibit lysosomal nucleoside transport at relatively low concentrations (25 microM) relative to the Km of 9 mM for lysosomal adenosine uptake. The half-times of [3H]inosine and [3H]uridine efflux from fibroblast lysosomes ranged from 6 to 8 min at 37 degrees C. Trans effects were not observed to be associated with either inosine or uridine exodus. In contrast to adenosine uptake, adenine primarily enters fibroblast lysosomes by a route not saturable by high concentrations of various nucleosides. In conclusion, the saturability of lysosomal adenosine uptake and its specific, competitive inhibition by other nucleosides indicate the existence of a carrier-mediated transport system for

  16. Carbocyclic nucleoside analogues: classification, target enzymes, mechanisms of action and synthesis

    NASA Astrophysics Data System (ADS)

    Matyugina, E. S.; Khandazhinskaya, A. P.; Kochetkov, Sergei N.

    2012-08-01

    Key biological targets (S-adenosyl-L-homocysteine hydrolase, telomerase, human immunodeficiency virus reverse transcriptase, herpes virus DNA polymerase and hepatitis B virus DNA polymerase) and the mechanisms of action of carbocyclic nucleoside analogues are considered. Structural types of analogues are discussed. Methods of synthesis for the most promising compounds and the spectrum of their biological activities are described. The bibliography includes 126 references.

  17. Human concentrative nucleoside transporter 3 transfection with ultrasound and microbubbles in nucleoside transport deficient HEK293 cells greatly increases gemcitabine uptake.

    PubMed

    Paproski, Robert J; Yao, Sylvia Y M; Favis, Nicole; Evans, David; Young, James D; Cass, Carol E; Zemp, Roger J

    2013-01-01

    method to reverse gemcitabine resistance in pancreatic tumors that have little nucleoside transport activity which are resistant to almost all current anticancer therapies.

  18. 2'-modified nucleosides for site-specific labeling of oligonucleotides

    NASA Technical Reports Server (NTRS)

    Krider, Elizabeth S.; Miller, Jeremiah E.; Meade, Thomas J.

    2002-01-01

    We report the synthesis of 2'-modified nucleosides designed specifically for incorporating labels into oligonucleotides. Conversion of these nucleosides to phosphoramidite and solid support-bound derivatives proceeds in good yield. Large-scale synthesis of 11-mer oligonucleotides possessing the 2'-modified nucleosides is achieved using these derivatives. Thermal denaturation studies indicate that the presence of 2'-modified nucleosides in 11-mer duplexes has minimal destabilizing effects on the duplex structure when the nucleosides are placed at the duplex termini. The powerful combination of phosphoramidite and support-bound derivatives of 2'-modified nucleosides affords the large-scale preparation of an entirely new class of oligonucleotides. The ability to synthesize oligonucleotides containing label attachment sites at 3', intervening, and 5' locations of a duplex is a significant advance in the development of oligonucleotide conjugates.

  19. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA.

    PubMed

    Karikó, Katalin; Buckstein, Michael; Ni, Houping; Weissman, Drew

    2005-08-01

    DNA and RNA stimulate the mammalian innate immune system through activation of Toll-like receptors (TLRs). DNA containing methylated CpG motifs, however, is not stimulatory. Selected nucleosides in naturally occurring RNA are also methylated or otherwise modified, but the immunomodulatory effects of these alterations remain untested. We show that RNA signals through human TLR3, TLR7, and TLR8, but incorporation of modified nucleosides m5C, m6A, m5U, s2U, or pseudouridine ablates activity. Dendritic cells (DCs) exposed to such modified RNA express significantly less cytokines and activation markers than those treated with unmodified RNA. DCs and TLR-expressing cells are potently activated by bacterial and mitochondrial RNA, but not by mammalian total RNA, which is abundant in modified nucleosides. We conclude that nucleoside modifications suppress the potential of RNA to activate DCs. The innate immune system may therefore detect RNA lacking nucleoside modification as a means of selectively responding to bacteria or necrotic tissue. PMID:16111635

  20. X-ray structure and activities of an essential Mononegavirales L-protein domain

    PubMed Central

    Paesen, Guido C.; Collet, Axelle; Sallamand, Corinne; Debart, Françoise; Vasseur, Jean-Jacques; Canard, Bruno; Decroly, Etienne; Grimes, Jonathan M.

    2015-01-01

    The L protein of mononegaviruses harbours all catalytic activities for genome replication and transcription. It contains six conserved domains (CR-I to -VI; Fig. 1a). CR-III has been linked to polymerase and polyadenylation activity, CR-V to mRNA capping and CR-VI to cap methylation. However, how these activities are choreographed is poorly understood. Here we present the 2.2-Å X-ray structure and activities of CR-VI+, a portion of human Metapneumovirus L consisting of CR-VI and the poorly conserved region at its C terminus, the +domain. The CR-VI domain has a methyltransferase fold, which besides the typical S-adenosylmethionine-binding site (SAMP) also contains a novel pocket (NSP) that can accommodate a nucleoside. CR-VI lacks an obvious cap-binding site, and the SAMP-adjoining site holding the nucleotides undergoing methylation (SUBP) is unusually narrow because of the overhanging +domain. CR-VI+ sequentially methylates caps at their 2′O and N7 positions, and also displays nucleotide triphosphatase activity. PMID:26549102

  1. X-ray structure and activities of an essential Mononegavirales L-protein domain.

    PubMed

    Paesen, Guido C; Collet, Axelle; Sallamand, Corinne; Debart, Françoise; Vasseur, Jean-Jacques; Canard, Bruno; Decroly, Etienne; Grimes, Jonathan M

    2015-01-01

    The L protein of mononegaviruses harbours all catalytic activities for genome replication and transcription. It contains six conserved domains (CR-I to -VI; Fig. 1a). CR-III has been linked to polymerase and polyadenylation activity, CR-V to mRNA capping and CR-VI to cap methylation. However, how these activities are choreographed is poorly understood. Here we present the 2.2-Å X-ray structure and activities of CR-VI+, a portion of human Metapneumovirus L consisting of CR-VI and the poorly conserved region at its C terminus, the +domain. The CR-VI domain has a methyltransferase fold, which besides the typical S-adenosylmethionine-binding site ((SAM)P) also contains a novel pocket ((NS)P) that can accommodate a nucleoside. CR-VI lacks an obvious cap-binding site, and the (SAM)P-adjoining site holding the nucleotides undergoing methylation ((SUB)P) is unusually narrow because of the overhanging +domain. CR-VI+ sequentially methylates caps at their 2'O and N7 positions, and also displays nucleotide triphosphatase activity. PMID:26549102

  2. Membrane bound pyrophosphatase and P-type adenosine triphosphatase of Leishmania donovani as possible chemotherapeutic targets: similarities and differences in inhibitor sensitivities.

    PubMed

    Sen, S S; Bhuyan, N R; Lakshman, K; Roy, A K; Chakraborty, B; Bera, T

    2009-12-01

    The activities of inorganic pyrophosphatase (PPase) and adenosine triphosphatase (ATPase) were studied in the plasma membrane of Leishmania donovani promastigotes and amastigotes. It was shown that the specific activity of PPase was greater than that of ATPase in the promastigote plasma membrane. We characterized H+-PPase present in the plasma membrane of L. donovani and investigated its possible role in the survival of promastigote and amastigote. PPase activity was stimulated by K+ and sodium orthovanadate and inhibited by pyrophosphate analogs (imidodiphosphate and alendronate), KF, N,N'-dicyclohexylcarbodiimide (DCCD), thiol reagents (p-chloromercuribenzenesulfonate (PCMBS), N-ethylmaleimide (NEM), and phenylarsine oxide (PAO)), the ABC superfamily transport modulator verapamil, and also by the F(1)F(o)-ATPase inhibitor quercetin. ATPase activity was stimulated by K+ and verapamil, inhibited by DCCD, PCMBS, NEM, sodium azide, sodium orthovanadate, and quercetin, and was unaffected by PAO. We conclude that there are significant differences within promastigote, amastigote, and mammalian host in cytosolic pH homeostasis to merit the inclusion of PPase transporter as a putative target for rational drug design. PMID:19961421

  3. Crystallization and Crystal-Packing Studies of Chlorella Virus Deoxyuridine Triphosphatase

    SciTech Connect

    Homma, K.; Moriyama, H

    2009-01-01

    The 141-amino-acid deoxyuridine triphosphatase (dUTPase) from the algal Chlorella virus IL-3A and its Glu81Ser/Thr84Arg-mutant derivative Mu-22 were crystallized using the hanging-drop vapor-diffusion method at 298 K with polyethylene glycol as the precipitant. An apo IL-3A dUTPase with an amino-terminal T7 epitope tag and a carboxy-terminal histidine tag yielded cubic P2{sub 1}3 crystals with unit-cell parameter a = 106.65 {angstrom}. In the presence of dUDP, the enzyme produced thin stacked orthorhombic P222 crystals with unit-cell parameters a = 81.0, b = 96.2, c = 132.8 {angstrom}. T7-histidine-tagged Mu-22 dUTPase formed thin stacked rectangular crystals. Amino-terminal histidine-tagged dUTPases did not crystallize but formed aggregates. Glycyl-seryl-tagged dUTPases yielded cubic P2{sub 1}3 IL-3A crystals with unit-cell parameter a = 105.68 {angstrom} and hexagonal P6{sub 3} Mu-22 crystals with unit-cell parameters a = 132.07, c = 53.45 {angstrom}, {gamma} = 120{sup o}. Owing to the Thr84Arg mutation, Mu-22 dUTPase had different monomer-to-monomer interactions to those of IL-3A dUTPase.

  4. Purification and characterization of purine nucleoside phosphorylase from developing embryos of Hyalomma dromedarii.

    PubMed

    Kamel, M Y; Fahmy, A S; Ghazy, A H; Mohamed, M A

    1991-04-01

    Purine nucleoside phosphorylase from Hyalomma dromedarii, the camel tick, was purified to apparent homogeneity. A molecular weight of 56,000 - 58,000 was estimated for both the native and denatured enzyme, suggesting that the enzyme is monomeric. Unlike purine nucleoside phosphorylase preparations from other tissues, the H. dromedarii enzyme was unstable in the presence of beta-mercaptoethanol. The enzyme had a sharp pH optimum at pH 6.5. It catalyzed the phosphorolysis and arsenolysis of ribo- and deoxyribo-nucleosides of hypoxanthine and guanine, but not of adenine or pyrimidine nucleosides. The Km values of the enzyme at the optimal pH for inosine, deoxyinosine, guanosine, and deoxyguanosine were 0.31, 0.67, 0.55, and 0.33 mM, respectively. Inactivation and kinetic studies suggested that histidine and cysteine residues were essential for activity. The pKa values determined for catalytic ionizable groups were 6-7 and 8-9. The enzyme was completely inactivated by thiol reagents and reactivated by excess beta-mercaptoethanol. The enzyme was also susceptible to pH-dependent photooxidation in the presence of methylene blue, implicating histidine. Initial velocity studies showed an intersecting pattern of double-reciprocal plots of the data, consistent with a sequential mechanism. PMID:1905141

  5. Hybridization accompanying FRET event in labeled natural nucleoside-unnatural nucleoside containing chimeric DNA duplexes.

    PubMed

    Bag, Subhendu Sekhar; Das, Suman K; Pradhan, Manoj Kumar; Jana, Subhashis

    2016-09-01

    Förster resonance energy transfer (FRET) is a highly efficient strategy in illuminating the structures, structural changes and dynamics of DNA, proteins and other biomolecules and thus is being widely utilized in studying such phenomena, in designing molecular/biomolecular probes for monitoring the hybridization event of two single stranded DNA to form duplex, in gene detection and in many other sensory applications in chemistry, biology and material sciences. Moreover, FRET can give information about the positional status of chromophores within the associated biomolecules with much more accuracy than other methods can yield. Toward this end, we want to report here the ability of fluorescent unnatural nucleoside, triazolylphenanthrene ((TPhen)BDo) to show FRET interaction upon hybridization with fluorescently labeled natural nucleosides, (Per)U or (OxoPy)U or (Per)U, forming two stable chimeric DNA duplexes. The pairing selectivity and the thermal duplex stability of the chimeric duplexes are higher than any of the duplexes with natural nucleoside formed. The hybridization results in a Förster resonance energy transfer (FRET) from donor triazolylphenanthrene of (TPhen)BDo to acceptor oxopyrene of (OxoPy)U and/or to perylene chromophore of (Per)U, respectively, in two chimeric DNA duplexes. Therefore, we have established the FRET process in two chimeric DNA duplexes wherein a fluorescently labeled natural nucleoside ((OxoPy)U or (Per)U) paired against an unnatural nucleoside ((TPhen)BDo) without sacrificing the duplex stability and B-DNA conformation. The hybridization accompanying FRET event in these classes of interacting fluorophores is new. Moreover, there is no report of such designed system of chimeric DNA duplex. Our observed phenomenon and the design can potentially be exploited in designing more of such efficient FRET pairs for useful application in the detection and analysis of biomolecular interactions and in material science application. PMID:27498231

  6. Hybridization accompanying FRET event in labeled natural nucleoside-unnatural nucleoside containing chimeric DNA duplexes.

    PubMed

    Bag, Subhendu Sekhar; Das, Suman K; Pradhan, Manoj Kumar; Jana, Subhashis

    2016-09-01

    Förster resonance energy transfer (FRET) is a highly efficient strategy in illuminating the structures, structural changes and dynamics of DNA, proteins and other biomolecules and thus is being widely utilized in studying such phenomena, in designing molecular/biomolecular probes for monitoring the hybridization event of two single stranded DNA to form duplex, in gene detection and in many other sensory applications in chemistry, biology and material sciences. Moreover, FRET can give information about the positional status of chromophores within the associated biomolecules with much more accuracy than other methods can yield. Toward this end, we want to report here the ability of fluorescent unnatural nucleoside, triazolylphenanthrene ((TPhen)BDo) to show FRET interaction upon hybridization with fluorescently labeled natural nucleosides, (Per)U or (OxoPy)U or (Per)U, forming two stable chimeric DNA duplexes. The pairing selectivity and the thermal duplex stability of the chimeric duplexes are higher than any of the duplexes with natural nucleoside formed. The hybridization results in a Förster resonance energy transfer (FRET) from donor triazolylphenanthrene of (TPhen)BDo to acceptor oxopyrene of (OxoPy)U and/or to perylene chromophore of (Per)U, respectively, in two chimeric DNA duplexes. Therefore, we have established the FRET process in two chimeric DNA duplexes wherein a fluorescently labeled natural nucleoside ((OxoPy)U or (Per)U) paired against an unnatural nucleoside ((TPhen)BDo) without sacrificing the duplex stability and B-DNA conformation. The hybridization accompanying FRET event in these classes of interacting fluorophores is new. Moreover, there is no report of such designed system of chimeric DNA duplex. Our observed phenomenon and the design can potentially be exploited in designing more of such efficient FRET pairs for useful application in the detection and analysis of biomolecular interactions and in material science application.

  7. Facilitated mitochondrial import of antiviral and anticancer nucleoside drugs by human equilibrative nucleoside transporter-3

    PubMed Central

    Govindarajan, Rajgopal; Leung, George P. H.; Zhou, Mingyan; Tse, Chung-Ming; Wang, Joanne; Unadkat, Jashvant D

    2009-01-01

    human equilibrative nucleoside transporter-3 (hENT3) was recently reported as a pH-dependent, intracellular (lysosomal) transporter capable of transporting anti-human immunodeficiency virus (HIV) dideoxynucleosides (ddNs). Because most anti-HIV ddNs (e.g., zidovudine, AZT) exhibit clinical mitochondrial toxicity, we investigated whether hENT3 facilitates transport of anti-HIV ddNs into the mitochondria. Cellular fractionation and immunofluorescence microscopy studies in several human cell lines identified a substantial presence of hENT3 in the mitochondria, with additional presence at the cell surface of two placental cell lines (JAR, JEG3). Mitochondrial or cell surface hENT3 expression was confirmed in human hepatocytes and placental tissues, respectively. Unlike endogenous hENT3, yellow fluorescent protein (YFP)-tagged hENT3 was partially directed to the lysosomes. Xenopus oocytes expressing NH2-terminal-deleted hENT3 (expressed at the cell surface) showed pH-dependent interaction with several classes of nucleosides (anti-HIV ddNs, gemcitabine, fialuridine, ribavirin) that produce mitochondrial toxicity. Transport studies in hENT3 gene-silenced JAR cells showed significant reduction in mitochondrial transport of nucleosides and nucleoside drugs. Our data suggest that cellular localization of hENT3 is cell type dependent and the native transporter is substantially expressed in mitochondria and/or cell surface. hENT3-mediated mitochondrial transport may play an important role in mediating clinically observed mitochondrial toxicity of nucleoside drugs. In addition, our finding that hENT3 is a mitochondrial transporter is consistent with the recent finding that mutations in the hENT3 gene cause an autosomal recessive disorder in humans called the H syndrome. PMID:19164483

  8. A novel nucleoside kinase from Burkholderia thailandensis: a member of the phosphofructokinase B-type family of enzymes.

    PubMed

    Ota, Hiroko; Sakasegawa, Shin-Ichi; Yasuda, Yuko; Imamura, Shigeyuki; Tamura, Tomohiro

    2008-12-01

    The genome of the mesophilic Gram-negative bacterium Burkholderia thailandensis contains an open reading frame (i.e. the Bth_I1158 gene) that has been annotated as a putative ribokinase and PFK-B family member. Notably, although the deduced amino acid sequence of the gene showed only 29% similarity to the recently identified nucleoside kinase from hyperthermophilic archaea Methanocaldococcus jannaschii, 15 of 17 residues reportedly involved in the catalytic activity of M. jannaschii nucleoside kinase were conserved. The gene was cloned and functionally overexpressed in Rhodococcus erythropolis, and the purified enzyme was characterized biochemically. The substrate specificity of the enzyme was unusually broad for a bacterial PFK-B protein, and the specificity extended not only to purine and purine-analog nucleosides but also to uridine. Inosine was the most effective phosphoryl acceptor, with the highest k(cat)/K(m) value (80 s(-1).mm(-1)) being achieved when ATP served as the phosphoryl donor. By contrast, this enzyme exhibited no activity toward ribose, indicating that the recombinant enzyme was a nucleoside kinase rather than a ribokinase. To our knowledge, this is the first detailed analysis of a bacterial nucleoside kinase in the PFK-B family.

  9. Expression of nucleoside transporter in freshly isolated neurons and astrocytes from mouse brain.

    PubMed

    Li, B; Gu, L; Hertz, L; Peng, L

    2013-11-01

    Nucleoside transporters comprise equilibrative ENT1-4 and concentrative CNT1-3. CNTs transport against an intracellular/extracellular gradient and are essential for transmitter removal, independently of metabolic need. ENT1-4 mediate transport until intracellular/extracellular equilibrium of the transported compound, but are very efficient, when the accumulated nucleoside or nucleobase is rapidly eliminated by metabolism. Most nucleoside transporters are membrane-bound, but ENT3 is mainly intracellular. This study uses freshly isolated neurons and astrocytes from two adult mouse strains. In one transgenic strain the neuronal marker Thy1 was associated with a compound fluorescing at one wavelength, and in the other the astrocytic marker GFAP was associated with a compound fluorescent at a different wavelength. Highly purified astrocytic and neuronal populations (as determined by presence/absence of cell-specific genes) were obtained from these mice by fluorescence-activated cell sorting. In each population mRNA analysis was performed by reverse-transcription polymerase chain reaction. CNT1 was absent in both cell types; all other nucleoside transporters were expressed to at least a similar degree (in relation to applied amount of RNA and to a house-keeping gene) in astrocytes as in neurons. Astrocytic ENT3 enrichment was dramatic, but it was not up-regulated after fluoxetine-mediated increase in DNA synthesis. A comparison with results obtained in cultured astrocytes shows that the latter are generally compatible with the present findings and suggests that many observations obtained in intact tissue, mainly by in situ hybridization (which also determines mRNA expression) may underestimate astrocytic nucleoside transporter expression.

  10. Parasite-induced permeation of nucleosides in Plasmodium falciparum malaria.

    PubMed

    Upston, J M; Gero, A M

    1995-06-14

    A mechanism which mediates the transport of the nonphysiological nucleoside, L-adenosine, was demonstrated in Plasmodium falciparum infected erythrocytes and naturally released merozoites. L-Adenosine was not a substrate for influx in freed intraerythrocytic parasites or in normal human erythrocytes nor was L-adenosine transported in a variety of cell types including other parasitic protozoa such as Crithidia luciliae, Trichomonas vaginalis, Giardia intestinalis, or the mammalian cells, Buffalo Green Monkey and HeLa cells. L-Adenosine transport in P. falciparum infected cells was nonsaturable, with a rate of 0.13 +/- 0.01 pmol/microliter cell water per s per microM L-adenosine, yet the transport was inhibited by furosemide, phloridzin and piperine with IC50 values between 1-13 microM, distinguishing the transport pathway from simple diffusion. The channel-like permeation was selective as disaccharides were not permeable to parasitised cells. In addition, an unusual metabolic property of parasitic adenosine deaminase was found in that L-adenosine was metabolised to L-inosine by both P. falciparum infected erythrocytes and merozoites, an activity which was inhibited by 50 nM deoxycoformycin. No other cell type examined displayed this enzymic activity. The results further substantiate that nucleoside transport in P. falciparum infected cells was significantly altered compared to uninfected erythrocytes and that L-adenosine transport and metabolism was a biochemical property of Plasmodium infected cells and merozoites and not found in normal erythrocytes nor any of the other cell types investigated.

  11. Design, synthesis and evaluation of pyrazole derivatives as non-nucleoside hepatitis B virus inhibitors.

    PubMed

    Jia, Haiyong; Bai, Fuxiang; Liu, Na; Liang, Xiaohong; Zhan, Peng; Ma, Chunhong; Jiang, Xuemei; Liu, Xinyong

    2016-11-10

    In continuation of our efforts toward the discovery of potent non-nucleoside hepatitis B virus (HBV) inhibitors with novel structures, we have employed bioisosterism and hybrid pharmacophore-based strategy to explore the chemically diverse space of bioactive compounds. In this article, the original thiazole platform was replaced with pyrazole scaffold to yield the optimal pharmacophore moieties in order to generate novel non-nucleoside HBV inhibitors with desirable potency. Some of the new compounds were able to inhibit HBV activity in the low micromolar range. In particular, compound 6a3 displayed the most potent activity against the secretion of HBsAg and HBeAg with IC50 of 24.33 μM and 2.22 μM, respectively. The preliminary structure-activity relationship (SAR) of this new series of compounds was investigated, which may help designing more potent molecules.

  12. The halo-substituent effect on Pseudomonas cepacia lipase-mediated regioselective acylation of nucleosides: A comparative investigation.

    PubMed

    Wang, Zhao-Yu; Bi, Yan-Hong; Yang, Rong-Ling; Duan, Zhang-Qun; Nie, Ling-Hong; Li, Xiang-Qian; Zong, Min-Hua; Wu, Jie

    2015-10-20

    In this work, comparative experiments were explored to investigate the substrate specificity of Pseudomonas cepacia lipase in regioselective acylation of nucleosides carrying various substituents (such as the H, F, Cl, Br, I) at 2'- and 5-positions. Experimental data indicated that the catalytic performance of the enzyme depended very much on the halo-substituents in nucleosides. The increased bulk of 2'-substituents in ribose moiety of the nucleoside might contribute to the improved 3'-regioselectivity (90-98%, nucleosides a-d) in enzymatic decanoylation, while the enhancement of regioselectivity (93-99%) in 3'-O-acylated nucleosides e-h could be attributable to the increasing hydrophobicity of the halogen atoms at 5-positions. With regard to the chain-length selectivity, P. cepacia lipase displayed the highest 3'-regioselectivity toward the longer chain (C14) as compared to shorter (C6 and C10) ones. The position, orientation and property of the substituent, specific structure of the lipase's active site, and acyl structure could account for the diverse results. PMID:26325198

  13. Multiple sodium-dependent nucleoside transport systems in bovine renal brush-border membrane vesicles.

    PubMed Central

    Williams, T C; Jarvis, S M

    1991-01-01

    Na(+)-dependent nucleoside transport was examined in bovine renal brush-border membrane vesicles. Two separate Na+/nucleoside cotransporters were shown to be present: (1) a system specific for purine nucleosides and uridine, designated as the N1 carrier, and (2) an Na(+)-dependent nucleoside transporter that accepts pyrimidine nucleosides, adenosine and analogues of adenosine, designated as the N2 system. Both systems exhibit a high affinity for nucleosides (apparent Km values approximately 10 microM), are insensitive to inhibition by facilitated-diffusion nucleoside transport inhibitors, are rheogenic and exhibit a high specificity for Na+. Na+ increases the affinity of the influx of guanosine and thymidine, nucleosides that serve as model permeants for the N1 and N2 nucleoside transporters respectively. The Na+/nucleoside coupling stoichiometry is consistent with 1:1 for both carriers. PMID:2001243

  14. Natural and engineered biosynthesis of nucleoside antibiotics in Actinomycetes.

    PubMed

    Chen, Wenqing; Qi, Jianzhao; Wu, Pan; Wan, Dan; Liu, Jin; Feng, Xuan; Deng, Zixin

    2016-03-01

    Nucleoside antibiotics constitute an important family of microbial natural products bearing diverse bioactivities and unusual structural features. Their biosynthetic logics are unique with involvement of complex multi-enzymatic reactions leading to the intricate molecules from simple building blocks. Understanding how nature builds this family of antibiotics in post-genomic era sets the stage for rational enhancement of their production, and also paves the way for targeted persuasion of the cell factories to make artificial designer nucleoside drugs and leads via synthetic biology approaches. In this review, we discuss the recent progress and perspectives on the natural and engineered biosynthesis of nucleoside antibiotics.

  15. Formation of nucleoside 5'-polyphosphates under potentially prebiological conditions

    NASA Technical Reports Server (NTRS)

    Lohrmann, R.

    1976-01-01

    The characteristics and efficiencies of biochemical reactions involving nucleoside 5'-diphosphates and -triphosphates (important substrates of RNA and DNA synthesis) under conditions corresponding to the primitive prebiotic earth are investigated. Urea catalysis of the formation of linear inorganic polyphosphates and metal ions promoting the reactions are discussed. Linear polyphosphate was incubated with Mg(++) in the presence of a nucleoside 5'-phosphate, to yield nucleoside 5'-polyphosphates when products are dried, while Mg(++) prompts depolymerization to trimetaphosphate in aqueous solutions. Plausible biogenetic pathways are examined.

  16. A pentose bisphosphate pathway for nucleoside degradation in Archaea.

    PubMed

    Aono, Riku; Sato, Takaaki; Imanaka, Tadayuki; Atomi, Haruyuki

    2015-05-01

    Owing to the absence of the pentose phosphate pathway, the degradation pathway for the ribose moieties of nucleosides is unknown in Archaea. Here, in the archaeon Thermococcus kodakarensis, we identified a metabolic network that links the pentose moieties of nucleosides or nucleotides to central carbon metabolism. The network consists of three nucleoside phosphorylases, an ADP-dependent ribose-1-phosphate kinase and two enzymes of a previously identified NMP degradation pathway, ribose-1,5-bisphosphate isomerase and type III ribulose-1,5-bisphosphate carboxylase/oxygenase. Ribose 1,5-bisphosphate and ribulose 1,5-bisphosphate are intermediates of this pathway, which is thus designated the pentose bisphosphate pathway.

  17. Lights and shadows in the challenge of binding acyclovir, a synthetic purine-like nucleoside with antiviral activity, at an apical-distal coordination site in copper(II)-polyamine chelates.

    PubMed

    Pérez-Toro, Inmaculada; Domínguez-Martín, Alicia; Choquesillo-Lazarte, Duane; Vílchez-Rodríguez, Esther; González-Pérez, Josefa María; Castiñeiras, Alfonso; Niclós-Gutiérrez, Juan

    2015-07-01

    Several nucleic acid components and their metal complexes are known to be involved in crucial metabolic steps. Therefore the study of metal-nucleic acid interactions becomes essential to understand these biological processes. In this work, the synthetic purine-like nucleoside acyclovir (acv) has been used as a model of guanosine recognition with copper(II)-polyamine chelates. The chemical stability of the N9-acyclic arm in acv offers the possibility to use this antiviral drug to deepen the knowledge of metal-nucleoside interactions. Cu(II) chelates with cyclam, cyclen and trien were used as suitable receptors. All these copper(II) tetraamine chelates have in common the potential ability to yield a Cu-N7(apical) bond assisted by an appropriate (amine)N-H⋯O6(acv) intra-molecular interligand interaction. A series of synthesis afforded the following compounds: [Cu(cyclam)(ClO4)2] (1), {[Cu(cyclam)(μ2-NO3)](NO3)}n (2), {[Cu(cyclam)(μ2-SO4)]·MeOH}n (3), {[Cu(cyclam)(μ2-SO4)]·5H2O}n (4), [Cu(cyclen)(H2O)]SO4·2H2O (5), [Cu(cyclen)(H2O)]SO4·3H2O (6), [Cu(trien)(acv)](NO3)2·acv (7) and [Cu(trien)(acv)]SO4·0.71H2O (8). All these compounds have been characterized by X-ray crystallography and FT-IR spectroscopy. Our results reveal that the macrochelates Cu(cyclen)(2+) and Cu(cyclam)(2+) are unable to bind acv at an apical site. In contrast, the Cu(trien)(2+) complex has proved to be an efficient receptor for acv in compounds (7) and (8). In the ternary complex [Cu(trien)(acv)](2+), the metal binding pattern of acv consists of an apical Cu-N7 bond assisted by an intra-molecular (primary amino)N-H⋯O6(acv) interligand interaction. Structural comparisons reveal that this unprecedented apical role of acv is due to the acyclic nature of trien together with the ability of the Cu(trien)(2+) chelate to generate five-coordinated (type 4+1) copper(II) complexes. PMID:25863571

  18. Lights and shadows in the challenge of binding acyclovir, a synthetic purine-like nucleoside with antiviral activity, at an apical-distal coordination site in copper(II)-polyamine chelates.

    PubMed

    Pérez-Toro, Inmaculada; Domínguez-Martín, Alicia; Choquesillo-Lazarte, Duane; Vílchez-Rodríguez, Esther; González-Pérez, Josefa María; Castiñeiras, Alfonso; Niclós-Gutiérrez, Juan

    2015-07-01

    Several nucleic acid components and their metal complexes are known to be involved in crucial metabolic steps. Therefore the study of metal-nucleic acid interactions becomes essential to understand these biological processes. In this work, the synthetic purine-like nucleoside acyclovir (acv) has been used as a model of guanosine recognition with copper(II)-polyamine chelates. The chemical stability of the N9-acyclic arm in acv offers the possibility to use this antiviral drug to deepen the knowledge of metal-nucleoside interactions. Cu(II) chelates with cyclam, cyclen and trien were used as suitable receptors. All these copper(II) tetraamine chelates have in common the potential ability to yield a Cu-N7(apical) bond assisted by an appropriate (amine)N-H⋯O6(acv) intra-molecular interligand interaction. A series of synthesis afforded the following compounds: [Cu(cyclam)(ClO4)2] (1), {[Cu(cyclam)(μ2-NO3)](NO3)}n (2), {[Cu(cyclam)(μ2-SO4)]·MeOH}n (3), {[Cu(cyclam)(μ2-SO4)]·5H2O}n (4), [Cu(cyclen)(H2O)]SO4·2H2O (5), [Cu(cyclen)(H2O)]SO4·3H2O (6), [Cu(trien)(acv)](NO3)2·acv (7) and [Cu(trien)(acv)]SO4·0.71H2O (8). All these compounds have been characterized by X-ray crystallography and FT-IR spectroscopy. Our results reveal that the macrochelates Cu(cyclen)(2+) and Cu(cyclam)(2+) are unable to bind acv at an apical site. In contrast, the Cu(trien)(2+) complex has proved to be an efficient receptor for acv in compounds (7) and (8). In the ternary complex [Cu(trien)(acv)](2+), the metal binding pattern of acv consists of an apical Cu-N7 bond assisted by an intra-molecular (primary amino)N-H⋯O6(acv) interligand interaction. Structural comparisons reveal that this unprecedented apical role of acv is due to the acyclic nature of trien together with the ability of the Cu(trien)(2+) chelate to generate five-coordinated (type 4+1) copper(II) complexes.

  19. Inhibitory Effect of Bridged Nucleosides on Thermus aquaticus DNA Polymerase and Insight into the Binding Interactions

    PubMed Central

    Kim, Sung-Kun; Castro, Aaron; Kim, Edward S.; Dinkel, Austin P.; Liu, Xiaoyun; Castro, Miguel

    2016-01-01

    Modified nucleosides have the potential to inhibit DNA polymerases for the treatment of viral infections and cancer. With the hope of developing potent drug candidates by the modification of the 2’,4’-position of the ribose with the inclusion of a bridge, efforts were focused on the inhibition of Taq DNA polymerase using quantitative real time PCR, and the results revealed the significant inhibitory effects of 2’,4’-bridged thymidine nucleoside on the polymerase. Study on the mode of inhibition revealed the competitive mechanism with which the 2’,4’-bridged thymidine operates. With a Ki value of 9.7 ± 1.1 μM, the 2’,4’-bridged thymidine proved to be a very promising inhibitor. Additionally, docking analysis showed that all the nucleosides including 2’,4’-bridged thymidine were able to dock in the active site, indicating that the substrate analogs reflect a structural complementarity to the enzyme active site. The analysis also provided evidence that Asp610 was a key binding site for 2’,4’-bridged thymidine. Molecular dynamics (MD) simulations were performed to further understand the conformational variations of the binding. The root-mean-square deviation (RMSD) values for the peptide backbone of the enzyme and the nitrogenous base of the inhibitor stabilized within 0.8 and 0.2 ns, respectively. Furthermore, the MD analysis indicates substantial conformational change in the ligand (inhibitor) as the nitrogenous base rotated anticlockwise with respect to the sugar moiety, complemented by the formation of several new hydrogen bonds where Arg587 served as a pivot axis for binding formation. In conclusion, the active site inhibition of Taq DNA polymerase by 2’,4’-bridged thymidine suggests the potential of bridged nucleosides as drug candidates. PMID:26820310

  20. Direct visualization by electron microscopy of the weakly bound intermediates in the actomyosin adenosine triphosphatase cycle.

    PubMed Central

    Pollard, T D; Bhandari, D; Maupin, P; Wachsstock, D; Weeds, A G; Zot, H G

    1993-01-01

    We used a novel stopped-flow/rapid-freezing machine to prepare the transient intermediates in the actin-myosin adenosine triphosphatase (ATPase) cycle for direct observation by electron microscopy. We focused on the low affinity complexes of myosin-adenosine triphosphate (ATP) and myosin-adenosine diphosphate (ADP)-Pi with actin filaments since the transition from these states to the high affinity actin-myosin-ADP and actin-myosin states is postulated to generate the molecular motion that drives muscle contraction and other types of cellular movements. After rapid freezing and metal replication of mixtures of myosin subfragment-1, actin filaments, and ATP, the structure of the weakly bound intermediates is indistinguishable from nucleotide-free rigor complexes. In particular, the average angle of attachment of the myosin head to the actin filament is approximately 40 degrees in both cases. At all stages in the ATPase cycle, the configuration of most of the myosin heads bound to actin filaments is similar, and the part of the myosin head preserved in freeze-fracture replicas does not tilt by more than a few degrees during the transition from the low affinity to high affinity states. In contrast, myosin heads chemically cross-linked to actin filaments differ in their attachment angles from ordered at 40 degrees without ATP to nearly random in the presence of ATP when viewed by negative staining (Craig, R., L.E. Greene, and E. Eisenberg. 1985. Proc. Natl. Acad. Sci. USA. 82:3247-3251, and confirmed here), freezing in vitreous ice (Applegate, D., and P. Flicker. 1987. J. Biol. Chem. 262:6856-6863), and in replicas of rapidly frozen samples. This suggests that many of the cross-linked heads in these preparations are dissociated from but tethered to the actin filaments in the presence of ATP. These observations suggest that the molecular motion produced by myosin and actin takes place with the myosin head at a point some distance from the actin binding site or does not

  1. TAOK3 Phosphorylates the Methylenecyclopropane Nucleoside MBX 2168 to its Monophosphate

    PubMed Central

    Komazin-Meredith, Gloria; Cardinale, Steven C.; Comeau, Katelyn; Magalhaes, Kevin J.; Hartline, Caroll B.; Williams, John D.; Opperman, Timothy J.; Prichard, Mark N.; Bowlin, Terry L.

    2015-01-01

    Monohydroxymethyl methylenecyclopropane nucleosides (MCPNs) with ether or thioether substituents at the 6-position show promise as broad-spectrum herpes virus inhibitors. Their proposed mechanism of action involves sequential phosphorylation to a triphosphate, which can then inhibit viral DNA polymerase. The inhibition of herpes simplex virus (HSV) by these compounds is not dependent on the viral thymidine kinase (TK), which is known to phosphorylate acyclovir (ACV), a standard treatment for HSV infections. Previous studies on the mechanism of action of these compounds against human cytomegalovirus (HCMV) implicated a host kinase in addition to HCMV UL97 kinase in performing the initial phosphorylation. After first eliminating other candidate HSV-1 encoded kinases (UL13 and US3) as well as potential host nucleoside kinases, using activity-based fractionation, we have now identified the host serine-threonine protein kinase TAOK3 as the kinase responsible for transforming the representative monohydroxymethyl MCPN analog MBX 2168 to its monophosphate. PMID:25857706

  2. Crystal structures of HIV-1 reverse transcriptase complexes with thiocarbamate non-nucleoside inhibitors

    SciTech Connect

    Spallarossa, Andrea Cesarini, Sara; Ranise, Angelo; Ponassi, Marco; Unge, Torsten; Bolognesi, Martino

    2008-01-25

    O-Phthalimidoethyl-N-arylthiocarbamates (TCs) have been recently identified as a new class of potent HIV-1 reverse transcriptase (RT) non-nucleoside inhibitors (NNRTIs), by means of computer-aided drug design techniques [Ranise A. Spallarossa, S. Cesarini, F. Bondavalli, S. Schenone, O. Bruno, G. Menozzi, P. Fossa, L. Mosti, M. La Colla, et al., Structure-based design, parallel synthesis, structure-activity relationship, and molecular modeling studies of thiocarbamates, new potent non-nucleoside HIV-1 reverse transcriptase inhibitor isosteres of phenethylthiazolylthiourea derivatives, J. Med. Chem. 48 (2005) 3858-3873]. To elucidate the atomic details of RT/TC interaction and validate an earlier TC docking model, the structures of three RT/TC complexes were determined at 2.8-3.0 A resolution by X-ray crystallography. The conformations adopted by the enzyme-bound TCs were analyzed and compared with those of bioisosterically related NNRTIs.

  3. Rapid and Liquid-Based Selection of Genetic Switches Using Nucleoside Kinase Fused with Aminoglycoside Phosphotransferase

    PubMed Central

    Kawai-Noma, Shigeko; Saito, Kyoichi; Umeno, Daisuke

    2015-01-01

    The evolutionary design of genetic switches and circuits requires iterative rounds of positive (ON-) and negative (OFF-) selection. We previously reported a rapid OFF selection system based on the kinase activity of herpes simplex virus thymidine kinase (hsvTK) on the artificial mutator nucleoside dP. By fusing hsvTK with the kanamycin resistance marker aminoglycoside-(3’)-phosphotransferase (APH), we established a novel selector system for genetic switches. Due to the bactericidal nature of kanamycin and nucleoside-based lethal mutagenesis, both positive and negative selection could be completed within several hours. Using this new selector system, we isolated a series of homoserine lactone-inducible genetic switches with different expression efficiencies from libraries of the Vibrio fischeri lux promoter in two days, using only liquid handling. PMID:25790096

  4. Purification, crystallization, and preliminary X-ray diffraction study of purine nucleoside phosphorylase from E. coli

    SciTech Connect

    Abramchik, Yu. A. Timofeev, V. I. Zhukhlistova, N. E.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2015-07-15

    Crystals of E. coli purine nucleoside phosphorylase were grown in microgravity by the capillary counter-diffusion method through a gel layer. The X-ray diffraction data set suitable for the determination of the three-dimensional structure at atomic resolution was collected from one crystal at the Spring-8 synchrotron facility to 0.99 Å resolution. The crystals belong to sp. gr. P2{sub 1} and have the following unit-cell parameters: a = 74.1 Å, b = 110.2 Å, c = 88.2 Å, α = γ = 90°, β = 111.08°. The crystal contains six subunits of the enzyme comprising a hexamer per asymmetric unit. The hexamer is the biological active form of E. coli. purine nucleoside phosphorylase.

  5. TAOK3 phosphorylates the methylenecyclopropane nucleoside MBX 2168 to its monophosphate.

    PubMed

    Komazin-Meredith, Gloria; Cardinale, Steven C; Comeau, Katelyn; Magalhaes, Kevin J; Hartline, Caroll B; Williams, John D; Opperman, Timothy J; Prichard, Mark N; Bowlin, Terry L

    2015-07-01

    Monohydroxymethyl methylenecyclopropane nucleosides (MCPNs) with ether or thioether substituents at the 6-position show promise as broad-spectrum herpes virus inhibitors. Their proposed mechanism of action involves sequential phosphorylation to a triphosphate, which can then inhibit viral DNA polymerase. The inhibition of herpes simplex virus (HSV) by these compounds is not dependent on the viral thymidine kinase (TK), which is known to phosphorylate acyclovir (ACV), a standard treatment for HSV infections. Previous studies on the mechanism of action of these compounds against human cytomegalovirus (HCMV) implicated a host kinase in addition to HCMV UL97 kinase in performing the initial phosphorylation. After first eliminating other candidate HSV-1 encoded kinases (UL13 and US3) as well as potential host nucleoside kinases, using activity-based fractionation, we have now identified the host serine-threonine protein kinase TAOK3 as the kinase responsible for transforming the representative monohydroxymethyl MCPN analog MBX 2168 to its monophosphate. PMID:25857706

  6. Studies on yeast nucleoside triphosphate-nucleoside diphosphate transphosphorylase (nucleoside diphosphokinase). IV. Steady-state kinetic properties with thymidine nucleotides (including 3'-azido-3'-deoxythymidine analogues).

    PubMed

    Kuby, S A; Fleming, G; Alber, T; Richardson, D; Takenaka, H; Hamada, M

    1991-01-01

    A study of the steady-state kinetics of the crystalline brewer's yeast (Saccharomyces carlsbergensis) nucleoside diphosphokinase, with the magnesium complexes of the adenine and thymidine nucleotides as reactants, has led to a postulated kinetic mechanism which proceeds through a substituted enzyme. This agrees with the earlier conclusions of Garces and Cleland [Biochemistry 1969; 8:633-640] who characterized a reaction between the magnesium complexes of the adenine and uridine nucleotides. An advantage of using thymidine nucleotides as reactants is that they permit accurate, rapid and continuous assays of the enzymatic activity in coupled-enzymatic tests. Through measurements of the initial velocities and product inhibition studies, the Michaelis constants, maximum velocities, and inhibition constants could be evaluated for the individual substrates. Competitive substrate inhibition was encountered at relatively high substrate concentrations, which also permitted an evaluation of their ability to act as 'dead-end' inhibitors. The Michaelis constants for the 3'-azido-3'-deoxythymidine (AzT) analogues were also evaluated and, although these values were only somewhat higher than those of their natural substrates, the Km's for the adenine nucleotides as paired substrates were lower and the Vmax's were drastically reduced. The pharmacological implications of these observations are touched upon and extrapolated to the cases where therapeutic doses of AzT may be employed.

  7. Palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides.

    PubMed

    Shaughnessy, Kevin H

    2015-05-22

    Synthetic modification of nucleoside structures provides access to molecules of interest as pharmaceuticals, biochemical probes, and models to study diseases. Covalent modification of the purine and pyrimidine bases is an important strategy for the synthesis of these adducts. Palladium-catalyzed cross-coupling is a powerful method to attach groups to the base heterocycles through the formation of new carbon-carbon and carbon-heteroatom bonds. In this review, approaches to palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleotides are reviewed. Polar reaction media, such as water or polar aprotic solvents, allow reactions to be performed directly on the hydrophilic nucleosides and nucleotides without the need to use protecting groups. Homogeneous aqueous-phase coupling reactions catalyzed by palladium complexes of water-soluble ligands provide a general approach to the synthesis of modified nucleosides, nucleotides, and oligonucleotides.

  8. Design, synthesis and biological evaluation of phosphorodiamidate prodrugs of antiviral and anticancer nucleosides

    PubMed Central

    McGuigan, Christopher; Bourdin, Claire; Derudas, Marco; Hamon, Nadège; Hinsinger, Karen; Kandil, Sahar; Madela, Karolina; Meneghesso, Silvia; Pertusati, Fabrizio; Serpi, Michaela; Slusarczyk, Magdalena; Chamberlain, Stanley; Kolykhalov, Alexander; Vernachio, John; Vanpouille, Christophe; Introini, Andrea; Margolis, Leonid; Balzarini, Jan

    2014-01-01

    We herein report the application of the phosphorodiamidate phosphate prodrug approach to a series of thirteen nucleoside analogs with antiviral or anticancer activity. Twenty-five symmetrical phosphorodiamidates were synthesized, bearing esterified l-Alanine (and in one case d-alanine) in the prodrug moiety, each as single stereoisomer. The presence of an achiral phosphorus represents a potential advantage over the phosphoramidate ProTide approach, where diastereoisomeric mixtures are routinely obtained, and different biological profiles may be expected from the diastereoisomers. Optimization of the synthetic pathway allowed us to identify two general methods depending on the particular nucleoside analogs. All the compounds were biologically evaluated in antiviral and anticancer assays and several showed improvement of activity compared to their parent nucleosides, as in the case of ddA, d4T, abacavir and acyclovir against HIV-1 and/or HIV-2. The biological results were supported by metabolism studies with carboxypeptidase Y monitored by 31P NMR to investigate their bioactivation. This work further validates the phosphorodiamidate approach as a monophosphate prodrug motif with broad application in the antiviral and anticancer fields. PMID:24177359

  9. The Nucleoside Uridine Isolated in the Gas Phase**

    PubMed Central

    Peña, Isabel; Cabezas, Carlos; Alonso, José L.

    2016-01-01

    Herein we present the first experimental observation of the isolated nucleoside uridine, placed in the gas phase by laser ablation and characterized by Fourier transform microwave techniques. Free from the bulk effects of their native environments, anti/C2’-endo-g+ conformation has been revealed as the most stable form of uridine. Intramolecular hydrogen bonds involving uracil and ribose moieties have been found to play an important role in the stabilization of the nucleoside. PMID:25683559

  10. The nucleoside uridine isolated in the gas phase.

    PubMed

    Peña, Isabel; Cabezas, Carlos; Alonso, José L

    2015-03-01

    Herein we present the first experimental observation of the isolated nucleoside uridine, placed in the gas phase by laser ablation and characterized by Fourier transform (FT) microwave techniques. Free from the bulk effects of their native environments, anti/C2'-endo-g+ conformation has been revealed as the most stable form of uridine. Intramolecular hydrogen bonds involving uracil and ribose moieties have been found to play an important role in the stabilization of the nucleoside.

  11. Synthesis and Evaluation of 2'-Deoxy-2'-Spirodiflurocyclopropyl Nucleoside Analogs.

    PubMed

    Liu, Xiao; Xia, Xueliang; Sun, Chenghai; Lin, Cai; Zhou, Yiqian; Hussain, Muzammal; Tang, Fei; Liu, Lu; Li, Xue; Zhang, Jiancun

    2016-09-01

    The preparation of 2'-deoxy-2'-siprodifluorocyclopropany-lnucleoside analogs has been achieved from α-d-glucose in several steps. The key step in the synthesis was the introduction of the difluorocyclopropane through a difluorocarbene type reaction at the 2'-position. Then, a series of novel 2'-deoxy-2'-spirodifluorocyclopropanyl nucleoside analogs were synthesized using the Vorbrüggen method. All the synthesized nucleosides were characterized and subsequently evaluated against hepatitis C and influenza A virus strains in vitro. PMID:27556785

  12. Photochemical synthesis of nucleoside analogues from cyclobutanones: bicyclic and isonucleosides.

    PubMed

    Jaffer, Mileina; Ebead, Abdelaziz; Lee-Ruff, Edward

    2010-05-26

    The preparation of two nucleoside analogues are reported. Both syntheses involve a key photochemical ring-expansion of cyclobutanones to an oxacarbene and its subsequent scavenging by 6-chloropurine. The synthesis of a bicyclic (locked) purine starts from a oxabicycloheptanone with a hydroxymethyl pendant. The preparation of an isonucleoside uses a cyclobutanone with an alpha-substituted 6-chloropurine. Irradiation of the latter produces an isonucleoside and acyclic nucleoside analogues.

  13. Distribution of nucleosides in populations of Cordyceps cicadae.

    PubMed

    Zeng, Wen-Bo; Yu, Hong; Ge, Feng; Yang, Jun-Yuan; Chen, Zi-Hong; Wang, Yuan-Bing; Dai, Yong-Dong; Adams, Alison

    2014-01-01

    A rapid HPLC method had been developed and used for the simultaneous determination of 10 nucleosides (uracil, uridine, 2'-deoxyuridine, inosine, guanosine, thymidine, adenine, adenosine, 2'-deoxyadenosine and cordycepin) in 10 populations of Cordyceps cicadae, in order to compare four populations of Ophicordyceps sinensis and one population of Cordyceps militaris. Statistical analysis system (SAS) 8.1 was used to analyze the nucleoside data. The pattern of nucleoside distribution was analyzed in the sampled populations of C. cicadae, O. sinensis and C. militaris, using descriptive statistical analysis, nested analysis and Q cluster analysis. The total amount of the 10 nucleosides in coremium was 1,463.89-5,678.21 µg/g in 10 populations of C. cicadae, 1,369.80-3,941.64 µg/g in sclerotium. The average contents of the 10 analytes were 4,392.37 µg/g and 3,016.06 µg/g in coremium and sclerotium, respectively. The coefficient of variation (CV) of nucleosides ranged from 8.36% to 112.36% in coremium of C. cicadae, and from 10.77% to 155.87% in sclerotium of C. cicadae. The CV of the nucleosides was wide within C. cicadae populations. The nested variation analysis by the nine nucleosides' distribution indicated that about 42.29% of the nucleoside variability in coremium was attributable to the differentiation among populations, and the remaining 57.71% resided in the populations. It was also shown that about 28.94% of the variation in sclerotium was expressed between populations, while most of the variation (71.06%) corresponded to the populations. PMID:24830714

  14. Human Cytomegalovirus Resistance to Deoxyribosylindole Nucleosides Maps to a Transversion Mutation in the Terminase Subunit-Encoding Gene UL89

    PubMed Central

    Phan, Quang; Hall, Ellie D.; Breitenbach, Julie M.; Borysko, Katherine Z.; Kamil, Jeremy P.; Townsend, Leroy B.; Drach, John C.

    2014-01-01

    Human cytomegalovirus (HCMV) infection can cause severe illnesses, including encephalopathy and mental retardation, in immunocompromised and immunologically immature patients. Current pharmacotherapies for treating systemic HCMV infections include ganciclovir, cidofovir, and foscarnet. However, long-term administration of these agents can result in serious adverse effects (myelosuppression and/or nephrotoxicity) and the development of viral strains with reduced susceptibility to drugs. The deoxyribosylindole (indole) nucleosides demonstrate a 20-fold greater activity in vitro (the drug concentration at which 50% of the number of plaques was reduced with the presence of drug compared to the number in the absence of drug [EC50] = 0.34 μM) than ganciclovir (EC50 = 7.4 μM) without any observed increase in cytotoxicity. Based on structural similarity to the benzimidazole nucleosides, we hypothesize that the indole nucleosides target the HCMV terminase, an enzyme responsible for packaging viral DNA into capsids and cleaving the DNA into genome-length units. To test this hypothesis, an indole nucleoside-resistant HCMV strain was isolated, the open reading frames of the genes that encode the viral terminase were sequenced, and a G766C mutation in exon 1 of UL89 was identified; this mutation resulted in an E256Q change in the amino acid sequence of the corresponding protein. An HCMV wild-type strain, engineered with this mutation to confirm resistance, demonstrated an 18-fold decrease in susceptibility to the indole nucleosides (EC50 = 3.1 ± 0.7 μM) compared to that of wild-type virus (EC50 = 0.17 ± 0.04 μM). Interestingly, this mutation did not confer resistance to the benzimidazole nucleosides (EC50 for wild-type HCMV = 0.25 ± 0.04 μM, EC50 for HCMV pUL89 E256Q = 0.23 ± 0.04 μM). We conclude, therefore, that the G766C mutation that results in the E256Q substitution is unique for indole nucleoside resistance and distinct from previously discovered substitutions

  15. A novel bis(pinacolato)diboron-mediated N-O bond deoxygenative route to C6 benzotriazolyl purine nucleoside derivatives.

    PubMed

    Basava, Vikram; Yang, Lijia; Pradhan, Padmanava; Lakshman, Mahesh K

    2016-08-01

    Reaction of amide bonds in t-butyldimethylsilyl-protected inosine, 2'-deoxyinosine, guanosine, 2'-deoxyguanosine, and 2-phenylinosine with commercially available peptide-coupling agents (benzotriazol-1H-yloxy)tris(dimethylaminophosphonium) hexafluorophosphate (BOP), (6-chloro-benzotriazol-1H-yloxy)trispyrrolidinophosphonium hexafluorophosphate (PyClocK), and (7-azabenzotriazol-1H-yloxy)trispyrrolidinophosphonium hexafluorophospate (PyAOP) gave the corresponding O(6)-(benzotriazol-1-yl) nucleoside analogues containing a C-O-N bond. Upon exposure to bis(pinacolato)diboron and base, the O(6)-(benzotriazol-1-yl) and O(6)-(6-chlorobenzotriazol-1-yl) purine nucleoside derivatives obtained from BOP and PyClocK, respectively, underwent N-O bond reduction and C-N bond formation, leading to the corresponding C6 benzotriazolyl purine nucleoside analogues. In contrast, the 7-azabenzotriazolyloxy purine nucleoside derivatives did not undergo efficient deoxygenation, but gave unsymmetrical nucleoside dimers instead. This is consistent with a prior report on the slow reduction of 1-hydroxy-1H-4-aza and 1-hydroxy-1H-7-azabenzotriazoles. Because of the limited number of commercial benzotriazole-based peptide coupling agents, and to show the applicability of the method when such coupling agents are unavailable, 1-hydroxy-1H-5,6-dichlorobenzotriazole was synthesized. Using this compound, silyl-protected inosine and 2'-deoxyinosine were converted to the O(6)-(5,6-dichlorobenzotriazol-1-yl) derivatives via in situ amide activation with PyBroP. The O(6)-(5,6-dichlorobenzotriazol-1-yl) purine nucleosides so obtained also underwent smooth reduction to afford the corresponding C6 5,6-dichlorobenzotriazolyl purine nucleoside derivatives. A total of 13 examples were studied with successful reactions occurring in 11 cases (the azabenzotriazole derivatives, mentioned above, being the only unreactive entities). To understand whether these reactions are intra or intermolecular processes, a

  16. Human cytomegalovirus resistance to deoxyribosylindole nucleosides maps to a transversion mutation in the terminase subunit-encoding gene UL89.

    PubMed

    Gentry, Brian G; Phan, Quang; Hall, Ellie D; Breitenbach, Julie M; Borysko, Katherine Z; Kamil, Jeremy P; Townsend, Leroy B; Drach, John C

    2015-01-01

    Human cytomegalovirus (HCMV) infection can cause severe illnesses, including encephalopathy and mental retardation, in immunocompromised and immunologically immature patients. Current pharmacotherapies for treating systemic HCMV infections include ganciclovir, cidofovir, and foscarnet. However, long-term administration of these agents can result in serious adverse effects (myelosuppression and/or nephrotoxicity) and the development of viral strains with reduced susceptibility to drugs. The deoxyribosylindole (indole) nucleosides demonstrate a 20-fold greater activity in vitro (the drug concentration at which 50% of the number of plaques was reduced with the presence of drug compared to the number in the absence of drug [EC50] = 0.34 μM) than ganciclovir (EC50 = 7.4 μM) without any observed increase in cytotoxicity. Based on structural similarity to the benzimidazole nucleosides, we hypothesize that the indole nucleosides target the HCMV terminase, an enzyme responsible for packaging viral DNA into capsids and cleaving the DNA into genome-length units. To test this hypothesis, an indole nucleoside-resistant HCMV strain was isolated, the open reading frames of the genes that encode the viral terminase were sequenced, and a G766C mutation in exon 1 of UL89 was identified; this mutation resulted in an E256Q change in the amino acid sequence of the corresponding protein. An HCMV wild-type strain, engineered with this mutation to confirm resistance, demonstrated an 18-fold decrease in susceptibility to the indole nucleosides (EC50 = 3.1 ± 0.7 μM) compared to that of wild-type virus (EC50 = 0.17 ± 0.04 μM). Interestingly, this mutation did not confer resistance to the benzimidazole nucleosides (EC50 for wild-type HCMV = 0.25 ± 0.04 μM, EC50 for HCMV pUL89 E256Q = 0.23 ± 0.04 μM). We conclude, therefore, that the G766C mutation that results in the E256Q substitution is unique for indole nucleoside resistance and distinct from previously discovered substitutions

  17. An unusual UMP C-5 methylase in nucleoside antibiotic polyoxin biosynthesis.

    PubMed

    Chen, Wenqing; Li, Yan; Li, Jie; Wu, Lian; Li, Yan; Wang, Renxiao; Deng, Zixin; Zhou, Jiahai

    2016-09-01

    Polyoxin is a group of structurally-related peptidyl nucleoside antibiotics bearing C-5 modifications on the nucleoside skeleton. Although the structural diversity and bioactivity preference of polyoxin are, to some extent, affected by such modifications, the biosynthetic logic for their occurence remains obscure. Here we report the identification of PolB in polyoxin pathway as an unusual UMP C-5 methylase with thymidylate synthase activity which is responsible for the C-5 methylation of the nucleoside skeleton. To probe its molecular mechanism, we determined the crystal structures of PolB alone and in complexes with 5-Br UMP and 5-Br dUMP at 2.15 Å, 1.76 Å and 2.28 Å resolutions, respectively. Loop 1 (residues 117-131), Loop 2 (residues 192-201) and the substrate recognition peptide (residues 94-102) of PolB exhibit considerable conformational flexibility and adopt distinct structures upon binding to different substrate analogs. Consistent with the structural findings, a PolB homolog that harbors an identical function from Streptomyces viridochromogenes DSM 40736 was identified. The discovery of UMP C5-methylase opens the way to rational pathway engineering for polyoxin component optimization, and will also enrich the toolbox for natural nucleotide chemistry. PMID:27412636

  18. Mechanisms of uptake and resistance to troxacitabine, a novel deoxycytidine nucleoside analogue, in human leukemic and solid tumor cell lines.

    PubMed

    Gourdeau, H; Clarke, M L; Ouellet, F; Mowles, D; Selner, M; Richard, A; Lee, N; Mackey, J R; Young, J D; Jolivet, J; Lafrenière, R G; Cass, C E

    2001-10-01

    Troxacitabine (Troxatyl; BCH-4556; (-)-2'-deoxy-3'-oxacytidine), a deoxycytidine analogue with an unusual dioxolane structure and nonnatural L-configuration, has potent antitumor activity in animal models and is in clinical trials against human malignancies. The current work was undertaken to identify potential biochemical mechanisms of resistance to troxacitabine and to determine whether there are differences in resistance mechanisms between troxacitabine, gemcitabine, and cytarabine in human leukemic and solid tumor cell lines. The CCRF-CEM leukemia cell line was highly sensitive to the antiproliferative effects of troxacitabine, gemcitabine, and cytarabine with inhibition of proliferation by 50% observed at 160, 20, and 10 nM, respectively, whereas a deoxycytidine kinase (dCK)-deficient variant (CEM/dCK(-)) was resistant to all three drugs. In contrast, a nucleoside transport-deficient variant (CEM/ARAC8C) exhibited high levels of resistance to cytarabine (1150-fold) and gemcitabine (432-fold) but only minimal resistance to troxacitabine (7-fold). Analysis of troxacitabine transportability by the five molecularly characterized human nucleoside transporters [human equilibrative nucleoside transporters 1 and 2, human concentrative nucleoside transporter (hCNT) 1, hCNT2, and hCNT3] revealed that short- and long-term uptake of 10-30 microM [(3)H]troxacitabine was low and unaffected by the presence of either nucleoside transport inhibitors or high concentrations of nonradioactive troxacitabine. These results, which suggested that the major route of cellular uptake of troxacitabine was passive diffusion, demonstrated that deficiencies in nucleoside transport were unlikely to impart resistance to troxacitabine. A troxacitabine-resistant prostate cancer subline (DU145(R); 6300-fold) that exhibited reduced uptake of troxacitabine was cross-resistant to both gemcitabine (350-fold) and cytarabine (300-fold). dCK activity toward deoxycytidine in DU145(R) cell lysates was

  19. Triple nucleoside reverse transcriptase inhibitor therapy in children.

    PubMed

    Handforth, Jennifer; Sharland, Mike

    2004-01-01

    Much of the success attributed to HIV therapy in the last few years has resulted from improved ways of using existing drugs in combination therapy regimens. The availability of new, more potent drugs such as protease inhibitors and more accurate viral load tests to aid decisions to start or change treatment has also contributed to the success. Published recommendations for pediatric HIV therapy, generated by a panel of experts and specialists, are readily available and regularly updated. Preferred regimens of 'potent' therapy (referred to as highly active antiretroviral therapy, or HAART) currently consist of two nucleoside reverse transcriptase inhibitors (NRTIs) combined with either a non-nucleoside reverse transcriptase inhibitor (NNRTI) or a protease inhibitor. More intense four-drug regimens using an NNRTI or a second protease inhibitor as a fourth drug are being evaluated. Problems with HAART include: unpalatable drug formulations and adverse effects, coupled with lack of data on the pharmacokinetics, efficacy, and safety of various drug combinations. Adherence is a major factor influencing the efficacy and outcome of antiretroviral therapy. Many children cannot adhere to complex multidrug regimens, which cause virologic failure, despite excellent CD4+ cell count responses. This means a rapid progression through the limited number of treatment regimens available. Simpler regimens such as those containing three NRTIs have been proposed as a method of treatment that will allow suppression of the virus, yet circumvent many of the problems previously mentioned. An additional benefit would be the preservation of antiretroviral drugs from other classes for future treatment options if required. The major advantages of triple NRTI regimens are the simplicity of the regimen, good tolerability, few drug-drug interactions, and infrequent adverse effects coupled with a low pill burden. However, abacavir hypersensitivity remains a major problem. Up to 3% of patients may

  20. Inosine triphosphatase allele frequency and association with ribavirin-induced anaemia in Brazilian patients receiving antiviral therapy for chronic hepatitis C

    PubMed Central

    Delvaux, Nathália; da Costa, Vanessa Duarte; da Costa, Maristella Matos; Villar, Livia Melo; Coelho, Henrique Sérgio Moraes; Esberard, Eliane Bordalo Cathalá; Flores, Priscila Pollo; Brandão-Mello, Carlos Eduardo; Villela-Nogueira, Cristiane Alves; de Almeida, Adilson José; Lampe, Elisabeth

    2015-01-01

    Inosine triphosphatase (ITPA) single nucleotide polymorphisms (SNPs) are strongly associated with protection against ribavirin (RBV)-induced anaemia in European, American and Asian patients; however, there is a paucity of data for Brazilian patients. The aim of this study was to evaluate the ITPA SNP (rs7270101/rs1127354) frequency in healthy and hepatitis C virus (HCV)-infected patients from Brazil and the association with the development of severe anaemia during antiviral therapy. ITPA SNPs were determined in 200 HCV infected patients and 100 healthy individuals by sequencing. Biochemical parameters and haemoglobin (Hb) levels were analysed in 97 patients who underwent antiviral therapy. A combination of AArs7270101+CCrs1127354 (100% ITPase activity) was observed in 236/300 individuals. Anaemia was observed in 87.5% and 86.2% of treated patients with AA (rs7270101) and CC genotypes (rs1127354), respectively. Men with AA (rs7270101) showed a considerable reduction in Hb at week 12 compared to those with AC/CC (p = 0.1475). In women, there was no influence of genotype (p = 0.5295). For rs1127354, men with the CC genotype also showed a sudden reduction in Hb compared to those with AC. Allelic distribution of rs7270101 and rs1127354 shows high rates of the genotypes AA and CC, respectively, suggesting that the study population had a great propensity for developing RBV-induced anaemia. A progressive Hb reduction during treatment was observed; however, this reduction was greater in men at week 12 than in women. PMID:26154744

  1. [New furano- and pyrrolo[2,3-d]pyrimidine nucleosides and their 5'-triphosphates: synthesis and biological properties].

    PubMed

    Ivanov, M A; Ivanov, A V; Krasnitskaia, I A; Smirnova, O A; Karpenko, I L; Belanov, E F; Prasolov, V S; Tunitskaia, V L; Aleksandrova, L A

    2008-01-01

    Bicyclic furano[2,3-d]pyrimidine ribonucleosides were synthesized by Pd(0)- and CuI-catalyzed coupling of 5-iodouridine with terminal alkynes. The treatment of the resulting nucleosides with ammonia or methylamine solution in aqueous alcohol resulted in pyrrolo- and N(7)-methylpyrrolo[2,3-d]pyrimidine nucleosides. 5'-O-Triphosphates of bicyclic nucleosides were obtained by the treatment of the nucleosides with POCl3 in the presence of a "proton sponge." The 5'-O-triphosphates are not substrates for HCV RNA-dependent RNA polymerase, but are effective substrates for HCV RNA helicase/NTPase and did not inhibit ATP hydrolysis. Only 3-(beta-D-ribofuranosyl)-6-decyl-2,3-dihydrofuro-[2,3-d]pyrimidin-2-one showed a moderate anti-HCV activity in the HCV replicon system and efficiently inhibited replication of bovine viral diarrhea virus (BVDV) in KCT-cells, other compounds being inactive. None of the compounds were cytotoxic within the tested range of concentrations. PMID:19060941

  2. Inhibition of nucleoside transport and synergistic potentiation of methotrexate cytotoxicity by cimicifugoside, a triterpenoid from Cimicifuga simplex.

    PubMed

    Yawata, Ayako; Matsuhashi, Yuko; Kato, Hanako; Uemura, Keiko; Kusano, Genjiro; Ito, Junko; Chikuma, Toshiyuki; Hojo, Hiroshi

    2009-11-01

    Cimicifugoside, a triterpenoid isolated from Cimicifuga simplex, which has been used as a traditional Chinese medicine due to its anti-inflammatory, analgesic or anti-pyretic action, was examined for inhibition of nucleoside transport and synergistic potentiation of methotrexate cytotoxicity. Cimicifugoside inhibited uptake of uridine, thymidine and adenosine in human leukemia U937 cells with the low nanomolar IC(50) values, but did not affect that of uracil, leucine or 2-deoxyglucose at cimicifugenin (aglycon of cimicifugoside)>bugbanoside B>cimicifugenin A, O-methyl cimicifugenin and bugbanoside A. Cimicifugoside had less affinity for the binding site of nitrobenzylthioinosine (typical high-affinity inhibitor of equilibrative nucleoside transporter-1) in U937 cells, K562 cells and human erythrocyte membranes compared with the prototype nucleoside transport inhibitor dipyridamole. Cimicifugoside markedly potentiated methotrexate cytotoxicity in a culture of U937 cells and human carcinoma KB cells. Potentiation of methotrexate cytotoxicity by cimicifugoside analogs in U937 cells was in proportion to their inhibitory activity against uridine uptake. The present study demonstrates that cimicifugoside is a novel specific nucleoside transport inhibitor that displays synergistic potentiation of methotrexate cytotoxicity. PMID:19748575

  3. Purine nucleoside phosphorylase polymorphism in the genus Littorina (Prosobranchia: Mollusca).

    PubMed

    Knight, A J; Ward, R D

    1986-06-01

    Examination of eight Atlantic species of the genus Littorina by starch gel electrophoresis of purine nucleoside phosphorylase revealed extensive polymorphism within the L. saxatilis complex. In this group, four alleles have been identified. Heterozygotes are four banded, and thus, as in vertebrates, the enzyme is likely to be a trimer. Breeding experiments confirmed the genetic interpretation of the phenotype patterns. Where species of the saxatilis complex [L. saxatilis (=L. rudis), L. arcana, L. nigrolineata, L. neglecta] are sympatric, there are sometimes significant allele frequency differences between them. A fifth allele was present at a high frequency in L. obtusata and L. mariae, and L. littorea and L. neritoides each possessed unique alleles. A total of eight alleles was identified. Densitometric scanning of heterozygote patterns pointed to activity differences between alleles and also showed that, while the heterotrimeric bands were never less intense than the homotrimeric bands, the heterotrimeric bands were sometimes less intense than expected. It is not clear whether this represents nonrandom association of subunits, decreased stability of heterotrimers, or simply an artifact of the staining and quantifying process. PMID:3091000

  4. Synthesis of novel fluorocarbocyclic nucleosides and nucleotides as potential inhibitors of human immunodeficiency virus

    SciTech Connect

    Hilpert, H.

    1989-01-01

    3[prime]-Azido-3[prime]-deoxythymidine (AZT) and 2[prime], 3[prime]-dideoxycytidine (DDC) are potent in vivo inhibitors of human immunodeficiency virus. Due to their short half-life in the body and undesired side-effects compounds with improved bioavailability were designed. A feature of these analogues was the replacement of the heterocyclic oxygen atom by an isosteric CHF-group thus stabilizing the labile glycosidic bond against metabolic breakdown. A versatile and short synthesis, starting from ketone, serves to construct the highly functionalized and protected key intermediates. These ([alpha]- and [beta]-fluoro epimeric) intermediates were elaborated to eight fluorocarbocyclic nucleoside analogues linked with a thymine base, an adenine base, and a guanine base. An attempt was made to prepare analogues of the potent HIV inhibitor carbovir c. The unexpected oxidation of the double bond of compound d, instead of the desired Baeyer-Villiger ring-expansion, meant that the synthetic scheme was redundant. A second total synthesis involves the preparation of the three fluorocarbocyclic phosphonates. These analogues possess additionally a P-C linkage which should markedly enhance the stability of the side chain. To perform enzyme inhibition tests, three analogues were chemically activated to the biologically active triphosphates. Inhibition tests on HIV associated reverse transcriptase confirmed the high activity of one of the AZT triphosphates. The fluorocarbocyclic counterpart was two orders of magnitude less active. A fluorocarbocyclic phosphonate was twice as active as the AZT triphosphate. Neither the eight nucleoside analogues nor the three phosphonates displayed significant activity against HIV infected cells. Crystallographic data of two fluorocarbocyclic nucleosides, two potent HIV inhibitors, and some 20 examples of 2[prime]-deoxyribonucleosides have been compared.

  5. A review on the chemical synthesis of pyrophosphate bonds in bioactive nucleoside diphosphate analogs.

    PubMed

    Xu, Zhihong

    2015-09-15

    Currently, there is an ongoing interest in the synthesis of nucleoside diphosphate analogs as important regulators in catabolism/anabolism, and their potential applications as mechanistic probes and chemical tools for bioassays. However, the pyrophosphate bond formation step remains as the bottleneck. In this Digest, the chemical synthesis of the pyrophosphate bonds of representative bioactive nucleoside diphosphate analogs, i.e. phosphorus-modified analogs, nucleoside cyclic diphosphates, and nucleoside diphosphate conjugates, will be described.

  6. Ethenoguanines undergo glycosylation by nucleoside 2'-deoxyribosyltransferases at non-natural sites.

    PubMed

    Ye, Wenjie; Paul, Debamita; Gao, Lina; Seckute, Jolita; Sangaiah, Ramiah; Jayaraj, Karupiah; Zhang, Zhenfa; Kaminski, P Alexandre; Ealick, Steven E; Gold, Avram; Ball, Louise M

    2014-01-01

    Deoxyribosyl transferases and functionally related purine nucleoside phosphorylases are used extensively for synthesis of non-natural deoxynucleosides as pharmaceuticals or standards for characterizing and quantitating DNA adducts. Hence exploring the conformational tolerance of the active sites of these enzymes is of considerable practical interest. We have determined the crystal structure at 2.1 Å resolution of Lactobacillus helveticus purine deoxyribosyl transferase (PDT) with the tricyclic purine 8,9-dihydro-9-oxoimidazo[2,1-b]purine (N2,3-ethenoguanine) at the active site. The active site electron density map was compatible with four orientations, two consistent with sites for deoxyribosylation and two appearing to be unproductive. In accord with the crystal structure, Lactobacillus helveticus PDT glycosylates the 8,9-dihydro-9-oxoimidazo[2,1-b]purine at N7 and N1, with a marked preference for N7. The activity of Lactobacillus helveticus PDT was compared with that of the nucleoside 2'-deoxyribosyltransferase enzymes (DRT Type II) from Lactobacillus leichmannii and Lactobacillus fermentum, which were somewhat more effective in the deoxyribosylation than Lactobacillus helveticus PDT, glycosylating the substrate with product profiles dependent on the pH of the incubation. The purine nucleoside phosphorylase of Escherichia coli, also commonly used in ribosylation of non-natural bases, was an order of magnitude less efficient than the transferase enzymes. Modeling based on published active-site structures as templates suggests that in all cases, an active site Phe is critical in orienting the molecular plane of the purine derivative. Adventitious hydrogen bonding with additional active site residues appears to result in presentation of multiple nucleophilic sites on the periphery of the acceptor base for ribosylation to give a distribution of nucleosides. Chemical glycosylation of O9-benzylated 8,9-dihydro-9-oxoimidazo[2,1-b]purine also resulted in N7 and N1

  7. Ethenoguanines undergo glycosylation by nucleoside 2'-deoxyribosyltransferases at non-natural sites.

    PubMed

    Ye, Wenjie; Paul, Debamita; Gao, Lina; Seckute, Jolita; Sangaiah, Ramiah; Jayaraj, Karupiah; Zhang, Zhenfa; Kaminski, P Alexandre; Ealick, Steven E; Gold, Avram; Ball, Louise M

    2014-01-01

    Deoxyribosyl transferases and functionally related purine nucleoside phosphorylases are used extensively for synthesis of non-natural deoxynucleosides as pharmaceuticals or standards for characterizing and quantitating DNA adducts. Hence exploring the conformational tolerance of the active sites of these enzymes is of considerable practical interest. We have determined the crystal structure at 2.1 Å resolution of Lactobacillus helveticus purine deoxyribosyl transferase (PDT) with the tricyclic purine 8,9-dihydro-9-oxoimidazo[2,1-b]purine (N2,3-ethenoguanine) at the active site. The active site electron density map was compatible with four orientations, two consistent with sites for deoxyribosylation and two appearing to be unproductive. In accord with the crystal structure, Lactobacillus helveticus PDT glycosylates the 8,9-dihydro-9-oxoimidazo[2,1-b]purine at N7 and N1, with a marked preference for N7. The activity of Lactobacillus helveticus PDT was compared with that of the nucleoside 2'-deoxyribosyltransferase enzymes (DRT Type II) from Lactobacillus leichmannii and Lactobacillus fermentum, which were somewhat more effective in the deoxyribosylation than Lactobacillus helveticus PDT, glycosylating the substrate with product profiles dependent on the pH of the incubation. The purine nucleoside phosphorylase of Escherichia coli, also commonly used in ribosylation of non-natural bases, was an order of magnitude less efficient than the transferase enzymes. Modeling based on published active-site structures as templates suggests that in all cases, an active site Phe is critical in orienting the molecular plane of the purine derivative. Adventitious hydrogen bonding with additional active site residues appears to result in presentation of multiple nucleophilic sites on the periphery of the acceptor base for ribosylation to give a distribution of nucleosides. Chemical glycosylation of O9-benzylated 8,9-dihydro-9-oxoimidazo[2,1-b]purine also resulted in N7 and N1

  8. Ethenoguanines Undergo Glycosylation by Nucleoside 2′-Deoxyribosyltransferases at Non-Natural Sites

    PubMed Central

    Ye, Wenjie; Paul, Debamita; Gao, Lina; Seckute, Jolita; Jayaraj, Karupiah; Zhang, Zhenfa; Kaminski, P. Alexandre

    2014-01-01

    Deoxyribosyl transferases and functionally related purine nucleoside phosphorylases are used extensively for synthesis of non-natural deoxynucleosides as pharmaceuticals or standards for characterizing and quantitating DNA adducts. Hence exploring the conformational tolerance of the active sites of these enzymes is of considerable practical interest. We have determined the crystal structure at 2.1 Å resolution of Lactobacillus helveticus purine deoxyribosyl transferase (PDT) with the tricyclic purine 8,9-dihydro-9-oxoimidazo[2,1-b]purine (N2,3-ethenoguanine) at the active site. The active site electron density map was compatible with four orientations, two consistent with sites for deoxyribosylation and two appearing to be unproductive. In accord with the crystal structure, Lactobacillus helveticus PDT glycosylates the 8,9-dihydro-9-oxoimidazo[2,1-b]purine at N7 and N1, with a marked preference for N7. The activity of Lactobacillus helveticus PDT was compared with that of the nucleoside 2′-deoxyribosyltransferase enzymes (DRT Type II) from Lactobacillus leichmannii and Lactobacillus fermentum, which were somewhat more effective in the deoxyribosylation than Lactobacillus helveticus PDT, glycosylating the substrate with product profiles dependent on the pH of the incubation. The purine nucleoside phosphorylase of Escherichia coli, also commonly used in ribosylation of non-natural bases, was an order of magnitude less efficient than the transferase enzymes. Modeling based on published active-site structures as templates suggests that in all cases, an active site Phe is critical in orienting the molecular plane of the purine derivative. Adventitious hydrogen bonding with additional active site residues appears to result in presentation of multiple nucleophilic sites on the periphery of the acceptor base for ribosylation to give a distribution of nucleosides. Chemical glycosylation of O9-benzylated 8,9-dihydro-9-oxoimidazo[2,1-b]purine also resulted in N7 and N1

  9. Occurrence of Flavonoids and Nucleosides in Agricultural Soils

    PubMed Central

    Phillips, D. A.; Joseph, C. M.; Hirsch, P. R.

    1997-01-01

    An ecologically relevant soil extraction procedure separated two types of molecules important for bacteria: flavonoids and small hydrophilic organic compounds. Two flavonoids, identified previously as inducers of nodulation genes in Rhizobium meliloti, were detected in rhizosphere soil from alfalfa (Medicago sativa L.). In addition, biologically significant quantities (micromoles per kilogram) of ribonucleosides and deoxyribonucleosides were found in all soils tested. Long-term wheat (Triticum aestivum L.) plots that had received manure contained elevated amounts of nucleosides, and in a separate experiment, the presence of legumes in a wheat-cropping sequence increased soil nucleosides. Intact bacterial cells accounted for less than 1% of the free nucleosides detected. These results suggest new testable hypotheses for molecular ecologists and differ from those obtained with older, harsher techniques. PMID:16535739

  10. Flow cytomeric measurement of DNA and incorporated nucleoside analogs

    DOEpatents

    Dolbeare, Frank A.; Gray, Joe W.

    1989-01-01

    A method is provided for simultaneously measuring total cellular DNA and incorporated nucleoside analog. The method entails altering the cellular DNA of cells grown in the presence of a nucleoside analog so that single stranded and double stranded portions are present. Separate stains are used against the two portions. An immunochemical stain is used against the single stranded portion to provide a measure of incorporated nucleoside analog, and a double strand DNA-specific stain is used against the double stranded portion to simultaneously provide a measure of total cellular DNA. The method permits rapid flow cytometric analysis of cell populations, rapid identification of cycling and noncycling subpopulations, and determination of the efficacy of S phase cytotoxic anticancer agents.

  11. The Crystal Structure of Streptococcus pyogenes Uridine Phosphorylase Reveals a Distinct Subfamily of Nucleoside Phosphorylases

    SciTech Connect

    Tran, Timothy H.; Christoffersen, S.; Allan, Paula W.; Parker, William B.; Piskur, Jure; Serra, I.; Terreni, M.; Ealick, Steven E.

    2011-09-20

    Uridine phosphorylase (UP), a key enzyme in the pyrimidine salvage pathway, catalyzes the reversible phosphorolysis of uridine or 2'-deoxyuridine to uracil and ribose 1-phosphate or 2'-deoxyribose 1-phosphate. This enzyme belongs to the nucleoside phosphorylase I superfamily whose members show diverse specificity for nucleoside substrates. Phylogenetic analysis shows Streptococcus pyogenes uridine phosphorylase (SpUP) is found in a distinct branch of the pyrimidine subfamily of nucleoside phosphorylases. To further characterize SpUP, we determined the crystal structure in complex with the products, ribose 1-phosphate and uracil, at 1.8 {angstrom} resolution. Like Escherichia coli UP (EcUP), the biological unit of SpUP is a hexamer with an ?/? monomeric fold. A novel feature of the active site is the presence of His169, which structurally aligns with Arg168 of the EcUP structure. A second active site residue, Lys162, is not present in previously determined UP structures and interacts with O2 of uracil. Biochemical studies of wild-type SpUP showed that its substrate specificity is similar to that of EcUP, while EcUP is {approx}7-fold more efficient than SpUP. Biochemical studies of SpUP mutants showed that mutations of His169 reduced activity, while mutation of Lys162 abolished all activity, suggesting that the negative charge in the transition state resides mostly on uracil O2. This is in contrast to EcUP for which transition state stabilization occurs mostly at O4.

  12. Enhancement of Peripheral Nerve Regrowth by the Purine Nucleoside Analog and Cell Cycle Inhibitor, Roscovitine

    PubMed Central

    Law, Vincent; Dong, Sophie; Rosales, Jesusa L.; Jeong, Myung-Yung; Zochodne, Douglas; Lee, Ki-Young

    2016-01-01

    Peripheral nerve regeneration is a slow process that can be associated with limited outcomes and thus a search for novel and effective therapy for peripheral nerve injury and disease is crucial. Here, we found that roscovitine, a synthetic purine nucleoside analog, enhances neurite outgrowth in neuronal-like PC12 cells. Furthermore, ex vivo analysis of pre-injured adult rat dorsal root ganglion (DRG) neurons showed that roscovitine enhances neurite regrowth in these cells. Likewise, in vivo transected sciatic nerves in rats locally perfused with roscovitine had augmented repopulation of new myelinated axons beyond the transection zone. By mass spectrometry, we found that roscovitine interacts with tubulin and actin. It interacts directly with tubulin and causes a dose-dependent induction of tubulin polymerization as well as enhances Guanosine-5′-triphosphate (GTP)-dependent tubulin polymerization. Conversely, roscovitine interacts indirectly with actin and counteracts the inhibitory effect of cyclin-dependent kinases 5 (Cdk5) on Actin-Related Proteins 2/3 (Arp2/3)-dependent actin polymerization, and thus, causes actin polymerization. Moreover, in the presence of neurotrophic factors such as nerve growth factor (NGF), roscovitine-enhanced neurite outgrowth is mediated by increased activation of the extracellular signal-regulated kinases 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) pathways. Since microtubule and F-actin dynamics are critical for axonal regrowth, the ability of roscovitine to activate the ERK1/2 and p38 MAPK pathways and support polymerization of tubulin and actin indicate a major role for this purine nucleoside analog in the promotion of axonal regeneration. Together, our findings demonstrate a therapeutic potential for the purine nucleoside analog, roscovitine, in peripheral nerve injury. PMID:27799897

  13. SAMHD1 has differential impact on the efficacies of HIV nucleoside reverse transcriptase inhibitors.

    PubMed

    Huber, Andrew D; Michailidis, Eleftherios; Schultz, Megan L; Ong, Yee T; Bloch, Nicolin; Puray-Chavez, Maritza N; Leslie, Maxwell D; Ji, Juan; Lucas, Anthony D; Kirby, Karen A; Landau, Nathaniel R; Sarafianos, Stefan G

    2014-08-01

    Sterile alpha motif- and histidine/aspartic acid domain-containing protein 1 (SAMHD1) limits HIV-1 replication by hydrolyzing deoxynucleoside triphosphates (dNTPs) necessary for reverse transcription. Nucleoside reverse transcriptase inhibitors (NRTIs) are components of anti-HIV therapies. We report here that SAMHD1 cleaves NRTI triphosphates (TPs) at significantly lower rates than dNTPs and that SAMHD1 depletion from monocytic cells affects the susceptibility of HIV-1 infections to NRTIs in complex ways that depend not only on the relative changes in dNTP and NRTI-TP concentrations but also on the NRTI activation pathways. PMID:24867973

  14. SAMHD1 Has Differential Impact on the Efficacies of HIV Nucleoside Reverse Transcriptase Inhibitors

    PubMed Central

    Huber, Andrew D.; Michailidis, Eleftherios; Schultz, Megan L.; Ong, Yee T.; Bloch, Nicolin; Puray-Chavez, Maritza N.; Leslie, Maxwell D.; Ji, Juan; Lucas, Anthony D.; Kirby, Karen A.; Landau, Nathaniel R.

    2014-01-01

    Sterile alpha motif- and histidine/aspartic acid domain-containing protein 1 (SAMHD1) limits HIV-1 replication by hydrolyzing deoxynucleoside triphosphates (dNTPs) necessary for reverse transcription. Nucleoside reverse transcriptase inhibitors (NRTIs) are components of anti-HIV therapies. We report here that SAMHD1 cleaves NRTI triphosphates (TPs) at significantly lower rates than dNTPs and that SAMHD1 depletion from monocytic cells affects the susceptibility of HIV-1 infections to NRTIs in complex ways that depend not only on the relative changes in dNTP and NRTI-TP concentrations but also on the NRTI activation pathways. PMID:24867973

  15. Syntheses of isoxazoline-carbocyclic nucleosides and their antiviral evaluation: a standard protocol.

    PubMed

    Quadrelli, Paolo; Vazquez Martinez, Naiara; Scrocchi, Roberto; Corsaro, Antonino; Pistarà, Venerando

    2014-01-01

    The current synthesis of racemic purine and pyrimidine isoxazoline-carbocyclic nucleosides is reported, detailing the key-steps for standard and reliable preparations. Improved yields were obtained by the proper tuning of the single synthetic steps, opening the way for the preparation of a variety of novel compounds. Some of the obtained compounds were also evaluated against a wide variety of DNA and RNA viruses including HIV. No specific antiviral activity was observed in the cases at hand. Novel compounds were prepared for future biological tests.

  16. Syntheses of Isoxazoline-Carbocyclic Nucleosides and Their Antiviral Evaluation: A Standard Protocol

    PubMed Central

    Quadrelli, Paolo; Vazquez Martinez, Naiara; Scrocchi, Roberto; Corsaro, Antonino; Pistarà, Venerando

    2014-01-01

    The current synthesis of racemic purine and pyrimidine isoxazoline-carbocyclic nucleosides is reported, detailing the key-steps for standard and reliable preparations. Improved yields were obtained by the proper tuning of the single synthetic steps, opening the way for the preparation of a variety of novel compounds. Some of the obtained compounds were also evaluated against a wide variety of DNA and RNA viruses including HIV. No specific antiviral activity was observed in the cases at hand. Novel compounds were prepared for future biological tests. PMID:25544956

  17. Substituted indoles as HIV-1 non-nucleoside reverse transcriptase inhibitors: a patent evaluation (WO2015044928).

    PubMed

    Li, Xiao; Gao, Ping; Zhan, Peng; Liu, Xinyong

    2016-05-01

    The invention described in this patent (WO2015044928) is related to compounds based on the substituted indole scaffold, their synthetic process and application to inhibit HIV-1 replication as non-nucleoside reverse transcriptase inhibitors (NNRTIs). Some of the newly claimed compounds presented improved potency against wild-type (WT) HIV-1 strain in comparison to previously disclosed indole-based NNRTIs and were also shown to be effective against common resistant HIV-1 strains. In light of their novel structural characteristics, simple synthetic route and improved anti-HIV activity, these compounds deserve further study as promising NNRTIs.

  18. Nucleoside-Based Diarylethene Photoswitches: Synthesis and Photochromic Properties.

    PubMed

    Wang, Hai-Xia; Xi, Dan-Dan; Xie, Ming-Sheng; Wang, Hui-Xuan; Qu, Gui-Rong; Guo, Hai-Ming

    2016-07-01

    Diarylethene photoswitches based on the natural nucleoside deoxyadenosine were designed and synthesized. In aqueous solution, some of them exhibited good photochromic properties, including clear changes in color upon irradiation at 365 nm, red-shifts of the absorption wavelength, with good fatigue resistance, thermal stability, conversion efficiency, and base-pairing properties. PMID:27124421

  19. Structural determinants of the 5'-methylthioinosine specificity of Plasmodium purine nucleoside phosphorylase.

    PubMed

    Donaldson, Teraya M; Ting, Li-Min; Zhan, Chenyang; Shi, Wuxian; Zheng, Renjian; Almo, Steven C; Kim, Kami

    2014-01-01

    Plasmodium parasites rely upon purine salvage for survival. Plasmodium purine nucleoside phosphorylase is part of the streamlined Plasmodium purine salvage pathway that leads to the phosphorylysis of both purines and 5'-methylthiopurines, byproducts of polyamine synthesis. We have explored structural features in Plasmodium falciparum purine nucleoside phosphorylase (PfPNP) that affect efficiency of catalysis as well as those that make it suitable for dual specificity. We used site directed mutagenesis to identify residues critical for PfPNP catalytic activity as well as critical residues within a hydrophobic pocket required for accommodation of the 5'-methylthio group. Kinetic analysis data shows that several mutants had disrupted binding of the 5'-methylthio group while retaining activity for inosine. A triple PfPNP mutant that mimics Toxoplasma gondii PNP had significant loss of 5'-methylthio activity with retention of inosine activity. Crystallographic investigation of the triple mutant PfPNP with Tyr160Phe, Val66Ile, andVal73Ile in complex with the transition state inhibitor immucillin H reveals fewer hydrogen bond interactions for the inhibitor in the hydrophobic pocket. PMID:24416224

  20. Structural determinants of the 5'-methylthioinosine specificity of Plasmodium purine nucleoside phosphorylase.

    PubMed

    Donaldson, Teraya M; Ting, Li-Min; Zhan, Chenyang; Shi, Wuxian; Zheng, Renjian; Almo, Steven C; Kim, Kami

    2014-01-01

    Plasmodium parasites rely upon purine salvage for survival. Plasmodium purine nucleoside phosphorylase is part of the streamlined Plasmodium purine salvage pathway that leads to the phosphorylysis of both purines and 5'-methylthiopurines, byproducts of polyamine synthesis. We have explored structural features in Plasmodium falciparum purine nucleoside phosphorylase (PfPNP) that affect efficiency of catalysis as well as those that make it suitable for dual specificity. We used site directed mutagenesis to identify residues critical for PfPNP catalytic activity as well as critical residues within a hydrophobic pocket required for accommodation of the 5'-methylthio group. Kinetic analysis data shows that several mutants had disrupted binding of the 5'-methylthio group while retaining activity for inosine. A triple PfPNP mutant that mimics Toxoplasma gondii PNP had significant loss of 5'-methylthio activity with retention of inosine activity. Crystallographic investigation of the triple mutant PfPNP with Tyr160Phe, Val66Ile, andVal73Ile in complex with the transition state inhibitor immucillin H reveals fewer hydrogen bond interactions for the inhibitor in the hydrophobic pocket.

  1. Novel reactivity of Fhit proteins: catalysts for fluorolysis of nucleoside 5'-phosphoramidates and nucleoside 5'-phosphosulfates to generate nucleoside 5'-phosphorofluoridates.

    PubMed

    Wojdyła-Mamoń, Anna M; Zimny, Jarosław; Romanowska, Joanna; Kraszewski, Adam; Stawinski, Jacek; Bieganowski, Paweł; Guranowski, Andrzej

    2015-06-01

    Fragile histidine triad (HIT) proteins (Fhits) occur in all eukaryotes but their function is largely unknown. Human Fhit is presumed to function as a tumour suppressor. Previously, we demonstrated that Fhits catalyse hydrolysis of not only dinucleoside triphosphates but also natural adenosine 5'-phosphoramidate (NH2-pA) and adenosine 5'-phosphosulfate (SO4-pA) as well as synthetic adenosine 5'-phosphorofluoridate (F-pA). In the present study, we describe an Fhit-catalysed displacement of the amino group of nucleoside 5'-phosphoramidates (NH2-pNs) or the sulfate moiety of nucleoside 5'-phosphosulfates (SO4-pNs) by fluoride anion. This results in transient accumulation of the corresponding nucleoside 5'-phosphorofluoridates (F-pNs). Substrate specificity and kinetic characterization of the fluorolytic reactions catalysed by the human Fhit and other examples of involvement of fluoride in the biochemistry of nucleotides are described. Among other HIT proteins, human histidine triad nucleotide-binding protein (Hint1) catalysed fluorolysis of NH2-pA 20 times and human Hint2 40 times more slowly than human Fhit. PMID:25826698

  2. Sensing Metal Ions with DNA Building Blocks: Fluorescent Pyridobenzimidazole Nucleosides

    PubMed Central

    Kim, Su Jeong; Kool, Eric T.

    2008-01-01

    We describe novel fluorescent N-deoxyribosides (1 and 2) having 2-pyrido-2-benzimidazole and 2-quino-2-benzimidazole as aglycones. The compounds were prepared from the previously unknown heterocyclic precursors and Hoffer’s chlorosugar, yielding alpha anomers as the chief products. X-ray crystal structures confirmed the geometry, and showed that the pyridine and benzimidazole ring systems deviated from coplanarity in the solid state by 154° and 140°, respectively. In methanol the compounds 1 and 2 had absorption maxima at 360 and 370 nm respectively, and emission maxima at 494 and 539 nm. Experiments revealed varied fluorescence responses of the nucleosides to a panel of seventeen monovalent, divalent and trivalent metal ions in methanol. One or both of the nucleosides showed significant changes with ten of the metal ions. The most pronounced spectral changes for ligand-nucleoside 1 included red shifts in fluorescence (Au+, Au3+), strong quenching (Cu2+, Ni2+, Pt2+), and in substantial enhancements in emission intensity coupled with redshifts (Ag+, Cd2+, Zn2+). The greatest spectral changes for ligand-nucleoside 2 included a redshift in fluorescence (Ag+), a blueshift (Cd2+), strong quenching (Pd2+, Pt2+), and in substantial enhancements in emission intensity coupled with a blueshift (Zn2+). The compounds could be readily incorporated into oligodeoxynucleotides, where an initial study revealed that they retained sensitivity to metal ions in aqueous solution, and demonstrated possible cooperative sensing behavior with several ions. The two free nucleosides alone can act as differential sensors for at multiple metal ions, and they are potentially useful monomers for contributing metal ion sensing capability to DNAs. PMID:16669686

  3. Cross-linked polymeric nanogel formulations of 5'-triphosphates of nucleoside analogues: role of the cellular membrane in drug release.

    PubMed

    Vinogradov, Serguei V; Kohli, Ekta; Zeman, Arin D

    2005-01-01

    Activation of cytotoxic nucleoside analogues in vivo depends primarily on their cell-specific phosphorylation. Anticancer chemotherapy using nucleoside analogues may be significantly enhanced by intracellular administration of active phosphorylated drugs. However, the cellular transport of anionic compounds is very ineffective and restricted by many drug efflux transporters. Recently developed cationic nanogel carriers can encapsulate large amounts of nucleoside 5'-triphosphates that form polyionic complexes with protonated amino groups on the polyethylenimine backbone of the nanogels. In this paper, the 5'-triphosphate of an antiviral nucleoside analogue, 3'-azido-2',3'-dideoxythymidine (AZT), was efficiently synthesized and its complexes with nanogels were obtained and evaluated as potential cytotoxic drug formulations for treatment of human breast carcinoma cells. A selective phosphorylating reagent, tris-imidazolylphosphate, was used to convert AZT into the nucleoside analogue 5'-triphosphate using a one-pot procedure. The corresponding 3'-azido-2',3'-dideoxythymidine 5'-triphosphate (AZTTP) was isolated with high yield (75%). Nanogels encapsulated up to 30% of AZTTP by weight by mixing solutions of the carrier and the drug. The AZTTP/nanogel formulation showed enhanced cytotoxicity in two breast cancer cell lines, MCF-7 and MDA-MB-231, demonstrating IC50 values 130-200 times lower than those values for AZT alone. The exact mechanism of drug release from nanogels remains unclear. One mechanism could involve interaction with negatively charged counterions. A high affinity of nanogels to isolated cellular membranes has been observed, especially for nanogels made of amphiphilic block copolymer, Pluronic P85. Cellular trafficking of nanogel particles, contrasted by polyethylenimine-coordinated copper(II) ions, was studied by transmission electron microscopy (TEM), which revealed membranotropic properties of nanogels. A substantial release of encapsulated drug was

  4. Nucleoside transporters, bcl-2 and apoptosis in CLL cells exposed to nucleoside analogues in vitro.

    PubMed

    Petersen, A J; Brown, R D; Gibson, J; Pope, B; Luo, X F; Schutz, L; Wiley, J S; Joshua, D E

    1996-04-01

    The purine nucleoside analogues fludarabine (F1) and chlorodeoxyadenosine (2-CdA) are considered to be cell cycle specific agents which require DNA synthesis for cytotoxicity. However, their efficacy in the treatment of CLL, an indolent lymphoid malignancy suggests additional mechanisms of action. Like cytosine arabinoside (AraC), F1 and 2-CdA gain access to the cell via a specific nucleoside transporter (NST) protein. To investigate the mode of action of these drugs in CLL, we used a fluorescent ligand for the NST (5'-(SAENTA- x8)-fluorescein) and 3-colour flow cytometry to determine NST expression on CD5+/CD19+ B-cells from the peripheral blood (PB) of patients with CLL. NST levels on these cells was found to be not significantly different from normal control lymphocytes (mean = 485 +/- 425) vs. (mean = 553 +/- 178). Exposure to varying concentrations (0, 3 microM and 30 microM) of F1 and 2-CdA, however, resulted in an upregulation of NST (mean = 1552 +/- 775 with 30 microM FL; mean = 3392 +/- 2197 with 30 microM 2-CdA) after 48. "Large" lymphoid cells (not present in normal PB) were found to express significantly more NST (mean = 2540 +/- 2861) and have a higher proliferative capacity than "small" cells (mean = 357 +/- 517 NST/cell). Incubation of CLL cells with F1 (n = 6) and 2-CdA (n = 8) in vitro over 48 h also resulted in an increase in the proportion of cells in S-phase (0 microM = 0.2 + 2 - 0.1; 30 microM FL = 2.4 +/- 2.0; 30 microM 2-CdA = 3.3 +/- 1.3) and a significant increase in morphologically identifiable apoptosis. Apoptosis was confirmed by flow cytometric DNA analysis (0 microM = 13 +/- 8%; 30 microM FL = 40 +/- 20%; 30 microM 2-CdA = 48 +/- 11%). In situ hybridization using a biotinylated cDNA bcl-2 probe demonstrated that bcl-2 mRNA expression was markedly decreased in treated cells after 24 h. These studies have demonstrated that: (1) NST expression on CLL lymphocytes is low; (2) in vitro exposure to the analogues increases both the level of

  5. Structure of nucleoside diphosphate kinase from pacific shrimp (Litopenaeus vannamei) in binary complexes with purine and pyrimidine nucleoside diphosphates.

    PubMed

    López-Zavala, Alonso A; Quintero-Reyes, Idania E; Carrasco-Miranda, Jesús S; Stojanoff, Vivian; Weichsel, Andrzej; Rudiño-Piñera, Enrique; Sotelo-Mundo, Rogerio R

    2014-09-01

    Nucleoside diphosphate kinase (NDK; EC 2.7.4.6) is an enzyme that catalyzes the third phosphorylation of nucleoside diphosphates, leading to nucleoside triphosphates for DNA replication. Expression of the NDK from Litopenaeus vannamei (LvNDK) is known to be regulated under viral infection. Also, as determined by isothermal titration calorimetry, LvNDK binds both purine and pyrimidine deoxynucleoside diphosphates with high binding affinity for dGDP and dADP and with no heat of binding interaction for dCDP [Quintero-Reyes et al. (2012), J. Bioenerg. Biomembr. 44, 325-331]. In order to investigate the differences in selectivity, LvNDK was crystallized as binary complexes with both acceptor (dADP and dCDP) and donor (ADP) phosphate-group nucleoside diphosphate substrates and their structures were determined. The three structures with purine or pyrimidine nucleotide ligands are all hexameric. Also, the binding of deoxy or ribonucleotides is similar, as in the former a water molecule replaces the hydrogen bond made by Lys11 to the 2'-hydroxyl group of the ribose moiety. This allows Lys11 to maintain a catalytically favourable conformation independently of the kind of sugar found in the nucleotide. Because of this, shrimp NDK may phosphorylate nucleotide analogues to inhibit the viral infections that attack this organism.

  6. Synthesis and Biological Evaluation of Triazolyl 13α-Estrone-Nucleoside Bioconjugates.

    PubMed

    Bodnár, Brigitta; Mernyák, Erzsébet; Wölfling, János; Schneider, Gyula; Herman, Bianka Edina; Szécsi, Mihály; Sinka, Izabella; Zupkó, István; Kupihár, Zoltán; Kovács, Lajos

    2016-01-01

    2'-Deoxynucleoside conjugates of 13α-estrone were synthesized by applying the copper-catalyzed alkyne-azide click reaction (CuAAC). For the introduction of the azido group the 5'-position of the nucleosides and a propargyl ether functional group on the 3-hydroxy group of 13α-estrone were chosen. The best yields were realized in our hands when the 3'-hydroxy groups of the nucleosides were protected by acetyl groups and the 5'-hydroxy groups were modified by the tosyl-azide exchange method. The commonly used conditions for click reaction between the protected-5'-azidonucleosides and the steroid alkyne was slightly modified by using 1.5 equivalent of Cu(I) catalyst. All the prepared conjugates were evaluated in vitro by means of MTT assays for antiproliferative activity against a panel of human adherent cell lines (HeLa, MCF-7 and A2780) and the potential inhibitory activity of the new conjugates on human 17β-hydroxysteroid dehydrogenase 1 (17β-HSD1) was investigated via in vitro radiosubstrate incubation. Some protected conjugates displayed moderate antiproliferative properties against a panel of human adherent cancer cell lines (the protected cytidine conjugate proved to be the most potent with IC50 value of 9 μM). The thymidine conjugate displayed considerable 17β-HSD1 inhibitory activity (IC50 = 19 μM). PMID:27626395

  7. Thermodynamics and kinetics of inhibitor binding to human equilibrative nucleoside transporter subtype-1.

    PubMed

    Rehan, Shahid; Ashok, Yashwanth; Nanekar, Rahul; Jaakola, Veli-Pekka

    2015-12-15

    Many nucleoside transport inhibitors are in clinical use as anti-cancer, vasodilator and cardioprotective drugs. However, little is known about the binding energetics of these inhibitors to nucleoside transporters (NTs) due to their low endogenous expression levels and difficulties in the biophysical characterization of purified protein with ligands. Here, we present kinetics and thermodynamic analyses of inhibitor binding to the human equilibrative nucleoside transporter-1 (hENT1), also known as SLC29A1. Using a radioligand binding assay, we obtained equilibrium binding and kinetic rate constants of well-known NT inhibitors--[(3)H]nitrobenzylmercaptopurine ribonucleoside ([(3)H]NBMPR), dilazep, and dipyridamole--and the native permeant, adenosine, to hENT1. We observed that the equilibrium binding affinities for all inhibitors decreased whereas, the kinetic rate constants increased with increasing temperature. Furthermore, we found that binding is enthalpy driven and thus, an exothermic reaction, implying that the transporter does not discriminate between its inhibitors and substrates thermodynamically. This predominantly enthalpy-driven binding by four chemically distinct ligands suggests that the transporter may not tolerate diversity in the type of interactions that lead to high affinity binding. Consistent with this, the measured activation energy of [(3)H]NBMPR association was relatively large (20 kcal mol(-1)) suggesting a conformational change upon inhibitor binding. For all three inhibitors the enthalpy (ΔH°) and entropy (ΔS°) contributions to the reaction energetics were determined by van't Hoff analysis to be roughly similar (25-75% ΔG°). Gains in enthalpy with increasing polar surface area of inhibitors suggest that the binding is favored by electrostatic or polar interactions between the ligands and the transporter.

  8. Sulfhydryl groups of the F1 adenosine triphosphatase of Escherichia coli and the stoichiometry of the subunits.

    PubMed

    Stan-Lotter, H; Bragg, P D

    1984-02-15

    The distribution and total number of sulfhydryl groups present in the F1 adenosine triphosphatase of Escherichia coli were used to calculate the stoichiometry of the alpha-delta subunits. Titration with 5,5'-dithiobis (2-nitrobenzoate) gave 19.1 +/- 2.2 sulfhydryl groups/mol ATPase. Labeling with [14C]iodoacetamide and [14C]N-ethylmaleimide showed that 11.9, 3.1, 1.9, and 1.8 sulfhydryl groups per molecule of ATPase were associated with the alpha, beta, gamma, and delta subunits, respectively. The epsilon subunit was not labeled. Application of the method of Creighton [Nature (London) (1980) 284, 487-489] showed that 4, 1, and 2 sulfhydryl groups were present in the alpha, beta, and gamma subunits, respectively. This, together with published data for the delta subunit, allowed a subunit stoichiometry of alpha 3 beta 3 gamma delta to be calculated. The presence of four cysteinyl residues in the alpha subunit, as shown by several different methods, does not agree with the results of DNA sequencing of the ATPase genes [H. Kanazawa, T. Kayano, K. Mabuchi, and M. Futai (1981) Biochem. Biophys. Res. Commun. 103, 604-612; N. J. Gay and J. E. Walker (1981) Nucl. Acids Res. 9, 2187-2194] where three cysteinyl residues/alpha subunit have been found. It is suggested that post-translational modification of the alpha subunit to add a fourth cysteinyl residue might occur.

  9. Insecticidal properties of essential oils against Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase and adenosine triphosphatases.

    PubMed

    Abou-Taleb, Hamdy K; Mohamed, Magdy I E; Shawir, Mohamed S; Abdelgaleil, Samir A M

    2016-01-01

    Essential oils from 20 Egyptian plants were obtained by using hydrodistillation. The chemical composition of the isolated oils was identified by gas chromatograph/mass spectrometer. Fumigant and contact toxicities of the essential oils were evaluated against the adults of Tribolium castaneum. In fumigation assays, the oil of Origanum vulgare (LC50 = 9.97 mg/L air) displayed the highest toxicity towards the adults of T. castaneum. In contact assays, the oils of Artemisia monosperma (LC50 = 0.07 mg/cm(2)) and O. vulgare (LC50 = 0.07 mg/cm(2)) were the most potent toxicants against the adults of T. castaneum. Biochemical studies showed that the tested oils caused pronounced inhibition of acetylcholinesterase (AChE) and adenosine triphosphatases (ATPases) isolated from the larvae of T. castaneum. The oil Cupressus macrocarpa (IC50 = 12.3 mg/L) was the most potent inhibitor of AChE, while the oil of Calistemon viminals (IC50 = 4.4 mg/L) was the most potent inhibitor of ATPases. PMID:25978134

  10. Insecticidal properties of essential oils against Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase and adenosine triphosphatases.

    PubMed

    Abou-Taleb, Hamdy K; Mohamed, Magdy I E; Shawir, Mohamed S; Abdelgaleil, Samir A M

    2016-01-01

    Essential oils from 20 Egyptian plants were obtained by using hydrodistillation. The chemical composition of the isolated oils was identified by gas chromatograph/mass spectrometer. Fumigant and contact toxicities of the essential oils were evaluated against the adults of Tribolium castaneum. In fumigation assays, the oil of Origanum vulgare (LC50 = 9.97 mg/L air) displayed the highest toxicity towards the adults of T. castaneum. In contact assays, the oils of Artemisia monosperma (LC50 = 0.07 mg/cm(2)) and O. vulgare (LC50 = 0.07 mg/cm(2)) were the most potent toxicants against the adults of T. castaneum. Biochemical studies showed that the tested oils caused pronounced inhibition of acetylcholinesterase (AChE) and adenosine triphosphatases (ATPases) isolated from the larvae of T. castaneum. The oil Cupressus macrocarpa (IC50 = 12.3 mg/L) was the most potent inhibitor of AChE, while the oil of Calistemon viminals (IC50 = 4.4 mg/L) was the most potent inhibitor of ATPases.

  11. The chemoenzymatic synthesis of clofarabine and related 2'-deoxyfluoroarabinosyl nucleosides: the electronic and stereochemical factors determining substrate recognition by E. coli nucleoside phosphorylases.

    PubMed

    Fateev, Ilja V; Antonov, Konstantin V; Konstantinova, Irina D; Muravyova, Tatyana I; Seela, Frank; Esipov, Roman S; Miroshnikov, Anatoly I; Mikhailopulo, Igor A

    2014-01-01

    Two approaches to the synthesis of 2-chloro-9-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)adenine (1, clofarabine) were studied. The first approach consists in the chemical synthesis of 2-deoxy-2-fluoro-α-D-arabinofuranose-1-phosphate (12a, (2F)Ara-1P) via three step conversion of 1,3,5-tri-O-benzoyl-2-deoxy-2-fluoro-α-D-arabinofuranose (9) into the phosphate 12a without isolation of intermediary products. Condensation of 12a with 2-chloroadenine catalyzed by the recombinant E. coli purine nucleoside phosphorylase (PNP) resulted in the formation of clofarabine in 67% yield. The reaction was also studied with a number of purine bases (2-aminoadenine and hypoxanthine), their analogues (5-aza-7-deazaguanine and 8-aza-7-deazahypoxanthine) and thymine. The results were compared with those of a similar reaction with α-D-arabinofuranose-1-phosphate (13a, Ara-1P). Differences of the reactivity of various substrates were analyzed by ab initio calculations in terms of the electronic structure (natural purines vs analogues) and stereochemical features ((2F)Ara-1P vs Ara-1P) of the studied compounds to determine the substrate recognition by E. coli nucleoside phosphorylases. The second approach starts with the cascade one-pot enzymatic transformation of 2-deoxy-2-fluoro-D-arabinose into the phosphate 12a, followed by its condensation with 2-chloroadenine thereby affording clofarabine in ca. 48% yield in 24 h. The following recombinant E. coli enzymes catalyze the sequential conversion of 2-deoxy-2-fluoro-D-arabinose into the phosphate 12a: ribokinase (2-deoxy-2-fluoro-D-arabinofuranose-5-phosphate), phosphopentomutase (PPN; no 1,6-diphosphates of D-hexoses as co-factors required) (12a), and finally PNP. The substrate activities of D-arabinose, D-ribose and D-xylose in the similar cascade syntheses of the relevant 2-chloroadenine nucleosides were studied and compared with the activities of 2-deoxy-2-fluoro-D-arabinose. As expected, D-ribose exhibited the best substrate activity

  12. Identification and characterization of proximal promoter polymorphisms in the human concentrative nucleoside transporter 2 (SLC28A2).

    PubMed

    Yee, Sook Wah; Shima, James E; Hesselson, Stephanie; Nguyen, Loan; De Val, Sarah; Lafond, Rachel J; Kawamoto, Michiko; Johns, Susan J; Stryke, Doug; Kwok, Pui-Yan; Ferrin, Thomas E; Black, Brian L; Gurwitz, David; Ahituv, Nadav; Giacomini, Kathleen M

    2009-03-01

    The human concentrative nucleoside transporter 2 (CNT2) plays an important role in the absorption, disposition, and biological effects of endogenous nucleosides and nucleoside analog drugs. We identified genetic variation in the basal promoter region of CNT2 and characterized the function of the variants. We screened DNA from an ethnically diverse population and identified five basal promoter variants in CNT2. Three major haplotypes in the CNT2 basal promoter region were identified and were found at different allele frequencies in various ethnic groups. The common promoter variants and haplotypes were constructed and characterized for their promoter activity using luciferase reporter assays. One polymorphic variant, rs2413775 (-146T>A), with an allele frequency >20% in all populations, showed a gain of function in luciferase activity. Furthermore, in vivo mouse promoter assays of these nucleotide variants using the hydrodynamic tail vein injection, leading to their expression in the liver, demonstrated similar results. Transcription factor binding site (TFBS) analysis indicated this variant alters a hepatic nuclear factor (HNF) 1 TFBS. Electrophoretic mobility shift assay demonstrated stronger binding of HNF1alpha and weaker binding of HNF1beta to the -146T and -146A regions, whereas the single nucleotide polymorphism (SNP), -146A, exhibited enhanced binding to both HNF1alpha and HNF1beta, consistent with its greater activity in reporter assays. The data collectively suggest that the common variant, -146T>A, in the proximal promoter of CNT2 may result in an enhanced transcription rate of the gene and, thus, expression levels of CNT2. This SNP may play a role in variation in the pharmacokinetics and pharmacological effects of nucleoside analogs.

  13. The reactivity of the thiol groups of the adenosine triphosphatase of sarcoplasmic reticulum and their location on tryptic fragments of the molecule

    PubMed Central

    Thorley-Lawson, David A.; Green, N. Michael

    1977-01-01

    The ATPase (adenosine triphosphatase) from sarcoplasmic reticulum contains 20 thiol groups/115000 daltons, measured by using either N-ethyl[14C]maleimide or 5,5′-dithiobis-(2-nitrobenzoate) in sodium dodecyl sulphate. After reduction there were 26 thiol groups, in good agreement with 26.5 residues of cysteic acid found by amino acid analysis. The difference between this and the 20 residues measured before reduction implies the presence of three disulphide residues. The same number of disulphide residues was found by direct measurement. Three to six fewer thiol groups were found in preparations made in the absence of dithiothreitol. The missing residues were accounted for as cysteic acid. The distribution of disulphide bonds and of exposed and buried thiol groups among the tryptic fragments of the molecule was measured after labelling with N-ethyl[14C]-maleimide. The disulphides were confined to fragment B (mol.wt. 55000), whereas several thiol groups were present on each of the fragments (A, B, A1 and A2). The kinetics of the reaction of the ATPase with 5,5′-dithiobis-(2-nitrobenzoate) showed that four or five of the thiol groups were unreactive in the absence of detergent and that 13 of the remainder reacted with a single first-order rate constant. In the presence of ATP and Ca2+ the reaction rate of all but two groups of this class was uniformly decreased. In the presence or absence of ATP and Ca2+ the rate constant for inactivation was close to the rate constant for this class, but was not identical with it. No selective protection of a specific active-site-thiol group was observed. Parallel experiments with sarcoplasmic reticulum gave similar results, except that the reaction rates were a little lower and there were two more buried groups. Solution of ATPase of sarcoplasmic reticulum in detergent greatly increased the reactivity of all thiol groups. The effects of low concentrations of deoxycholate were reversible. EGTA or low concentrations (0.02mm) of Ca2

  14. Vaccinia virus lacking the deoxyuridine triphosphatase gene (F2L) replicates well in vitro and in vivo, but is hypersensitive to the antiviral drug (N)-methanocarbathymidine

    PubMed Central

    Prichard, Mark N; Kern, Earl R; Quenelle, Debra C; Keith, Kathy A; Moyer, Richard W; Turner, Peter C

    2008-01-01

    Background The vaccinia virus (VV) F2L gene encodes a functional deoxyuridine triphosphatase (dUTPase) that catalyzes the conversion of dUTP to dUMP and is thought to minimize the incorporation of deoxyuridine residues into the viral genome. Previous studies with with a complex, multigene deletion in this virus suggested that the gene was not required for viral replication, but the impact of deleting this gene alone has not been determined in vitro or in vivo. Although the crystal structure for this enzyme has been determined, its potential as a target for antiviral therapy is unclear. Results The F2L gene was replaced with GFP in the WR strain of VV to assess its effect on viral replication. The resulting virus replicated well in cell culture and its replication kinetics were almost indistinguishable from those of the wt virus and attained similar titers. The virus also appeared to be as pathogenic as the WR strain suggesting that it also replicated well in mice. Cells infected with the dUTPase mutant would be predicted to affect pyrimidine deoxynucleotide pools and might be expected to exhibit altered susceptibility to pyrimidine analogs. The antiviral activity of cidofovir and four thymidine analogs were evaluated both in the mutant and the parent strain of this virus. The dUTPase knockout remained fully susceptible to cidofovir and idoxuridine, but was hypersensitive to the drug (N)-methanocarbathymidine, suggesting that pyrimidine metabolism was altered in cells infected with the mutant virus. The absence of dUTPase should reduce cellular dUMP pools and may result in a reduced conversion to dTMP by thymidylate synthetase or an increased reliance on the salvage of thymidine by the viral thymidine kinase. Conclusion We confirmed that F2L was not required for replication in cell culture and determined that it does not play a significant role on virulence of the virus in intranasally infected mice. The recombinant virus is hypersensitive to (N

  15. Glycoprotein reglucosylation and nucleotide sugar utilization in the secretory pathway: identification of a nucleoside diphosphatase in the endoplasmic reticulum.

    PubMed Central

    Trombetta, E S; Helenius, A

    1999-01-01

    UDP is generated in the lumen of the endoplasmic reticulum (ER) as a product of the UDP-glucose-dependent glycoprotein reglucosylation in the calnexin/calreticulin cycle. We describe here the identification, purification and characterization of an ER enzyme that hydrolyzes UDP to UMP. This nucleoside diphosphatase is a ubiquitously expressed, soluble 45 kDa glycoprotein devoid of transmembrane domains and KDEL-related ER localization sequences. It requires divalent cations for activity and hydrolyzes UDP, GDP and IDP but not any other nucleoside di-, mono- or triphosphates, nor thiamine pyrophosphate. By eliminating UDP, which is an inhibitory product of the UDP-Glc:glycoprotein glucosyltransferase, it is likely to promote reglucosylation reactions involved in glycoprotein folding and quality control in the ER. PMID:10369669

  16. Kinetics and docking studies of two potential new inhibitors of the nucleoside hydrolase from Leishmania donovani.

    PubMed

    Rennó, Magdalena Nascimento; França, Tanos Celmar Costa; Nico, Dirlei; Palatnik-de-Sousa, Clarisa B; Tinoco, Luzineide Wanderley; Figueroa-Villar, José Daniel

    2012-10-01

    In this study the recombinant enzyme nucleoside hydrolase of Leishmania donovani (rLdNH) was expressed in Escherichia coli in connection with maltose binding protein (MBP). The rLdNH-MBP showed efficient a significant in vitro activity with inosine as substrate. From the coupled reaction with xanthine oxidase (XO) it was possible to determine the kinetic constants of rLdNH-MBP as K(M) (434 ± 109 μM) and V(max) (0.20 ± 0.02 μM). In addition, two nucleoside analogs (compounds 1 and 2) were tested as prototypes of rLdNH inhibitors. These compounds presented high affinity for the enzyme with K(i) values of 1.6 ± 0.2 and 17.0 ± 2.1 μM, respectively, as well as 271 and 26 folds higher than the affinity constant found for inosine. We also determined the type of enzyme inhibition, using double-reciprocal plot for these two compounds and the results confirmed a competitive inhibition. Additional docking studies showed the binding manner of compounds 1 and 2 inside the active site of LdNH revealing the essential residues for an effective inhibition. These results confirm that compounds 1 and 2 are strong rLdNH-MBP inhibitors.

  17. Targeting Mycobacterium tuberculosis Biotin Protein Ligase (MtBPL) with Nucleoside-Based Bisubstrate Adenylation Inhibitors

    PubMed Central

    Petrelli, Riccardo; De la Mora-Rey, Teresa; Tiwari, Divya; Liu, Feng; Dawadi, Surrendra; Nandakumar, Madhumitha; Rhee, Kyu Y.; Schnappinger, Dirk; Finzel, Barry C.; Aldrich, Courtney C.

    2015-01-01

    Mycobacterium tuberculosis (Mtb) responsible for both latent and symptomatic tuberculosis (TB) remains the second leading cause of mortality among infectious diseases worldwide. Mycobacterial biotin protein ligase (MtBPL) is an essential enzyme in Mtb and regulates lipid metabolism through the post-translational biotinylation of acyl coenzyme A carboxylases. We report the synthesis and evaluation of a systematic series of potent nucleoside-based inhibitors of MtBPL that contain modifications to the ribofuranosyl ring of the nucleoside. All compounds were characterized by isothermal titration calorimetry (ITC) and shown to bind potently with KD's below 2 nM. Additionally, we obtained high-resolution co-crystal structures for a majority of the compounds. Despite fairly uniform biochemical potency, the whole-cell Mtb activity varied greatly with minimum inhibitory concentrations (MIC) ranging from 0.78 to >100 μM. Cellular accumulation studies showed a nearly 10-fold enhanced accumulation of a C-2′-α analog over the corresponding C-2′-β analog, consistent with their differential whole-cell activity. PMID:26299766

  18. Detection of RNA nucleoside modifications with the uridine-specific ribonuclease MC1 from Momordica charantia.

    PubMed

    Addepalli, Balasubrahmanym; Lesner, Nicholas P; Limbach, Patrick A

    2015-10-01

    A codon-optimized recombinant ribonuclease, MC1 is characterized for its uridine-specific cleavage ability to map nucleoside modifications in RNA. The published MC1 amino acid sequence, as noted in a previous study, was used as a template to construct a synthetic gene with a natural codon bias favoring expression in Escherichia coli. Following optimization of various expression conditions, the active recombinant ribonuclease was successfully purified as a C-terminal His-tag fusion protein from E. coli [Rosetta 2(DE3)] cells. The isolated protein was tested for its ribonuclease activity against oligoribonucleotides and commercially available E. coli tRNA(Tyr I). Analysis of MC1 digestion products by ion-pairing reverse phase liquid-chromatography coupled with mass spectrometry (IP-RP-LC-MS) revealed enzymatic cleavage of RNA at the 5'-termini of uridine and pseudouridine, but cleavage was absent if the uridine was chemically modified or preceded by a nucleoside with a bulky modification. Furthermore, the utility of this enzyme to generate complementary digestion products to other common endonucleases, such as RNase T1, which enables the unambiguous mapping of modified residues in RNA is demonstrated.

  19. The SLC28 (CNT) and SLC29 (ENT) nucleoside transporter families: a 30-year collaborative odyssey.

    PubMed

    Young, James D

    2016-06-15

    Specialized nucleoside transporter (NT) proteins are required for passage of nucleosides and hydrophilic nucleoside analogues across biological membranes. Physiologic nucleosides serve as central salvage metabolites in nucleotide biosynthesis, and nucleoside analogues are used as chemotherapeutic agents in the treatment of cancer and antiviral diseases. The nucleoside adenosine modulates numerous cellular events via purino-receptor cell signalling pathways. Human NTs are divided into two structurally unrelated protein families: the SLC28 concentrative nucleoside transporter (CNT) family and the SLC29 equilibrative nucleoside transporter (ENT) family. Human CNTs are inwardly directed Na(+)-dependent nucleoside transporters found predominantly in intestinal and renal epithelial and other specialized cell types. Human ENTs mediate bidirectional fluxes of purine and pyrimidine nucleosides down their concentration gradients and are ubiquitously found in most, possibly all, cell types. Both protein families are evolutionarily old: CNTs are present in both eukaryotes and prokaryotes; ENTs are widely distributed in mammalian, lower vertebrate and other eukaryote species. This mini-review describes a 30-year collaboration with Professor Stephen Baldwin to identify and understand the structures and functions of these physiologically and clinically important transport proteins. PMID:27284054

  20. The SLC28 (CNT) and SLC29 (ENT) nucleoside transporter families: a 30-year collaborative odyssey.

    PubMed

    Young, James D

    2016-06-15

    Specialized nucleoside transporter (NT) proteins are required for passage of nucleosides and hydrophilic nucleoside analogues across biological membranes. Physiologic nucleosides serve as central salvage metabolites in nucleotide biosynthesis, and nucleoside analogues are used as chemotherapeutic agents in the treatment of cancer and antiviral diseases. The nucleoside adenosine modulates numerous cellular events via purino-receptor cell signalling pathways. Human NTs are divided into two structurally unrelated protein families: the SLC28 concentrative nucleoside transporter (CNT) family and the SLC29 equilibrative nucleoside transporter (ENT) family. Human CNTs are inwardly directed Na(+)-dependent nucleoside transporters found predominantly in intestinal and renal epithelial and other specialized cell types. Human ENTs mediate bidirectional fluxes of purine and pyrimidine nucleosides down their concentration gradients and are ubiquitously found in most, possibly all, cell types. Both protein families are evolutionarily old: CNTs are present in both eukaryotes and prokaryotes; ENTs are widely distributed in mammalian, lower vertebrate and other eukaryote species. This mini-review describes a 30-year collaboration with Professor Stephen Baldwin to identify and understand the structures and functions of these physiologically and clinically important transport proteins.

  1. Compositions containing nucleosides and manganese and their uses

    DOEpatents

    Daly, Michael J.; Gaidamakova, Elena K.; Matrosova, Vera Y.; Levine, Rodney L.; Wehr, Nancy B.

    2015-11-17

    This invention encompasses methods of preserving protein function by contacting a protein with a composition comprising one or more purine or pyrimidine nucleosides (such as e.g., adenosine or uridine) and an antioxidant (such as e.g., manganese). In addition, the invention encompasses methods of treating and/or preventing a side effect of radiation exposure and methods of preventing a side effect of radiotherapy comprising administration of a pharmaceutically effective amount of a composition comprising one or more purine or pyrimidine nucleosides (such as e.g., adenosine or uridine) and an antioxidant (such as e.g., manganese) to a subject in need thereof. The compositions may comprise D. radiodurans extracts.

  2. Diagnostic use of anti-modified nucleoside monoclonal antibody.

    PubMed

    Itoh, K; Ishiwata, S; Ishida, N; Mizugaki, M

    1992-10-01

    By use of monoclonal antibodies (MoAbs) termed APU-6 and AMA-2, we determined the usefulness of urinary modified nucleosides, pseudouridine and 1-methyladenosine, as markers for malignancy. In patients with leukemia and other forms of cancer, these nucleosides elevated significantly and reflected the disease status of patients. The immunohistochemical analysis showed that cancer cells were specifically stained with the MoAbs. Chemical identification of the cellular components reactive with the MoAbs revealed that APU-6-associated antigens were mainly rRNA and AMA-2-associated antigens were mainly tRNA. These results suggest that APU-6 and AMA-2 would be useful tools for clinical and biological studies of cancer.

  3. Formation of nucleoside 5'-polyphosphates from nucleotides and trimetaphosphate

    NASA Technical Reports Server (NTRS)

    Lohrmann, R.

    1975-01-01

    Nucleoside 5'-polyphosphates (N5PP) formed when solutions of nucleoside 5'-phosphates (N5P) and trimetaphosphate (TMP) are dessicated at room temperature are studied by paper chromatography, electrophoresis, and metal catalytic reactions. Divalent Mg ion exhibited superior catalytic function to other divalent metal ions in the reaction. Major reaction products are indicated. The importance of the N5PP series, TMP, and N5-triphosphate as substrates of RNA and DNA synthesis, and under postulated prebiotic conditions likely to obtain during prebiological ages of the earth, is emphasized and discussed. Alternate drying and wetting, evaporation from a prebiotic puddle, concentration of solubles in the remaining liquid phase, metal catalysis, and the role of these substances in the formation of amino acids and long-chain polyphosphates are considered.

  4. Highly reliable heterologous system for evaluating resistance of clinical herpes simplex virus isolates to nucleoside analogues.

    PubMed

    Bestman-Smith, J; Schmit, I; Papadopoulou, B; Boivin, G

    2001-04-01

    Clinical resistance of herpes simplex virus (HSV) types 1 and 2 to acyclovir (ACV) is usually caused by the presence of point mutations within the coding region of the viral thymidine kinase (TK) gene. The distinction between viral TK mutations involved in ACV resistance or part of viral polymorphism can be difficult to evaluate with current methodologies based on transfection and homologous recombination. We have developed and validated a new heterologous system based on the expression of the viral TK gene by the protozoan parasite Leishmania, normally devoid of TK activity. The viral TK genes from 5 ACV-susceptible and 13 ACV-resistant clinical HSV isolates and from the reference strains MS2 (type 2) and KOS (type 1) were transfected as part of an episomal expression vector in Leishmania. The susceptibility of TK-recombinant parasites to ganciclovir (GCV), a closely related nucleoside analogue, was evaluated by a simple measurement of the absorbance of Leishmania cultures grown in the presence of the drug. Expression of the TK gene from ACV-susceptible clinical isolates resulted in Leishmania susceptibility to GCV, whereas expression of a TK gene with frameshift mutations or nucleotide substitutions from ACV-resistant isolates gave rise to parasites with high levels of GCV resistance. The expression of the HSV TK gene in Leishmania provides an easy, reliable, and sensitive assay for evaluating HSV susceptibility to nucleoside analogues and for assessing the role of specific viral TK mutations.

  5. Three-Enzyme Cascade Bioreactor for Rapid Digestion of Genomic DNA into Single Nucleosides.

    PubMed

    Yin, Junfa; Xu, Tian; Zhang, Ning; Wang, Hailin

    2016-08-01

    Structure-based DNA modification analysis provides accurate and important information on genomic DNA changes from epigenetic modifications to various DNA lesions. However, genomic DNA strands are often required to be efficiently digested into single nucleosides. It is an arduous task because of the involvement of multiple enzymes with different catalytic acitivities. Here we constructed a three-enzyme cascade capillary monolithic bioreactor that consists of immobilized deoxyribonuclease I (DNase I), snake venom phosphodiesterase (SVP), and alkaline phosphatase (ALPase). By the use of this cascade capillary bioreactor, genomic DNA can be efficiently digested into single nucleosides with an increasing rate of ∼20 folds. The improvement is mainly attributed to dramatically increase enzymatic capacity and activity. With a designed macro-porous structure, genomic DNA of 5-30 Kb (∼1.6-10 million Daltons) can be directly passed through the bioreactor simply by hand pushing or a low-pressure microinjection pump. By coupling with liquid chromatography-tandem mass spectrometry (LC-MS/MS), we further developed a sensitive assay for detection of an oxidative stress biomarker 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in DNA. The proposed three-enzyme cascade bioreactor is also potentially applicable for fast identification and quantitative detection of other lesions and modifications in genomic DNA. PMID:27416319

  6. Non-nucleoside reverse transcriptase inhibitors: a review on pharmacokinetics, pharmacodynamics, safety and tolerability

    PubMed Central

    Usach, Iris; Melis, Virginia; Peris, José-Esteban

    2013-01-01

    Introduction Human immunodeficiency virus (HIV) type-1 non-nucleoside and nucleoside reverse transcriptase inhibitors (NNRTIs) are key drugs of highly active antiretroviral therapy (HAART) in the clinical management of acquired immune deficiency syndrome (AIDS)/HIV infection. Discussion First-generation NNRTIs, nevirapine (NVP), delavirdine (DLV) and efavirenz (EFV) are drugs with a low genetic barrier and poor resistance profile, which has led to the development of new generations of NNRTIs. Second-generation NNRTIs, etravirine (ETR) and rilpivirine (RPV) have been approved by the Food and Drug Administration and European Union, and the next generation of drugs is currently being clinically developed. This review describes recent clinical data, pharmacokinetics, metabolism, pharmacodynamics, safety and tolerability of commercialized NNRTIs, including the effects of sex, race and age differences on pharmacokinetics and safety. Moreover, it summarizes the characteristics of next-generation NNRTIs: lersivirine, GSK 2248761, RDEA806, BILR 355 BS, calanolide A, MK-4965, MK-1439 and MK-6186. Conclusions This review presents a wide description of NNRTIs, providing useful information for researchers interested in this field, both in clinical use and in research. PMID:24008177

  7. Identification of the distribution of adenosine phosphates, nucleosides and nucleobases in royal jelly.

    PubMed

    Wu, Liming; Chen, Lanzhen; Selvaraj, Jonathan Nimal; Wei, Yue; Wang, Yong; Li, Yi; Zhao, Jing; Xue, Xiaofeng

    2015-04-15

    Nucleotides, nucleosides and nucleobases play a greater role in the physiological activity of organisms which are highly present in royal jelly (RJ). The objective of the present study is to develop a HPLC method to simultaneous determine nucleotides, nucleosides and nucleobases in RJ and access them in fresh and commercial RJ samples. The LOD and LOQ were 12.2-99.6 μg/L and 40.8-289.4 μg/L, respectively with nearly 100.9% recoveries. Except uric acid, all other compounds were found in RJ samples. Significant difference in the average content of compounds in fresh (2682.93 mg/kg) and commercial samples (3152.78 mg/kg) were observed. AMP, adenosine and adenine were found predominant in all the samples. Significant higher levels of ATP, ADP and AMP was seen in fresh RJ samples, and IMP, uridine, guanosine, and thymidine was seen in commercial RJ samples. The investigated compounds can be used as indexes for assessment RJ freshness and quality.

  8. Physiology of nucleoside transporters: back to the future. . . .

    PubMed

    Rose, Jennifer B; Coe, Imogen R

    2008-02-01

    Nucleoside transporters (NTs) are integral membrane proteins responsible for mediating and facilitating the flux of nucleosides and nucleobases across cellular membranes. NTs are also responsible for the uptake of nucleoside analog drugs used in the treatment of cancer and viral infections, and they are the target of certain compounds used in the treatment of some types of cardiovascular disease. The important role of NTs as drug transporters and therapeutic targets has necessarily led to intense interest into their structure and function and the relationship between these proteins and drug efficacy. In contrast, we still know relatively little about the fundamental physiology of NTs. In this review, we discuss various aspects of the physiology of NTs in mammalian systems, particularly noting tissues and cells where there has been little recent research. Our central thesis is reference back to some of the older literature, combined with current findings, will provide direction for future research into NT physiology that will lead to a fuller understanding of the role of these intriguing proteins in the everyday lives of cells, tissues, organs, and whole animals.

  9. Nucleobase and nucleoside transport and integration into plant metabolism

    PubMed Central

    Girke, Christopher; Daumann, Manuel; Niopek-Witz, Sandra; Möhlmann, Torsten

    2014-01-01

    Nucleotide metabolism is an essential process in all living organisms. Besides newly synthesized nucleotides, the recycling (salvage) of partially degraded nucleotides, i.e., nucleosides and nucleobases serves to keep the homeostasis of the nucleotide pool. Both types of metabolites are substrates of at least six families of transport proteins in Arabidopsis thaliana (Arabidopsis) with a total of 49 members. In the last years several members of such transport proteins have been analyzed allowing to present a more detailed picture of nucleoside and nucleobase transport and the physiological function of these processes. Besides functioning in nucleotide metabolism it turned out that individual members of the before named transporters exhibit the capacity to transport a wide range of different substrates including vitamins and phytohormones. The aim of this review is to summarize the current knowledge on nucleobase and nucleoside transport processes in plants and integrate this into nucleotide metabolism in general. Thereby, we will focus on those proteins which have been characterized at the biochemical level. PMID:25250038

  10. Effects of halides on reaction of nucleosides with ozone.

    PubMed

    Suzuki, Toshinori; Kaya, Eriko; Inukai, Michiyo

    2012-01-01

    Ozone (O(3)), a major component of photochemical oxidants, is used recently as a deodorizer in living spaces. It has been reported that O(3) can directly react with DNA, causing mutagenesis in human cells and carcinogenesis in mice. However, little is known about the effects of coexistent ions in the reaction of O(3). In the present study, we analyzed the effects of halides on the reaction of O(3) with nucleosides using reversed-phase high-performance liquid chromatography with ultraviolet detection. When aqueous O(3) solution was added to a nucleoside mixture in potassium phosphate buffer (pH 7.3), the nucleosides were consumed with the following decreasing order of importance: dGuo > Thd > dCyd > dAdo. The effects of addition of fluoride and chloride in the system were slight. Bromide suppressed the reactions of dGuo, Thd, and dAdo but enhanced the reaction of dCyd. The major products were 5-hydroxy-2'-deoxycytidine, 5-bromo-2'-deoxycytidine, and 8-bromo-2'-deoxyguanosine. The time course and pH dependence of the product yield indicated formation of hypobromous acid as the reactive agent. Iodide suppressed all the reactions effectively. The results suggest that bromide may alter the mutation spectrum by O(3) in humans. PMID:22646086

  11. Alterations in the expression of uvomorulin and Na+,K(+)-adenosine triphosphatase during mouse skin tumor progression.

    PubMed Central

    Ruggeri, B.; Caamano, J.; Slaga, T. J.; Conti, C. J.; Nelson, W. J.; Klein-Szanto, A. J.

    1992-01-01

    Uvomorulin (E-cadherin), a cell adhesion molecule, and Na+,K(+)-adenosine triphosphatase (ATPase), a marker protein of the basal-lateral cell membrane domains of polarized epithelial cells, were investigated in a group of mouse skin tumors induced by a two-stage chemical carcinogenesis protocol and in cell lines derived from mouse skin papillomas and squamous cell carcinomas (SCC). Although these two markers were present in benign tumors and in nontumorigenic cell lines, the Na+,K(+)-ATPase showed an altered pattern of distribution that included the presence of enzyme not only in the basolateral domain but also on the apical domain of the cell membrane of basal and spinous cells in well-differentiated squamous cell carcinomas (SCC). In higher grade SCC, a loss of Na+,K(+)-ATPase immunoreactivity was simultaneously detected with a marginal or absent expression of uvomorulin. The more differentiated SCC and papillomas expressed less uvomorulin immunoreactivity than normal epidermal cells. Both markers were seen in tumor cell lines that produced well-differentiated SCC after subcutaneous inoculation into nude mice. Neither Na+,K(+)-ATPase nor uvomorulin could be detected in cell lines that produced high grade, poorly differentiated SCC. Northern blots confirmed the absence of uvomorulin mRNA in these highly malignant cell lines. These data indicate that progression from premalignant papilloma to low-grade SCC and subsequently to high-grade SCC is accompanied by loss of epithelial cell polarity as detected by changes in Na+,K(+)-ATPase and by decreased or absent expression of uvomorulin in tumors and cell lines characterized by an advanced malignant phenotype. Images Figure 1 Figure 2 Figure 3 PMID:1316085

  12. Ab initio molecular dynamics studies on HIV-1 reverse transcriptase triphosphate binding site: implications for nucleoside-analog drug resistance.

    PubMed

    Alber, F; Carloni, P

    2000-12-01

    Quantum-chemical methods are used to shed light on the functional role of residues involved in the resistance of HIV-1 reverse transcriptase against nucleoside-analog drugs. Ab initio molecular dynamics simulations are carried out for models representing the adduct between the triphosphate substrate and the nucleoside binding site. The triphosphate is considered either deprotonated or protonated at the gamma-position. Although the protonated form already experiences large rearrangements in the ps time scale, the fully deprotonated state exhibits a previously unrecognized low-barrier hydrogen bond between Lys65 and gamma-phosphate. Absence of this interaction in Lys65-->Arg HIV-1 RT might play a prominent role in the resistance of this mutant for nucleoside analogs (Gu Z et al., 1994b, Antimicrob Agents Chemother 38:275-281; Zhang D et al., 1994, Antimicrob Agents Chemother 38:282-287). Water molecules present in the active site, not detected in the X-ray structure, form a complex H-bond network. Among these waters, one may be crucial for substrate recognition as it bridges Gln151 and Arg72 with the beta-phosphate. Absence of this stabilizing interaction in Gln151-->Met HIV-1 RT mutant may be a key factor for the known drug resistance of this mutant toward dideoxy-type drugs and AZT (Shirasaka T et al., 1995, Proc Natl Acad Sci USA 92:2398-2402: Iversen AK et al., 1996, J Virol 70:1086-1090).

  13. A general approach to the synthesis of 5-S-functionalized pyrimidine nucleosides and their analogues.

    PubMed

    Kananovich, Dzmitry G; Reino, Alli; Ilmarinen, Kaja; Rõõmusoks, Marko; Karelson, Mati; Lopp, Margus

    2014-08-14

    A general and efficient approach was developed for the introduction of S-functionality at the C-5 position of cytosine and uracil nucleosides and their analogues. The key step is a palladium-catalyzed C-S coupling of the corresponding 5-bromo nucleoside derivative and alkyl thiol. The butyl 3-mercaptopropionate coupling products were further converted to the corresponding disulphides, the stable precursors of 5-mercaptopyrimidine nucleosides.

  14. Nicotinamide riboside and nicotinic acid riboside salvage in fungi and mammals. Quantitative basis for Urh1 and purine nucleoside phosphorylase function in NAD+ metabolism.

    PubMed

    Belenky, Peter; Christensen, Kathryn C; Gazzaniga, Francesca; Pletnev, Alexandre A; Brenner, Charles

    2009-01-01

    NAD+ is a co-enzyme for hydride transfer enzymes and an essential substrate of ADP-ribose transfer enzymes and sirtuins, the type III protein lysine deacetylases related to yeast Sir2. Supplementation of yeast cells with nicotinamide riboside extends replicative lifespan and increases Sir2-dependent gene silencing by virtue of increasing net NAD+ synthesis. Nicotinamide riboside elevates NAD+ levels via the nicotinamide riboside kinase pathway and by a pathway initiated by splitting the nucleoside into a nicotinamide base followed by nicotinamide salvage. Genetic evidence has established that uridine hydrolase, purine nucleoside phosphorylase, and methylthioadenosine phosphorylase are required for Nrk-independent utilization of nicotinamide riboside in yeast. Here we show that mammalian purine nucleoside phosphorylase but not methylthioadenosine phosphorylase is responsible for mammalian nicotinamide riboside kinase-independent nicotinamide riboside utilization. We demonstrate that so-called uridine hydrolase is 100-fold more active as a nicotinamide riboside hydrolase than as a uridine hydrolase and that uridine hydrolase and mammalian purine nucleoside phosphorylase cleave nicotinic acid riboside, whereas the yeast phosphorylase has little activity on nicotinic acid riboside. Finally, we show that yeast nicotinic acid riboside utilization largely depends on uridine hydrolase and nicotinamide riboside kinase and that nicotinic acid riboside bioavailability is increased by ester modification. PMID:19001417

  15. HIV-1 reverse transcriptase (RT) polymorphism 172K suppresses the effect of clinically relevant drug resistance mutations to both nucleoside and non-nucleoside RT inhibitors.

    PubMed

    Hachiya, Atsuko; Marchand, Bruno; Kirby, Karen A; Michailidis, Eleftherios; Tu, Xiongying; Palczewski, Krzysztof; Ong, Yee Tsuey; Li, Zhe; Griffin, Daniel T; Schuckmann, Matthew M; Tanuma, Junko; Oka, Shinichi; Singh, Kamalendra; Kodama, Eiichi N; Sarafianos, Stefan G

    2012-08-24

    Polymorphisms have poorly understood effects on drug susceptibility and may affect the outcome of HIV treatment. We have discovered that an HIV-1 reverse transcriptase (RT) polymorphism (RT(172K)) is present in clinical samples and in widely used laboratory strains (BH10), and it profoundly affects HIV-1 susceptibility to both nucleoside (NRTIs) and non-nucleoside RT inhibitors (NNRTIs) when combined with certain mutations. Polymorphism 172K significantly suppressed zidovudine resistance caused by excision (e.g. thymidine-associated mutations) and not by discrimination mechanism mutations (e.g. Q151M complex). Moreover, it attenuated resistance to nevirapine or efavirenz imparted by NNRTI mutations. Although 172K favored RT-DNA binding at an excisable pre-translocation conformation, it decreased excision by thymidine-associated mutation-containing RT. 172K affected DNA handling and decreased RT processivity without significantly affecting the k(cat)/K(m) values for dNTP. Surface plasmon resonance experiments revealed that RT(172K) decreased DNA binding by increasing the dissociation rate. Hence, the increased zidovudine susceptibility of RT(172K) results from its increased dissociation from the chain-terminated DNA and reduced primer unblocking. We solved a high resolution (2.15 Å) crystal structure of RT mutated at 172 and compared crystal structures of RT(172R) and RT(172K) bound to NNRTIs or DNA/dNTP. Our structural analyses highlight differences in the interactions between α-helix E (where 172 resides) and the active site β9-strand that involve the YMDD loop and the NNRTI binding pocket. Such changes may increase dissociation of DNA, thus suppressing excision-based NRTI resistance and also offset the effect of NNRTI resistance mutations thereby restoring NNRTI binding. PMID:22761416

  16. HIV-1 Reverse Transcriptase (RT) Polymorphism 172K Suppresses the Effect of Clinically Relevant Drug Resistance Mutations to Both Nucleoside and Non-nucleoside RT Inhibitors*

    PubMed Central

    Hachiya, Atsuko; Marchand, Bruno; Kirby, Karen A.; Michailidis, Eleftherios; Tu, Xiongying; Palczewski, Krzysztof; Ong, Yee Tsuey; Li, Zhe; Griffin, Daniel T.; Schuckmann, Matthew M.; Tanuma, Junko; Oka, Shinichi; Singh, Kamalendra; Kodama, Eiichi N.; Sarafianos, Stefan G.

    2012-01-01

    Polymorphisms have poorly understood effects on drug susceptibility and may affect the outcome of HIV treatment. We have discovered that an HIV-1 reverse transcriptase (RT) polymorphism (RT172K) is present in clinical samples and in widely used laboratory strains (BH10), and it profoundly affects HIV-1 susceptibility to both nucleoside (NRTIs) and non-nucleoside RT inhibitors (NNRTIs) when combined with certain mutations. Polymorphism 172K significantly suppressed zidovudine resistance caused by excision (e.g. thymidine-associated mutations) and not by discrimination mechanism mutations (e.g. Q151M complex). Moreover, it attenuated resistance to nevirapine or efavirenz imparted by NNRTI mutations. Although 172K favored RT-DNA binding at an excisable pre-translocation conformation, it decreased excision by thymidine-associated mutation-containing RT. 172K affected DNA handling and decreased RT processivity without significantly affecting the kcat/Km values for dNTP. Surface plasmon resonance experiments revealed that RT172K decreased DNA binding by increasing the dissociation rate. Hence, the increased zidovudine susceptibility of RT172K results from its increased dissociation from the chain-terminated DNA and reduced primer unblocking. We solved a high resolution (2.15 Å) crystal structure of RT mutated at 172 and compared crystal structures of RT172R and RT172K bound to NNRTIs or DNA/dNTP. Our structural analyses highlight differences in the interactions between α-helix E (where 172 resides) and the active site β9-strand that involve the YMDD loop and the NNRTI binding pocket. Such changes may increase dissociation of DNA, thus suppressing excision-based NRTI resistance and also offset the effect of NNRTI resistance mutations thereby restoring NNRTI binding. PMID:22761416

  17. Nucleoside triphosphate mimicry: a sugar triazolyl nucleoside as an ATP-competitive inhibitor of B. anthracis pantothenate kinase.

    PubMed

    Rowan, Andrew S; Nicely, Nathan I; Cochrane, Nicola; Wlassoff, Wjatschesslaw A; Claiborne, Al; Hamilton, Chris J

    2009-10-01

    The synthesis of a library of nucleoside triphosphate mimetics is described where the Mg(2+) chelated triphosphate sidechain is replaced by an uncharged methylene-triazole linked monosaccharide sidechain. The compounds have been evaluated as inhibitors of Bacillus anthracis pantothenate kinase and a competitive inhibitor has been identified with a K(i) that is 3-fold lower than the K(m) value of ATP.

  18. Structure-catalytic activity relationships of dicyclohexylcarboxamidine analogs in phosphorylation and alkylation of nucleosides by a two-step phosphorylating agent, 2-methylthio-4H-1,3,2-benzodioxaphosphorin 2-oxide (MTBO).

    PubMed

    Eto, M; Kawasaki, S

    1986-01-01

    Adenosine borate complex was phosphorylated and o-hydroxybenzylated by 2-methylthio-4H-1,3,2-benzodioxaphosphorin 2-oxide (MTBO) in the presence of 4-morpholine-N,N'-dicyclohexylcarboxamidine (MDC) at first to give 1-(o-hydroxybenzyl)adenosine derivative followed by the rearrangement of the benzyl group to the N-6 amino group to give N6-(o-hydroxybenzyl)adenosine 5'-S-methyl phosphorothiolate. More than 20 analogs of MDC were examined for their catalytic activity in phosphorylation and o-hydroxybenzylation of ribonucleoside by MTBO. Dicyclohexylformamidine (DCF) and n-alkylamino analogs of MDC had no effect on the o-hydroxybenzylation of ribonucleoside by MTBO, but had great effect on the phosphorylation. Dialkylamino and cyclic imino analogs of MDC had high catalytic activities to the both reaction. The dicyclohexylcarboxamidine structure of MDC gave the catalytic ability for phosphorylation by MTBO, while the morpholine moiety had great effect on the selectivity of o-hydroxybenzylation by MTBO. PMID:3562278

  19. Chemical Logic and Enzymatic Machinery for Biological Assembly of Peptidyl Nucleoside Antibiotics

    PubMed Central

    Walsh, Christopher T.; Zhang, Wenjun

    2011-01-01

    Peptidyl nucleoside antibiotics are a group of natural products targeting MraY, a bacterial translocase involved in the lipid-linked cycle in peptidoglycan biosynthesis. In this Perspective, we explore how Nature builds complex peptidyl nucleoside antibiotics scaffolds from simple nucleoside and amino acid building blocks. We discuss the current stage of research on biosynthetic pathways for peptidyl nucleoside antibiotics, primarily focusing on chemical logic and enzymatic machinery for uridine transformation and coupling to peptides. We further survey the nonribosomal biosynthetic paradigm for a subgroup of uridyl peptide antibiotics represented by pacidamycins, concluded by diversification opportunities for antibiotic optimization. PMID:21851099

  20. Discovery, characterization, and lead optimization of 7-azaindole non-nucleoside HIV-1 reverse transcriptase inhibitors.

    PubMed

    Stanton, Richard A; Lu, Xiao; Detorio, Mervi; Montero, Catherine; Hammond, Emily T; Ehteshami, Maryam; Domaoal, Robert A; Nettles, James H; Feraud, Michel; Schinazi, Raymond F

    2016-08-15

    A library of 585 compounds built off a 7-azaindole core was evaluated for anti-HIV-1 activity, and ten hits emerged with submicromolar potency and therapeutic index >100. Of these, three were identified as non-nucleoside reverse transcriptase (RT) inhibitors and were assayed against relevant resistant mutants. Lead compound 8 inhibited RT with submicromolar potency (IC50=0.73μM) and also maintained some activity against the clinically important RT mutants K103N and Y181C (IC50=9.2, 3.5μM) in cell-free assays. Free energy perturbation guided lead optimization resulted in the development of a compound with a two-fold increase in potency against RT (IC50=0.36μM). These data highlight the discovery of a unique scaffold with the potential to move forward as next-generation anti-HIV-1 agents. PMID:27390064

  1. Solubilization and Partial Purification of the Adenosine Triphosphatase from a Corn Root Plasma Membrane Fraction

    PubMed Central

    Dupont, Frances M.; Leonard, Robert T.

    1980-01-01

    The K+-stimulated ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mo 17) by solubilization with 30 millimolar octyl-β-d-glucopyranoside followed by precipitation with dilute ammonium sulfate. The specific activity of the enzyme was increased about five times by this procedure. The molecular weight of the detergent-extracted ATPase complex was estimated to be at least 500,000 daltons by chromatography on a Bio-Gel A-5m column. Negative staining electron microscopy indicated that the detergent-extracted material consisted of amorphous particles, while the ammonium sulfate precipitate was composed of uniform vesicles with an average diameter of 100 nanometers. The protein composition of the ammonium sulfate precipitate was significantly different from that of the plasma membrane fraction when compared by sodium dodecyl sulfate gel electrophoresis. The characteristics of the partially purified ATPase resembled those of the plasma membrane associated enzyme. The ATPase required Mg2+, was further stimulated by K+, was almost completely inhibited by 0.1 millimolar diethylstilbestrol, and was not affected by 5.0 micrograms per milliliter oligomycin. Although the detergents sodium cholate, deoxycholate, Triton X-100 and Lubrol WX also solubilized some membrane protein, none solubilized the K+-stimulated ATPase activity. Low concentrations of each detergent, including octyl-β-d-glucopyranoside, activated the ATPase and higher concentrations inactivated the enzyme. These results suggest that the plasma membrane ATPase is a large, integral membrane protein or protein complex that requires lipids to maintain its activity. Images PMID:16661309

  2. Mechanism of inhibition of rat brain adenosine triphosphatase by mercuric chloride

    SciTech Connect

    Chetty, C.S.; Rajanna, B.; Rajanna, S. )

    1989-02-09

    Mercuric Chloride (Hg), a neurotoxic compound inhibited ATPase system of rat brain microsomes. Membrane bound enzymes, Na{sup +}-K{sup +} ATPase (IC{sub 50} = 2.35 {times} 10{sup {minus}7M}) and K-paranitrophenyl phosphatase (K-PNPPase) (IC{sub 50} = 2.7 {times} 10{sup {minus}7M}) and {sup 3}H-Ouabain binding (IC{sub 50} = 3.3 {times} 10{sup {minus}7M}) were inhibited by Hg at micromolar concentrations in a dose dependent manner. Hydrolysis of ATP was linear with time with or without Hg in the reaction mixtures. Altered pH or temperature versus enzyme activity showed higher inhibition by Hg at basic pH (8.0-9.0) and at lower temperatures (17-32{degree}C). Activation energy ({Delta}E) values were increased at 27-37{degree}C in the presence of Hg. Kinetic studies of cationic-substrate activation of Na{sup +}-K{sup +} ATPase and K-PNPPase in the presence of Hg showed significant changes in kinetic constant (K{sub m} and V{sub max}). Inhibition of Na{sup +}-K{sup +} ATPase was partially restored by repeated washings of microsomes. Preincubation with sulfhydryl agents protected Na{sup +}-K{sup +} ATPase from Hg inhibition. Cumulative inhibition studies with Hg and ouabain indicated possible interaction between the two inhibitors of Na{sup +}-K{sup +} ATPase by interacting at Na{sup +} and K{sup +} sites.

  3. Carboranyl Nucleosides & Oligonucleotides for Neutron Capture Therapy Final Report

    SciTech Connect

    Schinazi, Raymond F.

    2004-12-01

    This proposal enabled us to synthesize and develop boron-rich nucleosides and oligonucleotide analogues for boron neutron capture therapy (BNCT) and the treatment of various malignancies. First, we determined the relationship between structure, cellular accumulation and tissue distribution of 5-o-carboranyl-2'-deoxyuridine (D-CDU) and its derivatives D-ribo-CU and 5-o-carboranyluracil (CU), to potentially target brain and other solid tumors for neutron capture therapy. Synthesized carborane containing nucleoside derivatives of CDU, D- and L-enantiomers of CDU, D-ribo-CU and CU were used. We measured tissue disposition in xenografted mice bearing 9479 human prostate tumors xenografts and in rats bearing 9L gliosarcoma isografts in their flanks and intracranially. The accumulation of D-CDU, 1-({beta}-L-arabinosyl)-5-o-carboranyluracil, D-ribo-CU, and CU were also studied in LnCap human prostate tumor cells and their retention was measured in male nude mice bearing LnCap and 9479 human prostate tumor xenografts. D-CDU, D-ribo-CU and CU levels were measured after administration in mice bearing 9479 human prostate tumors in their flanks. D-CDU achieved high cellular concentrations in LnCap cells and up to 2.5% of the total cellular compound was recovered in the 5'-monophosphorylated form. D-CDU cellular concentrations were similar in LnCap and 9479 tumor xenografts. Studies in tumor bearing animals indicated that increasing the number of hydroxyl moieties in the sugar constituent of the carboranyl nucleosides lead to increased rate and extent of renal elimination, a decrease in serum half-lives and an increased tissue specificity. Tumor/brain ratios were greatest for CDU and D-ribo-CU, while tumor/prostate ratios were greatest with CU. CDU and D-ribo-CU have potential for BNCT of brain malignancies, while CU may be further developed for prostate cancer. A method was developed for the solid phase synthesis of oligonucleotides containing (ocarboran-1-yl

  4. Inactivation of mitochondrial adenosine triphosphatase from Trypanosoma cruzi by oxygen radicals.

    PubMed

    Cataldi de Flombaum, M A; Stoppani, A O

    1986-06-01

    Incubation of Trypanosoma cruzi mitochondrial ATPase (Fo-F1) with the xanthine oxidase system (XO), Fenton's reagent (Fe2+ + H2O2) and the ascorbate-Cu system, caused gradual loss of enzyme activity, which increased as a function of incubation time and rate of oxygen radical generation. The essential role of OH. radicals for ATPase inactivation was supported by a) the enzyme protection afforded by superoxide dismutase, catalase and mannitol, when using the XO system; b) the similar effect of mannitol and benzoate with Fenton's reagent; c) the similar effect of catalase, EDTA and histidine with the ascorbate-Cu system; d) the increased rate of ATPase inactivation by 1) the XO system supplemented with chelated iron, and 2) the ascorbate-Cu system supplemented with H2O2. Comparison of oxygen radical generators for their action on membrane-bound (Fo-F1) and soluble F1 revealed that ascorbate-Cu was the most effective one, possibly because of its capability of producing OH. radicals that react preferentially with the enzyme at their formation site. PMID:3017349

  5. Computer-generated Model of Purine Nucleoside Phosphorylase (PNP)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Purine Nucleoside Phosphorylase (PNP) is an important target enzyme for the design of anti-cancer and immunosuppressive drugs. Bacterial PNP, which is slightly different from the human enzyme, is used to synthesize chemotherapuautic agents. Knowledge of the three-dimensional structure of the bacterial PNP molecule is useful in efforts to engineer different types of PNP enzymes, that can be used to produce new chemotherapeutic agents. This picture shows a computer model of bacterial PNP, which looks a lot like a display of colorful ribbons. Principal Investigator was Charles Bugg.

  6. Polymerization of the cyclic pyrophosphates of nucleosides and their analogues

    NASA Technical Reports Server (NTRS)

    Tohidi, Mahrokh; Orgel, Leslie E.

    1990-01-01

    When 2-prime-deoxythymidine 3-prime, 5-prime-cyclic diphosphate, or the cyclic pyrophosphates of the acyclic nucleoside analogs II and IV are heated to 65-85 C in the presence of imidazole, oligomers with lengths up to 20-30 are formed in excellent yield. This reaction provides a useful source of oligomers for use as templates in aqueous condensation reactions. In the absence of evidence to the contrary, it is assumed that the oligomers are atactic. The potential significance of this reaction in prebiotic chemistry is discussed.

  7. A procedure for the preparation and isolation of nucleoside-5’-diphosphates

    PubMed Central

    Korhonen, Heidi J; Bolt, Hannah L

    2015-01-01

    Summary Tris[bis(triphenylphosphoranylidene)ammonium] pyrophosphate (PPN pyrophosphate) was used in the SN2 displacements of the tosylate ion from 5’-tosylnucleosides to afford nucleoside-5’-diphosphates. Selective precipitation permitted the direct isolation of nucleoside-5’-diphosphates from crude reaction mixtures. PMID:25977720

  8. Analysis of Nucleosides in Municipal Wastewater by Large-Volume Liquid Chromatography Tandem Mass Spectrometry

    PubMed Central

    Brewer, Alex J.; Lunte, Craig

    2015-01-01

    Nucleosides are components of both DNA and RNA, and contain either a ribose (RNA) or 2deoxyribose (DNA) sugar and a purine or pyrimidine base. In addition to DNA and RNA turnover, modified nucleosides found in urine have been correlated to a diminished health status associated with AIDS, cancers, oxidative stress and age. Nucleosides found in municipal wastewater influent are potentially useful markers of community health status, and as of now, remain uninvestigated. A method was developed to quantify nucleosides in municipal wastewater using large-volume injection, liquid chromatography, and mass spectrometry. Method accuracy ranged from 92 to 139% when quantified by using isotopically labeled internal standards. Precision ranged from 6.1 to 19% of the relative standard deviation. The method’s utility was demonstrated by the analysis of twenty-four hour composite wastewater influent samples that were collected over a week to investigate community nucleoside excretion. Nucleosides originating from RNA were more abundant that DNA over the study period, with total loads of nucleosides ranging from 2 to 25 kg/day. Given this relatively high amount of nucleosides found over the study period they present an attractive analyte for the investigation of community health. PMID:26322136

  9. Origin, Utilization, and Recycling of Nucleosides in the Central Nervous System

    ERIC Educational Resources Information Center

    Ipata, Piero Luigi

    2011-01-01

    The brain relies on the salvage of preformed purine and pyrimidine rings, mainly in the form of nucleosides, to maintain its nucleotide pool in the proper qualitative and quantitative balance. The transport of nucleosides from blood into neurons and glia is considered to be an essential prerequisite to enter their metabolic utilization in the…

  10. Herbicidin Congeners, Undecose Nucleosides from an Organic Extract of Streptomyces sp. L-9-10

    PubMed Central

    2015-01-01

    Four new undecose nucleosides (herbicidin congeners), three known herbicidins, and 9-(β-d-arabinofuranosyl)hypoxanthine (Ara-H) were isolated from the organic extract of a fermentation culture of Streptomyces sp. L-9-10 using proton NMR-guided fractionation. Their structures were elucidated on the basis of comprehensive 1D and 2D NMR and mass spectrometry analyses. These structures included 2′-O-demethylherbicidin F (1), 9′-deoxy-8′,8′-dihydroxyherbicidin B (2), 9′-deoxy-8′-oxoherbicidin B (2a), and the 8′-epimer of herbicidin B (3). This is the first detailed assignment of proton and carbon chemical shifts for herbicidins A, B, and F. The isolated compounds were evaluated for cancer chemopreventive potential based on inhibition of tumor necrosis factor alpha (TNF-α)-induced nuclear factor-kappa B (NF-κB) activity. PMID:24533857

  11. Evaluation of capillary chromatographic supports for immobilized human purine nucleoside phosphorylase in frontal affinity chromatography studies.

    PubMed

    de Moraes, Marcela Cristina; Temporini, Caterina; Calleri, Enrica; Bruni, Giovanna; Ducati, Rodrigo Gay; Santos, Diógenes Santiago; Cardoso, Carmen Lucia; Cass, Quezia Bezerra; Massolini, Gabriella

    2014-04-18

    The aim of this work was to optimize the preparation of a capillary human purine nucleoside phosphorylase (HsPNP) immobilized enzyme reactor (IMER) for characterization and affinity screening studies of new inhibitors by frontal affinity chromatography coupled to mass spectrometry (FAC-MS). For this purpose two monolithic supports, a Chromolith Speed Rod (0.1mm I.D.×5cm) and a methacrylate-based monolithic epoxy polymeric capillary column (0.25mm I.D.×5cm) with epoxy reactive groups were considered and compared to an IMER previously developed using an open fused silica capillary. Each HsPNP-IMER was characterized in terms of catalytic activity using Inosine as standard substrate. Furthermore, they were also explored for affinity ranking experiments. Kd determination was carried out with the based fused silica HsPNP-IMER and the results are herein discussed.

  12. Complete inactivation of HIV-1 using photo-labeled non-nucleoside reverse transcriptase inhibitors.

    PubMed

    Rios, Adan; Quesada, Jorge; Anderson, Dallas; Goldstein, Allan; Fossum, Theresa; Colby-Germinario, Susan; Wainberg, Mark A

    2011-01-01

    We demonstrate that a photo-labeled derivative of the non-nucleoside reverse transcriptase inhibitor (NNRTI) dapivirine termed DAPY, when used together with exposure to ultraviolet light, was able to completely and irreversibly inactivate both HIV-1 RT activity as well as infectiousness in each of a T cell line and peripheral blood mononuclear cells. Control experiments using various concentrations of DAPY revealed that a combination of exposure to ultraviolet light together with use of the specific, high affinity photo-labeled compound was necessary for complete inactivation to occur. This method of HIV RT inactivation may have applicability toward preservation of an intact viral structure and warrants further investigation in regard to the potential of this approach to elicit a durable, broad protective immune response. PMID:20937333

  13. Anti-Mycobacterial Nucleoside Antibiotics from a Marine-Derived Streptomyces sp. TPU1236A

    PubMed Central

    Bu, Ying-Yue; Yamazaki, Hiroyuki; Ukai, Kazuyo; Namikoshi, Michio

    2014-01-01

    Five new nucleoside antibiotics, named streptcytosines A–E (1–5), and six known compounds, de-amosaminyl-cytosamine (6), plicacetin (7), bamicetin (8), amicetin (9), collismycin B (10), and SF2738 C (11), were isolated from a culture broth of Streptomyces sp. TPU1236A collected in Okinawa, Japan. The structures of new compounds were elucidated on the basis of their spectroscopic data (HRFABMS, IR, UV, and 2D NMR experiments including 1H-1H COSY, HMQC, HMBC, and NOESY spectra). Streptcytosine A (1) belonged to the amicetin group antibiotics, and streptcytosines B–E (2–5) were derivatives of de-amosaminyl-cytosamine (6), 2,3,6-trideoxyglucopyranosyl cytosine. Compound 1 inhibited the growth of Mycobacterium smegmatis (MIC = 32 µg/mL), while compounds 2–5 were not active at 50 µg/disc. Bamicetin (8) and amicetin (9) showed the MICs of 16 and 8 µg/mL, respectively. PMID:25522318

  14. Identification and characterization of the conserved nucleoside-binding sites in the Epstein-Barr virus thymidine kinase.

    PubMed Central

    Wu, Chung-Chun; Chen, Min-Che; Chang, Ya-Ru; Hsu, Tsuey-Ying; Chen, Jen-Yang

    2004-01-01

    Thymidine kinase (TK), encoded by EBV (Epstein-Barr virus), is an attractive target for antiviral therapy and provides a novel approach to the treatment of EBV-associated malignancies. Despite the extensive use of nucleoside analogues for the treatment of viral infections and cancer, the structure-function relationship of EBV TK has been addressed rarely. In the absence of any structural information, we sought to identify and elucidate the functional roles of amino acids in the nucleoside-binding site using site-directed mutagenesis. Through alignment with other human herpesviral TK protein sequences, we predicted that certain conserved regions comprise the nucleoside-binding site of EBV TK and, through site-directed mutagenesis, showed significant changes in activity and binding affinity for thymidine of site 3 (-DRH-) and 4 (-VFP-) mutants. For site 3, only mutants D392E (Asp392-->Glu) and R393H retain activity, indicating that a negative charge is important for Asp392 and a positive charge is required for Arg393. The increased binding affinities of these two mutants for 3'-deoxy-2',3'-didehydrothymidine suggest that the two residues are also important for substrate selection. Interestingly, the changed metal-ion usage pattern of D392E reveals that Asp392 plays multiple roles in this region. His394 cannot be compensated by other amino acids, also indicating a crucial role. In site 4, the F402Y mutant retains full activity; however, F402S retains only 60% relative activity. Strikingly, when Phe402 is substituted with serine residue, the original preferred pyrimidine substrates, such as 3'-azido-3'-deoxythymidine, iododeoxyuridine and beta-L-5-iododioxolane uracil (L-form substrate), have decreased competitiveness with thymidine, suggesting that Phe402 plays a crucial role in substrate specificity and that the aromatic ring is important for function. PMID:14705959

  15. A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway.

    PubMed

    Becker, Sidney; Thoma, Ines; Deutsch, Amrei; Gehrke, Tim; Mayer, Peter; Zipse, Hendrik; Carell, Thomas

    2016-05-13

    The origin of life is believed to have started with prebiotic molecules reacting along unidentified pathways to produce key molecules such as nucleosides. To date, a single prebiotic pathway to purine nucleosides had been proposed. It is considered to be inefficient due to missing regioselectivity and low yields. We report that the condensation of formamidopyrimidines (FaPys) with sugars provides the natural N-9 nucleosides with extreme regioselectivity and in good yields (60%). The FaPys are available from formic acid and aminopyrimidines, which are in turn available from prebiotic molecules that were also detected during the Rosetta comet mission. This nucleoside formation pathway can be fused to sugar-forming reactions to produce pentosides, providing a plausible scenario of how purine nucleosides may have formed under prebiotic conditions. PMID:27174989

  16. Recognizing nucleosides with transverse electronic transport via perpendicular direction of base planes for DNA sequencing

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Dong, Ruixin; Yan, Xunling; Shi, Qiang

    2012-09-01

    Putting the four DNA nucleosides in the middle of gold [111] nanoelectrodes with base planes parallel to the electrode surface layer, we study the transverse electronic transport properties of four nucleosides along the direction of electrodes. First, the optimal distance of the electrodes is released. The results show that the optimal electrode distance to study transverse electronic transport characteristics of DNA nucleosides is about 0.68 nm. Second, we theoretically calculate the conductance and current of the four nucleosides via perpendicular direction of base planes in the bias range of [-2, 2] V by exploiting the first principle theory. According to the calculated results, we propose three methods to recognize the nucleoside type in practice application.

  17. Recognizing nucleosides with transverse electronic transport via perpendicular direction of base planes for DNA sequencing.

    PubMed

    Yang, Bing; Dong, Ruixin; Yan, Xunling; Shi, Qiang

    2012-01-01

    Putting the four DNA nucleosides in the middle of gold [111] nanoelectrodes with base planes parallel to the electrode surface layer, we study the transverse electronic transport properties of four nucleosides along the direction of electrodes. First, the optimal distance of the electrodes is released. The results show that the optimal electrode distance to study transverse electronic transport characteristics of DNA nucleosides is about 0.68 nm. Second, we theoretically calculate the conductance and current of the four nucleosides via perpendicular direction of base planes in the bias range of [-2, 2] V by exploiting the first principle theory. According to the calculated results, we propose three methods to recognize the nucleoside type in practice application.

  18. Aquaporin 3 (AQP3) participates in the cytotoxic response to nucleoside-derived drugs

    PubMed Central

    2012-01-01

    Background Nucleoside analogs used in the chemotherapy of solid tumors, such as the capecitabine catabolite 5′-deoxy-5-fluorouridine (5′-DFUR) trigger a transcriptomic response that involves the aquaglyceroporin aquaporin 3 along with other p53-dependent genes. Here, we examined whether up-regulation of aquaporin 3 (AQP3) mRNA in cancer cells treated with 5′-DFUR represents a collateral transcriptomic effect of the drug, or conversely, AQP3 participates in the activity of genotoxic agents. Methods The role of AQP3 in cell volume increase, cytotoxicity and cell cycle arrest was analyzed using loss-of-function approaches. Results 5′-DFUR and gemcitabine, but not cisplatin, stimulated AQP3 expression and cell volume, which was partially and significantly blocked by knockdown of AQP3. Moreover, AQP3 siRNA significantly blocked other effects of nucleoside analogs, including G1/S cell cycle arrest, p21 and FAS up-regulation, and cell growth inhibition. Short incubations with 5-fluorouracil (5-FU) also induced AQP3 expression and increased cell volume, and the inhibition of AQP3 expression significantly blocked growth inhibition triggered by this drug. To further establish whether AQP3 induction is related to cell cycle arrest and apoptosis, cells were exposed to long incubations with escalating doses of 5-FU. AQP3 was highly up-regulated at doses associated with cell cycle arrest, whereas at doses promoting apoptosis induction of AQP3 mRNA expression was reduced. Conclusions Based on the results, we propose that the aquaglyceroporin AQP3 is required for cytotoxic activity of 5’-DFUR and gemcitabine in the breast cancer cell line MCF7 and the colon adenocarcinoma cell line HT29, and is implicated in cell volume increase and cell cycle arrest. PMID:23017148

  19. Nucleoside triphosphate-dependent DNA-binding properties of mos protein.

    PubMed Central

    Seth, A; Priel, E; Vande Woude, G F

    1987-01-01

    We have previously shown that the mos gene product, p40mos, produced in Escherichia coli binds ATP and has ATPase activity. In the present study, we investigated the DNA-binding properties of p40mos and two mos deletion mutant proteins. Nitrocellulose blot protein-DNA binding assays showed that p40mos binds DNA in the presence of Mg2+-ATP and certain other nucleoside triphosphates. Ninety percent of the p40mos-bound DNA is dissociated if the complex is washed in the presence of 1 M NaCl or in the absence of ATP. p40mos-DNA binding is not observed in the presence of AMP or the nonhydrolyzable ATP analog adenosine 5'-[beta, gamma-methylene]-triphosphate; however, in the presence of ADP, p40mos binds DNA at 20% of the level that is observed with ATP. An N-terminal-deletion mutant protein, p19mos, has no DNA-binding activity, whereas a C-terminal-deletion mutant protein, p25mos, does. p25mos contains the ATP-binding domain, binds DNA in the presence of either ADP or ATP, and shows 5% and 45% binding (relative to that in the presence of ATP) in the presence of AMP and adenosine 5'-[beta, gamma-methylene]triphosphate, respectively. These results suggest that the N-terminal domain of p40mos is responsible for nucleoside triphosphate-mediated DNA binding. We also observed differential histone-DNA binding in the presence and absence of ATP. Images PMID:3035537

  20. A purine nucleoside phosphorylase in Solanum tuberosum L. (potato) with specificity for cytokinins contributes to the duration of tuber endodormancy.

    PubMed

    Bromley, Jennifer R; Warnes, Barbara J; Newell, Christine A; Thomson, Jamie C P; James, Celia M; Turnbull, Colin G N; Hanke, David E

    2014-03-01

    StCKP1 (Solanum tuberosum cytokinin riboside phosphorylase) catalyses the interconversion of the N9-riboside form of the plant hormone CK (cytokinin), a subset of purines, with its most active free base form. StCKP1 prefers CK to unsubstituted aminopurines. The protein was discovered as a CK-binding activity in extracts of tuberizing potato stolon tips, from which it was isolated by affinity chromatography. The N-terminal amino acid sequence matched the translation product of a set of ESTs, enabling a complete mRNA sequence to be obtained by RACE-PCR. The predicted polypeptide includes a cleavable signal peptide and motifs for purine nucleoside phosphorylase activity. The expressed protein was assayed for purine nucleoside phosphorylase activity against CKs and adenine/adenosine. Isopentenyladenine, trans-zeatin, dihydrozeatin and adenine were converted into ribosides in the presence of ribose 1-phosphate. In the opposite direction, isopentenyladenosine, trans-zeatin riboside, dihydrozeatin riboside and adenosine were converted into their free bases in the presence of Pi. StCKP1 had no detectable ribohydrolase activity. Evidence is presented that StCKP1 is active in tubers as a negative regulator of CKs, prolonging endodormancy by a chill-reversible mechanism.

  1. Muraymycin nucleoside-peptide antibiotics: uridine-derived natural products as lead structures for the development of novel antibacterial agents

    PubMed Central

    Wirth, Marius; Niro, Giuliana; Leyerer, Kristin

    2016-01-01

    Summary Muraymycins are a promising class of antimicrobial natural products. These uridine-derived nucleoside-peptide antibiotics inhibit the bacterial membrane protein translocase I (MraY), a key enzyme in the intracellular part of peptidoglycan biosynthesis. This review describes the structures of naturally occurring muraymycins, their mode of action, synthetic access to muraymycins and their analogues, some structure–activity relationship (SAR) studies and first insights into muraymycin biosynthesis. It therefore provides an overview on the current state of research, as well as an outlook on possible future developments in this field. PMID:27340469

  2. Muraymycin nucleoside-peptide antibiotics: uridine-derived natural products as lead structures for the development of novel antibacterial agents.

    PubMed

    Wiegmann, Daniel; Koppermann, Stefan; Wirth, Marius; Niro, Giuliana; Leyerer, Kristin; Ducho, Christian

    2016-01-01

    Muraymycins are a promising class of antimicrobial natural products. These uridine-derived nucleoside-peptide antibiotics inhibit the bacterial membrane protein translocase I (MraY), a key enzyme in the intracellular part of peptidoglycan biosynthesis. This review describes the structures of naturally occurring muraymycins, their mode of action, synthetic access to muraymycins and their analogues, some structure-activity relationship (SAR) studies and first insights into muraymycin biosynthesis. It therefore provides an overview on the current state of research, as well as an outlook on possible future developments in this field. PMID:27340469

  3. Chutes and Ladders in Hepatitis C Nucleoside Drug Development§

    PubMed Central

    Coats, Steven J.; Garnier-Amblard, Ethel C.; Amblard, Franck; Ehteshami, Maryam; Amiralaei, Sheida; Zhang, Hongwang; Zhou, Longhu; Boucle, Sebastien R. L.; Lu, Xiao; Bondada, Lavanya; Shelton, Jadd R.; Li, Hao; Liu, Peng; Li, Chengwei; Cho, Jong Hyun; Chavre, Satish N.; Zhou, Shaoman; Mathew, Judy; Schinazi, Raymond F.

    2014-01-01

    Chutes and Ladders is an exciting up-and-down-again game in which players race to be the first to the top of the board. Along the way, they will find ladders to help them advance, and chutes that will cause them to move backwards. The development of nucleoside analogs for clinical treatment of hepatitis C presents a similar scenario in which taking shortcuts may help quickly advance a program, but there is always a tremendous risk of being sent backwards as one competes for the finish line. In recent years the treatment options for chronic hepatitis C virus (HCV) infection have expand due to the development of a replicon based in vitro evaluation system, allowing for the identification of multiple drugable viral targets along with a concerted and substantial drug discovery effort. Three major drug targets have reached clinical study for chronic HCV infection: the NS3/4A serine protease, the large phosphoprotein NS5A, and the NS5B RNA-dependent RNA polymerase. Recently, two oral HCV protease inhibitors were approved by the FDA and were the first direct acting anti-HCV agents to result from the substantial research in this area. There are currently many new chemical entities from several different target classes that are being evaluated worldwide in clinical trials for their effectiveness at achieving a sustained virologic response (SVR) (Pham et al., 2004; Radkowski et al., 2005). Clearly the goal is to develop therapies leading to a cure that are safe, widely accessible and available, and effective against all HCV genotypes (GT), and all stages of the disease. Nucleoside analogs that target the HCV NS5B polymerase that have reached human clinical trials is the focus of this review as they have demonstrated significant advantages in the clinic with broader activity against the various HCV GT and a higher barrier to the development of resistant viruses when compared to all other classes of HCV inhibitors. PMID:24275341

  4. Transition Path Sampling Study of the Reaction Catalyzed by Purine Nucleoside Phosphorylase

    PubMed Central

    Saen-oon, Suwipa; Schramm, Vern L.; Schwartz, Steven D.

    2010-01-01

    The Transition Path Sampling (TPS) method is a powerful technique for studying rare events in complex systems, that allows description of reactive events in atomic detail without prior knowledge of reaction coordinates and transition states. We have applied TPS in combination with a hybrid Quantum Mechanical/Molecular Mechanical (QM/MM) method to study the enzyme human purine nucleoside phosphorylase (hPNP). This enzyme catalyzes the reversible phosphorolysis of 6-oxypurine (deoxy)nucleosides to generate the corresponding purine base and (deoxy)ribose 1-phosphate. Hundreds of reactive trajectories were generated. Analysis of this transition path ensembles provides insight into the detailed mechanistic dynamics of reaction in the enzyme. Our studies have indicated a reaction mechanism involving the cleavage of the N-ribosidic bond to form transition states with substantial ribooxacarbenium ion character, that is then followed by conformational changes in the enzyme and the ribosyl group leading to migration of the anomeric carbon of the ribosyl group toward phosphate to form the product ribose 1-phosphate. This latter process is crucial in PNP, because several strong H-bonds form between active site residues in order to capture and align the phosphate nucleophile. Calculations of the commitment probability along reactive paths demonstrated the presence of a broad energy barrier at the transition state. Analysis of these transition state structures showed that bond-breaking and bond-forming distances are not a good choice for the reaction coordinate, but that the pseudorotational phase of the ribose ring is also a significant variable. PMID:20664707

  5. Nicotine-modulated formation of spiroiminodihydantoin nucleoside via 8-oxo-7,8-dihydro-2'-deoxyguanosine in 2'-deoxyguanosine-hypochlorous acid reaction.

    PubMed

    Suzuki, Toshinori; Ohshima, Hiroshi

    2002-04-10

    Hypochlorous acid (HOCl) is generated by myeloperoxidase of activated neutrophils which kill invading microorganisms, but also cause DNA damage in inflamed tissues. We report here that spiroiminodihydantoin nucleoside (dS), a further oxidized product of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), is formed, in addition to 8-chloro-2'-deoxyguanosine and 8-oxo-dG, by reaction of 2'-deoxyguanosine with HOCl. Presence of low concentrations of nicotine significantly enhanced the yields of these HOCl-modified nucleosides. Our results imply that nicotine may enhance genotoxicity and tissue damage caused by neutrophil activation. dS may also serve as a new biomarker for oxidative DNA damage induced by oxidants such as HOCl. PMID:11959105

  6. On the Functional Role of the {epsilon} Subunit of the Molecular Motor F-Adenosine Triphosphatase in Lipid Membranes of Cells

    SciTech Connect

    Pikin, S. A. Loginov, E. B.

    2010-11-15

    The effect of the e subunit of the molecular motor F-adenosine triphosphatase, which is built into the lipid membrane of a cell, on the dynamics of the rotor ({gamma} subunit), with which this subunit is bound, has been qualitatively considered. It is shown that its structural and conformational features arising during the hydrolysis of 'fuel' adenosine triphosphate (ATP) molecules can be explained by the change in the potential within which the rotor is located. As the numerical calculations showed, at a low ATP concentration, the hydrolysis is accompanied by an unstable rotation of the {gamma} subunit and the related proton current. A model is proposed to describe the interaction between the {epsilon} subunit and the lipid order fluctuations caused by the membrane transition to the gel state. It is demonstrated that the rotor rotations become inhomogeneous when this interaction is enhanced with a decrease in the cell temperature.

  7. Nucleoside-nucleotide free diet protects rat colonic mucosa from damage induced by trinitrobenzene sulphonic acid.

    PubMed Central

    Adjei, A A; Morioka, T; Ameho, C K; Yamauchi, K; Kulkarni, A D; Al-Mansouri, H M; Kawajiri, A; Yamamoto, S

    1996-01-01

    BACKGROUND: Growing evidence suggests that intestinal recovery from injury induced by radiation, endotoxin, and protein deficiency is improved by the ingestion of nucleosides and nucleotides. AIM: This study examined the effect of dietary nucleosides and nucleotides supplementation on trinitrobenzene sulphonic acid induced colonic damage in experimental colitis. METHODS: Sprague-Dawley rats were randomised into two groups and fed nucleic acid free 20% casein diet (control) or this diet supplemented with 0.5% nucleoside-nucleotide mixture for four weeks. On the second week, colonic inflammation was induced in rats by intracolonic administration of 0.25 ml of 50% ethanol containing 25 mg of trinitrobenzene sulphonic acid. Additionally, other sets of rats were treated with 0.25 ml of 50% ethanol, 25 mg of trinitrobenzene sulphonic acid in 0.25 ml saline, or 0.25 ml of 0.9% saline. RESULTS: After two weeks, colon weight, macroscopic and microscopic damage scores, were significantly greater (p < 0.05) in the nucleoside-nucleotide supplemented group compared with the non-supplemented control groups. The same variables seen in the trinitrobenzene sulphonic acid-ethanol group fed nucleoside-nucleotide free diet were greater (p < 0.05) than in the rest of the groups fed nucleoside-nucleotide free diet and treated with ethanol, trinitrobenzene sulphonic acid in saline, or saline. Histologically, segmental ulceration and inflammation associated with significantly increased infiltration of polymorphonuclear leucocytes, macrophages, lymphocytes, fibroblasts were observed in the supplemented group compared with the controls. In the nucleoside-nucleotide supplemented group the epithelial damage, mucosal erosion, oedema, and coagulative necrosis of the muscularis propria was more extensive in comparison to the non-supplemented control groups. CONCLUSIONS: This study suggests that dietary nucleosides and nucleotides may aggravate colonic damage and inflammation in chemically

  8. Synthesis of α-l-Threofuranosyl Nucleoside Triphosphates (tNTPs)

    PubMed Central

    Zou, Keyong; Horhota, Allen; Yu, Biao; Szostak, Jack W.

    2005-01-01

    The α-l-threofuranosyl nucleoside triphosphates of T, G, and D (tTTP, tGTP, and tDTP) were synthesized from the described 2‘-O-DMT-protected derivatives using the Eckstein method, while the corresponding C derivative (tCTP) was prepared from the 2‘-O-acetyl derivative. The prepared α-l-threofuranosyl nucleoside triphosphates, despite being one carbon shorter than the native 2‘-deoxyfuranosyl nucleoside triphosphates, are effective substrates for selected DNA polymerases. PMID:15816733

  9. An Efficient Protection-Free One-Pot Chemical Synthesis of Modified Nucleoside-5'-Triphosphates.

    PubMed

    Shanmugasundaram, Muthian; Senthilvelan, Annamalai; Xiao, Zejun; Kore, Anilkumar R

    2016-07-01

    A simple, reliable, and an efficient "one-pot, three step" chemical method for the synthesis of modified nucleoside triphosphates such as 5-methylcytidine-5'-triphosphate (5-MeCTP), pseudouridine-5'-triphosphate (pseudoUTP) and N(1)-methylpseudouridine-5'-triphosphate (N(1)-methylpseudoUTP) starting from the corresponding nucleoside is described. The overall reaction involves the monophosphorylation of nucleoside, followed by the reaction with pyrophosphate and subsequent hydrolysis of the cyclic intermediate to furnish the corresponding NTP in moderate yields with high purity (>99.5%).

  10. An HIV reverse transcriptase-selective nucleoside chain terminator.

    PubMed

    Fraley, Andrew W; Chen, Dongli; Johnson, Kenneth; McLaughlin, Larry W

    2003-01-22

    The synthesis of a 2',3'-dideoxynucleoside cytidine analogue, but one that lacks the O2-carbonyl, is described from 2-aminopyridine in an overall yield of 60%. The synthesis of the 2-pyridone C-nucleoside relies upon the use of a Heck-type coupling between an appropriately protected sugar glycal and the 5-iodo derivative of 2-aminopyridone. Upon conversion of the dideoxynucleoside to the corresponding 5'-triphosphate, the analogue ddNTP is observed to be a reasonable substrate with HIV reverse transcriptase (for a template dG residue), but is not a substrate for calf thymus DNA polymerase alpha or for human DNA polymerase beta. With the human mitochondrial DNA polymerase the analogue functions as a poor substrate. The observed polymerase selectivities appear to arise from the absence of the O2-carbonyl, which either results in a destabilized Watson-Crick base pair or represents a critical contact for some polymerases.

  11. Uridine Nucleoside Thiation: Gas-Phase Structures and Energetics

    NASA Astrophysics Data System (ADS)

    Hamlow, Lucas; Lee, Justin; Rodgers, M. T.; Berden, Giel; Oomens, Jos

    2016-06-01

    The naturally occurring thiated uridine nucleosides, 4-thiouridine (s4Urd) and 2-thiouridine (s2Urd), play important roles in the function and analysis of a variety of RNAs. 2-Thiouridine and its C5 modified analogues are commonly found in tRNAs and are believed to play an important role in codon recognition possibly due to their different structure, which has been shown by NMR to be predominantly C3'-endo. 2-Thiouridine may also play an important role in facilitating nonenzymatic RNA replication and transcription. 4-Thiouridine is a commonly used photoactivatable crosslinker that is often used to study RNA-RNA and RNA-protein cross-linking behavior. Differences in the base pairing between uracil and 4-thiouracil with adenine and guanine are an important factor in their role as a cross linker. The photoactivity of s4Urd may also aid in preventing near-UV lethality in cells. An understanding of their intrinsic structure in the gas-phase may help further elucidate the roles these modified nucleosides play in the regulation of RNAs. In this work, infrared multiple photon dissociation (IRMPD) action spectra of the protonated forms of s2Urd and s4Urd were collected in the IR fingerprint region. Structural information is determined by comparison with theoretical linear IR spectra generated from density functional theory calculations using molecular modeling to generate low-energy candidate structures. Present results are compared with analogous results for the protonated forms of uridine and 2'-deoxyuridine as well as solution phase NMR data and crystal structures.

  12. Pyrimidine nucleoside phosphorylation in developing seeds and germinating seedlings of wheat

    SciTech Connect

    Rowe, M.L.

    1988-01-01

    Uridine- and thymidine-phosphorylating enzymes were measured in developing and germinating seeds of Triticum aestivum v. Arthur and T. aestivum v. Lemhi. Because crude extracts were to be used in the developmental study, characteristics of unpurified nucleoside phosphotransferase (NPTase) were examined. In the developmental study with two varieties of wheat, NPTase activity was found to be very low in all of the true seed tissues during seed maturation. Uridine-phosphorylating activity was due to primarily to uridine kinase. Thymidine phosphorylation was very low in all tissues throughout seed maturation, with a brief appearance by thymidine kinase in the developing embryo. In germinating seeds, uridine-phosphorylating activity was present from earliest stages of germination but showed a decrease in activity followed by a recovery after 48 hours inbibition. Experiments using ({alpha}-{sup 32}P)ATP indicated that uridine kinase was present during early germination but had disappeared by 96 hours. Uridine phosphorylation at later stages of germination was accomplished by NTPase. Thymidine phosphorylation did not begin until after 36 hours of germination and was the result of NPTase activity.

  13. Comparison of nucleoside concentrations in blood of fish with and without tumors

    SciTech Connect

    Kuehl, D.W.; Johnson, R.D. ); Eisenschenk, L.; Naumann, S. ); Regal, R.; Barnidge, P. ); McKim, J. Jr. )

    1991-05-01

    The objective of this study was to develop and use HPLC based analytical methodology to characterize nucleosides in blood plasma and serum from fish with and without tumors, with a goal of determining if fish blood nucleoside concentrations could similarly be used as a bioindicator of tumor development in fish. The approach was to develop analytical methodology and quality assurance criteria for the analysis of nucleosides in fish blood, and to characterize nucleoside concentrations in blood of fish for which both healthy and tumor-bearing samples were available. Data would then be used to establish parameters with which tumor-bearing fish could be distinguished from healthy fish. Blood samples used to establish the diagnostic parameters were from control rainbow trout (Oncorhynchus mykiss) and those with tumors developed after exposure to aflatoxins. A second set of blood samples was from field collected black bullheads (Ictalurus melas).

  14. Nucleoside, nucleotide and oligonucleotide based amphiphiles: a successful marriage of nucleic acids with lipids.

    PubMed

    Gissot, Arnaud; Camplo, Michel; Grinstaff, Mark W; Barthélémy, Philippe

    2008-04-21

    Amphiphilic molecules based on nucleosides, nucleotides and oligonucleotides are finding more and more biotechnological applications. This Perspective highlights their synthesis, supramolecular organization as well as their applications in the field of biotechnology.

  15. Metabolic engineering of an industrial polyoxin producer for the targeted overproduction of designer nucleoside antibiotics.

    PubMed

    Qi, Jianzhao; Liu, Jin; Wan, Dan; Cai, You-Sheng; Wang, Yinghu; Li, Shunying; Wu, Pan; Feng, Xuan; Qiu, Guofu; Yang, Sheng-Ping; Chen, Wenqing; Deng, Zixin

    2015-09-01

    Polyoxin and nikkomycin are naturally occurring peptidyl nucleoside antibiotics with potent antifungal bioactivity. Both exhibit similar structural features, having a nucleoside skeleton and one or two peptidyl moieties. Combining the refactoring of the polyoxin producer Streptomyces aureochromogenes with import of the hydroxypyridylhomothreonine pathway of nikkomycin allows the targeted production of three designer nucleoside antibiotics designated as nikkoxin E, F, and G. These structures were determined by NMR and/or high resolution mass spectrometry. Remarkably, the introduction of an extra copy of the nikS gene encoding an ATP-dependent ligase significantly enhanced the production of the designer antibiotics. Moreover, all three nikkoxins displayed improved bioactivity against several pathogenic fungi as compared with the naturally-occurring antibiotics. These data provide a feasible model for high efficiency generation of nucleoside antibiotics related to polyoxins and nikkomycins in a polyoxin cell factory via synthetic biology strategy.

  16. The preparation of trisubstituted alkenyl nucleoside phosphonates under ultrasound-assisted olefin cross-metathesis.

    PubMed

    Sari, Ozkan; Hamada, Manabu; Roy, Vincent; Nolan, Steven P; Agrofoglio, Luigi A

    2013-09-01

    Intermolecular ultrasound-assisted olefin cross-metathesis is reported. This approach allows an easy access to challenging trisubstituted alkenyl nucleoside phosphonates. Regioselective chemoenzymatic deacetylation and Mitsunobu coupling are also described. PMID:23961760

  17. The preparation of trisubstituted alkenyl nucleoside phosphonates under ultrasound-assisted olefin cross-metathesis.

    PubMed

    Sari, Ozkan; Hamada, Manabu; Roy, Vincent; Nolan, Steven P; Agrofoglio, Luigi A

    2013-09-01

    Intermolecular ultrasound-assisted olefin cross-metathesis is reported. This approach allows an easy access to challenging trisubstituted alkenyl nucleoside phosphonates. Regioselective chemoenzymatic deacetylation and Mitsunobu coupling are also described.

  18. Glycosyl-nucleoside-lipid based supramolecular assembly as a nanostructured material with nucleic acid delivery capabilities.

    PubMed

    Godeau, Guilhem; Bernard, Julie; Staedel, Cathy; Barthélémy, Philippe

    2009-09-14

    A glycosyl-nucleoside-lipid self-assembles to give highly organized structures such as fibers and nanotubes, which can stabilize hydrogels; carbohydrate moieties provide a suitable environment to deliver nucleic acids into human cells.

  19. Novel indole-3-sulfonamides as potent HIV non-nucleoside reverse transcriptase inhibitors (NNRTIs)

    SciTech Connect

    Zhao, Zhijian; Wolkenberg, Scott E.; Lu, Meiqing; Munshi, Vandna; Moyer, Gregory; Feng, Meizhen; Carella, Anthony V.; Ecto, Linda T.; Gabryelski, Lori J.; Lai, Ming-Tain; Prasad, Sridar G.; Yan, Youwei; McGaughey, Georgia B.; Miller, Michael D.; Lindsley, Craig W.; Hartman, George D.; Vacca, Joseph P.; Williams, Theresa M.

    2008-09-29

    This Letter describes the design, synthesis, and biological evaluation of novel 3-indole sulfonamides as potent non-nucleoside reverse transcriptase inhibitors (NNRTIs) with balanced profiles against common HIV RT mutants K103N and Y181C.

  20. Aqueous microwave-assisted cross-coupling reactions applied to unprotected nucleosides.

    PubMed

    Hervé, Gwénaëlle; Len, Christophe

    2015-01-01

    Metal catalyzed cross-coupling reactions have been the preferred tools to access to modified nucleosides (on the C5-position of pyrimidines and on the C7- or C8-positions of purines). Our objective is to focus this mini-review on the Suzuki-Miyaura and on the Heck cross-couplings of nucleosides using microwave irradiations which is an alternative technology compatible with green chemistry and sustainable development.

  1. Enantioselective Intermolecular Cyclopropanations for the Synthesis of Chiral Pyrimidine Carbocyclic Nucleosides.

    PubMed

    Xie, Ming-Sheng; Zhou, Peng; Niu, Hong-Ying; Qu, Gui-Rong; Guo, Hai-Ming

    2016-09-01

    A direct route to chiral cyclopropylpyrimidine carbocyclic nucleoside analogues has been reported via highly enantioselective intermolecular cyclopropanation reactions of N1-vinylpyrimidines with α-diazoesters. With chiral ruthenium(II)-phenyloxazoline complex (2 mol %) as the catalyst, cyclopropyl pyrimidine nucleoside analogues could be obtained in good yields (71-96% yields) with high levels of diastereo- and enantioselectivities (10:1 to >20:1 dr and 96-99% ee) in 1 min. PMID:27526779

  2. Classification of lung cancer patients and controls by chromatography of modified nucleosides in serum

    USGS Publications Warehouse

    McEntire, John E.; Kuo, Kenneth C.; Smith, Mark E.; Stalling, David L.; Richens, Jack W.; Zumwalt, Robert W.; Gehrke, Charles W.; Papermaster, Ben W.

    1989-01-01

    A wide spectrum of modified nucleosides has been quantified by high-performance liquid chromatography in serum of 49 male lung cancer patients, 35 patients with other cancers, and 48 patients hospitalized for nonneoplastic diseases. Data for 29 modified nucleoside peaks were normalized to an internal standard and analyzed by discriminant analysis and stepwise discriminant analysis. A model based on peaks selected by a stepwise discriminant procedure correctly classified 79% of the cancer and 75% of the noncancer subjects. It also demonstrated 84% sensitivity and 79% specificity when comparing lung cancer to noncancer subjects, and 80% sensitivity and 55% specificity in comparing lung cancer to other cancers. The nucleoside peaks having the greatest influence on the models varied dependent on the subgroups compared, confirming the importance of quantifying a wide array of nucleosides. These data support and expand previous studies which reported the utility of measuring modified nucleoside levels in serum and show that precise measurement of an array of 29 modified nucleosides in serum by high-performance liquid chromatography with UV scanning with subsequent data modeling may provide a clinically useful approach to patient classification in diagnosis and subsequent therapeutic monitoring.

  3. Molecular modeling studies on nucleoside hydrolase from the biological warfare agent Brucella suis.

    PubMed

    Mancini, Daiana T; Matos, Karina S; da Cunha, Elaine F F; Assis, Tamiris M; Guimarães, Ana P; França, Tanos C C; Ramalho, Teodorico C

    2012-01-01

    Brucella suis is a dangerous biological warfare agent already used for military purposes. This bacteria cause brucellosis, a zoonosis highly infective and difficult to fight. An important selective target for chemotherapy against this disease is nucleoside hydrolase (NH), an enzyme still not found in mammals. We present here the first three-dimensional structure of B. suis NH (BsNH) and propose this enzyme as a molecular target to the drug design in the fight against brucellosis. In addition, we performed molecular docking studies, aiming to analyze the three-dimensional positioning of nine known inhibitors of Chritidia fasciculata NH (CfNH) in the active sites of BsNH and CfNH. We also analyzed the main interactions of some of these compounds inside the active site of BsNH and the relevant factors to biological activity. These results, together with further molecular dynamics (MD) simulations, pointed out to the most promising compound as lead for the design of potential inhibitors of BsNH. Most of the docking and MD results corroborated to each other and the docking results also suggested a good correlation with experimental data.

  4. Elucidation of Different Binding Modes of Purine Nucleosides to Human Deoxycytidine Kinase

    SciTech Connect

    Sabini, Elisabetta; Hazra, Saugata; Konrad, Manfred; Lavie, Arnon

    2008-07-30

    Purine nucleoside analogues of medicinal importance, such as cladribine, require phosphorylation by deoxycytidine kinase (dCK) for pharmacological activity. Structural studies of ternary complexes of human dCK show that the enzyme conformation adjusts to the different hydrogen-bonding properties between dA and dG and to the presence of substituent at the 2-position present in dG and cladribine. Specifically, the carbonyl group in dG elicits a previously unseen conformational adjustment of the active site residues Arg104 and Asp133. In addition, dG and cladribine adopt the anti conformation, in contrast to the syn conformation observed with dA. Kinetic analysis reveals that cladribine is phosphorylated at the highest efficiency with UTP as donor. We attribute this to the ability of cladribine to combine advantageous properties from dA (favorable hydrogen-bonding pattern) and dG (propensity to bind to the enzyme in its anti conformation), suggesting that dA analogues with a substituent at the 2-position are likely to be better activated by human dCK.

  5. Crystal structure and molecular dynamics studies of purine nucleoside phosphorylase from Mycobacterium tuberculosis associated with acyclovir.

    PubMed

    Caceres, Rafael A; Timmers, Luís F S M; Ducati, Rodrigo G; da Silva, Diego O N; Basso, Luiz A; de Azevedo, Walter F; Santos, Diógenes S

    2012-01-01

    Consumption has been a scourge of mankind since ancient times. This illness has charged a high price to human lives. Many efforts have been made to defeat Mycobacterium tuberculosis (Mt). The M. tuberculosis purine nucleoside phosphorylase (MtPNP) is considered an interesting target to pursuit new potential inhibitors, inasmuch it belongs to the purine salvage pathway and its activity might be involved in the mycobacterial latency process. Here we present the MtPNP crystallographic structure associated with acyclovir and phosphate (MtPNP:ACY:PO(4)) at 2.10 Å resolution. Molecular dynamics simulations were carried out in order to dissect MtPNP:ACY:PO(4) structural features, and the influence of the ligand in the binding pocket stability. Our results revealed that the ligand leads to active site lost of stability, in agreement with experimental results, which demonstrate a considerable inhibitory activity against MtPNP (K(i) = 150 nM). Furthermore, we observed that some residues which are important in the proper ligand's anchor into the human homologous enzyme do not present the same importance to MtPNP. Therewithal, these findings contribute to the search of new specific inhibitors for MtPNP, since peculiarities between the mycobacterial and human enzyme binding sites have been identified, making a structural-based drug design feasible.

  6. Permeation of aldopentoses and nucleosides through fatty acid and phospholipid membranes: implications to the origins of life.

    PubMed

    Wei, Chenyu; Pohorille, Andrew

    2013-02-01

    Permeation of aldopentoses and nucleosides through fatty acid and phospholipid membranes was investigated by way of molecular dynamics simulations. Calculated permeability coefficients of membranes to aldopentoses, which exist predominantly in the pyranose form, are in a very good agreement with experimental results. The unexpected preferential permeation of ribose, compared to its diastereomers, found by Sacerdote and Szostak, is explained in terms of inter- and intramolecular interactions involving hydroxyl groups. In aqueous solution, these groups favor the formation of intermolecular hydrogen bonds with neighboring water molecules. Inside the membrane, however, they form intramolecular hydrogen bonds, which in ribose are arranged in a chain. In its diastereomers this chain is broken, which yields higher free energy barrier to transfer through membranes. Faster permeation of ribose would lead to its preferential accumulation inside cells if sugars were converted sufficiently quickly to nonpermeable derivatives. An estimate for the rate of such reaction was derived. Preferential accumulation of ribose would increase the probability of correct monomers' incorporation during synthesis of nucleic acids inside protocells. The same mechanism does not apply to nucleosides or their activated derivatives because sugars are locked in the furanose form, which contains fewer exocyclic hydroxyl groups than does pyranose. The results of this study underscore concerted early evolution of membranes and the biochemical processes that they encapsulated. PMID:23397957

  7. Expression and purification of an engineered, yeast-expressed Leishmania donovani nucleoside hydrolase with immunogenic properties.

    PubMed

    Hudspeth, Elissa M; Wang, Qian; Seid, Christopher A; Hammond, Molly; Wei, Junfei; Liu, Zhuyun; Zhan, Bin; Pollet, Jeroen; Heffernan, Michael J; McAtee, C Patrick; Engler, David A; Matsunami, Risë K; Strych, Ulrich; Asojo, Oluwatoyin A; Hotez, Peter J; Bottazzi, Maria Elena

    2016-07-01

    Leishmania donovani is the major cause of visceral leishmaniasis (kala-azar), now recognized as the parasitic disease with the highest level of mortality second only to malaria. No human vaccine is currently available. A 36 kDa L. donovani nucleoside hydrolase (LdNH36) surface protein has been previously identified as a potential vaccine candidate antigen. Here we present data on the expression of LdNH36 in Pichia pastoris and its purification at the 20 L scale to establish suitability for future pilot scale manufacturing. To improve efficiency of process development and ensure reproducibility, 4 N-linked glycosylation sites shown to contribute to heterogeneous high-mannose glycosylation were mutated to glutamine residues. The mutant LdNH36 (LdNH36-dg2) was expressed and purified to homogeneity. Size exclusion chromatography and light scattering demonstrated that LdNH36-dg2 existed as a tetramer in solution, similar to the wild-type recombinant L. major nucleoside hydrolase. The amino acid mutations do not affect the tetrameric interface as confirmed by theoretical modeling, and the mutated amino acids are located outside the major immunogenic domain. Immunogenic properties of the LdNH36-dg2 recombinant protein were evaluated in BALB/c mice using formulations that included a synthetic CpG oligodeoxynucleotide, together with a microparticle delivery platform (poly(lactic-co-glycolic acid)). Mice exhibited high levels of IgG1, IgG2a, and IgG2b antibodies that were reactive to both LdNH36-dg2 and LdNH36 wild-type. While the point mutations did affect the hydrolase activity of the enzyme, the IgG antibodies elicited by LdNH36-dg2 were shown to inhibit the hydrolase activity of the wild-type LdNH36. The results indicate that LdNH36-dg2 as expressed in and purified from P. pastoris is suitable for further scale-up, manufacturing, and testing in support of future first-in-humans phase 1 clinical trials. PMID:26839079

  8. Design, Synthesis, and Evaluation of Diarylpyridines and Diarylanilines as Potent Non-nucleoside HIV-1 Reverse Transcriptase Inhibitors

    PubMed Central

    Tian, Xingtao; Qin, Bingjie; Wu, Zhiyuan; Wang, Xiaofeng; Lu, Hong; Morris-Natschke, Susan L.; Chen, Chin Ho; Jiang, Shibo; Lee, Kuo-Hsiung; Xie, Lan

    2010-01-01

    Based on the structures and activities of our previously identified non-nucleoside reverse transcriptase inhibitors (NNRTIs), we designed and synthesized two sets of derivatives, diarylpyridines (A) and diarylanilines (B), and tested their anti-HIV-1 activity against infection by HIV-1 NL4-3 and IIIB in TZM-bl and MT-2 cells, respectively. The results showed that most compounds exhibited potent anti-HIV-1 activity with low nanomolar EC50 values, and some of them, such as 13m, 14c, and 14e, displayed high potency with subnanomolar EC50 values, which were more potent than etravirine (TMC125, 1) in the same assays. Notably, these compounds were also highly effective against infection by multi-RTI-resistant strains, suggesting a high potential to further develop these compounds as a novel class of NNRTIs with improved antiviral efficacy and resistance profile. PMID:21049929

  9. The antiretroviral nucleoside analogue Abacavir reduces cell growth and promotes differentiation of human medulloblastoma cells

    PubMed Central

    Rossi, Alessandra; Russo, Giuseppe; Puca, Andrew; La Montagna, Raffaele; Caputo, Mariella; Mattioli, Eliseo; Lopez, Massimo; Giordano, Antonio; Pentimalli, Francesca

    2009-01-01

    Abacavir is one of the most efficacious nucleoside analogues, with a well-characterized inhibitory activity on reverse transcriptase enzymes of retroviral origin, and has been clinically approved for the treatment of AIDS. Recently, Abacavir has been shown to inhibit also the human telomerase activity. Telomerase activity seems to be required in essentially all tumours for the immortalization of a subset of cells, including cancer stem cells. In fact, many cancer cells are dependent on telomerase for their continued replication and therefore telomerase is an attractive target for cancer therapy. Telomerase expression is upregulated in primary primitive neuroectodermal tumours and in the majority of medulloblastomas suggesting that its activation is associated with the development of these diseases. Therefore, we decided to test Abacavir activity on human medulloblastoma cell lines with high telomerase activity. We report that exposure to Abacavir induces a dose-dependent decrease in the proliferation rate of medulloblastoma cells. This is associated with a cell accumulation in the G2/M phase of the cell cycle in the Daoy cell line, and with increased cell death in the D283-MED cell line, and is likely to be dependent on the inhibition of telomerase activity. Interestingly, both cell lines showed features of senescence after Abacavir treatment. Moreover, following Abacavir exposure we detected, by immunofluorescence staining, increased protein expression of the glial marker glial fibrillary acidic protein (GFAP) and the neuronal marker synaptophysin (SYN) in both medulloblastoma cell lines. In conclusion, our results suggest that Abacavir reduces proliferation and induces differentiation of human medulloblastoma cells through the downregulation of telomerase activity. Thus, using Abacavir, alone or in combination with current therapies, might be an effective therapeutic strategy for the treatment of medulloblastoma. PMID:19358275

  10. Sangivamycin, a nucleoside analogue, is a potent inhibitor of protein kinase C.

    PubMed

    Loomis, C R; Bell, R M

    1988-02-01

    Protein kinase C functions prominently in cell regulation via its pleiotropic role in signal transduction processes. Certain oncogene products resemble elements involved in transmembrane signaling, elevate cellular sn-1,2-diacylglycerol second messenger levels, and activate protein kinase C. Sangivamycin was unique among the nucleoside compounds tested in its ability to potently inhibit protein kinase C activity. Inhibition was competitive with respect to ATP for both protein kinase C and the catalytic fragment of protein kinase C prepared by trypsin digestion. Sangivamycin was a noncompetitive inhibitor with respect to histone and lipid cofactors (phosphatidylserine and diacylglycerol). Sangivamycin inhibited native protein kinase C and the catalytic fragment identically, with apparent Ki values of 11 and 15 microM, respectively. Sangivamycin was an effective an inhibitor of protein kinase C as H-7, an isoquinolinsulfonamide. Sangivamycin did not inhibit [3H]phorbol-12,13-dibutyrate binding to protein kinase C. Sangivamycin did not exert its action through the lipid binding/regulatory domain; inhibition was not affected by the presence of lipid or detergent. Unlike H-7, sangivamycin selectively inhibited protein kinase C compared to cAMP-dependent protein kinase. The discovery that protein kinase C is inhibited by sangivamycin and other antitumor agents suggests that protein kinase C may be a target for rational design of antitumor compounds. PMID:3338987

  11. Purine nucleoside metabolism in the erythrocytes of patients with adenosine deaminase deficiency and severe combined immunodeficiency.

    PubMed Central

    Agarwal, R P; Crabtree, G W; Parks, R E; Nelson, J A; Keightley, R; Parkman, R; Rosen, F S; Stern, R C; Polmar, S H

    1976-01-01

    Deficiency of erythrocytic and lymphocytic adenosine deaminase (ADA) occurs in some patients with severe combined immunodeficiency disease (SCID). SCID with ADA deficiency is inherited as an autosomal recessive trait. ADA is markedly reduced or undetectable in affected patients (homozygotes), and approximately one-half normal levels are found in individuals heterozygous for ADA deficiency. The metabolism of purine nucleosides was studied in erythrocytes from normal individuals, four ADA-deficiency patients, and two heterozygous individuals. ADA deficiency in intake erythrocytes was confirmed by a very sensitive ammonia-liberation technique. Erythrocytic ADA activity in three heterozygous individuals (0.07,0.08, and 0.14 mumolar units/ml of packed cells) was between that of the four normal controls (0.20-0.37 mumol/ml) and the ADA-deficient patients (no activity). In vitro, adenosine was incorporated principally into IMP in the heterozygous and normal individuals but into the adenosine nucleotides in the ADa-deficient patients. Coformycin (3-beta-D-ribofuranosyl-6,7,8-trihydroimidazo[4,5-4] [1,3] diazepin-8 (R)-ol), a potent inhibitor of ADA, made possible incorporation of adenosine nucleotides in the ADA-deficient patients... PMID:947948

  12. DNA nucleoside composition and methylation in several species of microalgae

    SciTech Connect

    Jarvis, E.E.; Dunahay, T.G.; Brown, L.M. )

    1992-06-01

    Total DNA was isolated from 10 species of microalgae, including representatives of the Chlorophyceae (Chlorella ellipsoidea, Chlamydomonas reinhardtii, and Monoraphidium minutum), Bacillariophyceae (Cyclotella cryptica, Navicula saprophila, Nitzschia pusilla, and Phaeodactylum tricornutum), Charophyceae (Stichococcus sp.), Dinophyceae (Crypthecodinium cohnii), and Prasinophyceae (Tetraselmis suecica). Control samples of Escherichia coli and calf thymus DNA were also analyzed. The nucleoside base composition of each DNA sample was determined by reversed-phase high performance liquid chromatography. All samples contained 5-methyldeoxycytidine, although at widely varying levels. In M. minutum, about one-third of the cytidine residues were methylated. Restriction analysis supported this high degree of methylation in M. minutum and suggested that methylation is biased toward 5[prime]-CG dinucleotides. The guanosine + cytosine (GC) contents of the green algae were, with the exception of Stichococcus sp., consistently higher than those of the diatoms. Monoraphidium minutum exhibited an extremely high GC content of 71%. Such a value is rare among eukaryotic organisms and might indicate an unusual codon usage. This work is important for developing strategies for transformation and gene cloning in these algae. 46 refs., 1 fig., 2 tabs.

  13. Inhibition and Structure of Toxoplasma gondii Purine Nucleoside Phosphorylase

    PubMed Central

    Donaldson, Teraya M.; Cassera, María B.; Ho, Meng-Chiao; Zhan, Chenyang; Merino, Emilio F.; Evans, Gary B.; Tyler, Peter C.; Almo, Steven C.; Schramm, Vern L.

    2014-01-01

    The intracellular pathogen Toxoplasma gondii is a purine auxotroph that relies on purine salvage for proliferation. We have optimized T. gondii purine nucleoside phosphorylase (TgPNP) stability and crystallized TgPNP with phosphate and immucillin-H, a transition-state analogue that has high affinity for the enzyme. Immucillin-H bound to TgPNP with a dissociation constant of 370 pM, the highest affinity of 11 immucillins selected to probe the catalytic site. The specificity for transition-state analogues indicated an early dissociative transition state for TgPNP. Compared to Plasmodium falciparum PNP, large substituents surrounding the 5′-hydroxyl group of inhibitors demonstrate reduced capacity for TgPNP inhibition. Catalytic discrimination against large 5′ groups is consistent with the inability of TgPNP to catalyze the phosphorolysis of 5′-methylthioinosine to hypoxanthine. In contrast to mammalian PNP, the 2′-hydroxyl group is crucial for inhibitor binding in the catalytic site of TgPNP. This first crystal structure of TgPNP describes the basis for discrimination against 5′-methylthioinosine and similarly 5′-hydroxy-substituted immucillins; structural differences reflect the unique adaptations of purine salvage pathways of Apicomplexa. PMID:24585883

  14. Fluorescent pyrimidopyrimidoindole nucleosides: control of photophysical characterizations by substituent effects.

    PubMed

    Mizuta, Masahiro; Seio, Kohji; Miyata, Kenichi; Sekine, Mitsuo

    2007-07-01

    10-(2-Deoxy-beta-D-ribofuranosyl)pyrimido[4',5':4,5]pyrimido[1,6-a]indole-6,9(7H)-dione (dCPPI) and its derivatives were synthesized via the Suzuki-Miyaura coupling reaction of 5-iododeoxycytidine with 5-substituted N-Boc-indole-2-borates and characterized by UV-vis and fluorescence spectroscopy. The new fluorescent nucleosides showed rather large Stokes shifts (116-139 nm) in an aqueous buffer. The fluorescent intensities were dependent on the nature of the substituents on the indole rings. The electron-withdrawing groups increased the fluorescent intensity while the electron-donating groups having lone pairs decreased it. Among the substituted dCPPI derivatives tested, the trimethylammonium derivative of dCPPI was found to emit the brightest fluorescent light. The solvatochromism of dCPPI and its derivatives was also studied. Some of the dCPPI derivatives showed interesting solvent-dependent fluorescence enhancement and could be useful as new fluorescent structural probes for nucleic acids. The Lippert-Mataga analyses of the Stokes shift were also carried out to obtain estimated values of the dipole moment of the excited states of some of the derivatives. PMID:17555352

  15. Rigid Adenine Nucleoside Derivatives as Novel Modulators of the Human Sodium Symporters for Dopamine and Norepinephrine.

    PubMed

    Janowsky, Aaron; Tosh, Dilip K; Eshleman, Amy J; Jacobson, Kenneth A

    2016-04-01

    Thirty-two congeneric rigid adenine nucleoside derivatives containing a North (N)-methanocarba ribose substitution and a 2-arylethynyl group either enhanced (up to 760% of control) or inhibited [(125)I] methyl (1R,2S,3S)-3-(4-iodophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate (RTI-55) binding at the human dopamine (DA) transporter (DAT) and inhibited DA uptake. Several nucleosides also enhanced [(3)H]mazindol [(±)-5-(4-chlorophenyl)-3,5-dihydro-2H-imidazo[2,1-a]isoindol-5-ol] binding to the DAT. The combination of binding enhancement and functional inhibition suggests possible allosteric interaction with the tropanes. The structure-activity relationship of this novel class of DAT ligands was explored: small N(6)-substition (methyl or ethyl) was favored, while the N1 of the adenine ring was essential. Effective terminal aryl groups include thien-2-yl (compounds 9 and 16), with EC50 values of 35.1 and 9.1 nM, respectively, in [(125)I]RTI-55 binding enhancement, and 3,4-difluorophenyl as in the most potent DA uptake inhibitor (compound 6) with an IC50 value of 92 nM (3-fold more potent than cocaine), but not nitrogen heterocycles. Several compounds inhibited or enhanced binding at the norepinephrine transporter (NET) and serotonin transporter (SERT) and inhibited function in the micromolar range; truncation at the 4'-position in compound 23 allowed for weak inhibition of the SERT. We have not yet eliminated adenosine receptor affinity from this class of DAT modulators, but we identified modifications that remove DAT inhibition as an off-target effect of potent adenosine receptor agonists. Thus, we have identified a new class of allosteric DAT ligands, rigidified adenosine derivatives, and explored their initial structural requirements. They display a very atypical pharmacological profile, i.e., either enhancement by increasing affinity or inhibition of radioligand binding at the DAT, and in some cases the NET and SERT, and inhibition of neurotransmitter

  16. Rigid Adenine Nucleoside Derivatives as Novel Modulators of the Human Sodium Symporters for Dopamine and Norepinephrine

    PubMed Central

    Tosh, Dilip K.; Eshleman, Amy J.; Jacobson, Kenneth A.

    2016-01-01

    Thirty-two congeneric rigid adenine nucleoside derivatives containing a North (N)-methanocarba ribose substitution and a 2-arylethynyl group either enhanced (up to 760% of control) or inhibited [125I] methyl (1R,2S,3S)-3-(4-iodophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate (RTI-55) binding at the human dopamine (DA) transporter (DAT) and inhibited DA uptake. Several nucleosides also enhanced [3H]mazindol [(±)-5-(4-chlorophenyl)-3,5-dihydro-2H-imidazo[2,1-a]isoindol-5-ol] binding to the DAT. The combination of binding enhancement and functional inhibition suggests possible allosteric interaction with the tropanes. The structure-activity relationship of this novel class of DAT ligands was explored: small N6-substition (methyl or ethyl) was favored, while the N1 of the adenine ring was essential. Effective terminal aryl groups include thien-2-yl (compounds 9 and 16), with EC50 values of 35.1 and 9.1 nM, respectively, in [125I]RTI-55 binding enhancement, and 3,4-difluorophenyl as in the most potent DA uptake inhibitor (compound 6) with an IC50 value of 92 nM (3-fold more potent than cocaine), but not nitrogen heterocycles. Several compounds inhibited or enhanced binding at the norepinephrine transporter (NET) and serotonin transporter (SERT) and inhibited function in the micromolar range; truncation at the 4′-position in compound 23 allowed for weak inhibition of the SERT. We have not yet eliminated adenosine receptor affinity from this class of DAT modulators, but we identified modifications that remove DAT inhibition as an off-target effect of potent adenosine receptor agonists. Thus, we have identified a new class of allosteric DAT ligands, rigidified adenosine derivatives, and explored their initial structural requirements. They display a very atypical pharmacological profile, i.e., either enhancement by increasing affinity or inhibition of radioligand binding at the DAT, and in some cases the NET and SERT, and inhibition of neurotransmitter uptake

  17. Preliminary characterization of (nucleoside-2′-O-)-methyltransferase crystals from Meaban and Yokose flaviviruses

    SciTech Connect

    Mastrangelo, Eloise; Bollati, Michela; Milani, Mario; Lamballeire, Xavier de; Brisbare, Nadege; Dalle, Karen; Lantez, Violaine; Egloff, Marie-Pierre; Coutard, Bruno; Canard, Bruno; Gould, Ernest; Forrester, Naomi; Bolognesi, Martino

    2006-08-01

    Two methyltransferases from flaviviruses (Meaban and Yokose viruses) have been overexpressed and crystallized. Diffraction data and characterization of the two crystal forms are presented, together with a preliminary molecular-replacement solution for both enzymes. Viral methyltranferases (MTase) are involved in the third step of the mRNA-capping process, transferring a methyl group from S-adenosyl-l-methionine (SAM) to the capped mRNA. MTases are classified into two groups: (guanine-N7)-methyltransferases (N7MTases), which add a methyl group onto the N7 atom of guanine, and (nucleoside-2′-O-)-methyltransferases (2′OMTases), which add a methyl group to a ribose hydroxyl. The MTases of two flaviviruses, Meaban and Yokose viruses, have been overexpressed, purified and crystallized in complex with SAM. Characterization of the crystals together with details of preliminary X-ray diffraction data collection (at 2.8 and 2.7 Å resolution, respectively) are reported here. The sequence homology relative to Dengue virus 2′OMTase and the structural conservation of specific residues in the putative active sites suggest that both enzymes belong to the 2′OMTase subgroup.

  18. Synthesis of nucleoside 3'-(S-alkyl phosphorothioates) and their use as substrates for nucleases.

    PubMed

    Saba, D; Dekker, C A

    1981-09-15

    The synthesis of cytidine, uridine, guanosine, and adenosine 3'-(S-methyl phosphorothioates) by treatment of the 2',5'-di-O-(4-methoxytetrahydropyran-4-yl)ribonucleosides with 2-(methylthio 4H-1,3,2-benzodioxaphosphorin 2-oxide is described. These nucleotide analogues are stable compounds both in the solid state and the neutral aqueous solution. All four of these compounds are degraded by RNase T2 to the parent nucleotides and methanethiol. In addition, cytidine and uridine 3'-(S-methyl phosphorothioates) are substrates for bovine pancreatic ribonuclease and guanosine 3'-(S-methyl phosphorothioate) is a substrate for RNase T1 and RNase U1. When used in conjunction with a chromophore-producing reagent, nucleoside 3'-(S-methyl phosphorothioates) provide a means for direct kinetic measurement of ribonuclease activity over a wide pH range (pH 2-9). The reactivities of these substrates with ribonucleases are compared to the reactivities of other synthetic substrates as well as a number of natural substrates. The utility of ribonucleoside 3'-(S-methyl phosphorothioates) as substrates for the assay of ribonucleases is discussed. PMID:6271188

  19. Mass Spectrometric Characterization of HIV-1 Reverse Transcriptase Interactions with Non-nucleoside Reverse Transcriptase Inhibitors.

    PubMed

    Thammaporn, Ratsupa; Ishii, Kentaro; Yagi-Utsumi, Maho; Uchiyama, Susumu; Hannongbua, Supa; Kato, Koichi

    2016-01-01

    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) have been developed for the treatment of acquired immunodeficiency syndrome. HIV-1 RT binding to NNRTIs has been characterized by various biophysical techniques. However, these techniques are often hampered by the low water solubility of the inhibitors, such as the current promising diarylpyrimidine-based inhibitors rilpivirine and etravirine. Hence, a conventional and rapid method that requires small sample amounts is desirable for studying NNRTIs with low water solubility. Here we successfully applied a recently developed mass spectrometric technique under non-denaturing conditions to characterize the interactions between the heterodimeric HIV-1 RT enzyme and NNRTIs with different inhibitory activities. Our data demonstrate that mass spectrometry serves as a semi-quantitative indicator of NNRTI binding affinity for HIV-1 RT using low and small amounts of samples, offering a new high-throughput screening tool for identifying novel RT inhibitors as anti-HIV drugs. PMID:26934936

  20. Five putative nucleoside triphosphate diphosphohydrolase genes are expressed in Trichomonas vaginalis.

    PubMed

    Frasson, Amanda Piccoli; Dos Santos, Odelta; Meirelles, Lúcia Collares; Macedo, Alexandre José; Tasca, Tiana

    2016-01-01

    Trichomonas vaginalis is a protozoan that parasitizes the human urogenital tract causing trichomoniasis, the most common non-viral sexually transmitted disease. The parasite has unique genomic characteristics such as a large genome size and expanded gene families. Ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) is an enzyme responsible for hydrolyzing nucleoside tri- and diphosphates and has already been biochemically characterized in T. vaginalis. Considering the important role of this enzyme in the production of extracellular adenosine for parasite uptake, we evaluated the gene expression of five putative NTPDases in T. vaginalis. We showed that all five putative TvNTPDase genes (TvNTPDase1-5) were expressed by both fresh clinical and long-term grown isolates. The amino acid alignment predicted the presence of the five crucial apyrase conserved regions, transmembrane domains, signal peptides, phosphorylation and catalytic sites. Moreover, a phylogenetic analysis showed that TvNTPDase sequences make up a clade with NTPDases intracellularly located. Biochemical NTPDase activity (ATP and ADP hydrolysis) is responsive to the serum-restrictive conditions and the gene expression of TvNTPDases was mostly increased, mainly TvNTPDase2 and TvNTPDase4, although there was not a clear pattern of expression among them. In summary, the present report demonstrates the gene expression patterns of predicted NTPDases in T. vaginalis.

  1. Solution-Phase Parallel Synthesis of Acyclic Nucleoside Libraries of Purine, Pyrimidine, and Triazole Acetamides

    PubMed Central

    2015-01-01

    Molecular diversity plays a pivotal role in modern drug discovery against phenotypic or enzyme-based targets using high throughput screening technology. Under the auspices of the Pilot Scale Library Program of the NIH Roadmap Initiative, we produced and report herein a diverse library of 181 purine, pyrimidine, and 1,2,4-triazole-N-acetamide analogues which were prepared in a parallel high throughput solution-phase reaction format. A set of assorted amines were reacted with several nucleic acid N-acetic acids utilizing HATU as the coupling reagent to produce diverse acyclic nucleoside N-acetamide analogues. These reactions were performed using 24 well reaction blocks and an automatic reagent-dispensing platform under inert atmosphere. The targeted compounds were purified on an automated purification system using solid sample loading prepacked cartridges and prepacked silica gel columns. All compounds were characterized by NMR and HRMS, and were analyzed for purity by HPLC before submission to the Molecular Libraries Small Molecule Repository (MLSMR) at NIH. Initial screening through the Molecular Libraries Probe Production Centers Network (MLPCN) program, indicates that several analogues showed diverse and interesting biological activities. PMID:24933643

  2. Mechanistic Insights into the Rate-Limiting Step in Purine-Specific Nucleoside Hydrolase.

    PubMed

    Chen, Nanhao; Zhao, Yuan; Lu, Jianing; Wu, Ruibo; Cao, Zexing

    2015-07-14

    A full enzymatic catalysis cycle in the inosine-adenosine-guanosine specific nucleoside hydrolase (IAG-NH) was assumed to be comprised of four steps: substrate binding, chemical reaction, base release, and ribose release. Nevertheless, the mechanistic details for the rate-limiting step of the entire enzymatic reaction are still unknown, even though the ribose release was likely to be the most difficult stage. Based on state-of-the-art quantum mechanics and molecular mechanics (QM/MM) molecular dynamics (MD) simulations, the ribose release process can be divided into two steps: "ribose dissociation" and "ribose release". The "ribose dissociation" includes "cleavage" and "exchange" stages, in which a metastable 6-fold intermediate will recover to an 8-fold coordination shell of Ca(2+) as observed in apo- IAG-NH. Extensive random acceleration molecular dynamics and MD simulations have been employed to verify plausible release channels, and the estimated barrier for the rate-determining step of the entire reaction is 13.0 kcal/mol, which is comparable to the experimental value of 16.7 kcal/mol. Moreover, the gating mechanism arising from loop1 and loop2, as well as key residues around the active pocket, has been found to play an important role in manipulating the ribose release. PMID:26575755

  3. Biochemical characterization of recombinant nucleoside hydrolase from Mycobacterium tuberculosis H37Rv.

    PubMed

    Wink, Priscila Lamb; Sanchez Quitian, Zilpa Adriana; Rosado, Leonardo Astolfi; Rodrigues, Valnes da Silva; Petersen, Guilherme Oliveira; Lorenzini, Daniel Macedo; Lipinski-Paes, Thiago; Saraiva Macedo Timmers, Luis Fernando; de Souza, Osmar Norberto; Basso, Luiz Augusto; Santos, Diogenes Santiago

    2013-10-15

    Tuberculosis (TB) is a major global health threat. There is a need for the development of more efficient drugs for the sterilization of the disease's causative agent, Mycobacterium tuberculosis (MTB). A more comprehensive understanding of the bacilli's nucleotide metabolic pathways could aid in the development of new anti-mycobacterial drugs. Here we describe expression and purification of recombinant iunH-encoded nucleoside hydrolase from MTB (MtIAGU-NH). Glutaraldehyde cross-linking results indicate that MtIAGU-NH predominates as a monomer, presenting varied oligomeric states depending upon binding of ligands. Steady-state kinetics results show that MtIAGU-NH has broad substrate specificity, accepting inosine, adenosine, guanosine, and uridine as substrates. Inosine and adenosine displayed positive homotropic cooperativity kinetics, whereas guanosine and uridine displayed hyperbolic saturation curves. Measurements of kinetics of ribose binding to MtIAGU-NH by fluorescence spectroscopy suggest two pre-existing forms of enzyme prior to ligand association. The intracellular concentrations of inosine, uridine, hypoxanthine, and uracil were determined and thermodynamic parameters estimated. Thermodynamic activation parameters (Ea, ΔG(#), ΔS(#), ΔH(#)) for MtIAGU-NH-catalyzed chemical reaction are presented. Results from mass spectrometry, isothermal titration calorimetry (ITC), pH-rate profile experiment, multiple sequence alignment, and molecular docking experiments are also presented. These data should contribute to our understanding of the biological role played by MtIAGU-NH. PMID:23988349

  4. Crystal structure and molecular dynamics studies of human purine nucleoside phosphorylase complexed with 7-deazaguanine.

    PubMed

    Caceres, Rafael Andrade; Timmers, Luis Fernando Saraiva Macedo; Pauli, Ivani; Gava, Lisandra Marques; Ducati, Rodrigo Gay; Basso, Luiz Augusto; Santos, Diógenes Santiago; de Azevedo, Walter Filgueira

    2010-03-01

    In humans, purine nucleoside phosphorylase (HsPNP) is responsible for degradation of deoxyguanosine, and genetic deficiency of this enzyme leads to profound T-cell mediated immunosuppression. HsPNP is a target for inhibitor development aiming at T-cell immune response modulation. Here we report the crystal structure of HsPNP in complex with 7-deazaguanine (HsPNP:7DG) at 2.75 A. Molecular dynamics simulations were employed to assess the structural features of HsPNP in both free form and in complex with 7DG. Our results show that some regions, responsible for entrance and exit of substrate, present a conformational variability, which is dissected by dynamics simulation analysis. Enzymatic assays were also carried out and revealed that 7-deazaguanine presents a lower inhibitory activity against HsPNP (K(i)=200 microM). The present structure may be employed in both structure-based design of PNP inhibitors and in development of specific empirical scoring functions.

  5. Capillary bioreactors based on human purine nucleoside phosphorylase: a new approach for ligands identification and characterization.

    PubMed

    de Moraes, Marcela Cristina; Ducati, Rodrigo Gay; Donato, Augusto José; Basso, Luiz Augusto; Santos, Diógenes Santiago; Cardoso, Carmen Lucia; Cass, Quezia Bezerra

    2012-04-01

    The enzyme purine nucleoside phosphorylase (PNP) is a target for the discovery of new lead compounds employed on the treatment severe T-cell mediated disorders. Within this context, the development of new, direct, and reliable methods for ligands screening is an important task. This paper describes the preparation of fused silica capillaries human PNP (HsPNP) immobilized enzyme reactor (IMER). The activity of the obtained IMER is monitored on line in a multidimensional liquid chromatography system, by the quantification of the product formed throughout the enzymatic reaction. The K(M) value for the immobilized enzyme was about twofold higher than that measured for the enzyme in solution (255 ± 29.2 μM and 133 ± 14.9 μM, respectively). A new fourth-generation immucillin derivative (DI4G; IC(50)=40.6 ± 0.36 nM), previously identified and characterized in HsPNP free enzyme assays, was used to validate the IMER as a screening method for HsPNP ligands. The validated method was also used for mechanistic studies with this inhibitor. This new approach is a valuable tool to PNP ligand screening, since it directly measures the hypoxanthine released by inosine phosphorolysis, thus furnishing more reliable results than those one used in a coupled enzymatic spectrophotometric assay.

  6. Binding Strength of Nucleobases and Nucleosides on Silver Nanoparticles Probed by a Colorimetric Method.

    PubMed

    Yu, Lu; Li, Na

    2016-06-01

    Because of their unique and tunable properties, oligonucleotide-functionalized noble metal nanoparticles have provided a versatile platform for various engineering and biomedical applications. The vast majority of such applications were demonstrated with gold nanoparticles (AuNPs) while only a few were demonstrated with sliver nanoparticles (AgNPs). This is largely due to the lack of robust protocols to functionalize AgNPs with thiol-modified oligonucleotides. Previous studies have revealed strong interactions between nucleobases and AgNPs. This could enable an alternative way to functionalize AgNPs with non-thiolated oligonucleotides. However, there is no quantitative study on the interaction strengths between AgNPs and oligonucleotides. Several methods have been used for quantitative evaluation of the interaction strengths between AuNPs and oligonucleotides. These methods often require specialized equipment that might not be widely accessible or rely on labor-intensive procedures to obtain the adsorption isotherms. Herein, we developed a colorimetric method, as a simple and high-throughput alternative of existing methods, to quantify the binding strength between AgNPs and nucleobases/nucleosides. In this colorimetric method, concentration-dependent destabilizing effects of nucleobase/nucleoside adsorption on AgNPs are utilized to indirectly quantify the amount of nucleobases/nucleosides adsorbed on AgNPs, thus deriving the binding strength between AgNPs and nucleobases/nucleosides. First, the concentration-dependent AgNP aggregation kinetics in the presence of nucleobases/nucleosides were systematically investigated. Then, this colorimetric method was used to determine the binding strengths between AgNPs and various DNA/RNA nucleobases/nucleosides. It was found that the ranking of interaction strengths between AgNPs and DNA/RNA nucleosides (dC < dT < dA, rC < rU < rA) is generally agreed with that between AgNPs and corresponding nucleobases (C < T < U < A). This

  7. Enzymatic properties of an ecto-nucleoside triphosphate diphosphohydrolase from Legionella pneumophila: substrate specificity and requirement for virulence.

    PubMed

    Sansom, Fiona M; Riedmaier, Patrice; Newton, Hayley J; Dunstone, Michelle A; Müller, Christa E; Stephan, Holger; Byres, Emma; Beddoe, Travis; Rossjohn, Jamie; Cowan, Peter J; d'Apice, Anthony J F; Robson, Simon C; Hartland, Elizabeth L

    2008-05-01

    Legionella pneumophila is the predominant cause of Legionnaires disease, a severe and potentially fatal form of pneumonia. Recently, we identified an ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) from L. pneumophila, termed Lpg1905, which enhances intracellular replication of L. pneumophila in eukaryotic cells. Lpg1905 is the first prokaryotic member of the CD39/NTPDase1 family of enzymes, which are characterized by the presence of five apyrase conserved regions and the ability to hydrolyze nucleoside tri- and diphosphates. Here we examined the substrate specificity of Lpg1905 and showed that apart from ATP and ADP, the enzyme catalyzed the hydrolysis of GTP and GDP but had limited activity against CTP, CDP, UTP, and UDP. Based on amino acid residues conserved in the apyrase conserved regions of eukaryotic NTPDases, we generated five site-directed mutants, Lpg1905E159A, R122A, N168A, Q193A, and W384A. Although the mutations E159A, R122A, Q193A, and W384A abrogated activity completely, N168A resulted in decreased activity caused by reduced affinity for nucleotides. When introduced into the lpg1905 mutant strain of L. pneumophila, only N168A partially restored the ability of L. pneumophila to replicate in THP-1 macrophages. Following intratracheal inoculation of A/J mice, none of the Lpg1905 mutants was able to restore virulence to an lpg1905 mutant during lung infection, thereby demonstrating the importance of NTPDase activity to L. pneumophila infection. Overall, the kinetic studies undertaken here demonstrated important differences to mammalian NTPDases and different sensitivities to NTPDase inhibitors that may reflect underlying structural variations.

  8. Supramolecular polymerization of a prebiotic nucleoside provides insights into the creation of sequence-controlled polymers

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Bonnesen, Peter V.; Rangel, E.; Vallejo, E.; Sanchez-Castillo, Ariadna; James Cleaves, H., II; Baddorf, Arthur P.; Sumpter, Bobby G.; Pan, Minghu; Maksymovych, Petro; Fuentes-Cabrera, Miguel

    2016-01-01

    Self-assembly of a nucleoside on Au(111) was studied to ascertain whether polymerization on well-defined substrates constitutes a promising approach for making sequence-controlled polymers. Scanning tunneling microscopy and density functional theory were used to investigate the self-assembly on Au(111) of (RS)-N9-(2,3-dihydroxypropyl)adenine (DHPA), a plausibly prebiotic nucleoside analog of adenosine. It is found that DHPA molecules self-assemble into a hydrogen-bonded polymer that grows almost exclusively along the herringbone reconstruction pattern, has a two component sequence that is repeated over hundreds of nanometers, and is erasable with electron-induced excitation. Although the sequence is simple, more complicated ones are envisioned if two or more nucleoside types are combined. Because polymerization occurs on a substrate in a dry environment, the success of each combination can be gauged with high-resolution imaging and accurate modeling techniques. These characteristics make nucleoside self-assembly on a substrate an attractive approach for designing sequence-controlled polymers. Further, by choosing plausibly prebiotic nucleosides, insights may be provided into how nature created the first sequence-controlled polymers capable of storing information. Such insights, in turn, can inspire new ways of synthesizing sequence-controlled polymers.

  9. Apoplastic Nucleoside Accumulation in Arabidopsis Leads to Reduced Photosynthetic Performance and Increased Susceptibility Against Botrytis cinerea.

    PubMed

    Daumann, Manuel; Fischer, Marietta; Niopek-Witz, Sandra; Girke, Christopher; Möhlmann, Torsten

    2015-01-01

    Interactions between plant and pathogen often occur in the extracellular space and especially nucleotides like ATP and NAD have been identified as key players in this scenario. Arabidopsis mutants accumulating nucleosides in the extracellular space were generated and studied with respect to susceptibility against Botrytis cinerea infection and general plant fitness determined as photosynthetic performance. The mutants used are deficient in the main nucleoside uptake system ENT3 and the extracellular nucleoside hydrolase NSH3. When grown on soil but not in hydroponic culture, these plants markedly accumulate adenosine and uridine in leaves. This nucleoside accumulation was accompanied by reduced photosystem II efficiency and altered expression of photosynthesis related genes. Moreover, a higher susceptibility toward Botrytis cinerea infection and a reduced induction of pathogen related genes PR1 and WRKY33 was observed. All these effects did not occur in hydroponically grown plants substantiating a contribution of extracellular nucleosides to these effects. Whether reduced general plant fitness, altered pathogen response capability or more direct interactions with the pathogen are responsible for these observations is discussed.

  10. Supramolecular polymerization of a prebiotic nucleoside provides insights into the creation of sequence-controlled polymers

    DOE PAGESBeta

    Wang, Jun; Bonnesen, Peter V; Rangel, E.; Vallejo, E.; Sanchez-Castillo, Ariadna; Cleaves, II, H. James; Baddorf, Arthur P; Sumpter, Bobby G; Pan, Minghu; Maksymovych, Petro; et al

    2016-01-04

    The self-assembly of a nucleoside on Au(111) was studied to ascertain whether polymerization on well-defined substrates constitutes a promising approach for making sequence-controlled polymers. Scanning tunneling microscopy and density functional theory were used to investigate the self-assembly on Au(111) of (RS)-N9-(2,3-dihydroxypropyl)adenine (DHPA), a plausibly prebiotic nucleoside analog of adenosine. It is found that DHPA molecules self-assemble into a hydrogen-bonded polymer that grows almost exclusively along the herringbone reconstruction pattern, has a two component sequence that is repeated over hundreds of nanometers, and is erasable with electron-induced excitation. Although the sequence is simple, more complicated ones are envisioned if two ormore » more nucleoside types are combined. Because polymerization occurs on a substrate in a dry environment, the success of each combination can be gauged with high-resolution imaging and accurate modeling techniques. The resulting characteristics make nucleoside self-assembly on a substrate an attractive approach for designing sequence-controlled polymers. Moreover, by choosing plausibly prebiotic nucleosides, insights may be provided into how nature created the first sequence-controlled polymers capable of storing information. Such insights, in turn, can inspire new ways of synthesizing sequence-controlled polymers.« less

  11. Intrinsic electrophilic properties of nucleosides: photoelectron spectroscopy of their parent anions.

    PubMed

    Stokes, Sarah T; Li, Xiang; Grubisic, Andrej; Ko, Yeon Jae; Bowen, Kit H

    2007-08-28

    The nucleoside parent anions 2(')-deoxythymidine(-), 2(')-deoxycytidine(-), 2(')-deoxyadenosine(-), uridine(-), cytidine(-), adenosine(-), and guanosine(-) were generated in a novel source, employing a combination of infrared desorption, electron photoemission, and a gas jet expansion. Once mass selected, the anion photoelectron spectrum of each of these was recorded. In the three cases in which comparisons were possible, the vertical detachment energies and likely adiabatic electron affinities extracted from these spectra agreed well with the values calculated both by Richardson et al. [J. Am. Chem. Soc. 126, 4404 (2004)] and by Li et al. [Radiat. Res. 165, 721 (2006)]. Through the combination of our experimental results and their theoretical calculations, several implications emerge. (1) With the possible exception of dG(-), the parent anions of nucleosides exist, and they are stable. (2) These nucleoside anions are valence anions, and in most cases the negative charge is closely associated with the nucleobase moiety. (3) The nucleoside parent anions we have generated and studied are the negative ions of canonical, neutral nucleosides, similar to those found in DNA.

  12. Apoplastic Nucleoside Accumulation in Arabidopsis Leads to Reduced Photosynthetic Performance and Increased Susceptibility Against Botrytis cinerea

    PubMed Central

    Daumann, Manuel; Fischer, Marietta; Niopek-Witz, Sandra; Girke, Christopher; Möhlmann, Torsten

    2015-01-01

    Interactions between plant and pathogen often occur in the extracellular space and especially nucleotides like ATP and NAD have been identified as key players in this scenario. Arabidopsis mutants accumulating nucleosides in the extracellular space were generated and studied with respect to susceptibility against Botrytis cinerea infection and general plant fitness determined as photosynthetic performance. The mutants used are deficient in the main nucleoside uptake system ENT3 and the extracellular nucleoside hydrolase NSH3. When grown on soil but not in hydroponic culture, these plants markedly accumulate adenosine and uridine in leaves. This nucleoside accumulation was accompanied by reduced photosystem II efficiency and altered expression of photosynthesis related genes. Moreover, a higher susceptibility toward Botrytis cinerea infection and a reduced induction of pathogen related genes PR1 and WRKY33 was observed. All these effects did not occur in hydroponically grown plants substantiating a contribution of extracellular nucleosides to these effects. Whether reduced general plant fitness, altered pathogen response capability or more direct interactions with the pathogen are responsible for these observations is discussed. PMID:26779190

  13. Supramolecular polymerization of a prebiotic nucleoside provides insights into the creation of sequence-controlled polymers.

    PubMed

    Wang, Jun; Bonnesen, Peter V; Rangel, E; Vallejo, E; Sanchez-Castillo, Ariadna; James Cleaves Ii, H; Baddorf, Arthur P; Sumpter, Bobby G; Pan, Minghu; Maksymovych, Petro; Fuentes-Cabrera, Miguel

    2016-01-01

    Self-assembly of a nucleoside on Au(111) was studied to ascertain whether polymerization on well-defined substrates constitutes a promising approach for making sequence-controlled polymers. Scanning tunneling microscopy and density functional theory were used to investigate the self-assembly on Au(111) of (RS)-N(9)-(2,3-dihydroxypropyl)adenine (DHPA), a plausibly prebiotic nucleoside analog of adenosine. It is found that DHPA molecules self-assemble into a hydrogen-bonded polymer that grows almost exclusively along the herringbone reconstruction pattern, has a two component sequence that is repeated over hundreds of nanometers, and is erasable with electron-induced excitation. Although the sequence is simple, more complicated ones are envisioned if two or more nucleoside types are combined. Because polymerization occurs on a substrate in a dry environment, the success of each combination can be gauged with high-resolution imaging and accurate modeling techniques. These characteristics make nucleoside self-assembly on a substrate an attractive approach for designing sequence-controlled polymers. Further, by choosing plausibly prebiotic nucleosides, insights may be provided into how nature created the first sequence-controlled polymers capable of storing information. Such insights, in turn, can inspire new ways of synthesizing sequence-controlled polymers. PMID:26725380

  14. Supramolecular polymerization of a prebiotic nucleoside provides insights into the creation of sequence-controlled polymers

    PubMed Central

    Wang, Jun; Bonnesen, Peter V.; Rangel, E.; Vallejo, E.; Sanchez-Castillo, Ariadna; James Cleaves II, H.; Baddorf, Arthur P.; Sumpter, Bobby G.; Pan, Minghu; Maksymovych, Petro; Fuentes-Cabrera, Miguel

    2016-01-01

    Self-assembly of a nucleoside on Au(111) was studied to ascertain whether polymerization on well-defined substrates constitutes a promising approach for making sequence-controlled polymers. Scanning tunneling microscopy and density functional theory were used to investigate the self-assembly on Au(111) of (RS)-N9-(2,3-dihydroxypropyl)adenine (DHPA), a plausibly prebiotic nucleoside analog of adenosine. It is found that DHPA molecules self-assemble into a hydrogen-bonded polymer that grows almost exclusively along the herringbone reconstruction pattern, has a two component sequence that is repeated over hundreds of nanometers, and is erasable with electron-induced excitation. Although the sequence is simple, more complicated ones are envisioned if two or more nucleoside types are combined. Because polymerization occurs on a substrate in a dry environment, the success of each combination can be gauged with high-resolution imaging and accurate modeling techniques. These characteristics make nucleoside self-assembly on a substrate an attractive approach for designing sequence-controlled polymers. Further, by choosing plausibly prebiotic nucleosides, insights may be provided into how nature created the first sequence-controlled polymers capable of storing information. Such insights, in turn, can inspire new ways of synthesizing sequence-controlled polymers. PMID:26725380

  15. Short Communication: Transplacental Nucleoside Analogue Exposure and Mitochondrial Parameters in HIV-Uninfected Children

    PubMed Central

    Brogly, Susan B.; DiMauro, Salvatore; Van Dyke, Russell B.; Williams, Paige L.; Naini, Ali; Libutti, Daniel E.; Choi, Julia; Chung, Michelle

    2011-01-01

    Abstract Transplacental nucleoside analogue exposure can affect infant mitochondrial DNA (mtDNA). We evaluated mitochondria in peripheral blood mononuclear cells of children with and without clinical signs of mitochondrial dysfunction (MD) and antiretroviral (ARV) exposure. We previously identified 20 children with signs of MD (cases) among 1037 HIV-uninfected children born to HIV-infected women. We measured mtDNA copies/cell and oxidative phosphorylation (OXPHOS) NADH dehydrogenase (complex I) and cytochrome c oxidase (complex IV) protein levels and enzyme activities, determined mtDNA haplogroups and deletions in 18 of 20 cases with stored samples and in sex- and age-matched HIV-uninfected children, both ARV exposed and unexposed, (1) within 18 months of birth and (2) at the time of presentation of signs of MD. In specimens drawn within 18 months of birth, mtDNA levels were higher and OXPHOS protein levels and enzyme activities lower in cases than controls. In contrast, at the time of MD presentation, cases and ARV-exposed controls had lower mtDNA levels, 214 and 215 copies/cell, respectively, than ARV-unexposed controls, 254 copies/cell. OXPHOS protein levels and enzyme activities were lower in cases than exposed controls, and higher in cases than unexposed controls, except for complex IV activity, which was higher in cases. Haplotype H was less frequent among cases (6%) than controls (31%). No deletions were found. The long-term significance of these small but potentially important alterations should continue to be studied as these children enter adolescence and adulthood. PMID:21142587

  16. Flagellar Radial Spokes Contain a Ca2+-stimulated Nucleoside Diphosphate Kinase

    PubMed Central

    Patel-King, Ramila S.; Gorbatyuk, Oksana; Takebe, Sachiko; King, Stephen M.

    2004-01-01

    The radial spokes are required for Ca2+-initiated intraflagellar signaling, resulting in modulation of inner and outer arm dynein activity. However, the mechanochemical properties of this signaling pathway remain unknown. Here, we describe a novel nucleoside diphosphate kinase (NDK) from the Chlamydomonas flagellum. This protein (termed p61 or RSP23) consists of an N-terminal catalytic NDK domain followed by a repetitive region that includes three IQ motifs and a highly acidic C-terminal segment. We find that p61 is missing in axonemes derived from the mutants pf14 (lacks radial spokes) and pf24 (lacks the spoke head and several stalk components) but not in those from pf17 (lacking only the spoke head). The p61 protein can be extracted from oda1 (lacks outer dynein arms) and pf17 axonemes with 0.5 M KI, and copurifies with radial spokes in sucrose density gradients. Furthermore, p61 contains two classes of calmodulin binding site: IQ1 interacts with calmodulin-Sepharose beads in a Ca2+-independent manner, whereas IQ2 and IQ3 show Ca2+-sensitive associations. Wild-type axonemes exhibit two distinct NDKase activities, at least one of which is stimulated by Ca2+. This Ca2+-responsive enzyme, which accounts for ∼45% of total axonemal NDKase, is missing from pf14 axonemes. We found that purified radial spokes also exhibit NDKase activity. Thus, we conclude that p61 is an integral component of the radial spoke stalk that binds calmodulin and exhibits Ca2+-controlled NDKase activity. These observations suggest that nucleotides other than ATP may play an important role in the signal transduction pathway that underlies the regulatory mechanism defined by the radial spokes. PMID:15194815

  17. Curious (Old and New) Antiviral Nucleoside Analogues with Intriguing Therapeutic Potential.

    PubMed

    De Clercq, Erik

    2015-01-01

    In the current context of antiviral drug development, which has been traditionally dominated by herpesviruses, human immunodeficiency virus (HIV) and hepatitis C virus (HCV), a new viral target has been recently gained unforeseen attention, Ebola virus. Ten nucleoside analogues, or categories thereof, are reviewed for their therapeutic potential as antiviral drugs: (i) BCX4430, a C-nucleoside; (ii) 4'-azido-, 4'-cyano-, and 4'-ethynyl derivatives; (iii) 4'-thionucleosides; (iv) cordycepin (3'-deoxyadeosine); (v) pyrazofurin, another C-nucleoside; (vi) neplanocin A analogues; (vii) EICAR, a ribavirin analogue; (viii) GR-92938X, a double carboxamide; (ix) sofosbuvir (Solvaldi(®)), a 2'-C-methylnucleoside; and (x) favipiravir (T-705), a pyrazine analogue.

  18. N-Branched acyclic nucleoside phosphonates as monomers for the synthesis of modified oligonucleotides.

    PubMed

    Hocková, Dana; Rosenbergová, Šárka; Ménová, Petra; Páv, Ondřej; Pohl, Radek; Novák, Pavel; Rosenberg, Ivan

    2015-04-21

    Protected N-branched nucleoside phosphonates containing adenine and thymine bases were prepared as the monomers for the introduction of aza-acyclic nucleotide units into modified oligonucleotides. The phosphotriester and phosphoramidite methods were used for the incorporation of modified and natural units, respectively. The solid phase synthesis of a series of nonamers containing one central modified unit was successfully performed in both 3'→5' and 5'→3' directions. Hybridization properties of the prepared oligoribonucleotides and oligodeoxyribonucleotides were evaluated. The measurement of thermal characteristics of the complexes of modified nonamers with the complementary strand revealed a considerable destabilizing effect of the introduced units. We also examined the substrate/inhibitory properties of aza-acyclic nucleoside phosphono-diphosphate derivatives (analogues of nucleoside triphosphates) but neither inhibition of human and bacterial DNA polymerases nor polymerase-mediated incorporation of these triphosphate analogues into short DNA was observed. PMID:25766752

  19. Structural and Enzymatic Characterization of a Nucleoside Diphosphate Sugar Hydrolase from Bdellovibrio bacteriovorus

    PubMed Central

    Duong-ly, Krisna C.; Schoeffield, Andrew J.; Pizarro-Dupuy, Mario A.; Zarr, Melissa; Pineiro, Silvia A.; Amzel, L. Mario; Gabelli, Sandra B.

    2015-01-01

    Given the broad range of substrates hydrolyzed by Nudix (nucleoside diphosphate linked to X) enzymes, identification of sequence and structural elements that correctly predict a Nudix substrate or characterize a family is key to correctly annotate the myriad of Nudix enzymes. Here, we present the structure determination and characterization of Bd3179 –- a Nudix hydrolase from Bdellovibrio bacteriovorus–that we show localized in the periplasmic space of this obligate Gram-negative predator. We demonstrate that the enzyme is a nucleoside diphosphate sugar hydrolase (NDPSase) and has a high degree of sequence and structural similarity to a canonical ADP-ribose hydrolase and to a nucleoside diphosphate sugar hydrolase (1.4 and 1.3 Å Cα RMSD respectively). Examination of the structural elements conserved in both types of enzymes confirms that an aspartate-X-lysine motif on the C-terminal helix of the α-β-α NDPSase fold differentiates NDPSases from ADPRases. PMID:26524597

  20. Structure of purine nucleoside phosphorylase (DeoD) from Bacillus anthracis

    SciTech Connect

    Grenha, Rosa; Levdikov, Vladimir M.; Fogg, Mark J.; Blagova, Elena V.; Brannigan, James A. Wilkinson, Anthony J.; Wilson, Keith S.

    2005-05-01

    The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis was solved by X-ray crystallography using molecular replacement and refined at a resolution of 2.24 Å. Protein structures from the causative agent of anthrax (Bacillus anthracis) are being determined as part of a structural genomics programme. Amongst initial candidates for crystallographic analysis are enzymes involved in nucleotide biosynthesis, since these are recognized as potential targets in antibacterial therapy. Purine nucleoside phosphorylase is a key enzyme in the purine-salvage pathway. The crystal structure of purine nucleoside phosphorylase (DeoD) from B. anthracis has been solved by molecular replacement at 2.24 Å resolution and refined to an R factor of 18.4%. This is the first report of a DeoD structure from a Gram-positive bacterium.

  1. Synthesis and Biological Evaluation of 2-Oxo/Thioxoquinoxaline and 2-Oxo/Thioxoquinoxaline-Based Nucleoside Analogues.

    PubMed

    El-Sayed, Hassan A; Said, Said A; Moustafa, Ahmed H; Baraka, Mohamed M; Abdel-Kader, Rimaa T

    2016-01-01

    Several O- and S-quinoxaline glycosides have been prepared by glycosidation of 3-methyl-2-oxo(thioxo)-1,2-dihydroquinoxalines 1a,b with α-D-glucopyranosyl, α-D-galactopyranosyl, and α-D-lactosyl bromide in the presence of K2CO3 followed by deacetylation with Et3N/H2O. Furthermore, alkylation of 1a,b with 4-bromobutyl acetate, 2-acetoxyethoxymethyl bromide, and 3-chloropropanol afforded the corresponding O- and S-acycloquinoxaline nucleosides. Reaction of 1b with chloroacetic acid followed by condensation with sulfacetamide and sulfadiazine in the presence of Et3N/THF and ethyl chloroformate gave the corresponding sulfonamide derivatives 14 and 15, respectively. The structures of new compounds were confirmed by using IR, (1)H, (13)C NMR spectra and microanalysis. Some of these compounds were screened in vitro for antitumor and antifungal activities. PMID:26810144

  2. Contents Changes of Triterpenic Acids, Nucleosides, Nucleobases, and Saccharides in Jujube (Ziziphus jujuba) Fruit During the Drying and Steaming Process.

    PubMed

    Guo, Sheng; Duan, Jin-Ao; Zhang, Ying; Qian, Dawei; Tang, Yuping; Zhu, Zhenhua; Wang, Hanqing

    2015-12-12

    Chinese jujube (Ziziphus jujuba), a medicinal and edible plant, is widely consumed in Asian countries owing to the remarkable health activities of its fruits. To facilitate selection of the suitable processing method for jujube fruits, in this study their contents of triterpenic acids, nucleosides, nucleobases and saccharides after drying and steaming treatment were determined using ultra-high performance liquid chromatography and high performance liquid chromatography coupled with evaporative light scattering detector methods. The results showed that except for sucrose, the content levels of most analytes were increasing in the jujube fruits during drying treatment at 45 °C. The levels of cyclic nucleotides such as adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, were significantly decreased after the fruits were steamed. Therefore, owing to the bioactivities of these components for human health, the dried fruits would be the better choice as medicinal material or functional food, and dried jujube fruit should not be further steamed.

  3. Use of molecular modelling to probe the mechanism of the nucleoside transporter NupG

    PubMed Central

    Vaziri, Hamidreza; Baldwin, Stephen A.; Baldwin, Jocelyn M.; Adams, David G.; Young, James D.

    2013-01-01

    Nucleosides play key roles in biology as precursors for salvage pathways of nucleotide synthesis. Prokaryotes import nucleosides across the cytoplasmic membrane by proton- or sodium-driven transporters belonging to the Concentrative Nucleoside Transporter (CNT) family or the Nucleoside:H+ Symporter (NHS) family of the Major Facilitator Superfamily. The high resolution structure of a CNT from Vibrio cholerae has recently been determined, but no similar structural information is available for the NHS family. To gain a better understanding of the molecular mechanism of nucleoside transport, in the present study the structures of two conformations of the archetypical NHS transporter NupG from Escherichia coli were modelled on the inward- and outward-facing conformations of the lactose transporter LacY from E. coli, a member of the Oligosaccharide:H+ Symporter (OHS) family. Sequence alignment of these distantly related proteins (∼ 10% sequence identity), was facilitated by comparison of the patterns of residue conservation within the NHS and OHS families. Despite the low sequence similarity, the accessibilities of endogenous and introduced cysteine residues to thiol reagents were found to be consistent with the predictions of the models, supporting their validity. For example C358, located within the predicted nucleoside binding site, was shown to be responsible for the sensitivity of NupG to inhibition by p-chloromercuribenzene sulphonate. Functional analysis of mutants in residues predicted by the models to be involved in the translocation mechanism, including Q261, E264 and N228, supported the hypothesis that they play important roles, and suggested that the transport mechanisms of NupG and LacY, while different, share common features. PMID:23256604

  4. Nucleoside transporter proteins as biomarkers of drug responsiveness and drug targets

    PubMed Central

    Pastor-Anglada, Marçal; Pérez-Torras, Sandra

    2015-01-01

    Nucleoside and nucleobase analogs are currently used in the treatment of solid tumors, lymphoproliferative diseases, viral infections such as hepatitis and AIDS, and some inflammatory diseases such as Crohn. Two gene families are implicated in the uptake of nucleosides and nucleoside analogs into cells, SCL28 and SLC29. The former encodes hCNT1, hCNT2, and hCNT3 proteins. They translocate nucleosides in a Na+ coupled manner with high affinity and some substrate selectivity, being hCNT1 and hCNT2 pyrimidine- and purine-preferring, respectively, and hCNT3 a broad selectivity transporter. SLC29 genes encode four members, being hENT1 and hENT2 the only two which are unequivocally implicated in the translocation of nucleosides and nucleobases (the latter mostly via hENT2) at the cell plasma membrane. Some nucleoside-derived drugs can also interact with and be translocated by members of the SLC22 gene family, particularly hOCT and hOAT proteins. Inter-individual differences in transporter function and perhaps, more importantly, altered expression associated with the disease itself might modulate the transporter profile of target cells, thereby determining drug bioavailability and action. Drug transporter pharmacology has been periodically reviewed. Thus, with this contribution we aim at providing a state-of-the-art overview of the clinical evidence generated so far supporting the concept that these membrane proteins can indeed be biomarkers suitable for diagnosis and/or prognosis. Last but not least, some of these transporter proteins can also be envisaged as drug targets, as long as they can show “transceptor” functions, in some cases related to their role as modulators of extracellular adenosine levels, thereby providing a functional link between P1 receptors and transporters. PMID:25713533

  5. Multiple ecto-nucleoside triphosphate diphosphohydrolases facilitate intracellular replication of Legionella pneumophila.

    PubMed

    Riedmaier, Patrice; Sansom, Fiona M; Sofian, Trifina; Beddoe, Travis; Schuelein, Ralf; Newton, Hayley J; Hartland, Elizabeth L

    2014-09-01

    Legionella pneumophila is an opportunistic pathogen that replicates within alveolar macrophages resulting in the onset of severe atypical pneumonia. Previously we have identified Lpg1905, a eukaryotic-type ecto-NTPDase (nucleoside triphosphate diphosphohydrolase) from L. pneumophila that was required for optimal intracellular replication and virulence in a mouse lung infection model. In the present study, we characterized the activity of a second eukaryotic-type NTPDase, Lpg0971, from L. pneumophila. We observed that recombinant Lpg0971 hydrolysed only ATP and exhibited divalent cation preference for manganese (II) ions. Similar to lpg1905, an lpg0971 mutant carrying the plasmid pMIP was attenuated in a mouse lung infection model and impaired for replication in human macrophages and amoebae. Increased trafficking of the LCV (Legionella-containing vacuole) to a LAMP-1 (lysosome-associated membrane protein-1)-positive compartment was observed for both the lpg1905 and lpg0971 mutants carrying pMIP. Complementation with either lpg1905 or lpg0971 restored intracellular replication, suggesting that a minimum level of ATPase activity was required for this function. A double lpg1905/0971 mutant was not more impaired for intracellular replication than the single mutants and complementation of the double mutant with lpg0971, but not lpg1905, restored intracellular replication. This suggested that although the NTPDases have overlapping activities they have distinct functions. Unlike many eukaryotic-type proteins from L. pneumophila, neither Lpg1905 nor Lpg0971 were translocated into the host cell by the Dot/Icm (defective in organelle trafficking/intracellular multiplication) type IV secretion system. Overall our data suggest that the ability of L. pneumophila to replicate in eukaryotic cells relies in part on the ability of the pathogen to hydrolyse ATP within an intracellular compartment.

  6. Predictive markers of capecitabine sensitivity identified from the expression profile of pyrimidine nucleoside-metabolizing enzymes.

    PubMed

    Yasuno, Hideyuki; Kurasawa, Mitsue; Yanagisawa, Mieko; Sato, Yasuko; Harada, Naoki; Mori, Kazushige

    2013-02-01

    Molecular markers predicting sensitivity to anticancer drugs are important and useful not only for selecting potential responders but also for developing new combinations. In the present study, we analyzed the difference in the sensitivity of xenograft models to capecitabine (Xeloda®), 5'-deoxy-5-fluorouridine (5'-DFUR, doxifluridine, Furtulon®) and 5-FU by comparing the mRNA levels of 12 pyrimidine nucleoside-metabolizing enzymes. Amounts of mRNA in the tumor tissues of 80 xenograft models were determined by real-time RT-PCR and mutual correlations were examined. A clustering analysis revealed that the 12 enzymes were divided into two groups; one group consisted of 8 enzymes, including orotate phosphoribosyl transferase (OPRT), TMP kinase (TMPK) and UMP kinase (UMPK), and was related to the de novo synthesis pathway for nucleotides, with mRNA expression levels showing significant mutual correlation. In the other group, 4 enzymes, including thymidine phosphorylase (TP) and dihydropyrimidine dehydrogenase (DPD), were involved in the salvage/degradation pathway of the nucleotides, and the mRNA levels of this group were dispersed more widely than that of the de novo group. Antitumor activity was assessed in 24 xenograft models for each drug. The antitumor activity of capecitabine and 5'-DFUR correlated significantly with the mRNA levels of TP and with the TP/DPD ratio, whereas the activity of 5-FU correlated significantly with OPRT, TMPK, UMPK and CD. In a stepwise regression analysis, TP and DPD were found to be independent predictive factors of sensitivity to capecitabine and 5'-DFUR, and UMPK was predictive of sensitivity to 5-FU. These results indicate that the predictive factors for sensitivity to capecitabine and 5'-DFUR in xenograft models may be different from those for 5-FU, suggesting that these drugs may have different responders in clinical usage. PMID:23229803

  7. Selective diphosphorylation, dithiodiphosphorylation, triphosphorylation, and trithiotriphosphorylation of unprotected carbohydrates and nucleosides.

    PubMed

    Ahmadibeni, Yousef; Parang, Keykavous

    2005-12-01

    [chemical reaction: see text]. Aminomethyl polystyrene resin-bound linkers of p-acetoxybenzyl alcohol were subjected to reactions with diphosphitylating and triphosphitylating reagents to yield the corresponding polymer-bound diphosphitylating and triphosphitylating reagents, respectively. A number of unprotected carbohydrates and nucleosides were reacted with the polymer-bound reagents. Oxidation with tert-butyl hydroperoxide or sulfurization with Beaucage's reagent, followed by removal of cyanoethoxy group with DBU and the acidic cleavage, respectively, afforded only one type of monosubstituted nucleoside and carbohydrate diphosphates, dithiodiphosphates, triphosphates, and trithiotriphosphates with high regioselectivity.

  8. Characterization of nitrobenzylthioinosine binding to nucleoside transport sites selective for adenosine in rat brain

    SciTech Connect

    Geiger, J.D.; LaBella, F.S.; Nagy, J.I.

    1985-03-01

    Nucleoside transport sites in rat brain membrane preparations were labeled with (/sup 3/H)nitrobenzylthioinosine ((/sup 3/H) NBI), a potent inhibitor of nucleoside transport systems. The membranes contained a single class of very high affinity binding sites with K/sub D/ and B/sub max/ values of 0.06 nM and 147 fmol/mg of protein, respectively. The displacement of (/sup 3/H)NBI binding by various nucleosides, adenosine receptor agonists and antagonists, and known nucleoside transport inhibitors was examined. The K/sub i/ values (micromolar concentration) of (/sup 3/H)NBI displacement by the nucleosides tested were: adenosine, 3.0; inosine, 160; thymidine, 240; uridine, 390; guanosine, 460; and cytidine, 1000. These nucleosides displayed parallel displacement curves indicating their interaction with a common site labeled by (/sup 3/H)NBI. The nucleobases, hypoxanthine and adenine, exhibited K/sub i/ values of 220 and 3640 microM, respectively. Adenosine receptor agonists exhibited moderate affinities for the (/sup 3/H)NBI site, whereas the adenosine receptor antagonists, caffeine, theophylline, and enprofylline, were ineffective displacers. The K/sub i/ values for cyclohexyladenosine, (+)- and (-)-phenylisopropyladenosine, 2-chloroadenosine, and adenosine 5'-ethylcarboxamide were 0.8, 0.9, 2.6, 12, and 54 microM, respectively. These affinities and the rank order of potencies indicate that (/sup 3/H)NBI does not label any known class of adenosine receptors (i.e., A1, A2, and P). The K/sub i/ values of other nucleoside transport inhibitors were: nitrobenzylthioguanosine, 0.05 nM; dipyridamole, 16 nM; papaverine, 3 microM; and 2'-deoxyadenosine, 22 microM. These results indicate that (/sup 3/H)NBI binds to a nucleoside transporter in brain which specifically recognizes adenosine as its preferred endogenous substrate. This ligand may aid in the identification of CNS neural systems that selectively accumulate adenosine and thereby control adenosinergic function.

  9. L-nucleoside analogues as potential antimalarials that selectively target Plasmodium falciparum adenosine deaminase.

    PubMed

    Brown, D M; Netting, A G; Chun, B K; Choi, Y; Chu, C K; Gero, A M

    1999-01-01

    The L-stereoisomer analogues of D-coformycin selectively inhibited P. falciparum adenosine deaminase (ADA) in the picomolar range (L-isocoformycin, Ki 7 pM; L-coformycin, Ki 250 pM). While the L-nucleoside analogues, L-adenosine, 2,6-diamino-9-(L-ribofuranosyl)purine and 4-amino-1-(L-ribofuranosyl)pyrazolo[3,4-d]-pyrimidine were selectively deaminated by P. falciparum ADA, L-thioinosine and L-thioguanosine were not. This is the first example of 'non-physiological' L-nucleosides that serve as either substrates or inhibitors of malarial ADA and are not utilised by mammalian ADA.

  10. [Study of the calmodulin-dependent regulation of calcium adenosine triphosphatase of erythrocyte membranes in patients with ischemic heart disease].

    PubMed

    Malaia, L T; Petruniaka, V V; Rudyk, Iu S

    1991-01-01

    The inhibitor calmodulin (R 24571) was examined for effects on the activity of red blood cell Ca-ATPases in patients with coronary heart disease during the treatment with nitrates, beta-blockers and calcium antagonists. The maximum activity of Ca-ATPase was measured in the erythrocytes perforated with saponine in the presence of endogenous regulators at a concentration of Ca2+ of 3-5 microM. Patients with high and low Ca-ATPase activity were identified. In the control group R24571 failed to affect Ca-ATPase activity. In patients, the calmodulin inhibitor caused both Ca-ATPase activation and inhibition. The effects of R 24571 correlated with the severity of the patients' condition. In effective therapy, the action of the calmodulin inhibitor became lower on Ca-ATPase activity. It was concluded that there was Ca-ATPase regulation imbalance in patients with coronary heart diseases. PMID:1838226

  11. Anopheles gambiae Purine Nucleoside Phosphorylase: Catalysis, Structure, and Inhibition

    SciTech Connect

    Taylor,E.; Rinaldo-Matthis, A.; Li, L.; Ghanem, M.; Hazleton, K.; Cassera, M.; Almo, S.; Schramm, V.

    2007-01-01

    The purine salvage pathway of Anopheles gambiae, a mosquito that transmits malaria, has been identified in genome searches on the basis of sequence homology with characterized enzymes. Purine nucleoside phosphorylase (PNP) is a target for the development of therapeutic agents in humans and purine auxotrophs, including malarial parasites. The PNP from Anopheles gambiae (AgPNP) was expressed in Escherichia coli and compared to the PNPs from Homo sapiens (HsPNP) and Plasmodium falciparum (PfPNP). AgPNP has kcat values of 54 and 41 s-1 for 2'-deoxyinosine and inosine, its preferred substrates, and 1.0 s-1 for guanosine. However, the chemical step is fast for AgPNP at 226 s-1 for guanosine in pre-steady-state studies. 5'-Deaza-1'-aza-2'-deoxy-1'-(9-methylene)-Immucillin-H (DADMe-ImmH) is a transition-state mimic for a 2'-deoxyinosine ribocation with a fully dissociated N-ribosidic bond and is a slow-onset, tight-binding inhibitor with a dissociation constant of 3.5 pM. This is the tightest-binding inhibitor known for any PNP, with a remarkable Km/Ki* of 5.4 x 107, and is consistent with enzymatic transition state predictions of enhanced transition-state analogue binding in enzymes with enhanced catalytic efficiency. Deoxyguanosine is a weaker substrate than deoxyinosine, and DADMe-Immucillin-G is less tightly bound than DADMe-ImmH, with a dissociation constant of 23 pM for AgPNP as compared to 7 pM for HsPNP. The crystal structure of AgPNP was determined in complex with DADMe-ImmH and phosphate to a resolution of 2.2 Angstroms to reveal the differences in substrate and inhibitor specificity. The distance from the N1' cation to the phosphate O4 anion is shorter in the AgPNP{center_dot}DADMe-ImmH{center_dot}PO4 complex than in HsPNP{center_dot}DADMe-ImmH{center_dot}SO4, offering one explanation for the stronger inhibitory effect of DADMe-ImmH for AgPNP.

  12. Mycobacterium tuberculosis Nucleoside Diphosphate Kinase Inactivates Small GTPases Leading to Evasion of Innate Immunity

    PubMed Central

    Sun, Jim; Singh, Vijender; Lau, Alice; Stokes, Richard W.; Obregón-Henao, Andrés; Orme, Ian M.; Wong, Dennis; Av-Gay, Yossef; Hmama, Zakaria

    2013-01-01

    Defining the mechanisms of Mycobacterium tuberculosis (Mtb) persistence in the host macrophage and identifying mycobacterial factors responsible for it are keys to better understand tuberculosis pathogenesis. The emerging picture from ongoing studies of macrophage deactivation by Mtb suggests that ingested bacilli secrete various virulence determinants that alter phagosome biogenesis, leading to arrest of Mtb vacuole interaction with late endosomes and lysosomes. While most studies focused on Mtb interference with various regulators of the endosomal compartment, little attention was paid to mechanisms by which Mtb neutralizes early macrophage responses such as the NADPH oxidase (NOX2) dependent oxidative burst. Here we applied an antisense strategy to knock down Mtb nucleoside diphosphate kinase (Ndk) and obtained a stable mutant (Mtb Ndk-AS) that displayed attenuated intracellular survival along with reduced persistence in the lungs of infected mice. At the molecular level, pull-down experiments showed that Ndk binds to and inactivates the small GTPase Rac1 in the macrophage. This resulted in the exclusion of the Rac1 binding partner p67phox from phagosomes containing Mtb or Ndk-coated latex beads. Exclusion of p67phox was associated with a defect of both NOX2 assembly and production of reactive oxygen species (ROS) in response to wild type Mtb. In contrast, Mtb Ndk-AS, which lost the capacity to disrupt Rac1-p67phox interaction, induced a strong ROS production. Given the established link between NOX2 activation and apoptosis, the proportion of Annexin V positive cells and levels of intracellular active caspase 3 were significantly higher in cells infected with Mtb Ndk-AS compared to wild type Mtb. Thus, knock down of Ndk converted Mtb into a pro-apoptotic mutant strain that has a phenotype of increased susceptibility to intracellular killing and reduced virulence in vivo. Taken together, our in vitro and in vivo data revealed that Ndk contributes significantly to

  13. Purine nucleoside phosphorylase and the enzymatic antioxidant defense system in breast milk from women with different levels of arsenic exposure.

    PubMed

    Gaxiola-Robles, Ramón; Labrada-Martagón, Vanessa; Bitzer-Quintero, Oscar Kurt; Zenteno-Savín, Tania; Méndez-Rodríguez, Lía Celina

    2015-05-01

    Purine nucleoside phosphorylase (PNP) is an ubiquitous enzyme which plays an important role in arsenic (As) detoxification. As is a toxic metalloid present in air, soil and water; is abundant in the environment and is readily transferred along the trophic chain, being found even in human breast milk. Milk is the main nutrient source for the growth and development of neonates. Information on breast milk synthesis and its potential defense mechanism against As toxicity is scarce. In this study, PNP and antioxidant enzymes activities, as well as glutathione (GSH) and total arsenic (TAs) concentrations, were quantified in breast milk samples. PNP, superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), glutathione peroxidase (GPx), glutathione reductase (GR) activities and GSH concentration were determined spectrophotometrically; TAs concentration ([TAs]) was measured by atomic absorption spectrometry. Data suggest an increase in PNP activity (median = 0.034 U mg protein-1) in the presence of TAs (median = 1.16 g L(-1)). To explain the possible association of PNP activity in breast milk with the activity of the antioxidant enzymes as well as with GSH and TAs concentrations, generalized linear models were built. In the adjusted model, GPx and GR activities showed a statistically significant (p<0.01) association with PNP activity. These results may suggest that PNP activity increases in the presence of TAs as part of the detoxification mechanism in breast milk.

  14. Glycine-Linked Nucleoside-β-Amino Acids: Polyamide Analogues of Nucleic Acids.

    PubMed

    Banerjee, Anjan; Bagmare, Seema; Varada, Manojkumar; Kumar, Vaijayanti A

    2015-08-19

    3'-5'-Deoxyribose-sugar-phoshate backbone in DNA is completely replaced by 2'-deoxyribonucleoside-based β-amino acids interlinked by glycine to create uncharged polyamide DNA with 3'-5'-directionality. These oligomers as conjugates of α-amino acids and nucleoside-β-amino acids bind strongly and sequence-specifically only to the antiparallel complementary RNA and DNA.

  15. Release of nucleosides from canine and human hearts as an index of prior ischemia.

    PubMed

    Fox, A C; Reed, G E; Meilman, H; Silk, B B

    1979-01-01

    During ischemia, myocardial adenosine triphosphate is degraded to adenosine, inosine and hypoxanthine. These nucleosides are released into coronary venous blood and may provide an index of ischemia; adenosine may also participate in the autoregulation of coronary flow. In dogs, the temporal relations between reactive hyperemic flow and nucleoside concentrations in regional venous blood were correlated after brief occlusions of a segmental coronary artery. Reactive hyperemia and adenosine release peaked together in 10 seconds, persisted for 10 to 30 seconds and then decreased in a pattern consistent with the hypothesis that they are related. During initial reflow after 45 seconds of ischemia, mean concentrations of adenosine, inosine and hypoxanthine increased, respectively, to 52, 67 and 114 nmol/100 ml plasma; after 5 minutes of ischemia, the respective levels increased to 58, 1,570 and 1,134 nmol and fell quickly. In nine patients there was a similar release of nucleosides into coronary sinus blood during reperfusion after 59 to 80 minutes of ischemic arrest during cardiac surgery. With initial reflow, adenosine, inosine and hypoxanthine levels reached 65, 655 and 917 nmol/100 ml of blood, respectively. Inosine and hypoxanthine concentrations remained high for 5 to 10 minutes after cardiac beating resumed, often when production of lactate had decreased. The results indicate that postischemic release of nucleosides reaches significant levels in man as well as animals, is parallel with the duration of ischemia, is temporary and may be a useful supplement to measurement of lactate as an index of prior myocardial ischemia. PMID:758770

  16. Characterization of nucleobases and nucleosides in the fruit of Alpinia oxyphylla collected from different cultivation regions.

    PubMed

    Song, Wenjing; Li, Yonghui; Wang, Jianguo; Li, Zeyou; Zhang, Junqing

    2014-03-01

    The fruit of Alpinia oxyphylla, known as Yizhi, Yakuchi and Ikji in Chinese, Japanese, and Korean, respectively, has been utilized as an important drug for the treatment of diarrhea, dyspepsia, spermatorrhea, kidney asthenia and abdominal pain in East Asian traditional medicine for thousands of years. Since the therapeutic effects of A. oxyphylla are attributed to multiple components and nucleobases and nucleosides exhibit various bioactivities, it is necessary to explore the chemical characterization of nucleobases and nucleosides in this herb. Herein, 10 common nucleobases and nucleosides, including cytidine, adenosine, thymidine, inosine, guanosine, 2'-deoxyinosine, guanine, adenine, cytosine, and hypoxanthine, were quantified simultaneously in the fruit of A. oxyphylla collected from different geographical regions. Changes in their contents were discussed, and hierarchical cluster analysis (HCA) was performed to classify all samples on the basis of the contents of the investigated analytes. The results indicated that there was a large variation in the contents of nucleobases and nucleosides among the herbs from different regions, and the samples collected from the same cultivation region were mostly classified in one cluster. The method can be used for comprehensive quality evaluation of A. oxyphylla.

  17. Pseudobond parameters for QM/MM studies involving nucleosides, nucleotides, and their analogs

    NASA Astrophysics Data System (ADS)

    Chaudret, Robin; Parks, Jerry M.; Yang, Weitao

    2013-01-01

    In biological systems involving nucleosides, nucleotides, or their respective analogs, the ribose sugar moiety is the most common reaction site, for example, during DNA replication and repair. However, nucleic bases, which comprise a sizable portion of nucleotide molecules, are usually unreactive during such processes. In quantum mechanical/molecular simulations of nucleic acid reactivity, it may therefore be advantageous to describe specific ribosyl or ribosyl phosphate groups quantum mechanically and their respective nucleic bases with a molecular mechanics potential function. Here, we have extended the pseudobond approach to enable quantum mechanical/molecular mechanical simulations involving nucleotides, nucleosides, and their analogs in which the interface between the two subsystems is located between the sugar and the base, namely, the C(sp3)-N(sp2) bond. The pseudobond parameters were optimized on a training set of 10 molecules representing several nucleotide and nucleoside bases and analogs, and they were then tested on a larger test set of 20 diverse molecules. Particular emphasis was placed on providing accurate geometries and electrostatic properties, including electrostatic potential, natural bond orbital (NBO) and atoms in molecules (AIM) charges and AIM first moments. We also tested the optimized parameters on five nucleotide and nucleoside analogues of pharmaceutical relevance and a small polypeptide (triglycine). Accuracy was maintained for these systems, which highlights the generality and transferability of the pseudobond approach.

  18. Preparation of stilbene-tethered nonnatural nucleosides for use with blue-fluorescent antibodies.

    PubMed

    Chen, D W; Beuscher, A E; Stevens, R C; Wirsching, P; Lerner, R A; Janda, K D

    2001-03-01

    The synthesis of the first examples of stilbene-tethered hydrophobic C-nucleosides is described. Compounds of this type are targeted for use with our recently reported "blue-fluorescent antibodies" with the aim of probing native and nonnatural DNA. The nucleophilic addition of aryl Grignard reagents to either a protected 2'-deoxy-1'-chloro-ribofuranose or a protected 2'-deoxy-ribonolactone was the key synthetic step and afforded C-nucleosides in good yields. Both routes resulted in a final product that was >/=90% of the beta-anomer. Amide- and ether-based linkers for attachment of trans-stilbene to the nucleobase were assessed for utility during synthesis and in binding of the ligands to a blue-fluorescent monoclonal antibody. X-ray structures of each complex were obtained and serve as a guideline for second-generation stilbene-tethered C-nucleosides. The development of these hydrophobic nucleosides will be useful in current native and nonnatural DNA studies and invaluable for investigations regarding novel, nonnatural genomes in the future.

  19. Donor/acceptor chromophores-decorated triazolyl unnatural nucleosides: synthesis, photophysical properties and study of interaction with BSA.

    PubMed

    Bag, Subhendu Sekhar; Talukdar, Sangita; Das, Suman Kalyan; Pradhan, Manoj Kumar; Mukherjee, Soumen

    2016-06-14

    Much effort has been put forth to develop unnatural, stable, hydrophobic base pairs with orthogonal recognition properties and study their effect on DNA duplex stabilisation. Our continuous efforts on the design of fluorescent unnatural biomolecular building blocks lead us to the synthesis of some triazolyl donor/acceptor unnatural nucleosides via an azide-alkyne 1,3-dipolar cycloaddition reaction as a key step, which we want to report herein. We have studied their photophysical properties and found interesting solvatochromic fluorescence for two of the nucleosides. Photophysical interactions among two donor-acceptor β-nucleosides as well as a pair of α/β-nucleosides have also been evaluated. Furthermore, we have exploited one of the fluorescent nucleosides in studying its interaction with BSA with the help of UV-visible and steady state fluorescence techniques. Our design concept is based on the hypothesis that a pair of such donor/acceptor nucleosides might be involved in π-stacking as well as in photophysical interactions, leading to stabilization of the DNA duplex if such nucleosides can be incorporated into short oligonucleotide sequences. Therefore, the designed bases may find application in biophysical studies in the context of DNA. PMID:27181694

  20. Four Generations of Transition State Analogues for Human Purine Nucleoside Phosphorylase

    SciTech Connect

    Ho, M.; Shi, W; Rinaldo-Mathis, A; Tyler, P; Evans, G; Almo, S; Schramm, V

    2010-01-01

    Inhibition of human purine nucleoside phosphorylase (PNP) stops growth of activated T-cells and the formation of 6-oxypurine bases, making it a target for leukemia, autoimmune disorders, and gout. Four generations of ribocation transition-state mimics bound to PNP are structurally characterized. Immucillin-H (K*{sub i} = 58 pM, first-generation) contains an iminoribitol cation with four asymmetric carbons. DADMe-Immucillin-H (K*{sub i} = 9 pM, second-generation), uses a methylene-bridged dihydroxypyrrolidine cation with two asymmetric centers. DATMe-Immucillin-H (K*{sub i} = 9 pM, third-generation) contains an open-chain amino alcohol cation with two asymmetric carbons. SerMe-ImmH (K*{sub i} = 5 pM, fourth-generation) uses achiral dihydroxyaminoalcohol seramide as the ribocation mimic. Crystal structures of PNPs establish features of tight binding to be; (1) ion-pair formation between bound phosphate (or its mimic) and inhibitor cation, (2) leaving-group interactions to N1, O6, and N7 of 9-deazahypoxanthine, (3) interaction between phosphate and inhibitor hydroxyl groups, and (4) His257 interacting with the 5{prime}-hydroxyl group. The first generation analogue is an imperfect fit to the catalytic site with a long ion pair distance between the iminoribitol and bound phosphate and weaker interactions to the leaving group. Increasing the ribocation to leaving-group distance in the second- to fourth-generation analogues provides powerful binding interactions and a facile synthetic route to powerful inhibitors. Despite chemical diversity in the four generations of transition-state analogues, the catalytic site geometry is almost the same for all analogues. Multiple solutions in transition-state analogue design are available to convert the energy of catalytic rate enhancement to binding energy in human PNP.

  1. Conformational States of Human Purine Nucleoside Phosphorylase at Rest, at Work and with Transition State Analogues†

    PubMed Central

    Edwards, Achelle A.; Tipton, Jeremiah D.; Brenowitz, Michael D.; Emmett, Mark R.; Marshall, Alan G.; Evans, Gary B.; Tyler, Peter C.; Schramm, Vern L.

    2010-01-01

    Human purine nucleoside phosphorylase (PNP) is a homotrimer binding tightly to the transition state analogues Immucillin-H (ImmH, Kd = 56 pM) and DATMe-ImmH-Immucillin-H (DATMe-ImmH, Kd = 8.6 pM). ImmH binds with a larger entropic penalty than DATMe-ImmH, a chemically more flexible inhibitor. The testable hypothesis is that PNP conformational states are more relaxed (dynamic) with DATMe-ImmH, despite tighter binding than with ImmH. PNP conformations are probed by peptide amide deuterium exchange (HDX) using liquid chromatography high-resolution Fourier transform ion cyclotron resonance mass spectrometry and by sedimentation rates. Catalytically equilibrating Michaelis complexes (PNP•PO4•Inosine ↔ PNP•Hx•R-1-P) and inhibited complexes (PNP•PO4•DATMe-ImmH and PNP•PO4•ImmH) show protection from HDX at 9, 13 and 15 sites per subunit relative to resting PNP (PNP•PO4) in extended incubations. The PNP•PO4•ImmH complex is more compact (by sedimentation rate) than the other complexes. HDX kinetic analysis of ligand-protected sites corresponds to peptides near the catalytic sites. HDX and sedimentation results establish that PNP protein conformation (dynamic motion) correlates more closely to entropy of binding than to affinity. Catalytically active turnover with saturated substrate sites causes less change in HDX and sedimentation rates than binding of transition state analogues. DATMe-ImmH more closely mimics the transition of human PNP than does ImmH, and achieves strong binding interactions at the catalytic site while causing relatively modest alterations of the protein dynamic motion. Transition state analogues causing the most rigid, closed protein conformation are therefore not necessarily the most tightly bound. Close mimics of the transition state are hypothesized to retain enzymatic dynamic motions related to transition state formation. PMID:20108972

  2. Potent inhibition of hemangioma formation in rats by the acyclic nucleoside phosphonate analogue cidofovir.

    PubMed

    Liekens, S; Andrei, G; Vandeputte, M; De Clercq, E; Neyts, J

    1998-06-15

    The acyclic nucleoside phosphonate analogue cidofovir elicited a marked protection against hemangioma growth in newborn rats that had been infected i.p. with a high titer of murine polyomavirus. Untreated, infected rats developed cutaneous, i.m., and cerebral hemangiomas associated with severe hemorrhage and anemia leading to death within 3 weeks postinfection (p.i.). s.c. treatment with cidofovir at 25 mg/kg, once a week, resulted in a complete suppression of hemangioma development and associated mortality when treatment was initiated at 3 days p.i. (100% survival compared with 0% for the untreated animals). Cidofovir still afforded 40% survival and a significant delay in tumor-associated mortality when treatment was started at a time at which cerebral hemangiomas were already macroscopically visible (i.e., 9 days p.i.). Infectious virus or viral DNA was undetectable in the brain at different times p.i. as assessed by means of (a) a DNA-DNA hybridization assay and (b) titration of the brain for infectious virus content, indicating that there was no viral replication in murine polyomavirus-infected rats. Moreover, a semiquantitative PCR for viral protein 1 DNA revealed that the amount of viral protein 1 DNA declined with time after infection to become virtually undetectable at 18 days p.i. Therefore, an antitumor or antiangiogenic effect, rather than inhibition of viral replication, may be the reason for the inhibitory activity of cidofovir in this model. Cidofovir may thus be further explored for the treatment of vascular tumors and, in particular, life-threatening juvenile hemangiomas.

  3. BCX4430, a Novel Nucleoside Analog, Effectively Treats Yellow Fever in a Hamster Model

    PubMed Central

    Bantia, Shanta; Taubenheim, Brian R.; Minning, Dena M.; Kotian, Pravin; Morrey, John D.; Smee, Donald F.; Sheridan, William P.; Babu, Yarlagadda S.

    2014-01-01

    No effective antiviral therapies are currently available to treat disease after infection with yellow fever virus (YFV). A Syrian golden hamster model of yellow fever (YF) was used to characterize the effect of treatment with BCX4430, a novel adenosine nucleoside analog. Significant improvement in survival was observed after treatment with BCX4430 at 4 mg/kg of body weight per day dosed intraperitoneally (i.p.) twice daily (BID). Treatment with BCX4430 at 12.5 mg/kg/day administered i.p. BID for 7 days offered complete protection from mortality and also resulted in significant improvement of other YF disease parameters, including weight loss, serum alanine aminotransferase levels (6 days postinfection [dpi]), and viremia (4 dpi). In uninfected hamsters, BCX4430 at 200 mg/kg/day administered i.p. BID for 7 days was well tolerated and did not result in mortality or weight loss, suggesting a potentially wide therapeutic index. Treatment with BCX4430 at 12 mg/kg/day i.p. remained effective when administered once daily and for only 4 days. Moreover, BCX4430 dosed at 200 mg/kg/day i.p. BID for 7 days effectively treated YF, even when treatment was delayed up to 4 days after virus challenge, corresponding with peak viral titers in the liver and serum. BCX4430 treatment did not preclude a protective antibody response, as higher neutralizing antibody (nAb) concentrations corresponded with increasing delays of treatment initiation, and greater nAb responses resulted in the protection of animals from a secondary challenge with YFV. In summary, BCX4430 is highly active in a hamster model of YF, even when treatment is initiated at the peak of viral replication. PMID:25155605

  4. BCX4430, a novel nucleoside analog, effectively treats yellow fever in a Hamster model.

    PubMed

    Julander, Justin G; Bantia, Shanta; Taubenheim, Brian R; Minning, Dena M; Kotian, Pravin; Morrey, John D; Smee, Donald F; Sheridan, William P; Babu, Yarlagadda S

    2014-11-01

    No effective antiviral therapies are currently available to treat disease after infection with yellow fever virus (YFV). A Syrian golden hamster model of yellow fever (YF) was used to characterize the effect of treatment with BCX4430, a novel adenosine nucleoside analog. Significant improvement in survival was observed after treatment with BCX4430 at 4 mg/kg of body weight per day dosed intraperitoneally (i.p.) twice daily (BID). Treatment with BCX4430 at 12.5 mg/kg/day administered i.p. BID for 7 days offered complete protection from mortality and also resulted in significant improvement of other YF disease parameters, including weight loss, serum alanine aminotransferase levels (6 days postinfection [dpi]), and viremia (4 dpi). In uninfected hamsters, BCX4430 at 200 mg/kg/day administered i.p. BID for 7 days was well tolerated and did not result in mortality or weight loss, suggesting a potentially wide therapeutic index. Treatment with BCX4430 at 12 mg/kg/day i.p. remained effective when administered once daily and for only 4 days. Moreover, BCX4430 dosed at 200 mg/kg/day i.p. BID for 7 days effectively treated YF, even when treatment was delayed up to 4 days after virus challenge, corresponding with peak viral titers in the liver and serum. BCX4430 treatment did not preclude a protective antibody response, as higher neutralizing antibody (nAb) concentrations corresponded with increasing delays of treatment initiation, and greater nAb responses resulted in the protection of animals from a secondary challenge with YFV. In summary, BCX4430 is highly active in a hamster model of YF, even when treatment is initiated at the peak of viral replication.

  5. Use of Nucleoside Reverse Transcriptase Inhibitor Only Regimens in HIV-infected Children and Adolescents

    PubMed Central

    Neely, Michael; Rutstein, Richard; Del Bianco, Gabriela; Heresi, Gloria; Barton, Theresa; Wiznia, Andrew; Wiegand, Ryan; Wheeling, Travis; Bohannon, Beverly; Dominguez, Kenneth

    2013-01-01

    In adults, nucleoside reverse transcriptase inhibitor (NRTI)-only antiretroviral regimens (NOARs) with ≥ three NRTIs are less potent than highly active antiretroviral therapy (HAART). However published pediatric experience with NOARs is limited. Methods We analyzed data from NOAR-treated participants in LEGACY, a multicenter observational cohort study of HIV-infected children and adolescents. NOAR-treated case-participantswere matched to participantswithout prior NOAR who initiated HAART during the same year for comparison. Results Of 575 participants with data from time of HIV diagnosis through 2006, 67 (12%) received NOARs for at least 24 weeks; most (46%) received the fixed dose combination of zidovudine/lamivudine/abacavir. NOAR use peaked in 2001-2002. NOAR-treated participants were significantly older and more treatment-experienced than HAART-treated participants. Virologic outcomes, including the percentage of participants with a plasma HIV RNA viral load <400 copies/mL at week 24 (47% vs. 34%) and the mean 24-week change in log10 plasma HIV RNA viral load from baseline (−0.63 vs. −1.02) were similar between NOAR- and HAART-treated participants, but virologic rebound was more likely in NOAR-treated participants (77% vs. 54%, P = 0.02). Increase in CD4 percentage points from baseline to 24 weeks was negligible in NOAR-treated participants compared with HAART-treated participants (0.95% vs. 10.1%, P <0.001). Anemia and leukopenia were more commonly reported with NOARs than HAART. Discussion Week 24 virologic outcomes were similar between NOAR- and HAART-treated participants, but NOAR durability was poorer and their use was associated with less immunologic reconstitution. NOARs should play a limited role in pediatric and adolescent ART. PMID:24008749

  6. Inhibition of Nm23H2 Gene Product (NDPK-B) by Angiostatin, Polyphenols and Nucleoside Analogs

    PubMed Central

    Buxton, Iain L. O.

    2009-01-01

    Human breast cancer cells (MDA-MB-435s) secrete a nucleoside diphosphate kinase (NDPK-B) as a phosphoprotein capable of converting diphosphate nucleosides to triphosphate nucleotides for one round in the absence of a phosphoryl donor. Incubation of the partially purified NDPK-B (Nm23-H2 by Western blot) from [γ32P]Pi-labeled cells with non-radioactive ADP results in the formation of [γ32P]ATP (Proc. West. Pharmacol. Soc. 44: 61–63, 2001). The presence of a secreted protein that can maintain ATP levels in the vicinity of capillary and lymph vessels may support cancer metastasis in several ways based on the known actions of ATP at P2Y receptors: facilitate intravasation of breast cancer cells that migrate from a solid tumor, support their extravasation at a distal site, and stimulate angiogenesis. The putative role of angiostatin (AS) as an ATP-synthase inhibitor led us to test the notion that AS blocks NDPK-B activity. Addition of commercial AS (kringles 1–4) did not alter enzyme activity. However, AS produced by us and never lyophilized, blocked NDPK activity in a dose-dependent fashion consistent with the notion that extracellular ATP generation by tumor cells may be important to the development of metastases. The ability of 0.5 mg/ml angiostatin to block NDPK-B activity to ~75% of control activity compared poorly with the polyphenol inhibitors of. The catechin gallates, theaflavins and ellagic acid inhibited NDPK-B completely with the rank order of potency: EA>theaflavins>EGCG>ECG>PAPS. Our results suggest that the biological activity of angiostatin as a putative metastasis inhibitor may be in part the result of nm23 inhibition and that the production, lyophilization, packaging or storage of commercial angiostatin leads to the alteration of its biological activity against NDPK-B. Ellagic acid is a potent (IC50 = 10.5 µM) NDPK-B inhibitor that may prove useful in elucidating the role of cancer-cell secreted NDPK-B in tumor development. PMID:19544670

  7. Synthesis of nucleoside and nucleotide conjugates of bile acids, and polymerase construction of bile acid-functionalized DNA.

    PubMed

    Ikonen, Satu; Macícková-Cahová, Hana; Pohl, Radek; Sanda, Miloslav; Hocek, Michal

    2010-03-01

    Aqueous Sonogashira cross-coupling reactions of 5-iodopyrimidine or 7-iodo-7-deazaadenine nucleosides with bile acid-derived terminal acetylenes linked via an ester or amide tether gave the corresponding bile acid-nucleoside conjugates. Analogous reactions of halogenated nucleoside triphosphates gave directly bile acid-modified dNTPs. Enzymatic incorporation of these modified nucleotides to DNA was successfully performed using Phusion polymerase for primer extension. One of the dNTPs (dCTP bearing cholic acid) was also efficient for PCR amplification. PMID:20165813

  8. Design, synthesis, and in vitro biological evaluation of novel 6-methyl-7-substituted-7-deaza purine nucleoside analogs as anti-influenza A agents.

    PubMed

    Lin, Cai; Sun, Chenghai; Liu, Xiao; Zhou, Yiqian; Hussain, Muzammal; Wan, Junting; Li, Minke; Li, Xue; Jin, Ruiliang; Tu, Zhengchao; Zhang, Jiancun

    2016-05-01

    Among many subtypes of influenza A viruses, influenza A(H1N1) and A(H3N2) subtypes are currently circulating among humans (WHO report 2014-15). Therapeutically, the emergence of viral resistance to currently available drugs (adamantanes and neuraminidase inhibitors) has heightened alarms for developing novel drugs that could address diverse targets in the viral replication cycle in order to improve treatment outcomes. To this regard, the design and synthesis of nucleoside analog inhibitors as potential anti-influenza A agents is a very active field of research nowadays. In this study, we designed and synthesized a series of hitherto unknown 6-methyl-7-substituted-7-deaza purine nucleoside analogs, and evaluated for their biological activities against influenza A virus strains, H1N1 and H3N2. From the viral inhibition assay, we identified some effective compounds, among which, compounds 5x (IC50 = 5.88 μM and 6.95 μM for H1N1 and H3N2, respectively) and 5z (IC50 = 3.95 μM and 3.61 μM for H1N1 and H3N2, respectively) demonstrated potent anti-influenza A activity. On the basis of selectivity index, we conceive that compound 5x may serve as a chemical probe of interest for further lead optimization studies with a general aim of developing novel and effective anti-influenza A virus agents.

  9. The transition state analog inhibitor of Purine Nucleoside Phosphorylase (PNP) Immucillin-H arrests bone loss in rat periodontal disease models.

    PubMed

    Deves, Candida; de Assunção, Thiago Milech; Ducati, Rodrigo Gay; Campos, Maria Martha; Basso, Luiz Augusto; Santos, Diogenes Santiago; Batista, Eraldo L

    2013-01-01

    Purine nucleoside phosphorylase (PNP) is a purine-metabolizing enzyme that catalyzes the reversible phosphorolysis of 6-oxypurine (deoxy)nucleosides to their respective bases and (deoxy)ribose-1-phosphate. It is a key enzyme in the purine salvage pathway of mammalian cells. The present investigation sought to determine whether the PNP transition state analog inhibitor (Immucillin-H) arrests bone loss in two models of induced periodontal disease in rats. Periodontal disease was induced in rats using ligature or LPS injection followed by administration of Immucillin-H for direct analysis of bone loss, histology and TRAP staining. In vitro osteoclast differentiation and activation of T CD4+ cells in the presence of Immucillin-H were carried out for assessment of RANKL expression, PNP and Cathepsin K activity. Immucillin-H inhibited bone loss induced by ligatures and LPS, leading to a reduced number of infiltrating osteoclasts and inflammatory cells. In vitro assays revealed that Immucillin-H could not directly abrogate differentiation of osteoclast precursor cells, but affected lymphocyte-mediated osteoclastogenesis. On the other hand, incubation of pre-activated T CD4+ with Immucillin-H decreased RANKL secretion with no compromise of cell viability. The PNP transition state analog Immucillin-H arrests bone loss mediated by T CD4+ cells with no direct effect on osteoclasts. PNP inhibitor may have an impact in the treatment of diseases characterized by the presence of pathogens and imbalances of bone metabolism.

  10. Cysteine Cross-linking Defines the Extracellular Gate for the Leishmania donovani Nucleoside Transporter 1.1 (LdNT1.1)*

    PubMed Central

    Valdés, Raquel; Shinde, Ujwal; Landfear, Scott M.

    2012-01-01

    Equilibrative nucleoside transporters are a unique family of proteins that enable uptake of nucleosides/nucleobases into a wide range of eukaryotes and internalize a myriad of drugs used in the treatment of cancer, heart disease, AIDs, and parasitic infections. In previous work we generated a structural model for such a transporter, the LdNT1.1 nucleoside permease from the parasitic protozoan Leishmania donovani, using ab initio computation. The model suggested that aromatic residues present in transmembrane helices 1, 2, and 7 interact to form an extracellular gate that closes the permeation pathway in the inward-open conformation. Mutation of residues Phe-48TM1 and Trp-75TM2 abrogated transport activity, consistent with such prediction. In this study cysteine mutagenesis and oxidative cross-linking were combined to analyze proximity relationships of helices 1, 2, and 7 in LdNT1.1. Disulfide bond formation between introduced paired cysteines at the interface of such helices (A61CTM1/F74CTM2, A61CTM1/G350CTM7, and F74CTM2/G350CTM7) was analyzed by transport measurement and gel mobility shifts upon oxidation with Cu (II)-(1,10-phenanthroline)3. In all cases cross-linking inhibited transport. However, if LdNT1.1 ligands were included during cross-linking, inhibition of transport was reduced, suggesting that ligands moved the three gating helices apart. Moreover, all paired cysteine mutants exhibited a mobility shift upon oxidation, corroborating the formation of a disulfide bond. These data support the notion that helices 1, 2, and 7 constitute the extracellular gate of LdNT1.1, thus further validating the computational model and the previously demonstrated importance of F48TM1 and Trp-75TM2 in tethering together helices that are part of the gate. PMID:23150661

  11. Structures of bacterial polynucleotide kinase in a michaelis complex with nucleoside triphosphate (NTP)-Mg2+ and 5'-OH RNA and a mixed substrate-product complex with NTP-Mg2+ and a 5'-phosphorylated oligonucleotide.

    PubMed

    Das, Ushati; Wang, Li Kai; Smith, Paul; Munir, Annum; Shuman, Stewart

    2014-12-01

    Clostridium thermocellum polynucleotide kinase (CthPnk), the 5'-end-healing module of a bacterial RNA repair system, catalyzes reversible phosphoryl transfer from a nucleoside triphosphate (NTP) donor to a 5'-OH polynucleotide acceptor, either DNA or RNA. Here we report the 1.5-Å crystal structure of CthPnk-D38N in a Michaelis complex with GTP-Mg(2+) and a 5'-OH RNA oligonucleotide. The RNA-binding mode of CthPnk is different from that of the metazoan RNA kinase Clp1. CthPnk makes hydrogen bonds to the ribose 2'-hydroxyls of the 5' terminal nucleoside, via Gln51, and the penultimate nucleoside, via Gln83. The 5'-terminal nucleobase is sandwiched by Gln51 and Val129. Mutating Gln51 or Val129 to alanine reduced kinase specific activity 3-fold. Ser37 and Thr80 donate functionally redundant hydrogen bonds to the terminal phosphodiester; a S37A-T80A double mutation reduced kinase activity 50-fold. Crystallization of catalytically active CthPnk with GTP-Mg(2+) and a 5'-OH DNA yielded a mixed substrate-product complex with GTP-Mg(2+) and 5'-PO4 DNA, wherein the product 5' phosphate group is displaced by the NTP γ phosphate and the local architecture of the acceptor site is perturbed. PMID:25266383

  12. Calf spleen purine nucleoside phosphorylase: complex kinetic mechanism, hydrolysis of 7-methylguanosine, and oligomeric state in solution.

    PubMed

    Bzowska, Agnieszka

    2002-04-29

    The active enzyme form was found to be a homotrimer, no active monomers were observed. Only in the presence of an extremely high orthophosphate concentration (0.5 M) or at a low enzyme concentration (0.2 microg/ml) with no ligands present a small fraction of the enzyme is probably in a dissociated and/or non-active form. The specific activity is invariant over a broad enzyme concentration range (0.017 microg/ml-0.29 mg/ml). At concentrations below 0.9 microg/ml and in the absence of ligands the enzyme tends to loose its catalytic activity, while in the presence of any substrate or at higher concentrations it was found to be active as a trimer. In the absence of phosphate the enzyme catalyses the hydrolysis of 7-methylguanosine (m7Guo) with a catalytic rate constant 1.3x10(-3) x s(-1) as compared with the rate of 38 s(-1) for the phosphorolysis of this nucleoside. The initial pre-steady-state phase of the phosphorolysis of m7Guo, 70 s(-1), is almost twice faster than the steady-state rate and indicates that the rate-limiting step is subsequent to the glycosidic bond cleavage. Complex kinetic behaviour with substrates of phosphorolytic direction (various nucleosides and orthophosphate) was observed; data for phosphate as the variable substrate with inosine and guanosine, but not with their 7-methyl counterparts, might be interpreted as two binding sites with different affinities, or as a negative cooperativity. However, the titration of the enzyme intrinsic fluorescence with 0.2 microM-30 mM phosphate is consistent with only one dissociation constant for phosphate, K(d)=220+/-120 microM. Protective effects of ligands on the thermal inactivation of the enzyme indicate that all substrates of the phosphorolytic and the synthetic reactions are able to form binary complexes with the calf spleen purine nucleoside phosphorylase. The purine bases, guanine and hypoxanthine, bind strongly with dissociation constants of about 0.1 microM, while all other ligands studied

  13. Development of a capillary electrophoresis method for analyzing adenosine deaminase and purine nucleoside phosphorylase and its application in inhibitor screening.

    PubMed

    Qi, Yanfei; Li, Youxin; Bao, James J

    2016-08-01

    A novel capillary electrophoresis (CE) method was developed for simultaneous analysis of adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) in red blood cells (RBCs). The developed method considered and took advantage of the natural conversion from the ADA product, inosine to hypoxanthine. The transformation ratio was introduced for ADA and PNP analysis to obtain more reliable results. After optimizing the enzymatic incubation and electrophoresis separation conditions, the determined activities of ADA and PNP in 12 human RBCs were 0.237-0.833 U/ml and 9.013-10.453 U/ml packed cells, respectively. The analysis of ADA in mice RBCs indicated that there was an apparent activity difference between healthy and hepatoma mice. In addition, the proposed method was also successfully applied in the inhibitor screening from nine traditional Chinese medicines, and data showed that ADA activities were strongly inhibited by Rhizoma Chuanxiong and Angelica sinensis. The inhibition effect of Angelica sinensis on ADA is first reported here and could also inhibit PNP activity. PMID:27173606

  14. Structure and function of nucleoside hydrolases from Physcomitrella patens and maize catalyzing the hydrolysis of purine, pyrimidine, and cytokinin ribosides.

    PubMed

    Kopecná, Martina; Blaschke, Hanna; Kopecny, David; Vigouroux, Armelle; Koncitíková, Radka; Novák, Ondrej; Kotland, Ondrej; Strnad, Miroslav; Moréra, Solange; von Schwartzenberg, Klaus

    2013-12-01

    We present a comprehensive characterization of the nucleoside N-ribohydrolase (NRH) family in two model plants, Physcomitrella patens (PpNRH) and maize (Zea mays; ZmNRH), using in vitro and in planta approaches. We identified two NRH subclasses in the plant kingdom; one preferentially targets the purine ribosides inosine and xanthosine, while the other is more active toward uridine and xanthosine. Both subclasses can hydrolyze plant hormones such as cytokinin ribosides. We also solved the crystal structures of two purine NRHs, PpNRH1 and ZmNRH3. Structural analyses, site-directed mutagenesis experiments, and phylogenetic studies were conducted to identify the residues responsible for the observed differences in substrate specificity between the NRH isoforms. The presence of a tyrosine at position 249 (PpNRH1 numbering) confers high hydrolase activity for purine ribosides, while an aspartate residue in this position confers high activity for uridine. Bud formation is delayed by knocking out single NRH genes in P. patens, and under conditions of nitrogen shortage, PpNRH1-deficient plants cannot salvage adenosine-bound nitrogen. All PpNRH knockout plants display elevated levels of certain purine and pyrimidine ribosides and cytokinins that reflect the substrate preferences of the knocked out enzymes. NRH enzymes thus have functions in cytokinin conversion and activation as well as in purine and pyrimidine metabolism.

  15. Preparative purification and desalting of bases and nucleosides labeled with tritium by column chromatography on sephadex G-10

    SciTech Connect

    Yalovleva, L.A.; Kaminskii, Y.L.; Kozyreva, O.I.; Nagorskii, A.I.; Patokina, N.A.; Sosnova, L.P.

    1986-03-01

    The authors demonstrate the application of column chromatography on Sephadex G-10 and elution with water for the isolation of tritium labeled components of nucleic acids from reaction mixtures after catalytic dehalogenation or enzymic desoxyribosylation and simultaneous removal from inorganic salts. Distribution constants of 16 bases and nucleosides on elution with water were determined. Comparison of the sorbents with Sephadex G-20 disclosed the undoubted advantages of the latter in processes of desalting and separation of mixtures of bases and nucleosides.

  16. Salvadenosine, a 5′-Deoxy-5′-(methylthio) Nucleoside from the Bahamian Tunicate Didemnum sp.

    PubMed Central

    2015-01-01

    Salvadenosine, (1) a rare 5′-deoxy-5′-(methylthio) nucleoside, was isolated from the deep-water Bahaman tunicate Didemnum sp. The structure was solved by integrated analysis of MS and 1D and 2D NMR data. We revise the structure of the known natural product, hamiguanosinol, which is a constitutional isomer of 1, to 5 by interpretation of the spectroscopic data and comparison with synthesized nucleosides. PMID:25284474

  17. Potent and selective inhibition of varicella-zoster virus (VZV) by nucleoside analogues with an unusual bicyclic base.

    PubMed

    McGuigan, C; Yarnold, C J; Jones, G; Velázquez, S; Barucki, H; Brancale, A; Andrei, G; Snoeck, R; De Clercq, E; Balzarini, J

    1999-11-01

    We herein report the discovery of an entirely new category of potent antiviral agents based on novel deoxynucleoside analogues with unusual bicyclic base moieties. Target structures, previously known as byproducts in Pd-catalyzed coupling of terminal alkynes with 5-iodo-nucleosides, are recognized herein for the first time to be potent and selective inhibitors of varicella-zoster virus (VZV) in vitro. As an unusual structure-activity relationship we noted the absolute requirement of a long alkyl side chain, with an optimum length of C(8)-C(10), for antiviral activity. We thus report the synthesis and characterization of a series of chain-modified analogues and their extensive in vitro evaluation. The lead compounds have a ca. 300-fold enhancement in anti-VZV activity over the reference compound acyclovir, with no detectable in vitro cytotoxicity. The novel structure of these compounds, coupled with their ease of synthesis, excellent antiviral profile, and promising physical properties, makes them of great interest for possible antiviral drug development.

  18. Leishmania (Viannia) braziliensis nucleoside triphosphate diphosphohydrolase (NTPDase 1): localization and in vitro inhibition of promastigotes growth by polyclonal antibodies.

    PubMed

    Porcino, Gabriane Nascimento; Carvalho-Campos, Cristiane; Maia, Ana Carolina Ribeiro Gomes; Detoni, Michelle Lima; Faria-Pinto, Priscila; Coimbra, Elaine Soares; Marques, Marcos José; Juliano, Maria Aparecida; Juliano, Luiz; Diniz, Vanessa Álvaro; Corte-Real, Suzana; Vasconcelos, Eveline Gomes

    2012-10-01

    Nucleoside triphosphate diphosphohydrolase (NTPDase) activity was recently characterized in Leishmania (Viannia) braziliensis promastigotes (Lb), and an antigenic conserved domain (r82-121) from the specific NTPDase 1 isoform was identified. In this work, mouse polyclonal antibodies produced against two synthetic peptides derived from this domain (LbB1LJ, r82-103; LbB2LJ, r102-121) were used. The anti-LbB1LJ or anti-LbB2LJ antibodies were immobilized on protein A-sepharose and immunoprecipitated the NTPDase 1 of 48 kDa and depleted approximately 40% of the phosphohydrolytic activity from detergent-homogenized Lb preparation. Ultrastructural immunocytochemical microscopy identified the NTPDase 1 on the parasite surface and in its subcellular cytoplasmic vesicles, mitochondria, kinetoplast and nucleus. The ATPase and ADPase activities of detergent-homogenized Lb preparation were partially inhibited by anti-LbB1LJ antibody (43-79%), which was more effective than that inhibition (18-47%) by anti-LbB2LJ antibody. In addition, the immune serum anti-LbB1LJ (67%) or anti-LbB2LJ (33%) was cytotoxic, significantly reducing the promastigotes growth in vitro. The results appoint the conserved domain from the L. braziliensis NTPDase as an important target for inhibitor design and the potential application of these biomolecules in experimental protocols of disease control. PMID:22921497

  19. Structure-Based Evaluation of Non-nucleoside Inhibitors with Improved Potency and Solubility That Target HIV Reverse Transcriptase Variants

    PubMed Central

    2015-01-01

    The development of novel non-nucleoside inhibitors (NNRTIs) with activity against variants of HIV reverse transcriptase (RT) is crucial for overcoming treatment failure. The NNRTIs bind in an allosteric pocket in RT ∼10 Å away from the active site. Earlier analogues of the catechol diether compound series have picomolar activity against HIV strains with wild-type RT but lose potency against variants with single Y181C and double K103N/Y181C mutations. As guided by structure-based and computational studies, removal of the 5-Cl substitution of compound 1 on the catechol aryl ring system led to a new analogue compound 2 that maintains greater potency against Y181C and K103N/Y181C variants and better solubility (510 μg/mL). Crystal structures were determined for wild-type, Y181C, and K103N/Y181C RT in complex with both compounds 1 and 2 to understand the structural basis for these findings. Comparison of the structures reveals that the Y181C mutation destabilizes the binding mode of compound 1 and disrupts the interactions with residues in the pocket. Compound 2 maintains the same conformation in wild-type and mutant structures, in addition to several interactions with the NNRTI binding pocket. Comparison of the six crystal structures will assist in the understanding of compound binding modes and future optimization of the catechol diether series. PMID:25700160

  20. Expression of the rabbit intestinal N2 Na+/nucleoside transporter in Xenopus laevis oocytes.

    PubMed Central

    Jarvis, S M; Griffith, D A

    1991-01-01

    Polyadenylated [poly(A)+] mRNA isolated from rabbit small-intestinal mucosa was injected into Xenopus laevis oocytes, and expression of the N2 Na+/nucleoside co-transporter was assayed by measuring Na(+)-dependent thymidine uptake. Expression of Na(+)-dependent thymidine uptake steadily increased after mRNA injection and was on average increased 11-fold by day 6 over background. Na(+)-dependent thymidine uptake was saturable (apparent Km approximately 30 microM at 22 degrees C) and inhibited by uridine and cytidine, but not by guanosine and inosine. These properties of the expressed thymidine transport strongly suggest that the epithelial N2 Na+/nucleoside co-transporter can be expressed in X. laevis oocytes. PMID:1898349

  1. Glucaminium ionic liquid-functionalized stationary phase for the separation of nucleosides in hydrophilic interaction chromatography.

    PubMed

    Jiang, Qiong; Zhang, Mingliang; Wang, Xusheng; Guo, Yong; Qiu, Hongdeng; Zhang, Shusheng

    2015-10-01

    A glucaminium-based ionic liquid stationary phase was prepared via facile epoxy-amine reaction and subsequent quaternization. Successful immobilization of glucaminium-based ionic liquid onto silica surface was validated by elemental analysis and infrared spectroscopy. The new stationary phase was evaluated for the separation of nucleosides in hydrophilic interaction liquid chromatography (HILIC). Effects of various factors, such as acetonitrile concentration, salt concentration, pH value, as well as column temperature, on the chromatographic behavior toward nucleosides were studied in detail. The results indicated that this new stationary phase can be used for separation of water-soluble polar substances in HILIC mode. The retention of solutes on the stationary phase was influenced by a mixed-mode retention mechanism with a combination of adsorptive and partitioning interactions. PMID:26231689

  2. Three-dimensional structure of E. Coli purine nucleoside phosphorylase at 0.99 Å resolution

    NASA Astrophysics Data System (ADS)

    Timofeev, V. I.; Abramchik, Yu. A.; Zhukhlistova, N. E.; Muravieva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2016-03-01

    Purine nucleoside phosphorylases (PNPs) catalyze the reversible phosphorolysis of nucleosides and are key enzymes involved in nucleotide metabolism. They are essential for normal cell function and can catalyze the transglycosylation. Crystals of E. coli PNP were grown in microgravity by the capillary counterdiffusion method through a gel layer. The three-dimensional structure of the enzyme was determined by the molecular-replacement method at 0.99 Å resolution. The structural features are considered, and the structure of E. coli PNP is compared with the structures of the free enzyme and its complexes with purine base derivatives established earlier. A comparison of the environment of the purine base in the complex of PNP with formycin A and of the pyrimidine base in the complex of uridine phosphorylase with thymidine revealed the main structural features of the base-binding sites. Coordinates of the atomic model determined with high accuracy were deposited in the Protein Data Bank (PDB_ID: 4RJ2).

  3. Electronic Signatures of all Four DNA Nucleosides in a Tunneling Gap

    NASA Astrophysics Data System (ADS)

    Chang, Shuai

    2011-03-01

    New approaches to DNA sequencing are required to reduce costs and increase the availability of personalized genomics. Using Scanning Tunneling Microscope as a tool, we report measurements of the current signals generated as free nucleosides diffuse into a tunnel junction in which both electrodes are functionalized with a reagent that presents a hydrogen bond donor and acceptor to the nucleosides. This functionalization serves to both limit the range of molecular orientations in the tunnel gap and reduce the contact resistance, increasing the selectivity of the tunneling signal, so that a direct readout may be possible with a few repeated reads. This work was supported by a grant from the Sequencing Technology Program of the National Human Genome Research Institute (HG004378).

  4. Linker phosphoramidite reagents for the attachment of the first nucleoside to underivatized solid-phase supports

    PubMed Central

    Pon, Richard T.; Yu, Shuyuan

    2004-01-01

    New linker phosphoramidite reagents containing a cleavable 3′-ester linkage are used for attaching the first nucleoside to the surface of a solid- phase support. Inexpensive, underivatized amino supports, such as long chain alkylamine controlled-pore glass, can serve as universal supports. No modifications to phosphoramidite coupling conditions are required and, after synthesis, treatment with NH4OH releases the products with 3′-OH ends. No 3′-dephosphorylation is required. Phosphoramidite reagents containing a succinate and sulfonyl diethanol linkage between the nucleoside and phosphoramidite group are particularly advantageous and can be used to create both 3′-OH and 5′-phosphate ends on oligonucleotides. Reproducibility and quality of oligonucleotide synthesis is demonstrated for either column and 96-well plate formats on low-, medium- or high-loading CPG supports. PMID:14752050

  5. Glucaminium ionic liquid-functionalized stationary phase for the separation of nucleosides in hydrophilic interaction chromatography.

    PubMed

    Jiang, Qiong; Zhang, Mingliang; Wang, Xusheng; Guo, Yong; Qiu, Hongdeng; Zhang, Shusheng

    2015-10-01

    A glucaminium-based ionic liquid stationary phase was prepared via facile epoxy-amine reaction and subsequent quaternization. Successful immobilization of glucaminium-based ionic liquid onto silica surface was validated by elemental analysis and infrared spectroscopy. The new stationary phase was evaluated for the separation of nucleosides in hydrophilic interaction liquid chromatography (HILIC). Effects of various factors, such as acetonitrile concentration, salt concentration, pH value, as well as column temperature, on the chromatographic behavior toward nucleosides were studied in detail. The results indicated that this new stationary phase can be used for separation of water-soluble polar substances in HILIC mode. The retention of solutes on the stationary phase was influenced by a mixed-mode retention mechanism with a combination of adsorptive and partitioning interactions.

  6. Novel carboranyl derivatives of nucleoside mono- and diphosphites and phosphonates: a synthetic investigation.

    PubMed

    Vyakaranam, Kamesh; Hosmane, Narayan S

    2004-01-01

    A number of nucleoside mono- and diphosphites and phosphonates containing 1,2-dicarbadodecaborane (12) (la-6b) at 5'-position of the sugar moiety have been synthesized in good yields. Experimental details along with the spectroscopic and analytical data, supporting the formation of the title compounds, are presented. These constitute a new generation of boron compounds that are envisioned to be useful in cancer treatment via Boron Neutron Capture Therapy (BNCT). PMID:18365067

  7. Synthesis and properties of novel base-discriminating fluorescent (BDF) nucleosides.

    PubMed

    Saito, Yoshio; Hanawa, Kazuo; Hayashi, Keigo; Motegi, Kaori; Okaoto, Akimitsu; Saito, Isao

    2005-01-01

    We designed a new type of pyrene-labeled base-discrimination fluorescent (BDF) nucleosides (Py)U, (Py)C, (8Py)A and (MePy)dA, which emitted strong fluorescence only when the bases opposite the BDF base are A, G, T and C, respectively. The DNA probes containing four different BDF bases enable us to distinguish single base alterations by simply mixing with a sample solution of target DNA. PMID:17150679

  8. Novel carboranyl derivatives of nucleoside mono- and diphosphites and phosphonates: a synthetic investigation.

    PubMed

    Vyakaranam, Kamesh; Hosmane, Narayan S

    2004-01-01

    A number of nucleoside mono- and diphosphites and phosphonates containing 1,2-dicarbadodecaborane (12) (la-6b) at 5'-position of the sugar moiety have been synthesized in good yields. Experimental details along with the spectroscopic and analytical data, supporting the formation of the title compounds, are presented. These constitute a new generation of boron compounds that are envisioned to be useful in cancer treatment via Boron Neutron Capture Therapy (BNCT).

  9. A one-pot synthesis of α-l-threofuranosyl nucleoside triphosphates (tNTPs).

    PubMed

    Sau, Sujay P; Chaput, John C

    2016-07-15

    TNA (α-l-threofuranosyl nucleoside) triphosphates of adenosine (tATP), guanosine (tGTP), cytidine (tCTP), and thymidine (tTTP) were synthesized from their corresponding 3'-O-phosphoramidite derivatives using a novel one-pot reaction that is less moisture sensitive than traditional methods. The chemically synthesized tNTPs, despite containing an unnatural 3'-triphosphate moiety, are similar in thermal stability to natural nucleotide triphosphates. PMID:27246616

  10. Modulation of the equilibrative nucleoside transporter by inhibitors of DNA synthesis.

    PubMed Central

    Pressacco, J.; Wiley, J. S.; Jamieson, G. P.; Erlichman, C.; Hedley, D. W.

    1995-01-01

    Expression of the equilibrative, S-(p-nitrobenzyl)-6-thioinosine (NBMPR)-sensitive nucleoside transporter (es), a component of the nucleoside salvage pathway, was measured during unperturbed growth and following exposure to various antimetabolites at growth-inhibitory concentrations. The probe 5-(SAENTA-x8)-fluorescein is a highly modified form of adenosine incorporating a fluorescein molecule. It binds. with high affinity and specificity to the (es) nucleoside transporter at a 1:1 stoichiometry, allowing reliable estimates of es expression by flow cytometry. Using a dual labelling technique which combined the vital DNA dye Hoechst-33342 and 5-(SAENTA-x8)-fluorescein, we found that surface expression of es approximately doubled between G1 and G2 + M phases of the cell cycle. To address the question of whether es expression could be modulated in cells exposed to drugs which inhibit de novo synthesis of nucleotides, cells were exposed to antimetabolite drugs having different modes of action. Hydroxyurea and 5-fluorouracil (5-FU), which inhibit the de novo synthesis of DNA precursors, produced increases in the expression of es. In contrast, cytosine arabinoside (ara-C) and aphidicolin, which directly inhibit DNA synthesis, produced no significant increase in es expression. Thymidine (TdR), which is an allosteric inhibitor of ribonucleotide reductase that depletes dATP, dCTP and dGTP pools while repleting the dTTP pool, had no significant effect on es expression. These data suggest that surface expression of the es nucleoside transporter is regulated by a mechanism which is sensitive to the supply of deoxynucleotides. Because 5-FU (which specifically depletes dTTP pools) causes a large increase in expression whereas TdR (which depletes all precursors except dTTP) does not, this mechanism might be particularly sensitive to dTTP pools. PMID:7547244

  11. Comparison of Clostridium difficile detection by monolayer and by inhibition of nucleoside uptake

    SciTech Connect

    Fuhr, J.E.; Trent, D.J.; Collmann, I.R.

    1987-02-01

    Detection and identification of Clostridium difficile toxin by traditional monolayer assay were compared with results obtained by a new procedure based on toxin-dependent inhibition of target cell uptake of a radioactive nucleoside. A high degree of correlation was noted between the two determinations. Although the new procedure was quantitative and objective, its value is seen at present as a rapid screen that may support results obtained in monolayers and as a potential assay for other, currently unidentified, toxins.

  12. L-Enantiomers of Transition State Analogue Inhibitors Bound to Human Purine Nucleoside Phosphorylase

    SciTech Connect

    Rinaldo-Matthis,A.; Murkin, A.; Ramagopal, U.; Clinch, K.; Mee, S.; Evans, G.; Tyler, P.; Furneaux, R.; Almo, S.; Schramm, v.

    2008-01-01

    Human purine nucleoside phosphorylase (PNP) was crystallized with transition-state analogue inhibitors Immucillin-H and DADMe-Immucillin-H synthesized with ribosyl mimics of l-stereochemistry. The inhibitors demonstrate that major driving forces for tight binding of these analogues are the leaving group interaction and the cationic mimicry of the transition state, even though large geometric changes occur with d-Immucillins and l-Immucillins bound to human PNP.

  13. A one-pot synthesis of α-l-threofuranosyl nucleoside triphosphates (tNTPs).

    PubMed

    Sau, Sujay P; Chaput, John C

    2016-07-15

    TNA (α-l-threofuranosyl nucleoside) triphosphates of adenosine (tATP), guanosine (tGTP), cytidine (tCTP), and thymidine (tTTP) were synthesized from their corresponding 3'-O-phosphoramidite derivatives using a novel one-pot reaction that is less moisture sensitive than traditional methods. The chemically synthesized tNTPs, despite containing an unnatural 3'-triphosphate moiety, are similar in thermal stability to natural nucleotide triphosphates.

  14. Systematic evaluation of methyl ester bioisosteres in the context of developing alkenyldiarylmethanes (ADAMs) as non-nucleoside reverse transcriptase inhibitors (NNRTIs) for anti-HIV-1 chemotherapy.

    PubMed

    Hoshi, Ayako; Sakamoto, Takeshi; Takayama, Jun; Xuan, Meiyan; Okazaki, Mari; Hartman, Tracy L; Buckheit, Robert W; Pannecouque, Christophe; Cushman, Mark

    2016-07-01

    The alkenyldiarylmethanes (ADAMs) are a class of non-nucleoside reverse transcriptase inhibitors (NNRTIs) targeting HIV-1. Four chemically and metabolically stabilized ADAMs incorporating N-methoxyimidoyl halide replacements of the methyl esters of the lead compound were previously reported. In this study, twenty-five new ADAMs were synthesized in order to investigate the biological consequences of installing nine different methyl ester bioisosteres at three different locations. Attempts to define a universal rank order of methyl ester bioisosteres and discover the 'best' one in terms of inhibitory activity versus HIV-1 reverse transcriptase (RT) led to the realization that the potencies are critically dependent on the surrounding structure at each location, and therefore the definition of universal rank order is impossible. This investigation produced several new non-nucleoside reverse transcriptase inhibitors in which all three of the three methyl esters of the lead compound were replaced by methyl ester bioisosteres, resulting in compounds that are more potent as HIV-1 RT inhibitors and antiviral agents than the lead compound itself and are expected to also be more metabolically stable than the lead compound. PMID:27234889

  15. Changes in the free nucleotide and nucleoside pattern of pea seeds in relation to germination

    PubMed Central

    Brown, E. G.

    1965-01-01

    1. Major changes in the free nucleotide and nucleoside pattern of germinating pea seeds are described. 2. During the imbibition phase of germination (0–16hr.) there was a 250% increase in ATP content and a parallel fall in AMP content without detectable change in ADP content. Metabolic implications are discussed. 3. The main nucleoside changes during imbibition were a 93% increase in xanthosine content and a 39% fall in adenosine content. 4. During the last phase of germination, leading to the emergence of the radicle, there is a general fall in free nucleotide content. AMP, ADP and ATP contents decreased 73, 48 and 52% respectively. Acetyl-3′-dephosphocoenzyme A concentration fell by 53%. However, the (NADP++NADPH)/(NAD++NADH) ratio increased, and except for uridine content (52% decrease) the nucleoside pattern changed little. 5. A sixfold increase in the concentration of an unidentified UDP-glycosyl compound occurs at this stage, although the content of UDP-glucose and UDP-galactose remained unchanged. 6. No free purine or pyrimidine bases could be detected at any stage of germination. PMID:14340101

  16. Pseudobond parameters for QM/MM studies involving nucleosides, nucleotides, and their analogs

    SciTech Connect

    Chaudret, Robin; Parks, Jerry M; Yang, Weitao

    2013-01-01

    In biological systems involving nucleosides, nucleotides, or their respective analogs, the ribose sugar moiety is the most common reaction site, for example, during DNA replication and repair. How- ever, nucleic bases, which comprise a sizable portion of nucleotide molecules, are usually unreactive during such processes. In quantum mechanical/molecular simulations of nucleic acid reactivity, it may therefore be advantageous to describe specific ribosyl or ribosyl phosphate groups quantum me- chanically and their respective nucleic bases with a molecular mechanics potential function. Here, we have extended the pseudobond approach to enable quantum mechanical/molecular mechanical simulations involving nucleotides, nucleosides, and their analogs in which the interface between the two subsystems is located between the sugar and the base, namely, the C(sp3) N(sp2) bond. The pseudobond parameters were optimized on a training set of 10 molecules representing several nu- cleotide and nucleoside bases and analogs, and they were then tested on a larger test set of 20 diverse molecules. Particular emphasis was placed on providing accurate geometries and electrostatic prop- erties, including electrostatic potential, natural bond orbital (NBO) and atoms in molecules (AIM) charges and AIM first moments. We also tested the optimized parameters on five nucleotide and nu- cleoside analogues of pharmaceutical relevance and a small polypeptide (triglycine). Accuracy was maintained for these systems, which highlights the generality and transferability of the pseudobond approach. 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772182

  17. In Silico Investigation of Flavonoids as Potential Trypanosomal Nucleoside Hydrolase Inhibitors

    PubMed Central

    Ha, Christina Hung Hung; Fatima, Ayesha; Gaurav, Anand

    2015-01-01

    Human African Trypanosomiasis is endemic to 37 countries of sub-Saharan Africa. It is caused by two related species of Trypanosoma brucei. Current therapies suffer from resistance and public accessibility of expensive medicines. Finding safer and effective therapies of natural origin is being extensively explored worldwide. Pentamidine is the only available therapy for inhibiting the P2 adenosine transporter involved in the purine salvage pathway of the trypanosomatids. The objective of the present study is to use computational studies for the investigation of the probable trypanocidal mechanism of flavonoids. Docking experiments were carried out on eight flavonoids of varying level of hydroxylation, namely, flavone, 5-hydroxyflavone, 7-hydroxyflavone, chrysin, apigenin, kaempferol, fisetin, and quercetin. Using AutoDock 4.2, these compounds were tested for their affinity towards inosine-adenosine-guanosine nucleoside hydrolase and the inosine-guanosine nucleoside hydrolase, the major enzymes of the purine salvage pathway. Our results showed that all of the eight tested flavonoids showed high affinities for both hydrolases (lowest free binding energy ranging from −10.23 to −7.14 kcal/mol). These compounds, especially the hydroxylated derivatives, could be further studied as potential inhibitors of the nucleoside hydrolases. PMID:26640486

  18. Control of glutamatergic neurotransmission in the rat spinal dorsal horn by the nucleoside transporter ENT1.

    PubMed

    Ackley, Michael A; Governo, Ricardo J M; Cass, Carol E; Young, James D; Baldwin, Stephen A; King, Anne E

    2003-04-15

    Adenosine modulates nociceptive processing in the superficial dorsal horn of the spinal cord. In other tissues, membrane transporters influence profoundly the extracellular levels of adenosine. To investigate the putative role of nucleoside transporters in the regulation of excitatory synaptic transmission in the dorsal horn, we employed immunohistochemistry and whole-cell patch-clamp recording of substantia gelatinosa neurons in slices of rat spinal cord in vitro. The rat equilibrative nucleoside transporter (rENT1) was revealed by antibody staining to be abundant in neonatal and mature dorsal horn, especially within laminae I-III. This was confirmed by immunoblots of dorsal horn homogenate. Nitrobenzylthioinosine (NBMPR), a potent non-transportable inhibitor of rENT1, attenuated synaptically evoked EPSCs onto lamina II neurons in a concentration-dependent manner. Application of an adenosine A1 antagonist 1,3-dipropyl-8-cyclopentylxanthine produced a parallel rightward shift in the NBMPR concentration-effect curve. The effects of NBMPR were partially reversed by adenosine deaminase, which facilitates the metabolic degradation of adenosine. The modulation by NBMPR of evoked EPSCs was mimicked by exogenous adenosine or the selective A1 receptor agonist, 2-chloro-N6-cyclopentyl adenosine. NBMPR reduced the frequency but not the amplitude of spontaneous miniature EPSCs and increased the paired-pulse ratio of evoked currents, an effect that is consistent with presynaptic modulation. These data provide the first direct evidence that nucleoside transporters are able to critically modulate glutamatergic synaptic transmission. PMID:12611914

  19. The search for and identification of amino acids, nucleobases and nucleosides in samples returned from Mars

    NASA Technical Reports Server (NTRS)

    Gehrke, Charles W.; Ponnamperuma, Cyril; Kuo, Kenneth C.; Stalling, David L.; Zumwalt, Robert W.

    1989-01-01

    An investigation of the returned Mars samples for biologically important organic compounds, with emphasis on amino acid, the puring and pyrimidine bases, and nucleosides is proposed. These studies would be conducted on subsurface samples obtained by drilling past the surface oxidizing layer with emphasis on samples containing the larges quantities of organic carbon as determined by the rover gas chromatographic mass spectrometer (GCMS). Extraction of these molecules from the returned samples will be performed using the hydrothermal extraction technique described by Cheng and Ponnamperuma. More rigorous extraction methods will be developed and evaluated. For analysis of the extract for free amino acids or amino acids present in a bound or peptidic form, aliquots will be analyzed by capillary GCMS both before and after hydrolysis with 6N hydrochloric acid. Establishment of the presence of amino acids would then lead to the next logical step which would be the use of chiral stationary gas chromatography phases to determine the enatiomeic composition of the amino acids present, and thus potentially establish their biotic or abiotic origin. Confirmational analyses for amino acids would include ion-exchange and reversed-phase liquid chromatographic analysis. For analyses of the returned Mars samples for nucleobases and nucleosides, affinity and reversed-phase liquid chromatography would be utilized. This technology coupled with scanning UV detection for identification, presents a powerful tool for nucleobase and nucleoside analysis. Mass spectrometric analysis of these compounds would confirm their presence in samples returned form Mars.

  20. Membrane protein crystallization in micelles conjugated by nucleoside base-pairing: A different concept.

    PubMed

    Hosamani, Basavaprabhu; Kale, Raju R; Sharma, Hemlata; Wachtel, Ellen; Kesselman, Ellina; Danino, Dganit; Friedman, Noga; Sheves, Mordechai; Namboothiri, Irishi N N; Patchornik, Guy

    2016-09-01

    The dearth of high quality, three dimensional crystals of membrane proteins, suitable for X-ray diffraction analysis, constitutes a serious barrier to progress in structural biology. To address this challenge, we have developed a new crystallization medium that relies on the conjugation of surfactant micelles via base-pairing of complementary hydrophobic nucleosides. Base-pairs formed at the interface between micelles bring them into proximity with each other; and when the conjugated micelles contain a membrane protein, crystal nucleation centers can be stabilized, thereby promoting crystal growth. Accordingly, two hydrophobic nucleoside derivatives - deoxyguanosine (G) and deoxycytidine (C), each covalently bonded to a 10 carbon chain were synthesized and added to an aqueous solution containing octyl β-d-thioglucopyranoside micelles. These hydrophobic nucleosides induced the formation of oil-rich globules after 2days incubation at 19°C or after a few hours in the presence of ammonium sulfate; however, phase separation was inhibited by 100mM GMP. The presence of the membrane protein bacteriorhodopsin in the conjugated - micellar dispersion resulted in the growth within the colorless globules of a variety of purple crystals, the color indicating a functional protein. On this basis, we suggest that conjugation of micelles via base-pair complementarity may provide significant assistance to the structural determination of integral membrane proteins. PMID:27368128

  1. Toxicity of nucleoside analogues used to treat AIDS and the selectivity of the mitochondrial DNA polymerase.

    PubMed

    Lee, Harold; Hanes, Jeremiah; Johnson, Kenneth A

    2003-12-23

    Incorporation of nucleoside analogues by the mitochondrial DNA polymerase has been implicated as the primary cause underlying many of the toxic side effects of these drugs in HIV therapy. Recent success in reconstituting recombinant human enzyme has afforded a detailed mechanistic analysis of the reactions governing nucleotide selectivity of the polymerase and the proofreading exonuclease. The toxic side effects of nucleoside analogues are correlated with the kinetics of incorporation by the mitochondrial DNA polymerase, varying over 6 orders of magnitude in the sequence zalcitabine (ddC) > didanosine (ddI metabolized to ddA) > stavudine (d4T) > lamivudine (3TC) > tenofovir (PMPA) > zidovudine (AZT) > abacavir (metabolized to carbovir, CBV). In this review, we summarize our current efforts to examine the mechanistic basis for nucleotide selectivity by the mitochondrial DNA polymerase and its role in mitochondrial toxicity of nucleoside analogues used to treat AIDS and other viral infections. We will also discuss the promise and underlying challenges for the development of new analogues with lower toxicity.

  2. Design of vectors for efficient expression of human purine nucleoside phosphorylase in skin fibroblasts from enzyme-deficient humans

    SciTech Connect

    Osborne, W.R.A.; Miller, A.D.

    1988-09-01

    Purine nucleoside phosphorylase deficiency is an inherited disorder associated with a severe immune defect that is fatal. Enzyme replacement therapy is an attractive approach to treatment of this disease. To this aim the authors constructed retroviral vectors containing a human PNP cDNA and a selectable gene encoding neomycin phosphotransferase. PNP expression was controlled by either the early promoter from simian virus 40, the immediate early promoter from human cytomegalovirus, or the retroviral promoter. Cultured skin fibroblasts from two unrelated PNP-deficient patients that were infected with these vectors expressed mean PNP activities of 0.03, 0.74, and 5.9 /mu/mol/hr per mg of protein, respectively. The latter infectants had PNP activities eight times the level of 0.74 /mu/mol/hr per mg of protein observed in normal skin fibroblasts, enabling rapid metabolism of exogenous deoxyguanosine, the cytotoxic metabolite that accumulates in the plasma of PNP-deficient patients. These experiments indicate that viral long terminal repeat was the strongest promoter for expression of PNP and suggest the potential of human skin fibroblasts as vehicles for therapeutic gene expression.

  3. 31P NMR and Genetic Analysis Establish hinT as the only E. coli Purine Nucleoside Phosphoramidase and as Essential for Growth under High Salt Conditions

    PubMed Central

    Chou, Tsui-Fen; Bieganowski, Pawel; Shilinski, Kara; Cheng, Jilin; Brenner, Charles; Wagner, Carston R.

    2008-01-01

    Eukaryotic cells encode AMP-lysine hydrolases related to the rabbit histidine triad nucleotide-binding protein 1 (Hint1) sequence. Bacterial and archaeal cells have Hint homologs annotated in a variety of ways but the enzymes have not been characterized, nor have phenotypes been described due to loss of enzymatic activity. We developed a quantitative 31P NMR assay to determine whether Escherichia coli possesses an adenosine phosphoramidase activity. Indeed, soluble lysates prepared from wild-type laboratory Escherichia coli exhibited activity on the model substrate adenosine monophosphoramidate (AMP-NH2). The Escherichia coli Hint homolog, which had been comprehensively designated ycfF and is here named hinT, was cloned, over-expressed, purified and characterized with respect to purine nucleoside phosphoramidate substrates. Bacterial hinT was several times more active than mammalian Hint on three model substrates. In addition, bacterial and mammalian enzymes preferred guanosine versus adenosine phosphoramidates as substrates. Analysis of the lysates from a constructed hinT knockout strain of Escherichia coli demonstrated that all of the cellular purine nucleoside phosphoramidase activity is due to hinT. Physiological analysis of this mutant revealed that the loss of hinT enzymatic activity results in failure to grow in media containing 0.75 KCl, 0.9 M NaCl, 0.5 M NaOAc and 10 mM MnCl2. Thus, bacteria may possess nucleotidylylated phosphoramidate substrates that must be hydrolyzed to support growth under certain high salt conditions. PMID:15703176

  4. Carbacaprazamycins: Chemically Stable Analogues of the Caprazamycin Nucleoside Antibiotics.

    PubMed

    Ichikawa, Satoshi; Yamaguchi, Mayumi; Hsuan, Lee Shang; Kato, Yuta; Matsuda, Akira

    2015-04-10

    Carbacaprazamycins, which are chemically stable analogues of caprazamycins, were designed and synthesized. These analogues were active against drug-resistant bacterial pathogens such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, and their activities were comparable to those of the parent caprazamycins. The effect of treatment with carbacaprazamycin on morphological changes in S. aureus indicated that the mode of action was completely different from those of existing peptidoglycan inhibitors. PMID:27622529

  5. Inhibition of ribonucleic acid efflux from isolated SV40-3T3 cell nuclei by 3'-deoxyadenosine (cordycepin).

    PubMed

    Agutter, P S; McCaldin, B

    1979-05-15

    The effect of 3'-deoxyadenosine (cordycepin) on mRNA efflux from isolated SV40-3T3 cell nuclei has been studied and compared with its effect on the nucleoside triphosphatase activity in the isolated nuclear envelope. Inhibition of mRNA efflux occurs rapidly, but is dependent on the presence of ATP. Half-maximal inhibition occurs with 40 microM-cordycepin. The effect is not simulated by 2'-deoxyadenosine or by actinomycin D, and adenosine provides a substantial degree of protection against it. Cordycepin does not directly inhibit the nucleoside triphosphatase. The stimulation of this enzyme by poly(A) is not affected unless the poly(A) and cordycepin are incubated together with nuclear lysate in the presence of ATP; in this case the stimulation is significantly reduced. Possible interpretations of these results and their relevance for understanding the system in vivo for nucleo-cytoplasmic messenger transport are discussed.

  6. Inhibition of ribonucleic acid efflux from isolated SV40-3T3 cell nuclei by 3'-deoxyadenosine (cordycepin).

    PubMed Central

    Agutter, P S; McCaldin, B

    1979-01-01

    The effect of 3'-deoxyadenosine (cordycepin) on mRNA efflux from isolated SV40-3T3 cell nuclei has been studied and compared with its effect on the nucleoside triphosphatase activity in the isolated nuclear envelope. Inhibition of mRNA efflux occurs rapidly, but is dependent on the presence of ATP. Half-maximal inhibition occurs with 40 microM-cordycepin. The effect is not simulated by 2'-deoxyadenosine or by actinomycin D, and adenosine provides a substantial degree of protection against it. Cordycepin does not directly inhibit the nucleoside triphosphatase. The stimulation of this enzyme by poly(A) is not affected unless the poly(A) and cordycepin are incubated together with nuclear lysate in the presence of ATP; in this case the stimulation is significantly reduced. Possible interpretations of these results and their relevance for understanding the system in vivo for nucleo-cytoplasmic messenger transport are discussed. PMID:226073

  7. Discovery of Potent Non-Nucleoside Inhibitors of Dengue Viral RNA-Dependent RNA Polymerase from a Fragment Hit Using Structure-Based Drug Design.

    PubMed

    Yokokawa, Fumiaki; Nilar, Shahul; Noble, Christian G; Lim, Siew Pheng; Rao, Ranga; Tania, Stefani; Wang, Gang; Lee, Gladys; Hunziker, Jürg; Karuna, Ratna; Manjunatha, Ujjini; Shi, Pei-Yong; Smith, Paul W

    2016-04-28

    The discovery and optimization of non-nucleoside dengue viral RNA-dependent-RNA polymerase (RdRp) inhibitors are described. An X-ray-based fragment screen of Novartis' fragment collection resulted in the identification of a biphenyl acetic acid fragment 3, which bound in the palm subdomain of RdRp. Subsequent optimization of the fragment hit 3, relying on structure-based design, resulted in a >1000-fold improvement in potency in vitro and acquired antidengue activity against all four serotypes with low micromolar EC50 in cell-based assays. The lead candidate 27 interacts with a novel binding pocket in the palm subdomain of the RdRp and exerts a promising activity against all clinically relevant dengue serotypes. PMID:26984786

  8. Synthesis of chromone, quinolone, and benzoxazinone sulfonamide nucleosides as conformationally constrained inhibitors of adenylating enzymes required for siderophore biosynthesis.

    PubMed

    Engelhart, Curtis A; Aldrich, Courtney C

    2013-08-01

    MbtA catalyzes the first committed step of mycobactin biosynthesis in Mycobacterium tuberculosis (Mtb) and is responsible for the incorporation of salicylic acid into the mycobactin siderophores. 5'-O-[N-(Salicyl)sulfamoyl]adenosine (Sal-AMS) is an extremely potent nucleoside inhibitor of MbtA that possesses excellent activity against whole-cell Mtb but suffers from poor bioavailability. In an effort to improve the bioavailability, we have designed four conformationally constrained analogues of Sal-AMS that remove two rotatable bonds and the ionized sulfamate group on the basis of computational and structural studies. Herein we describe the synthesis, biochemical, and microbiological evaluation of chromone-, quinolone-, and benzoxazinone-3-sulfonamide derivatives of Sal-AMS. We developed new chemistry to assemble these three heterocycles from common β-ketosulfonamide intermediates. The synthesis of the chromone- and quinolone-3-sulfonamide intermediates features formylation of a β-ketosulfonamide employing dimethylformamide dimethyl acetal to afford an enaminone that can react intramolecularly with a phenol or intermolecularly with a primary amine via addition-elimination reaction(s). The benzoxazinone-3-sulfonamide was prepared by nitrosation of a β-ketosulfonamide followed by intramolecular nucleophilic aromatic substitution. Mitsunobu coupling of these bicyclic sulfonamides with a protected adenosine derivative followed by global deprotection provides a concise synthesis of the respective inhibitors.

  9. Contents Changes of Triterpenic Acids, Nucleosides, Nucleobases, and Saccharides in Jujube (Ziziphus jujuba) Fruit During the Drying and Steaming Process.

    PubMed

    Guo, Sheng; Duan, Jin-Ao; Zhang, Ying; Qian, Dawei; Tang, Yuping; Zhu, Zhenhua; Wang, Hanqing

    2015-01-01

    Chinese jujube (Ziziphus jujuba), a medicinal and edible plant, is widely consumed in Asian countries owing to the remarkable health activities of its fruits. To facilitate selection of the suitable processing method for jujube fruits, in this study their contents of triterpenic acids, nucleosides, nucleobases and saccharides after drying and steaming treatment were determined using ultra-high performance liquid chromatography and high performance liquid chromatography coupled with evaporative light scattering detector methods. The results showed that except for sucrose, the content levels of most analytes were increasing in the jujube fruits during drying treatment at 45 °C. The levels of cyclic nucleotides such as adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, were significantly decreased after the fruits were steamed. Therefore, owing to the bioactivities of these components for human health, the dried fruits would be the better choice as medicinal material or functional food, and dried jujube fruit should not be further steamed. PMID:26703531

  10. Apyrases (Nucleoside Triphosphate-Diphosphohydrolases) Play a Key Role in Growth Control in Arabidopsis1[W][OA

    PubMed Central

    Wu, Jian; Steinebrunner, Iris; Sun, Yu; Butterfield, Timothy; Torres, Jonathan; Arnold, David; Gonzalez, Antonio; Jacob, Francis; Reichler, Stuart; Roux, Stanley J.

    2007-01-01

    Expression of two Arabidopsis (Arabidopsis thaliana) apyrase (nucleoside triphosphate-diphosphohydrolase) genes with high similarity, APY1 and APY2, was analyzed during seedling development and under different light treatments using β-glucuronidase fusion constructs with the promoters of both genes. As evaluated by β-glucuronidase staining and independently confirmed by other methods, the highest expression of both apyrases was in rapidly growing tissues and/or tissues that accumulate high auxin levels. Red-light treatment of etiolated seedlings suppressed the protein and message level of both apyrases at least as rapidly as it inhibited hypocotyl growth. Adult apy1 and apy2 single mutants had near-normal growth, but apy1apy2 double-knockout plants were dwarf, due primarily to reduced cell elongation. Pollen tubes and etiolated hypocotyls overexpressing an apyrase had faster growth rates than wild-type plants. Growing pollen tubes released ATP into the growth medium and suppression of apyrase activity by antiapyrase antibodies or by inhibitors simultaneously increased medium ATP levels and inhibited pollen tube growth. These results imply that APY1 and APY2, like their homologs in animals, act to reduce the concentration of extracellular nucleotides, and that this function is important for the regulation of growth in Arabidopsis. PMID:17434987

  11. Thermodynamics of HIV-1 reverse transcriptase in action elucidates the mechanism of action of non-nucleoside inhibitors.

    PubMed

    Bec, Guillaume; Meyer, Benoit; Gerard, Marie-Aline; Steger, Jessica; Fauster, Katja; Wolff, Philippe; Burnouf, Dominique; Micura, Ronald; Dumas, Philippe; Ennifar, Eric

    2013-07-01

    HIV-1 reverse transcriptase (RT) is a heterodimeric enzyme that converts the genomic viral RNA into proviral DNA. Despite intensive biochemical and structural studies, direct thermodynamic data regarding RT interactions with its substrates are still lacking. Here we addressed the mechanism of action of RT and of non-nucleoside RT inhibitors (NNRTIs) by isothermal titration calorimetry (ITC). Using a new incremental-ITC approach, a step-by-step thermodynamic dissection of the RT polymerization activity showed that most of the driving force for DNA synthesis is provided by initial dNTP binding. Surprisingly, thermodynamic and kinetic data led to a reinterpretation of the mechanism of inhibition of NNRTIs. Binding of NNRTIs to preformed RT/DNA complexes is hindered by a kinetic barrier and NNRTIs mostly interact with free RT. Once formed, RT/NNRTI complexes bind DNA either in a seemingly polymerase-competent orientation or form high-affinity dead-end complexes, both RT/NNRTI/DNA complexes being unable to bind the incoming nucleotide substrate.

  12. Purification and Biochemical Characterisation of Rabbit Calicivirus RNA-Dependent RNA Polymerases and Identification of Non-Nucleoside Inhibitors

    PubMed Central

    Urakova, Nadya; Netzler, Natalie; Kelly, Andrew G.; Frese, Michael; White, Peter A.; Strive, Tanja

    2016-01-01

    Rabbit haemorrhagic disease virus (RHDV) is a calicivirus that causes acute infections in both domestic and wild European rabbits (Oryctolagus cuniculus). The virus causes significant economic losses in rabbit farming and reduces wild rabbit populations. The recent emergence of RHDV variants capable of overcoming immunity to other strains emphasises the need to develop universally effective antivirals to enable quick responses during outbreaks until new vaccines become available. The RNA-dependent RNA polymerase (RdRp) is a primary target for the development of such antiviral drugs. In this study, we used cell-free in vitro assays to examine the biochemical characteristics of two rabbit calicivirus RdRps and the effects of several antivirals that were previously identified as human norovirus RdRp inhibitors. The non-nucleoside inhibitor NIC02 was identified as a potential scaffold for further drug development against rabbit caliciviruses. Our experiments revealed an unusually high temperature optimum (between 40 and 45 °C) for RdRps derived from both a pathogenic and a non-pathogenic rabbit calicivirus, possibly demonstrating an adaptation to a host with a physiological body temperature of more than 38 °C. Interestingly, the in vitro polymerase activity of the non-pathogenic calicivirus RdRp was at least two times higher than that of the RdRp of the highly virulent RHDV. PMID:27089358

  13. Purification and Biochemical Characterisation of Rabbit Calicivirus RNA-Dependent RNA Polymerases and Identification of Non-Nucleoside Inhibitors.

    PubMed

    Urakova, Nadya; Netzler, Natalie; Kelly, Andrew G; Frese, Michael; White, Peter A; Strive, Tanja

    2016-04-01

    Rabbit haemorrhagic disease virus (RHDV) is a calicivirus that causes acute infections in both domestic and wild European rabbits (Oryctolagus cuniculus). The virus causes significant economic losses in rabbit farming and reduces wild rabbit populations. The recent emergence of RHDV variants capable of overcoming immunity to other strains emphasises the need to develop universally effective antivirals to enable quick responses during outbreaks until new vaccines become available. The RNA-dependent RNA polymerase (RdRp) is a primary target for the development of such antiviral drugs. In this study, we used cell-free in vitro assays to examine the biochemical characteristics of two rabbit calicivirus RdRps and the effects of several antivirals that were previously identified as human norovirus RdRp inhibitors. The non-nucleoside inhibitor NIC02 was identified as a potential scaffold for further drug development against rabbit caliciviruses. Our experiments revealed an unusually high temperature optimum (between 40 and 45 °C) for RdRps derived from both a pathogenic and a non-pathogenic rabbit calicivirus, possibly demonstrating an adaptation to a host with a physiological body temperature of more than 38 °C. Interestingly, the in vitro polymerase activity of the non-pathogenic calicivirus RdRp was at least two times higher than that of the RdRp of the highly virulent RHDV. PMID:27089358

  14. Effect of Host Genetic Variation on the Pharmacokinetics and Clinical Response of Non-nucleoside Reverse Transcriptase Inhibitors.

    PubMed

    Saitoh, Akihiko; Spector, Stephen A

    2008-01-01

    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have been used widely for treating human immunodeficiency virus type 1 (HIV-1) infected patients as a component of highly active antiretroviral therapy (HAART) and for the prevention of mother-to-child transmission (MTCT). Cytochrome P450 (CYP) 2B6 is an important hepatic isoenzyme responsible for the metabolism of NNRTIs including efavirenz and nevirapine. Recent pharmacogenetic studies have shown that CYP2B6 genetic variants alter hepatic CYP2B6 protein expression and function, and the pharmacokinetics of several CYP2B6 substrates. In particular, the CYP2B6-G516T polymorphism in exon 4 affects the pharmacokinetics of efavirenz. Other studies have shown associations of the CYP2B6-G516T genotype with nevirapine pharmacokinetics and central nervous system adverse effects related to efavirenz use. In total, CYP2B6 genetic variants are important determinants of efavirenz and nevirapine pharmacokinetics . Further studies are needed to identify the associations of CYP2B6 genetic variants with the development of NNRTI resistant viruses.

  15. The Human Immunodeficiency Virus Type 1 Nonnucleoside Reverse Transcriptase Inhibitor Resistance Mutation I132M Confers Hypersensitivity to Nucleoside Analogs▿

    PubMed Central

    Ambrose, Zandrea; Herman, Brian D.; Sheen, Chih-Wei; Zelina, Shannon; Moore, Katie L.; Tachedjian, Gilda; Nissley, Dwight V.; Sluis-Cremer, Nicolas

    2009-01-01

    We previously identified a rare mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT), I132M, which confers high-level resistance to the nonnucleoside RT inhibitors (NNRTIs) nevirapine and delavirdine. In this study, we have further characterized the role of this mutation in viral replication capacity and in resistance to other RT inhibitors. Surprisingly, our data show that I132M confers marked hypersusceptibility to the nucleoside analogs lamivudine (3TC) and tenofovir at both the virus and enzyme levels. Subunit-selective mutagenesis studies revealed that the mutation in the p51 subunit of RT was responsible for the increased sensitivity to the drugs, and transient kinetic analyses showed that this hypersusceptibility was due to I132M decreasing the enzyme's affinity for the natural dCTP substrate but increasing its affinity for 3TC-triphosphate. Furthermore, the replication capacity of HIV-1 containing I132M is severely impaired. This decrease in viral replication capacity could be partially or completely compensated for by the A62V or L214I mutation, respectively. Taken together, these results help to explain the infrequent selection of I132M in patients for whom NNRTI regimens are failing and furthermore demonstrate that a single mutation outside of the polymerase active site and inside of the p51 subunit of RT can significantly influence nucleotide selectivity. PMID:19193782

  16. Synthesis of Chromone, Quinolone, and Benzoxazinone Sulfonamide Nucleosides as Conformationally Constrained Inhibitors of Adenylating Enzymes Required for Siderophore Biosynthesis

    PubMed Central

    Engelhart, Curtis A.; Aldrich, Courtney C.

    2013-01-01

    MbtA catalyzes the first committed step of mycobactin biosynthesis in Mycobacterium tuberculosis (Mtb) and is responsible for the incorporation of salicylic acid into the mycobactin siderophores. 5′-O-[N-(Salicyl)sulfamoyl]adenosine (Sal-AMS) is an extremely potent nucleoside inhibitor of MbtA that possesses excellent activity against whole-cell Mtb, but suffers from poor bioavailability. In an effort to improve the bioavailability, we have designed four conformationally constrained analogues of Sal-AMS that remove two rotatable bonds and the ionized sulfamate group based on computational and structural studies. Herein we describe the synthesis, biochemical, and microbiological evaluation of chromone-, quinolone-, and benzoxazinone-3-sulfonamide derivatives of Sal-AMS. We developed new chemistry to assemble these three heterocycles from common β-ketosulfonamide intermediates. The synthesis of the chromone- and quinolone-3-sulfonamide intermediates features formylation of a β-ketosulfonamide employing dimethylformamide dimethyl acetal to afford an enaminone that can react intramolecularly with a phenol or intermolecularly with a primary amine via addition-elimination reaction(s). The benzoxazinone-3-sulfonamide was prepared by nitrosation of a β-ketosulfonamide followed by intramolecular nucleophilic aromatic substitution. Mitsunobu coupling of these bicyclic sulfonamides with a protected adenosine derivative followed by global deprotection provides a concise synthesis of the respective inhibitors. PMID:23805993

  17. Computer Simulations Reveal Substrate Specificity of Glycosidic Bond Cleavage in Native and Mutant Human Purine Nucleoside Phosphorylase.

    PubMed

    Isaksen, Geir Villy; Hopmann, Kathrin Helen; Åqvist, Johan; Brandsdal, Bjørn Olav

    2016-04-12

    Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of purine ribonucleosides and 2'-deoxyribonucleosides, yielding the purine base and (2'-deoxy)ribose 1-phosphate as products. While this enzyme has been extensively studied, several questions with respect to the catalytic mechanism have remained largely unanswered. The role of the phosphate and key amino acid residues in the catalytic reaction as well as the purine ring protonation state is elucidated using density functional theory calculations and extensive empirical valence bond (EVB) simulations. Free energy surfaces for adenosine, inosine, and guanosine are fitted to ab initio data and yield quantitative agreement with experimental data when the surfaces are used to model the corresponding enzymatic reactions. The cognate substrates 6-aminopurines (inosine and guanosine) interact with PNP through extensive hydrogen bonding, but the substrate specificity is found to be a direct result of the electrostatic preorganization energy along the reaction coordinate. Asn243 has previously been identified as a key residue providing substrate specificity. Mutation of Asn243 to Asp has dramatic effects on the substrate specificity, making 6-amino- and 6-oxopurines equally good as substrates. The principal effect of this particular mutation is the change in the electrostatic preorganization energy between the native enzyme and the Asn243Asp mutant, clearly favoring adenosine over inosine and guanosine. Thus, the EVB simulations show that this particular mutation affects the electrostatic preorganization of the active site, which in turn can explain the substrate specificity. PMID:26985580

  18. Site-Selective Ribosylation of Fluorescent Nucleobase Analogs Using Purine-Nucleoside Phosphorylase as a Catalyst: Effects of Point Mutations.

    PubMed

    Stachelska-Wierzchowska, Alicja; Wierzchowski, Jacek; Bzowska, Agnieszka; Wielgus-Kutrowska, Beata

    2015-12-28

    Enzymatic ribosylation of fluorescent 8-azapurine derivatives, like 8-azaguanine and 2,6-diamino-8-azapurine, with purine-nucleoside phosphorylase (PNP) as a catalyst, leads to N9, N8, and N7-ribosides. The final proportion of the products may be modulated by point mutations in the enzyme active site. As an example, ribosylation of the latter substrate by wild-type calf PNP gives N7- and N8-ribosides, while the N243D mutant directs the ribosyl substitution at N9- and N7-positions. The same mutant allows synthesis of the fluorescent N7-β-d-ribosyl-8-azaguanine. The mutated form of the E. coli PNP, D204N, can be utilized to obtain non-typical ribosides of 8-azaadenine and 2,6-diamino-8-azapurine as well. The N7- and N8-ribosides of the 8-azapurines can be analytically useful, as illustrated by N7-β-d-ribosyl-2,6-diamino-8-azapurine, which is a good fluorogenic substrate for mammalian forms of PNP, including human blood PNP, while the N8-riboside is selective to the E. coli enzyme.

  19. Mechanistic insights into the suppression of drug resistance by human immunodeficiency virus type 1 reverse transcriptase using alpha-boranophosphate nucleoside analogs.

    PubMed

    Deval, Jérôme; Alvarez, Karine; Selmi, Boulbaba; Bermond, Marielle; Boretto, Joëlle; Guerreiro, Catherine; Mulard, Laurence; Canard, Bruno

    2005-02-01

    A class of amino acid substitutions in drug-resistant HIV-1 reverse transcriptase (RT) is responsible for the selectively impaired incorporation of the nucleotide analog inhibitor into DNA. We have shown previously that alpha-boranophosphate nucleoside analogs suppress RT-mediated resistance when the catalytic rate is responsible for drug resistance such as in the case of K65R and dideoxy (dd)NTPs, and Q151M toward AZTTP and ddNTPs. Here, we extend this property to BH3-d4TTP and BH3-3TCTP toward their clinically relevant mutants Q151M and M184V, respectively. Pre-steady-state kinetics on mutants of the Q151M RT family reveal a 3-5-fold resistance to d4TTP. This resistance is suppressed using BH3-d4TTP. Likewise, resistance to 3TCTP by M184V RT (30-fold) and K65R/M184V RT (180-fold) is suppressed using BH3-3TCTP because of a 160-fold acceleration of the catalytic constant kpol. Mechanistic insights into the rate enhancement were obtained using various alpha-boranophosphate nucleotides. The presence of the BH3 group renders kpol independent of amino acid substitutions present in RT. Indeed, the approximately 100-fold decrease in polymerase activity caused by the R72A substitution is restored to wild-type levels using BH3-dTTP. Metal ion titration studies show that alpha-boranophosphate nucleoside analogs enhance 3-8-fold the binding of Mg2+ ions to the active site of the RT.DNA.dNTP complex and alleviate the requirement of critical amino acids involved in phosphodiester bond formation. To our knowledge, this is the first example of rescue of polymerase activity by means of a nucleotide analog.

  20. Nucleoside diphosphate kinase from Mycobacterium tuberculosis cleaves single strand DNA within the human c-myc promoter in an enzyme-catalyzed reaction.

    PubMed

    Kumar, Praveen; Verma, Anjali; Saini, Adesh Kumar; Chopra, Puneet; Chakraborti, Pradip K; Singh, Yogendra; Chowdhury, Shantanu

    2005-01-01

    The reason for secretion of nucleoside diphosphate kinase (NdK), an enzyme involved in maintaining the cellular pool of nucleoside triphosphates in both prokaryotes and eukaryotes, by Mycobacterium tuberculosis is intriguing. We recently observed that NdK from M.tuberculosis (mNdK) localizes within nuclei of HeLa and COS-1 cells and also nicks chromosomal DNA in situ (A. K. Saini, K. Maithal, P. Chand, S. Chowdhury, R. Vohra, A. Goyal, G. P. Dubey, P. Chopra, R. Chandra, A. K. Tyagi, Y. Singh and V. Tandon (2004) J. Biol. Chem., 279, 50142-50149). In the current study, using a molecular beacon approach, we demonstrate that the mNdK catalyzes the cleavage of single strand DNA. It displays Michaelis-Menten kinetics with a kcat/K(M) of 9.65 (+/-0.88) x 10(6) M(-1) s(-1). High affinity (K(d) approximately K(M) of approximately 66 nM) and sequence-specific binding to the sense strand of the nuclease hypersensitive region in the c-myc promoter was observed. This is the first study demonstrating that the cleavage reaction is also enzyme-catalyzed in addition to the enzymatic kinase activity of multifunctional NdK. Using our approach, we demonstrate that GDP competitively inhibits the nuclease activity with a K(I) of approximately 1.9 mM. Recent evidence implicates mNdK as a potent virulence factor in tuberculosis owing to its DNase-like activity. In this context, our results demonstrate a molecular mechanism that could be the basis for assessing in situ DNA damage by secretory mNdK.

  1. Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides

    PubMed Central

    Kobayashi, Kaori; Guilliam, Thomas A.; Tsuda, Masataka; Yamamoto, Junpei; Bailey, Laura J.; Iwai, Shigenori; Takeda, Shunichi; Doherty, Aidan J.; Hirota, Kouji

    2016-01-01

    ABSTRACT PrimPol is a DNA damage tolerance enzyme possessing both translesion synthesis (TLS) and primase activities. To uncover its potential role in TLS-mediated IgVλ hypermutation and define its interplay with other TLS polymerases, PrimPol−/− and PrimPol−/−/Polη−/−/Polζ −/− gene knockouts were generated in avian cells. Loss of PrimPol had no significant impact on the rate of hypermutation or the mutation spectrum of IgVλ. However, PrimPol−/− cells were sensitive to methylmethane sulfonate, suggesting that it may bypass abasic sites at the IgVλ segment by repriming DNA synthesis downstream of these sites. PrimPol−/− cells were also sensitive to cisplatin and hydroxyurea, indicating that it assists in maintaining / restarting replication at a variety of lesions. To accurately measure the relative contribution of the TLS and primase activities, we examined DNA damage sensitivity in PrimPol−/− cells complemented with polymerase or primase-deficient PrimPol. Polymerase-defective, but not primase-deficient, PrimPol suppresses the hypersensitivity of PrimPol−/− cells. This indicates that its primase, rather than TLS activity, is pivotal for DNA damage tolerance. Loss of TLS polymerases, Polη and Polζ has an additive effect on the sensitivity of PrimPol−/− cells. Moreover, we found that PrimPol and Polη-Polζ redundantly prevented cell death and facilitated unperturbed cell cycle progression. PrimPol−/− cells also exhibited increased sensitivity to a wide variety of chain-terminating nucleoside analogs (CTNAs). PrimPol could perform close-coupled repriming downstream of CTNAs and oxidative damage in vitro. Together, these results indicate that PrimPol's repriming activity plays a central role in reinitiating replication downstream from CTNAs and other specific DNA lesions. PMID:27230014

  2. Extracellular nucleotide and nucleoside signaling in vascular and blood disease

    PubMed Central

    Idzko, Marco; Ferrari, Davide; Riegel, Ann-Kathrin

    2014-01-01

    Nucleotides and nucleosides—such as adenosine triphosphate (ATP) and adenosine—are famous for their intracellular roles as building blocks for the genetic code or cellular energy currencies. In contrast, their function in the extracellular space is different. Here, they are primarily known as signaling molecules via activation of purinergic receptors, classified as P1 receptors for adenosine or P2 receptors for ATP. Because extracellular ATP is rapidly converted to adenosine by ectonucleotidase, nucleotide-phosphohydrolysis is important for controlling the balance between P2 and P1 signaling. Gene-targeted mice for P1, P2 receptors, or ectonucleotidase exhibit only very mild phenotypic manifestations at baseline. However, they demonstrate alterations in disease susceptibilities when exposed to a variety of vascular or blood diseases. Examples of phenotypic manifestations include vascular barrier dysfunction, graft-vs-host disease, platelet activation, ischemia, and reperfusion injury or sickle cell disease. Many of these studies highlight that purinergic signaling events can be targeted therapeutically. PMID:25001468

  3. [RILPIVIRINE -- a novel HIV-1 non-nucleoside reverse transcriptase inhibitor].

    PubMed

    Snopková, Svatava; Havlíčková, Kateřina; Polák, Pavel; Šlesinger, Pavel; Husa, Petr

    2013-03-01

    The article summarizes the basic facts about the pharmacokinetic profile, metabolism and drug interactions of rilpivirine (RPV). This is the latest orally administered second-generation non-nucleoside reverse transcriptase inhibitor (NNRTI) for antiretroviral-naive patients with HIV-1 infection. Conformational flexibility and adaptability are the factors that dominantly determine the high resistance barrier of RPV and are the unique features of diarylpyrimidine inhibitors (DAPY inhibitors - 2nd generation NNRTIs). Multicentre studies ECHO and THRIVE are also reviewed. Current guidelines for the treatment of HIV/AIDS are mentioned as well as the role of RPV in current therapeutic regimens.

  4. Crystallographic and docking studies of purine nucleoside phosphorylase from Mycobacterium tuberculosis.

    PubMed

    Ducati, Rodrigo G; Basso, Luiz A; Santos, Diógenes S; de Azevedo, Walter F

    2010-07-01

    This work describes for the first time the structure of purine nucleoside phosphorylase from Mycobacterium tuberculosis (MtPNP) in complex with sulfate and its natural substrate, 2'-deoxyguanosine, and its application to virtual screening. We report docking studies of a set of molecules against this structure. Application of polynomial empirical scoring function was able to rank docking solutions with good predicting power which opens the possibility to apply this new criterion to analyze docking solutions and screen small-molecule databases for new chemical entities to inhibit MtPNP.

  5. Nucleoside reverse-transcriptase inhibitor dosing errors in an outpatient HIV clinic in the electronic medical record era.

    PubMed

    Willig, James H; Westfall, Andrew O; Allison, Jeroan; Van Wagoner, Nicholas; Chang, Pei-Wen; Raper, James; Saag, Michael S; Mugavero, Michael J

    2007-09-01

    Information on antiretroviral dosing errors among health care providers for outpatient human immunodeficiency virus (HIV)-infected patients is lacking. We evaluated factors associated with nucleoside reverse-transcriptase inhibitor dosing errors in a university-based HIV clinic using an electronic medical record. Overall, older age, minority race or ethnicity, and didanosine use were related to such errors. Impaired renal function was more common in older patients and racial or ethnic minorities and, in conjunction with fixed-dose combination drugs, contributed to the higher rates of errors in nucleoside reverse-transcriptase inhibitor dosing. Understanding the factors related to nucleoside reverse-transcriptase inhibitor dosing errors is an important step in the building of preventive tools.

  6. Detection of food-derived damaged nucleosides with possible adverse effects on human health using a global adductomics approach.

    PubMed

    Spilsberg, Bjørn; Rundberget, Thomas; Johannessen, Lene E; Kristoffersen, Anja B; Holst-Jensen, Arne; Berdal, Knut G

    2010-05-26

    A range of damaged nucleosides, also found in digested dietary DNA, appear to be taken up by cells and incorporated into the cells' own DNA. Most incorporated damaged nucleosides will be repaired by cellular DNA repair systems. However, a small fraction of these will escape repair and thus ultimately create mutations. Over the long human lifespan this could be a mechanism that contributes to disease, cancer, and aging. This study analyzed damaged nucleosides derived from dietary DNA in a commercially successful fungus-based novel food, Quorn, and in two fungus-based food items with a history of safe use, button mushroom ( Agaricus bisporus ) and dried powdered brewers yeast ( Saccharomyces cerevisiae ). By using liquid chromatography combined with tandem mass spectrometry more than 90 putative DNA adducts were measured, showing that foods do contain a range of different DNA damages. PMID:20429587

  7. The identification and characterization of non-coding and coding RNAs and their modified nucleosides by mass spectrometry

    PubMed Central

    Gaston, Kirk W; Limbach, Patrick A

    2014-01-01

    The analysis of ribonucleic acids (RNA) by mass spectrometry has been a valuable analytical approach for more than 25 years. In fact, mass spectrometry has become a method of choice for the analysis of modified nucleosides from RNA isolated out of biological samples. This review summarizes recent progress that has been made in both nucleoside and oligonucleotide mass spectral analysis. Applications of mass spectrometry in the identification, characterization and quantification of modified nucleosides are discussed. At the oligonucleotide level, advances in modern mass spectrometry approaches combined with the standard RNA modification mapping protocol enable the characterization of RNAs of varying lengths ranging from low molecular weight short interfering RNAs (siRNAs) to the extremely large 23 S rRNAs. New variations and improvements to this protocol are reviewed, including top-down strategies, as these developments now enable qualitative and quantitative measurements of RNA modification patterns in a variety of biological systems. PMID:25616408

  8. Detection of food-derived damaged nucleosides with possible adverse effects on human health using a global adductomics approach.

    PubMed

    Spilsberg, Bjørn; Rundberget, Thomas; Johannessen, Lene E; Kristoffersen, Anja B; Holst-Jensen, Arne; Berdal, Knut G

    2010-05-26

    A range of damaged nucleosides, also found in digested dietary DNA, appear to be taken up by cells and incorporated into the cells' own DNA. Most incorporated damaged nucleosides will be repaired by cellular DNA repair systems. However, a small fraction of these will escape repair and thus ultimately create mutations. Over the long human lifespan this could be a mechanism that contributes to disease, cancer, and aging. This study analyzed damaged nucleosides derived from dietary DNA in a commercially successful fungus-based novel food, Quorn, and in two fungus-based food items with a history of safe use, button mushroom ( Agaricus bisporus ) and dried powdered brewers yeast ( Saccharomyces cerevisiae ). By using liquid chromatography combined with tandem mass spectrometry more than 90 putative DNA adducts were measured, showing that foods do contain a range of different DNA damages.

  9. A new strategy to construct acyclic nucleosides via Ag(I)-catalyzed addition of pronucleophiles to 9-allenyl-9H-purines.

    PubMed

    Wei, Tao; Xie, Ming-Sheng; Qu, Gui-Rong; Niu, Hong-Ying; Guo, Hai-Ming

    2014-02-01

    A new strategy to construct acyclic nucleosides with diverse side chains was developed. With Ag(I) salts as catalysts, the hydrocarboxylation, hydroamination, and hydrocarbonation reactions proceeded well, affording acyclic nucleosides in good yields (41 examples, 60-98% yields). Meanwhile, these reactions exhibited high chemoselectivities and E-selectivities. PMID:24437554

  10. Telomerase inhibition by non-nucleosidic compound BIBR1532 causes rapid cell death in pre-B acute lymphoblastic leukemia cells.

    PubMed

    Bashash, Davood; Ghaffari, Seyed H; Mirzaee, Rooholah; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir

    2013-03-01

    Since unlimited proliferative potential has been identified as a major and, to date, therapeutically unexploited phenotypic hallmark of cancer, telomere maintenance mechanisms have been proposed as potential targets for new anticancer interventions. This study was aimed to investigate the effects of BIBR1532, the lead compound of non-nucleosidic inhibition of telomerase, on pre-B acute lymphoblastic leukemia (ALL) cells. BIBR1532 caused rapid cell death in Nalm-6 cells probably through transcriptional suppression of survivin-mediated c-Myc and human telomerase reverse transcriptase (hTERT) expression in a concentration-dependent manner. Moreover, our results also suggest that induced p73, up-regulated Bax/Bcl-2 molecular ratio and subsequent activation of caspase-3 may contribute to a direct short-term cytotoxic effect of high doses of BIBR1532, independent of long-term substantial telomere erosion-mediated cell cycle arrest.

  11. Discovery of the Aryl-phospho-indole IDX899, a Highly Potent Anti-HIV Non-nucleoside Reverse Transcriptase Inhibitor.

    PubMed

    Dousson, Cyril; Alexandre, François-René; Amador, Agnès; Bonaric, Séverine; Bot, Stéphanie; Caillet, Catherine; Convard, Thierry; da Costa, Daniel; Lioure, Marie-Pierre; Roland, Arlène; Rosinovsky, Elodie; Maldonado, Sébastien; Parsy, Christophe; Trochet, Christophe; Storer, Richard; Stewart, Alistair; Wang, Jingyang; Mayes, Benjamin A; Musiu, Chiara; Poddesu, Barbara; Vargiu, Luana; Liuzzi, Michel; Moussa, Adel; Jakubik, Jocelyn; Hubbard, Luke; Seifer, Maria; Standring, David

    2016-03-10

    Here, we describe the design, synthesis, biological evaluation, and identification of a clinical candidate non-nucleoside reverse transcriptase inhibitors (NNRTIs) with a novel aryl-phospho-indole (APhI) scaffold. NNRTIs are recommended components of highly active antiretroviral therapy (HAART) for the treatment of HIV-1. Since a major problem associated with NNRTI treatment is the emergence of drug resistant virus, this work focused on optimization of the APhI against clinically relevant HIV-1 Y181C and K103N mutants and the Y181C/K103N double mutant. Optimization of the phosphinate aryl substituent led to the discovery of the 3-Me,5-acrylonitrile-phenyl analogue RP-13s (IDX899) having an EC50 of 11 nM against the Y181C/K103N double mutant.

  12. Synthesis and biological evaluation of nucleoside analogues than contain silatrane on the basis of the structure of acyclovir (ACV) as novel inhibitors of hepatitis B virus (HBV).

    PubMed

    Han, Anyue; Li, Lingna; Qing, Kuiyou; Qi, Xiaolu; Hou, Leping; Luo, Xintong; Shi, Shaohua; Ye, Faqing

    2013-03-01

    Hepatitis B virus (HBV) infection causes major public health problems worldwide. Acyclovir (ACV) is mainly used to inhibit herpes simplex virus (HSV) rather than HBV. In this study, we used the combination principle to design and synthesize nucleoside analogues that contain silatrane on the basis of the structure of ACV. We found that the compounds were effective inhibitors of HBV, both in vitro and in vivo. All of the compounds showed suppressive activity on the expression of HBV surface antigen (HBsAg) and HBV e antigen (HBeAg) in the HepG2.2.15 cell line with low cytotoxicity. One of compounds was studied in HBV transgenic mice model, and the test results showed its ability to reduce the levels of HBsAg, HBeAg and HBV DNA by ELASE and qPCR. Furthermore, significant improvement of T lymphocyte was observed after treatment, as evaluated by flow cytometry (FCM).

  13. Mutation V111I in HIV-2 Reverse Transcriptase Increases the Fitness of the Nucleoside Analogue-Resistant K65R and Q151M Viruses

    PubMed Central

    Deuzing, Ilona P.; Charpentier, Charlotte; Wright, David W.; Matheron, Sophie; Paton, Jack; Frentz, Dineke; van de Vijver, David A.; Coveney, Peter V.; Descamps, Diane; Boucher, Charles A. B.

    2014-01-01

    ABSTRACT Infection with HIV-2 can ultimately lead to AIDS, although disease progression is much slower than with HIV-1. HIV-2 patients are mostly treated with a combination of nucleoside reverse transcriptase (RT) inhibitors (NRTIs) and protease inhibitors designed for HIV-1. Many studies have described the development of HIV-1 resistance to NRTIs and identified mutations in the polymerase domain of RT. Recent studies have shown that mutations in the connection and RNase H domains of HIV-1 RT may also contribute to resistance. However, only limited information exists regarding the resistance of HIV-2 to NRTIs. In this study, therefore, we analyzed the polymerase, connection, and RNase H domains of RT in HIV-2 patients failing NRTI-containing therapies. Besides the key resistance mutations K65R, Q151M, and M184V, we identified a novel mutation, V111I, in the polymerase domain. This mutation was significantly associated with mutations K65R and Q151M. Sequencing of the connection and RNase H domains of the HIV-2 patients did not reveal any of the mutations that were reported to contribute to NRTI resistance in HIV-1. We show that V111I does not strongly affect drug susceptibility but increases the replication capacity of the K65R and Q151M viruses. Biochemical assays demonstrate that V111I restores the polymerization defects of the K65R and Q151M viruses but negatively affects the fidelity of the HIV-2 RT enzyme. Molecular dynamics simulations were performed to analyze the structural changes mediated by V111I. This showed that V111I changed the flexibility of the 110-to-115 loop region, which may affect deoxynucleoside triphosphate (dNTP) binding and polymerase activity. IMPORTANCE Mutation V111I in the HIV-2 reverse transcriptase enzyme was identified in patients failing therapies containing nucleoside analogues. We show that the V111I change does not strongly affect the sensitivity of HIV-2 to nucleoside analogues but increases the fitness of viruses with drug

  14. Methylated nucleosides in tRNA and tRNA methyltransferases

    PubMed Central

    Hori, Hiroyuki

    2014-01-01

    To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed. PMID:24904644

  15. Parameterization of AZT-A widely used nucleoside inhibitor of HIV-1 reverse transcriptase

    NASA Astrophysics Data System (ADS)

    Carvalho, Alexandra T. P.; Fernandes, Pedro A.; Ramos, Maria J.

    Seven nucleoside reverse transcriptase (RT) inhibitors are currently used in the clinical treatment of acquired immunodeficiency syndrome (AIDS). These substrate analogues block DNA synthesis by the viral enzyme RT. However, the emergence of resistant variants of RT allied to their long-term toxicity requires the design of new and better RT inhibitors, with long-term in vivo efficacy. In this work we used density functional theory (DFT) calculations to develop a set of molecular mechanics (MM) parameters committed to the AMBER force field for one of the most used in the clinic nucleoside reverse transcriptase inhibitors (NRTIs): zidovudine (AZT). These parameters were tested by comparing the optimized geometries of AZT at both the DFT and MM levels of theory. The ability of the new parameters to reproduce the torsional energy of the azide group was also verified by scanning the surface in MM with the new parameters and comparing the results with the same potential energy surface (PES) at the DFT level. Finally, the parameters were validated through classical MD simulations of AZT in aqueous environment.

  16. Selective adsorption of modified nucleoside cancer biomarkers by hybrid molecularly imprinted adsorbents.

    PubMed

    Iwanowska, Agnieszka; Yusa, Shin-Ichi; Nowakowska, Maria; Szczubiałka, Krzysztof

    2016-08-01

    Modified adenosine nucleosides have been proposed to be potential DNA-based biomarkers for early diagnosis of tumor and a promising tool for the development of noninvasive prediction systems. However, the low concentration of modified adenosine nucleosides in physiological fluids makes them challenging for both quantitative and qualitative determination. Therefore, materials, which are potentially useful for selective adsorption of nucleobase-containing compounds, were obtained. To obtain the adsorbents, the silica gel particles were coated layer-by-layer with films of the polymers with different combinations of polymers containing thymine groups. Next, the microspheres were irradiated with UV light in the presence of 2'-deoxyadenosine or 5'-deoxy-5'-(methylthio)adenosine, as template molecules, which resulted in the photodimerization of thymine moieties and molecular imprinting of adsorbed modified adenosine compounds. The selectivity of the adsorption was significantly enhanced by the photoimprinting process. Eventually, the imprinted particles have shown an improved ability to recognize mainly 2'-deoxyadenosine and 5'-deoxy-5'-(methylthio)adenosine molecules. The best performing adsorbent was obtained using modified natural polysaccharides. The studied materials could serve as promising adsorbents of biomarkers for tumor diagnostics. PMID:27296785

  17. Substrate specificity and kinetic mechanism of purine nucleoside phosphorylase from Mycobacterium tuberculosis.

    PubMed

    Ducati, Rodrigo G; Santos, Diógenes S; Basso, Luiz A

    2009-06-15

    Purine nucleoside phosphorylase from Mycobacterium tuberculosis (MtPNP) is numbered among targets for persistence of the causative agent of tuberculosis. Here, it is shown that MtPNP is more specific to natural 6-oxopurine nucleosides and synthetic compounds, and does not catalyze the phosphorolysis of adenosine. Initial velocity, product inhibition and equilibrium binding data suggest that MtPNP catalyzes 2'-deoxyguanosine (2dGuo) phosphorolysis by a steady-state ordered bi bi kinetic mechanism, in which inorganic phosphate (P(i)) binds first followed by 2dGuo, and ribose 1-phosphate dissociates first followed by guanine. pH-rate profiles indicated a general acid as being essential for both catalysis and 2dGuo binding, and that deprotonation of a group abolishes P(i) binding. Proton inventory and solvent deuterium isotope effects indicate that a single solvent proton transfer makes a modest contribution to the rate-limiting step. Pre-steady-state kinetic data indicate that product release appears to contribute to the rate-limiting step for MtPNP-catalyzed reaction.

  18. Cardiac mitochondrial compromise in 1-yr-old Erythrocebus patas monkeys perinatally-exposed to nucleoside reverse transcriptase inhibitors.

    PubMed

    Divi, Rao L; Leonard, Sarah L; Kuo, Maryanne M; Walker, Brettania L; Orozco, Christine C; St Claire, Marisa C; Nagashima, Kunio; Harbaugh, Steven W; Harbaugh, Jeffrey W; Thamire, Chandrasekhar; Sable, Craig A; Poirier, Miriam C

    2005-01-01

    Hearts from 1-yr-old Erythrocebus patas monkeys were examined after in utero and 6-wk-postbirth exposure to antiretroviral nucleoside reverse transcriptase inhibitors (NRTIs). Protocols were modeled on those given to human immunodeficiency virus (HIV)-1-infected pregnant women. NRTIs were administered daily to the dams for the last 20% or 50% of gestation, and to the infants for 6 wk after birth. Exposures included: no drug (n = 4); Zidovudine, 3'-azido-3'-deoxythymidine (AZT; n = 4); AZT/Lamivudine, (-)-beta-L-2', 3'-Dideoxy-3'-thiacytidine (Epivir, 3TC) (n = 4); AZT/Didanosine (Videx, ddI) (n = 4); and Stavudine (Zerit, d4T)/3TC (n = 4). Echocardiograms and clinical chemistry showed no drug-related changes, but the d4T/3TC-exposed fetuses at 6 and 12 mo had increased white cell counts (p < 0.05). At 1 yr of age, oxidative phosphorylation (OXPHOS) enzyme activities were similar in heart mitochondria from all groups. Mitochondrial pathology, that included clones of damaged mitochondria (p < 0.05), was found in hearts of all 1-yr drug-exposed infants. Levels of mtDNA were elevated (p < 0.05) in hearts of all NRTI-exposed monkeys in the following order: control < d4T/3TC < AZT < AZT/3TC < AZT/ddI. The clinical status of NRTI-exposed infants, as evidenced by behavior, clinical chemistry, OXPHOS activity and echocardiogram, was normal. However, extensive mitochondrial damage with clusters of similar-appearing damaged heart mitochondria observed by electron microscopy, and an increase in mtDNA quantity, that persisted at 1 yr of age, suggest the potential for cardiotoxicity later in life.

  19. Localization of the NBMPR-sensitive equilibrative nucleoside transporter, ENT1, in the rat dorsal root ganglion and lumbar spinal cord.

    PubMed

    Governo, Ricardo J M; Deuchars, Jim; Baldwin, Stephen A; King, Anne E

    2005-10-19

    ENT1 is an equilibrative nucleoside transporter that enables trans-membrane bi-directional diffusion of biologically active purines such as adenosine. In spinal cord dorsal horn and in sensory afferent neurons, adenosine acts as a neuromodulator with complex pro- and anti-nociceptive actions. Although uptake and release mechanisms for adenosine are believed to exist in both the dorsal horn and sensory afferent neurons, the expression profile of specific nucleoside transporter subtypes such as ENT1 is not established. In this study, immunoblot analysis with specific ENT1 antibodies (anti-rENT1(227-290) or anti-hENT1(227-290)) was used to reveal the expression of ENT1 protein in tissue homogenates of either adult rat dorsal horn or dorsal root ganglia (DRG). Immunoperoxidase labeling with ENT1 antibodies produced specific staining in dorsal horn which was concentrated over superficial laminae, especially the substantia gelatinosa (lamina II). Immunofluorescence double-labeling revealed a punctate pattern for ENT1 closely associated, in some instances, with cell bodies of either neurons (confirmed with NeuN) or glia (confirmed with CNPase). Electron microscopy analysis of ENT1 expression in lamina II indicated its presence within pre- and post-synaptic elements, although a number of other structures, including myelinated and unmyelinated, axons were also labeled. In sensory ganglia, ENT1 was localized to a high proportion of cell bodies of all sizes that co-expressed substance P, IB4 or NF, although ENT1 was most highly expressed in the peptidergic population. These data provide the first detailed account of the expression and cellular distribution of ENT1 in rat dorsal horn and sensory ganglia. The functional significance of ENT1 expression with regard to the homeostatic regulation of adenosine at synapses remains to be established. PMID:16226730

  20. ADME studies of [5-(3)H]-2'-O-methyluridine nucleoside in mice: a building block in siRNA therapeutics.

    PubMed

    Lozac'h, Frederic; Christensen, Jesper; Faller, Thomas; van de Kerkhof, Esther; Krauser, Joel; Garnier, Maxime; Litherland, Karine; Catoire, Alexandre; Natt, Francois; Hunziker, Jurg; Swart, Piet

    2016-02-01

    The chemical modification 2'-O-methyl of nucleosides is often used to increase siRNA stability towards nuclease activities. However, the metabolic fate of modified nucleosides remains unclear. Therefore, the aim of this study was to determine the mass balance, pharmacokinetic, and absorption, distribution, metabolism, and excretion (ADME)-properties of tritium-labeled 2'-O-methyluridine, following a single intravenous dose to male CD-1 mice. The single intravenous administration of [5-(3)H]-2'-O-methyluridine was well tolerated in mice. Radioactivity was rapidly and widely distributed throughout the body and remained detectable in all tissues investigated throughout the observation period of 48 h. After an initial rapid decline, blood concentrations of total radiolabeled components declined at a much slower rate. [(3)H]-2'-O-Methyluridine represented a minor component of the radioactivity in plasma (5.89% of [(3)H]-AUC 0-48 h). Three [(3)H]-2'-O-methyluridine metabolites namely uridine (M1), cytidine (M2), and uracil (M3) were the major circulating components representing 32.8%, 8.11%, and 23.6% of radioactivity area under the curve, respectively. The highest concentrations of total radiolabeled components and exposures were observed in kidney, spleen, pineal body, and lymph nodes. The mass balance, which is the sum of external recovery of radioactivity in excreta and remaining radioactivity in carcass and cage wash, was complete. Renal excretion accounted for about 52.7% of the dose with direct renal excretion of the parent in combination with metabolism to the endogenous compounds cytidine, uracil, cytosine, and cytidine. PMID:26977299