Science.gov

Sample records for nucleotide binding domains

  1. Mutations of PKA cyclic nucleotide-binding domains reveal novel aspects of cyclic nucleotide selectivity.

    PubMed

    Lorenz, Robin; Moon, Eui-Whan; Kim, Jeong Joo; Schmidt, Sven H; Sankaran, Banumathi; Pavlidis, Ioannis V; Kim, Choel; Herberg, Friedrich W

    2017-07-06

    Cyclic AMP and cyclic GMP are ubiquitous second messengers that regulate the activity of effector proteins in all forms of life. The main effector proteins, the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) and the 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG), are preferentially activated by cAMP and cGMP, respectively. However, the molecular basis of this cyclic nucleotide selectivity is still not fully understood. Analysis of isolated cyclic nucleotide-binding (CNB) domains of PKA regulatory subunit type Iα (RIα) reveals that the C-terminal CNB-B has a higher cAMP affinity and selectivity than the N-terminal CNB-A. Here, we show that introducing cGMP-specific residues using site-directed mutagenesis reduces the selectivity of CNB-B, while the combination of two mutations (G316R/A336T) results in a cGMP-selective binding domain. Furthermore, introducing the corresponding mutations (T192R/A212T) into the PKA RIα CNB-A turns this domain into a highly cGMP-selective domain, underlining the importance of these contacts for achieving cGMP specificity. Binding data with the generic purine nucleotide 3',5'-cyclic inosine monophosphate (cIMP) reveal that introduced arginine residues interact with the position 6 oxygen of the nucleobase. Co-crystal structures of an isolated CNB-B G316R/A336T double mutant with either cAMP or cGMP reveal that the introduced threonine and arginine residues maintain their conserved contacts as seen in PKG I CNB-B. These results improve our understanding of cyclic nucleotide binding and the molecular basis of cyclic nucleotide specificity. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  2. The Tomato Nucleotide-binding Leucine-rich Repeat Immune Receptor I-2 Couples DNA-binding to Nucleotide-binding Domain Nucleotide Exchange*

    PubMed Central

    Fenyk, Stepan; Dixon, Christopher H.; Gittens, William H.; Townsend, Philip D.; Sharples, Gary J.; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2016-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA. PMID:26601946

  3. Nucleotide Binding in an Engineered Recombinant Ca(2+)-ATPase N-Domain.

    PubMed

    Páez-Pérez, Edgar D; De La Cruz-Torres, Valentín; Sampedro, José G

    2016-12-13

    A recombinant Ca(2+)-ATPase nucleotide binding domain (N-domain) harboring the mutations Trp552Leu and Tyr587Trp was expressed and purified. Chemical modification by N-bromosuccinimide and fluorescence quenching by acrylamide showed that the displaced Trp residue was located at the N-domain surface and slightly exposed to solvent. Guanidine hydrochloride-mediated N-domain unfolding showed the low structural stability of the α6-loop-α7 motif (the new Trp location) located near the nucleotide binding site. The binding of nucleotides (free and in complex with Mg(2+)) to the engineered N-domain led to significant intrinsic fluorescence quenching (ΔFmax ∼ 30%) displaying a saturable hyperbolic pattern; the calculated affinities decreased in the following order: ATP > ADP = ADP-Mg(2+) > ATP-Mg(2+). Interestingly, it was found that Ca(2+) binds to the N-domain as monitored by intrinsic fluorescence quenching (ΔFmax ∼ 12%) with a dissociation constant (Kd) of 50 μM. Notably, the presence of Ca(2+) (200 μM) increased the ATP and ADP affinity but favored the binding of ATP over that of ADP. In addition, binding of ATP to the N-domain generated slight changes in secondary structure as evidenced by circular dichroism spectral changes. Molecular docking of ATP to the N-domain provided different binding modes that potentially might be the binding stages prior to γ-phosphate transfer. Finally, the nucleotide binding site was studied by fluorescein isothiocyanate labeling and molecular docking. The N-domain of Ca(2+)-ATPase performs structural dynamics upon Ca(2+) and nucleotide binding. It is proposed that the increased affinity of the N-domain for ATP mediated by Ca(2+) binding may be involved in Ca(2+)-ATPase activation under normal physiological conditions.

  4. Hydrolysis at One of the Two Nucleotide-binding Sites Drives the Dissociation of ATP-binding Cassette Nucleotide-binding Domain Dimers

    SciTech Connect

    Zoghbi, M. E.; Altenberg, G. A.

    2013-10-15

    The functional unit of ATP-binding cassette (ABC) transporters consists of two transmembrane domains and two nucleotide-binding domains (NBDs). ATP binding elicits association of the two NBDs, forming a dimer in a head-to-tail arrangement, with two nucleotides “sandwiched” at the dimer interface. Each of the two nucleotide-binding sites is formed by residues from the two NBDs. We recently found that the prototypical NBD MJ0796 from Methanocaldococcus jannaschii dimerizes in response to ATP binding and dissociates completely following ATP hydrolysis. However, it is still unknown whether dissociation of NBD dimers follows ATP hydrolysis at one or both nucleotide-binding sites. Here, we used luminescence resonance energy transfer to study heterodimers formed by one active (donor-labeled) and one catalytically defective (acceptor-labeled) NBD. Rapid mixing experiments in a stop-flow chamber showed that NBD heterodimers with one functional and one inactive site dissociated at a rate indistinguishable from that of dimers with two hydrolysis-competent sites. Comparison of the rates of NBD dimer dissociation and ATP hydrolysis indicated that dissociation followed hydrolysis of one ATP. We conclude that ATP hydrolysis at one nucleotide-binding site drives NBD dimer dissociation.

  5. Hydrolysis at One of the Two Nucleotide-binding Sites Drives the Dissociation of ATP-binding Cassette Nucleotide-binding Domain Dimers*

    PubMed Central

    Zoghbi, Maria E.; Altenberg, Guillermo A.

    2013-01-01

    The functional unit of ATP-binding cassette (ABC) transporters consists of two transmembrane domains and two nucleotide-binding domains (NBDs). ATP binding elicits association of the two NBDs, forming a dimer in a head-to-tail arrangement, with two nucleotides “sandwiched” at the dimer interface. Each of the two nucleotide-binding sites is formed by residues from the two NBDs. We recently found that the prototypical NBD MJ0796 from Methanocaldococcus jannaschii dimerizes in response to ATP binding and dissociates completely following ATP hydrolysis. However, it is still unknown whether dissociation of NBD dimers follows ATP hydrolysis at one or both nucleotide-binding sites. Here, we used luminescence resonance energy transfer to study heterodimers formed by one active (donor-labeled) and one catalytically defective (acceptor-labeled) NBD. Rapid mixing experiments in a stop-flow chamber showed that NBD heterodimers with one functional and one inactive site dissociated at a rate indistinguishable from that of dimers with two hydrolysis-competent sites. Comparison of the rates of NBD dimer dissociation and ATP hydrolysis indicated that dissociation followed hydrolysis of one ATP. We conclude that ATP hydrolysis at one nucleotide-binding site drives NBD dimer dissociation. PMID:24129575

  6. Simulation of the coupling between nucleotide binding and transmembrane domains in the ATP binding cassette transporter BtuCD.

    PubMed

    Sonne, Jacob; Kandt, Christian; Peters, Günther H; Hansen, Flemming Y; Jensen, Morten Ø; Tieleman, D Peter

    2007-04-15

    The nucleotide-induced structural rearrangements in ATP binding cassette (ABC) transporters, leading to substrate translocation, are largely unknown. We have modeled nucleotide binding and release in the vitamin B(12) importer BtuCD using perturbed elastic network calculations and biased molecular dynamics simulations. Both models predict that nucleotide release decreases the tilt between the two transmembrane domains and opens the cytoplasmic gate. Nucleotide binding has the opposite effect. The observed coupling may be relevant for all ABC transporters because of the conservation of nucleotide binding domains and the shared role of ATP in ABC transporters. The rearrangements in the cytoplasmic gate region do not provide enough space for B(12) to diffuse from the transporter pore into the cytoplasm, which could suggest that peristaltic forces are needed to exclude B(12) from the transporter pore.

  7. Allosteric communication between the nucleotide binding domains of caseinolytic peptidase B.

    PubMed

    Fernández-Higuero, José Ángel; Acebrón, Sergio P; Taneva, Stefka G; Del Castillo, Urko; Moro, Fernando; Muga, Arturo

    2011-07-22

    ClpB is a hexameric chaperone that solubilizes and reactivates protein aggregates in cooperation with the Hsp70/DnaK chaperone system. Each of the identical protein monomers contains two nucleotide binding domains (NBD), whose ATPase activity must be coupled to exert on the substrate the mechanical work required for its reactivation. However, how communication between these sites occurs is at present poorly understood. We have studied herein the affinity of each of the NBDs for nucleotides in WT ClpB and protein variants in which one or both sites are mutated to selectively impair nucleotide binding or hydrolysis. Our data show that the affinity of NBD2 for nucleotides (K(d) = 3-7 μm) is significantly higher than that of NBD1. Interestingly, the affinity of NBD1 depends on nucleotide binding to NBD2. Binding of ATP, but not ADP, to NBD2 increases the affinity of NBD1 (the K(d) decreases from ≈160-300 to 50-60 μm) for the corresponding nucleotide. Moreover, filling of the NBD2 ring with ATP allows the cooperative binding of this nucleotide and substrates to the NBD1 ring. Data also suggest that a minimum of four subunits cooperate to bind and reactivate two different aggregated protein substrates.

  8. Prolonged Nonhydrolytic Interaction of Nucleotide with CFTR's NH2-terminal Nucleotide Binding Domain and its Role in Channel Gating

    PubMed Central

    Basso, Claudia; Vergani, Paola; Nairn, Angus C.; Gadsby, David C.

    2003-01-01

    CFTR, the protein defective in cystic fibrosis, functions as a Cl− channel regulated by cAMP-dependent protein kinase (PKA). CFTR is also an ATPase, comprising two nucleotide-binding domains (NBDs) thought to bind and hydrolyze ATP. In hydrolyzable nucleoside triphosphates, PKA-phosphorylated CFTR channels open into bursts, lasting on the order of a second, from closed (interburst) intervals of a second or more. To investigate nucleotide interactions underlying channel gating, we examined photolabeling by [α32P]8-N3ATP or [γ32P]8-N3ATP of intact CFTR channels expressed in HEK293T cells or Xenopus oocytes. We also exploited split CFTR channels to distinguish photolabeling at NBD1 from that at NBD2. To examine simple binding of nucleotide in the absence of hydrolysis and gating reactions, we photolabeled after incubation at 0°C with no washing. Nucleotide interactions under gating conditions were probed by photolabeling after incubation at 30°C, with extensive washing, also at 30°C. Phosphorylation of CFTR by PKA only slightly influenced photolabeling after either protocol. Strikingly, at 30°C nucleotide remained tightly bound at NBD1 for many minutes, in the form of nonhydrolyzed nucleoside triphosphate. As nucleotide-dependent gating of CFTR channels occurred on the time scale of seconds under comparable conditions, this suggests that the nucleotide interactions, including hydrolysis, that time CFTR channel opening and closing occur predominantly at NBD2. Vanadate also appeared to act at NBD2, presumably interrupting its hydrolytic cycle, and markedly delayed termination of channel open bursts. Vanadate somewhat increased the magnitude, but did not alter the rate, of the slow loss of nucleotide tightly bound at NBD1. Kinetic analysis of channel gating in Mg8-N3ATP or MgATP reveals that the rate-limiting step for CFTR channel opening at saturating [nucleotide] follows nucleotide binding to both NBDs. We propose that ATP remains tightly bound or occluded at

  9. Nucleotides regulate the mechanical hierarchy between subdomains of the nucleotide binding domain of the Hsp70 chaperone DnaK.

    PubMed

    Bauer, Daniela; Merz, Dale R; Pelz, Benjamin; Theisen, Kelly E; Yacyshyn, Gail; Mokranjac, Dejana; Dima, Ruxandra I; Rief, Matthias; Žoldák, Gabriel

    2015-08-18

    The regulation of protein function through ligand-induced conformational changes is crucial for many signal transduction processes. The binding of a ligand alters the delicate energy balance within the protein structure, eventually leading to such conformational changes. In this study, we elucidate the energetic and mechanical changes within the subdomains of the nucleotide binding domain (NBD) of the heat shock protein of 70 kDa (Hsp70) chaperone DnaK upon nucleotide binding. In an integrated approach using single molecule optical tweezer experiments, loop insertions, and steered coarse-grained molecular simulations, we find that the C-terminal helix of the NBD is the major determinant of mechanical stability, acting as a glue between the two lobes. After helix unraveling, the relative stability of the two separated lobes is regulated by ATP/ADP binding. We find that the nucleotide stays strongly bound to lobe II, thus reversing the mechanical hierarchy between the two lobes. Our results offer general insights into the nucleotide-induced signal transduction within members of the actin/sugar kinase superfamily.

  10. Nucleotides regulate the mechanical hierarchy between subdomains of the nucleotide binding domain of the Hsp70 chaperone DnaK

    PubMed Central

    Bauer, Daniela; Merz, Dale R.; Pelz, Benjamin; Theisen, Kelly E.; Yacyshyn, Gail; Mokranjac, Dejana; Dima, Ruxandra I.; Rief, Matthias; Žoldák, Gabriel

    2015-01-01

    The regulation of protein function through ligand-induced conformational changes is crucial for many signal transduction processes. The binding of a ligand alters the delicate energy balance within the protein structure, eventually leading to such conformational changes. In this study, we elucidate the energetic and mechanical changes within the subdomains of the nucleotide binding domain (NBD) of the heat shock protein of 70 kDa (Hsp70) chaperone DnaK upon nucleotide binding. In an integrated approach using single molecule optical tweezer experiments, loop insertions, and steered coarse-grained molecular simulations, we find that the C-terminal helix of the NBD is the major determinant of mechanical stability, acting as a glue between the two lobes. After helix unraveling, the relative stability of the two separated lobes is regulated by ATP/ADP binding. We find that the nucleotide stays strongly bound to lobe II, thus reversing the mechanical hierarchy between the two lobes. Our results offer general insights into the nucleotide-induced signal transduction within members of the actin/sugar kinase superfamily. PMID:26240360

  11. Drug binding in human P-glycoprotein causes conformational changes in both nucleotide-binding domains.

    PubMed

    Loo, Tip W; Bartlett, M Claire; Clarke, David M

    2003-01-17

    The human multidrug resistance P-glycoprotein (P-gp, ABCB1) uses ATP to transport many structurally diverse compounds out of the cell. It is an ABC transporter with two nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Recently, we showed that the "LSGGQ" motif in one NBD ((531)LSGGQ(535) in NBD1; (1176)LSGGQ(1180) in NBD2) is adjacent to the "Walker A" sequence ((1070)GSSGCGKS(1077) in NBD2; (427)GNSGCGKS(434) in NBD1) in the other NBD (Loo, T. W., Bartlett, M. C., and Clarke, D. M. (2002) J. Biol. Chem. 277, 41303-41306). Drug substrates can stimulate or inhibit the ATPase activity of P-gp. Here, we report the effect of drug binding on cross-linking between the LSGGQ signature and Walker A sites (Cys(431)(NBD1)/C1176C(NBD2) and Cys(1074)(NBD2)/L531C(NBD1), respectively). Seven drug substrates (calcein-AM, demecolcine, cis(Z)-flupentixol, verapamil, cyclosporin A, Hoechst 33342, and trans(E)-flupentixol) were tested for their effect on oxidative cross-linking. Substrates that stimulated the ATPase activity of P-gp (calcein-AM, demecolcine, cis(Z)-flupentixol, and verapamil) increased the rate of cross-linking between Cys(431)(NBD1-Walker A)/C1176C(NBD2-LSGGQ) and between Cys(1074)(NBD2-Walker A)/L531C(NBD1-LSGGQ) when compared with cross-linking in the absence of drug substrate. By contrast, substrates that inhibited ATPase activity (cyclosporin A, Hoechst 33342, and trans(E)-flupentixol) decreased the rate of cross-linking. These results indicate that interaction between the LSGGQ motifs and Walker A sites must be essential for coupling drug binding to ATP hydrolysis. Drug binding in the transmembrane domains can induce long range conformational changes in the NBDs, such that compounds that stimulate or inhibit ATPase activity must decrease and increase, respectively, the distance between the Walker A and LSGGQ sequences.

  12. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    PubMed Central

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-01-01

    Inosine-5′-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches. PMID:26558346

  13. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    NASA Astrophysics Data System (ADS)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-11-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches.

  14. Common functionally-important motions of the nucleotide-binding domain of Hsp70

    PubMed Central

    Gołaś, Ewa I.; Czaplewski, Cezary; Scheraga, Harold A.; Liwo, Adam

    2014-01-01

    The 70 kDa Heat Shock Proteins (Hsp70) are a family of molecular chaperones involved in protein folding, aggregate prevention, and protein disaggregation. They consist of the substrate binding domain (SBD) that binds client substrates, and the nucleotide-binding domain (NBD), whose cycles of nucleotide hydrolysis and exchange underpin the activity of the chaperone. To characterize the structure-function relationships that link the binding state of the NBD to its conformational behavior, we analyzed the dynamics of the NBD of the Hsp70 chaperone from Bos taurus (pdb 3C7N:B) by all-atom canonical molecular dynamics simulations. It was found that essential motions within the NBD fall into three major classes: the mutual class, reflecting tendencies common to all binding states, and the ADP- and ATP-unique classes, which reflect conformational trends that are unique to either the ADP- or ATP-bound states, respectively. ‘Mutual’ class motions generally describe ‘in-plane’ and/or ‘out-of-plane’ (‘scissor-like’) rotation of the subdomains within the NBD. This result is consistent with experimental nuclear magnetic resonance data on the NBD. The ‘Unique’ class motions target specific regions on the NBD, usually surface loops or sites involved in nucleotide-binding and are, therefore, expected to be involved in allostery and signal transmission. For all classes, and especially for those of the ‘Unique’ type, regions of enhanced mobility can be identified; these are termed ‘hot-spots,’ and their locations generally parallel those found by NMR spectroscopy. The presence of magnesium and potassium cations in the nucleotide-binding pocket was also found to influence the dynamics of the NBD significantly. PMID:25412765

  15. Crystal structure of the nucleotide-binding domain of mortalin, the mitochondrial Hsp70 chaperone.

    PubMed

    Amick, Joseph; Schlanger, Simon E; Wachnowsky, Christine; Moseng, Mitchell A; Emerson, Corey C; Dare, Michelle; Luo, Wen-I; Ithychanda, Sujay S; Nix, Jay C; Cowan, J A; Page, Richard C; Misra, Saurav

    2014-06-01

    Mortalin, a member of the Hsp70-family of molecular chaperones, functions in a variety of processes including mitochondrial protein import and quality control, Fe-S cluster protein biogenesis, mitochondrial homeostasis, and regulation of p53. Mortalin is implicated in regulation of apoptosis, cell stress response, neurodegeneration, and cancer and is a target of the antitumor compound MKT-077. Like other Hsp70-family members, Mortalin consists of a nucleotide-binding domain (NBD) and a substrate-binding domain. We determined the crystal structure of the NBD of human Mortalin at 2.8 Å resolution. Although the Mortalin nucleotide-binding pocket is highly conserved relative to other Hsp70 family members, we find that its nucleotide affinity is weaker than that of Hsc70. A Parkinson's disease-associated mutation is located on the Mortalin-NBD surface and may contribute to Mortalin aggregation. We present structure-based models for how the Mortalin-NBD may interact with the nucleotide exchange factor GrpEL1, with p53, and with MKT-077. Our structure may contribute to the understanding of disease-associated Mortalin mutations and to improved Mortalin-targeting antitumor compounds.

  16. Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator

    PubMed Central

    Lewis, Hal A; Buchanan, Sean G; Burley, Stephen K; Conners, Kris; Dickey, Mark; Dorwart, Michael; Fowler, Richard; Gao, Xia; Guggino, William B; Hendrickson, Wayne A; Hunt, John F; Kearins, Margaret C; Lorimer, Don; Maloney, Peter C; Post, Kai W; Rajashankar, Kanagalaghatta R; Rutter, Marc E; Sauder, J Michael; Shriver, Stephanie; Thibodeau, Patrick H; Thomas, Philip J; Zhang, Marie; Zhao, Xun; Emtage, Spencer

    2004-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that functions as a chloride channel. Nucleotide-binding domain 1 (NBD1), one of two ABC domains in CFTR, also contains sites for the predominant CF-causing mutation and, potentially, for regulatory phosphorylation. We have determined crystal structures for mouse NBD1 in unliganded, ADP- and ATP-bound states, with and without phosphorylation. This NBD1 differs from typical ABC domains in having added regulatory segments, a foreshortened subdomain interconnection, and an unusual nucleotide conformation. Moreover, isolated NBD1 has undetectable ATPase activity and its structure is essentially the same independent of ligand state. Phe508, which is commonly deleted in CF, is exposed at a putative NBD1-transmembrane interface. Our results are consistent with a CFTR mechanism, whereby channel gating occurs through ATP binding in an NBD1–NBD2 nucleotide sandwich that forms upon displacement of NBD1 regulatory segments. PMID:14685259

  17. Structural and evolutionary divergence of cyclic nucleotide binding domains in eukaryotic pathogens: Implications for drug design☆

    PubMed Central

    Mohanty, Smita; Kennedy, Eileen J.; Herberg, Friedrich W.; Hui, Raymond; Taylor, Susan S.; Langsley, Gordon; Kannan, Natarajan

    2015-01-01

    Many cellular functions in eukaryotic pathogens are mediated by the cyclic nucleotide binding (CNB) domain, which senses second messengers such as cyclic AMP and cyclic GMP. Although CNB domain-containing proteins have been identified in many pathogenic organisms, an incomplete understanding of how CNB domains in pathogens differ from other eukaryotic hosts has hindered the development of selective inhibitors for CNB domains associated with infectious diseases. Here, we identify and classify CNB domain-containing proteins in eukaryotic genomes to understand the evolutionary basis for CNB domain functional divergence in pathogens. We identify 359 CNB domain-containing proteins in 31 pathogenic organisms and classify them into distinct subfamilies based on sequence similarity within the CNB domain as well as functional domains associated with the CNB domain. Our study reveals novel subfamilies with pathogen-specific variations in the phosphate-binding cassette. Analyzing these variations in light of existing structural and functional data provides new insights into ligand specificity and promiscuity and clues for drug design. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases. PMID:25847873

  18. Structural and evolutionary divergence of cyclic nucleotide binding domains in eukaryotic pathogens: Implications for drug design.

    PubMed

    Mohanty, Smita; Kennedy, Eileen J; Herberg, Friedrich W; Hui, Raymond; Taylor, Susan S; Langsley, Gordon; Kannan, Natarajan

    2015-10-01

    Many cellular functions in eukaryotic pathogens are mediated by the cyclic nucleotide binding (CNB) domain, which senses second messengers such as cyclic AMP and cyclic GMP. Although CNB domain-containing proteins have been identified in many pathogenic organisms, an incomplete understanding of how CNB domains in pathogens differ from other eukaryotic hosts has hindered the development of selective inhibitors for CNB domains associated with infectious diseases. Here, we identify and classify CNB domain-containing proteins in eukaryotic genomes to understand the evolutionary basis for CNB domain functional divergence in pathogens. We identify 359 CNB domain-containing proteins in 31 pathogenic organisms and classify them into distinct subfamilies based on sequence similarity within the CNB domain as well as functional domains associated with the CNB domain. Our study reveals novel subfamilies with pathogen-specific variations in the phosphate-binding cassette. Analyzing these variations in light of existing structural and functional data provides new insights into ligand specificity and promiscuity and clues for drug design. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases. Copyright © 2015. Published by Elsevier B.V.

  19. The nucleotide-binding domain of NLRC5 is critical for nuclear import and transactivation activity

    SciTech Connect

    Meissner, Torsten B.; Li, Amy; Liu, Yuen-Joyce; Gagnon, Etienne; Kobayashi, Koichi S.

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer NLRC5 requires an intact NLS for its function as MHC class I transactivator. Black-Right-Pointing-Pointer Nuclear presence of NLRC5 is required for MHC class I induction. Black-Right-Pointing-Pointer Nucleotide-binding controls nuclear import and transactivation activity of NLRC5. -- Abstract: Major histocompatibility complex (MHC) class I and class II are crucial for the function of the human adaptive immune system. A member of the NLR (nucleotide-binding domain, leucine-rich repeat) protein family, NLRC5, has recently been identified as a transcriptional regulator of MHC class I and related genes. While a 'master regulator' of MHC class II genes, CIITA, has long been known, NLRC5 specifically associates with and transactivates the proximal promoters of MHC class I genes. In this study, we analyzed the molecular requirements of NLRC5 nuclear import and transactivation activity. We show that NLRC5-mediated MHC class I gene induction requires an intact nuclear localization signal and nuclear distribution of NLRC5. In addition, we find that the nucleotide-binding domain (NBD) of NLRC5 is critical not only for nuclear translocation but also for the transactivation of MHC class I genes. Changing the cellular localization of NLRC5 is likely to immediately impact MHC class I expression as well as MHC class I-mediated antigen presentation. NLRC5 may thus provide a promising target for the modulation of MHC class I antigen presentation, especially in the setting of transplant medicine.

  20. Stabilization of Nucleotide Binding Domain Dimers Rescues ABCC6 Mutants Associated with Pseudoxanthoma Elasticum.

    PubMed

    Ran, Yanchao; Thibodeau, Patrick H

    2017-02-03

    ABC transporters are polytopic membrane proteins that utilize ATP binding and hydrolysis to facilitate transport across biological membranes. Forty-eight human ABC transporters have been identified in the genome, and the majority of these are linked to heritable disease. Mutations in the ABCC6 (ATP binding cassette transporter C6) ABC transporter are associated with pseudoxanthoma elasticum, a disease of altered elastic properties in multiple tissues. Although ∼200 mutations have been identified in pseudoxanthoma elasticum patients, the underlying structural defects associated with the majority of these are poorly understood. To evaluate the structural consequences of these missense mutations, a combination of biophysical and cell biological approaches were applied to evaluate the local and global folding and assembly of the ABCC6 protein. Structural and bioinformatic analyses suggested that a cluster of mutations, representing roughly 20% of the patient population with identified missense mutations, are located in the interface between the transmembrane domain and the C-terminal nucleotide binding domain. Biochemical and cell biological analyses demonstrate these mutations influence multiple steps in the biosynthetic pathway, minimally altering local domain structure but adversely impacting ABCC6 assembly and trafficking. The differential impacts on local and global protein structure are consistent with hierarchical folding and assembly of ABCC6. Stabilization of specific domain-domain interactions via targeted amino acid substitution in the catalytic site of the C-terminal nucleotide binding domain restored proper protein trafficking and cell surface localization of multiple biosynthetic mutants. This rescue provides a specific mechanism by which chemical chaperones could be developed for the correction of ABCC6 biosynthetic defects.

  1. Structural, biochemical, and functional characterization of the cyclic nucleotide binding homology domain from the mouse EAG1 potassium channel.

    PubMed

    Marques-Carvalho, Maria J; Sahoo, Nirakar; Muskett, Frederick W; Vieira-Pires, Ricardo S; Gabant, Guillaume; Cadene, Martine; Schönherr, Roland; Morais-Cabral, João H

    2012-10-12

    KCNH channels are voltage-gated potassium channels with important physiological functions. In these channels, a C-terminal cytoplasmic region, known as the cyclic nucleotide binding homology (CNB-homology) domain displays strong sequence similarity to cyclic nucleotide binding (CNB) domains. However, the isolated domain does not bind cyclic nucleotides. Here, we report the X-ray structure of the CNB-homology domain from the mouse EAG1 channel. Through comparison with the recently determined structure of the CNB-homology domain from the zebrafish ELK (eag-like K(+)) channel and the CNB domains from the MlotiK1 and HCN (hyperpolarization-activated cyclic nucleotide-gated) potassium channels, we establish the structural features of CNB-homology domains that explain the low affinity for cyclic nucleotides. Our structure establishes that the "self-liganded" conformation, where two residues of the C-terminus of the domain are bound in an equivalent position to cyclic nucleotides in CNB domains, is a conserved feature of CNB-homology domains. Importantly, we provide biochemical evidence that suggests that there is also an unliganded conformation where the C-terminus of the domain peels away from its bound position. A functional characterization of this unliganded conformation reveals a role of the CNB-homology domain in channel gating. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. The 5' binding MID domain of human Argonaute2 tolerates chemically modified nucleotide analogues.

    PubMed

    Deleavey, Glen F; Frank, Filipp; Hassler, Matthew; Wisnovsky, Simon; Nagar, Bhushan; Damha, Masad J

    2013-02-01

    Small interfering RNAs (siRNAs) can trigger potent gene silencing through the RNA interference (RNAi) pathway. The RNA-induced silencing complex (RISC) is key to this targeted mRNA degradation, and the human Argonaute2 (hAGO2) endonuclease component of RISC is responsible for the actual mRNA cleavage event. During RNAi, hAGO2 becomes loaded with the siRNA guide strand, making several key nucleic acid-enzyme interactions. Chemically modified siRNAs are now widely used in place of natural double-stranded RNAs, and understanding the effects chemical modifications have on guide strand-hAGO2 interactions has become particularly important. Here, interactions between the 5' nucleotide binding domain of hAGO2, MID, and chemically modified nucleotide analogues are investigated. Measured dissociation constants reveal that hAGO2 does not discriminate between nucleotide analogues during binding, regardless of the preferred sugar conformation of the nucleotide analogues. These results correlate well with cell-based gene silencing results employing siRNAs with 5'-modified guide strands. Additionally, chemical modification with 2'-deoxy-2'-fluoroarabino nucleic acid (2'F-ANA) and 2'-deoxy-2'-fluororibonucleic acid (2'F-RNA) at the passenger strand cleavage site of siRNAs has been shown to prevent hAGO2-mediated strand cleavage, an observation that appears to have little impact on overall gene silencing potency.

  3. Definition of the domain boundaries is critical to the expression of the nucleotide-binding domains of P-glycoprotein.

    PubMed

    Kerr, Ian D; Berridge, Georgina; Linton, Kenneth J; Higgins, Christopher F; Callaghan, Richard

    2003-11-01

    Heterologous expression of domains of eukaryotic proteins is frequently associated with formation of inclusion bodies, consisting of aggregated mis-folded protein. This phenomenon has proved a significant barrier to the characterization of domains of eukaryotic ATP binding cassette (ABC) transporters. We hypothesized that the solubility of heterologously expressed nucleotide binding domains (NBDs) of ABC transporters is dependent on the definition of the domain boundaries. In this paper we have defined a core NBD, and tested the effect of extensions to and deletions of this core domain on protein expression. Of 10 NBDs constructed, only one was expressed as a soluble protein in Escherichia coli, with expression of the remaining NBDs being associated with inclusion body formation. The soluble NBD protein we have obtained corresponds to residues 386-632 of P-glycoprotein and represents an optimally defined domain. The NBD has been isolated and purified to 95% homogeneity by a two-step purification protocol, involving affinity chromatography and gel filtration. Although showing no detectable ATP hydrolysis, the protein retains specific ATP binding and has a secondary structure compatible with X-ray crystallographic data on bacterial NBDs. We have interpreted our results in terms of homology models, which suggest that the N-terminal NBD of P-glycoprotein can be produced as a stable, correctly folded, isolate domain with judicious design of the expression construct.

  4. Phosphorylation-dependent Changes in Nucleotide Binding, Conformation, and Dynamics of the First Nucleotide Binding Domain (NBD1) of the Sulfonylurea Receptor 2B (SUR2B)*

    PubMed Central

    de Araujo, Elvin D.; Alvarez, Claudia P.; López-Alonso, Jorge P.; Sooklal, Clarissa R.; Stagljar, Marijana; Kanelis, Voula

    2015-01-01

    The sulfonylurea receptor 2B (SUR2B) forms the regulatory subunit of ATP-sensitive potassium (KATP) channels in vascular smooth muscle. Phosphorylation of the SUR2B nucleotide binding domains (NBD1 and NBD2) by protein kinase A results in increased channel open probability. Here, we investigate the effects of phosphorylation on the structure and nucleotide binding properties of NBD1. Phosphorylation sites in SUR2B NBD1 are located in an N-terminal tail that is disordered. Nuclear magnetic resonance (NMR) data indicate that phosphorylation of the N-terminal tail affects multiple residues in NBD1, including residues in the NBD2-binding site, and results in altered conformation and dynamics of NBD1. NMR spectra of NBD1 lacking the N-terminal tail, NBD1-ΔN, suggest that phosphorylation disrupts interactions of the N-terminal tail with the core of NBD1, a model supported by dynamic light scattering. Increased nucleotide binding of phosphorylated NBD1 and NBD1-ΔN, compared with non-phosphorylated NBD1, suggests that by disrupting the interaction of the NBD core with the N-terminal tail, phosphorylation also exposes the MgATP-binding site on NBD1. These data provide insights into the molecular basis by which phosphorylation of SUR2B NBD1 activates KATP channels. PMID:26198630

  5. Novel missense mutation in the cyclic nucleotide-binding domain of HERG causes long QT syndrome

    SciTech Connect

    Satler, C.A.; Walsh, E.P.; Vesely, M.R.

    1996-10-02

    Autosomal-dominant long QT syndrome (LQT) is an inherited disorder, predisposing affected individuals to sudden death from tachyarrhythmias. To identify the gene(s) responsible for LQT, we identified and characterized an LQT family consisting of 48 individuals. DNA was screened with 150 microsatellite polymorphic markers encompassing approximately 70% of the genome. We found evidence for linkage of the LQT phenotype to chromosome 7(q35-36). Marker D7S636 yielded a maximum lod score of 6.93 at a recombination fraction ({theta}) of 0.00. Haplotype analysis further localized the LQT gene within a 6-2-cM interval. HERG encodes a potassium channel which has been mapped to this region. Single-strand conformational polymorphism analyses demonstrated aberrant bands that were unique to all affected individuals. DNA sequencing of the aberrant bands demonstrated a G to A substitution in all affected patients; this point mutation results in the substitution of a highly conserved valine residue with a methionine (V822M) in the cyclic nucleotide-binding domain of this potassium channel. The cosegregation of this distinct mutation with LQT demonstrates that HERG is the LQT gene in this pedigree. Furthermore, the location and character of this mutation suggests that the cyclic nucleotide-binding domain of the potassium channel encoded by HERG plays an important role in normal cardiac repolarization and may decrease susceptibility to ventricular tachyarrhythmias. 38 refs., 7 figs., 2 tabs.

  6. Solution structure of the Mesorhizobium loti K1 channel cyclic nucleotide-binding domain in complex with cAMP

    PubMed Central

    Schünke, Sven; Stoldt, Matthias; Novak, Kerstin; Kaupp, U Benjamin; Willbold, Dieter

    2009-01-01

    Cyclic nucleotide-sensitive ion channels, known as HCN and CNG channels, are crucial in neuronal excitability and signal transduction of sensory cells. HCN and CNG channels are activated by binding of cyclic nucleotides to their intracellular cyclic nucleotide-binding domain (CNBD). However, the mechanism by which the binding of cyclic nucleotides opens these channels is not well understood. Here, we report the solution structure of the isolated CNBD of a cyclic nucleotide-sensitive K+ channel from Mesorhizobium loti. The protein consists of a wide anti-parallel β-roll topped by a helical bundle comprising five α-helices and a short 310-helix. In contrast to the dimeric arrangement (‘dimer-of-dimers') in the crystal structure, the solution structure clearly shows a monomeric fold. The monomeric structure of the CNBD supports the hypothesis that the CNBDs transmit the binding signal to the channel pore independently of each other. PMID:19465888

  7. Functional hot spots in human ATP-binding cassette transporter nucleotide binding domains

    PubMed Central

    Kelly, Libusha; Fukushima, Hisayo; Karchin, Rachel; Gow, Jason M; Chinn, Leslie W; Pieper, Ursula; Segal, Mark R; Kroetz, Deanna L; Sali, Andrej

    2010-01-01

    The human ATP-binding cassette (ABC) transporter superfamily consists of 48 integral membrane proteins that couple the action of ATP binding and hydrolysis to the transport of diverse substrates across cellular membranes. Defects in 18 transporters have been implicated in human disease. In hundreds of cases, disease phenotypes and defects in function can be traced to nonsynonymous single nucleotide polymorphisms (nsSNPs). The functional impact of the majority of ABC transporter nsSNPs has yet to be experimentally characterized. Here, we combine experimental mutational studies with sequence and structural analysis to describe the impact of nsSNPs in human ABC transporters. First, the disease associations of 39 nsSNPs in 10 transporters were rationalized by identifying two conserved loops and a small α-helical region that may be involved in interdomain communication necessary for transport of substrates. Second, an approach to discriminate between disease-associated and neutral nsSNPs was developed and tailored to this superfamily. Finally, the functional impact of 40 unannotated nsSNPs in seven ABC transporters identified in 247 ethnically diverse individuals studied by the Pharmacogenetics of Membrane Transporters consortium was predicted. Three predictions were experimentally tested using human embryonic kidney epithelial (HEK) 293 cells stably transfected with the reference multidrug resistance transporter 4 and its variants to examine functional differences in transport of the antiviral drug, tenofovir. The experimental results confirmed two predictions. Our analysis provides a structural and evolutionary framework for rationalizing and predicting the functional effects of nsSNPs in this clinically important membrane transporter superfamily. PMID:20799350

  8. New insights into interactions between the nucleotide-binding domain of CFTR and keratin 8.

    PubMed

    Premchandar, Aiswarya; Kupniewska, Anna; Bonna, Arkadiusz; Faure, Grazyna; Fraczyk, Tomasz; Roldan, Ariel; Hoffmann, Brice; Faria da Cunha, Mélanie; Herrmann, Harald; Lukacs, Gergely L; Edelman, Aleksander; Dadlez, Michał

    2017-02-01

    The intermediate filament protein keratin 8 (K8) interacts with the nucleotide-binding domain 1 (NBD1) of the cystic fibrosis (CF) transmembrane regulator (CFTR) with phenylalanine 508 deletion (ΔF508), and this interaction hampers the biogenesis of functional ΔF508-CFTR and its insertion into the plasma membrane. Interruption of this interaction may constitute a new therapeutic target for CF patients bearing the ΔF508 mutation. Here, we aimed to determine the binding surface between these two proteins, to facilitate the design of the interaction inhibitors. To identify the NBD1 fragments perturbed by the ΔF508 mutation, we used hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) on recombinant wild-type (wt) NBD1 and ΔF508-NBD1 of CFTR. We then performed the same analysis in the presence of a peptide from the K8 head domain, and extended this investigation using bioinformatics procedures and surface plasmon resonance, which revealed regions affected by the peptide binding in both wt-NBD1 and ΔF508-NBD1. Finally, we performed HDX-MS analysis of the NBD1 molecules and full-length K8, revealing hydrogen-bonding network changes accompanying complex formation. In conclusion, we have localized a region in the head segment of K8 that participates in its binding to NBD1. Our data also confirm the stronger binding of K8 to ΔF508-NBD1, which is supported by an additional binding site located in the vicinity of the ΔF508 mutation in NBD1. © 2016 The Protein Society.

  9. The intrinsically liganded cyclic nucleotide-binding homology domain promotes KCNH channel activation.

    PubMed

    Zhao, Yaxian; Goldschen-Ohm, Marcel P; Morais-Cabral, João H; Chanda, Baron; Robertson, Gail A

    2017-02-01

    Channels in the ether-à-go-go or KCNH family of potassium channels are characterized by a conserved, C-terminal domain with homology to cyclic nucleotide-binding homology domains (CNBhDs). Instead of cyclic nucleotides, two amino acid residues, Y699 and L701, occupy the binding pocket, forming an "intrinsic ligand." The role of the CNBhD in KCNH channel gating is still unclear, however, and a detailed characterization of the intrinsic ligand is lacking. In this study, we show that mutating both Y699 and L701 to alanine, serine, aspartate, or glycine impairs human EAG1 channel function. These mutants slow channel activation and shift the conductance-voltage (G-V) relation to more depolarized potentials. The mutations affect activation and the G-V relation progressively, indicating that the gating machinery is sensitive to multiple conformations of the CNBhD. Substitution with glycine at both sites (GG), which eliminates the side chains that interact with the binding pocket, also reduces the ability of voltage prepulses to populate more preactivated states along the activation pathway (i.e., the Cole-Moore effect), as if stabilizing the voltage sensor in deep resting states. Notably, deletion of the entire CNBhD (577-708, ΔCNBhD) phenocopies the GG mutant, suggesting that GG is a loss-of-function mutation and the CNBhD requires an intrinsic ligand to exert its functional effects. We developed a kinetic model for both wild-type and ΔCNBhD mutant channels that describes all our observations on activation kinetics, the Cole-Moore shift, and G-V relations. These findings support a model in which the CNBhD both promotes voltage sensor activation and stabilizes the open pore. The intrinsic ligand is critical for these functional effects.

  10. Fluorescence studies on the nucleotide binding domains of the P-glycoprotein multidrug transporter.

    PubMed

    Liu, R; Sharom, F J

    1997-03-11

    One of the major causes of multidrug resistance in human cancers is expression of the P-glycoprotein multidrug transporter, which acts as an efflux pump for a diverse range of natural products, chemotherapeutic drugs, and hydrophobic peptides. In the present study, fluorescence techniques were used to probe the nucleotide binding domains (NBD) of P-glycoprotein. The transporter was labeled at two conserved cysteine residues, one within each NBD, using the thiol-reactive fluor 2-(4'-maleimidylanilino)-naphthalene-6-sulfonic acid (MIANS), and collisional quenching was used to assess solvent accessibility of the bound probe. Acrylamide was a poor quencher, which suggests that MIANS is buried in a relatively inaccessible region of the protein. Iodide ion was a highly effective quencher, whereas Cs+ was not, demonstrating the presence of a positive charge in the region close to the ATP binding site. The fluorescent nucleotide derivative 2'(3')-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP) was hydrolysed slowly by P-glycoprotein, with a V(max) approximately 20-fold lower than that for unmodified ATP, and a K(M) of 81 microM. TNP-ATP and TNP-ADP inhibited P-glycoprotein ATPase activity, indicating that they interact with the NBD, whereas TNP-AMP was a very poor inhibitor. When TNP-nucleotides bound to P-glycoprotein, their fluorescence intensity was enhanced in a concentration-dependent manner. Both TNP-ATP and TNP-ADP bound to P-glycoprotein with substantially higher affinity than ATP, with K(d) values of 43 and 36 microM, respectively. Addition of ATP led to only partial displacement of TNP-ATP. Resonance energy transfer was observed between cysteine-bound MIANS and TNP-ATP/ADP, which indicated that the two fluorescent groups are located close to each other within the catalytic site of P-glycoprotein.

  11. The Role of Nucleotide-Binding Oligomerization Domain-Like Receptors in Pulmonary Infection.

    PubMed

    Wiese, Kristin M; Coates, Bria M; Ridge, Karen M

    2017-08-01

    Pneumonia is caused by both viral and bacterial pathogens and is responsible for a significant health burden in the Unites States. The innate immune system is the human body's first line of defense against these pathogens. The recognition of invading pathogens via pattern recognition receptors leads to proinflammatory cytokine and chemokine production, followed by recruitment and activation of effector immune cells. The nonspecific inflammatory nature of the innate immune response can result in immunopathology that is detrimental to the host. In this review, we focus on one class of pattern recognition receptors, the nucleotide-binding oligomerization domain (NOD)-like receptors, specifically NOD1 and NOD2, and their role in host defense against viral and bacterial pathogens of the lung, including influenza, respiratory syncytial virus, Streptococcus pneumoniae, Chlamydophila pneumoniae, and Staphylococcus aureus. It is hoped that improved understanding of NOD1 and NOD2 activity in pneumonia will facilitate the development of novel therapies and promote improved patient outcomes.

  12. A potentiator induces conformational changes on the recombinant CFTR nucleotide binding domains in solution.

    PubMed

    Galfrè, Elena; Galeno, Lauretta; Moran, Oscar

    2012-11-01

    Nucleotide binding domains (NBD1 and NBD2) of the cystic fibrosis transmembrane conductance regulator (CFTR), the defective protein in cystic fibrosis, are responsible for controlling the gating of the chloride channel and are the putative binding sites for several candidate drugs in the disease treatment. We studied the effects of the application of 2-pyrimidin-7,8-benzoflavone (PBF), a strong potentiator of the CFTR, on the properties of recombinant and equimolar NBD1/NBD2 mixture in solution. The results indicate that the potentiator induces significant conformational changes of the NBD1/NBD2 dimer in solution. The potentiator does not modify the ATP binding constant, but reduces the ATP hydrolysis activity of the NBD1/NBD2 mixture. The intrinsic fluorescence and the guanidinium denaturation measurements indicate that the potentiator induces different conformational changes on the NBD1/NBD2 mixture in the presence and absence of ATP. It was confirmed from small-angle X-ray scattering experiments that, in absence of ATP, the NBD1/NBD2 dimer was disrupted by the potentiator, but in the presence of 2 mM ATP, the two NBDs kept dimerised, and a major change in the size and the shape of the structure was observed. We propose that these conformational changes could modify the NBDs-intracellular loop interaction in a way that would facilitate the open state of the channel.

  13. Discovery of novel potent ΔF508-CFTR correctors that target the nucleotide binding domain.

    PubMed

    Odolczyk, Norbert; Fritsch, Janine; Norez, Caroline; Servel, Nathalie; da Cunha, Melanie Faria; Bitam, Sara; Kupniewska, Anna; Wiszniewski, Ludovic; Colas, Julien; Tarnowski, Krzysztof; Tondelier, Danielle; Roldan, Ariel; Saussereau, Emilie L; Melin-Heschel, Patricia; Wieczorek, Grzegorz; Lukacs, Gergely L; Dadlez, Michal; Faure, Grazyna; Herrmann, Harald; Ollero, Mario; Becq, Frédéric; Zielenkiewicz, Piotr; Edelman, Aleksander

    2013-10-01

    The deletion of Phe508 (ΔF508) in the first nucleotide binding domain (NBD1) of CFTR is the most common mutation associated with cystic fibrosis. The ΔF508-CFTR mutant is recognized as improperly folded and targeted for proteasomal degradation. Based on molecular dynamics simulation results, we hypothesized that interaction between ΔF508-NBD1 and housekeeping proteins prevents ΔF508-CFTR delivery to the plasma membrane. Based on this assumption we applied structure-based virtual screening to identify new low-molecular-weight compounds that should bind to ΔF508-NBD1 and act as protein-protein interaction inhibitors. Using different functional assays for CFTR activity, we demonstrated that in silico-selected compounds induced functional expression of ΔF508-CFTR in transfected HeLa cells, human bronchial CF cells in primary culture, and in the nasal epithelium of homozygous ΔF508-CFTR mice. The proposed compounds disrupt keratin8-ΔF508-CFTR interaction in ΔF508-CFTR HeLa cells. Structural analysis of ΔF508-NBD1 in the presence of these compounds suggests their binding to NBD1. We conclude that our strategy leads to the discovery of new compounds that are among the most potent correctors of ΔF508-CFTR trafficking defect known to date. © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  14. An alternative domain near the nucleotide-binding site of Drosophila muscle myosin affects ATPase kinetics.

    PubMed

    Miller, Becky M; Zhang, Shuxing; Suggs, Jennifer A; Swank, Douglas M; Littlefield, Kimberly P; Knowles, Aileen F; Bernstein, Sanford I

    2005-10-14

    In Drosophila melanogaster expression of muscle myosin heavy chain isoforms occurs by alternative splicing of transcripts from a single gene. The exon 7 domain is one of four variable regions in the catalytic head and is located near the nucleotide-binding site. To ascribe a functional role to this domain, we created two chimeric myosin isoforms (indirect flight isoform-exon 7a and embryonic-exon 7d) that differ from the native indirect flight muscle and embryonic body-wall muscle isoforms only in the exon 7 region. Germline transformation and subsequent expression of the chimeric myosins in the indirect flight muscle of myosin-null Drosophila allowed us to purify the myosin for in vitro studies and to assess in vivo structure and function of transgenic muscles. Intriguingly, in vitro experiments show the exon 7 domain modulates myosin ATPase activity but has no effect on actin filament velocity, a novel result compared to similar studies with other Drosophila variable exons. Transgenic flies expressing the indirect flight isoform-exon 7a have normal indirect flight muscle structure, and flight and jump ability. However, expression of the embryonic-exon 7d chimeric isoform yields flightless flies that show improvements in both the structural stability of the indirect flight muscle and in locomotor abilities as compared to flies expressing the embryonic isoform. Overall, our results suggest the exon 7 domain participates in the regulation of the attachment of myosin to actin in order to fine-tune the physiological properties of Drosophila myosin isoforms.

  15. The N-Terminal Domain of the E. coli PriA Helicase Contains Both the DNA- and the Nucleotide-Binding Sites. Energetics of Domain-DNA Interactions and Allosteric Effect of the Nucleotide Cofactors§

    PubMed Central

    Szymanski, Michal R.; Bujalowski, Paul J.; Jezewska, Maria J.; Gmyrek, Aleksandra M.; Bujalowski, Wlodzimierz

    2011-01-01

    Functional interactions of the E. coli PriA helicase 181N-terminal domain with the DNA and nucleotide cofactors have been quantitatively examined. The isolated 181N-terminal domain forms a stable dimer in solution, most probably reflecting the involvement of the domain in specific cooperative interactions of the intact PriA protein - dsDNA complex. Only one monomer of the domain dimer binds the DNA, i.e., the dimer has one effective DNA-binding site. Although the total site-size of the dimer - ssDNA complex is ~13 nucleotides, the DNA-binding subsite engages in direct interactions ~5 nucleotides. A small number of interacting nucleotides indicates that the DNA-binding subsites of the PriA helicase, i.e., the strong subsite on the helicase domain and the weak subsite on the N-terminal domain, are spatially separated in the intact enzyme. Contrary to current views, the subsite has only a slight preference for the 3′-end OH group of the ssDNA and lacks any significant base specificity, although it has a significant dsDNA affinity. Unlike the intact helicase, the DNA-binding subsite of the isolated domain is in an open conformation, indicating the presence of the direct helicase domain - N-terminal domain interactions. The discovery that the 181N-terminal domain possesses a nucleotide-binding site places the allosteric, weak nucleotide-binding site of the intact PriA on the N-terminal domain. The specific ADP effect on the domain DNA-binding subsite indicates that in the intact helicase, the bound ADP not only opens the DNA-binding subsite but also increases its intrinsic DNA affinity. PMID:21888358

  16. Molecular cloning and functional characterization of duck nucleotide-binding oligomerization domain 1 (NOD1).

    PubMed

    Li, Huilin; Jin, Hui; Li, Yaqian; Liu, Dejian; Foda, Mohamed Frahat; Jiang, Yunbo; Luo, Rui

    2017-09-01

    Nucleotide-binding oligomerization domain 1 (NOD1) is an imperative cytoplasmic pattern recognition receptor (PRR) and considered as a key member of the NOD-like receptor (NLR) family which plays a critical role in innate immunity through sensing microbial components derived from bacterial peptidoglycan. In the current study, the full-length of duck NOD1 (duNOD1) cDNA from duck embryo fibroblasts (DEFs) was cloned. Multiple sequence alignment and phylogenetic analysis demonstrated that duNOD1 exhibited a strong evolutionary relationship with chicken and rock pigeon NOD1. Tissue-specific expression analysis showed that duNOD1 was widely distributed in various organs, with the highest expression observed in the liver. Furthermore, duNOD1 overexpression induced NF-κB activation in DEFs and the CARD domain is crucial for duNOD1-mediated NF-κB activation. In addition, silencing the duNOD1 decreased the activity of NF-κB in DEFs stimulated by iE-DAP. Overexpression of duNOD1 significantly increased the expression of TNF-α, IL-6, and RANTES in DEFs. These findings highlight the crucial role of duNOD1 as an intracellular sensor in duck innate immune system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Obligate coupling of CFTR pore opening to tight nucleotide-binding domain dimerization

    PubMed Central

    Mihályi, Csaba; Töröcsik, Beáta; Csanády, László

    2016-01-01

    In CFTR, the chloride channel mutated in cystic fibrosis (CF) patients, ATP-binding-induced dimerization of two cytosolic nucleotide binding domains (NBDs) opens the pore, and dimer disruption following ATP hydrolysis closes it. Spontaneous openings without ATP are rare in wild-type CFTR, but in certain CF mutants constitute the only gating mechanism, stimulated by ivacaftor, a clinically approved CFTR potentiator. The molecular motions underlying spontaneous gating are unclear. Here we correlate energetic coupling between residues across the dimer interface with spontaneous pore opening/closure in single CFTR channels. We show that spontaneous openings are also strictly coupled to NBD dimerization, which may therefore occur even without ATP. Coordinated NBD/pore movements are therefore intrinsic to CFTR: ATP alters the stability, but not the fundamental structural architecture, of open- and closed-pore conformations. This explains correlated effects of phosphorylation, mutations, and drugs on ATP-driven and spontaneous activity, providing insights for understanding CF mutation and drug mechanisms. DOI: http://dx.doi.org/10.7554/eLife.18164.001 PMID:27328319

  18. Conformational coupling of the nucleotide-binding and the transmembrane domains in ABC transporters.

    PubMed

    Wen, Po-Chao; Tajkhorshid, Emad

    2011-08-03

    Basic architecture of ABC transporters includes two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). Although the transport process takes place in the TMDs, which provide the substrate translocation pathway across the cell membrane and control its accessibility between the two sides of the membrane, the energy required for the process is provided by conformational changes induced in the NBDs by binding and hydrolysis of ATP. Nucleotide-dependent conformational changes in the NBDs, therefore, need to be coupled to structural changes in the TMDs. Using molecular dynamics simulations, we have investigated the structural elements involved in the conformational coupling between the NBDs and the TMDs in the Escherichia coli maltose transporter, an ABC importer for which an intact structure is available both in inward-facing and outward-facing conformations. The prevailing model of coupling is primarily based on a single structural motif, known as the coupling helices, as the main structural element for the NBD-TMD coupling. Surprisingly, we find that in the absence of the NBDs the coupling helices can be conformationally decoupled from the rest of the TMDs, despite their covalent connection. That is, the structural integrity of the coupling helices and their tight coupling to the core of the TMDs rely on the contacts provided by the NBDs. Based on the conformational and dynamical analysis of the simulation trajectories, we propose that the core coupling elements in the maltose transporter involve contributions from several structural motifs located at the NBD-TMD interface, namely, the EAA loops from the TMDs, and the Q-loop and the ENI motifs from the NBDs. These three structural motifs in small ABC importers show a high degree of correlation in motion and mediate the necessary conformational coupling between the core of TMDs and the helical subdomains of NBDs. A comprehensive analysis of the structurally known ABC transporters shows a high degree

  19. Gating of the MlotiK1 potassium channel involves large rearrangements of the cyclic nucleotide-binding domains

    PubMed Central

    Mari, Stefania A.; Pessoa, João; Altieri, Stephen; Hensen, Ulf; Thomas, Lise; Morais-Cabral, João H.; Müller, Daniel J.

    2011-01-01

    Cyclic nucleotide-regulated ion channels are present in bacteria, plants, vertebrates, and humans. In higher organisms, they are closely involved in signaling networks of vision and olfaction. Binding of cAMP or cGMP favors the activation of these ion channels. Despite a wealth of structural and studies, there is a lack of structural data describing the gating process in a full-length cyclic nucleotide-regulated channel. We used high-resolution atomic force microscopy (AFM) to directly observe the conformational change of the membrane embedded bacterial cyclic nucleotide-regulated channel MlotiK1. In the nucleotide-bound conformation, the cytoplasmic cyclic nucleotide-binding (CNB) domains of MlotiK1 are disposed in a fourfold symmetric arrangement forming a pore-like vestibule. Upon nucleotide-unbinding, the four CNB domains undergo a large rearrangement, stand up by ∼1.7 nm, and adopt a structurally variable grouped conformation that closes the cytoplasmic vestibule. This fully reversible conformational change provides insight into how CNB domains rearrange when regulating the potassium channel. PMID:22135457

  20. Cloning and Iron Transportation of Nucleotide Binding Domain of Cryptosporidium andersoni ATP-Binding Cassette (CaABC) Gene.

    PubMed

    Wang, Ju-Hua; Xue, Xiu-Heng; Zhou, Jie; Fan, Cai-Yun; Xie, Qian-Qian; Wang, Pan

    2015-06-01

    Cryptosporidium andersoni ATP-binding cassette (CaABC) is an important membrane protein involved in substrate transport across the membrane. In this research, the nucleotide binding domain (NBD) of CaABC gene was amplified by PCR, and the eukaryotic expression vector of pEGFP-C1-CaNBD was reconstructed. Then, the recombinant plasmid of pEGFP-C1-CaNBD was transformed into the mouse intestinal epithelial cells (IECs) to study the iron transportation function of CaABC. The results indicated that NBD region of CaABC gene can significantly elevate the transport efficiency of Ca(2+), Mg(2+), K(+), and HCO3 (-) in IECs (P<0.05). The significance of this study is to find the ATPase inhibitors for NBD region of CaABC gene and to inhibit ATP binding and nutrient transport of CaABC transporter. Thus, C. andersoni will be killed by inhibition of nutrient uptake. This will open up a new way for treatment of cryptosporidiosis.

  1. Structure of the nucleotide-binding domain of a dipeptide ABC transporter reveals a novel iron-sulfur cluster-binding domain.

    PubMed

    Li, Xiaolu; Zhuo, Wei; Yu, Jie; Ge, Jingpeng; Gu, Jinke; Feng, Yue; Yang, Maojun; Wang, Linfang; Wang, Na

    2013-02-01

    Dipeptide permease (Dpp), which belongs to an ABC transport system, imports peptides consisting of two or three L-amino acids from the matrix to the cytoplasm in microbes. Previous studies have indicated that haem competes with dipeptides to bind DppA in vitro and in vivo and that the Dpp system can also translocate haem. Here, the crystal structure of DppD, the nucleotide-binding domain (NBD) of the ABC-type dipeptide/oligopeptide/nickel-transport system from Thermoanaerobacter tengcongensis, bound with ATP, Mg(2+) and a [4Fe-4S] iron-sulfur cluster is reported. The N-terminal domain of DppD shares a similar structural fold with the NBDs of other ABC transporters. Interestingly, the C-terminal domain of DppD contains a [4Fe-4S] cluster. The UV-visible absorbance spectrum of DppD was consistent with the presence of a [4Fe-4S] cluster. A search with DALI revealed that the [4Fe-4S] cluster-binding domain is a novel structural fold. Structural analysis and comparisons with other ABC transporters revealed that this iron-sulfur cluster may act as a mediator in substrate (dipeptide or haem) binding by electron transfer and may regulate the transport process in Dpp ABC transport systems. The crystal structure provides a basis for understanding the properties of ABC transporters and will be helpful in investigating the functions of NBDs in the regulation of ABC transporter activity.

  2. Multiple DNA Binding Domains Mediate the Function of the ERCC1-XPF Protein in Nucleotide Excision Repair*

    PubMed Central

    Su, Yan; Orelli, Barbara; Madireddy, Advaitha; Niedernhofer, Laura J.; Schärer, Orlando D.

    2012-01-01

    ERCC1-XPF is a heterodimeric, structure-specific endonuclease that cleaves single-stranded/double-stranded DNA junctions and has roles in nucleotide excision repair (NER), interstrand crosslink (ICL) repair, homologous recombination, and possibly other pathways. In NER, ERCC1-XPF is recruited to DNA lesions by interaction with XPA and incises the DNA 5′ to the lesion. We studied the role of the four C-terminal DNA binding domains in mediating NER activity and cleavage of model substrates. We found that mutations in the helix-hairpin-helix domain of ERCC1 and the nuclease domain of XPF abolished cleavage activity on model substrates. Interestingly, mutations in multiple DNA binding domains were needed to significantly diminish NER activity in vitro and in vivo, suggesting that interactions with proteins in the NER incision complex can compensate for some defects in DNA binding. Mutations in DNA binding domains of ERCC1-XPF render cells more sensitive to the crosslinking agent mitomycin C than to ultraviolet radiation, suggesting that the ICL repair function of ERCC1-XPF requires tighter substrate binding than NER. Our studies show that multiple domains of ERCC1-XPF contribute to substrate binding, and are consistent with models of NER suggesting that multiple weak protein-DNA and protein-protein interactions drive progression through the pathway. Our findings are discussed in the context of structural studies of individual domains of ERCC1-XPF and of its role in multiple DNA repair pathways. PMID:22547097

  3. Evolving nucleotide binding surfaces

    NASA Technical Reports Server (NTRS)

    Kieber-Emmons, T.; Rein, R.

    1981-01-01

    An analysis is presented of the stability and nature of binding of a nucleotide to several known dehydrogenases. The employed approach includes calculation of hydrophobic stabilization of the binding motif and its intermolecular interaction with the ligand. The evolutionary changes of the binding motif are studied by calculating the Euclidean deviation of the respective dehydrogenases. Attention is given to the possible structural elements involved in the origin of nucleotide recognition by non-coded primordial polypeptides.

  4. Association of Nucleotide-binding Oligomerization Domain Receptors with Peptic Ulcer and Gastric Cancer.

    PubMed

    Mohammadian Amiri, Rajeeh; Tehrani, Mohsen; Taghizadeh, Shirin; Shokri-Shirvani, Javad; Fakheri, Hafez; Ajami, Abolghasem

    2016-10-01

    Host innate immunity can affect the clinical outcomes of Helicobacter pylori infection, including gastritis, gastric ulcer, gastric adenocarcinoma, and MALT lymphoma. Nucleotide binding oligomerization domain (NOD)-1 and -2 are two molecules of innate immunity which are involved in the host defense against H. pylori. This study aimed to evaluate the effect of the expression level of NOD1 and NOD2 on the susceptibility to gastric cancer as well as peptic ulcer in individuals with H. pylori infection. The gene expression levels of these molecules were compared in three groups of non-ulcer dyspepsia (NUD) as a control group (n=52); peptic ulcer disease (PUD), (n=53); and gastric cancer (GC), (n=39). Relative expression levels of NOD1 in patients with GC were higher than those of NUD and PUD (p<0.001 and P<0.001, respectively). Similarly in case of NOD1, PUD group showed higher level of expression than NUD group (p<0.01). However, there was no significant difference between H. pylori -positive and -negative patients in NUD, PUD, or GC groups. Moreover, the expression levels of NOD2 showed no significant difference among NUD, PUD, or GC groups, while among H. pylori-positive patients, it was higher in GC group than NUD  and PUD groups (p<0.05 and p<0.01, respectively). In addition, positive correlation coefficients were attained between NOD1 and NOD2 expressions in patients with NUD (R2 Linear=0.349, p<0.001), PUD (R2 Linear=0.695, p<0.001), and GC (R2 Linear=0.385, p<0.001). Collectively, the results suggest that the chronic activation of NOD1 and NOD2 receptors might play a role in the development of gastric cancer.

  5. On the interactions between nucleotide binding domains and membrane spanning domains in cystic fibrosis transmembrane regulator: A molecular dynamic study.

    PubMed

    Belmonte, Luca; Moran, Oscar

    2015-04-01

    The Cystic Fibrosis Transmembrane Regulator (CFTR) is a membrane protein whose mutations cause cystic fibrosis, a lethal genetic disease. We performed a molecular dynamic (MD) study of the properties of the nucleotide binding domains (NBD) whose conformational changes, upon ATP binding, are the direct responsible of the gating mechanisms of CFTR. This study was done for the wild type (WT) CFTR and for the two most common mutations, ΔF508, that produces a traffic defect of the protein, and the mutation G551D, that causes a gating defect on CFTR. Using an homology model of the open channel conformation of the CFTR we thus introduced the mutations to the structure. Although the overall structures of the G551D and ΔF508 are quite well conserved, the NBD1-NBD2 interactions are severely modified in both mutants. NBD1 and NBD2 are indeed destabilized with a higher internal energy (Ei) in the ΔF508-CFTR. Differently, Ei does not change in the NBDs of G551D but, while the number of close contacts between NBD1 and NBD2 in ΔF508 is increased, a significant reduction of close contacts is found in the G551D mutated form. Hydrogen bonds formation between NBDs of the two mutated forms is also altered and it is slightly increased for the ΔF508, while are severely reduced in G551D. A consequent modification of the NBDs-ICLs interactions between residues involved in the transduction of the ATP binding and the channel gating is also registered. Indeed, while a major interaction is noticed between NBDs interface and ICL2 and ICL4 in the WT, this interaction is somehow altered in both mutated forms plausibly with effect on channel gating. Thus, single point mutations of the CFTR protein can reasonably results in channel gating defects due to alteration of the interaction mechanisms between the NBDs and NBDs-ICLs interfaces upon ATP-binding process. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  6. Domain Interactions in the Yeast ATP Binding Cassette Transporter Ycf1p: Intragenic Suppressor Analysis of Mutations in the Nucleotide Binding Domains

    PubMed Central

    Falcón-Pérez, Juan M.; Martínez-Burgos, Mónica; Molano, Jesús; Mazón, María J.; Eraso, Pilar

    2001-01-01

    The yeast cadmium factor (Ycf1p) is a vacuolar ATP binding cassette (ABC) transporter required for heavy metal and drug detoxification. Cluster analysis shows that Ycf1p is strongly related to the human multidrug-associated protein (MRP1) and cystic fibrosis transmembrane conductance regulator and therefore may serve as an excellent model for the study of eukaryotic ABC transporter structure and function. Identifying intramolecular interactions in these transporters may help to elucidate energy transfer mechanisms during transport. To identify regions in Ycf1p that may interact to couple ATPase activity to substrate binding and/or movement across the membrane, we sought intragenic suppressors of ycf1 mutations that affect highly conserved residues presumably involved in ATP binding and/or hydrolysis. Thirteen intragenic second-site suppressors were identified for the D777N mutation which affects the invariant Asp residue in the Walker B motif of the first nucleotide binding domain (NBD1). Two of the suppressor mutations (V543I and F565L) are located in the first transmembrane domain (TMD1), nine (A1003V, A1021T, A1021V, N1027D, Q1107R, G1207D, G1207S, S1212L, and W1225C) are found within TMD2, one (S674L) is in NBD1, and another one (R1415G) is in NBD2, indicating either physical proximity or functional interactions between NBD1 and the other three domains. The original D777N mutant protein exhibits a strong defect in the apparent affinity for ATP and Vmax of transport. The phenotypic characterization of the suppressor mutants shows that suppression does not result from restoring these alterations but rather from a change in substrate specificity. We discuss the possible involvement of Asp777 in coupling ATPase activity to substrate binding and/or transport across the membrane. PMID:11466279

  7. Water-mediated forces between the nucleotide binding domains generate the power stroke in an ABC transporter

    NASA Astrophysics Data System (ADS)

    Furukawa-Hagiya, Tomoka; Yoshida, Norio; Chiba, Shuntaro; Hayashi, Tomohiko; Furuta, Tadaomi; Sohma, Yoshiro; Sakurai, Minoru

    2014-11-01

    ATP binding cassette proteins shuttle a variety of molecules across cell membranes. The substrate transportation process is initiated by the ATP-driven dimerization of nucleotide binding domains (NBDs). Here, the integral-equation theory of liquids was applied to simulated NBD structures to analyze their dimerization process from the viewpoint of thermodynamics and the water-mediated interaction between the NBDs. It was found that a long-range hydration force of enthalpic origin drives the two NBDs to approach from a large separation. In the subsequent step, the water-mediated attraction of entropic origin brings about a structural adjustment between the two NBDs and their tighter contact.

  8. FRET-based binding assay between a fluorescent cAMP analogue and a cyclic nucleotide-binding domain tagged with a CFP.

    PubMed

    Romero, Francisco; Santana-Calvo, Carmen; Sánchez-Guevara, Yoloxochitl; Nishigaki, Takuya

    2017-07-22

    The cyclic nucleotide-binding domain (CNBD) functions as a regulatory domain of many proteins involved in cyclic nucleotide signalling. We developed a straightforward and reliable binding assay based on intermolecular fluorescence resonance energy transfer (FRET) between an adenosine-3', 5'-cyclic monophosphate analogue labelled with fluorescein and a recombinant CNBD of human EPAC1 tagged with a cyan fluorescence protein (CFP). The high FRET efficiency of this method (~ 80%) allowed us to perform several types of binding experiments with nanomolar range of sample using conventional equipment. In addition, the CFP tag on the CNBD enabled us to perform a specific binding experiment using an unpurified protein. Considering these advantages, this technique is useful to study poorly characterized CNBDs. © 2017 Federation of European Biochemical Societies.

  9. Identification of MDP (muramyl dipeptide)-binding key domains in NOD2 (nucleotide-binding and oligomerization domain-2) receptor of Labeo rohita.

    PubMed

    Maharana, Jitendra; Swain, Banikalyan; Sahoo, Bikash R; Dikhit, Manas R; Basu, Madhubanti; Mahapatra, Abhijit S; Jayasankar, Pallipuram; Samanta, Mrinal

    2013-08-01

    In lower eukaryotes-like fish, innate immunity contributed by various pattern recognition receptor (PRR) plays an essential role in protection against diseases. Nucleotide-binding and oligomerization domain (NOD)-2 is a cytoplasmic PRR that recognizes MDP (muramyl dipeptide) of the Gram positive and Gram negative bacteria as ligand and activates signalling to induce innate immunity. Hypothesizing a similar NOD2 signalling pathway of higher eukaryotes, the peripheral blood leucocytes (PBLs) of rohu (Labeo rohita) was stimulated with MDP. The data of quantitative real-time PCR (qRT-PCR) revealed MDP-mediated inductive expression of NOD2 and its down-stream molecule RICK/RIP2 (receptor-interacting serine-threonine protein kinase-2). This observation suggested the existence of MDP-binding sites in rohu NOD2 (rNOD2). To investigate it, 3D model of ligand-binding leucine-rich repeat (LRR) region of rNOD2 (rNOD2-LRR) was constructed following ab initio and threading approaches in I-TASSER web server. Structural refinement of the model was performed by energy minimization, and MD (molecular dynamics) simulation was performed in GROMACS (Groningen Machine for Chemical Simulations). The refined model of rNOD2-LRR was validated through SAVES, ProSA, ProQ, WHAT IF and MolProbity servers, and molecular docking with MDP was carried out in GOLD 4.1. The result of docking identified LRR3-7 comprising Lys820, Phe821, Asn822, Arg847, Gly849, Trp877, Trp901 and Trp931 as MDP-binding critical amino acids in rNOD2. This is the first study in fish to provide an insight into the 3D structure of NOD2-LRR region and its important motifs that are expected to be engaged in MDP binding and innate immunity.

  10. Structural Determination of Functional Units of the Nucleotide Binding Domain (NBD94) of the Reticulocyte Binding Protein Py235 of Plasmodium yoelii

    PubMed Central

    Balakrishna, Asha M.; Hunke, Cornelia; Jeyakanthan, Jeyaraman; Preiser, Peter R.; Grüber, Gerhard

    2010-01-01

    Background Invasion of the red blood cells (RBC) by the merozoite of malaria parasites involves a large number of receptor ligand interactions. The reticulocyte binding protein homologue family (RH) plays an important role in erythrocyte recognition as well as virulence. Recently, it has been shown that members of RH in addition to receptor binding may also have a role as ATP/ADP sensor. A 94 kDa region named Nucleotide-Binding Domain 94 (NBD94) of Plasmodium yoelii YM, representative of the putative nucleotide binding region of RH, has been demonstrated to bind ATP and ADP selectively. Binding of ATP or ADP induced nucleotide-dependent structural changes in the C-terminal hinge-region of NBD94, and directly impacted on the RBC binding ability of RH. Methodology/Principal Findings In order to find the smallest structural unit, able to bind nucleotides, and its coupling module, the hinge region, three truncated domains of NBD94 have been generated, termed NBD94444–547, NBD94566–663 and NBD94674–793, respectively. Using fluorescence correlation spectroscopy NBD94444–547 has been identified to form the smallest nucleotide binding segment, sensitive for ATP and ADP, which became inhibited by 4-Chloro-7-nitrobenzofurazan. The shape of NBD94444–547 in solution was calculated from small-angle X-ray scattering data, revealing an elongated molecule, comprised of two globular domains, connected by a spiral segment of about 73.1 Å in length. The high quality of the constructs, forming the hinge-region, NBD94566–663 and NBD94674–793 enabled to determine the first crystallographic and solution structure, respectively. The crystal structure of NBD94566–663 consists of two helices with 97.8 Å and 48.6 Å in length, linked by a loop. By comparison, the low resolution structure of NBD94674–793 in solution represents a chair–like shape with three architectural segments. Conclusions These structures give the first insight into how nucleotide binding impacts on

  11. Biocomputational analysis of evolutionary relationship between toll-like receptor and nucleotide-binding oligomerization domain-like receptors genes

    PubMed Central

    Bhardwaj, Rabia; Mukhopadhyay, Chandra Shekhar; Deka, Dipak; Verma, Ramneek; Dubey, P. P.; Arora, J. S.

    2016-01-01

    Aim: The active domains (TIR and NACHT) of the pattern recognition receptors (PRRs: Toll-like receptors [TLRs] and nucleotide-binding oligomerization domain [NOD]-like receptors [NLR], respectively) are the major hotspots of evolution as natural selection has crafted their final structure by substitution of residues over time. This paper addresses the evolutionary perspectives of the TLR and NLR genes with respect to the active domains in terms of their chronological fruition, functional diversification, and species-specific stipulation. Materials and Methods: A total of 48 full-length cds (and corresponding peptide) of the domains were selected as representatives of each type of PRRs, belonging to divergent animal species, for the biocomputational analyses. The secondary and tertiary structure of the taurine TIR and NACHT domains was predicted to compare the relatedness among the domains under study. Results: Multiple sequence alignment and phylogenetic tree results indicated that these host-specific PRRs formed entirely different clusters, with active domains of NLRs (NACHT) evolved earlier as compared to the active domains of TLRs (TIR). Each type of TLR or NLR shows comparatively less variation among the animal species due to the specificity of action against the type of microbes. Conclusion: It can be concluded from the study that there has been no positive selection acting on the domains associated with disease resistance which is a fitness trait indicating the extent of purifying pressure on the domains. Gene duplication could be a possible reason of genesis of similar kinds of TLRs (virus or bacteria specific). PMID:27956772

  12. Ubiquitin Regulates Caspase Recruitment Domain-mediated Signaling by Nucleotide-binding Oligomerization Domain-containing Proteins NOD1 and NOD2*

    PubMed Central

    Ver Heul, Aaron M.; Fowler, C. Andrew; Ramaswamy, S.; Piper, Robert C.

    2013-01-01

    NOD1 and NOD2 (nucleotide-binding oligomerization domain-containing proteins) are intracellular pattern recognition receptors that activate inflammation and autophagy. These pathways rely on the caspase recruitment domains (CARDs) within the receptors, which serve as protein interaction platforms that coordinately regulate immune signaling. We show that NOD1 CARD binds ubiquitin (Ub), in addition to directly binding its downstream targets receptor-interacting protein kinase 2 (RIP2) and autophagy-related protein 16-1 (ATG16L1). NMR spectroscopy and structure-guided mutagenesis identified a small hydrophobic surface of NOD1 CARD that binds Ub. In vitro, Ub competes with RIP2 for association with NOD1 CARD. In vivo, we found that the ligand-stimulated activity of NOD1 with a mutant CARD lacking Ub binding but retaining ATG16L1 and RIP2 binding is increased relative to wild-type NOD1. Likewise, point mutations in the tandem NOD2 CARDs at positions analogous to the surface residues defining the Ub interface on NOD1 resulted in loss of Ub binding and increased ligand-stimulated NOD2 signaling. These data suggest that Ub binding provides a negative feedback loop upon NOD-dependent activation of RIP2. PMID:23300079

  13. Ubiquitin regulates caspase recruitment domain-mediated signaling by nucleotide-binding oligomerization domain-containing proteins NOD1 and NOD2.

    PubMed

    Ver Heul, Aaron M; Fowler, C Andrew; Ramaswamy, S; Piper, Robert C

    2013-03-08

    NOD1 and NOD2 (nucleotide-binding oligomerization domain-containing proteins) are intracellular pattern recognition receptors that activate inflammation and autophagy. These pathways rely on the caspase recruitment domains (CARDs) within the receptors, which serve as protein interaction platforms that coordinately regulate immune signaling. We show that NOD1 CARD binds ubiquitin (Ub), in addition to directly binding its downstream targets receptor-interacting protein kinase 2 (RIP2) and autophagy-related protein 16-1 (ATG16L1). NMR spectroscopy and structure-guided mutagenesis identified a small hydrophobic surface of NOD1 CARD that binds Ub. In vitro, Ub competes with RIP2 for association with NOD1 CARD. In vivo, we found that the ligand-stimulated activity of NOD1 with a mutant CARD lacking Ub binding but retaining ATG16L1 and RIP2 binding is increased relative to wild-type NOD1. Likewise, point mutations in the tandem NOD2 CARDs at positions analogous to the surface residues defining the Ub interface on NOD1 resulted in loss of Ub binding and increased ligand-stimulated NOD2 signaling. These data suggest that Ub binding provides a negative feedback loop upon NOD-dependent activation of RIP2.

  14. Role of Nucleotide Binding and GTPase Domain Dimerization in Dynamin-like Myxovirus Resistance Protein A for GTPase Activation and Antiviral Activity*

    PubMed Central

    Dick, Alexej; Graf, Laura; Olal, Daniel; von der Malsburg, Alexander; Gao, Song; Kochs, Georg; Daumke, Oliver

    2015-01-01

    Myxovirus resistance (Mx) GTPases are induced by interferon and inhibit multiple viruses, including influenza and human immunodeficiency viruses. They have the characteristic domain architecture of dynamin-related proteins with an N-terminal GTPase (G) domain, a bundle signaling element, and a C-terminal stalk responsible for self-assembly and effector functions. Human MxA (also called MX1) is expressed in the cytoplasm and is partly associated with membranes of the smooth endoplasmic reticulum. It shows a protein concentration-dependent increase in GTPase activity, indicating regulation of GTP hydrolysis via G domain dimerization. Here, we characterized a panel of G domain mutants in MxA to clarify the role of GTP binding and the importance of the G domain interface for the catalytic and antiviral function of MxA. Residues in the catalytic center of MxA and the nucleotide itself were essential for G domain dimerization and catalytic activation. In pulldown experiments, MxA recognized Thogoto virus nucleocapsid proteins independently of nucleotide binding. However, both nucleotide binding and hydrolysis were required for the antiviral activity against Thogoto, influenza, and La Crosse viruses. We further demonstrate that GTP binding facilitates formation of stable MxA assemblies associated with endoplasmic reticulum membranes, whereas nucleotide hydrolysis promotes dynamic redistribution of MxA from cellular membranes to viral targets. Our study highlights the role of nucleotide binding and hydrolysis for the intracellular dynamics of MxA during its antiviral action. PMID:25829498

  15. QUATERNARY STRUCTURE OF KATP CHANNEL SUR2A NUCLEOTIDE BINDING DOMAINS RESOLVED BY SYNCHROTRON RADIATION X-RAY SCATTERING

    PubMed Central

    Park, Sungjo; Terzic, Andre

    2009-01-01

    Heterodimeric nucleotide binding domains NBD1/NBD2 distinguish the ATP-binding cassette protein SUR2A, a recognized regulatory subunit of cardiac ATP-sensitive K+ (KATP) channels. The tandem function of these core domains ensures metabolism-dependent gating of the Kir6.2 channel pore, yet their structural arrangement has not been resolved. Here, purified monodisperse and interference-free recombinant particles were subjected to synchrotron radiation small-angle X-ray scattering (SAXS) in solution. Intensity function analysis of SAXS profiles resolved NBD1 and NBD2 as octamers. Implemented by ab initio simulated annealing, shape determination prioritized an oblong envelope wrapping NBD1 and NBD2 with respective dimensions of 168 × 80 × 37 Å3 and 175 × 81 × 37 Å3 based on symmetry constraints, validated by atomic force microscopy. Docking crystal structure homology models against SAXS data reconstructed the NBD ensemble surrounding an inner cleft suitable for Kir6.2 insertion. Human heart disease-associated mutations introduced in silico verified the criticality of the mapped protein-protein interface. The resolved quaternary structure delineates thereby a macromolecular arrangement of KATP channel SUR2A regulatory domains. PMID:19919849

  16. Allosteric Coupling between the Intracellular Coupling Helix 4 and Regulatory Sites of the First Nucleotide-binding Domain of CFTR

    PubMed Central

    Dawson, Jennifer E.; Farber, Patrick J.; Forman-Kay, Julie D.

    2013-01-01

    Cystic fibrosis is caused by mutations in CFTR (cystic fibrosis transmembrane conductance regulator), leading to folding and processing defects and to chloride channel gating misfunction. CFTR is regulated by ATP binding to its cytoplasmic nucleotide-binding domains, NBD1 and NBD2, and by phosphorylation of the NBD1 regulatory insert (RI) and the regulatory extension (RE)/R region. These regulatory effects are transmitted to the rest of the channel via NBD interactions with intracellular domain coupling helices (CL), particularly CL4. Using a sensitive method for detecting inter-residue correlations between chemical shift changes in NMR spectra, an allosteric network was revealed within NBD1, with a construct lacking RI. The CL4-binding site couples to the RI-deletion site and the C-terminal residues of NBD1 that precede the R region in full-length CFTR. Titration of CL4 peptide into NBD1 perturbs the conformational ensemble in these sites with similar titration patterns observed in F508del, the major CF-causing mutant, and in suppressor mutants F494N, V510D and Q637R NBD1, as well as in a CL4-NBD1 fusion construct. Reciprocally, the C-terminal mutation, Q637R, perturbs dynamics in these three sites. This allosteric network suggests a mechanism synthesizing diverse regulatory NBD1 interactions and provides biophysical evidence for the allosteric coupling required for CFTR function. PMID:24058550

  17. C Terminus of Nucleotide Binding Domain 1 Contains Critical Features for Cystic Fibrosis Transmembrane Conductance Regulator Trafficking and Activation*

    PubMed Central

    Billet, Arnaud; Melin, Patricia; Jollivet, Mathilde; Mornon, Jean-Paul; Callebaut, Isabelle; Becq, Frédéric

    2010-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl− channel physiologically important in fluid-transporting epithelia and pathologically relevant in several human diseases. Here, we show that mutations in the C terminus of the first nucleotide binding domain comprising the latest β strands (βc5 and βc6) influence the trafficking, channel activity, and pharmacology of CFTR. We mutated CFTR amino acids located in the βc5-βc6 hairpin, within the βc5 strand (H620Q), within the β-turn linking the two β strands (E621G, G622D), as well as within (S623A, S624A) and at the extremity (G628R) of the βc6 strand. Functional analysis reveals that the current density was largely reduced for G622D and G628R channels compared with wt CFTR, similar for E621G and S624A, but increased for H620Q and S623A. For G622D and G628R, the abnormal activity is likely due to a defective maturation process, as assessed by the augmented activity and mature C-band observed in the presence of the trafficking corrector miglustat. In addition, in presence of the CFTR activator benzo[c]quinolizinium, the CFTR current density compared with that of wt CFTR was abolished for G622D and G628R channels, but similar for H620Q, S623A, and S624A or slightly increased for E621G. Finally, G622D and G628R were activated by the CFTR agonists genistein, RP-107, and isobutylmethylxanthine. Our results identify the C terminus of the CFTR first nucleotide binding domain as an important molecular site for the trafficking of CFTR protein, for the control of CFTR channel gating, and for the pharmacological effect of a dual activity agent. PMID:20435887

  18. Structural insights into conformational changes of a cyclic nucleotide-binding domain in solution from Mesorhizobium loti K1 channel

    PubMed Central

    Schünke, Sven; Stoldt, Matthias; Lecher, Justin; Kaupp, U. Benjamin; Willbold, Dieter

    2011-01-01

    Cyclic nucleotide-sensitive ion channels, known as HCN and CNG channels, are activated by binding of ligands to a domain (CNBD) located on the cytoplasmic side of the channel. The underlying mechanisms are not well understood. To elucidate the gating mechanism, structures of both the ligand-free and -bound CNBD are required. Several crystal structures of the CNBD from HCN2 and a bacterial CNG channel (MloK1) have been solved. However, for HCN2, the cAMP-free and -bound state did not reveal substantial structural rearrangements. For MloK1, structural information for the cAMP-free state has only been gained from mutant CNBDs. Moreover, in the crystal, the CNBD molecules form an interface between dimers, proposed to be important for allosteric channel gating. Here, we have determined the solution structure by NMR spectroscopy of the cAMP-free wild-type CNBD of MloK1. A comparison of the solution structure of cAMP-free and -bound states reveals large conformational rearrangement on ligand binding. The two structures provide insights on a unique set of conformational events that accompany gating within the ligand-binding site. PMID:21430265

  19. Nucleotide binding domains of human CFTR: a structural classification of critical residues and disease-causing mutations.

    PubMed

    Eudes, R; Lehn, P; Férec, C; Mornon, J-P; Callebaut, I

    2005-09-01

    Defective function of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) causes CF, the most frequent lethal inherited disease among the Caucasian population. The structure of this chloride ion channel includes two nucleotide-binding domains (NBDs), whose ATPase activity controls channel gating. Recently, the experimental structures of mouse and human CFTR NBD1 and our model of the human CFTR NBD1/NBD2 heterodimer have provided new insights into specific structural features of the CFTR NBD dimer. In the present work, we provide a structural classification of CF-causing mutations which may complement the existing functional classification. Our analysis also identified amino acid residues which may play a critical role in interdomain interaction and are located at the NBD1-NBD2 interface or on the surface of the dimer. In particular, a cluster of aromatic amino acids, which includes F508 and straddles the two NBDs, might be directly involved in the interaction of the NBD1/NBD2 heterodimer with the channel-forming membrane-spanning domains.

  20. Mutations Define Cross-talk between the N-terminal Nucleotide-binding Domain and Transmembrane Helix-2 of the Yeast Multidrug Transporter Pdr5

    PubMed Central

    Sauna, Zuben E.; Bohn, Sherry Supernavage; Rutledge, Robert; Dougherty, Michael P.; Cronin, Susan; May, Leopold; Xia, Di; Ambudkar, Suresh V.; Golin, John

    2008-01-01

    The yeast Pdr5 multidrug transporter is an important member of the ATP-binding cassette superfamily of proteins. We describe a novel mutation (S558Y) in transmembrane helix 2 of Pdr5 identified in a screen for suppressors that eliminated Pdr5-mediated cycloheximide hyper-resistance. Nucleotides as well as transport substrates bind to the mutant Pdr5 with an affinity comparable with that for wild-type Pdr5. Wild-type and mutant Pdr5s show ATPase activity with comparable Km(ATP) values. Nonetheless, drug sensitivity is equivalent in the mutant pdr5 and the pdr5 deletion. Finally, the transport substrate clotrimazole, which is a noncompetitive inhibitor of Pdr5 ATPase activity, has a minimal effect on ATP hydrolysis by the S558Y mutant. These results suggest that the drug sensitivity of the mutant Pdr5 is attributable to the uncoupling of NTPase activity and transport. We screened for amino acid alterations in the nucleotide-binding domains that would reverse the phenotypic effect of the S558Y mutation. A second-site mutation, N242K, located between the Walker A and signature motifs of the N-terminal nucleotide-binding domain, restores significant function. This region of the nucleotide-binding domain interacts with the transmembrane domains via the intracellular loop-1 (which connects transmembrane helices 2 and 3) in the crystal structure of Sav1866, a bacterial ATP-binding cassette drug transporter. These structural studies are supported by biochemical and genetic evidence presented here that interactions between transmembrane helix 2 and the nucleotide-binding domain, via the intracellular loop-1, may define at least part of the translocation pathway for coupling ATP hydrolysis to drug transport. PMID:18842589

  1. Critical role of nucleotide-binding oligomerization domain-like receptor 3 in vascular repair

    SciTech Connect

    Schlaweck, Sebastian; Zimmer, Sebastian; Struck, Rafael; Werner, Nikos; Latz, Eicke; Nickenig, Georg; Ghanem, Alexander

    2011-08-05

    Highlights: {yields} NLRP3 is not required for systemic cardiovascular function in healthy mice. {yields} NLRP3 deficiency itself does not affect the functional cardiovascular phenotype and that it does not alter peripheral differential blood counts. {yields} NLRP3 is critical in neointima formation following vascular injury. -- Abstract: Vascular remodeling characterized by hyperproliferative neointima formation is an unfavorable repair process that is triggered by vascular damage. This process is characterized by an increased local inflammatory and proliferative response that critically involves the pro-inflammatory cytokine interleukin-1{beta} (IL-1{beta}). IL-1{beta} is expressed and cytosolically retained as a procytokine that requires additional processing prior to exerting its pro-inflammatory function. Maturation and release of pro IL-1{beta} is governed by a cytosolic protein scaffold that is known as the inflammasome. Here we show that NLRP3 (NOD-like receptor family, pryin domain containing 3), an important activating component of the inflammasome, is involved in neointima formation after vascular injury. NLRP3 deficiency itself does not affect the functional cardiovascular phenotype and does not alter peripheral differential blood counts. However, neointima development following wire injury of the carotid artery was significantly decreased in NLRP3-deficient mice as compared to wild-type controls. In all, NLRP3 plays a non-redundant role in vascular damage mediated neointima formation. Our data establish NLRP3 as a key player in the response to vascular damage, which could open new avenues to therapeutic intervention.

  2. Time-resolved Fourier Transform Infrared Spectroscopy of the Nucleotide-binding Domain from the ATP-binding Cassette Transporter MsbA

    PubMed Central

    Syberg, Falk; Suveyzdis, Yan; Kötting, Carsten; Gerwert, Klaus; Hofmann, Eckhard

    2012-01-01

    MsbA is an essential Escherichia coli ATP-binding cassette (ABC) transporter involved in the flipping of lipid A across the cytoplasmic membrane. It is a close homologue of human P-glycoprotein involved in multidrug resistance, and it similarly accepts a variety of small hydrophobic xenobiotics as transport substrates. X-ray structures of three full-length ABC multidrug exporters (including MsbA) have been published recently and reveal large conformational changes during the transport cycle. However, how ATP hydrolysis couples to these conformational changes and finally the transport is still an open question. We employed time-resolved FTIR spectroscopy, a powerful method to elucidate molecular reaction mechanisms of soluble and membrane proteins, to address this question with high spatiotemporal resolution. Here, we monitored the hydrolysis reaction in the nucleotide-binding domain of MsbA at the atomic level. The isolated MsbA nucleotide-binding domain hydrolyzed ATP with Vmax = 45 nmol mg−1 min−1, similar to the full-length transporter. A Hill coefficient of 1.49 demonstrates positive cooperativity between the two catalytic sites formed upon dimerization. Global fit analysis of time-resolved FTIR data revealed two apparent rate constants of ∼1 and 0.01 s−1, which were assigned to formation of the catalytic site and hydrolysis, respectively. Using isotopically labeled ATP, we identified specific marker bands for protein-bound ATP (1245 cm−1), ADP (1101 and 1205 cm−1), and free phosphate (1078 cm−1). Cleavage of the β-phosphate–γ-phosphate bond was found to be the rate-limiting step; no protein-bound phosphate intermediate was resolved. PMID:22593573

  3. Role of Nucleotide-Binding Oligomerization Domain-Containing (NOD) 2 in Host Defense during Pneumococcal Pneumonia.

    PubMed

    Hommes, Tijmen J; van Lieshout, Miriam H; van 't Veer, Cornelis; Florquin, Sandrine; Bootsma, Hester J; Hermans, Peter W; de Vos, Alex F; van der Poll, Tom

    2015-01-01

    Streptococcus (S.) pneumoniae is the most common causative pathogen in community-acquired pneumonia. Nucleotide-binding oligomerization domain-containing (NOD) 2 is a pattern recognition receptor located in the cytosol of myeloid cells that is able to detect peptidoglycan fragments of S. pneumoniae. We here aimed to investigate the role of NOD2 in the host response during pneumococcal pneumonia. Phagocytosis of S. pneumoniae was studied in NOD2 deficient (Nod2-/-) and wild-type (Wt) alveolar macrophages and neutrophils in vitro. In subsequent in vivo experiments Nod2-/- and Wt mice were inoculated with serotype 2 S. pneumoniae (D39), an isogenic capsule locus deletion mutant (D39Δcps) or serotype 3 S. pneumoniae (6303) via the airways, and bacterial growth and dissemination and the lung inflammatory response were evaluated. Nod2-/- alveolar macrophages and blood neutrophils displayed a reduced capacity to internalize pneumococci in vitro. During pneumonia caused by S. pneumoniae D39 Nod2-/- mice were indistinguishable from Wt mice with regard to bacterial loads in lungs and distant organs, lung pathology and neutrophil recruitment. While Nod2-/- and Wt mice also had similar bacterial loads after infection with the more virulent S. pneumoniae 6303 strain, Nod2-/- mice displayed a reduced bacterial clearance of the normally avirulent unencapsulated D39Δcps strain. These results suggest that NOD2 does not contribute to host defense during pneumococcal pneumonia and that the pneumococcal capsule impairs recognition of S. pneumoniae by NOD2.

  4. The nucleotide-binding oligomerization domain-like receptor NLRC5 is involved in IFN-dependent antiviral immune responses.

    PubMed

    Kuenzel, Sven; Till, Andreas; Winkler, Michael; Häsler, Robert; Lipinski, Simone; Jung, Sascha; Grötzinger, Joachim; Fickenscher, Helmut; Schreiber, Stefan; Rosenstiel, Philip

    2010-02-15

    Nucleotide-binding oligomerization domain-like receptors (NLRs) are a group of intracellular proteins that mediate recognition of pathogen-associated molecular patterns or other cytosolic danger signals. Mutations in NLR genes have been linked to a variety of inflammatory diseases, underscoring their pivotal role in host defense and immunity. This report describes the genomic organization and regulation of the human NLR family member NLRC5 and aspects of cellular function of the encoded protein. We have analyzed the tissue-specific expression of NLRC5 and have characterized regulatory elements in the NLRC5 promoter region that are responsive to IFN-gamma. We show that NLRC5 is upregulated in human fibroblasts postinfection with CMV and demonstrate the role of a JAK/STAT-mediated autocrine signaling loop involving IFN-gamma. We demonstrate that overexpression and enforced oligomerization of NLRC5 protein results in activation of the IFN-responsive regulatory promoter elements IFN-gamma activation sequence and IFN-specific response element and upregulation of antiviral target genes (e.g., IFN-alpha, OAS1, and PRKRIR). Finally, we demonstrate the effect of small interfering RNA-mediated knockdown of NLRC5 on a target gene level in the context of viral infection. We conclude that NLRC5 may represent a molecular switch of IFN-gamma activation sequence/IFN-specific response element signaling pathways contributing to antiviral defense mechanisms.

  5. Mucosal clearance of capsule-expressing bacteria requires both TLR and nucleotide-binding oligomerization domain 1 signaling.

    PubMed

    Zola, Tracey A; Lysenko, Elena S; Weiser, Jeffrey N

    2008-12-01

    Expression of capsular polysaccharide by bacterial pathogens is associated with increased resistance to host clearance mechanisms, in particular by evading opsonization and uptake by professional phagocytes. The potential for rapid progression of disease caused by encapsulated bacteria points to the importance of innate immunity at the mucosal surface where infection is initiated. Using a murine model of nasopharyngeal colonization, host immune components that contribute to the mucosal clearance of capsule-expressing bacteria were investigated. Clearance of encapsulated Haemophilus influenzae (Hi) required both TLR and nucleotide-binding oligomerization domain (NOD) signaling pathways, whereas individual deficiencies in each of these signaling cascades did not affect clearance of nonencapsulated strains. Moreover, clearance of Hi-expressing capsular polysaccharide required the recruitment of neutrophils to the site of infection, and ex vivo phagocytic bacterial killing required expression of the NOD1 signaling pathway. Conversely, redundancies within these innate immune pathways of non-neutrophil cells were sufficient to promote mucosal clearance of nonencapsulated Hi. Our findings reveal a role for NOD1 in protection from encapsulated pathogens. In addition, this study provides an example of a microbial virulence determinant that alters the requirements for host signaling to provide effective protection.

  6. Role of Nucleotide-Binding Oligomerization Domain-Containing (NOD) 2 in Host Defense during Pneumococcal Pneumonia

    PubMed Central

    Hommes, Tijmen J.; van Lieshout, Miriam H.; van ‘t Veer, Cornelis; Florquin, Sandrine; Bootsma, Hester J.; Hermans, Peter W.; de Vos, Alex F.; van der Poll, Tom

    2015-01-01

    Streptococcus (S.) pneumoniae is the most common causative pathogen in community-acquired pneumonia. Nucleotide-binding oligomerization domain-containing (NOD) 2 is a pattern recognition receptor located in the cytosol of myeloid cells that is able to detect peptidoglycan fragments of S. pneumoniae. We here aimed to investigate the role of NOD2 in the host response during pneumococcal pneumonia. Phagocytosis of S. pneumoniae was studied in NOD2 deficient (Nod2-/-) and wild-type (Wt) alveolar macrophages and neutrophils in vitro. In subsequent in vivo experiments Nod2-/- and Wt mice were inoculated with serotype 2 S. pneumoniae (D39), an isogenic capsule locus deletion mutant (D39Δcps) or serotype 3 S. pneumoniae (6303) via the airways, and bacterial growth and dissemination and the lung inflammatory response were evaluated. Nod2-/- alveolar macrophages and blood neutrophils displayed a reduced capacity to internalize pneumococci in vitro. During pneumonia caused by S. pneumoniae D39 Nod2-/- mice were indistinguishable from Wt mice with regard to bacterial loads in lungs and distant organs, lung pathology and neutrophil recruitment. While Nod2-/- and Wt mice also had similar bacterial loads after infection with the more virulent S. pneumoniae 6303 strain, Nod2-/- mice displayed a reduced bacterial clearance of the normally avirulent unencapsulated D39Δcps strain. These results suggest that NOD2 does not contribute to host defense during pneumococcal pneumonia and that the pneumococcal capsule impairs recognition of S. pneumoniae by NOD2. PMID:26673231

  7. Communication between the nucleotide binding domains of P-glycoprotein occurs via conformational changes that involve residue 508.

    PubMed

    Gabriel, Mark P; Storm, Janet; Rothnie, Alice; Taylor, Andrew M; Linton, Kenneth J; Kerr, Ian D; Callaghan, Richard

    2003-07-01

    Our aim is to provide molecular understanding of the mechanisms underlying the (i) interaction between the two nucleotide binding domains (NBDs) and (ii) coupling between NBDs and transmembrane domains within P-glycoprotein (Pgp) during a transport cycle. To facilitate this, we have introduced a number of unique cysteine residues at surface exposed positions (E393C, S452C, I500C, N508C, and K578C) in the N-terminal NBD of Pgp, which had previously been engineered to remove endogenous cysteines. Positions of the mutations were designed using a model based on crystallographic features of prokaryotic NBDs. The single cysteine mutants were expressed in insect cells using recombinant baculovirus and the proteins purified by metal affinity chromatography by virtue of a polyhistidine tag. None of the introduced cysteine residues perturbed the function of Pgp as judged by the characteristics of drug stimulated ATP hydrolysis. The role of residues at each of the introduced sites in the catalytic cycle of Pgp was investigated by the effect of covalent conjugation with N-ethyl-maleimide (NEM). All but one mutation (K578C) was accessible to labeling with [(3)H]-NEM. However, perturbation of ATPase activity was only observed for the derivitized N508C isoform. The principle functional manifestation was a marked inhibition of the "basal" rate of ATP hydrolysis. Neither the extent nor potency to which a range of drugs could affect the ATPase activity were altered in the NEM conjugated N508C isoform. The results imply that the accessibility of residue 508, located in the alpha-helical subdomain of NBD1 in Pgp, is altered by the conformational changes that occur during ATP hydrolysis.

  8. Thermal unfolding studies show the disease causing F508del mutation in CFTR thermodynamically destabilizes nucleotide-binding domain 1

    PubMed Central

    Protasevich, Irina; Yang, Zhengrong; Wang, Chi; Atwell, Shane; Zhao, Xun; Emtage, Spencer; Wetmore, Diana; Hunt, John F; Brouillette, Christie G

    2010-01-01

    Misfolding and degradation of CFTR is the cause of disease in patients with the most prevalent CFTR mutation, an in-frame deletion of phenylalanine (F508del), located in the first nucleotide-binding domain of human CFTR (hNBD1). Studies of (F508del)CFTR cellular folding suggest that both intra- and inter-domain folding is impaired. (F508del)CFTR is a temperature-sensitive mutant, that is, lowering growth temperature, improves both export, and plasma membrane residence times. Yet, paradoxically, F508del does not alter the fold of isolated hNBD1 nor did it seem to perturb its unfolding transition in previous isothermal chemical denaturation studies. We therefore studied the in vitro thermal unfolding of matched hNBD1 constructs ±F508del to shed light on the defective folding mechanism and the basis for the thermal instability of (F508del)CFTR. Using primarily differential scanning calorimetry (DSC) and circular dichroism, we show for all hNBD1 pairs studied, that F508del lowers the unfolding transition temperature (Tm) by 6–7°C and that unfolding occurs via a kinetically-controlled, irreversible transition in isolated monomers. A thermal unfolding mechanism is derived from nonlinear least squares fitting of comprehensive DSC data sets. All data are consistent with a simple three-state thermal unfolding mechanism for hNBD1 ± F508del: N(±MgATP) ⇄ IT(±MgATP) → AT → (AT)n. The equilibrium unfolding to intermediate, IT, is followed by the rate-determining, irreversible formation of a partially folded, aggregation-prone, monomeric state, AT, for which aggregation to (AT)n and further unfolding occur with no detectable heat change. Fitted parameters indicate that F508del thermodynamically destabilizes the native state, N, and accelerates the formation of AT. PMID:20687133

  9. The domain architecture of large guanine nucleotide exchange factors for the small GTP-binding protein Arf.

    PubMed

    Mouratou, Barbara; Biou, Valerie; Joubert, Alexandra; Cohen, Jean; Shields, David J; Geldner, Niko; Jürgens, Gerd; Melançon, Paul; Cherfils, Jacqueline

    2005-02-17

    Small G proteins, which are essential regulators of multiple cellular functions, are activated by guanine nucleotide exchange factors (GEFs) that stimulate the exchange of the tightly bound GDP nucleotide by GTP. The catalytic domain responsible for nucleotide exchange is in general associated with non-catalytic domains that define the spatio-temporal conditions of activation. In the case of small G proteins of the Arf subfamily, which are major regulators of membrane trafficking, GEFs form a heterogeneous family whose only common characteristic is the well-characterized Sec7 catalytic domain. In contrast, the function of non-catalytic domains and how they regulate/cooperate with the catalytic domain is essentially unknown. Based on Sec7-containing sequences from fully-annotated eukaryotic genomes, including our annotation of these sequences from Paramecium, we have investigated the domain architecture of large ArfGEFs of the BIG and GBF subfamilies, which are involved in Golgi traffic. Multiple sequence alignments combined with the analysis of predicted secondary structures, non-structured regions and splicing patterns, identifies five novel non-catalytic structural domains which are common to both subfamilies, revealing that they share a conserved modular organization. We also report a novel ArfGEF subfamily with a domain organization so far unique to alveolates, which we name TBS (TBC-Sec7). Our analysis unifies the BIG and GBF subfamilies into a higher order subfamily, which, together with their being the only subfamilies common to all eukaryotes, suggests that they descend from a common ancestor from which species-specific ArfGEFs have subsequently evolved. Our identification of a conserved modular architecture provides a background for future functional investigation of non-catalytic domains.

  10. SVOP Is a Nucleotide Binding Protein

    PubMed Central

    Yao, Jia; Bajjalieh, Sandra M.

    2009-01-01

    Background Synaptic Vesicle Protein 2 (SV2) and SV2-related protein (SVOP) are transporter-like proteins that localize to neurotransmitter-containing vesicles. Both proteins share structural similarity with the major facilitator (MF) family of small molecule transporters. We recently reported that SV2 binds nucleotides, a feature that has also been reported for another MF family member, the human glucose transporter 1 (Glut1). In the case of Glut1, nucleotide binding affects transport activity. In this study, we determined if SVOP also binds nucleotides and assessed its nucleotide binding properties. Methodology/Principal Findings We performed in vitro photoaffinity labeling experiments with the photoreactive ATP analogue, 8-azido-ATP[γ] biotin and purified recombinant SVOP-FLAG fusion protein. We found that SVOP is a nucleotide-binding protein, although both its substrate specificity and binding site differ from that of SV2. Within the nucleotides tested, ATP, GTP and NAD show same level of inhibition on SVOP-FLAG labeling. Dose dependent studies indicated that SVOP demonstrates the highest affinity for NAD, in contrast to SV2, which binds both NAD and ATP with equal affinity. Mapping of the binding site revealed a single region spanning transmembrane domains 9–12, which contrasts to the two binding sites in the large cytoplasmic domains in SV2A. Conclusions/Significance SVOP is the third MF family member to be found to bind nucleotides. Given that the binding sites are unique in SVOP, SV2 and Glut1, this feature appears to have arisen separately. PMID:19390693

  11. Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: implications for protein evolution in the RNA.

    PubMed

    Aravind, L; Anantharaman, Vivek; Koonin, Eugene V

    2002-07-01

    Protein sequence and structure comparisons show that the catalytic domains of Class I aminoacyl-tRNA synthetases, a related family of nucleotidyltransferases involved primarily in coenzyme biosynthesis, nucleotide-binding domains related to the UspA protein (USPA domains), photolyases, electron transport flavoproteins, and PP-loop-containing ATPases together comprise a distinct class of alpha/beta domains designated the HUP domain after HIGH-signature proteins, UspA, and PP-ATPase. Several lines of evidence are presented to support the monophyly of the HUP domains, to the exclusion of other three-layered alpha/beta folds with the generic "Rossmann-like" topology. Cladistic analysis, with patterns of structural and sequence similarity used as discrete characters, identified three major evolutionary lineages within the HUP domain class: the PP-ATPases; the HIGH superfamily, which includes class I aaRS and related nucleotidyltransferases containing the HIGH signature in their nucleotide-binding loop; and a previously unrecognized USPA-like group, which includes USPA domains, electron transport flavoproteins, and photolyases. Examination of the patterns of phyletic distribution of distinct families within these three major lineages suggests that the Last Universal Common Ancestor of all modern life forms encoded 15-18 distinct alpha/beta ATPases and nucleotide-binding proteins of the HUP class. This points to an extensive radiation of HUP domains before the last universal common ancestor (LUCA), during which the multiple class I aminoacyl-tRNA synthetases emerged only at a late stage. Thus, substantial evolutionary diversification of protein domains occurred well before the modern version of the protein-dependent translation machinery was established, i.e., still in the RNA world.

  12. Functional Analysis of the Streptomyces coelicolor NrdR ATP-Cone Domain: Role in Nucleotide Binding, Oligomerization, and DNA Interactions▿ †

    PubMed Central

    Grinberg, Inna; Shteinberg, Tatyana; Hassan, A. Quamrul; Aharonowitz, Yair; Borovok, Ilya; Cohen, Gerald

    2009-01-01

    Ribonucleotide reductases (RNRs) are essential enzymes in all living cells, providing the only known de novo pathway for the biosynthesis of deoxyribonucleotides (dNTPs), the immediate precursors of DNA synthesis and repair. RNRs catalyze the controlled reduction of all four ribonucleotides to maintain a balanced pool of dNTPs during the cell cycle. Streptomyces species contain genes, nrdAB and nrdJ, coding for oxygen-dependent class I and oxygen-independent class II RNRs, either of which is sufficient for vegetative growth. Both sets of genes are transcriptionally repressed by NrdR. NrdR contains a zinc ribbon DNA-binding domain and an ATP-cone domain similar to that present in the allosteric activity site of many class I and class III RNRs. Purified NrdR contains up to 1 mol of tightly bound ATP or dATP per mol of protein and binds to tandem 16-bp sequences, termed NrdR-boxes, present in the upstream regulatory regions of bacterial RNR operons. Previously, we showed that the ATP-cone domain alone determines nucleotide binding and that an NrdR mutant defective in nucleotide binding was unable to bind to DNA probes containing NrdR-boxes. These observations led us to propose that when NrdR binds ATP/dATP it undergoes a conformational change that affects DNA binding and hence RNR gene expression. In this study, we analyzed a collection of ATP-cone mutant proteins containing changes in residues inferred to be implicated in nucleotide binding and show that they result in pleiotrophic effects on ATP/dATP binding, on protein oligomerization, and on DNA binding. A model is proposed to integrate these observations. PMID:19047342

  13. Structure of the Cyclic Nucleotide-Binding Homology Domain of the hERG Channel and Its Insight into Type 2 Long QT Syndrome

    PubMed Central

    Li, Yan; Ng, Hui Qi; Li, Qingxin; Kang, CongBao

    2016-01-01

    The human ether-à-go-go related gene (hERG) channel is crucial for the cardiac action potential by contributing to the fast delayed-rectifier potassium current. Mutations in the hERG channel result in type 2 long QT syndrome (LQT2). The hERG channel contains a cyclic nucleotide-binding homology domain (CNBHD) and this domain is required for the channel gating though molecular interactions with the eag domain. Here we present solution structure of the CNBHD of the hERG channel. The structural study reveals that the CNBHD adopts a similar fold to other KCNH channels. It is self-liganded and it contains a short β-strand that blocks the nucleotide-binding pocket in the β-roll. Folding of LQT2-related mutations in this domain was shown to be affected by point mutation. Mutations in this domain can cause protein aggregation in E. coli cells or induce conformational changes. One mutant-R752W showed obvious chemical shift perturbation compared with the wild-type, but it still binds to the eag domain. The helix region from the N-terminal cap domain of the hERG channel showed unspecific interactions with the CNBHD. PMID:27025590

  14. Role of the nucleotide-binding domain-like receptor protein 3 inflammasome in acute kidney injury.

    PubMed

    Cao, Yanhui; Fei, Dongsheng; Chen, Mingwei; Sun, Miao; Xu, Jun; Kang, Kai; Jiang, Lei; Zhao, Mingyan

    2015-10-01

    Acute kidney injury (AKI), which is associated with high mortality rates, involves renal inflammation related to the activation of innate immunity. The inflammatory response in AKI involves the inflammasome, which integrates danger signals into caspase-1-activating platforms, leading to the processing and secretion of the proinflammatory cytokines interleukin (IL)-1β and IL-18. The nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome plays a role in the development of many diseases, including AKI. However, the mechanisms by which the NLRP3 inflammasome translates different danger signals into the expression of proinflammatory cytokines remain unclear. Here, we investigated the role of the NLRP3 inflammasome in renal injury in a cecal ligation and puncture (CLP) model of sepsis-induced AKI. CLP decreased blood pressure and increased serum creatinine levels and neutrophil infiltration into the kidney in parallel with the upregulation of NLRP3, the adaptor protein apoptosis-associated speck-like protein, and caspase-1 expression and activity in kidney tissues, and increases in the serum and kidney levels of IL-1β and IL-18. Genetic deletion of NLRP3 reversed the CLP-induced reduction in blood pressure and increases in serum creatinine level and neutrophil infiltration, and attenuated the CLP-induced upregulation of apoptosis-associated speck-like protein, caspase-1 expression and activity, and the secretion of IL-1β and IL-18, similarly to the effects of caspase-1 inhibition. Taken together, our results indicate that activation of the NLRP3 inflammasome contributes to the development of hypotension and the inflammatory response of AKI, suggesting its possible role as a therapeutic target for the treatment of kidney diseases.

  15. Cyclosporine A Impairs Nucleotide Binding Oligomerization Domain (Nod1)-Mediated Innate Antibacterial Renal Defenses in Mice and Human Transplant Recipients

    PubMed Central

    Tourneur, Emilie; Ben Mkaddem, Sanae; Chassin, Cécilia; Bens, Marcelle; Goujon, Jean-Michel; Charles, Nicolas; Pellefigues, Christophe; Aloulou, Meryem; Hertig, Alexandre; Monteiro, Renato C.; Girardin, Stephen E.; Philpott, Dana J.; Rondeau, Eric

    2013-01-01

    Acute pyelonephritis (APN), which is mainly caused by uropathogenic Escherichia coli (UPEC), is the most common bacterial complication in renal transplant recipients receiving immunosuppressive treatment. However, it remains unclear how immunosuppressive drugs, such as the calcineurin inhibitor cyclosporine A (CsA), decrease renal resistance to UPEC. Here, we investigated the effects of CsA in host defense against UPEC in an experimental model of APN. We show that CsA-treated mice exhibit impaired production of the chemoattractant chemokines CXCL2 and CXCL1, decreased intrarenal recruitment of neutrophils, and greater susceptibility to UPEC than vehicle-treated mice. Strikingly, renal expression of Toll-like receptor 4 (Tlr4) and nucleotide-binding oligomerization domain 1 (Nod1), neutrophil migration capacity, and phagocytic killing of E. coli were significantly reduced in CsA-treated mice. CsA inhibited lipopolysaccharide (LPS)-induced, Tlr4-mediated production of CXCL2 by epithelial collecting duct cells. In addition, CsA markedly inhibited Nod1 expression in neutrophils, macrophages, and renal dendritic cells. CsA, acting through inhibition of the nuclear factor of activated T-cells (NFATs), also markedly downregulated Nod1 in neutrophils and macrophages. Silencing the NFATc1 isoform mRNA, similar to CsA, downregulated Nod1 expression in macrophages, and administration of the 11R-VIVIT peptide inhibitor of NFATs to mice also reduced neutrophil bacterial phagocytosis and renal resistance to UPEC. Conversely, synthetic Nod1 stimulating agonists given to CsA-treated mice significantly increased renal resistance to UPEC. Renal transplant recipients receiving CsA exhibited similar decrease in NOD1 expression and neutrophil phagocytosis of E. coli. The findings suggest that such mechanism of NFATc1-dependent inhibition of Nod1-mediated innate immune response together with the decrease in Tlr4-mediated production of chemoattractant chemokines caused by CsA may

  16. Impact of the [delta]F508 Mutation in First Nucleotide-binding Domain of Human Cystic Fibrosis Transmembrane Conductance Regulator on Domain Folding and Structure

    SciTech Connect

    Lewis, Hal A.; Zhao, Xun; Wang, Chi; Sauder, J. Michael; Rooney, Isabelle; Noland, Brian W.; Lorimer, Don; Kearins, Margaret C.; Conners, Kris; Condon, Brad; Maloney, Peter C.; Guggino, William B.; Hunt, John F.; Emtage, Spencer

    2010-07-19

    Cystic fibrosis is caused by defects in the cystic fibrosis transmembrane conductance regulator (CFTR), commonly the deletion of residue Phe-508 (DeltaF508) in the first nucleotide-binding domain (NBD1), which results in a severe reduction in the population of functional channels at the epithelial cell surface. Previous studies employing incomplete NBD1 domains have attributed this to aberrant folding of DeltaF508 NBD1. We report structural and biophysical studies on complete human NBD1 domains, which fail to demonstrate significant changes of in vitro stability or folding kinetics in the presence or absence of the DeltaF508 mutation. Crystal structures show minimal changes in protein conformation but substantial changes in local surface topography at the site of the mutation, which is located in the region of NBD1 believed to interact with the first membrane spanning domain of CFTR. These results raise the possibility that the primary effect of DeltaF508 is a disruption of proper interdomain interactions at this site in CFTR rather than interference with the folding of NBD1. Interestingly, increases in the stability of NBD1 constructs are observed upon introduction of second-site mutations that suppress the trafficking defect caused by the DeltaF508 mutation, suggesting that these suppressors might function indirectly by improving the folding efficiency of NBD1 in the context of the full-length protein. The human NBD1 structures also solidify the understanding of CFTR regulation by showing that its two protein segments that can be phosphorylated both adopt multiple conformations that modulate access to the ATPase active site and functional interdomain interfaces.

  17. Regulation and Function of the Nucleotide Binding Domain Leucine-Rich Repeat-Containing Receptor, Pyrin Domain-Containing-3 Inflammasome in Lung Disease

    PubMed Central

    Lee, Seonmin; Suh, Gee-Young; Ryter, Stefan W.

    2016-01-01

    Inflammasomes are specialized inflammatory signaling platforms that govern the maturation and secretion of proinflammatory cytokines, such as IL-1β and IL-18, through the regulation of caspase-1–dependent proteolytic processing. Several nucleotide binding domain leucine-rich repeat-containing receptor (NLR) family members (i.e., NLR family, pyrin domain containing [NLRP] 1, NLRP3, and NLR family, caspase recruitment domain containing-4 [NLRC4]) as well as the pyrin and hemopoietic expression, interferon-inducibility, nuclear localization domain–containing family member, absent in melanoma 2, can form inflammasome complexes in human cells. In particular, the NLRP3 inflammasome is activated in response to cellular stresses through a two-component pathway, involving Toll-like receptor 4–ligand interaction (priming) followed by a second signal, such as ATP-dependent P2X purinoreceptor 7 receptor activation. Emerging studies suggest that the NLRP3 inflammasome can exert pleiotropic effects in human diseases with potentially both pro- and antipathogenic sequelae. Whereas NLRP3 inflammasome activation can serve as a vital component of host defense against invading bacteria and pathogens, excessive activation of the inflammasome can lead to inflammation-associated tissue injury in the setting of chronic disease. In addition, pyroptosis, an inflammasome-associated mode of cell death, contributes to host defense. Recent research has described the regulation and function of the NLRP3 inflammasome in various pulmonary diseases, including acute lung injury and acute respiratory distress syndrome, sepsis, respiratory infections, chronic obstructive pulmonary disease, asthma, pulmonary hypertension, cystic fibrosis, and idiopathic pulmonary fibrosis. The NLRP3 and related inflammasomes, and their regulated cytokines or receptors, may represent novel diagnostic or therapeutic targets in pulmonary diseases and other diseases in which inflammation contributes to pathogenesis

  18. Mutations in the nucleotide binding and hydrolysis domains of Helicobacter pylori MutS2 lead to altered biochemical activities and inactivation of its in vivo function.

    PubMed

    Damke, Prashant P; Dhanaraju, Rajkumar; Marsin, Stéphanie; Radicella, J Pablo; Rao, Desirazu N

    2016-02-03

    Helicobacter pylori MutS2 (HpMutS2), an inhibitor of recombination during transformation is a non-specific nuclease with two catalytic sites, both of which are essential for its anti-recombinase activity. Although HpMutS2 belongs to a highly conserved family of ABC transporter ATPases, the role of its ATP binding and hydrolysis activities remains elusive. To explore the putative role of ATP binding and hydrolysis activities of HpMutS2 we specifically generated point mutations in the nucleotide-binding Walker-A (HpMutS2-G338R) and hydrolysis Walker-B (HpMutS2-E413A) domains of the protein. Compared to wild-type protein, HpMutS2-G338R exhibited ~2.5-fold lower affinity for both ATP and ADP while ATP hydrolysis was reduced by ~3-fold. Nucleotide binding efficiencies of HpMutS2-E413A were not significantly altered; however the ATP hydrolysis was reduced by ~10-fold. Although mutations in the Walker-A and Walker-B motifs of HpMutS2 only partially reduced its ability to bind and hydrolyze ATP, we demonstrate that these mutants not only exhibited alterations in the conformation, DNA binding and nuclease activities of the protein but failed to complement the hyper-recombinant phenotype displayed by mutS2-disrupted strain of H. pylori. In addition, we show that the nucleotide cofactor modulates the conformation, DNA binding and nuclease activities of HpMutS2. These data describe a strong crosstalk between the ATPase, DNA binding, and nuclease activities of HpMutS2. Furthermore these data show that both, ATP binding and hydrolysis activities of HpMutS2 are essential for the in vivo anti-recombinase function of the protein.

  19. The coiled-coil and nucleotide binding domains of the Potato Rx disease resistance protein function in pathogen recognition and signaling.

    PubMed

    Rairdan, Gregory J; Collier, Sarah M; Sacco, Melanie A; Baldwin, Thomas T; Boettrich, Teresa; Moffett, Peter

    2008-03-01

    Plant genomes encode large numbers of nucleotide binding and leucine-rich repeat (NB-LRR) proteins, some of which mediate the recognition of pathogen-encoded proteins. Following recognition, the initiation of a resistance response is thought to be mediated by the domains present at the N termini of NB-LRR proteins, either a Toll and Interleukin-1 Receptor or a coiled-coil (CC) domain. In order to understand the role of the CC domain in NB-LRR function, we have undertaken a systematic structure-function analysis of the CC domain of the potato (Solanum tuberosum) CC-NB-LRR protein Rx, which confers resistance to Potato virus X. We show that the highly conserved EDVID motif of the CC domain mediates an intramolecular interaction that is dependent on several domains within the rest of the Rx protein, including the NB and LRR domains. Other conserved and nonconserved regions of the CC domain mediate the interaction with the Ran GTPase-activating protein, RanGAP2, a protein required for Rx function. Furthermore, we show that the Rx NB domain is sufficient for inducing cell death typical of hypersensitive plant resistance responses. We describe a model of CC-NB-LRR function wherein the LRR and CC domains coregulate the signaling activity of the NB domain in a recognition-specific manner.

  20. Identification of a noncatalytic cGMP-binding domain conserved in both the cGMP-stimulated and photoreceptor cyclic nucleotide phosphodiesterases.

    PubMed Central

    Charbonneau, H; Prusti, R K; LeTrong, H; Sonnenburg, W K; Mullaney, P J; Walsh, K A; Beavo, J A

    1990-01-01

    Partial amino acid sequence has been determined for the cone, alpha' subunit of the bovine photoreceptor cyclic nucleotide phosphodiesterase (PDE) and deduced from nucleotide sequences of a partial cDNA clone. These sequences identify the alpha' subunit as the product of a gene that is distinct from those encoding the alpha or beta subunits of the membrane-associated rod photoreceptor PDE. Comparisons between the recently determined cGMP-stimulated-PDE sequence and those of the alpha and alpha' photoreceptor PDE subunits reveal an unexpected sequence similarity. In addition to the catalytic domain conserved in eukaryotic PDEs, all three PDEs possess a second conserved segment of approximately 340 residues that contains two internally homologous repeats. Limited proteolysis and direct photolabeling studies indicate that the noncatalytic, cGMP-binding site(s) in the cGMP-stimulated PDE is located within this conserved domain, suggesting that it also may serve this function in the photoreceptor PDEs. Moreover, other PDEs that do not bind cGMP at noncatalytic sites do not contain this conserved domain. The function of the conserved segment in the photoreceptor PDEs is not known, but the homology to allosteric sites of the cGMP-stimulated PDE suggests a role in cGMP binding and modulation of enzyme activity. Images PMID:2153290

  1. Role of nucleotide-binding oligomerization domain 1 (NOD1) and its variants in human cytomegalovirus control in vitro and in vivo

    PubMed Central

    Fan, Yi-Hsin; Roy, Sujayita; Mukhopadhyay, Rupkatha; Kapoor, Arun; Duggal, Priya; Wojcik, Genevieve L.; Pass, Robert F.; Arav-Boger, Ravit

    2016-01-01

    Induction of nucleotide-binding oligomerization domain 2 (NOD2) and downstream receptor-interacting serine/threonine-protein kinase 2 (RIPK2) by human cytomegalovirus (HCMV) is known to up-regulate antiviral responses and suppress virus replication. We investigated the role of nucleotide-binding oligomerization domain 1 (NOD1), which also signals through RIPK2, in HCMV control. NOD1 activation by Tri-DAP (NOD1 agonist) suppressed HCMV and induced IFN-β. Mouse CMV was also inhibited through NOD1 activation. NOD1 knockdown (KD) or inhibition of its activity with small molecule ML130 enhanced HCMV replication in vitro. NOD1 mutations displayed differential effects on HCMV replication and antiviral responses. In cells overexpressing the E56K mutation in the caspase activation and recruitment domain, virus replication was enhanced, but in cells overexpressing the E266K mutation in the nucleotide-binding domain or the wild-type NOD1, HCMV was inhibited, changes that correlated with IFN-β expression. The interaction of NOD1 and RIPK2 determined the outcome of virus replication, as evidenced by enhanced virus growth in NOD1 E56K mutant cells (which failed to interact with RIPK2). NOD1 activities were executed through IFN-β, given that IFN-β KD reduced the inhibitory effect of Tri-DAP on HCMV. Signaling through NOD1 resulting in HCMV suppression was IKKα-dependent and correlated with nuclear translocation and phosphorylation of IRF3. Finally, NOD1 polymorphisms were significantly associated with the risk of HCMV infection in women who were infected with HCMV during participation in a glycoprotein B vaccine trial. Collectively, our data indicate a role for NOD1 in HCMV control via RIPK2- IKKα-IRF3 and suggest that its polymorphisms predict the risk of infection. PMID:27856764

  2. Structural Insights into the Nucleotide-Binding Domains of the P1B-type ATPases HMA6 and HMA8 from Arabidopsis thaliana

    PubMed Central

    Mayerhofer, Hubert; Sautron, Emeline; Rolland, Norbert; Catty, Patrice; Seigneurin-Berny, Daphné; Pebay-Peyroula, Eva; Ravaud, Stéphanie

    2016-01-01

    Copper is a crucial ion in cells, but needs to be closely controlled due to its toxic potential and ability to catalyse the formation of radicals. In chloroplasts, an important step for the proper functioning of the photosynthetic electron transfer chain is the delivery of copper to plastocyanin in the thylakoid lumen. The main route for copper transport to the thylakoid lumen is driven by two PIB-type ATPases, Heavy Metal ATPase 6 (HMA6) and HMA8, located in the inner membrane of the chloroplast envelope and in the thylakoid membrane, respectively. Here, the crystal structures of the nucleotide binding domain of HMA6 and HMA8 from Arabidopsis thaliana are reported at 1.5Å and 1.75Å resolution, respectively, providing the first structural information on plants Cu+-ATPases. The structures reveal a compact domain, with two short helices on both sides of a twisted beta-sheet. A double mutant, aiding in the crystallization, provides a new crystal contact, but also avoids an internal clash highlighting the benefits of construct modifications. Finally, the histidine in the HP motif of the isolated domains, unable to bind ATP, shows a side chain conformation distinct from nucleotide bound structures. PMID:27802305

  3. Structural Insights into the Nucleotide-Binding Domains of the P1B-type ATPases HMA6 and HMA8 from Arabidopsis thaliana.

    PubMed

    Mayerhofer, Hubert; Sautron, Emeline; Rolland, Norbert; Catty, Patrice; Seigneurin-Berny, Daphné; Pebay-Peyroula, Eva; Ravaud, Stéphanie

    2016-01-01

    Copper is a crucial ion in cells, but needs to be closely controlled due to its toxic potential and ability to catalyse the formation of radicals. In chloroplasts, an important step for the proper functioning of the photosynthetic electron transfer chain is the delivery of copper to plastocyanin in the thylakoid lumen. The main route for copper transport to the thylakoid lumen is driven by two PIB-type ATPases, Heavy Metal ATPase 6 (HMA6) and HMA8, located in the inner membrane of the chloroplast envelope and in the thylakoid membrane, respectively. Here, the crystal structures of the nucleotide binding domain of HMA6 and HMA8 from Arabidopsis thaliana are reported at 1.5Å and 1.75Å resolution, respectively, providing the first structural information on plants Cu+-ATPases. The structures reveal a compact domain, with two short helices on both sides of a twisted beta-sheet. A double mutant, aiding in the crystallization, provides a new crystal contact, but also avoids an internal clash highlighting the benefits of construct modifications. Finally, the histidine in the HP motif of the isolated domains, unable to bind ATP, shows a side chain conformation distinct from nucleotide bound structures.

  4. Structures of a minimal human CFTR first nucleotide-binding domain as a monomer, head-to-tail homodimer, and pathogenic mutant

    SciTech Connect

    Atwell, Shane; Brouillette, Christie G.; Conners, Kris; Emtage, Spencer; Gheyi, Tarun; Guggino, William B.; Hendle, Jorg; Hunt, John F.; Lewis, Hal A.; Lu, Frances; Protasevich, Irina I.; Rodgers, Logan A.; Romero, Rich; Wasserman, Stephen R.; Weber, Patricia C.; Wetmore, Diana; Zhang, Feiyu F.; Zhao, Xun

    2010-04-26

    Upon removal of the regulatory insert (RI), the first nucleotide binding domain (NBD1) of human cystic fibrosis transmembrane conductance regulator (CFTR) can be heterologously expressed and purified in a form that remains stable without solubilizing mutations, stabilizing agents or the regulatory extension (RE). This protein, NBD1 387-646({Delta}405-436), crystallizes as a homodimer with a head-to-tail association equivalent to the active conformation observed for NBDs from symmetric ATP transporters. The 1.7-{angstrom} resolution X-ray structure shows how ATP occupies the signature LSGGQ half-site in CFTR NBD1. The {Delta}F508 version of this protein also crystallizes as a homodimer and differs from the wild-type structure only in the vicinity of the disease-causing F508 deletion. A slightly longer construct crystallizes as a monomer. Comparisons of the homodimer structure with this and previously published monomeric structures show that the main effect of ATP binding at the signature site is to order the residues immediately preceding the signature sequence, residues 542-547, in a conformation compatible with nucleotide binding. These residues likely interact with a transmembrane domain intracellular loop in the full-length CFTR channel. The experiments described here show that removing the RI from NBD1 converts it into a well-behaved protein amenable to biophysical studies yielding deeper insights into CFTR function.

  5. Involvement of the heterodimeric interface region of the nucleotide binding domain-2 (NBD2) in the CFTR quaternary structure and membrane stability.

    PubMed

    Micoud, Julien; Chauvet, Sylvain; Scheckenbach, Klaus Ernst Ludwig; Alfaidy, Nadia; Chanson, Marc; Benharouga, Mohamed

    2015-10-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is the only member of the ATP-binding cassette (ABC) superfamily that functions as a chloride channel. The predicted structure of CFTR protein contains two membrane-spanning domains (MSDs), each followed by a nucleotide binding domain (NBD1 and NBD2). The opening of the Cl- channel is directly linked to ATP-driven tight dimerization of CFTR's NBD1 and NBD2 domains. The presence of a heterodimeric interfaces (HI) region in NBD1 and NBD2 generated a head to tail orientation necessary for channel activity. This process was also suggested to promote important conformational changes in the associated transmembrane domains of CFTR, which may impact the CFTR plasma membrane stability. To better understand the role of the individual HI region in this process, we generated recombinant CFTR protein with suppressed HI-NBD1 and HI-NBD2. Our results indicate that HI-NBD2 deletion leads to the loss of the dimerization profile of CFTR that affect its plasma membrane stability. We conclude that, in addition to its role in Cl- transport, HI-NBD2 domain confers membrane stability of CFTR by consolidating its quaternary structure through interactions with HI-NBD1 region.

  6. The Roles of the RIIβ Linker and N-terminal Cyclic Nucleotide-binding Domain in Determining the Unique Structures of the Type IIβ Protein Kinase A

    PubMed Central

    Blumenthal, Donald K.; Copps, Jeffrey; Smith-Nguyen, Eric V.; Zhang, Ping; Heller, William T.; Taylor, Susan S.

    2014-01-01

    Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. The PKA holoenzyme is a tetramer (R2:C2), with a regulatory subunit homodimer (R2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the type IIβ holoenzyme is much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1–280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. Our results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA. PMID:25112875

  7. Cysteine-scanning mutagenesis provides no evidence for the extracellular accessibility of the nucleotide-binding domains of the multidrug resistance transporter P-glycoprotein.

    PubMed

    Blott, E J; Higgins, C F; Linton, K J

    1999-12-01

    Multidrug resistance of cancer cells is, at least in part, conferred by overexpression of P-glycoprotein (P-gp), a member of the ATP-binding cassette (ABC) superfamily of active transporters. P-gp actively extrudes chemotherapeutic drugs from cells, thus reducing their efficacy. As a typical ABC transporter, P-gp has four domains: two transmembrane domains, which form a pathway through the membrane through which substrates are transported, and two hydrophilic nucleotide-binding domains (NBDs), located on the cytoplasmic side of the membrane, which couple the energy of ATP hydrolysis to substrate translocation. It has been proposed that the NBDs of ABC transporters, including the histidine permease of Salmonella typhimurium and the cystic fibrosis transmembrane conductance regulator, are accessible from the extracellular surface of the cell, spanning the membrane directly or potentially contributing to the transmembrane pore. Such organization would have significant implications for the transport mechanism. We determined to establish whether the NBDs of P-gp are exposed extracellularly and which amino acids are accessible, using cysteine-scanning mutagenesis and limited proteolysis. In contrast to other transporters, the data provided no evidence that the P-gp NBDs are exposed to the cell surface. The implications for the structure and mechanism of P-gp and other ABC transporters are discussed.

  8. Cysteine-scanning mutagenesis provides no evidence for the extracellular accessibility of the nucleotide-binding domains of the multidrug resistance transporter P-glycoprotein.

    PubMed Central

    Blott, E J; Higgins, C F; Linton, K J

    1999-01-01

    Multidrug resistance of cancer cells is, at least in part, conferred by overexpression of P-glycoprotein (P-gp), a member of the ATP-binding cassette (ABC) superfamily of active transporters. P-gp actively extrudes chemotherapeutic drugs from cells, thus reducing their efficacy. As a typical ABC transporter, P-gp has four domains: two transmembrane domains, which form a pathway through the membrane through which substrates are transported, and two hydrophilic nucleotide-binding domains (NBDs), located on the cytoplasmic side of the membrane, which couple the energy of ATP hydrolysis to substrate translocation. It has been proposed that the NBDs of ABC transporters, including the histidine permease of Salmonella typhimurium and the cystic fibrosis transmembrane conductance regulator, are accessible from the extracellular surface of the cell, spanning the membrane directly or potentially contributing to the transmembrane pore. Such organization would have significant implications for the transport mechanism. We determined to establish whether the NBDs of P-gp are exposed extracellularly and which amino acids are accessible, using cysteine-scanning mutagenesis and limited proteolysis. In contrast to other transporters, the data provided no evidence that the P-gp NBDs are exposed to the cell surface. The implications for the structure and mechanism of P-gp and other ABC transporters are discussed. PMID:10581253

  9. Nucleotide-binding domains of cystic fibrosis transmembrane conductance regulator, an ABC transporter, catalyze adenylate kinase activity but not ATP hydrolysis.

    PubMed

    Gross, Christian H; Abdul-Manan, Norzehan; Fulghum, John; Lippke, Judith; Liu, Xun; Prabhakar, Prakash; Brennan, Debra; Willis, Melissa Swope; Faerman, Carlos; Connelly, Patrick; Raybuck, Scott; Moore, Jonathan

    2006-02-17

    The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter family. CFTR consists of two transmembrane domains, two nucleotide-binding domains (NBD1 and NBD2), and a regulatory domain. Previous biochemical reports suggest NBD1 is a site of stable nucleotide interaction with low ATPase activity, whereas NBD2 is the site of active ATP hydrolysis. It has also been reported that NBD2 additionally possessed adenylate kinase (AK) activity. Knowledge about the intrinsic biochemical activities of the NBDs is essential to understanding the Cl(-) ion gating mechanism. We find that purified mouse NBD1, human NBD1, and human NBD2 function as adenylate kinases but not as ATPases. AK activity is strictly dependent on the addition of the adenosine monophosphate (AMP) substrate. No liberation of [(33)P]phosphate is observed from the gamma-(33)P-labeled ATP substrate in the presence or absence of AMP. AK activity is intrinsic to both human NBDs, as the Walker A box lysine mutations abolish this activity. At low protein concentration, the NBDs display an initial slower nonlinear phase in AK activity, suggesting that the activity results from homodimerization. Interestingly, the G551D gating mutation has an exaggerated nonlinear phase compared with the wild type and may indicate this mutation affects the ability of NBD1 to dimerize. hNBD1 and hNBD2 mixing experiments resulted in an 8-57-fold synergistic enhancement in AK activity suggesting heterodimer formation, which supports a common theme in ABC transporter models. A CFTR gating mechanism model based on adenylate kinase activity is proposed.

  10. Stabilization of a nucleotide-binding domain of the cystic fibrosis transmembrane conductance regulator yields insight into disease-causing mutations.

    PubMed

    Vernon, Robert M; Chong, P Andrew; Lin, Hong; Yang, Zhengrong; Zhou, Qingxian; Aleksandrov, Andrei A; Dawson, Jennifer E; Riordan, John R; Brouillette, Christie G; Thibodeau, Patrick H; Forman-Kay, Julie D

    2017-08-25

    Characterization of the second nucleotide-binding domain (NBD2) of the cystic fibrosis transmembrane conductance regulator (CFTR) has lagged behind research into the NBD1 domain, in part because NBD1 contains the F508del mutation, which is the dominant cause of cystic fibrosis. Research on NBD2 has also been hampered by the overall instability of the domain and the difficulty of producing reagents. Nonetheless, multiple disease-causing mutations reside in NBD2, and the domain is critical for CFTR function, because channel gating involves NBD1/NBD2 dimerization, and NBD2 contains the catalytically active ATPase site in CFTR. Recognizing the paucity of structural and biophysical data on NBD2, here we have defined a bioinformatics-based method for manually identifying stabilizing substitutions in NBD2, and we used an iterative process of screening single substitutions against thermal melting points to both produce minimally mutated stable constructs and individually characterize mutations. We present a range of stable constructs with minimal mutations to help inform further research on NBD2. We have used this stabilized background to study the effects of NBD2 mutations identified in cystic fibrosis (CF) patients, demonstrating that mutants such as N1303K and G1349D are characterized by lower stability, as shown previously for some NBD1 mutations, suggesting a potential role for NBD2 instability in the pathology of CF. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. The role of CAPS buffer in expanding the crystallization space of the nucleotide-binding domain of the ABC transporter haemolysin B from Escherichia coli.

    PubMed

    Zaitseva, Jelena; Holland, I Barry; Schmitt, Lutz

    2004-06-01

    Nucleotide-binding domains (NBDs), which are roughly 27 kDa in size, are conserved components of the large family of ABC (ATP-binding cassette) transporters, which includes importers and exporters. NBDs, or ABC-ATPases, supply energy for the translocation of a vast range of substrates across biological membranes. Despite their hydrophilic sequence, many NBDs readily associate in some way with membranes but demonstrate extreme instability in solution upon separation from the complete transporter. Conditions that stabilized the purified ABC domain of the Escherichia coli haemolysin A (HlyA) transporter were developed. This allowed the screening of unlimited crystallization conditions in the presence of different substrates, the performance of reproducible functional assays and the protection of 50 mg ml(-1) protein from precipitation on ice for months. As a result, it became possible to obtain crystals of HlyB-NBD in the presence of ADP and ATP that were suitable for X-ray analysis. Although the focus of these investigations was placed on HlyB-NBD, the strategy described here can be directly transferred to other proteins that display instability in solution.

  12. Characterization of the Catalytic and Nucleotide Binding Properties of the α-Kinase Domain of Dictyostelium Myosin-II Heavy Chain Kinase A*

    PubMed Central

    Yang, Yidai; Ye, Qilu; Jia, Zongchao; Côté, Graham P.

    2015-01-01

    The α-kinases are a widely expressed family of serine/threonine protein kinases that exhibit no sequence identity with conventional eukaryotic protein kinases. In this report, we provide new information on the catalytic properties of the α-kinase domain of Dictyostelium myosin-II heavy chain kinase-A (termed A-CAT). Crystallization of A-CAT in the presence of MgATP yielded structures with AMP or adenosine in the catalytic cleft together with a phosphorylated Asp-766 residue. The results show that the β- and α-phosphoryl groups are transferred either directly or indirectly to the catalytically essential Asp-766. Biochemical assays confirmed that A-CAT hydrolyzed ATP, ADP, and AMP with kcat values of 1.9, 0.6, and 0.32 min−1, respectively, and showed that A-CAT can use ADP to phosphorylate peptides and proteins. Binding assays using fluorescent 2′/3′-O-(N-methylanthraniloyl) analogs of ATP and ADP yielded Kd values for ATP, ADP, AMP, and adenosine of 20 ± 3, 60 ± 20, 160 ± 60, and 45 ± 15 μm, respectively. Site-directed mutagenesis showed that Glu-713, Leu-716, and Lys-645, all of which interact with the adenine base, were critical for nucleotide binding. Mutation of the highly conserved Gln-758, which chelates a nucleotide-associated Mg2+ ion, eliminated catalytic activity, whereas loss of the highly conserved Lys-722 and Arg-592 decreased kcat values for kinase and ATPase activities by 3–6-fold. Mutation of Asp-663 impaired kinase activity to a much greater extent than ATPase, indicating a specific role in peptide substrate binding, whereas mutation of Gln-768 doubled ATPase activity, suggesting that it may act to exclude water from the active site. PMID:26260792

  13. The H-loop in the Second Nucleotide-binding Domain of the Cystic Fibrosis Transmembrane Conductance Regulator is Required for Efficient Chloride Channel Closing

    PubMed Central

    Kloch, Monika; Milewski, Michał; Nurowska, Ewa; Dworakowska, Beata; Cutting, Garry R.; Dołowy, Krzysztof

    2010-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that functions as a cAMP-activated chloride channel. The recent model of CFTR gating predicts that the ATP binding to both nucleotide-binding domains (NBD1 and NBD2) of CFTR is required for the opening of the channel, while the ATP hydrolysis at NBD2 induces subsequent channel closing. In most ABC proteins, efficient hydrolysis of ATP requires the presence of the invariant histidine residue within the H-loop located in the C-terminal part of the NBD. However, the contribution of the corresponding region (H-loop) of NBD2 to the CFTR channel gating has not been examined so far. Here we report that the alanine substitution of the conserved dipeptide HR motif (HR→AA) in the H-loop of NBD2 leads to prolonged open states of CFTR channel, indicating that the H-loop is required for efficient channel closing. On the other hand, the HR→AA substitution lead to the substantial decrease of CFTR-mediated current density (pA/pF) in transfected HEK 293 cells, as recorded in the whole-cell patch-clamp analysis. These results suggest that the H-loop of NBD2, apart from being required for CFTR channel closing, may be involved in regulating CFTR trafficking to the cell surface. PMID:20110677

  14. Computational studies on receptor-ligand interactions between novel buffalo (Bubalus bubalis) nucleotide-binding oligomerization domain-containing protein 2 (NOD2) variants and muramyl dipeptide (MDP).

    PubMed

    Brahma, Biswajit; Patra, Mahesh Chandra; Mishra, Purusottam; De, Bidhan Chandra; Kumar, Sushil; Maharana, Jitendra; Vats, Ashutosh; Ahlawat, Sonika; Datta, Tirtha Kumar; De, Sachinandan

    2016-04-01

    Nucleotide binding and oligomerization domain 2 (NOD2), a member of intracellular NOD-like receptors (NLRs) family, recognizes the bacterial peptidoglycan, muramyl dipeptide (MDP) and initiates host immune response. The precise ligand recognition mechanism of NOD2 has remained elusive, although studies have suggested leucine rich repeat (LRR) region of NOD2 as the possible binding site of MDP. In this study, we identified multiple transcripts of NOD2 gene in buffalo (buNOD2) and at least five LRR variants (buNOD2-LRRW (wild type), buNOD2-LRRV1-V4) were found to be expressed in buffalo peripheral blood mononuclear cells. The newly identified buNOD2 transcripts were shorter in lengths as a result of exon-skipping and frame-shift mutations. Among the variants, buNOD2-LRRW, V1, and V3 were expressed more frequently in the animals studied. A comparative receptor-ligand interaction study through modeling of variants, docking, and molecular dynamics simulation revealed that the binding affinity of buNOD2-LRRW towards MDP was greater than that of the shorter variants. The absence of a LRR segment in the buNOD2 variants had probably affected their affinity toward MDP. Notwithstanding a high homology among the variants, the amino acid residues that interact with MDP were located on different LRR motifs. The binding free energy calculation revealed that the amino acids Arg850(LRR4) and Glu932(LRR7) of buNOD2-LRRW, Lys810(LRR3) of buNOD2-LRRV1, and Lys830(LRR3) of buNOD2-LRRV3 largely contributed towards MDP recognition. The knowledge of MDP recognition and binding modes on buNOD2 variants could be useful to understand the regulation of NOD-mediated immune response as well as to develop next generation anti-inflammatory compounds.

  15. Effect of point substitutions within the minimal DNA-binding domain of xeroderma pigmentosum group A protein on interaction with DNA intermediates of nucleotide excision repair.

    PubMed

    Maltseva, E A; Krasikova, Y S; Naegeli, H; Lavrik, O I; Rechkunova, N I

    2014-06-01

    Xeroderma pigmentosum factor A (XPA) is one of the key proteins in the nucleotide excision repair (NER) process. The effects of point substitutions in the DNA-binding domain of XPA (positively charged lysine residues replaced by negatively charged glutamate residues: XPA K204E, K179E, K141E, and tandem mutant K141E/K179E) on the interaction of the protein with DNA structures modeling intermediates of the damage recognition and pre-incision stages in NER were analyzed. All these mutations decreased the affinity of the protein to DNA, the effect depending on the substitution and the DNA structure. The mutant as well as wild-type proteins bind with highest efficiency partly open damaged DNA duplex, and the affinity of the mutants to this DNA is reduced in the order: K204E > K179E > K141E = K141/179E. For all the mutants, decrease in DNA binding efficiency was more pronounced in the case of full duplex and single-stranded DNA than with bubble-DNA structure, the difference between protein affinities to different DNA structures increasing as DNA binding activity of the mutant decreased. No effect of the studied XPA mutations on the location of the protein on the partially open DNA duplex was observed using photoinduced crosslinking with 5-I-dUMP in different positions of the damaged DNA strand. These results combined with earlier published data suggest no direct correlation between DNA binding and activity in NER for these XPA mutants.

  16. Potassium Acts as a GTPase-Activating Element on Each Nucleotide-Binding Domain of the Essential Bacillus subtilis EngA

    PubMed Central

    Foucher, Anne-Emmanuelle; Reiser, Jean-Baptiste; Ebel, Christine; Housset, Dominique; Jault, Jean-Michel

    2012-01-01

    EngA proteins form a unique family of bacterial GTPases with two GTP-binding domains in tandem, namely GD1 and GD2, followed by a KH (K-homology) domain. They have been shown to interact with the bacterial ribosome and to be involved in its biogenesis. Most prokaryotic EngA possess a high GTPase activity in contrast to eukaryotic GTPases that act mainly as molecular switches. Here, we have purified and characterized the GTPase activity of the Bacillus subtilis EngA and two shortened EngA variants that only contain GD1 or GD2-KH. Interestingly, the GTPase activity of GD1 alone is similar to that of the whole EngA, whereas GD2-KH has a 150-fold lower GTPase activity. At physiological concentration, potassium strongly stimulates the GTPase activity of each protein construct. Interestingly, it affects neither the affinities for nucleotides nor the monomeric status of EngA or the GD1 domain. Thus, potassium likely acts as a chemical GTPase-activating element as proposed for another bacterial GTPase like MnmE. However, unlike MnmE, potassium does not promote dimerization of EngA. In addition, we solved two crystal structures of full-length EngA. One of them contained for the first time a GTP-like analogue bound to GD2 while GD1 was free. Surprisingly, its overall fold was similar to a previously solved structure with GDP bound to both sites. Our data indicate that a significant structural change must occur upon K+ binding to GD2, and a comparison with T. maritima EngA and MnmE structures allowed us to propose a model explaining the chemical basis for the different GTPase activities of GD1 and GD2. PMID:23056455

  17. CARD6 is interferon inducible but not involved in nucleotide-binding oligomerization domain protein signaling leading to NF-kappaB activation.

    PubMed

    Dufner, Almut; Duncan, Gordon S; Wakeham, Andrew; Elford, Alisha R; Hall, Håkan T; Ohashi, Pamela S; Mak, Tak W

    2008-03-01

    We have previously reported the cloning and characterization of CARD6, a caspase recruitment domain (CARD)-containing protein that is structurally related to the interferon (IFN)-inducible GTPases. CARD6 associates with microtubules and with receptor-interacting protein 2 (RIP2). RIP2 mediates NF-kappaB activation induced by the intracellular nucleotide-binding oligomerization domain (NOD) receptors that sense bacterial peptidoglycan. Here we report that the expression of CARD6 and RIP2 in bone marrow-derived macrophages is rapidly induced by beta IFN and gamma IFN. This IFN-induced upregulation of CARD6 is suppressed by lipopolysaccharide (LPS), in contrast to LPS's enhancement of IFN-induced RIP2 upregulation. We generated CARD6-deficient (CARD6(-/-)) mice and carried out extensive analyses of signaling pathways mediating innate and adaptive immune responses, including the NOD pathways, but did not detect any abnormalities. Moreover, CARD6(-/-) mice were just as susceptible as wild-type mice to infection by Salmonella enterica serovar Typhimurium, Listeria monocytogenes, Candida albicans, lymphocytic choriomeningitis virus, or mouse adenovirus type 1. Thus, although structural and in vitro analyses strongly suggest an important role for CARD6 in immune defense, the physiological function of CARD6 remains obscure.

  18. Crystal structure of cGMP-dependent protein kinase Iβ cyclic nucleotide-binding-B domain : Rp-cGMPS complex reveals an apo-like, inactive conformation.

    PubMed

    Campbell, James C; VanSchouwen, Bryan; Lorenz, Robin; Sankaran, Banumathi; Herberg, Friedrich W; Melacini, Giuseppe; Kim, Choel

    2017-01-01

    The R-diastereomer of phosphorothioate analogs of cGMP, Rp-cGMPS, is one of few known inhibitors of cGMP-dependent protein kinase I (PKG I); however, its mechanism of inhibition is currently not fully understood. Here, we determined the crystal structure of the PKG Iβ cyclic nucleotide-binding domain (PKG Iβ CNB-B), considered a 'gatekeeper' for cGMP activation, bound to Rp-cGMPS at 1.3 Å. Our structural and NMR data show that PKG Iβ CNB-B bound to Rp-cGMPS displays an apo-like structure with its helical domain in an open conformation. Comparison with the cAMP-dependent protein kinase regulatory subunit (PKA RIα) showed that this conformation resembles the catalytic subunit-bound inhibited state of PKA RIα more closely than the apo or Rp-cAMPS-bound conformations. These results suggest that Rp-cGMPS inhibits PKG I by stabilizing the inactive conformation of CNB-B. © 2016 Federation of European Biochemical Societies.

  19. Small-angle X-ray scattering study of the ATP modulation of the structural features of the nucleotide binding domains of the CFTR in solution.

    PubMed

    Galeno, Lauretta; Galfrè, Elena; Moran, Oscar

    2011-07-01

    Nucleotide binding domains (NBD1 and NBD2) of the cystic fibrosis transmembrane conductance (CFTR), the defective protein in cystic fibrosis, are responsible for controlling the gating of the chloride channel and are the putative binding site for several candidate drugs in the disease treatment. We studied the structural properties of recombinant NBD1, NBD2, and an equimolar NBD1/NBD2 mixture in solution by small-angle X-ray scattering. We demonstrated that NBD1 or NBD2 alone have an overall structure similar to that observed for crystals. Application of 2 mM ATP induces a dimerization of NBD1 but does not modify the NBD2 monomeric conformation. An equimolar mixture of NBD1/NBD2 in solution shows a dimeric conformation, and the application of ATP to the solution causes a conformational change in the NBD1/NBD2 complex into a tight heterodimer. We hypothesize that a similar conformation change occurs in situ and that transition is part of the gating mechanism. To our knowledge, this is the first direct observation of a conformational change of the NBD1/NBD2 interaction by ATP. This information may be useful to understand the physiopathology of cystic fibrosis.

  20. The nucleotide-binding domains of sulfonylurea receptor 2A and 2B play different functional roles in nicorandil-induced activation of ATP-sensitive K+ channels.

    PubMed

    Yamada, Mitsuhiko; Kurachi, Yoshihisa

    2004-05-01

    Nicorandil activates ATP-sensitive K(+) channels composed of Kir6.2 and either sulfonylurea receptor (SUR) 2A or 2B. Although SUR2A and SUR2B differ only in their C-terminal 42 amino acids (C42) and possess identical drug receptors and nucleotide-binding domains (NBDs), nicorandil more potently activates SUR2B/Kir6.2 than SUR2A/Kir6.2 channels. Here, we analyzed the roles of NBDs in these channels' response to nicorandil with the inside-out configuration of the patch-clamp method. Binding and hydrolysis of nucleotides by NBDs were impaired by mutations in the Walker A motif of NBD1 (K708A) and NBD2 (K1349A) and in the Walker B motif of NBD2 (D1470N). Experiments were done with internal ATP (1 mM). In SUR2A/Kir6.2 channels, the K708A mutation abolished, and the K1349A but not D1470N mutation reduced the sensitivity to nicorandil. ADP (100 microM) significantly increased the wild-type channels' sensitivity to nicorandil, which was abolished by the K1349A or D1470N mutation. Thus, the SUR2A/Kir6.2 channels' response to nicorandil critically depends on ATP-NBD1 interaction and is facilitated by interactions of ATP or ADP with NBD2. In SUR2B/Kir6.2 channels, either the K708A or K1349A mutation partially suppressed the response to nicorandil, and double mutations abolished it. The D1470N mutation also significantly impaired the response. ADP did not sensitize the channels. Thus, NBD2 hydrolyzes ATP, and NBD1 and NBD2 equally contribute to the response by interacting with ATP and ADP, accounting for the higher nicorandil sensitivity of SUR2B/Kir6.2 than SUR2A/Kir6.2 channels in the presence of ATP alone. Thus, C42 modulates the interaction of both NBDs with intracellular nucleotides.

  1. High-Affinity Binding of Silybin Derivatives to the Nucleotide-Binding Domain of a Leishmania tropica P-Glycoprotein-Like Transporter and Chemosensitization of a Multidrug-Resistant Parasite to Daunomycin

    PubMed Central

    Pérez-Victoria, José M.; Pérez-Victoria, F. Javier; Conseil, Gwenaëlle; Maitrejean, Mathias; Comte, Gilles; Barron, Denis; Di Pietro, Attilio; Castanys, Santiago; Gamarro, Francisco

    2001-01-01

    In order to overcome the multidrug resistance mediated by P-glycoprotein-like transporters in Leishmania spp., we have studied the effects produced by derivatives of the flavanolignan silybin and related compounds lacking the monolignol unit on (i) the affinity of binding to a recombinant C-terminal nucleotide-binding domain of the L. tropica P-glycoprotein-like transporter and (ii) the sensitization to daunomycin on promastigote forms of a multidrug-resistant L. tropica line overexpressing the transporter. Oxidation of the flavanonol silybin to the corresponding flavonol dehydrosilybin, the presence of the monolignol unit, and the addition of a hydrophobic substituent such as dimethylallyl, especially at position 8 of ring A, considerably increased the binding affinity. The in vitro binding affinity of these compounds for the recombinant cytosolic domain correlated with their modulation of drug resistance phenotype. In particular, 8-(3,3-dimethylallyl)-dehydrosilybin effectively sensitized multidrug-resistant Leishmania spp. to daunomycin. The cytosolic domains are therefore attractive targets for the rational design of inhibitors against P-glycoprotein-like transporters. PMID:11158738

  2. Deletion of Phenylalanine 508 in the First Nucleotide-binding Domain of the Cystic Fibrosis Transmembrane Conductance Regulator Increases Conformational Exchange and Inhibits Dimerization.

    PubMed

    Chong, P Andrew; Farber, Patrick J; Vernon, Robert M; Hudson, Rhea P; Mittermaier, Anthony K; Forman-Kay, Julie D

    2015-09-18

    Deletion of Phe-508 (F508del) in the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) results in destabilization of the domain, intramolecular interactions involving the domain, and the entire channel. The destabilization caused by F508del manifests itself in defective channel processing and channel gating defects. Here, we present NMR studies of the effect of F508del and the I539T stabilizing mutation on NBD1 dynamics, with a view to understanding these changes in stability. Qualitatively, F508del NMR spectra exhibit significantly more peak broadening than WT spectra due to the enhanced intermediate time scale (millisecond to microsecond) motions in the mutant. Unexpectedly, studies of fast (nanosecond to picosecond) motions revealed that F508del NBD1 tumbles more rapidly in solution than WT NBD1. Whereas F508del tumbles at a rate nearly consistent with the monomeric state, the WT protein tumbles significantly more slowly. Paramagnetic relaxation enhancement experiments confirm that NBD1 homodimerizes in solution in the expected head-to-tail orientation. NMR spectra of WT NBD1 reveal significant concentration-dependent chemical shift perturbations consistent with NBD1 dimerization. Chemical shift analysis suggests that the more rapid tumbling of F508del is the result of an impaired ability to dimerize. Based on previously published crystal structures and NMR spectra of various NBD1 mutants, we propose that deletion of Phe-508 affects Q-loop conformational sampling in a manner that inhibits dimerization. These results provide a potential mechanism for inhibition of channel opening by F508del and support the dimer interface as a target for cystic fibrosis therapeutics.

  3. Solution Structure of the cGMP Binding GAF Domain from Phosphodiesterase 5: Insights into Nucleotide Specificity, Dimerization, and cGMP-Dependent Conformational Change

    SciTech Connect

    Heikaus, Clemens C.; Stout, Joseph R.; Sekharan, Monica R.; Eakin, Catherine M.; Rajagopal, Ponni; Brzovic, Peter S.; Beavo, Joseph A.; Klevit, Rachel E.

    2008-08-15

    Phosphodiesterase 5 (PDE5) controls intracellular levels of cGMP through its regulation of cGMP hydrolysis. Hydrolytic activity of the C-terminal catalytic domain is increased by cGMP binding to the N-terminal GAF A domain. We present the NMR solution structure of the cGMP-bound PDE5A GAF A domain. The cGMP orientation in the buried binding pocket was defined through 37 intermolecular NOEs.

  4. Fish oil attenuates liver injury caused by LPS in weaned pigs associated with inhibition of TLR4 and nucleotide-binding oligomerization domain protein signaling pathways.

    PubMed

    Chen, Feng; Liu, Yulan; Zhu, Huiling; Hong, Yu; Wu, Zhifeng; Hou, Yongqing; Li, Quan; Ding, Binying; Yi, Dan; Chen, Hongbo

    2013-10-01

    This study evaluated whether fish oil exerted a hepatoprotective effect in a LPS-induced liver injury model via regulation of TLR4 and nucleotide-binding oligomerization domain protein (NOD) signaling pathways. Twenty-four piglets were used in a 2 × 2 factorial design, and the main factors included diet (5% corn oil or 5% fish oil) and immunological challenge (LPS or saline). Fish oil resulted in enrichment of eicosapentaenoic acid, docosahexaenoic acid and total (n-3) polyunsaturated fatty acids in liver. Less severe liver injury was observed in pigs fed fish oil, as evidenced by improved serum biochemical parameters and less severe histological liver damage. In addition, higher expression of liver tight junction proteins, and lower hepatocyte proliferation and higher hepatocyte apoptosis were observed in pigs fed fish oil. The improved liver integrity in pigs fed fish oil was concurrent with reduced hepatic mRNA expression of TLR4, myeloid differentiation factor 88, IL-1 receptor-associated kinase 1 and TNF-α receptor-associated factor 6, and NOD1, NOD2 and receptor-interacting serine/threonine-protein kinase 2, as well as reduced hepatic protein expression of NF-κB p65, leading to reduced hepatic pro-inflammatory mediators. These results indicate that fish oil improves liver integrity partially via inhibition of TLR4 and NOD signaling pathways under an inflammatory condition.

  5. Retinoic acid-induced gene-I (RIG-I) associates with nucleotide-binding oligomerization domain-2 (NOD2) to negatively regulate inflammatory signaling.

    PubMed

    Morosky, Stefanie A; Zhu, Jianzhong; Mukherjee, Amitava; Sarkar, Saumendra N; Coyne, Carolyn B

    2011-08-12

    Cytoplasmic caspase recruiting domain (CARD)-containing molecules often function in the induction of potent antimicrobial responses in order to protect mammalian cells from invading pathogens. Retinoic acid-induced gene-I (RIG-I) and nucleotide binding oligomerization domain 2 (NOD2) serve as key factors in the detection of viral and bacterial pathogens, and in the subsequent initiation of innate immune signals to combat infection. RIG-I and NOD2 share striking similarities in their cellular localization, both localize to membrane ruffles in non-polarized epithelial cells and both exhibit a close association with the junctional complex of polarized epithelia. Here we show that RIG-I and NOD2 not only colocalize to cellular ruffles and cell-cell junctions, but that they also form a direct interaction that is mediated by the CARDs of RIG-I and multiple regions of NOD2. Moreover, we show that RIG-I negatively regulates ligand-induced nuclear factor-κB (NF-κB) signaling mediated by NOD2, and that NOD2 negatively regulates type I interferon induction by RIG-I. We also show that the three main Crohn disease-associated mutants of NOD2 (1007fs, R702W, G908R) form an interaction with RIG-I and negatively regulate its signaling to a greater extent than wild-type NOD2. Our results show that in addition to their role in innate immune recognition, RIG-I and NOD2 form a direct interaction at actin-enriched sites within cells and suggest that this interaction may impact RIG-I- and NOD2-dependent innate immune signaling.

  6. Retinoic Acid-induced Gene-I (RIG-I) Associates with Nucleotide-binding Oligomerization Domain-2 (NOD2) to Negatively Regulate Inflammatory Signaling*

    PubMed Central

    Morosky, Stefanie A.; Zhu, Jianzhong; Mukherjee, Amitava; Sarkar, Saumendra N.; Coyne, Carolyn B.

    2011-01-01

    Cytoplasmic caspase recruiting domain (CARD)-containing molecules often function in the induction of potent antimicrobial responses in order to protect mammalian cells from invading pathogens. Retinoic acid-induced gene-I (RIG-I) and nucleotide binding oligomerization domain 2 (NOD2) serve as key factors in the detection of viral and bacterial pathogens, and in the subsequent initiation of innate immune signals to combat infection. RIG-I and NOD2 share striking similarities in their cellular localization, both localize to membrane ruffles in non-polarized epithelial cells and both exhibit a close association with the junctional complex of polarized epithelia. Here we show that RIG-I and NOD2 not only colocalize to cellular ruffles and cell-cell junctions, but that they also form a direct interaction that is mediated by the CARDs of RIG-I and multiple regions of NOD2. Moreover, we show that RIG-I negatively regulates ligand-induced nuclear factor-κB (NF-κB) signaling mediated by NOD2, and that NOD2 negatively regulates type I interferon induction by RIG-I. We also show that the three main Crohn disease-associated mutants of NOD2 (1007fs, R702W, G908R) form an interaction with RIG-I and negatively regulate its signaling to a greater extent than wild-type NOD2. Our results show that in addition to their role in innate immune recognition, RIG-I and NOD2 form a direct interaction at actin-enriched sites within cells and suggest that this interaction may impact RIG-I- and NOD2-dependent innate immune signaling. PMID:21690088

  7. DNA sequence polymorphisms within the bovine guanine nucleotide-binding protein Gs subunit alpha (Gsα)-encoding (GNAS) genomic imprinting domain are associated with performance traits

    PubMed Central

    2011-01-01

    Background Genes which are epigenetically regulated via genomic imprinting can be potential targets for artificial selection during animal breeding. Indeed, imprinted loci have been shown to underlie some important quantitative traits in domestic mammals, most notably muscle mass and fat deposition. In this candidate gene study, we have identified novel associations between six validated single nucleotide polymorphisms (SNPs) spanning a 97.6 kb region within the bovine guanine nucleotide-binding protein Gs subunit alpha gene (GNAS) domain on bovine chromosome 13 and genetic merit for a range of performance traits in 848 progeny-tested Holstein-Friesian sires. The mammalian GNAS domain consists of a number of reciprocally-imprinted, alternatively-spliced genes which can play a major role in growth, development and disease in mice and humans. Based on the current annotation of the bovine GNAS domain, four of the SNPs analysed (rs43101491, rs43101493, rs43101485 and rs43101486) were located upstream of the GNAS gene, while one SNP (rs41694646) was located in the second intron of the GNAS gene. The final SNP (rs41694656) was located in the first exon of transcripts encoding the putative bovine neuroendocrine-specific protein NESP55, resulting in an aspartic acid-to-asparagine amino acid substitution at amino acid position 192. Results SNP genotype-phenotype association analyses indicate that the single intronic GNAS SNP (rs41694646) is associated (P ≤ 0.05) with a range of performance traits including milk yield, milk protein yield, the content of fat and protein in milk, culled cow carcass weight and progeny carcass conformation, measures of animal body size, direct calving difficulty (i.e. difficulty in calving due to the size of the calf) and gestation length. Association (P ≤ 0.01) with direct calving difficulty (i.e. due to calf size) and maternal calving difficulty (i.e. due to the maternal pelvic width size) was also observed at the rs43101491 SNP. Following

  8. Activation of nucleotide-binding oligomerization domain 1 (NOD1) receptor signaling in Labeo rohita by iE-DAP and identification of ligand-binding key motifs in NOD1 by molecular modeling and docking.

    PubMed

    Sahoo, Bikash Ranjan; Swain, Banikalyan; Dikhit, Manas Ranjan; Basu, Madhubanti; Bej, Aritra; Jayasankar, Pallipuram; Samanta, Mrinal

    2013-07-01

    The nucleotide-binding oligomerization domain 1 (NOD1) receptor recognizes various pattern-associated structures of microbes through its leucine-rich repeat (LRR) domain and activates signaling cascades to induce innate immunity. This report describes the activation of NOD1 receptor signaling by gamma-D-glutamyl-meso-diaminopimelic acid (or γ-D-Glu-mDAP [iE-DAP]) in a commercially important fish species, rohu (Labeo rohita). It also described critical motifs in the NOD1-LRR domain that could be involved in binding iE-DAP, lipopolysaccharide (LPS), and polyinosinic:polycytidylic acid (poly I:C). The activation of NOD1 receptor signaling was studied by injecting iE-DAP, and analysis of tissue samples for NOD1 and receptor-interacting serine/threonine kinase (RICK) expression was done by quantitative real-time polymerase chain reaction (qRT-PCR) assay. To identify ligand-binding motifs in NOD1, the 3D model of NOD1-LRR was generated, followed by a 6-ns molecular dynamics simulation. Molecular docking of LPS with NOD1-LRR was executed at the Hex and PatchDock servers, and iE-DAP and poly I:C in the AutoDock 4.2, FlexX 2.1, Glide 5.5, and GOLD 4.1 programs. The results of qRT-PCR revealed significant (p < 0.05) upregulation of NOD1 and RICK expression. Molecular docking revealed that the amino acid residues at LRR1-2, LRR3-7, and LRR8-9 could be involved in poly I:C, LPS, and iE-DAP binding, respectively. In fish, this is the first report describing the 3D structure of NOD1-LRR and its critical ligand-binding motifs.

  9. The rho-guanine nucleotide exchange factor domain of obscurin regulates assembly of titin at the Z-disk through interactions with Ran binding protein 9.

    PubMed

    Bowman, Amber L; Catino, Dawn H; Strong, John C; Randall, William R; Kontrogianni-Konstantopoulos, Aikaterini; Bloch, Robert J

    2008-09-01

    Obscurin is an approximately 800-kDa protein composed of structural and signaling domains that organizes contractile structures in striated muscle. We have studied the Rho-GEF domain of obscurin to understand its roles in morphogenesis and signaling. We used adenoviral overexpression of this domain, together with ultrastructural and immunofluorescence methods, to examine its effect on maturing myofibrils. We report that overexpression of the Rho-GEF domain specifically inhibits the incorporation of titin into developing Z-disks and disrupts the structure of the Z-disk and Z/I junction, and alters features of the A/I junction. The organization of other sarcomeric markers, including alpha-actinin, was not affected. We identified Ran binding protein 9 (RanBP9) as a novel ligand of the Rho-GEF domain and showed that binding is specific, with an apparent binding affinity of 1.9 microM. Overexpression of the binding region of RanBP9 also disrupted the incorporation of titin into developing Z-disks. Immunofluorescence localization during myofibrillogenesis indicated that the Rho-GEF domain assembles into sarcomeres before RanBP9, which first occurs in myonuclei and later in development translocates to the myoplasm, where it colocalizes with obscurin. Both the Rho-GEF domain and its binding region on RanBP9 bind directly to the N-terminal Ig domains of titin, which flank the Z-disk. Our results suggest that the Rho-GEF domain interacts with RanBP9 and that both can interact with the N-terminal region of titin to influence the formation of the Z-disk and A/I junction.

  10. The Microbiota Protects against Ischemia/Reperfusion-Induced Intestinal Injury through Nucleotide-Binding Oligomerization Domain-Containing Protein 2 (NOD2) Signaling

    PubMed Central

    Perez-Chanona, Ernesto; Mühlbauer, Marcus; Jobin, Christian

    2015-01-01

    Nucleotide-binding oligomerization domain-containing protein 2 (NOD2), an intracellular pattern recognition receptor, induces autophagy on detection of muramyl dipeptide (MDP), a component of microbial cell walls. The role of bacteria and NOD2 signaling toward ischemia/reperfusion (I/R)–induced intestinal injury response is unknown. Herein, we report that I/R-induced intestinal injury in germ-free (GF) C57BL/6 wild-type (WT) mice is worse than in conventionally derived mice. More important, microbiota-mediated protection against I/R-induced intestinal injury is abrogated in conventionally derived Nod2−/− mice and GF Nod2−/− mice. Also, WT mice raised in specific pathogen-free (SPF) conditions fared better against I/R-induced injury than SPF Nod2−/− mice. Moreover, SPF WT mice i.p. administered 10 mg/kg MDP were protected against injury compared with mice administered the inactive enantiomer, l-MDP, an effect lost in Nod2−/− mice. However, MDP administration failed to protect GF mice from I/R-induced intestinal injury compared with control, a phenomenon correlating with undetectable Nod2 mRNA level in the epithelium of GF mice. More important, the autophagy-inducer rapamycin protected Nod2−/− mice against I/R-induced injury and increased the levels of LC3+ puncta in injured tissue of Nod2−/− mice. These findings demonstrate that NOD2 protects against I/R and promotes wound healing, likely through the induction of the autophagy response. PMID:25204845

  11. A Dual Role for Receptor-interacting Protein Kinase 2 (RIP2) Kinase Activity in Nucleotide-binding Oligomerization Domain 2 (NOD2)-dependent Autophagy*

    PubMed Central

    Homer, Craig R.; Kabi, Amrita; Marina-García, Noemí; Sreekumar, Arun; Nesvizhskii, Alexey I.; Nickerson, Kourtney P.; Chinnaiyan, Arul M.; Nuñez, Gabriel; McDonald, Christine

    2012-01-01

    Autophagy is triggered by the intracellular bacterial sensor NOD2 (nucleotide-binding, oligomerization domain 2) as an anti-bacterial response. Defects in autophagy have been implicated in Crohn's disease susceptibility. The molecular mechanisms of activation and regulation of this process by NOD2 are not well understood, with recent studies reporting conflicting requirements for RIP2 (receptor-interacting protein kinase 2) in autophagy induction. We examined the requirement of NOD2 signaling mediated by RIP2 for anti-bacterial autophagy induction and clearance of Salmonella typhimurium in the intestinal epithelial cell line HCT116. Our data demonstrate that NOD2 stimulates autophagy in a process dependent on RIP2 tyrosine kinase activity. Autophagy induction requires the activity of the mitogen-activated protein kinases MEKK4 and p38 but is independent of NFκB signaling. Activation of autophagy was inhibited by a PP2A phosphatase complex, which interacts with both NOD2 and RIP2. PP2A phosphatase activity inhibited NOD2-dependent autophagy but not activation of NFκB or p38. Upon stimulation of NOD2, the phosphatase activity of the PP2A complex is inhibited through tyrosine phosphorylation of the catalytic subunit in a process dependent on RIP2 activity. These findings demonstrate that RIP2 tyrosine kinase activity is not only required for NOD2-dependent autophagy but plays a dual role in this process. RIP2 both sends a positive autophagy signal through activation of p38 MAPK and relieves repression of autophagy mediated by the phosphatase PP2A. PMID:22665475

  12. SH3 Domains of Grb2 Adaptor Bind to PXψPXR Motifs Within the Sos1 Nucleotide Exchange Factor in a Discriminate Manner†

    PubMed Central

    McDonald, Caleb B.; Seldeen, Kenneth L.; Deegan, Brian J.; Farooq, Amjad

    2009-01-01

    Ubiquitously encountered in a wide variety of cellular processes, the Grb2-Sos1 interaction is mediated through the combinatorial binding of nSH3 and cSH3 domains of Grb2 to various sites containing PXψPXR motifs within Sos1. Here, using isothermal titration calorimetry, we demonstrate that while the nSH3 domain binds with affinities in the physiological range to all four sites containing PXψPXR motifs, designated S1, S2, S3 and S4, the cSH3 domain can only do so at S1 site. Further scrutiny of these sites yields rationale for the recognition of various PXψPXR motifs by the SH3 domains in a discriminate manner. Unlike the PXψPXR motifs at S2, S3 and S4 sites, the PXψPXR motif at S1 site is flanked at its C-terminus with two additional arginine residues that are absolutely required for high-affinity binding of cSH3 domain. In striking contrast, these two additional arginine residues augment the binding of nSH3 domain to S1 site but their role is not critical for the recognition of S2, S3 and S4 sites. Site-directed mutagenesis suggests that the two additional arginine residues flanking the PXψPXR motif at S1 site contribute to free energy of binding via the formation of salt bridges with specific acidic residues in SH3 domains. Molecular modeling is employed to project these novel findings into the 3D structures of SH3 domains in complex with a peptide containing the PXψPXR motif and flanking arginine residues at S1 site. Taken together, this study furthers our understanding of the assembly of a key signaling complex central to cellular machinery. PMID:19323566

  13. SH3 domains of Grb2 adaptor bind to PXpsiPXR motifs within the Sos1 nucleotide exchange factor in a discriminate manner.

    PubMed

    McDonald, Caleb B; Seldeen, Kenneth L; Deegan, Brian J; Farooq, Amjad

    2009-05-19

    Ubiquitously encountered in a wide variety of cellular processes, the Grb2-Sos1 interaction is mediated through the combinatorial binding of nSH3 and cSH3 domains of Grb2 to various sites containing PXpsiPXR motifs within Sos1. Here, using isothermal titration calorimetry, we demonstrate that while the nSH3 domain binds with affinities in the physiological range to all four sites containing PXpsiPXR motifs, designated S1, S2, S3, and S4, the cSH3 domain can only do so at the S1 site. Further scrutiny of these sites yields rationale for the recognition of various PXpsiPXR motifs by the SH3 domains in a discriminate manner. Unlike the PXpsiPXR motifs at S2, S3, and S4 sites, the PXpsiPXR motif at the S1 site is flanked at its C-terminus with two additional arginine residues that are absolutely required for high-affinity binding of the cSH3 domain. In striking contrast, these two additional arginine residues augment the binding of the nSH3 domain to the S1 site, but their role is not critical for the recognition of S2, S3, and S4 sites. Site-directed mutagenesis suggests that the two additional arginine residues flanking the PXpsiPXR motif at the S1 site contribute to free energy of binding via the formation of salt bridges with specific acidic residues in SH3 domains. Molecular modeling is employed to project these novel findings into the 3D structures of SH3 domains in complex with a peptide containing the PXpsiPXR motif and flanking arginine residues at the S1 site. Taken together, this study furthers our understanding of the assembly of a key signaling complex central to cellular machinery.

  14. Effects of polymorphisms in nucleotide-binding oligomerization domains 1 and 2 on biomarkers of the metabolic syndrome and type II diabetes.

    PubMed

    Cuda, Cristina; Badawi, Alaa; Karmali, Mohamed; El-Sohemy, Ahmed

    2012-07-01

    The innate immune receptor toll-like receptor 4 (TLR4) has been implicated in mediating some of the effects of dietary lipids on inflammation and type 2 diabetes (T2D). Similar to TLR4, the nucleotide-binding oligomerization domains (Nods) 1 and 2 are also proteins of innate immunity, which can respond to lipids and initiate pro-inflammatory signalling that plays a role in the aetiology of T2D. The objective was to determine the effect of Nod1 (Glu266Lys) and Nod2 (Ser268Pro) genotypes on factors associated with the metabolic syndrome (MetS), and whether they modify the association between dietary lipids and biomarkers of the MetS. Men and women (n = 998) between the ages of 20-29 years were genotyped for both polymorphisms, completed a one-month, semiquantitative food frequency questionnaire and provided a fasting blood sample. The Glu266Lys polymorphism in Nod1 was not associated with any of the biomarkers of the MetS, but modified the association between dietary saturated fat (SFA) and insulin sensitivity, as measured by HOMA-IR (p for interaction = 0.04). Individuals with the Glu/Glu or Glu/Lys genotype showed no significant relationship between dietary SFA and HOMA-IR (β = -0.002 ± 0.006, p = 0.77; and β = -0.003 ± 0.006, p = 0.61), while those with the Lys/Lys genotype showed a positive association (β = 0.033 ± 0.02, p = 0.03). The Nod2 Ser268Pro polymorphism was not associated with components of the MetS and did not modify the relationship between dietary lipid intake and the biomarkers of MetS. In summary, the Nod1 Glu266Lys polymorphism modifies the relationship between dietary SFA intake and HOMA-IR, suggesting that Nod1 may act as an intracellular lipid sensor affecting insulin sensitivity.

  15. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  16. Cellulose binding domain proteins

    SciTech Connect

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  17. Rotations of the 2B Sub-domain of E. coli UvrD Helicase/Translocase Coupled to Nucleotide and DNA Binding

    SciTech Connect

    Jia, Haifeng; Korolev, Sergey; Niedziela-Majka, Anita; Maluf, Nasib K.; Gauss, George H.; Myong, Sua; Ha, Taekjip; Waksman, Gabriel; Lohman, Timothy M.

    2011-11-02

    Escherichia coli UvrD is a superfamily 1 DNA helicase and single-stranded DNA (ssDNA) translocase that functions in DNA repair and plasmid replication and as an anti-recombinase by removing RecA protein from ssDNA. UvrD couples ATP binding and hydrolysis to unwind double-stranded DNA and translocate along ssDNA with 3'-to-5' directionality. Although a UvrD monomer is able to translocate along ssDNA rapidly and processively, DNA helicase activity in vitro requires a minimum of a UvrD dimer. Previous crystal structures of UvrD bound to a ssDNA/duplex DNA junction show that its 2B sub-domain exists in a 'closed' state and interacts with the duplex DNA. Here, we report a crystal structure of an apo form of UvrD in which the 2B sub-domain is in an 'open' state that differs by an {approx} 160{sup o} rotation of the 2B sub-domain. To study the rotational conformational states of the 2B sub-domain in various ligation states, we constructed a series of double-cysteine UvrD mutants and labeled them with fluorophores such that rotation of the 2B sub-domain results in changes in fluorescence resonance energy transfer. These studies show that the open and closed forms can interconvert in solution, with low salt favoring the closed conformation and high salt favoring the open conformation in the absence of DNA. Binding of UvrD to DNA and ATP binding and hydrolysis also affect the rotational conformational state of the 2B sub-domain, suggesting that 2B sub-domain rotation is coupled to the function of this nucleic acid motor enzyme.

  18. Rotations of the 2B Sub-domain of E. coli UvrD Helicase/Translocase Coupled to Nucleotide and DNA Binding

    PubMed Central

    Jia, Haifeng; Korolev, Sergey; Niedziela-Majka, Anita; Maluf, Nasib K.; Gauss, George H.; Myong, Sua; Ha, Taekjip; Waksman, Gabriel; Lohman, Timothy M.

    2011-01-01

    E. coli UvrD is a superfamily 1 (SF1) DNA helicase and single stranded (ss) DNA translocase that functions in DNA repair, plasmid replication and as an anti-recombinase by removing RecA protein from ssDNA. UvrD couples ATP binding and hydrolysis to unwind double-stranded DNA (dsDNA) and translocate along ssDNA with 3′ to 5′ directionality. Although a UvrD monomer is able to translocate along ssDNA rapidly and processively, DNA helicase activity in vitro requires a minimum of a UvrD dimer. Previous crystal structures of UvrD bound to a ss-duplex DNA junction show that its 2B sub-domain exists in a “closed” state and interacts with the duplex DNA. Here we report a crystal structure of an apo form of UvrD in which the 2B sub-domain is in an “open” state that differs by a ~160° rotation of the 2B sub-domain. To study the rotational conformational states of the 2B sub-domain in various ligation states, a series of double cysteine UvrD mutants were constructed and labeled with fluorophores such that rotation of the 2B sub-domain results in changes in fluorescence resonance energy transfer (FRET). These studies show that the open and closed forms can interconvert in solution with low salt favoring the closed conformation and high salt favoring the open conformation in the absence of DNA. Binding of UvrD to DNA as well as ATP binding and hydrolysis also affect the rotational conformational state of the 2B sub-domain suggesting that 2B sub-domain rotation is coupled to the function of this nucleic acid motor enzyme. PMID:21704638

  19. Evolution of allostery in the cyclic nucleotide binding module

    PubMed Central

    Kannan, Natarajan; Wu, Jian; Anand, Ganesh S; Yooseph, Shibu; Neuwald, Andrew F; Venter, J Craig; Taylor, Susan S

    2007-01-01

    Background The cyclic nucleotide binding (CNB) domain regulates signaling pathways in both eukaryotes and prokaryotes. In this study, we analyze the evolutionary information embedded in genomic sequences to explore the diversity of signaling through the CNB domain and also how the CNB domain elicits a cellular response upon binding to cAMP. Results Identification and classification of CNB domains in Global Ocean Sampling and other protein sequences reveals that they typically are fused to a wide variety of functional domains. CNB domains have undergone major sequence variation during evolution. In particular, the sequence motif that anchors the cAMP phosphate (termed the PBC motif) is strikingly different in some families. This variation may contribute to ligand specificity inasmuch as members of the prokaryotic cooA family, for example, harbor a CNB domain that contains a non-canonical PBC motif and that binds a heme ligand in the cAMP binding pocket. Statistical comparison of the functional constraints imposed on the canonical and non-canonical PBC containing sequences reveals that a key arginine, which coordinates with the cAMP phosphate, has co-evolved with a glycine in a distal β2-β3 loop that allosterically couples cAMP binding to distal regulatory sites. Conclusion Our analysis suggests that CNB domains have evolved as a scaffold to sense a wide variety of second messenger signals. Based on sequence, structural and biochemical data, we propose a mechanism for allosteric regulation by CNB domains. PMID:18076763

  20. The crystal structure of the D-alanine-D-alanine ligase from Acinetobacter baumannii suggests a flexible conformational change in the central domain before nucleotide binding.

    PubMed

    Huynh, Kim-Hung; Hong, Myoung-ki; Lee, Clarice; Tran, Huyen-Thi; Lee, Sang Hee; Ahn, Yeh-Jin; Cha, Sun-Shin; Kang, Lin-Woo

    2015-11-01

    Acinetobacter baumannii, which is emerging as a multidrug-resistant nosocomial pathogen, causes a number of diseases, including pneumonia, bacteremia, meningitis, and skin infections. With ATP hydrolysis, the D-alanine-D-alanine ligase (DDL) catalyzes the synthesis of D-alanyl-D-alanine, which is an essential component of bacterial peptidoglycan. In this study, we determined the crystal structure of DDL from A. baumannii (AbDDL) at a resolution of 2.2 Å. The asymmetric unit contained six protomers of AbDDL. Five protomers had a closed conformation in the central domain, while one protomer had an open conformation in the central domain. The central domain with an open conformation did not interact with crystallographic symmetry-related protomers and the conformational change of the central domain was not due to crystal packing. The central domain of AbDDL can have an ensemble of the open and closed conformations before the binding of substrate ATP. The conformational change of the central domain is important for the catalytic activity and the detail information will be useful for the development of inhibitors against AbDDL and putative antibacterial agents against A. baumannii. The AbDDL structure was compared with that of other DDLs that were in complex with potent inhibitors and the catalytic activity of AbDDL was confirmed using enzyme kinetics assays.

  1. The ATPase Activity of the P-glycoprotein Drug Pump Is Highly Activated When the N-terminal and Central Regions of the Nucleotide-binding Domains Are Linked Closely Together*

    PubMed Central

    Loo, Tip W.; Bartlett, M. Claire; Detty, Michael R.; Clarke, David M.

    2012-01-01

    The P-glycoprotein (P-gp, ABCB1) drug pump protects us from toxic compounds and confers multidrug resistance. Each of the homologous halves of P-gp is composed of a transmembrane domain (TMD) with 6 TM segments followed by a nucleotide-binding domain (NBD). The predicted drug- and ATP-binding sites reside at the interface between the TMDs and NBDs, respectively. Crystal structures and EM projection images suggest that the two halves of P-gp are separated by a central cavity that closes upon binding of nucleotide. Binding of drug substrates may induce further structural rearrangements because they stimulate ATPase activity. Here, we used disulfide cross-linking with short (8 Å) or long (22 Å) cross-linkers to identify domain-domain interactions that activate ATPase activity. It was found that cross-linking of cysteines that lie close to the LSGGQ (P517C) and Walker A (I1050C) sites of NBD1 and NBD2, respectively, as well as the cytoplasmic extensions of TM segments 3 (D177C or L175C) and 9 (N820C) with a short cross-linker activated ATPase activity over 10-fold. A pyrylium compound that inhibits ATPase activity blocked cross-linking at these sites. Cross-linking between the NBDs was not inhibited by tariquidar, a drug transport inhibitor that stimulates P-gp ATPase activity but is not transported. Cross-linking between extracellular cysteines (T333C/L975C) predicted to lock P-gp into a conformation that prevents close NBD association inhibited ATPase activity. The results suggest that trapping P-gp in a conformation in which the NBDs are closely associated likely mimics the structural rearrangements caused by binding of drug substrates that stimulate ATPase activity. PMID:22700974

  2. The Nucleotide-Binding Oligomerization Domain-Like Receptor Family Pyrin Domain-Containing 3 Inflammasome Regulates Bronchial Epithelial Cell Injury and Proapoptosis after Exposure to Biomass Fuel Smoke.

    PubMed

    Li, Chen; Zhihong, Huang; Wenlong, Li; Xiaoyan, Liu; Qing, Chen; Wenzhi, Luo; Siming, Xie; Shengming, Liu

    2016-12-01

    The number of individuals in the population exposed to biomass fuel smoke (BS) is far greater than the number of cigarette smokers. About 20% of cigarette smokers develop chronic obstructive pulmonary disease (COPD) due to smoke-induced irreversible damage and sustained inflammation of the airway epithelium. However, the role of BS in COPD pathogenesis remains to be elucidated. In this study, we investigated the expression of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing (NLRP) 3 and caspase-1 in the bronchial epithelium from patients with COPD, and further determined the specific role of the NLRP3 inflammasome in bronchial epithelium injury using two in vitro models (BS and cigarette smoke [CS]) in the human bronchial epithelial (HBE) cell line (16HBE). After exposure to BS and CS, the release of damage-associated molecular patterns, the transcriptional and translational up-regulation of NLRP3, and the activation of caspase-1 were observed in cells at different time points. Because IL-1β secretion was dependent on the NLRP3 inflammasome, we assessed CXCL-8 production in response to smoke. Using a transwell migration assay in which 16HBE cells and human alveolar macrophages were cocultured, we showed that smoke-induced NLRP3 activation in 16HBE cells increased the migration of human alveolar macrophages. When the NLRP3 expression was silenced, the average migration distance of 16HBE was increased in scratch assay, because the activation of NLRP3 induced apoptosis by the p53-Bax mitochondrial pathway in the smoke-induced response. These results demonstrate the importance of the NLRP3 inflammasome in mediating BS- and CS-induced HBE cell damage and proapoptosis.

  3. The roles of RIIbeta linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of Type IIbeta Protein Kinase A. A small angle X-ray and neutron scattering study

    DOE PAGES

    Blumenthal, Donald K.; Copps, Jeffrey; Smith-Nguyen, Eric V.; ...

    2014-08-11

    Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. Moreover, the PKA holoenzyme is a tetramer (R2:C2), with a regulatory subunit homodimer (R2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the type IIβ holoenzyme ismore » much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1–280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. These results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA.« less

  4. The roles of RIIbeta linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of Type IIbeta Protein Kinase A. A small angle X-ray and neutron scattering study

    SciTech Connect

    Blumenthal, Donald K.; Copps, Jeffrey; Smith-Nguyen, Eric V.; Zhang, Ping; Heller, William T.; Taylor, Susan S.

    2014-08-11

    Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. Moreover, the PKA holoenzyme is a tetramer (R2:C2), with a regulatory subunit homodimer (R2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the type IIβ holoenzyme is much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1–280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. These results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA.

  5. The roles of the RIIβ linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of the type IIβ protein kinase A: a small angle x-ray and neutron scattering study.

    PubMed

    Blumenthal, Donald K; Copps, Jeffrey; Smith-Nguyen, Eric V; Zhang, Ping; Heller, William T; Taylor, Susan S

    2014-10-10

    Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. The PKA holoenzyme is a tetramer (R2:C2), with a regulatory subunit homodimer (R2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the type IIβ holoenzyme is much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1-280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. Our results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA.

  6. A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties.

    PubMed

    Murphy, James M; Zhang, Qingwei; Young, Samuel N; Reese, Michael L; Bailey, Fiona P; Eyers, Patrick A; Ungureanu, Daniela; Hammaren, Henrik; Silvennoinen, Olli; Varghese, Leila N; Chen, Kelan; Tripaydonis, Anne; Jura, Natalia; Fukuda, Koichi; Qin, Jun; Nimchuk, Zachary; Mudgett, Mary Beth; Elowe, Sabine; Gee, Christine L; Liu, Ling; Daly, Roger J; Manning, Gerard; Babon, Jeffrey J; Lucet, Isabelle S

    2014-01-15

    Protein kinase-like domains that lack conserved residues known to catalyse phosphoryl transfer, termed pseudokinases, have emerged as important signalling domains across all kingdoms of life. Although predicted to function principally as catalysis-independent protein-interaction modules, several pseudokinase domains have been attributed unexpected catalytic functions, often amid controversy. We established a thermal-shift assay as a benchmark technique to define the nucleotide-binding properties of kinase-like domains. Unlike in vitro kinase assays, this assay is insensitive to the presence of minor quantities of contaminating kinases that may otherwise lead to incorrect attribution of catalytic functions to pseudokinases. We demonstrated the utility of this method by classifying 31 diverse pseudokinase domains into four groups: devoid of detectable nucleotide or cation binding; cation-independent nucleotide binding; cation binding; and nucleotide binding enhanced by cations. Whereas nine pseudokinases bound ATP in a divalent cation-dependent manner, over half of those examined did not detectably bind nucleotides, illustrating that pseudokinase domains predominantly function as non-catalytic protein-interaction modules within signalling networks and that only a small subset is potentially catalytically active. We propose that henceforth the thermal-shift assay be adopted as the standard technique for establishing the nucleotide-binding and catalytic potential of kinase-like domains.

  7. Activation of Autophagy and Nucleotide-Binding Domain Leucine-Rich Repeat–Containing-Like Receptor Family, Pyrin Domain–Containing 3 Inflammasome during Leishmania infantum–Associated Glomerulonephritis

    PubMed Central

    Esch, Kevin J.; Schaut, Robert G.; Lamb, Ian M.; Clay, Gwendolyn; Morais Lima, Ádila L.; do Nascimento, Paulo R.P.; Whitley, Elizabeth M.; Jeronimo, Selma M.B.; Sutterwala, Fayyaz S.; Haynes, Joseph S.; Petersen, Christine A.

    2016-01-01

    Chronic kidney disease is a major contributor to human and companion animal morbidity and mortality. Renal complications are sequelae of canine and human visceral leishmaniasis (VL). Despite the high incidence of infection-mediated glomerulonephritis, little is known about pathogenesis of VL-associated renal disease. Leishmania infantum–infected dogs are a naturally occurring model of VL-associated glomerulonephritis. Membranoproliferative glomerulonephritis type I [24 of 25 (96%)], with interstitial lymphoplasmacytic nephritis [23 of 25 (92%)], and glomerular and interstitial fibrosis [12 of 25 (48%)] were predominant lesions. An ultrastructural evaluation of glomeruli from animals with VL identified mesangial cell proliferation and interposition. Immunohistochemistry demonstrated significant Leishmania antigen, IgG, and C3b deposition in VL dog glomeruli. Asymptomatic and symptomatic dogs had increased glomerular nucleotide-binding domain leucine-rich repeat–containing-like receptor family, pyrin domain containing 3 and autophagosome-associated microtubule-associated protein 1 light chain 3 associated with glomerular lesion severity. Transcriptional analyses from symptomatic dogs confirmed induction of autophagy and inflammasome genes within glomeruli and tubules. On the basis of temporal VL staging, glomerulonephritis was initiated by IgG and complement deposition. This deposition preceded presence of nucleotide-binding domain leucine-rich repeat–containing-like receptor family, pyrin domain containing 3–associated inflammasomes and increased light chain 3 puncta indicative of autophagosomes in glomeruli from dogs with clinical VL and renal failure. These findings indicate potential roles for inflammasome complexes in glomerular damage during VL and autophagy in ensuing cellular responses. PMID:26079813

  8. Microbial starch-binding domain.

    PubMed

    Rodríguez-Sanoja, Romina; Oviedo, Norma; Sánchez, Sergio

    2005-06-01

    Glucosidic bonds from different non-soluble polysaccharides such as starch, cellulose and xylan are hydrolyzed by amylases, cellulases and xylanases, respectively. These enzymes are produced by microorganisms. They have a modular structure that is composed of a catalytic domain and at least one non-catalytic domain that is involved in polysaccharide binding. Starch-binding modules are present in microbial enzymes that are involved in starch metabolism; these are classified into several different families on the basis of their amino acid sequence similarities. Such binding domains promote attachment to the substrate and increase its concentration at the active site of the enzyme, which allows microorganisms to degrade non-soluble starch. Fold similarities are better conserved than sequences; nevertheless, it is possible to notice two evolutionary clusters of microbial starch-binding domains. These domains have enormous potential as tags for protein immobilization, as well as for the tailoring of enzymes that play a part in polysaccharide metabolism.

  9. In Silico Molecular Modeling and Docking Studies on Novel Mutants (E229V, H225P and D230C) of the Nucleotide-Binding Domain of Homo sapiens Hsp70.

    PubMed

    Elengoe, Asita; Hamdan, Salehhuddin

    2016-08-12

    In this study, we explored the possibility of determining the synergistic interactions between nucleotide-binding domain (NBD) of Homo sapiens heat-shock 70 kDa protein (Hsp70) and E1A 32 kDa of adenovirus serotype 5 motif (PNLVP) in the efficiency of killing of tumor cells in cancer treatment. At present, the protein interaction between NBD and PNLVP motif is still unknown, but believed to enhance the rate of virus replication in tumor cells. Three mutant models (E229V, H225P and D230C) were built and simulated, and their interactions with PNLVP motif were studied. The PNLVP motif showed the binding energy and intermolecular energy values with the novel E229V mutant at -7.32 and -11.2 kcal/mol. The E229V mutant had the highest number of hydrogen bonds (7). Based on the root mean square deviation, root mean square fluctuation, hydrogen bonds, salt bridge, secondary structure, surface-accessible solvent area, potential energy and distance matrices analyses, it was proved that the E229V had the strongest and most stable interaction with the PNLVP motif among all the four protein-ligand complex structures. The knowledge of this protein-ligand complex model would help in designing Hsp70 structure-based drug for cancer therapy.

  10. Conserved Asp327 of Walker B motif in the N-terminal Nucleotide Binding Domain (NBD-1) of Cdr1p of Candida albicans has acquired a new role in ATP hydrolysis

    PubMed Central

    Rai, Versha; Gaur, Manisha; Shukla, Sudhanshu; Shukla, Suneet; Ambudkar, Suresh V.; Komath, Sneha Sudha; Prasad, Rajendra

    2008-01-01

    The Walker A and B motifs of nucleotide binding domains (NBDs) of Cdr1p though almost identical to all ABC transporters, has unique substitutions. We have in the past shown that Trp326 of Walker B and Cys193 of Walker A motifs of N-terminal NBD of Cdr1p have distinct roles in ATP binding and hydrolysis, respectively. In the present study, we have examined the role of a well conserved Asp327 in the Walker B motif of the N-terminal NBD which is preceded (Trp326) and followed (Asn328) by atypical amino acid substitutions and compared it with its equivalent well conserved Asp1026 of the C-terminal NBD of Cdr1p. We observed that the removal of the negative charge by D327N, D327A, D1026N, D1026A and D327N/D1026N substitutions, resulted in Cdr1p mutant variants that were severely impaired in ATPase activity and drug efflux. Importantly, all the mutant variants showed characteristics similar to those of wild type with respect to cell surface expression and photoaffinity drug analogue [125I] IAAP and [3H] azidopine labeling. While Cdr1p D327N mutant variant showed comparable binding with [α-32P] 8-azido ATP, Cdr1p D1026N and Cdr1p D327N/D1026N mutant variants were crippled in nucleotide binding. That the two conserved carboxylate residues Asp327 and Asp1026 are functionally different was further evident from the pH profile of ATPase activity. Cdr1p D327N mutant variant showed ∼40% enhancement of its residual ATPase activity at acidic pH while no such pH effect was seen with Cdr1p D1026N mutant variant. Our experimental data suggest that Asp327 of N-terminal NBD has acquired a new role to act as a catalytic base in ATP hydrolysis, a role normally conserved for Glu present adjacent to the conserved Asp in the Walker B motif of all the non-fungal transporters. PMID:17144665

  11. Nucleotide-binding properties of kinase-deficient epidermal-growth-factor-receptor mutants.

    PubMed

    Cheng, K; Koland, J G

    1998-02-15

    The nucleotide-binding properties of wild-type epidermal- growth-factor (EGF)-receptor protein tyrosine kinase (PTK) and EGF-receptor mutants with site-specific amino acid substitutions known to attenuate protein kinase activity were analysed by a fluorescence competition assay employing the nucleotide analogue 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate. Binding affinities for ATP and Mn.ATP complex were determined for the PTK domains of the wild-type and two mutant proteins. Surprisingly, mutation of the highly conserved Lys-721 residue in the nucleotide-binding site of the EGF- receptor PTK domain did not abolish ATP and Mn.ATP binding, although the binding affinity for the Mn.ATP complex was significantly reduced. A second kinase-inactivating mutation that targeted the highly conserved Asp-813 residue had little effect on the nucleotide-binding properties of the EGF-receptor PTK domain. These results indicated that the principle effect of these two kinase-inactivating amino acid substitutions is not to block nucleotide binding, but is instead an inhibition of the phospho-transfer reaction.

  12. Nucleotide-binding properties of kinase-deficient epidermal-growth-factor-receptor mutants.

    PubMed Central

    Cheng, K; Koland, J G

    1998-01-01

    The nucleotide-binding properties of wild-type epidermal- growth-factor (EGF)-receptor protein tyrosine kinase (PTK) and EGF-receptor mutants with site-specific amino acid substitutions known to attenuate protein kinase activity were analysed by a fluorescence competition assay employing the nucleotide analogue 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate.Binding affinities for ATP and Mn.ATP complex were determined for the PTK domains of the wild-type and two mutant proteins. Surprisingly, mutation of the highly conserved Lys-721 residue in the nucleotide-binding site of the EGF- receptor PTK domain did not abolish ATP and Mn.ATP binding, although the binding affinity for the Mn.ATP complex was significantly reduced. A second kinase-inactivating mutation that targeted the highly conserved Asp-813 residue had little effect on the nucleotide-binding properties of the EGF-receptor PTK domain. These results indicated that the principle effect of these two kinase-inactivating amino acid substitutions is not to block nucleotide binding, but is instead an inhibition of the phospho-transfer reaction. PMID:9461530

  13. Ligand binding by PDZ domains.

    PubMed

    Chi, Celestine N; Bach, Anders; Strømgaard, Kristian; Gianni, Stefano; Jemth, Per

    2012-01-01

    The postsynaptic density protein-95/disks large/zonula occludens-1 (PDZ) protein domain family is one of the most common protein-protein interaction modules in mammalian cells, with paralogs present in several hundred human proteins. PDZ domains are found in most cell types, but neuronal proteins, for example, are particularly rich in these domains. The general function of PDZ domains is to bring proteins together within the appropriate cellular compartment, thereby facilitating scaffolding, signaling, and trafficking events. The many functions of PDZ domains under normal physiological as well as pathological conditions have been reviewed recently. In this review, we focus on the molecular details of how PDZ domains bind their protein ligands and their potential as drug targets in this context.

  14. Guanyl nucleotides modulate binding to steroid receptors in neuronal membranes.

    PubMed Central

    Orchinik, M; Murray, T F; Franklin, P H; Moore, F L

    1992-01-01

    The recently characterized corticosteroid receptor on amphibian neuronal membranes appears to mediate rapid, stress-induced changes in male reproductive behaviors. Because the transduction mechanisms associated with this receptor are unknown, we performed radioligand binding studies to determine whether this steroid receptor is negatively modulated by guanyl nucleotides. The binding of [3H]corticosterone to neuronal membranes was inhibited by nonhydrolyzable guanyl nucleotides in both equilibrium saturation binding and titration studies. The addition of guanyl nucleotide plus unlabeled corticosterone induced a rapid phase of [3H]corticosterone dissociation from membranes that was not induced by addition of unlabeled ligand alone. Furthermore, the equilibrium binding of [3H]corticosterone and the sensitivity of the receptor to modulation by guanyl nucleotides were both enhanced by Mg2+. These results are consistent with the formation of a ternary complex of steroid, receptor, and guanine nucleotide-binding protein that is subject to regulation by guanyl nucleotides. Therefore, rapid signal transduction through corticosteroid receptors on neuronal membranes appears to be mediated by guanine nucleotide-binding proteins. PMID:1570300

  15. Bay11-7082 attenuates neuropathic pain via inhibition of nuclear factor-kappa B and nucleotide-binding domain-like receptor protein 3 inflammasome activation in dorsal root ganglions in a rat model of lumbar disc herniation

    PubMed Central

    Zhang, Ailiang; Wang, Kun; Ding, Lianghua; Bao, Xinnan; Wang, Xuan; Qiu, Xubin; Liu, Jinbo

    2017-01-01

    Lumbar disc herniation (LDH) is an important cause of radiculopathy, but the underlying mechanisms are incompletely understood. Many studies suggested that local inflammation, rather than mechanical compression, results in radiculopathy induced by LDH. On the molecular and cellular level, nuclear factor-kappa B (NF-κB) and nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome have been implicated in the regulation of neuroinflammation formation and progression. In this study, the autologous nucleus pulposus (NP) was implanted in the left L5 dorsal root ganglion (DRG) to mimic LDH in rats. We investigated the expression of NF-κB and the components of NLRP3 inflammasome in the DRG neurons in rats. Western blotting and immunofluorescence for the related molecules, including NLRP3, apoptosis-associated speck-like protein containing caspase-1 activator domain (ASC), caspase-1, interleukin (IL)-1β, IL-18, IκBα, p-IκBα, p65, p-p65, and calcitonin gene-related peptide (CGRP) were examined. In the NP-treated group, the activations of NLRP3, ASC, caspase-1, IL-1β, IL-18, p-IκBα, and p-p65 in DRG neurons in rats were elevated at 1 day after surgery, and the peak occurred at 7 days. Treatment with Bay11-7082, an inhibitor of the actions of IKK-β, was able to inhibit expression and activation of the molecules (NLRP3, ASC, caspase-1, IL-1β, IL-18, p-IκBα, and p-p65) and relieve the pain in rats. Our study shows that NF-κB and NLRP3 inflammasome are involved in the maintenance of NP-induced pain, and that Bay11-7082 could alleviate mechanical allodynia and thermal hyperalgesia by inhibiting NF-κB and NLRP3 inflammasome activation. PMID:28243141

  16. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  17. Cellulose binding domain fusion proteins

    SciTech Connect

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  18. Investigating cyclic nucleotide and cyclic dinucleotide binding to HCN channels by surface plasmon resonance.

    PubMed

    Hayoz, Sebastien; Tiwari, Purushottam B; Piszczek, Grzegorz; Üren, Aykut; Brelidze, Tinatin I

    2017-01-01

    Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels control cardiac and neuronal rhythmicity. HCN channels contain cyclic nucleotide-binding domain (CNBD) in their C-terminal region linked to the pore-forming transmembrane segment with a C-linker. The C-linker couples the conformational changes caused by the direct binding of cyclic nucleotides to the HCN pore opening. Recently, cyclic dinucleotides were shown to antagonize the effect of cyclic nucleotides in HCN4 but not in HCN2 channels. Based on the structural analysis and mutational studies it has been proposed that cyclic dinucleotides affect HCN4 channels by binding to the C-linker pocket (CLP). Here, we first show that surface plasmon resonance (SPR) can be used to accurately measure cyclic nucleotide binding affinity to the C-linker/CNBD of HCN2 and HCN4 channels. We then used SPR to investigate cyclic dinucleotide binding in HCN channels. To our surprise, we detected no binding of cyclic dinucleotides to the isolated monomeric C-linker/CNBDs of HCN4 channels with SPR. The binding of cyclic dinucleotides was further examined with isothermal calorimetry (ITC), which indicated no binding of cyclic dinucleotides to both monomeric and tetrameric C-linker/CNBDs of HCN4 channels. Taken together, our results suggest that interaction of the C-linker/CNBD with other parts of the channel is necessary for cyclic-dinucleotide binding in HCN4 channels.

  19. Different Characteristics and Nucleotide Binding Properties of Inosine Monophosphate Dehydrogenase (IMPDH) Isoforms

    PubMed Central

    Thomas, Elaine C.; Gunter, Jennifer H.; Webster, Julie A.; Schieber, Nicole L.; Oorschot, Viola; Parton, Robert G.; Whitehead, Jonathan P.

    2012-01-01

    We recently reported that Inosine Monophosphate Dehydrogenase (IMPDH), a rate-limiting enzyme in de novo guanine nucleotide biosynthesis, clustered into macrostructures in response to decreased nucleotide levels and that there were differences between the IMPDH isoforms, IMPDH1 and IMPDH2. We hypothesised that the Bateman domains, which are present in both isoforms and serve as energy-sensing/allosteric modules in unrelated proteins, would contribute to isoform-specific differences and that mutations situated in and around this domain in IMPDH1 which give rise to retinitis pigmentosa (RP) would compromise regulation. We employed immuno-electron microscopy to investigate the ultrastructure of IMPDH macrostructures and live-cell imaging to follow clustering of an IMPDH2-GFP chimera in real-time. Using a series of IMPDH1/IMPDH2 chimera we demonstrated that the propensity to cluster was conferred by the N-terminal 244 amino acids, which includes the Bateman domain. A protease protection assay suggested isoform-specific purine nucleotide binding characteristics, with ATP protecting IMPDH1 and AMP protecting IMPDH2, via a mechanism involving conformational changes upon nucleotide binding to the Bateman domain without affecting IMPDH catalytic activity. ATP binding to IMPDH1 was confirmed in a nucleotide binding assay. The RP-causing mutation, R224P, abolished ATP binding and nucleotide protection and this correlated with an altered propensity to cluster. Collectively these data demonstrate that (i) the isoforms are differentially regulated by AMP and ATP by a mechanism involving the Bateman domain, (ii) communication occurs between the Bateman and catalytic domains and (iii) the RP-causing mutations compromise such regulation. These findings support the idea that the IMPDH isoforms are subject to distinct regulation and that regulatory defects contribute to human disease. PMID:23236438

  20. Crystal structure of cyclic nucleotide-binding-like protein from Brucella abortus.

    PubMed

    He, Zheng; Gao, Yuan; Dong, Jing; Ke, Yuehua; Li, Xuemei; Chen, Zeliang; Zhang, Xuejun C

    2015-12-25

    The cyclic nucleotide-binding (CNB)-like protein (CNB-L) from Brucella abortus shares sequence homology with CNB domain-containing proteins. We determined the crystal structure of CNB-L at 2.0 Å resolution in the absence of its C-terminal helix and nucleotide. The 3D structure of CNB-L is in a two-fold symmetric form. Each protomer shows high structure similarity to that of cGMP-binding domain-containing proteins, and likely mimics their nucleotide-free conformation. A key residue, Glu17, mediates the dimerization and prevents binding of cNMP to the canonical ligand-pocket. The structurally observed dimer of CNB-L is stable in solution, and thus is likely to be biologically relevant.

  1. The nucleotide-binding domain, leucine-rich repeat protein 3 inflammasome/IL-1 receptor I axis mediates innate, but not adaptive, immune responses after exposure to particulate matter under 10 μm.

    PubMed

    Hirota, Jeremy A; Gold, Matthew J; Hiebert, Paul R; Parkinson, Leigh G; Wee, Tracee; Smith, Dirk; Hansbro, Phil M; Carlsten, Chris; VanEeden, Stephan; Sin, Don D; McNagny, Kelly M; Knight, Darryl A

    2015-01-01

    Exposure to particulate matter (PM), a major component of air pollution, contributes to increased morbidity and mortality worldwide. Inhaled PM induces innate immune responses by airway epithelial cells that may lead to the exacerbation or de novo development of airway disease. We have previously shown that 10-μm PM (PM10) activates the nucleotide-binding domain, leucine-rich repeat protein (NLRP) 3 inflammasome in human airway epithelial cells. Our objective was to determine the innate and adaptive immune responses mediated by the airway epithelium NLRP3 inflammasome in response to PM10 exposure. Using in vitro cultures of human airway epithelial cells and in vivo studies with wild-type and Nlrp3(-/-) mice, we investigated the downstream consequences of PM10-induced NLPR3 inflammasome activation on cytokine production, cellular inflammation, dendritic cell activation, and PM10-facilitated allergic sensitization. PM10 activates an NLRP3 inflammasome/IL-1 receptor I (IL-1RI) axis in airway epithelial cells, resulting in IL-1β, CC chemokine ligand-20, and granulocyte/macrophage colony-stimulating factor production, which is associated with dendritic cell activation and lung neutrophilia. Despite these profound innate immune responses in the airway epithelium, the NLRP3 inflammasome/IL-1RI axis is dispensable for PM10-facilitated allergic sensitization. We demonstrate the importance of the lung NLRP3 inflammasome in mediating PM10 exposure-associated innate, but not adaptive, immune responses. Our study highlights a mechanism by which PM10 exposure can contribute to the exacerbation of airway disease, but not PM10-facilitated allergic sensitization.

  2. On the use of the transmembrane domain of bacteriorhodopsin as a template for modeling the three-dimensional structure of guanine nucleotide-binding regulatory protein-coupled receptors.

    PubMed Central

    Pardo, L; Ballesteros, J A; Osman, R; Weinstein, H

    1992-01-01

    The molecular architecture of bacteriorhodopsin (BR) is commonly regarded as a structural template for the three-dimensional structure of membrane receptors that are functionally coupled to guanine nucleotide-binding regulatory proteins (GPCR). More recently, specific molecular models of such GPCR were constructed on the basis of the functional and structural relation of rhodopsin to BR as well as the sequence homology between rhodopsin and the GPCR. Such models of GPCR leave unresolved the difficulty caused by the apparent lack of any significant degree of sequence homology between the seven transmembrane helices (TMH) of BR and the portions in the sequence of the various GPCR that are considered to constitute their transmembrane domains. Evolutionary arguments offered in favor of the structural relation between BR and the opsins, and hence the GPCR, prompted our investigation of the possibility that the sequence homology, including any similarity in the distribution of kink-inducing proline residues among the helices, might have been obscured by the assumption that the TMH maintained their sequential order from BR in the evolution of the mammalian proteins. With a definition of the TMH in the neurotransmitter GPCR guided by hydropathicity predictions, and additional criteria used to define the span of each helix, optimal alignment of each pair of sequences was determined with no gaps allowed in the matching. The resulting alignment proposed here reveals considerable homology between the TMH in BR and those in GPCR, if the sequential order of the helices is ignored. These findings suggest the possibility that exon shuffling could have occurred in the proposed evolution of the GPCR gene from BR and point to a modification of the BR template to account for the correct packing of the helices in the tertiary structures of GPCR. These findings could guide the construction of three-dimensional models of the neurotransmitter GPCR on the basis of specific interhelical

  3. Nucleotides flanking a conserved TAAT core dictate the DNA binding specificity of three murine homeodomain proteins.

    PubMed Central

    Catron, K M; Iler, N; Abate, C

    1993-01-01

    Murine homeobox genes play a fundamental role in directing embryogenesis by controlling gene expression during development. The homeobox encodes a DNA binding domain (the homeodomain) which presumably mediates interactions of homeodomain proteins with specific DNA sites in the control regions of target genes. However, the bases for these selective DNA-protein interactions are not well defined. In this report, we have characterized the DNA binding specificities of three murine homeodomain proteins, Hox 7.1, Hox 1.5, and En-1. We have identified optimal DNA binding sites for each of these proteins by using a random oligonucleotide selection strategy. Comparison of the sequences of the selected binding sites predicted a common consensus site that contained the motif (C/G)TAATTG. The TAAT core was essential for DNA binding activity, and the nucleotides flanking this core directed binding specificity. Whereas variations in the nucleotides flanking the 5' side of the TAAT core produced modest alterations in binding activity for all three proteins, perturbations of the nucleotides directly 3' of the core distinguished the binding specificity of Hox 1.5 from those of Hox 7.1 and En-1. These differences in binding activity reflected differences in the dissociation rates rather than the equilibrium constants of the protein-DNA complexes. Differences in DNA binding specificities observed in vitro may contribute to selective interactions of homeodomain proteins with potential binding sites in the control regions of target genes. Images PMID:8096059

  4. Asparagine attenuates hepatic injury caused by lipopolysaccharide in weaned piglets associated with modulation of Toll-like receptor 4 and nucleotide-binding oligomerisation domain protein signalling and their negative regulators.

    PubMed

    Wu, Huanting; Liu, Yulan; Pi, Dingan; Leng, Weibo; Zhu, Huiling; Hou, Yongqing; Li, Shuang; Shi, Haifeng; Wang, Xiuying

    2015-07-01

    Pro-inflammatory cytokines play a key role in many models of hepatic damage. In addition, asparagine (Asn) plays an important role in immune function. We aimed to investigate whether Asn could attenuate lipopolysaccharide (LPS)-induced liver damage. Forty-eight castrated barrows were allotted to four groups including: (1) non-challenged control; (2) LPS-challenged control; (3) LPS + 0.5% Asn; and (4) LPS + 1.0% Asn. After 19 d feeding with control, 0.5 or 1.0% Asn diets, pigs were injected with LPS or saline. Blood and liver samples were obtained at 4 h (early stage) and 24 h (late stage) post-injection. Asn alleviated liver injury, indicated by reduced serum aspartate aminotransferase and alkaline phosphatase activities linearly and quadratically; it increased claudin-1 protein expression linearly and quadratically at 24 h, and less severe liver morphological impairment at 4 or 24 h. In addition, Asn decreased mRNA expression of TNF-α and heat shock protein 70 (HSP70) linearly and quadratically at 4 h; it increased TNF-α mRNA expression, and HSP70 protein expression linearly and quadratically at 24 h. Moreover, Asn increased inducible NO synthase activity linearly and quadratically. Finally, Asn down-regulated the mRNA expression of Toll-like receptor 4 (TLR4) signalling molecules (TLR4, IL-1 receptor-associated kinase 1 (IRAK1), TNF-α receptor-associated factor 6), nucleotide-binding oligomerisation domain protein (NOD) signalling molecules (NOD1, NOD2 and their adaptor molecule receptor-interacting serine/threonine-protein kinase 2 (RIPK2)), and NF-κB p65 linearly or quadratically at 4 h. Oppositely, Asn up-regulated mRNA expressions of TLR4 and NOD signalling molecules (TLR4, myeloid differentiation factor 88, IRAK1, NOD2 and RIPK2), and their negative regulators (radioprotective 105, single Ig IL-1R-related molecule, Erbb2 interacting protein and centaurin β1) linearly or quadratically at 24 h. These results indicate that, in early and late stages of LPS

  5. The YTH Domain Is a Novel RNA Binding Domain*

    PubMed Central

    Zhang, Zhaiyi; Theler, Dominik; Kaminska, Katarzyna H.; Hiller, Michael; de la Grange, Pierre; Pudimat, Rainer; Rafalska, Ilona; Heinrich, Bettina; Bujnicki, Janusz M.; Allain, Frédéric H.-T.; Stamm, Stefan

    2010-01-01

    The YTH (YT521-B homology) domain was identified by sequence comparison and is found in 174 different proteins expressed in eukaryotes. It is characterized by 14 invariant residues within an α-helix/β-sheet structure. Here we show that the YTH domain is a novel RNA binding domain that binds to a short, degenerated, single-stranded RNA sequence motif. The presence of the binding motif in alternative exons is necessary for YT521-B to directly influence splice site selection in vivo. Array analyses demonstrate that YT521-B predominantly regulates vertebrate-specific exons. An NMR titration experiment identified the binding surface for single-stranded RNA on the YTH domain. Structural analyses indicate that the YTH domain is related to the pseudouridine synthase and archaeosine transglycosylase (PUA) domain. Our data show that the YTH domain conveys RNA binding ability to a new class of proteins that are found in all eukaryotic organisms. PMID:20167602

  6. Probing the nucleotide-binding site of Escherichia coli succinyl-CoA synthetase.

    PubMed

    Joyce, M A; Fraser, M E; Brownie, E R; James, M N; Bridger, W A; Wolodko, W T

    1999-06-01

    Succinyl-CoA synthetase (SCS) catalyzes the reversible interchange of purine nucleoside diphosphate, succinyl-CoA, and Pi with purine nucleoside triphosphate, succinate, and CoA via a phosphorylated histidine (H246alpha) intermediate. Two potential nucleotide-binding sites were predicted in the beta-subunit, and have been differentiated by photoaffinity labeling with 8-N3-ATP and by site-directed mutagenesis. It was demonstrated that 8-N3-ATP is a suitable analogue for probing the nucleotide-binding site of SCS. Two tryptic peptides from the N-terminal domain of the beta-subunit were labeled with 8-N3-ATP. These corresponded to residues 107-119beta and 121-146beta, two regions lying along one side of an ATP-grasp fold. A mutant protein with changes on the opposite side of the fold (G53betaV/R54betaE) was unable to be phosphorylated using ATP or GTP, but could be phosphorylated by succinyl-CoA and Pi. A mutant protein designed to probe nucleotide specificity (P20betaQ) had a Km(app) for GTP that was more than 5 times lower than that of wild-type SCS, whereas parameters for the other substrates remained unchanged. Mutations of residues in the C-terminal domain of the beta-subunit designed to distrupt one loop of the Rossmann fold (I322betaA, and R324betaN/D326betaA) had the greatest effect on the binding of succinate and CoA. They did not disrupt the phosphorylation of SCS with nucleotides. It was concluded that the nucleotide-binding site is located in the N-terminal domain of the beta-subunit. This implies that there are two active sites approximately 35 A apart, and that the H246alpha loop moves between them during catalysis.

  7. Why Transcription Factor Binding Sites Are Ten Nucleotides Long

    PubMed Central

    Stewart, Alexander J.; Hannenhalli, Sridhar; Plotkin, Joshua B.

    2012-01-01

    Gene expression is controlled primarily by transcription factors, whose DNA binding sites are typically 10 nt long. We develop a population-genetic model to understand how the length and information content of such binding sites evolve. Our analysis is based on an inherent trade-off between specificity, which is greater in long binding sites, and robustness to mutation, which is greater in short binding sites. The evolutionary stable distribution of binding site lengths predicted by the model agrees with the empirical distribution (5–31 nt, with mean 9.9 nt for eukaryotes), and it is remarkably robust to variation in the underlying parameters of population size, mutation rate, number of transcription factor targets, and strength of selection for proper binding and selection against improper binding. In a systematic data set of eukaryotic and prokaryotic transcription factors we also uncover strong relationships between the length of a binding site and its information content per nucleotide, as well as between the number of targets a transcription factor regulates and the information content in its binding sites. Our analysis explains these features as well as the remarkable conservation of binding site characteristics across diverse taxa. PMID:22887818

  8. Exploring the correlation between the sequence composition of the nucleotide binding G5 loop of the FeoB GTPase domain (NFeoB) and intrinsic rate of GDP release.

    PubMed

    Guilfoyle, Amy P; Deshpande, Chandrika N; Schenk, Gerhard; Maher, Megan J; Jormakka, Mika

    2014-12-12

    GDP release from GTPases is usually extremely slow and is in general assisted by external factors, such as association with guanine exchange factors or membrane-embedded GPCRs (G protein-coupled receptors), which accelerate the release of GDP by several orders of magnitude. Intrinsic factors can also play a significant role; a single amino acid substitution in one of the guanine nucleotide recognition motifs, G5, results in a drastically altered GDP release rate, indicating that the sequence composition of this motif plays an important role in spontaneous GDP release. In the present study, we used the GTPase domain from EcNFeoB (Escherichia coli FeoB) as a model and applied biochemical and structural approaches to evaluate the role of all the individual residues in the G5 loop. Our study confirms that several of the residues in the G5 motif have an important role in the intrinsic affinity and release of GDP. In particular, a T151A mutant (third residue of the G5 loop) leads to a reduced nucleotide affinity and provokes a drastically accelerated dissociation of GDP.

  9. Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors

    PubMed Central

    Bulyk, Martha L.; Johnson, Philip L. F.; Church, George M.

    2002-01-01

    We can determine the effects of many possible sequence variations in transcription factor binding sites using microarray binding experiments. Analysis of wild-type and mutant Zif268 (Egr1) zinc fingers bound to microarrays containing all possible central 3 bp triplet binding sites indicates that the nucleotides of transcription factor binding sites cannot be treated independently. This indicates that the current practice of characterizing transcription factor binding sites by mutating individual positions of binding sites one base pair at a time does not provide a true picture of the sequence specificity. Similarly, current bioinformatic practices using either just a consensus sequence, or even mononucleotide frequency weight matrices to provide more complete descriptions of transcription factor binding sites, are not accurate in depicting the true binding site specificities, since these methods rely upon the assumption that the nucleotides of binding sites exert independent effects on binding affinity. Our results stress the importance of complete reference tables of all possible binding sites for comparing protein binding preferences for various DNA sequences. We also show results suggesting that microarray binding data using particular subsets of all possible binding sites can be used to extrapolate the relative binding affinities of all possible full-length binding sites, given a known binding site for use as a starting sequence for site preference refinement. PMID:11861919

  10. Prediction of Nucleotide Binding Peptides Using Star Graph Topological Indices.

    PubMed

    Liu, Yong; Munteanu, Cristian R; Fernández Blanco, Enrique; Tan, Zhiliang; Santos Del Riego, Antonino; Pazos, Alejandro

    2015-11-01

    The nucleotide binding proteins are involved in many important cellular processes, such as transmission of genetic information or energy transfer and storage. Therefore, the screening of new peptides for this biological function is an important research topic. The current study proposes a mixed methodology to obtain the first classification model that is able to predict new nucleotide binding peptides, using only the amino acid sequence. Thus, the methodology uses a Star graph molecular descriptor of the peptide sequences and the Machine Learning technique for the best classifier. The best model represents a Random Forest classifier based on two features of the embedded and non-embedded graphs. The performance of the model is excellent, considering similar models in the field, with an Area Under the Receiver Operating Characteristic Curve (AUROC) value of 0.938 and true positive rate (TPR) of 0.886 (test subset). The prediction of new nucleotide binding peptides with this model could be useful for drug target studies in drug development. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Bioenergetics and gene silencing approaches for unraveling nucleotide recognition by the human EIF2C2/Ago2 PAZ domain.

    PubMed

    Kandeel, Mahmoud; Al-Taher, Abdullah; Nakashima, Remi; Sakaguchi, Tomoya; Kandeel, Ali; Nagaya, Yuki; Kitamura, Yoshiaki; Kitade, Yukio

    2014-01-01

    Gene silencing and RNA interference are major cellular processes that control gene expression via the cleavage of target mRNA. Eukaryotic translation initiation factor 2C2 (EIF2C2, Argonaute protein 2, Ago2) is considered to be the major player of RNAi as it is the core component of RISC complexes. While a considerable amount of research has focused on RNA interference and its associated mechanisms, the nature and mechanisms of nucleotide recognition by the PAZ domain of EIF2C2/Ago2 have not yet been characterized. Here, we demonstrate that the EIF2C2/Ago2 PAZ domain has an inherent lack of binding to adenine nucleotides, a feature that highlights the poor binding of 3'-adenylated RNAs with the PAZ domain as well as the selective high trimming of the 3'-ends of miRNA containing adenine nucleotides. We further show that the PAZ domain selectively binds all ribonucleotides (except adenosine), whereas it poorly recognizes deoxyribonucleotides. In this context, the modification of dTMP to its ribonucleotide analogue gave a drastic improvement of binding enthalpy and, hence, binding affinity. Additionally, higher in vivo gene silencing efficacy was correlated with the stronger PAZ domain binders. These findings provide new insights into the nature of the interactions of the EIF2C2/Ago2 PAZ domain.

  12. Bioenergetics and Gene Silencing Approaches for Unraveling Nucleotide Recognition by the Human EIF2C2/Ago2 PAZ Domain

    PubMed Central

    Kandeel, Mahmoud; Al-Taher, Abdullah; Nakashima, Remi; Sakaguchi, Tomoya; Kandeel, Ali; Nagaya, Yuki; Kitamura, Yoshiaki; Kitade, Yukio

    2014-01-01

    Gene silencing and RNA interference are major cellular processes that control gene expression via the cleavage of target mRNA. Eukaryotic translation initiation factor 2C2 (EIF2C2, Argonaute protein 2, Ago2) is considered to be the major player of RNAi as it is the core component of RISC complexes. While a considerable amount of research has focused on RNA interference and its associated mechanisms, the nature and mechanisms of nucleotide recognition by the PAZ domain of EIF2C2/Ago2 have not yet been characterized. Here, we demonstrate that the EIF2C2/Ago2 PAZ domain has an inherent lack of binding to adenine nucleotides, a feature that highlights the poor binding of 3′-adenylated RNAs with the PAZ domain as well as the selective high trimming of the 3′-ends of miRNA containing adenine nucleotides. We further show that the PAZ domain selectively binds all ribonucleotides (except adenosine), whereas it poorly recognizes deoxyribonucleotides. In this context, the modification of dTMP to its ribonucleotide analogue gave a drastic improvement of binding enthalpy and, hence, binding affinity. Additionally, higher in vivo gene silencing efficacy was correlated with the stronger PAZ domain binders. These findings provide new insights into the nature of the interactions of the EIF2C2/Ago2 PAZ domain. PMID:24788663

  13. Identification of widespread adenosine nucleotide binding in Mycobacterium tuberculosis

    SciTech Connect

    Ansong, Charles; Ortega, Corrie; Payne, Samuel H.; Haft, Daniel H.; Chauvigne-Hines, Lacie M.; Lewis, Michael P.; Ollodart, Anja R.; Purvine, Samuel O.; Shukla, Anil K.; Fortuin, Suereta; Smith, Richard D.; Adkins, Joshua N.; Grundner, Christoph; Wright, Aaron T.

    2013-01-24

    The annotation of protein function is almost completely performed by in silico approaches. However, computational prediction of protein function is frequently incomplete and error prone. In Mycobacterium tuberculosis (Mtb), ~25% of all genes have no predicted function and are annotated as hypothetical proteins. This lack of functional information severely limits our understanding of Mtb pathogenicity. Current tools for experimental functional annotation are limited and often do not scale to entire protein families. Here, we report a generally applicable chemical biology platform to functionally annotate bacterial proteins by combining activity-based protein profiling (ABPP) and quantitative LC-MS-based proteomics. As an example of this approach for high-throughput protein functional validation and discovery, we experimentally annotate the families of ATP-binding proteins in Mtb. Our data experimentally validate prior in silico predictions of >250 ATPases and adenosine nucleotide-binding proteins, and reveal 73 hypothetical proteins as novel ATP-binding proteins. We identify adenosine cofactor interactions with many hypothetical proteins containing a diversity of unrelated sequences, providing a new and expanded view of adenosine nucleotide binding in Mtb. Furthermore, many of these hypothetical proteins are both unique to Mycobacteria and essential for infection, suggesting specialized functions in mycobacterial physiology and pathogenicity. Thus, we provide a generally applicable approach for high throughput protein function discovery and validation, and highlight several ways in which application of activity-based proteomics data can improve the quality of functional annotations to facilitate novel biological insights.

  14. Nucleotide binding affects intrinsic dynamics and structural communication in Ras GTPases.

    PubMed

    Fanelli, Francesca; Raimondi, Francesco

    2013-01-01

    The Ras superfamily comprises many guanine nucleotide-binding proteins (G proteins) that are essential to intracellular signal transduction. These proteins act biologically as molecular switches, which, cycling between OFF and ON states, play fundamental role in cell biology. This review article summarizes the inferences from the widest computational analyses done so far on Ras GTPases aimed at providing a comprehensive structural/dynamic view of the trans-family and family-specific functioning mechanisms. These variegated comparative analyses could infer the evolutionary and intrinsic flexibilities as well as the structural communication features in the most representative G protein families in different functional states. In spite of the low sequence similarities, the members of the Ras superfamily share the topology of the Ras-like domain, including the nucleotide binding site. GDP and GTP make very similar interactions in all GTPases and differences in their binding modes are localized around the γ-phosphate of GTP. Remarkably, such subtle local differences result in significant differences in the functional dynamics and structural communication features of the protein. In Ras GTPases, the nucleotide plays a central and active role in dictating functional dynamics, establishing the major structure network, and mediating the communication paths instrumental in function retention and specialization. Collectively, the results of these studies support the speculation that an "extended conformational selection model" that embraces a repertoire of selection and adjustment processes is likely more suitable to describe the nucleotide behavior in these important molecular switches.

  15. Cyclic di-nucleotide signaling enters the eukaryote domain.

    PubMed

    Schaap, Pauline

    2013-11-01

    Cyclic (c-di-GMP) is the prevalent intracellular signaling intermediate in bacteria. It triggers a spectrum of responses that cause bacteria to shift from a swarming motile phase to sessile biofilm formation. However, additional functions for c-di-GMP and roles for related molecules, such as c-di-AMP and c-AMP-GMP continue to be uncovered. The first usage of cyclic-di-nucleotide (c-di-NMP) signaling in the eukaryote domain emerged only recently. In dictyostelid social amoebas, c-di-GMP is a secreted signal that induces motile amoebas to differentiate into sessile stalk cells. In humans, c-di-NMPs, which are either produced endogenously in response to foreign DNA or by invading bacterial pathogens, trigger the innate immune system by activating the expression of interferon genes. STING, the human c-di-NMP receptor, is conserved throughout metazoa and their closest unicellular relatives, suggesting protist origins for human c-di-NMP signaling. Compared to the limited number of conserved protein domains that detect the second messengers cAMP and cGMP, the domains that detect the c-di-NMPs are surprisingly varied.

  16. GATING OF HCN CHANNELS BY CYCLIC NUCLEOTIDES: RESIDUE CONTACTS THAT UNDERLIE LIGAND BINDING, SELECTIVITY AND EFFICACY

    PubMed Central

    Zhou, Lei; Siegelbaum, Steven A.

    2007-01-01

    SUMMARY Cyclic nucleotides regulate the activity of various proteins by interacting with a conserved cyclic nucleotide-binding domain (CNBD). Although X-ray crystallographic studies have revealed the structures of several CNBDs, the residues responsible for generating the high efficacy with which ligand binding leads to protein activation remain unknown. Here we combine molecular dynamics simulations with mutagenesis to identify ligand contacts important for the regulation of the hyperpolarization-activated HCN2 channel by cyclic nucleotides. Surprisingly, out of seven residues that make strong contacts with ligand, only R632 in the C-helix of the CNBD is essential for high ligand efficacy, due to its selective stabilization of cNMP binding to the open state of the channel. Principle component analysis suggests that a local movement of the C-helix upon ligand binding propagates through the CNBD of one subunit to the C-linker of a neighboring subunit to apply force to the gate of the channel. PMID:17562313

  17. Structural basis of nucleotide exchange and client binding by the novel Hsp70-cochaperone Bag2

    PubMed Central

    Xu, Zhen; Page, Richard C; Gomes, Michelle M; Kohli, Ekta; Nix, Jay C; Herr, Andrew B; Patterson, Cam; Misra, Saurav

    2009-01-01

    Cochaperones are essential for Hsp70/Hsc70-mediated folding of proteins and include nucleotide exchange factors (NEF) that assist protein folding by accelerating ADP/ATP exchange on Hsp70. The cochaperone Bag2 binds misfolded Hsp70 clients and also acts as a NEF, but the molecular basis of its functions is unclear. We show that, rather than being a member of the Bag domain family, Bag2 contains a new type of Hsp70 NEF domain, which we call the “Brand New Bag” (BNB) domain. Free and Hsc70-bound crystal structures of Bag2-BNB show its dimeric structure in which a flanking linker helix and loop bind to Hsc70 to promote nucleotide exchange. NMR analysis demonstrates that the client-binding sites and Hsc70 interaction sites of Bag2-BNB overlap, and that Hsc70 can displace clients from Bag2-BNB, indicating a distinct mechanism for the regulation of Hsp-70-mediated protein folding by Bag2. PMID:19029896

  18. Nucleotide binding by the epidermal growth factor receptor protein-tyrosine kinase. Trinitrophenyl-ATP as a spectroscopic probe.

    PubMed

    Cheng, K; Koland, J G

    1996-01-05

    The nucleotide binding properties of the epidermal growth factor (EGF) receptor protein-tyrosine kinase were investigated with the fluorescent nucleotide analog 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate (TNP-ATP). TNP-ATP was found to be an active substrate for the autophosphorylation reaction of the recombinant EGF receptor protein-tyrosine kinase domain (TKD). Whereas the Vmax for the TNP-ATP-dependent autophosphorylation reaction was approximately 200-fold lower than that of ATP, the Km for this reaction was similar to that observed with ATP. The nucleotide analog was also shown to be an inhibitor of the ATP-dependent autophosphorylation and substrate phosphorylation reactions of the TKD. Spectroscopic studies demonstrated both a high affinity binding of TNP-ATP to the recombinant TKD and a markedly enhanced fluorescence of the bound nucleotide analog. The fluorescence of enzyme-bound TNP-ATP was attenuated in the presence of ATP, which enabled determination of the dissociation constants for both ATP and the Mn2+ complex of ATP. A truncated form of the EGF receptor TKD lacking the C-terminal autophosphorylation domain exhibited an enhanced affinity for TNP-ATP, which indicated that the autophosphorylation domain occupied the peptide substrate binding site of the TKD and modulated the binding of the nucleotide substrates.

  19. Myosin subfragment 1 structures reveal a partially bound nucleotide and a complex salt bridge that helps couple nucleotide and actin binding.

    PubMed

    Risal, Dipesh; Gourinath, S; Himmel, Daniel M; Szent-Györgyi, Andrew G; Cohen, Carolyn

    2004-06-15

    Structural studies of myosin have indicated some of the conformational changes that occur in this protein during the contractile cycle, and we have now observed a conformational change in a bound nucleotide as well. The 3.1-A x-ray structure of the scallop myosin head domain (subfragment 1) in the ADP-bound near-rigor state (lever arm =45 degrees to the helical actin axis) shows the diphosphate moiety positioned on the surface of the nucleotide-binding pocket, rather than deep within it as had been observed previously. This conformation strongly suggests a specific mode of entry and exit of the nucleotide from the nucleotide-binding pocket through the so-called "front door." In addition, using a variety of scallop structures, including a relatively high-resolution 2.75-A nucleotide-free near-rigor structure, we have identified a conserved complex salt bridge connecting the 50-kDa upper and N-terminal subdomains. This salt bridge is present only in crystal structures of muscle myosin isoforms that exhibit a strong reciprocal relationship (also known as coupling) between actin and nucleotide affinity.

  20. Evolution of function in the "two dinucleotide binding domains" flavoproteins.

    PubMed

    Ojha, Sunil; Meng, Elaine C; Babbitt, Patricia C

    2007-07-01

    Structural and biochemical constraints force some segments of proteins to evolve more slowly than others, often allowing identification of conserved structural or sequence motifs that can be associated with substrate binding properties, chemical mechanisms, and molecular functions. We have assessed the functional and structural constraints imposed by cofactors on the evolution of new functions in a superfamily of flavoproteins characterized by two-dinucleotide binding domains, the "two dinucleotide binding domains" flavoproteins (tDBDF) superfamily. Although these enzymes catalyze many different types of oxidation/reduction reactions, each is initiated by a stereospecific hydride transfer reaction between two cofactors, a pyridine nucleotide and flavin adenine dinucleotide (FAD). Sequence and structural analysis of more than 1,600 members of the superfamily reveals new members and identifies details of the evolutionary connections among them. Our analysis shows that in all of the highly divergent families within the superfamily, these cofactors adopt a conserved configuration optimal for stereospecific hydride transfer that is stabilized by specific interactions with amino acids from several motifs distributed among both dinucleotide binding domains. The conservation of cofactor configuration in the active site restricts the pyridine nucleotide to interact with FAD from the re-side, limiting the flow of electrons from the re-side to the si-side. This directionality of electron flow constrains interactions with the different partner proteins of different families to occur on the same face of the cofactor binding domains. As a result, superimposing the structures of tDBDFs aligns not only these interacting proteins, but also their constituent electron acceptors, including heme and iron-sulfur clusters. Thus, not only are specific aspects of the cofactor-directed chemical mechanism conserved across the superfamily, the constraints they impose are manifested in the

  1. Conformational dynamics of a G-protein α subunit is tightly regulated by nucleotide binding

    PubMed Central

    Goricanec, David; Stehle, Ralf; Egloff, Pascal; Grigoriu, Simina; Wagner, Gerhard; Hagn, Franz

    2016-01-01

    Heterotrimeric G proteins play a pivotal role in the signal-transduction pathways initiated by G-protein–coupled receptor (GPCR) activation. Agonist–receptor binding causes GDP-to-GTP exchange and dissociation of the Gα subunit from the heterotrimeric G protein, leading to downstream signaling. Here, we studied the internal mobility of a G-protein α subunit in its apo and nucleotide-bound forms and characterized their dynamical features at multiple time scales using solution NMR, small-angle X-ray scattering, and molecular dynamics simulations. We find that binding of GTP analogs leads to a rigid and closed arrangement of the Gα subdomain, whereas the apo and GDP-bound forms are considerably more open and dynamic. Furthermore, we were able to detect two conformational states of the Gα Ras domain in slow exchange whose populations are regulated by binding to nucleotides and a GPCR. One of these conformational states, the open state, binds to the GPCR; the second conformation, the closed state, shows no interaction with the receptor. Binding to the GPCR stabilizes the open state. This study provides an in-depth analysis of the conformational landscape and the switching function of a G-protein α subunit and the influence of a GPCR in that landscape. PMID:27298341

  2. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site.

    PubMed

    Sage, Jay M; Cura, Anthony J; Lloyd, Kenneth P; Carruthers, Anthony

    2015-05-15

    Glucose transporter 1 (GLUT1) is the primary glucose transport protein of the cardiovascular system and astroglia. A recent study proposes that caffeine uncompetitive inhibition of GLUT1 results from interactions at an exofacial GLUT1 site. Intracellular ATP is also an uncompetitive GLUT1 inhibitor and shares structural similarities with caffeine, suggesting that caffeine acts at the previously characterized endofacial GLUT1 nucleotide-binding site. We tested this by confirming that caffeine uncompetitively inhibits GLUT1-mediated 3-O-methylglucose uptake in human erythrocytes [Vmax and Km for transport are reduced fourfold; Ki(app) = 3.5 mM caffeine]. ATP and AMP antagonize caffeine inhibition of 3-O-methylglucose uptake in erythrocyte ghosts by increasing Ki(app) for caffeine inhibition of transport from 0.9 ± 0.3 mM in the absence of intracellular nucleotides to 2.6 ± 0.6 and 2.4 ± 0.5 mM in the presence of 5 mM intracellular ATP or AMP, respectively. Extracellular ATP has no effect on sugar uptake or its inhibition by caffeine. Caffeine and ATP displace the fluorescent ATP derivative, trinitrophenyl-ATP, from the GLUT1 nucleotide-binding site, but d-glucose and the transport inhibitor cytochalasin B do not. Caffeine, but not ATP, inhibits cytochalasin B binding to GLUT1. Like ATP, caffeine renders the GLUT1 carboxy-terminus less accessible to peptide-directed antibodies, but cytochalasin B and d-glucose do not. These results suggest that the caffeine-binding site bridges two nonoverlapping GLUT1 endofacial sites-the regulatory, nucleotide-binding site and the cytochalasin B-binding site. Caffeine binding to GLUT1 mimics the action of ATP but not cytochalasin B on sugar transport. Molecular docking studies support this hypothesis.

  3. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site

    PubMed Central

    Sage, Jay M.; Cura, Anthony J.; Lloyd, Kenneth P.

    2015-01-01

    Glucose transporter 1 (GLUT1) is the primary glucose transport protein of the cardiovascular system and astroglia. A recent study proposes that caffeine uncompetitive inhibition of GLUT1 results from interactions at an exofacial GLUT1 site. Intracellular ATP is also an uncompetitive GLUT1 inhibitor and shares structural similarities with caffeine, suggesting that caffeine acts at the previously characterized endofacial GLUT1 nucleotide-binding site. We tested this by confirming that caffeine uncompetitively inhibits GLUT1-mediated 3-O-methylglucose uptake in human erythrocytes [Vmax and Km for transport are reduced fourfold; Ki(app) = 3.5 mM caffeine]. ATP and AMP antagonize caffeine inhibition of 3-O-methylglucose uptake in erythrocyte ghosts by increasing Ki(app) for caffeine inhibition of transport from 0.9 ± 0.3 mM in the absence of intracellular nucleotides to 2.6 ± 0.6 and 2.4 ± 0.5 mM in the presence of 5 mM intracellular ATP or AMP, respectively. Extracellular ATP has no effect on sugar uptake or its inhibition by caffeine. Caffeine and ATP displace the fluorescent ATP derivative, trinitrophenyl-ATP, from the GLUT1 nucleotide-binding site, but d-glucose and the transport inhibitor cytochalasin B do not. Caffeine, but not ATP, inhibits cytochalasin B binding to GLUT1. Like ATP, caffeine renders the GLUT1 carboxy-terminus less accessible to peptide-directed antibodies, but cytochalasin B and d-glucose do not. These results suggest that the caffeine-binding site bridges two nonoverlapping GLUT1 endofacial sites—the regulatory, nucleotide-binding site and the cytochalasin B-binding site. Caffeine binding to GLUT1 mimics the action of ATP but not cytochalasin B on sugar transport. Molecular docking studies support this hypothesis. PMID:25715702

  4. Competition between LIM-binding domains.

    PubMed

    Matthews, Jacqueline M; Bhati, Mugdha; Craig, Vanessa J; Deane, Janet E; Jeffries, Cy; Lee, Christopher; Nancarrow, Amy L; Ryan, Daniel P; Sunde, Margaret

    2008-12-01

    LMO (LIM-only) and LIM-HD (LIM-homeodomain) proteins form a family of proteins that is required for myriad developmental processes and which can contribute to diseases such as T-cell leukaemia and breast cancer. The four LMO and 12 LIM-HD proteins in mammals are expressed in a combinatorial manner in many cell types, forming a transcriptional 'LIM code'. The proteins all contain a pair of closely spaced LIM domains near their N-termini that mediate protein-protein interactions, including binding to the approximately 30-residue LID (LIM interaction domain) of the essential co-factor protein Ldb1 (LIM domain-binding protein 1). In an attempt to understand the molecular mechanisms behind the LIM code, we have determined the molecular basis of binding of LMO and LIM-HD proteins for Ldb1(LID) through a series of structural, mutagenic and biophysical studies. These studies provide an explanation for why Ldb1 binds the LIM domains of the LMO/LIM-HD family, but not LIM domains from other proteins. The LMO/LIM-HD family exhibit a range of affinities for Ldb1, which influences the formation of specific functional complexes within cells. We have also identified an additional LIM interaction domain in one of the LIM-HD proteins, Isl1. Despite low sequence similarity to Ldb1(LID), this domain binds another LIM-HD protein, Lhx3, in an identical manner to Ldb1(LID). Through our and other studies, it is emerging that the multiple layers of competitive binding involving LMO and LIM-HD proteins and their partner proteins contribute significantly to cell fate specification and development.

  5. The monocyte binding domain(s) on human immunoglobulin G.

    PubMed

    Woof, J M; Nik Jaafar, M I; Jefferis, R; Burton, D R

    1984-06-01

    Monocyte binding has previously been assigned to the C gamma 3 domain of human immunoglobulin G (IgG) largely on the ability of the pFc' fragment to inhibit the monocyte-IgG interaction. This ability is markedly reduced compared to the intact parent IgG. We find this result with a conventional pFc' preparation but this preparation is found to contain trace contamination of parent IgG as demonstrated by reactivity with monoclonal antibodies directed against C gamma 2 domain and light-chain epitopes of human IgG. Extensive immunoaffinity purification of the pFc' preparation removes its inhibitory ability indicating that this originates in the trace contamination of parent IgG (or Fc). Neither of the human IgG1 paraproteins TIM, lacking the C gamma 2 domain, or SIZ, lacking the C gamma 3 domain, are found to inhibit the monocyte-IgG interaction. The hinge-deleted IgG1 Dob protein shows little or no inhibitory ability. Indirect evidence for the involvement of the C gamma 2 domain in monocyte binding is considered. We suggest finally that the site of interaction is found either on the C gamma 2 domain alone or between the C gamma 2 and C gamma 3 domains.

  6. Kinetic properties of a single nucleotide binding site on chloroplast coupling factor 1 (CF1).

    PubMed

    Günther, S; Huchzermeyer, B

    1998-12-01

    The kinetics of nucleotide binding to spinach chloroplast coupling factor CF1 in a fully inhibited state were investigated by stopped-flow experiments using the fluorescent trinitrophenyl analogue (NO2)3Ph-ADP. The CF1 was in a state in which two of the three binding sites on the beta subunits were irreversibly blocked with ADP, Mg2+ and fluoroaluminate, while the three binding sites on the alpha subunits were occupied by nucleotides [Garin, J., Vincon, M., Gagnon, J. & Vignais, P. V. (1994) Biochemistry 33, 3772-3777)]. Thus, it was possible to characterise a single nucleotide-binding site without superimposed nucleotide exchange or binding to an additional site. (NO2)3Ph-ADP binding to the remaining site on the third beta subunit was characterised by a high dissociation rate of 15 s(-1), leading to a very low affinity (dissociation constant higher than 150 microM). Subsequent to isolation, CF1 preparations contained two endogenously bound nucleotides. Pre-loading with ATP yielded CF1 with five tightly bound nucleotides and one free nucleotide-binding site on a beta subunit. Pre-loading with ADP, however, resulted in a CF1 preparation containing four tightly bound nucleotides and two free nucleotide binding sites. One of the two free binding sites was located on a beta subunit, while the other was probably located on an alpha subunit.

  7. Defining the nucleotide binding sites of P2Y receptors using rhodopsin-based homology modeling

    NASA Astrophysics Data System (ADS)

    Ivanov, Andrei A.; Costanzi, Stefano; Jacobson, Kenneth A.

    2006-08-01

    Ongoing efforts to model P2Y receptors for extracellular nucleotides, i.e., endogenous ADP, ATP, UDP, UTP, and UDP-glucose, were summarized and correlated for the eight known subtypes. The rhodopsin-based homology modeling of the P2Y receptors is supported by a growing body of site-directed mutagenesis data, mainly for P2Y1 receptors. By comparing molecular models of the P2Y receptors, it was concluded that nucleotide binding could occur in the upper part of the helical bundle, with the ribose moiety accommodated between transmembrane domain (TM) 3 and TM7. The nucleobase was oriented towards TM1, TM2, and TM7, in the direction of the extracellular side of the receptor. The phosphate chain was oriented towards TM6, in the direction of the extracellular loops (ELs), and was coordinated by three critical cationic residues. In particular, in the P2Y1, P2Y2, P2Y4, and P2Y6 receptors the nucleotide ligands had very similar positions. ADP in the P2Y12 receptor was located deeper inside the receptor in comparison to other subtypes, and the uridine moiety of UDP-glucose in the P2Y14 receptor was located even deeper and shifted toward TM7. In general, these findings are in agreement with the proposed binding site of small molecules to other class A GPCRs.

  8. Ligand Binding and Conformational Changes in the Purine-Binding Riboswitch Aptamer Domains

    NASA Astrophysics Data System (ADS)

    Noeske, Jonas; Buck, Janina; Wöhnert, Jens; Schwalbe, Harald

    Riboswitches are highly structured mRNA elements that regulate gene expression upon specific binding of small metabolite molecules. The purine-binding riboswitches bind different purine ligands by forming both canonical Watson—Crick and non-canonical intermolecular base pairs, involving a variety of hydrogen bonds between the riboswitch aptamer domain and the purine ligand. Here, we summarize work on the ligand binding modes of both purine-binding aptamer domains, their con-formational characteristics in the free and ligand-bound forms, and their ligand-induced folding. The adenine- and guanine-binding riboswitch aptamer domains display different conformations in their free forms, despite nearly identical nucleotide loop sequences that form a loop—loop interaction in the ligand-bound forms. Interestingly, the stability of helix II is crucial for the formation of the loop—loop interaction in the free form. A more stable helix II in the guanine riboswitch leads to a preformed loop—loop interaction in its free form. In contrast, a less stable helix II in the adenine riboswitch results in a lack of this loop—loop interaction in the absence of ligand and divalent cations.

  9. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  10. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1996-03-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 15 figs.

  11. Characterization and functional analysis of the nucleotide binding fold in human peroxisomal ATP binding cassette transporters.

    PubMed

    Roerig, P; Mayerhofer, P; Holzinger, A; Gärtner, J

    2001-03-09

    The 70-kDa peroxisomal membrane protein (PMP70) and the adrenoleukodystrophy protein (ALDP) are half ATP binding cassette (ABC) transporters in the peroxisome membrane. Mutations in the ALD gene encoding ALDP result in the X-linked neurodegenerative disorder adrenoleukodystrophy. Plausible models exist to show a role for ATP hydrolysis in peroxisomal ABC transporter functions. Here, we describe the first measurements of the rate of ATP binding and hydrolysis by purified nucleotide binding fold (NBF) fusion proteins of PMP70 and ALDP. Both proteins act as an ATP specific binding subunit releasing ADP after ATP hydrolysis; they did not exhibit GTPase activity. Mutations in conserved residues of the nucleotidases (PMP70: G478R, S572I; ALDP: G512S, S606L) altered ATPase activity. Furthermore, our results indicate that these mutations do not influence homodimerization or heterodimerization of ALDP or PMP70. The study provides evidence that peroxisomal ABC transporters utilize ATP to become a functional transporter.

  12. Predicting protein-binding RNA nucleotides with consideration of binding partners.

    PubMed

    Tuvshinjargal, Narankhuu; Lee, Wook; Park, Byungkyu; Han, Kyungsook

    2015-06-01

    In recent years several computational methods have been developed to predict RNA-binding sites in protein. Most of these methods do not consider interacting partners of a protein, so they predict the same RNA-binding sites for a given protein sequence even if the protein binds to different RNAs. Unlike the problem of predicting RNA-binding sites in protein, the problem of predicting protein-binding sites in RNA has received little attention mainly because it is much more difficult and shows a lower accuracy on average. In our previous study, we developed a method that predicts protein-binding nucleotides from an RNA sequence. In an effort to improve the prediction accuracy and usefulness of the previous method, we developed a new method that uses both RNA and protein sequence data. In this study, we identified effective features of RNA and protein molecules and developed a new support vector machine (SVM) model to predict protein-binding nucleotides from RNA and protein sequence data. The new model that used both protein and RNA sequence data achieved a sensitivity of 86.5%, a specificity of 86.2%, a positive predictive value (PPV) of 72.6%, a negative predictive value (NPV) of 93.8% and Matthews correlation coefficient (MCC) of 0.69 in a 10-fold cross validation; it achieved a sensitivity of 58.8%, a specificity of 87.4%, a PPV of 65.1%, a NPV of 84.2% and MCC of 0.48 in independent testing. For comparative purpose, we built another prediction model that used RNA sequence data alone and ran it on the same dataset. In a 10 fold-cross validation it achieved a sensitivity of 85.7%, a specificity of 80.5%, a PPV of 67.7%, a NPV of 92.2% and MCC of 0.63; in independent testing it achieved a sensitivity of 67.7%, a specificity of 78.8%, a PPV of 57.6%, a NPV of 85.2% and MCC of 0.45. In both cross-validations and independent testing, the new model that used both RNA and protein sequences showed a better performance than the model that used RNA sequence data alone in

  13. Chlamydial entry involves TARP binding of guanine nucleotide exchange factors.

    PubMed

    Lane, B Josh; Mutchler, Charla; Al Khodor, Souhaila; Grieshaber, Scott S; Carabeo, Rey A

    2008-03-01

    Chlamydia trachomatis attachment to cells induces the secretion of the elementary body-associated protein TARP (Translocated Actin Recruiting Protein). TARP crosses the plasma membrane where it is immediately phosphorylated at tyrosine residues by unknown host kinases. The Rac GTPase is also activated, resulting in WAVE2 and Arp2/3-dependent recruitment of actin to the sites of chlamydia attachment. We show that TARP participates directly in chlamydial invasion activating the Rac-dependent signaling cascade to recruit actin. TARP functions by binding two distinct Rac guanine nucleotide exchange factors (GEFs), Sos1 and Vav2, in a phosphotyrosine-dependent manner. The tyrosine phosphorylation profile of the sequence YEPISTENIYESI within TARP, as well as the transient activation of the phosphatidylinositol 3-kinase (PI3-K), appears to determine which GEF is utilized to activate Rac. The first and second tyrosine residues, when phosphorylated, are utilized by the Sos1/Abi1/Eps8 and Vav2, respectively, with the latter requiring the lipid phosphatidylinositol 3,4,5-triphosphate. Depletion of these critical signaling molecules by siRNA resulted in inhibition of chlamydial invasion to varying degrees, owing to a possible functional redundancy of the two pathways. Collectively, these data implicate TARP in signaling to the actin cytoskeleton remodeling machinery, demonstrating a mechanism by which C.trachomatis invades non-phagocytic cells.

  14. FHA domains: Phosphopeptide binding and beyond.

    PubMed

    Almawi, Ahmad W; Matthews, Lindsay A; Guarné, Alba

    2016-12-08

    Forkhead-associated (FHA) domains are small phosphopeptide recognition modules found in eubacterial and eukaryotic, but not archeal, genomes. Although they were originally found in forkhead-type transcription factors, they have now been identified in many other signaling proteins. FHA domains share a remarkably conserved fold despite very low sequence conservation. They only have five conserved amino acids that are important for binding to phosphorylated epitopes. Recent work from several laboratories has demonstrated that FHA domains can mediate many interactions that do not depend on their ability to recognize a phosphorylated threonine. In this review, we present structural and biochemical work that has unveiled novel interaction interfaces on FHA domains. We discuss how these non-canonical interactions modulate the recognition of phosphorylated and non-phosphorylated substrates, as well as protein oligomerization - events that collectively determine FHA function.

  15. The binding domain structure of retinoblastoma-binding proteins.

    PubMed Central

    Figge, J.; Breese, K.; Vajda, S.; Zhu, Q. L.; Eisele, L.; Andersen, T. T.; MacColl, R.; Friedrich, T.; Smith, T. F.

    1993-01-01

    The retinoblastoma gene product (Rb), a cellular growth suppressor, complexes with viral and cellular proteins that contain a specific binding domain incorporating three invariant residues: Leu-X-Cys-X-Glu, where X denotes a nonconserved residue. Hydrophobic and electrostatic properties are strongly conserved in this segment even though the nonconserved amino acids vary considerably from one Rb-binding protein to another. In this report, we present a diagnostic computer pattern for a high-affinity Rb-binding domain featuring the three conserved residues as well as the conserved physico-chemical properties. Although the pattern encompasses only 10 residues (with only 4 of these explicitly defined), it exhibits 100% sensitivity and 99.95% specificity in database searches. This implies that a certain pattern of structural and physico-chemical properties encoded by this short sequence is sufficient to govern specific Rb binding. We also present evidence that the secondary structural conformation through this region is important for effective Rb binding. PMID:8382993

  16. A non-catalytic N-terminal domain negatively influences the nucleotide exchange activity of translation elongation factor 1Bα.

    PubMed

    Trosiuk, Tetiana V; Shalak, Vyacheslav F; Szczepanowski, Roman H; Negrutskii, Boris S; El'skaya, Anna V

    2016-02-01

    Eukaryotic translation elongation factor 1Bα (eEF1Bα) is a functional homolog of the bacterial factor EF-Ts, and is a component of the macromolecular eEF1B complex. eEF1Bα functions as a catalyst of guanine nucleotide exchange on translation elongation factor 1A (eEF1A). The C-terminal domain of eEF1Bα is necessary and sufficient for its catalytic activity, whereas the N-terminal domain interacts with eukaryotic translation elongation factor 1Bγ (eEF1Bγ) to form a tight complex. However, eEF1Bγ has been shown to enhance the catalytic activity of eEF1Bα attributed to the C-terminal domain of eEF1Bα. This suggests that the N-terminal domain of eEF1Bα may in some way influence the guanine nucleotide exchange process. We have shown that full-length recombinant eEF1Bα and its truncated forms are non-globular proteins with elongated shapes. Truncation of the N-terminal domain of eEF1Bα, which is dispensable for catalytic activity, resulted in acceleration of the rate of guanine nucleotide exchange on eEF1A compared to full-length eEF1Bα. A similar effect on the catalytic activity of eEF1Bα was observed after its interaction with eEF1Bγ. We suggest that the non-catalytic N-terminal domain of eEF1Bα may interfere with eEF1A binding to the C-terminal catalytic domain, resulting in a decrease in the overall rate of the guanine nucleotide exchange reaction. Formation of a tight complex between the eEF1Bγ and eEF1Bα N-terminal domains abolishes this inhibitory effect.

  17. Receptor binding domain based HIV vaccines.

    PubMed

    Liu, Huan; Bi, Wenwen; Wang, Qian; Lu, Lu; Jiang, Shibo

    2015-01-01

    This paper analyzes the main trend of the development of acquired immunodeficiency syndrome (AIDS) vaccines in recent years. Designing an HIV-1 vaccine that provides robust protection from HIV-1 infection remains a challenge despite many years of effort. Therefore, we describe the receptor binding domain of gp120 as a target for developing AIDS vaccines. And we recommend some measures that could induce efficiently and produce cross-reactive neutralizing antibodies with high binding affinity. Those measures may offer a new way of the research and development of the potent and broad AIDS vaccines.

  18. Cytoplasmic dynein regulates its attachment to microtubules via nucleotide state-switched mechanosensing at multiple AAA domains.

    PubMed

    Nicholas, Matthew P; Berger, Florian; Rao, Lu; Brenner, Sibylle; Cho, Carol; Gennerich, Arne

    2015-05-19

    Cytoplasmic dynein is a homodimeric microtubule (MT) motor protein responsible for most MT minus-end-directed motility. Dynein contains four AAA+ ATPases (AAA: ATPase associated with various cellular activities) per motor domain (AAA1-4). The main site of ATP hydrolysis, AAA1, is the only site considered by most dynein motility models. However, it remains unclear how ATPase activity and MT binding are coordinated within and between dynein's motor domains. Using optical tweezers, we characterize the MT-binding strength of recombinant dynein monomers as a function of mechanical tension and nucleotide state. Dynein responds anisotropically to tension, binding tighter to MTs when pulled toward the MT plus end. We provide evidence that this behavior results from an asymmetrical bond that acts as a slip bond under forward tension and a slip-ideal bond under backward tension. ATP weakens MT binding and reduces bond strength anisotropy, and unexpectedly, so does ADP. Using nucleotide binding and hydrolysis mutants, we show that, although ATP exerts its effects via binding AAA1, ADP effects are mediated by AAA3. Finally, we demonstrate "gating" of AAA1 function by AAA3. When tension is absent or applied via dynein's C terminus, ATP binding to AAA1 induces MT release only if AAA3 is in the posthydrolysis state. However, when tension is applied to the linker, ATP binding to AAA3 is sufficient to "open" the gate. These results elucidate the mechanisms of dynein-MT interactions, identify regulatory roles for AAA3, and help define the interplay between mechanical tension and nucleotide state in regulating dynein motility.

  19. A nucleotide-dependent and HRDC domain-dependent structural transition in DNA-bound RecQ helicase.

    PubMed

    Kocsis, Zsuzsa S; Sarlós, Kata; Harami, Gábor M; Martina, Máté; Kovács, Mihály

    2014-02-28

    The allosteric communication between the ATP- and DNA-binding sites of RecQ helicases enables efficient coupling of ATP hydrolysis to translocation along single-stranded DNA (ssDNA) and, in turn, the restructuring of multistranded DNA substrates during genome maintenance processes. In this study, we used the tryptophan fluorescence signal of Escherichia coli RecQ helicase to decipher the kinetic mechanism of the interaction of the enzyme with ssDNA. Rapid kinetic experiments revealed that ssDNA binding occurs in a two-step mechanism in which the initial binding step is followed by a structural transition of the DNA-bound helicase. We found that the nucleotide state of RecQ greatly influences the kinetics of the detected structural transition, which leads to a high affinity DNA-clamped state in the presence of the nucleotide analog ADP-AlF4. The DNA binding mechanism is largely independent of ssDNA length, indicating the independent binding of RecQ molecules to ssDNA and the lack of significant DNA end effects. The structural transition of DNA-bound RecQ was not detected when the ssDNA binding capability of the helicase-RNase D C-terminal domain was abolished or the domain was deleted. The results shed light on the nature of conformational changes leading to processive ssDNA translocation and multistranded DNA processing by RecQ helicases.

  20. Structural basis for allosteric cross-talk between the asymmetric nucleotide binding sites of a heterodimeric ABC exporter

    PubMed Central

    Hohl, Michael; Hürlimann, Lea M.; Böhm, Simon; Schöppe, Jendrik; Grütter, Markus G.; Bordignon, Enrica; Seeger, Markus A.

    2014-01-01

    ATP binding cassette (ABC) transporters mediate vital transport processes in every living cell. ATP hydrolysis, which fuels transport, displays positive cooperativity in numerous ABC transporters. In particular, heterodimeric ABC exporters exhibit pronounced allosteric coupling between a catalytically impaired degenerate site, where nucleotides bind tightly, and a consensus site, at which ATP is hydrolyzed in every transport cycle. Whereas the functional phenomenon of cooperativity is well described, its structural basis remains poorly understood. Here, we present the apo structure of the heterodimeric ABC exporter TM287/288 and compare it to the previously solved structure with adenosine 5′-(β,γ-imido)triphosphate (AMP-PNP) bound at the degenerate site. In contrast to other ABC exporter structures, the nucleotide binding domains (NBDs) of TM287/288 remain in molecular contact even in the absence of nucleotides, and the arrangement of the transmembrane domains (TMDs) is not influenced by AMP-PNP binding, a notion confirmed by double electron-electron resonance (DEER) measurements. Nucleotide binding at the degenerate site results in structural rearrangements, which are transmitted to the consensus site via two D-loops located at the NBD interface. These loops owe their name from a highly conserved aspartate and are directly connected to the catalytically important Walker B motif. The D-loop at the degenerate site ties the NBDs together even in the absence of nucleotides and substitution of its aspartate by alanine is well-tolerated. By contrast, the D-loop of the consensus site is flexible and the aspartate to alanine mutation and conformational restriction by cross-linking strongly reduces ATP hydrolysis and substrate transport. PMID:25030449

  1. Structure and nucleotide sequence of the rat intestinal vitamin D-dependent calcium binding protein gene.

    PubMed Central

    Krisinger, J; Darwish, H; Maeda, N; DeLuca, H F

    1988-01-01

    The vitamin D-dependent intestinal calcium binding protein (ICaBP, 9 kDa) is under transcriptional regulation by 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], the hormonal active form of the vitamin. To study the mechanism of gene regulation by 1,25-(OH)2D3, we isolated the rat ICaBP gene by using a cDNA probe. Its nucleotide sequence revealed 3 exons separated by 2 introns within approximately 3 kilobases. The first exon represents only noncoding sequences, while the second and third encode the two calcium binding domains of the protein. The gene contains a 15-base-pair imperfect palindrome in the first intron that shows high homology to the estrogen-responsive element. This sequence may represent the vitamin D-responsive element involved in the regulation of the ICaBP gene. The second intron shows an 84-base-pair-long simple nucleotide repeat that implicates Z-DNA formation. Genomic Southern analysis shows that the rat gene is represented as a single copy. Images PMID:3194402

  2. In vitro guanine nucleotide exchange activity of DHR-2/DOCKER/CZH2 domains.

    PubMed

    Côté, Jean-François; Vuori, Kristiina

    2006-01-01

    Rho family GTPases regulate a large variety of biological processes, including the reorganization of the actin cytoskeleton. Like other members of the Ras superfamily of small GTP-binding proteins, Rho GTPases cycle between a GDP-bound (inactive) and a GTP-bound (active) state, and, when active, the GTPases relay extracellular signals to a large number of downstream effectors. Guanine nucleotide exchange factors (GEFs) promote the exchange of GDP for GTP on Rho GTPases, thereby activating them. Most Rho-GEFs mediate their effects through their signature domain known as the Dbl Homology-Pleckstrin Homology (DH-PH) module. Recently, we and others identified a family of evolutionarily conserved, DOCK180-related proteins that also display GEF activity toward Rho GTPases. The DOCK180-family of proteins lacks the canonical DH-PH module. Instead, they rely on a novel domain, termed DHR-2, DOCKER, or CZH2, to exchange GDP for GTP on Rho targets. In this chapter, the experimental approach that we used to uncover the exchange activity of the DHR-2 domain of DOCK180-related proteins will be described.

  3. AKAP18 contains a phosphoesterase domain which binds AMP

    PubMed Central

    Gold, Matthew G.; Smith, F. Donelson; Scott, John D.; Barford, David

    2011-01-01

    SUMMARY Protein kinase A anchoring proteins (AKAPs), defined by their capacity to target the cAMP-dependent protein kinase to distinct sub-cellular locations, function as molecular scaffolds mediating the assembly of multi-component complexes to integrate and organise multiple signalling events. Despite their central importance in regulating cellular processes, little is known regarding their diverse structures and molecular mechanisms. Here, using bioinformatics and X-ray crystallography, we define a central domain of AKAP18δ (AKAP18CD) as a member of the 2H phosphoesterase family. The domain features two conserved His-x-Thr motifs positioned at the base of a groove located between two lobes related by pseudo two-fold symmetry. Nucleotide co-crystallisation screening revealed that this groove binds specifically to 5’AMP/CMP, with the affinity constant for AMP in the physiological concentration range. This is the first example of an AKAP capable of binding a small molecule. Our data generate two functional hypotheses for the AKAP18 central domain. It may act as a phosphoesterase, although we did not identify a substrate, or as an AMP sensor with the potential to couple intracellular AMP levels to PKA signalling events. PMID:18082768

  4. Design and synthesis of a new class of fluorescent photoaffinity label with specific reference to 4-benzoyl-1-benzamidofluorescein: a new photolabel for adenine nucleotide binding domains on enzymes

    NASA Astrophysics Data System (ADS)

    Rosen, Jane E.

    1993-05-01

    Benzophenone was used as the photoreactive moiety in the synthesis of several water soluble, fluorescent photoaffinity labels. The following compounds were synthesized: 5-(2-(p- benzoylbenzamido)ethylamino-1-napthalenesulfonate (BzEDANS); 5-(2-(p- benzoylbenzamido)hexylamino-1-napthalenesulfonate (BzHDANS); and 4-benzoyl-1- benzamidofluorescein (BzAF). BzEDANS and BzHDANS were found to be unsuitable for use as photochemical probes. They were incapable of photoinduced covalent binding to methylene carbon due to intramolecular triplet-triplet energy transfer. BzAF was synthesized because its fluorescent moiety, fluorescein, is an inefficient acceptor for intramolecular quenching of the benzophenone triplet state diradical intermediate. BzAF was found to be a suitable and efficient photolabel and is presently a prototype for a new class of fluorescent photolabel.

  5. DEAD-box Helicases as Integrators of RNA, Nucleotide and Protein Binding

    PubMed Central

    Putnam, Andrea A.

    2013-01-01

    DEAD-box helicases perform diverse cellular functions in virtually all steps of RNA metabolism from Bacteria to Humans. Although DEAD-box helicases share a highly conserved core domain, the enzymes catalyze a wide range of biochemical reactions. In addition to the well established RNA unwinding and corresponding ATPase activities, DEAD-box helicases promote duplex formation and displace proteins from RNA. They can also function as assembly platforms for larger ribonucleoprotein complexes, and as metabolite sensors. This review aims to provide a perspective on the diverse biochemical features of DEAD-box helicases and connections to structural information. We discuss these data in the context of a model that views the enzymes as integrators of RNA, nucleotide, and protein binding. PMID:23416748

  6. Synthetic actin-binding domains reveal compositional constraints for function.

    PubMed

    Lorenzi, Maria; Gimona, Mario

    2008-01-01

    The actin-binding domains of many proteins consist of a canonical type 1/type 2 arrangement of the structurally conserved calponin homology domain. Using the actin-binding domain of alpha-actinin-1 as a scaffold we have generated synthetic actin-binding domains by altering position and composition of the calponin homology domains. We show that the presence of two calponin homology domains alone and in the context of an actin-binding domain is not sufficient for actin-binding, and that both single and homotypic type 2 calponin homology domain tandems fail to bind to actin in vitro and in transfected cells. In contrast, single and tandem type 1 calponin homology domain arrays bind actin directly but result in defective turnover rates on actin filaments, and in aberrant actin bundling when introduced into the full-length alpha-actinin molecule. An actin-binding domain harboring the calponin homology domains in an inverted position, however, functions both in isolation and in the context of the dimeric alpha-actinin molecule. Our data demonstrate that the dynamics and specificity of actin-binding via actin-binding domains requires both the filament binding properties of the type 1, and regulation by type 2 calponin homology domains, and appear independent of their position.

  7. A Minimal Rac Activation Domain in the Unconventional Guanine Nucleotide Exchange Factor Dock180†

    PubMed Central

    Wu, Xin; Ramachandran, Sekar; Cerione, Richard A.; Erickson, Jon W.

    2011-01-01

    Guanine nucleotide exchange factors (GEFs) activate Rho GTPases by catalyzing the exchange of bound GDP for GTP, thereby resulting in downstream effector recognition. Two metazoan families of GEFs have been described: Dbl-GEF family members that share conserved Dbl homology (DH) and Pleckstrin homology (PH) domains and the more recently described Dock180 family members that share little sequence homology with the Dbl family and are characterized by conserved Dock homology regions 1 and 2 (DHR-1 and -2). While extensive characterization of the Dbl family has been performed, less is known about how Dock180 family members act as GEFs, with only a single x-ray structure having recently been reported for the Dock9-Cdc42 complex. In order to learn more about the mechanisms used by the founding member of the family, Dock180, to act as a Rac-specific GEF, we set out to identify and characterize its limit functional GEF domain. A C-terminal portion of the DHR-2 domain, composed of approximately 300 residues (designated as Dock180DHR-2c), is shown to be necessary and sufficient for robust Rac-specific GEF activity both in vitro and in vivo. We further show that Dock180DHR-2c binds to Rac in a manner distinct from Rac-GEFs of the Dbl family. Specifically, Ala27 and Trp56 of Rac appear to provide a bipartite binding site for the specific recognition of Dock180DHR-2c, whereas, for Dbl family Rac-GEFs, Trp56 of Rac is the sole primary determinant of GEF specificity. Based on our findings, we are able to define the core of Dock180 responsible for its Rac-GEF activity as well as highlight key recognition sites that distinguish different Dock180 family members and determine their corresponding GTPase specificities. PMID:21033699

  8. Site-specific fab fragment biotinylation at the conserved nucleotide binding site for enhanced Ebola detection.

    PubMed

    Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar

    2015-07-01

    The nucleotide binding site (NBS) is a highly conserved region between the variable light and heavy chains at the Fab domains of all antibodies, and a small molecule that we identified, indole-3-butyric acid (IBA), binds specifically to this site. Fab fragment, with its small size and simple production methods compared to intact antibody, is good candidate for use in miniaturized diagnostic devices and targeted therapeutic applications. However, commonly used modification techniques are not well suited for Fab fragments as they are often more delicate than intact antibodies. Fab fragments are of particular interest for sensor surface functionalization but immobilization results in damage to the antigen binding site and greatly reduced activity due to their truncated size that allows only a small area that can bind to surfaces without impeding antigen binding. In this study, we describe an NBS-UV photocrosslinking functionalization method (UV-NBS(Biotin) in which a Fab fragment is site-specifically biotinylated with an IBA-EG11-Biotin linker via UV energy exposure (1 J/cm(2)) without affecting its antigen binding activity. This study demonstrates successful immobilization of biotinylated Ebola detecting Fab fragment (KZ52 Fab fragment) via the UV-NBS(Biotin) method yielding 1031-fold and 2-fold better antigen detection sensitivity compared to commonly used immobilization methods: direct physical adsorption and NHS-Biotin functionalization, respectively. Utilization of the UV-NBS(Biotin) method for site-specific conjugation to Fab fragment represents a proof of concept use of Fab fragment for various diagnostic and therapeutic applications with numerous fluorescent probes, affinity molecules and peptides.

  9. Mass spectrometry reveals synergistic effects of nucleotides, lipids, and drugs binding to a multidrug resistance efflux pump.

    PubMed

    Marcoux, Julien; Wang, Sheila C; Politis, Argyris; Reading, Eamonn; Ma, Jerome; Biggin, Philip C; Zhou, Min; Tao, Houchao; Zhang, Qinghai; Chang, Geoffrey; Morgner, Nina; Robinson, Carol V

    2013-06-11

    Multidrug resistance is a serious barrier to successful treatment of many human diseases, including cancer, wherein chemotherapeutics are exported from target cells by membrane-embedded pumps. The most prevalent of these pumps, the ATP-Binding Cassette transporter P-glycoprotein (P-gp), consists of two homologous halves each comprising one nucleotide-binding domain and six transmembrane helices. The transmembrane region encapsulates a hydrophobic cavity, accessed by portals in the membrane, that binds cytotoxic compounds as well as lipids and peptides. Here we use mass spectrometry (MS) to probe the intact P-gp small molecule-bound complex in a detergent micelle. Activation in the gas phase leads to formation of ions, largely devoid of detergent, yet retaining drug molecules as well as charged or zwitterionic lipids. Measuring the rates of lipid binding and calculating apparent KD values shows that up to six negatively charged diacylglycerides bind more favorably than zwitterionic lipids. Similar experiments confirm binding of cardiolipins and show that prior binding of the immunosuppressant and antifungal antibiotic cyclosporin A enhances subsequent binding of cardiolipin. Ion mobility MS reveals that P-gp exists in an equilibrium between different states, readily interconverted by ligand binding. Overall these MS results show how concerted small molecule binding leads to synergistic effects on binding affinities and conformations of a multidrug efflux pump.

  10. Structural fold, conservation and Fe(II) binding of the intracellular domain of prokaryote FeoB

    SciTech Connect

    Hung, Kuo-Wei; Chang, Yi-Wei; Eng, Edward T.; Chen, Jai-Hui; Chen, Yi-Chung; Sun, Yuh-Ju; Hsiao, Chwan-Deng; Dong, Gang; Spasov, Krasimir A.; Unger, Vinzenz M.; Huang, Tai-huang

    2010-09-17

    FeoB is a G-protein coupled membrane protein essential for Fe(II) uptake in prokaryotes. Here, we report the crystal structures of the intracellular domain of FeoB (NFeoB) from Klebsiella pneumoniae (KpNFeoB) and Pyrococcus furiosus (PfNFeoB) with and without bound ligands. In the structures, a canonical G-protein domain (G domain) is followed by a helical bundle domain (S-domain), which despite its lack of sequence similarity between species is structurally conserved. In the nucleotide-free state, the G-domain's two switch regions point away from the binding site. This gives rise to an open binding pocket whose shallowness is likely to be responsible for the low nucleotide-binding affinity. Nucleotide binding induced significant conformational changes in the G5 motif which in the case of GMPPNP binding was accompanied by destabilization of the switch I region. In addition to the structural data, we demonstrate that Fe(II)-induced foot printing cleaves the protein close to a putative Fe(II)-binding site at the tip of switch I, and we identify functionally important regions within the S-domain. Moreover, we show that NFeoB exists as a monomer in solution, and that its two constituent domains can undergo large conformational changes. The data show that the S-domain plays important roles in FeoB function.

  11. Intersectin 1L Guanine Nucleotide Exchange Activity Is Regulated by Adjacent src Homology 3 Domains That Are Also Involved in Endocytosis

    PubMed Central

    Zamanian, Jennifer L.; Kelly, Regis B.

    2003-01-01

    Intersectin 1L is a scaffolding protein involved in endocytosis that also has guanine nucleotide exchange activity for Cdc42. In the context of the full-length protein, the catalytic exchange activity of the DH domain is repressed. Here we use biochemical methods to dissect the mechanism for this inhibition. We demonstrate that the intersectin 1L SH3 domains, which bind endocytic proteins, directly inhibit the activity of the DH domain in assays for both binding and exchange of Cdc42. This inhibitory mechanism seems to act through steric hindrance of Cdc42 binding by an intramolecular interaction between the intersectin 1L SH3 domain region and the adjacent DH domain. Surprisingly, the mode of SH3 domain binding is other than through the proline peptide binding pocket. The dual role of the SH3 domains in endocytosis and repression of exchange activity suggests that the intersectin 1L exchange activity is regulated by endocytosis. We show that the endocytic protein, dynamin, competes for binding to the SH3 domains with the neural Wiskott-Aldrich Syndrome protein, an actin filament nucleation protein that is a substrate for activated Cdc42. Swapping of SH3 domain binding partners might act as a switch controlling the actin nucleation activity of intersectin 1L. PMID:12686614

  12. Do cellulose binding domains increase substrate accessibility?

    PubMed

    Esteghlalian, A R; Srivastava, V; Gilkes, N R; Kilburn, D G; Warren, R A; Saddle, J N

    2001-01-01

    This article provides an overview of various theories proposed during the past five decades to describe the enzymatic hydrolysis of cellulose highlighting the major shifts that these theories have undergone. It also describes the effect of the cellulose-binding domain (CBD) of an exoglucanase/xylanase from bacterium Cellulomonas fimi on the enzymatic hydrolysis of Avicel. Pretreatment of Avicel with CBDCex at 4 and 37 degrees C as well as simultaneous addition of CBDCex to the hydrolytic enzyme (Celluclast, Novo, Nordisk) reduced the initial rate of hydrolysis owing to irreversible binding of CBD proteins to the substrate's binding sites. Nonetheless, near complete hydrolysis was achieved even in the presence of CBDCex. Protease treatment of both pure and CBDCex-treated Avicel reduced the substrates' hydrolyzability, perhaps owing to proteolysis of the hydrolyzing enzyme (Celluclast) by the residual Proteinase K remaining in the substrate. Better protocols for complete removal of CBD proteins from the substrate need to be developed to investigate the effect of CBD adsorption on cellulose digestibility.

  13. Steroid binding domain of porcine estrogen receptor

    SciTech Connect

    Koike, S.; Nii, A.; Sakai, M.; Muramatsu, M.

    1987-05-05

    For the purpose of characterizing the estrogen binding domain of porcine estrogen receptor (ER), the authors have made use of affinity labeling of partially purified ER with (/sup 3/H)tamoxifen aziridine. The labeling is very efficient and selective particularly after partial purification of ER. A 65,000-dalton (65-kDa) band was detected on the fluorogram of a sodium dodecyl sulfate-polyacrylamide gel, together with a 50-kDa band and a few more smaller bands. The 50-kDa protein appears to be a degradation product of the 65-kDa protein in view of the similar peptide map. ER was affinity labeled before or after controlled limited proteolysis with either trypsin, papain, or ..cap alpha..-chymotrypsin. The labeling patterns of limited digests indicate that a fragment of about 30 kDa is relatively resistant to proteases and has a full and specific binding activity to estrogen, whereas smaller fragments have lost much of the binding activity. This fragment is very hydrophobic and probably corresponds to the carboxy half of ER.

  14. The number of nucleotide binding sites in cytochrome C oxidase.

    PubMed

    Rieger, T; Napiwotzki, J; Hüther, F J; Kadenbach, B

    1995-12-05

    The binding of 2'(3')-O-(2,4,6-trinitrophenyl)-adenosine-5'-triphosphate (TNP-ATP), [35S]ATP alpha S and 8-azido-[gamma-32P]ATP to isolated cytochrome c oxidase of bovine heart and liver and to the two-subunit enzyme of Paracoccus dentrificans was studied by measuring the fluorescence change or bound radioactivity, respectively. With TNP-ATP three binding sites were determined at cytochrome c oxidase from bovine heart and liver, both with two dissociation constants Kd of about 0.2 and 0.9 microM. Trypsin treatment of the enzyme from bovine heart, resulted in one binding site with a Kd of 0.3 microM. The two-subunit enzyme of Paracoccus dentrificans had only one binding site with a Kd of 3.6 microM. The binding of [35S]ATP alpha S to cytochrome c oxidase was studied by equilibrium dialysis. With the enzyme of bovine heart seven and the enzyme of liver six high-affinity binding sites with apparent Kd's of 7.5 and 12 microM, respectively, were obtained. The two-subunit enzyme of Paracoccus denitrificans had one binding site with a Kd of 20 microM. The large number of binding sites at cytochrome c oxidase from bovine heart, mainly at nuclear coded subunits, was verified by photoaffinity labelling with 8-azido-[gamma-32P]ATP.

  15. Structural change and nucleotide dissociation of Myosin motor domain: dual go model simulation.

    PubMed

    Takagi, Fumiko; Kikuchi, Macoto

    2007-12-01

    We investigated the structural relaxation of myosin motor domain from the pre-power stroke state to the near-rigor state using molecular dynamics simulation of a coarse-grained protein model. To describe the spontaneous structural change, we propose a dual Gō-model-a variant of the Gō-like model that has two reference structures. The nucleotide dissociation process is also studied by introducing a coarse-grained nucleotide in the simulation. We found that the myosin structural relaxation toward the near-rigor conformation cannot be completed before the nucleotide dissociation. Moreover, the relaxation and the dissociation occurred cooperatively when the nucleotide was tightly bound to the myosin head. The result suggested that the primary role of the nucleotide is to suppress the structural relaxation.

  16. CARF and WYL domains: ligand-binding regulators of prokaryotic defense systems

    PubMed Central

    Makarova, Kira S.; Anantharaman, Vivek; Grishin, Nick V.; Koonin, Eugene V.; Aravind, L.

    2014-01-01

    CRISPR-Cas adaptive immunity systems of bacteria and archaea insert fragments of virus or plasmid DNA as spacer sequences into CRISPR repeat loci. Processed transcripts encompassing these spacers guide the cleavage of the cognate foreign DNA or RNA. Most CRISPR-Cas loci, in addition to recognized cas genes, also include genes that are not directly implicated in spacer acquisition, CRISPR transcript processing or interference. Here we comprehensively analyze sequences, structures and genomic neighborhoods of one of the most widespread groups of such genes that encode proteins containing a predicted nucleotide-binding domain with a Rossmann-like fold, which we denote CARF (CRISPR-associated Rossmann fold). Several CARF protein structures have been determined but functional characterization of these proteins is lacking. The CARF domain is most frequently combined with a C-terminal winged helix-turn-helix DNA-binding domain and “effector” domains most of which are predicted to possess DNase or RNase activity. Divergent CARF domains are also found in RtcR proteins, sigma-54 dependent regulators of the rtc RNA repair operon. CARF genes frequently co-occur with those coding for proteins containing the WYL domain with the Sm-like SH3 β-barrel fold, which is also predicted to bind ligands. CRISPR-Cas and possibly other defense systems are predicted to be transcriptionally regulated by multiple ligand-binding proteins containing WYL and CARF domains which sense modified nucleotides and nucleotide derivatives generated during virus infection. We hypothesize that CARF domains also transmit the signal from the bound ligand to the fused effector domains which attack either alien or self nucleic acids, resulting, respectively, in immunity complementing the CRISPR-Cas action or in dormancy/programmed cell death. PMID:24817877

  17. An empirical approach for detecting nucleotide-binding sites on proteins.

    PubMed

    Saito, Mihoko; Go, Mitiko; Shirai, Tsuyoshi

    2006-02-01

    Protein structure data in the PDB (Protein Data Bank) were used to construct empirical scores of nucleotide-protein interactions. A simple strategy to evaluate the spatial distribution of protein atoms around the base moieties of nucleotides was applied to categorize adenine, guanine, nicotinamide and flavin nucleotide-binding sites. In addition to the known nucleotide-binding motifs, the empirical scores detected several other features that were shared among proteins with different folds. The empirical scores were also used to predict the binding sites on protein molecules and a comprehensive test of the prediction system was performed. As a result, adenine, guanine, nicotinamide and flavin sites were detected with efficiencies of 31, 29, 32 and 40%, respectively. The predictions were judged to be successful if the predicted base with the best score was located within a 3.0 A r.m.s.d. from the known ligand positions.

  18. SNP@Domain: a web resource of single nucleotide polymorphisms (SNPs) within protein domain structures and sequences

    PubMed Central

    Han, Areum; Kang, Hyo Jin; Cho, Yoobok; Lee, Sunghoon; Kim, Young Joo; Gong, Sungsam

    2006-01-01

    The single nucleotide polymorphisms (SNPs) in conserved protein regions have been thought to be strong candidates that alter protein functions. Thus, we have developed SNP@Domain, a web resource, to identify SNPs within human protein domains. We annotated SNPs from dbSNP with protein structure-based as well as sequence-based domains: (i) structure-based using SCOP and (ii) sequence-based using Pfam to avoid conflicts from two domain assignment methodologies. Users can investigate SNPs within protein domains with 2D and 3D maps. We expect this visual annotation of SNPs within protein domains will help scientists select and interpret SNPs associated with diseases. A web interface for the SNP@Domain is freely available at and from . PMID:16845090

  19. Structural and Histone Binding Ability Characterizations of Human PWWP Domains

    SciTech Connect

    Wu, Hong; Zeng, Hong; Lam, Robert; Tempel, Wolfram; Amaya, Maria F.; Xu, Chao; Dombrovski, Ludmila; Qiu, Wei; Wang, Yanming; Min, Jinrong

    2013-09-25

    The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members, implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical {beta}-barrel core, an insertion motif between the second and third {beta}-strands and a C-terminal {alpha}-helix bundle. Both the canonical {beta}-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.

  20. Decipher the Mechanisms of Protein Conformational Changes Induced by Nucleotide Binding through Free-Energy Landscape Analysis: ATP Binding to Hsp70

    PubMed Central

    Nicolaï, Adrien; Delarue, Patrice; Senet, Patrick

    2013-01-01

    ATP regulates the function of many proteins in the cell by transducing its binding and hydrolysis energies into protein conformational changes by mechanisms which are challenging to identify at the atomic scale. Based on molecular dynamics (MD) simulations, a method is proposed to analyze the structural changes induced by ATP binding to a protein by computing the effective free-energy landscape (FEL) of a subset of its coordinates along its amino-acid sequence. The method is applied to characterize the mechanism by which the binding of ATP to the nucleotide-binding domain (NBD) of Hsp70 propagates a signal to its substrate-binding domain (SBD). Unbiased MD simulations were performed for Hsp70-DnaK chaperone in nucleotide-free, ADP-bound and ATP-bound states. The simulations revealed that the SBD does not interact with the NBD for DnaK in its nucleotide-free and ADP-bound states whereas the docking of the SBD was found in the ATP-bound state. The docked state induced by ATP binding found in MD is an intermediate state between the initial nucleotide-free and final ATP-bound states of Hsp70. The analysis of the FEL projected along the amino-acid sequence permitted to identify a subset of 27 protein internal coordinates corresponding to a network of 91 key residues involved in the conformational change induced by ATP binding. Among the 91 residues, 26 are identified for the first time, whereas the others were shown relevant for the allosteric communication of Hsp70 s in several experiments and bioinformatics analysis. The FEL analysis revealed also the origin of the ATP-induced structural modifications of the SBD recently measured by Electron Paramagnetic Resonance. The pathway between the nucleotide-free and the intermediate state of DnaK was extracted by applying principal component analysis to the subset of internal coordinates describing the transition. The methodology proposed is general and could be applied to analyze allosteric communication in other proteins

  1. RsiteDB: a database of protein binding pockets that interact with RNA nucleotide bases.

    PubMed

    Shulman-Peleg, Alexandra; Nussinov, Ruth; Wolfson, Haim J

    2009-01-01

    We present a new database and an on-line search engine, which store and query the protein binding pockets that interact with single-stranded RNA nucleotide bases. The database consists of a classification of binding sites derived from protein-RNA complexes. Each binding site is assigned to a cluster of similar binding sites in other protein-RNA complexes. Cluster members share similar spatial arrangements of physico-chemical properties, thus can reveal novel similarity between proteins and RNAs with different sequences and folds. The clusters provide 3D consensus binding patterns important for protein-nucleotide recognition. The database search engine allows two types of useful queries: first, given a PDB code of a protein-RNA complex, RsiteDB can detail and classify the properties of the protein binding pockets accommodating extruded RNA nucleotides not involved in local RNA base pairing. Second, given an unbound protein structure, RsiteDB can perform an on-line structural search against the constructed database of 3D consensus binding patterns. Regions similar to known patterns are predicted to serve as binding sites. Alignment of the query to these patterns with their corresponding RNA nucleotides allows making unique predictions of the protein-RNA interactions at the atomic level of detail. This database is accessible at http://bioinfo3d.cs.tau.ac.il/RsiteDB.

  2. Characterization of the DNA binding protein encoded by the N-specific filamentous Escherichia coli phage IKe. Binding properties of the protein and nucleotide sequence of the gene.

    PubMed

    Peeters, B P; Konings, R N; Schoenmakers, J G

    1983-09-05

    A DNA binding protein encoded by the filamentous single-stranded DNA phage IKe has been isolated from IKe-infected Escherichia coli cells. Fluorescence and in vitro binding studies have shown that the protein binds co-operatively and with a high specificity to single-stranded but not to double-stranded DNA. From titration of the protein to poly(dA) it has been calculated that approximately four bases of the DNA are covered by one monomer of protein. These binding characteristics closely resemble those of gene V protein encoded by the F-specific filamentous phages M13 and fd. The nucleotide sequence of the gene specifying the IKe DNA binding protein has been established. When compared to the nucleotide sequence of gene V of phage M13 it shows an homology of 58%, indicating that these two phages are evolutionarily related. The IKe DNA binding protein is 88 amino acids long which is one amino acid residue larger than the gene V protein sequence. When the IKe DNA binding protein sequence is compared with that of gene V protein it was found that 39 amino acid residues have identical positions in both proteins. The positions of all five tyrosine residues, a number of which are known to be involved in DNA binding, are conserved. Secondary structure predictions indicate that the two proteins contain similar structural domains. It is proposed that the tyrosine residues which are involved in DNA binding are the ones in or next to a beta-turn, at positions 26, 41 and 56 in gene V protein and at positions 27, 42 and 57 in the IKe DNA binding protein.

  3. Global genome nucleotide excision repair is organized into domains that promote efficient DNA repair in chromatin

    PubMed Central

    Yu, Shirong; Evans, Katie; Bennett, Mark; Webster, Richard M.; Leadbitter, Matthew; Teng, Yumin; Waters, Raymond

    2016-01-01

    The rates at which lesions are removed by DNA repair can vary widely throughout the genome, with important implications for genomic stability. To study this, we measured the distribution of nucleotide excision repair (NER) rates for UV-induced lesions throughout the budding yeast genome. By plotting these repair rates in relation to genes and their associated flanking sequences, we reveal that, in normal cells, genomic repair rates display a distinctive pattern, suggesting that DNA repair is highly organized within the genome. Furthermore, by comparing genome-wide DNA repair rates in wild-type cells and cells defective in the global genome–NER (GG-NER) subpathway, we establish how this alters the distribution of NER rates throughout the genome. We also examined the genomic locations of GG-NER factor binding to chromatin before and after UV irradiation, revealing that GG-NER is organized and initiated from specific genomic locations. At these sites, chromatin occupancy of the histone acetyl-transferase Gcn5 is controlled by the GG-NER complex, which regulates histone H3 acetylation and chromatin structure, thereby promoting efficient DNA repair of UV-induced lesions. Chromatin remodeling during the GG-NER process is therefore organized into these genomic domains. Importantly, loss of Gcn5 significantly alters the genomic distribution of NER rates; this has implications for the effects of chromatin modifiers on the distribution of mutations that arise throughout the genome. PMID:27470111

  4. Effects of nucleotide binding to LmrA: A combined MAS-NMR and solution NMR study.

    PubMed

    Hellmich, Ute A; Mönkemeyer, Leonie; Velamakanni, Saroj; van Veen, Hendrik W; Glaubitz, Clemens

    2015-12-01

    ABC transporters are fascinating examples of fine-tuned molecular machines that use the energy from ATP hydrolysis to translocate a multitude of substrates across biological membranes. While structural details have emerged on many members of this large protein superfamily, a number of functional details are still under debate. High resolution structures yield valuable insights into protein function, but it is the combination of structural, functional and dynamic insights that facilitates a complete understanding of the workings of their complex molecular mechanisms. NMR is a technique well-suited to investigate proteins in atomic resolution while taking their dynamic properties into account. It thus nicely complements other structural techniques, such as X-ray crystallography, that have contributed high-resolution data to the architectural understanding of ABC transporters. Here, we describe the heterologous expression of LmrA, an ABC exporter from Lactococcus lactis, in Escherichia coli. This allows for more flexible isotope labeling for nuclear magnetic resonance (NMR) studies and the easy study of LmrA's multidrug resistance phenotype. We use a combination of solid-state magic angle spinning (MAS) on the reconstituted transporter and solution NMR on its isolated nucleotide binding domain to investigate consequences of nucleotide binding to LmrA. We find that nucleotide binding affects the protein globally, but that NMR is also able to pinpoint local dynamic effects to specific residues, such as the Walker A motif's conserved lysine residue.

  5. Asparagine reduces the mRNA expression of muscle atrophy markers via regulating protein kinase B (Akt), AMP-activated protein kinase α, toll-like receptor 4 and nucleotide-binding oligomerisation domain protein signalling in weaning piglets after lipopolysaccharide challenge.

    PubMed

    Wang, Xiuying; Liu, Yulan; Wang, Shuhui; Pi, Dingan; Leng, Weibo; Zhu, Huiling; Zhang, Jing; Shi, Haifeng; Li, Shuang; Lin, Xi; Odle, Jack

    2016-10-01

    Pro-inflammatory cytokines are critical in mechanisms of muscle atrophy. In addition, asparagine (Asn) is necessary for protein synthesis in mammalian cells. We hypothesised that Asn could attenuate lipopolysaccharide (LPS)-induced muscle atrophy in a piglet model. Piglets were allotted to four treatments (non-challenged control, LPS-challenged control, LPS+0·5 % Asn and LPS+1·0 % Asn). On day 21, the piglets were injected with LPS or saline. At 4 h post injection, piglet blood and muscle samples were collected. Asn increased protein and RNA content in muscles, and decreased mRNA expression of muscle atrophy F-box (MAFbx) and muscle RING finger 1 (MuRF1). However, Asn had no effect on the protein abundance of MAFbx and MuRF1. In addition, Asn decreased muscle AMP-activated protein kinase (AMPK) α phosphorylation, but increased muscle protein kinase B (Akt) and Forkhead Box O (FOXO) 1 phosphorylation. Moreover, Asn decreased the concentrations of TNF-α, cortisol and glucagon in plasma, and TNF-α mRNA expression in muscles. Finally, Asn decreased mRNA abundance of muscle toll-like receptor (TLR) 4 and nucleotide-binding oligomerisation domain protein (NOD) signalling-related genes, and regulated their negative regulators. The beneficial effects of Asn on muscle atrophy may be associated with the following: (1) inhibiting muscle protein degradation via activating Akt and inactivating AMPKα and FOXO1; and (2) decreasing the expression of muscle pro-inflammatory cytokines via inhibiting TLR4 and NOD signalling pathways by modulation of their negative regulators.

  6. Monocytes from patients with rheumatoid arthritis and type 2 diabetes mellitus display an increased production of interleukin (IL)-1β via the nucleotide-binding domain and leucine-rich repeat containing family pyrin 3(NLRP3)-inflammasome activation: a possible implication for therapeutic decision in these patients.

    PubMed

    Ruscitti, P; Cipriani, P; Di Benedetto, P; Liakouli, V; Berardicurti, O; Carubbi, F; Ciccia, F; Alvaro, S; Triolo, G; Giacomelli, R

    2015-10-01

    A better understanding about the mechanisms involved in the pathogenesis of type 2 diabetes mellitus (T2D) showed that inflammatory cytokines such as tumour necrosis factor (TNF) and interleukin (IL)-1β play a pivotal role, mirroring data largely reported in rheumatoid arthritis (RA). IL-1β is produced mainly by monocytes (MO), and hyperglycaemia may be able to modulate, in the cytoplasm of these cells, the assembly of a nucleotide-binding domain and leucine-rich repeat containing family pyrin (NLRP3)-inflammosome, a cytosolic multi-protein platform where the inactive pro-IL-1β is cleaved into active form, via caspase-1 activity. In this paper, we evaluated the production of IL-1 β and TNF, in peripheral blood MO of patients affected by RA or T2D or both diseases, in order to understand if an alteration of the glucose metabolism may influence their proinflammatory status. Our data showed, after 24 h of incubation with different glucose concentrations, a significantly increased production of IL-1β and TNF in all evaluated groups when compared with healthy controls. However, a significant increase of IL-1β secretion by T2D/RA was observed when compared with other groups. The analysis of relative mRNA expression confirmed these data. After 24 h of incubation with different concentrations of glucose, our results showed a significant increase in NLRP3 expression. In this work, an increased production of IL-1β by MO obtained from patients affected by both RA and T2D via NLRP3-inflammasome activation may suggest a potential IL-1β targeted therapy in these patients.

  7. Interaction between the AAA+ ATPase p97 and its cofactor ataxin3 in health and disease: Nucleotide-induced conformational changes regulate cofactor binding.

    PubMed

    Rao, Maya V; Williams, Dewight R; Cocklin, Simon; Loll, Patrick J

    2017-09-22

    p97 is an essential ATPase associated with various cellular activities (AAA+) that functions as a segregase in diverse cellular processes, including the maintenance of proteostasis. p97 interacts with different cofactors that target it to distinct pathways; an important example is the deubiquitinase ataxin3, which collaborates with p97 in endoplasmic reticulum associated degradation (ERAD). However, the molecular details of this interaction have been unclear. Here, we characterized the binding of ataxin3 to p97, showing that ataxin3 binds with low-micromolar affinity to both wild-type p97 and mutants linked to degenerative disorders known as multisystem proteinopathy 1 (MSP1); we further showed that the stoichiometry of binding is one ataxin3 molecule per p97 hexamer. We mapped the binding determinants on each protein, demonstrating that ataxin3's p97/VCP-binding motif (VBM) interacts with the inter-lobe cleft in the N-domain of p97. We also probed the nucleotide dependence of this interaction, confirming that ataxin3 and p97 associate in the presence of ATP and in the absence of nucleotide, but not in the presence of ADP. Our experiments suggest that an ADP-driven downward movement of the p97 N-terminal domain dislodges ataxin3 by inducing a steric clash between the D1-domain and ataxin3's C-terminus. In contrast, MSP1 mutants of p97 bind ataxin3 irrespective of their nucleotide state, indicating a failure by these mutants to translate ADP binding into a movement of the N-terminal domain. Our model provides a mechanistic explanation for how nucleotides regulate the p97-ataxin3 interaction and why atypical cofactor binding is observed with MSP1 mutants. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  8. The Potato Nucleotide-binding Leucine-rich Repeat (NLR) Immune Receptor Rx1 Is a Pathogen-dependent DNA-deforming Protein*

    PubMed Central

    Fenyk, Stepan; Townsend, Philip D.; Dixon, Christopher H.; Spies, Gerhard B.; de San Eustaquio Campillo, Alba; Slootweg, Erik J.; Westerhof, Lotte B.; Gawehns, Fleur K. K.; Knight, Marc R.; Sharples, Gary J.; Goverse, Aska; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2015-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus; however, conserved nuclear targets that support their role in immunity are unknown. Previously, we noted a structural homology between the nucleotide-binding domain of NLRs and DNA replication origin-binding Cdc6/Orc1 proteins. Here we show that the NB-ARC (nucleotide-binding, Apaf-1, R-proteins, and CED-4) domain of the Rx1 NLR of potato binds nucleic acids. Rx1 induces ATP-dependent bending and melting of DNA in vitro, dependent upon a functional P-loop. In situ full-length Rx1 binds nuclear DNA following activation by its cognate pathogen-derived effector protein, the coat protein of potato virus X. In line with its obligatory nucleocytoplasmic distribution, DNA binding was only observed when Rx1 was allowed to freely translocate between both compartments and was activated in the cytoplasm. Immune activation induced by an unrelated NLR-effector pair did not trigger an Rx1-DNA interaction. DNA binding is therefore not merely a consequence of immune activation. These data establish a role for DNA distortion in Rx1 immune signaling and define DNA as a molecular target of an activated NLR. PMID:26306038

  9. Nicotinamide mononucleotide adenylyltransferase displays alternate binding modes for nicotinamide nucleotides

    PubMed Central

    Pfoh, Roland; Pai, Emil F.; Saridakis, Vivian

    2015-01-01

    Nicotinamide mononucleotide adenylyltransferase (NMNAT) catalyzes the biosynthesis of NAD+ and NaAD+. The crystal structure of NMNAT from Methanobacterium thermoautotrophicum complexed with NAD+ and SO4 2− revealed the active-site residues involved in binding and catalysis. Site-directed mutagenesis was used to further characterize the roles played by several of these residues. Arg11 and Arg136 were implicated in binding the phosphate groups of the ATP substrate. Both of these residues were mutated to lysine individually. Arg47 does not interact with either NMN or ATP substrates directly, but was deemed to play a role in binding as it is proximal to Arg11 and Arg136. Arg47 was mutated to lysine and glutamic acid. Surprisingly, when expressed in Escherichia coli all of these NMNAT mutants trapped a molecule of NADP+ in their active sites. This NADP+ was bound in a conformation that was quite different from that displayed by NAD+ in the native enzyme complex. When NADP+ was co-crystallized with wild-type NMNAT, the same structural arrangement was observed. These studies revealed a different conformation of NADP+ in the active site of NMNAT, indicating plasticity of the active site. PMID:26457427

  10. Nucleotide Binding Site Communication in Arabidopsis thaliana Adenosine 5′-Phosphosulfate Kinase*

    PubMed Central

    Ravilious, Geoffrey E.; Jez, Joseph M.

    2012-01-01

    Adenosine 5′-phosphosulfate kinase (APSK) catalyzes the ATP-dependent synthesis of adenosine 3′-phosphate 5′-phosphosulfate (PAPS), which is an essential metabolite for sulfur assimilation in prokaryotes and eukaryotes. Using APSK from Arabidopsis thaliana, we examine the energetics of nucleotide binary and ternary complex formation and probe active site features that coordinate the order of ligand addition. Calorimetric analysis shows that binding can occur first at either nucleotide site, but that initial interaction at the ATP/ADP site was favored and enhanced affinity for APS in the second site by 50-fold. The thermodynamics of the two possible binding models (i.e. ATP first versus APS first) differs and implies that active site structural changes guide the order of nucleotide addition. The ligand binding analysis also supports an earlier suggestion of intermolecular interactions in the dimeric APSK structure. Crystallographic, site-directed mutagenesis, and energetic analyses of oxyanion recognition by the P-loop in the ATP/ADP binding site and the role of Asp136, which bridges the ATP/ADP and APS/PAPS binding sites, suggest how the ordered nucleotide binding sequence and structural changes are dynamically coordinated for catalysis. PMID:22810229

  11. Nucleotide Binding Site Communication in Arabidopsis thaliana Adenosine 5;-Phosphosulfate Kinase

    SciTech Connect

    Ravilious, Geoffrey E.; Jez, Joseph M.

    2012-08-31

    Adenosine 5{prime}-phosphosulfate kinase (APSK) catalyzes the ATP-dependent synthesis of adenosine 3{prime}-phosphate 5{prime}-phosphosulfate (PAPS), which is an essential metabolite for sulfur assimilation in prokaryotes and eukaryotes. Using APSK from Arabidopsis thaliana, we examine the energetics of nucleotide binary and ternary complex formation and probe active site features that coordinate the order of ligand addition. Calorimetric analysis shows that binding can occur first at either nucleotide site, but that initial interaction at the ATP/ADP site was favored and enhanced affinity for APS in the second site by 50-fold. The thermodynamics of the two possible binding models (i.e. ATP first versus APS first) differs and implies that active site structural changes guide the order of nucleotide addition. The ligand binding analysis also supports an earlier suggestion of intermolecular interactions in the dimeric APSK structure. Crystallographic, site-directed mutagenesis, and energetic analyses of oxyanion recognition by the P-loop in the ATP/ADP binding site and the role of Asp136, which bridges the ATP/ADP and APS/PAPS binding sites, suggest how the ordered nucleotide binding sequence and structural changes are dynamically coordinated for catalysis.

  12. Identification of residues in the human guanylate-binding protein 1 critical for nucleotide binding and cooperative GTP hydrolysis.

    PubMed

    Praefcke, Gerrit J K; Kloep, Stephan; Benscheid, Utz; Lilie, Hauke; Prakash, Balaji; Herrmann, Christian

    2004-11-12

    The guanylate-binding proteins (GBPs) form a group of interferon-gamma inducible GTP-binding proteins which belong to the family of dynamin-related proteins. Like other members of this family, human guanylate-binding protein 1 (hGBP1) shows nucleotide-dependent oligomerisation that stimulates the GTPase activity of the protein. A unique feature of the GBPs is their ability to hydrolyse GTP to GDP and GMP. In order to elucidate the relationship between these findings, we designed point mutants in the phosphate-binding loop (P-loop) as well as in the switch I and switch II regions of the protein based on the crystal structure of hGBP1. These mutant proteins were analysed for their interaction with guanine nucleotides labeled with a fluorescence dye and for their ability to hydrolyse GTP in a cooperative manner. We identified mutations of amino acid residues that decrease GTPase activity by orders of magnitude a part of which are conserved in GTP-binding proteins. In addition, mutants in the P-loop were characterized that strongly impair binding of nucleotide. In consequence, together with altered GTPase activity and given cellular nucleotide concentrations this results in hGBP1 mutants prevailingly resting in the nucleotide-free (K51A and S52N) or the GTP bound form (R48A), respectively. Using size-exclusion chromatography and analytical ultracentrifugation we addressed the impact on protein oligomerisation. In summary, mutants of hGBP1 were identified and biochemically characterized providing hGBP1 locked in defined states in order to investigate their functional role in future cell biology studies.

  13. High-Throughput Screening for Small Molecule Inhibitors of LARG-Stimulated RhoA Nucleotide Binding via a Novel Fluorescence Polarization Assay

    PubMed Central

    Evelyn, Chris R.; Ferng, Timothy; Rojas, Rafael J.; Larsen, Martha J.; Sondek, John; Neubig, Richard R.

    2009-01-01

    Guanine nucleotide-exchange factors (GEFs) stimulate guanine nucleotide exchange and the subsequent activation of Rho-family proteins in response to extracellular stimuli acting upon cytokine, tyrosine kinase, adhesion, integrin, and G-protein coupled receptors (GPCRs). Upon Rho activation, several downstream events occur, such as morphological and cytokskeletal changes, motility, growth, survival, and gene transcription. The RhoGEF Leukemia-Associated RhoGEF (LARG) is a member of the Regulators of G-protein Signaling Homology Domain (RH) family of GEFs originally identified as a result of chromosomal translocation in acute myeloid leukemia. Using a novel fluorescence polarization guanine nucleotide binding assay utilizing BODIPY-Texas Red-GTPγS (BODIPY-TR-GTPγS), we performed a ten-thousand compound high-throughput screen for inhibitors of LARG-stimulated RhoA nucleotide binding. Five compounds identified from the high-throughput screen were confirmed in a non-fluorescent radioactive guanine nucleotide binding assay measuring LARG-stimulated [35S] GTPγS binding to RhoA, thus ruling out non-specific fluorescent effects. All five compounds selectively inhibited LARG-stimulated RhoA [35S] GTPγS binding, but had little to no effect upon RhoA or Gαo [35S] GTPγS binding. Therefore, these five compounds should serve as promising starting points for the development of small molecule inhibitors of LARG-mediated nucleotide exchange as both pharmacological tools and therapeutics. In addition, the fluorescence polarization guanine nucleotide binding assay described here should serve as a useful approach for both high-throughput screening and general biological applications. PMID:19196702

  14. GE23077 binds to the RNA polymerase 'i' and 'i+1' sites and prevents the binding of initiating nucleotides.

    PubMed

    Zhang, Yu; Degen, David; Ho, Mary X; Sineva, Elena; Ebright, Katherine Y; Ebright, Yon W; Mekler, Vladimir; Vahedian-Movahed, Hanif; Feng, Yu; Yin, Ruiheng; Tuske, Steve; Irschik, Herbert; Jansen, Rolf; Maffioli, Sonia; Donadio, Stefano; Arnold, Eddy; Ebright, Richard H

    2014-04-22

    Using a combination of genetic, biochemical, and structural approaches, we show that the cyclic-peptide antibiotic GE23077 (GE) binds directly to the bacterial RNA polymerase (RNAP) active-center 'i' and 'i+1' nucleotide binding sites, preventing the binding of initiating nucleotides, and thereby preventing transcription initiation. The target-based resistance spectrum for GE is unusually small, reflecting the fact that the GE binding site on RNAP includes residues of the RNAP active center that cannot be substituted without loss of RNAP activity. The GE binding site on RNAP is different from the rifamycin binding site. Accordingly, GE and rifamycins do not exhibit cross-resistance, and GE and a rifamycin can bind simultaneously to RNAP. The GE binding site on RNAP is immediately adjacent to the rifamycin binding site. Accordingly, covalent linkage of GE to a rifamycin provides a bipartite inhibitor having very high potency and very low susceptibility to target-based resistance. DOI: http://dx.doi.org/10.7554/eLife.02450.001.

  15. Synthesis and evaluation of potential inhibitors of human and Escherichia coli histidine triad nucleotide binding proteins.

    PubMed

    Bardaweel, Sanaa K; Ghosh, Brahma; Wagner, Carston R

    2012-01-01

    Based on recent substrate specificity studies, a series of ribonucleotide based esters and carbamates were synthesized and screened as inhibitors of the phosphoramidases and acyl-AMP hydrolases, Escherichia coli Histidine Triad Nucleotide Binding Protein (ecHinT) and human Histidine Triad Nucleotide Binding Protein 1 (hHint1). Using our established phosphoramidase assay, K(i) values were determined. All compounds exhibited non-competitive inhibition profiles. The carbamate based inhibitors were shown to successfully suppress the Hint1-associated phenotype in E. coli, suggesting that they are permeable intracellular inhibitors of ecHinT.

  16. Thiol-modifying phenylarsine oxide inhibits guanine nucleotide binding of Rho but not of Rac GTPases.

    PubMed

    Gerhard, Ralf; John, Harald; Aktories, Klaus; Just, Ingo

    2003-06-01

    Phenylarsine oxide (PAO) is a phosphotyrosine phosphatase inhibitor that cross-links vicinal thiol groups, thereby inactivating phosphatases possessing XCysXXCysX motifs. The RhoA-GTPase, but not the Rac1-GTPase, also possesses vicinal cysteines within the guanine nucleotide-binding region (aa 13-20) and the phosphohydrolase activity site. Treatment of Caco-2 cells with PAO showed a dose-dependent reorganization of the actin cytoskeleton, indicating involvement of Rho GTPases. As tested by pull-down experiments, RhoA, but not Rac1, from cell lysates was inactivated by PAO in a concentration-dependent manner. Modification of RhoA by PAO resulted in altered mobility on SDS-polyacrylamide gel electrophoresis, and PAO-modified RhoA was no longer substrate for C3-catalyzed ADP-ribosylation. Furthermore, RhoA treated with PAO, but not Rac1 treated with PAO, lost its property to bind to guanine nucleotides. Matrix-assisted laser desorption ionization-mass analysis of PAO-modified RhoA showed a mass shift according to an adduction of a single PAO molecule per molecule RhoA. Further analysis of Glu-C-generated RhoA peptides confirmed binding of PAO to a peptide harboring the guanine nucleotide binding region. Thus, PAO does not exclusively inhibit phosphotyrosine phosphatases but also inactivates RhoA by alteration of nucleotide binding.

  17. Determinants of Nucleotide-Binding Selectivity of Malic Enzyme

    PubMed Central

    Hung, Hui-Chih

    2011-01-01

    Malic enzymes have high cofactor selectivity. An isoform-specific distribution of residues 314, 346, 347 and 362 implies that they may play key roles in determining the cofactor specificity. Currently, Glu314, Ser346, Lys347 and Lys362 in human c-NADP-ME were changed to the corresponding residues of human m-NAD(P)-ME (Glu, Lys, Tyr and Gln, respectively) or Ascaris suum m-NAD-ME (Ala, Ile, Asp and His, respectively). Kinetic data demonstrated that the S346K/K347Y/K362Q c-NADP-ME was transformed into a debilitated NAD+-utilizing enzyme, as shown by a severe decrease in catalytic efficiency using NADP+ as the cofactor without a significant increase in catalysis using NAD+ as the cofactor. However, the S346K/K347Y/K362H enzyme displayed an enhanced value for kcat,NAD, suggesting that His at residue 362 may be more beneficial than Gln for NAD+ binding. Furthermore, the S346I/K347D/K362H mutant had a very large Km,NADP value compared to other mutants, suggesting that this mutant exclusively utilizes NAD+ as its cofactor. Since the S346K/K347Y/K362Q, S346K/K347Y/K362H and S346I/K347D/K362H c-NADP-ME mutants did not show significant reductions in their Km,NAD values, the E314A mutation was then introduced into these triple mutants. Comparison of the kinetic parameters of each triple-quadruple mutant pair (for example, S346K/K347Y/K362Q versus E314A/S346K/K347Y/K362Q) revealed that all of the Km values for NAD+ and NADP+ of the quadruple mutants were significantly decreased, while either kcat,NAD or kcat,NADP was substantially increased. By adding the E314A mutation to these triple mutant enzymes, the E314A/S346K/K347Y/K362Q, E314A/S346K/K347Y/K362H and E314A/S346I/K347D/K362H c-NADP-ME variants are no longer debilitated but become mainly NAD+-utilizing enzymes by a considerable increase in catalysis using NAD+ as the cofactor. These results suggest that abolishing the repulsive effect of Glu314 in these quadruple mutants increases the binding affinity of NAD+. Here, we

  18. Proteome-wide Discovery and Characterizations of Nucleotide-binding Proteins with Affinity-labeled Chemical Probes

    PubMed Central

    Xiao, Yongsheng; Guo, Lei; Jiang, Xinning; Wang, Yinsheng

    2013-01-01

    Nucleotide-binding proteins play pivotal roles in many cellular processes including cell signaling. However, targeted study of sub-proteome of nucleotide-binding proteins, especially protein kinases and GTP-binding proteins, remained challenging. Here, we reported a general strategy in using affinity-labeled chemical probes to enrich, identify, and quantify ATP- and GTP-binding proteins in the entire human proteome. Our results revealed that the ATP/GTP affinity probes facilitated the identification of 100 GTP-binding proteins and 206 kinases with the use of low mg quantities of lysate of HL-60 cells. In combination with the use of SILAC-based quantitative proteomics method, we assessed the ATP/GTP binding selectivities of nucleotide-binding proteins at the global proteome scale. Our results confirmed known and, more importantly, unveiled new ATP/GTP-binding preferences of hundreds of nucleotide-binding proteins. Additionally, our strategy led to the identification of three and one unique nucleotide-binding motifs for kinases and GTP-binding proteins, respectively, and the characterizations of the nucleotide binding selectivities of individual motifs. Our strategy for capturing and characterizing ATP/GTP-binding proteins should be generally applicable for those proteins that can interact with other nucleotides. PMID:23413923

  19. The auto-inhibitory state of Rho guanine nucleotide exchange factor ARHGEF5/TIM can be relieved by targeting its SH3 domain with rationally designed peptide aptamers.

    PubMed

    He, Ping; Tan, De-Li; Liu, Hong-Xiang; Lv, Feng-Lin; Wu, Wei

    2015-04-01

    The short isoform of Rho guanine nucleotide exchange factor ARHGEF5 is known as TIM, which plays diverse roles in, for example, tumorigenesis, neuronal development and Src-induced podosome formation through the activation of its substrates, the Rho family of GTPases. The activation is auto-inhibited by a putative helix N-terminal to the DH domain of TIM, which is stabilized by the intramolecular interaction of C-terminal SH3 domain with a poly-proline sequence between the putative helix and the DH domain. In this study, we systematically investigated the structural basis, energetic landscape and biological implication underlying TIM auto-inhibition by using atomistic molecular dynamics simulations and binding free energy analysis. The computational study revealed that the binding of SH3 domain to poly-proline sequence is the prerequisite for the stabilization of TIM auto-inhibition. Thus, it is suggested that targeting SH3 domain with competitors of the poly-proline sequence would be a promising strategy to relieve the auto-inhibitory state of TIM. In this consideration, we rationally designed a number of peptide aptamers for competitively inhibiting the SH3 domain based on modeled TIM structure and computationally generated data. Peptide binding test and guanine nucleotide exchange analysis solidified that these designed peptides can both bind to the SH3 domain potently and activate TIM-catalyzed RhoA exchange reaction effectively. Interestingly, a positive correlation between the peptide affinity and induced exchange activity was observed. In addition, separate mutation of three conserved residues Pro49, Pro52 and Lys54 - they are required for peptide recognition by SH3 domain -- in a designed peptide to Ala would completely abolish the capability of this peptide activating TIM. All these come together to suggest an intrinsic relationship between peptide binding to SH3 domain and the activation of TIM.

  20. Crystal structure of the nucleotide-binding subunit DhaL of the Escherichia coli dihydroxyacetone kinase.

    PubMed

    Oberholzer, Anselm Erich; Schneider, Philipp; Baumann, Ulrich; Erni, Bernhard

    2006-06-09

    Dihydroxyacetone (Dha) kinases are a family of sequence-related enzymes that utilize either ATP or phosphoenolpyruvate (PEP) as source of high energy phosphate. The PEP-dependent Dha kinase of Escherichia coli consists of three subunits. DhaK and DhaL are homologous to the Dha and nucleotide-binding domains of the ATP-dependent kinase of Citrobacter freundii. The DhaM subunit is a multiphosphorylprotein of the PEP:sugar phosphotransferase system (PTS). DhaL contains a tightly bound ADP as coenzyme that gets transiently phosphorylated in the double displacement of phosphate between DhaM and Dha. Here we report the 2.6A crystal structure of the E.coli DhaL subunit. DhaL folds into an eight-helix barrel of regular up-down topology with a hydrophobic core made up of eight interlocked aromatic residues and a molecule of ADP bound at the narrower end of the barrel. The alpha and beta phosphates of ADP are complexed by two Mg2+ and by a hydrogen bond to the imidazole ring of an invariant histidine. The Mg ions in turn are coordinated by three gamma-carboxyl groups of invariant aspartate residues. Water molecules complete the octahedral coordination sphere. The nucleotide is capped by an alpha-helical segment connecting helices 7 and 8 of the barrel. DhaL and the nucleotide-binding domain of the C.freundii kinase assume the same fold but display strongly different surface potentials. The latter observation and biochemical data indicate that the domains of the C.freundii Dha kinase constitute one cooperative unit and are not randomly interacting and independent like the subunits of the E.coli enzyme.

  1. GrpE, Hsp110/Grp170, HspBP1/Sil1 and BAG domain proteins: nucleotide exchange factors for Hsp70 molecular chaperones.

    PubMed

    Bracher, Andreas; Verghese, Jacob

    2015-01-01

    Molecular chaperones of the Hsp70 family are key components of the cellular protein folding machinery. Substrate folding is accomplished by iterative cycles of ATP binding, hydrolysis and release. The ATPase activity of Hsp70 is regulated by two main classes of cochaperones: J-domain proteins stimulate ATPase hydrolysis by Hsp70, while nucleotide exchange factors (NEF) facilitate its conversion from the ADP-bound to the ATP-bound state, thus closing the chaperone folding cycle. Beginning with the discovery of the prototypical bacterial NEF GrpE, a large diversity of Hsp70 nucleotide exchange factors has been identified, connecting Hsp70 to a multitude of cellular processes in the eukaryotic cell. Here we review recent advances towards structure and function of nucleotide exchange factors from the Hsp110/Grp170, HspBP1/Sil1 and BAG domain protein families and discuss how these cochaperones connect protein folding with quality control and degradation pathways.

  2. Multifunctionality of a Picornavirus Polymerase Domain: Nuclear Localization Signal and Nucleotide Recognition

    PubMed Central

    Ferrer-Orta, Cristina; de la Higuera, Ignacio; Caridi, Flavia; Sánchez-Aparicio, María Teresa; Moreno, Elena; Perales, Celia; Singh, Kamalendra; Sarafianos, Stefan G.; Sobrino, Francisco; Domingo, Esteban

    2015-01-01

    ABSTRACT The N-terminal region of the foot-and-mouth disease virus (FMDV) 3D polymerase contains the sequence MRKTKLAPT (residues 16 to 24) that acts as a nuclear localization signal. A previous study showed that substitutions K18E and K20E diminished the transport to the nucleus of 3D and 3CD and severely impaired virus infectivity. These residues have also been implicated in template binding, as seen in the crystal structures of different 3D-RNA elongation complexes. Here, we report the biochemical and structural characterization of different mutant polymerases harboring substitutions at residues 18 and 20, in particular, K18E, K18A, K20E, K20A, and the double mutant K18A K20A (KAKA). All mutant enzymes exhibit low RNA binding activity, low processivity, and alterations in nucleotide recognition, including increased incorporation of ribavirin monophosphate (RMP) relative to the incorporation of cognate nucleotides compared with the wild-type enzyme. The structural analysis shows an unprecedented flexibility of the 3D mutant polymerases, including both global rearrangements of the closed-hand architecture and local conformational changes at loop β9-α11 (within the polymerase motif B) and at the template-binding channel. Specifically, in 3D bound to RNA, both K18E and K20E induced the opening of new pockets in the template channel where the downstream templating nucleotide at position +2 binds. The comparisons of free and RNA-bound enzymes suggest that the structural rearrangements may occur in a concerted mode to regulate RNA replication, processivity, and fidelity. Thus, the N-terminal region of FMDV 3D that acts as a nuclear localization signal (NLS) and in template binding is also involved in nucleotide recognition and can affect the incorporation of nucleotide analogues. IMPORTANCE The study documents multifunctionality of a nuclear localization signal (NLS) located at the N-terminal region of the foot-and-mouth disease viral polymerase (3D). Amino acid

  3. The Nucleotide-Binding Sites of SUR1: A Mechanistic Model

    PubMed Central

    Vedovato, Natascia; Ashcroft, Frances M.; Puljung, Michael C.

    2015-01-01

    ATP-sensitive potassium (KATP) channels comprise four pore-forming Kir6.2 subunits and four modulatory sulfonylurea receptor (SUR) subunits. The latter belong to the ATP-binding cassette family of transporters. KATP channels are inhibited by ATP (or ADP) binding to Kir6.2 and activated by Mg-nucleotide interactions with SUR. This dual regulation enables the KATP channel to couple the metabolic state of a cell to its electrical excitability and is crucial for the KATP channel’s role in regulating insulin secretion, cardiac and neuronal excitability, and vascular tone. Here, we review the regulation of the KATP channel by adenine nucleotides and present an equilibrium allosteric model for nucleotide activation and inhibition. The model can account for many experimental observations in the literature and provides testable predictions for future experiments. PMID:26682803

  4. Human Sos1: A guanine nucleotide exchange factor for ras that binds to GRB2

    SciTech Connect

    Chardin, P. ); Camonis, J.; Gale, N.W.; Aelst, L. Van; Wigler, M.H.; Bar-Sagi, D. ); Schlessinger, J. )

    1993-05-28

    A human complementary DNA was isolated that encodes a widely expressed protein, hSos1, that is closely related to Sos, the product of the Drosophila son of sevenless gene. The hSos1 protein contains a region of significant sequence similarity to CDC25, a guanine nucleotide exchange factor for Ras from yeast. A fragment of hSos1 encoding the CDC25-related domain complemented loss of CDC25 function in yeast. This hSos1 domain specifically stimulated guanine nucleotide exchange on mammalian Ras proteins in vitro. Mammalian cells overexpressing full-length hSos1 had increased guanine nucleotide exchange activity. Thus hSos1 is a guanine nucleotide exchange factor for Ras. The hSos1 interacted with growth factor receptor-bound protein 2 (GRB2) in vivo and in vitro. This interaction was mediated by the carboxyl-terminal domain of hSos1 and the Src homology 3 (SH3) domains of GRB2. These results suggest that the coupling of receptor tyrosine kinases to Ras signaling is mediated by a molecular complex consisting of GRB2 and hSos1. 42 refs., 5 figs.

  5. Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2.

    PubMed

    Chardin, P; Camonis, J H; Gale, N W; van Aelst, L; Schlessinger, J; Wigler, M H; Bar-Sagi, D

    1993-05-28

    A human complementary DNA was isolated that encodes a widely expressed protein, hSos1, that is closely related to Sos, the product of the Drosophila son of sevenless gene. The hSos1 protein contains a region of significant sequence similarity to CDC25, a guanine nucleotide exchange factor for Ras from yeast. A fragment of hSos1 encoding the CDC25-related domain complemented loss of CDC25 function in yeast. This hSos1 domain specifically stimulated guanine nucleotide exchange on mammalian Ras proteins in vitro. Mammalian cells overexpressing full-length hSos1 had increased guanine nucleotide exchange activity. Thus hSos1 is a guanine nucleotide exchange factor for Ras. The hSos1 interacted with growth factor receptor-bound protein 2 (GRB2) in vivo and in vitro. This interaction was mediated by the carboxyl-terminal domain of hSos1 and the Src homology 3 (SH3) domains of GRB2. These results suggest that the coupling of receptor tyrosine kinases to Ras signaling is mediated by a molecular complex consisting of GRB2 and hSos1.

  6. Affi-Gel Blue for nucleic acid removal and early enrichment of nucleotide binding proteins.

    PubMed

    Deutscher, Murray P

    2009-01-01

    Passage of an extract or supernatant fraction through a column of Affi-Gel Blue and batchwise elution can be a rapid and effective early procedure for removal of nucleic acid, concentration of the sample and purification of nucleotide binding proteins.

  7. Novel nucleotide-binding sites in ATP-sensitive potassium channels formed at gating interfaces.

    PubMed

    Dong, Ke; Tang, Lie-Qi; MacGregor, Gordon G; Leng, Qiang; Hebert, Steven C

    2005-04-06

    The coupling of cell metabolism to membrane electrical activity is a vital process that regulates insulin secretion, cardiac and neuronal excitability and the responses of cells to ischemia. ATP-sensitive potassium channels (K(ATP); Kir6.x) are a major part of this metabolic-electrical coupling system and translate metabolic signals such as the ATP:ADP ratio to changes in the open or closed state (gate) of the channel. The localization of the nucleotide-binding site (NBS) on Kir6.x channels and how nucleotide binding gates these K(ATP) channels remain unclear. Here, we use fluorescent nucleotide binding to purified Kir6.x proteins to define the peptide segments forming the NBS on Kir6.x channels and show that unique N- and C-terminal interactions from adjacent subunits are required for high-affinity nucleotide binding. The short N- and C-terminal segments comprising the novel intermolecular NBS are next to helices that likely move with channel opening/closing, suggesting a lock-and-key model for ligand gating.

  8. Structural and evolutionary division of phosphotyrosine binding (PTB) domains.

    PubMed

    Uhlik, Mark T; Temple, Brenda; Bencharit, Sompop; Kimple, Adam J; Siderovski, David P; Johnson, Gary L

    2005-01-07

    Proteins encoding phosphotyrosine binding (PTB) domains function as adaptors or scaffolds to organize the signaling complexes involved in wide-ranging physiological processes including neural development, immunity, tissue homeostasis and cell growth. There are more than 200 proteins in eukaryotes and nearly 60 human proteins having PTB domains. Six PTB domain encoded proteins have been found to have mutations that contribute to inherited human diseases including familial stroke, hypercholesteremia, coronary artery disease, Alzheimer's disease and diabetes, demonstrating the importance of PTB scaffold proteins in organizing critical signaling complexes. PTB domains bind both peptides and headgroups of phosphatidylinositides, utilizing two distinct binding motifs to mediate spatial organization and localization within cells. The structure of PTB domains confers specificity for binding peptides having a NPXY motif with differing requirements for phosphorylation of the tyrosine within this recognition sequence. In this review, we use structural, evolutionary and functional analysis to divide PTB domains into three groups represented by phosphotyrosine-dependent Shc-like, phosphotyrosine-dependent IRS-like and phosphotyrosine-independent Dab-like PTBs, with the Dab-like PTB domains representing nearly 75% of proteins encoding PTB domains. In addition, we further define the binding characteristics of the cognate ligands for each group of PTB domains. The signaling complexes organized by PTB domain encoded proteins are largely unknown and represents an important challenge in systems biology for the future.

  9. Quantitative determination of binding of ISWI to nucleosomes and DNA shows allosteric regulation of DNA binding by nucleotides.

    PubMed

    Al-Ani, Gada; Briggs, Koan; Malik, Shuja Shafi; Conner, Michael; Azuma, Yoshiaki; Fischer, Christopher J

    2014-07-15

    The regulation of chromatin structure is controlled by a family of molecular motors called chromatin remodelers. The ability of these enzymes to remodel chromatin structure is dependent on their ability to couple ATP binding and hydrolysis into the mechanical work that drives nucleosome repositioning. The necessary first step in determining how these essential enzymes perform this function is to characterize both how they bind nucleosomes and how this interaction is regulated by ATP binding and hydrolysis. With this goal in mind, we monitored the interaction of the chromatin remodeler ISWI with fluorophore-labeled nucleosomes and DNA through associated changes in fluorescence anisotropy of the fluorophore upon binding of ISWI to these substrates. We determined that one ISWI molecule binds to a 20 bp double-stranded DNA substrate with an affinity of 18 ± 2 nM. In contrast, two ISWI molecules can bind to the core nucleosome with short linker DNA with stoichiometric macroscopic equilibrium constants: 1/β1 = 1.3 ± 0.6 nM, and 1/β2 = 13 ± 7 nM(2). Furthermore, to improve our understanding of the mechanism of DNA translocation by ISWI, and hence nucleosome repositioning, we determined the effect of nucleotide analogues on substrate binding by ISWI. While the affinity of ISWI for the nucleosome substrate with short lengths of flanking DNA was not affected by the presence of nucleotides, the affinity of ISWI for the DNA substrate is weakened in the presence of nonhydrolyzable ATP analogues but not by ADP.

  10. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily.

    PubMed

    Meyers, B C; Dickerman, A W; Michelmore, R W; Sivaramakrishnan, S; Sobral, B W; Young, N D

    1999-11-01

    The nucleotide binding site (NBS) is a characteristic domain of many plant resistance gene products. An increasing number of NBS-encoding sequences are being identified through gene cloning, PCR amplification with degenerate primers, and genome sequencing projects. The NBS domain was analyzed from 14 known plant resistance genes and more than 400 homologs, representing 26 genera of monocotyledonous, dicotyle-donous and one coniferous species. Two distinct groups of diverse sequences were identified, indicating divergence during evolution and an ancient origin for these sequences. One group was comprised of sequences encoding an N-terminal domain with Toll/Interleukin-1 receptor homology (TIR), including the known resistance genes, N, M, L6, RPP1 and RPP5. Surprisingly, this group was entirely absent from monocot species in searches of both random genomic sequences and large collections of ESTs. A second group contained monocot and dicot sequences, including the known resistance genes, RPS2, RPM1, I2, Mi, Dm3, Pi-B, Xa1, RPP8, RPS5 and Prf. Amino acid signatures in the conserved motifs comprising the NBS domain clearly distinguished these two groups. The Arabidopsis genome is estimated to contain approximately 200 genes that encode related NBS motifs; TIR sequences were more abundant and outnumber non-TIR sequences threefold. The Arabidopsis NBS sequences currently in the databases are located in approximately 21 genomic clusters and 14 isolated loci. NBS-encoding sequences may be more prevalent in rice. The wide distribution of these sequences in the plant kingdom and their prevalence in the Arabidopsis and rice genomes indicate that they are ancient, diverse and common in plants. Sequence inferences suggest that these genes encode a novel class of nucleotide-binding proteins.

  11. Characterization of the human sigma-1 receptor chaperone domain structure and binding immunoglobulin protein (BiP) interactions.

    PubMed

    Ortega-Roldan, Jose Luis; Ossa, Felipe; Schnell, Jason R

    2013-07-19

    The sigma-1 receptor (S1R) is a ligand-regulated membrane protein chaperone involved in the ER stress response. S1R activity is implicated in diseases of the central nervous system including amnesia, schizophrenia, depression, Alzheimer disease, and addiction. S1R has been shown previously to regulate the Hsp70 binding immunoglobulin protein (BiP) and the inositol triphosphate receptor calcium channel through a C-terminal domain. We have developed methods for bacterial expression and reconstitution of the chaperone domain of human S1R into detergent micelles that enable its study by solution NMR spectroscopy. The chaperone domain is found to contain a helix at the N terminus followed by a largely dynamic region and a structured, helical C-terminal region that encompasses a membrane associated domain containing four helices. The helical region at residues ∼198-206 is strongly amphipathic and proposed to anchor the chaperone domain to micelles and membranes. Three of the helices in the C-terminal region closely correspond to previously identified cholesterol and drug recognition sites. In addition, it is shown that the chaperone domain interacts with full-length BiP or the isolated nucleotide binding domain of BiP, but not the substrate binding domain, suggesting that the nucleotide binding domain is sufficient for S1R interactions.

  12. Characterization of the Human Sigma-1 Receptor Chaperone Domain Structure and Binding Immunoglobulin Protein (BiP) Interactions*

    PubMed Central

    Ortega-Roldan, Jose Luis; Ossa, Felipe; Schnell, Jason R.

    2013-01-01

    The sigma-1 receptor (S1R) is a ligand-regulated membrane protein chaperone involved in the ER stress response. S1R activity is implicated in diseases of the central nervous system including amnesia, schizophrenia, depression, Alzheimer disease, and addiction. S1R has been shown previously to regulate the Hsp70 binding immunoglobulin protein (BiP) and the inositol triphosphate receptor calcium channel through a C-terminal domain. We have developed methods for bacterial expression and reconstitution of the chaperone domain of human S1R into detergent micelles that enable its study by solution NMR spectroscopy. The chaperone domain is found to contain a helix at the N terminus followed by a largely dynamic region and a structured, helical C-terminal region that encompasses a membrane associated domain containing four helices. The helical region at residues ∼198–206 is strongly amphipathic and proposed to anchor the chaperone domain to micelles and membranes. Three of the helices in the C-terminal region closely correspond to previously identified cholesterol and drug recognition sites. In addition, it is shown that the chaperone domain interacts with full-length BiP or the isolated nucleotide binding domain of BiP, but not the substrate binding domain, suggesting that the nucleotide binding domain is sufficient for S1R interactions. PMID:23760505

  13. Transcription profiling of guanine nucleotide binding proteins during developmental regulation, and pesticide response in Solenopsis invicta (Hymenoptera: Formicidae)

    USDA-ARS?s Scientific Manuscript database

    Guanine nucleotide binding proteins (GNBP or G-protein) are glycoproteins anchored on the cytoplasmic cell membrane, and are mediators for many cellular processes. Complete cDNA of guanine nucleotide-binding protein gene ß-subunit (SiGNBP) was cloned and sequenced from S. invicta workers. To detect ...

  14. Phospholipid binding to the FAK catalytic domain impacts function

    PubMed Central

    Schaller, Michael D.

    2017-01-01

    Focal adhesion kinase is an essential nonreceptor tyrosine kinase that plays an important role in development, in homeostasis and in the progression of human disease. Multiple stimuli activate FAK, which requires a change in structure from an autoinhibited to activated conformation. In the autoinhibited conformation the FERM domain associates with the catalytic domain of FAK and PI(4,5)P2 binding to the FERM domain plays a role in the release of autoinhibition, activating the enzyme. An in silico model of FAK/PI(4,5)P2 interaction suggests that residues on the catalytic domain interact with PI(4,5)P2, in addition to the known FERM domain PI(4,5)P2 binding site. This study was undertaken to test the significance of this in silico observation. Mutations designed to disrupt the putative PI(4,5)P2 binding site were engineered into FAK. These mutants exhibited defects in phosphorylation and failed to completely rescue the phenotype associated with fak -/- phenotype fibroblasts demonstrating the importance of these residues in FAK function. The catalytic domain of FAK exhibited PI(4,5)P2 binding in vitro and binding activity was lost upon mutation of putative PI(4,5)P2 binding site basic residues. However, binding was not selective for PI(4,5)P2, and the catalytic domain bound to several phosphatidylinositol phosphorylation variants. The mutant exhibiting the most severe biological defect was defective for phosphatidylinositol phosphate binding, supporting the model that catalytic domain phospholipid binding is important for biochemical and biological function. PMID:28222177

  15. The Tiam1 Guanine Nucleotide Exchange Factor is Auto-inhibited by its Pleckstrin Homology Coiled-Coil Extension Domain.

    PubMed

    Xu, Zhen; Gakhar, Lokesh; Bain, Fletcher E; Spies, Maria; Fuentes, Ernesto J

    2017-09-07

    T-cell lymphoma invasion and metastasis 1 (Tiam1) is a Dbl-family guanine nucleotide exchange factor (GEF) that specifically activates the Rho-family GTPase Rac1 in response to upstream signals, thereby regulating cellular processes including cell adhesion and migration. Tiam1 contains multiple domains, including an N-terminal Pleckstrin homology coiled-coiled extension (PHn-CC-Ex) and catalytic Dbl-homology and C-terminal Pleckstrin homology (DH-PHc) domain. Previous studies indicate that larger fragments of Tiam1, such the region encompassing the N-terminal to C-terminal Pleckstrin homology domains (PHn-PHc) are auto-inhibited. However, the domains in this region responsible for inhibition remain unknown. Here, we show that the PHn-CC-Ex domain inhibits Tiam1 GEF activity by directly interacting with the catalytic DH-PHc domain, preventing Rac1 binding and activation. Enzyme kinetics experiments suggested that Tiam1 is auto-inhibited through occlusion of the catalytic site, rather than by allostery. Small angle X-ray scattering and ensemble modeling yielded models of the PHn-PHc fragment that indicate it is in equilibrium between open and closed conformational states. Finally, single-molecule experiments support a model in which conformational sampling between the open and closed states of Tiam1 contributes to Rac1 dissociation. Our results highlight the role of the PHn-CC-Ex domain in Tiam1 GEF regulation, and suggest a combinatorial model for GEF inhibition and activation of the Rac1 signaling pathway. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  16. Starch-binding domain shuffling in Aspergillus niger glucoamylase.

    PubMed

    Cornett, Catherine A G; Fang, Tsuei-Yun; Reilly, Peter J; Ford, Clark

    2003-07-01

    Aspergillus niger glucoamylase (GA) consists mainly of two forms, GAI [from the N-terminus, catalytic domain + linker + starch-binding domain (SBD)] and GAII (catalytic domain + linker). These domains were shuffled to make RGAI (SBD + linker + catalytic domain), RGAIDeltaL (SBD + catalytic domain) and RGAII (linker + catalytic domain), with domains defined by function rather than by tertiary structure. In addition, Paenibacillus macerans cyclomaltodextrin glucanotransferase SBD replaced the closely related A.niger GA SBD to give GAE. Soluble starch hydrolysis rates decreased as RGAII approximately GAII approximately GAI > RGAIDeltaL approximately RGAI approximately GAE. Insoluble starch hydrolysis rates were GAI > RGAIDeltaL > RGAI > GAE approximately RGAII > GAII, while insoluble starch-binding capacities were GAI > RGAI > RGAIDeltaL > RGAII > GAII > GAE. These results indicate that: (i) moving the SBD to the N-terminus or replacing the native SBD somewhat affects soluble starch hydrolysis; (ii) SBD location significantly affects insoluble starch binding and hydrolysis; (iii) insoluble starch hydrolysis is imperfectly correlated with its binding by the SBD; and (iv) placing the P.macerans cyclomaltodextrin glucanotransferase SBD at the end of a linker, instead of closely associated with the rest of the enzyme, severely reduces its ability to bind and hydrolyze insoluble starch.

  17. Formyl peptide receptor chimeras define domains involved in ligand binding.

    PubMed

    Perez, H D; Holmes, R; Vilander, L R; Adams, R R; Manzana, W; Jolley, D; Andrews, W H

    1993-02-05

    We have begun to study the structural requirements for the binding of formyl peptides to their specific receptors. As an initial approach, we constructed C5a-formyl peptide receptor chimeras. Unique (and identical) restriction sites were introduced within the transmembrane domains of these receptors that allowed for the exchange of specific areas. Four types of chimeric receptors were generated. 1) The C5a receptor was progressively substituted by the formyl peptide receptor. 2) The formyl peptide receptor was progressively substituted by the C5a receptor. 3) Specific domains of the C5a receptor were substituted by the corresponding domain of the formyl peptide receptor. 4) Specific domains of the formyl peptide receptor were replaced by the same corresponding domain of the C5a receptor. Wild type and chimeric receptors were transfected into COS 7 cells and their ability to bind formyl peptide determined, taking into account efficiency of transfection and expression of chimeric protein. Based on these results, a ligand binding model is presented in which the second, third, and fourth extracellular (and/or their transmembrane) domains together with the first transmembrane domain form a ligand binding pocket for formyl peptides. It is proposed that the amino-terminal domain plays a role by presumably providing a "lid" to the pocket. The carboxyl-terminal cytoplasmic tail appears to modulate ligand binding by regulating receptor affinity.

  18. The BAH domain of Rsc2 is a histone H3 binding domain

    PubMed Central

    Chambers, Anna L.; Pearl, Laurence H.; Oliver, Antony W.; Downs, Jessica A.

    2013-01-01

    Bromo-adjacent homology (BAH) domains are commonly found in chromatin-associated proteins and fall into two classes; Remodels the Structure of Chromatin (RSC)-like or Sir3-like. Although Sir3-like BAH domains bind nucleosomes, the binding partners of RSC-like BAH domains are currently unknown. The Rsc2 subunit of the RSC chromatin remodeling complex contains an RSC-like BAH domain and, like the Sir3-like BAH domains, we find Rsc2 BAH also interacts with nucleosomes. However, unlike Sir3-like BAH domains, we find that Rsc2 BAH can bind to recombinant purified H3 in vitro, suggesting that the mechanism of nucleosome binding is not conserved. To gain insight into the Rsc2 BAH domain, we determined its crystal structure at 2.4 Å resolution. We find that it differs substantially from Sir3-like BAH domains and lacks the motifs in these domains known to be critical for making contacts with histones. We then go on to identify a novel motif in Rsc2 BAH that is critical for efficient H3 binding in vitro and show that mutation of this motif results in defective Rsc2 function in vivo. Moreover, we find this interaction is conserved across Rsc2-related proteins. These data uncover a binding target of the Rsc2 family of BAH domains and identify a novel motif that mediates this interaction. PMID:23907388

  19. Retinoblastoma-binding protein 1 has an interdigitated double Tudor domain with DNA binding activity.

    PubMed

    Gong, Weibin; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2014-02-21

    Retinoblastoma-binding protein 1 (RBBP1) is a tumor and leukemia suppressor that binds both methylated histone tails and DNA. Our previous studies indicated that RBBP1 possesses a Tudor domain, which cannot bind histone marks. In order to clarify the function of the Tudor domain, the solution structure of the RBBP1 Tudor domain was determined by NMR and is presented here. Although the proteins are unrelated, the RBBP1 Tudor domain forms an interdigitated double Tudor structure similar to the Tudor domain of JMJD2A, which is an epigenetic mark reader. This indicates the functional diversity of Tudor domains. The RBBP1 Tudor domain structure has a significant area of positively charged surface, which reveals a capability of the RBBP1 Tudor domain to bind nucleic acids. NMR titration and isothermal titration calorimetry experiments indicate that the RBBP1 Tudor domain binds both double- and single-stranded DNA with an affinity of 10-100 μM; no apparent DNA sequence specificity was detected. The DNA binding mode and key interaction residues were analyzed in detail based on a model structure of the Tudor domain-dsDNA complex, built by HADDOCK docking using the NMR data. Electrostatic interactions mediate the binding of the Tudor domain with DNA, which is consistent with NMR experiments performed at high salt concentration. The DNA-binding residues are conserved in Tudor domains of the RBBP1 protein family, resulting in conservation of the DNA-binding function in the RBBP1 Tudor domains. Our results provide further insights into the structure and function of RBBP1.

  20. Structural Dynamics of the Cereblon Ligand Binding Domain

    PubMed Central

    Hartmann, Marcus D.; Boichenko, Iuliia; Coles, Murray; Lupas, Andrei N.; Hernandez Alvarez, Birte

    2015-01-01

    Cereblon, a primary target of thalidomide and its derivatives, has been characterized structurally from both bacteria and animals. Especially well studied is the thalidomide binding domain, CULT, which shows an invariable structure across different organisms and in complex with different ligands. Here, based on a series of crystal structures of a bacterial representative, we reveal the conformational flexibility and structural dynamics of this domain. In particular, we follow the unfolding of large fractions of the domain upon release of thalidomide in the crystalline state. Our results imply that a third of the domain, including the thalidomide binding pocket, only folds upon ligand binding. We further characterize the structural effect of the C-terminal truncation resulting from the mental-retardation linked R419X nonsense mutation in vitro and offer a mechanistic hypothesis for its irresponsiveness to thalidomide. At 1.2Å resolution, our data provide a view of thalidomide binding at atomic resolution. PMID:26024445

  1. Stimulation of phospholipase C by guanine-nucleotide-binding protein beta gamma subunits.

    PubMed

    Camps, M; Hou, C; Sidiropoulos, D; Stock, J B; Jakobs, K H; Gierschik, P

    1992-06-15

    We have previously shown that soluble fractions obtained from human HL-60 granulocytes contain a phospholipase C which is markedly stimulated by the stable GTP analogue guanosine 5'-[3-O-thio]triphosphate (Camps, M., Hou, C., Jakobs, K. H. and Gierschik, P. (1990) Biochem. J. 271, 743-748]. To investigate whether this stimulation was due to a soluble alpha subunit of a heterotrimeric guanine-nucleotide-binding protein or a soluble low-molecular-mass GTP-binding protein, we have examined the effect of purified guanine-nucleotide-binding protein beta gamma dimers on the phospholipase-C-mediated formation of inositol phosphates by HL-60 cytosol. We found that beta gamma subunits, purified from bovine retinal transducin (beta gamma t), markedly stimulated the hydrolysis of phosphatidylinositol 4,5-bisphosphate by this phospholipase C preparation. The stimulation of phospholipase C by beta gamma t was not secondary to a phospholipase-A2-mediated generation of arachidonic acid, was prevented by the GDP-liganded transducin alpha subunit and was additive to activation of phospholipase C by guanosine 5'-[3-O-thio]triphosphate. Beta gamma t also stimulated soluble phospholipase C from human and bovine peripheral neutrophils, as well as membrane-bound, detergent-solubilized phospholipase C from HL-60 cells. Stimulation of soluble HL-60 phospholipase C was not restricted to beta gamma t, but was also observed with highly purified beta gamma subunits from bovine brain. Fractionation of HL-60 cytosol by anion-exchange chromatography revealed the existence of at least two distinct forms of phospholipase C in HL-60 granulocytes. Only one of these forms was sensitive to stimulation by beta gamma t, demonstrating that stimulation of phospholipase C by beta gamma subunits is isozyme specific. Taken together, our results suggest that guanine-nucleotide-binding protein beta gamma subunits may play an important and active role in mediating the stimulation of phospholipase C by

  2. Identification of two nuclear factor-binding domains on the chicken cardiac actin promoter: implications for regulation of the gene.

    PubMed Central

    Quitschke, W W; DePonti-Zilli, L; Lin, Z Y; Paterson, B M

    1989-01-01

    The cis-acting regions that appear to be involved in negative regulation of the chicken alpha-cardiac actin promoter both in vivo and in vitro have been identified. A nuclear factor(s) binding to the proximal region mapped over the TATA element between nucleotides -50 and -25. In the distal region, binding spanned nucleotides -136 to -112, a region that included a second CArG box (CArG2) 5' to the more familiar CCAAT-box (CArG1) consensus sequence. Nuclear factors binding to these different domains were found in both muscle and nonmuscle preparations but were detectable at considerably lower levels in tissues expressing the alpha-cardiac actin gene. In contrast, concentrations of the beta-actin CCAAT-box binding activity were similar in all extracts tested. The role of these factor-binding domains on the activity of the cardiac actin promoter in vivo and in vitro and the prevalence of the binding factors in nonmuscle extracts are consistent with the idea that these binding domains and their associated factors are involved in the tissue-restricted expression of cardiac actin through both positive and negative regulatory mechanisms. In the absence of negative regulatory factors, these same binding domains act synergistically, via other factors, to activate the cardiac actin promoter during myogenesis. Images PMID:2552286

  3. Molecular Basis for Failure of “Atypical” C1 Domain of Vav1 to Bind Diacylglycerol/Phorbol Ester*

    PubMed Central

    Geczy, Tamas; Peach, Megan L.; El Kazzouli, Saïd; Sigano, Dina M.; Kang, Ji-Hye; Valle, Christopher J.; Selezneva, Julia; Woo, Wonhee; Kedei, Noemi; Lewin, Nancy E.; Garfield, Susan H.; Lim, Langston; Mannan, Poonam; Marquez, Victor E.; Blumberg, Peter M.

    2012-01-01

    C1 domains, the recognition motif of the second messenger diacylglycerol and of the phorbol esters, are classified as typical (ligand-responsive) or atypical (not ligand-responsive). The C1 domain of Vav1, a guanine nucleotide exchange factor, plays a critical role in regulation of Vav activity through stabilization of the Dbl homology domain, which is responsible for exchange activity of Vav. Although the C1 domain of Vav1 is classified as atypical, it retains a binding pocket geometry homologous to that of the typical C1 domains of PKCs. This study clarifies the basis for its failure to bind ligands. Substituting Vav1-specific residues into the C1b domain of PKCδ, we identified five crucial residues (Glu9, Glu10, Thr11, Thr24, and Tyr26) along the rim of the binding cleft that weaken binding potency in a cumulative fashion. Reciprocally, replacing these incompatible residues in the Vav1 C1 domain with the corresponding residues from PKCδ C1b (δC1b) conferred high potency for phorbol ester binding. Computer modeling predicts that these unique residues in Vav1 increase the hydrophilicity of the rim of the binding pocket, impairing membrane association and thereby preventing formation of the ternary C1-ligand-membrane binding complex. The initial design of diacylglycerol-lactones to exploit these Vav1 unique residues showed enhanced selectivity for C1 domains incorporating these residues, suggesting a strategy for the development of ligands targeting Vav1. PMID:22351766

  4. The Intimin periplasmic domain mediates dimerisation and binding to peptidoglycan.

    PubMed

    Leo, Jack C; Oberhettinger, Philipp; Chaubey, Manish; Schütz, Monika; Kühner, Daniel; Bertsche, Ute; Schwarz, Heinz; Götz, Friedrich; Autenrieth, Ingo B; Coles, Murray; Linke, Dirk

    2015-01-01

    Intimin and Invasin are prototypical inverse (Type Ve) autotransporters and important virulence factors of enteropathogenic Escherichia coli and Yersinia spp. respectively. In addition to a C-terminal extracellular domain and a β-barrel transmembrane domain, both proteins also contain a short N-terminal periplasmic domain that, in Intimin, includes a lysin motif (LysM), which is thought to mediate binding to peptidoglycan. We show that the periplasmic domain of Intimin does bind to peptidoglycan both in vitro and in vivo, but only under acidic conditions. We were able to determine a dissociation constant of 0.8 μM for this interaction, whereas the Invasin periplasmic domain, which lacks a LysM, bound only weakly in vitro and failed to bind peptidoglycan in vivo. We present the solution structure of the Intimin LysM, which has an additional α-helix conserved within inverse autotransporter LysMs but lacking in others. In contrast to previous reports, we demonstrate that the periplasmic domain of Intimin mediates dimerisation. We further show that dimerisation and peptidoglycan binding are general features of LysM-containing inverse autotransporters. Peptidoglycan binding by the periplasmic domain in the infection process may aid in resisting mechanical and chemical stress during transit through the gastrointestinal tract.

  5. Biosensors engineered from conditionally stable ligand-binding domains

    DOEpatents

    Church, George M.; Feng, Justin; Mandell, Daniel J.; Baker, David; Fields, Stanley; Jester, Benjamin Ward; Tinberg, Christine Elaine

    2017-09-19

    Disclosed is a biosensor engineered to conditionally respond to the presence of specific small molecules, the biosensors including conditionally stable ligand-binding domains (LBDs) which respond to the presence of specific small molecules, wherein readout of binding is provided by reporter genes or transcription factors (TFs) fused to the LBDs.

  6. Interactions of. beta. -adrenergic receptors with guanine nucleotide-binding proteins

    SciTech Connect

    Abramson, S.N.

    1985-01-01

    The properties of ..beta..-adrenergic receptors were investigated with radioligand binding assays using the agonists (/sup 3/H)hydroxybenzyl-isoproterenol (/sup 3/H-HBI) and (/sup 3/H)epinephrine (/sup 3/H-EPI), and the antagonist (/sup 125/I)iodopindolol (/sup 125/I-IPIN). Membranes prepared from L6 myoblasts bound (/sup 3/H)HBI, (/sup 3/H)EPI, and (/sup 125/I)IPIN with high affinity and Scatchard plots revealed densities of 222 +/- 23, 111 +/- 7, and 325 +/- 37 fmol/mg of protein, respectively. Binding of (/sup 3/H)HBI and (/sup 3/H)EPI was inhibited allosterically by guanine nucleotides. Membranes prepared from wild-type S49 lymphoma cells bound (/sup 3/H)HBI and (/sup 125/I)IPIN with high affinity and Scatchard plots revealed densities of 48.9 +/- 7.1 and 196 +/- 29 fmol/mg of protein, respectively. Binding of (/sup 3/H)HBI was inhibited allosterically by GTP. Similar results were obtained with membranes prepared from the adenylate cyclase deficient variant of S49 lymphoma cells (cyc-), which does not contain a functional stimulatory guanine nucleotide-binding protein (N/sub s/), but does contain a functional inhibitory guanine nucleotide-binding protein (N/sub i/). Binding of (/sup 3/H)HBI to membranes prepared from cyc- S49 cells was inhibited by pretreatment of cells with pertussis toxin. These results suggest that ..beta..-adrenergic receptors on membranes prepared from cyc- S49 cells interact with N/sub i/ to form a ternary complex composed of agonist, receptor, and N/sub i/.

  7. Quantitative Determination of Binding of ISWI to Nucleosomes and DNA Shows Allosteric Regulation of DNA Binding by Nucleotides

    PubMed Central

    2015-01-01

    The regulation of chromatin structure is controlled by a family of molecular motors called chromatin remodelers. The ability of these enzymes to remodel chromatin structure is dependent on their ability to couple ATP binding and hydrolysis into the mechanical work that drives nucleosome repositioning. The necessary first step in determining how these essential enzymes perform this function is to characterize both how they bind nucleosomes and how this interaction is regulated by ATP binding and hydrolysis. With this goal in mind, we monitored the interaction of the chromatin remodeler ISWI with fluorophore-labeled nucleosomes and DNA through associated changes in fluorescence anisotropy of the fluorophore upon binding of ISWI to these substrates. We determined that one ISWI molecule binds to a 20 bp double-stranded DNA substrate with an affinity of 18 ± 2 nM. In contrast, two ISWI molecules can bind to the core nucleosome with short linker DNA with stoichiometric macroscopic equilibrium constants: 1/β1 = 1.3 ± 0.6 nM, and 1/β2 = 13 ± 7 nM2. Furthermore, to improve our understanding of the mechanism of DNA translocation by ISWI, and hence nucleosome repositioning, we determined the effect of nucleotide analogues on substrate binding by ISWI. While the affinity of ISWI for the nucleosome substrate with short lengths of flanking DNA was not affected by the presence of nucleotides, the affinity of ISWI for the DNA substrate is weakened in the presence of nonhydrolyzable ATP analogues but not by ADP. PMID:24898734

  8. Alpha-amylase starch binding domains: cooperative effects of binding to starch granules of multiple tandemly arranged domains.

    PubMed

    Guillén, D; Santiago, M; Linares, L; Pérez, R; Morlon, J; Ruiz, B; Sánchez, S; Rodríguez-Sanoja, R

    2007-06-01

    The Lactobacillus amylovorus alpha-amylase starch binding domain (SBD) is a functional domain responsible for binding to insoluble starch. Structurally, this domain is dissimilar from other reported SBDs because it is composed of five identical tandem modules of 91 amino acids each. To understand adsorption phenomena specific to this SBD, the importance of their modular arrangement in relationship to binding ability was investigated. Peptides corresponding to one, two, three, four, or five modules were expressed as His-tagged proteins. Protein binding assays showed an increased capacity of adsorption as a function of the number of modules, suggesting that each unit of the SBD may act in an additive or synergic way to optimize binding to raw starch.

  9. Nucleotide binding to human uncoupling protein-2 refolded from bacterial inclusion bodies.

    PubMed

    Jekabsons, Mika B; Echtay, Karim S; Brand, Martin D

    2002-09-01

    Experiments were performed to test the hypothesis that recombinant human uncoupling protein-2 (UCP2) ectopically expressed in bacterial inclusion bodies binds nucleotides in a manner identical with the nucleotide-inhibited uncoupling that is observed in kidney mitochondria. For this, sarkosyl-solubilized UCP2 inclusion bodies were treated with the polyoxyethylene ether detergent C12E9 and hydroxyapatite. Protein recovered from hydroxyapatite chromatography was approx. 90% pure UCP2, as judged by Coomassie Blue and silver staining of polyacrylamide gels. Using fluorescence resonance energy transfer, N-methylanthraniloyl-tagged purine nucleoside di- and tri-phosphates exhibited enhanced fluorescence with purified UCP2. Dissociation constants determined by least-squares non-linear regression indicated that the affinity of UCP2 for these fluorescently tagged nucleotides was 3-5 microM or perhaps an order of magnitude stronger, depending on the model used. Competition experiments with [8-14C]ATP demonstrated that UCP2 binds unmodified purine and pyrimidine nucleoside triphosphates with 2-5 microM affinity. Affinities for ADP and GDP were approx. 10-fold lower. These data indicate that: UCP2 (a) is at least partially refolded from sarkosyl-solubilized bacterial inclusion bodies by a two-step treatment with C12E9 detergent and hydroxyapatite; (b) binds purine and pyrimidine nucleoside triphosphates with low micromolar affinity; (c) binds GDP with the same affinity as GDP inhibits superoxide-stimulated uncoupling by kidney mitochondria; and (d) exhibits a different nucleotide preference than kidney mitochondria.

  10. MIT domain of Vps4 is a Ca2+-dependent phosphoinositide-binding domain.

    PubMed

    Iwaya, Naoko; Takasu, Hirotoshi; Goda, Natsuko; Shirakawa, Masahiro; Tanaka, Toshiki; Hamada, Daizo; Hiroaki, Hidekazu

    2013-05-01

    The microtubule interacting and trafficking (MIT) domain is a small protein module that is conserved in proteins of diverged function, such as Vps4, spastin and sorting nexin 15 (SNX15). The molecular function of the MIT domain is protein-protein interaction, in which the domain recognizes peptides containing MIT-interacting motifs. Recently, we identified an evolutionarily related domain, 'variant' MIT domain at the N-terminal region of the microtubule severing enzyme katanin p60. We found that the domain was responsible for binding to microtubules and Ca(2+). Here, we have examined whether the authentic MIT domains also bind Ca(2+). We found that the loop between the first and second α-helices of the MIT domain binds a Ca(2+) ion. Furthermore, the MIT domains derived from Vps4b and SNX15a showed phosphoinositide-binding activities in a Ca(2+)-dependent manner. We propose that the MIT domain is a novel membrane-associating domain involved in endosomal trafficking.

  11. Structural studies on MtRecA-nucleotide complexes: insights into DNA and nucleotide binding and the structural signature of NTP recognition.

    PubMed

    Datta, S; Ganesh, N; Chandra, Nagasuma R; Muniyappa, K; Vijayan, M

    2003-02-15

    RecA protein plays a crucial role in homologous recombination and repair of DNA. Central to all activities of RecA is its binding to Mg(+2)-ATP. The active form of the protein is a helical nucleoprotein filament containing the nucleotide cofactor and single-stranded DNA. The stability and structure of the helical nucleoprotein filament formed by RecA are modulated by nucleotide cofactors. Here we report crystal structures of a MtRecA-ADP complex, complexes with ATPgammaS in the presence and absence of magnesium as well as a complex with dATP and Mg+2. Comparison with the recently solved crystal structures of the apo form as well as a complex with ADP-AlF4 confirms an expansion of the P-loop region in MtRecA, compared to its homologue in Escherichia coli, correlating with the reduced affinity of MtRecA for ATP. The ligand bound structures reveal subtle variations in nucleotide conformations among different nucleotides that serve in maintaining the network of interactions crucial for nucleotide binding. The nucleotide binding site itself, however, remains relatively unchanged. The analysis also reveals that ATPgammaS rather than ADP-AlF4 is structurally a better mimic of ATP. From among the complexed structures, a definition for the two DNA-binding loops L1 and L2 has clearly emerged for the first time and provides a basis to understand DNA binding by RecA. The structural information obtained from these complexes correlates well with the extensive biochemical data on mutants available in the literature, contributing to an understanding of the role of individual residues in the nucleotide binding pocket, at the molecular level. Modeling studies on the mutants again point to the relative rigidity of the nucleotide binding site. Comparison with other NTP binding proteins reveals many commonalties in modes of binding by diverse members in the structural family, contributing to our understanding of the structural signature of NTP recognition.

  12. A Ras-like domain in the light intermediate chain bridges the dynein motor to a cargo-binding region.

    PubMed

    Schroeder, Courtney M; Ostrem, Jonathan M L; Hertz, Nicholas T; Vale, Ronald D

    2014-10-01

    Cytoplasmic dynein, a microtubule-based motor protein, transports many intracellular cargos by means of its light intermediate chain (LIC). In this study, we have determined the crystal structure of the conserved LIC domain, which binds the motor heavy chain, from a thermophilic fungus. We show that the LIC has a Ras-like fold with insertions that distinguish it from Ras and other previously described G proteins. Despite having a G protein fold, the fungal LIC has lost its ability to bind nucleotide, while the human LIC1 binds GDP preferentially over GTP. We show that the LIC G domain binds the dynein heavy chain using a conserved patch of aromatic residues, whereas the less conserved C-terminal domain binds several Rab effectors involved in membrane transport. These studies provide the first structural information and insight into the evolutionary origin of the LIC as well as revealing how this critical subunit connects the dynein motor to cargo.

  13. The MLLE domain of the ubiquitin ligase UBR5 binds to its catalytic domain to regulate substrate binding.

    PubMed

    Muñoz-Escobar, Juliana; Matta-Camacho, Edna; Kozlov, Guennadi; Gehring, Kalle

    2015-09-11

    E3 ubiquitin ligases catalyze the transfer of ubiquitin from an E2-conjugating enzyme to a substrate. UBR5, homologous to the E6AP C terminus (HECT)-type E3 ligase, mediates the ubiquitination of proteins involved in translation regulation, DNA damage response, and gluconeogenesis. In addition, UBR5 functions in a ligase-independent manner by prompting protein/protein interactions without ubiquitination of the binding partner. Despite recent functional studies, the mechanisms involved in substrate recognition and selective ubiquitination of its binding partners remain elusive. The C terminus of UBR5 harbors the HECT catalytic domain and an adjacent MLLE domain. MLLE domains mediate protein/protein interactions through the binding of a conserved peptide motif, termed PAM2. Here, we characterize the binding properties of the UBR5 MLLE domain to PAM2 peptides from Paip1 and GW182. The crystal structure with a Paip1 PAM2 peptide reveals the network of hydrophobic and ionic interactions that drive binding. In addition, we identify a novel interaction of the MLLE domain with the adjacent HECT domain mediated by a PAM2-like sequence. Our results confirm the role of the MLLE domain of UBR5 in substrate recruitment and suggest a potential role in regulating UBR5 ligase activity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. The B(12)-binding subunit of glutamate mutase from Clostridium tetanomorphum traps the nucleotide moiety of coenzyme B(12).

    PubMed

    Tollinger, M; Eichmüller, C; Konrat, R; Huhta, M S; Marsh, E N; Kräutler, B

    2001-06-08

    Glutamate mutase from Clostridium tetanomorphum binds coenzyme B(12) in a base-off/His-on form, in which the nitrogenous ligand of the B(12)-nucleotide function is displaced from cobalt by a conserved histidine. The effect of binding the B(12)-nucleotide moiety to MutS, the B(12)-binding subunit of glutamate mutase, was investigated using NMR spectroscopic methods. Binding of the B(12)-nucleotide to MutS was determined to occur with K(d)=5.6(+/-0.7) mM and to be accompanied by a specific conformational change in the protein. The nucleotide binding cleft of the apo-protein, which is formed by a dynamic segment with propensity for partial alpha-helical conformation (the "nascent" alpha-helix), becomes completely structured upon binding of the B(12)-nucleotide, with formation of helix alpha1. In contrast, the segment containing the conserved residues of the B(12)-binding Asp-x-His-x-x-Gly motif remains highly dynamic in the protein/B(12)-nucleotide complex. From relaxation studies, the time constant tau, which characterizes the time scale for the formation of helix alpha1, was estimated to be about 30 micros (15)N and was the same in both, apo-protein and nucleotide-bound protein. Thus, the binding of the B(12)-nucleotide moiety does not significantly alter the kinetics of helix formation, but only shifts the equilibrium towards the structured fold. These results indicate MutS to be structured in such a way, as to be able to trap the nucleotide segment of the base-off form of coenzyme B(12) and provide, accordingly, the first structural clues as to how the process of B(12)-binding occurs. Copyright 2001 Academic Press.

  15. Guanine nucleotide binding properties of the mammalian RalA protein produced in Escherichia coli.

    PubMed

    Frech, M; Schlichting, I; Wittinghofer, A; Chardin, P

    1990-04-15

    The simian ralA cDNA was inserted in a ptac expression vector, and high amounts of soluble ral protein were expressed in Escherichia coli. The purified p24ral contains 1 mol of bound nucleotide/mol of protein that can be exchanged against external nucleotide. The ral protein exchanges GDP with a t 1/2 of 90 min at 37 degrees C in the presence of Mg2+, and has a low GTPase activity (0.07 min-1 at 37 degrees C). We have also studied its affinity for various guanine nucleotides and analogs. NMR measurements show that the three-dimensional environment around the nucleotide is similar in p21ras and p24ral. In addition to these studies on the wild-type ral protein, we used in vitro mutagenesis to introduce substitutions corresponding to the Val12, Val12 + Thr59, and Leu61 substitutions of p21ras. These mutant ral proteins display altered nucleotide exchange kinetics and GTPase activities, however, the effects of the substitutions are less pronounced than in the ras proteins. p24ralVal12 + Thr59 autophosphorylates on the substituted Thr, as a side reaction of the GTP hydrolysis, but the rate is much lower than those of the Thr59 mutants of p21ras. These results show that ras and ral proteins have similar structures and biochemical properties. Significant differences are found, however, in the contribution of the Mg2+ ion to GDP binding, in the rate of the GTPase reaction and in the sensitivity of these two proteins to substitutions around the phosphate-binding site, suggesting that the various "small G-proteins" of the ras family perform different functions.

  16. Functional characterization and signal transduction ability of nucleotide-binding site-leucine-rich repeat resistance genes in plants.

    PubMed

    Joshi, R K; Nayak, S

    2011-10-25

    Pathogen infection in plants is often limited by a multifaceted defense response triggered by resistance genes. The most prevalent class of resistance proteins includes those that contain a nucleotide-binding site-leucine-rich repeat (NBS-LRR) domain. Over the past 15 years, more than 50 novel NBS-LRR class resistance genes have been isolated and characterized; they play a significant role in activating conserved defense-signaling networks. Recent molecular research on NBS-LRR resistance proteins and their signaling networks has the potential to broaden the use of resistance genes for disease control. Various transgenic approaches have been tested to broaden the disease resistance spectrum using NBS-LRR genes. This review highlights the recent progress in understanding the structure, function, signal transduction ability of NBS-LRR resistance genes in different host-pathogen systems and suggests new strategies for engineering pathogen resistance in crop plants.

  17. Mapping small molecule binding data to structural domains

    PubMed Central

    2012-01-01

    Background Large-scale bioactivity/SAR Open Data has recently become available, and this has allowed new analyses and approaches to be developed to help address the productivity and translational gaps of current drug discovery. One of the current limitations of these data is the relative sparsity of reported interactions per protein target, and complexities in establishing clear relationships between bioactivity and targets using bioinformatics tools. We detail in this paper the indexing of targets by the structural domains that bind (or are likely to bind) the ligand within a full-length protein. Specifically, we present a simple heuristic to map small molecule binding to Pfam domains. This profiling can be applied to all proteins within a genome to give some indications of the potential pharmacological modulation and regulation of all proteins. Results In this implementation of our heuristic, ligand binding to protein targets from the ChEMBL database was mapped to structural domains as defined by profiles contained within the Pfam-A database. Our mapping suggests that the majority of assay targets within the current version of the ChEMBL database bind ligands through a small number of highly prevalent domains, and conversely the majority of Pfam domains sampled by our data play no currently established role in ligand binding. Validation studies, carried out firstly against Uniprot entries with expert binding-site annotation and secondly against entries in the wwPDB repository of crystallographic protein structures, demonstrate that our simple heuristic maps ligand binding to the correct domain in about 90 percent of all assessed cases. Using the mappings obtained with our heuristic, we have assembled ligand sets associated with each Pfam domain. Conclusions Small molecule binding has been mapped to Pfam-A domains of protein targets in the ChEMBL bioactivity database. The result of this mapping is an enriched annotation of small molecule bioactivity data and a

  18. Molecular Evolution of the Oxygen-Binding Hemerythrin Domain

    PubMed Central

    Alvarez-Carreño, Claudia; Becerra, Arturo; Lazcano, Antonio

    2016-01-01

    Background The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins) are known to have evolved independently the capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolutionary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in marine invertebrates but further research has made it clear that it is present in the three domains of life, strongly suggesting that its origin predated the emergence of eukaryotes. Results Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histidine, histidine, glutamic acid) cation-binding domain. Oxygen-binding hemerythrin homologs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 eukaryotic genomes. Overall, oxygen-binding hemerythrin homologues were found in the same proportion as single-domain and as long protein sequences. The associated functions of protein domains in long hemerythrin sequences can be classified in three major groups: signal transduction, phosphorelay response regulation, and protein binding. This suggests that in many organisms the reversible oxygen-binding capacity was incorporated in signaling pathways. A maximum-likelihood tree of oxygen-binding hemerythrin homologues revealed a complex evolutionary history in which lateral gene transfer, duplications and gene losses appear to have played an important role. Conclusions Hemerythrin is an ancient protein domain with a complex evolutionary history. The distinctive iron-binding coordination site of oxygen-binding hemerythrins evolved first in prokaryotes, very likely prior to the divergence of Firmicutes and Proteobacteria, and spread into many bacterial, archaeal and eukaryotic species. The later

  19. Dystrophin contains multiple independent membrane-binding domains.

    PubMed

    Zhao, Junling; Kodippili, Kasun; Yue, Yongping; Hakim, Chady H; Wasala, Lakmini; Pan, Xiufang; Zhang, Keqing; Yang, Nora N; Duan, Dongsheng; Lai, Yi

    2016-09-01

    Dystrophin is a large sub-sarcolemmal protein. Its absence leads to Duchenne muscular dystrophy (DMD). Binding to the sarcolemma is essential for dystrophin to protect muscle from contraction-induced injury. It has long been thought that membrane binding of dystrophin depends on its cysteine-rich (CR) domain. Here, we provide in vivo evidence suggesting that dystrophin contains three additional membrane-binding domains including spectrin-like repeats (R)1-3, R10-12 and C-terminus (CT). To systematically study dystrophin membrane binding, we split full-length dystrophin into ten fragments and examined subcellular localizations of each fragment by adeno-associated virus-mediated gene transfer. In skeletal muscle, R1-3, CR domain and CT were exclusively localized at the sarcolemma. R10-12 showed both cytosolic and sarcolemmal localization. Importantly, the CR-independent membrane binding was conserved in murine and canine muscles. A critical function of the CR-mediated membrane interaction is the assembly of the dystrophin-associated glycoprotein complex (DGC). While R1-3 and R10-12 did not restore the DGC, surprisingly, CT alone was sufficient to establish the DGC at the sarcolemma. Additional studies suggest that R1-3 and CT also bind to the sarcolemma in the heart, though relatively weak. Taken together, our study provides the first conclusive in vivo evidence that dystrophin contains multiple independent membrane-binding domains. These structurally and functionally distinctive membrane-binding domains provide a molecular framework for dystrophin to function as a shock absorber and signaling hub. Our results not only shed critical light on dystrophin biology and DMD pathogenesis, but also provide a foundation for rationally engineering minimized dystrophins for DMD gene therapy.

  20. Actomyosin Interaction: Mechanical and Energetic Properties in Different Nucleotide Binding States

    PubMed Central

    Aprodu, Iuliana; Redaelli, Alberto; Soncini, Monica

    2008-01-01

    The mechanics of the actomyosin interaction is central in muscle contraction and intracellular trafficking. A better understanding of the events occurring in the actomyosin complex requires the examination of all nucleotide-dependent states and of the energetic features associated with the dynamics of the cross-bridge cycle. The aim of the present study is to estimate the interaction strength between myosin in nucleotide-free, ATP, ADP·Pi and ADP states and actin monomer. The molecular models of the complexes were constructed based on cryo-electron microscopy maps and the interaction properties were estimated by means of a molecular dynamics approach, which simulate the unbinding of the complex applying a virtual spring to the core of myosin protein. Our results suggest that during an ATP hydrolysis cycle the affinity of myosin for actin is modulated by the presence and nature of the nucleotide in the active site of the myosin motor domain. When performing unbinding simulations with a pulling rate of 0.001 nm/ps, the maximum pulling force applied to the myosin during the experiment is about 1nN. Under these conditions the interaction force between myosin and actin monomer decreases from 0.83 nN in the nucleotide-free state to 0.27 nN in the ATP state, and increases to 0.60 nN after ATP hydrolysis and Pi release from the complex (ADP state). PMID:19325727

  1. Actomyosin interaction: mechanical and energetic properties in different nucleotide binding states.

    PubMed

    Aprodu, Iuliana; Redaelli, Alberto; Soncini, Monica

    2008-10-01

    The mechanics of the actomyosin interaction is central in muscle contraction and intracellular trafficking. A better understanding of the events occurring in the actomyosin complex requires the examination of all nucleotide-dependent states and of the energetic features associated with the dynamics of the cross-bridge cycle. The aim of the present study is to estimate the interaction strength between myosin in nucleotide-free, ATP, ADP.Pi and ADP states and actin monomer. The molecular models of the complexes were constructed based on cryo-electron microscopy maps and the interaction properties were estimated by means of a molecular dynamics approach, which simulate the unbinding of the complex applying a virtual spring to the core of myosin protein. Our results suggest that during an ATP hydrolysis cycle the affinity of myosin for actin is modulated by the presence and nature of the nucleotide in the active site of the myosin motor domain. When performing unbinding simulations with a pulling rate of 0.001 nm/ps, the maximum pulling force applied to the myosin during the experiment is about 1nN. Under these conditions the interaction force between myosin and actin monomer decreases from 0.83 nN in the nucleotide-free state to 0.27 nN in the ATP state, and increases to 0.60 nN after ATP hydrolysis and Pi release from the complex (ADP state).

  2. Energetics of Calmodulin Domain Interactions with the Calmodulin Binding Domain of CaMKII

    PubMed Central

    Evans, T. Idil Apak; Shea, Madeline A.

    2010-01-01

    Calmodulin (CaM) is an essential eukaryotic calcium receptor that regulates many kinases, including CaMKII. Calcium-depleted CaM does not bind to CaMKII under physiological conditions. However, binding of (Ca2+)4-CaM to a basic amphipathic helix in CaMKII releases auto-inhibition of the kinase. The crystal structure of CaM bound to CaMKIIp, a peptide representing the CaM-binding domain (CaMBD) of CaMKII, shows an anti-parallel interface: the C-domain of CaM primarily contacts the N-terminal half of the CaMBD. The two domains of calcium-saturated CaM are believed to play distinct roles in releasing auto-inhibition. To investigate the underlying mechanism of activation, calcium-dependent titrations of isolated domains of CaM binding to CaMKIIp were monitored using fluorescence anisotropy. The binding affinity of CaMKIIp for the domains of CaM increased upon saturation with calcium, with a 35-fold greater increase observed for the C-domain than the N-domain. Because the interdomain linker of CaM regulates calcium-binding affinity and contribute to conformational change, the role of each CaM domain was explored further by investigating effects of CaMKIIp on site-knockout mutants affecting the calcium-binding sites of a single domain. Investigation of the thermodynamic linkage between saturation of individual calcium-binding sites and CaM-domain binding to CaMKIIp showed that calcium binding to sites III and IV was sufficient to recapitulate the behavior of (Ca2+)4-CaM. The magnitude of favorable interdomain cooperativity varied depending on which of the four calcium-binding sites were mutated, emphasizing differential regulatory roles for the domains of CaM, despite the high degree of homology among the four EF-hands of CaM. PMID:19089983

  3. Nucleotide binding database NBDB – a collection of sequence motifs with specific protein-ligand interactions

    PubMed Central

    Zheng, Zejun; Goncearenco, Alexander; Berezovsky, Igor N.

    2016-01-01

    NBDB database describes protein motifs, elementary functional loops (EFLs) that are involved in binding of nucleotide-containing ligands and other biologically relevant cofactors/coenzymes, including ATP, AMP, ATP, GMP, GDP, GTP, CTP, PAP, PPS, FMN, FAD(H), NAD(H), NADP, cAMP, cGMP, c-di-AMP and c-di-GMP, ThPP, THD, F-420, ACO, CoA, PLP and SAM. The database is freely available online at http://nbdb.bii.a-star.edu.sg. In total, NBDB contains data on 249 motifs that work in interactions with 24 ligands. Sequence profiles of EFL motifs were derived de novo from nonredundant Uniprot proteome sequences. Conserved amino acid residues in the profiles interact specifically with distinct chemical parts of nucleotide-containing ligands, such as nitrogenous bases, phosphate groups, ribose, nicotinamide, and flavin moieties. Each EFL profile in the database is characterized by a pattern of corresponding ligand–protein interactions found in crystallized ligand–protein complexes. NBDB database helps to explore the determinants of nucleotide and cofactor binding in different protein folds and families. NBDB can also detect fragments that match to profiles of particular EFLs in the protein sequence provided by user. Comprehensive information on sequence, structures, and interactions of EFLs with ligands provides a foundation for experimental and computational efforts on design of required protein functions. PMID:26507856

  4. 3'-Phosphorylated nucleotides are tight binding inhibitors of nucleoside diphosphate kinase activity.

    PubMed

    Schneider, B; Xu, Y W; Janin, J; Véron, M; Deville-Bonne, D

    1998-10-30

    Nucleoside diphosphate (NDP) kinase catalyzes the phosphorylation of ribo- and deoxyribonucleosides diphosphates into triphosphates. NDP kinase is also involved in malignant tumors and was shown to activate in vitro transcription of the c-myc oncogene by binding to its NHE sequence. The structure of the complex of NDP kinase with bound ADP shows that the nucleotide adopts a different conformation from that observed in other phosphokinases with an internal H bond between the 3'-OH and the beta-O made free by the phosphate transfer. We use intrinsic protein fluorescence to investigate the inhibitory and binding potential of nucleotide analogues phosphorylated in 3'-OH position of the ribose to both wild type and F64W mutant NDP kinase from Dictyostelium discoideum. Due to their 3'-phosphate, 5'-phosphoadenosine 3'-phosphate (PAP) and adenosine 3'-phosphate 5'-phosphosulfate (PAPS) can be regarded as structural analogues of enzyme-bound ADP. The KD of PAPS (10 microM) is three times lower than the KD of ADP. PAPS also acts as a competitive inhibitor toward natural substrates during catalysis, with a KI in agreement with binding data. The crystal structure of the binary complex between Dictyostelium NDP kinase and PAPS was solved at 2.8-A resolution. It shows a new mode of nucleotide binding at the active site with the 3'-phosphate of PAPS located near the catalytic histidine, at the same position as the gamma-phosphate in the transition state. The sulfate group is directed toward the protein surface. PAPS will be useful for the design of high affinity drugs targeted to NDP kinases.

  5. Rab27a Targeting to Melanosomes Requires Nucleotide Exchange but Not Effector Binding

    PubMed Central

    Tarafder, Abul K; Wasmeier, Christina; Figueiredo, Ana C; Booth, Antonia E G; Orihara, Asumi; Ramalho, Jose S; Hume, Alistair N; Seabra, Miguel C

    2011-01-01

    Rab GTPases are important determinants of organelle identity and regulators of vesicular transport pathways. Consequently, each Rab occupies a highly specific subcellular localization. However, the precise mechanisms governing Rab targeting remain unclear. Guanine nucleotide exchange factors (GEFs), putative membrane-resident targeting factors and effector binding have all been implicated as critical regulators of Rab targeting. Here, we address these issues using Rab27a targeting to melanosomes as a model system. Rab27a regulates motility of lysosome-related organelles and secretory granules. Its effectors have been characterized extensively, and we have identified Rab3GEP as the non-redundant Rab27a GEF in melanocytes (Figueiredo AC et al. Rab3GEP is the non-redundant guanine nucleotide exchange factor for Rab27a in melanocytes. J Biol Chem 2008;283:23209–23216). Using Rab27a mutants that show impaired binding to representatives of all four Rab27a effector subgroups, we present evidence that effector binding is not essential for targeting of Rab27a to melanosomes. In contrast, we observed that knockdown of Rab3GEP resulted in mis-targeting of Rab27a, suggesting that Rab3GEP activity is required for correct targeting of Rab27a. However, the identification of Rab27a mutants that undergo efficient GDP/GTP exchange in the presence of Rab3GEP in vitro but are mis-targeted in a cellular context indicates that nucleotide loading is not the sole determinant of subcellular targeting of Rab27a. Our data support a model in which exchange activity, but not effector binding, represents one essential factor that contributes to membrane targeting of Rab proteins. PMID:21554507

  6. Tetramerization Dynamics of C-terminal Domain Underlies Isoform-specific cAMP Gating in Hyperpolarization-activated Cyclic Nucleotide-gated Channels*

    PubMed Central

    Lolicato, Marco; Nardini, Marco; Gazzarrini, Sabrina; Möller, Stefan; Bertinetti, Daniela; Herberg, Friedrich W.; Bolognesi, Martino; Martin, Holger; Fasolini, Marina; Bertrand, Jay A.; Arrigoni, Cristina; Thiel, Gerhard; Moroni, Anna

    2011-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are dually activated by hyperpolarization and binding of cAMP to their cyclic nucleotide binding domain (CNBD). HCN isoforms respond differently to cAMP; binding of cAMP shifts activation of HCN2 and HCN4 by 17 mV but shifts that of HCN1 by only 2–4 mV. To explain the peculiarity of HCN1, we solved the crystal structures and performed a biochemical-biophysical characterization of the C-terminal domain (C-linker plus CNBD) of the three isoforms. Our main finding is that tetramerization of the C-terminal domain of HCN1 occurs at basal cAMP concentrations, whereas those of HCN2 and HCN4 require cAMP saturating levels. Therefore, HCN1 responds less markedly than HCN2 and HCN4 to cAMP increase because its CNBD is already partly tetrameric. This is confirmed by voltage clamp experiments showing that the right-shifted position of V½ in HCN1 is correlated with its propensity to tetramerize in vitro. These data underscore that ligand-induced CNBD tetramerization removes tonic inhibition from the pore of HCN channels. PMID:22006928

  7. Ligand binding domain of vitamin D receptors.

    PubMed

    Rochel, Natacha; Moras, Dino

    2006-01-01

    The vitamin D receptor, a member of the nuclear receptor subgroup NR1I, is regulated by 1alpha,25(OH)2D3 to control calcium metabolism, cell proliferation and differentiation and immunomodulation. The therapeutic applications of vitamin D metabolites are wide. To develop efficient therapy, the elucidation of the structure-function relationships of VDR and its ligands are essential. In this review we will focus on the current structural understanding of the interactions of ligands in the ligand binding pocket of the VDR. These structures revealed the mutual adaptability of the ligands and the protein. In silico modeling has further revealed a possible new pocket in the VDR LBD responsible of the non-genomic action mediated by VDR. With the availability of all these structural information on VDR LBD, new ligands that are more selective, such as non-steroidal ligands, could be designed by taking into account the flexibility of some VDR regions. Tissue selectivity may also be achieved by developing ligands that specifically activate the non-genomic pathway.

  8. Functional analyses of two cellular binding domains of bovine lactadherin.

    PubMed

    Andersen, M H; Graversen, H; Fedosov, S N; Petersen, T E; Rasmussen, J T

    2000-05-23

    The glycoprotein bovine lactadherin (formerly known as PAS-6/7) comprises two EGF-like domains and two C-like domains found in blood clotting factors V and VIII. Bovine lactadherin binds to alpha(v)beta(5) integrin in an RGD-dependent manner and also to phospholipids, especially phosphatidyl serine. To define and characterize these bindings the interactions between lactadherin and different mammalian cell types were investigated. Using recombinant forms of bovine lactadherin, the human breast carcinomas MCF-7 cells expressing the alpha(v)beta(5) integrin receptor were shown to bind specifically to RGD containing lactadherin but not to a mutated RGE lactadherin. A monoclonal antibody against the alpha(v)beta(5) integrin receptor and a synthetic RGD-containing peptide inhibited the adhesion of MCF-7 cells to lactadherin. Green monkey kidney MA-104 cells, also expressing the alpha(v)beta(3) together with the alpha(v)beta(5) integrin, showed binding to bovine lactadherin via both integrins. To investigate the interaction of lipid with lactadherin two fragments were expressed corresponding to the C1C2 domains and the C2 domain. Both fragments bound to phosphatidyl serine in a concentration-dependent manner with an affinity similar to native lactadherin (K(d) = 1.8 nM). A peptide corresponding to the C-terminal part of the C2 domain inhibited the binding of lactadherin to phospholipid in a concentration-dependent manner, and finally it was shown that lactadherin mediates binding between artificial phosphatidyl serine membranes and MCF-7 cells. Taken together these results show that lactadherin can act as link between two surfaces by binding to integrin receptors through its N-terminus and to phospholipids through its C-terminus.

  9. Extended HSR/CARD domain mediates AIRE binding to DNA

    SciTech Connect

    Maslovskaja, Julia Saare, Mario; Liiv, Ingrid; Rebane, Ana; Peterson, Pärt

    2015-12-25

    Autoimmune regulator (AIRE) activates the transcription of many genes in an unusual promiscuous and stochastic manner. The mechanism by which AIRE binds to the chromatin and DNA is not fully understood, and the regulatory elements that AIRE target genes possess are not delineated. In the current study, we demonstrate that AIRE activates the expression of transiently transfected luciferase reporters that lack defined promoter regions, as well as intron and poly(A) signal sequences. Our protein-DNA interaction experiments with mutated AIRE reveal that the intact homogeneously staining region/caspase recruitment domain (HSR/CARD) and amino acids R113 and K114 are key elements involved in AIRE binding to DNA. - Highlights: • Promoter and mRNA processing elements are not important for AIRE to activate gene expression from reporter plasmids. • AIRE protein fragment aa 1–138 mediates direct binding to DNA. • Integrity of the HSR/CARD domain is needed for AIRE binding to DNA.

  10. Mechanistic insights into phosphoprotein-binding FHA domains.

    PubMed

    Liang, Xiangyang; Van Doren, Steven R

    2008-08-01

    [Structure: see text]. FHA domains are protein modules that switch signals in diverse biological pathways by monitoring the phosphorylation of threonine residues of target proteins. As part of the effort to gain insight into cellular avoidance of cancer, FHA domains involved in the cellular response to DNA damage have been especially well-characterized. The complete protein where the FHA domain resides and the interaction partners determine the nature of the signaling. Thus, a key biochemical question is how do FHA domains pick out their partners from among thousands of alternatives in the cell? This Account discusses the structure, affinity, and specificity of FHA domains and the formation of their functional structure. Although FHA domains share sequence identity at only five loop residues, they all fold into a beta-sandwich of two beta-sheets. The conserved arginine and serine of the recognition loops recognize the phosphorylation of the threonine targeted. Side chains emanating from loops that join beta-strand 4 with 5, 6 with 7, or 10 with 11 make specific contacts with amino acids of the ligand that tailor sequence preferences. Many FHA domains choose a partner in extended conformation, somewhat according to the residue three after the phosphothreonine in sequence (pT + 3 position). One group of FHA domains chooses a short carboxylate-containing side chain at pT + 3. Another group chooses a long, branched aliphatic side chain. A third group prefers other hydrophobic or uncharged polar side chains at pT + 3. However, another FHA domain instead chooses on the basis of pT - 2, pT - 3, and pT + 1 positions. An FHA domain from a marker of human cancer instead chooses a much longer protein fragment that adds a beta-strand to its beta-sheet and that presents hydrophobic residues from a novel helix to the usual recognition surface. This novel recognition site and more remote sites for the binding of other types of protein partners were predicted for the entire family

  11. An HflX-type GTPase from Sulfolobus solfataricus binds to the 50S ribosomal subunit in all nucleotide-bound states.

    PubMed

    Blombach, Fabian; Launay, Helene; Zorraquino, Violeta; Swarts, Daan C; Cabrita, Lisa D; Benelli, Dario; Christodoulou, John; Londei, Paola; van der Oost, John

    2011-06-01

    HflX GTPases are found in all three domains of life, the Bacteria, Archaea, and Eukarya. HflX from Escherichia coli has been shown to bind to the 50S ribosomal subunit in a nucleotide-dependent manner, and this interaction strongly stimulates its GTPase activity. We recently determined the structure of an HflX ortholog from the archaeon Sulfolobus solfataricus (SsoHflX). It revealed the presence of a novel HflX domain that might function in RNA binding and is linked to a canonical G domain. This domain arrangement is common to all archaeal, bacterial, and eukaryotic HflX GTPases. This paper shows that the archaeal SsoHflX, like its bacterial orthologs, binds to the 50S ribosomal subunit. This interaction does not depend on the presence of guanine nucleotides. The HflX domain is sufficient for ribosome interaction. Binding appears to be restricted to free 50S ribosomal subunits and does not occur with 70S ribosomes engaged in translation. The fingerprint (1)H-(15)N heteronuclear correlation nuclear magnetic resonance (NMR) spectrum of SsoHflX reveals a large number of well-resolved resonances that are broadened upon binding to the 50S ribosomal subunit. The GTPase activity of SsoHflX is stimulated by crude fractions of 50S ribosomal subunits, but this effect is lost with further high-salt purification of the 50S ribosomal subunits, suggesting that the stimulation depends on an extrinsic factor bound to the 50S ribosomal subunit. Our results reveal common properties but also marked differences between archaeal and bacterial HflX proteins.

  12. Mechanisms of membrane deformation by lipid-binding domains.

    PubMed

    Itoh, Toshiki; Takenawa, Tadaomi

    2009-09-01

    Among an increasing number of lipid-binding domains, a group that not only binds to membrane lipids but also changes the shape of the membrane has been found. These domains are characterized by their strong ability to transform globular liposomes as well as flat plasma membranes into elongated membrane tubules both in vitro and in vivo. Biochemical studies on the structures of these proteins have revealed the importance of the amphipathic helix, which potentially intercalates into the lipid bilayer to induce and/or sense membrane curvature. Among such membrane-deforming domains, BAR and F-BAR/EFC domains form crescent-shaped dimers, suggesting a preference for a curved membrane, which is important for curvature sensing. Bioinformatics in combination with structural analyses has been identifying an increasing number of novel families of lipid-binding domains. This review attempts to summarize the evidence obtained by recent studies in order to gain general insights into the roles of membrane-deforming domains in a variety of biological events.

  13. Uncoupling protein 1 binds one nucleotide per monomer and is stabilized by tightly bound cardiolipin.

    PubMed

    Lee, Yang; Willers, Chrissie; Kunji, Edmund R S; Crichton, Paul G

    2015-06-02

    Uncoupling protein 1 (UCP1) catalyzes fatty acid-activated, purine nucleotide-sensitive proton leak across the mitochondrial inner membrane of brown adipose tissue to produce heat, and could help combat obesity and metabolic disease in humans. Studies over the last 30 years conclude that the protein is a dimer, binding one nucleotide molecule per two proteins, and unlike the related mitochondrial ADP/ATP carrier, does not bind cardiolipin. Here, we have developed novel methods to purify milligram amounts of UCP1 from native sources by using covalent chromatography that, unlike past methods, allows the protein to be prepared in defined conditions, free of excess detergent and lipid. Assessment of purified preparations by TLC reveal that UCP1 retains tightly bound cardiolipin, with a lipid phosphorus content equating to three molecules per protein, like the ADP/ATP carrier. Cardiolipin stabilizes UCP1, as demonstrated by reconstitution experiments and thermostability assays, indicating that the lipid has an integral role in the functioning of the protein, similar to other mitochondrial carriers. Furthermore, we find that UCP1 is not dimeric but monomeric, as indicated by size exclusion analysis, and has a ligand titration profile in isothermal calorimetric measurements that clearly shows that one nucleotide binds per monomer. These findings reveal the fundamental composition of UCP1, which is essential for understanding the mechanism of the protein. Our assessment of the properties of UCP1 indicate that it is not unique among mitochondrial carriers and so is likely to use a common exchange mechanism in its primary function in brown adipose tissue mitochondria.

  14. A primary survey on bryophyte species reveals two novel classes of nucleotide-binding site (NBS) genes.

    PubMed

    Xue, Jia-Yu; Wang, Yue; Wu, Ping; Wang, Qiang; Yang, Le-Tian; Pan, Xiao-Han; Wang, Bin; Chen, Jian-Qun

    2012-01-01

    Due to their potential roles in pathogen defense, genes encoding nucleotide-binding site (NBS) domain have been particularly surveyed in many angiosperm genomes. Two typical classes were found: one is the TIR-NBS-LRR (TNL) class and the other is the CC-NBS-LRR (CNL) class. It is seldom known, however, what kind of NBS-encoding genes are mainly present in other plant groups, especially the most ancient groups of land plants, that is, bryophytes. To fill this gap of knowledge, in this study, we mainly focused on two bryophyte species: the moss Physcomitrella patens and the liverwort Marchantia polymorpha, to survey their NBS-encoding genes. Surprisingly, two novel classes of NBS-encoding genes were discovered. The first novel class is identified from the P. patens genome and a typical member of this class has a protein kinase (PK) domain at the N-terminus and a LRR domain at the C-terminus, forming a complete structure of PK-NBS-LRR (PNL), reminiscent of TNL and CNL classes in angiosperms. The second class is found from the liverwort genome and a typical member of this class possesses an α/β-hydrolase domain at the N-terminus and also a LRR domain at the C-terminus (Hydrolase-NBS-LRR, HNL). Analysis on intron positions and phases also confirmed the novelty of HNL and PNL classes, as reflected by their specific intron locations or phase characteristics. Phylogenetic analysis covering all four classes of NBS-encoding genes revealed a closer relationship among the HNL, PNL and TNL classes, suggesting the CNL class having a more divergent status from the others. The presence of specific introns highlights the chimerical structures of HNL, PNL and TNL genes, and implies their possible origin via exon-shuffling during the quick lineage separation processes of early land plants.

  15. Allosteric nucleotide-binding site in the mitochondrial NADH:ubiquinone oxidoreductase (respiratory complex I)

    PubMed Central

    Grivennikova, Vera G.; Gladyshev, Grigory V.; Vinogradov, Andrei D.

    2011-01-01

    The rotenone-insensitive NADH:hexaammineruthenium III (HAR) oxidoreductase reactions catalyzed by bovine heart and Yarrowia lipolytica submitochondrial particles or purified bovine complex I are stimulated by ATP and other purine nucleotides. The soluble fraction of mammalian complex I (FP) and prokaryotic complex I homolog NDH-1 in Paracoccus denitrificans plasma membrane lack stimulation of their activities by ATP. The stimulation appears as a decrease in apparent Km values for NADH and HAR. Thus, the “accessory” subunits of eukaryotic complex I bear an allosteric ATP-binding site. PMID:21624365

  16. Revised domain structure of ulvan lyase and characterization of the first ulvan binding domain

    PubMed Central

    Melcher, Rebecca L. J.; Neumann, Marten; Fuenzalida Werner, Juan Pablo; Gröhn, Franziska; Moerschbacher, Bruno M.

    2017-01-01

    Biomass waste products from green algae have recently been given new life, as these polysaccharides have potential applications in industry, agriculture, and medicine. One such polysaccharide group called ulvans displays many different, potentially useful properties that arise from their structural versatility. Hence, performing structural analyses on ulvan is crucial for future applications. However, chemical reaction–based analysis methods cannot fully characterize ulvan and tend to alter its structure. Thus, better methods require well-characterized ulvan-degrading enzymes. Therefore, we analysed a previously sequenced ulvan lyase (GenebankTM reference number JN104480) and characterized its domains. We suggest that the enzyme consists of a shorter than previously described catalytic domain, a newly identified substrate binding domain, and a C-terminal type 9 secretion system signal peptide. By separately expressing the two domains in E. coli, we confirmed that the binding domain is ulvan specific, having higher affinity for ulvan than most lectins for their ligands (affinity constant: 105 M−1). To our knowledge, this is the first description of an ulvan-binding domain. Overall, identifying this new binding domain is one step towards engineering ulvan enzymes that can be used to characterize ulvan, e.g. through enzymatic/mass spectrometric fingerprinting analyses, and help unlock its full potential. PMID:28327560

  17. PTEN-PDZ domain interactions: binding of PTEN to PDZ domains of PTPN13.

    PubMed

    Sotelo, Natalia S; Schepens, Jan T G; Valiente, Miguel; Hendriks, Wiljan J A J; Pulido, Rafael

    2015-05-01

    Protein modular interactions mediated by PDZ domains are essential for the establishment of functional protein networks controlling diverse cellular functions. The tumor suppressor PTEN possesses a C-terminal PDZ-binding motif (PDZ-BM) that is recognized by a specific set of PDZ domains from scaffolding and regulatory proteins. Here, we review the current knowledge on PTEN-PDZ domain interactions and tumor suppressor networks, describe methodology suitable to analyze these interactions, and report the binding of PTEN and the PDZ domain-containing protein tyrosine phosphatase PTPN13. Yeast two-hybrid and GST pull-down analyses showed that PTEN binds to PDZ2/PTPN13 domain in a manner that depends on the specific PTPN13 PDZ domain arrangement involving the interdomain region between PDZ1 and PDZ2. Furthermore, a specific binding profile of PTEN to PDZ2/PTPN13 domain was observed by mutational analysis of the PTEN PDZ-BM. Our results disclose a PDZ-mediated physical interaction of PTEN and PTPN13 with potential relevance in tumor suppression and cell homeostasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. RNA binding domain of Jamestown Canyon virus S segment RNAs.

    PubMed

    Ogg, Monica M; Patterson, Jean L

    2007-12-01

    Jamestown Canyon virus (JCV) is a member of the Bunyaviridae family, Orthobunyavirus genus, California serogroup. Replication and, ultimately, assembly and packaging rely on the process of encapsidation. Therefore, the ability of viral RNAs (vRNAs) (genomic and antigenomic) to interact with the nucleocapsid protein (N protein) and the location of this binding domain on the RNAs are of interest. The questions to be addressed are the following. Where is the binding domain located on both the vRNA and cRNA strands, is this RNA bound when double or single stranded, and does this identified region have the ability to transform the binding potential of nonviral RNA? Full-length viral and complementary S segment RNA, as well as 3' deletion mutants of both vRNA and cRNA, nonviral RNA, and hybrid viral/nonviral RNA, were analyzed for their ability to interact with bacterially expressed JCV N protein. RNA-nucleocapsid interactions were examined by UV cross-linking, filter binding assays, and the generation of hybrid RNA to help define the area responsible for RNA-protein binding. The assays identified the region responsible for binding to the nucleocapsid as being contained within the 5' half of both the genomic and antigenomic RNAs. This region, if placed within nonviral RNA, is capable of altering the binding potential of nonviral RNA to levels seen with wild-type vRNAs.

  19. Identification of novel anionic phospholipid binding domains in neutral sphingomyelinase 2 with selective binding preference.

    PubMed

    Wu, Bill X; Clarke, Christopher J; Matmati, Nabil; Montefusco, David; Bartke, Nana; Hannun, Yusuf A

    2011-06-24

    Sphingolipids such as ceramide are recognized as vital regulators of many biological processes. Neutral sphingomyelinase 2 (nSMase2) is one of the key enzymes regulating ceramide production. It was previously shown that the enzymatic activity of nSMase2 was dependent on anionic phospholipids (APLs). In this study, the structural requirements for APL-selective binding of nSMase2 were determined and characterized. Using lipid-protein overlay assays, nSMase2 interacted specifically and directly with several APLs, including phosphatidylserine and phosphatidic acid. Lipid-protein binding studies of deletion mutants identified two discrete APL binding domains in the N terminus of nSMase2. Further, mutagenesis experiments pinpointed the core sequences and major cationic amino acids in the domains that are necessary for the cooperative activation of nSMase2 by APLs. The first domain included the first amino-terminal hydrophobic segment and Arg-33, which were essential for nSMase2 to interact with APLs. The second binding domain was comprised of the second hydrophobic segment and Arg-92 and Arg-93. Moreover, mutation of one or both domains decreased APL binding and APL-dependent catalytic activity of nSMase2. Further, mutation of both domains in nSMase2 reduced its plasma membrane localization. Finally, these binding domains are also important for the capability of nSMase2 to rescue the defects of yeast lacking the nSMase homologue, ISC1. In conclusion, these data have identified the APL binding domains of nSMase2 for the first time. The analysis of interactions between nSMase2 and APLs will contribute to our understanding of signaling pathways mediated by sphingolipid metabolites.

  20. A Low Affinity Ground State Conformation for the Dynein Microtubule Binding Domain*

    PubMed Central

    McNaughton, Lynn; Tikhonenko, Irina; Banavali, Nilesh K.; LeMaster, David M.; Koonce, Michael P.

    2010-01-01

    Dynein interacts with microtubules through a dedicated binding domain that is dynamically controlled to achieve high or low affinity, depending on the state of nucleotide bound in a distant catalytic pocket. The active sites for microtubule binding and ATP hydrolysis communicate via conformational changes transduced through a ∼10-nm length antiparallel coiled-coil stalk, which connects the binding domain to the roughly 300-kDa motor core. Recently, an x-ray structure of the murine cytoplasmic dynein microtubule binding domain (MTBD) in a weak affinity conformation was published, containing a covalently constrained β+ registry for the coiled-coil stalk segment (Carter, A. P., Garbarino, J. E., Wilson-Kubalek, E. M., Shipley, W. E., Cho, C., Milligan, R. A., Vale, R. D., and Gibbons, I. R. (2008) Science 322, 1691–1695). We here present an NMR analysis of the isolated MTBD from Dictyostelium discoideum that demonstrates the coiled-coil β+ registry corresponds to the low energy conformation for this functional region of dynein. Addition of sequence encoding roughly half of the coiled-coil stalk proximal to the binding tip results in a decreased affinity of the MTBD for microtubules. In contrast, addition of the complete coiled-coil sequence drives the MTBD to the conformationally unstable, high affinity binding state. These results suggest a thermodynamic coupling between conformational free energy differences in the α and β+ registries of the coiled-coil stalk that acts as a switch between high and low affinity conformations of the MTBD. A balancing of opposing conformations in the stalk and MTBD enables potentially modest long-range interactions arising from ATP binding in the motor core to induce a relaxation of the MTBD into the stable low affinity state. PMID:20351100

  1. The coiled-coil domain of zebrafish TRPM7 regulates Mg·nucleotide sensitivity

    PubMed Central

    Jansen, Chad; Sahni, Jaya; Suzuki, Sayuri; Horgen, F. David; Penner, Reinhold; Fleig, Andrea

    2016-01-01

    TRPM7 is a member of the Transient-Receptor-Potential Melastatin ion channel family. TRPM7 is a unique fusion protein of an ion channel and an α-kinase. Although mammalian TRPM7 is well characterized biophysically and its pivotal role in cancer, ischemia and cardiovascular disease is becoming increasingly evident, the study of TRPM7 in mouse models has been hampered by embryonic lethality of transgenic ablations. In zebrafish, functional loss of TRPM7 (drTRPM7) manifests itself in an array of non-lethal physiological malfunctions. Here, we investigate the regulation of wild type drTRPM7 and multiple C-terminal truncation mutants. We find that the biophysical properties of drTRPM7 are very similar to mammalian TRPM7. However, pharmacological profiling reveals that drTRPM7 is facilitated rather than inhibited by 2-APB, and that the TRPM7 inhibitor waixenicin A has no effect. This is reminiscent of the pharmacological profile of human TRPM6, the sister channel kinase of TRPM7. Furthermore, using truncation mutations, we show that the coiled-coil domain of drTRPM7 is involved in the channel’s regulation by magnesium (Mg) and Mg·adenosine triphosphate (Mg·ATP). We propose that drTRPM7 has two protein domains that regulate inhibition by intracellular magnesium and nucleotides, and one domain that is concerned with sensing magnesium only. PMID:27628598

  2. Methods of detection using a cellulose binding domain fusion product

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1999-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  3. Methods of detection using a cellulose binding domain fusion product

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1999-01-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 34 figs.

  4. Methods of use of cellulose binding domain proteins

    SciTech Connect

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1997-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  5. Methods of use of cellulose binding domain proteins

    SciTech Connect

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1997-09-23

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  6. Methods of use of cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1997-09-23

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  7. Mapping the Binding Domain of the F18 Fimbrial Adhesin

    PubMed Central

    Smeds, A.; Pertovaara, M.; Timonen, T.; Pohjanvirta, T.; Pelkonen, S.; Palva, A.

    2003-01-01

    F18 fimbrial Esherichia coli strains are associated with porcine postweaning diarrhea and pig edema disease. Recently, the FedF subunit was identified as the adhesin of the F18 fimbriae. In this study, adhesion domains of FedF were further studied by constructing deletions within the fedF gene and expressing FedF proteins with deletions either together with the other F18 fimbrial subunits or as fusion proteins tagged with maltose binding protein. The region essential for adhesion to porcine intestinal epithelial cells was mapped between amino acid residues 60 and 109 of FedF. To map the binding domain even more closely, all eight charged amino acid residues within this region were independently replaced by alanine. Three of these single point mutants expressing F18 fimbriae exhibited significantly diminished capabilities to adhere to porcine epithelial cells in vitro. In addition, a triple point mutation and a double point mutation completely abolished receptor adhesiveness. The result further confirmed that the region between amino acid residues 60 and 109 is essential for the binding of F18 fimbriae to their receptor. In addition, the adhesion capability of the binding domain was eliminated after treatment with iodoacetamide, suggesting the formation of a disulfide bridge between Cys-63 and Cys-83, whereas Cys-111 and Cys-116 could be deleted without affecting the binding ability of FedF. PMID:12654838

  8. Specificities of Caenorhabditis elegans and human hairpin binding proteins for the first nucleotide in the histone mRNA hairpin loop.

    PubMed Central

    Michel, F; Schümperli, D; Müller, B

    2000-01-01

    The 3' ends of animal replication-dependent histone mRNAs are formed by endonucleolytic cleavage of the primary transcripts downstream of a highly conserved RNA hairpin. The hairpin-binding protein (HBP) binds to this RNA element and is involved in histone RNA 3' processing. A minimal RNA-binding domain (RBD) of approximately 73 amino acids that has no similarity with other known RNA-binding motifs was identified in human HBP [Wang Z-F et al., Genes & Dev, 1996, 10:3028-3040]. The primary sequence identity between human and Caenorhabditis elegans RBDs is 55% compared to 38% for the full-length proteins. We analyzed whether differences between C. elegans and human HBP and hairpins are reflected in the specificity of RNA binding. The C. elegans HBP and its RBD recognize only their cognate RNA hairpins, whereas the human HBP or RBD can bind both the mammalian and the C. elegans hairpins. This selectivity of C. elegans HBP is mostly mediated by the first nucleotide in the loop, which is C in C. elegans and U in all other metazoans. By converting amino acids in the human RBD to the corresponding C. elegans residues at places where the latter deviates from the consensus, we could identify two amino acid segments that contribute to selectivity for the first nucleotide of the hairpin loop. PMID:11105754

  9. A conformational analysis of mouse Nalp3 domain structures by molecular dynamics simulations, and binding site analysis.

    PubMed

    Sahoo, Bikash R; Maharana, Jitendra; Bhoi, Gopal K; Lenka, Santosh K; Patra, Mahesh C; Dikhit, Manas R; Dubey, Praveen K; Pradhan, Sukanta K; Behera, Bijay K

    2014-05-01

    Scrutinizing various nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) genes in higher eukaryotes is very important for understanding the intriguing mechanism of the host defense against pathogens. The nucleotide-binding domain (NACHT), leucine-rich repeat (LRR), and pyrin domains (PYD)-containing protein 3 (Nalp3), is an intracellular innate immune receptor and is associated with several immune system related disorders. Despite Nalp3's protective role during a pathogenic invasion, the molecular features and structural organization of this crucial protein is poorly understood. Using comparative modeling and molecular dynamics simulations, we have studied the structural architecture of Nalp3 domains, and characterized the dynamic and energetic parameters of adenosine triphosphate (ATP) binding in NACHT, and pathogen-derived ligands muramyl dipeptide (MDP) and imidazoquinoline with LRR domains. The results suggested that walker A, B and extended walker B motifs were the key ATP binding regions in NACHT that mediate self-oligomerization. The analysis of the binding sites of MDP and imidazoquinoline revealed LRR 7-9 to be the most energetically favored site for imidazoquinoline interaction. However, the binding free energy calculations using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method indicated that MDP is incompatible for activating the Nalp3 molecule in its monomeric form, and suggest its complex interaction with NOD2 or other NLRs accounts for MDP recognition. The high binding affinity of ATP with NACHT was correlated to the experimental data for human NLRs. Our binding site prediction for imidazoquinoline in LRR warrants further investigation via in vivo models. This is the first study that provides ligand recognition in mouse Nalp3 and its spatial structural arrangements.

  10. Cytosolic Na+ controls and epithelial Na+ channel via the Go guanine nucleotide-binding regulatory protein.

    PubMed Central

    Komwatana, P; Dinudom, A; Young, J A; Cook, D I

    1996-01-01

    In tight Na+-absorbing epithelial cells, the fate of Na+ entry through amiloride-sensitive apical membrane Na+ channels is matched to basolateral Na+ extrusion so that cell Na+ concentration and volume remain steady. Control of this process by regulation of apical Na+ channels has been attributed to changes in cytosolic Ca2+ concentration or pH, secondary to changes in cytosolic Na+ concentration, although cytosolic Cl- seems also to be involved. Using mouse mandibular gland duct cells, we now demonstrate that increasing cytosolic Na+ concentration inhibits apical Na+ channels independent of changes in cytosolic Ca2+, pH, or Cl-, and the effect is blocked by GDP-beta-S, pertussis toxin, and antibodies against the alpha-subunits of guanine nucleotide-binding regulatory proteins (Go). In contrast, the inhibitory effect of cytosolic anions is blocked by antibodies to inhibitory guanine nucleotide-binding regulatory proteins (Gi1/Gi2. It thus appears that apical Na+ channels are regulated by Go and Gi proteins, the activities of which are controlled, respectively, by cytosolic Na+ and Cl-. Images Fig. 4 PMID:8755611

  11. Chromosomal localization of genes encoding guanine nucleotide-binding protein subunits in mouse and human

    SciTech Connect

    Blatt, C.; Eversole-Cire, P.; Cohn, V.H.; Zollman, S.; Fournier, R.E.K.; Mohandas, L.T.; Nesbitt, M.; Lugo, T.; Jones, D.T.; Reed, R.R.; Weiner, L.P.; Sparkes, R.S.; Simon, M.I. )

    1988-10-01

    A variety of genes have been identified that specify the synthesis of the components of guanine nucleotide-binding proteins (G proteins). Eight different guanine nucleotide-binding {alpha}-subunit proteins, two different {beta} subunits, and one {gamma} subunit have been described. Hybridization of cDNA clones with DNA from human-mouse somatic cell hybrids was used to assign many of these genes to human chromosomes. The retinal-specific transducin subunit genes GNAT1 and GNAT2 were on chromosomes 3 and 1; GNAI1, GNAI2, and GNAI3 were assigned to chromosomes 7, 3, and 1, respectively; GNAZ and GNAS were found on chromosomes 22 and 20. The {beta} subunits were also assigned-GNB1 to chromosome 1 and GNB2 to chromosome 7. Restriction fragment length polymorphisms were used to map the homologues of some of these genes in the mouse. GNAT1 and GNAI2 were found to map adjacent to each other on mouse chromosome 9 and GNAT2 was mapped on chromosome 17. The mouse GNB1 gene was assigned to chromosome 19. These mapping assignments will be useful in defining the extend of the G{alpha} gene family and may help in attempts to correlate specific genetic diseases and with genes corresponding to G proteins.

  12. Cytosolic Na+ Controls an Epithelial Na+ Channel Via the Go Guanine Nucleotide-Binding Regulatory Protein

    NASA Astrophysics Data System (ADS)

    Komwatana, P.; Dinudom, A.; Young, J. A.; Cook, D. I.

    1996-07-01

    In tight Na+-absorbing epithelial cells, the rate of Na+ entry through amiloride-sensitive apical membrane Na+ channels is matched to basolateral Na+ extrusion so that cell Na+ concentration and volume remain steady. Control of this process by regulation of apical Na+ channels has been attributed to changes in cytosolic Ca2+ concentration or pH, secondary to changes in cytosolic Na+ concentration, although cytosolic Cl- seems also to be involved. Using mouse mandibular gland duct cells, we now demonstrate that increasing cytosolic Na+ concentration inhibits apical Na+ channels independent of changes in cytosolic Ca2+, pH, or Cl-, and the effect is blocked by GDP-β -S, pertussis toxin, and antibodies against the α -subunits of guanine nucleotide-binding regulatory proteins (Go). In contrast, the inhibitory effect of cytosolic anions is blocked by antibodies to inhibitory guanine nucleotide-binding regulatory proteins (Gi1/Gi2. It thus appears that apical Na+ channels are regulated by Go and Gi proteins, the activities of which are controlled, respectively, by cytosolic Na+ and Cl-.

  13. Functions of nucleotide binding subunits in the tonoplast ATPase from Beta vulgaris L

    SciTech Connect

    Manolson, M.F.; Poole, R.J.

    1986-04-01

    Partial purification of NO/sub 3/ sensitive H/sup +/-ATPases from the vacuolar membranes of high plants reveal two prominent polypeptides of approximately 60 and 70 kDa. Both polypeptides appear to contain nucleotide binding sites. The photoactive affinity analog of ATP, BzATP, cannot be hydrolyzed by the tonoplast ATPase but is a potential inhibitor (apparent K/sub I/ = 11 ..mu..M). /sup 32/P-BzATP was shown to specifically photolabel the 60 kDa polypeptide. In contrast, Mandala and Taiz have shown the photoincorporation of /sup 32/P-azidoATP to the 70 kDa polypeptide. This sterically different photoaffinity probe can be hydrolyzed although with a low affinity. Azido and benzophenone derivatives of the product, ADP, are currently being examined with respect to their inhibition kinetics of, and their photoincorporation into, the tonoplast ATPase from Beta vulgaris L. Kinetic data will be integrated with patterns of photoincorporation using analogs of both substrate and product, in order to illuminate the functions of the two nucleotide binding subunits.

  14. The tail domain of myosin M catalyses nucleotide exchange on Rac1 GTPases and can induce actin-driven surface protrusions.

    PubMed

    Geissler, H; Ullmann, R; Soldati, T

    2000-05-01

    Members of the myosin superfamily play crucial roles in cellular processes including management of the cortical cytoskeleton, organelle transport and signal transduction. GTPases of the Rho family act as key control elements in the reorganization of the actin cytoskeleton in response to growth factors, and other functions such as membrane trafficking, transcriptional regulation, growth control and development. Here, we describe a novel unconventional myosin from Dictyostelium discoideum, MyoM. Primary sequence analysis revealed that it has the appearance of a natural chimera between a myosin motor domain and a guanine nucleotide exchange factor (GEF) domain for Rho GTPases. The functionality of both domains was established. Binding of the motor domain to F-actin was ATP-dependent and potentially regulated by phosphorylation. The GEF domain displayed selective activity on Rac1-related GTPases. Overexpression, rather than absence of MyoM, affected the cell morphology and viability. Particularly in response to hypo-osmotic stress, cells overexpressing the MyoM tail domain extended massive actin-driven protrusions. The GEF was enriched at the tip of growing protuberances, probably through its pleckstrin homology domain. MyoM is the first unconventional myosin containing an active Rac-GEF domain, suggesting a role at the interface of Rac-mediated signal transduction and remodeling of the actin cytoskeleton.

  15. Single-stranded DNA-binding proteins regulate the abundance of LIM domain and LIM domain-binding proteins

    PubMed Central

    Xu, Zhixiong; Meng, Xianzhang; Cai, Ying; Liang, Hong; Nagarajan, Lalitha; Brandt, Stephen J.

    2007-01-01

    The LIM domain-binding protein Ldb1 is an essential cofactor of LIM-homeodomain (LIM-HD) and LIM-only (LMO) proteins in development. The stoichiometry of Ldb1, LIM-HD, and LMO proteins is tightly controlled in the cell and is likely a critical determinant of their biological actions. Single-stranded DNA-binding proteins (SSBPs) were recently shown to interact with Ldb1 and are also important in developmental programs. We establish here that two mammalian SSBPs, SSBP2 and SSBP3, contribute to an erythroid DNA-binding complex that contains the transcription factors Tal1 and GATA-1, the LIM domain protein Lmo2, and Ldb1 and binds a bipartite E-box-GATA DNA sequence motif. In addition, SSBP2 was found to augment transcription of the Protein 4.2 (P4.2) gene, a direct target of the E-box-GATA-binding complex, in an Ldb1-dependent manner and to increase endogenous Ldb1 and Lmo2 protein levels, E-box-GATA DNA-binding activity, and P4.2 and β-globin expression in erythroid progenitors. Finally, SSBP2 was demonstrated to inhibit Ldb1 and Lmo2 interaction with the E3 ubiquitin ligase RLIM, prevent RLIM-mediated Ldb1 ubiquitination, and protect Ldb1 and Lmo2 from proteasomal degradation. These results define a novel biochemical function for SSBPs in regulating the abundance of LIM domain and LIM domain-binding proteins. PMID:17437998

  16. Kinetics of Ligand-Receptor Interaction Reveals an Induced-Fit Mode of Binding in a Cyclic Nucleotide-Activated Protein

    PubMed Central

    Peuker, Sebastian; Cukkemane, Abhishek; Held, Martin; Noé, Frank; Kaupp, U. Benjamin; Seifert, Reinhard

    2013-01-01

    Many receptors and ion channels are activated by ligands. One key question concerns the binding mechanism. Does the ligand induce conformational changes in the protein via the induced-fit mechanism? Or does the protein preexist as an ensemble of conformers and the ligand selects the most complementary one, via the conformational selection mechanism? Here, we study ligand binding of a tetrameric cyclic nucleotide-gated channel from Mesorhizobium loti and of its monomeric binding domain (CNBD) using rapid mixing, mutagenesis, and structure-based computational biology. Association rate constants of ∼107 M−1 s−1 are compatible with diffusion-limited binding. Ligand binding to the full-length CNG channel and the isolated CNBD differ, revealing allosteric control of the CNBD by the effector domain. Finally, mutagenesis of allosteric residues affects only the dissociation rate constant, suggesting that binding follows the induced-fit mechanism. This study illustrates the strength of combining mutational, kinetic, and computational approaches to unravel important mechanistic features of ligand binding. PMID:23332059

  17. Identification of a novel nucleotide-sensitive microtubule-binding protein in HeLa cells

    PubMed Central

    1990-01-01

    A protein of Mr 170,000 (170K protein) has been identified in HeLa cells, using an antiserum raised against HeLa nucleotide-sensitive microtubule-binding proteins. Affinity-purified antibodies specific for this 170K polypeptide were used for its characterization. In vitro sedimentation of the 170K protein with taxol microtubules polymerized from HeLa high-speed supernatant is enhanced in the presence of an ATP depleting system, but unaffected by the non-hydrolyzable ATP analogue AMP-PNP. In addition, it can be eluted from taxol microtubules by ATP or GTP, as well as NaCl. Thus it shows microtubule-binding characteristics distinct from those of the previously described classes of nucleotide-sensitive microtubule-binding proteins, the motor proteins kinesin and cytoplasmic dynein, homologues of which are also present in HeLa cells. The 170K protein sediments on sucrose gradients at approximately 6S, separate from kinesin (9.5S) and cytoplasmic dynein (20S), further indicating that it is not associated with these motor proteins. Immunofluorescence localization of the 170K protein shows a patchy distribution in interphase HeLa cells, often organized into linear arrays that correlate with microtubules. However, not all microtubules are labeled, and there is a significant accumulation of antigen at the peripheral ends of microtubules. In mitotic cells, 170K labeling is found in the spindle, but there is also dotty labeling in the cytoplasm. After depolymerization of microtubules by nocodazole, the staining pattern is also patchy but not organized in linear arrays, suggesting that the protein may be able to associate with other intracellular structures as well as microtubules. In vinblastine- treated cells, there is strong labeling of tubulin paracrystals, and random microtubules induced in vivo by taxol are also labeled by the antibodies. These immunofluorescence labeling patterns are stable to extraction of cells with Triton X-100 before fixation, further suggesting an

  18. A lipid binding domain in sphingosine kinase 2

    SciTech Connect

    Don, Anthony S.; Rosen, Hugh

    2009-02-27

    The lipid second messenger sphingosine 1-phosphate (S1P) is a critical mediator of cellular proliferation and survival signals, and is essential for vasculogenesis and neurogenesis. S1P formation is catalysed by sphingosine kinases 1 and 2 (Sphk1 and Sphk2). We have found that the endogenous glycolipid sulfatide (3-O-sulfogalactosylceramide) binds to and inhibits the activity of Sphk2 and the closely related ceramide kinase (Cerk), but not Sphk1. Using sulfatide as a probe, we mapped the lipid binding domain to the N-terminus of Sphk2 (residues 1-175), a region of sequence that is absent in Sphk1, but aligns with a pleckstrin homology domain in Cerk. Accordingly, Sphk2 bound to phosphatidylinositol monophosphates but not to abundant cellular phospholipids. Deleting the N-terminal domain reduced Sphk2 membrane localisation in cells. We have therefore identified a lipid binding domain in Sphk2 that is important for the enzyme's sub-cellular localisation.

  19. Structure of the Nucleoprotein Binding Domain of Mokola Virus Phosphoprotein▿

    PubMed Central

    Assenberg, René; Delmas, Olivier; Ren, Jingshan; Vidalain, Pierre-Olivier; Verma, Anil; Larrous, Florence; Graham, Stephen C.; Tangy, Frédéric; Grimes, Jonathan M.; Bourhy, Hervé

    2010-01-01

    Mokola virus (MOKV) is a nonsegmented, negative-sense RNA virus that belongs to the Lyssavirus genus and Rhabdoviridae family. MOKV phosphoprotein P is an essential component of the replication and transcription complex and acts as a cofactor for the viral RNA-dependent RNA polymerase. P recruits the viral polymerase to the nucleoprotein-bound viral RNA (N-RNA) via an interaction between its C-terminal domain and the N-RNA complex. Here we present a structure for this domain of MOKV P, obtained by expression of full-length P in Escherichia coli, which was subsequently truncated during crystallization. The structure has a high degree of homology with P of rabies virus, another member of Lyssavirus genus, and to a lesser degree with P of vesicular stomatitis virus (VSV), a member of the related Vesiculovirus genus. In addition, analysis of the crystal packing of this domain reveals a potential binding site for the nucleoprotein N. Using both site-directed mutagenesis and yeast two-hybrid experiments to measure P-N interaction, we have determined the relative roles of key amino acids involved in this interaction to map the region of P that binds N. This analysis also reveals a structural relationship between the N-RNA binding domain of the P proteins of the Rhabdoviridae and the Paramyxoviridae. PMID:19906936

  20. Structural Basis for Viral Late-Domain Binding to Alix

    SciTech Connect

    Lee,S.; Joshi, A.; Nagashima, K.; Freed, E.; Hurley, J.

    2007-01-01

    The modular protein Alix is a central node in endosomal-lysosomal trafficking and the budding of human immunodeficiency virus (HIV)-1. The Gag p6 protein of HIV-1 contains a LYPx{sub n}LxxL motif that is required for Alix-mediated budding and binds a region of Alix spanning residues 360-702. The structure of this fragment of Alix has the shape of the letter 'V' and is termed the V domain. The V domain has a topologically complex arrangement of 11 {alpha}-helices, with connecting loops that cross three times between the two arms of the V. The conserved residue Phe676 is at the center of a large hydrophobic pocket and is crucial for binding to a peptide model of HIV-1 p6. Overexpression of the V domain inhibits HIV-1 release from cells. This inhibition of release is reversed by mutations that block binding of the Alix V domain to p6.

  1. A Binding Domain on Mesothelin for CA125/MUC16*

    PubMed Central

    Kaneko, Osamu; Gong, Lucy; Zhang, Jingli; Hansen, Johanna K.; Hassan, Raffit; Lee, Byungkook; Ho, Mitchell

    2009-01-01

    Ovarian cancer and malignant mesothelioma frequently express both mesothelin and CA125 (also known as MUC16) at high levels on the cell surface. The interaction between mesothelin and CA125 may facilitate the implantation and peritoneal spread of tumors by cell adhesion, whereas the detailed nature of this interaction is still unknown. Here, we used truncated mutagenesis and alanine replacement techniques to identify a binding site on mesothelin for CA125. We examined the molecular interaction by Western blot overlay assays and further quantitatively analyzed by enzyme-linked immunosorbent assay. We also evaluated the binding on cancer cells by flow cytometry. We identified the region (296–359) consisting of 64 amino acids at the N-terminal of cell surface mesothelin as the minimum fragment for complete binding activity to CA125. We found that substitution of tyrosine 318 with an alanine abolished CA125 binding. Replacement of tryptophan 321 and glutamic acid 324 with alanine could partially decrease binding to CA125, whereas mutation of histidine 354 had no effect. These results indicate that a conformation-sensitive structure of the region (296–359) is required and sufficient for the binding of mesothelin to CA125. In addition, we have shown that a single chain monoclonal antibody (SS1) recognizes this CA125-binding domain and blocks the mesothelin-CA125 interaction on cancer cells. The identified CA125-binding domain significantly inhibits cancer cell adhesion and merits evaluation as a new therapeutic agent for preventing or treating peritoneal malignant tumors. PMID:19075018

  2. Structural Basis for Nucleotide Binding and Reaction Catalysis in Mevalonate Diphosphate Decarboxylase

    SciTech Connect

    Barta, Michael L.; McWhorter, William J.; Miziorko, Henry M.; Geisbrecht, Brian V.

    2012-09-17

    Mevalonate diphosphate decarboxylase (MDD) catalyzes the final step of the mevalonate pathway, the Mg{sup 2+}-ATP dependent decarboxylation of mevalonate 5-diphosphate (MVAPP), producing isopentenyl diphosphate (IPP). Synthesis of IPP, an isoprenoid precursor molecule that is a critical intermediate in peptidoglycan and polyisoprenoid biosynthesis, is essential in Gram-positive bacteria (e.g., Staphylococcus, Streptococcus, and Enterococcus spp.), and thus the enzymes of the mevalonate pathway are ideal antimicrobial targets. MDD belongs to the GHMP superfamily of metabolite kinases that have been extensively studied for the past 50 years, yet the crystallization of GHMP kinase ternary complexes has proven to be difficult. To further our understanding of the catalytic mechanism of GHMP kinases with the purpose of developing broad spectrum antimicrobial agents that target the substrate and nucleotide binding sites, we report the crystal structures of wild-type and mutant (S192A and D283A) ternary complexes of Staphylococcus epidermidis MDD. Comparison of apo, MVAPP-bound, and ternary complex wild-type MDD provides structural information about the mode of substrate binding and the catalytic mechanism. Structural characterization of ternary complexes of catalytically deficient MDD S192A and D283A (k{sub cat} decreased 10{sup 3}- and 10{sup 5}-fold, respectively) provides insight into MDD function. The carboxylate side chain of invariant Asp{sup 283} functions as a catalytic base and is essential for the proper orientation of the MVAPP C3-hydroxyl group within the active site funnel. Several MDD amino acids within the conserved phosphate binding loop ('P-loop') provide key interactions, stabilizing the nucleotide triphosphoryl moiety. The crystal structures presented here provide a useful foundation for structure-based drug design.

  3. Nucleotide and deduced amino acid sequences of rat myosin binding protein H (MyBP-H).

    PubMed

    Jung, J; Oh, J; Lee, K

    1998-12-01

    The complete nucleotide sequence of the cDNA clone encoding rat skeletal muscle myosin-binding protein H (MyBP-H) was determined and amino acid sequence was deduced from the nucleotide sequence (GenBank accession number AF077338). The full-length cDNA of 1782 base pairs(bp) contains a single open reading frame of 1454 bp encoding a rat MyBP-H protein of the predicted molecular mass 52.7 kDa and includes the common consensus 'CA__TG' protein binding motif. The cDNA sequence of rat MyBP-H show 92%, 84% and 41% homology with those of mouse, human and chicken, respectively. The protein contains tandem internal motifs array (-FN III-Ig C2-FN III-Ig C2-) in the C-terminal region which resembles to the immunoglobulin superfamily C2 and fibronectin type III motifs. The amino acid sequence of the C-terminal Ig C2 was highly conserved among MyBPs family and other thick filament binding proteins, suggesting that the C-terminal Ig C2 might play an important role in its function. All proteins belonging to MyBP-H member contains 'RKPS' sequence which is assumed to be cAMP- and cGMP-dependent protein kinase A phosphorylation site. Computer analysis of the primary sequence of rat MyBP-H predicted 11 protein kinase C (PKC) phosphorylation site, 7 casein kinase II (CK2) phosphorylation site and 4 N-myristoylation site.

  4. Targeting of nucleotide-binding proteins by HAMLET--a conserved tumor cell death mechanism.

    PubMed

    Ho, J C S; Nadeem, A; Rydström, A; Puthia, M; Svanborg, C

    2016-02-18

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) kills tumor cells broadly suggesting that conserved survival pathways are perturbed. We now identify nucleotide-binding proteins as HAMLET binding partners, accounting for about 35% of all HAMLET targets in a protein microarray comprising 8000 human proteins. Target kinases were present in all branches of the Kinome tree, including 26 tyrosine kinases, 10 tyrosine kinase-like kinases, 13 homologs of yeast sterile kinases, 4 casein kinase 1 kinases, 15 containing PKA, PKG, PKC family kinases, 15 calcium/calmodulin-dependent protein kinase kinases and 13 kinases from CDK, MAPK, GSK3, CLK families. HAMLET acted as a broad kinase inhibitor in vitro, as defined in a screen of 347 wild-type, 93 mutant, 19 atypical and 17 lipid kinases. Inhibition of phosphorylation was also detected in extracts from HAMLET-treated lung carcinoma cells. In addition, HAMLET recognized 24 Ras family proteins and bound to Ras, RasL11B and Rap1B on the cytoplasmic face of the plasma membrane. Direct cellular interactions between HAMLET and activated Ras family members including Braf were confirmed by co-immunoprecipitation. As a consequence, oncogenic Ras and Braf activity was inhibited and HAMLET and Braf inhibitors synergistically increased tumor cell death in response to HAMLET. Unlike most small molecule kinase inhibitors, HAMLET showed selectivity for tumor cells in vitro and in vivo. The results identify nucleotide-binding proteins as HAMLET targets and suggest that dysregulation of the ATPase/kinase/GTPase machinery contributes to cell death, following the initial, selective recognition of HAMLET by tumor cells. The findings thus provide a molecular basis for the conserved tumoricidal effect of HAMLET, through dysregulation of kinases and oncogenic GTPases, to which tumor cells are addicted.

  5. Structures of 5-Methylthioribose Kinase Reveal Substrate Specificity and Unusual Mode of Nucleotide Binding

    SciTech Connect

    Ku,S.; Yip, P.; Cornell, K.; Riscoe, M.; Behr, J.; Guillerm, G.; Howell, P.

    2007-01-01

    The methionine salvage pathway is ubiquitous in all organisms, but metabolic variations exist between bacteria and mammals. 5-Methylthioribose (MTR) kinase is a key enzyme in methionine salvage in bacteria and the absence of a mammalian homolog suggests that it is a good target for the design of novel antibiotics. The structures of the apo-form of Bacillus subtilis MTR kinase, as well as its ADP, ADP-PO4, AMPPCP, and AMPPCP-MTR complexes have been determined. MTR kinase has a bilobal eukaryotic protein kinase fold but exhibits a number of unique features. The protein lacks the DFG motif typically found at the beginning of the activation loop and instead coordinates magnesium via a DXE motif (Asp{sup 250}-Glu{sup 252}). In addition, the glycine-rich loop of the protein, analogous to the 'Gly triad' in protein kinases, does not interact extensively with the nucleotide. The MTR substrate-binding site consists of Asp{sup 233} of the catalytic HGD motif, a novel twin arginine motif (Arg{sup 340}/Arg{sup 341}), and a semi-conserved W-loop, which appears to regulate MTR binding specificity. No lobe closure is observed for MTR kinase upon substrate binding. This is probably because the enzyme lacks the lobe closure/inducing interactions between the C-lobe of the protein and the ribosyl moiety of the nucleotide that are typically responsible for lobe closure in protein kinases. The current structures suggest that MTR kinase has a dissociative mechanism.

  6. Protein universe containing a PUA RNA-binding domain.

    PubMed

    Cerrudo, Carolina S; Ghiringhelli, Pablo D; Gomez, Daniel E

    2014-01-01

    Here, we review current knowledge about pseudouridine synthase and archaeosine transglycosylase (PUA)-domain-containing proteins to illustrate progress in this field. A methodological analysis of the literature about the topic was carried out, together with a 'qualitative comparative analysis' to give a more comprehensive review. Bioinformatics methods for whole-protein or protein-domain identification are commonly based on pairwise protein sequence comparisons; we added comparison of structures to detect the whole universe of proteins containing the PUA domain. We present an update of proteins having this domain, focusing on the specific proteins present in Homo sapiens (dyskerin, MCT1, Nip7, eIF2D and Nsun6), and explore the existence of these in other species. We also analyze the phylogenetic distribution of the PUA domain in different species and proteins. Finally, we performed a structural comparison of the PUA domain through data mining of structural databases, determining a conserved structural motif, despite the differences in the sequence, even among eukaryotes, archaea and bacteria. All data discussed in this review, both bibliographic and analytical, corroborate the functional importance of the PUA domain in RNA-binding proteins.

  7. Bacterial collagen-binding domain targets undertwisted regions of collagen

    PubMed Central

    Philominathan, Sagaya Theresa Leena; Koide, Takaki; Matsushita, Osamu; Sakon, Joshua

    2012-01-01

    Clostridium histolyticum collagenase causes extensive degradation of collagen in connective tissue that results in gas gangrene. The C-terminal collagen-binding domain (CBD) of these enzymes is the minimal segment required to bind to a collagen fibril. CBD binds unidirectionally to the undertwisted C-terminus of triple helical collagen. Here, we examine whether CBD could also target undertwisted regions even in the middle of the triple helix. Collageneous peptides with an additional undertwisted region were synthesized by introducing a Gly → Ala substitution [(POG)xPOA(POG)y]3, where x + y = 9 and x > 3). 1H–15N heteronuclear single quantum coherence nuclear magnetic resonance (HSQC NMR) titration studies with 15N-labeled CBD demonstrated that the minicollagen binds to a 10 Å wide 25 Å long cleft. Six collagenous peptides each labeled with a nitroxide radical were then titrated with 15N-labeled CBD. CBD binds to either the Gly → Ala substitution site or to the C-terminus of each minicollagen. Small-angle X-ray scattering measurements revealed that CBD prefers to bind the Gly → Ala site to the C-terminus. The HSQC NMR spectra of 15N-labeled minicollagen and minicollagen with undertwisted regions were unaffected by the titration of unlabeled CBD. The results imply that CBD binds to the undertwisted region of the minicollagen but does not actively unwind the triple helix. PMID:22898990

  8. Neurosteroid binding to the amino terminal and glutamate binding domains of ionotropic glutamate receptors.

    PubMed

    Cameron, Krasnodara; Bartle, Emily; Roark, Ryan; Fanelli, David; Pham, Melissa; Pollard, Beth; Borkowski, Brian; Rhoads, Sarah; Kim, Joon; Rocha, Monica; Kahlson, Martha; Kangala, Melinda; Gentile, Lisa

    2012-06-01

    The endogenous neurosteroids, pregnenolone sulfate (PS) and 3α-hydroxy-5β-pregnan-20-one sulfate (PREGAS), have been shown to differentially regulate the ionotropic glutamate receptor (iGluR) family of ligand-gated ion channels. Upon binding to these receptors, PREGAS decreases current flow through the channels. Upon binding to non-NMDA or NMDA receptors containing an GluN2C or GluN2D subunit, PS also decreases current flow through the channels, however, upon binding to NMDA receptors containing an GluN2A or GluN2B subunit, flow through the channels increases. To begin to understand this differential regulation, we have cloned the S1S2 and amino terminal domains (ATD) of the NMDA GluN2B and GluN2D and AMPA GluA2 subunits. Here we present results that show that PS and PREGAS bind to different sites in the ATD of the GluA2 subunit, which when combined with previous results from our lab, now identifies two binding domains for each neurosteroid. We also show both neurosteroids bind only to the ATD of the GluN2D subunit, suggesting that this binding is distinct from that of the AMPA GluA2 subunit, with both leading to iGluR inhibition. Finally, we provide evidence that both PS and PREGAS bind to the S1S2 domain of the NMDA GluN2B subunit. Neurosteroid binding to the S1S2 domain of NMDA subunits responsible for potentiation of iGluRs and to the ATD of NMDA subunits responsible for inhibition of iGluRs, provides an interesting option for therapeutic design.

  9. Guanine nucleotide-binding protein regulation of melatonin receptors in lizard brain

    SciTech Connect

    Rivkees, S.A.; Carlson, L.L.; Reppert, S.M. )

    1989-05-01

    Melatonin receptors were identified and characterized in crude membrane preparations from lizard brain by using {sup 125}I-labeled melatonin ({sup 125}I-Mel), a potent melatonin agonist. {sup 125}I-Mel binding sites were saturable; Scatchard analysis revealed high-affinity and lower affinity binding sites, with apparent K{sub d} of 2.3 {plus minus} 1.0 {times} 10{sup {minus}11} M and 2.06 {plus minus} 0.43 {times} 10{sup {minus}10} M, respectively. Binding was reversible and inhibited by melatonin and closely related analogs but not by serotonin or norepinephrine. Treatment of crude membranes with the nonhydrolyzable GTP analog guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)), significantly reduced the number of high-affinity receptors and increased the dissociation rate of {sup 125}I-Mel from its receptor. Furthermore, GTP({gamma}S) treatment of ligand-receptor complexes solubilized by Triton X-100 also led to a rapid dissociation of {sup 125}I-Mel from solubilized ligand-receptor complexes. Gel filtration chromatography of solubilized ligand-receptor complexes revealed two major peaks of radioactivity corresponding to M{sub r} > 400,000 and M{sub r} ca. 110,000. This elution profile was markedly altered by pretreatment with GTP({gamma}S) before solubilization; only the M{sub r} 110,000 peak was present in GTP({gamma}S)-pretreated membranes. The results strongly suggest that {sup 125}I-mel binding sites in lizard brain are melatonin receptors, with agonist-promoted guanine nucleotide-binding protein (G protein) coupling and that the apparent molecular size of receptors uncoupled from G proteins is about 110,000.

  10. Nucleotide binding triggers a conformational change of the CBS module of the magnesium transporter CNNM2 from a twisted towards a flat structure.

    PubMed

    Corral-Rodríguez, María Ángeles; Stuiver, Marchel; Abascal-Palacios, Guillermo; Diercks, Tammo; Oyenarte, Iker; Ereño-Orbea, June; de Opakua, Alain Ibáñez; Blanco, Francisco J; Encinar, José Antonio; Spiwok, Vojtêch; Terashima, Hiroyuki; Accardi, Alessio; Müller, Dominik; Martínez-Cruz, Luis Alfonso

    2014-11-15

    Recent studies suggest CNNM2 (cyclin M2) to be part of the long-sought basolateral Mg2+ extruder at the renal distal convoluted tubule, or its regulator. In the present study, we explore structural features and ligand-binding capacities of the Bateman module of CNNM2 (residues 429-584), an intracellular domain structurally equivalent to the region involved in Mg2+ handling by the bacterial Mg2+ transporter MgtE, and AMP binding by the Mg2+ efflux protein CorC. Additionally, we studied the structural impact of the pathogenic mutation T568I located in this region. Our crystal structures reveal that nucleotides such as AMP, ADP or ATP bind at only one of the two cavities present in CNNM2429-584. Mg2+ favours ATP binding by alleviating the otherwise negative charge repulsion existing between acidic residues and the polyphosphate group of ATP. In crystals CNNM2429-584 forms parallel dimers, commonly referred to as CBS (cystathionine β-synthase) modules. Interestingly, nucleotide binding triggers a conformational change in the CBS module from a twisted towards a flat disc-like structure that mostly affects the structural elements connecting the Bateman module with the transmembrane region. We furthermore show that the T568I mutation, which causes dominant hypomagnesaemia, mimics the structural effect induced by nucleotide binding. The results of the present study suggest that the T568I mutation exerts its pathogenic effect in humans by constraining the conformational equilibrium of the CBS module of CNNM2, which becomes 'locked' in its flat form.

  11. Structural basis underlying CAC RNA recognition by the RRM domain of dimeric RNA-binding protein RBPMS.

    PubMed

    Teplova, Marianna; Farazi, Thalia A; Tuschl, Thomas; Patel, Dinshaw J

    2016-01-01

    RNA-binding protein with multiple splicing (designated RBPMS) is a higher vertebrate mRNA-binding protein containing a single RNA recognition motif (RRM). RBPMS has been shown to be involved in mRNA transport, localization and stability, with key roles in axon guidance, smooth muscle plasticity, as well as regulation of cancer cell proliferation and migration. We report on structure-function studies of the RRM domain of RBPMS bound to a CAC-containing single-stranded RNA. These results provide insights into potential topologies of complexes formed by the RBPMS RRM domain and the tandem CAC repeat binding sites as detected by photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation. These studies establish that the RRM domain of RBPMS forms a symmetrical dimer in the free state, with each monomer binding sequence-specifically to all three nucleotides of a CAC segment in the RNA bound state. Structure-guided mutations within the dimerization and RNA-binding interfaces of RBPMS RRM on RNA complex formation resulted in both disruption of dimerization and a decrease in RNA-binding affinity as observed by size exclusion chromatography and isothermal titration calorimetry. As anticipated from biochemical binding studies, over-expression of dimerization or RNA-binding mutants of Flag-HA-tagged RBPMS were no longer able to track with stress granules in HEK293 cells, thereby documenting the deleterious effects of such mutations in vivo.

  12. Structure of the RNA-Binding Domain of Telomerase: Implications For RNA Recognition and Binding

    SciTech Connect

    Rouda,S.; Skordalakes, E.

    2007-01-01

    Telomerase, a ribonucleoprotein complex, replicates the linear ends of eukaryotic chromosomes, thus taking care of the 'end of replication problem.' TERT contains an essential and universally conserved domain (TRBD) that makes extensive contacts with the RNA (TER) component of the holoenzyme, and this interaction is thought to facilitate TERT/TER assembly and repeat-addition processivity. Here, we present a high-resolution structure of TRBD from Tetrahymena thermophila. The nearly all-helical structure comprises a nucleic acid-binding fold suitable for TER binding. An extended pocket on the surface of the protein, formed by two conserved motifs (CP and T motifs) comprises TRBD's RNA-binding pocket. The width and the chemical nature of this pocket suggest that it binds both single- and double-stranded RNA, possibly stem I, and the template boundary element (TBE). Moreover, the structure provides clues into the role of this domain in TERT/TER stabilization and telomerase repeat-addition processivity.

  13. Systematic Analysis and Comparison of Nucleotide-Binding Site Disease Resistance Genes in a Diploid Cotton Gossypium raimondii

    PubMed Central

    Wei, Hengling; Li, Wei; Sun, Xiwei; Zhu, Shuijin; Zhu, Jun

    2013-01-01

    Plant disease resistance genes are a key component of defending plants from a range of pathogens. The majority of these resistance genes belong to the super-family that harbors a Nucleotide-binding site (NBS). A number of studies have focused on NBS-encoding genes in disease resistant breeding programs for diverse plants. However, little information has been reported with an emphasis on systematic analysis and comparison of NBS-encoding genes in cotton. To fill this gap of knowledge, in this study, we identified and investigated the NBS-encoding resistance genes in cotton using the whole genome sequence information of Gossypium raimondii. Totally, 355 NBS-encoding resistance genes were identified. Analyses of the conserved motifs and structural diversity showed that the most two distinct features for these genes are the high proportion of non-regular NBS genes and the high diversity of N-termini domains. Analyses of the physical locations and duplications of NBS-encoding genes showed that gene duplication of disease resistance genes could play an important role in cotton by leading to an increase in the functional diversity of the cotton NBS-encoding genes. Analyses of phylogenetic comparisons indicated that, in cotton, the NBS-encoding genes with TIR domain not only have their own evolution pattern different from those of genes without TIR domain, but also have their own species-specific pattern that differs from those of TIR genes in other plants. Analyses of the correlation between disease resistance QTL and NBS-encoding resistance genes showed that there could be more than half of the disease resistance QTL associated to the NBS-encoding genes in cotton, which agrees with previous studies establishing that more than half of plant resistance genes are NBS-encoding genes. PMID:23936305

  14. Systematic analysis and comparison of nucleotide-binding site disease resistance genes in a diploid cotton Gossypium raimondii.

    PubMed

    Wei, Hengling; Li, Wei; Sun, Xiwei; Zhu, Shuijin; Zhu, Jun

    2013-01-01

    Plant disease resistance genes are a key component of defending plants from a range of pathogens. The majority of these resistance genes belong to the super-family that harbors a Nucleotide-binding site (NBS). A number of studies have focused on NBS-encoding genes in disease resistant breeding programs for diverse plants. However, little information has been reported with an emphasis on systematic analysis and comparison of NBS-encoding genes in cotton. To fill this gap of knowledge, in this study, we identified and investigated the NBS-encoding resistance genes in cotton using the whole genome sequence information of Gossypium raimondii. Totally, 355 NBS-encoding resistance genes were identified. Analyses of the conserved motifs and structural diversity showed that the most two distinct features for these genes are the high proportion of non-regular NBS genes and the high diversity of N-termini domains. Analyses of the physical locations and duplications of NBS-encoding genes showed that gene duplication of disease resistance genes could play an important role in cotton by leading to an increase in the functional diversity of the cotton NBS-encoding genes. Analyses of phylogenetic comparisons indicated that, in cotton, the NBS-encoding genes with TIR domain not only have their own evolution pattern different from those of genes without TIR domain, but also have their own species-specific pattern that differs from those of TIR genes in other plants. Analyses of the correlation between disease resistance QTL and NBS-encoding resistance genes showed that there could be more than half of the disease resistance QTL associated to the NBS-encoding genes in cotton, which agrees with previous studies establishing that more than half of plant resistance genes are NBS-encoding genes.

  15. C2′-endo nucleotides as molecular timers suggested by the folding of an RNA domain

    PubMed Central

    Mortimer, Stefanie A.; Weeks, Kevin M.

    2009-01-01

    A striking and widespread observation is that higher-order folding for many RNAs is very slow, often requiring minutes. In some cases, slow folding reflects the need to disrupt stable, but incorrect, interactions. However, a molecular explanation for slow folding in most RNAs is unknown. The specificity domain of the Bacillus subtilis RNase P ribozyme undergoes a rate-limiting folding step on the minute time-scale. This RNA also contains a C2′-endo nucleotide at A130 that exhibits extremely slow local conformational dynamics. This nucleotide is evolutionarily conserved and essential for tRNA recognition by RNase P. Here we show that deleting this single nucleotide accelerates folding by an order of magnitude even though this mutation does not change the global fold of the RNA. These results demonstrate that formation of a single stacking interaction at a C2′-endo nucleotide comprises the rate-determining step for folding an entire 154 nucleotide RNA. C2′-endo nucleotides exhibit slow local dynamics in structures spanning isolated helices to complex tertiary interactions. Because the motif is both simple and ubiquitous, C2′-endo nucleotides may function as molecular timers in many RNA folding and ligand recognition reactions. PMID:19717440

  16. Flow cytometry for real-time measurement of guanine nucleotide binding and exchange by Ras-like GTPases.

    PubMed

    Schwartz, Samantha L; Tessema, Mathewos; Buranda, Tione; Pylypenko, Olena; Rak, Alexey; Simons, Peter C; Surviladze, Zurab; Sklar, Larry A; Wandinger-Ness, Angela

    2008-10-15

    Ras-like small GTPases cycle between GTP-bound active and GDP-bound inactive conformational states to regulate diverse cellular processes. Despite their importance, detailed kinetic or comparative studies of family members are rarely undertaken due to the lack of real-time assays measuring nucleotide binding or exchange. Here we report a bead-based flow cytometric assay that quantitatively measures the nucleotide binding properties of glutathione-S-transferase (GST) chimeras for prototypical Ras family members Rab7 and Rho. Measurements are possible in the presence or absence of Mg(2+), with magnesium cations principally increasing affinity and slowing nucleotide dissociation rates 8- to 10-fold. GST-Rab7 exhibited a 3-fold higher affinity for guanosine diphosphate (GDP) relative to guanosine triphosphate (GTP) that is consistent with a 3-fold slower dissociation rate of GDP. Strikingly, GST-Rab7 had a marked preference for GTP with ribose ring-conjugated BODIPY FL. The more commonly used gamma-NH-conjugated BODIPY FL GTP analogue failed to bind to GST-Rab7. In contrast, both BODIPY analogues bound equally well to GST-RhoA and GST-RhoC. Comparisons of the GST-Rab7 and GST-RhoA GTP binding pockets provide a structural basis for the observed binding differences. In sum, the flow cytometric assay can be used to measure nucleotide binding properties of GTPases in real time and to quantitatively assess differences between GTPases.

  17. Structure of the microtubule-binding domain of flagellar dynein.

    PubMed

    Kato, Yusuke S; Yagi, Toshiki; Harris, Sarah A; Ohki, Shin-ya; Yura, Kei; Shimizu, Youské; Honda, Shinya; Kamiya, Ritsu; Burgess, Stan A; Tanokura, Masaru

    2014-11-04

    Flagellar dyneins are essential microtubule motors in eukaryotes, as they drive the beating motions of cilia and flagella. Unlike myosin and kinesin motors, the track binding mechanism of dyneins and the regulation between the strong and weak binding states remain obscure. Here we report the solution structure of the microtubule-binding domain of flagellar dynein-c/DHC9 (dynein-c MTBD). The structure reveals a similar overall helix-rich fold to that of the MTBD of cytoplasmic dynein (cytoplasmic MTBD), but dynein-c MTBD has an additional flap, consisting of an antiparallel b sheet. The flap is positively charged and highly flexible. Despite the structural similarity to cytoplasmic MTBD, dynein-c MTBD shows only a small change in the microtubule- binding affinity depending on the registry change of coiled coil-sliding, whereby lacks the apparent strong binding state. The surface charge distribution of dynein-c MTBD also differs from that of cytoplasmic MTBD, which suggests a difference in the microtubule-binding mechanism.

  18. Structural changes of the sarcoplasmic reticulum Ca(2+)-ATPase upon nucleotide binding studied by fourier transform infrared spectroscopy.

    PubMed Central

    von Germar, F; Barth, A; Mäntele, W

    2000-01-01

    Changes in the vibrational spectrum of the sarcoplasmic reticulum Ca(2+)-ATPase upon nucleotide binding were recorded in H(2)O and (2)H(2)O at -7 degrees C and pH 7.0. The reaction cycle was triggered by the photochemical release of nucleotides (ATP, ADP, and AMP-PNP) from a biologically inactive precursor (caged ATP, P(3)-1-(2-nitrophenyl) adenosine 5'-triphosphate, and related caged compounds). Infrared absorbance changes due to ATP release and two steps of the Ca(2+)-ATPase reaction cycle, ATP binding and phosphorylation, were followed in real time. Under the conditions used in our experiments, the rate of ATP binding was limited by the rate of ATP release (k(app) congruent with 3 s(-1) in H(2)O and k(app) congruent with 7 s(-1) in (2)H(2)O). Bands in the amide I and II regions of the infrared spectrum show that the conformation of the Ca(2+)-ATPase changes upon nucleotide binding. The observation of bands in the amide I region can be assigned to perturbations of alpha-helical and beta-sheet structures. According to similar band profiles in the nucleotide binding spectra, ATP, AMP-PNP, and ADP induce similar conformational changes. However, subtle differences between ATP and AMP-PNP are observed; these are most likely due to the protonation state of the gamma-phosphate group. Differences between the ATP and ADP binding spectra indicate the significance of the gamma-phosphate group in the interactions between the Ca(2+)-ATPase and the nucleotide. Nucleotide binding affects Asp or Glu residues, and bands characteristic of their protonated side chains are observed at 1716 cm(-1) (H(2)O) and 1706 cm(-1) ((2)H(2)O) and seem to depend on the charge of the phosphate groups. Bands at 1516 cm(-1) (H(2)O) and 1514 cm(-1) ((2)H(2)O) are tentatively assigned to a protonated Tyr residue affected by nucleotide binding. Possible changes in Arg, Trp, and Lys absorption and in the nucleoside are discussed. The spectra are compared with those of nucleotide binding to arginine

  19. An intact DNA-binding domain is not required for peroxisome proliferator-activated receptor gamma (PPARgamma) binding and activation on some PPAR response elements.

    PubMed

    Temple, Karla A; Cohen, Ronald N; Wondisford, Sarah R; Yu, Christine; Deplewski, Dianne; Wondisford, Fredric E

    2005-02-04

    Peroxisome proliferator-activated receptor gamma (PPARgamma) interacts with retinoid X receptor (RXR) on PPAR response elements (PPREs) to regulate transcription of PPAR-responsive genes. To investigate the binding of PPARgamma and RXR to PPREs, three mutations were constructed in the DNA-binding domains of PPARgamma; two of the mutants maintained the structure of zinc finger I (PPARgamma-GS and PPARgamma-AA), and a third mutation disrupted the protein structure of zinc finger I (PPARgamma-CS). Results indicated that the mutations of PPARgamma that maintained intact zinc fingers were capable of binding to a variety of PPREs in the presence of RXR and could activate transcription on several PPREs. In parallel, a mutation was created in the DNA-binding domain of RXRalpha that maintained the structure of the zinc fingers (RXR-GS) but did not bind DNA and was transcriptionally inactive. Examination of the 3' half-site of several PPREs revealed that variations from the consensus sequence reduced or abolished transcriptional activity, but conversion to consensus improved transcriptional activity with PPARgamma-GS and PPARgamma-AA. Examination of the 5' half-site indicated that the upstream three nucleotides were more important for transcriptional activity than the downstream three nucleotides. Our data demonstrated that stringent binding of RXR to the 3' half-site of a PPRE is more influential on the binding of the PPARgamma/RXR heterodimer than the ability of PPARgamma to bind DNA. Thus, unlike RXR, PPARgamma exhibits promiscuity in binding on a PPRE, suggesting that the definition of a PPRE for PPARgamma may need to be expanded.

  20. Histone-binding domains: strategies for discovery and characterization.

    PubMed

    Wilkinson, Alex W; Gozani, Or

    2014-08-01

    Chromatin signaling dynamics fundamentally regulate eukaryotic genomes. The reversible covalent post-translational modification (PTM) of histone proteins by chemical moieties such as phosphate, acetyl and methyl groups constitutes one of the primary chromatin signaling mechanisms. Modular protein domains present within chromatin-regulatory activities recognize or "read" specifically modified histone species and transduce these modified species into distinct downstream biological outcomes. Thus, understanding the molecular basis underlying PTM-mediated signaling at chromatin requires knowledge of both the modification and the partnering reader domains. Over the last ten years, a number of innovative approaches have been developed and employed to discover reader domain binding events with histones. Together, these studies have provided crucial insight into how chromatin pathways influence key cellular programs. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Guanyl nucleotide interactions with dopaminergic binding sites labeled by (/sup 3/H)spiroperidol in human caudate and putamen: guanyl nucleotides enhance ascorbate-induced lipid peroxidation and cause an apparent loss of high affinity binding sites

    SciTech Connect

    Andorn, A.C.; Bacon, B.R.; Nguyen-Hunh, A.T.; Parlato, S.J.; Stitts, J.A.

    1988-02-01

    The human caudate and putamen contain two high affinity binding sites for (/sup 3/H)spiroperidol. Both of these affinity states exhibit dopaminergic selectivity. Ascorbic acid, at 0.1 mM, induces a slow loss of the low affinity component of (/sup 3/H)spiroperidol binding in these tissues. The addition of guanyl nucleotides to the ascorbate produces a more rapid loss of (/sup 3/H)spiroperidol binding which includes a loss of the highest affinity state for (/sup 3/H)spiroperidol. Ascorbate induces lipid peroxidation in human caudate and putamen, an effect that is further enhanced by guanyl and inosine nucleotides. In the absence of ascorbate, guanyl nucleotides have no effect on (/sup 3/H)spiroperidol binding but do decrease the affinity of dopamine at each affinity state greater than 60-fold. In the absence of ascorbate, guanyl nucleotides apparently decrease agonist affinity at human brain dopamine2-binding sites without causing an interconversion of agonist affinity states.

  2. Inositol phospholipids regulate the guanine-nucleotide-exchange factor Tiam1 by facilitating its binding to the plasma membrane and regulating GDP/GTP exchange on Rac1.

    PubMed

    Fleming, Ian N; Batty, Ian H; Prescott, Alan R; Gray, Alex; Kular, Gursant S; Stewart, Hazel; Downes, C Peter

    2004-09-15

    Binding of the Rac1-specific guanine-nucleotide-exchange factor, Tiam1, to the plasma membrane requires the N-terminal pleckstrin homology domain. In the present study, we show that membrane-association is mediated by binding of PtdIns(4,5)P(2) to the pleckstrin homology domain. Moreover, in 1321N1 astrocytoma cells, translocation of Tiam1 to the cytosol, following receptor-mediated stimulation of PtdIns(4,5)P(2) breakdown, correlates with decreased Rac1-GTP levels, indicating that membrane-association is required for GDP/GTP exchange on Rac1. In addition, we show that platelet-derived growth factor activates Rac1 in vivo by increasing PtdIns(3,4,5)P(3) concentrations, rather than the closely related lipid, PtdIns(3,4)P(2). Finally, the data demonstrate that PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3) bind to the same pleckstrin homology domain in Tiam1 and that soluble inositol phosphates appear to compete with lipids for this binding. Together, these novel observations provide strong evidence that distinct phosphoinositides regulate different functions of this enzyme, indicating that local concentrations of signalling lipids and the levels of cytosolic inositol phosphates will play crucial roles in determining its activity in vivo.

  3. Inositol phospholipids regulate the guanine-nucleotide-exchange factor Tiam1 by facilitating its binding to the plasma membrane and regulating GDP/GTP exchange on Rac1

    PubMed Central

    2004-01-01

    Binding of the Rac1-specific guanine-nucleotide-exchange factor, Tiam1, to the plasma membrane requires the N-terminal pleckstrin homology domain. In the present study, we show that membrane-association is mediated by binding of PtdIns(4,5)P2 to the pleckstrin homology domain. Moreover, in 1321N1 astrocytoma cells, translocation of Tiam1 to the cytosol, following receptor-mediated stimulation of PtdIns(4,5)P2 breakdown, correlates with decreased Rac1-GTP levels, indicating that membrane-association is required for GDP/GTP exchange on Rac1. In addition, we show that platelet-derived growth factor activates Rac1 in vivo by increasing PtdIns(3,4,5)P3 concentrations, rather than the closely related lipid, PtdIns(3,4)P2. Finally, the data demonstrate that PtdIns(4,5)P2 and PtdIns(3,4,5)P3 bind to the same pleckstrin homology domain in Tiam1 and that soluble inositol phosphates appear to compete with lipids for this binding. Together, these novel observations provide strong evidence that distinct phosphoinositides regulate different functions of this enzyme, indicating that local concentrations of signalling lipids and the levels of cytosolic inositol phosphates will play crucial roles in determining its activity in vivo. PMID:15242348

  4. Structural aspects of nucleotide ligand binding by a bacterial 2H phosphoesterase

    PubMed Central

    Myllykoski, Matti; Kursula, Petri

    2017-01-01

    The 2H phosphoesterase family contains enzymes with two His-X-Ser/Thr motifs in the active site. 2H enzymes are found in all kingdoms of life, sharing little sequence identity despite the conserved overall fold and active site. For many 2H enzymes, the physiological function is unknown. Here, we studied the structure of the 2H family member LigT from Escherichia coli both in the apo form and complexed with different active-site ligands, including ATP, 2′-AMP, 3′-AMP, phosphate, and NADP+. Comparisons to the well-characterized vertebrate myelin enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) highlight specific features of the catalytic cycle and substrate recognition in both enzymes. The role played by the helix α7, unique to CNPases within the 2H family, is apparently taken over by Arg130 in the bacterial enzyme. Other residues and loops lining the active site groove are likely to be important for RNA substrate binding. We visualized conformational changes related to ligand binding, as well as the position of the nucleophilic water molecule. We also present a low-resolution model of E. coli LigT bound to tRNA in solution, and provide a model for RNA binding by LigT, involving flexible loops lining the active site cavity. Taken together, our results both aid in understanding the common features of 2H family enzymes and help highlight the distinct features in the 2H family members, which must result in different reaction mechanisms. Unique aspects in different 2H family members can be observed in ligand recognition and binding, and in the coordination of the nucleophilic water molecule and the reactive phosphate moiety. PMID:28141848

  5. BuD, a helix-loop-helix DNA-binding domain for genome modification.

    PubMed

    Stella, Stefano; Molina, Rafael; López-Méndez, Blanca; Juillerat, Alexandre; Bertonati, Claudia; Daboussi, Fayza; Campos-Olivas, Ramon; Duchateau, Phillippe; Montoya, Guillermo

    2014-07-01

    DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein-DNA interactions in protein scaffolds is key to providing `toolkits' for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix-loop-helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin β (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing.

  6. SNPnexus: a web database for functional annotation of newly discovered and public domain single nucleotide polymorphisms

    PubMed Central

    Chelala, Claude; Khan, Arshad; Lemoine, Nicholas R

    2009-01-01

    Motivation: Design a new computational tool allowing scientists to functionally annotate newly discovered and public domain single nucleotide polymorphisms in order to help in prioritizing targets in further disease studies and large-scale genotyping projects. Summary: SNPnexus database provides functional annotation for both novel and public SNPs. Possible effects on the transcriptome and proteome levels are characterized and reported from five major annotation systems providing the most extensive information on alternative splicing. Additional information on HapMap genotype and allele frequency, overlaps with potential regulatory elements or structural variations as well as related genetic diseases can be also retrieved. The SNPnexus database has a user-friendly web interface, providing single or batch query options using SNP identifiers from dbSNP as well as genomic location on clones, contigs or chromosomes. Therefore, SNPnexus is the only database currently providing a complete set of functional annotations of SNPs in public databases and newly detected from sequencing projects. Hence, we describe SNPnexus, provide details of the query options, the annotation categories as well as biological examples of use. Availability: The SNPnexus database is freely available at http://www.snp-nexus.org. Contact: claude.chelala@cancer.org.uk PMID:19098027

  7. Exploring human 40S ribosomal proteins binding to the 18S rRNA fragment containing major 3'-terminal domain.

    PubMed

    Gopanenko, Alexander V; Malygin, Alexey A; Karpova, Galina G

    2015-02-01

    Association of ribosomal proteins with rRNA during assembly of ribosomal subunits is an intricate process, which is strictly regulated in vivo. As for the assembly in vitro, it was reported so far only for prokaryotic subunits. Bacterial ribosomal proteins are capable of selective binding to 16S rRNA as well as to its separate morphological domains. In this work, we explored binding of total protein of human 40S ribosomal subunit to the RNA transcript corresponding to the major 3'-domain of 18S rRNA. We showed that the resulting ribonucleoprotein particles contained almost all of the expected ribosomal proteins, whose binding sites are located in this 18S rRNA domain in the 40S subunit, together with several nonspecific proteins. The binding in solution was accompanied with aggregation of the RNA-protein complexes. Ribosomal proteins bound to the RNA transcript protected from chemical modification mostly those 18S rRNA nucleotides that are known to be involved in binding with the proteins in the 40S subunit and thereby demonstrated their ability to selectively bind to the rRNA in vitro. The possible implication of unstructured extensions of eukaryotic ribosomal proteins in their nonspecific binding with rRNA and in subsequent aggregation of the resulting complexes is discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Sequential coagulation factor VIIa domain binding to tissue factor

    SciTech Connect

    Oesterlund, Maria; Persson, Egon; Freskgard, Per-Ola . E-mail: msv@ifm.liu.se

    2005-12-02

    Vessel wall tissue factor (TF) is exposed to blood upon vascular damage which enables association with factor VIIa (FVIIa). This leads to initiation of the blood coagulation cascade through localization and allosteric induction of FVIIa procoagulant activity. To examine the docking pathway of the FVIIa-TF complex, various residues in the extracellular part of TF (sTF) that are known to interact with FVIIa were replaced with cysteines labelled with a fluorescent probe. By using stopped-flow fluorescence kinetic measurements in combination with surface plasmon resonance analysis, we studied the association of the resulting sTF variants with FVIIa. We found the docking trajectory to be a sequence of events in which the protease domain of FVIIa initiates contact with sTF. Thereafter, the two proteins are tethered via the first epidermal growth factor-like and finally the {gamma}-carboxyglutamic acid (Gla) domain. The two labelled sTF residues interacting with the protease domain of FVIIa bind or become eventually ordered at different rates, revealing kinetic details pertinent to the allosteric activation of FVIIa by sTF. Moreover, when the Gla domain of FVIIa is removed the difference in the rate of association for the remaining domains is much more pronounced.

  9. Control of domain swapping in bovine odorant-binding protein.

    PubMed Central

    Ramoni, Roberto; Vincent, Florence; Ashcroft, Alison E; Accornero, Paolo; Grolli, Stefano; Valencia, Christel; Tegoni, Mariella; Cambillau, Christian

    2002-01-01

    As revealed by the X-ray structure, bovine odorant-binding protein (OBPb) is a domain swapped dimer [Tegoni, Ramoni, Bignetti, Spinelli and Cambillau (1996) Nat. Struct. Biol. 3, 863-867; Bianchet, Bains, Petosi, Pevsner, Snyder, Monaco and Amzel (1996) Nat. Struct. Biol. 3, 934-939]. This contrasts with all known mammalian OBPs, which are monomers, and in particular with porcine OBP (OBPp), sharing 42.3% identity with OBPb. By the mechanism of domain swapping, monomers are proposed to evolve into dimers and oligomers, as observed in human prion. Comparison of bovine and porcine OBP sequences pointed at OBPp glycine 121, in the hinge linking the beta-barrel to the alpha-helix. The absence of this residue in OBPb might explain why the normal lipocalin beta-turn is not formed. In order to decipher the domain swapping determinants we have produced a mutant of OBPb in which a glycine residue was inserted after position 121, and a mutant of OBPp in which glycine 121 was deleted. The latter mutation did not result in dimerization, while OBPb-121Gly+ became monomeric, suggesting that domain swapping was reversed. Careful structural analysis revealed that besides the presence of a glycine in the hinge, the dimer interface formed by the C-termini and by the presence of the lipocalins conserved disulphide bridge may also control domain swapping. PMID:11931632

  10. Guanine nucleotide binding protein-like 3 is a potential prognosis indicator of gastric cancer.

    PubMed

    Chen, Jing; Dong, Shuang; Hu, Jiangfeng; Duan, Bensong; Yao, Jian; Zhang, Ruiyun; Zhou, Hongmei; Sheng, Haihui; Gao, Hengjun; Li, Shunlong; Zhang, Xianwen

    2015-01-01

    Guanine nucleotide binding protein-like 3 (GNL3) is a GIP-binding nuclear protein that has been reported to be involved in various biological processes, including cell proliferation, cellular senescence and tumorigenesis. This study aimed to investigate the expression level of GNL3 in gastric cancer and to evaluate the relationship between its expression and clinical variables and overall survival of gastric cancer patients. The expression level of GNL3 was examined in 89 human gastric cancer samples using immunohistochemistry (IHC) staining. GNL3 in gastric cancer tissues was significantly upregulated compared with paracancerous tissues. GNL3 expression in adjacent non-cancerous tissues was associated with sex and tumor size. Survival analyses showed that GNL3 expression in both gastric cancer and adjacent non-cancerous tissues were not related to overall survival. However, in the subgroup of patients with larger tumor size (≥ 6 cm), a close association was found between GNL3 expression in gastric cancer tissues and overall survival. GNL3-positive patients had a shorter survival than GNL3-negative patients. Our study suggests that GNL3 might play an important role in the progression of gastric cancer and serve as a biomarker for poor prognosis in gastric cancer patients.

  11. A MicroRNA Superfamily Regulates Nucleotide Binding Site–Leucine-Rich Repeats and Other mRNAs[W][OA

    PubMed Central

    Shivaprasad, Padubidri V.; Chen, Ho-Ming; Patel, Kanu; Bond, Donna M.; Santos, Bruno A.C.M.; Baulcombe, David C.

    2012-01-01

    Analysis of tomato (Solanum lycopersicum) small RNA data sets revealed the presence of a regulatory cascade affecting disease resistance. The initiators of the cascade are microRNA members of an unusually diverse superfamily in which miR482 and miR2118 are prominent members. Members of this superfamily are variable in sequence and abundance in different species, but all variants target the coding sequence for the P-loop motif in the mRNA sequences for disease resistance proteins with nucleotide binding site (NBS) and leucine-rich repeat (LRR) motifs. We confirm, using transient expression in Nicotiana benthamiana, that miR482 targets mRNAs for NBS-LRR disease resistance proteins with coiled-coil domains at their N terminus. The targeting causes mRNA decay and production of secondary siRNAs in a manner that depends on RNA-dependent RNA polymerase 6. At least one of these secondary siRNAs targets other mRNAs of a defense-related protein. The miR482-mediated silencing cascade is suppressed in plants infected with viruses or bacteria so that expression of mRNAs with miR482 or secondary siRNA target sequences is increased. We propose that this process allows pathogen-inducible expression of NBS-LRR proteins and that it contributes to a novel layer of defense against pathogen attack. PMID:22408077

  12. Identification of mutations in regions corresponding to the two putative nucleotide (ATP)-binding folds of the cystic fibrosis gene

    SciTech Connect

    Kerem, B.; Zielenski, J.; Markiewicz, D.; Bozon, D.; Kennedy, D.; Rommens, J.M. ); Gazit, E. ); Yahav, J. ); Riordan, J.R. ); Collins, F.S. ); Tsui, Lapchee Univ. of Toronto, Ontario )

    1990-11-01

    Additional mutations in the cystic fibrosis (CF) gene were identified in the regions corresponding to the two putative nucleotide (ATP)-binding folds (NBFs) of the predicted polypeptide. The patient cohort included 46 Canadian CF families with well-characterized DNA marker haplotypes spanning the disease locus and several other families from Israel. Eleven mutations were found in the first NBF, 2 were found in the second NBF, but none was found in the R-domain. Seven of the mutations were of the missense type affecting some of the highly conserved amino acid residues in the first NBF; 3 were nonsense mutations; 2 would probably affect mRNA splicing; 2 corresponded to small deletions, including another 3-base-pair deletion different from the major mutation ({delta}F508), which could account for 70% of the CF chromosomes in the population. Nine of these mutations accounted for 12 of the 31 non-{delta}F508 CF chromosomes in the Canadian families. The highly heterogeneous nature of the remaining CF mutations provides important insights into the structure and function of the protein, but it also suggests that DNA-based genetic screening for CF carrier status will not be straightforward.

  13. Mutations in the ligand-binding domain of the androgen receptor gene cluster in two regions of the gene.

    PubMed

    McPhaul, M J; Marcelli, M; Zoppi, S; Wilson, C M; Griffin, J E; Wilson, J D

    1992-11-01

    We have analyzed the nucleotide sequence of the androgen receptor from 22 unrelated subjects with substitution mutations of the hormone-binding domain. Eleven had the phenotype of complete testicular feminization, four had incomplete testicular feminization, and seven had Reifenstein syndrome. The underlying functional defect in cultured skin fibroblasts included individuals with absent, qualitative, or quantitative defects in ligand binding. 19 of the 21 substitution mutations (90%) cluster in two regions that account for approximately 35% of the hormone-binding domain, namely, between amino acids 726 and 772 and between amino acids 826 and 864. The fact that one of these regions is homologous to a region of the human thyroid hormone receptor (hTR-beta) which is a known cluster site for mutations that cause thyroid hormone resistance implies that this localization of mutations is not a coincidence. These regions of the androgen receptor may be of particular importance for the formation and function of the hormone-receptor complex.

  14. Structural and functional studies of conserved nucleotide-binding protein LptB in lipopolysaccharide transport

    SciTech Connect

    Wang, Zhongshan; Xiang, Quanju; Zhu, Xiaofeng; Dong, Haohao; He, Chuan; Wang, Haiyan; Zhang, Yizheng; Wang, Wenjian; Dong, Changjiang

    2014-09-26

    Highlights: • Determination of the structure of the wild-type LptB in complex with ATP and Mg{sup 2+}. • Demonstrated that ATP binding residues are essential for LptB’s ATPase activity and LPS transport. • Dimerization is required for the LptB’s function and LPS transport. • Revealed relationship between activity of the LptB and the vitality of E. coli cells. - Abstract: Lipopolysaccharide (LPS) is the main component of the outer membrane of Gram-negative bacteria, which plays an essential role in protecting the bacteria from harsh conditions and antibiotics. LPS molecules are transported from the inner membrane to the outer membrane by seven LPS transport proteins. LptB is vital in hydrolyzing ATP to provide energy for LPS transport, however this mechanism is not very clear. Here we report wild-type LptB crystal structure in complex with ATP and Mg{sup 2+}, which reveals that its structure is conserved with other nucleotide-binding proteins (NBD). Structural, functional and electron microscopic studies demonstrated that the ATP binding residues, including K42 and T43, are crucial for LptB’s ATPase activity, LPS transport and the vitality of Escherichia coli cells with the exceptions of H195A and Q85A; the H195A mutation does not lower its ATPase activity but impairs LPS transport, and Q85A does not alter ATPase activity but causes cell death. Our data also suggest that two protomers of LptB have to work together for ATP hydrolysis and LPS transport. These results have significant impacts in understanding the LPS transport mechanism and developing new antibiotics.

  15. Fluorescence energy transfer between points in G-actin: the nucleotide-binding site, the metal-binding site and Cys-373 residue.

    PubMed

    Miki, M; Wahl, P

    1985-04-05

    Fluorescence energy transfers were studied in order to investigate the spatial relationships between the nucleotide-binding site, the metal-binding site and the Cys-373 residue in the G-actin molecule. When 1-N6-ethenoadenosine-5'-triphosphate (epsilon-ATP) in the nucleotide-binding site and Co2+ or Ni2+ in the metal-binding site were used as fluorescence donor and acceptor, respectively, the fluorescence intensity of epsilon-ATP was perfectly quenched by Ni2+ or Co2+. This indicated that the nucleotide-binding site is very close to the metal-binding site; the distance should be less than 10 A. When N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS) bound to Cys-373 residue and Co2+ in the metal-binding site were used as a fluorescence donor and an acceptor, respectively, the transfer efficiency was equal to 5 +/- 1%. The corresponding distance was calculated to be 23-32 A, assuming a random orientation factor K2 = 2/3.

  16. CFTR: the nucleotide binding folds regulate the accessibility and stability of the activated state

    PubMed Central

    1996-01-01

    The functional roles of the two nucleotide binding folds, NBF1 and NBF2, in the activation of the cystic fibrosis transmembrane conductance regulator (CFTR) were investigated by measuring the rates of activation and deactivation of CFTR Cl- conductance in Xenopus oocytes. Activation of wild-type CFTR in response to application of forskolin and 3-isobutyl-1-methylxanthine (IBMX) was described by a single exponential. Deactivation after washout of the cocktail consisted of two phases: an initial slow phase, described by a latency, and an exponential decline. Rate analysis of CFTR variants bearing analogous mutations in NBF1 and NBF2 permitted us to characterize amino acid substitutions according to their effects on the accessibility and stability of the active state. Access to the active state was very sensitive to substitutions for the invariant glycine (G551) in NBF1, where mutations to alanine (A), serine (S), or aspartic acid (D) reduced the apparent on rate by more than tenfold. The analogous substitutions in NBF2 (G1349) also reduced the on rate, by twofold to 10-fold, but substantially destabilized the active state as well, as judged by increased deactivation rates. In the putative ATP-binding pocket of either NBF, substitution of alanine, glutamine (Q), or arginine (R) for the invariant lysine (K464 or K1250) reduced the on rate similarly, by two- to fourfold. In contrast, these analogous substitutions produced opposite effects on the deactivation rate. NBF1 mutations destabilized the active state, whereas the analogous substitutions in NBF2 stabilized the active state such that activation was prolonged compared with that seen with wild-type CFTR. Substitution of asparagine (N) for a highly conserved aspartic acid (D572) in the ATP-binding pocket of NBF1 dramatically slowed the on rate and destabilized the active state. In contrast, the analogous substitution in NBF2 (D1370N) did not appreciably affect the on rate and markedly stabilized the active state

  17. Immunochemical analysis of the glucocorticoid receptor: identification of a third domain separate from the steroid-binding and DNA-binding domains.

    PubMed Central

    Carlstedt-Duke, J; Okret, S; Wrange, O; Gustafsson, J A

    1982-01-01

    The glucocorticoid-receptor complex can be subdivided into three separate domains by limited proteolysis with trypsin or alpha-chymotrypsin. The following characteristics can be separated: steroid-binding activity (domain A), DNA-binding activity (domain B), and immunoactivity (domain C). We have previously reported the separation of the steroid-binding domain from the DNA-binding domain by limited proteolysis of the receptor with trypsin. In this paper, we report the detection by immunochemical analysis of a third domain of the glucocorticoid receptor, which does not bind hormone. Immunoactivity was detected by using specific antiglucocorticoid receptor antibodies raised in rabbits against purified rat liver glucocorticoid receptor and the assay used was an enzyme-linked immunosorbent assay. After digestion with alpha-chymotrypsin, the immunoactive region of the receptor (domain C) was separated from the other two domains (A and B). The immunoactive fragment was found to have a Stokes radius of 2.6 nm. Further digestion with alpha-chymotrypsin resulted in separation of the immunoactive fragment to give a fragment having a Stokes radius of 1.4 nm. The immunoactive domain could be separated from the half of the glucocorticoid receptor containing the steroid-binding and the DNA-binding domains (Stokes radius, 3.3 nm), by limited proteolysis of the receptor by alpha-chymotrypsin followed by gel filtration or chromatography on DNA-cellulose. PMID:6181503

  18. Single-nucleotide mutation matrix: a new model for predicting the NF-κB DNA binding sites.

    PubMed

    Du, Wenxin; Gao, Jing; Wang, Tingting; Wang, Jinke

    2014-01-01

    In this study, we established a single nucleotide mutation matrix (SNMM) model based on the relative binding affinities of NF-κB p50 homodimer to a wild-type binding site (GGGACTTTCC) and its all single-nucleotide mutants detected with the double-stranded DNA microarray. We evaluated this model by scoring different groups of 10-bp DNA sequences with this model and analyzing the correlations between the scores and the relative binding affinities detected with three wet experiments, including the electrophoresis mobility shift assay (EMSA), the protein-binding microarray (PBM) and the systematic evolution of ligands by exponential enrichment-sequencing (SELEX-Seq). The results revealed that the SNMM scores were strongly correlated with the detected binding affinities. We also scored the DNA sequences with other three models, including the principal coordinate (PC) model, the position weight matrix scoring algorithm (PWMSA) model and the Match model, and analyzed the correlations between the scores and the detected binding affinities. In comparison with these models, the SNMM model achieved reliable results. We finally determined 0.747 as the optimal threshold for predicting the NF-κB DNA-binding sites with the SNMM model. The SNMM model thus provides a new alternative model for scoring the relative binding affinities of NF-κB to the 10-bp DNA sequences and predicting the NF-κB DNA-binding sites.

  19. Polyphosphoinositide binding domains: Key to inositol lipid biology.

    PubMed

    Hammond, Gerald R V; Balla, Tamas

    2015-06-01

    Polyphosphoinositides (PPIn) are an important family of phospholipids located on the cytoplasmic leaflet of eukaryotic cell membranes. Collectively, they are critical for the regulation of many aspects of membrane homeostasis and signaling, with notable relevance to human physiology and disease. This regulation is achieved through the selective interaction of these lipids with hundreds of cellular proteins, and thus the capability to study these localized interactions is crucial to understanding their functions. In this review, we discuss current knowledge of the principle types of PPIn-protein interactions, focusing on specific lipid-binding domains. We then discuss how these domains have been re-tasked by biologists as molecular probes for these lipids in living cells. Finally, we describe how the knowledge gained with these probes, when combined with other techniques, has led to the current view of the lipids' localization and function in eukaryotes, focusing mainly on animal cells. This article is part of a Special Issue entitled Phosphoinositides.

  20. Extended HSR/CARD domain mediates AIRE binding to DNA.

    PubMed

    Maslovskaja, Julia; Saare, Mario; Liiv, Ingrid; Rebane, Ana; Peterson, Pärt

    2015-12-25

    Autoimmune regulator (AIRE) activates the transcription of many genes in an unusual promiscuous and stochastic manner. The mechanism by which AIRE binds to the chromatin and DNA is not fully understood, and the regulatory elements that AIRE target genes possess are not delineated. In the current study, we demonstrate that AIRE activates the expression of transiently transfected luciferase reporters that lack defined promoter regions, as well as intron and poly(A) signal sequences. Our protein-DNA interaction experiments with mutated AIRE reveal that the intact homogeneously staining region/caspase recruitment domain (HSR/CARD) and amino acids R113 and K114 are key elements involved in AIRE binding to DNA. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Screening nucleotide binding to amino acid-coated supports by surface plasmon resonance and nuclear magnetic resonance.

    PubMed

    Cruz, Carla; Cabrita, Eurico J; Queiroz, João A

    2011-08-01

    Here, we describe a rapid and efficient screening method using surface plasmon resonance (SPR) and saturation transfer difference-nuclear magnetic resonance (STD-NMR) spectroscopy to yield information regarding the residues involved in nucleotide binding to amino acid-coated supports. The aim of this work was to explore the use of these spectroscopic techniques to study amino acid-nucleotide interactions in order to improve the binding specificity of the amino acid ligands used to purify plasmid DNA. For SPR, we present a strategy that immobilizes arginine and lysine on a surface as model supports, and we analyze binding responses when synthetic homo-deoxyoligonucleotides are injected over the amino acid surface. The binding responses are detectable and reproducible despite the small size of the immobilized amino acids. Using STD-NMR, we performed epitope mapping of homo-deoxyoligonucleotides bound to L-arginine-bisoxyran-Sepharose and L-lysine-Sepharose supports. Polynucleotide binding preferences differed; for example, polyC interacted preferentially through its backbone with the two supports, whereas polyT bound the supports through its thymine moiety. STD-NMR combined with SPR measurements was successfully used to screen amino acid-nucleotide interactions and determine the binding affinities of the complexes.

  2. Inactivation of the first nucleotide-binding fold of the sulfonylurea receptor, and familial persistent hyperinsulinemic hypoglycemia of infancy

    SciTech Connect

    Thomas, P.M.; Wohllk, N.; Huang, E.

    1996-09-01

    Familial persistent hyperinsulinemic hypoglycemia of infancy is a disorder of glucose homeostasis and is characterized by unregulated insulin secretion and profound hypoglycemia. Loss-of-function mutations in the second nucleotide-binding fold of the sulfonylurea receptor, a subunit of the pancreatic-islet {beta}-cell ATP-dependent potassium channel, has been demonstrated to be causative for persistent hyperinsulinemic hypoglycemia of infancy. We now describe three additional mutations in the first nucleotide-binding fold of the sulfonylurea-receptor gene. One point mutation disrupts the highly conserved Walker A motif of the first nucleotide-binding-fold region. The other two mutations occur in noncoding sequences required for RNA processing and are predicted to disrupt the normal splicing pathway of the sulfonylurea-receptor mRNA precursor. These data suggest that both nucleotide-binding-fold regions of the sulfortylurea receptor are required for normal regulation of {beta}-cell ATP-dependent potassium channel activity and insulin secretion. 32 refs., 4 figs., 1 tab.

  3. Crystal Structure of the Botulinum Neurotoxin Type G Binding Domain: Insight into Cell Surface Binding

    SciTech Connect

    Stenmark, Pål; Dong, Min; Dupuy, Jérôme; Chapman, Edwin R.; Stevens, Raymond C.

    2011-11-02

    Botulinum neurotoxins (BoNTs) typically bind the neuronal cell surface via dual interactions with both protein receptors and gangliosides. We present here the 1.9-{angstrom} X-ray structure of the BoNT serotype G (BoNT/G) receptor binding domain (residues 868-1297) and a detailed view of protein receptor and ganglioside binding regions. The ganglioside binding motif (SxWY) has a conserved structure compared to the corresponding regions in BoNT serotype A and BoNT serotype B (BoNT/B), but several features of interactions with the hydrophilic face of the ganglioside are absent at the opposite side of the motif in the BoNT/G ganglioside binding cleft. This may significantly reduce the affinity between BoNT/G and gangliosides. BoNT/G and BoNT/B share the protein receptor synaptotagmin (Syt) I/II. The Syt binding site has a conserved hydrophobic plateau located centrally in the proposed protein receptor binding interface (Tyr1189, Phe1202, Ala1204, Pro1205, and Phe1212). Interestingly, only 5 of 14 residues that are important for binding between Syt-II and BoNT/B are conserved in BoNT/G, suggesting that the means by which BoNT/G and BoNT/B bind Syt diverges more than previously appreciated. Indeed, substitution of Syt-II Phe47 and Phe55 with alanine residues had little effect on the binding of BoNT/G, but strongly reduced the binding of BoNT/B. Furthermore, an extended solvent-exposed hydrophobic loop, located between the Syt binding site and the ganglioside binding cleft, may serve as a third membrane association and binding element to contribute to high-affinity binding to the neuronal membrane. While BoNT/G and BoNT/B are homologous to each other and both utilize Syt-I/Syt-II as their protein receptor, the precise means by which these two toxin serotypes bind to Syt appears surprisingly divergent.

  4. MODELING THE BINDING OF THE METABOLITES OF SOME POLYCYCLIC AROMTIC HYDROCARBONS TO THE LIGAND BINDING DOMAIN OF THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the binding of the metabolites of some Polycyclic Aromatic Hydrocarbons to the ligand binding domain of the estrogen receptor
    James Rabinowitz, Stephen Little, Katrina Brown, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC; Un...

  5. MODELING THE BINDING OF THE METABOLITES OF SOME POLYCYCLIC AROMTIC HYDROCARBONS TO THE LIGAND BINDING DOMAIN OF THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the binding of the metabolites of some Polycyclic Aromatic Hydrocarbons to the ligand binding domain of the estrogen receptor
    James Rabinowitz, Stephen Little, Katrina Brown, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC; Un...

  6. Determinants of ligand binding and catalytic activity in the myelin enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase

    PubMed Central

    Raasakka, Arne; Myllykoski, Matti; Laulumaa, Saara; Lehtimäki, Mari; Härtlein, Michael; Moulin, Martine; Kursula, Inari; Kursula, Petri

    2015-01-01

    2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) is an enzyme highly abundant in the central nervous system myelin of terrestrial vertebrates. The catalytic domain of CNPase belongs to the 2H phosphoesterase superfamily and catalyzes the hydrolysis of nucleoside 2′,3′-cyclic monophosphates to nucleoside 2′-monophosphates. The detailed reaction mechanism and the essential catalytic amino acids involved have been described earlier, but the roles of many amino acids in the vicinity of the active site have remained unknown. Here, several CNPase catalytic domain mutants were studied using enzyme kinetics assays, thermal stability experiments, and X-ray crystallography. Additionally, the crystal structure of a perdeuterated CNPase catalytic domain was refined at atomic resolution to obtain a detailed view of the active site and the catalytic mechanism. The results specify determinants of ligand binding and novel essential residues required for CNPase catalysis. For example, the aromatic side chains of Phe235 and Tyr168 are crucial for substrate binding, and Arg307 may affect active site electrostatics and regulate loop dynamics. The β5-α7 loop, unique for CNPase in the 2H phosphoesterase family, appears to have various functions in the CNPase reaction mechanism, from coordinating the nucleophilic water molecule to providing a binding pocket for the product and being involved in product release. PMID:26563764

  7. GE23077 binds to the RNA polymerase ‘i’ and ‘i+1’ sites and prevents the binding of initiating nucleotides

    PubMed Central

    Zhang, Yu; Degen, David; Ho, Mary X; Sineva, Elena; Ebright, Katherine Y; Ebright, Yon W; Mekler, Vladimir; Vahedian-Movahed, Hanif; Feng, Yu; Yin, Ruiheng; Tuske, Steve; Irschik, Herbert; Jansen, Rolf; Maffioli, Sonia; Donadio, Stefano; Arnold, Eddy; Ebright, Richard H

    2014-01-01

    Using a combination of genetic, biochemical, and structural approaches, we show that the cyclic-peptide antibiotic GE23077 (GE) binds directly to the bacterial RNA polymerase (RNAP) active-center ‘i’ and ‘i+1’ nucleotide binding sites, preventing the binding of initiating nucleotides, and thereby preventing transcription initiation. The target-based resistance spectrum for GE is unusually small, reflecting the fact that the GE binding site on RNAP includes residues of the RNAP active center that cannot be substituted without loss of RNAP activity. The GE binding site on RNAP is different from the rifamycin binding site. Accordingly, GE and rifamycins do not exhibit cross-resistance, and GE and a rifamycin can bind simultaneously to RNAP. The GE binding site on RNAP is immediately adjacent to the rifamycin binding site. Accordingly, covalent linkage of GE to a rifamycin provides a bipartite inhibitor having very high potency and very low susceptibility to target-based resistance. DOI: http://dx.doi.org/10.7554/eLife.02450.001 PMID:24755292

  8. The RNA-binding domain of influenzavirus non-structural protein-1 cooperatively binds to virus-specific RNA sequences in a structure-dependent manner

    PubMed Central

    Marc, Daniel; Barbachou, Sosthène; Soubieux, Denis

    2013-01-01

    Influenzavirus non-structural protein NS1 is involved in several steps of the virus replication cycle. It counteracts the interferon response, and also exhibits other activities towards viral and cellular RNAs. NS1 is known to bind non-specifically to double-stranded RNA (dsRNA) as well as to viral and cellular RNAs. We set out to search whether NS1 could preferentially bind sequence-specific RNA patterns, and performed an in vitro selection (SELEX) to isolate NS1-specific aptamers from a pool of 80-nucleotide(nt)-long RNAs. Among the 63 aptamers characterized, two families were found to harbour a sequence that is strictly conserved at the 5′ terminus of all positive-strand RNAs of influenzaviruses A. We found a second virus-specific motif, a 9 nucleotide sequence located 15 nucleotides downstream from NS1’s stop codon. In addition, a majority of aptamers had one or two symmetrically positioned copies of the 5′-GUAAC / 3′-CUUAG double-stranded motif, which closely resembles the canonical 5′-splice site. Through an in-depth analysis of the interaction combining fluorimetry and gel-shift assays, we showed that NS1’s RNA-binding domain (RBD) specifically recognizes sequence patterns in a structure-dependent manner, resulting in an intimate interaction with high affinity (low nanomolar to subnanomolar KD values) that leads to oligomerization of the RBD on its RNA ligands. PMID:23093596

  9. Nucleotide Specificity of DNA Binding of the Aryl Hydrocarbon Receptor:ARNT Complex Is Unaffected by Ligand Structure

    PubMed Central

    Denison, Michael S.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the toxic and biological effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and a wide variety of structurally diverse ligands through its ability to translocate into the nucleus and bind to a specific DNA recognition site (the dioxin-responsive element [DRE]) adjacent to responsive genes. Although the sequence of the DRE is well defined, several reports suggested that the nucleotide specificity of AhR DNA binding may vary depending on the structure of its bound ligand. Given the potential toxicological significance of this hypothesis, an unbiased DNA-selection-and-PCR-amplification approach was utilized to directly determine whether binding and activation of the AhR by structurally diverse agonists alter its nucleotide specificity of DNA binding. Guinea pig hepatic cytosolic AhR activated in vitro by equipotent concentrations of TCDD, 3-methylcholanthrene, β-naphthoflavone, indirubin, L-kynurenine, or YH439 was incubated with a pool of DNA oligonucleotides containing a 15-base pair variable region consisting of all possible nucleotides. The AhR-bound oligonucleotides isolated by immunoprecipitation were PCR amplified and used in subsequent rounds of selection. Sequence analysis of a total of 196 isolated oligonucleotides revealed that each ligand-activated AhR:ARNT complex only bound to DRE-containing DNA oligonucleotides; no non-DRE-containing DNA oligonucleotides were identified. These results demonstrate that the binding and activation of the AhR by structurally diverse agonists do not appear to alter its nucleotide specificity of DNA binding and suggest that stimulation of gene expression mediated by direct DNA binding of ligand-activated AhR:ARNT complexes is DRE dependent. PMID:24136190

  10. Nucleotide specificity of DNA binding of the aryl hydrocarbon receptor:ARNT complex is unaffected by ligand structure.

    PubMed

    DeGroot, Danica E; Denison, Michael S

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the toxic and biological effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and a wide variety of structurally diverse ligands through its ability to translocate into the nucleus and bind to a specific DNA recognition site (the dioxin-responsive element [DRE]) adjacent to responsive genes. Although the sequence of the DRE is well defined, several reports suggested that the nucleotide specificity of AhR DNA binding may vary depending on the structure of its bound ligand. Given the potential toxicological significance of this hypothesis, an unbiased DNA-selection-and-PCR-amplification approach was utilized to directly determine whether binding and activation of the AhR by structurally diverse agonists alter its nucleotide specificity of DNA binding. Guinea pig hepatic cytosolic AhR activated in vitro by equipotent concentrations of TCDD, 3-methylcholanthrene, β-naphthoflavone, indirubin, L-kynurenine, or YH439 was incubated with a pool of DNA oligonucleotides containing a 15-base pair variable region consisting of all possible nucleotides. The AhR-bound oligonucleotides isolated by immunoprecipitation were PCR amplified and used in subsequent rounds of selection. Sequence analysis of a total of 196 isolated oligonucleotides revealed that each ligand-activated AhR:ARNT complex only bound to DRE-containing DNA oligonucleotides; no non-DRE-containing DNA oligonucleotides were identified. These results demonstrate that the binding and activation of the AhR by structurally diverse agonists do not appear to alter its nucleotide specificity of DNA binding and suggest that stimulation of gene expression mediated by direct DNA binding of ligand-activated AhR:ARNT complexes is DRE dependent.

  11. Solution structure and binding specificity of the p63 DNA binding domain

    PubMed Central

    Enthart, Andreas; Klein, Christian; Dehner, Alexander; Coles, Murray; Gemmecker, Gerd; Kessler, Horst; Hagn, Franz

    2016-01-01

    p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner. PMID:27225672

  12. Generation of Metal-Binding Staphylococci through Surface Display of Combinatorially Engineered Cellulose-Binding Domains

    PubMed Central

    Wernérus, Henrik; Lehtiö, Janne; Teeri, Tuula; Nygren, Per-Åke; Ståhl, Stefan

    2001-01-01

    Ni2+-binding staphylococci were generated through surface display of combinatorially engineered variants of a fungal cellulose-binding domain (CBD) from Trichoderma reesei cellulase Cel7A. Novel CBD variants were generated by combinatorial protein engineering through the randomization of 11 amino acid positions, and eight potentially Ni2+-binding CBDs were selected by phage display technology. These new variants were subsequently genetically introduced into chimeric surface proteins for surface display on Staphylococcus carnosus cells. The expressed chimeric proteins were shown to be properly targeted to the cell wall of S. carnosus cells, since full-length proteins could be extracted and affinity purified. Surface accessibility for the chimeric proteins was demonstrated, and furthermore, the engineered CBDs, now devoid of cellulose-binding capacity, were shown to be functional with regard to metal binding, since the recombinant staphylococci had gained Ni2+-binding capacity. Potential environmental applications for such tailor-made metal-binding bacteria as bioadsorbents in biofilters or biosensors are discussed. PMID:11571172

  13. Generation of metal-binding staphylococci through surface display of combinatorially engineered cellulose-binding domains.

    PubMed

    Wernérus, H; Lehtiö, J; Teeri, T; Nygren, P A; Ståhl, S

    2001-10-01

    Ni(2+)-binding staphylococci were generated through surface display of combinatorially engineered variants of a fungal cellulose-binding domain (CBD) from Trichoderma reesei cellulase Cel7A. Novel CBD variants were generated by combinatorial protein engineering through the randomization of 11 amino acid positions, and eight potentially Ni(2+)-binding CBDs were selected by phage display technology. These new variants were subsequently genetically introduced into chimeric surface proteins for surface display on Staphylococcus carnosus cells. The expressed chimeric proteins were shown to be properly targeted to the cell wall of S. carnosus cells, since full-length proteins could be extracted and affinity purified. Surface accessibility for the chimeric proteins was demonstrated, and furthermore, the engineered CBDs, now devoid of cellulose-binding capacity, were shown to be functional with regard to metal binding, since the recombinant staphylococci had gained Ni(2+)-binding capacity. Potential environmental applications for such tailor-made metal-binding bacteria as bioadsorbents in biofilters or biosensors are discussed.

  14. Solution structure and binding specificity of the p63 DNA binding domain.

    PubMed

    Enthart, Andreas; Klein, Christian; Dehner, Alexander; Coles, Murray; Gemmecker, Gerd; Kessler, Horst; Hagn, Franz

    2016-05-26

    p63 is a close homologue of p53 and, together with p73, is grouped into the p53 family of transcription factors. p63 is known to be involved in the induction of controlled apoptosis important for differentiation processes, germ line integrity and development. Despite its high homology to p53, especially within the DNA binding domain (DBD), p63-DBD does not show cooperative DNA binding properties and is significantly more stable against thermal and chemical denaturation. Here, we determined the solution structure of p63-DBD and show that it is markedly less dynamic than p53-DBD. In addition, we also investigate the effect of a double salt bridge present in p53-DBD, but not in p63-DBD on the cooperative binding behavior and specificity to various DNA sites. Restoration of the salt bridges in p63-DBD by mutagenesis leads to enhanced binding affinity to p53-specific, but not p63-specific response elements. Furthermore, we show that p63-DBD is capable of binding to anti-apoptotic BclxL via its DNA binding interface, a feature that has only been shown for p53 so far. These data suggest that all p53 family members - despite alterations in the specificity and binding affinity - are capable of activating pro-apoptotic pathways in a tissue specific manner.

  15. Conserved Receptor-Binding Domains of Lake Victoria Marburgvirus and Zaire Ebolavirus Bind a Shared Receptor

    DTIC Science & Technology

    2006-04-14

    murine leukemia virus; PBS, phos- phate-buffered saline; RBD, receptor-binding domain; SARS, severe acute respiratory syndrome; VSV, vesicular stomatitis ...domain-deletedGP1,2 of ZEBOV-May (ZEBOV/MLV), or with theG pro- tein of vesicular stomatitis Indiana virus (VSV/MLV). Vero E6 cells were incubated with...virion, because of the functional importance of and limited variation in this region (44, 45). In some cases, such as murine and feline leukemia viruses

  16. GTP Binding and Oncogenic Mutations May Attenuate Hypervariable Region (HVR)-Catalytic Domain Interactions in Small GTPase K-Ras4B, Exposing the Effector Binding Site*

    PubMed Central

    Lu, Shaoyong; Banerjee, Avik; Jang, Hyunbum; Zhang, Jian; Gaponenko, Vadim; Nussinov, Ruth

    2015-01-01

    K-Ras4B, a frequently mutated oncogene in cancer, plays an essential role in cell growth, differentiation, and survival. Its C-terminal membrane-associated hypervariable region (HVR) is required for full biological activity. In the active GTP-bound state, the HVR interacts with acidic plasma membrane (PM) headgroups, whereas the farnesyl anchors in the membrane; in the inactive GDP-bound state, the HVR may interact with both the PM and the catalytic domain at the effector binding region, obstructing signaling and nucleotide exchange. Here, using molecular dynamics simulations and NMR, we aim to figure out the effects of nucleotides (GTP and GDP) and frequent (G12C, G12D, G12V, G13D, and Q61H) and infrequent (E37K and R164Q) oncogenic mutations on full-length K-Ras4B. The mutations are away from or directly at the HVR switch I/effector binding site. Our results suggest that full-length wild-type GDP-bound K-Ras4B (K-Ras4BWT-GDP) is in an intrinsically autoinhibited state via tight HVR-catalytic domain interactions. The looser association in K-Ras4BWT-GTP may release the HVR. Some of the oncogenic mutations weaken the HVR-catalytic domain association in the K-Ras4B-GDP/-GTP bound states, which may facilitate the HVR disassociation in a nucleotide-independent manner, thereby up-regulating oncogenic Ras signaling. Thus, our results suggest that mutations can exert their effects in more than one way, abolishing GTP hydrolysis and facilitating effector binding. PMID:26453300

  17. Ligand binding by recombinant domains from insect ecdysone receptors.

    PubMed

    Graham, L D; Johnson, W M; Pawlak-Skrzecz, A; Eaton, R E; Bliese, M; Howell, L; Hannan, G N; Hill, R J

    2007-06-01

    The ligand binding domains (LBDs) from the EcR and USP proteins of four insect pests (Lucilia cuprina, Myzus persicae, Bemisia tabaci, Helicoverpa armigera) were purified as recombinant heterodimers. The K(d) values for [(3)H]-ponasterone A binding by LBD heterodimers that included the hinge regions (i.e., DE/F heterodimers) ranged 0.7-2.5 nM, with K(i) values for ecdysteroid and dibenzoylhydrazine ligands ranging from 0.1 nM to >448 microM. The K(d) and K(i) values for a recombinant H. armigera LBD heterodimer that lacked D-regions (i.e., an E/F heterodimer) were approximately 4 times higher than those for its DE/F counterpart. Rate constants were estimated for the L. cuprina LBD heterodimer. A fluorescein-inokosterone conjugate (K(i)~40 nM) was used to develop a novel binding assay based on fluorescence polarization. This assay, which ranked the affinity of competitor ecdysteroids in the same order as the [(3)H]-ponasterone A binding assay, is well suited to high-throughput screening. Ponasterone A had a higher affinity than muristerone A for the recombinant hemipteran LBD heterodimers, whereas the reverse was true for the recombinant dipteran one. The same preference was observed when these ligands were tested as inducers of ecdysone receptor-controlled gene expression in transfected mammalian cells. The binding data obtained in vitro using recombinant LBD heterodimers reflects the ability of agonists to induce transgene expression in recombinant mammalian cells, and can also reflect their efficacy as larvicides.

  18. Evidence for a reactive cysteine at the nucleotide binding site of spinach ribulose-5-phosphate kinase

    SciTech Connect

    Omnaas, J.; Porter, M.A.; Hartman, F.C.

    1985-02-01

    Ribulose-5-phosphate kinase from spinach was rapidly inactivated by N-bromoacetylethanolamine phosphate in a bimolecular fashion with a k2 of 2.0 m s at 2C and pH 8.0. Ribulose 5-phosphate had little effect on the rate of inactivation, whereas complete protection was afforded by ADP or ATP. The extent of incorporation as determined with UC-labeled reagent was about 1 molar equivalent per subunit in the presence of ATP with full retention of enzymatic activity, and about 2 molar equivalents per subunit in the completely inactivated enzyme. Amino acid analyses of enzyme derivatized with UC-labeled reagent reveal that all of the covalently incorporated reagent was associated with cysteinyl residues. Hence, two sulfhydryls are reactive, but the inactivation correlates with alkylation of one cysteinyl residue at or near the enzyme's nucleotide binding site. The kinase was also extremely sensitive to the sulfhydryl reagents 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide. The reactive sulfhydryl groups are likely to be those generated by reduction of a disulfide during activation. 20 references, 3 figures, 2 tables.

  19. Influence of gamma subunit prenylation on association of guanine nucleotide-binding regulatory proteins with membranes.

    PubMed Central

    Muntz, K H; Sternweis, P C; Gilman, A G; Mumby, S M

    1992-01-01

    Two approaches were taken to address the possible role of gamma-subunit prenylation in dictating the cellular distribution of guanine nucleotide-binding regulatory proteins. Prenylation of gamma subunits was prevented by site-directed mutagenesis or by inhibiting the synthesis of mevalonate, the precursor of cellular isoprenoids. When beta or gamma subunits were transiently expressed in COS-M6 simian kidney cells (COS) cells, the proteins were found in the membrane fraction by immunoblotting. Immunofluorescence experiments indicated that the proteins were distributed to intracellular structures in addition to plasma membranes. Replacement of Cys68 of gamma with Ser prevented prenylation of the mutant protein and association of the protein with the membrane fraction of COS cells. Immunoblotting results demonstrated that some of the beta subunits were found in the cytoplasm when coexpressed with the nonprenylated mutant gamma subunit. When Neuro 2A cells were treated with compactin to inhibit protein prenylation, a fraction of endogenous beta and gamma was distributed in the cytoplasm. It is concluded that prenylation facilitates association of gamma subunits with membranes, that the cellular location of gamma influences the distribution of beta, and that prenylation is not an absolute requirement for interaction of beta and gamma. Images PMID:1550955

  20. Kinetics of Interaction between ADP-ribosylation Factor-1 (Arf1) and the Sec7 Domain of Arno Guanine Nucleotide Exchange Factor, Modulation by Allosteric Factors, and the Uncompetitive Inhibitor Brefeldin A

    PubMed Central

    Rouhana, Jad; Padilla, André; Estaran, Sébastien; Bakari, Sana; Delbecq, Stephan; Boublik, Yvan; Chopineau, Joel; Pugnière, Martine; Chavanieu, Alain

    2013-01-01

    The GDP/GTP nucleotide exchange of Arf1 is catalyzed by nucleotide exchange factors (GEF), such as Arno, which act through their catalytic Sec7 domain. This exchange is a complex mechanism that undergoes conformational changes and intermediate complex species involving several allosteric partners such as nucleotides, Mg2+, and Sec7 domains. Using a surface plasmon resonance approach, we characterized the kinetic binding parameters for various intermediate complexes. We first confirmed that both GDP and GTP counteract equivalently to the free-nucleotide binary Arf1-Arno complex stability and revealed that Mg2+ potentiates by a factor of 2 the allosteric effect of GDP. Then we explored the uncompetitive inhibitory mechanism of brefeldin A (BFA) that conducts to an abortive pentameric Arf1-Mg2+-GDP-BFA-Sec7 complex. With BFA, the association rate of the abortive complex is drastically reduced by a factor of 42, and by contrast, the 15-fold decrease of the dissociation rate concurs to stabilize the pentameric complex. These specific kinetic signatures have allowed distinguishing the level and nature as well as the fate in real time of formed complexes according to experimental conditions. Thus, we showed that in the presence of GDP, the BFA-resistant Sec7 domain of Arno can also associate to form a pentameric complex, which suggests that the uncompetitive inhibition by BFA and the nucleotide allosteric effect combine to stabilize such abortive complex. PMID:23255605

  1. Autophosphorylation in the Leucine-Rich Repeat Kinase 2 (LRRK2) GTPase Domain Modifies Kinase and GTP-Binding Activities

    PubMed Central

    Webber, Philip J.; Smith, Archer D.; Sen, Saurabh; Renfrow, Matthew B.; Mobley, James A.; West, Andrew B.

    2011-01-01

    The LRRK2 protein has both GTPase and kinase activities and mutation in either enzymatic domain can cause late-onset Parkinson’s disease (PD). Nucleotide binding in the GTPase domain may be required for kinase activity and residues in the GTPase domain are potential sites for autophosphorylation, suggesting a complex mechanism of intrinsic regulation. To further define the effects of LRRK2 autophosphorylation, we applied a technique optimal for detection of protein phosphorylation, electron transfer dissociation (ETD), and identified autophosphorylation events exclusively nearby the nucleotide binding pocket in the GTPase domain. PD-linked mutations alter kinase activity but did not alter autophosphorylation site specificity or sites of phosphorylation in a robust in vitro substrate myelin basic protein. Amino-acid substitutions in the GTPase domain have large effects on kinase activity, as insertion of the GTPase-associated R1441C pathogenic mutation together with the G2019S kinase-domain mutation resulted in a multiplicative increase (~7-fold) in activity. Removal of a conserved autophosphorylation site (T1503) by mutation to an alanine residue resulted in greatly decreased GTP-binding and kinase activity. While autophosphorylation likely serves to potentiate kinase activity, we find that oligomerization and loss of the active dimer species occurs in an ATP and autophosphorylation independent manner. LRRK2 autophosphorylation sites are overall robustly protected from dephosphorylation in vitro, suggesting tight control over activity in vivo. We developed highly specific antibodies targeting pT1503 but failed to detect endogenous autophosphorylation in protein derived from transgenic mice and cell lines. LRRK2 activity in vivo is unlikely to be constitutive but rather refined to specific responses. PMID:21806997

  2. Homology modeling of the receptor binding domain of human thrombopoietin

    NASA Astrophysics Data System (ADS)

    Song, Jin-Soo; Park, Heungrok; Hong, Hyo-Jeong; Yu, Myeong-Hee; Ryu, Seong-Eon

    1998-09-01

    Platelet production in blood is regulated by a lineage specific humoral factor, thrombopoietin (TPO). The amino terminal domain of TPO (TPO-N) is responsible for the signal transduction mediated by the TPO receptor, c-mpl. From the predicted length of helices we found that TPO-N belongs to the long-chain subfamily of the four-helix bundle cytokine family. We built a three dimensional model of TPO-N by a comparative homology modeling procedure. The four helices of TPO-N with an up-up-down-down topology are stabilized by a tightly packed central hydrophobic core and the extended loop AB makes an additional hydrophobic core with helices B and D outside of the four helix bundle scaffold. An interpretation of the previous site directed mutageneses results in light of the model enabled us to identify two isolated receptor binding sites. The surface made of Lys 136, Lys 138 and Lys 140 in helix D, and Pro 42 and Glu 50 in loop AB forms the first receptor binding site, while the surface of Asp 8, Arg 10 and Lys14 in helix A represents the second binding site for the sequential receptor oligomerization.

  3. Starch-binding domains in the post-genome era.

    PubMed

    Machovic, M; Janecek, S

    2006-12-01

    Starch belongs to the most abundant biopolymers on Earth. As a source of energy, starch is degraded by a large number of various amylolytic enzymes. However, only about 10% of them are capable of binding and degrading raw starch. These enzymes usually possess a distinct sequence-structural module, the so-called starchbinding domain (SBD). In general, all carbohydrate-binding modules (CBMs) have been classified into the CBM families. In this sequence-based classification the individual types of SBDs have been placed into seven CBM families: CBM20, CBM21, CBM25, CBM26, CBM34, CBM41 and CBM45. The family CBM20, known also as a classical C-terminal SBD of microbial amylases, is the most thoroughly studied. The three-dimensional structures have already been determined by X-ray crystallography or nuclear magnetic resonance for SBDs from five CBM families (20, 25, 26, 34 and 41), and the structure of the CBM21 has been modelled. Despite differences among the amino acid sequences, the fold of a distorted beta-barrel seems to be conserved together with a similar way of substrate binding (mainly stacking interactions between aromatic residues and glucose rings). SBDs have recently been discovered in many non-amylolytic proteins. These may, for example, have regulatory functions in starch metabolism in plants or glycogen metabolism in mammals. SBDs have also found practical uses.

  4. Peptide binding properties of the three PDZ domains of Bazooka (Drosophila Par-3).

    PubMed

    Yu, Cao Guo; Tonikian, Raffi; Felsensteiner, Corinna; Jhingree, Jacquelyn R; Desveaux, Darrell; Sidhu, Sachdev S; Harris, Tony J C

    2014-01-01

    The Par complex is a conserved cell polarity regulator. Bazooka/Par-3 is scaffold for the complex and contains three PDZ domains in tandem. PDZ domains can act singly or synergistically to bind the C-termini of interacting proteins. Sequence comparisons among Drosophila Baz and its human and C. elegans Par-3 counterparts indicate a divergence of the peptide binding pocket of PDZ1 and greater conservation for the pockets of PDZ2 and PDZ3. However, it is unclear whether the domains from different species share peptide binding preferences, or if their tandem organization affects their peptide binding properties. To investigate these questions, we first used phage display screens to identify unique peptide binding profiles for each single PDZ domain of Baz. Comparisons with published phage display screens indicate that Baz and C. elegans PDZ2 bind to similar peptides, and that the peptide binding preferences of Baz PDZ3 are more similar to C. elegans versus human PDZ3. Next we quantified the peptide binding preferences of each Baz PDZ domain using single identified peptides in surface plasmon resonance assays. In these direct binding studies, each peptide had a binding preference for a single PDZ domain (although the peptide binding of PDZ2 was weakest and the least specific). PDZ1 and PDZ3 bound their peptides with dissociation constants in the nM range, whereas PDZ2-peptide binding was in the µM range. To test whether tandem PDZ domain organization affects peptide binding, we examined a fusion protein containing all three PDZ domains and their normal linker regions. The binding strengths of the PDZ-specific peptides to single PDZ domains and to the PDZ domain tandem were indistinguishable. Thus, the peptide binding pockets of each PDZ domain in Baz are not obviously affected by the presence of neighbouring PDZ domains, but act as isolated modules with specific in vitro peptide binding preferences.

  5. An extended U2AF65–RNA-binding domain recognizes the 3′ splice site signal

    PubMed Central

    Agrawal, Anant A.; Salsi, Enea; Chatrikhi, Rakesh; Henderson, Steven; Jenkins, Jermaine L.; Green, Michael R.; Ermolenko, Dmitri N.; Kielkopf, Clara L.

    2016-01-01

    How the essential pre-mRNA splicing factor U2AF65 recognizes the polypyrimidine (Py) signals of the major class of 3′ splice sites in human gene transcripts remains incompletely understood. We determined four structures of an extended U2AF65–RNA-binding domain bound to Py-tract oligonucleotides at resolutions between 2.0 and 1.5 Å. These structures together with RNA binding and splicing assays reveal unforeseen roles for U2AF65 inter-domain residues in recognizing a contiguous, nine-nucleotide Py tract. The U2AF65 linker residues between the dual RNA recognition motifs (RRMs) recognize the central nucleotide, whereas the N- and C-terminal RRM extensions recognize the 3′ terminus and third nucleotide. Single-molecule FRET experiments suggest that conformational selection and induced fit of the U2AF65 RRMs are complementary mechanisms for Py-tract association. Altogether, these results advance the mechanistic understanding of molecular recognition for a major class of splice site signals. PMID:26952537

  6. A new type of plant chitinase containing LysM domains from a fern (Pteris ryukyuensis): roles of LysM domains in chitin binding and antifungal activity.

    PubMed

    Onaga, Shoko; Taira, Toki

    2008-05-01

    Chitinase-A (PrChi-A), of molecular mass 42 kDa, was purified from the leaves of a fern (P. ryukyuensis) using several column chromatographies. The N-terminal amino acid sequence of PrChi-A was similar to the lysin motif (LysM). A cDNA encoding PrChi-A was cloned by rapid amplification of cDNA ends and polymerase chain reaction. It consisted of 1459 nucleotides and encoded an open-reading frame of 423-amino-acid residues. The deduced amino acid sequence indicated that PrChi-A is composed of two N-terminal LysM domains and a C-terminal catalytic domain, belonging to the group of plant class IIIb chitinases, linked by proline, serine, and threonine-rich regions. Wild-type PrChi-A had chitin-binding and antifungal activities, but a mutant without LysM domains had lost both activities. These results suggest that the LysM domains contribute significantly to the antifungal activity of PrChi-A through their binding activity to chitin in the cell wall of fungi. This is the first report of the presence in plants of a family-18 chitinase containing LysM domains.

  7. The Dof domain, a zinc finger DNA-binding domain conserved only in higher plants, truly functions as a Cys2/Cys2 Zn finger domain.

    PubMed

    Umemura, Yoshimi; Ishiduka, Tomoko; Yamamoto, Rie; Esaka, Muneharu

    2004-03-01

    The Dof (DNA-binding with one finger) proteins are plant transcription factors that have a highly conserved DNA-binding domain, called the Dof domain. The Dof domain, which is composed of 52 amino acid residues, is similar to the Cys2/Cys2 zinc finger DNA-binding domain of GATA1 and steroid hormone receptors, but has a longer putative loop than that in the case of these zinc finger domains. The DNA-binding function of ascorbate oxidase gene binding protein (AOBP), a Dof protein, was investigated by gel retardation analysis. When Cys was replaced by His, the Dof domain could not function as a Cys3/His- or a Cys2/His2-type zinc finger. The characteristic longer loop was essential for DNA-binding activity. Furthermore, heavy metals such as Co(II), Ni(II), Cd(II), Cu(II), Hg(II), Fe(II), and Fe(III) inhibited the DNA-binding activity of the Dof domain. Manganese ion as well as zinc ion was coordinated by the Dof domain in vitro. On the other hand, the analysis using inductively coupled argon plasma mass spectrometry (ICP-MS) showed that the Dof domain contained zinc ion but not manganese ion. Thus, the Dof domain was proved to function as a Cys2/Cys2 zinc finger domain.

  8. Isolation and characterization of nucleotide-binding site and C-terminal leucine-rich repeat-resistance gene candidates in bananas.

    PubMed

    Lu, Y; Xu, W H; Xie, Y X; Zhang, X; Pu, J J; Qi, Y X; Li, H P

    2011-12-15

    Commercial banana varieties are highly susceptible to fungal pathogens, as well as bacterial pathogens, nematodes, viruses, and insect pests. The largest known family of plant resistance genes encodes proteins with nucleotide-binding site (NBS) and C-terminal leucine-rich repeat (LRR) domains. Conserved motifs in such genes in diverse plant species offer a means for the isolation of candidate genes in banana that may be involved in plant defense. Six degenerate PCR primers were designed to target NBS and additional domains were tested on commercial banana species Musa acuminata subsp malaccensis and the Musa AAB Group propagated in vitro and plants maintained in a greenhouse. Total DNA was isolated by a modified CTAB extraction technique. Four resistance gene analogs were amplified and deposited in GenBank and assigned numbers HQ199833-HQ199836. The predicted amino acid sequences compared to the amino acid sequences of known resistance genes (MRGL1, MRGL2, MRGL3, and MRGL4) revealed significant sequence similarity. The presence of consensus domains, namely kinase-1a, kinase-2 and hydrophobic domain, provided evidence that the cloned sequences belong to the typical non-Toll/interleukin-1 receptor-like domain NBS-LRR gene family.

  9. Characterization of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A.

    PubMed Central

    Goldstein, M A; Takagi, M; Hashida, S; Shoseyov, O; Doi, R H; Segel, I H

    1993-01-01

    Cellulose-binding protein A (CbpA), a component of the cellulase complex of Clostridium cellulovorans, contains a unique sequence which has been demonstrated to be a cellulose-binding domain (CBD). The DNA coding for this putative CBD was subcloned into pET-8c, an Escherichia coli expression vector. The protein produced under the direction of the recombinant plasmid, pET-CBD, had a high affinity for crystalline cellulose. Affinity-purified CBD protein was used in equilibrium binding experiments to characterize the interaction of the protein with various polysaccharides. It was found that the binding capacity of highly crystalline cellulose samples (e.g., cotton) was greater than that of samples of low crystallinity (e.g., fibrous cellulose). At saturating CBD concentration, about 6.4 mumol of protein was bound by 1 g of cotton. Under the same conditions, fibrous cellulose bound only 0.2 mumol of CBD per g. The measured dissociation constant was in the 1 microM range for all cellulose samples. The results suggest that the CBD binds specifically to crystalline cellulose. Chitin, which has a crystal structure similar to that of cellulose, also was bound by the CBD. The presence of high levels of cellobiose or carboxymethyl cellulose in the assay mixture had no effect on the binding of CBD protein to crystalline cellulose. This result suggests that the CBD recognition site is larger than a simple cellobiose unit or more complex than a repeating cellobiose moiety. This CBD is of particular interest because it is the first CBD from a completely sequenced nonenzymatic protein shown to be an independently functional domain. Images PMID:8376323

  10. The importance of highly conserved nucleotides in the binding region of chloramphenicol at the peptidyl transfer centre of Escherichia coli 23S ribosomal RNA.

    PubMed

    Vester, B; Garrett, R A

    1988-11-01

    The peptidyl transfer site has been localized at the centre of domain V of 23S-like ribosomal RNA (rRNA) primarily on the basis of a chloramphenicol binding site. The implicated region constitutes an unstructured circle in the current secondary structural model which contains several universally conserved nucleotides. With a view to investigate the function of this RNA region further, four of these conserved nucleotides, including one indirectly implicated in chloramphenicol binding, were selected for mutation in Escherichia coli 23S rRNA using oligonucleotide primers. Mutant RNAs were expressed in vivo on a plasmid-encoded rRNA (rrnB) operon and each one yielded dramatically altered phenotypes. Cells exhibiting A2060----C or A2450----C transversions were inviable and it was shown by inserting the mutated genes after a temperature-inducible promoter that the mutant RNAs were directly responsible. In addition, a G2502----A transition caused a decreased growth rate, probably due to a partial selection against mutant ribosome incorporation into polysomes, while an A2503----C transversion produced a decreased growth rate and conferred resistance to chloramphenicol. All of the mutant RNAs were incorporated into 50S subunits, but while the two lethal mutant RNAs were strongly selected against in 70S ribosomes, the plasmid-encoded A2503----C RNA was preferred over the chromosome-encoded RNA, contrary to current regulatory theories. The results establish the critical structural and functional importance of highly conserved nucleotides in the chloramphenicol binding region. A mechanistic model is also presented to explain the disruptive effect of chloramphenicol (and other antibiotics) on peptide bond formation at the ribosomal subunit interface.

  11. Structure and interactions of the C-terminal metal binding domain of Archaeoglobus fulgidus CopA

    PubMed Central

    Agarwal, Sorabh; Hong, Deli; Desai, Nirav K.; Sazinsky, Matthew H.; Argüello, José M.; Rosenzweig, Amy C.

    2010-01-01

    The Cu+-ATPase CopA from Archaeoglobus fulgidus belongs to the P1B family of the P-type ATPases. These integral membrane proteins couple the energy of ATP hydrolysis to heavy metal ion translocation across membranes. A defining feature of P1B-1-type ATPases is the presence of soluble metal binding domains at the N-terminus (N-MBDs). The N-MBDs exhibit a conserved ferredoxin-like fold, similar to that of soluble copper chaperones, and bind metal ions via a conserved CXXC motif. The N-MBDs enable Cu+ regulation of turnover rates apparently through Cu-sensitive interactions with catalytic domains. A. fulgidus CopA is unusual in that it contains both an N-terminal MBD and a C-terminal MBD (C-MBD). The functional role of the unique C-MBD has not been established. Here, we report the crystal structure of the apo, oxidized C-MBD to 2.0 Å resolution. In the structure, two C-MBD monomers form a domain-swapped dimer, which has not been observed previously for similar domains. In addition, the interaction of the C-MBD with the other cytoplasmic domains of CopA, the ATP binding domain (ATPBD) and actuator domain (A-domain) has been investigated. Interestingly, the C-MBD interacts specifically with both of these domains, independent of the presence of Cu+ or nucleotides. These data reinforce the uniqueness of the C-MBD and suggest a distinct structural role for the C-MBD in CopA transport. PMID:20602459

  12. A conserved proline-rich region of the Saccharomyces cerevisiae cyclase-associated protein binds SH3 domains and modulates cytoskeletal localization.

    PubMed

    Freeman, N L; Lila, T; Mintzer, K A; Chen, Z; Pahk, A J; Ren, R; Drubin, D G; Field, J

    1996-02-01

    Saccharomyces cerevisiae cyclase-associated protein (CAP or Srv2p) is multifunctional. The N-terminal third of CAP binds to adenylyl cyclase and has been implicated in adenylyl cyclase activation in vivo. The widely conserved C-terminal domain of CAP binds to monomeric actin and serves an important cytoskeletal regulatory function in vivo. In addition, all CAP homologs contain a centrally located proline-rich region which has no previously identified function. Recently, SH3 (Src homology 3) domains were shown to bind to proline-rich regions of proteins. Here we report that the proline-rich region of CAP is recognized by the SH3 domains of several proteins, including the yeast actin-associated protein Abp1p. Immunolocalization experiments demonstrate that CAP colocalizes with cortical actin-containing structures in vivo and that a region of CAP containing the SH3 domain binding site is required for this localization. We also demonstrate that the SH3 domain of yeast Abp1p and that of the yeast RAS protein guanine nucleotide exchange factor Cdc25p complex with adenylyl cyclase in vitro. Interestingly, the binding of the Cdc25p SH3 domain is not mediated by CAP and therefore may involve direct binding to adenylyl cyclase or to an unidentified protein which complexes with adenylyl cyclase. We also found that CAP homologous from Schizosaccharomyces pombe and humans bind SH3 domains. The human protein binds most strongly to the SH3 domain from the abl proto-oncogene. These observations identify CAP as an SH3 domain-binding protein and suggest that CAP mediates interactions between SH3 domain proteins and monomeric actin.

  13. A conserved proline-rich region of the Saccharomyces cerevisiae cyclase-associated protein binds SH3 domains and modulates cytoskeletal localization.

    PubMed Central

    Freeman, N L; Lila, T; Mintzer, K A; Chen, Z; Pahk, A J; Ren, R; Drubin, D G; Field, J

    1996-01-01

    Saccharomyces cerevisiae cyclase-associated protein (CAP or Srv2p) is multifunctional. The N-terminal third of CAP binds to adenylyl cyclase and has been implicated in adenylyl cyclase activation in vivo. The widely conserved C-terminal domain of CAP binds to monomeric actin and serves an important cytoskeletal regulatory function in vivo. In addition, all CAP homologs contain a centrally located proline-rich region which has no previously identified function. Recently, SH3 (Src homology 3) domains were shown to bind to proline-rich regions of proteins. Here we report that the proline-rich region of CAP is recognized by the SH3 domains of several proteins, including the yeast actin-associated protein Abp1p. Immunolocalization experiments demonstrate that CAP colocalizes with cortical actin-containing structures in vivo and that a region of CAP containing the SH3 domain binding site is required for this localization. We also demonstrate that the SH3 domain of yeast Abp1p and that of the yeast RAS protein guanine nucleotide exchange factor Cdc25p complex with adenylyl cyclase in vitro. Interestingly, the binding of the Cdc25p SH3 domain is not mediated by CAP and therefore may involve direct binding to adenylyl cyclase or to an unidentified protein which complexes with adenylyl cyclase. We also found that CAP homologous from Schizosaccharomyces pombe and humans bind SH3 domains. The human protein binds most strongly to the SH3 domain from the abl proto-oncogene. These observations identify CAP as an SH3 domain-binding protein and suggest that CAP mediates interactions between SH3 domain proteins and monomeric actin. PMID:8552082

  14. Structures of DNA-binding mutant zinc finger domains: implications for DNA binding.

    PubMed Central

    Hoffman, R. C.; Horvath, S. J.; Klevit, R. E.

    1993-01-01

    Studies of Cys2-His2 zinc finger domains have revealed that the structures of individual finger domains in solution determined by NMR spectroscopy are strikingly similar to the structure of fingers bound to DNA determined by X-ray diffraction. Therefore, detailed structural analyses of single finger domains that contain amino acid substitutions known to affect DNA binding in the whole protein can yield information concerning the structural ramifications of such mutations. We have used this approach to study two mutants in the N-terminal finger domain of ADR1, a yeast transcription factor that contains two Cys2-His2 zinc finger sequences spanning residues 102-159. Two point mutants at position 118 in the N-terminal zinc finger (ADR1b: 102-130) that adversely affect the DNA-binding activity of ADR1 have previously been identified: H118A and H118Y. The structures of wild-type ADR1b and the two mutant zinc finger domains were determined using two-dimensional nuclear magnetic resonance spectroscopy and distance geometry and were refined using a complete relaxation matrix method approach (REPENT) to improve agreement between the models and the nuclear Overhauser effect spectroscopy data from which they were generated. The molecular architecture of the refined wild-type ADR1b domain is presented in detail. Comparisons of wild-type ADR1b and the two mutants revealed that neither mutation causes a significant structural perturbation. The structures indicate that the DNA binding properties of the His 118 mutants are dependent on the identity of the side chain at position 118, which has been postulated to make a direct DNA contact in the wild-type ADR1 protein. The results suggest that the identity of the side chain at the middle DNA contact position in Cys2-His2 zinc fingers may be changed with impunity regarding the domain structure and can affect the affinity of the protein-DNA interaction. PMID:8318900

  15. Cloning and genomic nucleotide sequence of the matrix attachment region binding protein from the halotolerant alga Dunaliella salina.

    PubMed

    Wang, Peng-Ju; Wang, Tian-Yun; Wang, Ya-Feng; Yang, Rui; Li, Zhao-Xi

    2013-07-01

    In our previous study, the sequence of a matrix attachment region binding protein (MBP) cDNA was cloned from the unicellular green alga Dunaliella salina. However, the nucleotide sequence of this gene has not been reported so far. In this paper, the nucleotide sequence of MBP was cloned and characterized, and its gene copy number was determined. The MBP nucleotide sequence is 5641 bp long, and interrupted by 12 introns ranging from 132 to 562 bp. All the introns in the D. salina MBP gene have orthodox splice sites, exhibiting GT at the 5' end and AG at the 3' end. Southern blot analysis showed that MBP only has one copy in the D. salina genome.

  16. Regulation of presynaptic terminal organization by C. elegans RPM-1, a putative guanine nucleotide exchanger with a RING-H2 finger domain.

    PubMed

    Zhen, M; Huang, X; Bamber, B; Jin, Y

    2000-05-01

    Presynaptic terminals contain highly organized subcellular structures to facilitate neurotransmitter release. In C. elegans, the typical presynaptic terminal has an electron-dense active zone surrounded by synaptic vesicles. Loss-of-function mutations in the rpm-1 gene result in abnormally structured presynaptic terminals in GABAergic neuromuscular junctions (NMJs), most often manifested as a single presynaptic terminal containing multiple active zones. The RPM-1 protein has an RCC1-like guanine nucleotide exchange factor (GEF) domain and a RING-H2 finger. RPM-1 is most similar to the Drosophila presynaptic protein Highwire (HIW) and the mammalian Myc binding protein Pam. RPM-1 is localized to the presynaptic region independent of synaptic vesicles and functions cell autonomously. The temperature-sensitive period of rpm-1 coincides with the time of synaptogenesis. rpm-1 may regulate the spatial arrangement, or restrict the formation, of presynaptic structures.

  17. The Receptor Binding Domain of Botulinum Neurotoxin Stereotype C Binds Phosphoinositides

    SciTech Connect

    Zhang, Yanfeng; Varnum, Susan M.

    2012-03-01

    Botulinum neurotoxins (BoNTs) are the most toxic proteins known for humans and animals with an extremely low LD50 of {approx} 1 ng/kg. BoNTs generally require a protein and a ganglioside on the cell membrane surface for binding, which is known as a 'dual receptor' mechanism for host intoxication. Recent studies have suggested that in addition to gangliosides, other membrane lipids such as phosphoinositides may be involved in the interactions with the receptor binding domain (HCR) of BoNTs for better membrane penetration. Here, using two independent lipid-binding assays, we tested the interactions of BoNT/C-HCR with lipids in vitro. BoNT/C-HCR was found to bind negatively charged phospholipids, preferentially phosphoinositides. Additional interactions to phosphoinositides may help BoNT/C bind membrane more tightly and transduct signals for subsequent steps of intoxication. Our results provide new insights into the mechanisms of host cell membrane recognition by BoNTs.

  18. Hepatitis C virus NS4B carboxy terminal domain is a membrane binding domain.

    PubMed

    Liefhebber, Jolanda M P; Brandt, Bernd W; Broer, Rene; Spaan, Willy J M; van Leeuwen, Hans C

    2009-05-25

    Hepatitis C virus (HCV) induces membrane rearrangements during replication. All HCV proteins are associated to membranes, pointing out the importance of membranes for HCV. Non structural protein 4B (NS4B) has been reported to induce cellular membrane alterations like the membranous web. Four transmembrane segments in the middle of the protein anchor NS4B to membranes. An amphipatic helix at the amino-terminus attaches to membranes as well. The carboxy-terminal domain (CTD) of NS4B is highly conserved in Hepaciviruses, though its function remains unknown. A cytosolic localization is predicted for the NS4B-CTD. However, using membrane floatation assays and immunofluorescence, we now show targeting of the NS4B-CTD to membranes. Furthermore, a profile-profile search, with an HCV NS4B-CTD multiple sequence alignment, indicates sequence similarity to the membrane binding domain of prokaryotic D-lactate dehydrogenase (d-LDH). The crystal structure of E. coli d-LDH suggests that the region similar to NS4B-CTD is located in the membrane binding domain (MBD) of d-LDH, implying analogy in membrane association. Targeting of d-LDH to membranes occurs via electrostatic interactions of positive residues on the outside of the protein with negative head groups of lipids. To verify that anchorage of d-LDH MBD and NS4B-CTD is analogous, NS4B-CTD mutants were designed to disrupt these electrostatic interactions. Membrane association was confirmed by swopping the membrane contacting helix of d-LDH with the corresponding domain of the 4B-CTD. Furthermore, the functionality of these residues was tested in the HCV replicon system. Together these data show that NS4B-CTD is associated to membranes, similar to the prokaryotic d-LDH MBD, and is important for replication.

  19. The Rapamycin-Binding Domain of the Protein Kinase mTOR is a Destabilizing Domain*

    PubMed Central

    Edwards, Sarah R.; Wandless, Thomas J.

    2013-01-01

    Rapamycin is an immunosuppressive drug that binds simultaneously to the 12-kDa FK506- and rapamycin-binding protein (FKBP12, or FKBP) and the FKBP-rapamycin binding domain (FRB) of the mammalian target of rapamycin (mTOR) kinase. The resulting ternary complex has been used to conditionally perturb protein function, and one such method involves perturbation of a protein of interest through its mislocalization. We synthesized two rapamycin derivatives that possess large substituents at the C16 position within the FRB-binding interface, and these derivatives were screened against a library of FRB mutants using a three-hybrid assay in Saccharomyces cerevisiae. Several FRB mutants responded to one of the rapamycin derivatives, and twenty of these mutants were further characterized in mammalian cells. The mutants most responsive to the ligand were fused to yellow fluorescent protein, and fluorescence levels in the presence and absence of the ligand were measured to determine stability of the fusion proteins. Wild-type and mutant FRB domains were expressed at low levels in the absence of the rapamycin derivative, and expression levels rose up to ten-fold upon treatment with ligand. The synthetic rapamycin derivatives were further analyzed using quantitative mass spectrometry, and one of the compounds was found to contain contaminating rapamycin. Furthermore, uncontaminated analogs retain the ability to inhibit mTOR, albeit with diminished potency relative to rapamycin. The ligand-dependent stability displayed by wildtype FRB and FRB mutants as well as the inhibitory potential and purity of the rapamycin derivatives should be considered as potentially confounding experimental variables when using these systems. PMID:17350953

  20. BuD, a helix–loop–helix DNA-binding domain for genome modification

    SciTech Connect

    Stella, Stefano; Molina, Rafael; López-Méndez, Blanca; Juillerat, Alexandre; Bertonati, Claudia; Daboussi, Fayza; Campos-Olivas, Ramon; Duchateau, Phillippe; Montoya, Guillermo

    2014-07-01

    Crystal structures of BurrH and the BurrH–DNA complex are reported. DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein–DNA interactions in protein scaffolds is key to providing ‘toolkits’ for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix–loop–helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin β (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing.

  1. The intrinsically liganded cyclic nucleotide–binding homology domain promotes KCNH channel activation

    PubMed Central

    Zhao, Yaxian; Goldschen-Ohm, Marcel P.; Morais-Cabral, João H.; Chanda, Baron

    2017-01-01

    Channels in the ether-à-go-go or KCNH family of potassium channels are characterized by a conserved, C-terminal domain with homology to cyclic nucleotide–binding homology domains (CNBhDs). Instead of cyclic nucleotides, two amino acid residues, Y699 and L701, occupy the binding pocket, forming an “intrinsic ligand.” The role of the CNBhD in KCNH channel gating is still unclear, however, and a detailed characterization of the intrinsic ligand is lacking. In this study, we show that mutating both Y699 and L701 to alanine, serine, aspartate, or glycine impairs human EAG1 channel function. These mutants slow channel activation and shift the conductance–voltage (G–V) relation to more depolarized potentials. The mutations affect activation and the G-V relation progressively, indicating that the gating machinery is sensitive to multiple conformations of the CNBhD. Substitution with glycine at both sites (GG), which eliminates the side chains that interact with the binding pocket, also reduces the ability of voltage prepulses to populate more preactivated states along the activation pathway (i.e., the Cole–Moore effect), as if stabilizing the voltage sensor in deep resting states. Notably, deletion of the entire CNBhD (577–708, ΔCNBhD) phenocopies the GG mutant, suggesting that GG is a loss-of-function mutation and the CNBhD requires an intrinsic ligand to exert its functional effects. We developed a kinetic model for both wild-type and ΔCNBhD mutant channels that describes all our observations on activation kinetics, the Cole–Moore shift, and G-V relations. These findings support a model in which the CNBhD both promotes voltage sensor activation and stabilizes the open pore. The intrinsic ligand is critical for these functional effects. PMID:28122815

  2. Botulinum neurotoxin devoid of receptor binding domain translocates active protease.

    PubMed

    Fischer, Audrey; Mushrush, Darren J; Lacy, D Borden; Montal, Mauricio

    2008-12-01

    Clostridium botulinum neurotoxin (BoNT) causes flaccid paralysis by disabling synaptic exocytosis. Intoxication requires the tri-modular protein to undergo conformational changes in response to pH and redox gradients across endosomes, leading to the formation of a protein-conducting channel. The approximately 50 kDa light chain (LC) protease is translocated into the cytosol by the approximately 100 kDa heavy chain (HC), which consists of two modules: the N-terminal translocation domain (TD) and the C-terminal Receptor Binding Domain (RBD). Here we exploited the BoNT modular design to identify the minimal requirements for channel activity and LC translocation in neurons. Using the combined detection of substrate proteolysis and single-channel currents, we showed that a di-modular protein consisting only of LC and TD was sufficient to translocate active protease into the cytosol of target cells. The RBD is dispensable for cell entry, channel activity, or LC translocation; however, it determined a pH threshold for channel formation. These findings indicate that, in addition to its individual functions, each module acts as a chaperone for the others, working in concert to achieve productive intoxication.

  3. Botulinum Neurotoxin Devoid of Receptor Binding Domain Translocates Active Protease

    PubMed Central

    Fischer, Audrey; Mushrush, Darren J.; Lacy, D. Borden; Montal, Mauricio

    2008-01-01

    Clostridium botulinum neurotoxin (BoNT) causes flaccid paralysis by disabling synaptic exocytosis. Intoxication requires the tri-modular protein to undergo conformational changes in response to pH and redox gradients across endosomes, leading to the formation of a protein-conducting channel. The ∼50 kDa light chain (LC) protease is translocated into the cytosol by the ∼100 kDa heavy chain (HC), which consists of two modules: the N-terminal translocation domain (TD) and the C-terminal Receptor Binding Domain (RBD). Here we exploited the BoNT modular design to identify the minimal requirements for channel activity and LC translocation in neurons. Using the combined detection of substrate proteolysis and single-channel currents, we showed that a di-modular protein consisting only of LC and TD was sufficient to translocate active protease into the cytosol of target cells. The RBD is dispensable for cell entry, channel activity, or LC translocation; however, it determined a pH threshold for channel formation. These findings indicate that, in addition to its individual functions, each module acts as a chaperone for the others, working in concert to achieve productive intoxication. PMID:19096517

  4. Structure of the homodimeric androgen receptor ligand-binding domain

    PubMed Central

    Nadal, Marta; Prekovic, Stefan; Gallastegui, Nerea; Helsen, Christine; Abella, Montserrat; Zielinska, Karolina; Gay, Marina; Vilaseca, Marta; Taulès, Marta; Houtsmuller, Adriaan B.; van Royen, Martin E.; Claessens, Frank; Fuentes-Prior, Pablo; Estébanez-Perpiñá, Eva

    2017-01-01

    The androgen receptor (AR) plays a crucial role in normal physiology, development and metabolism as well as in the aetiology and treatment of diverse pathologies such as androgen insensitivity syndromes (AIS), male infertility and prostate cancer (PCa). Here we show that dimerization of AR ligand-binding domain (LBD) is induced by receptor agonists but not by antagonists. The 2.15-Å crystal structure of homodimeric, agonist- and coactivator peptide-bound AR-LBD unveils a 1,000-Å2 large dimerization surface, which harbours over 40 previously unexplained AIS- and PCa-associated point mutations. An AIS mutation in the self-association interface (P767A) disrupts dimer formation in vivo, and has a detrimental effect on the transactivating properties of full-length AR, despite retained hormone-binding capacity. The conservation of essential residues suggests that the unveiled dimerization mechanism might be shared by other nuclear receptors. Our work defines AR-LBD homodimerization as an essential step in the proper functioning of this important transcription factor. PMID:28165461

  5. Arf6 Guanine Nucleotide Exchange Factor Cytohesin-2 Binds to CCDC120 and Is Transported Along Neurites to Mediate Neurite Growth*

    PubMed Central

    Torii, Tomohiro; Miyamoto, Yuki; Tago, Kenji; Sango, Kazunori; Nakamura, Kazuaki; Sanbe, Atsushi; Tanoue, Akito; Yamauchi, Junji

    2014-01-01

    The mechanism of neurite growth is complicated, involving continuous cytoskeletal rearrangement and vesicular trafficking. Cytohesin-2 is a guanine nucleotide exchange factor for Arf6, an Arf family molecular switch protein, controlling cell morphological changes such as neuritogenesis. Here, we show that cytohesin-2 binds to a protein with a previously unknown function, CCDC120, which contains three coiled-coil domains, and is transported along neurites in differentiating N1E-115 cells. Transfection of the small interfering RNA (siRNA) specific for CCDC120 into cells inhibits neurite growth and Arf6 activation. When neurites start to extend, vesicles containing CCDC120 and cytohesin-2 are transported in an anterograde manner rather than a retrograde one. As neurites continue extension, anterograde vesicle transport decreases. CCDC120 knockdown inhibits cytohesin-2 localization into vesicles containing CCDC120 and diffuses cytohesin-2 in cytoplasmic regions, illustrating that CCDC120 determines cytohesin-2 localization in growing neurites. Reintroduction of the wild type CCDC120 construct into cells transfected with CCDC120 siRNA reverses blunted neurite growth and Arf6 activity, whereas the cytohesin-2-binding CC1 region-deficient CCDC120 construct does not. Thus, cytohesin-2 is transported along neurites by vesicles containing CCDC120, and it mediates neurite growth. These results suggest a mechanism by which guanine nucleotide exchange factor for Arf6 is transported to mediate neurite growth. PMID:25326380

  6. Nucleotide binding-promoted conformational changes release a nonnative polypeptide from the Escherichia coli chaperonin GroEL.

    PubMed Central

    Lin, Z; Eisenstein, E

    1996-01-01

    The Escherichia coli chaperonins GroEL and GroES facilitate the refolding of polypeptide chains in an ATP hydrolysis-dependent reaction. The elementary steps in the binding and release of polypeptide substrates to GroEL were investigated in surface plasmon resonance studies to measure the rates of binding and dissociation of a normative variant of subtilisin. The rate constants determined for GroEL association with and dissociation from this variant yielded a micromolar dissociation constant, in agreement with independent calorimetric estimates. The rate of GroEL dissociation from the nonnative chain was increased significantly in the presence of 5'-adenylylimidodiphosphate (AMP-PNP), ADP, and ATP, yielding maximal values between 0.04 and 0.22 s(-1). The sigmoidal dependence of the dissociation rate on the concentration of AMP-PNP and ADP indicated that polypeptide dissociation is limited by a concerted conformational change that occurs after nucleotide binding. The dependence of the rate of release on ATP exhibited two sigmoidal transitions attributable to nucleotide binding to the distal and proximal toroid of a GroEL-polypeptide chain complex. The addition of GroES resulted in a marked increase in the rate of nonnative polypeptide release from GroEL, indicating that the cochaperonin binds more rapidly than the dissociation of polypeptides. These data demonstrate the importance of nucleotide binding-promoted concerted conformational changes for the release of chains from GroEL, which correlate with the sigmoidal hydrolysis of ATP by the chaperonin. The implications of these findings are discussed in terms of a working hypothesis for a single cycle of chaperonin action. PMID:8700870

  7. Distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases of Actinobacteria.

    PubMed

    Ogawara, Hiroshi

    2016-09-01

    PASTA domains (penicillin-binding protein and serine/threonine kinase-associated domains) have been identified in penicillin-binding proteins and serine/threonine kinases of Gram-positive Firmicutes and Actinobacteria. They are believed to bind β-lactam antibiotics, and be involved in peptidoglycan metabolism, although their biological function is not definitively clarified. Actinobacteria, especially Streptomyces species, are distinct in that they undergo complex cellular differentiation and produce various antibiotics including β-lactams. This review focuses on the distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases in Actinobacteria. In Actinobacteria, PASTA domains are detectable exclusively in class A but not in class B penicillin-binding proteins, in sharp contrast to the cases in other bacteria. In penicillin-binding proteins, PASTA domains distribute independently from taxonomy with some distribution bias. Particularly interesting thing is that no Streptomyces species have penicillin-binding protein with PASTA domains. Protein kinases in Actinobacteria possess 0 to 5 PASTA domains in their molecules. Protein kinases in Streptomyces can be classified into three groups: no PASTA domain, 1 PASTA domain and 4 PASTA domain-containing groups. The 4 PASTA domain-containing groups can be further divided into two subgroups. The serine/threonine kinases in different groups may perform different functions. The pocket region in one of these subgroup is more dense and extended, thus it may be involved in binding of ligands like β-lactams more efficiently.

  8. Prediction of flavin mono-nucleotide binding sites using modified PSSM profile and ensemble support vector machine.

    PubMed

    Wang, Xia; Mi, Gang; Wang, Cuicui; Zhang, Yongqing; Li, Juan; Guo, Yanzhi; Pu, Xuemei; Li, Menglong

    2012-11-01

    Flavin mono-nucleotide (FMN) closely evolves in many biological processes. In this study, a computational method was proposed to identify FMN binding sites based on amino acid sequences of proteins only. A modified Position Specific Score Matrix was used to characterize the local environmental sequence information, and a visible improvement of performance was obtained. Also, the ensemble SVM was applied to solve the imbalanced data problem. Additionally, an independent dataset was built to evaluate the practical performance of the method, and a satisfactory accuracy of 87.87% was achieved. It demonstrates that the method is effective in predicting FMN-binding sites.

  9. Microarray study of single nucleotide polymorphisms and expression of ATP-binding cassette genes in breast tumors

    NASA Astrophysics Data System (ADS)

    Tsyganov, M. M.; Ibragimova, M. K.; Karabut, I. V.; Freydin, M. B.; Choinzonov, E. L.; Litvyakov, N. V.

    2015-11-01

    Our previous research establishes that changes of expression of the ATP-binding cassette genes family is connected with the neoadjuvant chemotherapy effect. However, the mechanism of regulation of resistance gene expression remains unclear. As many researchers believe, single nucleotide polymorphisms can be involved in this process. Thereupon, microarray analysis is used to study polymorphisms in ATP-binding cassette genes. It is thus found that MDR gene expression is connected with 5 polymorphisms, i.e. rs241432, rs241429, rs241430, rs3784867, rs59409230, which participate in the regulation of expression of own genes.

  10. Characterization of the DNA-binding properties of the origin-binding domain of simian virus 40 large T antigen by fluorescence anisotropy.

    PubMed

    Titolo, S; Welchner, E; White, P W; Archambault, J

    2003-05-01

    The affinity of the origin-binding domain (OBD) of simian virus 40 large T antigen for its cognate origin was measured at equilibrium using a DNA binding assay based on fluorescence anisotropy. At a near-physiological concentration of salt, the affinities of the OBD for site II and the core origin were 31 and 50 nM, respectively. Binding to any of the four 5'-GAGGC-3' binding sites in site II was only slightly weaker, between 57 and 150 nM. Although the OBD was shown previously to assemble as a dimer on two binding sites spaced by 7 bp, we found that increasing the distance between both binding sites by 1 to 3 bp had little effect on affinity. Similar results were obtained for full-length T antigen in absence of nucleotide. Addition of ADP-Mg, which promotes hexamerization of T antigen, greatly increased the affinity of full-length T antigen for the core origin and for nonspecific DNA. The implications of these findings for the assembly of T antigen at the origin and its transition to a non-specific DNA helicase are discussed.

  11. Inorganic phosphate blocks binding of pre-miRNA to Dicer-2 via its PAZ domain

    PubMed Central

    Fukunaga, Ryuya; Colpan, Cansu; Han, Bo W; Zamore, Phillip D

    2014-01-01

    In Drosophila, Dicer-1 produces microRNAs (miRNAs) from pre-miRNAs, whereas Dicer-2 generates small interfering RNAs from long double-stranded RNA (dsRNA), a process that requires ATP hydrolysis. We previously showed that inorganic phosphate inhibits Dicer-2 cleavage of pre-miRNAs, but not long dsRNAs. Here, we report that phosphate-dependent substrate discrimination by Dicer-2 reflects dsRNA substrate length. Efficient processing by Dicer-2 of short dsRNA requires a 5′ terminal phosphate and a two-nucleotide, 3′ overhang, but does not require ATP. Phosphate inhibits cleavage of such short substrates. In contrast, cleavage of longer dsRNA requires ATP but no specific end structure: phosphate does not inhibit cleavage of these substrates. Mutation of a pair of conserved arginine residues in the Dicer-2 PAZ domain blocked cleavage of short, but not long, dsRNA. We propose that inorganic phosphate occupies a PAZ domain pocket required to bind the 5′ terminal phosphate of short substrates, blocking their use and restricting pre-miRNA processing in flies to Dicer-1. Our study helps explain how a small molecule can alter the substrate specificity of a nucleic acid processing enzyme. PMID:24488111

  12. Novel domains in NADPH oxidase subunits, sorting nexins, and PtdIns 3-kinases: binding partners of SH3 domains?

    PubMed Central

    Ponting, C. P.

    1996-01-01

    Two SH3 domain-containing cytosolic components of the NADPH oxidase, p47phox and p40phox, are shown by analyses of their sequences to contain single copies of a novel class of domain, the PX (phox) domain. Homologous domains are demonstrated to be present in the Cpk class of phosphatidylinositol 3-kinase, S. cerevisiae Bem1p, and S. pombe Scd2, and a large family of human sorting nexin 1 (SNX1) homologues. The majority of these domains contains a polyproline motif, typical of SH3 domain-binding proteins. Two further findings are reported. A third NADPH oxidase subunit, p67phox, is shown to contain four tetratricopeptide repeats (TPRs) within its N-terminal RaclGTP-binding region, and a 28 residue motif in p40phox is demonstrated to be present in protein kinase C isoforms iota/lambda and zeta, and in three ZZ domain-containing proteins. PMID:8931154

  13. Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase.

    PubMed

    Qian, Kevin C; Wang, Lian; Hickey, Eugene R; Studts, Joey; Barringer, Kevin; Peng, Charline; Kronkaitis, Anthony; Li, Jun; White, Andre; Mische, Sheenah; Farmer, Bennett

    2005-02-18

    Pim-1 kinase is a member of a distinct class of serine/threonine kinases consisting of Pim-1, Pim-2, and Pim-3. Pim kinases are highly homologous to one another and share a unique consensus hinge region sequence, ER-PXPX, with its two proline residues separated by a non-conserved residue, but they (Pim kinases) have <30% sequence identity with other kinases. Pim-1 has been implicated in both cytokine-induced signal transduction and the development of lymphoid malignancies. We have determined the crystal structures of apo Pim-1 kinase and its AMP-PNP (5'-adenylyl-beta,gamma-imidodiphosphate) complex to 2.1-angstroms resolutions. The structures reveal the following. 1) The kinase adopts a constitutively active conformation, and extensive hydrophobic and hydrogen bond interactions between the activation loop and the catalytic loop might be the structural basis for maintaining such a conformation. 2) The hinge region has a novel architecture and hydrogen-bonding pattern, which not only expand the ATP pocket but also serve to establish unambiguously the alignment of the Pim-1 hinge region with that of other kinases. 3) The binding mode of AMP-PNP to Pim-1 kinase is unique and does not involve a critical hinge region hydrogen bond interaction. Analysis of the reported Pim-1 kinase-domain structures leads to a hypothesis as to how Pim kinase activity might be regulated in vivo.

  14. Ligand Binding to WW Tandem Domains of YAP2 Transcriptional Regulator Is Under Negative Cooperativity

    PubMed Central

    Schuchardt, Brett J.; Mikles, David C.; Hoang, Lawrence M.; Bhat, Vikas; McDonald, Caleb B.; Sudol, Marius; Farooq, Amjad

    2014-01-01

    YAP2 transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well-documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules. PMID:25283809

  15. Ligand binding to WW tandem domains of YAP2 transcriptional regulator is under negative cooperativity.

    PubMed

    Schuchardt, Brett J; Mikles, David C; Hoang, Lawrence M; Bhat, Vikas; McDonald, Caleb B; Sudol, Marius; Farooq, Amjad

    2014-12-01

    YES-associated protein 2 (YAP2) transcriptional regulator drives a multitude of cellular processes, including the newly discovered Hippo tumor suppressor pathway, by virtue of the ability of its WW domains to bind and recruit PPXY-containing ligands to specific subcellular compartments. Herein, we employ an array of biophysical tools to investigate allosteric communication between the WW tandem domains of YAP2. Our data show that the WW tandem domains of YAP2 negatively cooperate when binding to their cognate ligands. Moreover, the molecular origin of such negative cooperativity lies in an unfavorable entropic contribution to the overall free energy relative to ligand binding to isolated WW domains. Consistent with this notion, the WW tandem domains adopt a fixed spatial orientation such that the WW1 domain curves outwards and stacks onto the binding groove of the WW2 domain, thereby sterically hindering ligand binding to both itself and its tandem partner. Although ligand binding to both WW domains disrupts such interdomain stacking interaction, they reorient themselves and adopt an alternative fixed spatial orientation in the liganded state by virtue of their ability to engage laterally so as to allow their binding grooves to point outwards and away from each other. In short, while the ability of WW tandem domains to aid ligand binding is well documented, our demonstration that they may also be subject to negative binding cooperativity represents a paradigm shift in our understanding of the molecular action of this ubiquitous family of protein modules.

  16. Kinetic Mechanism of Human Histidine Triad Nucleotide Binding Protein 1 (Hint1)

    PubMed Central

    Zhou, Xin; Chou, Tsui-Fen; Aubol, Brandon E; Park, Chin Ju; Wolfenden, Richard; Adams, Joseph; Wagner, Carston R.

    2013-01-01

    Human histidine triad nucleotide binding protein 1 (hHint1) is a member of a ubiquitous and ancient branch of the histidine triad (HIT) protein superfamily. hHint1 is a homodimeric protein that catalyzes the hydrolysis of model substrates, phosphoramidate (TpAd) and acyl adenylate (AIPA), with a high efficiency. Recently, catalytically inactive hHint1 has been identified as the cause of inherited peripheral neuropathy (1). We have carried out the first detailed kinetic mechanistic studies of hHint1 and have found that the reaction mechanism is consistent with a double displacement mechanism, in which the active site nucleophile His112 is first adenylylated by the substrate, followed by hydrolysis of the AMP-enzyme intermediate. A transient burst phase followed by a linear phase from the stopped-flow fluorescence assay indicated that enzyme adenylylation was faster than the subsequent intermediate hydrolysis and product release. Solvent viscosity experiments suggested that both chemical transformation and diffusion-sensitive events (product release or protein conformational change) limit the overall turnover. The catalytic trapping experiments and data simulation indicated that the true koff rate of the final product AMP is unlikely to control the overall kcat. Therefore, a protein conformational change associated with product release is likely rate limiting. In addition, the rate of Hint1 adenylylation was found to be dependent on two residues with pKas of 6.5 and 8, with the former pKa agreeing well with the NMR titration results for the pKa of the active site nucleophile His112. When compared to the uncatalyzed rates, hHint1 was shown to enhance acyl-AMP and AMP phosphoramidate hydrolysis by 106 to 108- fold. Taken together, our analysis indicates that hHint1 catalyzes the hydrolysis of phosphoramidate and acyl adenylate with high efficiency, through a mechanism that relies on rapid adenylylation of the active residue, His-112, while being partially rate limited

  17. Structural and functional definition of the human chitinase chitin-binding domain.

    PubMed

    Tjoelker, L W; Gosting, L; Frey, S; Hunter, C L; Trong, H L; Steiner, B; Brammer, H; Gray, P W

    2000-01-07

    Mammalian chitinase, a chitinolytic enzyme expressed by macrophages, has been detected in atherosclerotic plaques and is elevated in blood and tissues of guinea pigs infected with Aspergillus. Its normal physiological function is unknown. To understand how the enzyme interacts with its substrate, we have characterized the chitin-binding domain. The C-terminal 49 amino acids make up the minimal sequence required for chitin binding activity. The absence of this domain does not affect the ability of the enzyme to hydrolyze the soluble substrate, triacetylchitotriose, but abolishes hydrolysis of insoluble chitin. Within the minimal chitin-binding domain are six cysteines; mutation of any one of these to serine results in complete loss of chitin binding activity. Analysis of purified recombinant chitin-binding domain revealed the presence of three disulfide linkages. The recombinant domain binds specifically to chitin but does not bind chitosan, cellulose, xylan, beta-1, 3-glucan, beta-1,3-1,4-glucan, or mannan. Fluorescently tagged chitin-binding domain was used to demonstrate chitin-specific binding to Saccharomyces cerevisiae, Candida albicans, Mucor rouxii, and Neurospora crassa. These experiments define structural features of the minimal domain of human chitinase required for both specifically binding to and hydrolyzing insoluble chitin and demonstrate relevant binding within the context of the fungal cell wall.

  18. A Gα12-specific Binding Domain in AKAP-Lbc and p114RhoGEF

    PubMed Central

    Brawley, Douglas N.; Berkley, Carrie Y.; Smolski, William C.; Garcia, Ricardo D.; Towne, Autumn L.; Sims, Jonathan R.

    2016-01-01

    AKAP-Lbc is a Rho-activating guanine nucleotide exchange factor (RhoGEF) important in heart development and pro-fibrotic signaling in cardiomyocytes. Heterotrimeric G proteins of the G12/13 subfamily, comprising Gα12 and Gα13, are well characterized as stimulating a specialized group of RhoGEFs through interaction with their RGS-homology (RH) domain. Despite lacking an RH domain, AKAP-Lbc is bound by Gα12 through an unknown mechanism to activate Rho signaling. We identified a Gα12-binding region near the C-terminus of AKAP-Lbc, closely homologous to a region of p114RhoGEF that we also discovered to interact with Gα12. This binding mechanism is distinct from the well-studied interface between RH-RhoGEFs and G12/13 α subunits, as demonstrated by Gα12 mutants selectively impaired in binding either this AKAP-Lbc/p114RhoGEF region or RH-RhoGEFs. AKAP-Lbc and p114RhoGEF showed high specificity for binding Gα12 in comparison to Gα13, and experiments using chimeric G12/13 α subunits mapped determinants of this selectivity to the N-terminal region of Gα12. In cultured cells expressing constitutively GDP-bound Gα12 or Gα13, the Gα12 construct was more potent in exerting a dominant-negative effect on serum-mediated signaling to p114RhoGEF, demonstrating coupling of these signaling proteins in a cellular pathway. In addition, charge-reversal of conserved residues in AKAP-Lbc and p114RhoGEF disrupted Gα12 binding for both proteins, suggesting they harbor a common structural mechanism for interaction with this α subunit. Our results provide the first evidence of p114RhoGEF as a Gα12 signaling effector, and define a novel region conserved between AKAP-Lbc and p114RhoGEF that allows Gα12 signaling input to these non-RH RhoGEFs.

  19. Structure, function, and tethering of DNA-binding domains in σ54 transcriptional activators

    PubMed Central

    Vidangos, Natasha; Maris, Ann E.; Young, Anisa; Hong, Eunmi; Pelton, Jeffrey G.; Batchelor, Joseph D.; Wemmer, David E.

    2014-01-01

    We compare the structure, activity and linkage of DNA binding domains from σ54 transcriptional activators, and discuss how the properties of the DNA binding domains and the linker to the neighboring domain are affected by the overall properties and requirements of the full proteins. These transcriptional activators bind upstream of specific promoters that utilize σ54-polymerase. Upon receiving a signal the activators assemble into hexamers, which then, through ATP hydrolysis, drive a conformational change in polymerase that enables transcription initiation. We present structures of the DNA-binding domains of activators NtrC1 and Nlh2 from the thermophile A. aeolicus. The structures of these domains, and their relationship to other sparts of the activators are discussed. These structures are compared with previously determined structures of the DNA-binding domains of NtrC4, NtrC, ZraR, and FIS. The N-terminal linkers that connect the DNA-binding domains to the central domains in NtrC1 and Nlh2 were studied and found to be unstructured. Additionally, a crystal structure of full-length NtrC1 was solved, but density for the DNA-binding domains was extremely weak, further indicating that the linker between ATPase and DNA binding domains functions as a flexible tether. Flexible linking of ATPase and DNA binding domains is likely necessary to allow assembly of the active hexameric ATPase ring. The comparison of this set of activators also shows clearly that strong dimerization of the DNA binding domain only occurs when other domains do not dimerize strongly. PMID:23818155

  20. DNA binding properties of a chemically synthesized DNA binding domain of hRFX1.

    PubMed

    Cornille, F; Emery, P; Schüler, W; Lenoir, C; Mach, B; Roques, B P; Reith, W

    1998-05-01

    The RFX DNA binding domain (DBD) is a novel highly conserved motif belonging to a large number of dimeric DNA binding proteins which have diverse regulatory functions in eukaryotic organisms, ranging from yeasts to human. To characterize this novel motif, solid phase synthesis of a 76mer polypeptide corresponding to the DBD of human hRFX1 (hRFX1/DBD), a prototypical member of the RFX family, has been optimized to yield large quantities (approximately 90 mg) of pure compound. Preliminary two-dimensional1H NMR experiments suggested the presence of helical regions in this sequence in agreement with previously reported secondary structure predictions. In gel mobility shift assays, this synthetic peptide was shown to bind in a cooperative manner the 23mer duplex oligodeoxynucleotide corresponding to the binding site of hRFX1, with a 2:1 stoichoimetry due to an inverse repeat present in the 23mer. The stoichiometry of this complex was reduced to 1:1 by decreasing the length of the DNA sequence to a 13mer oligonucleotide containing a single half-site. Surface plasmon resonance measurements were achieved using this 5'-biotylinated 13mer oligonucleotide immobilized on an avidin-coated sensor chip. Using this method an association constant (K a = 4 x 10(5)/M/s), a dissociation constant (K d = 6 x 10(-2)/s) and an equilibrium dissociation constant (K D = 153 nM) were determined for binding of hRFX1/DBD to the double-stranded 13mer oligonucleotide. In the presence of hRFX1/DBD the melting temperature of the 13mer DNA was increased by 16 degreesC, illustrating stabilization of the double-stranded conformation induced by the peptide.

  1. DNA binding properties of a chemically synthesized DNA binding domain of hRFX1.

    PubMed Central

    Cornille, F; Emery, P; Schüler, W; Lenoir, C; Mach, B; Roques, B P; Reith, W

    1998-01-01

    The RFX DNA binding domain (DBD) is a novel highly conserved motif belonging to a large number of dimeric DNA binding proteins which have diverse regulatory functions in eukaryotic organisms, ranging from yeasts to human. To characterize this novel motif, solid phase synthesis of a 76mer polypeptide corresponding to the DBD of human hRFX1 (hRFX1/DBD), a prototypical member of the RFX family, has been optimized to yield large quantities (approximately 90 mg) of pure compound. Preliminary two-dimensional1H NMR experiments suggested the presence of helical regions in this sequence in agreement with previously reported secondary structure predictions. In gel mobility shift assays, this synthetic peptide was shown to bind in a cooperative manner the 23mer duplex oligodeoxynucleotide corresponding to the binding site of hRFX1, with a 2:1 stoichoimetry due to an inverse repeat present in the 23mer. The stoichiometry of this complex was reduced to 1:1 by decreasing the length of the DNA sequence to a 13mer oligonucleotide containing a single half-site. Surface plasmon resonance measurements were achieved using this 5'-biotylinated 13mer oligonucleotide immobilized on an avidin-coated sensor chip. Using this method an association constant (K a = 4 x 10(5)/M/s), a dissociation constant (K d = 6 x 10(-2)/s) and an equilibrium dissociation constant (K D = 153 nM) were determined for binding of hRFX1/DBD to the double-stranded 13mer oligonucleotide. In the presence of hRFX1/DBD the melting temperature of the 13mer DNA was increased by 16 degreesC, illustrating stabilization of the double-stranded conformation induced by the peptide. PMID:9547272

  2. Identification and phylogenetic analyses of VASt, an uncharacterized protein domain associated with lipid-binding domains in Eukaryotes.

    PubMed

    Khafif, Mehdi; Cottret, Ludovic; Balagué, Claudine; Raffaele, Sylvain

    2014-06-26

    Several regulators of programmed cell death (PCD) in plants encode proteins with putative lipid-binding domains. Among them, VAD1 is a regulator of PCD propagation harboring a GRAM putative lipid-binding domain. However the function of VAD1 at the subcellular level is unknown and the domain architecture of VAD1 has not been analyzed in details. We analyzed sequence conservation across the plant kingdom in the VAD1 protein and identified an uncharacterized VASt (VAD1 Analog of StAR-related lipid transfer) domain. Using profile hidden Markov models (profile HMMs) and phylogenetic analysis we found that this domain is conserved among eukaryotes and generally associates with various lipid-binding domains. Proteins containing both a GRAM and a VASt domain include notably the yeast Ysp2 cell death regulator and numerous uncharacterized proteins. Using structure-based phylogeny, we found that the VASt domain is structurally related to Bet v1-like domains. We identified a novel protein domain ubiquitous in Eukaryotic genomes and belonging to the Bet v1-like superfamily. Our findings open perspectives for the functional analysis of VASt-containing proteins and the characterization of novel mechanisms regulating PCD.

  3. Two tight binding sites for ADP and their interactions during nucleotide exchange in chloroplast coupling factor 1.

    PubMed

    Digel, J G; McCarty, R E

    1995-11-07

    Chloroplast coupling factor 1 (CF1) deficient in its epsilon subunit was loaded with 2'(3')-O-trinitrophenyl-ADP (TNP-ADP), and the release of tightly bound TNP-ADP was followed as a decrease in fluorescence. TNP-ADP could be exchanged for medium ADP, ATP, MgADP, and MgATP. The preferred substrate for exchange was MgADP, particularly in the presence of P(i). One nucleotide binding site contained ADP which was not displaced during TNP-ADP loading. When Mg2+ was bound at this site, complete exchange of bound TNP-ADP for medium nucleotide was prevented. This tightly bound MgADP was removed by incubation of the enzyme with EDTA. Tightly bound TNP-ADP was removed by high concentrations of sulfite, sulfate, or P(i) in the absence of medium nucleotide and free Mg2+, regardless of the bound Mg2+ content of the enzyme. Sulfite and P(i), in the presence of medium nucleotide and Mg2+, enabled complete exchange of tightly bound TNP-ADP. The combination of Mg2+ and sulfite, or Mg2+ and P(i), caused exchange of tightly bound ADP from two different sites. These results suggest that both sites exchange when the enzyme is fully active, and that at least three sites are likely to participate in catalysis.

  4. Gonococcal pili. Primary structure and receptor binding domain.

    PubMed

    Schoolnik, G K; Fernandez, R; Tai, J Y; Rothbard, J; Gotschlich, E C

    1984-05-01

    The complete amino acid sequence of pilin from gonococcal strain MS11 and the sequence of constant and variable regions from strain R10 pilin have been determined in order to elucidate the structural basis for adherence function, antigenic diversity, and polymeric structure. The MS11 pilin sequence consists of 159 amino acids in a single polypeptide chain with two cysteines in disulfide linkage and serine-bonded phosphate residues. TC-2 (31-111), a soluble monomeric pilus peptide prepared by arginine-specific digestion, bound human endocervical, but not buccal or HeLa cells and therefore is postulated to encompass the receptor binding domain. Variable regions of CNBr-3 appear to confer antigenic diversity and comprise segments in which changes in the position of charged residues occur in hydrophilic, beta-turns. Residues 2-21 and 202-221 of gonococcal pilins and lower eucaryotic actins, respectively, exhibit 50% homology. When these residues are arranged at intervals of 100 degrees of arc on "helical wheels," the identical amino acids comprise a hydrophobic face on one side of the helix. This observation, the hydrophobic character of this region and the tendency for TC-1 (residues 1-30) to aggregate in water, suggest that this stretch interacts with other subunits to stabilize polymeric structure.

  5. The role of ubiquitin-binding domains in human pathophysiology.

    PubMed

    Sokratous, Kleitos; Hadjisavvas, Andreas; Diamandis, Eleftherios P; Kyriacou, Kyriacos

    2014-10-01

    Ubiquitination, a fundamental post-translational modification (PTM) resulting in the covalent attachment of ubiquitin (Ub) to a target protein, is currently implicated in several key cellular processes. Although ubiquitination was initially associated with protein degradation, it is becoming increasingly evident that proteins labeled with polyUb chains of specific topology and length are activated in an ever-expanding repertoire of specific cellular processes. In addition to their involvement in the classical protein degradation pathways they are involved in DNA repair, kinase regulation and nuclear factor-κB (NF-κB) signaling. The sorting and processing of distinct Ub signals is mediated by small protein motifs, known as Ub-binding domains (UBDs), which are found in proteins that execute disparate biological functions. The involvement of UBDs in several biological pathways has been revealed by several studies which have highlighted the vital role of UBDs in cellular homeostasis. Importantly, functional impairment of UBDs in key regulatory pathways has been related to the development of pathophysiological conditions, including immune disorders and cancer. In this review, we present an up-to-date account of the crucial role of UBDs and their functions, with a special emphasis on their functional impairment in key biological pathways and the pathogenesis of several human diseases. The still under-investigated topic of Ub-UBD interactions as a target for developing novel therapeutic strategies against many diseases is also discussed.

  6. Poly (ADP-Ribose) synthetase. Separation and identification of three proteolytic fragments as the substrate-binding domain, the DNA-binding domain, and the automodification domain.

    PubMed

    Kameshita, I; Matsuda, Z; Taniguchi, T; Shizuta, Y

    1984-04-25

    Poly(ADP-ribose) synthetase of Mr = 120,000 is cleaved by limited proteolysis with alpha-chymotrypsin into two fragments of Mr = 54,000 (54K) and Mr = 66,000 (66K). When the native enzyme is modified with 3-(bromoacetyl)pyridine, both portions of the enzyme are alkylated; however, alkylation of the 54K portions of the enzyme is protected by the addition of the substrate, NAD, or its analog, nicotinamide, suggesting that the substrate-binding site is localized in the 54K fragment. When the enzyme previously automodified with a low concentration of [adenine-U-14C] NAD is digested with alpha-chymotrypsin, the radioactivity is detected exclusively in the 66K fragment. The 66K fragment thus labeled is further cleaved with papain into two fragments of Mr = 46,000 and Mr = 22,000. With these two fragments, the label is detected only in the 22K fragment, but not in the 46K fragment. The 46K fragment binds to a DNA-cellulose column with the same affinity as that of the native enzyme, while the 22K fragment and the 54K fragment have little affinity for the DNA ligand. These results indicate that poly (ADP-ribose) synthetase contains three separable domains, the first possessing the site for binding of the substrate, NAD, the second containing the site for binding of DNA, and the third acting as the site(s) for accepting poly(ADP-ribose).

  7. Structural Basis of Rnd1 Binding to Plexin Rho GTPase Binding Domains (RBDs)

    SciTech Connect

    Wang, Hui; Hota, Prasanta K.; Tong, Yufeng; Li, Buren; Shen, Limin; Nedyalkova, Lyudmila; Borthakur, Susmita; Kim, SoonJeung; Tempel, Wolfram; Buck, Matthias; Park, Hee-Won

    2011-09-20

    Plexin receptors regulate cell adhesion, migration, and guidance. The Rho GTPase binding domain (RBD) of plexin-A1 and -B1 can bind GTPases, including Rnd1. By contrast, plexin-C1 and -D1 reportedly bind Rnd2 but associate with Rnd1 only weakly. The structural basis of this differential Rnd1 GTPase binding to plexin RBDs remains unclear. Here, we solved the structure of the plexin-A2 RBD in complex with Rnd1 and the structures of the plexin-C1 and plexin-D1 RBDs alone, also compared with the previously determined plexin-B1 RBD.Rnd1 complex structure. The plexin-A2 RBD {center_dot} Rnd1 complex is a heterodimer, whereas plexin-B1 and -A2 RBDs homodimerize at high concentration in solution, consistent with a proposed model for plexin activation. Plexin-C1 and -D1 RBDs are monomeric, consistent with major residue changes in the homodimerization loop. In plexin-A2 and -B1, the RBD {beta}3-{beta}4 loop adjusts its conformation to allow Rnd1 binding, whereas minimal structural changes occur in Rnd1. The plexin-C1 and -D1 RBDs lack several key non-polar residues at the corresponding GTPase binding surface and do not significantly interact with Rnd1. Isothermal titration calorimetry measurements on plexin-C1 and -D1 mutants reveal that the introduction of non-polar residues in this loop generates affinity for Rnd1. Structure and sequence comparisons suggest a similar mode of Rnd1 binding to the RBDs, whereas mutagenesis suggests that the interface with the highly homologous Rnd2 GTPase is different in detail. Our results confirm, from a structural perspective, that Rnd1 does not play a role in the activation of plexin-C1 and -D1. Plexin functions appear to be regulated by subfamily-specific mechanisms, some of which involve different Rho family GTPases.

  8. T antigen origin-binding domain of simian virus 40: determinants of specific DNA binding.

    PubMed

    Bradshaw, Elizabeth M; Sanford, David G; Luo, Xuelian; Sudmeier, James L; Gurard-Levin, Zachary A; Bullock, Peter A; Bachovchin, William W

    2004-06-08

    To better understand origin recognition and initiation of DNA replication, we have examined by NMR complexes formed between the origin-binding domain of SV40 T antigen (T-ag-obd), the initiator protein of the SV40 virus, and cognate and noncognate DNA oligomers. The results reveal two structural effects associated with "origin-specific" binding that are absent in nonspecific DNA binding. The first is the formation of a hydrogen bond (H-bond) involving His 203, a residue that genetic studies have previously identified as crucial to both specific and nonspecific DNA binding in full-length T antigen. In free T-ag-obd, the side chain of His 203 has a pK(a) value of approximately 5, titrating to the N(epsilon)(1)H tautomer at neutral pH (Sudmeier, J. L., et al. (1996) J. Magn. Reson., Ser. B 113, 236-247). In complexes with origin DNA, His 203 N(delta)(1) becomes protonated and remains nontitrating as the imidazolium cation at all pH values from 4 to 8. The H-bonded N(delta1)H resonates at 15.9 ppm, an unusually large N-H proton chemical shift, of a magnitude previously observed only in the catalytic triad of serine proteases at low pH. The formation of this H-bond requires the middle G/C base pair of the recognition pentanucleotide, GAGGC. The second structural effect is a selective distortion of the A/T base pair characterized by a large (0.6 ppm) upfield chemical-shift change of its Watson-Crick proton, while nearby H-bonded protons remain relatively unaffected. The results indicate that T antigen, like many other DNA-binding proteins, may employ "catalytic" or "transition-state-like" interactions in binding its cognate DNA (Jen-Jacobson, L. (1997) Biopolymers 44, 153-180), which may be the solution to the well-known paradox between the relatively modest DNA-binding specificity exhibited by initiator proteins and the high specificity of initiation.

  9. Specific binding of the methyl binding domain protein 2 at the BRCA1-NBR2 locus

    PubMed Central

    Auriol, Emilie; Billard, Lise-Marie; Magdinier, Frédérique; Dante, Robert

    2005-01-01

    The methyl-CpG binding domain (MBD) proteins are key molecules in the interpretation of DNA methylation signals leading to gene silencing. We investigated their binding specificity at the constitutively methylated region of a CpG island containing the bidirectional promoter of the Breast cancer predisposition gene 1, BRCA1, and the Near BRCA1 2 (NBR2) gene. In HeLa cells, quantitative chromatin immunoprecipitation assays indicated that MBD2 is associated with the methylated region, while MeCP2 and MBD1 were not detected at this locus. MBD2 depletion (∼90%), mediated by a transgene expressing a small interfering RNA (siRNA), did not induce MeCP2 or MBD1 binding at the methylated area. Furthermore, the lack of MBD2 at the BRCA1-NBR2 CpG island is associated with an elevated level of NBR2 transcripts and with a significant reduction of induced-DNA-hypomethylation response. In MBD2 knockdown cells, transient expression of a Mbd2 cDNA, refractory to siRNA-mediated decay, shifted down the NBR2 mRNA level to that observed in unmodified HeLa cells. Variations in MBD2 levels did not affect BRCA1 expression despite its stimulation by DNA hypomethylation. Collectively, our data indicate that MBD2 has specific targets and its presence at these targets is indispensable for gene repression. PMID:16052033

  10. A novel bis-phenanthridine triamine with pH controlled binding to nucleotides and nucleic acids.

    PubMed

    Malojcić, Goran; Piantanida, Ivo; Marinić, Mirna; Zinić, Mladen; Marjanović, Marko; Kralj, Marijeta; Pavelić, Kresimir; Schneider, Hans-Jörg

    2005-12-21

    The new bis-phenanthridine triamine is characterised by three pK(a) values: 3.65; 6.0 and >7.5. A significant difference in the protonation state of at pH = 5 (four positive charges) and at pH = 7 (less than two positive charges) accounts for the strong dependence of -nucleotide binding constants on nucleotide charge under acidic conditions, whereas at neutral pH all -nucleotide complexes are of comparable stability. All experimental data point at intercalation as the dominant binding mode of to polynucleotides. However, there is no indication of bis-intercalation of the two phenanthridine subunits in binding to double stranded polynucleotides, the respective complexes being most likely mono-intercalative. Thermal stabilisation of calf thymus DNA (ct-DNA) and poly A-poly U duplexes upon addition of is significantly higher at pH = 5 than at neutral conditions. This is not the case with poly dA-poly dT, indicating that the specific secondary structure of the latter, most likely the shape of the minor groove, plays a key role in complex stability. At pH = 5 acts as a fluorimetric probe for poly G (emission quenching) as opposed to other ss-polynucleotides (emission increase), while at neutral conditions this specificity is lost. One order of magnitude higher cytotoxicity of compared to its "monomer" can be accounted for by cooperative action of two phenanthridinium units and the charged triamine linker. The results presented here are of interest to the development of e.g. sequence-selective cytostatic drugs, and in particular for the possibility to control the drug activity properties over binding to DNA and/or RNA by variation of the pH of its surrounding.

  11. Cooperative DNA Binding and Sequence-Selective Recognition Conferred by the STAT Amino-Terminal Domain

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Sun, Ya-Lin; Hoey, Timothy

    1996-08-01

    STAT proteins (signal transducers and activators of transcription) activate distinct target genes despite having similar DNA binding preferences. The transcriptional specificity of STAT proteins was investigated on natural STAT binding sites near the interferon-gamma gene. These sites are arranged in multiple copies and required cooperative interactions for STAT binding. The conserved amino-terminal domain of STAT proteins was required for cooperative DNA binding, although this domain was not essential for dimerization or binding to a single site. Cooperative binding interactions enabled the STAT proteins to recognize variations of the consensus site. These sites can be specific for the different STAT proteins and may function to direct selective transcriptional activation.

  12. Insight into Pleiotropic Drug Resistance ATP-binding Cassette Pump Drug Transport through Mutagenesis of Cdr1p Transmembrane Domains*

    PubMed Central

    Rawal, Manpreet Kaur; Khan, Mohammad Firoz; Kapoor, Khyati; Goyal, Neha; Sen, Sobhan; Saxena, Ajay Kumar; Lynn, Andrew M.; Tyndall, Joel D. A.; Monk, Brian C.; Cannon, Richard D.; Komath, Sneha Sudha; Prasad, Rajendra

    2013-01-01

    The fungal ATP-binding cassette (ABC) transporter Cdr1 protein (Cdr1p), responsible for clinically significant drug resistance, is composed of two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). We have probed the nature of the drug binding pocket by performing systematic mutagenesis of the primary sequences of the 12 transmembrane segments (TMSs) found in the TMDs. All mutated proteins were expressed equally well and localized properly at the plasma membrane in the heterologous host Saccharomyces cerevisiae, but some variants differed significantly in efflux activity, substrate specificity, and coupled ATPase activity. Replacement of the majority of the amino acid residues with alanine or glycine yielded neutral mutations, but about 42% of the variants lost resistance to drug efflux substrates completely or selectively. A predicted three-dimensional homology model shows that all the TMSs, apart from TMS4 and TMS10, interact directly with the drug-binding cavity in both the open and closed Cdr1p conformations. However, TMS4 and TMS10 mutations can also induce total or selective drug susceptibility. Functional data and homology modeling assisted identification of critical amino acids within a drug-binding cavity that, upon mutation, abolished resistance to all drugs tested singly or in combinations. The open and closed Cdr1p models enabled the identification of amino acid residues that bordered a drug-binding cavity dominated by hydrophobic residues. The disposition of TMD residues with differential effects on drug binding and transport are consistent with a large polyspecific drug binding pocket in this yeast multidrug transporter. PMID:23824183

  13. Relationship between Ni(II) and Zn(II) Coordination and Nucleotide Binding by the Helicobacter pylori [NiFe]-Hydrogenase and Urease Maturation Factor HypB*

    PubMed Central

    Sydor, Andrew M.; Lebrette, Hugo; Ariyakumaran, Rishikesh; Cavazza, Christine; Zamble, Deborah B.

    2014-01-01

    The pathogen Helicobacter pylori requires two nickel-containing enzymes, urease and [NiFe]-hydrogenase, for efficient colonization of the human gastric mucosa. These enzymes possess complex metallocenters that are assembled by teams of proteins in multistep pathways. One essential accessory protein is the GTPase HypB, which is required for Ni(II) delivery to [NiFe]-hydrogenase and participates in urease maturation. Ni(II) or Zn(II) binding to a site embedded in the GTPase domain of HypB modulates the enzymatic activity, suggesting a mechanism of regulation. In this study, biochemical and structural analyses of H. pylori HypB (HpHypB) revealed an intricate link between nucleotide and metal binding. HpHypB nickel coordination, stoichiometry, and affinity were modulated by GTP and GDP, an effect not observed for zinc, and biochemical evidence suggests that His-107 coordination to nickel toggles on and off in a nucleotide-dependent manner. These results are consistent with the crystal structure of HpHypB loaded with Ni(II), GDP, and Pi, which reveals a nickel site distinct from that of zinc-loaded Methanocaldococcus jannaschii HypB as well as subtle changes to the protein structure. Furthermore, Cys-142, a metal ligand from the Switch II GTPase motif, was identified as a key component of the signal transduction between metal binding and the enzymatic activity. Finally, potassium accelerated the enzymatic activity of HpHypB but had no effect on the other biochemical properties of the protein. Altogether, this molecular level information about HpHypB provides insight into its cellular function and illuminates a possible mechanism of metal ion discrimination. PMID:24338018

  14. Single-stranded DNA Binding by the Helix-Hairpin-Helix Domain of XPF Protein Contributes to the Substrate Specificity of the ERCC1-XPF Protein Complex.

    PubMed

    Das, Devashish; Faridounnia, Maryam; Kovacic, Lidija; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E

    2017-02-17

    The nucleotide excision repair protein complex ERCC1-XPF is required for incision of DNA upstream of DNA damage. Functional studies have provided insights into the binding of ERCC1-XPF to various DNA substrates. However, because no structure for the ERCC1-XPF-DNA complex has been determined, the mechanism of substrate recognition remains elusive. Here we biochemically characterize the substrate preferences of the helix-hairpin-helix (HhH) domains of XPF and ERCC-XPF and show that the binding to single-stranded DNA (ssDNA)/dsDNA junctions is dependent on joint binding to the DNA binding domain of ERCC1 and XPF. We reveal that the homodimeric XPF is able to bind various ssDNA sequences but with a clear preference for guanine-containing substrates. NMR titration experiments and in vitro DNA binding assays also show that, within the heterodimeric ERCC1-XPF complex, XPF specifically recognizes ssDNA. On the other hand, the HhH domain of ERCC1 preferentially binds dsDNA through the hairpin region. The two separate non-overlapping DNA binding domains in the ERCC1-XPF heterodimer jointly bind to an ssDNA/dsDNA substrate and, thereby, at least partially dictate the incision position during damage removal. Based on structural models, NMR titrations, DNA-binding studies, site-directed mutagenesis, charge distribution, and sequence conservation, we propose that the HhH domain of ERCC1 binds to dsDNA upstream of the damage, and XPF binds to the non-damaged strand within a repair bubble.

  15. Interaction of the GTP-binding and GTPase-activating domains of ARD1 involves the effector region of the ADP-ribosylation factor domain.

    PubMed

    Vitale, N; Moss, J; Vaughan, M

    1997-02-14

    ADP-ribosylation factors (ARFs) are a family of approximately 20-kDa guanine nucleotide-binding proteins and members of the Ras superfamily, originally identified and purified by their ability to enhance the ADP-ribosyltransferase activity of cholera toxin and more recently recognized as critical participants in vesicular trafficking pathways and phospholipase D activation. ARD1 is a 64-kDa protein with an 18-kDa carboxyl-terminal ARF domain (p3) and a 46-kDa amino-terminal extension (p5) that is widely expressed in mammalian tissues. Using recombinant proteins, we showed that p5, the amino-terminal domain of ARD1, stimulates the GTPase activity of p3, the ARF domain, and appears to be the GTPase-activating protein (GAP) component of this bifunctional protein, whereas in other members of the Ras superfamily a separate GAP molecule interacts with the effector region of the GTP-binding protein. p5 stimulated the GTPase activity of p3 but not of ARF1, which differs from p3 in several amino acids in the effector domain. After substitution of 7 amino acids from p3 in the appropriate position in ARF1, the chimeric protein ARF1(39-45p3) bound to p5, which increased its GTPase activity. Specifically, after Gly40 and Thr45 in the putative effector domain of ARF1 were replaced with the equivalent Asp and Pro, respectively, from p3, functional interaction of the chimeric ARF1 with p5 was increased. Thus, Asp25 and Pro30 of the ARF domain (p3) of ARD1 are involved in its functional and physical interaction with the GTPase-activating (p5) domain of ARD1. After deletion of the amino-terminal 15 amino acids from ARF1(39-45p3), its interaction with p5 was essentially equivalent to that of p3, suggesting that the amino terminus of ARF1(39-45p3) may interfere with binding to p5. These results are consistent with the conclusion that the GAP domain of ARD1 interacts with the effector region of the ARF domain and thereby stimulates GTP hydrolysis.

  16. Dynamic Nucleotide-dependent Interactions of Cysteine- and Histidine-rich Domain (CHORD)-containing Hsp90 Cochaperones Chp-1 and Melusin with Cochaperones PP5 and Sgt1*

    PubMed Central

    Hong, Tae-Joon; Kim, Sangkyu; Wi, Ah Ram; Lee, Peter; Kang, Miae; Jeong, Jae-Hoon; Hahn, Ji-Sook

    2013-01-01

    Mammals have two cysteine- and histidine-rich domain (CHORD)-containing Hsp90 cochaperones, Chp-1 and melusin, which are homologs of plant Rar1. It has been shown previously that Rar1 CHORD directly interacts with ADP bound to the nucleotide pocket of Hsp90. Here, we report that ADP and ATP can bind to Hsp90 cochaperones Chp-1 and PP5, inducing their conformational changes. Furthermore, we demonstrate that Chp-1 and melusin can interact with cochaperones PP5 and Sgt1 and with each other in an ATP-dependent manner. Based on the known structure of the Rar1-Hsp90 complex, His-186 has been identified as an important residue of Chp-1 for ADP/ATP binding. His-186 is necessary for the nucleotide-dependent interaction of Chp-1 not only with Hsp90 but also with Sgt1. In addition, Ca2+, which is known to bind to melusin, enhances the interactions of melusin with Hsp90 and Sgt1. Furthermore, melusin acquires the ADP preference for Hsp90 binding in the presence of Ca2+. Our newly discovered nucleotide-dependent interactions between cochaperones might provide additional complexity to the dynamics of the Hsp90 chaperone system, also suggesting potential Hsp90-independent roles for these cochaperones. PMID:23184943

  17. Dynamic nucleotide-dependent interactions of cysteine- and histidine-rich domain (CHORD)-containing Hsp90 cochaperones Chp-1 and melusin with cochaperones PP5 and Sgt1.

    PubMed

    Hong, Tae-Joon; Kim, Sangkyu; Wi, Ah Ram; Lee, Peter; Kang, Miae; Jeong, Jae-Hoon; Hahn, Ji-Sook

    2013-01-04

    Mammals have two cysteine- and histidine-rich domain (CHORD)-containing Hsp90 cochaperones, Chp-1 and melusin, which are homologs of plant Rar1. It has been shown previously that Rar1 CHORD directly interacts with ADP bound to the nucleotide pocket of Hsp90. Here, we report that ADP and ATP can bind to Hsp90 cochaperones Chp-1 and PP5, inducing their conformational changes. Furthermore, we demonstrate that Chp-1 and melusin can interact with cochaperones PP5 and Sgt1 and with each other in an ATP-dependent manner. Based on the known structure of the Rar1-Hsp90 complex, His-186 has been identified as an important residue of Chp-1 for ADP/ATP binding. His-186 is necessary for the nucleotide-dependent interaction of Chp-1 not only with Hsp90 but also with Sgt1. In addition, Ca(2+), which is known to bind to melusin, enhances the interactions of melusin with Hsp90 and Sgt1. Furthermore, melusin acquires the ADP preference for Hsp90 binding in the presence of Ca(2+). Our newly discovered nucleotide-dependent interactions between cochaperones might provide additional complexity to the dynamics of the Hsp90 chaperone system, also suggesting potential Hsp90-independent roles for these cochaperones.

  18. Crystal structure of the Candida albicans Kar3 kinesin motor domain fused to maltose-binding protein

    SciTech Connect

    Delorme, Caroline; Joshi, Monika; Allingham, John S.

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer The Candida albicans Kar3 motor domain structure was solved as a maltose-binding protein fusion. Black-Right-Pointing-Pointer The electrostatic surface and part of the ATPase pocket of the motor domain differs markedly from other kinesins. Black-Right-Pointing-Pointer The MBP-Kar3 interface highlights a new site for intramolecular or intermolecular interactions. -- Abstract: In the human fungal pathogen Candida albicans, the Kinesin-14 motor protein Kar3 (CaKar3) is critical for normal mitotic division, nuclear fusion during mating, and morphogenic transition from the commensal yeast form to the virulent hyphal form. As a first step towards detailed characterization of this motor of potential medical significance, we have crystallized and determined the X-ray structure of the motor domain of CaKar3 as a maltose-binding protein (MBP) fusion. The structure shows strong conservation of overall motor domain topology to other Kar3 kinesins, but with some prominent differences in one of the motifs that compose the nucleotide-binding pocket and the surface charge distribution. The MBP and Kar3 modules are arranged such that MBP interacts with the Kar3 motor domain core at the same site where the neck linker of conventional kinesins docks during the 'ATP state' of the mechanochemical cycle. This site differs from the Kar3 neck-core interface in the recent structure of the ScKar3Vik1 heterodimer. The position of MBP is also completely distinct from the Vik1 subunit in this complex. This may suggest that the site of MBP interaction on the CaKar3 motor domain provides an interface for the neck, or perhaps a partner subunit, at an intermediate state of its motile cycle that has not yet been observed for Kinesin-14 motors.

  19. Effect of mutational alteration of Asn-128 in the putative GTP-binding domain of tetracycline resistance determinant Tet(O) from Campylobacter jejuni.

    PubMed Central

    Grewal, J; Manavathu, E K; Taylor, D E

    1993-01-01

    The deduced amino acid sequence of Campylobacter jejuni Tet(O), cloned in Escherichia coli, has shown that it contains the five highly conserved sequences of the GTP-binding domain found in other GTPases. Asn-128 belongs to the G4 motif of such a domain and is involved in hydrogen bonding with the guanine ring of the nucleotide. Substitution of Asn-128 by 11 other amino acids resulted in a decrease in tetracycline resistance, indicating that tetracycline resistance conferred by Tet(O) is related to GTP binding. The effect of the mutations on the GTP-binding domain is discussed with the EF-Tu-GDP complex as a model. PMID:8109930

  20. Trinitrophenyl-ATP blocks colonic Cl- channels in planar phospholipid bilayers. Evidence for two nucleotide binding sites

    PubMed Central

    1993-01-01

    Outwardly rectifying 30-50-pS Cl- channels mediate cell volume regulation and transepithelial transport. Several recent reports indicate that rectifying Cl- channels are blocked after addition of ATP to the extracellular bath (Alton, E. W. F. W., S. D. Manning, P. J. Schlatter, D. M. Geddes, and A. J. Williams. 1991. Journal of Physiology. 443:137-159; Paulmichl, M., Y. Li, K. Wickman, M. Ackerman, E. Peralta, and D. Clapham. 1992. Nature. 356:238-241). Therefore, we decided to conduct a more detailed study of the ATP binding site using a higher affinity probe. We tested the ATP derivative, 2',3',O-(2,4,6- trinitrocyclohexadienylidene) adenosine 5'-triphosphate (TNP-ATP), which has a high affinity for certain nucleotide binding sites. Here we report that TNP-ATP blocked colonic Cl- channels when added to either bath and that blockade was consistent with the closed-open-blocked kinetic model. The TNP-ATP concentration required for a 50% decrease in open probability was 0.27 microM from the extracellular (cis) side and 20 microM from the cytoplasmic (trans) side. Comparison of the off rate constants revealed that TNP-ATP remained bound 28 times longer when added to the extracellular side compared with the cytoplasmic side. We performed competition studies to determine if TNP-ATP binds to the same sites as ATP. Addition of ATP to the same bath containing TNP-ATP reduced channel amplitude and increased the time the channel spent in the open and fast-blocked states (i.e., burst duration). This is the result expected if TNP-ATP and ATP compete for block, presumably by binding to common sites. In contrast, addition of ATP to the bath opposite to the side containing TNP-ATP reduced amplitude but did not alter burst duration. This is the result expected if opposite-sided TNP- ATP and ATP bind to different sites. In summary, we have identified an ATP derivative that has a nearly 10-fold higher affinity for reconstituted rectifying colonic Cl- channels than any previously

  1. Binding to retinoblastoma pocket domain does not alter the inter-domain flexibility of the J domain of SV40 large T antigen.

    PubMed

    Williams, Christina K; Vaithiyalingam, Sivaraja; Hammel, Michal; Pipas, James; Chazin, Walter J

    2012-02-15

    Simian Virus 40 uses the large T antigen (Tag) to bind and inactivate retinoblastoma tumor suppressor proteins (Rb), which can result in cellular transformation. Tag is a modular protein with four domains connected by flexible linkers. The N-terminal J domain of Tag is necessary for Rb inactivation. Binding of Rb is mediated by an LXCXE consensus motif immediately C-terminal to the J domain. Nuclear magnetic resonance (NMR) and small angle X-ray scattering (SAXS) were used to study the structural dynamics and interaction of Rb with the LXCXE motif, the J domain and a construct (N(260)) extending from the J domain through the origin binding domain (OBD). NMR and SAXS data revealed substantial flexibility between the domains in N(260). Binding of pRb to a construct containing the LXCXE motif and the J domain revealed weak interactions between pRb and the J domain. Analysis of the complex of pRb and N(260) indicated that the OBD is not involved and retains its dynamic independence from the remainder of Tag. These results support a 'chaperone' model in which the J domain of Tag changes its orientation as it acts upon different protein complexes.

  2. Decoding ChIP-seq with a double-binding signal refines binding peaks to single-nucleotides and predicts cooperative interaction

    PubMed Central

    Gomes, Antonio L.C.; Abeel, Thomas; Peterson, Matthew; Azizi, Elham; Lyubetskaya, Anna; Carvalho, Luís

    2014-01-01

    The comprehension of protein and DNA binding in vivo is essential to understand gene regulation. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) provides a global map of the regulatory binding network. Most ChIP-seq analysis tools focus on identifying binding regions from coverage enrichment. However, less work has been performed to infer the physical and regulatory details inside the enriched regions. This research extends a previous blind-deconvolution approach to develop a post-peak–calling algorithm that improves binding site resolution and predicts cooperative interactions. At the core of our new method is a physically motivated model that characterizes the binding signal as an extreme value distribution. This model suggests a mathematical framework to study physical properties of DNA shearing from the ChIP-seq coverage. The model explains the ChIP-seq coverage with two signals: The first considers DNA fragments with only a single binding event, whereas the second considers fragments with two binding events (a double-binding signal). The model incorporates motif discovery and is able to detect multiple sites in an enriched region with single-nucleotide resolution, high sensitivity, and high specificity. Our method improves peak caller sensitivity, from less than 45% up to 94%, at a false positive rate <11% for a set of 47 experimentally validated prokaryotic sites. It also improves resolution of highly enriched regions of large-scale eukaryotic data sets. The double-binding signal provides a novel application in ChIP-seq analysis: the identification of cooperative interaction. Predictions of known cooperative binding sites show a 0.85 area under an ROC curve. PMID:25024162

  3. Decoding ChIP-seq with a double-binding signal refines binding peaks to single-nucleotides and predicts cooperative interaction.

    PubMed

    Gomes, Antonio L C; Abeel, Thomas; Peterson, Matthew; Azizi, Elham; Lyubetskaya, Anna; Carvalho, Luís; Galagan, James

    2014-10-01

    The comprehension of protein and DNA binding in vivo is essential to understand gene regulation. Chromatin immunoprecipitation followed by sequencing (ChIP-seq) provides a global map of the regulatory binding network. Most ChIP-seq analysis tools focus on identifying binding regions from coverage enrichment. However, less work has been performed to infer the physical and regulatory details inside the enriched regions. This research extends a previous blind-deconvolution approach to develop a post-peak-calling algorithm that improves binding site resolution and predicts cooperative interactions. At the core of our new method is a physically motivated model that characterizes the binding signal as an extreme value distribution. This model suggests a mathematical framework to study physical properties of DNA shearing from the ChIP-seq coverage. The model explains the ChIP-seq coverage with two signals: The first considers DNA fragments with only a single binding event, whereas the second considers fragments with two binding events (a double-binding signal). The model incorporates motif discovery and is able to detect multiple sites in an enriched region with single-nucleotide resolution, high sensitivity, and high specificity. Our method improves peak caller sensitivity, from less than 45% up to 94%, at a false positive rate < 11% for a set of 47 experimentally validated prokaryotic sites. It also improves resolution of highly enriched regions of large-scale eukaryotic data sets. The double-binding signal provides a novel application in ChIP-seq analysis: the identification of cooperative interaction. Predictions of known cooperative binding sites show a 0.85 area under an ROC curve. © 2014 Gomes et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Determination of the minimal essential nucleotide sequence for diphtheria tox repressor binding by in vitro affinity selection.

    PubMed

    Tao, X; Murphy, J R

    1994-09-27

    The expression of diphtheria toxin in lysogenic toxigenic strains of Corynebacterium diphtheriae is controlled by the heavy metal ion-activated regulatory protein DtxR. In the presence of divalent heavy metal ions, DtxR specifically binds to the diphtheria tox operator and protects a 27-bp interrupted palindromic sequence from DNase I digestion. To determine the consensus DNA sequence for DtxR binding, we have used gel electrophoresis mobility-shift assay and polymerase chain reaction (PCR) amplification for in vitro affinity selection of DNA binding sequences from a universe of 6.9 x 10(10) variants. After 10 rounds of in vitro affinity selection, each round coupled with 30 cycles of PCR amplification, we isolated and characterized a family of DNA sequences that function as DtxR-responsive genetic elements both in vitro and in vivo. Moreover, these DNA sequences were found to bind activated DtxR with an affinity similar to that of the wild-type tox operator. The DNA sequence analysis of 21 unique in vitro affinity-selected binding sites has revealed the minimal essential nucleotide sequence for DtxR binding to be a 9-bp palindrome separated by a single base pair.

  5. Quantitation of the Calcium and Membrane Binding Properties of the C2 Domains of Dysferlin

    PubMed Central

    Abdullah, Nazish; Padmanarayana, Murugesh; Marty, Naomi J.; Johnson, Colin P.

    2014-01-01

    Dysferlin is a large membrane protein involved in calcium-triggered resealing of the sarcolemma after injury. Although it is generally accepted that dysferlin is Ca2+ sensitive, the Ca2+ binding properties of dysferlin have not been characterized. In this study, we report an analysis of the Ca2+ and membrane binding properties of all seven C2 domains of dysferlin as well as a multi-C2 domain construct. Isothermal titration calorimetry measurements indicate that all seven dysferlin C2 domains interact with Ca2+ with a wide range of binding affinities. The C2A and C2C domains were determined to be the most sensitive, with Kd values in the tens of micromolar, whereas the C2D domain was least sensitive, with a near millimolar Kd value. Mutagenesis of C2A demonstrates the requirement for negatively charged residues in the loop regions for divalent ion binding. Furthermore, dysferlin displayed significantly lower binding affinity for the divalent cations magnesium and strontium. Measurement of a multidomain construct indicates that the solution binding affinity does not change when C2 domains are linked. Finally, sedimentation assays suggest all seven C2 domains bind lipid membranes, and that Ca2+ enhances but is not required for interaction. This report reveals for the first time, to our knowledge, that all dysferlin domains bind Ca2+ albeit with varying affinity and stoichiometry. PMID:24461013

  6. Comparison of Saccharomyces cerevisiae F-BAR Domain Structures Reveals a Conserved Inositol Phosphate Binding Site

    DOE PAGES

    Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R.; ...

    2015-01-22

    F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although they are generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important.