Science.gov

Sample records for nucleotide polymorphism rs1050450

  1. Pro198Leu polymorphism affects the selenium status and GPx activity in response to Brazil nut intake.

    PubMed

    Cardoso, Bárbara R; Busse, Alexandre L; Hare, Dominic J; Cominetti, Cristiane; Horst, Maria A; McColl, Gawain; Magaldi, Regina M; Jacob-Filho, Wilson; Cozzolino, Silvia M F

    2016-02-01

    Selenoproteins play important roles in antioxidant mechanisms, and are thus hypothesised to have some involvement in the pathology of certain types of dementia. Mild cognitive impairment (MCI) and Alzheimer's disease (AD) are both thought to involve impaired biological activity of certain selenoproteins. Previously, supplementation with a selenium-rich Brazil nut (Bertholletia excelsa) has shown potential in reducing cognitive decline in MCI patients, and could prove to be a safe and effective nutritional approach early in the disease process to slow decline. Here, we have conducted a pilot study that examined the effects of a range of single nucleotide polymorphisms (SNPs) in genes encoding the selenoproteins glutathione peroxidase (GPX1) and selenoprotein P (SEPP) in response to selenium supplementation via dietary Brazil nuts, including selenium status, oxidative stress parameters and GPX1 and SEPP gene expression. Our data suggest that GPX1 Pro198Leu rs1050450 genotypes may differentially affect the selenium status and GPx activity. Moreover, rs7579 and rs3877899 SNPs in SEPP gene, as well as GPX1 rs1050450 genotypes can influence the expression of GPX1 and SEPP mRNA in response to Brazil nuts intake. This small study gives cause for larger investigations into the role of these SNPs in both the selenium status and response to selenium dietary intake, especially in chronic degenerative conditions like MCI and AD.

  2. The Single Nucleotide Polymorphism Consortium

    NASA Technical Reports Server (NTRS)

    Morgan, Michael

    2003-01-01

    I want to discuss both the Single Nucleotide Polymorphism (SNP) Consortium and the Human Genome Project. I am afraid most of my presentation will be thin on law and possibly too high on rhetoric. Having been engaged in a personal and direct way with these issues as a trained scientist, I find it quite difficult to be always as objective as I ought to be.

  3. GLUTATHIONE PEROXIDASE-1 PRO200LEU POLYMORPHISM (RS1050450) IS ASSOCIATED WITH MORBID OBESITY INDEPENDENTLY OF THE PRESENCE OF PREDIABETES OR DIABETES IN WOMEN FROM CENTRAL MEXICO.

    PubMed

    Hernández Guerrero, César; Hernández Chávez, Paulina; Martínez Castro, Noemí; Parra Carriedo, Alicia; García Del Rio, Sandra; Pérez Lizaur, Ana

    2015-10-01

    Introducción: la obesidad afecta a una tercera parte de la población mexicana. El estrés oxidativo (EO) participa activamente en la etiología del fenómeno. La glutatión peroxidasa-1 (GPx-1) juega un papel protector contra el EO. El SNP Pro200Leu (rs10504050) afecta a la actividad de la enzima. Objetivo: determinar la frecuencia del polimorfismo rs10504050 en mujeres con obesidad (OB) y normopeso (CG), determinar la concentración de TBARS en sangre periférica y evaluar el consumo de pro y antioxidantes. Métodos: en el estudio se incluyeron 104 mujeres con obesidad y 70 controles. El polimorfismo rs10504050 se determinó por el método PCR/RFLP. La concentración de TBARS se cuantificó mediante espectrofotometría en plasma sanguíneo. Las participantes se estratificaron y compararon por grados de obesidad y subgrupos de prediabetes y diabetes. Se emplearon las pruebas estadísticas ANOVA de Kruskal Wallis, Xi cuadrada y correlación de Pearson. Resultados: el polimorfismo rs10504050 mostró diferencias estadísticas (Xi2 = 6; p = 0,01) entre la frecuencia del grupo OB (0,61) por arrastre (Pro/Leu+Leu/Leu) y el CG (0,42), así como (Xi2 = 8; p = 0,004) entre personas con obesidad mórbida (0,74) comparadas con el CG. No hubo diferencia significativa entre las frecuencias del rs10504050 en OB con pre o diabetes, comparado con el CG, ni con personas con obesidad sin diabetes. Las concentraciones de TBARS fueron mayores en todos los grados de OB comparados con el CG. Conclusión: el polimorfismo rs10504050 se asoció con obesidad, especialmente mórbida, pero no se asoció con diabetes o prediabetes. El estrés oxidativo está presente de manera significativa en todos los grados de obesidad.

  4. Single Nucleotide Polymorphisms and Osteoarthritis

    PubMed Central

    Wang, Ting; Liang, Yuting; Li, Hong; Li, Haibo; He, Quanze; Xue, Ying; Shen, Cong; Zhang, Chunhua; Xiang, Jingjing; Ding, Jie; Qiao, Longwei; Zheng, Qiping

    2016-01-01

    Abstract Osteoarthritis (OA) is a complex disorder characterized by degenerative articular cartilage and is largely attributed to genetic risk factors. Single nucleotide polymorphisms (SNPs) are common DNA variants that have shown promising and efficiency, compared with positional cloning, to map candidate genes of complex diseases, including OA. In this study, we aim to provide an overview of multiple SNPs from a number of genes that have recently been linked to OA susceptibility. We also performed a comprehensive meta-analysis to evaluate the association of SNP rs7639618 of double von Willebrand factor A domains (DVWA) gene with OA susceptibility. A systematic search of studies on the association of SNPs with susceptibility to OA was conducted in PubMed and Google scholar. Studies subjected to meta-analysis include human and case-control studies that met the Hardy–Weinberg equilibrium model and provide sufficient data to calculate an odds ratio (OR). A total of 9500 OA cases and 9365 controls in 7 case-control studies relating to SNP rs7639618 were included in this study and the ORs with 95% confidence intervals (CIs) were calculated. Over 50 SNPs from different genes have been shown to be associated with either hip (23), or knee (20), or both (13) OA. The ORs of these SNPs for OA and the subtypes are not consistent. As to SNP rs7639618 of DVWA, increased knee OA risk was observed in all genetic models analyzed. Specifically, people from Asian with G-allele showed significantly increased risk of knee OA (A versus G: OR = 1.28, 95% CI 1.13–1.46; AA versus GG: OR = 1.60, 95% CI 1.25–2.05; GA versus GG: OR = 1.31, 95% CI 1.18–1.44; AA versus GA+GG: OR = 1.34, 95% CI 1.12–1.61; AA+GA versus GG: OR = 1.40, 95% CI 1.19–1.64), but not in Caucasians or with hip OA. Our results suggest that multiple SNPs play different roles in the pathogenesis of OA and its subtypes; SNP rs7639618 of DVWA gene is associated with a significantly increased

  5. Association between Polymorphisms in Antioxidant Genes and Inflammatory Bowel Disease

    PubMed Central

    Coelho, Rosa; Grácio, Daniela; Silva, Marco; Peixoto, Armando; Lago, Paula; Pereira, Márcia; Catarino, Telmo; Pinho, Salomé; Teixeira, João Paulo; Macedo, Guilherme; Annese, Vito

    2017-01-01

    Inflammation is the driving force in inflammatory bowel disease (IBD) and its link to oxidative stress and carcinogenesis has long been accepted. The antioxidant system of the intestinal mucosa in IBD is compromised resulting in increased oxidative injury. This defective antioxidant system may be the result of genetic variants in antioxidant genes, which can represent susceptibility factors for IBD, namely Crohn’s disease (CD) and ulcerative colitis (UC). Single nucleotide polymorphisms (SNPs) in the antioxidant genes SOD2 (rs4880) and GPX1 (rs1050450) were genotyped in a Portuguese population comprising 436 Crohn’s disease and 367 ulcerative colitis patients, and 434 healthy controls. We found that the AA genotype in GPX1 is associated with ulcerative colitis (OR = 1.93, adjusted P-value = 0.037). Moreover, we found nominal significant associations between SOD2 and Crohn’s disease susceptibility and disease subphenotypes but these did not withstand the correction for multiple testing. These findings indicate a possible link between disease phenotypes and antioxidant genes. These results suggest a potential role for antioxidant genes in IBD pathogenesis and should be considered in future association studies. PMID:28052094

  6. Association between Polymorphisms in Antioxidant Genes and Inflammatory Bowel Disease.

    PubMed

    Costa Pereira, Cristiana; Durães, Cecília; Coelho, Rosa; Grácio, Daniela; Silva, Marco; Peixoto, Armando; Lago, Paula; Pereira, Márcia; Catarino, Telmo; Pinho, Salomé; Teixeira, João Paulo; Macedo, Guilherme; Annese, Vito; Magro, Fernando

    2017-01-01

    Inflammation is the driving force in inflammatory bowel disease (IBD) and its link to oxidative stress and carcinogenesis has long been accepted. The antioxidant system of the intestinal mucosa in IBD is compromised resulting in increased oxidative injury. This defective antioxidant system may be the result of genetic variants in antioxidant genes, which can represent susceptibility factors for IBD, namely Crohn's disease (CD) and ulcerative colitis (UC). Single nucleotide polymorphisms (SNPs) in the antioxidant genes SOD2 (rs4880) and GPX1 (rs1050450) were genotyped in a Portuguese population comprising 436 Crohn's disease and 367 ulcerative colitis patients, and 434 healthy controls. We found that the AA genotype in GPX1 is associated with ulcerative colitis (OR = 1.93, adjusted P-value = 0.037). Moreover, we found nominal significant associations between SOD2 and Crohn's disease susceptibility and disease subphenotypes but these did not withstand the correction for multiple testing. These findings indicate a possible link between disease phenotypes and antioxidant genes. These results suggest a potential role for antioxidant genes in IBD pathogenesis and should be considered in future association studies.

  7. Single nucleotide polymorphisms and suicidal behaviour.

    PubMed

    Pregelj, Peter

    2012-09-01

    The World Health Organization estimates that almost one million deaths each year are attributable to suicide, and suicide attempt is close to 10 times more common than suicide completion. Suicidal behaviour has multiple causes that are broadly divided into proximal stressors or triggers and predisposition such as genetic. It is also known that single nucleotide polymorphisms (SNPs) occur throughout a human DNA influencing the structure, quantity and the function of proteins and other molecules. Abnormalities of the serotonergic system were observed in suicide victims. Beside 5-HT1A and other serotonin receptors most studied are the serotonin transporter 5' functional promoter variant, and monoamine oxidase A and the tryptophan-hydroxylase 1 and 2 (TPH) polymorphisms. It seems that especially genes regulating serotoninergic system and neuronal systems involved in stress response are associated with suicidal behaviour. Most genetic studies on suicidal behaviour have considered a small set of functional polymorphisms relevant mostly to monoaminergic neurotransmission. However, genes involved in regulation of other factors such as brain-derived neurotropic factor seems to be even more relevant for further research.

  8. Single-nucleotide polymorphism discovery by targeted DNA photocleavage.

    PubMed

    Hart, Jonathan R; Johnson, Martin D; Barton, Jacqueline K

    2004-09-28

    Single-nucleotide polymorphisms are the largest source of genetic variation in humans. We report a method for the discovery of single-nucleotide polymorphisms within genomic DNA. Pooled genomic samples are amplified, denatured, and annealed to generate mismatches at polymorphic DNA sites. Upon photoactivation, these DNA mismatches are then cleaved site-specifically by using a small molecular probe, a bulky metallointercalator, Rhchrysi or Rhphzi. Fluorescent labeling of the cleaved products and separation by capillary electrophoresis permits rapid identification with single-base resolution of the single-nucleotide polymorphism site. This method is remarkably sensitive and minor allele frequencies as low as 5% can be readily detected.

  9. Time-resolved FRET for single-nucleotide polymorphism genotyping

    NASA Astrophysics Data System (ADS)

    Andreoni, Alessandra; Nardo, Luca; Bondani, Maria

    2009-05-01

    By tens-of-picosecond resolved fluorescence detection (TCSPC, time-correlated single-photon counting) we study Förster resonance energy transfer between a donor and a black-hole-quencher acceptor bound at the 5'- and 3'-positions of a synthetic DNA oligonucleotide. This dual labelled oligonucleotide is annealed with either the complementary sequence or with sequences that mimic single-nucleotide polymorphic gene sequences: they differ in one nucleotide at positions near either the ends or the center of the oligonucleotide. We find donor fluorescence decay times whose values are definitely distinct and discuss the feasibility of single nucleotide polymorphism genotyping by this method.

  10. Compositions and methods for detecting single nucleotide polymorphisms

    SciTech Connect

    Yeh, Hsin-Chih; Werner, James; Martinez, Jennifer S.

    2016-11-22

    Described herein are nucleic acid based probes and methods for discriminating and detecting single nucleotide variants in nucleic acid molecules (e.g., DNA). The methods include use of a pair of probes can be used to detect and identify polymorphisms, for example single nucleotide polymorphism in DNA. The pair of probes emit a different fluorescent wavelength of light depending on the association and alignment of the probes when hybridized to a target nucleic acid molecule. Each pair of probes is capable of discriminating at least two different nucleic acid molecules that differ by at least a single nucleotide difference. The methods can probes can be used, for example, for detection of DNA polymorphisms that are indicative of a particular disease or condition.

  11. Discovery, Validation and Characterization of 1039 Cattle Single Nucleotide Polymorphisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We identified approximately 13000 putative single nucleotide polymorphisms (SNPs) by comparison of repeat-masked BAC-end sequences from the cattle RPCI-42 BAC library with whole-genome shotgun contigs of cattle genome assembly Btau 1.0. Genotyping of a subset of these SNPs was performed on a panel ...

  12. A Laboratory Exercise for Genotyping Two Human Single Nucleotide Polymorphisms

    ERIC Educational Resources Information Center

    Fernando, James; Carlson, Bradley; LeBard, Timothy; McCarthy, Michael; Umali, Finianne; Ashton, Bryce; Rose, Ferrill F., Jr.

    2016-01-01

    The dramatic decrease in the cost of sequencing a human genome is leading to an era in which a wide range of students will benefit from having an understanding of human genetic variation. Since over 90% of sequence variation between humans is in the form of single nucleotide polymorphisms (SNPs), a laboratory exercise has been devised in order to…

  13. Single Nucleotide Polymorphisms Predict Symptom Severity of Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Jiao, Yun; Chen, Rong; Ke, Xiaoyan; Cheng, Lu; Chu, Kangkang; Lu, Zuhong; Herskovits, Edward H.

    2012-01-01

    Autism is widely believed to be a heterogeneous disorder; diagnosis is currently based solely on clinical criteria, although genetic, as well as environmental, influences are thought to be prominent factors in the etiology of most forms of autism. Our goal is to determine whether a predictive model based on single-nucleotide polymorphisms (SNPs)…

  14. Single nucleotide polymorphism for animal fibre identification.

    PubMed

    Subramanian, Selvi; Karthik, T; Vijayaraaghavan, N N

    2005-03-16

    Animal fibres are highly valuable industrial products often adulterated during marketing. Currently, there is no precise method available to identify and differentiate the fibres. In this study, a PCR-RFLP technique was exploited to differentiate cashmere and wool fibres derived from goat and sheep, respectively. The presence of DNA in animal hair shafts has enabled the isolation of DNA from scoured cashmere and wool fibres. The mitochondrial cytochrome b sequences of both species were amplified by PCR using primers designed from conserved regions. The polymorphism observed between the two species was detected by restricting the amplified product by endonucleases viz., BamH1 and Ssp1. The RFLP profile clearly distinguishes the cashmere and wool fibres and this technique can also be exploited to test adulteration in animal fibres qualitatively.

  15. Insertions/Deletions-Associated Nucleotide Polymorphism in Arabidopsis thaliana

    PubMed Central

    Guo, Changjiang; Du, Jianchang; Wang, Long; Yang, Sihai; Mauricio, Rodney; Tian, Dacheng; Gu, Tingting

    2016-01-01

    Although high levels of within-species variation are commonly observed, a general mechanism for the origin of such variation is still lacking. Insertions and deletions (indels) are a widespread feature of genomes and we hypothesize that there might be an association between indels and patterns of nucleotide polymorphism. Here, we investigate flanking sequences around 18 indels (>100 bp) among a large number of accessions of the plant, Arabidopsis thaliana. We found two distinct haplotypes, i.e., a nucleotide dimorphism, present around each of these indels and dimorphic haplotypes always corresponded to the indel-present/-absent patterns. In addition, the peaks of nucleotide diversity between the two divergent alleles were closely associated with these indels. Thus, there exists a close association between indels and dimorphisms. Further analysis suggests that indel-associated substitutions could be an important component of genetic variation shaping nucleotide polymorphism in Arabidopsis. Finally, we suggest a mechanism by which indels might generate these highly divergent haplotypes. This study provides evidence that nucleotide dimorphisms, which are frequently regarded as evidence of frequency-dependent selection, could be explained simply by structural variation in the genome. PMID:27965694

  16. Single nucleotide polymorphisms and linkage disequilibrium in sunflower.

    PubMed

    Kolkman, Judith M; Berry, Simon T; Leon, Alberto J; Slabaugh, Mary B; Tang, Shunxue; Gao, Wenxiang; Shintani, David K; Burke, John M; Knapp, Steven J

    2007-09-01

    Genetic diversity in modern sunflower (Helianthus annuus L.) cultivars (elite oilseed inbred lines) has been shaped by domestication and breeding bottlenecks and wild and exotic allele introgression(-)the former narrowing and the latter broadening genetic diversity. To assess single nucleotide polymorphism (SNP) frequencies, nucleotide diversity, and linkage disequilibrium (LD) in modern cultivars, alleles were resequenced from 81 genic loci distributed throughout the sunflower genome. DNA polymorphisms were abundant; 1078 SNPs (1/45.7 bp) and 178 insertions-deletions (INDELs) (1/277.0 bp) were identified in 49.4 kbp of DNA/genotype. SNPs were twofold more frequent in noncoding (1/32.1 bp) than coding (1/62.8 bp) sequences. Nucleotide diversity was only slightly lower in inbred lines ( = 0.0094) than wild populations ( = 0.0128). Mean haplotype diversity was 0.74. When extraploted across the genome ( approximately 3500 Mbp), sunflower was predicted to harbor at least 76.4 million common SNPs among modern cultivar alleles. LD decayed more slowly in inbred lines than wild populations (mean LD declined to 0.32 by 5.5 kbp in the former, the maximum physical distance surveyed), a difference attributed to domestication and breeding bottlenecks. SNP frequencies and LD decay are sufficient in modern sunflower cultivars for very high-density genetic mapping and high-resolution association mapping.

  17. Single nucleotide polymorphism analysis using different colored dye dimer probes

    NASA Astrophysics Data System (ADS)

    Marmé, Nicole; Friedrich, Achim; Denapaite, Dalia; Hakenbeck, Regine; Knemeyer, Jens-Peter

    2006-09-01

    Fluorescence quenching by dye dimer formation has been utilized to develop hairpin-structured DNA probes for the detection of a single nucleotide polymorphism (SNP) in the penicillin target gene pbp2x, which is implicated in the penicillin resistance of Streptococcus pneumoniae. We designed two specific DNA probes for the identification of the pbp2x genes from a penicillin susceptible strain R6 and a resistant strain Streptococcus mitis 661 using green-fluorescent tetramethylrhodamine (TMR) and red-fluorescent DY-636, respectively. Hybridization of each of the probes to its respective target DNA sequence opened the DNA hairpin probes, consequently breaking the nonfluorescent dye dimers into fluorescent species. This hybridization of the target with the hairpin probe achieved single nucleotide specific detection at nanomolar concentrations via increased fluorescence.

  18. Thoroughbred Horse Single Nucleotide Polymorphism and Expression Database: HSDB

    PubMed Central

    Lee, Joon-Ho; Lee, Taeheon; Lee, Hak-Kyo; Cho, Byung-Wook; Shin, Dong-Hyun; Do, Kyoung-Tag; Sung, Samsun; Kwak, Woori; Kim, Hyeon Jeong; Kim, Heebal; Cho, Seoae; Park, Kyung-Do

    2014-01-01

    Genetics is important for breeding and selection of horses but there is a lack of well-established horse-related browsers or databases. In order to better understand horses, more variants and other integrated information are needed. Thus, we construct a horse genomic variants database including expression and other information. Horse Single Nucleotide Polymorphism and Expression Database (HSDB) (http://snugenome2.snu.ac.kr/HSDB) provides the number of unexplored genomic variants still remaining to be identified in the horse genome including rare variants by using population genome sequences of eighteen horses and RNA-seq of four horses. The identified single nucleotide polymorphisms (SNPs) were confirmed by comparing them with SNP chip data and variants of RNA-seq, which showed a concordance level of 99.02% and 96.6%, respectively. Moreover, the database provides the genomic variants with their corresponding transcriptional profiles from the same individuals to help understand the functional aspects of these variants. The database will contribute to genetic improvement and breeding strategies of Thoroughbreds. PMID:25178365

  19. Single nucleotide polymorphisms in type 2 diabetes among Hispanic adults.

    PubMed

    Watson, Amanda L; Hu, Jie; Chiu, Norman H L

    2015-05-01

    In this pilot study, we explore the genetic variation that may relate to type 2 diabetes (T2D) among Hispanic adults. The genotypes of 36 Hispanic adults were analyzed by using the Cardio-Metabochip. The goal is to identify single nucleotide polymorphisms (SNPs) associated to T2D among Hispanic adults. A total of 26 SNPs were identified to be associated with T2D among Hispanic adults. None of these SNPs have been reported for T2D. By using the principle components analysis to analyze the genotype of 26 SNPs in 36 samples, the samples obtained from diabetic patients could be distinguished from the control samples. The findings support genetic involvement in T2D among Hispanic adults.

  20. High-Throughput Genotyping with Single Nucleotide Polymorphisms

    PubMed Central

    Ranade, Koustubh; Chang, Mau-Song; Ting, Chih-Tai; Pei, Dee; Hsiao, Chin-Fu; Olivier, Michael; Pesich, Robert; Hebert, Joan; Chen, Yii-Der I.; Dzau, Victor J.; Curb, David; Olshen, Richard; Risch, Neil; Cox, David R.; Botstein, David

    2001-01-01

    To make large-scale association studies a reality, automated high-throughput methods for genotyping with single-nucleotide polymorphisms (SNPs) are needed. We describe PCR conditions that permit the use of the TaqMan or 5′ nuclease allelic discrimination assay for typing large numbers of individuals with any SNP and computational methods that allow genotypes to be assigned automatically. To demonstrate the utility of these methods, we typed >1600 individuals for a G-to-T transversion that results in a glutamate-to-aspartate substitution at position 298 in the endothelial nitric oxide synthase gene, and a G/C polymorphism (newly identified in our laboratory) in intron 8 of the 11–β hydroxylase gene. The genotyping method is accurate—we estimate an error rate of fewer than 1 in 2000 genotypes, rapid—with five 96-well PCR machines, one fluorescent reader, and no automated pipetting, over one thousand genotypes can be generated by one person in one day, and flexible—a new SNP can be tested for association in less than one week. Indeed, large-scale genotyping has been accomplished for 23 other SNPs in 13 different genes using this method. In addition, we identified three “pseudo-SNPs” (WIAF1161, WIAF2566, and WIAF335) that are probably a result of duplication. PMID:11435409

  1. Preterm birth and single nucleotide polymorphisms in cytokine genes

    PubMed Central

    Zhu, Qin; Sun, Jian

    2014-01-01

    Preterm birth (PTB) is an important issue in neonates because of its complications as well as high morbidity and mortality. The prevalence of PTB is approximately 12-13% in USA and 5-9% in many other developed countries. China represents 7.8% (approximately one million) of 14.9 million babies born prematurely annually worldwide. The rate of PTB is still increasing. Both genetic susceptibility and environmental factors are the major causes of PTB. Inflammation is regarded as an enabling characteristic factor of PTB. The aim of this review is to summarize the current literatures to illustrate the role of single nucleotide polymorphisms (SNPs) of cytokine genes in PTB. These polymorphisms are different among different geographic regions and different races, thus different populations may have different risk factors of PTB. SNPs affect the ability to metabolize poisonous substances and determine inflammation susceptibility, which in turn has an influence on reproduction-related risks and on delivery outcomes after exposure to environmental toxicants and pathogenic organisms. PMID:26835330

  2. Genetic diversity of Eurycoma longifolia inferred from single nucleotide polymorphisms.

    PubMed

    Osman, Asiah; Jordan, Barbara; Lessard, Philip A; Muhammad, Norwati; Haron, M Rosli; Riffin, Norifiza Mat; Sinskey, Anthony J; Rha, ChoKyun; Housman, David E

    2003-03-01

    Eurycoma longifolia Jack. is a treelet that grows in the forests of Southeast Asia and is widely used throughout the region because of its reported medicinal properties. Widespread harvesting of wild-grown trees has led to rapid thinning of natural populations, causing a potential decrease in genetic diversity among E. longifolia. Suitable genetic markers would be very useful for propagation and breeding programs to support conservation of this species, although no such markers currently exist. To meet this need, we have applied a genome complexity reduction strategy to identify a series of single nucleotide polymorphisms (SNPs) within the genomes of several E. longifolia accessions. We have found that the occurrence of these SNPs reflects the geographic origins of individual plants and can distinguish different natural populations. This work demonstrates the rapid development of molecular genetic markers in species for which little or no genomic sequence information is available. The SNP markers that we have developed in this study will also be useful for identifying genetic fingerprints that correlate with other properties of E. longifolia, such as high regenerability or the appearance of bioactive metabolites.

  3. Single nucleotide polymorphisms of myostatin gene in Chinese domestic horses.

    PubMed

    Li, Ran; Liu, Dong-Hua; Cao, Chun-Na; Wang, Shao-Qiang; Dang, Rui-Hua; Lan, Xian-Yong; Chen, Hong; Zhang, Tao; Liu, Wu-Jun; Lei, Chu-Zhao

    2014-03-15

    The myostatin gene (MSTN) is a genetic determinant of skeletal muscle growth. Single nucleotide polymorphisms (SNP) in MSTN are of importance due to their strong associations with horse racing performances. In this study, we screened the SNPs in MSTN gene in 514 horses from 15 Chinese horse breeds. Six SNPs (g.26T>C, g.156T>C, g.587A>G, g.598C>T, g.1485C>T, g.2115A>G) in MSTN gene were detected by sequencing and genotyped using PCR-RFLP method. The g.587A>G and g.598C>T residing in the 5'UTR region were novel SNPs identified by this study. The g.2115A>G which have previously been associated with racing performances were present in Chinese horse breeds, providing valuable genetic information for evaluating the potential racing performances in Chinese domestic breeds. The six SNPs together defined thirteen haplotypes, demonstrating abundant haplotype diversities in Chinese horses. Most of the haplotypes were shared among different breeds with no haplotype restricted to a specific region or a single horse breed. AMOVA analysis indicated that most of the genetic variance was attributable to differences among individuals without any significant contribution by the four geographical groups. This study will provide fundamental and instrumental genetic information for evaluating the potential racing performances of Chinese horse breeds.

  4. ADH single nucleotide polymorphism associations with alcohol metabolism in vivo

    PubMed Central

    Birley, Andrew J.; James, Michael R.; Dickson, Peter A.; Montgomery, Grant W.; Heath, Andrew C.; Martin, Nicholas G.; Whitfield, John B.

    2009-01-01

    We have previously found that variation in alcohol metabolism in Europeans is linked to the chromosome 4q region containing the ADH gene family. We have now typed 103 single nucleotide polymorphisms (SNPs) across this region to test for allelic associations with variation in blood and breath alcohol concentrations after an alcohol challenge. In vivo alcohol metabolism was modelled with three parameters that identified the absorption and rise of alcohol concentration following ingestion, and the rate of elimination. Alleles of ADH7 SNPs were associated with the early stages of alcohol metabolism, with additional effects in the ADH1A, ADH1B and ADH4 regions. Rate of elimination was associated with SNPs in the intragenic region between ADH7 and ADH1C, and across ADH1C and ADH1B. SNPs affecting alcohol metabolism did not correspond to those reported to affect alcohol dependence or alcohol-related disease. The combined SNP associations with early- and late-stage metabolism only account for approximately 20% of the total genetic variance linked to the ADH region, and most of the variance for in vivo alcohol metabolism linked to this region is yet to be explained. PMID:19193628

  5. Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster

    SciTech Connect

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed; Mapa, Felipa A.; Ruddy, David A.; Ryan, Jessica J.; Young, Lynn M.; Wells, Trent; Kopczynski, Casey; Ellis, Michael C.

    2001-04-16

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that have recently revolutionized human, mouse and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila using an STS-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that the genome. The majority of these markers are single nucleotide polymorphisms (SNPs) and sequences for these variants are provided in an accessible format. The average density of the new markers is 1 marker per 225 kb on the autosomes and 1 marker per 1 Mb on the X chromosome. We include in this survey a set of P-element strains that provide additional utility for high-resolution mapping. We demonstrate one application of the new markers in a simple set of crosses to map a mutation in the hedgehog gene to an interval of <1 Mb. This new map resource significantly increases the efficiency and resolution of recombination mapping and will be of immediate value to the Drosophila research community.

  6. Single Nucleotide Polymorphism Clustering in Systemic Autoimmune Diseases

    PubMed Central

    Charlon, Thomas; Bossini-Castillo, Lara; Carmona, F. David; Di Cara, Alessandro; Wojcik, Jérôme; Voloshynovskiy, Sviatoslav

    2016-01-01

    Systemic Autoimmune Diseases, a group of chronic inflammatory conditions, have variable symptoms and difficult diagnosis. In order to reclassify them based on genetic markers rather than clinical criteria, we performed clustering of Single Nucleotide Polymorphisms. However naive approaches tend to group patients primarily by their geographic origin. To reduce this “ancestry signal”, we developed SNPClust, a method to select large sources of ancestry-independent genetic variations from all variations detected by Principal Component Analysis. Applied to a Systemic Lupus Erythematosus case control dataset, SNPClust successfully reduced the ancestry signal. Results were compared with association studies between the cases and controls without or with reference population stratification correction methods. SNPClust amplified the disease discriminating signal and the ratio of significant associations outside the HLA locus was greater compared to population stratification correction methods. SNPClust will enable the use of ancestry-independent genetic information in the reclassification of Systemic Autoimmune Diseases. SNPClust is available as an R package and demonstrated on the public Human Genome Diversity Project dataset at https://github.com/ThomasChln/snpclust. PMID:27490238

  7. Effectiveness of single-nucleotide polymorphisms to investigate cattle rustling.

    PubMed

    Fernández, María E; Rogberg-Muñoz, Andrés; Lirón, Juan P; Goszczynski, Daniel E; Ripoli, María V; Carino, Mónica H; Peral-García, Pilar; Giovambattista, Guillermo

    2014-11-01

    Short tandem repeats (STR)s have been the eligible markers for forensic animal genetics, despite single-nucleotide polymorphisms (SNP)s became acceptable. The technology, the type, and amount of markers could limit the investigation in degraded forensic samples. The performance of a 32-SNP panel genotyped through OpenArrays(TM) (real-time PCR based) was evaluated to resolve cattle-specific forensic cases. DNA from different biological sources was used, including samples from an alleged instance of cattle rustling. SNPs and STRs performance and repeatability were compared. SNP call rate was variable among sample type (average = 80.18%), while forensic samples showed the lowest value (70.94%). The repeatability obtained (98.7%) supports the used technology. SNPs had better call rates than STRs in 12 of 20 casework samples, while forensic index values were similar for both panels. In conclusion, the 32-SNPs used are as informative as the standard bovine STR battery and hence are suitable to resolve cattle rustling investigations.

  8. Single nucleotide polymorphisms in nucleotide excision repair genes, cancer treatment, and head and neck cancer survival

    PubMed Central

    Wyss, Annah B.; Weissler, Mark C.; Avery, Christy L.; Herring, Amy H.; Bensen, Jeannette T.; Barnholtz-Sloan, Jill S.; Funkhouser, William K.

    2014-01-01

    Purpose Head and neck cancers (HNC) are commonly treated with radiation and platinum-based chemotherapy, which produce bulky DNA adducts to eradicate cancerous cells. Because nucleotide excision repair (NER) enzymes remove adducts, variants in NER genes may be associated with survival among HNC cases both independently and jointly with treatment. Methods Cox proportional hazards models were used to estimate race-stratified (White, African American) hazard ratios (HRs) and 95 % confidence intervals for overall (OS) and disease-specific (DS) survival based on treatment (combinations of surgery, radiation, and chemotherapy) and 84 single nucleotide polymorphisms (SNPs) in 15 NER genes among 1,227 HNC cases from the Carolina Head and Neck Cancer Epidemiology Study. Results None of the NER variants evaluated were associated with survival at a Bonferroni-corrected alpha of 0.0006. However, rs3136038 [OS HR = 0.79 (0.65, 0.97), DS HR = 0.69 (0.51, 0.93)] and rs3136130 [OS HR = 0.78 (0.64, 0.96), DS HR = 0.68 (0.50, 0.92)] of ERCC4 and rs50871 [OS HR = 0.80 (0.64, 1.00), DS HR = 0.67 (0.48, 0.92)] of ERCC2 among Whites, and rs2607755 [OS HR = 0.62 (0.45, 0.86), DS HR = 0.51 (0.30, 0.86)] of XPC among African Americans were suggestively associated with survival at an uncorrected alpha of 0.05. Three SNP-treatment joint effects showed possible departures from additivity among Whites. Conclusions Our study, a large and extensive evaluation of SNPs in NER genes and HNC survival, identified mostly null associations, though a few variants were suggestively associated with survival and potentially interacted additively with treatment. PMID:24487794

  9. Association of prediabetes-associated single nucleotide polymorphisms with microalbuminuria

    PubMed Central

    Choi, Jong Wook; Moon, Shinje; Jang, Eun Jung; Lee, Chang Hwa; Park, Joon-Sung

    2017-01-01

    Increased glycemic exposure, even below the diagnostic criteria for diabetes mellitus, is crucial in the pathogenesis of diabetic microvascular complications represented by microalbuminuria. Nonetheless, there is limited evidence regarding which single nucleotide polymorphisms (SNPs) are associated with prediabetes and whether genetic predisposition to prediabetes is related to microalbuminuria, especially in the general population. Our objective was to answer these questions. We conducted a genomewide association study (GWAS) separately on two population-based cohorts, Ansung and Ansan, in the Korean Genome and Epidemiology Study (KoGES). The initial GWAS was carried out on the Ansung cohort, followed by a replication study on the Ansan cohort. A total of 5682 native Korean participants without a significant medical illness were classified into either control group (n = 3153) or prediabetic group (n = 2529). In the GWAS, we identified two susceptibility loci associated with prediabetes, one at 17p15.3-p15.1 in the GCK gene and another at 7p15.1 in YKT6. When variations in GCK and YKT6 were used as a model of prediabetes, this genetically determined prediabetes increased microalbuminuria. Multiple logistic regression analyses revealed that fasting glucose concentration in plasma and SNP rs2908289 in GCK were associated with microalbuminuria, and adjustment for age, gender, smoking history, systolic blood pressure, waist circumference, and serum triglyceride levels did not attenuate this association. Our results suggest that prediabetes and the associated SNPs may predispose to microalbuminuria before the diagnosis of diabetes mellitus. Further studies are needed to explore the details of the physiological and molecular mechanisms underlying this genetic association. PMID:28158221

  10. Association of prediabetes-associated single nucleotide polymorphisms with microalbuminuria.

    PubMed

    Choi, Jong Wook; Moon, Shinje; Jang, Eun Jung; Lee, Chang Hwa; Park, Joon-Sung

    2017-01-01

    Increased glycemic exposure, even below the diagnostic criteria for diabetes mellitus, is crucial in the pathogenesis of diabetic microvascular complications represented by microalbuminuria. Nonetheless, there is limited evidence regarding which single nucleotide polymorphisms (SNPs) are associated with prediabetes and whether genetic predisposition to prediabetes is related to microalbuminuria, especially in the general population. Our objective was to answer these questions. We conducted a genomewide association study (GWAS) separately on two population-based cohorts, Ansung and Ansan, in the Korean Genome and Epidemiology Study (KoGES). The initial GWAS was carried out on the Ansung cohort, followed by a replication study on the Ansan cohort. A total of 5682 native Korean participants without a significant medical illness were classified into either control group (n = 3153) or prediabetic group (n = 2529). In the GWAS, we identified two susceptibility loci associated with prediabetes, one at 17p15.3-p15.1 in the GCK gene and another at 7p15.1 in YKT6. When variations in GCK and YKT6 were used as a model of prediabetes, this genetically determined prediabetes increased microalbuminuria. Multiple logistic regression analyses revealed that fasting glucose concentration in plasma and SNP rs2908289 in GCK were associated with microalbuminuria, and adjustment for age, gender, smoking history, systolic blood pressure, waist circumference, and serum triglyceride levels did not attenuate this association. Our results suggest that prediabetes and the associated SNPs may predispose to microalbuminuria before the diagnosis of diabetes mellitus. Further studies are needed to explore the details of the physiological and molecular mechanisms underlying this genetic association.

  11. Discovery of nucleotide polymorphisms in the Musa gene pool by Ecotilling.

    PubMed

    Till, Bradley J; Jankowicz-Cieslak, Joanna; Sági, László; Huynh, Owen A; Utsushi, Hiroe; Swennen, Rony; Terauchi, Ryohei; Mba, Chikelu

    2010-11-01

    Musa (banana and plantain) is an important genus for the global export market and in local markets where it provides staple food for approximately 400 million people. Hybridization and polyploidization of several (sub)species, combined with vegetative propagation and human selection have produced a complex genetic history. We describe the application of the Ecotilling method for the discovery and characterization of nucleotide polymorphisms in diploid and polyploid accessions of Musa. We discovered over 800 novel alleles in 80 accessions. Sequencing and band evaluation shows Ecotilling to be a robust and accurate platform for the discovery of polymorphisms in homologous and homeologous gene targets. In the process of validating the method, we identified two single nucleotide polymorphisms that may be deleterious for the function of a gene putatively important for phototropism. Evaluation of heterozygous polymorphism and haplotype blocks revealed a high level of nucleotide diversity in Musa accessions. We further applied a strategy for the simultaneous discovery of heterozygous and homozygous polymorphisms in diploid accessions to rapidly evaluate nucleotide diversity in accessions of the same genome type. This strategy can be used to develop hypotheses for inheritance patterns of nucleotide polymorphisms within and between genome types. We conclude that Ecotilling is suitable for diversity studies in Musa, that it can be considered for functional genomics studies and as tool in selecting germplasm for traditional and mutation breeding approaches.

  12. Characterization of single nucleotide polymorphism markers for the green sea turtle (Chelonia mydas).

    PubMed

    Roden, Suzanne E; Dutton, Peter H; Morin, Phillip A

    2009-05-01

    We present data on 29 new single nucleotide polymorphism assays for the green sea turtle, Chelonia mydas. DNA extracts from 39 green turtles were used for two methods of single nucleotide polymorphism discovery. The first approach employed an amplified fragment length polymorphism technique. The second technique screened a microsatellite library. Allele-specific amplification assays were developed for high-throughput single nucleotide polymorphism genotyping and tested on two Pacific C. mydas nesting populations. Observed heterozygosities ranged from 0 to 0.95 for a Hawaiian population and from 0 to 0.85 for a Galapagos population. Each of the populations had one locus out of Hardy-Weinberg equilibrium, SSCM2b and SSCM5 for Hawaii and Galapagos, respectively. No loci showed significant genotypic linkage disequilibrium across an expanded set of four Pacific nesting populations. However, two loci, SSCM4 and SSCM10b showed linkage disequilibrium across three populations indicating possible association.

  13. Germline TP53 mutations and single nucleotide polymorphisms in children.

    PubMed

    Valva, Pamela; Becker, Pablo; Streitemberger, Patricia; Lombardi, García Mercedes; Rey, Guadalupe; Guzman, Carlos A; Preciado, María Victoria

    2009-01-01

    Mutations in the gene TP53, which codifies the tumor suppressor protein p53, are found in about 50% of tumors. These mutations can occur not only at somatic level, but also in germline. Pediatric cancer patients, mostly with additional family history of malignancy, should be considered as potential TP53 germline mutation carriers. Germline TP53 mutations and polymorphisms have been widely studied to determine their relation with different tumors' pathogenesis. Our aim was to analyze the occurrence frequency of germline TP53 mutations and polymorphisms and to relate these to tumor development in a pediatric series. Peripheral blood mononuclear cell samples from 26 children with solid tumors [PST] and 21 pediatric healthy donors [HD] were analyzed for germline mutations and polymorphisms in TP53 gene spanning from exon 5 to 8 including introns 5 and 7. These PCR amplified fragments were sequenced to determine variations. A heterozygous mutation at codon 245 was found in 1/26 PST and 0/21 HD. Comparative polymorphisms distribution, at position 14181 and 14201(intron 7), between HD and PST revealed a trend of association (p= 0.07) with cancer risk. HD group disclosed a similar polymorphism distribution as published data for Caucasian and Central/South American populations. This is the first study about TP53 variant frequency and distribution in healthy individuals and cancer patients in Argentina.

  14. Discovery of nucleotide polymorphisms in the Musa gene pool by Ecotilling

    PubMed Central

    Jankowicz-Cieslak, Joanna; Sági, László; Huynh, Owen A.; Utsushi, Hiroe; Swennen, Rony; Terauchi, Ryohei; Mba, Chikelu

    2010-01-01

    Musa (banana and plantain) is an important genus for the global export market and in local markets where it provides staple food for approximately 400 million people. Hybridization and polyploidization of several (sub)species, combined with vegetative propagation and human selection have produced a complex genetic history. We describe the application of the Ecotilling method for the discovery and characterization of nucleotide polymorphisms in diploid and polyploid accessions of Musa. We discovered over 800 novel alleles in 80 accessions. Sequencing and band evaluation shows Ecotilling to be a robust and accurate platform for the discovery of polymorphisms in homologous and homeologous gene targets. In the process of validating the method, we identified two single nucleotide polymorphisms that may be deleterious for the function of a gene putatively important for phototropism. Evaluation of heterozygous polymorphism and haplotype blocks revealed a high level of nucleotide diversity in Musa accessions. We further applied a strategy for the simultaneous discovery of heterozygous and homozygous polymorphisms in diploid accessions to rapidly evaluate nucleotide diversity in accessions of the same genome type. This strategy can be used to develop hypotheses for inheritance patterns of nucleotide polymorphisms within and between genome types. We conclude that Ecotilling is suitable for diversity studies in Musa, that it can be considered for functional genomics studies and as tool in selecting germplasm for traditional and mutation breeding approaches. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1395-5) contains supplementary material, which is available to authorized users. PMID:20589365

  15. Genome-wide divergence and linkage disequilibrium analyses for Capsicum baccatum revealed by genome-anchored single nucleotide polymorphisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to show the distribution of these 2 important incompatible cultivated pepper species. Estimated mean nucleotide...

  16. Increasing the number of single nucleotide polymorphisms used in genomic evaluation of dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GeneSeek designed a new version of the GeneSeek Genomic Profiler HD BeadChip for Dairy Cattle, which had >77,000 single nucleotide polymorphisms (SNPs). A set of >140,000 SNPs was selected that included all SNPs on the existing GeneSeek chip, all SNPs used in U.S. national genomic evaluations, SNPs ...

  17. Verification of genetic identity of introduced cacao germplasm in Ghana using single nucleotide polymorphism (SNP) markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate identification of individual genotypes is important for cacao (Theobroma cacao L.) breeding, germplasm conservation and seed propagation. The development of single nucleotide polymorphism (SNP) markers in cacao offers an effective way to use a high-throughput genotyping system for cacao gen...

  18. Identification of Single Nucleotide Polymorphism Markers in the Laccase Gene of Shiitake Mushrooms (Lentinula edodes)

    PubMed Central

    Kim, Ki-Hwan; Ka, Kang-Hyeon; Kang, Ji Hyoun; Kim, Sangil; Lee, Jung Won; Jeon, Bong-Kyun; Yun, Jung-Kuk

    2015-01-01

    We identified single nucleotide polymorphism (SNP) markers in the laccase gene to establish a line-diagnostic system for shiitake mushrooms. A total of 89 fungal isolates representing four lines, including Korean registered, Korean wild type, Chinese, and Japanese lines, were analyzed. The results suggest that SNP markers in the laccase gene can be useful for line typing in shiitake mushrooms. PMID:25892919

  19. Development of Single Nucleotide Polymorphism (SNP) Markers for Use in Commercial Maize (Zea Mays L.) Germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of single nucleotide polymorphism (SNP) markers in maize offer the opportunity to utilize DNA markers in many new areas of population genetics, gene discovery, plant breeding, and germplasm identification. However, the steps from sequencing and SNP discovery to SNP marker design and ...

  20. Subtyping of Salmonella enterica subspecies I using single nucleotide polymorphisms in adenylate cyclase (cyaA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single nucleotide polymorphisms (SNPs) were characterized within adenylate cyclas...

  1. Lineage and genogroup-defining single nucleotide polymorphisms of Escherichia coli 0157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli O157:H7 is a zoonotic human pathogen for which cattle are an important reservoir host. Using both previously published and new sequencing data, a 48-locus single nucleotide polymorphism (SNP) based typing panel was developed that redundantly identified eleven genogroups that span ...

  2. Association of a single nucleotide polymorphism of calpain 1 gene with meat tenderness of the yak

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The association of a single nucleotide polymorphism (SNP) of calpain 1 (CAPN1) gene with shear force of 2.54 cm steaks from M. longissimus dorsi from Gannan yaks (Bos grunniens, n = 181) was studied. The experimental design was a repeated measures with the main unit in a completely randomized design...

  3. Robust embryo identification using first polar body single nucleotide polymorphism microarray-based DNA fingerprinting.

    PubMed

    Treff, Nathan R; Su, Jing; Kasabwala, Natasha; Tao, Xin; Miller, Kathleen A; Scott, Richard T

    2010-05-01

    This study sought to validate a novel, minimally invasive system for embryo tracking by single nucleotide polymorphism microarray-based DNA fingerprinting of the first polar body. First polar body-based assignments of which embryos implanted and were delivered after multiple ET were 100% consistent with previously validated embryo DNA fingerprinting-based assignments.

  4. Short communication: Relationship of call rate and accuracy of single nucleotide polymorphism genotypes in dairy cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Call rate has been used as a measure of quality on both a single nucleotide polymorphism (SNP) and animal basis since SNP genotypes were first used in genomic evaluation of dairy cattle. The genotyping laboratories perform initial quality control screening and genotypes that fail are usually exclude...

  5. Effect of inversion polymorphism on the neutral nucleotide variability of linked chromosomal regions in Drosophila.

    PubMed Central

    Navarro, A; Barbadilla, A; Ruiz, A

    2000-01-01

    Recombination is a main factor determining nucleotide variability in different regions of the genome. Chromosomal inversions, which are ubiquitous in the genus Drosophila, are known to reduce and redistribute recombination, and thus their specific effect on nucleotide variation may be of major importance as an explanatory factor for levels of DNA variation. Here, we use the coalescent approach to study this effect. First, we develop analytical expressions to predict nucleotide variability in old inversion polymorphisms that have reached mutation-drift-flux equilibrium. The effects on nucleotide variability of a new arrangement appearing in the population and reaching a stable polymorphism are then studied by computer simulation. We show that inversions modulate nucleotide variability in a complex way. The establishment of an inversion polymorphism involves a partial selective sweep that eliminates part of the variability in the population. This is followed by a slow convergence to the equilibrium values. During this convergence, regions close to the breakpoints exhibit much lower variability than central regions. However, at equilibrium, regions close to the breakpoints have higher levels of variability and differentiation between arrangements than regions in the middle of the inverted segment. The implications of these findings for overall variability levels during the evolution of Drosophila species are discussed. PMID:10835391

  6. A novel technique for detecting single nucleotide polymorphisms by analyzing consumed allele-specific primers.

    PubMed

    Watanabe, G; Umetsu, K; Yuasa, I; Sato, M; Sakabe, M; Naito, E; Yamanouchi, H; Suzuki, T

    2001-02-01

    We present a simple and rapid polymerase chain reaction (PCR)-based technique, termed consumed allele-specific primer analysis (CASPA), as a new strategy for single nucleotide polymorphism (SNP) analysis. The method involves the use of labeled allele-specific primers, differing in length, with several noncomplementary nucleotides added in the 5'-terminal region. After PCR amplification, the amounts of the remaining primers not incorporated into the PCR products are determined. Thus, nucleotide substitutions are identified by measuring the consumption of primers. In this study, the CASPA method was successfully applied to ABO genotyping. In the present method, the allele-specific primer only anneals with the target polymorphic site on the DNA, so it is not necessary to analyze the PCR products. Therefore, this method is only little affected by modification of the PCR products. The CASPA method is expected to be a useful tool for typing of SNPs.

  7. Associations between single nucleotide polymorphisms in multiple candidate genes and body weight in rabbits

    PubMed Central

    El-Sabrout, Karim; Aggag, Sarah A.

    2017-01-01

    Aim: In this study, we examined parts of six growth genes (growth hormone [GH], melanocortin 4 receptor [MC4R], growth hormone receptor [GHR], phosphorglycerate mutase [PGAM], myostatin [MSTN], and fibroblast growth factor [FGF]) as specific primers for two rabbit lines (V-line, Alexandria) using nucleotide sequence analysis, to investigate association between detecting single nucleotide polymorphism (SNP) of these genes and body weight (BW) at market. Materials and Methods: Each line kits were grouped into high and low weight rabbits to identify DNA markers useful for association studies with high BW. DNA from blood samples of each group was extracted to amplify the six growth genes. SNP technique was used to study the associate polymorphism in the six growth genes and marketing BW (at 63 days) in the two rabbit lines. The purified polymerase chain reaction products were sequenced in those had the highest and lowest BW in each line. Results: Alignment of sequence data from each group revealed the following SNPs: At nucleotide 23 (A-C) and nucleotide 35 (T-G) in MC4R gene (sense mutation) of Alexandria and V-line high BW. Furthermore, we detected the following SNPs variation between the two lines: A SNP (T-C) at nucleotide 27 was identified by MC4R gene (sense mutation) and another one (A-C) at nucleotide 14 was identified by GHR gene (nonsense mutation) of Alexandria line. The results of individual BW at market (63 days) indicated that Alexandria rabbits had significantly higher BW compared with V-line rabbits. MC4R polymorphism showed significant association with high BW in rabbits. Conclusion: The results of polymorphism demonstrate the possibility to detect an association between BW in rabbits and the efficiency of the used primers to predict through the genetic specificity using the SNP of MC4R. PMID:28246458

  8. Implications of single nucleotide polymorphisms in CD44 exon 2 for risk of breast cancer.

    PubMed

    Zhou, Juhua; Nagarkatti, Prakash S; Zhong, Yin; Zhang, Jiajia; Nagarkatti, Mitzi

    2011-09-01

    CD44 is a cell-surface glycoprotein involved in many cellular functions including lymphocyte activation, recirculation and homing, hematopoiesis and tumor metastasis, suggesting that CD44 may play an important role in breast cancer development. In this study, we examined whether CD44 exon 2 polymorphisms are associated with increased susceptibility to breast cancer. Direct nucleotide sequencing analysis showed that multiple single nucleotide polymorphisms were present in the CD44 exon 2 coding region in female patients with breast cancer. There was no significant difference in the frequency of any one single nucleotide polymorphism in the CD44 exon 2 coding region between patients with breast cancer and normal donors. However, CD44 polymorphisms in the CD44 exon 2 coding region were identified in approximately 40% of patients with breast cancer, which was significantly higher than in normal donors (odds ratio, 9.34; 95% confidence interval = 2.58-33.82; P < 0.0001). The Wilcoxon-Mann-Whitney test analysis showed that the patients with the CD44 polymorphisms in CD44 exon 2 coding sequence had breast cancer at earlier ages, 49 ± 3 versus 62 ± 2 years (P < 0.0005), and larger tumor burdens (4.9 ± 1.22 vs. 1.6 ± 0.15 mm, P < 0.01) at the time of diagnosis. Interestingly, African-American female patients having the CD44 polymorphisms in CD44 exon 2 coding sequence were diagnosed with breast cancer at very young age (41 ± 2 years). Our results show that CD44 exon 2 polymorphisms are associated with breast cancer development, and such analysis may be effectively used in the evaluation of risk, prediction of cancer, prevention, diagnosis, and epidemiological studies of breast cancer.

  9. The Label-Free Unambiguous Detection and Symbolic Display of Single Nucleotide Polymorphisms on DNA Origami

    PubMed Central

    Subramanian, Hari K. K.; Chakraborty, Banani; Sha, Ruojie; Seeman, Nadrian C.

    2011-01-01

    Single Nucleotide Polymorphisms (SNPs) are the most common genetic variation in the human genome. Kinetic methods based on branch migration have proved successful for detecting SNPs because a mispair inhibits the progress of branch migration in the direction of the mispair. We have combined the effectiveness of kinetic methods with AFM of DNA origami patterns to produce a direct visual readout of the target nucleotide contained in the probe sequence. The origami contains graphical representations of the four nucleotide alphabetic characters, A, T, G and C, and the symbol containing the test nucleotide identity vanishes in the presence of the probe. The system also works with pairs of probes, corresponding to heterozygous diploid genomes. PMID:21235216

  10. Single nucleotide polymorphisms as susceptibility, prognostic, and therapeutic markers of nonsmall cell lung cancer

    PubMed Central

    Zienolddiny, Shanbeh; Skaug, Vidar

    2012-01-01

    Lung cancer is a major public health problem throughout the world. Among the most frequent cancer types (prostate, breast, colorectal, stomach, lung), lung cancer is the leading cause of cancer-related deaths worldwide. Among the two major subtypes of small cell lung cancer and nonsmall cell lung cancer (NSCLC), 85% of tumors belong to the NSCLC histological types. Small cell lung cancer is associated with the shortest survival time. Although tobacco smoking has been recognized as the major risk factor for lung cancer, there is a great interindividual and interethnic difference in risk of developing lung cancer given exposure to similar environmental and lifestyle factors. This may indicate that in addition to chemical and environmental factors, genetic variations in the genome may contribute to risk modification. A common type of genetic variation in the genome, known as single nucleotide polymorphism, has been found to be associated with susceptibility to lung cancer. Interestingly, many of these polymorphisms are found in the genes that regulate major pathways of carcinogen metabolism (cytochrome P450 genes), detoxification (glutathione S-transferases), adduct removal (DNA repair genes), cell growth/apoptosis (TP53/MDM2), the immune system (cytokines/chemokines), and membrane receptors (nicotinic acetylcholine and dopaminergic receptors). Some of these polymorphisms have been shown to alter the level of mRNA, and protein structure and function. In addition to being susceptibility markers, several of these polymorphisms are emerging to be important for response to chemotherapy/radiotherapy and survival of patients. Therefore, it is hypothesized that single nucleotide polymorphisms will be valuable genetic markers in individual-based prognosis and therapy in future. Here we will review some of the most important single nucleotide polymorphisms in the metabolic pathways that may modulate susceptibility, prognosis, and therapy in NSCLC. PMID:28210120

  11. High-Resolution Mapping of Structural Mutations in Prostate Cancer with Single Nucleotide Polymorphism Arrays

    DTIC Science & Technology

    2006-11-01

    recurrent phyllodes tumor and fibroa- denoma of breast using single nucleotide polymorphism arrays. Breast Cancer Res Treat 2006; 97:301–309. 21...neutral LOH). Interestingly, copy-neutral LOH, which is undetectable by conventional CGH methods, represents up to 80% of LOH events in some tumor ...the notion that LOH represents a key mechanism for tumor suppressor inactivation. Indeed, nearly all common tumor suppressor genes occur in regions

  12. Single nucleotide polymorphisms in the upstream regulatory region alter the expression of myostatin.

    PubMed

    Hu, Wei; Chen, Songyu; Zhang, Ran; Lin, Yushuang

    2013-06-01

    The expression of the gene encoding myostatin (MSTN), the product of which is a negative regulator of skeletal muscle growth and development in mammals, is regulated by many cis-regulatory elements, including enhancer box (E-box) motifs. While E-box motif mutants of MSTN exhibit altered expression of myostatin in many animal models, the phenotypes of these mutations in chicken are not investigated. In this study, we cloned and sequenced the full encoded DNA sequence of MSTN gene and its upstream promoter region in Wenshang Luhua chicken breed. After analysis of the sequence, 13 E-box motifs were identified in the MSTN promoter region, which were denoted by E1 to E13 according to their positions in the region. Although many single nucleotide polymorphisms (SNPs) were revealed in the MSTN promoter region, only two SNPs were in the E-boxes, i.e., the first nucleotide of the E3 and the fifth nucleotide of E4. The effects of these two polymorphisms on the expression of MSTN gene were explored both with MSTN-GFP reporter constructs in vitro and real-time PCR in vivo. The results suggested that the E-boxes in the chicken MSTN promoter region are involved in the regulation of myostatin expression and the polymorphisms in E3 and E4 altered the expression of myostatin.

  13. Computational Analysis of Single Nucleotide Polymorphisms Associated with Altered Drug Responsiveness in Type 2 Diabetes

    PubMed Central

    Costa, Valerio; Federico, Antonio; Pollastro, Carla; Ziviello, Carmela; Cataldi, Simona; Formisano, Pietro; Ciccodicola, Alfredo

    2016-01-01

    Type 2 diabetes (T2D) is one of the most frequent mortality causes in western countries, with rapidly increasing prevalence. Anti-diabetic drugs are the first therapeutic approach, although many patients develop drug resistance. Most drug responsiveness variability can be explained by genetic causes. Inter-individual variability is principally due to single nucleotide polymorphisms, and differential drug responsiveness has been correlated to alteration in genes involved in drug metabolism (CYP2C9) or insulin signaling (IRS1, ABCC8, KCNJ11 and PPARG). However, most genome-wide association studies did not provide clues about the contribution of DNA variations to impaired drug responsiveness. Thus, characterizing T2D drug responsiveness variants is needed to guide clinicians toward tailored therapeutic approaches. Here, we extensively investigated polymorphisms associated with altered drug response in T2D, predicting their effects in silico. Combining different computational approaches, we focused on the expression pattern of genes correlated to drug resistance and inferred evolutionary conservation of polymorphic residues, computationally predicting the biochemical properties of polymorphic proteins. Using RNA-Sequencing followed by targeted validation, we identified and experimentally confirmed that two nucleotide variations in the CAPN10 gene—currently annotated as intronic—fall within two new transcripts in this locus. Additionally, we found that a Single Nucleotide Polymorphism (SNP), currently reported as intergenic, maps to the intron of a new transcript, harboring CAPN10 and GPR35 genes, which undergoes non-sense mediated decay. Finally, we analyzed variants that fall into non-coding regulatory regions of yet underestimated functional significance, predicting that some of them can potentially affect gene expression and/or post-transcriptional regulation of mRNAs affecting the splicing. PMID:27347941

  14. A robust method for detecting single-nucleotide changes as polymorphic markers by PCR.

    PubMed

    Michaels, S D; Amasino, R M

    1998-05-01

    Numerous techniques in plant molecular genetic analysis, such as mapping and positional cloning techniques, rely on the availability of molecular markers that can differentiate between alleles at a particular locus. PCR-based cleaved amplified polymorphic sequences (CAPS) markers have been widely used as a means of rapidly and reliably detecting a single-base change that creates a unique restriction site in one of a pair of alleles. However, the majority of single-nucleotide changes do not create such sites and thus cannot be used to create CAPS markers. In this paper, a modification of the CAPS technique that allows detection of most single-nucleotide changes by utilizing mismatched PCR primers is described. The mismatches in the PCR primers, in combination with the single-nucleotide change, create a unique restriction site in one of the alleles.

  15. Heated oligonucleotide ligation assay (HOLA): an affordable single nucleotide polymorphism assay.

    PubMed

    Black, W C; Gorrochotegui-Escalante, N; Duteau, N M

    2006-03-01

    Most single nucleotide polymorphism (SNP) detection requires expensive equipment and reagents. The oligonucleotide ligation assay (OLA) is an inexpensive SNP assay that detects ligation between a biotinylated "allele-specific detector" and a 3' fluorescein-labeled "reporter" oligonucleotide. No ligation occurs unless the 3' detector nucleotide is complementary to the SNP nucleotide. The original OLA used chemical denaturation and neutralization. Heated OLA (HOLA) instead uses a thermal stable ligase and cycles of denaturing and hybridization for ligation and SNP detection. The cost per genotype is approximately US$1.25 with two-allele SNPs or approximately US$1.75 with three-allele SNPs. We illustrate the development of HOLA for SNP detection in the Early Trypsin and Abundant Trypsin loci in the mosquito Aedes aegypti (L.) and at the a-glycerophosphate dehydrogenase locus in the mosquito Anopheles gambiae s.s.

  16. Genome-wide association study of fertility traits in dairy cattle using high-density single nucleotide polymorphism marker panels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Unfavorable genetic correlations between production and fertility traits are well documented. Genetic selection for fertility traits is slow, however, due to low heritabilities. Identification of single nucleotide polymorphisms (SNP) involved in reproduction could improve reliability of genomic esti...

  17. Multilocus patterns of nucleotide polymorphism and demographic change in Taxodium distichum (Cupressaceae) in the lower Mississippi River alluvial valley

    USGS Publications Warehouse

    Kusumi, Junko; Zidong, Li; Kado, Tomoyuki; Tsumura, Yoshihiko; Middleton, Beth A.; Tachida, Hidenori

    2010-01-01

    Conclusions: Taxodium distichum had significantly higher nucleotide variation than C. japonica, and its patterns of polymorphism contrasted strikingly with those of the latter, which previously has been inferred to have experienced a reduction in population size.

  18. Developing Single Nucleotide Polymorphism (SNP) markers from transcriptome sequences for the identification of longan (Dimocarpus longan) germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in...

  19. Single nucleotide polymorphisms in the ovine casein genes detected by polymerase chain reaction-single strand conformation polymorphism.

    PubMed

    Ceriotti, G; Chessa, S; Bolla, P; Budelli, E; Bianchi, L; Duranti, E; Caroli, A

    2004-08-01

    Casein genetic polymorphisms are important and well known due to their effects on quantitative traits and technological properties of milk. At the DNA level, polymerase chain reaction (PCR)-single-strand conformation polymorphism (SSCP) allows for the simultaneous typing of several alleles at casein loci, as well as the detection of unknown polymorphisms. Here we describe the usefulness of the PCR-SSCP technique for casein typing in sheep. In particular, three single-nucleotide polymorphisms (SNP) are described at CSN1S1, CSN2, and CSN3, all resulting in amino acid exchanges. At CSN1S1, a transition T-->C was found, resulting in the deduced amino acid exchange Ile186-->Thr186. A transition A-->G resulting in the deduced amino acid exchange Met183-->Val183 was identified at CSN2. The 2 SNP showed a rather high frequency (ranging from 0.12 to 0.26) in 3 Italian breeds (Sarda, Comisana, Sopravissana). Another transition C-->T (Ser104-->Leu104) was found at CSN3 in one heterozygous animal.

  20. IMPDH2 genetic polymorphism: a promoter single-nucleotide polymorphism disrupts a cyclic adenosine monophosphate responsive element.

    PubMed

    Garat, Anne; Cauffiez, Christelle; Hamdan-Khalil, Rima; Glowacki, François; Devos, Aurore; Leclerc, Julie; Lionet, Arnaud; Allorge, Delphine; Lo-Guidice, Jean-Marc; Broly, Franck

    2009-12-01

    Inosine 5'-monophosphate dehydrogenase (IMPDH), which catalyzes a key step in the de novo biosynthesis of guanine nucleotide, is mediated by two highly conserved isoforms, IMPDH1 and IMPDH2. In this study, IMPDH2 genetic polymorphism was investigated in 96 individuals of Caucasian origin. Four single-nucleotide polymorphisms were identified, comprising one previously described single base-pair substitution in the close vicinity of the consensus donor splice site of intron 7 (IVS7+10T>C), and three novel polymorphisms, one silent substitution in exon 9 (c.915C>G), one single base-pair insertion (g.6971_6972insT) within the 3'-untranslated region of the gene, and one substitution located in the promoter region (c.-95T>G) in a transcription factor binding site CRE(A) (cyclic adenosine monophosphate [cAMP] response element). Considering the nature and location of this latter polymorphism, its functional relevance was examined by transfecting HEK293 and Jurkat cell lines with constructs of the related region of IMPDH2/luciferase reporter gene. The c.-95T>G mutation leads to a significant decrease of luciferase activity (HEK293: 55% decrease, p < 0.05; Jurkat: 65% decrease, p < 0.05) compared with the wild-type promoter sequence and, therefore, is likely to determine interindividual differences in IMPDH2 transcriptional regulation. These results might contribute to a better understanding of the variability in clinical outcome and dose adjustments of certain immunosuppressors that are metabolized through the IMPDH pathway or that are IMPDH inhibitors.

  1. Single strand conformation polymorphism is a sensitive method for screening nucleotide variations in Mycosphaerella graminicola.

    PubMed

    Siah, A; Tisserant, B; El Chartouni, L; Deweer, C; Roisin-Fichter, C; Sanssené, J; Durand, R; Reignault, Ph; Halama, P

    2010-01-01

    Single Strand Conformation Polymorphism (SSCP) and sequencing were performed in order to assess molecular polymorphism of mating type sequences in the heterothallic ascomycete Mycosphaerella graminicola, the causal agent of Septoria tritici blotch of wheat. The screening was undertaken on mat1-1 and mat1-2 partial sequences of 341 and 657 bp, respectively, amplified with multiplex PCR from 510 French single-conidial strains plus the two reference isolates IPO323 and IPO94269 from The Netherlands. After restriction with Taq1 in order to reduce the fragment sizes, all digested amplicons were subjected to SSCP. Sequencing was then performed when a SSCP pattern deviates from the most frequently occurring profile. Among the assessed strains, 228 ones plus IPO323 were MAT1-1 and 282 ones plus IPO94269 were MAT1-2. Among the MAT1-1 strains, only a single one exhibited a SSCP profile distinct to the other MAT1-1 strains, whereas 10 MAT1-2 strains (among which 2 and 4 with same profiles, respectively) showed a SSCP profile differing to the other MAT1-2 strains. Sequencing revealed that all polymorphisms observed on SSCP gels were single nucleotide variations and all strains displaying the same SSCP profiles showed identical nucleotide sequences. Among the seven disclosed nucleotide variations, only two were non-synonymous and both were non-conservative. This study reports a high sensitivity of SSCP allowing detection of single point mutations in M. graminicola, shows a conservation of mating type idiomorphs in the fungus at both sequence and population scales, but also suggests a difference in polymorphism level between the two mating type sequences.

  2. Single Nucleotide Polymorphisms in Nucleotide Excision Repair Genes, Cigarette Smoking, and the Risk of Head and Neck Cancer

    PubMed Central

    Wyss, Annah B.; Herring, Amy H.; Avery, Christy L.; Weissler, Mark C.; Bensen, Jeannette T.; Barnholtz-Sloan, Jill S.; Funkhouser, William K.; Olshan, Andrew F.

    2013-01-01

    Background Cigarette smoking is associated with increased head and neck cancer (HNC) risk. Tobacco-related carcinogens are known to cause bulky DNA adducts. Nucleotide excision repair (NER) genes encode enzymes that remove adducts and may be independently associated with HNC, as well as modifiers of the association between smoking and HNC. Methods Using population-based case-control data from the Carolina Head and Neck Cancer Epidemiology Study (1,227 cases, 1,325 controls), race-stratified (white, African American) conventional and hierarchical logistic regression models were utilized to estimate odds ratios (OR) with 95% intervals (I) for the independent and joint effects of cigarette smoking and 84 single nucleotide polymorphisms (SNPs) from 15 NER genes on HNC risk. Results The odds of HNC were elevated among ever cigarette smokers, and increased with smoking duration and frequency. Among whites, rs4150403 on ERCC3 was associated with increased HNC odds (AA+AG vs. GG, OR=1.28, 95% I=1.01,1.61). Among African Americans, rs4253132 on ERCC6 was associated with decreased HNC odds (CC+CT vs. TT, OR=0.62, 95% I=0.45,0.86). Interactions between ever cigarette smoking and three SNPs (rs4253132 on ERCC6, rs2291120 on DDB2, and rs744154 on ERCC4) suggested possible departures from additivity among whites. Conclusions We did not find associations between some previously studied NER variants and HNC. We did identify new associations between two SNPs and HNC and three suggestive cigarette-SNP interactions to consider in future studies. Impact We conducted one of the most comprehensive evaluations of NER variants, identifying a few SNPs from biologically plausible candidate genes associated with HNC and possibly interacting with cigarette smoking. PMID:23720401

  3. Development of 101 novel EST-derived single nucleotide polymorphism markers for Zhikong scallop ( Chlamys farreri)

    NASA Astrophysics Data System (ADS)

    Li, Jiqin; Bao, Zhenmin; Li, Ling; Wang, Xiaojian; Wang, Shi; Hu, Xiaoli

    2013-09-01

    Zhikong scallop ( Chlamys farreri) is an important maricultured species in China. Many researches on this species, such as population genetics and QTL fine-mapping, need a large number of molecular markers. In this study, based on the expressed sequence tags (EST), a total of 300 putative single nucleotide polymorphisms (SNPs) were selected and validated using high resolution melting (HRM) technology with unlabeled probe. Of them, 101 (33.7%) were found to be polymorphic in 48 individuals from 4 populations. Further evaluation with 48 individuals from Qingdao population showed that all the polymorphic loci had two alleles with the minor allele frequency ranged from 0.046 to 0.500. The observed and expected heterozygosities ranged from 0.000 to 0.925 and from 0.089 to 0.505, respectively. Fifteen loci deviated significantly from Hardy-Weinberg equilibrium and significant linkage disequilibrate was detected in one pair of markers. BLASTx gave significant hits for 72 of the 101 polymorphic SNP-containing ESTs. Thirty four polymorphic SNP loci were predicted to be non-synonymous substitutions as they caused either the change of codons (33 SNPs) or pretermination of translation (1 SNP). The markers developed can be used for the population studies and genetic improvement on Zhikong scallop.

  4. rs621554 single nucleotide polymorphism of DLC1 is associated with breast cancer susceptibility and prognosis.

    PubMed

    Ding, Xia; Gao, Sumei; Yang, Qifeng

    2016-05-01

    Deleted in liver cancer 1 (DLC1) on chromosome 8p22, is an important tumor suppressor gene originally identified to be deleted in hepatocellular carcinoma. It can regulate the structure of the actin cytoskeleton and inhibit cell proliferation, motility and angiogenesis, which predominantly depends on its homology to rat RhoGAP. There are many genetic variants in DLC1, which may influence its antitumor efficacy. The rs621554 (IVS19+108C>T) polymorphism is a synonymous single nucleotide polymorphism (SNP) previously found to be associated with hepatocellular carcinoma. In the present study, 453 patients with breast cancer and 330 healthy females were analyzed using a cycling probe method. It was determined that the rs621554 polymorphism of DLC1 was associated with breast cancer susceptibility, with the CC and CT genotypes resulting in a higher risk of developing breast cancer. In regard to clinicopathological variables, it was demonstrated that the CT and CC genotype were associated with tumor size, lymph node metastasis and progesterone receptor status. Patients with the CT and CC genotype had shorter disease-free survival and overall survival rates compared with those with the TT genotype. Additionally, it was demonstrated that the rs621554 polymorphism was correlated with DLC1 expression at the mRNA level. These results suggested that the rs621554 polymorphism is associated with breast cancer susceptibility and prognosis, and may serve as a biomarker for breast cancer development and progression.

  5. Association of the DIO2 gene single nucleotide polymorphisms with recurrent depressive disorder.

    PubMed

    Gałecka, Elżbieta; Talarowska, Monika; Orzechowska, Agata; Górski, Paweł; Bieńkiewicz, Małgorzata; Szemraj, Janusz

    2015-01-01

    Genetic factors may play a role in the etiology of depressive disorder. The type 2 iodothyronine deiodinase gene (DIO2) encoding the enzyme catalyzing the conversion of T4 to T3 is suggested to play a role in the recurrent depressive disorder (rDD). The current study investigates whether a specific single nucleotide polymorphism (SNP) of the DIO2 gene, Thr92Ala (T/C); rs 225014 or ORFa-Gly3Asp (C/T); rs 12885300, correlate with the risk for recurrent depression. Genotypes for these two single nucleotide polymorphisms (SNPs) were determined in 179 patients meeting the ICD-10 criteria for rDD group and in 152 healthy individuals (control group) using a polymerase chain reaction (PCR) based method. The specific variant of the DIO2 gene, namely the CC genotype of the Thr92Ala polymorphism, was more frequently found in healthy subjects than in patients with depression, what suggests that it could potentially serve as a marker of a lower risk for recurrent depressive disorder. The distribution of four haplotypes was also significantly different between the two study groups with the TC (Thr-Gly) haplotype more frequently detected in patients with depression. In conclusion, data generated from this study suggest for the first time that DIO2 gene may play a role in the etiology of the disease, and thus should be further investigated.

  6. A genetic variation map for chicken with 2.8 million single nucleotide polymorphisms

    SciTech Connect

    Wong, G K; Hillier, L; Brandstrom, M; Croojmans, R; Ovcharenko, I; Gordon, L; Stubbs, L; Lucas, S; Glavina, T; Kaiser, P; Gunnarsson, U; Webber, C; Overton, I

    2005-02-20

    We describe a genetic variation map for the chicken genome containing 2.8 million single nucleotide polymorphisms (SNPs), based on a comparison of the sequences of 3 domestic chickens (broiler, layer, Silkie) to their wild ancestor Red Jungle Fowl (RJF). Subsequent experiments indicate that at least 90% are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about 5 SNP/kb for almost every possible comparison between RJF and domestic lines, between two different domestic lines, and within domestic lines--contrary to the idea that domestic animals are highly inbred relative to their wild ancestors. In fact, most of the SNPs originated prior to domestication, and there is little to no evidence of selective sweeps for adaptive alleles on length scales of greater than 100 kb.

  7. Microfluidic linear hydrogel array for multiplexed single nucleotide polymorphism (SNP) detection.

    PubMed

    Jung, Yun Kyung; Kim, Jungkyu; Mathies, Richard A

    2015-03-17

    A PDMS-based microfluidic linear hydrogel array is developed for multiplexed single nucleotide polymorphism (SNP) detection. A sequence of three-dimensional (3D) hydrogel plugs containing the desired DNA probes is prepared by UV polymerization within a PDMS microchannel system. The fluorescently labeled target DNA is then electrophoresed through the sequence of hydrogel plugs for hybridization. Continued electrophoresis provides an electrophoretic wash that removes nonspecific binders. The capture gel array is imaged after washing at various temperatures (temperature gradient electrophoresis) to further distinguish perfect matches from mismatches. The ability of this microdevice to perform multiplex SNP genotyping is demonstrated by analyzing a mixture of model E. coli bacterial targets. This microfluidic hydrogel array is ∼1000 times more sensitive than planar microarrays due to the 3D gel capture, the hybridization time is much shorter due to electrophoretic control of the transport properties, and the stringent wash with temperature gradient electrophoresis enables analysis of single nucleotide mismatches with high specificity.

  8. Six diagnostic single nucleotide polymorphism markers for detecting introgression between cutthroat and rainbow trouts.

    PubMed

    Finger, Amanda J; Stephens, Molly R; Clipperton, Neil W; May, Bernie

    2009-05-01

    Ten primer pairs were screened to develop single nucleotide polymorphism (SNP) TaqMan assays that will distinguish California golden trout and some rainbow trouts (Oncorhynchus mykiss sspp., O. m. aguabonita) from the Paiute and Lahontan cutthroat trouts (Oncorhynchus clarkii seleniris, O. c. henshawi). From these 10 primer pairs, one mitochondrial and five nuclear fixed SNP differences were discovered and developed into TaqMan assays. These six assays will be useful for characterizing and monitoring hybridization between these groups. Additional Oncorhynchus clarkii sspp. and Oncorhynchus mykiss sspp. were assayed to determine if these assays are useful in closely related species.

  9. A suite of twelve single nucleotide polymorphism markers for detecting introgression between cutthroat and rainbow trout.

    PubMed

    Harwood, Andrew S; Phillips, Ruth B

    2011-03-01

    A suite of 12 subspecies and species-specific single nucleotide polymorphism (species-specific SNP) markers was developed to distinguish rainbow trout (RT) Oncorhynchus mykiss from the four major subspecies of cutthroat trout: westslope cutthroat trout (WCT) Oncorhynchus clarki lewisi, Yellowstone cutthroat trout (YCT) Oncorhynchus clarki bouvieri, coastal cutthroat trout (CCT) Oncorhynchus clarki clarki, Lahontan cutthroat trout (LCT) Oncorhynchus clarki henshawi, and their hybrids. Several of the markers were linked to help strengthen hybrid determinations, and sex-specific species-specific SNP assays were also developed.

  10. A Brownian-ratchet DNA pump with applications to single-nucleotide polymorphism genotyping

    NASA Astrophysics Data System (ADS)

    Bader, J. S.; Deem, M. W.; Hammond, R. W.; Henck, S. A.; Simpson, J. W.; Rothberg, J. M.

    2002-08-01

    We have fabricated a micron-scale device capable of transporting DNA oligomers using Brownian ratchets. The ratchet potential is generated by applying a voltage difference to interdigitated electrodes. Cycling between the charged state and a discharged, free-diffusion state rectifies the Brownian motion of charged particles. The observed macroscopic transport properties agree with the transport rate predicted from microscopic parameters including the DNA diffusivity, the dimensions of the ratchet potential, and the cycling time. Applications to human genetics, primarily genotyping of single-nucleotide polymorphisms (SNPs), are discussed.

  11. Multicolor fluorescence detection for single nucleotide polymorphism genotyping using a filter-less fluorescence detector

    NASA Astrophysics Data System (ADS)

    Yamasaki, Keita; Nakazawa, Hirokazu; Misawa, Nobuo; Ishida, Makoto; Sawada, Kazuaki

    2013-06-01

    Single nucleotide polymorphism (SNP) analysis that is commonly performed using fluorescence is important in drug development and pathology research. In this study, to facilitate the analysis, multicolor fluorescence detection for SNP genotyping using a filter-less fluorescence detector (FFD) was investigated. FFDs do not require any optical filters for multicolor fluorescence detection. From the experimental results, FFD could identify 0 μM, 1 μM, and 10 μM solutions of Texas Red and fluorescein isothiocyanate. Moreover, a mixture of Texas Red and 6-FAM could be detected in the SNP genotyping simulation. Therefore, a small and low-cost SNP genotyping system is feasible.

  12. Predicting responses to sunitinib using single nucleotide polymorphisms: Progress and recommendations for future trials.

    PubMed

    Ganapathi, Ram N; Bukowski, Ronald M

    2011-12-30

    Targeted therapy with tyrosine kinase inhibitors has led to a substantial improvement in the standard of care for patients with advanced or metastatic clear cell renal cell carcinoma. Because the mechanism of action, metabolism and transport of tyrosine kinase inhibitors can affect outcome and toxicity, several investigators have pursued the identification of single nucleotide polymorphisms (SNPs) in genes associated with these actions. We discuss SNPs associated with outcome and toxicity following sunitinib therapy and provide recommendations for future trials to facilitate the use of SNPs in personalized therapy for this disease.

  13. Nanoparticle-Based Discrimination of Single-Nucleotide Polymorphism in Long DNA Sequences.

    PubMed

    Sanromán-Iglesias, María; Lawrie, Charles H; Liz-Marzán, Luis M; Grzelczak, Marek

    2017-03-01

    Circulating DNA (ctDNA) and specifically the detection cancer-associated mutations in liquid biopsies promises to revolutionize cancer detection. The main difficulty however is that the length of typical ctDNA fragments (∼150 bases) can form secondary structures potentially obscuring the mutated fragment from detection. We show that an assay based on gold nanoparticles (65 nm) stabilized with DNA (Au@DNA) can discriminate single nucleotide polymorphism in clinically relevant ssDNA sequences (70-140 bases). The preincubation step was crucial to this process, allowing sequential bridging of Au@DNA, so that single base mutation can be discriminated, down to 100 pM concentration.

  14. Single nucleotide polymorphisms in chum salmon (Oncorhynchus keta) mitochondrial DNA derived from restriction site haplotype information.

    PubMed

    Garvin, M R; Saitoh, K; Churikov, D Y; Brykov, V A; Gharrett, A J

    2010-07-01

    Single nucleotide polymorphisms (SNPs) are useful genetic markers for the management and conservation of commercially important species such as salmon. Informative markers can be derived from data obtained for other purposes. We used restriction endonuclease data from earlier work to identify potentially useful restriction sites in chum salmon (Oncorhynchus keta). With the aid of a newly generated complete mitochondrial DNA sequence (accession number AP010773), we identified the SNP responsible for each restriction site variant, designed rapid genotyping assays, and surveyed the SNPs in more than 400 individuals. The restriction site analysis and the SNP genotyping assays were almost perfectly concordant. Some reasons for the non-concordance were identified and discussed.

  15. Single-nucleotide polymorphisms of the PRDM9 (MEISETZ) gene in patients with nonobstructive azoospermia.

    PubMed

    Irie, Shinji; Tsujimura, Akira; Miyagawa, Yasushi; Ueda, Tomohiro; Matsuoka, Yasuhiro; Matsui, Yasuhisa; Okuyama, Akihiko; Nishimune, Yoshitake; Tanaka, Hiromitsu

    2009-01-01

    To investigate the possible association between variations in the PRDM9 (MEISETZ) gene and impaired spermatogenesis in humans, we screened for mutations in the human PRDM9 gene using DNA from 217 sterile male patients and 162 proven fertile male volunteers. Two single-nucleotide polymorphisms (SNPs), 17353G>T (Gly433Val) and 18109C>G (Thr685Arg), were identified, as well as an intronic SNP, 15549G>T. These SNPs were identified in the heterozygous state in separate patients who demonstrated azoospermia. Neither variant was identified in fertile subjects. Our results suggest that mutations in PRDM9 may cause idiopathic infertility in human males.

  16. Contribution of protein Z gene single-nucleotide polymorphism to systemic lupus erythematosus in Egyptian patients.

    PubMed

    Yousry, Sherif M; Shahin, Rasha M H; El Refai, Rasha M

    2016-09-01

    Protein Z has been reported to exert an important role in inhibiting coagulation. Polymorphisms in the protein Z gene (PROZ) may affect protein Z levels and thus play a role in thrombosis. This study aimed to investigate the prevalence and clinical significance of protein Z gene G79A polymorphism in Egyptian patients with systemic lupus erythematosus (SLE). We studied the distribution of the protein Z gene (rs17882561) (G79A) single-nucleotide polymorphism by PCR-restriction fragment length polymorphism in 100 Egyptian patients with SLE and 100 age, sex, and ethnically matched controls. There was no statistically significant difference in the distribution of the genotypes between SLE patients and the control group in our study (P = 0.103). But a statistically significant difference in the frequency of the alleles between SLE patients and controls was observed (P = 0.024). Also a significant association was detected between protein Z genotypes (and also A allele) and thrombosis, which is one of the manifestations of SLE (P = 0.004 and P = 0.001, respectively). Moreover, we observed a significant association between the protein Z AA and GA genotypes (and also A allele) and the presence of anticardiolipin antibodies (P = 0.016 and P = 0.004, respectively). The minor A allele of the G79A polymorphism in the protein Z gene might contribute to the genetic susceptibility of SLE in Egyptian patients. Also, an influence for this polymorphism on some of the disease manifestations has been elucidated, so protein Z G79A AG/AA may be a risk factor for thrombosis.

  17. Correlation of Chitinase 3-Like 1 Single Nucleotide Polymorphisms with Hepatocellular Carcinoma in Taiwan

    PubMed Central

    Huang, Wayne Shih-Wei; Lin, Hung-Yu; Yeh, Chao-Bin; Chen, Li-You; Chou, Ying-Erh; Yang, Shun-Fa; Liu, Yu-Fan

    2017-01-01

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer death in Taiwan. Multiple risk factors, such as chronic hepatitis B or C virus infection, carcinogen exposure, cirrhosis, and various single-nucleotide polymorphisms (SNPs), are considered to contribute to hepatocarcinogenesis. Chitinase-3-like protein 1 (CHI3L1), a biomarker implicated in inflammation and tissue remodeling, plays a promoting role in angiogenesis, antiapoptosis, and cell proliferation. This study investigated the role of CHI3L1 SNPs in HCC susceptibility and clinicopathology. Real-time polymerase chain reaction was used to analyze four SNPs of CHI3L1 in 343 patients with HCC and 686 cancer-free controls. We found associations with HCC susceptibility in CHI3L1 rs880633 polymorphism carriers with genotypes (TC+CC). We observed that HCC patients had lower frequencies of CHI3L1 rs6691378 polymorphisms with the variant genotype GA+AA than the wild-type carriers with distant metastasis and positive HBsAg did. In 200 HBsAg negative HCC patients, we observed that the CHI3L1 rs4950928 polymorphisms carriers with the variant genotype CG+GG had higher frequencies of vascular invasion. Finally, carriers of CHI3L1 rs6691378 and 10399805 polymorphisms with the variant genotypes GA+AA showed lower levels of alpha-fetoprotein in HCC laboratory status. In conclusion, our results indicate that patients with CHI3L1 rs880633 variant genotypes TC+CC are at a higher risk of HCC. CHI3L1 polymorphisms rs880633 or rs4950928 may be potential candidates for predicting poor HCC prognosis and clinical status. PMID:28260989

  18. Functional Single-Nucleotide Polymorphisms in the BRCA1 Gene and Risk of Salivary Gland Carcinoma

    PubMed Central

    Xu, Li; Doan, Phi C.; Wei, Qingyi; Li, Guojun; Sturgis, Erich M.

    2012-01-01

    Objectives Polymorphic BRCA1 is a vital tumor suppressor gene within the DNA double-strand break repair pathways, but its association with salivary gland carcinoma (SGC) has yet to be investigated. Materials and Methods In a case-control study of 156 SGC patients and 511 controls, we used unconditional logistical regression analyses to investigate the association between SGC risk and seven common functional single-nucleotide polymorphisms (A1988G, A31875G, C33420T, A33921G, A34356G, T43893C and A55298G) in BRCA1. Results T43893C TC/CC genotype was associated with a reduction of SGC risk (adjusted odds ratio =0.55, 95% CI: 0.38–0.80, Bonferroni-adjusted p=0.011), which was more pronounced in women, non-Hispanic whites, and individuals with a family history of cancer in first-degree relatives. The interaction between T43893C and family history of cancer was significant (p=0.009). The GATGGCG and AACAACA haplotypes, both of which carry the T43893C minor allele, were also associated with reduced SGC risk. Conclusion Our results suggest that polymorphic BRCA1, particularly T43893C polymorphism, may protect against SGC. PMID:22503699

  19. A single nucleotide polymorphism of porcine MX2 gene provides antiviral activity against vesicular stomatitis virus.

    PubMed

    Sasaki, Keisuke; Tungtrakoolsub, Pullop; Morozumi, Takeya; Uenishi, Hirohide; Kawahara, Manabu; Watanabe, Tomomasa

    2014-01-01

    The objective was to determine if single nucleotide polymorphisms (SNPs) in porcine MX2 gene affect its antiviral potential. MX proteins are known to suppress the multiplication of several viruses, including influenza virus and vesicular stomatitis virus (VSV). In domestic animals possessing highly polymorphic genome, our previous research indicated that a specific SNP in chicken Mx gene was responsible for its antiviral function. However, there still has been no information about SNPs in porcine MX2 gene. In this study, we first conducted polymorphism analysis in 17 pigs of MX2 gene derived from seven breeds. Consequently, a total of 30 SNPs, of which 11 were deduced to cause amino acid variations, were detected, suggesting that the porcine MX2 is very polymorphic. Next, we classified MX2 into eight alleles (A1-A8) and subsequently carried out infectious experiments with recombinant VSVΔG*-G to each allele. In A1-A5 and A8, position 514 amino acid (514 aa) of MX2 was glycine (Gly), which did not inhibit VSV multiplication, whereas in A6 and A7, 514 aa was arginine (Arg), which exhibited the antiviral ability against VSV. These results demonstrate that a SNP at 514 aa (Gly-Arg) of porcine MX2 plays a pivotal role in the antiviral activity as well as that at 631 aa of chicken Mx.

  20. Assessment of the Geographic Origins of Pinewood Nematode Isolates via Single Nucleotide Polymorphism in Effector Genes

    PubMed Central

    Figueiredo, Joana; Simões, Maria José; Gomes, Paula; Barroso, Cristina; Pinho, Diogo; Conceição, Luci; Fonseca, Luís; Abrantes, Isabel; Pinheiro, Miguel; Egas, Conceição

    2013-01-01

    The pinewood nematode, Bursaphelenchus xylophilus, is native to North America but it only causes damaging pine wilt disease in those regions of the world where it has been introduced. The accurate detection of the species and its dispersal routes are thus essential to define effective control measures. The main goals of this study were to analyse the genetic diversity among B. xylophilus isolates from different geographic locations and identify single nucleotide polymorphism (SNPs) markers for geographic origin, through a comparative transcriptomic approach. The transcriptomes of seven B. xylophilus isolates, from Continental Portugal (4), China (1), Japan (1) and USA (1), were sequenced in the next generation platform Roche 454. Analysis of effector gene transcripts revealed inter-isolate nucleotide diversity that was validated by Sanger sequencing in the genomic DNA of the seven isolates and eight additional isolates from different geographic locations: Madeira Island (2), China (1), USA (1), Japan (2) and South Korea (2). The analysis identified 136 polymorphic positions in 10 effector transcripts. Pairwise comparison of the 136 SNPs through Neighbor-Joining and the Maximum Likelihood methods and 5-mer frequency analysis with the alignment-independent bilinear multivariate modelling approach correlated the SNPs with the isolates geographic origin. Furthermore, the SNP analysis indicated a closer proximity of the Portuguese isolates to the Korean and Chinese isolates than to the Japanese or American isolates. Each geographic cluster carried exclusive alleles that can be used as SNP markers for B. xylophilus isolate identification. PMID:24391785

  1. Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing.

    PubMed

    Marín, Antonio García; García-Mendiola, Tania; Bernabeu, Cristina Navio; Hernández, María Jesús; Piqueras, Juan; Pau, Jose Luis; Pariente, Félix; Lorenzo, Encarnación

    2016-05-05

    A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori onto GaNP/Si substrates; complementary target sequences of Helicobacter pylori can be quantified over the range of 10 pM to 3.0 nM with a detection limit of 6.0 pM and a linear correlation coefficient of R(2) = 0.990. The selectivity of the device allows the detection of a single nucleotide polymorphism (SNP) in a specific sequence of Helicobacter pylori, without the need for a hybridization suppressor in solution such as formamide. Furthermore, it also allows the detection of this sequence in the presence of other pathogens, such as Escherichia coli in the sample. The broad applicability of the system was demonstrated by the detection of a specific gene mutation directly associated with cystic fibrosis in large genomic DNA isolated from blood cells.

  2. Spatial pattern of nucleotide polymorphism indicates molecular adaptation in the bryophyte Sphagnum fimbriatum.

    PubMed

    Szövényi, P; Hock, Zs; Korpelainen, H; Shaw, A Jonathan

    2009-10-01

    In organisms with haploid-dominant life cycles, natural selection is expected to be especially effective because genetic variation is exposed directly to selection. However, in spore-producing plants with high dispersal abilities, among-population migration may counteract local adaptation by continuously redistributing genetic variability. In this study, we tested for adaptation at the molecular level by comparing nucleotide polymorphism in two genes (GapC and Rpb2) in 10 European populations of the peatmoss species, Sphagnum fimbriatum with variability at nine microsatellite loci assumed to be selectively neutral. In line with previous results, the GapC and Rpb2 genes showed strikingly different patterns of nucleotide polymorphism. Neutrality tests and comparison of population differentiation based on the GapC and Rpb2 genes with neutrally evolving microsatellites using coalescent simulations supported non-neutral evolution in GapC, but neutral evolution in the Rpb2 gene. These observations and the positions of the replacement mutations in the GAPDH enzyme (coded by GapC) indicate a significant impact of replacement mutations on enzyme function. Furthermore, the geographic distribution of alternate GapC alleles and/or linked genomic regions suggests that they have had differential success in the recolonization of Europe following the Last Glacial Maximum.

  3. Naked-eye fingerprinting of single nucleotide polymorphisms on psoriasis patients

    NASA Astrophysics Data System (ADS)

    Valentini, Paola; Marsella, Alessandra; Tarantino, Paolo; Mauro, Salvatore; Baglietto, Silvia; Congedo, Maurizio; Paolo Pompa, Pier

    2016-05-01

    We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics.We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02200f

  4. A single nucleotide polymorphism assay for the identification of unisexual Ambystoma salamanders.

    PubMed

    Greenwald, Katherine R; Lisle Gibbs, H

    2012-03-01

    Unisexual (all female) salamanders in the genus Ambystoma are animals of variable ploidy (2N-5N) that reproduce via a unique system of 'leaky' gynogenesis. As a result, these salamanders have a diverse array of nuclear genome combinations from up to five sexual species: the blue-spotted (A. laterale), Jefferson (A. jeffersonianum), smallmouth (A. texanum), tiger (A. tigrinum) and streamside (A. barbouri) salamanders. Identifying the genome complement, or biotype, is a critical first step in addressing a broad range of ecological and evolutionary questions about these salamanders. Previous work relied upon genome-related differences in allele size distributions for specific microsatellite loci, but overlap in these distributions among different genomes makes definitive identification and ploidy determination in unisexuals difficult or impossible. Here, we develop the first single nucleotide polymorphism assay for the identification of unisexual biotypes, based on species-specific nucleotide polymorphisms in noncoding DNA loci. Tests with simulated and natural unisexual DNA samples show that this method can accurately identify genome complement and estimate ploidy, making this a valuable tool for assessing the genome composition of unisexual samples.

  5. [Polymorphism of DNA nucleotide sequence as a source of enhancement of the discrimination potential of the STR-markers].

    PubMed

    Zemskova, E Yu; Timoshenko, T V; Leonov, S N; Ivanov, P L

    2016-01-01

    The objective of the present pilot investigation was to reveal and to study polymorphism of nucleotide sequence in the alleles of STR loci of human autosomal DNA with special reference to the role of this phenomenon as a source of the differences between homonymous allelic variants. The secondary objection was to evaluate the possibility of using the data thus obtained for the enhancement of the informative value of the forensic medical genotyping of STR loci by means of identification of single nucleotide polymorphisms (SNP) for the purpose of extending their allelic spectrum. The methodological basis of the study was constituted by the comprehensive amplified fragment length polymorphism (AFLP) analysis and amplified fragment sequence polymorphisms (AFSP) analysis of DNA with the use of the PLEX-ID^TM analytical mass-spectrometry platform (Abbot Molecular, USA). The study has demonstrated that polymorphism of DNA nucleotide sequence can be regarded as the possible source of enhancement of the discriminating potential of STR markers. It means that the analysis of polymorphism of DNA nucleotide sequence for genotyping AFLP-type markers of chromosomal DNA can considerably increase the effectiveness of their application as individualizing markers for the purpose of molecular genetic expertises.

  6. Genomic lineages of Rhizobium etli revealed by the extent of nucleotide polymorphisms and low recombination

    PubMed Central

    2011-01-01

    Background Most of the DNA variations found in bacterial species are in the form of single nucleotide polymorphisms (SNPs), but there is some debate regarding how much of this variation comes from mutation versus recombination. The nitrogen-fixing symbiotic bacteria Rhizobium etli is highly variable in both genomic structure and gene content. However, no previous report has provided a detailed genomic analysis of this variation at nucleotide level or the role of recombination in generating diversity in this bacterium. Here, we compared draft genomic sequences versus complete genomic sequences to obtain reliable measures of genetic diversity and then estimated the role of recombination in the generation of genomic diversity among Rhizobium etli. Results We identified high levels of DNA polymorphism in R. etli, and found that there was an average divergence of 4% to 6% among the tested strain pairs. DNA recombination events were estimated to affect 3% to 10% of the genomic sample analyzed. In most instances, the nucleotide diversity (π) was greater in DNA segments with recombinant events than in non-recombinant segments. However, this degree of recombination was not sufficiently large to disrupt the congruence of the phylogenetic trees, and further evaluation of recombination in strains quartets indicated that the recombination levels in this species are proportionally low. Conclusion Our data suggest that R. etli is a species composed of separated lineages with low homologous recombination among the strains. Horizontal gene transfer, particularly via the symbiotic plasmid characteristic of this species, seems to play an important role in diversity but the lineages maintain their evolutionary cohesiveness. PMID:22004448

  7. Identification of a Novel Single Nucleotide Polymorphism in Porcine Beta-Defensin-1 Gene.

    PubMed

    Pruthviraj, D R; Usha, A P; Venkatachalapathy, R T

    2016-03-01

    Porcine beta-defensin-1 (PBD-1) gene plays an important role in the innate immunity of pigs. The peptide encoded by this gene is an antimicrobial peptide that has direct activity against a wide range of microbes. This peptide is involved in the co-creation of an antimicrobial barrier in the oral cavity of pigs. The objective of the present study was to detect polymorphisms, if any, in exon-1 and exon-2 regions of PBD-1 gene in Large White Yorkshire (LWY) and native Ankamali pigs of Kerala, India. Blood samples were collected from 100 pigs and genomic DNA was isolated using phenol chloroform method. The quantity of DNA was assessed in a spectrophotometer and quality by gel electrophoresis. Exon-1 and exon-2 regions of PBD-1 gene were amplified by polymerase chain reaction (PCR) and the products were subjected to single strand conformation polymorphism (SSCP) analysis. Subsequent silver staining of the polyacrylamide gels revealed three unique SSCP banding patterns in each of the two exons. The presence of single nucleotide polymorphisms (SNPs) was confirmed by nucleotide sequencing of the PCR products. A novel SNP was found in the 5'-UTR region of exon-1 and a SNP was detected in the mature peptide coding region of exon-2. In exon-1, the pooled population frequencies of GG, GT, and TT genotypes were 0.67, 0.30, and 0.03, respectively. GG genotype was predominant in both the breeds whereas TT genotype was not detected in LWY breed. Similarly, in exon-2, the pooled population frequencies of AA, AG, and GG genotypes were 0.50, 0.27, and 0.23, respectively. AA genotype was predominant in LWY pigs whereas GG genotype was predominant in native pigs. These results suggest that there exists a considerable genetic variation at PBD-1 locus and further association studies may help in development of a PCR based genotyping test to select pigs with better immunity.

  8. Mining for single nucleotide polymorphisms and insertions / deletions in expressed sequence tag libraries of oil palm.

    PubMed

    Riju, Aykkal; Chandrasekar, Arumugam; Arunachalam, Vadivel

    2007-01-01

    The oil palm is a tropical oil bearing tree. Recently EST-derived SNPs and SSRs are a free by-product of the currently expanding EST (Expressed Sequence Tag) data bases. The development of high-throughput methods for the detection of SNPs (Single Nucleotide Polymorphism) and small indels (insertion / deletion) has led to a revolution in their use as molecular markers. Available (5452) Oil palm EST sequences were mined from dbEST of NCBI. CAP3 program was used to assemble EST sequences into contigs. Candidate SNPs and Indel polymorphisms were detected using the perl script auto_snip version 1.0 which has used 576 ESTs for detecting SNPs and Indel sites. We found 1180 SNP sites and 137 indel polymorphisms with frequency 1.36 SNPs / 100 bp. Among the six tissues from which the EST libraries had been generated, mesocarp had high frequency of 2.91 SNPs and indels per 100 bp whereas the zygotic embryos had lowest frequency of 0.15 per 100 bp. We also used the Shannon index to analyze the proportion of ten possible types of SNP/indels. ESTs from tissues of normal apex showed highest values of Shannon index (0.60) whereas abnormal apex had least value (0.02). The present report deals the use of Shannon index for comparing SNP/ indel frequencies mined from ESTlibraries and also confirm that the frequency of SNP occurrence in oil palm to use them as markers for genetic studies.

  9. The role of CGRP and CALCA T-692C single-nucleotide polymorphism in psoriasis vulgaris.

    PubMed

    Guo, Ren; Li, Fang-Fang; Chen, Ming-Liang; Ya, Ming-Zhu; He, Hui-Lan; Li, Dai

    2015-02-01

    Calcitonin gene related protein (CGRP) is increased in both lesional and non-lesional psoriasis. The role of CGRP in the pathogenesis of psoriasis vulgaris is still not clear. We designed to determine the CGRP-I (or CALCA), II (or CALCB) gene expression and morbidity and CALCA T-692C single-nucleotide polymorphism (SNP). Peripheral blood mononuclear cells (PBMCs) and plasma samples were collected, and CGRP level and CGRP-I, II mRNA expression were measured in psoriasis patients and healthy controls. The CALCA T-692C genetic polymorphism in psoriasis and control subjects was also compared. A higher expression of CGRP-I, II mRNA in PBMCs in psoriasis patients. The plasma CGRP level in psoriasis patients was also higher than that in healthy subjects. SNP analysis showed carriers of the T-692C allele were over-represented in non-drinking Patients. The plasma CGRP level was higher in alcohol-drinking patients with TT genotype than that with TC genotype. The plasma CGRP level is increased in psoriasis patients and CALCA T-692C polymorphism TT genotype is a factor for the affectability in alcohol-drinking Psoriasis vulgaris patients.

  10. The development and characterization of a 57K single nucleotide polymorphism array for rainbow trout.

    PubMed

    Palti, Y; Gao, G; Liu, S; Kent, M P; Lien, S; Miller, M R; Rexroad, C E; Moen, T

    2015-05-01

    In this study, we describe the development and characterization of the first high-density single nucleotide polymorphism (SNP) genotyping array for rainbow trout. The SNP array is publically available from a commercial vendor (Affymetrix). The SNP genotyping quality was high, and validation rate was close to 90%. This is comparable to other farm animals and is much higher than previous smaller scale SNP validation studies in rainbow trout. High quality and integrity of the genotypes are evident from sample reproducibility and from nearly 100% agreement in genotyping results from other methods. The array is very useful for rainbow trout aquaculture populations with more than 40 900 polymorphic markers per population. For wild populations that were confounded by a smaller sample size, the number of polymorphic markers was between 10 577 and 24 330. Comparison between genotypes from individual populations suggests good potential for identifying candidate markers for populations' traceability. Linkage analysis and mapping of the SNPs to the reference genome assembly provide strong evidence for a wide distribution throughout the genome with good representation in all 29 chromosomes. A total of 68% of the genome scaffolds and contigs were anchored through linkage analysis using the SNP array genotypes, including ~20% of the genome assembly that has not been previously anchored to chromosomes.

  11. Single nucleotide polymorphism mapping and alignment of recombinant chromosome substitution lines in barley.

    PubMed

    Sato, Kazuhiro; Close, Timothy J; Bhat, Prasanna; Muñoz-Amatriaín, María; Muehlbauer, Gary J

    2011-05-01

    Single nucleotide polymorphism (SNP) genotyping is useful for assessing genetic variation in germplasm collections, genetic map development and detection of alien chromosome substitutions. In this study, a diversity analysis using 1,301 SNPs on a set of 37 barley accessions was conducted. This analysis showed a high polymorphism rate between the malting barley cultivar 'Haruna Nijo' and the food barley cultivar 'Akashinriki'. Haruna Nijo and Akashinriki are donors of the barley expressed sequence tag (EST) collections. A doubled haploid (DH) population derived from the cross between Haruna Nijo and Akashinriki was genotyped with 1,448 SNPs. Of these 1,448 SNPs, 734 were polymorphic and distributed on barley linkage groups (chromosomes) as follows: 1H (86), 2H (125), 3H (120), 4H (100), 5H (127), 6H (88) and 7H (88). By using cMAP, we integrated the SNP markers across high-density maps. The SNPs were also used to genotype 98 BC(3)F(4) recombinant chromosome substitution lines (RCSLs) developed from the same cross (Haruna Nijo/Akashinriki). These data were used to create graphical genotypes for each line and thus estimate the location, extent and total number of introgressions from Akashinriki in the Haruna Nijo background. The 35 selected RCSLs sample most of the Akashinriki food barley genome, with only a few missing segments. These resources bring new alleles into the malting barley gene pool from food barley.

  12. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  13. The single nucleotide polymorphism Rs12817488 is associated with Parkinson's disease in the Chinese population.

    PubMed

    Yu, Ri-li; Guo, Ji-feng; Wang, Ya-qin; Liu, Zhen-hua; Sun, Zhan-fang; Su, Li; Zhang, Yuan; Yan, Xin-xiang; Tang, Bei-sha

    2015-06-01

    A recent meta-analysis of datasets from five of the published Parkinson's disease (PD) genome-wide association studies implicated the single nucleotide polymorphism (SNP) rs12817488 in coiled-coil domain containing 62 (CCDC62)/huntingtin interacting protein 1 related (HIP1R) as a risk factor for PD. We conducted a case-control study to evaluate the possible association between rs12817488 and PD in Chinese people. All patients (515 PD patients and 518 age and sex-matched controls) were successfully genotyped using polymerase chain reaction restriction fragment length polymorphism analysis. We observed that the rs12817488 polymorphism is associated with PD (p=0.003) and that the genotype and allele frequencies showed a difference between late-onset PD patients and male controls (p=0.025 and p=0.007, respectively). However, there was no difference in the early-onset PD patients and controls. We found a difference in the genotype and allele frequencies between the male PD patients and the male controls (p=0.034 and p=0.017, respectively). However, there was no difference in females. Patients with the A allele were susceptible to PD in both dominant (GA+AA versus GG; odds ratio [OR] 1.365, 95% confidence interval [CI] 1.041-1.788) and recessive (AA versus GG+GA; OR 1.606, 95% CI 1.194-2.158) models. Therefore, our findings support the conclusion that the rs12817488 in CCDC62/HIP1R polymorphism may increase the risk of PD in the Chinese Han population.

  14. Pro198Leu Polymorphism in the Glutathione Peroxidase 1 Gene Contributes to Diabetic Peripheral Neuropathy in Type 2 Diabetes Patients.

    PubMed

    Buraczynska, Monika; Buraczynska, Kinga; Dragan, Michal; Ksiazek, Andrzej

    2017-03-01

    Glutathione peroxidase 1 (Gpx1) is an endogenous antioxidant enzyme. The T allele of the Pro198Leu polymorphism in the Gpx1 (rs1050450, 198C > T) gene is associated with reduced enzyme activity. The aim of this study was to evaluate the association between Pro198Leu polymorphism and risk of diabetic peripheral neuropathy (DPN). We examined 1244 T2DM patients and 730 healthy controls. In the patient group, 33 % had diabetic peripheral neuropathy. All subjects were genotyped for the Gpx1 Pro198Leu polymorphism by polymerase chain reaction and restriction analysis. A significant increase in the T allele and TT genotype frequencies was observed in DPN patients compared to those without DPN (OR 1.55, 95 % CI 1.30-1.85 and 1.89, 95 % CI 1.30-2.74, respectively). The association remained significant after correction for age, disease duration, HbA1c and BMI. When distribution of T allele was compared between DPN+ and DPN- subgroups and controls, OR was 1.54 for DPN+ and 1.00 for DPN- patients. In conclusion, our findings suggest that Gpx1 Pro198Leu genotypes are significantly associated with the risk of diabetic peripheral neuropathy in patients with T2DM. The study provides new clinically relevant information regarding genetic determinants of susceptibility to diabetic neuropathy.

  15. Large-scale detection and application of expressed sequence tag single nucleotide polymorphisms in Nicotiana.

    PubMed

    Wang, Y; Zhou, D; Wang, S; Yang, L

    2015-07-14

    Single nucleotide polymorphisms (SNPs) are widespread in the Nicotiana genome. Using an alignment and variation detection method, we developed 20,607,973 SNPs, based on the expressed sequence tag sequences of 10 Nicotiana species. The replacement rate was much higher than the transversion rate in the SNPs, and SNPs widely exist in the Nicotiana. In vitro verification indicated that all of the SNPs were high quality and accurate. Evolutionary relationships between 15 varieties were investigated by polymerase chain reaction with a special primer; the specific 302 locus of these sequence results clearly indicated the origin of Zhongyan 100. A database of Nicotiana SNPs (NSNP) was developed to store and search for SNPs in Nicotiana. NSNP is a tool for researchers to develop SNP markers of sequence data.

  16. DivStat: A User-Friendly Tool for Single Nucleotide Polymorphism Analysis of Genomic Diversity

    PubMed Central

    Soares, Inês; Moleirinho, Ana; Oliveira, Gonçalo N. P.; Amorim, António

    2015-01-01

    Recent developments have led to an enormous increase of publicly available large genomic data, including complete genomes. The 1000 Genomes Project was a major contributor, releasing the results of sequencing a large number of individual genomes, and allowing for a myriad of large scale studies on human genetic variation. However, the tools currently available are insufficient when the goal concerns some analyses of data sets encompassing more than hundreds of base pairs and when considering haplotype sequences of single nucleotide polymorphisms (SNPs). Here, we present a new and potent tool to deal with large data sets allowing the computation of a variety of summary statistics of population genetic data, increasing the speed of data analysis. PMID:25756185

  17. Plasmonics nanoprobes: detection of single-nucleotide polymorphisms in the breast cancer BRCA1 gene.

    PubMed

    Wabuyele, Musundi B; Yan, Fei; Vo-Dinh, Tuan

    2010-09-01

    This paper describes the application of plasmonics-based nanoprobes that combine the modulation of the plasmonics effect to change the surface-enhanced Raman scattering (SERS) of a Raman label and the specificity of a DNA hairpin loop sequence to recognize and discriminate a variety of molecular target sequences. Hybridization with target DNA opens the hairpin and physically separates the Raman label from the metal nanoparticle thus reducing the plasmonics effect and quenching the SERS signal of the label. We have successfully demonstrated the specificity and selectivity of the nanoprobes in the detection of a single-nucleotide polymorphism (SNP) in the breast cancer BRCA1 gene in a homogenous solution at room temperature. In addition, the potential application of plasmonics nanoprobes for quantitative DNA diagnostic testing is discussed.

  18. Single nucleotide polymorphism genotyping of Erysipelothrix rhusiopathiae isolates from pigs affected with chronic erysipelas in Japan.

    PubMed

    Shiraiwa, Kazumasa; Ogawa, Yohsuke; Nishikawa, Sayaka; Kusumoto, Masahiro; Eguchi, Masahiro; Shimoji, Yoshihiro

    2017-04-05

    Over the past decades, Erysipelothrix rhusiopathiae strains displaying similar phenotypic and genetic profiles of the attenuated, acriflavine-resistant E. rhusiopathiae Koganei 65-0.15 strain (serovar 1a) have been frequently isolated from pigs affected with chronic erysipelas in Japan. In this study, using the conventional PCR assay that was designed to detect strain-specific single nucleotide polymorphism (SNP) sites found in the genome of the vaccine strain, we analyzed E. rhusiopathiae isolates from pigs with chronic disease in farms where the Koganei vaccine was used. Out of a total of 155 isolates, 101 isolates (65.2%) were determined to be the vaccine strain by SNP-based PCR. Among the 101 PCR-positive isolates, four isolates were found to be sensitive to acriflavine.

  19. No association of single nucleotide polymorphisms in one-carbon metabolism genes with prostate cancer risk.

    PubMed

    Stevens, Victoria L; Rodriguez, Carmen; Sun, Juzhong; Talbot, Jeffrey T; Thun, Michael J; Calle, Eugenia E

    2008-12-01

    One-carbon metabolism mediates the interconversion of folates for the synthesis of precursors used in DNA synthesis, repair, and methylation. Inadequate folate nutrition or compromised metabolism can disrupt these processes and facilitate carcinogenesis. In this study, we investigated associations of 39 candidate single nucleotide polymorphisms (SNP) in 9 one-carbon metabolism genes with risk of prostate cancer using 1,144 cases and 1,144 controls from the Cancer Prevention Study-II Nutrition Cohort. None of these SNPs were significantly associated with prostate cancer risk, either overall or in cases with advanced prostate cancer. Thus, our findings do not support the hypothesis that common genetic variation in one-carbon metabolism genes influences prostate cancer risk.

  20. Single nucleotide polymorphisms and inherited risk of chronic lymphocytic leukemia among African Americans

    PubMed Central

    Coombs, Catherine C.; Rassenti, Laura Z.; Falchi, Lorenzo; Slager, Susan L.; Strom, Sara S.; Ferrajoli, Alessandra; Weinberg, J. Brice; Kipps, Thomas J.

    2012-01-01

    The incidence of chronic lymphocytic leukemia (CLL) is significantly lower in African Americans than whites, but overall survival is inferior. The biologic basis for these observations remains unexplored. We hypothesized that germline genetic predispositions differ between African Americans and whites with CLL and yield inferior clinical outcomes among African Americans. We examined a discovery cohort of 42 African American CLL patients ascertained at Duke University and found that the risk allele frequency of most single nucleotide polymorphisms known to confer risk of development for CLL is significantly lower among African Americans than whites. We then confirmed our results in a distinct cohort of 68 African American patients ascertained by the CLL Research Consortium. These results provide the first evidence supporting differential genetic risk for CLL between African Americans compared with whites. A fuller understanding of differential genetic risk may improve prognostication and therapeutic decision making for all CLL patients. PMID:22745306

  1. Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of longan (Dimocarpus longan) germplasm

    PubMed Central

    Wang, Boyi; Tan, Hua-Wei; Fang, Wanping; Meinhardt, Lyndel W; Mischke, Sue; Matsumoto, Tracie; Zhang, Dapeng

    2015-01-01

    Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in 50 longan germplasm accessions, including cultivated varieties and wild germplasm; and designated 25 SNP markers that unambiguously identified all tested longan varieties with high statistical rigor (P<0.0001). Multiple trees from the same clone were verified and off-type trees were identified. Diversity analysis revealed genetic relationships among analyzed accessions. Cultivated varieties differed significantly from wild populations (Fst=0.300; P<0.001), demonstrating untapped genetic diversity for germplasm conservation and utilization. Within cultivated varieties, apparent differences between varieties from China and those from Thailand and Hawaii indicated geographic patterns of genetic differentiation. These SNP markers provide a powerful tool to manage longan genetic resources and breeding, with accurate and efficient genotype identification. PMID:26504559

  2. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious diseases

    PubMed Central

    Skevaki, C; Pararas, M; Kostelidou, K; Tsakris, A; Routsias, J G

    2015-01-01

    Toll-like receptors (TLRs) are the best-studied family of pattern-recognition receptors (PRRs), whose task is to rapidly recognize evolutionarily conserved structures on the invading microorganisms. Through binding to these patterns, TLRs trigger a number of proinflammatory and anti-microbial responses, playing a key role in the first line of defence against the pathogens also promoting adaptive immunity responses. Growing amounts of data suggest that single nucleotide polymorphisms (SNPs) on the various human TLR proteins are associated with altered susceptibility to infection. This review summarizes the role of TLRs in innate immunity, their ligands and signalling and focuses on the TLR SNPs which have been linked to infectious disease susceptibility. PMID:25560985

  3. Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing

    NASA Astrophysics Data System (ADS)

    Marín, Antonio García; García-Mendiola, Tania; Bernabeu, Cristina Navio; Hernández, María Jesús; Piqueras, Juan; Pau, Jose Luis; Pariente, Félix; Lorenzo, Encarnación

    2016-05-01

    A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori onto GaNP/Si substrates; complementary target sequences of Helicobacter pylori can be quantified over the range of 10 pM to 3.0 nM with a detection limit of 6.0 pM and a linear correlation coefficient of R2 = 0.990. The selectivity of the device allows the detection of a single nucleotide polymorphism (SNP) in a specific sequence of Helicobacter pylori, without the need for a hybridization suppressor in solution such as formamide. Furthermore, it also allows the detection of this sequence in the presence of other pathogens, such as Escherichia coli in the sample. The broad applicability of the system was demonstrated by the detection of a specific gene mutation directly associated with cystic fibrosis in large genomic DNA isolated from blood cells.A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori

  4. Single nucleotide polymorphisms from Theobroma cacao expressed sequence tags associated with witches' broom disease in cacao.

    PubMed

    Lima, L S; Gramacho, K P; Carels, N; Novais, R; Gaiotto, F A; Lopes, U V; Gesteira, A S; Zaidan, H A; Cascardo, J C M; Pires, J L; Micheli, F

    2009-07-14

    In order to increase the efficiency of cacao tree resistance to witches' broom disease, which is caused by Moniliophthora perniciosa (Tricholomataceae), we looked for molecular markers that could help in the selection of resistant cacao genotypes. Among the different markers useful for developing marker-assisted selection, single nucleotide polymorphisms (SNPs) constitute the most common type of sequence difference between alleles and can be easily detected by in silico analysis from expressed sequence tag libraries. We report the first detection and analysis of SNPs from cacao-M. perniciosa interaction expressed sequence tags, using bioinformatics. Selection based on analysis of these SNPs should be useful for developing cacao varieties resistant to this devastating disease.

  5. Genotyping of single nucleotide polymorphisms related to attention-deficit hyperactivity disorder.

    PubMed

    Tortajada-Genaro, Luis A; Mena, Salvador; Niñoles, Regina; Puigmule, Marta; Viladevall, Laia; Maquieira, Ángel

    2016-03-01

    Pharmacological treatment of several diseases, such as attention-deficit hyperactivity disorder (ADHD), presents marked variability in efficiency and its adverse effects. The genotyping of specific single nucleotide polymorphisms (SNPs) can support the prediction of responses to drugs and the genetic risk of presenting comorbidities associated with ADHD. This study presents two rapid and affordable microarray-based strategies to discriminate three clinically important SNPs in genes ADRA2A, SL6CA2, and OPRM1 (rs1800544, rs5569, and rs1799971, respectively). These approaches are allele-specific oligonucleotide hybridization (ASO) and a combination of allele-specific amplification (ASA) and solid-phase hybridization. Buccal swab and blood samples taken from ADHD patients and controls were analyzed by ASO, ASA, and a gold-reference method. The results indicated that ASA is superior in genotyping capability and analytical performance.

  6. Whole-genome linkage analysis in mapping alcoholism genes using single-nucleotide polymorphisms and microsatellites.

    PubMed

    Wang, Shuang; Huang, Song; Liu, Nianjun; Chen, Liang; Oh, Cheongeun; Zhao, Hongyu

    2005-12-30

    There is currently a great interest in using single-nucleotide polymorphisms (SNPs) in genetic linkage and association studies because of the abundance of SNPs as well as the availability of high-throughput genotyping technologies. In this study, we compared the performance of whole-genome scans using SNPs with microsatellites on 143 pedigrees from the Collaborative Studies on Genetics of Alcoholism provided by Genetic Analysis Workshop 14. A total of 315 microsatellites and 10,081 SNPs from Affymetrix on 22 autosomal chromosomes were used in our analyses. We found that the results from the two scans had good overall concordance. One region on chromosome 2 and two regions on chromosome 7 showed significant linkage signals (i.e., NPL >or= 2) for alcoholism from both the SNP and microsatellite scans. The different results observed between the two scans may be explained by the difference observed in information content between the SNPs and the microsatellites.

  7. Developing single nucleotide polymorphism markers for the identification of pineapple (Ananas comosus) germplasm.

    PubMed

    Zhou, Lin; Matsumoto, Tracie; Tan, Hua-Wei; Meinhardt, Lyndel W; Mischke, Sue; Wang, Boyi; Zhang, Dapeng

    2015-01-01

    Pineapple (Ananas comosus [L.] Merr.) is the third most important tropical fruit in the world after banana and mango. As a crop with vegetative propagation, genetic redundancy is a major challenge for efficient genebank management and in breeding. Using expressed sequence tag and nucleotide sequences from public databases, we developed 213 single nucleotide polymorphism (SNP) markers and validated 96 SNPs by genotyping the United States Department of Agriculture - Agricultural Research Service pineapple germplasm collection, maintained in Hilo, Hawaii. The validation resulted in designation of a set of 57 polymorphic SNP markers that revealed a high rate of duplicates in this pineapple collection. Twenty-four groups of duplicates were detected, encompassing 130 of the total 170 A cosmos accessions. The results show that somatic mutation has been the main source of intra-cultivar variations in pineapple. Multivariate clustering and a model-based population stratification suggest that the modern pineapple cultivars are comprised of progenies that are derived from different wild Ananas botanical varieties. Parentage analysis further revealed that both A. comosus var. bracteatus and A. comosus var. ananassoides are likely progenitors of pineapple cultivars. However, the traditional classification of cultivated pineapple into horticultural groups (e.g. 'Cayenne', 'Spanish', 'Queen') was not well supported by the present study. These SNP markers provide robust and universally comparable DNA fingerprints; thus, they can serve as an efficient genotyping tool to assist pineapple germplasm management, propagation of planting material, and pineapple cultivar protection. The high rate of genetic redundancy detected in this pineapple collection suggests the potential impact of applying this technology on other clonally propagated perennial crops.

  8. Developing single nucleotide polymorphism markers for the identification of pineapple (Ananas comosus) germplasm

    PubMed Central

    Zhou, Lin; Matsumoto, Tracie; Tan, Hua-Wei; Meinhardt, Lyndel W; Mischke, Sue; Wang, Boyi; Zhang, Dapeng

    2015-01-01

    Pineapple (Ananas comosus [L.] Merr.) is the third most important tropical fruit in the world after banana and mango. As a crop with vegetative propagation, genetic redundancy is a major challenge for efficient genebank management and in breeding. Using expressed sequence tag and nucleotide sequences from public databases, we developed 213 single nucleotide polymorphism (SNP) markers and validated 96 SNPs by genotyping the United States Department of Agriculture - Agricultural Research Service pineapple germplasm collection, maintained in Hilo, Hawaii. The validation resulted in designation of a set of 57 polymorphic SNP markers that revealed a high rate of duplicates in this pineapple collection. Twenty-four groups of duplicates were detected, encompassing 130 of the total 170 A cosmos accessions. The results show that somatic mutation has been the main source of intra-cultivar variations in pineapple. Multivariate clustering and a model-based population stratification suggest that the modern pineapple cultivars are comprised of progenies that are derived from different wild Ananas botanical varieties. Parentage analysis further revealed that both A. comosus var. bracteatus and A. comosus var. ananassoides are likely progenitors of pineapple cultivars. However, the traditional classification of cultivated pineapple into horticultural groups (e.g. ‘Cayenne’, ‘Spanish’, ‘Queen’) was not well supported by the present study. These SNP markers provide robust and universally comparable DNA fingerprints; thus, they can serve as an efficient genotyping tool to assist pineapple germplasm management, propagation of planting material, and pineapple cultivar protection. The high rate of genetic redundancy detected in this pineapple collection suggests the potential impact of applying this technology on other clonally propagated perennial crops. PMID:26640697

  9. Microarray study of single nucleotide polymorphisms and expression of ATP-binding cassette genes in breast tumors

    NASA Astrophysics Data System (ADS)

    Tsyganov, M. M.; Ibragimova, M. K.; Karabut, I. V.; Freydin, M. B.; Choinzonov, E. L.; Litvyakov, N. V.

    2015-11-01

    Our previous research establishes that changes of expression of the ATP-binding cassette genes family is connected with the neoadjuvant chemotherapy effect. However, the mechanism of regulation of resistance gene expression remains unclear. As many researchers believe, single nucleotide polymorphisms can be involved in this process. Thereupon, microarray analysis is used to study polymorphisms in ATP-binding cassette genes. It is thus found that MDR gene expression is connected with 5 polymorphisms, i.e. rs241432, rs241429, rs241430, rs3784867, rs59409230, which participate in the regulation of expression of own genes.

  10. Multi-locus genotyping of bottom fermenting yeasts by single nucleotide polymorphisms indicative of brewing characteristics.

    PubMed

    Ikushima, Shigehito; Tateishi, Yoshiyuki; Kanai, Keiko; Shimada, Emiko; Tanaka, Misa; Ishiguro, Tatsuji; Mizutani, Satoru; Kobayashi, Osamu

    2012-04-01

    Yeast plays a capital role in brewing fermentation and has a direct impact on flavor and aroma. For the evaluation of competent brewing strains during quality control or development of novel strains it is standard practice to perform fermentation tests, which are costly and time-consuming. Here, we have categorized DNA markers which enable to distinguish and to screen brewing strains more efficiently than ever before. Sequence analysis at 289 loci in the genomes of six bottom fermenting Saccharomyces pastorianus strains revealed that 30 loci contained single nucleotide polymorphisms (SNPs). By determining the nucleotide sequences at the SNP-loci in 26 other S. pastorianus strains and 20 strains of the top fermenting yeast Saccharomyces cerevisiae, almost all these strains could be discriminated solely on the basis of the SNPs. By comparing the fermentative phenotypes of these strains we found that some DNA markers showed a strong association with brewing characteristics, such as the production of ethyl acetate and hydrogen sulphide (H2S). Therefore, the DNA markers we identified will facilitate quality control and the efficient development of brewing yeast strains.

  11. Whole-genome single-nucleotide-polymorphism analysis for discrimination of Clostridium botulinum group I strains.

    PubMed

    Gonzalez-Escalona, Narjol; Timme, Ruth; Raphael, Brian H; Zink, Donald; Sharma, Shashi K

    2014-04-01

    Clostridium botulinum is a genetically diverse Gram-positive bacterium producing extremely potent neurotoxins (botulinum neurotoxins A through G [BoNT/A-G]). The complete genome sequences of three strains harboring only the BoNT/A1 nucleotide sequence are publicly available. Although these strains contain a toxin cluster (HA(+) OrfX(-)) associated with hemagglutinin genes, little is known about the genomes of subtype A1 strains (termed HA(-) OrfX(+)) that lack hemagglutinin genes in the toxin gene cluster. We sequenced the genomes of three BoNT/A1-producing C. botulinum strains: two strains with the HA(+) OrfX(-) cluster (69A and 32A) and one strain with the HA(-) OrfX(+) cluster (CDC297). Whole-genome phylogenic single-nucleotide-polymorphism (SNP) analysis of these strains along with other publicly available C. botulinum group I strains revealed five distinct lineages. Strains 69A and 32A clustered with the C. botulinum type A1 Hall group, and strain CDC297 clustered with the C. botulinum type Ba4 strain 657. This study reports the use of whole-genome SNP sequence analysis for discrimination of C. botulinum group I strains and demonstrates the utility of this analysis in quickly differentiating C. botulinum strains harboring identical toxin gene subtypes. This analysis further supports previous work showing that strains CDC297 and 657 likely evolved from a common ancestor and independently acquired separate BoNT/A1 toxin gene clusters at distinct genomic locations.

  12. Different applications of polymerases with and without proofreading activity in single-nucleotide polymorphism analysis.

    PubMed

    Zhang, Jia; Li, Kai; Liao, Duanfang; Pardinas, Jose R; Chen, Linling; Zhang, Xu

    2003-08-01

    With the completion of the human genome project, single-nucleotide polymorphisms (SNPs) have become the focus of intense study in biomedical research. Polymerase-mediated primer extension has been employed in a variety of SNP assays. However, these SNP assays using polymerase without proofreading function are compromised by their low reliability. Using a newly developed short amplicon harboring restriction enzyme site, EcoR-I, we were able to compare the single-base discrimination abilities of polymerases with and without proofreading function in primer extension in a broad range of annealing temperatures. Thermodynamic analysis demonstrated a striking single-nucleotide discrimination ability of polymerases with proofreading function. Using unmodified 3'-end allele-specific primers, only template-dependent products were generated by polymerase with proofreading activity. This powerful single-base discrimination ability of exo(+) polymerases was further evaluated in primer extension using three types of 3' terminally modified allele-specific primers. As compared with the poor fidelity in primer extension of polymerases lacking 3' exonuclease activity, this study provides convincing evidence that the use of proofreading polymerases in combination with 3'-end modified allele-specific primers can be a powerful new strategy for the development of SNP assays.

  13. Subtyping of Salmonella enterica Subspecies I Using Single-Nucleotide Polymorphisms in Adenylate Cyclase

    PubMed Central

    Abdo, Zaid; Byers, Sara Overstreet; Kriebel, Patrick; Rothrock, Michael J.

    2016-01-01

    Abstract Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single-nucleotide polymorphisms were characterized within adenylate cyclase (cyaA). The National Center for Biotechnology Information (NCBI) database had 378 cyaA sequences from S. enterica subspecies I, which included 42 unique DNA sequences and 19 different amino acid sequences. Five representative isolates, namely serotypes Typhimurium, Kentucky, Enteritidis phage type PT4, and two variants of Enteritidis phage type PT13a, were differentiated within a microsphere-based fluidics system in cyaA by allele-specific primer extension. Validation against 25 poultry-related environmental Salmonella isolates representing 11 serotypes yielded a ∼89% success rate at identifying the serotype of the isolate, and a different region could be targeted to achieve 100%. When coupled with ISR, all serotypes were differentiated. Phage lineages of serotype Enteritidis 13a and 4 were identified, and a biofilm-forming strain of PT13a was differentiated from a smooth phenotype within phage type. Comparative ranking of mutation indices to genes such as the tRNA transferases, the diguanylate cyclases, and genes used for multilocus sequence typing indicated that cyaA is an appropriate gene for assessing epidemiological trends of Salmonella because of its relative stability in nucleotide composition. PMID:27035032

  14. Single nucleotide polymorphisms in candidate genes associated with gastrointestinal nematode infection in goats.

    PubMed

    Bressani, F A; Tizioto, P C; Giglioti, R; Meirelles, S L C; Coutinho, R; Benvenuti, C L; Malagó-Jr, W; Mudadu, M A; Vieira, L S; Zaros, L G; Carrilho, E; Regitano, L C A

    2014-10-20

    Cytokines are small cell-signaling proteins that play an important role in the immune system, participating in intracellular communication. Four candidate genes of the cytokine family (IL2, IL4, IL13, and IFNG) were selected to identify Single Nucleotide Polymorphisms (SNPs) that might be associated with resistance to gastrointestinal endoparasites in goats. A population of 229 goats, F2 offspring from an F1 intercross was produced by crossing pure Saanen goats, considered as susceptible to gastrointestinal endoparasites, with pure Anglo-Nubian goats, considered resistant. Blood was collected for DNA extraction and fecal samples were also collected for parasite egg count. Polymorphisms were prospected by sequencing animals with extreme phenotype for fecal egg count (FEC) distribution. The association between SNPs and phenotype was determined by using the Fisher exact test with correction for multiple tests. Three of the 10 SNPs were identified as significant (P ≤ 0.03). They were found in intron 1 of IL2 (ENSBTA00000020883), intron 3 of IL13 (ENSBTA00000015953) and exon 3 of IFNG (ENSBTA00000012529), suggesting an association between them and gastrointestinal endoparasite resistance. Further studies will help describe the effects of these markers accurately before implementing them in marker assisted selection. This study is the pioneer in describing such associations in goats.

  15. Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data.

    PubMed

    Batley, Jacqueline; Barker, Gary; O'Sullivan, Helen; Edwards, Keith J; Edwards, David

    2003-05-01

    We have developed a computer based method to identify candidate single nucleotide polymorphisms (SNPs) and small insertions/deletions from expressed sequence tag data. Using a redundancy-based approach, valid SNPs are distinguished from erroneous sequence by their representation multiple times in an alignment of sequence reads. A second measure of validity was also calculated based on the cosegregation of the SNP pattern between multiple SNP loci in an alignment. The utility of this method was demonstrated by applying it to 102,551 maize (Zea mays) expressed sequence tag sequences. A total of 14,832 candidate polymorphisms were identified with an SNP redundancy score of two or greater. Segregation of these SNPs with haplotype indicates that candidate SNPs with high redundancy and cosegregation confidence scores are likely to represent true SNPs. This was confirmed by validation of 264 candidate SNPs from 27 loci, with a range of redundancy and cosegregation scores, in four inbred maize lines. The SNP transition/transversion ratio and insertion/deletion size frequencies correspond to those observed by direct sequencing methods of SNP discovery and suggest that the majority of predicted SNPs and insertion/deletions identified using this approach represent true genetic variation in maize.

  16. Identification, validation and survey of a single nucleotide polymorphism (SNP) associated with pungency in Capsicum spp.

    PubMed

    Garcés-Claver, Ana; Fellman, Shanna Moore; Gil-Ortega, Ramiro; Jahn, Molly; Arnedo-Andrés, María S

    2007-11-01

    A single nucleotide polymorphism (SNP) associated with pungency was detected within an expressed sequence tag (EST) of 307 bp. This fragment was identified after expression analysis of the EST clone SB2-66 in placenta tissue of Capsicum fruits. Sequence alignments corresponding to this new fragment allowed us to identify an SNP between pungent and non-pungent accessions. Two methods were chosen for the development of the SNP marker linked to pungency: tetra-primer amplification refractory mutation system-PCR (tetra-primer ARMS-PCR) and cleaved amplified polymorphic sequence. Results showed that both methods were successful in distinguishing genotypes. Nevertheless, tetra-primer ARMS-PCR was chosen for SNP genotyping because it was more rapid, reliable and less cost-effective. The utility of this SNP marker for pungency was demonstrated by the ability to distinguish between 29 pungent and non-pungent cultivars of Capsicum annuum. In addition, the SNP was also associated with phenotypic pungent character in the tested genotypes of C. chinense, C. baccatum, C. frutescens, C. galapagoense, C. eximium, C. tovarii and C. cardenasi. This SNP marker is a faster, cheaper and more reproducible method for identifying pungent peppers than other techniques such as panel tasting, and allows rapid screening of the trait in early growth stages.

  17. Role of six single nucleotide polymorphisms, risk factors in coronary disease, in OLR1 alternative splicing.

    PubMed

    Tejedor, J Ramón; Tilgner, Hagen; Iannone, Camilla; Guigó, Roderic; Valcárcel, Juan

    2015-06-01

    The OLR1 gene encodes the oxidized low-density lipoprotein receptor (LOX-1), which is responsible for the cellular uptake of oxidized LDL (Ox-LDL), foam cell formation in atheroma plaques and atherosclerotic plaque rupture. Alternative splicing (AS) of OLR1 exon 5 generates two protein isoforms with antagonistic functions in Ox-LDL uptake. Previous work identified six single nucleotide polymorphisms (SNPs) in linkage disequilibrium that influence the inclusion levels of OLR1 exon 5 and correlate with the risk of cardiovascular disease. Here we use minigenes to recapitulate the effects of two allelic series (Low- and High-Risk) on OLR1 AS and identify one SNP in intron 4 (rs3736234) as the main contributor to the differences in exon 5 inclusion, while the other SNPs in the allelic series attenuate the drastic effects of this key SNP. Bioinformatic, proteomic, mutational and functional high-throughput analyses allowed us to define regulatory sequence motifs and identify SR protein family members (SRSF1, SRSF2) and HMGA1 as factors involved in the regulation of OLR1 AS. Our results suggest that antagonism between SRSF1 and SRSF2/HMGA1, and differential recognition of their regulatory motifs depending on the identity of the rs3736234 polymorphism, influence OLR1 exon 5 inclusion and the efficiency of Ox-LDL uptake, with potential implications for atherosclerosis and coronary disease.

  18. High-throughput chemiluminometric genotyping of single nucleotide polymorphisms of histamine, serotonin, and adrenergic receptor genes.

    PubMed

    Toubanaki, Dimitra K; Christopoulos, Theodore K; Ioannou, Penelope C; Flordellis, Christodoulos S

    2009-02-01

    Several pharmacogenetic studies are focused on the investigation of the relation between the efficacy of various antipsychotic agents (e.g., clozapine) and the genetic profile of the patient with an emphasis on genes that code for neurotransmitter receptors such as histamine, serotonin, and adrenergic receptors. We report a high-throughput method for genotyping of single nucleotide polymorphisms (SNPs) within the genes of histamine H2 receptor (HRH2), serotonin receptor (HTR2A1 and HTR2A2), and beta(3) adrenergic receptor (ADRB3). The method combines the high specificity of allele discrimination by oligonucleotide ligation reaction (OLR) and the superior sensitivity and simplicity of chemiluminometric detection in a microtiter well assay configuration. The genomic region that spans the locus of interest is first amplified by polymerase chain reaction (PCR). Subsequently, an oligonucleotide ligation reaction is performed using a biotinylated common probe and two allele-specific probes that are labeled at the 3' end with digoxigenin and fluorescein. The ligation products are immobilized in polystyrene wells via biotin-streptavidin interaction, and the hybrids are denatured. Detection is accomplished by the addition of alkaline phosphatase-conjugated anti-digoxigenin or anti-fluorescein antibodies in combination with a chemiluminogenic substrate. The ratio of the luminescence signals obtained from digoxigenin and fluorescein indicates the genotype of the sample. The method was applied successfully to the genotyping of 23 blood samples for all four SNPs. The results were in concordance with both PCR-restriction fragment length polymorphism analysis and sequencing.

  19. Detection of mandarin in orange juice by single-nucleotide polymorphism qPCR assay.

    PubMed

    Aldeguer, Miriam; López-Andreo, María; Gabaldón, José A; Puyet, Antonio

    2014-02-15

    A dual-probe real time PCR (qPCR) DNA-based analysis was devised for the identification of mandarin in orange juice. A single nucleotide polymorphism at the trnL-trnF intergenic region of the chloroplast chromosome was confirmed in nine orange (Citrus sinensis) and thirteen commercial varieties of mandarin, including Citrus reticulata and Citrus unshiu species and a mandarin × tangelo hybrid. Two short minor-groove binding fluorescent probes targeting the polymorphic sequence were used in the dual-probe qPCR, which allowed the detection of both species in single-tube reactions. The similarity of PCR efficiencies allowed a simple estimation of the ratio mandarin/orange in the juice samples, which correlated to the measured difference of threshold cycle values for both probes. The limit of detection of the assay was 5% of mandarin in orange juice, both when the juice was freshly prepared (not from concentrate) or reconstituted from concentrate, which would allow the detection of fraudulently added mandarin juice. The possible use of the dual-probe system for quantitative measurements was also tested on fruit juice mixtures. qPCR data obtained from samples containing equal amounts of mandarin and orange juice revealed that the mandarin target copy number was approximately 2.6-fold higher than in orange juice. The use of a matrix-adapted control as calibrator to compensate the resulting C(T) bias allowed accurate quantitative measurements to be obtained.

  20. Feasibility of mini-sequencing schemes based on nucleotide polymorphisms for microbial identification and population analyses.

    PubMed

    Araujo, Ricardo; Eusebio, Nadia; Caramalho, Rita

    2015-03-01

    Practical schemes based on single nucleotide polymorphisms (SNP) have been proposed as alternatives to simplify and replace the molecular methodologies based on the extensive sequencing analysis of genes. SNaPshot mini-sequencing has been progressively experienced during the last decade and represents a fast and robust strategy to analyze critical polymorphisms. Such assays have been proposed to characterize some bacteria and microbial eukaryotes, and its feasibility was now reviewed in the present manuscript. The mini-sequencing schemes showed high discriminatory power and competence for identification of microorganisms, but some specificity errors were still found, particularly for species of the Burkholderia cepacia complex and mycobacteria. SNP assays designed for other goals, e.g., comparison of strains, detection of serotypes, virulence, epidemic, and phylogenetic-related subgroups of isolates, can be very useful by facilitating the investigation of large collections of isolates. The next-generation of SNP assays might consider the inclusion of large number of markers to fully characterize microbial taxonomy and strains; nevertheless, these new technologies are still prone to errors and can largely benefit from integration with well-established mini-sequencing assays. Newly proposed molecular tools should be systematically tested in collections of isolates with high indexes of diversity and guarantee interlaboratorial validation.

  1. Association of IL-13 single nucleotide polymorphisms in Iranian patients to multiple sclerosis

    PubMed Central

    Seyfizadeh, Narges; Kazemi, Tohid; Farhoudi, Mehdi; Aliparasti, Mohammad Reza; Sadeghi-Bazargani, Homayoun; Almasi, Shohreh; Babaloo, Zohreh

    2014-01-01

    MS is an autoimmune disease and interleukin 13 (IL-13) has been proposed to be an important neuroprotective mediator in MS. Because of plausible effect of single nucleotide polymorphisms (SNPs) in expression level or biological activity of any cytokine, we sought to investigate association of IL-13 SNPs, C-1112T, A-1512C and G+2044A, with risk to MS. Sixty-eight RRMS patients and 110 healthy controls were involved in this study. After extraction of genomic DNA, frequency of genotypes and alleles were determined by PCR-RFLP and data were analyzed statistically. Results showed significant higher frequency of CC, CC, and AA genotypes and C, C, and A alleles of -1112CT, -1512AC and +2044GA SNPs respectively, in patients group. There was significant association between -1112C allele with onset age of MS. No significant association was seen between any of genotypes or alleles with expanded disability status scale (EDSS) of patients. Our findings showed significant association between three studied SNPs of IL-13 with susceptibility to MS in Iranian patients. More studies should be done on other IL-13 SNPs, and also polymorphisms of IL-13 receptor and other cytokines to determine the exact role of SNPs in protecting or predisposing of individuals for MS. PMID:25628961

  2. Single-Nucleotide Polymorphism of PPARγ, a Protein at the Crossroads of Physiological and Pathological Processes

    PubMed Central

    Petrosino, Maria; Lori, Laura; Pasquo, Alessandra; Lori, Clorinda; Consalvi, Valerio; Minicozzi, Velia; Morante, Silvia; Laghezza, Antonio; Giorgi, Alessandra; Capelli, Davide; Chiaraluce, Roberta

    2017-01-01

    Genome polymorphisms are responsible for phenotypic differences between humans and for individual susceptibility to genetic diseases and therapeutic responses. Non-synonymous single-nucleotide polymorphisms (nsSNPs) lead to protein variants with a change in the amino acid sequence that may affect the structure and/or function of the protein and may be utilized as efficient structural and functional markers of association to complex diseases. This study is focused on nsSNP variants of the ligand binding domain of PPARγ a nuclear receptor in the superfamily of ligand inducible transcription factors that play an important role in regulating lipid metabolism and in several processes ranging from cellular differentiation and development to carcinogenesis. Here we selected nine nsSNPs variants of the PPARγ ligand binding domain, V290M, R357A, R397C, F360L, P467L, Q286P, R288H, E324K, and E460K, expressed in cancer tissues and/or associated with partial lipodystrophy and insulin resistance. The effects of a single amino acid change on the thermodynamic stability of PPARγ, its spectral properties, and molecular dynamics have been investigated. The nsSNPs PPARγ variants show alteration of dynamics and tertiary contacts that impair the correct reciprocal positioning of helices 3 and 12, crucially important for PPARγ functioning. PMID:28208577

  3. Paclitaxel sensitivity in relation to ABCB1 expression, efflux and single nucleotide polymorphisms in ovarian cancer.

    PubMed

    Gao, Bo; Russell, Amanda; Beesley, Jonathan; Chen, Xiao Qing; Healey, Sue; Henderson, Michelle; Wong, Mark; Emmanuel, Catherine; Galletta, Laura; Johnatty, Sharon E; Bowtell, David; Haber, Michelle; Norris, Murray; Harnett, Paul; Chenevix-Trench, Georgia; Balleine, Rosemary L; deFazio, Anna

    2014-05-09

    ABCB1 (adenosine triphosphate-binding cassette transporter B1) mediates cellular elimination of many chemotherapeutic agents including paclitaxel, which is commonly used to treat ovarian cancer. A significant association between common single nucleotide polymorphisms (SNPs) in ABCB1 and progression-free survival has been reported in patients with ovarian cancer. Variable paclitaxel clearance due to genotype specific differences in ABCB1 activity in cancer cells and/or normal tissues may underlie the association. Using cell-based models, we evaluated the correlations between ABCB1 expression, polymorphisms, transporter activity and paclitaxel sensitivity in ovarian cancer (n = 10) and lymphoblastoid (n = 19) cell lines. Close associations between ABCB1 expression, transporter function and paclitaxel sensitivity were found in lymphoblastoid cell lines, although we could not demonstrate an association with common SNPs. In ovarian cancer cell lines, ABCB1 expression was low and the association between expression and function was lost. These results suggest that ABCB1 related survival difference in ovarian cancer patients is more likely to be due to differential whole body paclitaxel clearance mediated by normal cells rather than a direct effect on cancer cells.

  4. Single nucleotide polymorphisms of TNFAIP3 are associated with systemic lupus erythematosus in Han Chinese population.

    PubMed

    Han, J-W; Wang, Y; Li, H-B; Alateng, C; Bai, Y-H; Sun, Z-Q; Lv, X-X; Wu, R-N

    2016-04-01

    The polymorphisms of tumour necrosis factor alpha-induced protein 3 (TNFAIP3) have been found to associate with several autoimmune diseases. This study aimed to explore the association of single nucleotide polymorphisms (SNPs) of TNFAIP3 gene with systemic lupus erythematosus (SLE) in Han Chinese. Thirty-two SNPs were genotyped in 284 patients with SLE and 630 controls using the ligation detection reaction (LDR) method. The quality control steps and statistical analyses were performed using the PLINK 1.07 package and HAPLOVIEW software. We found that 13 SNPs in TNFAIP3 showed significant association with SLE (P < 1.85 × 10(-3)), and all of them were in high linkage disequilibrium (LD). After conditioning on the SNP rs2230926, other 12 SNPs did not show association (P > 0.27). All 13 SNPs showed most significant association in the dominant model. In haplotype analysis, a long risk SNP haplotype (GCCCGTGTCATGG) showed most significant association (P = 1.00 × 10(-4)). In conclusion, our data suggest that TNFAIP3 is a susceptible gene for SLE in the Han Chinese population.

  5. Genetic Diversity Revealed by Single Nucleotide Polymorphism Markers in a Worldwide Germplasm Collection of Durum Wheat

    PubMed Central

    Ren, Jing; Sun, Daokun; Chen, Liang; You, Frank M.; Wang, Jirui; Peng, Yunliang; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2013-01-01

    Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity. PMID:23538839

  6. Single nucleotide polymorphism of FSHβ gene associated with reproductive traits in Japanese flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    He, Feng; Wen, Haishen; Yu, Dahui; Li, Jifang; Shi, Bao; Chen, Caifang; Zhang, Jiaren; Jin, Guoxiong; Chen, Xiaoyan; Shi, Dan; Yang, Yanping

    2010-12-01

    Follicle stimulating hormone β (FSHβ) of Japanese flounder ( Paralichthys olivaceus) plays a key role in the regulation of gonadal development. This study aimed to investigate molecular genetic characteristics of the FSHβ gene and elucidate the effects of single nucleotide polymorphisms (SNPs) of FSHβ on reproductive traits in Japanese flounder. We used polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) and sequencing of the FSHβ gene in 60 individuals. We identified only an SNP (T/C) in the coding region of exon3 of FSHβ. The SNP (T/C) did not lead to amino acid changes at the position 340 bp of FSHβ gene. Statistical analysis showed that the SNP was significantly associated with testosterone (T) level and gonadosomatic index (GSI) ( P < 0.05). Individuals with genotype TC of the SNP had significantly higher serum T levels and GSI ( P < 0.05) than that of genotype CC. Therefore, FSHβ gene could be a useful molecular marker in selection for prominent reproductive trait in Japanese Flounder.

  7. Oxytocin Receptor (OXTR) Single Nucleotide Polymorphisms Indirectly Predict Prosocial Behavior Through Perspective Taking and Empathic Concern.

    PubMed

    Christ, Christa C; Carlo, Gustavo; Stoltenberg, Scott F

    2016-04-01

    Engaging in prosocial behavior can provide positive outcomes for self and others. Prosocial tendencies contribute to the propensity to engage in prosocial behavior. The oxytocin receptor gene (OXTR) has also been associated with prosocial tendencies and behaviors. There has been little research, however, investigating whether the relationship between OXTR and prosocial behaviors is mediated by prosocial tendencies. This relationship may also vary among different types of prosocial behavior. The current study examines the relationship between OXTR, gender, prosocial tendencies, and both altruistic and public prosocial behavior endorsement. Students at a midwestern university (N = 398; 89.2% Caucasian; Mage  = 20.76; 26.6% male) provided self-report measures of prosocial tendencies and behaviors and buccal cells for genotyping OXTR polymorphisms. Results indicated that OXTR single nucleotide polymorphism (SNP) rs2268498 genotype significantly predicted empathic concern, whereas gender moderated the association between several other OXTR SNPs and prosocial tendencies. Increased prosocial tendencies predicted increased altruistic prosocial behavior endorsement and decreased public prosocial behavior endorsement. Our findings suggest an association between genetic variation in OXTR and endorsement of prosocial behavior indirectly through prosocial tendencies, and that the pathway is dependent on the type of prosocial behavior and gender.

  8. Evaluation of 16 loci to examine the cross-species utility of single nucleotide polymorphism arrays.

    PubMed

    Sechi, T; Coltman, D W; Kijas, J W

    2010-04-01

    Large collections of single nucleotide polymorphisms (SNPs) have recently been identified from a number of livestock genomes. This raises the possibility that SNP arrays might be useful for analysis in related species for which few genetic markers are currently available. To address the likely success of such an approach, the aim of this study was to examine the threshold number and position of flanking mutations which act to prevent genotype calls being produced. Sequence diversity was measured across 16 loci containing SNPs known either to work successfully between species or fail between species. In pairwise comparisons between domestic and wild sheep, sequence divergence surrounding working SNP assays was significantly lower than that surrounding non-functional assays. In addition, the location of flanking mismatches tended to be closer to the target SNP in loci that failed to generate genotype calls across species. The magnitude of sequence divergence observed for both working and non-functional assays was compared with the divergence separating domestic sheep from European Mouflon, African Barbary, goat and cattle. The results suggest that the utility of SNP arrays for analysis of shared polymorphism will be restricted to closely related pairs of species. Analysis across more divergent species will, however, be successful for other objectives, such as the identification of the ancestral state of SNPs.

  9. Differentiation of drug and non-drug Cannabis using a single nucleotide polymorphism (SNP) assay.

    PubMed

    Rotherham, D; Harbison, S A

    2011-04-15

    Cannabis sativa is both an illegal drug and a legitimate crop. The differentiation of illegal drug Cannabis from non-drug forms of Cannabis is relevant in the context of the growth of fibre and seed oil varieties of Cannabis for commercial purposes. This differentiation is currently determined based on the levels of tetrahydrocannabinol (THC) in adult plants. DNA based methods have the potential to assay Cannabis material unsuitable for analysis using conventional means including seeds, pollen and severely degraded material. The purpose of this research was to develop a single nucleotide polymorphism (SNP) assay for the differentiation of "drug" and "non-drug"Cannabis plants. An assay was developed based on four polymorphisms within a 399 bp fragment of the tetrahydrocannabinolic acid (THCA) synthase gene, utilising the snapshot multiplex kit. This SNP assay was tested on 94 Cannabis plants, which included 10 blind samples, and was able to differentiate between "drug" and "non-drug"Cannabis in all cases, while also differentiating between Cannabis and other species. Non-drug plants were found to be homozygous at the four sites assayed while drug Cannabis plants were either homozygous or heterozygous.

  10. Single-Nucleotide Polymorphism of PPARγ, a Protein at the Crossroads of Physiological and Pathological Processes.

    PubMed

    Petrosino, Maria; Lori, Laura; Pasquo, Alessandra; Lori, Clorinda; Consalvi, Valerio; Minicozzi, Velia; Morante, Silvia; Laghezza, Antonio; Giorgi, Alessandra; Capelli, Davide; Chiaraluce, Roberta

    2017-02-10

    Genome polymorphisms are responsible for phenotypic differences between humans and for individual susceptibility to genetic diseases and therapeutic responses. Non-synonymous single-nucleotide polymorphisms (nsSNPs) lead to protein variants with a change in the amino acid sequence that may affect the structure and/or function of the protein and may be utilized as efficient structural and functional markers of association to complex diseases. This study is focused on nsSNP variants of the ligand binding domain of PPARγ a nuclear receptor in the superfamily of ligand inducible transcription factors that play an important role in regulating lipid metabolism and in several processes ranging from cellular differentiation and development to carcinogenesis. Here we selected nine nsSNPs variants of the PPARγ ligand binding domain, V290M, R357A, R397C, F360L, P467L, Q286P, R288H, E324K, and E460K, expressed in cancer tissues and/or associated with partial lipodystrophy and insulin resistance. The effects of a single amino acid change on the thermodynamic stability of PPARγ, its spectral properties, and molecular dynamics have been investigated. The nsSNPs PPARγ variants show alteration of dynamics and tertiary contacts that impair the correct reciprocal positioning of helices 3 and 12, crucially important for PPARγ functioning.

  11. The Role of Vitamin D Level and Related Single Nucleotide Polymorphisms in Crohn’s Disease

    PubMed Central

    Carvalho, Andre Y. O. M.; Bishop, Karen S.; Han, Dug Yeo; Ellett, Stephanie; Jesuthasan, Amalini; Lam, Wen J.; Ferguson, Lynnette R.

    2013-01-01

    New Zealand has one of the highest rates of Crohn’s Disease (CD) in the world, and there is much speculation as to why this might be. A high risk of CD has been associated with deficient or insufficient levels of Vitamin D (Vit D), lifestyle as well as various genetic polymorphisms. In this study we sought to analyse the relevance of serum Vit D levels, lifestyle and genotype to CD status. Serum samples were analysed for 25-OH-Vitamin D levels. DNA was isolated from blood and cheek-swabs, and Sequenom and ImmunoChip techniques were used for genotyping. Serum Vit D levels were significantly lower in CD patients (mean = 49.5 mg/L) than those found in controls (mean = 58.9 mg/L, p = 4.74 × 10−6). A total of seven single nucleotide polymorphisms were examined for effects on serum Vit D levels, with adjustment for confounding variables. Two variants: rs731236[A] (VDR) and rs732594[A] (SCUBE3) showed a significant association with serum Vit D levels in CD patients. Four variants: rs7975232[A] (VDR), rs732594[A] (SCUBE3), and rs2980[T] and rs2981[A] (PHF-11) showed a significant association with serum Vit D levels in the control group. This study demonstrates a significant interaction between Vit D levels and CD susceptibility, as well as a significant association between Vit D levels and genotype. PMID:24084050

  12. A STAT6 Intronic Single-Nucleotide Polymorphism is Associated with Clinical Malaria in Ghanaian Children

    PubMed Central

    Amoako-Sakyi, Daniel; Adukpo, Selorme; Kusi, Kwadwo A.; Dodoo, Daniel; Ofori, Michael F.; Adjei, George O.; Edoh, Dominic E.; Asmah, Richard H.; Brown, Charles; Adu, Bright; Obiri-Yeboah, Dorcas; Futagbi, Godfred; Abubakari, Sharif Buari; Troye-Blomberg, Marita; Akanmori, Bartholomew D.; Goka, Bamenla Q.; Arko-Mensah, John; Gyan, Ben A.

    2016-01-01

    Malaria pathogenesis may be influenced by IgE responses and cytokine cross-regulation. Several mutations in the IL-4/STAT6 signaling pathway can alter cytokine cross-regulation and IgE responses during a Plasmodium falciparum malarial infection. This study investigated the relationship between a STAT6 intronic single-nucleotide polymorphism (rs3024974), total IgE, cytokines, and malaria severity in 238 Ghanaian children aged between 0.5 and 13 years. Total IgE and cytokine levels were measured by ELISA, while genotyping was done by polymerase chain reaction-restriction fragment length polymorphism (RFLP). Compared with healthy controls, heterozygosity protected against clinical malaria: uncomplicated malaria (odds ratios [OR] = 0.13, P < 0.001), severe malarial anemia (OR = 0.18, P < 0.001), and cerebral malaria (OR = 0.39, P = 0.022). Levels of total IgE significantly differed among malaria phenotypes (P = 0.044) and rs3024974 genotypes (P = 0.037). Neither cytokine levels nor IL-6/IL-10 ratios were associated with malaria phenotypes or rs3024974 genotypes. This study suggests a role for rs3024974 in malaria pathogenesis and offers further insights into an IL-4/STAT6 pathway mutation in malaria pathogenesis. PMID:27279750

  13. Influence of a critical single nucleotide polymorphism on nuclear receptor PXR-promoter function.

    PubMed

    Rana, Manjul; Coshic, Poonam; Goswami, Ravinder; Tyagi, Rakesh K

    2017-02-15

    The Pregnane and Xenobiotic Receptor (PXR; NR1I2) is a ligand-modulated transcription factor that belongs to the nuclear receptor superfamily. It is expressed at higher levels primarily in liver and intestine as compared to the levels in several other organs. It is activated by a broad spectrum of xenobiotics and endobiotics. The primary function of PXR is to regulate the expression of drug metabolizing enzymes and transporters and prevent the accumulation of toxic chemicals in the body, thereby maintaining body's homeostasis. In this study, we identified a C/T single nucleotide polymorphism at position -831 from the transcriptional start site of the PXR gene promoter and examined the functional significance of this variant using both the luciferase reporter gene assays and electrophoretic mobility shift assays (EMSA). Transient transfection experiments showed that the T-allele was associated with significantly greater transcriptional activity than the C-allele of SNP rs3814055. These results indicate that the -831C/T polymorphism has a direct effect on transcriptional regulation of PXR gene. This allelic variation may be a potential genetic marker that can help identify individuals at higher risk for Inflammatory Bowel Disease (IBD).

  14. Association of a single nucleotide polymorphism upstream of ICOS with Japanese autoimmune hepatitis type 1.

    PubMed

    Higuchi, Takashi; Oka, Shomi; Furukawa, Hiroshi; Nakamura, Minoru; Komori, Atsumasa; Abiru, Seigo; Nagaoka, Shinya; Hashimoto, Satoru; Naganuma, Atsushi; Naeshiro, Noriaki; Yoshizawa, Kaname; Shimada, Masaaki; Nishimura, Hideo; Tomizawa, Minoru; Kikuchi, Masahiro; Makita, Fujio; Yamashita, Haruhiro; Ario, Keisuke; Yatsuhashi, Hiroshi; Tohma, Shigeto; Kawasaki, Aya; Ohira, Hiromasa; Tsuchiya, Naoyuki; Migita, Kiyoshi

    2017-04-01

    Autoimmune hepatitis (AIH) is an uncommon chronic autoimmune liver disease. Several studies reported the association of polymorphisms between CD28, CTLA4 and ICOS gene cluster in 2q33.2 with autoimmune or inflammatory diseases. The previous genome-wide association study on type 1 AIH in a European population has reported a risk G allele of a single nucleotide polymorphism (SNP), rs4325730, in this region. Here, we conducted an association study of this SNP with type 1 AIH in a Japanese population, as a replication study.An association study of rs4325730 was conducted in 343 Japanese AIH patients and 315 controls.We found that rs4325730 is associated with AIH (P=0.0173, odds ratio (OR) 1.30, 95% confidence interval (CI) 1.05-1.62, under the allele model for G allele, P=0.0070, OR 1.62, 95% CI 1.14-2.31, under the dominant model for G allele). This SNP was strongly associated with definite AIH (P=0.0134, OR 1.36, 95% CI 1.07-1.74; under allele model for G, P=0.0035, OR 1.85, 95% CI 1.22-2.81, under dominant model for G).This is the first replication association study of rs4325730 upstream of ICOS with AIH in the Japanese population and rs4325730G is a risk allele.

  15. Potential impact of a single nucleotide polymorphism in the hyaluronan synthase 1 gene in Waldenstrom's macroglobulinemia.

    PubMed

    Adamia, Sophia; Treon, Steven P; Reiman, Tony; Tournilhac, Olivier; McQuarrie, Carrie; Mant, Michael J; Belch, Andrew R; Pilarski, Linda M

    2005-03-01

    The hyaluronan synthase 1 (HAS1) gene encodes a plasma membrane protein that synthesizes hyaluronan, an extracellular matrix molecule. Previously, in patients with Waldenstrom's macroglobulinemia (WM), we detected upregulation of HAS1 transcripts and identified aberrant splice variants of this gene. Aberrant splicing of HAS1 results from activation of cryptic splice sites. In turn, activation of cryptic donor and acceptor splice sites can be promoted by mutations occurring upstream of these sites and/or at the branch point of slicing. We measured the frequency of the HAS1 833A/G polymorphism (ie, single-nucleotide polymorphism; SNP) in patients with WM and healthy donors. Additionally, HAS1 gene expression was evaluated in the same group of patients. Our observations so far suggest that HAS1 833A/G SNPs contribute to aberrant splicing of this gene; this idea is supported by the fact that 833A/G SNP is located on an exonic splicing enhancer motif. Based on the results obtained thus far, we speculate that individuals with HAS1 833G/G genotype are predisposed toward aberrant HAS1 splicing and expression of HAS1 variants, resulting in an enhanced risk of developing WM. Study of a larger group of patients and healthy donors is needed to confirm these speculations and to evaluate the prognostic significance of these findings.

  16. [Analysis on single nucleotide polymorphisms of porcine myostatin gene in different breeds].

    PubMed

    Jiang, Y L; Li, N; Wu, C X; Du, L X

    2001-01-01

    By PCR-RFLPs and PCR-SSCP approach, three single nucleotide polymorphisms (SNPs) of porcine myostatin gene (MSTN) were analyzed in different breeds including "doubled-muscled" Yorkshire, Yorkshire, Landrace, Hamshire, Duroc, Piteran, Erhualian, Min, Hubei White and some hybrids. The three SNPs were located in the 3' encoding region, 5' promoter region and intronl region respectively. For the SNP in the 3' encoding region, which was caused by C-->T transition, the mutation frequency was relatively low: no TT genotype was detected in 274 individuals of different breeds. For the SNP in the 5' promoter region, 560 pigs were investigated. The allele T dominates in the imported lean-type pig breeds such as Yorkshire, Landrace, Duroc, Hampshire, Piteran and hybrid, however, in Erhualian and Hubei White pigs, the allele A was in majority. Polymorphism showed the similar pattern for the SNP in intron 1 region. G was the dominant allele in Yorkshire, Landrace and their hybrids, while in Erhualian and Hubei White pigs the frequency of A was much higher. Obviously they were not in Hardy-Weinberg equilibrium state. For Min and Yorshire x Erhualian pigs, they were in Hardy-Weinberg equilibrium state for the SNPs in the 5' promoter region and (or) intron 1 region. The frequency for the A alleles of SNPs in the 5' promoter region and intron 1 region was higher for "double-muscled" Yorkshire than for Yorkshire and linkage for these two mutation sites was also observed.

  17. Single nucleotide polymorphism in the neuroplastin locus associates with cortical thickness and intellectual ability in adolescents.

    PubMed

    Desrivières, S; Lourdusamy, A; Tao, C; Toro, R; Jia, T; Loth, E; Medina, L M; Kepa, A; Fernandes, A; Ruggeri, B; Carvalho, F M; Cocks, G; Banaschewski, T; Barker, G J; Bokde, A L W; Büchel, C; Conrod, P J; Flor, H; Heinz, A; Gallinat, J; Garavan, H; Gowland, P; Brühl, R; Lawrence, C; Mann, K; Martinot, M L P; Nees, F; Lathrop, M; Poline, J-B; Rietschel, M; Thompson, P; Fauth-Bühler, M; Smolka, M N; Pausova, Z; Paus, T; Feng, J; Schumann, G

    2015-02-01

    Despite the recognition that cortical thickness is heritable and correlates with intellectual ability in children and adolescents, the genes contributing to individual differences in these traits remain unknown. We conducted a large-scale association study in 1583 adolescents to identify genes affecting cortical thickness. Single-nucleotide polymorphisms (SNPs; n=54,837) within genes whose expression changed between stages of growth and differentiation of a human neural stem cell line were selected for association analyses with average cortical thickness. We identified a variant, rs7171755, associating with thinner cortex in the left hemisphere (P=1.12 × 10(-)(7)), particularly in the frontal and temporal lobes. Localized effects of this SNP on cortical thickness differently affected verbal and nonverbal intellectual abilities. The rs7171755 polymorphism acted in cis to affect expression in the human brain of the synaptic cell adhesion glycoprotein-encoding gene NPTN. We also found that cortical thickness and NPTN expression were on average higher in the right hemisphere, suggesting that asymmetric NPTN expression may render the left hemisphere more sensitive to the effects of NPTN mutations, accounting for the lateralized effect of rs7171755 found in our study. Altogether, our findings support a potential role for regional synaptic dysfunctions in forms of intellectual deficits.

  18. A new single-nucleotide polymorphisms database for rainbow trout generated through whole genome resequencing of selected samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout, SNP discovery has been done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL), RNA sequencing, and whole...

  19. Single Nucleotide Polymorphisms in ABCG5 and ABCG8 are associated with changes in cholestrol metabolism during weight loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To examine whether changes in cholesterol lowering and metabolism after weight loss were affected by single nucleotide polymorphisms (SNPs) in ABCG5 and ABCG8 genes. Methods and Results: Thirty-five hypercholesterolemic women lost 11.7 +/- 2.5 kg (P<0.001). Cholesterol kinetics were ass...

  20. A ferrofluid-based homogeneous assay for highly sensitive and selective detection of single-nucleotide polymorphisms.

    PubMed

    Shen, Wei; Lim, Cai Le; Gao, Zhiqiang

    2013-09-21

    A simple and low-cost colorimetric assay utilizing ferrofluidic nanoparticulate probes (FNPs) and a ligase for single-nucleotide polymorphism genotyping is described. Excellent sensitivity and selectivity were accomplished through the engagement of the FNPs and a ligase chain reaction.

  1. Discovery of single nucleotide polymorphisms in candidate genes associated with fertility and production traits in Holstein cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of single nucleotide polymorphisms (SNPs) for specific genes involved in reproduction might improve reliability of genomic estimates for these low- heritability traits. Semen from 550 Holstein bulls of high (>= 1.7; n=288) or low (<= -2; n = 262) daughter pregnancy rate (DPR) was geno...

  2. Assessing the association of single nucleotide polymorphisms at the thyroglobulin gene with carcass traits in beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to assess the association of single nucleotide polymorphisms in the thyroglobulin gene, including a previously reported marker in current industry use, with marbling score in beef cattle. Three populations, designated GPE6, GPE7, and GPE8, were studied. The GPE6 pop...

  3. Single nucleotide polymorphisms in candidate genes associated with fertilizing ability of sperm and subsequent embryonic development in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fertilization and development of the preimplantation embryo is under genetic control. The goal of the current study was to test 434 single nucleotide polymorphisms (SNPs) for association with genetic variation in fertilization and early embryonic development. The approach was to produce embryos from...

  4. Single nucleotide polymorphisms in uracil-processing genes, intake of one-carbon nutrients and breast cancer risk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Objectives: The misincorporation of uracil into DNA leads to genomic instability. In a previous study, some of us identified four common single nucleotide polymorphisms (SNPs) in uracil-processing genes (rs2029166 and rs7296239 in SMUG1, rs34259 in UNG and rs4775748 in DUT) that were asso...

  5. High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...

  6. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-density single nucleotide polymorphism (SNP) genotyping chips are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships among individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array includ...

  7. A high-density simple sequence repeat and single nucleotide polymorphism genetic map of the tetraploid cotton genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton genome complexity was investigated with a saturated molecular genetic map that combined several sets of microsatellites or simple sequence repeats (SSR) and the first major public set of single nucleotide polymorphism (SNP) markers in cotton genomes (Gossypium spp.), and that was constructed ...

  8. Comparing genotyping-by-sequencing and Single Nucleotide Polymorphism chip genotyping in Quantitive Trait Loci mapping in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Array- or chip-based single nucleotide polymorphism (SNP) markers are widely used in genomic studies because of their abundance in a genome and cost less per data point compared to older marker technologies. Genotyping by sequencing (GBS), a relatively newer approach of genotyping, suggests equal or...

  9. Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single-nucleotide polymorphism genotyping array

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the low cost of single nucleotide polymorphism (SNP) discovery, use of SNP markers for SNP array development is becoming more affordable. The SNP array is a very useful tool for high throughput genotyping and has a number of applications such as genome-wide association studies (GWAS). Since the...

  10. Effects of bovine cytochrome P450 single nucleotide polymorphism, forage type, and body condition on production traits in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relating single nucleotide polymorphisms (SNP) to cows with acceptable productivity could benefit cattle breeders especially in areas where tall fescue is the predominant forage. This study aimed to 1) identify SNPs in bovine cytochrome P450 3A28 (CYP3A28) and 2) determine associations between SNP g...

  11. The role of brain-derived neurotrophic factor and its single nucleotide polymorphisms in stroke patients.

    PubMed

    Kotlęga, Dariusz; Peda, Barbara; Zembroń-Łacny, Agnieszka; Gołąb-Janowska, Monika; Nowacki, Przemysław

    2017-03-06

    Stroke is the main cause of motoric and neuropsychological disability in adults. Recent advances in research into the role of the brain-derived neurotrophic factor in neuroplasticity, neuroprotection and neurogenesis might provide important information for the development of new poststroke-rehabilitation strategies. It plays a role as a mediator in motor learning and rehabilitation after stroke. Concentrations of BDNF are lower in acute ischemic-stroke patients compared to controls. Lower levels of BDNF are correlated with an increased risk of stroke, worse functional outcomes and higher mortality. BDNF signalling is dependent on the genetic variation which could affect an individual's response to recovery after stroke. Several single nucleotide polymorphisms of the BDNF gene have been studied with regard to stroke patients, but most papers analyse the rs6265 which results in a change from valine to methionine in the precursor protein. Subsequently a reduction in BDNF activity is observed. There are studies indicating the role of this polymorphism in brain plasticity, functional and morphological changes in the brain. It may affect the risk of ischemic stroke, post-stroke outcomes and the efficacy of the rehabilitation process within physical exercise and transcranial magnetic stimulation. There is a consistent trend of Met alleles' being connected with worse outcomes and prognoses after stroke. However, there is no satisfactory data confirming the importance of Met allele in stroke epidemiology and the post-stroke rehabilitation process. We present the current data on the role of BDNF and polymorphisms of the BDNF gene in stroke patients, concentrating on human studies.

  12. Distribution of cytokine gene single nucleotide polymorphisms among a multi-ethnic Iranian population

    PubMed Central

    Kurdistani, Zana Karimi; Saberi, Samaneh; Talebkhan, Yeganeh; Oghalaie, Akbar; Esmaeili, Maryam; Mohajerani, Nazanin; Bababeik, Maryam; Hassanpour, Parisa; Barani, Shaghik; Farjaddoost, Ameneh; Ebrahimzadeh, Fatemeh; Trejaut, Jean; Mohammadi, Marjan

    2015-01-01

    Background: Cytokine gene single nucleotide polymorphisms (SNPs) are widely used to study susceptibility to complex diseases and as a tool for anthropological studies. Materials and Methods: To investigate cytokine SNPs in an Iranian multi-ethnic population, we have investigated 10 interleukin (IL) SNPs (IL-1β (C-511T, T-31C), IL-2 (G-384T), IL-4 (C-590T), IL-6 (G-174C), IL-8 (T-251A), IL-10 (G-1082A, C-819T, C-592A) and tumor necrosis factor-alpha (TNF-α) (G-308A) in 415 Iranian subjects comprising of 6 different ethnicities. Allelic and genotypic frequencies as well as Hardy-Weinberg equilibrium (HWE) were calculated by PyPop software. Population genetic indices including observed heterozygosity (Ho), expected heterozygosity (He), fixation index (FIS), the effective number of alleles (Ne) and polymorphism information content (PIC) were derived using Popgene 32 software. Multidimensional scaling (MDS) was constructed using Reynold's genetic distance obtained from the frequencies of cytokine gene polymorphism. Results: Genotypic distributions were consistent with the HWE assumptions, except for 3 loci (IL-4-590, IL-8-251 and IL-10-819) in Fars and 4 loci (IL-4-590, IL-6-174, IL-10-1082 and TNF-α-308) in Turks. Pairwise assessment of allelic frequencies, detected differences at the IL-4-590 locus in Gilakis versus Kurds (P = 0.028) and Lurs (P = 0.022). Mazanis and Gilakis displayed the highest (Ho= 0.50 ± 0.24) and lowest (Ho= 0.34 ± 0.16) mean observed heterozygosity, respectively. Conclusions: MDS analysis of our study population, in comparison with others, revealed that Iranian ethnicities except Kurds and Mazanis were tightly located within a single cluster with closest genetic affinity to Europeans. PMID:26436076

  13. Association of BRCA1 Functional Single Nucleotide Polymorphisms with Risk of Differentiated Thyroid Carcinoma

    PubMed Central

    Xu, Li; Doan, Phi C.; Wei, Qingyi; Liu, Yanhong; Li, Guojun

    2012-01-01

    Background Breast cancer 1, early onset (BRCA1) is a vital DNA repair gene, and the single nucleotide polymorphisms (SNPs) of this gene have been studied in diverse cancer types. In this study, we investigated the association between eight common BRCA1 functional SNPs and the risk of differentiated thyroid carcinoma (DTC). Methods This cancer center-based case–control study included 303 DTC cases and 511 controls. A polymerase chain reaction-based restriction fragment length polymorphism assay was performed for genotyping. Unconditional logistical regression analysis was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) in single-SNP analysis and haplotype analysis. Results A decreased risk of DTC was found for the A1988G heterozygous AG genotype (adjusted OR=0.63, 95% CI: 0.45–0.87, Bonferroni-adjusted p-value=0.036). AATAATA and ATAA haplotypes that carry C33420T variant allele were associated with reduced papillary thyroid cancer risk (adjusted OR=0.52, 95% CI: 0.33–0.84; adjusted OR=0.62, 95% CI: 0.40–0.95, respectively). Also, having a combination of ≥3 favorable genotypes was associated with a DTC risk reduction (adjusted OR=0.69, 95% CI: 0.50–0.95). The A31875G AG/GG genotype was associated with a 69% reduced risk of multifocal primary tumor in DTC patients (adjusted OR=0.31, 95% CI: 0.12–0.81). Conclusion BRCA1 genetic polymorphisms may play a role in DTC risk, while the possible associations warrant confirmation in independent studies. PMID:22136207

  14. KRAS and VEGF gene 3'-UTR single nucleotide polymorphisms predicted susceptibility in colorectal cancer

    PubMed Central

    Xing, Xiaorui; Li, Xin; Xia, Tian; Long, Hanan

    2017-01-01

    Single nucleotide polymorphisms (SNPs) in tumor-related genes have been reported to play important roles in cancer development. Recent studies have shown that 3’-untranslated regions (UTR) polymorphisms are associated with the occurrence and prognosis of cancers. The aim of this study is to analyze the association between KRAS and VEGF gene 3’-UTR SNPs and genetic susceptibility to colorectal cancer (CRC). In this case-control study of 371 CRC cases and 246 healthy controls, we analyzed the association between one SNP (rs1137188G > A) in the KRAS gene and four SNPs (rs3025039C > T, rs3025040C > T, rs3025053G > A and rs10434A > G) in the VEGF gene and CRC susceptibility by the improved multiplex ligase detection reaction (iMLDR) method. We checked the selected SNPs’ minor allele frequency and its distribution in the frequency of Chinese people by Hap-map database and Hardy-Weinberg equilibrium, and used multivariate logistic regression models to estimate adjusted odds ratios (AORs) and 95% confidence intervals (95% CIs). We found that the rs3025039C variant genotype in the VEGF gene was associated with a significant protection for CRC (AOR = 0.693, 95% CI = 0.485–0.989; P = 0.043 for CC and CT+TT). Nevertheless, the difference was no longer significant after Bonferroni correction (Bonferroni-adjusted P = 0.172). In genetic polymorphisms analysis, we found that the KRAS rs1137188 variant AA genotype had higher portion of tumor size (≥ 5 cm) (P = 0.01; Bonferroni-adjusted P = 0.04), which suggested that the rs1137188 variant AA genotype may significantly be associated with increased progression of CRC. In conclusion, our study suggested that these five SNPs in the KRAS gene and the VEGF gene were not associated with CRC susceptibility in Han Chinese in Sichuan province. PMID:28328959

  15. Platelet receptor gain-of-function single nucleotide polymorphisms in carotid and vertebral stenosis patients.

    PubMed

    Lugli, Andrea Kopp; Brown, Martin M; Steffel, Jan; Büchi, Linda; Förnzler, Dorothee; Dupont, Annabelle; Gaussem, Pascale; Forestier, Marc; Beer, Juerg H

    2011-08-01

    The role of platelet receptor gain-of-function single nucleotide polymorphisms (SNP) in cardiovascular disease is controversial. We hypothesised that certain SNPs may accelerate the development of carotid artery stenosis. The intronic PAR-1 receptor intervening sequence-14 A/T (IVSn-14 A/T) polymorphism and three additional platelet receptor polymorphisms, i.e. GPIa (807C/T), GPIbα (5T/C) and HPA-1a/HPA-1b (Pl (A1/A2)) of GPIIIa were studied. The interaction of SNPs with conventional risk factors including male gender, hypertension, high cholesterol, diabetes, advanced age and smoking were investigated. The hypothesis was tested in 114 well-characterised patients with symptomatic carotid or vertebral stenosis from the British CAVATAS population and compared the results with 97 unrelated controls. The allele frequency of the platelet gain-of-function SNP was not significantly different in the CAVATAS population as compared to controls (PAR-1A/T (P = 0.13), GPIa C/T (P = 0.25), GPIIIa HPA-1a/HPA-1b (PlA1/A2) (P = 0.66) and GPIb T/C (P = 0.20)). In the subgroup of smokers, however, the prothrombotic GPIbα C mutated allele was found in a significantly higher frequency in the patient as compared to the control group (P = 0.04). Contrary to the primary hypothesis, the PAR-1A/T SNP as well as the other SNPs tested were not over- or underrepresented in the CAVATAS population. However, a significantly increased prevalence of GPIb-α (5C/T) was found in the subgroup of smokers and may represent an important cofactor in this patient group of our hypothesis-generating study.

  16. Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections

    PubMed Central

    Baniecki, Mary Lynn; Faust, Aubrey L.; Schaffner, Stephen F.; Park, Daniel J.; Galinsky, Kevin; Daniels, Rachel F.; Hamilton, Elizabeth; Ferreira, Marcelo U.; Karunaweera, Nadira D.; Serre, David; Zimmerman, Peter A.; Sá, Juliana M.; Wellems, Thomas E.; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E.; Volkman, Sarah K.; Wirth, Dyann F.; Sabeti, Pardis C.

    2015-01-01

    Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. PMID:25781890

  17. High-resolution genomic copy number profiling of glioblastoma multiforme by single nucleotide polymorphism DNA microarray.

    PubMed

    Yin, Dong; Ogawa, Seishi; Kawamata, Norihiko; Tunici, Patrizia; Finocchiaro, Gaetano; Eoli, Marica; Ruckert, Christian; Huynh, Thien; Liu, Gentao; Kato, Motohiro; Sanada, Masashi; Jauch, Anna; Dugas, Martin; Black, Keith L; Koeffler, H Phillip

    2009-05-01

    Glioblastoma multiforme (GBM) is an extremely malignant brain tumor. To identify new genomic alterations in GBM, genomic DNA of tumor tissue/explants from 55 individuals and 6 GBM cell lines were examined using single nucleotide polymorphism DNA microarray (SNP-Chip). Further gene expression analysis relied on an additional 56 GBM samples. SNP-Chip results were validated using several techniques, including quantitative PCR (Q-PCR), nucleotide sequencing, and a combination of Q-PCR and detection of microsatellite markers for loss of heterozygosity with normal copy number [acquired uniparental disomy (AUPD)]. Whole genomic DNA copy number in each GBM sample was profiled by SNP-Chip. Several signaling pathways were frequently abnormal. Either the p16(INK4A)/p15(INK4B)-CDK4/6-pRb or p14(ARF)-MDM2/4-p53 pathways were abnormal in 89% (49 of 55) of cases. Simultaneous abnormalities of both pathways occurred in 84% (46 of 55) samples. The phosphoinositide 3-kinase pathway was altered in 71% (39 of 55) GBMs either by deletion of PTEN or amplification of epidermal growth factor receptor and/or vascular endothelial growth factor receptor/platelet-derived growth factor receptor alpha. Deletion of chromosome 6q26-27 often occurred (16 of 55 samples). The minimum common deleted region included PARK2, PACRG, QKI, and PDE10A genes. Further reverse transcription Q-PCR studies showed that PARK2 expression was decreased in another collection of GBMs at a frequency of 61% (34 of 56) of samples. The 1p36.23 region was deleted in 35% (19 of 55) of samples. Notably, three samples had homozygous deletion encompassing this site. Also, a novel internal deletion of a putative tumor suppressor gene, LRP1B, was discovered causing an aberrant protein. AUPDs occurred in 58% (32 of 55) of the GBM samples and five of six GBM cell lines. A common AUPD was found at chromosome 17p13.3-12 (included p53 gene) in 13 of 61 samples and cell lines. Single-strand conformational polymorphism and nucleotide

  18. Nucleotide Polymorphism and Linkage Disequilibrium Within and Among Natural Populations of European Aspen (Populus tremula L., Salicaceae)

    PubMed Central

    Ingvarsson, Pär K.

    2005-01-01

    Populus is an important model organism in forest biology, but levels of nucleotide polymorphisms and linkage disequilibrium have never been investigated in natural populations. Here I present a study on levels of nucleotide polymorphism, haplotype structure, and population subdivision in five nuclear genes in the European aspen Populus tremula. Results show substantial levels of genetic variation. Levels of silent site polymorphisms, πs, averaged 0.016 across the five genes. Linkage disequilibrium was generally low, extending only a few hundred base pairs, suggesting that rates of recombination are high in this obligate outcrossing species. Significant genetic differentiation was found at all five genes, with an average estimate of FST = 0.116. Levels of polymorphism in P. tremula are 2- to 10-fold higher than those in other woody, long-lived perennial plants, such as Pinus and Cryptomeria. The high levels of nucleotide polymorphism and low linkage disequilibrium suggest that it may be possible to map functional variation to very fine scales in P. tremula using association-mapping approaches. PMID:15489521

  19. Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology

    PubMed Central

    Pareek, Chandra Shekhar; Błaszczyk, Paweł; Dziuba, Piotr; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Pierzchała, Mariusz; Feng, Yaping; Kadarmideen, Haja N.; Kumar, Dibyendu

    2017-01-01

    Background RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver tissue of young bulls of the Polish Red, Polish Holstein-Friesian (HF) and Hereford breeds, and to understand the genomic variation in the three cattle breeds that may reflect differences in production traits. Results The RNA-seq experiment on bovine liver produced 107,114,4072 raw paired-end reads, with an average of approximately 60 million paired-end reads per library. Breed-wise, a total of 345.06, 290.04 and 436.03 million paired-end reads were obtained from the Polish Red, Polish HF, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed that 81.35%, 82.81% and 84.21% of the mapped sequencing reads were properly paired to the Polish Red, Polish HF, and Hereford breeds, respectively. This study identified 5,641,401 SNPs and insertion and deletion (indel) positions expressed in the bovine liver with an average of 313,411 SNPs and indel per young bull. Following the removal of the indel mutations, a total of 195,3804, 152,7120 and 205,3184 raw SNPs expressed in bovine liver were identified for the Polish Red, Polish HF, and Hereford breeds, respectively. Breed-wise, three highly reliable breed-specific SNP-databases (SNP-dbs) with 31,562, 24,945 and 28,194 SNP records were constructed for the Polish Red, Polish HF, and Hereford breeds, respectively. Using a combination of stringent parameters of a minimum depth of ≥10 mapping reads that support the polymorphic nucleotide base and 100% SNP ratio, 4,368, 3,780 and 3,800 SNP records were detected in the Polish Red, Polish HF, and Hereford breeds, respectively. The SNP detections using RNA-seq data were successfully validated by kompetitive allele-specific PCR (KASPTM) SNP genotyping assay

  20. Kelvin probe force microscopy of DNA-capped nanoparticles for single-nucleotide polymorphism detection

    NASA Astrophysics Data System (ADS)

    Lee, Hyungbeen; Lee, Sang Won; Lee, Gyudo; Lee, Wonseok; Lee, Jeong Hoon; Hwang, Kyo Seon; Yang, Jaemoon; Lee, Sang Woo; Yoon, Dae Sung

    2016-07-01

    Kelvin probe force microscopy (KPFM) is a robust toolkit for profiling the surface potential (SP) of biomolecular interactions between DNAs and/or proteins at the single molecule level. However, it has often suffered from background noise and low throughput due to instrumental or environmental constraints, which is regarded as limiting KPFM applications for detection of minute changes in the molecular structures such as single-nucleotide polymorphism (SNP). Here, we show KPFM imaging of DNA-capped nanoparticles (DCNP) that enables SNP detection of the BRCA1 gene owing to sterically well-adjusted DNA-DNA interactions that take place within the confined spaces of DCNP. The average SP values of DCNP interacting with BRCA1 SNP were found to be lower than the DCNP reacting with normal (non-mutant) BRCA1 gene. We also demonstrate that SP characteristics of DCNP with different substrates (e.g., Au, Si, SiO2, and Fe) provide us with a chance to attenuate or augment the SP signal of DCNP without additional enhancement of instrumentation capabilities.Kelvin probe force microscopy (KPFM) is a robust toolkit for profiling the surface potential (SP) of biomolecular interactions between DNAs and/or proteins at the single molecule level. However, it has often suffered from background noise and low throughput due to instrumental or environmental constraints, which is regarded as limiting KPFM applications for detection of minute changes in the molecular structures such as single-nucleotide polymorphism (SNP). Here, we show KPFM imaging of DNA-capped nanoparticles (DCNP) that enables SNP detection of the BRCA1 gene owing to sterically well-adjusted DNA-DNA interactions that take place within the confined spaces of DCNP. The average SP values of DCNP interacting with BRCA1 SNP were found to be lower than the DCNP reacting with normal (non-mutant) BRCA1 gene. We also demonstrate that SP characteristics of DCNP with different substrates (e.g., Au, Si, SiO2, and Fe) provide us with a

  1. On-chip detection of a single nucleotide polymorphism without polymerase amplification

    PubMed Central

    Han, Jinhee; Tan, Matthew; Sudheendra, Lakshmana; Weiss, Robert H.; Kennedy, Ian M.

    2014-01-01

    A nanoparticle-assembled photonic crystal (PC) array was used to detect single nucleotide polymorphism (SNP). The assay platform with PC nanostructure enhanced the fluorescent signal from nanoparticle-hybridized DNA complexes due to phase matching of excitation and emission. Nanoparticles coupled with probe DNA were trapped into nanowells in an array by using an electrophoretic particle entrapment system. The PC/DNA assay platform was able to identify a 1 base pair (bp) difference in synthesized nucleotide sequences that mimicked the mutation seen in a feline model of human autosomal dominant polycystic kidney disease (PKD) with a sensitivity of 0.9 fg/mL (50 aM)-sensitivity, which corresponds to 30 oligos/array. The reliability of the PC/DNA assay platform to detect SNP in a real sample was demonstrated by using genomic DNA (gDNA) extracted from the urine and blood of two PKD− wild type and three PKD positive cats. The standard curves for PKD positive (PKD+) and negative (PKD−) DNA were created using two feline-urine samples. An additional three urine samples were analyzed in a similar fashion and showed satisfactory agreement with the standard curve, confirming the presence of the mutation in affected urine. The limit of detection (LOD) was 0.005 ng/mL which corresponds to 6 fg per array for gDNA in urine and blood. The PC system demonstrated the ability to detect a number of genome equivalents for the PKD SNP that was very similar to the results reported with real time polymerase chain reaction (PCR). The favorable comparison with quantitative PCR suggests that the PC technology may find application well beyond the detection of the PKD SNP, into areas where a simple, cheap and portable nucleic acid analysis is desirable. PMID:25580203

  2. Translational Medicine and Reliability of Single-Nucleotide Polymorphism Studies: Can We Believe in SNP Reports or Not?

    PubMed Central

    Valachis, Antonis; Mauri, Davide; Neophytou, Christodoulos; Polyzos, Nikolaos P.; Tsali, Lampriani; Garras, Antonios; Papanikolau, Evangelos G.

    2011-01-01

    Background: The number of genetic association studies is increasing exponentially. Nonetheless, genetic association reports are prone to potential biases which may influence the reported outcome. Aim: We hypothesized that positive outcome for a determined polymorphism might be over-reported across genetic association studies analysing a small number of polymorphisms, when compared to studies analysing the same polymorphism together with a high number of other polymorphisms. Methods: We systematically reviewed published reports on the association of glutathione s-transferase (GST) single-nucleotide polymorphisms (SNPs) and cancer outcome. Result: We identified 79 eligible trials. Most of the studies examined the GSTM1, theGSTP1 Ile105Val mutation, and GSTT1polymorphisms (n = 54, 57 and 46, respectively). Studies analysing one to three polymorphisms (n = 39) were significantly more likely to present positive outcomes, compared to studies examining more than 3 polymorphisms (n=40) p = 0.004; this was particularly evident for studies analysing the GSTM1polymorphism (p =0.001). We found no significant associations between journal impact factor, number of citations, and probability of publishing positive studies or studies with 1-3 polymorphisms examined. Conclusions: We propose a new subtype of publication bias in genetic association studies. Positive results for genetic association studies analysing a small number of polymorphisms (n = 1-3) should be evaluated extremely cautiously, because a very large number of such studies are inconclusive and statistically under-powered. Indeed, publication of misleading reports may affect harmfully medical decision-making and use of resources, both in clinical and pharmacological development setting. PMID:21897762

  3. Single-nucleotide polymorphism associations in common with immune responses to measles and rubella vaccines.

    PubMed

    Ovsyannikova, Inna G; Salk, Hannah M; Larrabee, Beth R; Pankratz, V Shane; Poland, Gregory A

    2014-11-01

    Single-nucleotide polymorphisms (SNPs) in candidate immune response genes were evaluated for associations with measles- and rubella-specific neutralizing antibodies, interferon (IFN)-γ, and interleukin (IL)-6 secretion in two separate association analyses in a cohort of healthy immunized subjects. We identified six SNP associations shared between the measles-specific and rubella-specific immune responses, specifically neutralizing antibody titers (DDX58), secreted IL-6 (IL10RB, IL12B), and secreted IFN-γ (IFNAR2, TLR4). An intronic SNP (rs669260) in the antiviral innate immune receptor gene, DDX58, was significantly associated with increased neutralizing antibody titers for both measles and rubella viral antigens post-MMR vaccination (p values 0.02 and 0.0002, respectively). Significant associations were also found between IL10RB (rs2284552; measles study p value 0.006, rubella study p value 0.00008) and IL12B (rs2546893; measles study p value 0.005, rubella study p value 0.03) gene polymorphisms and variations in both measles- and rubella virus-specific IL-6 responses. We also identified associations between individual SNPs in the IFNAR2 and TLR4 genes that were associated with IFN-γ secretion for both measles and rubella vaccine-specific immune responses. These results are the first to indicate that there are SNP associations in common across measles and rubella vaccine immune responses and that SNPs from multiple genes involved in innate and adaptive immune response regulation may contribute to the overall human antiviral response.

  4. Single-Nucleotide Polymorphisms on the RYD5 Gene in Nasal Polyposis

    PubMed Central

    İzbirak, Afife; Özdaş, Talih; Özcan, Kürşat Murat; Erbek, Selim S.; Köseoğlu, Sabri; Dere, Hüseyin

    2015-01-01

    Nasal polyposis (NP) is a chronic inflammatory disease. Several genes play major roles in the pathophysiology of the disease. We analyzed RYD5 gene polymorphisms to determine the effect of these variants or their genetic combinations on NP. We genotyped the RYD5 gene in 434 participants (196 patients with NP and 238 controls). Data were analyzed with SPSS, SNPStats, and multifactor dimensionality reduction (MDR) software. We genotyped 10 single-nucleotide polymorphisms (SNPs) in the RYD5 gene. RYD5 (+152G>T) (p.Gly51Va) has not been reported previously. The PolyPhen and PROVEAN predicted the missense mutation as deleterious, but sorting intolerant from tolerant (SIFT) did not. In the genotype analysis, we found that four SNPs (RYD5 [−264A>G], [−103G>A], [+57-14C>T], and [+66A>G]) were significantly associated with NP. The individuals with combined genotypes of six risk alleles (RYD5−264G, −103A, +13C, +57-14T, +66G, and +279T) had significantly higher risks for NP compared with the ones with one or four risk alleles. Haplotype analysis revealed that the two haplotypes were associated with risk of NP. As indicated by MDR analysis, RYD5 (−264A>G and −103G>A) and RYD5 (−264A>G, −177C>A, and −103G>A) were the best predictive combinations and they had the highest synergistic interaction on NP. In addition, RYD5 (+13C>T) was significantly associated with increased risk of both NP with asthma and NP with allergy and asthma. Some SNPs and their combinations in the RYD5 gene are associated with increased probability for developing NP. We emphasize the importance of genetic factors on NP and NP-related clinical phenotypes. PMID:26204469

  5. Host nucleotide polymorphism in hepatitis B virus-associated hepatocellular carcinoma

    PubMed Central

    Mathew, Shilu; Abdel-Hafiz, Hany; Raza, Abbas; Fatima, Kaneez; Qadri, Ishtiaq

    2016-01-01

    Hepatocellular carcinoma (HCC) is etiologically linked with hepatitis B virus (HBV) and is the leading cause of death amongst 80% of HBV patients. Among HBV affected patients, genetic factors are also involved in modifying the risk factors of HCC. However, the genetic factors that regulate progression to HCC still remain to be determined. In this review, we discuss several single nucleotide polymorphisms (SNPs) which were reportedly associated with increased or reduced risk of HCC occurrence in patients with chronic HBV infection such as cyclooxygenase (COX)-2 expression specifically at COX-2 -1195G/A in Chinese, Turkish and Egyptian populations, tumor necrosis factor α and the three most commonly studied SNPs: PAT-/+, Lys939Gln (A33512C, rs2228001) and Ala499Val (C21151T, rs2228000). In genome-wide association studies, strong associations have also been found at loci 1p36.22, 11q22.3, 6p21 (rs1419881, rs3997872, rs7453920 and rs7768538), 8p12 (rs2275959 and rs37821974) and 22q11.21. The genes implicated in these studies include HLA-DQB2, HLA-DQA1, TCF19, HLA-C, UBE2L3, LTL, FDX1, MICA, UBE4B and PG. The SNPs found to be associated with the above-mentioned genes still require validation in association studies in order to be considered good prognostic candidates for HCC. Screening of these polymorphisms is very beneficial in clinical experiments to stratify the higher or lower risk for HCC and may help in designing effective and efficient HCC surveillance programs for chronic HBV-infected patients if further genetic vulnerabilities are detected. PMID:27057306

  6. IL23R single nucleotide polymorphisms could be either beneficial or harmful in ulcerative colitis

    PubMed Central

    Fischer, Sarah; Kövesdi, Erzsébet; Magyari, Lili; Csöngei, Veronika; Hadzsiev, Kinga; Melegh, Béla; Hegyi, Péter; Sarlós, Patrícia

    2017-01-01

    AIM To investigate the association of seven single nucleotide polymorphisms (SNPs) of the IL23R gene with the clinical picture of ulcerative colitis (UC). METHODS Genomic DNA samples of 131 patients (66 males, 65 females, mean age 55.4 ± 15.8 years) with Caucasian origin, diagnosed with UC were investigated. The diagnosis of UC was based on the established clinical, endoscopic, radiological, and histopathological guidelines. DNA was extracted from peripheral blood leukocytes by routine salting out method. Polymerase chain reaction and restriction fragment length polymorphism were used to identify the alleles of seven SNPs of IL23R gene (rs11209026, rs10889677, rs1004819, rs2201841, rs7517847, rs10489629, rs7530511). RESULTS Four out of seven analyzed SNPs had statistically significant influence on the clinical picture of UC. Two SNPs were associated with greater colonic extension (rs2201841 P = 0.0084; rs10489629 P = 0.0405). For two of the SNPs, there was more frequently need for operations (rs2201841 P = 0.0348, OR = 8.0; rs10889677 P = 0.0347, OR = 8.0). The rs2201841 showed to be a risk factor for the development of iron deficiency (P = 0.0388, OR = 6.1837). For patients with the rs10889677, a therapy with azathioprine was more frequently necessary (P = 0.0116, OR = 6.1707). Patients with rs10489629 SNP had a lower risk for weight loss (P = 0.0169, OR = 0.3394). Carriers of the heterozygous variant had a higher risk for an extended disease (P = 0.0284). The rs7517847 showed a protective character leading to mild bowel movements. Three SNPs demonstrated no statistically significant influence on any examined clinical features of UC. CONCLUSION We demonstrated susceptible or protective character of the investigated IL23R SNPs on the phenotype of UC, confirming the genetic association. PMID:28210080

  7. Genome-wide single nucleotide polymorphisms reveal population history and adaptive divergence in wild guppies.

    PubMed

    Willing, Eva-Maria; Bentzen, Paul; van Oosterhout, Cock; Hoffmann, Margarete; Cable, Joanne; Breden, Felix; Weigel, Detlef; Dreyer, Christine

    2010-03-01

    Adaptation of guppies (Poecilia reticulata) to contrasting upland and lowland habitats has been extensively studied with respect to behaviour, morphology and life history traits. Yet population history has not been studied at the whole-genome level. Although single nucleotide polymorphisms (SNPs) are the most abundant form of variation in many genomes and consequently very informative for a genome-wide picture of standing natural variation in populations, genome-wide SNP data are rarely available for wild vertebrates. Here we use genetically mapped SNP markers to comprehensively survey genetic variation within and among naturally occurring guppy populations from a wide geographic range in Trinidad and Venezuela. Results from three different clustering methods, Neighbor-net, principal component analysis (PCA) and Bayesian analysis show that the population substructure agrees with geographic separation and largely with previously hypothesized patterns of historical colonization. Within major drainages (Caroni, Oropouche and Northern), populations are genetically similar, but those in different geographic regions are highly divergent from one another, with some indications of ancient shared polymorphisms. Clear genomic signatures of a previous introduction experiment were seen, and we detected additional potential admixture events. Headwater populations were significantly less heterozygous than downstream populations. Pairwise F(ST) values revealed marked differences in allele frequencies among populations from different regions, and also among populations within the same region. F(ST) outlier methods indicated some regions of the genome as being under directional selection. Overall, this study demonstrates the power of a genome-wide SNP data set to inform for studies on natural variation, adaptation and evolution of wild populations.

  8. Performance of single nucleotide polymorphisms versus haplotypes for genome-wide association analysis in barley.

    PubMed

    Lorenz, Aaron J; Hamblin, Martha T; Jannink, Jean-Luc

    2010-11-22

    Genome-wide association studies (GWAS) may benefit from utilizing haplotype information for making marker-phenotype associations. Several rationales for grouping single nucleotide polymorphisms (SNPs) into haplotype blocks exist, but any advantage may depend on such factors as genetic architecture of traits, patterns of linkage disequilibrium in the study population, and marker density. The objective of this study was to explore the utility of haplotypes for GWAS in barley (Hordeum vulgare) to offer a first detailed look at this approach for identifying agronomically important genes in crops. To accomplish this, we used genotype and phenotype data from the Barley Coordinated Agricultural Project and constructed haplotypes using three different methods. Marker-trait associations were tested by the efficient mixed-model association algorithm (EMMA). When QTL were simulated using single SNPs dropped from the marker dataset, a simple sliding window performed as well or better than single SNPs or the more sophisticated methods of blocking SNPs into haplotypes. Moreover, the haplotype analyses performed better 1) when QTL were simulated as polymorphisms that arose subsequent to marker variants, and 2) in analysis of empirical heading date data. These results demonstrate that the information content of haplotypes is dependent on the particular mutational and recombinational history of the QTL and nearby markers. Analysis of the empirical data also confirmed our intuition that the distribution of QTL alleles in nature is often unlike the distribution of marker variants, and hence utilizing haplotype information could capture associations that would elude single SNPs. We recommend routine use of both single SNP and haplotype markers for GWAS to take advantage of the full information content of the genotype data.

  9. Evaluation of Single Nucleotide Polymorphism Typing with Invader on PCR Amplicons and Its Automation

    PubMed Central

    Mein, Charles A.; Barratt, Bryan J.; Dunn, Michael G.; Siegmund, Thorsten; Smith, Annabel N.; Esposito, Laura; Nutland, Sarah; Stevens, Helen E.; Wilson, Amanda J.; Phillips, Michael S.; Jarvis, Nancy; Law, Scott; de Arruda, Monika; Todd, John A.

    2000-01-01

    Large-scale pharmacogenetics and complex disease association studies will require typing of thousands of single-nucleotide polymorphisms (SNPs) in thousands of individuals. Such projects would benefit from a genotyping system with accuracy >99% and a failure rate <5% on a simple, reliable, and flexible platform. However, such a system is not yet available for routine laboratory use. We have evaluated a modification of the previously reported Invader SNP-typing chemistry for use in a genotyping laboratory and tested its automation. The Invader technology uses a Flap Endonuclease for allele discrimination and a universal fluorescence resonance energy transfer (FRET) reporter system. Three hundred and eighty-four individuals were genotyped across a panel of 36 SNPs and one insertion/deletion polymorphism with Invader assays using PCR product as template, a total of 14,208 genotypes. An average failure rate of 2.3% was recorded, mostly associated with PCR failure, and the typing was 99.2% accurate when compared with genotypes generated with established techniques. An average signal-to-noise ratio (9:1) was obtained. The high degree of discrimination for single base changes, coupled with homogeneous format, has allowed us to deploy liquid handling robots in a 384-well microtitre plate format and an automated end-point capture of fluorescent signal. Simple semiautomated data interpretation allows the generation of ∼25,000 genotypes per person per week, which is 10-fold greater than gel-based SNP typing and microsatellite typing in our laboratory. Savings on labor costs are considerable. We conclude that Invader chemistry using PCR products as template represents a useful technology for typing large numbers of SNPs rapidly and efficiently. PMID:10720574

  10. Rapid single nucleotide polymorphism detection for personalized medicine applications using planar waveguide fluorescence sensors

    NASA Astrophysics Data System (ADS)

    Herron, James N.; Tolley, Samuel E.; Smith, Richard; Christensen, Douglas A.

    2006-02-01

    Personalized medicine is an emerging field in which clinical diagnostics information about a patient's genotype or phenotype is used to optimize his/her pharmacotherapy. This article evaluates whether planar waveguide fluorescent sensors are suitable for determining such information from patient testing in point-of-care (POC) settings. The model system was Long QT Syndrome, a congenital disease associated with single nucleotide polymorphisms (SNPs) in genes encoding for cardiac ion channels. Three different SNP assay formats were examined: DNA/DNA hybridization, DNA/PNA hybridization (PNA: "peptide nucleic acid"), and single base extension (SBEX). Although DNA/DNA hybridization produced a strong intensity-time response for both wildtype and SNP analytes in a 5-min assay at 32°C, their hybridization rates differed by only 32.7%, which was insufficient for clinical decision-making. Much better differentiation of the two rates was observed at 53°C, where the wildtype's hybridization rate was two-thirds of its maximum value, while that of the SNP was essentially zero. Such all-or-nothing resolution would be adequate for clinical decision-making; however, the elevated temperature and precise temperature control would be hard to achieve in a POC setting. Results from DNA/PNA hybridization studies were more promising. Nearly 20-fold discrimination between wildtype and SNP hybridization rates was observed in a 5-min assay at 30°C, although the low ionic strength conditions required necessitated a de-salting step between sample preparation and SNP detection. SBEX was the most promising of the three, determining the absolute identity of the suspected polymorphism in a 5-min assay at 40°C.

  11. Identification of single nucleotide polymorphism in protein phosphatase 1 regulatory subunit 11 gene in Murrah bulls

    PubMed Central

    Jain, Varsha; Patel, Brijesh; Umar, Farhat Paul; Ajithakumar, H. M.; Gurjar, Suraj K.; Gupta, I. D.; Verma, Archana

    2017-01-01

    Aim: This study was conducted with the objective to identify single nucleotide polymorphism (SNP) in protein phosphatase 1 regulatory subunit 11 (PPP1R11) gene in Murrah bulls. Materials and Methods: Genomic DNA was isolated by phenol–chloroform extraction method from the frozen semen samples of 65 Murrah bulls maintained at Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal. The quality and concentration of DNA was checked by spectrophotometer reading and agarose gel electrophoresis. The target region of PPP1R11 gene was amplified using four sets of primer designed based on Bos taurus reference sequence. The amplified products were sequenced and aligned using Clustal Omega for identification of SNPs. Animals were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using EcoNI restriction enzyme. Results: The sequences in the NCBI accession number NW_005785016.1 for Bubalus bubalis were compared and aligned with the edited sequences of Murrah bulls with Clustal Omega software. A total of 10 SNPs were found, out of which 1 at 5’UTR, 3 at intron 1, and 6 at intron 2 region. PCR-RFLP using restriction enzyme EcoNI revealed only AA genotype indicating monomorphism in PPP1R11 gene of all Murrah animals included in the study. Conclusion: A total of 10 SNPs were found. PCR-RFLP revealed only AA genotype indicating monomorphism in PPP1R11 gene of all Murrah animals included in the study, due to which association analysis with conception rate was not feasible. PMID:28344410

  12. Association of Single Nucleotide Polymorphisms in Glycosylation Genes with Risk of Epithelial Ovarian Cancer

    PubMed Central

    Sellers, Thomas A.; Huang, Yifan; Cunningham, Julie; Goode, Ellen L.; Sutphen, Rebecca; Vierkant, Robert A.; Kelemen, Linda E.; Fredericksen, Zachary S.; Liebow, Mark; Pankratz, V. Shane; Hartmann, Lynn C.; Myer, Jeff; Iversen, Edwin S.; Schildkraut, Joellen M.; Phelan, Catherine

    2012-01-01

    Studies suggest that underglycosylation of the cell membrane mucin MUC1 may be associated with epithelial ovarian cancer. We identified 26 genes involved in glycosylation and examined 93 single nucleotide polymorphisms (SNP) with a minor allele frequency of ≥0.05 in relation to incident ovarian cancer. Cases were ascertained at the Mayo Clinic, Rochester, MN (n = 396) or a 48-county region in North Carolina (Duke University; n = 534). Ovarian cancer- free controls (n = 1,037) were frequency matched to the cases on age, race, and residence. Subjects were interviewed to obtain data on risk factors and a sample of blood for DNA and genotyped using the Illumina GoldenGate assay. We excluded subjects and individual SNPs with genotype call rates of <90%. Data were analyzed using logistic regression, with adjustment for age and residence. We fitted dominant, log additive, and recessive genetic models. Among Caucasians, nine SNPs in eight genes were associated with risk at P < 0.05 under at least one genetic model before adjusting for multiple testing. A SNP in GALNT1 (rs17647532) was the only one that remained statistically significant after Bonferroni adjustment for multiple testing but was not statistically significant in Hardy-Weinberg equilibrium among controls. Haplo-type analyses revealed a global association of GALNT1 with risk (P = 0.038, under a recessive genetic model), which largely reflected a decreased risk of one haplotype (0.10 frequency; odds ratio, 0.07; P = 0.01) compared with the most common haplotype (0.39 frequency). These results suggest that genetic polymorphisms in the glycoslyation process may be novel risk factors for ovarian cancer. PMID:18268124

  13. [Natural nucleotide polymorphism of the Srlk gene that determines salt stress tolerance in alfalfa (Medicago sativa L)].

    PubMed

    Vishnevskaia, M S; Pavlov, A V; Dziubenko, E A; Dziubenko, N I; Potokina, E K

    2014-04-01

    Based on legume genome syntheny, the nucleotide sequence of Srlk gene, key role of which in response to salt stress was demonstrated for the model species Medicago truncatula, was identified in the major forage and siderate crop alfalfa (Medicago sativa). In twelve alfalfa samples originating from regions with contrasting growing conditions, 19 SNPs were revealed in the Srlk gene. For two nonsynonymous SNPs, molecular markers were designed that could be further used to analyze the association between Srlk gene nucleotide polymorphism and the variability in salt stress tolerance among alfalfa cultivars.

  14. Association Between Single Nucleotide Polymorphism +276G > T (rs1501299) in ADIPOQ and Endometrial Cancer.

    PubMed

    Bieńkiewicz, Jan; Smolarz, Beata; Malinowski, Andrzej

    2016-01-01

    Current literature gives evidence of an indisputable role adiponectin plays in adipose tissue metabolism and obesity-related diseases. Moreover, latest research efforts focus on linking genetic markers of this adipocytokine's gene (ADIPOQ) with cancer. Aim of this study was to determine the genotype distribution of single nucleotide polymorphism +276G > T (rs1501299) in ADIPOQ and an attempt to identify the impact this polymorphism exerts on endometrial cancer risk in obese females. The test group comprised 90 women treated surgically for endometrial cancer between 2000 and 2012 in the Department of Surgical & Endoscopic Gynecology and Gynecologic Oncology, Polish Mothers' Memorial Hospital - Research Institute, Lodz, Poland. 90 individuals treated in the parallel period for uterine fibroids constituted the control group. Patients within both groups were stratified according to BMI into: lean, overweight and obese subjects. Statistical analysis was performed between two major groups and, furthermore, within the abovementioned subgroups. The analysis revealed that allele G of the investigated polymorphism in obese women with endometrial cancer is significantly more frequent, and allele T is significantly less frequent than in lean controls. However, no significant correlation was observed between the polymorphism and endometrial cancer in lean and overweight females. Single nucleotide polymorphism +276G > T (rs1501299) in ADIPOQ may be considered to be a risk factor of endometrial cancer. Further research on SNP in EC is warranted to obtain more conclusive outcomes.

  15. Wireless electrochemiluminescence bipolar electrode array for visualized genotyping of single nucleotide polymorphism.

    PubMed

    Khoshfetrat, Seyyed Mehdi; Ranjbari, Mitra; Shayan, Mohsen; Mehrgardi, Masoud A; Kiani, Abolfazl

    2015-08-18

    The development of simple, inexpensive, hand-held, user-friendly biosensor for high throughput and multiplexed genotyping of various single nucleotide polymorphisms (SNPs) in a single run experiment by a nonspecialist user is the main challenge in the analysis of DNA. Visualizing the signal and possibility to monitor SNPs by a digital camera opens a new horizon for the routine applications. In the present manuscript, a novel wireless electrochemiluminescence (ECL) DNA array is introduced for the visualized genotyping of different SNPs on the basis of ECL of luminol/hydrogen peroxide system on a bipolar electrode (BPE) array platform. After modification of anodic poles of the array with the DNA probe and its hybridization with the targets, genotyping of various SNPs is carried out by exposing the array to different monobase modified luminol-platinum nanoparticles (M-L-PtNPs). Upon the hybridization of M-L-PtNPs to mismatch sites, the ECL of luminol is followed using a photomultiplier tube (PMT) or digital camera and the images are analyzed by ImageJ software. This biosensor can detect even thermodynamically stable SNP (G-T mismatches) in the range of 2-600 pM. Also, by combining the advantages of BPE and the high visual sensitivity of ECL, it could be easily expected to achieve sensitive screening of different SNPs. The present biosensor demonstrates the capability for the discrimination between PCR products of normal, heterozygous, and homozygous beta thalassemia genetic disorders.

  16. Endothelial Nitric Oxide Synthase Gene Single Nucleotide Polymorphism Predicts Cerebral Vasospasm following Aneurysmal Subarachnoid Hemorrhage

    PubMed Central

    Starke, Robert M.; Kim, Grace H.; Komotar, Ricardo J.; Hickman, Zachary L.; Black, Eric M.; Rosales, Maritza B.; Kellner, Christopher P.; Hahn, David K.; Otten, Marc L.; Edwards, John; Wang, Tao; Russo, James J.; Mayer, Stephan A.; Connolly, E. Sander

    2009-01-01

    Summary Vasospasm is a major cause of morbidity and mortality following aneurysmal subarachnoid hemorrhage (aSAH). Studies have demonstrated a link between single nucleotide polymorphisms (SNP) in the endothelial nitric oxide synthase (eNOS) gene and the incidence of coronary spasm and aneurysms. Alterations in the eNOS T-786 SNP may lead to an increased risk of post-aSAH cerebral vasospasm. In this prospective clinical study, 77 aSAH patients provided genetic material and were followed for the occurrence of vasospasm. In multivariate logistic regression analysis, genotype was the only factor predictive of vasospasm. The odds ratio for symptomatic vasospasm in patients with one T allele was 3.3 (95% CI 1.1–10.0, p=0.034) and 10.9 for TT. Patients with angiographic spasm were 3.6 times more likely to have a T allele (95% CI 1.3–9.6, p=0.013, TT OR 12.6). Patients with severe vasospasm requiring endovascular therapy were more likely to have a T allele (OR 3.5, 95% CI 1.3–9.5, p=0.016, TT OR 12.0). Patients with the T allele of the eNOS gene are more likely have severe vasospasm. Presence of this genotype may allow the identification of individuals at high risk for post-aSAH vasospasm and lead to early treatment and improved outcome. PMID:18319732

  17. Single nucleotide polymorphism isolated from a novel EST dataset in garden asparagus (Asparagus officinalis L.).

    PubMed

    Mercati, Francesco; Riccardi, Paolo; Leebens-Mack, Jim; Abenavoli, Maria Rosa; Falavigna, Agostino; Sunseri, Francesco

    2013-04-01

    Single nucleotide polymorphisms (SNPs) and simple sequence repeats (SSR) are abundant and evenly distributed co-dominant molecular markers in plant genomes. SSRs are valuable for marker assisted breeding and positional cloning of genes associated traits of interest. Although several high throughput platforms have been developed to identify SNP and SSR markers for analysis of segregant plant populations, breeding in garden asparagus (Asparagus officinalis L.) has been limited by a low content of such markers. In this study massively parallel GS-FLX pyro-sequencing technology (454 Life Sciences) has been used to sequence and compare transcriptome from two genotypes: a rust tolerant male (1770) and a susceptible female (G190). A total of 122,963 and 99,368 sequence reads, with an average length of 245.7bp, have been recovered from accessions 1770 and 190 respectively. A computational pipeline has been used to predict and visually inspect putative SNPs and SSR sequences. Analysis of Gene Ontology (GO) slim annotation assignments for all assembled uniscripts indicated that the 24,403 assemblies represent genes from a broad array of functions. Further, over 1800 putative SNPs and 1000 SSRs were detected. One hundred forty-four SNPs together with 60 selected SSRs were validated and used to develop a preliminary genetic map by using a large BC(1) population, derived from 1770 and G190. The abundance of SNPs and SSRs provides a foundation for the development of saturated genetic maps and their utilization in assisted asparagus breeding programs.

  18. Novel biosensing methodologies for improving the detection of single nucleotide polymorphism.

    PubMed

    Chang, Kai; Deng, Shaoli; Chen, Ming

    2015-04-15

    The growing volume of sequence data confirm more and more candidate single nucleotide polymorphisms (SNPs), which are believed to reveal the genetic basis of individual susceptibility to disease and the diverse responses to treatment. There is therefore an urgent demand for developing the sensitive, rapid, easy-to-use, and cost-effective method to identify SNPs. During the last two decades, biosensing techniques have been developed by integrating the unique specificity of biological reactions and the high sensitivity of physical sensors, which provided significant advantages for the detection of SNPs. In this feature article, we focused attention on the strategies of SNP genotyping based on biosensors, including nucleic acid analogs, surface ligation reaction, single base extension, mismatch binding protein, molecular beacon, rolling circle amplification, and strand-displacement amplification. In addition, the perspectives on their advantages, current limitations, and future trends were also discussed. The biosensing technique would provide a promising alternative for the detection of SNPs, and pave the way for the diagnosis of genetic diseases and the design of appropriate treatments.

  19. Selectivity of Enzymatic Conversion of Oligonucleotide Probes during Nucleotide Polymorphism Analysis of DNA

    PubMed Central

    Vinogradova, O.A.

    2010-01-01

    The analysis of DNA nucleotide polymorphisms is one of the main goals of DNA diagnostics. DNA–dependent enzymes (DNA polymerases and DNA ligases) are widely used to enhance the sensitivity and reliability of systems intended for the detection of point mutations in genetic material. In this article, we have summarized the data on the selectiveness of DNA–dependent enzymes and on the structural factors in enzymes and DNA which influence the effectiveness of mismatch discrimination during enzymatic conversion of oligonucleotide probes on a DNA template. The data presented characterize the sensitivity of a series of DNA–dependent enzymes that are widely used in the detection of noncomplementary base pairs in nucleic acid substrate complexes. We have analyzed the spatial properties of the enzyme–substrate complexes. These properties are vital for the enzymatic reaction and the recognition of perfect DNA–substrates. We also discuss relevant approaches to increasing the selectivity of enzyme–dependent reactions. These approaches involve the use of modified oligonucleotide probes which “disturb” the native structure of the DNA–substrate complexes. PMID:22649627

  20. Single nucleotide polymorphisms in Mycobacterium tuberculosis and the need for a curated database.

    PubMed

    Stucki, David; Gagneux, Sebastien

    2013-01-01

    Recent advances in DNA sequencing have led to the discovery of thousands of single nucleotide polymorphisms (SNPs) in clinical isolates of Mycobacterium tuberculosis complex (MTBC). This genetic variation has changed our understanding of the differences and phylogenetic relationships between strains. Many of these mutations can serve as phylogenetic markers for strain classification, while others cause drug resistance. Moreover, SNPs can affect the bacterial phenotype in various ways, which may have an impact on the outcome of tuberculosis (TB) infection and disease. Despite the importance of SNPs for our understanding of the diversity of MTBC populations, the research community currently lacks a comprehensive, well-curated and user-friendly database dedicated to SNP data. First attempts to catalogue and annotate SNPs in MTBC have been made, but more work is needed. In this review, we discuss the biological and epidemiological relevance of SNPs in MTBC. We then review some of the analytical challenges involved in processing SNP data, and end with a list of features, which should be included in a new SNP database for MTBC.

  1. A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms.

    PubMed

    Guo, Qingsheng; Bai, Zhixiong; Liu, Yuqian; Sun, Qingjiang

    2016-03-15

    In this work, we report the application of streptavidin-coated quantum dot (strAV-QD) in molecular beacon (MB) microarray assays by using the strAV-QD to label the immobilized MB, avoiding target labeling and meanwhile obviating the use of amplification. The MBs are stem-loop structured oligodeoxynucleotides, modified with a thiol and a biotin at two terminals of the stem. With the strAV-QD labeling an "opened" MB rather than a "closed" MB via streptavidin-biotin reaction, a sensitive and specific detection of label-free target DNA sequence is demonstrated by the MB microarray, with a signal-to-background ratio of 8. The immobilized MBs can be perfectly regenerated, allowing the reuse of the microarray. The MB microarray also is able to detect single nucleotide polymorphisms, exhibiting genotype-dependent fluorescence signals. It is demonstrated that the MB microarray can perform as a 4-to-2 encoder, compressing the genotype information into two outputs.

  2. Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay.

    PubMed

    Akhunov, Eduard; Nicolet, Charles; Dvorak, Jan

    2009-08-01

    Single nucleotide polymorphisms (SNPs) are indispensable in such applications as association mapping and construction of high-density genetic maps. These applications usually require genotyping of thousands of SNPs in a large number of individuals. Although a number of SNP genotyping assays are available, most of them are designed for SNP genotyping in diploid individuals. Here, we demonstrate that the Illumina GoldenGate assay could be used for SNP genotyping of homozygous tetraploid and hexaploid wheat lines. Genotyping reactions could be carried out directly on genomic DNA without the necessity of preliminary PCR amplification. A total of 53 tetraploid and 38 hexaploid homozygous wheat lines were genotyped at 96 SNP loci. The genotyping error rate estimated after removal of low-quality data was 0 and 1% for tetraploid and hexaploid wheat, respectively. Developed SNP genotyping assays were shown to be useful for genotyping wheat cultivars. This study demonstrated that the GoldenGate assay is a very efficient tool for high-throughput genotyping of polyploid wheat, opening new possibilities for the analysis of genetic variation in wheat and dissection of genetic basis of complex traits using association mapping approach.

  3. Challenges in the association of human single nucleotide polymorphism mentions with unique database identifiers

    PubMed Central

    2011-01-01

    Background Most information on genomic variations and their associations with phenotypes are covered exclusively in scientific publications rather than in structured databases. These texts commonly describe variations using natural language; database identifiers are seldom mentioned. This complicates the retrieval of variations, associated articles, as well as information extraction, e. g. the search for biological implications. To overcome these challenges, procedures to map textual mentions of variations to database identifiers need to be developed. Results This article describes a workflow for normalization of variation mentions, i.e. the association of them to unique database identifiers. Common pitfalls in the interpretation of single nucleotide polymorphism (SNP) mentions are highlighted and discussed. The developed normalization procedure achieves a precision of 98.1 % and a recall of 67.5% for unambiguous association of variation mentions with dbSNP identifiers on a text corpus based on 296 MEDLINE abstracts containing 527 mentions of SNPs. The annotated corpus is freely available at http://www.scai.fraunhofer.de/snp-normalization-corpus.html. Conclusions Comparable approaches usually focus on variations mentioned on the protein sequence and neglect problems for other SNP mentions. The results presented here indicate that normalizing SNPs described on DNA level is more difficult than the normalization of SNPs described on protein level. The challenges associated with normalization are exemplified with ambiguities and errors, which occur in this corpus. PMID:21992066

  4. Associations of Two Obesity-Related Single-Nucleotide Polymorphisms with Adiponectin in Chinese Children

    PubMed Central

    Gao, Liwang; Zhao, Xiaoyuan; Zhang, Meixian; Wu, Jianxin

    2017-01-01

    Purpose. Genome-wide association studies have found two obesity-related single-nucleotide polymorphisms (SNPs), rs17782313 near the melanocortin-4 receptor (MC4R) gene and rs6265 near the brain-derived neurotrophic factor (BDNF) gene, but the associations of both SNPs with other obesity-related traits are not fully described, especially in children. The aim of the present study is to investigate the associations between the SNPs and adiponectin that has a regulatory role in glucose and lipid metabolism. Methods. We examined the associations of the SNPs with adiponectin in Beijing Child and Adolescent Metabolic Syndrome (BCAMS) study. A total of 3503 children participated in the study. Results. The SNP rs6265 was significantly associated with adiponectin under an additive model (P = 0.02 and 0.024, resp.) after adjustment for age, gender, and BMI or obesity statuses. The SNP rs17782313 was significantly associated with low adiponectin under a recessive model. No statistical significance was found between the two SNPs and low adiponectin after correction for multiple testing. Conclusion. We demonstrate for the first time that the SNP rs17782313 near MC4R and the SNP rs6265 near BDNF are associated with adiponectin in Chinese children. These novel findings provide important evidence that adiponectin possibly mediates MC4R and BDNF involved in obesity.

  5. Single nucleotide polymorphisms to discriminate different classes of hybrid between wild Atlantic salmon and aquaculture escapees.

    PubMed

    Pritchard, Victoria L; Erkinaro, Jaakko; Kent, Matthew P; Niemelä, Eero; Orell, Panu; Lien, Sigbjørn; Primmer, Craig R

    2016-09-01

    Many wild Atlantic salmon (Salmo salar) populations are threatened by introgressive hybridization from domesticated fish that have escaped from aquaculture facilities. A detailed understanding of the hybridization dynamics between wild salmon and aquaculture escapees requires discrimination of different hybrid classes; however, markers currently available to discriminate the two types of parental genome have limited power to do this. Using a high-density Atlantic salmon single nucleotide polymorphism (SNP) array, in combination with pooled-sample allelotyping and an Fst outlier approach, we identified 200 SNPs that differentiated an important Atlantic salmon stock from the escapees potentially hybridizing with it. By simulating multiple generations of wild-escapee hybridization, involving wild populations in two major phylogeographic lineages and a genetically diverse set of escapees, we showed that both the complete set of SNPs and smaller subsets could reliably assign individuals to different hybrid classes up to the third hybrid (F3) generation. This set of markers will be a useful tool for investigating the genetic interactions between native wild fish and aquaculture escapees in many Atlantic salmon populations.

  6. HIV-1 Promoter Single Nucleotide Polymorphisms Are Associated with Clinical Disease Severity

    PubMed Central

    Feng, Rui; Moldover, Brian; Passic, Shendra; Aiamkitsumrit, Benjamas; Dampier, Will; Wojno, Adam; Kilareski, Evelyn; Blakey, Brandon; Ku, Tse-Sheun Jade; Shah, Sonia; Sullivan, Neil T.; Jacobson, Jeffrey M.; Wigdahl, Brian

    2016-01-01

    The large majority of human immunodeficiency virus type 1 (HIV-1) markers of disease progression/severity previously identified have been associated with alterations in host genetic and immune responses, with few studies focused on viral genetic markers correlate with changes in disease severity. This study presents a cross-sectional/longitudinal study of HIV-1 single nucleotide polymorphisms (SNPs) contained within the viral promoter or long terminal repeat (LTR) in patients within the Drexel Medicine CNS AIDS Research and Eradication Study (CARES) Cohort. HIV-1 LTR SNPs were found to associate with the classical clinical disease parameters CD4+ T-cell count and log viral load. They were found in both defined and undefined transcription factor binding sites of the LTR. A novel SNP identified at position 108 in a known COUP (chicken ovalbumin upstream promoter)/AP1 transcription factor binding site was significantly correlated with binding phenotypes that are potentially the underlying cause of the associated clinical outcome (increase in viral load and decrease in CD4+ T-cell count). PMID:27100290

  7. Bayesian pedigree inference with small numbers of single nucleotide polymorphisms via a factor-graph representation.

    PubMed

    Anderson, Eric C; Ng, Thomas C

    2016-02-01

    We develop a computational framework for addressing pedigree inference problems using small numbers (80-400) of single nucleotide polymorphisms (SNPs). Our approach relaxes the assumptions, which are commonly made, that sampling is complete with respect to the pedigree and that there is no genotyping error. It relies on representing the inferred pedigree as a factor graph and invoking the Sum-Product algorithm to compute and store quantities that allow the joint probability of the data to be rapidly computed under a large class of rearrangements of the pedigree structure. This allows efficient MCMC sampling over the space of pedigrees, and, hence, Bayesian inference of pedigree structure. In this paper we restrict ourselves to inference of pedigrees without loops using SNPs assumed to be unlinked. We present the methodology in general for multigenerational inference, and we illustrate the method by applying it to the inference of full sibling groups in a large sample (n=1157) of Chinook salmon typed at 95 SNPs. The results show that our method provides a better point estimate and estimate of uncertainty than the currently best-available maximum-likelihood sibling reconstruction method. Extensions of this work to more complex scenarios are briefly discussed.

  8. Novel Single Nucleotide Polymorphism Markers for Low Dose Aspirin-Associated Small Bowel Bleeding

    PubMed Central

    Shiotani, Akiko; Murao, Takahisa; Fujita, Yoshihiko; Fujimura, Yoshinori; Sakakibara, Takashi; Nishio, Kazuto; Haruma, Ken

    2013-01-01

    Background Aspirin-induced enteropathy is now increasingly being recognized although the pathogenesis of small intestinal damage induced by aspirin is not well understood and related risk factors have not been established. Aim To investigate pharmacogenomic profile of low dose aspirin (LDA)-induced small bowel bleeding. Methods Genome-wide analysis of single nucleotide polymorphisms (SNPs) was performed using the Affymetrix DMET™ Plus Premier Pack. Genotypes of candidate genes associated with small bowel bleeding were determined using TaqMan SNP Genotyping Assay kits and direct sequencing. Results In the validation study in overall 37 patients with small bowel bleeding and 400 controls, 4 of 27 identified SNPs: CYP4F11 (rs1060463) GG (p=0.003), CYP2D6 (rs28360521) GG (p=0.02), CYP24A1 (rs4809957) T allele (p=0.04), and GSTP1 (rs1695) G allele (p=0.04) were significantly more frequent in the small bowel bleeding group compared to the controls. After adjustment for significant factors, CYP2D6 (rs28360521) GG (OR 4.11, 95% CI. 1.62 -10.4) was associated with small bowel bleeding. Conclusions CYP4F11 and CYP2D6 SNPs may identify patients at increased risk for aspirin-induced small bowel bleeding. PMID:24367646

  9. Single nucleotide polymorphisms in the bovine Histophilus somni genome; a comparison of new and old isolates

    PubMed Central

    Madampage, Claudia Avis; Rawlyk, Neil; Crockford, Gordon; Van Donkersgoed, Joyce; Dorin, Craig; Potter, Andrew

    2015-01-01

    Histophilus somni, a causative agent of the bovine respiratory disease complex, can also cause a variety of systemic disorders, including bronchopneumonia, myocarditis, pericarditis, arthritis, pleuritis, and infectious thrombotic meningoencephalitis. The purpose of this study was to determine if currently circulating strains differ from those of the 1980s by identifying genomic changes. Single nucleotide polymorphisms (SNPs) and insertion and deletion (INDEL) sites were examined by whole-genome sequencing in 12 samples, 6 old and 6 new. The 31 028 SNP/INDELs recorded were compared against the reference genome sequence of the pathogenic H. somni strain 2336. The distribution of about 75% of these SNPs within a specified gene differed between old and new isolates and did not follow any particular pattern. The other 25% clustered into 2 groups containing the same SNPs in various genes: group I included 5 old isolates and 1 new isolate; group II included 5 new isolates and 1 old isolate. For putative virulence genes there were more SNPs in group I compared with strain 2336, itself an older isolate, than in group II. Although only 25% of all the SNPs formed 2 clusters, the results suggest some genetic difference in various genes between old and new strains. PMID:26130851

  10. Impact of single nucleotide polymorphisms in HBB gene causing haemoglobinopathies: in silico analysis.

    PubMed

    George Priya Doss, C; Rao, Sethumadhavan

    2009-04-01

    Single nucleotide polymorphisms (SNPs) are being intensively studied to understand the biological basis of complex traits and diseases. Deleterious mutations of the human beta-globin gene (HBB) are responsible for beta-thalassaemia and other haemoglobinopathies, which are the most common genetic diseases of blood. Single amino acid substitutions in the globin chain are the commonest forms of haemoglobinopathy. Although many haemoglobinopathies present similar structural abnormal points, their functions sometimes are different. Here, using computational methods, we analysed the genetic variations that can alter the expression and function of the HBB gene. We applied an evolutionary perspective to screen the SNPs using a sequence homology-based SIFT tool, which suggested that 210 (90%) non-synonymous (ns)SNPs were found to be deleterious. The structure-based approach PolyPhen server suggested that 134 (57%) nsSNPS may disrupt protein function and structure. The PupaSuite tool predicted the phenotypic effect of SNPs on the structure and function of the affected protein. Structure analysis was carried out with the major mutation that occurred in the native protein coded by the HBB gene in HbC, HbD, HbE and HbS. The amino acid residues in the native and mutant modelled protein were further analysed for solvent accessibility, and secondary structure to check the stability of the proteins. The functional analysis presented here may be a good model for further research.

  11. The Effect of Multiple Single Nucleotide Polymorphisms in the Folic Acid Pathway Genes on Homocysteine Metabolism

    PubMed Central

    Liang, Shuang; Zhou, Yuanpeng; Wang, Huijun; Qian, Yanyan; Ma, Duan; Tian, Weidong; Persaud-Sharma, Vishwani; Yu, Chen; Ren, Yunyun; Zhou, Shufeng; Li, Xiaotian

    2014-01-01

    Objective. To investigate the joint effects of the single nucleotide polymorphisms (SNPs) of genes in the folic acid pathway on homocysteine (Hcy) metabolism. Methods. Four hundred women with normal pregnancies were enrolled in this study. SNPs were identified by MassARRAY. Serum folic acid and Hcy concentration were measured. Analysis of variance (ANOVA) and support vector machine (SVM) regressions were used to analyze the joint effects of SNPs on the Hcy level. Results. SNPs of MTHFR (rs1801133 and rs3733965) were significantly associated with maternal serum Hcy level. In the different genotypes of MTHFR (rs1801133), SNPs of RFC1 (rs1051266), TCN2 (rs9606756), BHMT (rs3733890), and CBS (rs234713 and rs2851391) were linked with the Hcy level adjusted for folic acid concentration. The integrated SNPs scores were significantly associated with the residual Hcy concentration (RHC) (r = 0.247). The Hcy level was significantly higher in the group with high SNP scores than that in other groups with SNP scores of less than 0.2 (P = 0.000). Moreover, this difference was even more significant in moderate and high levels of folic acid. Conclusion. SNPs of genes in the folic acid pathway possibly affect the Hcy metabolism in the presence of moderate and high levels of folic acid. PMID:24524080

  12. Study of single-nucleotide polymorphisms by means of electrical conductance measurements

    NASA Astrophysics Data System (ADS)

    Hihath, Joshua; Xu, Bingqian; Zhang, Peiming; Tao, Nongjian

    2005-11-01

    Understanding the complexities of DNA has been a hallmark of science for over a half century, and one of the important topics in DNA research is recognizing the occurrence of mutations in the base-stack. In this article, we present a study of SNPs by direct-contact electrical measurements to a single DNA duplex. We have used short, 11- and 12-bp dsDNA to investigate the change in conductance that occurs if a single base pair, a single base, or two separate bases in the stack are modified. All measurements are carried out in aqueous solution with the DNA chemically bound to the electrodes. These measurements demonstrate that the presence of a single base pair mismatch can be identified by the conductance of the molecule and can cause a change in the conductance of dsDNA by as much as an order of magnitude, depending on the specific details of the double helix and the single nucleotide polymorphism. molecular electronics | scanning tunneling microscope break junction

  13. Three single nucleotide polymorphisms associated with type 2 diabetes mellitus in a Chinese population

    PubMed Central

    Chen, Meijun; Zhang, Xuelong; Fang, Qingxiao; Wang, Tongtong; Li, Tingting; Qiao, Hong

    2017-01-01

    An Indian study recently observed three new loci: rs9552911 in the SGCG, rs1593304 near PLXNA4 and rs4858889 in SCAP associated with type 2 diabetes mellitus (T2DM) in a south Asian population. The present study aimed to validate these findings in a Chinese population. We genotyped the above three single-nucleotide polymorphisms (SNPs), rs9552911, rs1593304, and rs4858889, in a group of 1,972 Chinese individuals, comprising of 966 type 2 diabetic patients and 976 controls. Anthropometric variables and biochemical traits were measured in all the participants. The association analyses of genotype-disease and genotype-traits were estimated. The genotype frequency of rs9552911 differed statistically between the cases and controls (P=0.017). The difference was also evident between the cases and controls in non-obese participants (P=0.033). In addition, the SNP rs9552911 was associated with weight (P=0.033), total cholesterol (P=0.006) and low-density lipoprotein-cholesterol (P=0.007). The SNP rs1593304 was associated with β-cell function estimated by the homeostatic model assessment of β-cell function (P=0.041). However, there was no significant association between rs4858889 and T2DM. In conclusion, the results show that the SNP rs9552911 was associated with T2DM, possibly by affecting body mass index and lipid metabolism. The SNP rs1593304 may impair β-cell function. PMID:28123479

  14. Association of Toll-Like Receptor 3 Single-Nucleotide Polymorphisms and Hepatitis C Virus Infection

    PubMed Central

    Al-Anazi, Mashael R.; Matou-Nasri, Sabine; Abdo, Ayman A.; Sanai, Faisal M.; Alkahtani, Saad; Alarifi, Saud; Alkahtane, Abdullah A.; Al-Yahya, Hamad; Ali, Daoud; Alessia, Mohammed S.; Alshahrani, Bushra; Al-Ahdal, Mohammed N.

    2017-01-01

    Toll-like receptor 3 (TLR3) plays a key role in innate immunity by recognizing pathogenic, double-stranded RNAs. Thus, activation of TLR3 is a major factor in antiviral defense and tumor eradication. Although downregulation of TLR3 gene expression has been mainly reported in patients infected with hepatitis C virus (HCV), the influence of TLR3 genotype on the risk of HCV infection, HCV-related cirrhosis, and/or hepatocellular carcinoma (HCC) remains to be determined. Single-nucleotide polymorphisms (SNPs) within the TLR3 gene and their associations with HCV-related disease risk were investigated in a Saudi Arabian population in this study. Eight TLR3 SNPs were analyzed in 563 patients with HCV, which consisted of 437 patients with chronic HCV infections, 88 with HCV-induced liver cirrhosis, and 38 with HCC. A total of 599 healthy control subjects were recruited to the study. Among the eight TLR3 SNPs studied, the rs78726532 SNP was strongly associated with HCV infection when compared to that in healthy control subjects. The rs5743314 was also strongly associated with HCV-related liver disease progression (cirrhosis and HCC). In summary, these results indicate that distinct genetic variants of TLR3 SNPs are associated with HCV infection and HCV-mediated liver disease progression in the Saudi Arabian population. PMID:28127569

  15. Validation of Single Nucleotide Polymorphisms Associated with Carcass Traits in a Commercial Hanwoo Population

    PubMed Central

    Sudrajad, Pita; Sharma, Aditi; Dang, Chang Gwon; Kim, Jong Joo; Kim, Kwan Suk; Lee, Jun Heon; Kim, Sidong; Lee, Seung Hwan

    2016-01-01

    Four carcass traits, namely carcass weight (CW), eye muscle area (EMA), back fat thickness (BF), and marbling score (MS), are the main price decision parameters used for purchasing Hanwoo beef. The development of DNA markers for these carcass traits for use in a beef management system could result in substantial profit for beef producers in Korea. The objective of this study was to validate the association of highly significant single nucleotide polymorphisms (SNPs) identified in a previous genome-wide association study (GWAS) with the four carcass traits in a commercial Hanwoo population. We genotyped 83 SNPs distributed across all 29 autosomes in 867 steers from a Korean Hanwoo feedlot. Six SNPs, namely ARS-BFGL-NGS-22774 (Chr4, Pos:4889229), ARS-BFGL-NGS-100046 (Chr6, Pos:61917424), ARS-BFGL-NGS-39006 (Chr27, Pos:38059196), ARS-BFGL-NGS-18790 (Chr10, Pos:26489109), ARS-BFGL-NGS-43879 (Chr9, Pos:39964297), and BTB-00775794 (Chr20, Pos:20476265), were found to be associated with CW, EMA, BF, and MS. The ARS-BFGL-NGS-22774, BTB-00775794, and ARS-BFGL-NGS-39006 markers accounted for 1.80%, 1.72%, and 1.35% (p<0.01), respectively, of the phenotypic variance in the commercial Hanwoo population. Many genes located in close proximity to the significant SNPs identified in this study were previously reported to have roles in carcass traits. The results of this study could be useful for marker-assisted selection programs. PMID:26954199

  16. Alteration of Antiviral Signalling by Single Nucleotide Polymorphisms (SNPs) of Mitochondrial Antiviral Signalling Protein (MAVS)

    PubMed Central

    Xing, Fei; Matsumiya, Tomoh; Hayakari, Ryo; Yoshida, Hidemi; Kawaguchi, Shogo; Takahashi, Ippei; Nakaji, Shigeyuki; Imaizumi, Tadaatsu

    2016-01-01

    Genetic variation is associated with diseases. As a type of genetic variation occurring with certain regularity and frequency, the single nucleotide polymorphism (SNP) is attracting more and more attention because of its great value for research and real-life application. Mitochondrial antiviral signalling protein (MAVS) acts as a common adaptor molecule for retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), which can recognize foreign RNA, including viral RNA, leading to the induction of type I interferons (IFNs). Therefore, MAVS is thought to be a crucial molecule in antiviral innate immunity. We speculated that genetic variation of MAVS may result in susceptibility to infectious diseases. To assess the risk of viral infection based on MAVS variation, we tested the effects of twelve non-synonymous MAVS coding-region SNPs from the National Center for Biotechnology Information (NCBI) database that result in amino acid substitutions. We found that five of these SNPs exhibited functional alterations. Additionally, four resulted in an inhibitory immune response, and one had the opposite effect. In total, 1,032 human genomic samples obtained from a mass examination were genotyped at these five SNPs. However, no homozygous or heterozygous variation was detected. We hypothesized that these five SNPs are not present in the Japanese population and that such MAVS variations may result in serious immune diseases. PMID:26954674

  17. Single Nucleotide Polymorphism Array Genotyping is Equivalent to Metaphase Cytogenetics for Diagnosis of Turner Syndrome

    PubMed Central

    Prakash, Siddharth; Guo, Dongchuan; Maslen, Cheryl L.; Silberbach, Michael; Investigators, GenTAC; Milewicz, Dianna; Bondy, Carolyn A.

    2013-01-01

    Background Turner syndrome (TS) is a developmental disorder caused by partial or complete monosomy for the X chromosome in 1:2500 females. We hypothesized that single nucleotide polymorphism (SNP) array genotyping can provide superior resolution in comparison to metaphase karyotype analysis to facilitate genotype-phenotype correlations. Methods We genotyped 187 TS patients with 733,000 SNP marker arrays. All cases met diagnostic criteria for TS based on karyotypes (60%) or characteristic physical features. SNP array results confirmed the diagnosis of TS in 100% of cases. Results We identified a single X chromosome (45,X) in 113 cases. In 58 additional cases (31%), other mosaic cell lines were present including isochromosomes (16%), rings (5%) and Xp deletions (8%). The remaining cases were mosaic for monosomy X and normal male or female cell lines. Array-based models of X chromosome structure were compatible with karyotypes in 104 of 116 comparable cases (90%). We found that SNP array data did not detect X;autosome translocations (3 cases), but did identify 2 derivative Y chromosomes and 13 large copy number variants that were not detected by karyotyping. Conclusions Our data is the first systematic comparison between the two methods and supports the utility of SNP array genotyping to address clinical and research questions in TS. PMID:23743550

  18. Melting analysis on microbeads in rapid temperature-gradient inside microchannels for single nucleotide polymorphisms detectiona)

    PubMed Central

    Li, Kan-Chien; Ding, Shih-Torng; Lin, En-Chung; Wang, Lon (Alex); Lu, Yen-Wen

    2014-01-01

    A continuous-flow microchip with a temperature gradient in microchannels was utilized to demonstrate spatial melting analysis on microbeads for clinical Single Nucleotide Polymorphisms (SNPs) genotyping on animal genomic DNA. The chip had embedded heaters and thermometers, which created a rapid and yet stable temperature gradient between 60 °C and 85 °C in a short distance as the detection region. The microbeads, which served as mobile supports carrying the target DNA and fluorescent dye, were transported across the temperature gradient. As the surrounding temperature increased, the fluorescence signals of the microbeads decayed with this relationship being acquired as the melting curve. Fast DNA denaturation, as a result of the improved heat transfer and thermal stability due to scaling, was also confirmed. Further, each individual microbead could potentially bear different sequences and pass through the detection region, one by one, for a series of melting analysis, with multiplex, high-throughput capability being possible. A prototype was tested with target DNA samples in different genotypes (i.e., wild and mutant types) with a SNP location from Landrace sows. The melting temperatures were obtained and compared to the ones using a traditional tube-based approach. The results showed similar levels of SNP discrimination, validating our proposed technique for scanning homozygotes and heterozygotes to distinguish single base changes for disease research, drug development, medical diagnostics, agriculture, and animal production. PMID:25553186

  19. How Oxytocin Receptor (OXTR) Single Nucleotide Polymorphisms Act on Prosociality: The Mediation Role of Moral Evaluation

    PubMed Central

    Shang, Siyuan; Wu, Nan; Su, Yanjie

    2017-01-01

    Prosociality is related to numerous positive outcomes, and mechanisms underlying individual differences in prosociality have been widely discussed. Recently, research has found converging evidence on the influence of the oxytocin receptor (OXTR) gene on prosociality. Meanwhile, moral reasoning, a key precursor for social behavior, has also been associated with variability in OXTR gene, thus the relationship between OXTR and prosociality is assumed to be mediated by moral evaluation. The current study examines the relationship in question, and includes gender as a potential moderator. Self-reported prosociality on Prosocial Tendencies Measure and evaluation on the moral acceptability of behaviors in stories from 790 Chinese adolescents (32.4% boys) were analyzed for the influence of their OXTR single nucleotide polymorphisms (SNPs). Results showed that SNP at site rs2254298 was indirectly associated with prosocial behaviors via moral evaluation of behaviors, and this effect was moderated by gender. Our findings suggest an indirect association between genetic variations in OXTR and prosociality through moral evaluation, indicating the potential pathway from genetic variability to prosociality through level of moral development. We also provide some evidence that the role of oxytocin system may to some extent depend on gender. These findings may promote our understanding of the genetic and biological roots of prosociality and morality. PMID:28377734

  20. SNPnexus: a web database for functional annotation of newly discovered and public domain single nucleotide polymorphisms

    PubMed Central

    Chelala, Claude; Khan, Arshad; Lemoine, Nicholas R

    2009-01-01

    Motivation: Design a new computational tool allowing scientists to functionally annotate newly discovered and public domain single nucleotide polymorphisms in order to help in prioritizing targets in further disease studies and large-scale genotyping projects. Summary: SNPnexus database provides functional annotation for both novel and public SNPs. Possible effects on the transcriptome and proteome levels are characterized and reported from five major annotation systems providing the most extensive information on alternative splicing. Additional information on HapMap genotype and allele frequency, overlaps with potential regulatory elements or structural variations as well as related genetic diseases can be also retrieved. The SNPnexus database has a user-friendly web interface, providing single or batch query options using SNP identifiers from dbSNP as well as genomic location on clones, contigs or chromosomes. Therefore, SNPnexus is the only database currently providing a complete set of functional annotations of SNPs in public databases and newly detected from sequencing projects. Hence, we describe SNPnexus, provide details of the query options, the annotation categories as well as biological examples of use. Availability: The SNPnexus database is freely available at http://www.snp-nexus.org. Contact: claude.chelala@cancer.org.uk PMID:19098027

  1. Self-similar characteristics of single nucleotide polymorphisms in the rice genome

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Yong

    2016-11-01

    With single nucleotide polymorphism (SNP) data from the 3,000 rice genome project, we investigate the mutational characteristics of the rice genome from the perspective of statistical physics. From the frequency distributions of the space between adjacent SNPs, we present evidence that SNPs are not spaced randomly, but clustered across the genome. The clustering property is related to a long-range correlation in SNP locations, suggesting that a mutation occurring in a locus may affect other mutations far away along the sequence in a chromosome. In addition, the reliability of the existence of the long-range correlation is supported by the agreement between the results of two independent analysis methods. The highly-skewed and long-tailed distribution of SNP spaces is further characterized by a multi-fractal, showing that SNP spaces possess a rich structure of a statistical self-similarity. These results can be used for an optimal design of a microarray assay and a primer, as well as for genotyping quality control.

  2. Estrogen receptor alpha single nucleotide polymorphism as predictor of diabetes type 2 risk in hypogonadal men.

    PubMed

    Linnér, Carl; Svartberg, Johan; Giwercman, Aleksander; Giwercman, Yvonne Lundberg

    2013-06-01

    Estradiol (E2) is, apart from its role as a reproductive hormone, also important for cardiac function and bone maturation in both genders. It has also been shown to play a role in insulin production, energy expenditure and in inducing lipolysis. The aim of the study was to investigate if low circulating testosterone or E2 levels in combination with variants in the estrogen receptor alpha (ESR1) and estrogen receptor beta (ESR2) genes were of importance for the risk of type-2 diabetes. The single nucleotide polymorphisms rs2207396 and rs1256049, in ESR1 and ESR2, respectively, were analysed by allele specific PCR in 172 elderly men from the population-based Tromsø study. The results were adjusted for age. In individuals with low total (≤11 nmol/L) or free testosterone (≤0.18 nmol/L) being carriers of the variant A-allele in ESR1 was associated with 7.3 and 15.9 times, respectively, increased odds ratio of being diagnosed with diabetes mellitus type 2 (p = 0.025 and p = 0.018, respectively). Lower concentrations of E2 did not seem to increase the risk of being diagnosed with diabetes. In conclusion, in hypogonadal men, the rs2207396 variant in ESR1 predicts the risk of type 2 diabetes.

  3. Analysis of Single Nucleotide Polymorphism in Adolescent Idiopathic Scoliosis in Korea: For Personalized Treatment

    PubMed Central

    Moon, Eun Su; Kim, Hak Sun; Sharma, Veushj; Park, Jin Oh; Lee, Hwan Mo; Moon, Sung Hwan

    2013-01-01

    Purpose The incidence of adolescent idiopathic scoliosis (AIS) has rapidly increased, and with it, physician consultations and expenditures (about one and a half times) in the last 5 years. Recent etiological studies reveal that AIS is a complex genetic disorder that results from the interaction of multiple gene loci and the environment. For personalized treatment of AIS, a tool that can accurately measure the progression of Cobb's angle would be of great use. Gene analysis utilizing single nucleotide polymorphism (SNP) has been developed as a diagnostic tool for use in Caucasians but not Koreans. Therefore, we attempted to reveal AIS-related genes and their relevance in Koreans, exploring the potential use of gene analysis as a diagnostic tool for personalized treatment of AIS therein. Materials and Methods A total of 68 Korean AIS and 35 age- and sex-matched, healthy adolescents were enrolled in this study and were examined for 10 candidate scoliosis gene SNPs. Results This study revealed that the SNPs of rs2449539 in lysosomal-associated transmembrane protein 4 beta (LAPTM4B) and rs5742612 in upstream and insulin-like growth factor 1 (IGF1) were associated with both susceptibility to and curve severity in AIS. The results suggested that both LAPTM4B and IGF1 genes were important in AIS predisposition and progression. Conclusion Thus, on the basis of this study, if more SNPs or candidate genes are studied in a larger population in Korea, personalized treatment of Korean AIS patients might become a possibility. PMID:23364988

  4. Pairwise Kinship Analysis by the Index of Chromosome Sharing Using High-Density Single Nucleotide Polymorphisms.

    PubMed

    Morimoto, Chie; Manabe, Sho; Kawaguchi, Takahisa; Kawai, Chihiro; Fujimoto, Shuntaro; Hamano, Yuya; Yamada, Ryo; Matsuda, Fumihiko; Tamaki, Keiji

    2016-01-01

    We developed a new approach for pairwise kinship analysis in forensic genetics based on chromosomal sharing between two individuals. Here, we defined "index of chromosome sharing" (ICS) calculated using 174,254 single nucleotide polymorphism (SNP) loci typed by SNP microarray and genetic length of the shared segments from the genotypes of two individuals. To investigate the expected ICS distributions from first- to fifth-degree relatives and unrelated pairs, we used computationally generated genotypes to consider the effect of linkage disequilibrium and recombination. The distributions were used for probabilistic evaluation of the pairwise kinship analysis, such as likelihood ratio (LR) or posterior probability, without allele frequencies and haplotype frequencies. Using our method, all actual sample pairs from volunteers showed significantly high LR values (i.e., ≥ 108); therefore, we can distinguish distant relationships (up to the fifth-degree) from unrelated pairs based on LR. Moreover, we can determine accurate degrees of kinship in up to third-degree relationships with a probability of > 80% using the criterion of posterior probability ≥ 0.90, even if the kinship of the pair is totally unpredictable. This approach greatly improves pairwise kinship analysis of distant relationships, specifically in cases involving identification of disaster victims or missing persons.

  5. A Single Nucleotide Polymorphism in Human APOBEC3C Enhances Restriction of Lentiviruses

    PubMed Central

    Wittkopp, Cristina J.; Adolph, Madison B.; Wu, Lily I.; Chelico, Linda; Emerman, Michael

    2016-01-01

    Humans express seven human APOBEC3 proteins, which can inhibit viruses and endogenous retroelements through cytidine deaminase activity. The seven paralogs differ in the potency of their antiviral effects, as well as in their antiviral targets. One APOBEC3, APOBEC3C, is exceptional as it has been found to only weakly block viruses and endogenous retroelements compared to other APOBEC3s. However, our positive selection analyses suggest that APOBEC3C has played a role in pathogen defense during primate evolution. Here, we describe a single nucleotide polymorphism in human APOBEC3C, a change from serine to isoleucine at position 188 (I188) that confers potent antiviral activity against HIV-1. The gain-of-function APOBEC3C SNP results in increased enzymatic activity and hypermutation of target sequences when tested in vitro, and correlates with increased dimerization of the protein. The I188 is widely distributed in human African populations, and is the ancestral primate allele, but is not found in chimpanzees or gorillas. Thus, while other hominids have lost activity of this antiviral gene, it has been maintained, or re-acquired, as a more active antiviral gene in a subset of humans. Taken together, our results suggest that APOBEC3C is in fact involved in protecting hosts from lentiviruses. PMID:27732658

  6. A single nucleotide polymorphism genotyping platform for the authentication of patient derived xenografts

    PubMed Central

    Evans, Kathryn; Toscan, Cara; Xie, Jinhan; Lee, Hyunjoo; Taylor, Renea A.; Lawrence, Mitchell G.; Risbridger, Gail P.; MacKenzie, Karen L.; Sutton, Rosemary; Lock, Richard B.

    2016-01-01

    Patient derived xenografts (PDXs) have become a vital, frequently used, component of anti-cancer drug development. PDXs can be serially passaged in vivo for years, and shared across laboratories. As a consequence, the potential for mis-identification and cross-contamination is possible, yet authentication of PDXs appears limited. We present a PDX Authentication System (PAS), by combining a commercially available OpenArray assay of single nucleotide polymorphisms (SNPs) with in-house R studio programs, to validate PDXs established in individual mice from acute lymphoblastic leukemia biopsies. The PAS is sufficiently robust to identify contamination at levels as low as 3%, similar to the gold standard of short tandem repeat (STR) profiling. We have surveyed a panel of PDXs established from 73 individual leukemia patients, and found that the PAS provided sufficient discriminatory power to identify each xenograft. The identified SNP-discrepant PDXs demonstrated distinct gene expression profiles, indicating a risk of contamination for PDXs at high passage number. The PAS also allows for the authentication of tumor cells with complex karyotypes from solid tumors including prostate cancer and Ewing's sarcoma. This study highlights the demands of authenticating PDXs for cancer research, and evaluates a reliable authentication platform that utilizes a commercially available and cost-effective system. PMID:27528024

  7. Facile method for automated genotyping of single nucleotide polymorphisms by mass spectrometry

    PubMed Central

    Sauer, Sascha; Gelfand, David H.; Boussicault, Francis; Bauer, Keith; Reichert, Fred; Gut, Ivo G.

    2002-01-01

    In the future, analysis of single nucleotide polymorphisms (SNPs) should become a powerful tool for many genetic applications in areas such as association studies, pharmacogenetics and traceability in the agro-alimentary sector. A number of technologies have been developed for high-throughput genotyping of SNPs. Here we present the simplified GOOD assay for SNP genotyping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI). The simplified GOOD assay is a single-tube, purification-free, three-step procedure consisting of PCR, primer extension and phosphodiesterase II digestion followed by mass spectrometric analysis. Due to the application of charge-tag technology, no sample purification is required prior to the otherwise very impurity-sensitive MALDI analysis. The use of methylphosphonate containing primers and ddNTPs or α-S-ddNTPs together with a novel DNA polymerase derived from Thermotoga maritima for primer extension allow the fluent preparation of negatively charge-tagged, allele-specific products. A key feature of this polymerase is its preference for ddNTPs and α-S-ddNTPs over dNTPs. The simplified GOOD assay was run with automatic liquid handling at the lowest manageable volumes, automatic data acquisition and interpretation. We applied this novel procedure to genotyping SNPs of candidate genes for hypertension and cardiovascular disease. PMID:11861927

  8. Melting analysis on microbeads in rapid temperature-gradient inside microchannels for single nucleotide polymorphisms detection.

    PubMed

    Li, Kan-Chien; Ding, Shih-Torng; Lin, En-Chung; Wang, Lon Alex; Lu, Yen-Wen

    2014-11-01

    A continuous-flow microchip with a temperature gradient in microchannels was utilized to demonstrate spatial melting analysis on microbeads for clinical Single Nucleotide Polymorphisms (SNPs) genotyping on animal genomic DNA. The chip had embedded heaters and thermometers, which created a rapid and yet stable temperature gradient between 60 °C and 85 °C in a short distance as the detection region. The microbeads, which served as mobile supports carrying the target DNA and fluorescent dye, were transported across the temperature gradient. As the surrounding temperature increased, the fluorescence signals of the microbeads decayed with this relationship being acquired as the melting curve. Fast DNA denaturation, as a result of the improved heat transfer and thermal stability due to scaling, was also confirmed. Further, each individual microbead could potentially bear different sequences and pass through the detection region, one by one, for a series of melting analysis, with multiplex, high-throughput capability being possible. A prototype was tested with target DNA samples in different genotypes (i.e., wild and mutant types) with a SNP location from Landrace sows. The melting temperatures were obtained and compared to the ones using a traditional tube-based approach. The results showed similar levels of SNP discrimination, validating our proposed technique for scanning homozygotes and heterozygotes to distinguish single base changes for disease research, drug development, medical diagnostics, agriculture, and animal production.

  9. Nano-enabled bioanalytical approaches to ultrasensitive detection of low abundance single nucleotide polymorphisms

    PubMed Central

    Lapitan Jr., Lorico D. S.; Guo, Yuan

    2015-01-01

    Single nucleotide polymorphisms (SNPs) constitute the most common types of genetic variations in the human genome. A number of SNPs have been linked to the development of life threatening diseases including cancer, cardiovascular diseases and neurodegenerative diseases. The ability for ultrasensitive and accurate detection of low abundant disease-related SNPs in bodily fluids (e.g. blood, serum, etc.) holds a significant value in the development of non-invasive future biodiagnostic tools. Over the past two decades, nanomaterials have been utilized in a myriad of biosensing applications due to their ability of detecting extremely low quantities of biologically important biomarkers with high sensitivity and accuracy. Of particular interest is the application of such technologies in the detection of SNPs. The use of various nanomaterials, coupled with different powerful signal amplification strategies, has paved the way for a new generation of ultrasensitive SNP biodiagnostic assays. Over the past few years, several ultrasensitive SNP biosensors capable of detecting specific targets down to the ultra-low regimes (ca. aM and below) and therefore holding great promises for early clinical diagnosis of diseases have been developed. This mini review will highlight some of the most recent, significant advances in nanomaterial-based ultrasensitive SNP sensing technologies capable of detecting specific targets on the attomolar (10–18 M) regime or below. In particular, the design of novel, powerful signal amplification strategies that hold the key to the ultrasensitivity is highlighted. PMID:25785914

  10. Association of Single Nucleotide Polymorphisms with Atrial Fibrillation and the Outcome after Catheter Ablation

    PubMed Central

    Hu, Yu-Feng; Wang, Hsueh-Hsiao; Yeh, Hung-I; Lee, Kun-Tai; Lin, Yenn-Jiang; Chang, Shih-Lin; Lo, Li-Wei; Tuan, Ta-Chuan; Li, Cheng-Hung; Chao, Tze-Fan; Chung, Fa-Po; Liao, Jo-Nan; Tang, Paul Wei Hua; Tsai, Wei-Chung; Chiou, Chuen-Wang; Chen, Shih-Ann

    2016-01-01

    Background The association of gene variants with atrial fibrillation (AF) type and the recurrence of AF after catheter ablation in Taiwan is still unclear. In this study, we aimed to investigate the relationships between gene variants, AF type, and the recurrence of AF. Methods In our investigation, we examined 383 consecutive patients with AF (61.9 ± 14.0 years; 63% men); of these 383 patients, 189 underwent catheter ablation for drug-refractory AF. Thereafter, the single nucleotide polymorphisms rs2200733, and rs7193343 were genotyped using real-time polymerase chain reaction. Results The rs7193343 variant was independently associated with non-paroxysmal AF (non-PAF). In the PAF group, the rs7193343 variant was independently associated with AF recurrence after catheter ablation. However, the rs2200733 variant was not associated with AF recurrence in this group. The combination of the rs7193343 and rs2200733 risk alleles was associated with a better predictive power in the PAF patients. In contrast, in the non-PAF group, the SNPs were not associated with recurrence. The rs7193343 and rs2200733 variants were not associated with different atrial voltage and activation times. Conclusions The rs7193343 variants were associated with AF recurrence after catheter ablation in PAF patients but not in non-PAF patients. The rs7193343 CC variant was independently associated with non-PAF. PMID:27713600

  11. Quadruplex-single nucleotide polymorphisms (Quad-SNP) influence gene expression difference among individuals.

    PubMed

    Baral, Aradhita; Kumar, Pankaj; Halder, Rashi; Mani, Prithvi; Yadav, Vinod Kumar; Singh, Ankita; Das, Swapan K; Chowdhury, Shantanu

    2012-05-01

    Non-canonical guanine quadruplex structures are not only predominant but also conserved among bacterial and mammalian promoters. Moreover recent findings directly implicate quadruplex structures in transcription. These argue for an intrinsic role of the structural motif and thereby posit that single nucleotide polymorphisms (SNP) that compromise the quadruplex architecture could influence function. To test this, we analysed SNPs within quadruplex motifs (Quad-SNP) and gene expression in 270 individuals across four populations (HapMap) representing more than 14,500 genotypes. Findings reveal significant association between quadruplex-SNPs and expression of the corresponding gene in individuals (P < 0.0001). Furthermore, analysis of Quad-SNPs obtained from population-scale sequencing of 1000 human genomes showed relative selection bias against alteration of the structural motif. To directly test the quadruplex-SNP-transcription connection, we constructed a reporter system using the RPS3 promoter-remarkable difference in promoter activity in the 'quadruplex-destabilized' versus 'quadruplex-intact' promoter was noticed. As a further test, we incorporated a quadruplex motif or its disrupted counterpart within a synthetic promoter reporter construct. The quadruplex motif, and not the disrupted-motif, enhanced transcription in human cell lines of different origin. Together, these findings build direct support for quadruplex-mediated transcription and suggest quadruplex-SNPs may play significant role in mechanistically understanding variations in gene expression among individuals.

  12. A novel, single nucleotide polymorphism-based assay to detect 22q11 deletions.

    PubMed

    Funke, Birgit H; Brown, Alison C; Ramoni, Marco F; Regan, Maura E; Baglieri, Chris; Finn, Christine T; Babcock, Melanie; Shprintzen, Robert J; Morrow, Bernice E; Kucherlapati, Raju

    2007-01-01

    Velocardiofacial syndrome, DiGeorge syndrome, and conotruncal anomaly face syndrome, now collectively referred to as 22q11deletion syndrome (22q11DS) are caused by microdeletions on chromosome 22q11. The great majority ( approximately 90%) of these deletions are 3 Mb in size. The remaining deleted patients have nested break-points resulting in overlapping regions of hemizygosity. Diagnostic testing for the disorder is traditionally done by fluorescent in situ hybridization (FISH) using probes located in the proximal half of the region common to all deletions. We developed a novel, high-resolution single-nucleotide polymorphism (SNP) genotyping assay to detect 22q11 deletions. We validated this assay using DNA from 110 nondeleted controls and 77 patients with 22q11DS that had previously been tested by FISH. The assay was 100% sensitive (all deletions were correctly identified). Our assay was also able to detect a case of segmental uniparental disomy at 22q11 that was not detected by the FISH assay. We used Bayesian networks to identify a set of 17 SNPs that are sufficient to ascertain unambiguously the deletion status of 22q11DS patients. Our SNP based assay is a highly accurate, sensitive, and specific method for the diagnosis of 22q11 deletion syndrome.

  13. MSProGene: integrative proteogenomics beyond six-frames and single nucleotide polymorphisms

    PubMed Central

    Zickmann, Franziska; Renard, Bernhard Y.

    2015-01-01

    Summary: Ongoing advances in high-throughput technologies have facilitated accurate proteomic measurements and provide a wealth of information on genomic and transcript level. In proteogenomics, this multi-omics data is combined to analyze unannotated organisms and to allow more accurate sample-specific predictions. Existing analysis methods still mainly depend on six-frame translations or reference protein databases that are extended by transcriptomic information or known single nucleotide polymorphisms (SNPs). However, six-frames introduce an artificial sixfold increase of the target database and SNP integration requires a suitable database summarizing results from previous experiments. We overcome these limitations by introducing MSProGene, a new method for integrative proteogenomic analysis based on customized RNA-Seq driven transcript databases. MSProGene is independent from existing reference databases or annotated SNPs and avoids large six-frame translated databases by constructing sample-specific transcripts. In addition, it creates a network combining RNA-Seq and peptide information that is optimized by a maximum-flow algorithm. It thereby also allows resolving the ambiguity of shared peptides for protein inference. We applied MSProGene on three datasets and show that it facilitates a database-independent reliable yet accurate prediction on gene and protein level and additionally identifies novel genes. Availability and implementation: MSProGene is written in Java and Python. It is open source and available at http://sourceforge.net/projects/msprogene/. Contact: renardb@rki.de PMID:26072472

  14. Social cognition, face processing, and oxytocin receptor single nucleotide polymorphisms in typically developing children.

    PubMed

    Slane, Mylissa M; Lusk, Laina G; Boomer, K B; Hare, Abby E; King, Margaret K; Evans, David W

    2014-07-01

    Recent research has provided evidence of a link between behavioral measures of social cognition (SC) and neural and genetic correlates. Differences in face processing and variations in the oxytocin receptor (OXTR) gene have been associated with SC deficits and autism spectrum disorder (ASD) traits. Much work has examined the qualitative differences between those with ASD and typically developing (TD) individuals, but very little has been done to quantify the natural variation in ASD-like traits in the typical population. The present study examines this variation in TD children using a multidimensional perspective involving behavior assessment, neural electroencephalogram (EEG) testing, and OXTR genotyping. Children completed a series of neurocognitive assessments, provided saliva samples for sequencing, and completed a face processing task while connected to an EEG. No clear pattern emerged for EEG covariates or genotypes for individual OXTR single nucleotide polymorphisms (SNPs). However, SNPs rs2254298 and rs53576 consistently interacted such that the AG/GG allele combination of these SNPs was associated with poorer performance on neurocognitive measures. These results suggest that neither SNP in isolation is risk-conferring, but rather that the combination of rs2254298(A/G) and rs53576(G/G) confers a deleterious effect on SC across several neurocognitive measures.

  15. Single nucleotide polymorphisms in the bovine Histophilus somni genome; a comparison of new and old isolates.

    PubMed

    Madampage, Claudia Avis; Rawlyk, Neil; Crockford, Gordon; Van Donkersgoed, Joyce; Dorin, Craig; Potter, Andrew

    2015-07-01

    Histophilus somni, a causative agent of the bovine respiratory disease complex, can also cause a variety of systemic disorders, including bronchopneumonia, myocarditis, pericarditis, arthritis, pleuritis, and infectious thrombotic meningoencephalitis. The purpose of this study was to determine if currently circulating strains differ from those of the 1980s by identifying genomic changes. Single nucleotide polymorphisms (SNPs) and insertion and deletion (INDEL) sites were examined by whole-genome sequencing in 12 samples, 6 old and 6 new. The 31 028 SNP/INDELs recorded were compared against the reference genome sequence of the pathogenic H. somni strain 2336. The distribution of about 75% of these SNPs within a specified gene differed between old and new isolates and did not follow any particular pattern. The other 25% clustered into 2 groups containing the same SNPs in various genes: group I included 5 old isolates and 1 new isolate; group II included 5 new isolates and 1 old isolate. For putative virulence genes there were more SNPs in group I compared with strain 2336, itself an older isolate, than in group II. Although only 25% of all the SNPs formed 2 clusters, the results suggest some genetic difference in various genes between old and new strains.

  16. Single nucleotide polymorphism and FMR1 CGG repeat instability in two Basque valleys.

    PubMed

    Barasoain, Maitane; Barrenetxea, Gorka; Ortiz-Lastra, Eduardo; González, Javier; Huerta, Iratxe; Télez, Mercedes; Ramírez, Juan Manuel; Domínguez, Amaia; Gurtubay, Paula; Criado, Begoña; Arrieta, Isabel

    2012-03-01

    Fragile X Syndrome (FXS, MIM 309550) is mainly due to the expansion of a CGG trinucleotide repeat sequence, found in the 5' untranslated region of the FMR1 gene. Some studies suggest that stable markers, such as single nucleotide polymorphisms (SNPs) and the study of populations with genetic identity, could provide a distinct advance to investigate the origin of CGG repeat instability. In this study, seven SNPs (WEX28 rs17312728:G>T, WEX70 rs45631657:C>T, WEX1 rs10521868:A>C, ATL1 rs4949:A>G, FMRb rs25707:A>G, WEX17 rs12010481:C>T and WEX10 ss71651741:C>T) have been analyzed in two Basque valleys (Markina and Arratia). We examined the association between these SNPs and the CGG repeat size, the AGG interruption pattern and two microsatellite markers (FRAXAC1 and DXS548). The results suggest that in both valleys WEX28-T, WEX70-C, WEX1-C, ATL1-G, and WEX10-C are preferably associated with cis-acting sequences directly influencing instability. But comparison of the two valleys reveals also important differences with respect to: (1) frequency and structure of "susceptible" alleles and (2) association between "susceptible" alleles and STR and SNP haplotypes. These results may indicate that, in Arratia, SNP status does not identify a pool of susceptible alleles, as it does in Markina. In Arratia valley, the SNP haplotype association reveals also a potential new "protective" factor.

  17. Single nucleotide polymorphisms in Mycobacterium tuberculosis and the need for a curated database

    PubMed Central

    Stucki, David; Gagneux, Sebastien

    2013-01-01

    Summary Recent advances in DNA sequencing have lead to the discovery of thousands of single nucleotide polymorphisms (SNPs) in clinical isolates of Mycobacterium tuberculosis complex (MTBC). This genetic variation has changed our understanding of the differences and phylogenetic relationships between strains. Many of these mutations can serve as phylogenetic markers for strain classification, while others cause drug resistance. Moreover, SNPs can affect the bacterial phenotype in various ways, which may have an impact on the outcome of tuberculosis (TB) infection and disease. Despite the importance of SNPs for our understanding of the diversity of MTBC populations, the research community is currently lacking a comprehensive, well-curated and user-friendly database dedicated to SNP data. First attempts to catalogue and annotate SNPs in MTBC have been made, but more work is needed. In this review, we discuss the biological and epidemiological relevance of SNPs in MTBC. We then review some of the analytical challenges involved in processing SNP data, and end with a list of features, which should be included in a new SNP database for MTBC. PMID:23266261

  18. Neuropeptide VGF Promotes Maturation of Hippocampal Dendrites That Is Reduced by Single Nucleotide Polymorphisms

    PubMed Central

    Behnke, Joseph; Cheedalla, Aneesha; Bhatt, Vatsal; Bhat, Maysa; Teng, Shavonne; Palmieri, Alicia; Windon, Charles Christian; Thakker-Varia, Smita; Alder, Janet

    2017-01-01

    The neuropeptide VGF (non-acronymic) is induced by brain-derived neurotrophic factor and promotes hippocampal neurogenesis, as well as synaptic activity. However, morphological changes induced by VGF have not been elucidated. Developing hippocampal neurons were exposed to VGF through bath application or virus-mediated expression in vitro. VGF-derived peptide, TLQP-62, enhanced dendritic branching, and outgrowth. Furthermore, VGF increased dendritic spine density and the proportion of immature spines. Spine formation was associated with increased synaptic protein expression and co-localization of pre- and postsynaptic markers. Three non-synonymous single nucleotide polymorphisms (SNPs) were selected in human VGF gene. Transfection of N2a cells with plasmids containing these SNPs revealed no relative change in protein expression levels and normal protein size, except for a truncated protein from the premature stop codon, E525X. All three SNPs resulted in a lower proportion of N2a cells bearing neurites relative to wild-type VGF. Furthermore, all three mutations reduced the total length of dendrites in developing hippocampal neurons. Taken together, our results suggest VGF enhances dendritic maturation and that these effects can be altered by common mutations in the VGF gene. The findings may have implications for people suffering from psychiatric disease or other conditions who may have altered VGF levels. PMID:28287464

  19. The presence of a single-nucleotide polymorphism in the BDNF gene affects the rate of locomotor adaptation after stroke.

    PubMed

    Helm, Erin E; Tyrell, Christine M; Pohlig, Ryan T; Brady, Lucas D; Reisman, Darcy S

    2016-02-01

    Induction of neural plasticity through motor learning has been demonstrated in animals and humans. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family of growth factors, is thought to play an integral role in modulation of central nervous system plasticity during learning and motor skill recovery. Thirty percent of humans possess a single-nucleotide polymorphism on the BDNF gene (Val66Met), which has been linked to decreased activity-dependent release of BDNF. Presence of the polymorphism has been associated with altered cortical activation, short-term plasticity and altered skill acquisition, and learning in healthy humans. The impact of the Val66Met polymorphism on motor learning post-stroke has not been explored. The purpose of this study was to examine the impact of the Val66Met polymorphism in learning of a novel locomotor task in subjects with chronic stroke. It was hypothesized that subjects with the polymorphism would have an altered rate and magnitude of adaptation to a novel locomotor walking paradigm (the split-belt treadmill), compared to those without the polymorphism. The rate of adaptation was evaluated as the reduction in gait asymmetry during the first 30 (early adaptation) and last 100 (late adaptation) strides. Twenty-seven individuals with chronic stroke participated in a single session of split-belt treadmill walking and tested for the polymorphism. Step length and limb phase were measured to assess adaptation of spatial and temporal parameters of walking. The rate of adaptation of step length asymmetry differed significantly between those with and without the polymorphism, while the amount of total adaptation did not. These results suggest that chronic stroke survivors, regardless of presence or absence of the polymorphism, are able to adapt their walking pattern over a period of trial-and-error practice; however, the presence of the polymorphism influences the rate at which this is achieved.

  20. The presence of a single nucleotide polymorphism in the BDNF gene affects the rate of locomotor adaptation after stroke

    PubMed Central

    Helm, Erin E.; Tyrell, Christine M.; Pohlig, Ryan T.; Brady, Lucas D.; Reisman, Darcy S.

    2015-01-01

    Induction of neural plasticity through motor learning has been demonstrated in animals and humans. Brain derived neurotrophic factor (BDNF), a member of the neurotrophin family of growth factors, is thought to play an integral role in modulation of central nervous system plasticity during learning and motor skill recovery. Thirty percent of humans possess a single nucleotide polymorphism on the BDNF gene (Val66Met), which has been linked to decreased activity dependent release of BDNF. Presence of the polymorphism has been associated with altered cortical activation, short term plasticity and altered skill acquisition, and learning in healthy humans. The impact of the Val66Met polymorphism on motor learning post-stroke has not been explored. The purpose of this study was to examine the impact of the Val66Met polymorphism in learning of a novel locomotor task in subjects with chronic stroke. It was hypothesized that subjects with the polymorphism would have an altered rate and magnitude of adaptation to a novel locomotor walking paradigm (the split-belt treadmill), compared to those without the polymorphism. The rate of adaptation was evaluated as the reduction in gait asymmetry during the first 30 (early adaptation) and last 100 (late adaptation) strides. Twenty-seven individuals with chronic stroke participated in a single session of split-belt treadmill walking and tested for the polymorphism. Step length and limb phase were measured to assess adaptation of spatial and temporal parameters of walking. The rate of adaptation of step length asymmetry differed significantly between those with and without the polymorphism, while the amount of total adaptation did not. These results suggest that chronic stroke survivors, regardless of presence or absence of the polymorphism, are able to adapt their walking pattern over a period of trial and error practice, however the presence of the polymorphism influences the rate at which this is achieved. PMID:26487176

  1. [The identification of the AB0 blood type system by means of the single nucleotide polymorphisms analysis].

    PubMed

    Lapenkov, M I; Plakhina, N V; Aleksandrova, V Yu; Kuklev, M Yu; Nikolaeva, T L; Konovalova, N V

    2016-01-01

    The authors describe a domestically produced test-system for the determination of the AB0 blood type by means of the single nucleotide polymorphisms (SNP) analysis. The results of the trials indicate that the proposed test-system can be employed for the investigation of DNA specimens of individual origin obtained from any objects of expertise including micro-objects containing human nuclear DNA.

  2. How many single nucleotide polymorphisms (SNPs) are needed to replace short tandem repeats (STRs) in forensic applications?

    PubMed

    Lee, Hyo-Jung; Lee, Jae Won; Jeong, Su Jin; Park, Mira

    2017-02-27

    Short tandem repeats (STRs) are the most commonly used forms of genetic information in forensic identification. In recent times, advances in the information on single nucleotide polymorphisms (SNPs) have raised the possibility that these markers could replace the forensically established STRs. In this work, we conducted comparative simulation studies that allowed us to estimate the number of SNPs needed if these markers were used instead of STRs in criminal cases and paternity investigations.

  3. Single nucleotide polymorphisms of microRNA-machinery genes modify the risk of renal cell carcinoma

    PubMed Central

    Horikawa, Yohei; Wood, Christopher G.; Yang, Hushan; Zhao, Hua; Ye, Yuanqing; Gu, Jian; Lin, Jie; Habuchi, Tomonori; Wu, Xifeng

    2008-01-01

    Purpose MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that have been implicated in a wide diversity of basic cellular functions through post-transcriptional regulations on their target genes. Compelling evidence has shown that miRNAs are involved in cancer initiation and progression. We hypothesized that genetic variations of the miRNA-machinery genes could be associated with the risk of renal cell carcinoma (RCC). Experimental Design We genotyped 40 single nucleotide polymorphisms (SNPs) from 11 miRNA processing genes (DROSHA, DGCR8, XPO5, RAN, DICER1, TARBP2, EIF2C1, AGO2, GEMIN3, GEMIN4, HIWI) and 15 miRNA genes in 279 Caucasian patients with RCC and 278 matched controls. Results We found that two SNPs in the GEMIN4 gene were significantly associated with altered RCC risks. The variant containing genotypes of the Asn929Asp and Cys1033Arg exhibited a significantly reduced risk with an odds ratio [OR] of 0.67 (95% confidence interval [CI], 0.47–0.96) and 0.68 (95% CI, 0.47–0.98), respectively. Haplotype analysis showed that a common haplotype of the GEMIN4 was associated with a significant reduce in risk of RCC (OR, 0.66; 95% CI, 0.45–0.97). We also conducted a combined unfavorable genotype analysis including five promising SNPs showing at least a borderline significant risk association. Compared with the low-risk reference group within one unfavorable genotype, the median-risk and high-risk group exhibited a 1.55-fold (95% CI, 0.96–2.50) and a 2.49-fold (95% CI, 1.58–3.91) increased risk of RCC, respectively (P for trend <0.001). Conclusion Our results suggested that genetic polymorphisms of the miRNA-machinery genes may impact RCC susceptibility individually and jointly. PMID:19047128

  4. Spatial distribution of single-nucleotide polymorphisms related to fungicide resistance and implications for sampling.

    PubMed

    Van der Heyden, H; Dutilleul, P; Brodeur, L; Carisse, O

    2014-06-01

    Spatial distribution of single-nucleotide polymorphisms (SNPs) related to fungicide resistance was studied for Botrytis cinerea populations in vineyards and for B. squamosa populations in onion fields. Heterogeneity in this distribution was characterized by performing geostatistical analyses based on semivariograms and through the fitting of discrete probability distributions. Two SNPs known to be responsible for boscalid resistance (H272R and H272Y), both located on the B subunit of the succinate dehydrogenase gene, and one SNP known to be responsible for dicarboximide resistance (I365S) were chosen for B. cinerea in grape. For B. squamosa in onion, one SNP responsible for dicarboximide resistance (I365S homologous) was chosen. One onion field was sampled in 2009 and another one was sampled in 2010 for B. squamosa, and two vineyards were sampled in 2011 for B. cinerea, for a total of four sampled sites. Cluster sampling was carried on a 10-by-10 grid, each of the 100 nodes being the center of a 10-by-10-m quadrat. In each quadrat, 10 samples were collected and analyzed by restriction fragment length polymorphism polymerase chain reaction (PCR) or allele specific PCR. Mean SNP incidence varied from 16 to 68%, with an overall mean incidence of 43%. In the geostatistical analyses, omnidirectional variograms showed spatial autocorrelation characterized by ranges of 21 to 1 m. Various levels of anisotropy were detected, however, with variograms computed in four directions (at 0°, 45°, 90°, and 135° from the within-row direction used as reference), indicating that spatial autocorrelation was prevalent or characterized by a longer range in one direction. For all eight data sets, the β-binomial distribution was found to fit the data better than the binomial distribution. This indicates local aggregation of fungicide resistance among sampling units, as supported by estimates of the parameter θ of the β-binomial distribution of 0.09 to 0.23 (overall median value = 0

  5. EST-derived single nucleotide polymorphism markers for assembling genetic and physical maps of the barley genome.

    PubMed

    Kota, R; Varshney, R K; Prasad, M; Zhang, H; Stein, N; Graner, A

    2008-08-01

    In a panel of seven genotypes, 437 expressed sequence tag (EST)-derived DNA fragments were sequenced. Single nucleotide polymorphisms (SNPs) that were polymorphic between the parents of three mapping populations were mapped by heteroduplex analysis and a genome-wide consensus map comprising 216 EST-derived SNPs and 4 InDel (insertion/deletion) markers was constructed. The average frequency of SNPs amounted to 1/130 bp and 1/107.8 bp for a set of randomly selected and a set of mapped ESTs, respectively. The calculated nucleotide diversities (pi) ranged from 0 to 40.0 x 10(-3) (average 3.1 x 10(-3)) and 0.52 x 10(-3) to 39.51 x 10(-3) (average 4.37 x 10(-3)) for random and mapped ESTs, respectively. The polymorphism information content value for mapped SNPs ranged from 0.24 to 0.50 with an average of 0.34. As expected, combination of SNPs present in an amplicon (haplotype) exhibited a higher information content ranging from 0.24 to 0.85 with an average of 0.50. Cleaved amplified polymorphic sequence assays (including InDels) were designed for a total of 87 (39.5%) SNP markers. The high abundance of SNPs in the barley genome provides avenues for the systematic development of saturated genetic maps and their integration with physical maps.

  6. Identification of novel single nucleotide polymorphisms in the DGAT1 gene of buffaloes by PCR-SSCP

    PubMed Central

    Raut, Ashwin A.; Kumar, Anil; Kala, Sheo N.; Chhokar, Vinod; Rana, Neeraj; Beniwal, Vikas; Jaglan, Sundeep; Samuchiwal, Sachin K.; Singh, Jitender K.; Mishra, Anamika

    2012-01-01

    Diacylglycerol O-acyltransferase 1 (DGAT1) is a microsomal enzyme that catalyzes the final step of triglyceride synthesis. The DGAT1 gene is a strong functional candidate for determining milk fat content in cattle. In this work, we used PCR-SSCP (polymerase chain reaction-single-strand conformation polymorphism) and DNA sequencing to examine polymorphism in the region spanning exon 7 to exon 9 of the DGAT1 gene in Murrah and Pandharpuri buffaloes. Three alleles (A, B and C) and four novel single-nucleotide polymorphisms were identified in the buffalo DGAT1 gene. The frequencies of the alleles differed between the two buffalo breeds, with allele C being present in Murrah but not in Pandharpuri buffalo. The allele variation detected in this work may influence DGAT1 expression and function. The results described here could be useful in examining the association between the DGAT1 gene and milk traits in buffalo. PMID:23055800

  7. Incorporating Single-nucleotide Polymorphisms Into the Lyman Model to Improve Prediction of Radiation Pneumonitis

    SciTech Connect

    Tucker, Susan L.; Li Minghuan; Xu Ting; Gomez, Daniel; Yuan Xianglin; Yu Jinming; Liu Zhensheng; Yin Ming; Guan Xiaoxiang; Wang Lie; Wei Qingyi; Mohan, Radhe; Vinogradskiy, Yevgeniy; Martel, Mary; Liao Zhongxing

    2013-01-01

    Purpose: To determine whether single-nucleotide polymorphisms (SNPs) in genes associated with DNA repair, cell cycle, transforming growth factor-{beta}, tumor necrosis factor and receptor, folic acid metabolism, and angiogenesis can significantly improve the fit of the Lyman-Kutcher-Burman (LKB) normal-tissue complication probability (NTCP) model of radiation pneumonitis (RP) risk among patients with non-small cell lung cancer (NSCLC). Methods and Materials: Sixteen SNPs from 10 different genes (XRCC1, XRCC3, APEX1, MDM2, TGF{beta}, TNF{alpha}, TNFR, MTHFR, MTRR, and VEGF) were genotyped in 141 NSCLC patients treated with definitive radiation therapy, with or without chemotherapy. The LKB model was used to estimate the risk of severe (grade {>=}3) RP as a function of mean lung dose (MLD), with SNPs and patient smoking status incorporated into the model as dose-modifying factors. Multivariate analyses were performed by adding significant factors to the MLD model in a forward stepwise procedure, with significance assessed using the likelihood-ratio test. Bootstrap analyses were used to assess the reproducibility of results under variations in the data. Results: Five SNPs were selected for inclusion in the multivariate NTCP model based on MLD alone. SNPs associated with an increased risk of severe RP were in genes for TGF{beta}, VEGF, TNF{alpha}, XRCC1 and APEX1. With smoking status included in the multivariate model, the SNPs significantly associated with increased risk of RP were in genes for TGF{beta}, VEGF, and XRCC3. Bootstrap analyses selected a median of 4 SNPs per model fit, with the 6 genes listed above selected most often. Conclusions: This study provides evidence that SNPs can significantly improve the predictive ability of the Lyman MLD model. With a small number of SNPs, it was possible to distinguish cohorts with >50% risk vs <10% risk of RP when they were exposed to high MLDs.

  8. LMNA gene single nucleotide polymorphisms in dilated cardiomyopathy of Han children

    PubMed Central

    Xie, Li-Jian; Xiao, Ting-Ting; Huang, Min; Shen, Jie

    2015-01-01

    Objective: To investigate whether LMNA gene mutation is associated with dilated cardiomyopathy (DCM) in Chinese Han Race children. Methods: DNA was isolated from 78 patients with DCM and 100 healthy Chinese children who served as controls. 12 exons in the functional regions and the adjacent part of introns of the LMNA gene were amplified with polymerase chain reactions (PCR) and the PCR products were sequenced with DNA sequencer. We compared the DNA sequence with Blast software online PubMed website. The differences of allele and genotype between the groups were detected by χ2 test. Results: No disease-causing mutation in LMNA gene was found in all DCM patients. Three nonsense single nucleotide polymorphisms (SNPs) were identified. ① The first is c.1908C>T (H566H, rs4641) which was located at exon 10 of LMNA gene. It was found in 29 DCM cases and 15 control subjects. Compared to healthy controls, the frequency of TT and TC genotypes, and the C allele were significantly increased in DCM patients (P<0.05). ② The second was c.861C>T (A287A, rs5380) which was located at exon 5 of LMNA gene. It was found in 9 DCM cases and 2 control subjects. The frequency of TC genotype was significantly increased in DCM patients (P<0.05). ③ The third was c.1338C>T (D446D, rs5058) which located at exon 7 of LMNA gene. It was found in 8 DCM cases and 3 control subjects. The frequency of TC genotype was significantly increased in DCM patients (P<0.05). Conclusion: The SNP of LMNA gene may be associated with the susceptivity of DCM in Chinese Han children. PMID:26379929

  9. Interaction of iron status with single nucleotide polymorphisms on incidence of type 2 diabetes.

    PubMed

    Kim, Jihye; Kim, Mi Kyung; Jung, Sukyoung; Lim, Ji Eun; Shin, Myung-Hee; Kim, Yeon-Jung; Oh, Bermseok

    2017-01-01

    The objective of this study is to find single nucleotide polymorphisms (SNPs) associated with a risk of Type 2 diabetes (T2D) in Korean adults and to investigate the longitudinal association between these SNPs and T2D and the interaction effects of iron intake and average hemoglobin level. Data from the KoGES_Ansan and Ansung Study were used. Gene-iron interaction analysis was conducted using a two-step approach. To select candidate SNPs associated with T2D, a total of 7,935 adults at baseline were included in genome-wide association analysis (step one). After excluding T2D prevalent cases, prospective analyses were conducted with 7,024 adults aged 40-69 (step two). The association of selected SNPs and iron status with T2D and their interaction were determined using a Cox proportional hazard model. A total of 3 SNPs [rs9465871 (CDKAL1), rs10761745 (JMJD1C), and rs163177 (KCNQ1)] were selected as candidate SNPs related to T2D. Among them, rs10761745 (JMJD1C) and rs163177 (KCNQ1) were prospectively associated with T2D. High iron intake was also prospectively associated with the risk of T2D after adjusting for covariates. Average hemoglobin level was positively associated with T2D after adjusting for covariates in women. We also found significant interaction effects between rs10761745 (JMJD1C) and average hemoglobin levels on the risk of T2D among women with normal inflammation and without anemia at baseline. In conclusion, KCNQ1 and JMJD1C may prospectively contribute to the risk of T2D incidence among adults over the age of 40 and JMJD1C, but CDKAL1 may not, and iron status may interactively contribute to T2D incidence in women.

  10. Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis)

    PubMed Central

    2010-01-01

    Background Castor bean (Ricinus communis) is an agricultural crop and garden ornamental that is widely cultivated and has been introduced worldwide. Understanding population structure and the distribution of castor bean cultivars has been challenging because of limited genetic variability. We analyzed the population genetics of R. communis in a worldwide collection of plants from germplasm and from naturalized populations in Florida, U.S. To assess genetic diversity we conducted survey sequencing of the genomes of seven diverse cultivars and compared the data to a reference genome assembly of a widespread cultivar (Hale). We determined the population genetic structure of 676 samples using single nucleotide polymorphisms (SNPs) at 48 loci. Results Bayesian clustering indicated five main groups worldwide and a repeated pattern of mixed genotypes in most countries. High levels of population differentiation occurred between most populations but this structure was not geographically based. Most molecular variance occurred within populations (74%) followed by 22% among populations, and 4% among continents. Samples from naturalized populations in Florida indicated significant population structuring consistent with local demes. There was significant population differentiation for 56 of 78 comparisons in Florida (pairwise population ϕPT values, p < 0.01). Conclusion Low levels of genetic diversity and mixing of genotypes have led to minimal geographic structuring of castor bean populations worldwide. Relatively few lineages occur and these are widely distributed. Our approach of determining population genetic structure using SNPs from genome-wide comparisons constitutes a framework for high-throughput analyses of genetic diversity in plants, particularly in species with limited genetic diversity. PMID:20082707

  11. Shifting Paradigm of Association Studies: Value of Rare Single-Nucleotide Polymorphisms

    PubMed Central

    Gorlov, Ivan P.; Gorlova, Olga Y.; Sunyaev, Shamil R.; Spitz, Margaret R.; Amos, Christopher I.

    2008-01-01

    Summary Currently, single-nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) of >5% are preferentially used in case-control association studies of common human diseases. Recent technological developments enable inexpensive and accurate genotyping of a large number of SNPs in thousands of cases and controls, which can provide adequate statistical power to analyze SNPs with MAF <5%. Our purpose was to determine whether evaluating rare SNPs in case-control association studies could help identify causal SNPs for common diseases. We suggest that slightly deleterious SNPs (sdSNPs) subjected to weak purifying selection are major players in genetic control of susceptibility to common diseases. We compared the distribution of MAFs of synonymous SNPs with that of nonsynonymous SNPs (1) predicted to be benign, (2) predicted to be possibly damaging, and (3) predicted to be probably damaging by PolyPhen. Our sources of data were the International HapMap Project, ENCODE, and the SeattleSNPs project. We found that the MAF distribution of possibly and probably damaging SNPs was shifted toward rare SNPs compared with the MAF distribution of benign and synonymous SNPs that are not likely to be functional. We also found an inverse relationship between MAF and the proportion of nsSNPs predicted to be protein disturbing. On the basis of this relationship, we estimated the joint probability that a SNP is functional and would be detected as significant in a case-control study. Our analysis suggests that including rare SNPs in genotyping platforms will advance identification of causal SNPs in case-control association studies, particularly as sample sizes increase. PMID:18179889

  12. Identification of single-nucleotide polymorphism markers associated with cortisol response to crowding in rainbow trout.

    PubMed

    Liu, Sixin; Vallejo, Roger L; Gao, Guangtu; Palti, Yniv; Weber, Gregory M; Hernandez, Alvaro; Rexroad, Caird E

    2015-06-01

    Understanding stress responses is essential for improving animal welfare and increasing agriculture production efficiency. Previously, we reported microsatellite markers associated with quantitative trait loci (QTL) affecting plasma cortisol response to crowding in rainbow trout. In this study, our main objectives were to identify single-nucleotide polymorphism (SNP) markers associated with cortisol response to crowding in rainbow trout using both GWAS (genome-wide association studies) and QTL mapping methods and to employ rapidly expanding genomic resources for rainbow trout toward the identification of candidate genes affecting this trait. A three-generation F2 mapping family (2008052) was genotyped using RAD-seq (restriction-site-associated DNA sequencing) to identify 4874 informative SNPs. GWAS identified 26 SNPs associated with cortisol response to crowding whereas QTL mapping revealed two significant QTL on chromosomes Omy8 and Omy12, respectively. Positional candidate genes were identified using marker sequences to search the draft genome assembly of rainbow trout. One of the genes in the QTL interval on Omy12 is a putative serine/threonine protein kinase gene that was differentially expressed in the liver in response to handling and confinement stress in our previous study. A homologue of this gene was differentially expressed in zebrafish embryos exposed to diclofenac, a nonsteroidal anti-inflammatory drug (NSAID) and an environmental toxicant. NSAIDs have been shown to affect the cortisol response in rainbow trout; therefore, this gene is a good candidate based on its physical position and expression. However, the reference genome resources currently available for rainbow trout require continued improvement as demonstrated by the unmapped SNPs and the putative assembly errors detected in this study.

  13. Single nucleotide polymorphism detection using gold nanoprobes and bio-microfluidic platform with embedded microlenses.

    PubMed

    Bernacka-Wojcik, Iwona; Águas, Hugo; Carlos, Fabio Ferreira; Lopes, Paulo; Wojcik, Pawel Jerzy; Costa, Mafalda Nascimento; Veigas, Bruno; Igreja, Rui; Fortunato, Elvira; Baptista, Pedro Viana; Martins, Rodrigo

    2015-06-01

    The use of microfluidics platforms combined with the optimal optical properties of gold nanoparticles has found plenty of application in molecular biosensing. This paper describes a bio-microfluidic platform coupled to a non-cross-linking colorimetric gold nanoprobe assay to detect a single nucleotide polymorphism associated with increased risk of obesity fat-mass and obesity-associated (FTO) rs9939609 (Carlos et al., 2014). The system enabled significant discrimination between positive and negative assays using a target DNA concentration of 5 ng/µL below the limit of detection of the conventionally used microplate reader (i.e., 15 ng/µL) with 10 times lower solution volume (i.e., 3 µL). A set of optimization of our previously reported bio-microfluidic platform (Bernacka-Wojcik et al., 2013) resulted in a 160% improvement of colorimetric analysis results. Incorporation of planar microlenses increased 6 times signal-to-loss ratio reaching the output optical fiber improving by 34% the colorimetric analysis of gold nanoparticles, while the implementation of an optoelectronic acquisition system yielded increased accuracy and reduced noise. The microfluidic chip was also integrated with a miniature fiber spectrometer to analyze the assays' colorimetric changes and also the LEDs transmission spectra when illuminating through various solutions. Furthermore, by coupling an optical microscope to a digital camera with a long exposure time (30 s), we could visualise the different scatter intensities of gold nanoparticles within channels following salt addition. These intensities correlate well to the expected difference in aggregation between FTO positive (none to small aggregates) and negative samples (large aggregates).

  14. Empirically derived subgroups in rheumatoid arthritis: association with single-nucleotide polymorphisms on chromosome 6

    PubMed Central

    Wilcox, Marsha A; McAfee, Andrew T

    2007-01-01

    Rheumatoid arthritis (RA) is a disorder with important public health implications. It is possible that there are clinically distinctive subtypes of the disorder with different genetic etiologies. We used the data provided to the participants in the Genetic Analysis Workshop 15 to evaluate and describe clinically based subgroups and their genetic associations with single-nucleotide polymorphisms (SNPs) on chromosome 6, which harbors the HLA region. Detailed two- and three-SNP haplotype analyses were conducted in the HLA region. We used demographic, clinical self-report, and biomarker data from the entire sample (n = 8477) to identify and characterize the subgroups. We did not use the RA diagnosis itself in the identification of the subgroups. Nuclear families (715 families, 1998 individuals) were used to examine the genetic association with the HLA region. We found five distinct subgroups in the data. The first comprised unaffected family members. Cluster 2 was a mix of affected and unaffected in which patients endorsed symptoms not corroborated by physicians. Clusters 3 through 5 represented a severity continuum in RA. Cluster 5 was characterized by early onset severe disease. Cluster 2 showed no association on chromosome 6. Clusters 3 through 5 showed association with 17 SNPs on chromosome 6. In the HLA region, Cluster 3 showed single-, two-, and three-SNP association with the centromeric side of the region in an area of linkage disequilibrium. Cluster 5 showed both single- and two-SNP association with the telomeric side of the region in a second area of linkage disequilibrium. It will be important to replicate the subgroup structure and the association findings in an independent sample. PMID:18466517

  15. Exploring the efficacy of paternity and kinship testing based on single nucleotide polymorphisms.

    PubMed

    Mo, Shao-Kang; Liu, Ya-Cheng; Wang, Sheng-qi; Bo, Xiao-Chen; Li, Zhen; Chen, Ying; Ni, Ming

    2016-05-01

    Short tandem repeats (STRs) are conventional genetic markers typically used for paternity and kinship testing. As supplementary markers of STRs, single nucleotide polymorphisms (SNPs) have less discrimination power but broader applicability to degraded samples. The rapid improvement of next-generation sequencing (NGS) and multiplex amplification technologies also make it possible now to simultaneously identify dozens or even hundreds of SNP loci in a single pool. However, few studies have been endeavored to kinship testing based on SNP loci. In this study, we genotyped 90 autosomal human identity SNP loci with NGS, and investigated their testing efficacies based on the likelihood ratio model in eight pedigree scenarios involving paternity, half/full-sibling, uncle/nephew, and first-cousin relationships. We found that these SNPs might be sufficient to discriminate paternity and full-sibling, but impractical for more distant relatives such as uncle and cousin. Furthermore, we conducted an in silico study to obtain the theoretical tendency of how testing efficacy varied with increasing number of SNP loci. For each testing battery in a given pedigree scenario, we obtained distributions of logarithmic likelihood ratio for both simulated relatives and unrelated controls. The proportion of the overlapping area between the two distributions was defined as a false testing level (FTL) to evaluate the testing efficacy. We estimated that 85, 127, 491, and 1,858 putative SNP loci were required to discriminate paternity, full-sibling, half-sibling/uncle-nephew, and first-cousin (FTL, 0.1%), respectively. To test a half-sibling or nephew, an additional uncle relative could be included to decrease the required number of putative SNP loci to ∼320 (FTL, 0.1%). As a systematic computation of paternity and kinship testing based only on SNPs, our results could be informative for further studies and applications on paternity and kinship testing using SNP loci.

  16. A biocompatible open-surface droplet manipulation platform for detection of multi-nucleotide polymorphism.

    PubMed

    Huang, C J; Fang, W F; Ke, M S; Chou, H Y E; Yang, J T

    2014-06-21

    We present a novel and simple method to manipulate droplets applicable to an open-surface microfluidic platform. The platform comprised a control module for pneumatic droplets and a superhydrophobic polydimethylsiloxane (PDMS) membrane. With pneumatic suction to cause deflection of the flexible PDMS-based superhydrophobic membrane, the sample and reagent droplets on the membrane become transported and mixed. A facile one-step laser micromachining technique serves to fabricate a superhydrophobic surface; a contact angle of 150° and a hysteresis angle of 4° were achieved without chemical modification. Relative to previous open-surface microfluidic systems, this platform is capable of simultaneous and precise delivery of droplets in two-dimensional (2D) manipulation. Droplets were manipulated with suction, which avoided interference from an external driving energy (e.g. heat, light, electricity) to affect the bio-sample inside the droplets. Two common bio-samples, namely protein and DNA, verified the performance of the platform. Based on the experimental results, operations on protein can be implemented without adsorption on the surface of the platform. Another striking result is the visual screening for multi-nucleotide polymorphism with hybridization-mediated growth of gold-nanoparticle (AuNP) probes. The detection results are observable with the naked eye, without the aid of advanced instruments. The entire procedure only takes 5 min from the addition of the sample and reagent to obtaining the results, which is much quicker than the traditional method. The total sample volume consumed in each operation is only 10 μL, which is significantly less than what is required in a large system. According to this approach, the proposed platform is suitable for biological and chemical applications.

  17. A Single Nucleotide Polymorphism in Catalase Is Strongly Associated with Ovarian Cancer Survival.

    PubMed

    Belotte, Jimmy; Fletcher, Nicole M; Saed, Mohammed G; Abusamaan, Mohammed S; Dyson, Gregory; Diamond, Michael P; Saed, Ghassan M

    2015-01-01

    Ovarian cancer is the deadliest of all gynecologic cancers. Recent evidence demonstrates an association between enzymatic activity altering single nucleotide polymorphisms (SNP) with human cancer susceptibility. We sought to evaluate the association of SNPs in key oxidant and antioxidant enzymes with increased risk and survival in epithelial ovarian cancer. Individuals (n = 143) recruited were divided into controls, (n = 94): healthy volunteers, (n = 18), high-risk BRCA1/2 negative (n = 53), high-risk BRCA1/2 positive (n = 23) and ovarian cancer cases (n = 49). DNA was subjected to TaqMan SNP genotype analysis for selected oxidant and antioxidant enzymes. Of the seven selected SNP studied, no association with ovarian cancer risk (Pearson Chi-square) was found. However, a catalase SNP was identified as a predictor of ovarian cancer survival by the Cox regression model. The presence of this SNP was associated with a higher likelihood of death (hazard ratio (HR) of 3.68 (95% confidence interval (CI): 1.149-11.836)) for ovarian cancer patients. Kaplan-Meier survival analysis demonstrated a significant median overall survival difference (108 versus 60 months, p<0.05) for those without the catalase SNP as compared to those with the SNP. Additionally, age at diagnosis greater than the median was found to be a significant predictor of death (HR of 2.78 (95% CI: 1.022-7.578)). This study indicates a strong association with the catalase SNP and survival of ovarian cancer patients, and thus may serve as a prognosticator.

  18. Assessing patterns of hybridization between North Atlantic eels using diagnostic single-nucleotide polymorphisms

    PubMed Central

    Pujolar, J M; Jacobsen, M W; Als, T D; Frydenberg, J; Magnussen, E; Jónsson, B; Jiang, X; Cheng, L; Bekkevold, D; Maes, G E; Bernatchez, L; Hansen, M M

    2014-01-01

    The two North Atlantic eel species, the European eel (Anguilla anguilla) and the American eel (Anguilla rostrata), spawn in partial sympatry in the Sargasso Sea, providing ample opportunity to interbreed. In this study, we used a RAD (Restriction site Associated DNA) sequencing approach to identify species-specific diagnostic single-nucleotide polymorphisms (SNPs) and design a low-density array that combined with screening of a diagnostic mitochondrial DNA marker. Eels from Iceland (N=159) and from the neighboring Faroe Islands (N=29) were genotyped, along with 94 larvae (49 European and 45 American eel) collected in the Sargasso Sea. Our SNP survey showed that the majority of Icelandic eels are pure European eels but there is also an important contribution of individuals of admixed ancestry (10.7%). Although most of the hybrids were identified as F1 hybrids from European eel female × American eel male crosses, backcrosses were also detected, including a first-generation backcross (F1 hybrid × pure European eel) and three individuals identified as second-generation backcrosses originating from American eel × F1 hybrid backcrosses interbreeding with pure European eels. In comparison, no hybrids were observed in the Faroe Islands, the closest bodies of land to Iceland. It is possible that hybrids show an intermediate migratory behaviour between the two parental species that ultimately brings hybrid larvae to the shores of Iceland, situated roughly halfway between the Sargasso Sea and Europe. Only two hybrids were observed among Sargasso Sea larvae, both backcrosses, but no F1 hybrids, that points to temporal variation in the occurrence of hybridization. PMID:24424165

  19. Single-Nucleotide Polymorphisms and Markers of Oxidative Stress in Healthy Women

    PubMed Central

    Minlikeeva, Albina N.; Browne, Richard W.; Ochs-Balcom, Heather M.; Marian, Catalin; Shields, Peter G.; Trevisan, Maurizio; Krishnan, Shiva; Modali, Ramakrishna; Seddon, Michael; Lehman, Teresa; Freudenheim, Jo L.

    2016-01-01

    Purpose There is accumulating evidence that oxidative stress is an important contributor to carcinogenesis. We hypothesized that genetic variation in genes involved in maintaining antioxidant/oxidant balance would be associated with overall oxidative stress. Methods We examined associations between single nucleotide polymorphisms (SNPs) in MnSOD, GSTP1, GSTM1, GPX1, GPX3, and CAT genes and thiobarbituric acid-reactive substances (TBARS), a blood biomarker of oxidative damage, in healthy white women randomly selected from Western New York (n = 1402). We used general linear models to calculate age-adjusted geometric means of TBARS across the variants. We also examined the associations within strata of menopausal status. Results For MnSOD, being heterozygous was associated with lower geometric means of TBARS (less oxidative stress), 1.28 mg/dL, compared to homozygous T-allele or homozygous C-allele,1.35 mg/dL, and 1.31 mg/dL correspondingly (p for trend = 0.01). This difference remained among postmenopausal women, 1.40 mg/dL for TT, 1.32 mg/dL for TC, and 1.34mg/dL for CC (p for trend 0.015); it was attenuated among premenopausal women. SNPs in the other genes examined (GSTP1, GSTM1, GPX1, GPX3, and CAT) were not associated with TBARS. Conclusions Our findings suggest that genetic variation in MnSOD gene may be associated with oxidative status, particularly among postmenopausal women. PMID:27271305

  20. The Impact of Single Nucleotide Polymorphisms on Human Aldehyde OxidaseS

    PubMed Central

    Hartmann, Tobias; Terao, Mineko; Garattini, Enrico; Teutloff, Christian; Alfaro, Joshua F.; Jones, Jeffrey P.; Leimkühler, Silke

    2012-01-01

    Aldehyde oxidase (AO) is a complex molybdo-flavoprotein that belongs to the xanthine oxidase family. AO is active as a homodimer, and each 150-kDa monomer binds two distinct [2Fe2S] clusters, FAD, and the molybdenum cofactor. AO has an important role in the metabolism of drugs based on its broad substrate specificity oxidizing aromatic aza-heterocycles, for example, N1-methylnicotinamide and N-methylphthalazinium, or aldehydes, such as benzaldehyde, retinal, and vanillin. Sequencing the 35 coding exons of the human AOX1 gene in a sample of 180 Italian individuals led to the identification of relatively frequent, synonymous, missense and nonsense single-nucleotide polymorphisms (SNPs). Human aldehyde oxidase (hAOX1) was purified after heterologous expression in Escherichia coli. The recombinant protein was obtained with a purity of 95% and a yield of 50 μg/l E. coli culture. Site-directed mutagenesis of the hAOX1 cDNA allowed the purification of protein variants bearing the amino acid changes R802C, R921H, N1135S, and H1297R, which correspond to some of the identified SNPs. The hAOX1 variants were purified and compared with the wild-type protein relative to activity, oligomerization state, and metal content. Our data show that the mutation of each amino acid residue has a variable impact on the ability of hAOX1 to metabolize selected substrates. Thus, the human population is characterized by the presence of functionally inactive hAOX1 allelic variants as well as variants encoding enzymes with different catalytic activities. Our results indicate that the presence of these allelic variants should be considered for the design of future drugs. PMID:22279051

  1. Prospecting for pig single nucleotide polymorphisms in the human genome: have we struck gold?

    PubMed

    Grapes, L; Rudd, S; Fernando, R L; Megy, K; Rocha, D; Rothschild, M F

    2006-06-01

    Gene-to-gene variation in the frequency of single nucleotide polymorphisms (SNPs) has been observed in humans, mice, rats, primates and pigs, but a relationship across species in this variation has not been described. Here, the frequency of porcine coding SNPs (cSNPs) identified by in silico methods, and the frequency of murine cSNPs, were compared with the frequency of human cSNPs across homologous genes. From 150,000 porcine expressed sequence tag (EST) sequences, a total of 452 SNP-containing sequence clusters were found, totalling 1394 putative SNPs. All the clustered porcine EST annotations and SNP data have been made publicly available at http://sputnik.btk.fi/project?name=swine. Human and murine cSNPs were identified from dbSNP and were characterized as either validated or total number of cSNPs (validated plus non-validated) for comparison purposes. The correlation between in silico pig cSNP and validated human cSNP densities was found to be 0.77 (p < 0.00001) for a set of 25 homologous genes, while a correlation of 0.48 (p < 0.0005) was found for a primarily random sample of 50 homologous human and mouse genes. This is the first evidence of conserved gene-to-gene variability in cSNP frequency across species and indicates that site-directed screening of porcine genes that are homologous to cSNP-rich human genes may rapidly advance cSNP discovery in pigs.

  2. Single Nucleotide Polymorphisms within Interferon Signaling Pathway Genes Are Associated with Colorectal Cancer Susceptibility and Survival

    PubMed Central

    Lu, Shun; Pardini, Barbara; Cheng, Bowang; Naccarati, Alessio; Huhn, Stefanie; Vymetalkova, Veronika; Vodickova, Ludmila; Buchler, Thomas; Hemminki, Kari; Vodicka, Pavel; Försti, Asta

    2014-01-01

    Interferon (IFN) signaling has been suggested to play an important role in colorectal carcinogenesis. Our study aimed to examine potentially functional genetic variants in interferon regulatory factor 3 (IRF3), IRF5, IRF7, type I and type II IFN and their receptor genes with respect to colorectal cancer (CRC) risk and clinical outcome. Altogether 74 single nucleotide polymorphisms (SNPs) were covered by the 34 SNPs genotyped in a hospital-based case-control study of 1327 CRC cases and 758 healthy controls from the Czech Republic. We also analyzed these SNPs in relation to overall survival and event-free survival in a subgroup of 483 patients. Seven SNPs in IFNA1, IFNA13, IFNA21, IFNK, IFNAR1 and IFNGR1 were associated with CRC risk. After multiple testing correction, the associations with the SNPs rs2856968 (IFNAR1) and rs2234711 (IFNGR1) remained formally significant (P = 0.0015 and P<0.0001, respectively). Multivariable survival analyses showed that the SNP rs6475526 (IFNA7/IFNA14) was associated with overall survival of the patients (P = 0.041 and event-free survival among patients without distant metastasis at the time of diagnosis, P = 0.034). The hazard ratios (HRs) for rs6475526 remained statistically significant even after adjustment for age, gender, grade and stage (P = 0.029 and P = 0.036, respectively), suggesting that rs6475526 is an independent prognostic marker for CRC. Our data suggest that genetic variation in the IFN signaling pathway genes may play a role in the etiology and survival of CRC and further studies are warranted. PMID:25350395

  3. Single nucleotide polymorphisms within interferon signaling pathway genes are associated with colorectal cancer susceptibility and survival.

    PubMed

    Lu, Shun; Pardini, Barbara; Cheng, Bowang; Naccarati, Alessio; Huhn, Stefanie; Vymetalkova, Veronika; Vodickova, Ludmila; Buchler, Thomas; Hemminki, Kari; Vodicka, Pavel; Försti, Asta

    2014-01-01

    Interferon (IFN) signaling has been suggested to play an important role in colorectal carcinogenesis. Our study aimed to examine potentially functional genetic variants in interferon regulatory factor 3 (IRF3), IRF5, IRF7, type I and type II IFN and their receptor genes with respect to colorectal cancer (CRC) risk and clinical outcome. Altogether 74 single nucleotide polymorphisms (SNPs) were covered by the 34 SNPs genotyped in a hospital-based case-control study of 1327 CRC cases and 758 healthy controls from the Czech Republic. We also analyzed these SNPs in relation to overall survival and event-free survival in a subgroup of 483 patients. Seven SNPs in IFNA1, IFNA13, IFNA21, IFNK, IFNAR1 and IFNGR1 were associated with CRC risk. After multiple testing correction, the associations with the SNPs rs2856968 (IFNAR1) and rs2234711 (IFNGR1) remained formally significant (P = 0.0015 and P<0.0001, respectively). Multivariable survival analyses showed that the SNP rs6475526 (IFNA7/IFNA14) was associated with overall survival of the patients (P = 0.041 and event-free survival among patients without distant metastasis at the time of diagnosis, P = 0.034). The hazard ratios (HRs) for rs6475526 remained statistically significant even after adjustment for age, gender, grade and stage (P = 0.029 and P = 0.036, respectively), suggesting that rs6475526 is an independent prognostic marker for CRC. Our data suggest that genetic variation in the IFN signaling pathway genes may play a role in the etiology and survival of CRC and further studies are warranted.

  4. Mechanisms of mosaicism, chimerism and uniparental disomy identified by single nucleotide polymorphism array analysis

    PubMed Central

    Conlin, Laura K.; Thiel, Brian D.; Bonnemann, Carsten G.; Medne, Livija; Ernst, Linda M.; Zackai, Elaine H.; Deardorff, Matthew A.; Krantz, Ian D.; Hakonarson, Hakon; Spinner, Nancy B.

    2010-01-01

    Mosaic aneuploidy and uniparental disomy (UPD) arise from mitotic or meiotic events. There are differences between these mechanisms in terms of (i) impact on embryonic development; (ii) co-occurrence of mosaic trisomy and UPD and (iii) potential recurrence risks. We used a genome-wide single nucleotide polymorphism (SNP) array to study patients with chromosome aneuploidy mosaicism, UPD and one individual with XX/XY chimerism to gain insight into the developmental mechanism and timing of these events. Sixteen cases of mosaic aneuploidy originated mitotically, and these included four rare trisomies and all of the monosomies, consistent with the influence of selective factors. Five trisomies arose meiotically, and three of the five had UPD in the disomic cells, confirming increased risk for UPD in the case of meiotic non-disjunction. Evidence for the meiotic origin of aneuploidy and UPD was seen in the patterns of recombination visible during analysis with 1–3 crossovers per chromosome. The mechanisms of formation of the UPD included trisomy rescue, with and without concomitant trisomy, monosomy rescue, and mitotic formation of a mosaic segmental UPD. UPD was also identified in an XX/XY chimeric individual, with one cell line having complete maternal UPD consistent with a parthenogenetic origin. Utilization of SNP arrays allows simultaneous evaluation of genomic alterations and insights into aneuploidy and UPD mechanisms. Differentiation of mitotic and meiotic origins for aneuploidy and UPD supports existence of selective factors against full trisomy of some chromosomes in the early embryo and provides data for estimation of recurrence and disease mechanisms. PMID:20053666

  5. Relationships between Single Nucleotide Polymorphism Markers and Meat Quality Traits of Duroc Breeding Stocks in Korea

    PubMed Central

    Choi, J. S.; Jin, S. K.; Jeong, Y. H.; Jung, Y. C.; Jung, J. H.; Shim, K. S.; Choi, Y. I.

    2016-01-01

    This study was conducted to determine the relationships of five intragenic single nucleotide polymorphism (SNP) markers (protein kinase adenosine monophosphate-activated γ3 subunit [PRKAG3], fatty acid synthase [FASN], calpastatin [CAST], high mobility group AT-hook 1 [HMGA1], and melanocortin-4 receptor [MC4R]) and meat quality traits of Duroc breeding stocks in Korea. A total of 200 purebred Duroc gilts from 8 sires and 40 dams at 4 pig breeding farms from 2010 to 2011 reaching market weight (110 kg) were slaughtered and their carcasses were chilled overnight. Longissimus dorsi muscles were removed from the carcass after 24 h of slaughter and used to determine pork properties including carcass weight, backfat thickness, moisture, intramuscular fat, pH24h, shear force, redness, texture, and fatty acid composition. The PRKAG3, FASN, CAST, and MC4R gene SNPs were significantly associated with the meat quality traits (p<0.003). The meats of PRKAG3 (A 0.024/G 0.976) AA genotype had higher pH, redness and texture than those from PRKAG3 GG genotype. Meats of FASN (C 0.301/A 0.699) AA genotype had higher backfat thickness, texture, stearic acid, oleic acid and polyunsaturated fatty acid than FASN CC genotype. While the carcasses of CAST (A 0.373/G 0.627) AA genotype had thicker backfat, and lower shear force, palmitoleic acid and oleic acid content, they had higher stearic acid content than those from the CAST GG genotype. The MC4R (G 0.208/A 0.792) AA genotype were involved in increasing backfat thickness, carcass weight, moisture and saturated fatty acid content, and decreasing unsaturated fatty acid content in Duroc meat. These results indicated that the five SNP markers tested can be a help to select Duroc breed to improve carcass and meat quality properties in crossbred pigs. PMID:27507182

  6. Methods to Increase the Sensitivity of High Resolution Melting Single Nucleotide Polymorphism Genotyping in Malaria.

    PubMed

    Daniels, Rachel; Hamilton, Elizabeth J; Durfee, Katelyn; Ndiaye, Daouda; Wirth, Dyann F; Hartl, Daniel L; Volkman, Sarah K

    2015-11-10

    Despite decades of eradication efforts, malaria remains a global burden. Recent renewed interest in regional elimination and global eradication has been accompanied by increased genomic information about Plasmodium parasite species responsible for malaria, including characteristics of geographical populations as well as variations associated with reduced susceptibility to anti-malarial drugs. One common genetic variation, single-nucleotide polymorphisms (SNPs), offers attractive targets for parasite genotyping. These markers are useful not only for tracking drug resistance markers but also for tracking parasite populations using markers not under drug or other selective pressures. SNP genotyping methods offer the ability to track drug resistance as well as to fingerprint individual parasites for population surveillance, particularly in response to malaria control efforts in regions nearing elimination status. While informative SNPs have been identified that are agnostic to specific genotyping technologies, high-resolution melting (HRM) analysis is particularly suited to field-based studies. Compared to standard fluorescent-probe based methods that require individual SNPs in a single labeled probe and offer at best 10% sensitivity to detect SNPs in samples that contain multiple genomes (polygenomic), HRM offers 2-5% sensitivity. Modifications to HRM, such as blocked probes and asymmetric primer concentrations as well as optimization of amplification annealing temperatures to bias PCR towards amplification of the minor allele, further increase the sensitivity of HRM. While the sensitivity improvement depends on the specific assay, we have increased detection sensitivities to less than 1% of the minor allele. In regions approaching malaria eradication, early detection of emerging or imported drug resistance is essential for prompt response. Similarly, the ability to detect polygenomic infections and differentiate imported parasite types from cryptic local reservoirs

  7. Isothermal Diagnostic Assays for Monitoring Single Nucleotide Polymorphisms in Necator americanus Associated with Benzimidazole Drug Resistance

    PubMed Central

    Rashwan, Nour; Bourguinat, Catherine; Keller, Kathy; Gunawardena, Nipul Kithsiri; de Silva, Nilanthi; Prichard, Roger

    2016-01-01

    Background Soil-transmitted helminths (STHs) are the most prevalent intestinal helminths of humans, and a major cause of morbidity in tropical and subtropical countries. The benzimidazole (BZ) drugs albendazole (ABZ) and mebendazole (MBZ) are used for treatment of human STH infections and this use is increasing dramatically with massive drug donations. Frequent and prolonged use of these drugs could lead to the emergence of anthelmintic resistance as has occurred in nematodes of livestock. Previous molecular assays for putative resistance mutations have been based mainly on PCR amplification and sequencing. However, these techniques are complicated and time consuming and not suitable for resource-constrained situations. A simple, rapid and sensitive genotyping method is required to monitor for possible developing resistance to BZ drugs. Methods To address this problem, single nucleotide polymorphism (SNP) detection assays were developed based on the Smart amplification method (SmartAmp2) to target codons 167, 198, and 200 in the β-tubulin isotype 1 gene for the hookworm Necator americanus. Findings Diagnostic assays were developed and applied to analyze hookworm samples by both SmartAmp2 and conventional sequencing methods and the results showed high concordance. Additionally, fecal samples spiked with N. americanus larvae were assessed and the results showed that the Aac polymerase used has high tolerance to inhibitors in fecal samples. Conclusion The N. americanus SmartAmp2 SNP detection assay is a new genotyping tool that is rapid, sensitive, highly specific and efficient with the potential to be used as a field tool for monitoring SNPs associated with BZ resistance. However, further validation on large numbers of field samples is required. PMID:27930648

  8. A Lactotransferrin Single Nucleotide Polymorphism Demonstrates Biological Activity That Can Reduce Susceptibility to Caries

    PubMed Central

    Toruner, Gokce A.; Velliyagounder, Kabilan; Sampathkumar, Vandana; Godboley, Dipti; Furgang, David

    2013-01-01

    Streptococcus mutans is prominently linked to dental caries. Saliva's influence on caries is incompletely understood. Our goal was to identify a salivary protein with anti-S. mutans activity, characterize its genotype, and determine genotypic variants associated with S. mutans activity and reduced caries. An S. mutans affinity column was used to isolate active moieties from saliva obtained from a subject with minimal caries. The bound and eluted protein was identified as lactotransferrin (LTF) by matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) analysis and confirmed by Western blotting with LTF antibody. A single nucleotide polymorphism (SNP) that produced a shift from arginine (R) to lysine (K) at amino acid position 47 in the LTF antimicrobial region (rs: 1126478) killed S. mutans in vitro. Saliva from a subject with moderate caries and with the LTF “wild-type” R form at position 47 had no such activity. A pilot genetic study (n = 30) showed that KK subjects were more likely to have anti-S. mutans activity than RR subjects (P = 0.001; relative risk = 3.6; 95% confidence interval [95% CI] = 1.5 to 11.13). Pretreatment of KK saliva with antibody to LTF reduced S. mutans killing in a dose-dependent manner (P = 0.02). KK subjects were less likely to have caries (P = 0.02). A synthetic 11-mer LTF/K peptide killed S. mutans and other caries-related bacteria, while the LTF/R peptide had no effect (P = 0.01). Our results provide functional evidence that the LTF/K variant results in both anti-S. mutans activity and reduced decay. We suggest that the LTF/K variant can influence oral microbial ecology in general and caries-provoking microbes specifically. PMID:23460521

  9. A lactotransferrin single nucleotide polymorphism demonstrates biological activity that can reduce susceptibility to caries.

    PubMed

    Fine, Daniel H; Toruner, Gokce A; Velliyagounder, Kabilan; Sampathkumar, Vandana; Godboley, Dipti; Furgang, David

    2013-05-01

    Streptococcus mutans is prominently linked to dental caries. Saliva's influence on caries is incompletely understood. Our goal was to identify a salivary protein with anti-S. mutans activity, characterize its genotype, and determine genotypic variants associated with S. mutans activity and reduced caries. An S. mutans affinity column was used to isolate active moieties from saliva obtained from a subject with minimal caries. The bound and eluted protein was identified as lactotransferrin (LTF) by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis and confirmed by Western blotting with LTF antibody. A single nucleotide polymorphism (SNP) that produced a shift from arginine (R) to lysine (K) at amino acid position 47 in the LTF antimicrobial region (rs: 1126478) killed S. mutans in vitro. Saliva from a subject with moderate caries and with the LTF "wild-type" R form at position 47 had no such activity. A pilot genetic study (n = 30) showed that KK subjects were more likely to have anti-S. mutans activity than RR subjects (P = 0.001; relative risk = 3.6; 95% confidence interval [95% CI] = 1.5 to 11.13). Pretreatment of KK saliva with antibody to LTF reduced S. mutans killing in a dose-dependent manner (P = 0.02). KK subjects were less likely to have caries (P = 0.02). A synthetic 11-mer LTF/K peptide killed S. mutans and other caries-related bacteria, while the LTF/R peptide had no effect (P = 0.01). Our results provide functional evidence that the LTF/K variant results in both anti-S. mutans activity and reduced decay. We suggest that the LTF/K variant can influence oral microbial ecology in general and caries-provoking microbes specifically.

  10. [Phenotype predictions of the pathogenic nonsynonymous single nucleotide polymorphisms in deafness-causing gene COCH].

    PubMed

    Xuli, Qian; Xin, Cao

    2015-07-01

    The COCH (Coagulation factor C homology) gene, located in human chromosome 14q12-q13, is the first gene identified to cause vestibular dysfunction. COCH encodes cochlin, which contains an N-terminal LCCL (Limulus factor C, cochlin, and late gestation lung protein Lgl1) domain and a C-temimal vWFA (Von Willebrand factor type A) domain. Recently, functional research of COCH mutations and cochlin have come under the spotlight in the field of hereditary deafness. Approximately 16 mutations in COCH have been confirmed to date, among which 13 non-synonymous single nucleotide polymorphisms (nsSNPs) are the most common form of genetic variations. Nonetheless, there is poor knowledge on the relationship between the genotype and the phenotype of the other nsSNPs in COCH. Here we analyzed deleterious nsSNPs from all SNPs in the COCH gene in the vWFA domain based on different computational methods and identified eight potential pathogenic nsSNPs (I176T, R180Q, G265E, V269L, I368N, I372T, R416C and Y424D) after combining literatures with 3D structures. Meanwhile, the protein structures of six reported pathogenic nsSNPs (P51S, G87W, I109N, I109T, W117R and F121S) in the LCCL domain have been constructed, and we identified aberrant structural changes in loops and chains. The prediction of pathogenic mutations for COCH nsSNPs will provide a blueprint for screening pathogenic mutations, and it will be beneficial to the functional research of COCH and cochlin in this field.

  11. Associations between single-nucleotide polymorphisms of human exonuclease 1 and the risk of hepatocellular carcinoma

    PubMed Central

    Tan, Shengkui; Qin, Ruoyun; Zhu, Xiaonian; Tan, Chao; Song, Jiale; Qin, Linyuan; Liu, Liu; Huang, Xiong; Li, Anhua; Qiu, Xiaoqiang

    2016-01-01

    Human exonuclease 1 (hEXO1) is an important nuclease involved in mismatch repair system that contributes to maintain genomic stability and modulate DNA recombination. This study is aimed to explore the associations between single-nucleotide polymorphisms (SNPs) of hEXO1 and the hereditary susceptibility of hepatocellular carcinoma (HCC). SNPs rs1047840, rs1776148, rs3754093, rs4149867, rs4149963, and rs1776181 of hEXO1 were examined from a hospital-based case-control study including 1,196 cases (HCC patients) and 1,199 controls (non-HCC patients) in Guangxi, China. We found the rs3754093 AG genotype decreased the risk of HCC (OR=0.714, 95% CI: 0.539∼0.946). According to the results of stratification analysis, rs3754093 mutant genotype AG/GG decreased the risk of HCC with some HCC protective factors such as non-smoking, non-alcohol consumption and non-HCC family history, but also decreased the risk of HCC with HBV infection. Moreover, it was correlated to non-tumor metastasis and increased the survival of HCC patients. The results from gene-environment interaction assay indicated all hEXO1 SNPs interacted with smoking, alcohol consumption, HBV infection in pathogenesis of HCC. However, gene-gene interaction assay suggested the interaction between rs3754093 and other 5 SNPs were associated with reducing the HCC risk. These results suggest rs3754093 exhibits a protective activity to decrease the incidence risk of HCC in Guangxi, China. In addition, all SNPs in this study interacted with environment risk factors in pathogenesis of HCC. PMID:27894089

  12. Association of Single-Nucleotide Polymorphisms of the Tau Gene With Late-Onset Parkinson Disease

    PubMed Central

    Martin, Eden R.; Scott, William K.; Nance, Martha A.; Watts, Ray L.; Hubble, Jean P.; Koller, William C.; Lyons, Kelly; Pahwa, Rajesh; Stern, Matthew B.; Colcher, Amy; Hiner, Bradley C.; Jankovic, Joseph; Ondo, William G.; Allen, Fred H.; Goetz, Christopher G.; Small, Gary W.; Masterman, Donna; Mastaglia, Frank; Laing, Nigel G.; Stajich, Jeffrey M.; Ribble, Robert C.; Booze, Michael W.; Rogala, Allison; Hauser, Michael A.; Zhang, Fengyu; Gibson, Rachel A.; Middleton, Lefkos T.; Roses, Allen D.; Haines, Jonathan L.; Scott, Burton L.; Pericak-Vance, Margaret A.; Vance, Jeffery M.

    2013-01-01

    Context The human tau gene, which promotes assembly of neuronal microtubules, has been associated with several rare neurologic diseases that clinically include parkinsonian features. We recently observed linkage in idiopathic Parkinson disease (PD) to a region on chromosome 17q21 that contains the tau gene. These factors make tau a good candidate for investigation as a susceptibility gene for idiopathic PD, the most common form of the disease. Objective To investigate whether the tau gene is involved in idiopathic PD. Design, Setting, and Participants Among a sample of 1056 individuals from 235 families selected from 13 clinical centers in the United States and Australia and from a family ascertainment core center, we tested 5 single-nucleotide polymorphisms (SNPs) within the tau gene for association with PD, using family-based tests of association. Both affected (n = 426) and unaffected (n = 579) family members were included; 51 individuals had unclear PD status. Analyses were conducted to test individual SNPs and SNP haplotypes within the tau gene. Main Outcome Measure Family-based tests of association, calculated using asymptotic distributions. Results Analysis of association between the SNPs and PD yielded significant evidence of association for 3 of the 5 SNPs tested: SNP 3, P = .03; SNP 9i, P = .04; and SNP 11, P = .04. The 2 other SNPs did not show evidence of significant association (SNP 9ii, P = .11, and SNP 9iii, P = .87). Strong evidence of association was found with haplotype analysis, with a positive association with one haplotype (P = .009) and a negative association with another haplotype (P = .007). Substantial linkage disequilibrium (P<.001) was detected between 4 of the 5 SNPs (SNPs 3,9i, 9ii, and 11). Conclusions This integrated approach of genetic linkage and positional association analyses implicates tau as a susceptibility gene for idiopathic PD. PMID:11710889

  13. Assessing patterns of hybridization between North Atlantic eels using diagnostic single-nucleotide polymorphisms.

    PubMed

    Pujolar, J M; Jacobsen, M W; Als, T D; Frydenberg, J; Magnussen, E; Jónsson, B; Jiang, X; Cheng, L; Bekkevold, D; Maes, G E; Bernatchez, L; Hansen, M M

    2014-06-01

    The two North Atlantic eel species, the European eel (Anguilla anguilla) and the American eel (Anguilla rostrata), spawn in partial sympatry in the Sargasso Sea, providing ample opportunity to interbreed. In this study, we used a RAD (Restriction site Associated DNA) sequencing approach to identify species-specific diagnostic single-nucleotide polymorphisms (SNPs) and design a low-density array that combined with screening of a diagnostic mitochondrial DNA marker. Eels from Iceland (N=159) and from the neighboring Faroe Islands (N=29) were genotyped, along with 94 larvae (49 European and 45 American eel) collected in the Sargasso Sea. Our SNP survey showed that the majority of Icelandic eels are pure European eels but there is also an important contribution of individuals of admixed ancestry (10.7%). Although most of the hybrids were identified as F1 hybrids from European eel female × American eel male crosses, backcrosses were also detected, including a first-generation backcross (F1 hybrid × pure European eel) and three individuals identified as second-generation backcrosses originating from American eel × F1 hybrid backcrosses interbreeding with pure European eels. In comparison, no hybrids were observed in the Faroe Islands, the closest bodies of land to Iceland. It is possible that hybrids show an intermediate migratory behaviour between the two parental species that ultimately brings hybrid larvae to the shores of Iceland, situated roughly halfway between the Sargasso Sea and Europe. Only two hybrids were observed among Sargasso Sea larvae, both backcrosses, but no F1 hybrids, that points to temporal variation in the occurrence of hybridization.

  14. Functional Impact of 14 Single Nucleotide Polymorphisms Causing Missense Mutations of Human α7 Nicotinic Receptor.

    PubMed

    Zhang, Qinhui; Du, Yingjie; Zhang, Jianliang; Xu, Xiaojun; Xue, Fenqin; Guo, Cong; Huang, Yao; Lukas, Ronald J; Chang, Yongchang

    2015-01-01

    The α7nicotinic receptor (nAChR) is a major subtype of the nAChRs in the central nervous system, and the receptor plays an important role in brain function. In the dbSNP database, there are 55 single nucleotide polymorphisms (SNPs) that cause missense mutations of the human α7nAChR in the coding region. In this study, we tested the impact of 14 SNPs that cause missense mutations in the agonist binding site or the coupling region between binding site and channel gate on the receptor function. The wild type or mutant receptors were expressed or co-expressed in Xenopus oocytes, and the agonist-induced currents were tested using two-electrode voltage clamp. Our results demonstrated that 6 mutants were nonfunctional, 4 mutants had reduced current expression, and 1 mutants altered ACh and nicotine efficacy in the opposite direction, and one additional mutant had slightly reduced agonist sensitivity. Interestingly, the function of most of these nonfunctional mutants could be rescued by α7nAChR positive allosteric modulator PNU-120596 and agonist-PAM 4BP-TQS. Finally, when coexpressed with the wild type, the nonfunctional mutants could also influence the receptor function. These changes of the receptor properties by the mutations could potentially have an impact on the physiological function of the α7nAChR-mediated cholinergic synaptic transmission and anti-inflammatory effects in the human SNP carriers. Rescuing the nonfunctional mutants could provide a novel way to treat the related disorders.

  15. Single nucleotide polymorphism discovery from expressed sequence tags in the waterflea Daphnia magna

    PubMed Central

    2011-01-01

    Background Daphnia (Crustacea: Cladocera) plays a central role in standing aquatic ecosystems, has a well known ecology and is widely used in population studies and environmental risk assessments. Daphnia magna is, especially in Europe, intensively used to study stress responses of natural populations to pollutants, climate change, and antagonistic interactions with predators and parasites, which have all been demonstrated to induce micro-evolutionary and adaptive responses. Although its ecology and evolutionary biology is intensively studied, little is known on the functional genomics underpinning of phenotypic responses to environmental stressors. The aim of the present study was to find genes expressed in presence of environmental stressors, and target such genes for single nucleotide polymorphic (SNP) marker development. Results We developed three expressed sequence tag (EST) libraries using clonal lineages of D. magna exposed to ecological stressors, namely fish predation, parasite infection and pesticide exposure. We used these newly developed ESTs and other Daphnia ESTs retrieved from NCBI GeneBank to mine for SNP markers targeting synonymous as well as non synonymous genetic variation. We validate the developed SNPs in six natural populations of D. magna distributed at regional scale. Conclusions A large proportion (47%) of the produced ESTs are Daphnia lineage specific genes, which are potentially involved in responses to environmental stress rather than to general cellular functions and metabolic activities, or reflect the arthropod's aquatic lifestyle. The characterization of genes expressed under stress and the validation of their SNPs for population genetic study is important for identifying ecologically responsive genes in D. magna. PMID:21668940

  16. Endothelial nitric oxide synthase tagging single nucleotide polymorphisms and recovery from aneurysmal subarachnoid hemorrhage.

    PubMed

    Alexander, Sheila; Poloyac, Samuel; Hoffman, Leslie; Gallek, Matthew; Dianxu Ren; Balzer, Jeffrey; Kassam, Amin; Conley, Yvette

    2009-07-01

    Aneurysmal subarachnoid hemorrhage (SAH) is a hemorrhagic stroke subtype with a poor recovery profile. Cerebral vasospasm (CV), a narrowing of the cerebral vasculature, significantly contributes to the poor recovery profile. Variation in the endothelial nitric oxide (NO) synthase (eNOS) gene has been implicated in CV and outcome after SAH. The purpose of this project was to explore the potential association between three eNOS tagging single nucleotide polymorphisms (SNPs) and recovery from SAH. We included 195 participants with a diagnosis of SAH and DNA and 6-month outcome data available but without preexisting neurologic disease/deficit. Genotyping was performed using an ABI Prism 7000 Sequence Detection System and TaqMan assays. CV was verified by cerebral angiogram independently read by a neurosurgeon on 118 participants. Modified Rankin Scores (MRS) and Glasgow Outcome Scale (GOS) scores were collected 6 months posthemorrhage. Data were analyzed using descriptive statistics, analysis of variance (ANOVA) and chi-square analysis as appropriate. The sample was primarily female (n=147; 75.4%) and White (n=178; 91.3%) with a mean age of 54.6 years. Of the participants with CV data, 56 (47.5%) developed CV within 14 days of SAH. None of the SNPs individually were associated with CV presence; however, a combination of the three variant SNPs was significantly associated with CV (p=.017). Only one SNP (rs1799983, variant allele) was associated with worse 6-month GOS scores (p<.001) and MRS (p<.001). These data indicate that the eNOS gene plays a role in the response to SAH, which may be explained by an influence on CV.

  17. Single nucleotide polymorphisms of metabolic syndrome-related genes in primary open angle glaucoma

    PubMed Central

    Zhou, Gang; Liu, Bin

    2010-01-01

    AIM To analyze single nucleotide polymorphisms (SNP) of primary open angle glaucoma- and metabolic syndrome-related genes in primary open angle glaucoma (POAG), in order to elucidate the roles of metabolic syndrome as a risk factor in POAG progress. METHODS SNP genotypes and alleles of interleukin-6 (IL-6), IL-6 receptor (IL-6R), dopamine D2 receptor (DRD2), beta-fibrinogen (FGB), peroxisome proliferator-activated receptor-γ2 (PPARG), transforming growth factor-β1 (TGF-β1), E-selectin (E-Sel), apolipoprotein A-5 (APOA5), C-reactive protein (CRP), ectonueleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), hepatic lipase (LIPC), adiponectin (ADIPOQ), paraoxonase 1 (PON1) and serine protease inhibitor E (SERPINE1) genes in POAG (n=37) and normal control (n=100) groups were measured with ABI Prism 7900HT Fluorescence Quantitative PCR and TaqMan SNP Genotyping fluorescence probe kit. RESULTS Genotypes and allele frequencies of IL-6R, IL-6, FGB, CRP, ENPP1, LIPC, ADIPOQ, PON1, and SERPINE1 in total POAG group were significantly different compared to the control group. CONCLUSION Metabolic syndrome as a risk factor for POAG may be associated with genotypes and allele frequencies of the related genes. The corresponding gene expression and function can affect POAG progress, including roles of SERPINE1 in extracellular matrix, ENPP1 in insulin inhibition, IL-6 in endogenous neuroprotection, IL-6, IL-6R and E-Sel in autoimmune response, LIPC and FGB in blood hyperviscosity syndrome, ADIPOQ in NOS/NO production, PON1 in vascular endothelial protection. PMID:22553514

  18. Pain perception is altered by a nucleotide polymorphism in SCN9A.

    PubMed

    Reimann, Frank; Cox, James J; Belfer, Inna; Diatchenko, Luda; Zaykin, Dmitri V; McHale, Duncan P; Drenth, Joost P H; Dai, Feng; Wheeler, Jerry; Sanders, Frances; Wood, Linda; Wu, Tian-Xia; Karppinen, Jaro; Nikolajsen, Lone; Männikkö, Minna; Max, Mitchell B; Kiselycznyk, Carly; Poddar, Minakshi; Te Morsche, Rene H M; Smith, Shad; Gibson, Dustin; Kelempisioti, Anthi; Maixner, William; Gribble, Fiona M; Woods, C Geoffrey

    2010-03-16

    The gene SCN9A is responsible for three human pain disorders. Nonsense mutations cause a complete absence of pain, whereas activating mutations cause severe episodic pain in paroxysmal extreme pain disorder and primary erythermalgia. This led us to investigate whether single nucleotide polymorphisms (SNPs) in SCN9A were associated with differing pain perception in the general population. We first genotyped 27 SCN9A SNPs in 578 individuals with a radiographic diagnosis of osteoarthritis and a pain score assessment. A significant association was found between pain score and SNP rs6746030; the rarer A allele was associated with increased pain scores compared to the commoner G allele (P = 0.016). This SNP was then further genotyped in 195 pain-assessed people with sciatica, 100 amputees with phantom pain, 179 individuals after lumbar discectomy, and 205 individuals with pancreatitis. The combined P value for increased A allele pain was 0.0001 in the five cohorts tested (1277 people in total). The two alleles of the SNP rs6746030 alter the coding sequence of the sodium channel Nav1.7. Each was separately transfected into HEK293 cells and electrophysiologically assessed by patch-clamping. The two alleles showed a difference in the voltage-dependent slow inactivation (P = 0.042) where the A allele would be predicted to increase Nav1.7 activity. Finally, we genotyped 186 healthy females characterized by their responses to a diverse set of noxious stimuli. The A allele of rs6746030 was associated with an altered pain threshold and the effect mediated through C-fiber activation. We conclude that individuals experience differing amounts of pain, per nociceptive stimulus, on the basis of their SCN9A rs6746030 genotype.

  19. Effects of single-nucleotide polymorphisms in the human holocarboxylase synthetase gene on enzyme catalysis.

    PubMed

    Esaki, Shingo; Malkaram, Sridhar A; Zempleni, Janos

    2012-04-01

    Holocarboxylase synthetase (HLCS) is a biotin protein ligase, which has a pivotal role in biotin-dependent metabolic pathways and epigenetic phenomena in humans. Knockdown of HLCS produces phenotypes such as heat susceptibility and decreased life span in Drosophila melanogaster, whereas knockout of HLCS appears to be embryonic lethal. HLCS comprises 726 amino acids in four domains. More than 2500 single-nucleotide polymorphisms (SNPs) have been identified in human HLCS. Here, we tested the hypotheses that HLCS SNPs impair enzyme activity, and that biotin supplementation restores the activities of HLCS variants to wild-type levels. We used an in silico approach to identify five SNPs that alter the amino acid sequence in the N-terminal, central, and C-terminal domains in human HLCS. Recombinant HLCS was used for enzyme kinetics analyses of HLCS variants, wild-type HLCS, and the L216R mutant, which has a biotin ligase activity near zero. The biotin affinity of variant Q699R is lower than that of the wild-type control, but the maximal activity was restored to that of wild-type HLCS when assay mixtures were supplemented with biotin. In contrast, the biotin affinities of HLCS variants V96F and G510R are not significantly different from the wild-type control, but their maximal activities remained moderately lower than that of wild-type HLCS even when assay mixtures were supplemented with biotin. The V96 L SNP did not alter enzyme kinetics. Our findings suggest that individuals with HLCS SNPs may benefit from supplemental biotin, yet to different extents depending on the genotype.

  20. Novel Single Nucleotide Polymorphism-Based Assay for Genotyping Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    Goldstone, Robert J.; McLuckie, Joyce; Smith, David G. E.

    2015-01-01

    Typing of Mycobacterium avium subspecies paratuberculosis strains presents a challenge, since they are genetically monomorphic and traditional molecular techniques have limited discriminatory power. The recent advances and availability of whole-genome sequencing have extended possibilities for the characterization of Mycobacterium avium subspecies paratuberculosis, and whole-genome sequencing can provide a phylogenetic context to facilitate global epidemiology studies. In this study, we developed a single nucleotide polymorphism (SNP) assay based on PCR and restriction enzyme digestion or sequencing of the amplified product. The SNP analysis was performed using genome sequence data from 133 Mycobacterium avium subspecies paratuberculosis isolates with different genotypes from 8 different host species and 17 distinct geographic regions around the world. A total of 28,402 SNPs were identified among all of the isolates. The minimum number of SNPs required to distinguish between all of the 133 genomes was 93 and between only the type C isolates was 41. To reduce the number of SNPs and PCRs required, we adopted an approach based on sequential detection of SNPs and a decision tree. By the analysis of 14 SNPs Mycobacterium avium subspecies paratuberculosis isolates can be characterized within 14 phylogenetic groups with a higher discriminatory power than mycobacterial interspersed repetitive unit–variable number tandem repeat assay and other typing methods. Continuous updating of genome sequences is needed in order to better characterize new phylogenetic groups and SNP profiles. The novel SNP assay is a discriminative, simple, reproducible method and requires only basic laboratory equipment for the large-scale global typing of Mycobacterium avium subspecies paratuberculosis isolates. PMID:26677250

  1. Strain-specific single-nucleotide polymorphism assays for the Bacillus anthracis Ames strain.

    PubMed

    Van Ert, Matthew N; Easterday, W Ryan; Simonson, Tatum S; U'Ren, Jana M; Pearson, Talima; Kenefic, Leo J; Busch, Joseph D; Huynh, Lynn Y; Dukerich, Megan; Trim, Carla B; Beaudry, Jodi; Welty-Bernard, Amy; Read, Timothy; Fraser, Claire M; Ravel, Jacques; Keim, Paul

    2007-01-01

    Highly precise diagnostics and forensic assays can be developed through a combination of evolutionary analysis and the exhaustive examination of genomic sequences. In Bacillus anthracis, whole-genome sequencing efforts revealed ca. 3,500 single-nucleotide polymorphisms (SNPs) among eight different strains and evolutionary analysis provides the identification of canonical SNPs. We have previously shown that SNPs are highly evolutionarily stable, and the clonal nature of B. anthracis makes them ideal signatures for subtyping this pathogen. Here we identified SNPs that define the lineage of B. anthracis that contains the Ames strain, the strain used in the 2001 bioterrorist attacks in the United States. Sequencing and real-time PCR were used to validate these SNPs across B. anthracis strains, including (i) 88 globally and genetically diverse isolates; (ii) isolates that were shown to be genetic relatives of the Ames strain by multiple-locus variable number tandem repeat analysis (MLVA); and (iii) several different lab stocks of the Ames strain, including a clinical isolate from the 2001 letter attack. Six SNPs were found to be highly specific for the Ames strain; four on the chromosome, one on the pX01 plasmid, and one on the pX02 plasmid. All six SNPs differentiated the B. anthracis Ames strain from the 88 unique B. anthracis strains, while five of the six separated Ames from its close genetic relatives. The use of these SNPs coupled with real-time PCR allows specific and sensitive (<100 fg of template DNA) identification of the Ames strain. This evolutionary and genomics-based approach provides an effective means for the discovery of strain-specific SNPs in B. anthracis.

  2. Validation of single nucleotide polymorphisms in invasive aspergillosis following hematopoietic cell transplantation.

    PubMed

    Fisher, Cynthia E; Hohl, Tobias M; Fan, Wenhong; Storer, Barry E; Levine, David M; Zhao, Lu Ping; Martin, Paul J; Warren, Edus H; Boeckh, Michael; Hansen, John A

    2017-03-07

    Invasive aspergillosis (IA) is a significant cause of morbidity and mortality following allogeneic hematopoietic cell transplantation (HCT). Previous studies have reported an association between IA development and single nucleotide polymorphisms (SNPs), but many have not been replicated in a separate cohort. The presence of a positive serum galactomannan assay (SGM+) has also been associated with a worse prognosis in patients with IA, and genetic determinants in this subset of patients have not been systematically studied. The study cohort included 2,609 HCT recipients and their donor pairs: 483 with proven/probable IA (183 SGM+) and 2,126 with no IA by standard criteria. Of 25 SNPs previously published, we analyzed 20 in 14 genes that passed quality control. Samples were genotyped via microarray, and SNPs that could not be genotyped were imputed. The primary aim was to replicate SNPs associated with proven/probable IA at 2 years; secondary goals were to explore the associations using an endpoint of SGM+ IA or proven/probable using a different genetic model or time-to-IA (3 months vs. 2 years) compared to the original study. Two SNPs in two genes (PTX3, CLEC7a) were replicated. Thirteen SNPs in nine genes had an association at p≤0.05 using the secondary aims (PTX3, CLEC7a, CD209, CXCL10, TLR6, S100B, IFNG, PLG, TNFR1), with hazards ratios ranging from 1.2 to 3.29. Underlying genetic differences can influence development of IA following HCT. Identification of genetic predispositions to IA could have important implications in donor screening, risk stratification of recipients, monitoring, and prophylaxis.

  3. Performance Metrics for Selecting Single Nucleotide Polymorphisms in Late-onset Alzheimer’s Disease

    PubMed Central

    Chen, Yen-Ching; Hsiao, Chi-Jung; Jung, Chien-Cheng; Hu, Hui-Han; Chen, Jen-Hau; Lee, Wen-Chung; Chiou, Jeng-Min; Chen, Ta-Fu; Sun, Yu; Wen, Li-Li; Yip, Ping-Keung; Chu, Yi-Min; Chen, Chien-Jen; Yang, Hwai-I

    2016-01-01

    Previous genome-wide association studies using P-values to select single nucleotide polymorphisms (SNPs) have suffered from high false-positive and false-negative results. This case-control study recruited 713 late-onset Alzheimer’s disease (LOAD) cases and controls aged ≥65 from three teaching hospitals in northern Taiwan from 2007 to 2010. Performance metrics were used to select SNPs in stage 1, which were then genotyped to another dataset (stage 2). Four SNPs (CPXM2 rs2362967, APOC1 rs4420638, ZNF521 rs7230380, and rs12965520) were identified for LOAD by both traditional P-values (without correcting for multiple tests) and performance metrics. After correction for multiple tests, no SNPs were identified by traditional P-values. Simultaneous testing of APOE e4 and APOC1 rs4420638 (the SNP with the best performance in the performance metrics) significantly improved the low sensitivity of APOE e4 from 0.50 to 0.78. A point-based genetic model including these 2 SNPs and important covariates was constructed. Compared with elders with low-risks score (0–6), elders belonging to moderate-risk (score = 7–11) and high-risk (score = 12–18) groups showed a significantly increased risk of LOAD (adjusted odds ratio = 7.80 and 46.93, respectively; Ptrend < 0.0001). Performance metrics allow for identification of markers with moderate effect and are useful for creating genetic tests with clinical and public health implications. PMID:27805002

  4. A functional single-nucleotide polymorphism in the human cytidine deaminase gene contributing to ara-C sensitivity.

    PubMed

    Yue, Lijie; Saikawa, Yutaka; Ota, Kazuhisa; Tanaka, Motohiro; Nishimura, Ryosei; Uehara, Takahiro; Maeba, Hideaki; Ito, Takashi; Sasaki, Takuma; Koizumi, Shoichi

    2003-01-01

    To test the hypothesis that analyses of drug targets for polymorphism will help to establish gene-based information for the treatment of cancer patients, we investigated the functional single-nucleotide polymorphisms in the human cytidine deaminase (HDCA) gene. The cDNAs from 52 leukaemia/lymphoma samples and 169 control blood samples were direct-sequenced and analysed for the polymorphisms. Three different polymorphisms (A79C, G208A and T435C) were identified in the coding region of the HDCA gene and displayed allelic frequencies of 20.1%, 4.3% and 70.1%, respectively. No association with susceptibility to disease was observed. A novel polymorphism, G208A produced an alanine to threonine substitution (A70T) within the conserved catalytic domain. By introduction of the polymorphic HCDA genes into the yeast CDA-null mutants, the HCDA-70T showed 40% and 32% activity of prototype for cytidine and ara-C substrates, respectively (P < 0.01). The ara-C IC50 value of the yeast transformants carrying HCDA-70T was 757 +/- 33 micromol and was significantly lower (P < 0.01) than that of prototype (941 +/- 58 micromol). This study demonstrated a population characterized with 208A genotype for, which potentially leads one more sensitive to ara-C treatment than prototype. Accumulation of polymorphisms in the genes responsible for drug metabolism and determination of polymorphism-induced biological variations could provide the additional therapeutic strategies in risk-stratified protocols for the treatment of childhood malignancies.

  5. Single-nucleotide polymorphisms in dopamine receptor D1 are associated with heroin dependence but not impulsive behavior.

    PubMed

    Liu, J H; Zhong, H J; Dang, J; Peng, L; Zhu, Y S

    2015-04-27

    Previous studies suggested that dopamine receptors may be associated with drug dependence and impulsive behavior. In this study, we examined whether dopamine receptor D1 (DRD1) is associated with heroin dependence and the impulsive behavior in patients with heroin dependence. The participants included 367 patients with heroin dependence and 372 healthy controls from a Chinese Han population. We examined the potential association between heroin dependence and 8 single-nucleotide polymorphisms (rs686, rs4867798, rs1799914, rs4532, rs5326, rs265981, rs10078714, rs10078866) of DRD1, and the associations between single single-nucleotide polymorphism, haplotypes, and impulsive behavior. Compared with the healthy controls, heroin dependence patients showed a significantly lower frequency of GG homozygotes of rs5326 (P = 0.027), significantly lower frequency of the G allele of rs5326 (P = 0.007, odds ratio = 0.718, 95% confidence interval = 0.565-0.913), and higher frequency of the rs265981 G allele (P = 0.0002, odds ratio = 1.711, 95% confidence interval = 1.281-2.287). Furthermore, strong linkage disequilibrium was observed in 2 blocks (D' > 0.9). However, no association was observed between haplotypes and heroin dependence in the 2 blocks. This genetic behavior correlation study showed that the 2 single-nucleotide polymorphisms, rs5326 and rs265981, were not associated with the impulsive behavior in patients with heroin dependence. These findings indicate that DRD1 gene polymorphisms are related to heroin dependence in a Chinese Han population and may be informative for future genetic or biological studies on heroin dependence.

  6. Cacao single-nucleotide polymorphism (SNP) markers: A discovery strategy to identify SNPs for genotyping, genetic mapping and genome wide association studies (GWAS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single-nucleotide polymorphisms (SNPs) are the most common genetic markers in Theobroma cacao, occurring approximately once in every 200 nucleotides. SNPs, like microsatellites, are co-dominant and PCR-based, but they have several advantages over microsatellites. They are unambiguous, so that a SN...

  7. Nucleotide diversity in starch synthase IIa and validation of single nucleotide polymorphisms in relation to starch gelatinization temperature and other physicochemical properties in rice (Oryza sativa L.).

    PubMed

    Bao, J S; Corke, H; Sun, M

    2006-11-01

    The characteristics of starch, such as gelatinization temperature (GT), apparent amylose content (AAC), pasting temperature (PT) and other physicochemical properties, determine the quality of various products of rice, e.g., eating, cooking and processing qualities. The GT of rice flour is controlled by the alk locus, which has been co-mapped to the starch synthase IIa (SSIIa) locus. In this study, we sequenced a 2,051 bp DNA fragment spanning part of intron 6, exon 7, intron 7, exon 8 and part of 3' untranslated region of SSIIa for 30 rice varieties with diverse geographical distribution and variation in starch physicochemical properties. A total of 24 single nucleotide polymorphisms (SNPs) and one insertion/deletion (InDel) were identified, which could be classified into nine haplotypes. The mean pairwise nucleotide diversity pi was 0.00292, and Watterson's estimator theta was 0.00296 in this collection of rice germplasm. Tajima's D test for selection showed no significant deviation from the neutral expectation (D = - 0.04612, P > 0.10). However, significant associations were found between seven of the SNPs and peak GT (T (p)) at P < 0.05, of which two contiguous SNPs (GC/TT) showed a very strong association with T (p) (P < 0.0001). With some rare exception, this GC/TT polymorphism alone can differentiate rice varieties with high or intermediate GT (possessing the GC allele) from those with low GT (possessing the TT allele). In contrast, none of these SNPs or InDel was significantly associated with amylose content. A further 509 rice varieties with known physicochemical properties (e.g., AAC and PT) and known alleles of other starch synthesizing genes were genotyped for the SSIIa GC/TT alleles. Association analysis indicated that 82% of the total variation of AAC in these samples could be explained by a (CT)n simple sequence repeat (SSR) and a G/T SNP of Waxy gene (Wx), and 62.4% of the total variation of PT could be explained by the GC/TT polymorphism. An

  8. Identification of novel single nucleotide polymorphisms (SNPs) in deer (Odocoileus spp.) using the BovineSNP50 BeadChip.

    PubMed

    Haynes, Gwilym D; Latch, Emily K

    2012-01-01

    Single nucleotide polymorphisms (SNPs) are growing in popularity as a genetic marker for investigating evolutionary processes. A panel of SNPs is often developed by comparing large quantities of DNA sequence data across multiple individuals to identify polymorphic sites. For non-model species, this is particularly difficult, as performing the necessary large-scale genomic sequencing often exceeds the resources available for the project. In this study, we trial the Bovine SNP50 BeadChip developed in cattle (Bos taurus) for identifying polymorphic SNPs in cervids Odocoileus hemionus (mule deer and black-tailed deer) and O. virginianus (white-tailed deer) in the Pacific Northwest. We found that 38.7% of loci could be genotyped, of which 5% (n = 1068) were polymorphic. Of these 1068 polymorphic SNPs, a mixture of putatively neutral loci (n = 878) and loci under selection (n = 190) were identified with the F(ST)-outlier method. A range of population genetic analyses were implemented using these SNPs and a panel of 10 microsatellite loci. The three types of deer could readily be distinguished with both the SNP and microsatellite datasets. This study demonstrates that commercially developed SNP chips are a viable means of SNP discovery for non-model organisms, even when used between very distantly related species (the Bovidae and Cervidae families diverged some 25.1-30.1 million years before present).

  9. High volume molecular genetic identification of single nucleotide polymorphisms using Genetic Bit Analysis Application to human genetic diagnosis

    SciTech Connect

    Boyce-Jacino, M.T.; Reynolds, J.; Nikiforov, T.

    1994-09-01

    The most common type of genetic disease-associated mutation is the single nucleotide polymorphism (SNP). Because most genetic diseases can be caused by multiple SNPs in the same gene, effective routine diagnosis of complex genetic diseases is dependent on a simple and reliable method of interrogating SNP sites. Molecular Tool`s solid phase assay capable of direct genotyping (single base sequencing) of SNP sites, Genetic Bit Analysis (GBA), involves hybridization-capture of a single-stranded PCR product to a sequence-specific, microtiter plate-bound oligonucleotide primer. The captured PCR product then acts as template for single-base extension of the capture primer across the polymorphic site, enabling direct determination of the base composition of the polymorphism through a simple colormetric assay. Genotyping in a high volume, semi-automated, processing system with a current capacity of 100 SNP interrogations per technician per day enables the screening of candidate mutations rapidly and cost-effectively, critically important to comprehensive genetic diagnosis. Using this gel-free technology, we have developed prototype diagnostic tests for CFTR and ApoE polymorphisms which enable direct sequencing of the polymorphic base at each site of interest. Routine clinical diagnosis of genetically complex diseases such as cystic fibrosis is dependent on this combination of robust biochemistry and simple format. Additionally, the ability to transfer the format and biochemistry to any disease gene of interest enables the broad application of this technology to clinical diagnostics, especially for genetically complex diseases.

  10. Multilocus patterns of nucleotide polymorphism and demographic change in Taxodium distichum (Cupressaceae) in the lower Mississippi River alluvial valley

    USGS Publications Warehouse

    Kusumi, J.; Zidong, L.; Kado, T.; Tsumura, Y.; Middleton, B.A.; Tachida, H.

    2010-01-01

    Premise of the Study: Studies of the geographic patterns of genetic variation can give important insights into the past population structure of species. Our study species, Taxodium distichum L. (bald-cypress), prefers riparian and wetland habitats and is widely distributed in southeastern North America and Mexico. We compared the genetic variation of T. distichum with that of its close relative, Cryptomeria japonica, which is endemic to Japan. Methods: Nucleotide polymorphisms of T. distichum in the lower Mississippi River alluvial valley, USA, were examined at 10 nuclear loci. Key Results: The average nucleotide diversity at silent sites, 7sil, across the 10 loci in T. distichum was higher than that of C. japonica (7sil = 0.00732 and 0.00322, respectively). In T. distichum, Tajima's D values were each negative at 9 out of 10 loci, which suggests a recent population expansion. Maximum-likelihood and Bayesian estimations of the exponential population growth rate (g) of T. distichum populations indicated that this species had expanded approximately at the rate of 1.7 - 1.0 10 -6 per year in the past. Conclusions: Taxodium distichum had signifi cantly higher nucleotide variation than C. japonica, and its patterns of polymorphism contrasted strikingly with those of the latter, which previously has been inferred to have experienced a reduction in population size.

  11. Association analysis of single nucleotide polymorphisms in candidate genes with root traits in maize (Zea mays L.) seedlings.

    PubMed

    Kumar, Bharath; Abdel-Ghani, Adel H; Pace, Jordon; Reyes-Matamoros, Jenaro; Hochholdinger, Frank; Lübberstedt, Thomas

    2014-07-01

    Several genes involved in maize root development have been isolated. Identification of SNPs associated with root traits would enable the selection of maize lines with better root architecture that might help to improve N uptake, and consequently plant growth particularly under N deficient conditions. In the present study, an association study (AS) panel consisting of 74 maize inbred lines was screened for seedling root traits in 6, 10, and 14-day-old seedlings. Allele re-sequencing of candidate root genes Rtcl, Rth3, Rum1, and Rul1 was also carried out in the same AS panel lines. All four candidate genes displayed different levels of nucleotide diversity, haplotype diversity and linkage disequilibrium. Gene based association analyses were carried out between individual polymorphisms in candidate genes, and root traits measured in 6, 10, and 14-day-old maize seedlings. Association analyses revealed several polymorphisms within the Rtcl, Rth3, Rum1, and Rul1 genes associated with seedling root traits. Several nucleotide polymorphisms in Rtcl, Rth3, Rum1, and Rul1 were significantly (P<0.05) associated with seedling root traits in maize suggesting that all four tested genes are involved in the maize root development. Thus considerable allelic variation present in these root genes can be exploited for improving maize root characteristics.

  12. Two bi-allelic single nucleotide polymorphisms within the promoter region of the horse tumour necrosis factor alpha gene.

    PubMed

    Matiasovic, J; Lukeszová, L; Horín, P

    2002-08-01

    Primers based on GenBank sequences within the 5' untranslated region (UTR) of the human and horse tumour necrosis factor alpha (TNF-alpha) genes were designed and used to amplify a 522-bp product. Sequencing of five clones derived from five independent PCRs obtained from three different animals of three different breeds (Old Kladruber, Akhal-Teke and Shetland Pony) revealed a high level of sequence identity to the TNF-alpha promoter regions of other species. The existing GenBank horse sequences were confirmed and extended upstream by 230 nucleotides. Based on the sequence obtained, a new horse-specific forward primer was designed to amplify a 213-bp PCR product, which was screened for polymorphism using single-strand conformation polymorphism (SSCP). Three allelic variants of the horse TNF-alpha gene were identified and sequenced (GenBank accession numbers ADF 349558-60). Two single nucleotide polymorphisms explained the existence of the three SSCP alleles detected: C/T and T/C single base pair substitutions at positions 137 and 147, respectively. Differences in allelic frequencies between Old Kladruber and Akhal-Teke breeds were observed.

  13. Single nucleotide polymorphisms of human STING can affect innate immune response to cyclic dinucleotides.

    PubMed

    Yi, Guanghui; Brendel, Volker P; Shu, Chang; Li, Pingwei; Palanathan, Satheesh; Cheng Kao, C

    2013-01-01

    The STING (stimulator of interferon genes) protein can bind cyclic dinucleotides to activate the production of type I interferons and inflammatory cytokines. The cyclic dinucleotides can be bacterial second messengers c-di-GMP and c-di-AMP, 3'5'-3'5' cyclic GMP-AMP (3'3' cGAMP) produced by Vibrio cholerae and metazoan second messenger 2'5'-3'5' Cyclic GMP-AMP (2'3' cGAMP). Analysis of single nucleotide polymorphism (SNP) data from the 1000 Genome Project revealed that R71H-G230A-R293Q (HAQ) occurs in 20.4%, R232H in 13.7%, G230A-R293Q (AQ) in 5.2%, and R293Q in 1.5% of human population. In the absence of exogenous ligands, the R232H, R293Q and AQ SNPs had only modest effect on the stimulation of IFN-β and NF-κB promoter activities in HEK293T cells, while HAQ had significantly lower intrinsic activity. The decrease was primarily due to the R71H substitution. The SNPs also affected the response to the cyclic dinucleotides. In the presence of c-di-GMP, the R232H variant partially decreased the ability to activate IFN-βsignaling, while it was defective for the response to c-di-AMP and 3'3' cGAMP. The R293Q dramatically decreased the stimulatory response to all bacterial ligands. Surprisingly, the AQ and HAQ variants maintained partial abilities to activate the IFN-β signaling in the presence of ligands due primarily to the G230A substitution. Biochemical analysis revealed that the recombinant G230A protein could affect the conformation of the C-terminal domain of STING and the binding to c-di-GMP. Comparison of G230A structure with that of WT revealed that the conformation of the lid region that clamps onto the c-di-GMP was significantly altered. These results suggest that hSTING variation can affect innate immune signaling and that the common HAQ haplotype expresses a STING protein with reduced intrinsic signaling activity but retained the ability to response to bacterial cyclic dinucleotides.

  14. Single nucleotide polymorphisms (SNPs) are highly conserved in rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques

    PubMed Central

    Street, Summer L; Kyes, Randall C; Grant, Richard; Ferguson, Betsy

    2007-01-01

    Background Macaca fascicularis (cynomolgus or longtail macaques) is the most commonly used non-human primate in biomedical research. Little is known about the genomic variation in cynomolgus macaques or how the sequence variants compare to those of the well-studied related species, Macaca mulatta (rhesus macaque). Previously we identified single nucleotide polymorphisms (SNPs) in portions of 94 rhesus macaque genes and reported that Indian and Chinese rhesus had largely different SNPs. Here we identify SNPs from some of the same genomic regions of cynomolgus macaques (from Indochina, Indonesia, Mauritius and the Philippines) and compare them to the SNPs found in rhesus. Results We sequenced a portion of 10 genes in 20 cynomolgus macaques. We identified 69 SNPs in these regions, compared with 71 SNPs found in the same genomic regions of 20 Indian and Chinese rhesus macaques. Thirty six (52%) of the M. fascicularis SNPs were overlapping in both species. The majority (70%) of the SNPs found in both Chinese and Indian rhesus macaque populations were also present in M. fascicularis. Of the SNPs previously found in a single rhesus population, 38% (Indian) and 44% (Chinese) were also identified in cynomolgus macaques. In an alternative approach, we genotyped 100 cynomolgus DNAs using a rhesus macaque SNP array representing 53 genes and found that 51% (29/57) of the rhesus SNPs were present in M. fascicularis. Comparisons of SNP profiles from cynomolgus macaques imported from breeding centers in China (where M. fascicularis are not native) showed they were similar to those from Indochina. Conclusion This study demonstrates a surprisingly high conservation of SNPs between M. fascicularis and M. mulatta, suggesting that the relationship of these two species is closer than that suggested by morphological and mitochondrial DNA analysis alone. These findings indicate that SNP discovery efforts in either species will generate useful resources for both macaque species

  15. mtDNA haplogroup and single nucleotide polymorphisms structure human microbiome communities

    PubMed Central

    2014-01-01

    Background Although our microbial community and genomes (the human microbiome) outnumber our genome by several orders of magnitude, to what extent the human host genetic complement informs the microbiota composition is not clear. The Human Microbiome Project (HMP) Consortium established a unique population-scale framework with which to characterize the relationship of microbial community structure with their human hosts. A wide variety of taxa and metabolic pathways have been shown to be differentially distributed by virtue of race/ethnicity in the HMP. Given that mtDNA haplogroups are the maternally derived ancestral genomic markers and mitochondria’s role as the generator for cellular ATP, characterizing the relationship between human mtDNA genomic variants and microbiome profiles becomes of potential marked biologic and clinical interest. Results We leveraged sequencing data from the HMP to investigate the association between microbiome community structures with its own host mtDNA variants. 15 haplogroups and 631 mtDNA nucleotide polymorphisms (mean sequencing depth of 280X on the mitochondria genome) from 89 individuals participating in the HMP were accurately identified. 16S rRNA (V3-V5 region) sequencing generated microbiome taxonomy profiles and whole genome shotgun sequencing generated metabolic profiles from various body sites were treated as traits to conduct association analysis between haplogroups and host clinical metadata through linear regression. The mtSNPs of individuals with European haplogroups were associated with microbiome profiles using PLINK quantitative trait associations with permutation and adjusted for multiple comparisons. We observe that among 139 stool and 59 vaginal posterior fornix samples, several haplogroups show significant association with specific microbiota (q-value < 0.05) as well as their aggregate community structure (Chi-square with Monte Carlo, p < 0.005), which confirmed and expanded previous research on the

  16. Mitochondrial localization of the OAS1 p46 isoform associated with a common single nucleotide polymorphism

    PubMed Central

    2014-01-01

    Background The expression of 2′-5′-Oligoadenylate synthetases (OASs) is induced by type 1 Interferons (IFNs) in response to viral infection. The OAS proteins have a unique ability to produce 2′-5′ Oligoadenylates, which bind and activate the ribonuclease RNase L. The RNase L degrades cellular RNAs which in turn inhibits protein translation and induces apoptosis. Several single nucleotide polymorphisms (SNPs) in the OAS1 gene have been associated with disease. We have investigated the functional effect of two common SNPs in the OAS1 gene. The SNP rs10774671 affects splicing to one of the exons in the OAS1 gene giving rise to differential expression of the OAS1 isoforms, and the SNP rs1131454 (former rs3741981) resides in exon 3 giving rise to OAS1 isoforms with either a Glycine or a Serine at position 162 in the core OAS unit. Results We have used three human cell lines with different genotypes in the OAS1 SNP rs10774671, HeLa cells with the AA genotype, HT1080 cells with AG, and Daudi cells with GG. The main OAS1 isoform expressed in Daudi and HT1080 cells was p46, and the main OAS1 isoform expressed in HeLa cells was p42. In addition, low levels of the OAS1 p52 mRNA was detected in HeLa cells and p48 mRNA in Daudi cells, and trace amounts of p44a mRNA were detected in the three cell lines treated with type 1 interferon. We show that the OAS1 p46 isoform was localized in the mitochondria in Daudi cells, whereas the OAS1 isoforms in HeLa cells were primarily localized in cytoplasmic vacuoles/lysosomes. By using recombinantly expressed OAS1 mutant proteins, we found that the OAS1 SNP rs1131454 (former rs3741981) did not affect the enzymatic OAS1 activity. Conclusions The SNP rs10774671 determines differential expression of the OAS1 isoforms. In Daudi and HT1080 cells the p46 isoform is the most abundantly expressed isoform associated with the G allele, whereas in HeLa cells the most abundantly expressed isoform is p42 associated with the A allele. The SNP rs

  17. Short communication: relationship of call rate and accuracy of single nucleotide polymorphism genotypes in dairy cattle.

    PubMed

    Cooper, T A; Wiggans, G R; VanRaden, P M

    2013-05-01

    Call rates on both a single nucleotide polymorphism (SNP) basis and an animal basis are used as measures of data quality and as screening tools for genomic studies and evaluations of dairy cattle. To investigate the relationship of SNP call rate and genotype accuracy for individual SNP, the correlation between percentages of missing genotypes and parent-progeny conflicts for each SNP was calculated for 103,313 Holsteins. Correlations ranged from 0.14 to 0.38 for the BovineSNP50 and BovineLD (Illumina Inc., San Diego, CA) and GeneSeek Genomic Profiler (Neogen Corp., Lincoln, NE) chips, with lower correlations for newer chips. For US genomic evaluations, genotypes are excluded for animals with a call rate of <90% across autosomal SNP or <80% across X-specific SNP. Mean call rate for 220,175 Holstein, Jersey, and Brown Swiss genotypes was 99.6%. Animal genotypes with a call rate of ≤99% were examined from the US Department of Agriculture genotype database to determine how genotype call rate is related to accuracy of calls on an animal basis. Animal call rate was determined from SNP used in genomic evaluation and is the number of called autosomal and X-specific SNP genotypes divided by the number of SNP from that type of chip. To investigate the relationship of animal call rate and parentage validation, conflicts between a genotyped animal and its sire or dam were determined through a duo test (opposite homozygous SNP genotypes between sire and progeny; 1,374 animal genotypes) and a trio test (also including conflicts with dam and heterozygous SNP genotype for the animal when both parents are the same homozygote; 482 animal genotypes). When animal call rate was ≤ 80%, parentage validation was no longer reliable with the duo test. With the trio test, parentage validation was no longer reliable when animal call rate was ≤ 90%. To investigate how animal call rate was related to genotyping accuracy for animals with multiple genotypes, concordance between genotypes

  18. Single nucleotide polymorphisms associated with thermoregulation in lactating dairy cows exposed to heat stress.

    PubMed

    Dikmen, S; Wang, X-z; Ortega, M S; Cole, J B; Null, D J; Hansen, P J

    2015-12-01

    Dairy cows with increased rectal temperature experience lower milk yield and fertility. Rectal temperature during heat stress is heritable, so genetic selection for body temperature regulation could reduce effects of heat stress on production. One aim of the study was to validate the relationship between genotype and heat tolerance for single nucleotide polymorphisms (SNPs) previously associated with resistance to heat stress. A second aim was to identify new SNPs associated with heat stress resistance. Thermotolerance was assessed in lactating Holsteins during the summer by measuring rectal temperature (a direct measurement of body temperature regulation; n = 435), respiration rate (an indirect measurement of body temperature regulation, n = 450) and sweating rate (the major evaporative cooling mechanism in cattle, n = 455). The association between genotype and thermotolerance was evaluated for 19 SNPs previously associated with rectal temperature from a genomewide analysis study (GWAS), four SNPs previously associated with change in milk yield during heat stress from GWAS, 2 candidate gene SNPs previously associated with rectal temperature and respiration rate during heat stress (ATPA1A and HSP70A) and 66 SNPs in genes previously shown to be associated with reproduction, production or health traits in Holsteins. For SNPs previously associated with heat tolerance, regions of BTA4, BTA6 and BTA24 were associated with rectal temperature; regions of BTA6 and BTA24 were associated with respiration rate; and regions of BTA5, BTA26 and BTA29 were associated with sweating rate. New SNPs were identified for rectal temperature (n = 12), respiration rate (n = 8) and sweating rate (n = 3) from among those previously associated with production, reproduction or health traits. The SNP that explained the most variation were PGR and ASL for rectal temperature, ACAT2 and HSD17B7 for respiration rate, and ARL6IP1 and SERPINE2 for sweating rate. ARL6IP1 was associated with all three

  19. Fluorescent detection of single nucleotide polymorphism utilizing a hairpin DNA containing a nucleotide base analog pyrrolo-deoxycytidine as a fluorescent probe.

    PubMed

    Zhang, Hongge; Wang, Minjuan; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2011-05-15

    A novel fluorescent method for the detection of single nucleotide polymorphism (SNP) was developed using a hairpin DNA containing nucleotide base analog pyrrolo-deoxycytidine (P-dC) as a fluorescent probe. This fluorescent probe was designed by incorporating a fluorescent P-dC into a stem of the hairpin DNA, whose sequence of the loop moiety complemented the target single strand DNA (ss-DNA). In the absence of the target ss-DNA, the fluorescent probe stays a closed configuration in which the P-dC is located in the double strand stem of the fluorescent probe, such that there is weak fluorescence, attributed to a more efficient stacking and collisional quenching of neighboring bases. In the presence of target ss-DNA, upon hybridizing the ss-DNA to the loop moiety, a stem-loop of the fluorescent probe is opened and the P-dC is located in the ss-DNA, thus resulting in strong fluorescence. The effective discrimination of the SNP, including single base mismatch ss-DNA (A, T, G) and double mismatch DNA (C, C), against perfect complementary ss-DNA was achieved by increased fluorescence intensity, and verified by thermal denaturation and circular dichroism spectroscopy. Relative fluorescence intensity had a linear relationship with the concentration of perfect complementary ss-DNA and ranged from 50 nM to 3.0 μM. The linear regression equation was F/F(0)=2.73 C (μM)+1.14 (R=0.9961) and the detection limit of perfect complementary ss-DNA was 16 nM (S/N=3). This study demonstrates that a hairpin DNA containing nucleotide base analog P-dC is a promising fluorescent probe for the effective discrimination of SNP and for highly sensitive detection of perfect complementary DNA.

  20. Performance of Whole-Genome Amplified DNA Isolated from Serum and Plasma on High-Density Single Nucleotide Polymorphism Arrays

    PubMed Central

    Croft, Daniel T.; Jordan, Rick M.; Patney, Heather L.; Shriver, Craig D.; Vernalis, Marina N.; Orchard, Trevor J.; Ellsworth, Darrell L.

    2008-01-01

    Defining genetic variation associated with complex human diseases requires standards based on high-quality DNA from well-characterized patients. With the development of robust technologies for whole-genome amplification, sample repositories such as serum banks now represent a potentially valuable source of DNA for both genomic studies and clinical diagnostics. We assessed the performance of whole-genome amplified DNA (wgaDNA) derived from stored serum/plasma on high-density single nucleotide polymorphism arrays. Neither storage time nor usage history affected either DNA extraction or whole-genome amplification yields; however, samples that were thawed and refrozen showed significantly lower call rates (73.9 ± 7.8%) than samples that were never thawed (92.0 ± 3.3%) (P < 0.001). Genotype call rates did not differ significantly (P = 0.13) between wgaDNA from never-thawed serum/plasma (92.9 ± 2.6%) and genomic DNA (97.5 ± 0.3%) isolated from whole blood. Approximately 400,000 genotypes were consistent between wgaDNA and genomic DNA, but the overall discordance rate of 4.4 ± 3.8% reflected an average of 11,110 ± 9502 genotyping errors per sample. No distinct patterns of chromosomal clustering were observed for single nucleotide polymorphisms showing discordant genotypes or homozygote conversion. Because the effects of genotyping errors on whole-genome studies are not well defined, we recommend caution when applying wgaDNA from serum/plasma to high-density single nucleotide polymorphism arrays in addition to the use of stringent quality control requirements for the resulting genotype data. PMID:18403606

  1. Performance of whole-genome amplified DNA isolated from serum and plasma on high-density single nucleotide polymorphism arrays.

    PubMed

    Croft, Daniel T; Jordan, Rick M; Patney, Heather L; Shriver, Craig D; Vernalis, Marina N; Orchard, Trevor J; Ellsworth, Darrell L

    2008-05-01

    Defining genetic variation associated with complex human diseases requires standards based on high-quality DNA from well-characterized patients. With the development of robust technologies for whole-genome amplification, sample repositories such as serum banks now represent a potentially valuable source of DNA for both genomic studies and clinical diagnostics. We assessed the performance of whole-genome amplified DNA (wgaDNA) derived from stored serum/plasma on high-density single nucleotide polymorphism arrays. Neither storage time nor usage history affected either DNA extraction or whole-genome amplification yields; however, samples that were thawed and refrozen showed significantly lower call rates (73.9 +/- 7.8%) than samples that were never thawed (92.0 +/- 3.3%) (P < 0.001). Genotype call rates did not differ significantly (P = 0.13) between wgaDNA from never-thawed serum/plasma (92.9 +/- 2.6%) and genomic DNA (97.5 +/- 0.3%) isolated from whole blood. Approximately 400,000 genotypes were consistent between wgaDNA and genomic DNA, but the overall discordance rate of 4.4 +/- 3.8% reflected an average of 11,110 +/- 9502 genotyping errors per sample. No distinct patterns of chromosomal clustering were observed for single nucleotide polymorphisms showing discordant genotypes or homozygote conversion. Because the effects of genotyping errors on whole-genome studies are not well defined, we recommend caution when applying wgaDNA from serum/plasma to high-density single nucleotide polymorphism arrays in addition to the use of stringent quality control requirements for the resulting genotype data.

  2. Development of single-nucleotide polymorphism markers for Bromus tectorum (Poaceae) from a partially sequenced transcriptome1

    PubMed Central

    Merrill, Keith R.; Coleman, Craig E.; Meyer, Susan E.; Leger, Elizabeth A.; Collins, Katherine A.

    2016-01-01

    Premise of the study: Bromus tectorum (Poaceae) is an annual grass species that is invasive in many areas of the world but most especially in the U.S. Intermountain West. Single-nucleotide polymorphism (SNP) markers were developed for use in investigating the geospatial and ecological diversity of B. tectorum in the Intermountain West to better understand the mechanisms behind its successful invasion. Methods and Results: Normalized cDNA libraries from six diverse B. tectorum individuals were pooled and sequenced using 454 sequencing. Ninety-five SNP assays were developed for use on 96.96 arrays with the Fluidigm EP1 genotyping platform. Verification of the 95 SNPs by genotyping 251 individuals from 12 populations is reported, along with amplification data from four related Bromus species. Conclusions: These SNP markers are polymorphic across populations of B. tectorum, are optimized for high-throughput applications, and may be applicable to other, related Bromus species. PMID:27843723

  3. Application of single nucleotide polymorphism markers to chum salmon Oncorhynchus keta: discovery, genotyping and linkage phase resolution.

    PubMed

    Garvin, M R; Gharrett, A J

    2010-12-01

    This study describes (1) the application of new methods to the discovery of informative single nucleotide polymorphism (SNP) markers in chum salmon Oncorhynchus keta, (2) a method to resolve the linkage phase of closely linked SNPs and (3) a method to inexpensively genotype them. Finally, it demonstrates that these SNPs provide information that discriminates among O. keta populations from different geographical regions of the northern Pacific Ocean. These informative markers can be used in conjunction with mixed-stock analysis to learn about the spatial and temporal marine distributions of O. keta and the factors that influence the distributions.

  4. ERCC1 and XRCC1 but not XPA single nucleotide polymorphisms correlate with response to chemotherapy in endometrial carcinoma

    PubMed Central

    Chen, Liang; Liu, Mei-Mei; Liu, Hui; Lu, Dan; Zhao, Xiao-Dan; Yang, Xue-Jing

    2016-01-01

    Our study aimed to investigate the correlation between single nucleotide polymorphisms of ERCC1/XRCC1/XPA genes and postoperative chemotherapy efficacy and prognosis of endometrial carcinoma. Our study included 108 patients with endometrial carcinoma and 100 healthy participants. ERCC1 rs11615/XRCC1 rs25487/XPA rs1800975 gene polymorphisms were detected by polymerase chain reaction–restriction fragment length polymorphism. Then the chemotherapy efficacy and toxic effects of the patients were assessed. The genotype and allele frequency of ERCC1 rs11615/XRCC1 rs25487 in the case group were significantly different from that in the control group (all P<0.05). The patients with AA + GA in ERCC1 rs11615 had an increased risk of endometrial carcinoma than those with GG, and the risk of endometrial carcinoma for patients with AA + GA was also higher in comparison with patients with GG genotype in XRCC1 rs25487 (all P<0.05). GG on both ERCC1 rs11615/XRCC1 rs25487 had a higher effective rate of chemotherapy than GA + AA (all P<0.05). ERCC1 rs11615/XRCC1 rs25487 gene polymorphisms were linked with toxic effects in liver, kidney, and nervous system. ERCC1 rs11615/XRCC1 rs25487, muscular invasion, and tumor stage were independent risk factors for the prognosis of endometrial carcinoma (all P<0.05). However, no significant associations were observed between XPA rs1800975 polymorphism and chemotherapy efficacy and prognosis of endometrial carcinoma (all P>0.05). These results indicated that ERCC1 and XRCC1 but not XPA polymorphisms correlate with response to chemotherapy in endometrial carcinoma. PMID:27895494

  5. Genomic variation and population structure detected by single nucleotide polymorphism arrays in Corriedale, Merino and Creole sheep.

    PubMed

    Grasso, Andrés N; Goldberg, Virginia; Navajas, Elly A; Iriarte, Wanda; Gimeno, Diego; Aguilar, Ignacio; Medrano, Juan F; Rincón, Gonzalo; Ciappesoni, Gabriel

    2014-06-01

    THE AIM OF THIS STUDY WAS TO INVESTIGATE THE GENETIC DIVERSITY WITHIN AND AMONG THREE BREEDS OF SHEEP: Corriedale, Merino and Creole. Sheep from the three breeds (Merino n = 110, Corriedale n = 108 and Creole n = 10) were genotyped using the Illumina Ovine SNP50 beadchip(®). Genetic diversity was evaluated by comparing the minor allele frequency (MAF) among breeds. Population structure and genetic differentiation were assessed using STRUCTURE software, principal component analysis (PCA) and fixation index (FST). Fixed markers (MAF = 0) that were different among breeds were identified as specific breed markers. Using a subset of 18,181 single nucleotide polymorphisms (SNPs), PCA and STUCTURE analysis were able to explain population stratification within breeds. Merino and Corriedale divergent lines showed high levels of polymorphism (89.4% and 86% of polymorphic SNPs, respectively) and moderate genetic differentiation (FST = 0.08) between them. In contrast, Creole had only 69% polymorphic SNPs and showed greater genetic differentiation from the other two breeds (FST = 0.17 for both breeds). Hence, a subset of molecular markers present in the OvineSNP50 is informative enough for breed assignment and population structure analysis of commercial and Creole breeds.

  6. Exploiting the Repetitive Fraction of the Wheat Genome for High-Throughput Single-Nucleotide Polymorphism Discovery and Genotyping.

    PubMed

    Cubizolles, Nelly; Rey, Elodie; Choulet, Frédéric; Rimbert, Hélène; Laugier, Christel; Balfourier, François; Bordes, Jacques; Poncet, Charles; Jack, Peter; James, Chris; Gielen, Jan; Argillier, Odile; Jaubertie, Jean-Pierre; Auzanneau, Jérôme; Rohde, Antje; Ouwerkerk, Pieter B F; Korzun, Viktor; Kollers, Sonja; Guerreiro, Laurent; Hourcade, Delphine; Robert, Olivier; Devaux, Pierre; Mastrangelo, Anna-Maria; Feuillet, Catherine; Sourdille, Pierre; Paux, Etienne

    2016-03-01

    Transposable elements (TEs) account for more than 80% of the wheat genome. Although they represent a major obstacle for genomic studies, TEs are also a source of polymorphism and consequently of molecular markers such as insertion site-based polymorphism (ISBP) markers. Insertion site-based polymorphisms have been found to be a great source of genome-specific single-nucleotide polymorphism (SNPs) in the hexaploid wheat ( L.) genome. Here, we report on the development of a high-throughput SNP discovery approach based on sequence capture of ISBP markers. By applying this approach to the reference sequence of chromosome 3B from hexaploid wheat, we designed 39,077 SNPs that are evenly distributed along the chromosome. We demonstrate that these SNPs can be efficiently scored with the KASPar (Kompetitive allele-specific polymerase chain reaction) genotyping technology. Finally, through genetic diversity and genome-wide association studies, we also demonstrate that ISBP-derived SNPs can be used in marker-assisted breeding programs.

  7. Single nucleotide polymorphisms of the haptoglobin gene in non-small cell lung cancer treated with personalized peptide vaccination

    PubMed Central

    Waki, Kayoko; Yamada, Teppei; Yoshiyama, Koichi; Terazaki, Yasuhiro; Sakamoto, Shinjiro; Sugawara, Shunichi; Takamori, Shinzo; Itoh, Kyogo; Yamada, Akira

    2017-01-01

    The present study analyzed polymorphisms of the 5′ flanking region (from nt −840 to +151) of the haptoglobin gene in 120 patients with advanced non-small cell lung cancer (NSCLC) receiving personalized peptide vaccinations. In the region, six single nucleotide polymorphisms (SNPs) were confirmed, of which two, rs5472 and rs9927981, were completely linked to each other. The minor allele frequencies of rs5472/rs9927981 and rs4788458 were higher than those of the other three SNPs. The genotype frequencies of rs5472 or rs9927981 were A/A or C/C (42.5%, n=51), A/G or C/T (40.8%, n=49), and G/G or T/T (16.7%, n=20), respectively; and those of rs4788458 were T/T (34.2%, n=41), T/C (40.0%, n=48), and C/C (25.8%, n=31). The association between polymorphism rs5472/rs9927981 and prognosis, or between rs4788458 and prognosis, was analyzed further. However, no correlation was found between these SNPs and overall survival, regardless of subgroup analysis of gender, histology or concurrent therapy. These results suggest that the polymorphisms rs5472/rs9927981 and rs4788458 are not useful prognostic tools for patients with NSCLC treated with personalized peptide vaccination. PMID:28356990

  8. Identification of single nucleotide polymorphisms in the ASB15 gene and their associations with chicken growth and carcass traits.

    PubMed

    Wang, Y C; Jiang, R R; Kang, X T; Li, Z J; Han, R L; Geng, J; Fu, J X; Wang, J F; Wu, J P

    2015-09-25

    ASB15 is a member of the ankyrin repeat and suppressor of cytokine signaling box family, and is predominantly expressed in skeletal muscle. In the present study, an F2 resource population of Gushi chickens crossed with Anka broilers was used to investigate the genetic effects of the chicken ASB15 gene. Two single nucleotide polymorphisms (SNPs) (rs315759231 A>G and rs312619270 T>C) were identified in exon 7 of the ASB15 gene using forced chain reaction-restriction fragment length polymorphism and DNA sequencing. One was a missense SNP (rs315759231 A>G) and the other was a synonymous SNP (rs312619270 T>C). The rs315759231 A>G polymorphism was significantly associated with body weight at birth, 12-week body slanting length, semi-evisceration weight, evisceration weight, leg muscle weight, and carcass weight (P < 0.05). The rs312619270 T>C polymorphism was significantly associated with body weight at birth, 4, 8, and 12-week body weight, 8-week shank length, 12-week breast bone length, 8 and 12-week body slanting length, breast muscle weight, and carcass weight (P < 0.05). Our results suggest that the ASB15 gene profoundly affects chicken growth and carcass traits.

  9. Genomic variation and population structure detected by single nucleotide polymorphism arrays in Corriedale, Merino and Creole sheep

    PubMed Central

    Grasso, Andrés N.; Goldberg, Virginia; Navajas, Elly A.; Iriarte, Wanda; Gimeno, Diego; Aguilar, Ignacio; Medrano, Juan F.; Rincón, Gonzalo; Ciappesoni, Gabriel

    2014-01-01

    The aim of this study was to investigate the genetic diversity within and among three breeds of sheep: Corriedale, Merino and Creole. Sheep from the three breeds (Merino n = 110, Corriedale n = 108 and Creole n = 10) were genotyped using the Illumina Ovine SNP50 beadchip®. Genetic diversity was evaluated by comparing the minor allele frequency (MAF) among breeds. Population structure and genetic differentiation were assessed using STRUCTURE software, principal component analysis (PCA) and fixation index (FST). Fixed markers (MAF = 0) that were different among breeds were identified as specific breed markers. Using a subset of 18,181 single nucleotide polymorphisms (SNPs), PCA and STUCTURE analysis were able to explain population stratification within breeds. Merino and Corriedale divergent lines showed high levels of polymorphism (89.4% and 86% of polymorphic SNPs, respectively) and moderate genetic differentiation (FST = 0.08) between them. In contrast, Creole had only 69% polymorphic SNPs and showed greater genetic differentiation from the other two breeds (FST = 0.17 for both breeds). Hence, a subset of molecular markers present in the OvineSNP50 is informative enough for breed assignment and population structure analysis of commercial and Creole breeds. PMID:25071404

  10. Single Nucleotide Polymorphism Discovery in Bovine Pituitary Gland Using RNA-Seq Technology

    PubMed Central

    Pareek, Chandra Shekhar; Smoczyński, Rafał; Kadarmideen, Haja N.; Dziuba, Piotr; Błaszczyk, Paweł; Sikora, Marcin; Walendzik, Paulina; Grzybowski, Tomasz; Pierzchała, Mariusz; Horbańczuk, Jarosław; Szostak, Agnieszka; Ogluszka, Magdalena; Zwierzchowski, Lech; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Wąsowicz, Krzysztof; Gelfand, Brian; Feng, Yaping; Kumar, Dibyendu

    2016-01-01

    Examination of bovine pituitary gland transcriptome by strand-specific RNA-seq allows detection of putative single nucleotide polymorphisms (SNPs) within potential candidate genes (CGs) or QTLs regions as well as to understand the genomics variations that contribute to economic trait. Here we report a breed-specific model to successfully perform the detection of SNPs in the pituitary gland of young growing bulls representing Polish Holstein-Friesian (HF), Polish Red, and Hereford breeds at three developmental ages viz., six months, nine months, and twelve months. A total of 18 bovine pituitary gland polyA transcriptome libraries were prepared and sequenced using the Illumina NextSeq 500 platform. Sequenced FastQ databases of all 18 young bulls were submitted to NCBI-SRA database with NCBI-SRA accession numbers SRS1296732. For the investigated young bulls, a total of 113,882,3098 raw paired-end reads with a length of 156 bases were obtained, resulting in an approximately 63 million paired-end reads per library. Breed-wise, a total of 515.38, 215.39, and 408.04 million paired-end reads were obtained for Polish HF, Polish Red, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed 93.04%, 94.39%, and 83.46% of the mapped sequencing reads were properly paired to the Polish HF, Polish Red, and Hereford breeds, respectively. Constructed breed-specific SNP-db of three cattle breeds yielded at 13,775,885 SNPs. On an average 765,326 breed-specific SNPs per young bull were identified. Using two stringent filtering parameters, i.e., a minimum 10 SNP reads per base with an accuracy ≥ 90% and a minimum 10 SNP reads per base with an accuracy = 100%, SNP-db records were trimmed to construct a highly reliable SNP-db. This resulted in a reduction of 95,7% and 96,4% cut-off mark of constructed raw SNP-db. Finally, SNP discoveries using RNA-Seq data were validated by KASP™ SNP genotyping assay. The comprehensive QTLs/CGs analysis of 76 QTLs

  11. Single nucleotide polymorphisms in rye (Secale cereale L.): discovery, frequency, and applications for genome mapping and diversity studies.

    PubMed

    Varshney, R K; Beier, U; Khlestkina, E K; Kota, R; Korzun, V; Graner, A; Börner, A

    2007-04-01

    To elucidate the potential of single nucleotide polymorphism (SNP) markers in rye, a set of 48 barley EST (expressed sequence tag) primer pairs was employed to amplify from DNA prepared from five rye inbred lines. A total of 96 SNPs and 26 indels (insertion-deletions) were defined from the sequences of 14 of the resulting amplicons, giving an estimated frequency of 1 SNP per 58 bp and 1 indel per 214 bp in the rye transcriptome. A mean of 3.4 haplotypes per marker with a mean expected heterozygosity of 0.66 were observed. The nucleotide diversity index (pi) was estimated to be in the range 0.0059-0.0530. To improve assay cost-effectiveness, 12 of the 14 SNPs were converted to a cleaved amplified polymorphic sequence (CAPS) format. The resulting 12 SNP loci mapped to chromosomes 1R, 3R, 4R, 5R, 6R, and 7R, at locations consistent with their known map positions in barley. SNP genotypic data were compared with genomic simple sequence repeat (SSR) and EST-derived SSR genotypic data collected from the same templates. This showed a broad equivalence with respect to genetic diversity between these different data types.

  12. Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species.

    PubMed

    Wang, Jing; Street, Nathaniel R; Scofield, Douglas G; Ingvarsson, Pär K

    2016-03-01

    A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species.

  13. Makeup of the genetic correlation between milk production traits using genome-wide single nucleotide polymorphism information.

    PubMed

    van Binsbergen, R; Veerkamp, R F; Calus, M P L

    2012-04-01

    The correlated responses between traits may differ depending on the makeup of genetic covariances, and may differ from the predictions of polygenic covariances. Therefore, the objective of the present study was to investigate the makeup of the genetic covariances between the well-studied traits: milk yield, fat yield, protein yield, and their percentages in more detail. Phenotypic records of 1,737 heifers of research farms in 4 different countries were used after homogenizing and adjusting for management effects. All cows had a genotype for 37,590 single nucleotide polymorphisms (SNP). A bayesian stochastic search variable selection model was used to estimate the SNP effects for each trait. About 0.5 to 1.0% of the SNP had a significant effect on 1 or more traits; however, the SNP without a significant effect explained most of the genetic variances and covariances of the traits. Single nucleotide polymorphism correlations differed from the polygenic correlations, but only 10 regions were found with an effect on multiple traits; in 1 of these regions the DGAT1 gene was previously reported with an effect on multiple traits. This region explained up to 41% of the variances of 4 traits and explained a major part of the correlation between fat yield and fat percentage and contributes to asymmetry in correlated response between fat yield and fat percentage. Overall, for the traits in this study, the infinitesimal model is expected to be sufficient for the estimation of the variances and covariances.

  14. Single nucleotide polymorphisms for genes encoding cytokines in the context of cardiac surgery. Part I: Heart transplantation.

    PubMed

    Danikiewicz, Aleksander; Szkodzinski, Janusz; Hudzik, Bartosz; Korzonek-Szlacheta, Ilona; Gąsior, Mariusz; Polonski, Lech; Zubelewicz-Szkodzińska, Barbara

    2015-03-01

    Cardiovascular diseases remain the leading cause of death in Poland and other countries of the European Union. Patients with end-stage heart failure constitute a patient subgroup for whom the treatment of choice is heart transplantation. Despite advances in immunosuppressive therapy, acute or chronic graft rejection occurs in 20-30% of cases in the first six months after transplantation. The significance of the immune response and inflammation in graft rejection implies the important role of cytokines. Molecular markers are sought to facilitate risk assessment and improve patient care. At present, genetic tests are not used for this purpose, but studies aiming to rectify that have been conducted for years, including studies on single nucleotide polymorphisms of cytokine genes. This paper presents the results of research on the single nucleotide polymorphisms (SNPs) of the IL-2, IL-4, IL-6, IL-10, TGF-β1, PDGF, VEGF, and TNF-α genes in conjunction with heart transplantation. The analyzed data do not allow for reliable application of these genetic tests in clinical practice, but suggest that it is a promising direction which may improve the options of treatment individualization in the future.

  15. Single nucleotide polymorphisms of mucosa-associated lymphoid tissue 1 in oral carcinoma cells and gingival fibroblasts.

    PubMed

    Oyama, Go; Midorikawa, Toshiaki; Matsumoto, Yasutaka; Takeyama, Mayu; Yamada, Kenji; Nozawa, Takaomi; Morikawa, Masako; Imai, Kazushi

    2013-07-01

    Oral carcinoma patients with inactivation of mucosa-associated lymphoid tissue 1 (MALT1) expression worsen their prognoses. Although the genetic mutation could be responsible for the inactivation, no information is available at present. In the present study, genomic DNA of oral carcinoma cells (HOC313, TSU, HSC2, HSC3, KOSC2, KOSC3, SCCKN, OSC19, Ca9.22, and Ho1u1 cells) and normal gingival fibroblasts (GF12 cells) derived from a Japanese population were amplified by polymerase chain reaction using primer sets spanning MALT1 exons, and nucleotide substitutions were analyzed by the single strand conformation polymorphism analysis. The substitutions were commonly observed in all cells, which express MALT1 at various levels. The substitutions at exons 1 and 9 were located at the 5' untranslated region and replaced (336)Asp to Asn, respectively, and others were positioned at the introns. Among the intronic substitutions, four were matched with the single nucleotide polymorphisms (SNPs) registered at the database. Since all cells were derived from a Japanese population, all substitutions detected are the SNPs. Absence of the carcinoma cell-specific mutation suggests that the inactivation of MALT1 expression but not the mutation promotes oral carcinoma progression.

  16. Single-nucleotide polymorphisms and DNA methylation markers associated with central obesity and regulation of body weight.

    PubMed

    Goni, Leticia; Milagro, Fermín I; Cuervo, Marta; Martínez, J Alfredo

    2014-11-01

    Visceral fat is strongly associated with the development of specific obesity-related metabolic alterations. Genetic and epigenetic mechanisms seem to be involved in the development of obesity and visceral adiposity. The aims of this review are to identify the single-nucleotide polymorphisms related to central obesity and to summarize the main findings on DNA methylation and obesity. A search of the MEDLINE database was conducted to identify genome-wide association studies, meta-analyses of genome-wide association studies, and gene-diet interaction studies related to central obesity, and, in addition, studies that analyzed DNA methylation in relation to body weight regulation. A total of 8 genome-wide association studies and 9 meta-analyses of genome-wide association studies reported numerous single-nucleotide polymorphisms to be associated with central obesity. Ten studies analyzed gene-diet interactions and central obesity, while 2 epigenome-wide association studies analyzed DNA methylation patterns and obesity. Nine studies investigated the relationship between DNA methylation and weight loss, excess body weight, or adiposity outcomes. Given the development of new sequencing and omics technologies, significantly more knowledge on genomics and epigenomics of obesity and body fat distribution will emerge in the near future.

  17. Single nucleotide polymorphism analysis of the NKG2D ligand cluster on the long arm of chromosome 6: Extensive polymorphisms and evidence of diversity between human populations.

    PubMed

    Antoun, Ayman; Jobson, Shirley; Cook, Mark; O'Callaghan, Chris A; Moss, Paul; Briggs, David C

    2010-06-01

    NKG2D is an important activating receptor on NK cells and T-cells and has a diverse panel of ligands (NKG2DL) which include the ULBP and RAET1 proteins. Several NKG2DL exhibit a considerable degree of genetic polymorphism, and although the functional significance of such allelic variation remains unclear, genetic variants have been implicated in susceptibility to infection and auto-immune disease. We used sequence-specific primer polymerase chain reaction to determine the frequency of 25 single nucleotide polymorphisms (SNPs) in the promoter and coding regions of genes of the RAET1/ULBP cluster in 223 Euro-Caucasoid, 60 Afro-Caribbean, and 52 Indo-Asian individuals to determine NKG2DL allele and haplotype frequencies within these populations. We show marked differences in the frequency of NKG2DL SNPs and haplotypes among the three ethnic groups, and certain haplotypes were observed almost exclusively in Afro-Caribbean compared with the Euro-Caucasoid and Indo-Asian populations. Interestingly, variation was focused within the RAET1E (ULBP4), RAET1L, and ULBP3 genes, whereas the ULBP1, ULBP2 and RAET1G (ULBP5) genes were highly conserved. These findings suggest that individual NKG2DL alleles have been subject to divergent selective pressures during the migration of Homo sapiens. This information will be of importance in understanding the biology and clinical significance of NKG2DL polymorphism.

  18. Identification of Single Nucleotide Polymorphisms and analysis of Linkage Disequilibrium in sunflower elite inbred lines using the candidate gene approach

    PubMed Central

    Fusari, Corina M; Lia, Verónica V; Hopp, H Esteban; Heinz, Ruth A; Paniego, Norma B

    2008-01-01

    Background Association analysis is a powerful tool to identify gene loci that may contribute to phenotypic variation. This includes the estimation of nucleotide diversity, the assessment of linkage disequilibrium structure (LD) and the evaluation of selection processes. Trait mapping by allele association requires a high-density map, which could be obtained by the addition of Single Nucleotide Polymorphisms (SNPs) and short insertion and/or deletions (indels) to SSR and AFLP genetic maps. Nucleotide diversity analysis of randomly selected candidate regions is a promising approach for the success of association analysis and fine mapping in the sunflower genome. Moreover, knowledge of the distance over which LD persists, in agronomically meaningful sunflower accessions, is important to establish the density of markers and the experimental design for association analysis. Results A set of 28 candidate genes related to biotic and abiotic stresses were studied in 19 sunflower inbred lines. A total of 14,348 bp of sequence alignment was analyzed per individual. In average, 1 SNP was found per 69 nucleotides and 38 indels were identified in the complete data set. The mean nucleotide polymorphism was moderate (θ = 0.0056), as expected for inbred materials. The number of haplotypes per region ranged from 1 to 9 (mean = 3.54 ± 1.88). Model-based population structure analysis allowed detection of admixed individuals within the set of accessions examined. Two putative gene pools were identified (G1 and G2), with a large proportion of the inbred lines being assigned to one of them (G1). Consistent with the absence of population sub-structuring, LD for G1 decayed more rapidly (r2 = 0.48 at 643 bp; trend line, pooled data) than the LD trend line for the entire set of 19 individuals (r2 = 0.64 for the same distance). Conclusion Knowledge about the patterns of diversity and the genetic relationships between breeding materials could be an invaluable aid in crop improvement

  19. Detection of single-nucleotide polymorphisms with novel leaky surface acoustic wave biosensors, DNA ligation and enzymatic signal amplification.

    PubMed

    Xu, Qinghua; Chang, Kai; Lu, Weiping; Chen, Wei; Ding, Yi; Jia, Shuangrong; Zhang, Kejun; Li, Fake; Shi, Jianfeng; Cao, Liang; Deng, Shaoli; Chen, Ming

    2012-03-15

    This manuscript describes a new technique for detecting single-nucleotide polymorphisms (SNPs) by integrating a leaky surface acoustic wave (LSAW) biosensor, enzymatic DNA ligation and enzymatic signal amplification. In this technique, the DNA target is hybridized with a capture probe immobilized on the surface of a LSAW biosensor. Then, the hybridized sequence is ligated to biotinylated allele-specific detection probe using Taq DNA ligase. The ligation does not take place if there is a single-nucleotide mismatch between the target and the capture probe. The ligated detection probe is transformed into a streptavidin-horseradish peroxidase (SA-HRP) terminal group via a biotin-streptavidin complex. Then, the SA-HRP group catalyzes the polymerization of 3,3-diaminobenzidine (DAB) to form a surface precipitate, thus effectively increasing the sensitivity of detecting surface mass changes and allowing detection of SNPs. Optimal detection conditions were found to be: 0.3 mol/L sodium ion concentration in PBS, pH 7.6, capture probe concentration 0.5 μmol/L and target sequence concentration 1.0 μmol/L. The detection limit was found to be 1 × 10(-12)mol/L. Using this technique, we were able to detect a single-point mutation at nucleotide A2293G in Japanese encephalitis virus.

  20. CYP2B6 gene single-nucleotide polymorphisms in an Italian population sample and relationship with nicotine dependence.

    PubMed

    Riccardi, Laura Natalia; Carano, Francesco; Bini, Carla; Ceccardi, Stefania; Ferri, Gianmarco; Pelotti, Susi

    2015-02-01

    The extensively polymorphic CYP2B6 gene metabolizes endogenous and exogenous compounds, among which are nicotine and bupropion, although its contribution to the systemic metabolism of nicotine still remains controversial. In the present study, the distribution of the CYP2B6 variant and genotype frequencies were analyzed in a sample of 202 Italian individuals who were also invited to answer the Fagerström test for nicotine dependence (FTND), in an effort to assess the involvement of CYP2B6 polymorphisms in nicotine dependence. Eight single-nucleotide polymorphisms of CYP2B6 were tested and seven different variants were identified showing frequencies similar to the European population. The reduced activity of the CYP2B6*6 variant was significantly (p=0.025) distributed among the nicotine-dependent individuals compared to non-nicotine dependents. Also, the CYP2B6*1/*6 genotype achieved statistical significance (p=0.016) within the nicotine-dependent individuals. The high occurrence of CYP2B6*6 carriers among nicotine-dependent individuals may suggest a possible involvement in nicotine dependence, with a potential impact on smoking cessation treatments tailored to the individual smoker's genotype.

  1. Relevance of single-nucleotide polymorphisms in human TLR genes to infectious and inflammatory diseases and cancer.

    PubMed

    Trejo-de la O, A; Hernández-Sancén, P; Maldonado-Bernal, C

    2014-04-01

    Innate and adaptive immune responses in humans have evolved as protective mechanisms against infectious microorganisms. Toll-like receptors (TLRs) have an important role in the recognition of invading microorganisms. TLRs are the first receptors to detect potential pathogens and to initiate the immune response, and they form the crucial link between the innate and adaptive immune responses. TLRs also have an important role in the pathophysiology of infectious and inflammatory diseases. Increasing data suggest that the ability of certain individuals to respond properly to TLR ligands may be impaired by single-nucleotide polymorphisms (SNPs) within TLR genes, resulting in an altered susceptibility to infectious or inflammatory disease that might contribute to the pathogenesis of complex diseases such as cancer. The associations between diseases and SNPs are in the early stage of discovery. Important clinical insights are emerging, and these polymorphisms provide new understanding of common diseases. This review summarizes and discusses the studies that shed light on the relevance of these polymorphisms in human infectious and inflammatory diseases and cancer.

  2. Relationship between polymorphisms of nucleotide excision repair genes and oral cancer risk in Taiwan: evidence for modification of smoking habit.

    PubMed

    Bau, Da-Tian; Tsai, Ming-Hsui; Huang, Chih-Yang; Lee, Cheng-Chun; Tseng, Hsien-Chang; Lo, Yen-Li; Tsai, Yuhsin; Tsai, Fuu-Jen

    2007-12-31

    Inherited polymorphisms in DNA repair genes may be associated with differences in the repair capacity and contribute to individual's susceptibility to smoking-related cancers. Both XPA and XPD encode proteins that are part of the nucleotide excision repair (NER) pathway. In a hospital-based case-control study, we have investigated the influence of XPA A-23G and XPD Lys751Gln polymorphisms on oral cancer risk in a Taiwanese population. In total, 154 patients with oral cancer, and 105 age-matched controls recruited from the Chinese Medical Hospital in Central Taiwan were genotyped. No significant association was found between the heterozygous variant allele (AG), the homozygous variant allele (AA) at XPA A-23G, the heterozygous variant allele (AC), the homozygous variant allele (CC) at XPD Lys751Gln, and oral cancer risk. There was no significant joint effect of XPA A-23G and XPD Lys751Gln on oral cancer risk either. Since XPA and XPD are both NER genes, which are very important in removing tobacco-induced DNA adducts, further stratified analyses of both genotype and smoking habit were performed. We found a synergistic effect of variant genotypes of both XPA and XPD, and smoking status on oral cancer risk. Our results suggest that the genetic polymorphisms are modified by environmental carcinogen exposure status, and combined analyses of both genotype and personal habit record are a better access to know the development of oral cancer and useful for primary prevention and early intervention.

  3. An evaluation of single nucleotide polymorphisms in the human aryl hydrocarbon receptor-interacting protein (AIP) gene.

    PubMed

    Rowlands, J Craig; Urban, Jonathan D; Wikoff, Daniele Staskal; Budinsky, Robert A

    2011-01-01

    The human aryl hydrocarbon receptor (AHR) is a protein for which there is little evidence of polymorphic variability of functional consequence. It has been hypothesized that potential variability in dioxin sensitivity may be due to polymorphisms in AHR-associated proteins, such as the human AHR-interacting protein (AIP). There are limited data on AIP single nucleotide polymorphisms (SNPs) with potential functional consequences. We sequenced 103 human DNA samples within the open reading frames of the AIP locus using samples from six ethnic populations to further characterize AIP SNPs. Eight exonic SNPs were identified at the AIP locus, including three novel SNPs: T48T, L212L, and V302V. Combined with prior reports, there are now a total of 14 exonic SNPs that have been identified within AIP. Of these, six are non-synonymous and are therefore of potential functional importance, though only two of these (Q228K and A276V) were detected in the current study. The functional consequences of Q228K and A276V are unknown, although functional evidence from AIP SNPs associated with congenital pituitary tumors suggests that such amino acid changes are likely to have no effect or to decrease, rather than increase, sensitivity to dioxins. To date, no non-synonymous SNPs have been detected in the AHR-binding region of AIP.

  4. Relationship between single nucleotide polymorphism of glycogen synthase gene of Pacific oyster Crassostrea gigas and its glycogen content

    NASA Astrophysics Data System (ADS)

    Liu, Siwei; Li, Qi; Yu, Hong; Kong, Lingfeng

    2017-02-01

    Glycogen is important not only for the energy supplementary of oysters, but also for human consumption. High glycogen content can improve the stress survival of oyster. A key enzyme in glycogenesis is glycogen synthase that is encoded by glycogen synthase gene GYS. In this study, the relationship between single nucleotide polymorphisms (SNPs) in coding regions of Crassostrea gigas GYS (Cg-GYS) and individual glycogen content was investigated with 321 individuals from five full-sib families. Single-strand conformation polymorphism (SSCP) procedure was combined with sequencing to confirm individual SNP genotypes of Cg-GYS. Least-square analysis of variance was performed to assess the relationship of variation in glycogen content of C. gigas with single SNP genotype and SNP haplotype. As a consequence, six SNPs were found in coding regions to be significantly associated with glycogen content ( P < 0.01), from which we constructed four main haplotypes due to linkage disequilibrium. Furthermore, the most effective haplotype H2 (GAGGAT) had extremely significant relationship with high glycogen content ( P < 0.0001). These findings revealed the potential influence of Cg-GYS polymorphism on the glycogen content and provided molecular biological information for the selective breeding of good quality traits of C. gigas.

  5. Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids.

    PubMed

    Montanari, Sara; Saeed, Munazza; Knäbel, Mareike; Kim, YoonKyeong; Troggio, Michela; Malnoy, Mickael; Velasco, Riccardo; Fontana, Paolo; Won, KyungHo; Durel, Charles-Eric; Perchepied, Laure; Schaffer, Robert; Wiedow, Claudia; Bus, Vincent; Brewer, Lester; Gardiner, Susan E; Crowhurst, Ross N; Chagné, David

    2013-01-01

    We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear ('Old Home'×'Louise Bon Jersey') and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality.

  6. Nucleotide polymorphism in colicin E2 gene clusters: evidence for nonneutral evolution.

    PubMed

    Tan, Y; Riley, M A

    1997-06-01

    To explore the molecular mechanisms behind the diversification of colicin gene clusters, we examined DNA sequence polymorphism for the colicin gene clusters of 14 colicin E2 (ColE2) plasmids obtained from natural isolates of Escherichia coli. Two types of ColE2 plasmids are revealed, with type II gene clusters generated by recombination between type I ColE2 and ColE7 gene clusters. The levels and patterns of DNA polymorphism are different between the two types. Type I polymorphism is distributed evenly along the gene cluster, while type II accumulates polymorphism at an elevated rate in the 5' end of the colicin gene. These differences may be explained by recombinational origins of type II gene clusters. The pattern of divergence between the ColE2 gene cluster and its close relative ColE9 is not correlated with the pattern of polymorphism within ColE2, suggesting that this gene cluster is not evolving in a neutral fashion. A statistical test confirms significant departures from the predictions of neutrality. These data lend further support to the hypothesis that colicin gene clusters may evolve under the influence of nonneutral forces.

  7. POLYMORPHISMS IN THE DNA NUCLEOTIDE EXCISION REPAIR GENES AND LUNG CANCER RISK IN XUAN WEI, CHINA

    EPA Science Inventory

    The lung cancer mortality rate in Xuan Wei County, China is among the highest in the country and has been etiologically attributed to exposure to indoor smoky coal emissions that contain very high levels of polycyclic aromatic hydrocarbons (PAHs). Nucleotide excision repair (NE...

  8. Association of single nucleotide polymorphisms in the MVP gene with platinum resistance and survival in patients with epithelial ovarian cancer

    PubMed Central

    ZHAO, YA-NAN; HE, DONG-NING; WANG, YA-DI; LI, JUN-JIE; HA, MIN-WEN

    2016-01-01

    The human major vault protein (MVP) has been linked to the development of multidrug resistance in cancer cells, and overexpression of MVP has been observed in ovarian cancer tissues. The aim of the present study was to investigate the association between single nucleotide polymorphisms (SNPs) in the MVP gene and the tumor response to platinum-based chemotherapy and survival of patients affected by epithelial ovarian cancer (EOC), in addition to confirm whether tetra-primer amplification-refractory mutation system (ARMS)-polymerase chain reaction (PCR) is an accurate genotyping method. For this purpose, two polymorphisms in the MVP gene, namely reference SNP (rs)1057451 and rs4788186, were selected from the data obtained by the International haplotype map (HapMap) Project regarding Chinese Han population, and were evaluated by tetra-primer ARMS-PCR. Upon validation by DNA sequencing, the association of these polymorphisms with platinum resistance, progression-free survival (PFS) and overall survival (OS) in patients with EOC was assessed. The results of tetra-primer ARMS-PCR were in agreement with those derived from DNA sequencing. No significant differences were observed between platinum-sensitive and platinum-resistant cohorts in terms of allele and genotype distribution of these two polymorphisms in the MVP gene, which were not associated with PFS or OS. However, a trend toward prolonged PFS was observed in patients carrying the heterozygous AG allele at the rs4788186 locus. These results suggest that rs1057451 and rs4788186 variants in the MVP gene are not associated with favorable therapeutic response to platinum or longer survival in Chinese Han patients affected by EOC. In addition, the data of the present study confirm that tetra-primer ARMS-PCR is a trustworthy and economical genotyping method. PMID:27073578

  9. Single-Nucleotide Polymorphisms of Genes Involved in Repair of Oxidative DNA Damage and the Risk of Recurrent Depressive Disorder.

    PubMed

    Czarny, Piotr; Kwiatkowski, Dominik; Toma, Monika; Gałecki, Piotr; Orzechowska, Agata; Bobińska, Kinga; Bielecka-Kowalska, Anna; Szemraj, Janusz; Berk, Michael; Anderson, George; Śliwiński, Tomasz

    2016-11-20

    BACKGROUND Depressive disorder, including recurrent type (rDD), is accompanied by increased oxidative stress and activation of inflammatory pathways, which may induce DNA damage. This thesis is supported by the presence of increased levels of DNA damage in depressed patients. Such DNA damage is repaired by the base excision repair (BER) pathway. BER efficiency may be influenced by polymorphisms in BER-related genes. Therefore, we genotyped nine single-nucleotide polymorphisms (SNPs) in six genes encoding BER proteins. MATERIAL AND METHODS Using TaqMan, we selected and genotyped the following SNPs: c.-441G>A (rs174538) of FEN1, c.2285T>C (rs1136410) of PARP1, c.580C>T (rs1799782) and c.1196A>G (rs25487) of XRCC1, c.*83A>C (rs4796030) and c.*50C>T (rs1052536) of LIG3, c.-7C>T (rs20579) of LIG1, and c.-468T>G (rs1760944) and c.444T>G (rs1130409) of APEX1 in 599 samples (288 rDD patients and 311 controls). RESULTS We found a strong correlation between rDD and both SNPs of LIG3, their haplotypes, as well as a weaker association with the c.-468T>G of APEXI which diminished after Nyholt correction. Polymorphisms of LIG3 were also associated with early onset versus late onset depression, whereas the c.-468T>G polymorphism showed the opposite association. CONCLUSIONS The SNPs of genes involved in the repair of oxidative DNA damage may modulate rDD risk. Since this is an exploratory study, the results should to be treated with caution and further work needs to be done to elucidate the exact involvement of DNA damage and repair mechanisms in the development of this disease.

  10. Single-Nucleotide Polymorphisms of Genes Involved in Repair of Oxidative DNA Damage and the Risk of Recurrent Depressive Disorder

    PubMed Central

    Czarny, Piotr; Kwiatkowski, Dominik; Toma, Monika; Gałecki, Piotr; Orzechowska, Agata; Bobińska, Kinga; Bielecka-Kowalska, Anna; Szemraj, Janusz; Berk, Michael; Anderson, George; Śliwiński, Tomasz

    2016-01-01

    Background Depressive disorder, including recurrent type (rDD), is accompanied by increased oxidative stress and activation of inflammatory pathways, which may induce DNA damage. This thesis is supported by the presence of increased levels of DNA damage in depressed patients. Such DNA damage is repaired by the base excision repair (BER) pathway. BER efficiency may be influenced by polymorphisms in BER-related genes. Therefore, we genotyped nine single-nucleotide polymorphisms (SNPs) in six genes encoding BER proteins. Material/Methods Using TaqMan, we selected and genotyped the following SNPs: c.-441G>A (rs174538) of FEN1, c.2285T>C (rs1136410) of PARP1, c.580C>T (rs1799782) and c.1196A>G (rs25487) of XRCC1, c.*83A>C (rs4796030) and c.*50C>T (rs1052536) of LIG3, c.-7C>T (rs20579) of LIG1, and c.-468T>G (rs1760944) and c.444T>G (rs1130409) of APEX1 in 599 samples (288 rDD patients and 311 controls). Results We found a strong correlation between rDD and both SNPs of LIG3, their haplotypes, as well as a weaker association with the c.-468T>G of APEXI which diminished after Nyholt correction. Polymorphisms of LIG3 were also associated with early onset versus late onset depression, whereas the c.-468T>G polymorphism showed the opposite association. Conclusions The SNPs of genes involved in the repair of oxidative DNA damage may modulate rDD risk. Since this is an exploratory study, the results should to be treated with caution and further work needs to be done to elucidate the exact involvement of DNA damage and repair mechanisms in the development of this disease. PMID:27866211

  11. Single nucleotide polymorphisms in toll-like receptor genes and case-control association studies with bovine tuberculosis

    PubMed Central

    Bhaladhare, Ashish; Sharma, Deepak; Kumar, Amit; Sonwane, Arvind; Chauhan, Anuj; Singh, Ranvir; Kumar, Pushpendra; Yadav, Ramji; Baqir, Mohd; Bhushan, Bharat; Prakash, Om

    2016-01-01

    Aim: Toll-like receptor 2 (TLR2) and TLR4 genes play critical roles in host recognition of Mycobacterium bovis infection and initiation of innate and adaptive immune response. The present study was aimed at exploring the association of seven single nucleotide polymorphisms (SNPs) in TLR2 and TLR4 genes with susceptibility/resistance against bovine tuberculosis (bTB) infection in cattle. Materials and Methods: A case-control resource population of 35 positive and 45 negative animals was developed after screening with single intradermal tuberculin test for bTB. Resource population was screened for SNPs in TLR2 and TLR4 genes using polymerase chain reaction-restriction fragment length polymorphism. The PROC LOGISTIC procedure of SAS 9.3 was used to find an association of allelic and genotypic frequencies with bTB. Results: In TLR2 gene, two of SNPs under study (rs55617172 and rs68268253) revealed polymorphism while in the case of TLR4 gene all four SNPs under investigation (rs8193041, rs207836014, rs8193060, and rs8193069) were found to be polymorphic in case-control population. SNP locus rs55617172 in TLR2 gene was found significantly (p<0.01) associated with susceptibility/resistance to TB in cattle. Conclusion: These findings indicate the presence of SNPs in TLR2 and TLR4 genes in our resource population. Upon validation in independent, large resource population and following biological characterization, SNP rs55617172 can be incorporated in marker panel for selection of animals with greater resistance to bTB. PMID:27284220

  12. Using PCR-RFLP Technology to Teach Single Nucleotide Polymorphism for Undergraduates

    ERIC Educational Resources Information Center

    Zhang, Bo; Wang, Yan; Xu, Xiaofeng; Guan, Xingying; Bai, Yun

    2013-01-01

    Recent studies indicated that the aberrant gene expression of peroxiredoxin-6 (prdx6) was found in various kinds of cancers. Because of its biochemical function and gene expression pattern in cancer cells, the association between genetic polymorphism of Prdx6 and cancer onset is interesting. In this report, we have developed and implemented a…

  13. TLR7 Gln11Leu single nucleotide polymorphism and susceptibility to cutaneous melanoma

    PubMed Central

    ELEFANTI, LISA; SACCO, GIORGIA; STAGNI, CAMILLA; RASTRELLI, MARCO; MENIN, CHIARA; RUSSO, IRENE; ALAIBAC, MAURO

    2016-01-01

    Cutaneous melanoma is a life-threatening skin cancer. Its incidence is rapidly increasing, and early diagnosis is the main factor able to improve its poor prognosis. Toll-like receptors (TLRs) are transmembrane glycoproteins that recognize pathogen- and damage-associated molecular patterns, against which TLRs activate the innate immune response and initiate the adaptive immune response. Genetic variations of these receptors may alter the immune system, and are involved in evolution and susceptibility to various diseases, including cancer. The aim of the present study was to evaluate whether the presence of TLR7 glutamine (Gln) 11 leucine (Leu) polymorphism confers an increased susceptibility to cutaneous melanoma. For that purpose, a case-control study was performed with 182 melanoma cases and 89 controls. To highlight the possible association between the aforementioned polymorphism and the susceptibility to melanoma, 93 cases of single melanoma and 89 cases of multiple primary melanoma (MPM) were compared in the present study. Since the TLR7 gene is localized on the chromosome X, the allelic frequency of the Gln11Leu polymorphism was analyzed separately in males and females. The distribution of allele frequencies between melanoma cases and controls (P=0.245) and between single melanoma and MPM cases (P=0.482) was not significant. Therefore, the present results do not suggest an association between TLR7 Gln11Leu polymorphism and susceptibility to cutaneous melanoma. Further studies are required to analyze the influence of other TLR polymorphisms on the susceptibility to malignant melanoma and the involvement of innate immunity in this malignancy. PMID:27347137

  14. IL28B single-nucleotide polymorphism rs12979860 is associated with spontaneous HIV control in white subjects.

    PubMed

    Machmach, Kawthar; Abad-Molina, Christina; Romero-Sánchez, María C; Abad, María A; Ferrando-Martínez, Sara; Genebat, Miguel; Pulido, Ildefonso; Viciana, Pompeyo; González-Escribano, María F; Leal, Manuel; Ruiz-Mateos, Ezequiel

    2013-02-15

    The single-nucleotide polymorphism (SNP) rs12979860 near the IL28B gene has been associated with the spontaneous clearance of hepatitis C virus. We sought to determine whether this SNP could be associated with the spontaneous control of human immunodeficiency virus (HIV) infection. We studied the prevalence of the IL28B CC genotype among 53 white HIV controllers, compared with the prevalence among 389 HIV-infected noncontrollers. We found that the IL28B CC genotype was independently associated with spontaneous HIV control (odds ratio [OR], 2.669; P = .017), as were female sex (OR, 7.077; P ≤ .001) and the presence of HLA-B57 and/or B27 (OR, 3.080; P = .017). This result supports the idea that common host mechanisms are involved in the spontaneous control of these 2 chronic infections.

  15. Evidence from single nucleotide polymorphism analyses of ADVANCE study demonstrates EFNB3 as a hypertension risk gene

    PubMed Central

    Tremblay, Johanne; Wang, Yujia; Raelson, John; Marois-Blanchet, Francois-Christophe; Wu, Zenghui; Luo, Hongyu; Bradley, Edward; Chalmers, John; Woodward, Mark; Harrap, Stephen; Hamet, Pavel; Wu, Jiangping

    2017-01-01

    EPH kinases and their ligands, ephrins (EFNs), have vital and diverse biological functions. We recently reported that Efnb3 gene deletion results in hypertension in female but not male mice. These data suggest that EFNB3 regulates blood pressure in a sex- and sex hormone-dependent way. In the present study, we conducted a human genetic study to assess the association of EFNB3 single nucleotide polymorphisms with human hypertension risks, using 3,448 patients with type 2 diabetes from the ADVANCE study (Action in Diabetes and Vascular Disease: Peterax and Diamicron MR Controlled Evaluation). We have observed significant association between 2 SNPs in the 3′ untranslated region or within the adjacent region just 3′ of the EFNB3 gene with hypertension, corroborating our findings from the mouse model. Thus, our investigation has shown that EFNB3 is a hypertension risk gene in certain individuals. PMID:28272517

  16. Non-Invasive Prenatal Detection of Trisomy 13 Using a Single Nucleotide Polymorphism- and Informatics-Based Approach

    PubMed Central

    Hall, Megan P.; Hill, Matthew; Zimmermann, Bernhard; Sigurjonsson, Styrmir; Westemeyer, Margaret; Saucier, Jennifer; Demko, Zachary; Rabinowitz, Matthew

    2014-01-01

    Purpose To determine how a single nucleotide polymorphism (SNP)- and informatics-based non-invasive prenatal aneuploidy test performs in detecting trisomy 13. Methods Seventeen trisomy 13 and 51 age-matched euploid samples, randomly selected from a larger cohort, were analyzed. Cell-free DNA was isolated from maternal plasma, amplified in a single multiplex polymerase chain reaction assay that interrogated 19,488 SNPs covering chromosomes 13, 18, 21, X, and Y, and sequenced. Analysis and copy number identification involved a Bayesian-based maximum likelihood statistical method that generated chromosome- and sample-specific calculated accuracies. Results Of the samples that passed a stringent DNA quality threshold (94.1%), the algorithm correctly identified 15/15 trisomy 13 and 49/49 euploid samples, for 320/320 correct copy number calls. Conclusions This informatics- and SNP-based method accurately detects trisomy 13-affected fetuses non-invasively and with high calculated accuracy. PMID:24805989

  17. Mitochondrial DNA in the sea urchin Arbacia lixula: nucleotide sequence differences between two polymorphic molecules indicate asymmetry of mutations.

    PubMed

    De Giorgi, C; De Luca, F; Saccone, C

    1991-07-22

    Two polymorphic forms of mitochondrial DNA (mtDNA) extracted from Arbacia lixula eggs were cloned and the nucleotide sequences of specific regions determined. A comparison of the sequences of the sense strand of the two molecules demonstrates that all the differences are transitions and only of the A----G type. A change such as G----A (or A----G) on the sense mtDNA strand results from either a direct G----A (or A----G) mutation on that strand or a C----T (or T----C) on the complementary strand. None of the C----T (or T----C) changes were detected on the sense strand, which implies that the A----G mutation bias on the sense strand is not reversed for the other strand. Our observation indicates the existence of mechanisms acting asymmetrically on the two mtDNA strands, possibly during mtDNA replication.

  18. SNP@Domain: a web resource of single nucleotide polymorphisms (SNPs) within protein domain structures and sequences

    PubMed Central

    Han, Areum; Kang, Hyo Jin; Cho, Yoobok; Lee, Sunghoon; Kim, Young Joo; Gong, Sungsam

    2006-01-01

    The single nucleotide polymorphisms (SNPs) in conserved protein regions have been thought to be strong candidates that alter protein functions. Thus, we have developed SNP@Domain, a web resource, to identify SNPs within human protein domains. We annotated SNPs from dbSNP with protein structure-based as well as sequence-based domains: (i) structure-based using SCOP and (ii) sequence-based using Pfam to avoid conflicts from two domain assignment methodologies. Users can investigate SNPs within protein domains with 2D and 3D maps. We expect this visual annotation of SNPs within protein domains will help scientists select and interpret SNPs associated with diseases. A web interface for the SNP@Domain is freely available at and from . PMID:16845090

  19. In silico model-driven assessment of the effects of single nucleotide polymorphisms (SNPs) on human red blood cell metabolism.

    PubMed

    Jamshidi, Neema; Wiback, Sharon J; Palsson B, Bernhard Ø

    2002-11-01

    The completion of the human genome project and the construction of single nucleotide polymorphism (SNP) maps have lead to significant efforts to find SNPs that can be linked to pathophysiology. In silico models of complete biochemical reaction networks relate a cell's individual reactions to the function of the entire network. Sequence variations can in turn be related to kinetic properties of individual enzymes, thus allowing an in silico model-driven assessment of the effects of defined SNPs on overall cellular functions. This process is applied to defined SNPs in two key enzymes of human red blood cell metabolism: glucose-6-phosphate dehydrogenase and pyruvate kinase. The results demonstrate the utility of in silico models in providing insight into differences between red cell function in patients with chronic and nonchronic anemia. In silico models of complex cellular processes are thus likely to aid in defining and understanding key SNPs in human pathophysiology.

  20. The Clinical Utility of a Single-Nucleotide Polymorphism Microarray in Patients With Epilepsy at a Tertiary Medical Center.

    PubMed

    Hrabik, Sarah A; Standridge, Shannon M; Greiner, Hansel M; Neilson, Derek E; Pilipenko, Valentina V; Zimmerman, Sarah L; Connor, Jessica A; Spaeth, Christine G

    2015-11-01

    Microarray testing has revolutionized clinical cytogenetics, as it provides a significantly higher resolution and greater clinical yield than karyotype analysis. This study assessed the clinical utility of single-nucleotide polymorphism microarray in patients with epilepsy. Study subjects were patients between the ages of birth to 23 years who were diagnosed with epilepsy and had a microarray performed at Cincinnati Children's Hospital Medical Center. Statistical analysis explored the association of microarray results and brain magnetic resonance imaging (MRI), seizure type, and structural malformations. Approximately 17.7% (26/147) of participants had an abnormal microarray as defined by laboratory guidelines. There were no differences in frequency of abnormal brain MRI or seizure type between the abnormal and normal microarray groups. There was a higher prevalence of musculoskeletal malformations (P < .0035) and cardiovascular malformations (P < .0081) in subjects with abnormal microarrays. Clinicians should consider microarray analysis in individuals who have epilepsy, especially in combination with musculoskeletal malformation or cardiovascular malformation.

  1. A gold nanoparticles-based colorimetric test to detect single nucleotide polymorphisms for improvement of personalized therapy of psoriasis

    NASA Astrophysics Data System (ADS)

    Marsella, Alessandra; Valentini, Paola; Tarantino, Paolo; Congedo, Maurizio; Pompa, Pier Paolo

    2016-04-01

    We report a simple, rapid and low-cost test, based on gold nanoparticles, for the naked-eye colorimetric detection of a signature of single nucleotide polymorphisms (SNPs) relevant for the personalized medicine of psoriasis patients. We validated the colorimetric assay on real-world DNA samples from a cohort of 30 psoriasis patients and we compared the results, in double-blind, with those obtained with two state-of-the-art instrumental techniques, namely reverse dot blotting and direct sequencing, finding 100% agreement. We demonstrated high accuracy, sensitivity and specificity of the colorimetric test that can be easily adapted for the genotypization of different SNPs, important for the pharmacogenomics of various diseases, and in other fields, such as food traceability and population structure analysis.

  2. Single nucleotide polymorphisms typing of Mycobacterium leprae reveals focal transmission of leprosy in high endemic regions of India.

    PubMed

    Lavania, M; Jadhav, R S; Turankar, R P; Chaitanya, V S; Singh, M; Sengupta, U

    2013-11-01

    Earlier studies indicate that genotyping of Mycobaterium leprae based on single-nucleotide polymorphisms (SNPs) is useful for analysis of the global spread of leprosy. In the present study, we investigated the diversity of M. leprae at eight SNP loci using 180 clinical isolates obtained from patients with leprosy residing mainly in Delhi and Purulia (West Bengal) regions. It was observed that the frequency of SNP type 1 and subtype D was most predominant in the Indian population. Further, the SNP type 2 subtype E was noted only from East Delhi region and SNP type 2 subtype G was noted only from the nearby areas of Hoogly district of West Bengal. These results indicate the occurrence of focal transmission of M. leprae infection and demonstrate that analysis by SNP typing has great potential to help researchers in understanding the transmission of M. leprae infection in the community.

  3. A comprehensive experiment for molecular biology: Determination of single nucleotide polymorphism in human REV3 gene using PCR-RFLP.

    PubMed

    Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui

    2017-02-01

    Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of DNA polymerase ζ and SNPs in this gene are associated with altered susceptibility to cancer. This newly designed experiment is composed of three parts, including genomic DNA extraction, gene amplification by PCR, and genotyping by RFLP. By combining these activities, the students are not only able to learn a series of biotechniques in molecular biology, but also acquire the ability to link the learned knowledge with practical applications. This comprehensive experiment will help the medical students improve the conceptual understanding of SNP and the technical understanding of SNP detection. © 2017 by The International Union of Biochemistry and Molecular Biology, 2017.

  4. Sub-micro-liter Electrochemical Single-Nucleotide-Polymorphism Detector for Lab-on-a-Chip System

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroyuki; Fiorini, Paolo; Peeters, Sara; Majeed, Bivragh; Sterken, Tom; de Beeck, Maaike Op; Hayashi, Miho; Yaku, Hidenobu; Yamashita, Ichiro

    2012-04-01

    A sub-micro-liter single-nucleotide-polymorphism (SNP) detector for lab-on-a-chip applications is developed. This detector enables a fast, sensitive, and selective SNP detection directly from human blood. The detector is fabricated on a Si substrate by a standard complementary metal oxide semiconductor/micro electro mechanical systems (CMOS/MEMS) process and Polydimethylsiloxane (PDMS) molding. Stable and reproducible measurements are obtained by implementing an on-chip Ag/AgCl electrode and encapsulating the detector. The detector senses the presence of SNPs by measuring the concentration of pyrophosphoric acid generated during selective DNA amplification. A 0.5-µL-volume detector enabled the successful performance of the typing of a SNP within the ABO gene using human blood. The measured sensitivity is 566 pA/µM.

  5. Direct determination of single nucleotide polymorphism haplotype of NFKBIL1 promoter polymorphism by DNA conformation analysis and its application to association study of chronic inflammatory diseases.

    PubMed

    Shibata, Hiroki; Yasunami, Michio; Obuchi, Nobuhisa; Takahashi, Megumi; Kobayashi, Yasushi; Numano, Fujio; Kimura, Akinori

    2006-01-01

    We previously revealed that one of the human leukocyte antigen-linked susceptibility genes for Takayasu's arteritis (TA) was mapped between TNFA and MICB loci and that -63T allele of NFKBIL1, which is between TNFA and MICB loci, was associated with rheumatoid arthritis (RA) in the Japanese population. We have developed a novel typing method based on reference strand-mediated conformation analysis for the upstream sequence of the NFKBIL1 gene, where -422 (T)8/(T)9, -325 C/G, -263 A/G, and -63 T/A polymorphisms were found. Upon the analysis of the patients with TA (n = 84), those with RA (n = 120), and healthy control subjects (n = 217), five common haplotypes named IKBLp*01 through IKBLp*05 were found in the Japanese population. The frequency of IKBLp*03 was significantly increased in the patient with TA (57.1% vs 35.0%, giving an odds ratio of 2.47). In addition, the frequency of IKBLp*01, but not that of other -63T-bearing alleles, was increased in the patients with RA (73.3% vs 58.1%, giving an odds ratio of 1.99), suggesting that the susceptibility to RA was conferred not by -63T alone but by combination of single nucleotide polymorphisms in the NFKBIL1 promoter. A higher promoter activity associated with IKBLp*03 and a lower activity associated with IKBLp*01 may contribute to the susceptibility to TA and RA, respectively.

  6. Genome-Wide Divergence and Linkage Disequilibrium Analyses for Capsicum baccatum Revealed by Genome-Anchored Single Nucleotide Polymorphisms.

    PubMed

    Nimmakayala, Padma; Abburi, Venkata L; Saminathan, Thangasamy; Almeida, Aldo; Davenport, Brittany; Davidson, Joshua; Reddy, C V Chandra Mohan; Hankins, Gerald; Ebert, Andreas; Choi, Doil; Stommel, John; Reddy, Umesh K

    2016-01-01

    Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to characterize population structure and species domestication of these two important incompatible cultivated pepper species. Estimated mean nucleotide diversity (π) and Tajima's D across various chromosomes revealed biased distribution toward negative values on all chromosomes (except for chromosome 4) in cultivated C. baccatum, indicating a population bottleneck during domestication of C. baccatum. In contrast, C. annuum chromosomes showed positive π and Tajima's D on all chromosomes except chromosome 8, which may be because of domestication at multiple sites contributing to wider genetic diversity. For C. baccatum, 13,129 SNPs were available, with minor allele frequency (MAF) ≥0.05; PCA of the SNPs revealed 283 C. baccatum accessions grouped into 3 distinct clusters, for strong population structure. The fixation index (FST ) between domesticated C. annuum and C. baccatum was 0.78, which indicates genome-wide divergence. We conducted extensive linkage disequilibrium (LD) analysis of C. baccatum var. pendulum cultivars on all adjacent SNP pairs within a chromosome to identify regions of high and low LD interspersed with a genome-wide average LD block size of 99.1 kb. We characterized 1742 haplotypes containing 4420 SNPs (range 9-2 SNPs per haplotype). Genome-wide association study (GWAS) of peduncle length, a trait that differentiates wild and domesticated C. baccatum types, revealed 36 significantly associated genome-wide SNPs. Population structure, identity by state (IBS) and LD patterns across the genome will be of potential use for future GWAS of economically important traits in C. baccatum peppers.

  7. Methodology for single nucleotide polymorphism selection in promoter regions for clinical use. An example of its applicability.

    PubMed

    Marques, Herlander; Freitas, José; Medeiros, Rui; Longatto-Filho, Adhemar

    2016-01-01

    Genetic variability in humans can explain many differences in disease risk factors. Polymorphism-related studies focus mainly on the single nucleotide polymorphisms (SNPs) of coding regions of the genes. SNPs on DNA binding motifs of the promoter region have been less explored. On a recent study of SNPs in patients with non-Hodgkin lymphomas we faced the problem of SNP selection from promoter regions and developed a practical methodology for clinical studies. The process consists in identifying SNPs in the coding and promoter regions of the antigen-processing system using the 'dbSNP' database. With the 'HapMap' program, we select SNPs with frequencies >20% in Caucasian populations. For coding regions, we sought biologically and clinically relevant SNPs described in the literature. For the promoter regions, we determined their chromosomal location on 'QiagenSABioscience' site database. The nucleotide sequence of ancestral and variant alleles is available in the 'dbSNP'. These sequences were used in 'Promoter TESS' to determine binding differences of transcription factors. Each sequence may have affinity to different TFs. Thus, SNP selection on the promoter regions was based in the differences on TF binding pattern between the old and the new allele. The potential clinical relevance of the new TFs was also evaluated before the final selection. With this approach, we found that almost half of the relevant SNP fall within the promoter region. In conclusion, we were able to develop a methodology of oriented selection of promoter regions of human genes, comparing the TF with affinity to the ancestral allele with the TF to a variant allele. We selected those SNPs that change the TF's affinity to a pattern with functional significance.

  8. Genome-Wide Divergence and Linkage Disequilibrium Analyses for Capsicum baccatum Revealed by Genome-Anchored Single Nucleotide Polymorphisms

    PubMed Central

    Nimmakayala, Padma; Abburi, Venkata L.; Saminathan, Thangasamy; Almeida, Aldo; Davenport, Brittany; Davidson, Joshua; Reddy, C. V. Chandra Mohan; Hankins, Gerald; Ebert, Andreas; Choi, Doil; Stommel, John; Reddy, Umesh K.

    2016-01-01

    Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to characterize population structure and species domestication of these two important incompatible cultivated pepper species. Estimated mean nucleotide diversity (π) and Tajima's D across various chromosomes revealed biased distribution toward negative values on all chromosomes (except for chromosome 4) in cultivated C. baccatum, indicating a population bottleneck during domestication of C. baccatum. In contrast, C. annuum chromosomes showed positive π and Tajima's D on all chromosomes except chromosome 8, which may be because of domestication at multiple sites contributing to wider genetic diversity. For C. baccatum, 13,129 SNPs were available, with minor allele frequency (MAF) ≥0.05; PCA of the SNPs revealed 283 C. baccatum accessions grouped into 3 distinct clusters, for strong population structure. The fixation index (FST) between domesticated C. annuum and C. baccatum was 0.78, which indicates genome-wide divergence. We conducted extensive linkage disequilibrium (LD) analysis of C. baccatum var. pendulum cultivars on all adjacent SNP pairs within a chromosome to identify regions of high and low LD interspersed with a genome-wide average LD block size of 99.1 kb. We characterized 1742 haplotypes containing 4420 SNPs (range 9–2 SNPs per haplotype). Genome-wide association study (GWAS) of peduncle length, a trait that differentiates wild and domesticated C. baccatum types, revealed 36 significantly associated genome-wide SNPs. Population structure, identity by state (IBS) and LD patterns across the genome will be of potential use for future GWAS of economically important traits in C. baccatum peppers. PMID:27857720

  9. Methodology for single nucleotide polymorphism selection in promoter regions for clinical use. An example of its applicability

    PubMed Central

    Marques, Herlander; Freitas, José; Medeiros, Rui; Longatto-Filho, Adhemar

    2016-01-01

    Genetic variability in humans can explain many differences in disease risk factors. Polymorphism-related studies focus mainly on the single nucleotide polymorphisms (SNPs) of coding regions of the genes. SNPs on DNA binding motifs of the promoter region have been less explored. On a recent study of SNPs in patients with non-Hodgkin lymphomas we faced the problem of SNP selection from promoter regions and developed a practical methodology for clinical studies. The process consists in identifying SNPs in the coding and promoter regions of the antigen-processing system using the ‘dbSNP’ database. With the ‘HapMap’ program, we select SNPs with frequencies >20% in Caucasian populations. For coding regions, we sought biologically and clinically relevant SNPs described in the literature. For the promoter regions, we determined their chromosomal location on ‘QiagenSABioscience’ site database. The nucleotide sequence of ancestral and variant alleles is available in the ‘dbSNP’. These sequences were used in ‘Promoter TESS’ to determine binding differences of transcription factors. Each sequence may have affinity to different TFs. Thus, SNP selection on the promoter regions was based in the differences on TF binding pattern between the old and the new allele. The potential clinical relevance of the new TFs was also evaluated before the final selection. With this approach, we found that almost half of the relevant SNP fall within the promoter region. In conclusion, we were able to develop a methodology of oriented selection of promoter regions of human genes, comparing the TF with affinity to the ancestral allele with the TF to a variant allele. We selected those SNPs that change the TF’s affinity to a pattern with functional significance. PMID:27766139

  10. African American-preponderant single nucleotide polymorphisms (SNPs) and risk of breast cancer

    PubMed Central

    Kato, Ikuko; Cichon, Michelle; Yee, Cecilia L.; Land, Susan; Korczak, Jeannette F.

    2009-01-01

    Background African American women more often present with more aggressive types of breast cancer than Caucasian women, but little is known whether genetic polymorphisms specific to or disproportionate in African Americans are associated with their risk of breast cancer. Methods A population-based case-control study was conducted including 194 cases identified through the Metropolitan Detroit Cancer Surveillance System and 189 controls recruited through random digit dialing to examine polymorphisms in genes involved in estrogen metabolism and action. Results The African American-specific CYP1A1 5639C allele was associated with an increased risk of breast cancer (odds ratio(OR)=2.34, 95%confidence interval (CI): 1.23–4.44) and this association with the CYP1A1 5639 locus was dependent on another polymorphism in the CYP3A4 gene (P=0.043 for the interaction). In addition, African American-predominant CYP1B1 432 Val allele was significantly more often found in the cases than in the controls overall and the HSD17B1 312 Gly allele was specifically associated with premenopausal breast cancer risk (OR=3.00, 95% CI: 1.29–6.99). Conclusion These observations need to be confirmed in larger studies due to the limited statistical power of the study based on a small number of cases. PMID:19679043

  11. Sensitive measurement of single-nucleotide polymorphism-induced changes of RNA conformation: application to disease studies.

    PubMed

    Salari, Raheleh; Kimchi-Sarfaty, Chava; Gottesman, Michael M; Przytycka, Teresa M

    2013-01-07

    Single-nucleotide polymorphisms (SNPs) are often linked to critical phenotypes such as diseases or responses to vaccines, medications and environmental factors. However, the specific molecular mechanisms by which a causal SNP acts is usually not obvious. Changes in RNA secondary structure emerge as a possible explanation necessitating the development of methods to measure the impact of single-nucleotide variation on RNA structure. Despite the recognition of the importance of considering the changes in Boltzmann ensemble of RNA conformers in this context, a formal method to perform directly such comparison was lacking. Here, we solved this problem and designed an efficient method to compute the relative entropy between the Boltzmann ensembles of the native and a mutant structure. On the basis of this theoretical progress, we developed a software tool, remuRNA, and investigated examples of its application. Comparing the impact of common SNPs naturally occurring in populations with the impact of random point mutations, we found that structural changes introduced by common SNPs are smaller than those introduced by random point mutations. This suggests a natural selection against mutations that significantly change RNA structure and demonstrates, surprisingly, that randomly inserted point mutations provide inadequate estimation of random mutations effects. Subsequently, we applied remuRNA to determine which of the disease-associated non-coding SNPs are potentially related to RNA structural changes.

  12. Silicon Based System for Single-Nucleotide-Polymorphism Detection: Chip Fabrication and Thermal Characterization of Polymerase Chain Reaction Microchamber

    NASA Astrophysics Data System (ADS)

    Majeed, Bivragh; Jones, Ben; Tezcan, Deniz S.; Tutunjyan, Nina; Haspeslagh, Luc; Peeters, Sara; Fiorini, Paolo; de Beeck, Maaike Op; Van Hoof, Chris; Hiraoka, Maki; Tanaka, Hiroyuki; Yamashita, Ichiro

    2012-04-01

    A single nucleotide polymorphism (SNP) is a difference in the DNA sequence of one nucleotide only. We recently proposed a lab-on-a-chip (LoC) system which has the potentiality of fast, sensitive and highly specific SNP detection. Most of the chip components are silicon based and fabricated within a single process. In this paper, the newly developed fabrication method for the silicon chip is presented. The robust and reliable process allows etching structures on the same chip with very different aspect ratios. The characterization of a crucial component to the LoC SNP detector, the microreactor where DNA amplification is performed, is also detailed. Thanks to innovative design and fabrication methodologies, the microreactor has an excellent thermal isolation from the surrounding silicon substrate. This allows for highly localized temperature control. Furthermore, the microreactor is demonstrated to have rapid heating and cooling rates, allowing for rapid amplification of the target DNA fragments. Successful DNA amplification in the microreactor is demonstrated.

  13. Highlights from the Functional Single Nucleotide Polymorphisms Associated with Human Muscle Size and Strength or FAMuSS Study

    PubMed Central

    Pescatello, Linda S.; Devaney, Joseph M.; Hubal, Monica J.; Thompson, Paul D.; Hoffman, Eric P.

    2013-01-01

    The purpose of the Functional Single Nucleotide Polymorphisms Associated with Human Muscle Size and Strength study or FAMuSS was to identify genetic factors that dictated the response of health-related fitness phenotypes to resistance exercise training (RT). The phenotypes examined were baseline muscle strength and muscle, fat, and bone volume and their response to RT. FAMuSS participants were 1300 young (24 years), healthy men (42%) and women (58%) that were primarily of European-American descent. They were genotyped for ~500 polymorphisms and completed the Paffenbarger Physical Activity Questionnaire to assess energy expenditure and time spent in light, moderate, and vigorous intensity habitual physical activity and sitting. Subjects then performed a 12-week progressive, unilateral RT program of the nondominant arm with the dominant arm used as a comparison. Before and after RT, muscle strength was measured with the maximum voluntary contraction and one repetition maximum, while MRI measured muscle, fat, and bone volume. We will discuss the history of how FAMuSS originated, provide a brief overview of the FAMuSS methods, and summarize our major findings regarding genotype associations with muscle strength and size, body composition, cardiometabolic biomarkers, and physical activity. PMID:24455711

  14. Single-nucleotide polymorphisms and activity analysis of the promoter and enhancer of the pig lactase gene.

    PubMed

    Du, Hai-Ting; Zhu, Hong-Yan; Wang, Jia-Mei; Zhao, Wei; Tao, Xiao-Li; Ba, Cai-Feng; Tian, Yu-Min; Su, Yu-Hong

    2014-07-15

    Lactose intolerance in northern Europeans is strongly associated with a single-nucleotide polymorphism (SNP) located 14 kb upstream of the human lactase gene: -13,910 C/T. We examined whether SNPs in the 5' flanking region of the pig lactase gene are similar to those in the human gene and whether these polymorphisms play a functional role in regulating pig lactase gene expression. The 5' flanking region of the lactase gene from several different breeds of pigs was cloned and analyzed for gene regulatory activity of a luciferase reporter gene. One SNP was found in the enhancer region (-797 G/A) and two were found in the promoter region (-308G/C and -301 A/G). The promoter C-308,G-301(Pro-CG) strongly promotes the expression of the lactase gene, but the promoter G-308,A-301(Pro-GA) does not. The enhancer A-797(Enh-A) genotype for Pro-GA can significantly enhance promoter activity, but has an inhibitory effect on Pro-CG. The Enhancer G-797(Enh-G) has a significant inhibitory effect on both promoters. In conclusion, the order of effectiveness on the pig lactase gene is Enh-A+Pro-GA>Enh-A/G+Pro-CG>Enh-G+Pro-GA.

  15. Candidate's single-nucleotide polymorphism predictors of treatment nonresponse to the first anti-TNF inhibitor in ankylosing spondylitis.

    PubMed

    Schiotis, Ruxandra; Sánchez, Alejandra; Escudero, Alejandro; Bartolomé, Nerea; Szczypiorska, Magdalena; Font, Pilar; Martínez, Antonio; Tejedor, Diego; Artieda, Marta; Mulero, Juan; Buzoianu, Anca; Collantes-Estévez, Eduardo

    2014-06-01

    The objective of this study is to identify single-nucleotide polymorphisms (SNPs) predictors of treatment nonresponse to the first anti-TNF-alpha agent in ankylosing spondylitis (AS). Patients were classified as "nonresponders" if they failed to achieve improvement ≥50 % of the initial BASDAI. We selected candidate SNPs previously reported, associated with susceptibility or pathogenesis of AS and with other spondylarthropaties (SpAs). The predictors of nonresponse were modeled with multiple logistic regression. The predictive power of the genetic model of nonresponse to treatment was tested with AUC-ROC. One hundred and twenty-one (121) AS patients fulfilled the inclusion criteria. Of the candidate SNPs tested for association with treatment effectiveness, five independent predictors were identified: rs917997, rs755622, rs1800896, rs3740691, and rs1061622. The genetic model of nonresponse to treatment had a predictive power of 0.77 (95 % CI 0.68-0.86). Our study identified several polymorphisms which could be the useful genetic biomarkers in predicting nonresponse to anti-TNF-alpha therapy.

  16. Identification of single nucleotide polymorphisms (SNPs) in the 16S rRNA gene of foodborne Bacillus spp.

    PubMed

    Fernández-No, I C; Böhme, K; Caamaño-Antelo, S; Barros-Velázquez, J; Calo-Mata, P

    2015-04-01

    The main goal of this work was the identification of single nucleotide polymorphisms (SNPs) in the 16S rRNA gene of foodborne Bacillus spp. that may be useful for typing purposes. These species include, among others, Bacillus cereus, an important pathogenic species involved in food poisoning, and Bacillus licheniformis, Bacillus subtilis and Bacillus pumilus, which are causative agents of food spoilage described as responsible for foodborne disease outbreaks. With this purpose in mind, 52 Bacillus strains isolated from culture collections and fresh and processed food were considered. SNP type "Y" at sites 212 and 476 appeared in the majority of B. licheniformis studied strains. SNP type "R" at site 278 was detected in many strains of the B. subtilis/Bacillus amyloliquefaciens group, while polymorphism "Y" at site 173 was characteristic of the majority of strains of B. cereus/Bacillus thuringiensis group. The analysis of SNPs provided more intra-specific information than phylogenetic analysis in the cases of B. cereus and B. subtilis. Moreover, this study describes novel SNPs that should be considered when designing 16S rRNA-based primers and probes for multiplex-PCR, Real-Time PCR and microarray systems for foodborne Bacillus spp.

  17. A Caenorhabditis elegans wild type defies the temperature-size rule owing to a single nucleotide polymorphism in tra-3.

    PubMed

    Kammenga, Jan E; Doroszuk, Agnieszka; Riksen, Joost A G; Hazendonk, Esther; Spiridon, Laurentiu; Petrescu, Andrei-Jose; Tijsterman, Marcel; Plasterk, Ronald H A; Bakker, Jaap

    2007-03-02

    Ectotherms rely for their body heat on surrounding temperatures. A key question in biology is why most ectotherms mature at a larger size at lower temperatures, a phenomenon known as the temperature-size rule. Since temperature affects virtually all processes in a living organism, current theories to explain this phenomenon are diverse and complex and assert often from opposing assumptions. Although widely studied, the molecular genetic control of the temperature-size rule is unknown. We found that the Caenorhabditis elegans wild-type N2 complied with the temperature-size rule, whereas wild-type CB4856 defied it. Using a candidate gene approach based on an N2 x CB4856 recombinant inbred panel in combination with mutant analysis, complementation, and transgenic studies, we show that a single nucleotide polymorphism in tra-3 leads to mutation F96L in the encoded calpain-like protease. This mutation attenuates the ability of CB4856 to grow larger at low temperature. Homology modelling predicts that F96L reduces TRA-3 activity by destabilizing the DII-A domain. The data show that size adaptation of ectotherms to temperature changes may be less complex than previously thought because a subtle wild-type polymorphism modulates the temperature responsiveness of body size. These findings provide a novel step toward the molecular understanding of the temperature-size rule, which has puzzled biologists for decades.

  18. Integrative Transcriptome, Genome and Quantitative Trait Loci Resources Identify Single Nucleotide Polymorphisms in Candidate Genes for Growth Traits in Turbot.

    PubMed

    Robledo, Diego; Fernández, Carlos; Hermida, Miguel; Sciara, Andrés; Álvarez-Dios, José Antonio; Cabaleiro, Santiago; Caamaño, Rubén; Martínez, Paulino; Bouza, Carmen

    2016-02-17

    Growth traits represent a main goal in aquaculture breeding programs and may be related to adaptive variation in wild fisheries. Integrating quantitative trait loci (QTL) mapping and next generation sequencing can greatly help to identify variation in candidate genes, which can result in marker-assisted selection and better genetic structure information. Turbot is a commercially important flatfish in Europe and China, with available genomic information on QTLs and genome mapping. Muscle and liver RNA-seq from 18 individuals was carried out to obtain gene sequences and markers functionally related to growth, resulting in a total of 20,447 genes and 85,344 single nucleotide polymorphisms (SNPs). Many growth-related genes and SNPs were identified and placed in the turbot genome and genetic map to explore their co-localization with growth-QTL markers. Forty-five SNPs on growth-related genes were selected based on QTL co-localization and relevant function for growth traits. Forty-three SNPs were technically feasible and validated in a wild Atlantic population, where 91% were polymorphic. The integration of functional and structural genomic resources in turbot provides a practical approach for QTL mining in this species. Validated SNPs represent a useful set of growth-related gene markers for future association, functional and population studies in this flatfish species.

  19. Single nucleotide polymorphisms in the bovine MHC region of Japanese Black cattle are associated with bovine leukemia virus proviral load.

    PubMed

    Takeshima, Shin-Nosuke; Sasaki, Shinji; Meripet, Polat; Sugimoto, Yoshikazu; Aida, Yoko

    2017-04-04

    Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, a malignant B cell lymphoma that has spread worldwide and causes serious problems for the cattle industry. The BLV proviral load, which represents the BLV genome integrated into host genome, is a useful index for estimating disease progression and transmission risk. Here, we conducted a genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with BLV proviral load in Japanese Black cattle. The study examined 93 cattle with a high proviral load and 266 with a low proviral load. Three SNPs showed a significant association with proviral load. One SNP was detected in the CNTN3 gene on chromosome 22, and two (which were not in linkage disequilibrium) were detected in the bovine major histocompatibility complex region on chromosome 23. These results suggest that polymorphisms in the major histocompatibility complex region affect proviral load. This is the first report to detect SNPs associated with BLV proviral load in Japanese Black cattle using whole genome association study, and understanding host factors may provide important clues for controlling the spread of BLV in Japanese Black cattle.

  20. Association study of interleukin-1 family and interleukin-6 gene single nucleotide polymorphisms in recurrent aphthous stomatitis.

    PubMed

    Najafi, S; Yousefi, H; Mohammadzadeh, M; Bidoki, A Z; Firouze Moqadam, I; Farhadi, E; Amirzargar, A A; Rezaei, N

    2015-12-01

    Recurrent aphthous stomatitis (RAS) is a common painful, ulcerative oral inflammatory disorder with unknown aetiology. Immune system and aberrant cytokine cascade deemed to be critical in outbreaks of RAS ulcers. Interleukin-1 (IL-1) and IL-6 are the most potent pro-inflammatory cytokines. Single nucleotide polymorphisms (SNPs) of IL-1 and IL-6 genes can affect the secretion of these cytokines. The aim of this study was to investigate the association between RAS and IL-6 and IL-1 in Iranian subjects with minor RAS. Genomic DNA was obtained from 64 Iranian patients with RAS. IL-1α C -889 T, IL-1β C -511 T, IL-1β C +3962 T, IL-1R C pst-I 1970 T, IL-1Ra C Mspa-I11100 T, IL-6 C -174 G and IL-6 A nt +565 G polymorphisms were determined using polymerase chain reaction with sequence-specific primers (PCR-SSP). The frequency of C -174 C genotype in the patients group was significantly different from the healthy control. No other significant differences were found in genotype and alleles frequencies between the two groups. These results indicate that certain SNPs of IL-6 gene at position -174 which located in promoter have association with predisposition of individuals to RAS.

  1. Integrative Transcriptome, Genome and Quantitative Trait Loci Resources Identify Single Nucleotide Polymorphisms in Candidate Genes for Growth Traits in Turbot

    PubMed Central

    Robledo, Diego; Fernández, Carlos; Hermida, Miguel; Sciara, Andrés; Álvarez-Dios, José Antonio; Cabaleiro, Santiago; Caamaño, Rubén; Martínez, Paulino; Bouza, Carmen

    2016-01-01

    Growth traits represent a main goal in aquaculture breeding programs and may be related to adaptive variation in wild fisheries. Integrating quantitative trait loci (QTL) mapping and next generation sequencing can greatly help to identify variation in candidate genes, which can result in marker-assisted selection and better genetic structure information. Turbot is a commercially important flatfish in Europe and China, with available genomic information on QTLs and genome mapping. Muscle and liver RNA-seq from 18 individuals was carried out to obtain gene sequences and markers functionally related to growth, resulting in a total of 20,447 genes and 85,344 single nucleotide polymorphisms (SNPs). Many growth-related genes and SNPs were identified and placed in the turbot genome and genetic map to explore their co-localization with growth-QTL markers. Forty-five SNPs on growth-related genes were selected based on QTL co-localization and relevant function for growth traits. Forty-three SNPs were technically feasible and validated in a wild Atlantic population, where 91% were polymorphic. The integration of functional and structural genomic resources in turbot provides a practical approach for QTL mining in this species. Validated SNPs represent a useful set of growth-related gene markers for future association, functional and population studies in this flatfish species. PMID:26901189

  2. Identification of a New Single-nucleotide Polymorphism within the Apolipoprotein A5 Gene, Which is Associated with Metabolic Syndrome

    PubMed Central

    Salehi, Samaneh; Emadi-Baygi, Modjtaba; Rezaei, Majdaddin; Kelishadi, Roya; Nikpour, Parvaneh

    2017-01-01

    Background: Metabolic syndrome (MetS) is a common disorder which is a constellation of clinical features including abdominal obesity, increased level of serum triglycerides (TGs) and decrease of serum high-density lipoprotein-cholesterol (HDL-C), elevated blood pressure, and glucose intolerance. The apolipoprotein A5 (APOA5) is involved in lipid metabolism, influencing the level of plasma TG and HDL-C. In the present study, we aimed to investigate the associations between four INDEL variants of APOA5 gene and the MetS risk. Materials and Methods: In this case–control study, we genotyped 116 Iranian children and adolescents with/without MetS by using Sanger sequencing method for these INDELs. Then, we explored the association of INDELs with MetS risk and their clinical components by logistic regression and one-way analysis of variance analyses. Results: We identified a novel insertion polymorphism, c. *282–283 insAG/c. *282–283 insG variant, which appears among case and control groups. rs72525532 showed a significant difference for TG levels between various genotype groups. In addition, there were significant associations between newly identified single-nucleotide polymorphism (SNP) and rs72525532 with MetS risk. Conclusions: These results show that rs72525532 and the newly identified SNP may influence the susceptibility of the individuals to MetS.

  3. Single nucleotide polymorphism rs11669203 in TGFBR3L is associated with the risk of neuroblastoma in a Chinese population.

    PubMed

    Jin, Yaqiong; Wang, Huanmin; Han, Wei; Lu, Jie; Chu, Ping; Han, Shujing; Ni, Xin; Ning, Baitang; Yu, Dianke; Guo, Yongli

    2016-03-01

    With a primary mortality, neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Amplification of the MYCN (v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog) oncogene is observed in 20-30 % of NB cases, a feature which also characterizes a highly aggressive subtype of the disease. However, the systematic study of association between single nucleotide polymorphisms (SNPs) in MYCN-regulated genes and the risk of NB has not been investigated. In the current study, we scanned a set of 16 SNPs located within known or predicted MYCN binding sites in a cohort of 247 patients of Chinese origin with neuroblastic family tumors, including neuroblastoma (NB), ganglioneuroma (GN), and ganglioneuroblastoma (GNB), and in 290 cancer-free controls to determine whether any of the tested SNPs are associated with neuroblastic family tumors. We found that the rs11669203 G>C polymorphism, located in TGFBR3L promoter, is significantly associated with the risk of NB. Further, we found that this association is site specific to adrenal NB compared to non-adrenal NB. In addition, transcriptome analysis indicated that increased expression of TGFBR3L is strongly correlated with poor survival. The SNP rs11669203 located at the MYCN binding site of TGFBR3L is significantly associated with elevated risk of NB, and abnormal MYCN-regulated TGFBR3L expression may contribute to NB oncogenesis.

  4. Single nucleotide polymorphisms in intron 1 and intron 2 of Larimichthys crocea growth hormone gene are correlated with growth traits

    NASA Astrophysics Data System (ADS)

    Ni, Jing; You, Feng; Xu, Jianhe; Xu, Dongdong; Wen, Aiyun; Wu, Zhihao; Xu, Yongli; Zhang, Peijun

    2012-03-01

    The growth hormone gene ( GH) affects animal growth and is a potential target for genetic studies of variation related to growth traits. In this study, we analyzed single nucleotide polymorphisms (SNPs) in GH intron regions and their associations with growth traits in large yellow croaker, Larimichthys crocea, from Zhejiang and Fujian stocks. The results of PCR-single strand conformation polymorphism showed two haplotypes of intron 1, named AA and AB genotypes, in Zhejiang stock. AB exhibited an SNP at position 196 (G→A) that was negatively correlated with body height and positively correlated with standard length/body height ( P≤0.05). Two different genotypes, CC and CD, were identified in intron 2 in Fujian stock, with CD showing an SNP at position 692 (T→C). The CD genotype had a significantly positive correlation with both weight and total length ( P≤0.01). These basic data highlight the potential for using GH as a genetic marker of fish growth in marker assisted selection.

  5. Single nucleotide polymorphisms in the bovine genome are associated with the number of oocytes collected during ovum pick up.

    PubMed

    Santos-Biase, W K F; Biase, F H; Buratini, J; Balieiro, J; Watanabe, Y F; Accorsi, M F; Ferreira, C R; Stranieri, P; Caetano, A R; Meirelles, F V

    2012-10-01

    The number of follicles recruited in each estrous cycle has gained practical importance in artificial reproductive technology, as it determines the oocyte yield from ultrasound-guided ovum pickup for in vitro embryo production. We aimed to identify single nucleotide polymorphisms (SNPs) in bovine genes related to reproductive physiology and evaluate the association between the candidate SNPs and the number of oocytes collected from ultrasound-guided ovum pickup. We sequenced genomic segments of GDF9, FGF8, FGF10 and BMPR2 and identified seventeen SNPs in the Bos taurus and Bos indicus breeds. Two SNPs cause amino acid changes in the proteins GDF9 and FGF8. Three SNPs in GDF9, FGF8 and BMPR2 were genotyped in 217 Nelore cows (B. indicus), while two previously identified mutations in LHCGR and mitochondrial DNA (mtDNA) were genotyped in the same group. The polymorphisms in GDF9, FGF8, BMRP2 and LHCGR were significantly associated (P<0.01) with the number of oocytes collected by ovum pickup, whereas the SNP in the mtDNA was not. In addition, we estimated an allelic substitution effect of 1.13±0.01 (P<0.01) oocytes for the SNP in the FGF8 gene. The results we report herein provide further evidence to support the hypothesis that genetic variability is an important component of the number of antral follicles in the bovine ovary.

  6. Differentiation of Erwinia amylovora and Erwinia pyrifoliae strains with single nucleotide polymorphisms and by synthesis of dihydrophenylalanine.

    PubMed

    Gehring, I; Geider, K

    2012-07-01

    Fire blight has spread from North America to New Zealand, Europe, and the Mediterranean region. We were able to differentiate strains from various origins with a novel PCR method. Three Single Nucleotide Polymorphisms (SNPs) in the Erwinia amylovora genome were characteristic of isolates from North America and could distinguish them from isolates from other parts of the world. They were derived from the galE, acrB, and hrpA genes of strains Ea273 and Ea1/79. These genes were analyzed by conventional PCR (cPCR) and quantitative PCR (qPCR) with differential primer annealing temperatures. North-American E. amylovora strains were further differentiated according to their production of L: -2,5-dihydrophenylalanine (DHP) as tested by growth inhibition of the yeast Rhodotorula glutinis. E. amylovora fruit tree (Maloideae) and raspberry (rubus) strains were also differentiated by Single Strand Conformational Polymorphism analysis. Strains from the related species Erwinia pyrifoliae isolated in Korea and Japan were all DHP positive, but were differentiated from each other by SNPs in the galE gene. Differential PCR is a rapid and simple method to distinguish E. amylovora as well as E. pyrifoliae strains according to their geographical origin.

  7. Strain-Specific Genotyping of Bifidobacterium animalis subsp. lactis by Using Single-Nucleotide Polymorphisms, Insertions, and Deletions▿ †

    PubMed Central

    Briczinski, Elizabeth P.; Loquasto, Joseph R.; Barrangou, Rodolphe; Dudley, Edward G.; Roberts, Anastasia M.; Roberts, Robert F.

    2009-01-01

    Several probiotic strains of Bifidobacterium animalis subsp. lactis are widely supplemented into food products and dietary supplements due to their documented health benefits and ability to survive within the mammalian gastrointestinal tract and acidified dairy products. The strain specificity of these characteristics demands techniques with high discriminatory power to differentiate among strains. However, to date, molecular approaches, such as pulsed-field gel electrophoresis and randomly amplified polymorphic DNA-PCR, have been ineffective at achieving strain separation due to the monomorphic nature of this subspecies. Previously, sequencing and comparison of two B. animalis subsp. lactis genomes (DSMZ 10140 and Bl-04) confirmed this high level of sequence similarity, identifying only 47 single-nucleotide polymorphisms (SNPs) and four insertions and/or deletions (INDELs) between them. In this study, we hypothesized that a sequence-based typing method targeting these loci would permit greater discrimination between strains than previously attempted methods. Sequencing 50 of these loci in 24 strains of B. animalis subsp. lactis revealed that a combination of nine SNPs/INDELs could be used to differentiate strains into 14 distinct genotypic groups. In addition, the presence of a nonsynonymous SNP within the gene encoding a putative glucose uptake protein was found to correlate with the ability of certain strains to transport glucose and to grow rapidly in a medium containing glucose as the sole carbon source. The method reported here can be used in clinical, regulatory, and commercial applications requiring identification of B. animalis subsp. lactis at the strain level. PMID:19801460

  8. Landscape genomics and biased FST approaches reveal single nucleotide polymorphisms under selection in goat breeds of North-East Mediterranean

    PubMed Central

    Pariset, Lorraine; Joost, Stephane; Marsan, Paolo Ajmone; Valentini, Alessio

    2009-01-01

    Background In this study we compare outlier loci detected using a FST based method with those identified by a recently described method based on spatial analysis (SAM). We tested a panel of single nucleotide polymorphisms (SNPs) previously genotyped in individuals of goat breeds of southern areas of the Mediterranean basin (Italy, Greece and Albania). We evaluate how the SAM method performs with SNPs, which are increasingly employed due to their high number, low cost and easy of scoring. Results The combined use of the two outlier detection approaches, never tested before using SNP polymorphisms, resulted in the identification of the same three loci involved in milk and meat quality data by using the two methods, while the FST based method identified 3 more loci as under selection sweep in the breeds examined. Conclusion Data appear congruent by using the two methods for FST values exceeding the 99% confidence limits. The methods of FST and SAM can independently detect signatures of selection and therefore can reduce the probability of finding false positives if employed together. The outlier loci identified in this study could indicate adaptive variation in the analysed species, characterized by a large range of climatic conditions in the rearing areas and by a history of intense trade, that implies plasticity in adapting to new environments. PMID:19228375

  9. Genetic diversity and relatedness of sweet cherry (prunus avium L.) cultivars based on single nucleotide polymorphic markers.

    PubMed

    Fernandez I Marti, Angel; Athanson, Blessing; Koepke, Tyson; Font I Forcada, Carolina; Dhingra, Amit; Oraguzie, Nnadozie

    2012-01-01

    Most previous studies on genetic fingerprinting and cultivar relatedness in sweet cherry were based on isoenzyme, RAPD, and simple sequence repeat (SSR) markers. This study was carried out to assess the utility of single nucleotide polymorphism (SNP) markers generated from 3' untranslated regions (UTR) for genetic fingerprinting in sweet cherry. A total of 114 sweet cherry germplasm representing advanced selections, commercial cultivars, and old cultivars imported from different parts of the world were screened with seven SSR markers developed from other Prunus species and with 40 SNPs obtained from 3' UTR sequences of Rainier and Bing sweet cherry cultivars. Both types of marker study had 99 accessions in common. The SSR data was used to validate the SNP results. Results showed that the average number of alleles per locus, mean observed heterozygosity, expected heterozygosity, and polymorphic information content values were higher in SSRs than in SNPs although both set of markers were similar in their grouping of the sweet cherry accessions as shown in the dendrogram. SNPs were able to distinguish sport mutants from their wild type germplasm. For example, "Stella" was separated from "Compact Stella." This demonstrates the greater power of SNPs for discriminating mutants from their original parents than SSRs. In addition, SNP markers confirmed parentage and also determined relationships of the accessions in a manner consistent with their pedigree relationships. We would recommend the use of 3' UTR SNPs for genetic fingerprinting, parentage verification, gene mapping, and study of genetic diversity in sweet cherry.

  10. Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene.

    PubMed

    Welsch, Ralf; Arango, Jacobo; Bär, Cornelia; Salazar, Bertha; Al-Babili, Salim; Beltrán, Jesús; Chavarriaga, Paul; Ceballos, Hernan; Tohme, Joe; Beyer, Peter

    2010-10-01

    Cassava (Manihot esculenta) is an important staple crop, especially in the arid tropics. Because roots of commercial cassava cultivars contain a limited amount of provitamin A carotenoids, both conventional breeding and genetic modification are being applied to increase their production and accumulation to fight vitamin A deficiency disorders. We show here that an allelic polymorphism in one of the two expressed phytoene synthase (PSY) genes is capable of enhancing the flux of carbon through carotenogenesis, thus leading to the accumulation of colored provitamin A carotenoids in storage roots. A single nucleotide polymorphism present only in yellow-rooted cultivars cosegregates with colored roots in a breeding pedigree. The resulting amino acid exchange in a highly conserved region of PSY provides increased catalytic activity in vitro and is able to increase carotenoid production in recombinant yeast and Escherichia coli cells. Consequently, cassava plants overexpressing a PSY transgene produce yellow-fleshed, high-carotenoid roots. This newly characterized PSY allele provides means to improve cassava provitamin A content in cassava roots through both breeding and genetic modification.

  11. Analysis of horse myostatin gene and identification of single nucleotide polymorphisms in breeds of different morphological types.

    PubMed

    Dall'Olio, Stefania; Fontanesi, Luca; Nanni Costa, Leonardo; Tassinari, Marco; Minieri, Laura; Falaschini, Adalberto

    2010-01-01

    Myostatin (MSTN) is a negative modulator of muscle mass. We characterized the horse (Equus caballus) MSTN gene and identified and analysed single nucleotide polymorphisms (SNPs) in breeds of different morphological types. Sequencing of coding, untranslated, intronic, and regulatory regions of MSTN gene in 12 horses from 10 breeds revealed seven SNPs: two in the promoter, four in intron 1, and one in intron 2. The SNPs of the promoter (GQ183900:g.26T>C and GQ183900:g.156T>C, the latter located within a conserved TATA-box like motif) were screened in 396 horses from 16 breeds. The g.26C and the g.156C alleles presented higher frequency in heavy (brachymorphic type) than in light breeds (dolichomorphic type such as Italian Trotter breed). The significant difference of allele frequencies for the SNPs at the promoter and analysis of molecular variance (AMOVA) on haplotypes indicates that these polymorphisms could be associated with variability of morphology traits in horse breeds.

  12. Previously Unidentified Single Nucleotide Polymorphisms in HIV/AIDS Cases Associate with Clinical Parameters and Disease Progression

    PubMed Central

    Bakhteeva, Liliia B.; Khasanova, Gulshat R.; Tillett, Richard L.; Schlauch, Karen A.

    2016-01-01

    The genetic background of an individual plays an important role in the progression of HIV infection to AIDS. Identifying previously unknown or uncharacterized single nucleotide polymorphisms (SNPs) that associate with disease progression may reveal important therapeutic targets and provide a greater understanding of disease pathogenesis. In the present study, we employed ultra-high multiplex PCR on an Ion Torrent next-generation sequencing platform to sequence 23 innate immune genes from 94 individuals with HIV/AIDS. This data was used to identify potential associations of SNPs with clinical parameters and disease progression. SNPs that associated with an increased viral load were identified in the genes for the interleukin 15 receptor (IL15RA), toll-like receptor 7 (TLR7), tripartite motif-containing protein 5 (TRIM5), and two killer-cell immunoglobulin-like receptors (KIR2DL1 and KIR2DL3). Additionally, SNPs that associated with progression from HIV infection to AIDS were identified in two 2′-5′-oligoadenylate synthetase genes (OAS2 and OAS3). In contrast, other SNPs identified in OAS2 and OAS3 genes, as well as in the TRIM5 and KIR2DS4 genes, were associated with a slower progression of disease. Taken together, our data demonstrates the utility of ultra-high multiplex PCR in identifying polymorphisms of potential clinical significance and further,identifies SNPs that may play a role in HIV pathogenesis. PMID:28050553

  13. Effect of increasing the number of single-nucleotide polymorphisms from 60,000 to 85,000 in genomic evaluation of Holsteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The periodic need to restock reagent pools for genotyping chips provides an opportunity to increase the number of single-nucleotide polymorphisms (SNP) on a chip at no increase in cost. A high-density chip with >140,000 SNP has been developed by GeneSeek Inc. (Lincoln, NE) to increase accuracy of ge...

  14. Single nucleotide polymorphisms in specific candidate genes are associated with phenotypic differences in days open for first lactation in Holstein cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, a candidate gene approach identified 51 single nucleotide polymorphisms (SNP) associated with genetic merit for reproductive traits and 26 associated with genetic merit for production in dairy bulls. We evaluated association of the 77 SNPs with days open (DO) for first lactation in a pop...

  15. Development of Single Nucleotide Polymorphism markers in Theobroma cacao and comparison to Simple Sequence Repeat markers for genotyping of Cameroon clones.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single Nucleotide Polymorphism (SNP) markers are increasingly being used in crop breeding programs, slowly replacing Simple Sequence Repeats (SSR) and other markers. SNPs provide many benefits over SSRs, including ease of analysis and unambiguous results across various platforms. We have identifie...

  16. A resource of single-nucleotide polymorphisms for rainbow trout generated by restriction-site associated DNA sequencing of doubled haploids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salmonid genomes are considered to be in a pseudo-tetraploid state as a result of an evolutionarily recent genome duplication event. This situation complicates single nucleotide polymorphism (SNP) discovery in rainbow trout as many putative SNPs are actually paralogous sequence variants (PSVs) and ...

  17. Brief Report: Glutamate Transporter Gene ("SLC1A1") Single Nucleotide Polymorphism (rs301430) and Repetitive Behaviors and Anxiety in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Gadow, Kenneth D.; Roohi, Jasmin; DeVincent, Carla J.; Kirsch, Sarah; Hatchwell, Eli

    2010-01-01

    Investigated association of single nucleotide polymorphism (SNP) rs301430 in glutamate transporter gene ("SLC1A1") with severity of repetitive behaviors (obsessive-compulsive behaviors, tics) and anxiety in children with autism spectrum disorder (ASD). Mothers and/or teachers completed a validated DSM-IV-referenced rating scale for 67 children…

  18. Rhabdomyolysis After Out-of-Water Exercise in an Elite Adolescent Water Polo Player Carrying the IL-6 174C Allele Single-Nucleotide Polymorphism.

    PubMed

    Eliakim, Alon; Ben Zaken, Sigal; Meckel, Yoav; Yamin, Chen; Dror, Nitzan; Nemet, Dan

    2015-12-01

    We present an adolescent elite water polo player who despite a genetic predisposition to develop exercise-induced severe muscle damage due to carrying the IL-6 174C allele single-nucleotide polymorphism, developed acute rhabdomyolysis only after a vigorous out-of-water training, suggesting that water polo training may be more suitable for genetically predisposed athletes.

  19. Genome-Wide Association Mapping for Intelligence in Military Working Dogs: Development of Advanced Classification Algorithm for Genome-Wide Single Nucleotide Polymorphism (SNP) Data Analysis

    DTIC Science & Technology

    2011-04-01

    distribution unlimited. QC – quality control QTL – quantitative trait loci SNP – single nucleotide polymorphism TE – Tris + EDTA TBE – Tris + Boric Acid + EDTA WGSA – whole genome sampling assay ...canine intelligence testing protocol EDTA – ethylenediaminetetraacetic acid GWAS – genome-wide association study LD – linkage disequilibrium MWD

  20. Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large datasets containing single nucleotide polymorphisms (SNPs) are used to analyze genome-wide diversity in a robust collection of cultivars from representative accessions, across the world. The extent of linkage disequilibrium (LD) within a population determines the number of markers required fo...

  1. Single nucleotide polymorphism in DNMT3B promoter and its association with hepatocellular carcinoma in a Moroccan population.

    PubMed

    Ezzikouri, Sayeh; El Feydi, Abdellah Essaid; Benazzouz, Mustapha; Afifi, Rajae; El Kihal, Latifa; Hassar, Mohammed; Akil, Abdellah; Pineau, Pascal; Benjelloun, Soumaya

    2009-09-01

    Hepatocellular carcinoma is a major malignant tumor characterized in all areas by the disparity of risk between genders. The molecular bases of such disparity are still poorly understood. DNA-methyltransferase-3B (DNMT3B) may play an oncogenic role during tumorigenesis, and its genetic variants have been consistently associated with risk of several cancers, but a single study has investigated their roles in hepatocellular carcinoma (HCC). Polymorphisms of the DNMT3B gene may influence its activity on DNA methylation in several cancers, thereby modulating susceptibility to tumorigenesis. To test this hypothesis, we investigated the association between single nucleotide polymorphism -149C>T (rs2424913) in the promoter region DNMT3B and risk of HCC in a Moroccan population. In this case-control study, the DNMT3B SNP was genotyped by polymerase chain reaction-restriction fragment length polymorphism in 96 HCCs patients and 222 healthy controls that matched for age, sex and ethnicity. Overall, we found that, the DNMT3B 149 TT genotype was not significantly associated with increased risk of HCC (adjusted odds ratio (OR), 0.86, 95% CI, 0.41-1.80, P=0.697). Stratification analysis detected, however, a trend towards a profound risk in the female subset of patients (OR=2.04, 95% CI, 0.77-5.42) and a lesser risk for HCV-infected patients (OR=1.33, 95% CI, 0.43-4.17). Our findings contrast with those of previous studies performed in various cancers, which showed that individuals carrying at least one T allele have a significantly increased risk of developing cancer. In addition, we provide genetic evidence for the major difference of HCC risk between men and women. Further mechanistic studies are needed to unravel the underlying molecular mechanisms.

  2. Relationship between single nucleotide polymorphism of interleukin-18 and susceptibility to pulmonary tuberculosis in the Chinese Han population.

    PubMed

    Han, Min; Yue, Jun; Lian, Yuan-Yuan; Zhao, Yan-Lin; Wang, Hong-Xiu; Liu, Li-Rong

    2011-06-01

    Interleukin-18 (IL-18) is a multi-functional cytokine capable of inducing either Th1 or Th2 polarization depending on the immunologic milieu. IL-18 may influence the host response to Mycobacterium tuberculosis (M.tb) infection. To investigate the relationship between single nucleotide polymorphisms of the IL-18 and susceptibility to pulmonary tuberculosis in the Chinese Han population, the IL-18 gene was sequenced to detect polymorphisms and to examine the genotype frequencies in 300 patients and 702 healthy controls. DNA sequencing revealed three IL-18 variants: rs1946518, rs5744247, and rs549908. It also revealed that allele A of rs1946518 confers a 1.47-fold increased risk of developing tuberculosis (TB) (P = 0.0001, OR [95%CI] = 1.47 [1.21-1.78]), and that the C allele of rs5744247 confers a 0.77-fold decreased risk of disease (P = 0.01, R [95%CI] = 0.77 [0.632-0.937]). The genotypes rs1946518, rs5744247 and rs549908 were found to be significantly associated with TB. Estimation of the frequencies of haplotypes revealed a potential risk haplotype AGA (P = 0.01, OR [95%CI] = 1.41 [1.15-1.72]) and a protective haplotype CCA (P = 0.01, OR [95%CI] = 0.70 [0.57-0.85]) for TB. The present findings suggest that polymorphisms in the IL-18 gene may affect susceptibility to TB and increase the risk of developing the disease in the Chinese Han population.

  3. An association study of single nucleotide polymorphisms of the FOXP3 intron-1 and the risk of Psoriasis vulgaris.

    PubMed

    Song, Qiu-He; Shen, Zhu; Xing, Xiao-Jing; Yin, Rui; Wu, Ya-Zhou; You, Yi; Guo, Hong; Chen, Ling; Hao, Fei; Bai, Yun

    2012-02-01

    Psoriasis vulgaris (PV) is a common autoimmune disease that involves the dysfunction of CD4+CD25+ regulatory T cells. FOXP3 is a key transcription factor in the development and function of CD4+CD25+ regulatory T cells. Previous studies have demonstrated a genetic association between the FOXP3 gene and some autoimmune diseases. To elucidate the association between the FOXP3 gene and the risk of PV, 408 patients diagnosed with PV and 363 age and sex-matched healthy controls from a cohort of the Chinese majority Han population were recruited. Four single nucleotide polymorphisms (rs2232365, rs3761547, rs3761548 and rs3761549) of the FOXP3 gene were analyzed using the polymerase chain reaction and ligase detection reaction. The major allele of three single nucleotide polymorphisms (SNPs - rs2232365 A, rs3761547 A and rs3761549 C) were associated with an increased risk of PV in a clinical subgroup of female patients, who were less than 40 yrs of age, had a family history of the disease and did not have disease complications (p < 0.05 for all parameters). The haplotype was structured between rs3761547 and rs3761549. An increased risk of PV was observed in haplotype A/A-T/T (p = 0.0055; adjusted OR = 3.188; 95% CI = 0.4354-23.34) and A/G-C/C (p = 0.0082; adjusted OR = 1.288; 95% CI = 0.1529-10.85) between rs3761547 and rs3761549. A synergistic effect was found among the three SNPs. Subjects with the rs2232365AA- rs3761547 AG + GG genotype were more susceptible to PV (p = 0.0393; OR = 2.90; 95% CI = 1.05-7.97). No correlation was found between rs3761548 and the onset of PV. Therefore, the FOXP3 polymorphisms appear to contribute to the risk of psoriasis among the Chinese majority Han population. These findings may aid in our understanding of the pathogenesis of psoriasis.

  4. Nucleotide polymorphism affecting FLC expression underpins heading date variation in horticultural brassicas.

    PubMed

    Irwin, Judith A; Soumpourou, Eleni; Lister, Clare; Ligthart, Jan-Dick; Kennedy, Sue; Dean, Caroline

    2016-09-01

    Variation in flowering time and response to overwintering has been exploited to breed brassica vegetables that can be harvested year-round. Our knowledge of flowering time control now enables the investigation of the molecular basis of this important variation. Here, we show that a major determinant of heading date variation in Brassica oleracea is from variation in vernalization response through allelic variation at FLOWERING LOCUS C.C2 (BoFLC4). We characterize two alleles of BoFLC.C2 that are both functional and confer a requirement for vernalization, but they show distinct expression dynamics in response to cold. Complementation experiments in Arabidopsis thaliana revealed that the allelic variation results from cis polymorphism at BoFLC.C2, which quantitatively influences the degree of cold-induced epigenetic silencing. This results in one allelic variant conferring consistently later heading under both glasshouse and field conditions through reduced environmental sensitivity. Our results suggest that breeding of brassica varieties for commercially valuable variation in heading date has been achieved through the selection of cis polymorphism at FLC, similar to that underpinning natural variation in A. thaliana. This understanding will allow for the selection of alleles with distinct sensitivities to cold and robust heading dates under variable climatic conditions, and will facilitate the breeding of varieties more resistant to climate change.

  5. Identification of mitochondrial DNA sequence variation and development of single nucleotide polymorphic markers for CMS-D8 in cotton.

    PubMed

    Suzuki, Hideaki; Yu, Jiwen; Wang, Fei; Zhang, Jinfa

    2013-06-01

    Cytoplasmic male sterility (CMS), which is a maternally inherited trait and controlled by novel chimeric genes in the mitochondrial genome, plays a pivotal role in the production of hybrid seed. In cotton, no PCR-based marker has been developed to discriminate CMS-D8 (from Gossypium trilobum) from its normal Upland cotton (AD1, Gossypium hirsutum) cytoplasm. The objective of the current study was to develop PCR-based single nucleotide polymorphic (SNP) markers from mitochondrial genes for the CMS-D8 cytoplasm. DNA sequence variation in mitochondrial genes involved in the oxidative phosphorylation chain including ATP synthase subunit 1, 4, 6, 8 and 9, and cytochrome c oxidase 1, 2 and 3 subunits were identified by comparing CMS-D8, its isogenic maintainer and restorer lines on the same nuclear genetic background. An allelic specific PCR (AS-PCR) was utilized for SNP typing by incorporating artificial mismatched nucleotides into the third or fourth base from the 3' terminus in both the specific and nonspecific primers. The result indicated that the method modifying allele-specific primers was successful in obtaining eight SNP markers out of eight SNPs using eight primer pairs to discriminate two alleles between AD1 and CMS-D8 cytoplasms. Two of the SNPs for atp1 and cox1 could also be used in combination to discriminate between CMS-D8 and CMS-D2 cytoplasms. Additionally, a PCR-based marker from a nine nucleotide insertion-deletion (InDel) sequence (AATTGTTTT) at the 59-67 bp positions from the start codon of atp6, which is present in the CMS and restorer lines with the D8 cytoplasm but absent in the maintainer line with the AD1 cytoplasm, was also developed. A SNP marker for two nucleotide substitutions (AA in AD1 cytoplasm to CT in CMS-D8 cytoplasm) in the intron (1,506 bp) of cox2 gene was also developed. These PCR-based SNP markers should be useful in discriminating CMS-D8 and AD1 cytoplasms, or those with CMS-D2 cytoplasm as a rapid, simple, inexpensive, and

  6. Influence of a nucleotide oligomerization domain 1 (NOD1) polymorphism and NOD2 mutant alleles on Crohn's disease phenotype

    PubMed Central

    Cantó, Elisabet; Ricart, Elena; Busquets, David; Monfort, David; García-Planella, Esther; González, Dolors; Balanzó, Joaquim; Rodríguez-Sánchez, José L; Vidal, Sílvia

    2007-01-01

    AIM: To examine genetic variation of nucleotide oligomerization domain 1 (NOD1) and NOD2, their respective influences on Crohn's disease phenotype and gene-gene interactions. METHODS: (ND1+32656*1) NOD1 polymorphism and SNP8, SNP12 and SNP13 of NOD2 were analyzed in 97 patients and 50 controls. NOD2 variants were determined by reaction restriction fragment length polymorphism analysis. NOD1 genotyping and NOD2 variant confirmation were performed by specific amplification and sequencing. RESULTS: The distribution of NOD1 polymorphism in patients was different from controls (P = 0.045) and not altered by existence of NOD2 mutations. In this cohort, 30.92% patients and 6% controls carried at least one NOD2 variant (P < 0.001) with R702W being the most frequent variant. Presence of at least one NOD2 mutation was inversely associated with colon involvement (9.09% with colon vs 36.4% with ileal or ileocolonic involvement, P = 0.04) and indicative of risk of penetrating disease (52.63% with penetrating vs 25.64% with non-penetrating or stricturing behavior, P = 0.02). L1007finsC and double NOD2 mutation conferred the highest risk for severity of disease (26.3% with penetrating disease vs 3.8% with non-penetrating or stricturing behavior presented L1007finsC, P = 0.01 and 21.0% with penetrating disease vs 2.5% with non-penentrating or stricturing behavior carried double NOD2 mutation, P = 0.007). Exclusion of patients with NOD2 mutations from phenotype/NOD1-genotype analysis revealed higher prevalence of *1*1 genotype in groups of younger age at onset and colonic location. CONCLUSION: This study suggests population differences in the inheritance of risk NOD1 polymorphism and NOD2 mutations. Although no interaction between NOD1-NOD2 was noticed, a relationship between disease location and Nod-like receptor molecules was established. PMID:17907287

  7. Identification and characterization of novel single nucleotide polymorphism markers for fat deposition in muscle tissue of pigs using amplified fragment length polymorphism

    PubMed Central

    Supakankul, Pantaporn; Kumchoo, Tanavadee; Mekchay, Supamit

    2017-01-01

    Objective This study was conducted to identify and evaluate the effective single nucleotide polymorphism (SNP) markers for fat deposition in the longissimus dorsi muscles of pigs using the amplified fragment length polymorphism (AFLP) approach. Methods Sixty-four selective primer combinations were used to identify the AFLP markers in the 20 highest- and 20 lowest-intramuscular fat (IMF) content phenotypes. Five AFLP fragments were converted into simple codominant SNP markers. These SNP markers were tested in terms of their association with IMF content and fatty acid (FA) composition traits in 620 commercially crossbred pigs. Results The SSC7 g.4937240C>G marker showed an association with IMF content (p<0.05). The SSC9 g.5496647_5496662insdel marker showed a significant association with IMF content and arachidonic levels (p<0.05). The SSC10 g.71225134G>A marker revealed an association with palmitoleic and ω9 FA levels (p<0.05), while the SSC17 g.61976696G>T marker showed a significant association with IMF content and FA levels of palmitoleic, eicosenoic, arachidonic, monounsaturated fatty acids, and ω9 FA levels. However, no significant association of SSC8 g.47338181G>A was observed with any IMF and FA levels in this study. Conclusion Four SNP markers (SSC7 g.4937240C>G, SSC9 g.5496647_5496662insdel, SSC10 g.71225134G>A, and SSC17 g.61976696G>T) were found to be associated with IMF and/or FA content traits in commercially crossbred pigs. These findings provide evidence of the novel SNP markers as being potentially useful for selecting pigs with the desirable IMF content and FA composition. PMID:27608636

  8. Species-wide genome sequence and nucleotide polymorphisms from the model allopolyploid plant Brassica napus.

    PubMed

    Schmutzer, Thomas; Samans, Birgit; Dyrszka, Emmanuelle; Ulpinnis, Chris; Weise, Stephan; Stengel, Doreen; Colmsee, Christian; Lespinasse, Denis; Micic, Zeljko; Abel, Stefan; Duchscherer, Peter; Breuer, Frank; Abbadi, Amine; Leckband, Gunhild; Snowdon, Rod; Scholz, Uwe

    2015-12-08

    Brassica napus (oilseed rape, canola) is one of the world's most important sources of vegetable oil for human nutrition and biofuel, and also a model species for studies investigating the evolutionary consequences of polyploidisation. Strong bottlenecks during its recent origin from interspecific hybridisation, and subsequently through intensive artificial selection, have severely depleted the genetic diversity available for breeding. On the other hand, high-throughput genome profiling technologies today provide unprecedented scope to identify, characterise and utilise genetic diversity in primary and secondary crop gene pools. Such methods also enable implementation of genomic selection strategies to accelerate breeding progress. The key prerequisite is availability of high-quality sequence data and identification of high-quality, genome-wide sequence polymorphisms representing relevant gene pools. We present comprehensive genome resequencing data from a panel of 52 highly diverse natural and synthetic B. napus accessions, along with a stringently selected panel of 4.3 million high-confidence, genome-wide SNPs. The data is of great interest for genomics-assisted breeding and for evolutionary studies on the origins and consequences in allopolyploidisation in plants.

  9. Real-Time PCR for Dihydrofolate Reductase Gene Single-Nucleotide Polymorphisms in Plasmodium vivax Isolates

    PubMed Central

    Brega, Sara; de Monbrison, Frédérique; Severini, Carlo; Udomsangpetch, Rachanee; Sutanto, Inge; Ruckert, Paul; Peyron, François; Picot, Stéphane

    2004-01-01

    Mutations in the dhfr gene of Plasmodium vivax (pvdhfr) are associated with resistance to the antifolate antimalarial drugs. Polymorphisms in the pvdhfr gene were assessed by hybridization probe technology on the LightCycler instrument with 134 P. vivax-infected blood samples from Turkey (n = 24), Azerbaijan (n = 39), Thailand (n = 16), Indonesia (n = 53), and travelers (n = 19). Double mutations (S58R and S117N) or quadruple mutations (F57L/I, S58R, T61M, and S117N) in the pvdhfr genes were found in all Thai samples (100%). pvdhfr mutant-type alleles were significantly more common in samples from travelers (42%) than in those from patients from Indonesia (5%). Surprisingly, the pvdhfr single-mutation allele (S117N) was identified at a high frequency in parasites from Turkey and Azerbaijan (71 and 36%, respectively), where sulfadoxine-pyrimethamine is not recommended for the treatment of P. vivax malaria by the World Health Organization and the Malaria National Programs. PMID:15215112

  10. SLC44A2 single nucleotide polymorphisms, isoforms, and expression: Association with severity of Meniere's disease?

    PubMed

    Nair, Thankam S; Kommareddi, Pavan K; Galano, Maria M; Miller, Danielle M; Kakaraparthi, Bala Naveen; Telian, Steven A; Arts, H Alex; El-Kashlan, Hussam; Kilijanczyk, Alyse; Lassig, Amy Anne D; Graham, Martin P; Fisher, Susan G; Stoll, Stefan W; Nair, Rajan P; Elder, James T; Carey, Thomas E

    2016-12-01

    SLC44A2 was discovered as the target of an antibody that causes hearing loss. Knockout mice develop age related hearing loss, loss of sensory cells and spiral ganglion neurons. SLC44A2 has polymorphic sites implicated in human disease. Transfusion related acute lung injury (TRALI) is linked to rs2288904 and genome wide association studies link rs2288904 and rs9797861 to venous thromboembolism (VTE), coronary artery disease and stroke. Here we report linkage disequilibrium of rs2288904 with rs3087969 and the association of these SLC44A2 SNPs with Meniere's disease severity. Tissue-specific isoform expression differences suggest that the N-terminal domain is linked to different functions in different cell types. Heterozygosity at rs2288904 CGA/CAA and rs3087969 GAT/GAC showed a trend for association with intractable Meniere's disease compared to less severe disease and to controls. The association of SLC44A2 SNPs with VTE suggests that thrombi affecting cochlear vessels could be a factor in Meniere's disease.

  11. Single nucleotide polymorphism discovery in TBX1 in individuals with and without 22q11.2 deletion syndrome

    PubMed Central

    Heike, Carrie L.; Starr, Jacqueline R.; Rieder, Mark J.; Cunningham, Michael L.; Edwards, Karen L.; Stanaway, Ian; Crawford, Dana C.

    2015-01-01

    BACKGROUND Children with 22q11.2 deletion syndrome (22q11.2DS) have a wide range of clinical features. TBX1 has been proposed as a candidate gene for some of the features in this condition. Polymorphisms in the non-deleted TBX1, which may affect the function of the sole TBX1 gene in individuals with the 22q11.2DS, may be a key to understanding the phenotypic variability among individuals with a shared deletion. Comprehensive single nucleotide polymorphism (SNP) discovery by resequencing candidate genes can identify genetic variants that influence a given phenotype. The purpose of this study was to further characterize the sequence variability in TBX1 by identifying all common SNPs in this gene. METHODS We resequenced TBX1 in 29 children with a documented 22q11.2 deletion and 95 non-deleted, healthy individuals. We estimated allele frequencies, performed tagSNP selection, and inferred haplotypes. We also compared SNP frequencies between 22q11.2DS and control samples. RESULTS We identified 355 biallelic markers among the 190 chromosomes resequenced in the control panel. The vast majority of the markers identified were SNPs (n=331), and the remainder indels (n=24). We did not identify SNPs or indels in the cis- regulatory element (FOX–binding site) upstream of TBX1. In children with 22q11.2DS we detected 187 biallelic markers, six of which were indels. Four of the seven coding SNPs identified in the controls were identified in children with 22q11.2DS. CONCLUSIONS This comprehensive SNP discovery data can be used to select SNPs to genotype for future association studies assessing the role of TBX1 and phenotypic variability in individuals with 22q11.2DS. PMID:19645056

  12. Identification and genotyping of feline infectious peritonitis-associated single nucleotide polymorphisms in the feline interferon-γ gene.

    PubMed

    Hsieh, Li-En; Chueh, Ling-Ling

    2014-05-21

    Feline infectious peritonitis (FIP) is an immune-mediated, highly lethal disease caused by feline coronavirus (FCoV) infection. Currently, no protective vaccine or effective treatment for the disease is available. Studies have found that some cats survive the challenge of virulent FCoV isolates. Since cellular immunity is thought to be critical in preventing FIP and because diseased cats often show a significant decrease in interferon-γ (IFN-γ) production, we investigated whether single nucleotide polymorphisms (SNP) in the feline IFN-γ gene (fIFNG) are associated with the outcome of infection. A total of 82 asymptomatic and 63 FIP cats were analyzed, and 16 SNP were identified in intron 1 of fIFNG. Among these SNP, the fFING + 428 T allele was shown to be a FIP-resistant allele (p = 0.03), and the heterozygous genotypes 01C/T and +408C/T were found to be FIP-susceptible factors (p = 0.004). Furthermore, an fIFNG + 428 resistant allele also showed a clear correlation with the plasma level of IFN-γ in FIP cats. For the identification of these three FIP-related SNP, genotyping methods were established using amplification refractory mutation system PCR (ARMS-PCR) and restriction fragment length polymorphisms (RFLP), and the different genotypes could easily be identified without sequencing. The identification of additional FIP-related SNP will allow the selection of resistant cats and decrease the morbidity of the cat population to FIP.

  13. Identification of a CYP19 Gene Single-Nucleotide Polymorphism Associated with a Reduced Risk of Coronary Heart Disease

    PubMed Central

    Wang, Bei; Fu, Zhen-Yan; Huang, Ding; Liu, Fen; Dong, Chun-Lan; Wang, Ting; Meng, Ya-Jie

    2016-01-01

    Objective: An imbalance in sex hormone ratios has been identified in coronary heart disease (CHD), and as a key enzyme in the conversion of androgen to estrogen, aromatase plays an important role in the balance of sex hormone levels. However, there is a paucity of research into the potential roles of aromatase in CHD. In this study, we investigated associations between single-nucleotide polymorphisms (SNPs) in the CYP19 gene, which encodes aromatase, and CHD. Methods: We collected 1706 blood samples from CHD patients and control participants and used propensity score matching techniques to match case and control groups with respect to confounding factors. In a final study population, including 596 individuals, we conducted a case–control study to identify associations between three SNPs in CYP19 and CHD using χ2 or Fisher exact tests, and binary logistic regression analysis. Differences in lipid levels and parameters of echocardiography among individuals with different genotypes were assessed by one-way analysis of variance. Results: The distributions of rs2289105 alleles in the CYP19 gene differed significantly between the CHD and control groups (p = 0.014), and the heterozygote CT genotype was associated with a significantly lower risk of CHD compared to the homozygous wild-type CC genotype (p = 0.0063 and odds ratio = 0.575). However, blood lipid levels and echocardiographic parameters among individuals with different genotypes did not differ between the CHD and control groups. Conclusions: The CT genotype of the rs2289105 polymorphism in the CYP19 gene is associated with a decreased risk of CHD and may be a genetic marker of protection from CHD. PMID:26562495

  14. Complex-disease networks of trait-associated single-nucleotide polymorphisms (SNPs) unveiled by information theory

    PubMed Central

    Li, Haiquan; Lee, Younghee; Chen, James L; Rebman, Ellen; Li, Jianrong

    2012-01-01

    Objective Thousands of complex-disease single-nucleotide polymorphisms (SNPs) have been discovered in genome-wide association studies (GWAS). However, these intragenic SNPs have not been collectively mined to unveil the genetic architecture between complex clinical traits. The authors hypothesize that biological annotations of host genes of trait-associated SNPs may reveal the biomolecular modularity across complex-disease traits and offer insights for drug repositioning. Methods Trait-to-polymorphism (SNPs) associations confirmed in GWAS were used. A novel method to quantify trait–trait similarity anchored in Gene Ontology annotations of human proteins and information theory was developed. The results were then validated with the shortest paths of physical protein interactions between biologically similar traits. Results A network was constructed consisting of 280 significant intertrait similarities among 177 disease traits, which covered 1438 well-validated disease-associated SNPs. Thirty-nine percent of intertrait connections were confirmed by curators, and the following additional studies demonstrated the validity of a proportion of the remainder. On a phenotypic trait level, higher Gene Ontology similarity between proteins correlated with smaller ‘shortest distance’ in protein interaction networks of complexly inherited diseases (Spearman p<2.2×10−16). Further, ‘cancer traits’ were similar to one another, as were ‘metabolic syndrome traits’ (Fisher's exact test p=0.001 and 3.5×10−7, respectively). Conclusion An imputed disease network by information-anchored functional similarity from GWAS trait-associated SNPs is reported. It is also demonstrated that small shortest paths of protein interactions correlate with complex-disease function. Taken together, these findings provide the framework for investigating drug targets with unbiased functional biomolecular networks rather than worn-out single-gene and subjective canonical pathway approaches

  15. Identification of high-quality single-nucleotide polymorphisms in Glycine latifolia using a heterologous reference genome sequence.

    PubMed

    Chang, Sungyul; Hartman, Glen L; Singh, Ram J; Lambert, Kris N; Hobbs, Houston A; Domier, Leslie L

    2013-06-01

    Like many widely cultivated crops, soybean [Glycine max (L.) Merr.] has a relatively narrow genetic base, while its perennial distant relatives in the subgenus Glycine Willd. are more genetically diverse and display desirable traits not present in cultivated soybean. To identify single-nucleotide polymorphisms (SNPs) between a pair of G. latifolia accessions that were resistant or susceptible to Sclerotinia sclerotiorum (Lib.) de Bary, reduced-representations of DNAs from each accession were sequenced. Approximately 30 % of the 36 million 100-nt reads produced from each of the two G. latifolia accessions aligned primarily to gene-rich euchromatic regions on the distal arms of G. max chromosomes. Because a genome sequence was not available for G. latifolia, the G. max genome sequence was used as a reference to identify 9,303 G. latifolia SNPs that aligned to unique positions in the G. max genome with at least 98 % identity and no insertions and deletions. To validate a subset of the SNPs, nine TaqMan and 384 GoldenGate allele-specific G. latifolia SNP assays were designed and analyzed in F2 G. latifolia populations derived from G. latifolia plant introductions (PI) 559298 and 559300. All nine TaqMan markers and 91 % of the 291 polymorphic GoldenGate markers segregated in a 1:2:1 ratio. Genetic linkage maps were assembled for G. latifolia, nine of which were uninterrupted and nearly collinear with the homoeologous G. max chromosomes. These results made use of a heterologous reference genome sequence to identify more than 9,000 informative high-quality SNPs for G. latifolia, a subset of which was used to generate the first genetic maps for any perennial Glycine species.

  16. Investigation and analysis of single nucleotide polymorphisms in Janus kinase/signal transducer and activator of transcription genes with leukemia.

    PubMed

    Zhong, Yuejiao; Wu, Jianzhong; Chen, Baoan; Ma, Rong; Cao, Haixia; Wang, Zhuo; Cheng, Lu; Ding, Jiahua; Feng, Jifeng

    2012-06-01

    Aberrant activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway may predispose to leukemia due to deregulation of proliferation, differentiation or apoptosis. This study was conducted to investigate whether any association exists between genetic polymorphisms in the JAK2, STAT3 and STAT5 genes and individual susceptibility to leukemia. A case-control study was carried out using a Chinese sample set with 344 cases of leukemia and 346 controls matched by age and ethnicity. Genomic DNA was assayed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) on 13 single nucleotide polymorphisms (SNPs). Genotype analyses showed that two SNPs, namely rs17886724 and rs2293157 located in STAT3 and STAT5, respectively, were significantly associated with leukemia (p < 0.05 for all). Interaction analyses of SNPs (rs17886724|rs2293157; rs11079041| rs2293157) showed that there were inferior associations in chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML) compared to the control group (0.1 > p > 0.05). Linkage disequilibrium existed between rs11079041 and rs2293157 in both leukemia and control groups (r(2) = 0.7). The haplotypes displayed significant association between rs11079041 and rs2293157 in both leukemia and control groups (p < 0.05). The accuracy rate of the support vector machine (SVM) classification model in making a prediction of leukemia was 97%. The results indicated that STAT3 and STAT5 gene SNPs may be prognostic of leukemia.

  17. Single-Nucleotide Polymorphisms of IL-17 Gene Are Associated with Asthma Susceptibility in an Asian Population

    PubMed Central

    Du, Jin; Han, Ji-Chang; Zhang, Ya-Jun; Qi, Guan-Bin; Li, Hong-Bing; Zhang, Yi-Jie; Cai, Shao

    2016-01-01

    Background The aim of this study was to examine the associations between the single-nucleotide polymorphisms (SNPs) of interleukin-17 (IL-17), including rs763780 (7488A/G), rs2275913 (–197G/A), and rs8193036 (–737C/T), and asthma susceptibility in an Asian population. Material/Methods From Oct 2013 to Dec 2014, 125 asthma patients enrolled in our hospital were selected as the case group. Another 132 healthy controls undergoing physical examinations in our hospital were enrolled as the control group. The genotype frequencies of IL-17 rs763780, rs2275913 and rs8193036 SNPs were detected using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Comprehensive Meta-analysis 2.0 (CMA 2.0) software was applied for meta-analysis. Results Our results demonstrated that asthma patients presented with higher frequencies of GA genotype in rs2275913 and TT genotype in rs8193036 of IL-17 than healthy controls (both P<0.001). The genotype frequencies of IL-17 rs763780 between the asthma patients and healthy controls exhibited no significant differences (P>0.05). The comparisons on the rs2275913 and rs8193036 frequencies between the asthma patients and healthy controls were statistically significant in both allele and addictive models (all P<0.05). The frequency of IL-17 rs763780 between the asthma patients and healthy controls were statistically different in allele models (P<0.05), but not in addictive models (P>0.05). The overall results of our case-control study were further confirmed by meta-analysis. Conclusions Our results revealed that, in an Asian population, IL-17 rs763780, rs2275913, and rs8193036 SNPs may be associated with asthma susceptibility, and GA genotype in rs2275913 and TT genotype in rs8193036 of IL-17 may contribute to increased risk of asthma in Asians. PMID:26954344

  18. Single-Nucleotide Polymorphism Markers from De-Novo Assembly of the Pomegranate Transcriptome Reveal Germplasm Genetic Diversity

    PubMed Central

    Ophir, Ron; Sherman, Amir; Rubinstein, Mor; Eshed, Ravit; Sharabi Schwager, Michal; Harel-Beja, Rotem; Bar-Ya'akov, Irit; Holland, Doron

    2014-01-01

    Pomegranate is a valuable crop that is grown commercially in many parts of the world. Wild species have been reported from India, Turkmenistan and Socotra. Pomegranate fruit has a variety of health-beneficial qualities. However, despite this crop's importance, only moderate effort has been invested in studying its biochemical or physiological properties or in establishing genomic and genetic infrastructures. In this study, we reconstructed a transcriptome from two phenotypically different accessions using 454-GS-FLX Titanium technology. These data were used to explore the functional annotation of 45,187 fully annotated contigs. We further compiled a genetic-variation resource of 7,155 simple-sequence repeats (SSRs) and 6,500 single-nucleotide polymorphisms (SNPs). A subset of 480 SNPs was sampled to investigate the genetic structure of the broad pomegranate germplasm collection at the Agricultural Research Organization (ARO), which includes accessions from different geographical areas worldwide. This subset of SNPs was found to be polymorphic, with 10.7% loci with minor allele frequencies of (MAF<0.05). These SNPs were successfully used to classify the ARO pomegranate collection into two major groups of accessions: one from India, China and Iran, composed of mainly unknown country origin and which was more of an admixture than the other major group, composed of accessions mainly from the Mediterranean basin, Central Asia and California. This study establishes a high-throughput transcriptome and genetic-marker infrastructure. Moreover, it sheds new light on the genetic interrelations between pomegranate species worldwide and more accurately defines their genetic nature. PMID:24558460

  19. Geographical Differences Associated with Single-Nucleotide Polymorphisms (SNPs) in Nine Gene Targets among Resistant Clinical Isolates of Mycobacterium tuberculosis

    PubMed Central

    Hoshide, Matt; Qian, Lishi; Rodrigues, Camilla; Warren, Rob; Victor, Tommie; Evasco, Henry B.; Tupasi, Thelma; Crudu, Valeriu

    2014-01-01

    Alternative diagnostic methods, such as sequence-based techniques, are necessary for increasing the proportion of tuberculosis cases tested for drug resistance. Despite the abundance of data on drug resistance, isolates can display phenotypic resistance but lack any distinguishable markers. Furthermore, because resistance-conferring mutations develop under antibiotic pressure, different drug regimens could favor unique single-nucleotide polymorphisms (SNPs) in different geographical regions. A total of 407 isolates were collected from four geographical regions with a high prevalence of drug-resistant tuberculosis (India, Moldova, the Philippines, and South Africa). The “hot spot” or promoter sequences of nine genes (rpoB, gyrA, gyrB, katG, inhA promoter, ahpC promoter, eis promoter, rrs, and tlyA) associated with resistance to four types of antibiotics (rifampin, isoniazid, fluoroquinolones, and aminoglycosides) were analyzed for markers. Four genes contributed largely to resistance (rpoB, gyrA, rrs, and katG), two genes contributed moderately to resistance (the eis and inhA promoters), and three genes contributed little or no resistance (gyrB, tlyA, and the ahpC promoter) in clinical isolates. Several geographical differences were found, including a double mutation in rpoB found in 37.1% of isolates from South Africa, the C→T mutation at position −12 of the eis promoter found exclusively in 60.6% of isolates from Moldova, and the G→A mutation at position −46 of the ahpC promoter found only in India. These differences in polymorphism frequencies emphasize the uniqueness of isolates found in different geographical regions. The inclusion of several genes provided a moderate increase in sensitivity, and elimination of the examination of other genes might increase efficiency. PMID:23784122

  20. [Microchip electrophoresis coupled with multiplex allele-specific am-plification for typing multiple single nucleotide polymorphisms (SNPs) simultaneously].

    PubMed

    Wang, Wei-Peng; Zhou, Guo-Hua

    2009-02-01

    A new method of DNA adapter ligation-mediated allele-specific amplification (ALM-ASA) was developed for typing multiple single nucleotide polymorphisms (SNPs) on the platform of microchip electrophoresis. Using seven SNPs of 794C>T, 1274C>T, 2143T>C, 2766T>del, 3298G>A, 5200G>A, and 5277C>T in the interleukin 1B (IL1B) gene as a target object, a long DNA fragment containing the seven SNPs of interest was pre-amplified to enhance the specificity. The pre-amplified DNA fragment was digested by a restriction endonuclease to form sticky ends; and then the adapter was ligated to either end of the digested fragment. Using the adapter-ligated fragments as templates, a 7-plex allele-specific amplification was performed by 7 allele-specific primers and a universal primer in one tube. The allele-specific products amplified were separated by chip electrophoresis and the types of SNPs were easily discriminated by the product sizes. The seven SNPs in IL1B gene in 48 healthy Chinese were successfully typed by microchip electrophoresis and the results coincided with those by PCR-restriction fragment length polymorphism and sequencing method. The method established was accurate and can be used to type multiple SNPs simultaneously. In combination with microchip electrophoresis for readout, ALM-ASA assay can be used for fast SNP detection with a small amount of sample. Using self-prepared gel matrix and reused chips for analysis, the SNP can be typed at an ultra low cost.

  1. Prediction of the damage-associated non-synonymous single nucleotide polymorphisms in the human MC1R gene.

    PubMed

    Hepp, Diego; Gonçalves, Gislene Lopes; de Freitas, Thales Renato Ochotorena

    2015-01-01

    The melanocortin 1 receptor (MC1R) is involved in the control of melanogenesis. Polymorphisms in this gene have been associated with variation in skin and hair color and with elevated risk for the development of melanoma. Here we used 11 computational tools based on different approaches to predict the damage-associated non-synonymous single nucleotide polymorphisms (nsSNPs) in the coding region of the human MC1R gene. Among the 92 nsSNPs arranged according to the predictions 62% were classified as damaging in more than five tools. The classification was significantly correlated with the scores of two consensus programs. Alleles associated with the red hair color (RHC) phenotype and with the risk of melanoma were examined. The R variants D84E, R142H, R151C, I155T, R160W and D294H were classified as damaging by the majority of the tools while the r variants V60L, V92M and R163Q have been predicted as neutral in most of the programs The combination of the prediction tools results in 14 nsSNPs indicated as the most damaging mutations in MC1R (L48P, R67W, H70Y, P72L, S83P, R151H, S172I, L206P, T242I, G255R, P256S, C273Y, C289R and R306H); C273Y showed to be highly damaging in SIFT, Polyphen-2, MutPred, PANTHER and PROVEAN scores. The computational analysis proved capable of identifying the potentially damaging nsSNPs in MC1R, which are candidates for further laboratory studies of the functional and pharmacological significance of the alterations in the receptor and the phenotypic outcomes.

  2. Potential relationship between single nucleotide polymorphisms used in forensic genetics and diseases or other traits in European population.

    PubMed

    Pombar-Gomez, Maria; Lopez-Lopez, Elixabet; Martin-Guerrero, Idoia; Garcia-Orad Carles, Africa; de Pancorbo, Marian M

    2015-05-01

    Single nucleotide polymorphisms (SNPs) are an interesting option to facilitate the analysis of highly degraded DNA by allowing the reduction of the size of the DNA amplicons. The SNPforID 52-plex panel is a clear example of the use of non-coding SNPs in forensic genetics. However, nonstop advances in studies of genetic polymorphisms are leading to the discovery of new associations between SNPs and diseases. The aim of this study was to perform a comprehensive review of the state of association between the 52 SNPs in the 52-plex panel and diseases or other traits related to their treatment, such as drug response characters. In order to achieve this goal, we have conducted a bioinformatic search for each SNP included in the panel and the SNPs in linkage disequilibrium (LD) with them in the European population (r (2)  > 0.8). A total of 424 SNPs (52 in the panel and 372 in LD) were investigated in PubMed, Scopus, and dbSNP databases. Our results show that three SNPs in the SNPforID 52-plex panel (rs2107612, rs1979255, rs1463729) have been associated with diseases such as hypertension or macular degeneration, as well as drug response. Similarly, three out of the 372 SNPs in LD (rs2107614, r (2)  = 0.859; rs765250, r (2)  = 0.858; rs11064560, r (2)  = 0,887) are also associated with various pathologies. In view of these results, we propose the need for a periodic review of the SNPs used in forensic genetics in order to keep their associations with diseases or related phenotypes updated and to evaluate their continuity in forensic panels for avoiding legal and ethical conflicts.

  3. Meta-analysis of the relationship between single nucleotide polymorphism rs72689236 of caspase-3 and Kawasaki disease.

    PubMed

    Xing, Yanlin; Wang, Hong; Liu, Xiaomei; Yu, Xianyi; Chen, Rui; Wang, Ce; Yu, Xuexin; Sun, Le

    2014-10-01

    Kawasaki disease is a pediatric systemic vasculitis of unknown etiology, for which a genetic influence is suspected. But whether single nucleotide polymorphism (SNP) of caspase-3 rs72689236 is associated with Kawasaki disease is controversial. The aim of our study is to assess the association between the SNP of caspase-3 and risk for Kawasaki disease. We searched PubMed, MEDLINE, EMBASE, Springer, Elsevier Science Direct, Cochrane Library Google scholar, CNKI (China National Knowledge Infrastructure, in Chinese) and Wanfang database (in Chinese) to identify studies investigating the association between rs72689236 polymorphism and Kawasaki disease occurrence. There were five eligible studies, which included 4,241 (case group 1,560; control group 2,681) participants in this meta-analysis. Pooled odds ratios (ORs) and 95 % confidence intervals (95 % CIs) were calculated in a fixed-effects model (the Mantel-Haenszel method) or a random-effects model (the DerSimonian and Laird method) when appropriate. Significant associations were found under the overall ORs for A-allele comparison (A vs. G, pooled OR 1.33, 95 % CI 1.21-1.46), AA versus GG comparison (pooled OR 1.64, 95 % CI 1.35-2.00), GA versus GG comparison (pooled OR 1.42, 95 % CI 1.24-1.63), recessive model (AA vs. GG + GA, pooled OR 1.37, 95 % CI 1.15-1.64) and dominant model (AA + GA vs. GG, pooled OR 1.47, 95 % CI 1.29-1.67). This meta-analysis suggested that SNP rs72689236 of caspase-3 might be associated with susceptibility of Kawasaki disease and the allele A might increase the risk of Kawasaki disease in Asian samples such as Japanese and Chinese. In addition, individual studies with large sample size are needed to further evaluate the associations in various ethnic populations.

  4. Genetic Diversity and Relatedness of Sweet Cherry (Prunus Avium L.) Cultivars Based on Single Nucleotide Polymorphic Markers

    PubMed Central

    Fernandez i Marti, Angel; Athanson, Blessing; Koepke, Tyson; Font i Forcada, Carolina; Dhingra, Amit; Oraguzie, Nnadozie

    2012-01-01

    Most previous studies on genetic fingerprinting and cultivar relatedness in sweet cherry were based on isoenzyme, RAPD, and simple sequence repeat (SSR) markers. This study was carried out to assess the utility of single nucleotide polymorphism (SNP) markers generated from 3′ untranslated regions (UTR) for genetic fingerprinting in sweet cherry. A total of 114 sweet cherry germplasm representing advanced selections, commercial cultivars, and old cultivars imported from different parts of the world were screened with seven SSR markers developed from other Prunus species and with 40 SNPs obtained from 3′ UTR sequences of Rainier and Bing sweet cherry cultivars. Both types of marker study had 99 accessions in common. The SSR data was used to validate the SNP results. Results showed that the average number of alleles per locus, mean observed heterozygosity, expected heterozygosity, and polymorphic information content values were higher in SSRs than in SNPs although both set of markers were similar in their grouping of the sweet cherry accessions as shown in the dendrogram. SNPs were able to distinguish sport mutants from their wild type germplasm. For example, “Stella” was separated from “Compact Stella.” This demonstrates the greater power of SNPs for discriminating mutants from their original parents than SSRs. In addition, SNP markers confirmed parentage and also determined relationships of the accessions in a manner consistent with their pedigree relationships. We would recommend the use of 3′ UTR SNPs for genetic fingerprinting, parentage verification, gene mapping, and study of genetic diversity in sweet cherry. PMID:22737155

  5. In silico Evaluation of Nonsynonymous Single Nucleotide Polymorphisms in the ADIPOQ Gene Associated with Diabetes, Obesity, and Inflammation

    PubMed Central

    Narayana Swamy, A; Valasala, Harika; Kamma, Sreenivasulu

    2015-01-01

    Background: The human ADIPOQ gene encodes adiponectin protein hormone, which is involved in regulating glucose levels as well as fatty acid breakdown. It is exclusively produced by adipose tissue and abundantly present in the circulation, with concentration of around 0.01% of total serum proteins, with important effect on metabolism. Methods: Most deleterious nonsynonymous single nucleotide polymorphisms in the coding region of the ADIPOQ gene were investigated using SNP databases, and detected nonsynonymous variants were analyzed in silico from the standpoint of relevant protein function and stability by using SIFT, PolyPhen-2, PROVEAN and MUpro, I-Mutant2.0 tools, respectively. Result: A total of 58 nonsynonymous SNPs consisting of 55 missense variations, 3 nonsense variations were found in the ADIPOQ gene. Next, 14 of the 55 missense variants were predicted to be damaging or deleterious by three different software programs (PolyPhen-2, SIFT, and PROVEAN), and 38 of them were predicted to be less stable (I-Mutant 2.0 and MUpro software). Totally, 10 variants out of 55 missense variants were predicted to be both deleterious and reduce protein stability. Additionally, 3 nonsense variants were predicted to produce a truncated ADIPOQ protein. RMSD and total energy were calculated for 4 nsSNPs out of 10 nsSNPs which were both deleterious and showed a decrease in protein stability. Conclusion: rs144526209 has high root-mean-square deviation (RMSD) and lower total energy value compared to the native modeled structure. It was concluded that this nsSNP, potentially functional and polymorphic in the ADIPOQ gene, might be associated with diabetes, obesity, and inflammation. PMID:26306152

  6. Cellular signalling of non-synonymous single-nucleotide polymorphisms of the human μ-opioid receptor (OPRM1)

    PubMed Central

    Knapman, Alisa; Connor, Mark

    2015-01-01

    There is significant variability in individual responses to opioid drugs, which is likely to have a significant genetic component. A number of non-synonymous single-nucleotide polymorphisms (SNPs) in the coding regions of the μ-opioid receptor gene (OPRM1) have been postulated to contribute to this variability. Although many studies have investigated the clinical influences of these μ-opioid receptor variants, the outcomes are reported in the context of thousands of other genes and environmental factors, and we are no closer to being able to predict individual response to opioids based on genotype. Investigation of how μ-opioid receptor SNPs affect their expression, coupling to second messengers, desensitization and regulation is necessary to understand how subtle changes in receptor structure can impact individual responses to opioids. To date, the few functional studies that have investigated the consequences of SNPs on the signalling profile of the μ-opioid receptor in vitro have shown that the common N40D variant has altered functional responses to some opioids, while other, rarer, variants display altered signalling or agonist-dependent regulation. Here, we review the data available on the effects of μ-opioid receptor polymorphisms on receptor function, expression and regulation in vitro, and discuss the limitations of the studies to date. Whether or not μ-opioid receptor SNPs contribute to individual variability in opioid responses remains an open question, in large part because we have relatively little good data about how the amino acid changes affect μ-opioid receptor function. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24527749

  7. Detection of single nucleotide polymorphism (SNP) controlling the waxy character in wheat by using a derived cleaved amplified polymorphic sequence (dCAPS) marker.

    PubMed

    Yanagisawa, T; Kiribuchi-Otobe, C; Hirano, H; Suzuki, Y; Fujita, M

    2003-06-01

    We investigated a single nucleotide polymorphism (SNP) in the Wx-D1 gene, which was found in a mutant waxy wheat, and which expressed the Wx-D1 protein (granule-bound starch synthase I) as shown by immunoblot analysis. We also assayed starch synthase activity of granule-bound proteins. Using 22 doubled-haploid (DH) lines and 172 F(5) lines derived from the wild type x the mutant, we detected SNP via a PCR-based (dCAPS) marker. Amplified PCR products from Wx-D1 gene-specific primers, followed by mismatched primers designed for dCAPS analysis, were digested with the appropriate restriction enzyme. The two alleles, and the heterozygote genotype were easily and rapidly discriminated by gel-electrophoresis resolution to reveal SNP. All progeny lines that have the SNP of the mutant allele were waxy. Integrating the results of dCAPS analysis, immunoblot analysis and assays of starch synthase activity of granule-bound proteins indicates that the SNP in the Wx-D1 gene was responsible for its waxy character. This dCAPS marker is therefore useful as a marker to introduce the mutant allele into elite breeding lines.

  8. Genetic diversity in populations of Slovak Spotted cattle based on single nucleotide polymorphisms analyses.

    PubMed

    Moravčíková, Nina; Trakovická, Anna; Navrátilová, Alica

    2013-01-01

    The aim of this study was to identify SNPs in leptin (LEP), leptin receptor (LEPR) and growth hormone (GH) genes in order to analyze genetic diversity of Slovak Spotted cattle. The total numbers of blood samples were taken from 353 Slovak Spotted cows originating from four farms. Genomic DNA was isolated by phenol-chloroform extraction method and analyzed by PCR-RFLP method. After digestion with restriction, enzymes were detected in whole population of cow's alleles with frequency: LEP/Sau3AI A 0.84 and B 0.16 (±0.0152); LEPR/BseGI C 0.95 and T 0.05 (±0.0089) and GH/AluI L 0.70 and V 0.30 (±0.0188). Based on the observed vs. expected genotypes frequencies populations across loci were in Hardy-Weinberg equilibrium (P\\>0.05). Predominant for SNP LEP/Sau3AI was AA genotype (0.70), for SNP LEPR/T945M CC genotype (0.91), and LL genotype (0.48) was most frequent for SNP GH/AluI. The observed heterozygosity of SNPs across populations was also transferred to the low or median polymorphic information content 0.24 (He 0.28), 0.08 (He 0.09) and 0.33 (He 0.47) for LEP, LEPR and GH genes, respectively. Within genetic variability estimating negative values of fixation indexes FIS (-0.09-0.05) and FIT (-0.07-0.03) indicating heterozygote excess were observed. The value of FST indexes (0.018-0.023) shows very low levels of genetic differentiation in allele frequencies of loci among evaluated subpopulations. The low values of genetic distances (0.0018-0.0159) indicated high genetic relatedness among animals in subpopulations caused probably by common ancestry used in breeding program at farms.

  9. Estimation of effective population size using single-nucleotide polymorphism (SNP) data in Jeju horse.

    PubMed

    Do, Kyoung-Tag; Lee, Joon-Ho; Lee, Hak-Kyo; Kim, Jun; Park, Kyung-Do

    2014-01-01

    This study was conducted to estimate the effective population size using SNPs data of 240 Jeju horses that had raced at the Jeju racing park. Of the total 61,746 genotyped autosomal SNPs, 17,320 (28.1%) SNPs (missing genotype rate of >10%, minor allele frequency of <0.05 and Hardy-Weinberg equilibrium test P-value of <10(-6)) were excluded after quality control processes. SNPs on the X and Y chromosomes and genotyped individuals with missing genotype rate over 10% were also excluded, and finally, 44,426 (71.9%) SNPs were selected and used for the analysis. The measures of the LD, square of correlation coefficient (r(2)) between SNP pairs, were calculated for each allele and the effective population size was determined based on r(2) measures. The polymorphism information contents (PIC) and expected heterozygosity (HE) were 0.27 and 0.34, respectively. In LD, the most rapid decline was observed over the first 1 Mb. But r(2) decreased more slowly with increasing distance and was constant after 2 Mb of distance and the decline was almost linear with log-transformed distance. The average r(2) between adjacent SNP pairs ranged from 0.20 to 0.31 in each chromosome and whole average was 0.26, while the whole average r(2) between all SNP pairs was 0.02. We observed an initial pattern of decreasing Ne and estimated values were closer to 41 at 1 ~ 5 generations ago. The effective population size (41 heads) estimated in this study seems to be large considering Jeju horse's population size (about 2,000 heads), but it should be interpreted with caution because of the technical limitations of the methods and sample size.

  10. Single Nucleotide Polymorphisms of One-Carbon Metabolism and Cancers of the Esophagus, Stomach, and Liver in a Chinese Population

    PubMed Central

    Chang, Shen-Chih; Chang, Po-Yin; Butler, Brendan; Goldstein, Binh Y.; Mu, Lina; Cai, Lin; You, Nai-Chieh Y.; Baecker, Aileen; Yu, Shun-Zhang; Heber, David; Lu, Qing-Yi; Li, Liming; Greenland, Sander; Zhang, Zuo-Feng

    2014-01-01

    One-carbon metabolism (folate metabolism) is considered important in carcinogenesis because of its involvement in DNA synthesis and biological methylation reactions. We investigated the associations of single nucleotide polymorphisms (SNPs) in folate metabolic pathway and the risk of three GI cancers in a population-based case-control study in Taixing City, China, with 218 esophageal cancer cases, 206 stomach cancer cases, 204 liver cancer cases, and 415 healthy population controls. Study participants were interviewed with a standardized questionnaire, and blood samples were collected after the interviews. We genotyped SNPs of the MTHFR, MTR, MTRR, DNMT1, and ALDH2 genes, using PCR-RFLP, SNPlex, or TaqMan assays. To account for multiple comparisons and reduce the chances of false reports, we employed semi-Bayes (SB) shrinkage analysis. After shrinkage and adjusting for potential confounding factors, we found positive associations between MTHFR rs1801133 and stomach cancer (any T versus C/C, SB odds-ratio [SBOR]: 1.79, 95% posterior limits: 1.18, 2.71) and liver cancer (SBOR: 1.51, 95% posterior limits: 0.98, 2.32). There was an inverse association between DNMT1 rs2228612 and esophageal cancer (any G versus A/A, SBOR: 0.60, 95% posterior limits: 0.39, 0.94). In addition, we detected potential heterogeneity across alcohol drinking status for ORs relating MTRR rs1801394 to esophageal (posterior homogeneity P = 0.005) and stomach cancer (posterior homogeneity P = 0.004), and ORs relating MTR rs1805087 to liver cancer (posterior homogeneity P = 0.021). Among non-alcohol drinkers, the variant allele (allele G) of these two SNPs was inversely associated with the risk of these cancers; while a positive association was observed among ever-alcohol drinkers. Our results suggest that genetic polymorphisms related to one-carbon metabolism may be associated with cancers of the esophagus, stomach, and liver. Heterogeneity across alcohol consumption status of the

  11. Relationship Between Cytokine Gene Single Nucleotide Polymorphisms and Symptom Burden and Quality of Life in Lung Cancer Survivors

    PubMed Central

    Rausch, Sarah M.; Clark, Matthew M.; Patten, Christi; Liu, Heshan; Felten, Sara; Li, Yafei; Sloan, Jeff; Yang, Ping

    2011-01-01

    BACKGROUND Previous research has demonstrated that many lung cancer survivors report difficulties with symptom control and experience a poor quality of life (QOL). Although recent studies have suggested a relationship of single nucleotide polymorphisms (SNPs) in several cytokine genes with cancer susceptibility and prognosis, associations with symptom burden and QOL have not been examined. The current study was conducted to identify SNPs related to symptom burden and QOL outcomes in lung cancer survivors. METHODS All participants were enrolled in the Mayo Clinic Lung Cancer Cohort following diagnosis of lung cancer. A total of 1149 Caucasian lung cancer survivors completed questionnaires and had genetic samples available. The main outcome measures were symptom burden as measured by the Lung Cancer Symptom Scale and health-related QOL as measured by the Short-Form General Health Survey. RESULTS Twenty-one SNPs in cytokine genes were associated with symptom burden and QOL outcomes. Our results suggested both specificity and consistency of cytokine gene SNPs in predicting outcomes. CONCLUSIONS These results provide support for genetic predisposition to QOL and symptom burden and may aid in identification of lung cancer survivors at high risk for symptom management and QOL difficulties. PMID:20564140

  12. Single Nucleotide Polymorphism-Based Analysis of Cell-Free Fetal DNA in 3000 Cases from Germany and Austria

    PubMed Central

    Eiben, B.; Krapp, M.; Borth, H.; Kutur, N.; Kreiselmaier, P.; Glaubitz, R.; Deutinger, J.; Merz, E.

    2015-01-01

    Background & Patient: Data from 3 008 patients, who underwent single-nucleotide-polymorphism (SNP)-based noninvasive prenatal testing (NIPT) are presented. Method: The PanoramaTM test (Natera, San Carlos, CA) was used to analyze cell-free fetal DNA from maternal blood for trisomies 21, 18, and 13, triploidy and sex-chromosome aneuploidies. Result: In 2 942 (97.8%) cases, a result was obtained. The average fetal fraction was 10.2%. A high-risk result for fetal aneuploidy was made for 65 (2.2%) cases. In 59 (90.8%) of these cases, invasive testing confirmed the aneuploidy. There were 6 false-positive cases. In the false-positive group, the fetal fraction was significantly lower. The overall positive predictive value was 90.8%. No false-negative cases were reported but many patients in this study have not delivered yet. Therefore, exact data cannot be given for potential false-negative cases. Conclusion: SNP-based NIPT is a reliable screening method for evaluating the risk of aneuploidies of chromosomes 21, 18 and 13. By using NIPT, the number of invasive procedures may be reduced significantly compared to maternal age and first-trimester screening. PMID:27689149

  13. Robust and accurate single nucleotide polymorphism genotyping by dynamic allele-specific hybridization (DASH): design criteria and assay validation.

    PubMed

    Prince, J A; Feuk, L; Howell, W M; Jobs, M; Emahazion, T; Blennow, K; Brookes, A J

    2001-01-01

    We recently introduced a generic single nucleotide polymorphism (SNP) genotyping method, termed DASH (dynamic allele-specific hybridization), which entails dynamic tracking of probe (oligonucleotide) to target (PCR product) hybridization as reaction temperature is steadily increased. The reliability of DASH and optimal design rules have not been previously reported. We have now evaluated crudely designed DASH assays (sequences unmodified from genomic DNA) for 89 randomly selected and confirmed SNPs. Accurate genotype assignment was achieved for 89% of these worst-case-scenario assays. Failures were determined to be caused by secondary structures in the target molecule, which could be reliably predicted from thermodynamic theory. Improved design rules were thereby established, and these were tested by redesigning six of the failed DASH assays. This involved reengineering PCR primers to eliminate amplified target sequence secondary structures. This sophisticated design strategy led to complete functional recovery of all six assays, implying that SNPs in most if not all sequence contexts can be effectively scored by DASH. Subsequent empirical support for this inference has been evidenced by approximately 30 failure-free DASH assay designs implemented across a range of ongoing genotyping programs. Structured follow-on studies employed standardized assay conditions, and revealed that assay reproducibility (733 duplicated genotypes, six different assays) was as high as 100%, with an assay accuracy (1200 genotypes, three different assays) that exceeded 99.9%. No post-PCR assay failures were encountered. These findings, along with intrinsic low cost and high flexibility, validate DASH as an effective procedure for SNP genotyping.

  14. Computational Analysis of Damaging Single-Nucleotide Polymorphisms and Their Structural and Functional Impact on the Insulin Receptor

    PubMed Central

    Mahmud, Zabed; Malik, Syeda Umme Fahmida; Ahmed, Jahed

    2016-01-01

    Single-nucleotide polymorphisms (SNPs) associated with complex disorders can create, destroy, or modify protein coding sites. Single amino acid substitutions in the insulin receptor (INSR) are the most common forms of genetic variations that account for various diseases like Donohue syndrome or Leprechaunism, Rabson-Mendenhall syndrome, and type A insulin resistance. We analyzed the deleterious nonsynonymous SNPs (nsSNPs) in INSR gene based on different computational methods. Analysis of INSR was initiated with PROVEAN followed by PolyPhen and I-Mutant servers to investigate the effects of 57 nsSNPs retrieved from database of SNP (dbSNP). A total of 18 mutations that were found to exert damaging effects on the INSR protein structure and function were chosen for further analysis. Among these mutations, our computational analysis suggested that 13 nsSNPs decreased protein stability and might have resulted in loss of function. Therefore, the probability of their involvement in disease predisposition increases. In the lack of adequate prior reports on the possible deleterious effects of nsSNPs, we have systematically analyzed and characterized the functional variants in coding region that can alter the expression and function of INSR gene. In silico characterization of nsSNPs affecting INSR gene function can aid in better understanding of genetic differences in disease susceptibility. PMID:27840822

  15. Identification of single nucleotide polymorphism markers associated with bacterial cold water disease resistance and spleen size in rainbow trout.

    PubMed

    Liu, Sixin; Vallejo, Roger L; Palti, Yniv; Gao, Guangtu; Marancik, David P; Hernandez, Alvaro G; Wiens, Gregory D

    2015-01-01

    Bacterial cold water disease (BCWD) is one of the frequent causes of elevated mortality in salmonid aquaculture. Previously, we identified and validated microsatellites on chromosome Omy19 associated with QTL (quantitative trait loci) for BCWD resistance and spleen size in rainbow trout. Recently, SNPs (single nucleotide polymorphism) have become the markers of choice for genetic analyses in rainbow trout as they are highly abundant, cost-effective and are amenable for high throughput genotyping. The objective of this study was to identify SNP markers associated with BCWD resistance and spleen size using both genome-wide association studies (GWAS) and linkage-based QTL mapping approaches. A total of 298 offspring from the two half-sib families used in our previous study to validate the significant BCWD QTL on chromosome Omy19 were genotyped with RAD-seq (restriction-site-associated DNA sequencing), and 7,849 informative SNPs were identified. Based on GWAS, 18 SNPs associated with BCWD resistance and 20 SNPs associated with spleen size were identified. Linkage-based QTL mapping revealed three significant QTL for BCWD resistance. In addition to the previously validated dam-derived QTL on chromosome Omy19, two significant BCWD QTL derived from the sires were identified on chromosomes Omy8 and Omy25, respectively. A sire-derived significant QTL for spleen size on chromosome Omy2 was detected. The SNP markers reported in this study will facilitate fine mapping to identify positional candidate genes for BCWD resistance in rainbow trout.

  16. Associations of nicotinamide N-methyltransferase gene single nucleotide polymorphisms with sport performance and relative maximal oxygen uptake.

    PubMed

    Li, Jiang-Hua; Chen, Wei; Zhu, Xiao-Juan; Lin, Ya-Jun; Qiu, Li-Qiang; Cai, Can-Xin; Wang, Ya-Hui; Xiong, Qun; Chen, Fei; Chen, Li-Hui

    2016-11-30

    To observe the associations between single nucleotide polymorphisms (SNPs) of nicotinamide N-methyltransferase (NNMT) gene and sport performance and to analyse genotype associations of the associated SNPs with sport performance and relative maximal oxygen uptake ([Formula: see text]). Participants were selected from 685 Chinese Han male college students. The completion times of a 1000-m run and a 50-m run were used to reflect sport performance, respectively. Nineteen tagSNPs were genotyped with Polymerase chain reaction-ligase detection reaction. Relative [Formula: see text] was directly determined with a cardiopulmonary function analyser. A significant association was found between rs2256292 and 1000-m run performance, but no significant association was found between any tagSNPs and 50-m run performance. The genotype associations of rs2256292 with 1000-m run performance and with relative [Formula: see text] were both significant under the recessive model (CC vs. CG + GG). No tagSNP in NNMT is significantly associated with 50-m run performance but rs2256292 is significantly associated with 1000-m run performance. The genotype associations of rs2256292 with sport performance are significant under recessive model, and a higher relative [Formula: see text] may be the physiological reason for minor homozygote CC carriers being of the better 1000-m runners.

  17. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array.

    PubMed

    Wang, Shichen; Wong, Debbie; Forrest, Kerrie; Allen, Alexandra; Chao, Shiaoman; Huang, Bevan E; Maccaferri, Marco; Salvi, Silvio; Milner, Sara G; Cattivelli, Luigi; Mastrangelo, Anna M; Whan, Alex; Stephen, Stuart; Barker, Gary; Wieseke, Ralf; Plieske, Joerg; Lillemo, Morten; Mather, Diane; Appels, Rudi; Dolferus, Rudy; Brown-Guedira, Gina; Korol, Abraham; Akhunova, Alina R; Feuillet, Catherine; Salse, Jerome; Morgante, Michele; Pozniak, Curtis; Luo, Ming-Cheng; Dvorak, Jan; Morell, Matthew; Dubcovsky, Jorge; Ganal, Martin; Tuberosa, Roberto; Lawley, Cindy; Mikoulitch, Ivan; Cavanagh, Colin; Edwards, Keith J; Hayden, Matthew; Akhunov, Eduard

    2014-08-01

    High-density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array including about 90,000 gene-associated SNPs and used it to characterize genetic variation in allohexaploid and allotetraploid wheat populations. The array includes a significant fraction of common genome-wide distributed SNPs that are represented in populations of diverse geographical origin. We used density-based spatial clustering algorithms to enable high-throughput genotype calling in complex data sets obtained for polyploid wheat. We show that these model-free clustering algorithms provide accurate genotype calling in the presence of multiple clusters including clusters with low signal intensity resulting from significant sequence divergence at the target SNP site or gene deletions. Assays that detect low-intensity clusters can provide insight into the distribution of presence-absence variation (PAV) in wheat populations. A total of 46 977 SNPs from the wheat 90K array were genetically mapped using a combination of eight mapping populations. The developed array and cluster identification algorithms provide an opportunity to infer detailed haplotype structure in polyploid wheat and will serve as an invaluable resource for diversity studies and investigating the genetic basis of trait variation in wheat.

  18. TET2, ASXL1, IDH1 and IDH2 single nucleotide polymorphisms in Turkish patients with chronic myeloproliferative neoplasms.

    PubMed

    Soyer, Nur; Tezcanlı Kaymaz, Burçin; Cömert Özkan, Melda; Aktan, Çağdaş; Küçükaslan, Ali Şahin; Şahin, Fahri; Kosova, Buket; Saydam, Güray

    2017-02-20

    We aimed to determine the genotype distribution, allele frequency and prognostic impact of IDH1/2(Isocitrate dehydrogenase), TET2(Ten-Eleven-Translocation2) and ASXL1(Additional Sex Combs-Like 1) single nucleotide polymorphisms (SNPs) in MPNs. TET2(rs763480), ASXL1(rs2208131) and IDH1(rs11554137) variant homozygous genotype frequencies were 1.5%, 9.2% and 2.3%, respectively. No IDH2 SNP was identified. IDH1 and TET2 frequencies were 5% in ET and 1.7% in ET, 5% in PMF, respectively. ASXL1 frequencies were 8.3-10% in MPN subgroups. TET2 mutant allele T and ASXL1 mutant allele G were the highest frequency with 0.272 in PMF and with 0.322 in the PV group, respectively. There was no impact of the SPNs on prognosis. IDH1 frequency in MPNs is found similar to the literature. ASXL1 frequencies were similar between ET, PV and PMF patients. Turkish population ASXL1 and TET2 allele frequency are similar to European population. The role of SNPs in MPNs might be further evaluated in larger, multicenter studies.

  19. 4th International Meeting on Single Nucleotide Polymorphism and Complex Genome Analysis. Various uses for DNA variations.

    PubMed

    Brookes, Anthony J

    2002-02-01

    At the 4th International Meeting on Single Nucleotide Polymorphism and Complex Genome Analysis (Stockholm, Sweden, 10th-14th October 2001), approximately 100 scientists from more than 20 nations undertook a probing review of latest developments in the field. Despite impressive and still ongoing activities towards SNP discovery and validation, plus efforts towards haplotype exploitation, it was clear that supporting technologies for genotyping are way behind where they need to be. Innate complexity and large variances in aspects of genome function together pose immense challenges that are difficult to surmount in the human situation. In contrast, studies in simpler organisms and population/evolutionary genetics studies are yielding important new insights. Breakthroughs that are being made in understanding the genetic etiology of complex disease tend to involve genes of larger effect or extremely well merited candidates. Linkage studies and proximal phenotypes are being recommended, though the best way forward is still hotly debated. Consequently, many diverse and ambitious projects are underway, from which the data itself will eventually show what is and is not possible.

  20. Multiple detection of single nucleotide polymorphism by microarray-based resonance light scattering assay with enlarged gold nanoparticle probes.

    PubMed

    Gao, Jiaxue; Ma, Lan; Lei, Zhen; Wang, Zhenxin

    2016-03-07

    The mapping of specific single nucleotide polymorphisms (SNPs) in patients' genome is a critical process for the development of personalized therapy. In this work, a DNA microarray-based resonance light scattering (RLS) assay has been developed for multiplexed detection of breast cancer related SNPs with high sensitivity and selectivity. After hybridization of the desired target single-stranded DNAs (ssDNAs) with the ssDNA probes on a microarray, the polyvalent ssDNA modified 13 nm gold nanoparticles (GNPs) are employed to label the hybridization reaction through the formation of a three-stranded DNA system. The H2O2-mediated enlargement of GNPs is then used to enhance the RLS signal. The microarray-based RLS assay provides a detection limit of 10 pM (S/N = 3) for the target ssDNA and determines an allele frequency as low as 1.0% in the target ssDNA cocktail. Combined with an asymmetric PCR technique, the proposed assay shows good accuracy and sensitivity in profiling 4 SNPs related to breast cancer of three selected cell lines.

  1. Single-nucleotide polymorphism-gene intermixed networking reveals co-linkers connected to multiple gene expression phenotypes

    PubMed Central

    Gong, Bin-Sheng; Zhang, Qing-Pu; Zhang, Guang-Mei; Zhang, Shao-Jun; Zhang, Wei; Lv, Hong-Chao; Zhang, Fan; Lv, Sa-Li; Li, Chuan-Xing; Rao, Shao-Qi; Li, Xia

    2007-01-01

    Gene expression profiles and single-nucleotide polymorphism (SNP) profiles are modern data for genetic analysis. It is possible to use the two types of information to analyze the relationships among genes by some genetical genomics approaches. In this study, gene expression profiles were used as expression traits. And relationships among the genes, which were co-linked to a common SNP(s), were identified by integrating the two types of information. Further research on the co-expressions among the co-linked genes was carried out after the gene-SNP relationships were established using the Haseman-Elston sib-pair regression. The results showed that the co-expressions among the co-linked genes were significantly higher if the number of connections between the genes and a SNP(s) was more than six. Then, the genes were interconnected via one or more SNP co-linkers to construct a gene-SNP intermixed network. The genes sharing more SNPs tended to have a stronger correlation. Finally, a gene-gene network was constructed with their intensities of relationships (the number of SNP co-linkers shared) as the weights for the edges. PMID:18466544

  2. A Multipurpose, High-Throughput Single-Nucleotide Polymorphism Chip for the Dengue and Yellow Fever Mosquito, Aedes aegypti

    PubMed Central

    Evans, Benjamin R.; Gloria-Soria, Andrea; Hou, Lin; McBride, Carolyn; Bonizzoni, Mariangela; Zhao, Hongyu; Powell, Jeffrey R.

    2015-01-01

    The dengue and yellow fever mosquito, Aedes aegypti, contributes significantly to global disease burden. Genetic study of Aedes aegypti is essential to understanding its evolutionary history, competence as a disease vector, and the effects and efficacy of vector control methods. The prevalence of repeats and transposable elements in the Aedes aegypti genome complicates marker development and makes genome-wide genetic study challenging. To overcome these challenges, we developed a high-throughput genotyping chip, Axiom_aegypti1. This chip screens for 50,000 single-nucleotide polymorphisms present in Aedes aegypti populations from around the world. The array currently used genotypes 96 samples simultaneously. To ensure that these markers satisfy assumptions commonly made in many genetic analyses, we tested for Mendelian inheritance and linkage disequilibrium in laboratory crosses and a wild population, respectively. We have validated more than 25,000 of these markers to date, and expect this number to increase with more sampling. We also present evidence of the chip’s efficacy in distinguishing populations throughout the world. The markers on this chip are ideal for applications ranging from population genetics to genome-wide association studies. This tool makes rapid, cost-effective, and comparable genotype data attainable to diverse sets of Aedes aegypti researchers, from those interested in potential range shifts due to climate change to those characterizing the genetic underpinnings of its competence to transmit disease. PMID:25721127

  3. The common single-nucleotide polymorphism rs2681472 is associated with early-onset preeclampsia in Northern Han Chinese women.

    PubMed

    Wan, Ji-Peng; Wang, Hong; Li, Chang-Zhong; Zhao, Han; You, Li; Shi, Dong-Hong; Sun, Xiu-Hua; Lv, Hong; Wang, Fei; Wen, Ze-Qing; Wang, Xie-Tong; Chen, Zi-Jiang

    2014-11-01

    Preeclampsia, characterized by hypertension and proteinuria, remains a leading cause of maternal morbidity and mortality. Recently, a genome-wide association study (GWAS) identified the single-nucleotide polymorphism, rs2681472, as a new hypertension susceptibility genetic variant. The purpose of this study was to evaluate the association between preeclampsia and rs268172 in a Northern Han Chinese population. We genotyped 1218 unrelated Northern Han Chinese women, including 515 patients with preeclampsia and 703 healthy controls. No significant differences were detected in the allele frequencies between patients and controls (P = .23). When patients were divided into early-onset and late-onset preeclampsia according to gestational age of disease onset, the allele frequencies significantly differed between controls and patients with early-onset preeclampsia (P = .02). Genotype frequencies also were significantly different between controls and patients early-onset preeclampsia when data were analyzed under additive (P = .03) and dominant (P = .009) models. We replicated this association in an independent Northern Han Chinese population and observed a significant difference in the allele frequencies between patients with early-onset preeclampsia and controls (P = .011). We report that rs2681472 is associated with early-onset preeclampsia in Northern Han Chinese women.

  4. No association between single nucleotide polymorphisms in pre-mirnas and the risk of gastric cancer in Chinese population

    PubMed Central

    Pu, Jia-Yuan; Dong, Wei; Zhang, Lin; Liang, Wei-Bo; Yang, Yan; Lv, Mei-Li

    2014-01-01

    Objective(s): Accumulating evidence has demonstrated that miRNAs contribute to various genetic and epigenetic modifications in the pathogenesis of gastric cancer (GC). Recent studies focused on the four single nucleotide polymorphisms (SNPs) of pre-miRNAs including rs11614913, rs3746444, rs2910164, and rs2292832. It was suggested that these four SNPs were significantly associated with the risk of GC and were described as candidate susceptibility factors. However, the previous results show conflicting findings. The aim of this study was to investigate whether these four SNPs are associated with GC in Chinese Han population. Materials and Methods: Genotype frequencies of these four SNPs of pre-miRNAs in 220 GC patients and 530 control subjects were performed using a PCR-RFLP assay. Results: No significant differences in genotype and allelic distribution were found in these four SNPs between GC and control subjects in the Chinese Han population. However, we found that the allelic frequency distributions of control subjects in these four SNPs were significantly different from those of the Japanese and the Koreans (All the P<0.05). Conclusion: The four SNPs did not show any significant correlation with the development of GC in the Chinese Han population, based on the current study. PMID:24711897

  5. RNase H-dependent PCR (rhPCR): improved specificity and single nucleotide polymorphism detection using blocked cleavable primers

    PubMed Central

    2011-01-01

    Background The polymerase chain reaction (PCR) is commonly used to detect the presence of nucleic acid sequences both in research and diagnostic settings. While high specificity is often achieved, biological requirements sometimes necessitate that primers are placed in suboptimal locations which lead to problems with the formation of primer dimers and/or misamplification of homologous sequences. Results Pyrococcus abyssi (P.a.) RNase H2 was used to enable PCR to be performed using blocked primers containing a single ribonucleotide residue which are activated via cleavage by the enzyme (rhPCR). Cleavage occurs 5'-to the RNA base following primer hybridization to the target DNA. The requirement of the primer to first hybridize with the target sequence to gain activity eliminates the formation of primer-dimers and greatly reduces misamplification of closely related sequences. Mismatches near the scissile linkage decrease the efficiency of cleavage by RNase H2, further increasing the specificity of the assay. When applied to the detection of single nucleotide polymorphisms (SNPs), rhPCR was found to be far more sensitive than standard allele-specific PCR. In general, the best discrimination occurs when the mismatch is placed at the RNA:DNA base pair. Conclusion rhPCR eliminates the formation of primer dimers and markedly improves the specificity of PCR with respect to off-target amplification. These advantages of the assay should find utility in challenging qPCR applications such as genotyping, high level multiplex assays and rare allele detection. PMID:21831278

  6. Single-nucleotide polymorphisms and haplotypes of non-coding area in the CP gene are correlated with Parkinson's disease.

    PubMed

    Zhao, Na; Xiao, Jianqiu; Zheng, Zhiyong; Fei, Guoqiang; Zhang, Feng; Jin, Lirong; Zhong, Chunjiu

    2015-04-01

    Our previous studies have demonstrated that ceruloplasmin (CP) dysmetabolism is correlated with Parkinson's disease (PD). However, the causes of decreased serum CP levels in PD patients remain to be clarified. This study aimed to explore the potential association between genetic variants of the CP gene and PD. Clinical features, serum CP levels, and the CP gene (both promoter and coding regions) were analyzed in 60 PD patients and 50 controls. A luciferase reporter system was used to investigate the function of promoter single-nucleotide polymorphisms (SNPs). High-density comparative genomic hybridization microarrays were also used to detect large-scale copy-number variations in CP and an additional 47 genes involved in PD and/or copper/iron metabolism. The frequencies of eight SNPs (one intronic SNP and seven promoter SNPs of the CP gene) and their haplotypes were significantly different between PD patients, especially those with lowered serum CP levels, and controls. However, the luciferase reporter system revealed no significant effect of the risk haplotype on promoter activity of the CP gene. Neither these SNPs nor their haplotypes were correlated with the Hoehn and Yahr staging of PD. The results of this study suggest that common genetic variants of CP are associated with PD and further investigation is needed to explore their functions in PD.

  7. TP53 and MDM2 single nucleotide polymorphisms influence survival in non-del(5q) myelodysplastic syndromes

    PubMed Central

    Sallman, David A.; Basiorka, Ashley A.; Irvine, Brittany A.; Zhang, Ling; Epling-Burnette, P.K.; Rollison, Dana E.; Mallo, Mar; Sokol, Lubomir; Solé, Francesc; Maciejewski, Jaroslaw; List, Alan F.

    2015-01-01

    P53 is a key regulator of many cellular processes and is negatively regulated by the human homolog of murine double minute-2 (MDM2) E3 ubiquitin ligase. Single nucleotide polymorphisms (SNPs) of either gene alone, and in combination, are linked to cancer susceptibility, disease progression, and therapy response. We analyzed the interaction of TP53 R72P and MDM2 SNP309 SNPs in relationship to outcome in patients with myelodysplastic syndromes (MDS). Sanger sequencing was performed on DNA isolated from 208 MDS cases. Utilizing a novel functional SNP scoring system ranging from +2 to −2 based on predicted p53 activity, we found statistically significant differences in overall survival (OS) (p = 0.02) and progression-free survival (PFS) (p = 0.02) in non-del(5q) MDS patients with low functional scores. In univariate analysis, only IPSS and the functional SNP score predicted OS and PFS in non-del(5q) patients. In multivariate analysis, the functional SNP score was independent of IPSS for OS and PFS. These data underscore the importance of TP53 R72P and MDM2 SNP309 SNPs in MDS, and provide a novel scoring system independent of IPSS that is predictive for disease outcome. PMID:26416416

  8. Prognostic significance of interleukin-6 single nucleotide polymorphism genotypes in neuroblastoma: rs1800795 (promoter) and rs8192284 (receptor)

    PubMed Central

    Lagmay, Joanne P.; London, Wendy B.; Gross, Thomas G.; Termuhlen, Amanda; Sullivan, Nicholas; Axel, Amy; Mundy, Bethany; Ranalli, Mark; Canner, Jason; McGrady, Patrick; Hall, Brett

    2009-01-01

    Purpose Neuroblastoma is a childhood cancer of the sympathetic nervous system and many patients present with high risk disease. Risk stratification, based on pathology and tumor-derived biomarkers, has improved prediction of clinical outcomes, but overall survival rates remain unfavorable and new therapeutic targets are needed. Some studies suggest a link between interleukin-6 and more aggressive behavior in neuroblastoma tumor cells. Therefore, we examined the impact of two IL-6 single nucleotide polymorphisms (SNP) on neuroblastoma disease progression. Experimental design DNA samples from 96 high risk neuroblastoma patients were screened for two SNP that are known to regulate the serum levels of IL-6 and the soluble IL-6 receptor (IL-6R), rs1800795 and rs8192284 respectively. The genotype for each SNP was determined in a blinded fashion and independent statistical analysis was performed to determine SNP-related event free survival (EFS) and overall survival (OS) rates. Results The rs1800795 IL-6 promoter SNP is an independent prognostic factor for EFS and OS in -high risk neuroblastoma patients. In contrast, the rs8192284 IL-6 receptor SNP revealed no prognostic value. Conclusions The rs1800795 SNP (-174 IL-6 (G>C) represents a novel and independent prognostic marker for both EFS and OS in high risk neuroblastoma. Since the rs1800795 SNP (-174 IL-6 (G>C) has been shown to correlate with production of IL-6, this cytokine may represent a target for development of new therapies in neuroblastoma. PMID:19671870

  9. Polymorphisms in nucleotide excision repair genes and risk of multiple primary melanoma: the Genes Environment and Melanoma Study.

    PubMed

    Millikan, Robert C; Hummer, Amanda; Begg, Colin; Player, Jon; de Cotret, Allan René; Winkel, Scott; Mohrenweiser, Harvey; Thomas, Nancy; Armstrong, Bruce; Kricker, Anne; Marrett, Loraine D; Gruber, Stephen B; Culver, Hoda Anton; Zanetti, Roberto; Gallagher, Richard P; Dwyer, Terence; Rebbeck, Timothy R; Busam, Klaus; From, Lynn; Mujumdar, Urvi; Berwick, Marianne

    2006-03-01

    Polymorphisms in six genes involved in nucleotide excision repair of DNA were examined in a large population-based case-control study of melanoma. Genotyping was conducted for 2485 patients with a single primary melanoma (controls) and 1238 patients with second or higher order primary melanomas (cases). Patients were ascertained from nine geographic regions in Australia, Canada, Italy and the United States. Positive associations were observed for XPD 312 Asn/Asn versus Asp/Asp [odds ratio (OR) = 1.5, 95% confidence interval (CI) 1.2-1.9] and XPD 751 Gln/Gln versus Lys/Lys (OR = 1.4, 95% CI 1.1-1.7) genotypes and melanoma. The combined XPD Asn (A) 312 + Gln (C) 751 haplotype was significantly more frequent in cases (32%) compared with controls (29%) (P = 0.003) and risk of melanoma increased significantly with one and two copies of the haplotype (ORs 1.2, 95% CI 1.0-1.4, and 1.6, 95% CI 1.2-2.0, trend P = 0.002). No significant associations were observed for HR23B codon 249, XPG codon 1104, XPC codon 939, XPF codon 415, XPF nt 2063, ERCC6 codon 1213 or ERCC6 codon 1230. ORs for XPD and XPC genotypes were stronger for melanoma diagnosed at an early age, but tests for interaction were not statistically significant. The results provide further evidence for a role of XPD in the etiology of melanoma.

  10. A Naturally Occurring Single Nucleotide Polymorphism in a Multicopy Plasmid Produces a Reversible Increase in Antibiotic Resistance.

    PubMed

    Santos-Lopez, Alfonso; Bernabe-Balas, Cristina; Ares-Arroyo, Manuel; Ortega-Huedo, Rafael; Hoefer, Andreas; San Millan, Alvaro; Gonzalez-Zorn, Bruno

    2017-02-01

    ColE1 plasmids are small mobilizable replicons that play an important role in the spread of antibiotic resistance in Pasteurellaceae In this study, we describe how a natural single nucleotide polymorphism (SNP) near the origin of replication of the ColE1-type plasmid pB1000 found in a Pasteurella multocida clinical isolate generates two independent plasmid variants able to coexist in the same cell simultaneously. Using the Haemophilus influenzae Rd KW20 strain as a model system, we combined antibiotic susceptibility tests, quantitative PCRs, competition assays, and experimental evolution to characterize the consequences of the coexistence of the pB1000 plasmid variants. This coexistence produced an increase of the total plasmid copy number (PCN) in the host bacteria, leading to a rise in both the antibiotic resistance level and the metabolic burden produced by pB1000. Using experimental evolution, we showed that in the presence of ampicillin, the bacteria maintained both plasmid variants for 300 generations. In the absence of antibiotics, on the other hand, the bacteria are capable of reverting to the single-plasmid genotype via the loss of one of the plasmid variants. Our results revealed how a single mutation in plasmid pB1000 provides the bacterial host with a mechanism to increase the PCN and, consequently, the ampicillin resistance level. Crucially, this mechanism can be rapidly reversed to avoid the extra cost entailed by the increased PCN in the absence of antibiotics.

  11. A non-synonymous single-nucleotide polymorphism associated with multiple sclerosis risk affects the EVI5 interactome

    PubMed Central

    Didonna, Alessandro; Isobe, Noriko; Caillier, Stacy J.; Li, Kathy H.; Burlingame, Alma L.; Hauser, Stephen L.; Baranzini, Sergio E.; Patsopoulos, Nikolaos A.; Oksenberg, Jorge R.

    2015-01-01

    Despite recent progress in the characterization of genetic loci associated with multiple sclerosis (MS) risk, the ubiquitous linkage disequilibrium operating across the genome has stalled efforts to distinguish causative variants from proxy single-nucleotide polymorphisms (SNPs). Here, we have identified through fine mapping and meta-analysis EVI5 as the most plausible disease risk gene within the 1p22.1 locus. We further show that an exonic SNP associated with risk induces changes in superficial hydrophobicity patterns of the coiled-coil domain of EVI5, which, in turns, affects the EVI5 interactome. Immunoprecipitation of wild-type and mutated EVI5 followed by mass spectrometry generated a roster of disease-specific interactors functionally linked to lipid metabolism. Among the exclusive binding partners of the risk variant, we describe the novel interaction with sphingosine 1-phosphate lyase (SGPL1)—a key enzyme for the creation of the sphingosine-1 phosphate gradient, which is relevant to the pathogenic process and therapeutic management of MS. PMID:26433934

  12. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array

    PubMed Central

    Wang, Shichen; Wong, Debbie; Forrest, Kerrie; Allen, Alexandra; Chao, Shiaoman; Huang, Bevan E; Maccaferri, Marco; Salvi, Silvio; Milner, Sara G; Cattivelli, Luigi; Mastrangelo, Anna M; Whan, Alex; Stephen, Stuart; Barker, Gary; Wieseke, Ralf; Plieske, Joerg; International Wheat Genome Sequencing Consortium; Lillemo, Morten; Mather, Diane; Appels, Rudi; Dolferus, Rudy; Brown-Guedira, Gina; Korol, Abraham; Akhunova, Alina R; Feuillet, Catherine; Salse, Jerome; Morgante, Michele; Pozniak, Curtis; Luo, Ming-Cheng; Dvorak, Jan; Morell, Matthew; Dubcovsky, Jorge; Ganal, Martin; Tuberosa, Roberto; Lawley, Cindy; Mikoulitch, Ivan; Cavanagh, Colin; Edwards, Keith J; Hayden, Matthew; Akhunov, Eduard

    2014-01-01

    High-density single nucleotide polymorphism (SNP) genotyping arrays are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships between individuals in populations and studying marker–trait associations in mapping experiments. We developed a genotyping array including about 90 000 gene-associated SNPs and used it to characterize genetic variation in allohexaploid and allotetraploid wheat populations. The array includes a significant fraction of common genome-wide distributed SNPs that are represented in populations of diverse geographical origin. We used density-based spatial clustering algorithms to enable high-throughput genotype calling in complex data sets obtained for polyploid wheat. We show that these model-free clustering algorithms provide accurate genotype calling in the presence of multiple clusters including clusters with low signal intensity resulting from significant sequence divergence at the target SNP site or gene deletions. Assays that detect low-intensity clusters can provide insight into the distribution of presence–absence variation (PAV) in wheat populations. A total of 46 977 SNPs from the wheat 90K array were genetically mapped using a combination of eight mapping populations. The developed array and cluster identification algorithms provide an opportunity to infer detailed haplotype structure in polyploid wheat and will serve as an invaluable resource for diversity studies and investigating the genetic basis of trait variation in wheat. PMID:24646323

  13. Genome-wide DNA copy number analysis in pancreatic cancer using high-density single nucleotide polymorphism arrays

    PubMed Central

    Harada, T; Chelala, C; Bhakta, V; Chaplin, T; Caulee, K; Baril, P; Young, BD; Lemoine, NR

    2008-01-01

    To identify genomic abnormalities characteristic of pancreatic ductal adenocarcinoma (PDAC) in vivo, a panel of 27 microdissected PDAC specimens were analysed using high-density microarrays representing ∼116 000 single nucleotide polymorphism (SNP) loci. We detected frequent gains of 1q, 2, 3, 5, 7p, 8q, 11, 14q and 17q (≥78% of cases), and losses of 1p, 3p, 6, 9p, 13q, 14q, 17p and 18q (≥44%). Although the results were comparable with those from array CGH, regions of those genetic changes were defined more accurately by SNP arrays. Integrating the Ensembl public data, we have generated ‘gene’ copy number indices that facilitate the search for novel candidates involved in pancreatic carcinogenesis. Copy numbers in a subset of the genes were validated using quantitative real-time PCR. The SKAP2/SCAP2 gene (7p15.2), which belongs to the src family kinases, was most frequently (63%) amplified in our sample set and its recurrent overexpression (67%) was confirmed by reverse transcription–PCR. Furthermore, fluorescence in situ hybridization and in situ RNA hybridization analyses for this gene have demonstrated a significant correlation between DNA copy number and mRNA expression level in an independent sample set (P<0.001). These findings indicate that the dysregulation of SKAP2/SCAP2, which is mostly caused by its increased gene copy number, is likely to be associated with the development of PDAC. PMID:17952125

  14. Detailed analysis of association between common single nucleotide polymorphisms and subclinical atherosclerosis: The Multi-ethnic Study of Atherosclerosis.

    PubMed

    Vargas, Jose D; Manichaikul, Ani; Wang, Xin-Qun; Rich, Stephen S; Rotter, Jerome I; Post, Wendy S; Polak, Joseph F; Budoff, Matthew J; Bluemke, David A

    2016-06-01

    Previously identified single nucleotide polymorphisms (SNPs) in genome wide association studies (GWAS) of cardiovascular disease (CVD) in participants of mostly European descent were tested for association with subclinical cardiovascular disease (sCVD), coronary artery calcium score (CAC) and carotid intima media thickness (CIMT) in the Multi-Ethnic Study of Atherosclerosis (MESA). The data in this data in brief article correspond to the article Common Genetic Variants and Subclinical Atherosclerosis: The Multi-Ethnic Study of Atherosclerosis [1]. This article includes the demographic information of the participants analyzed in the article as well as graphical displays and data tables of the association of the selected SNPs with CAC and of the meta-analysis across ethnicities of the association of CIMT-c (common carotid), CIMT-I (internal carotid), CAC-d (CAC as dichotomous variable with CAC>0) and CAC-c (CAC as continuous variable, the log of the raw CAC score plus one) and CVD. The data tables corresponding to the 9p21 fine mapping experiment as well as the power calculations referenced in the article are also included.

  15. Single Nucleotide Polymorphisms in Cellular Drug Transporters Are Associated with Intolerance to Antiretroviral Therapy in Brazilian HIV-1 Positive Individuals.

    PubMed

    Arruda, Mônica Barcellos; Campagnari, Francine; de Almeida, Tailah Bernardo; Couto-Fernandez, José Carlos; Tanuri, Amilcar; Cardoso, Cynthia Chester

    2016-01-01

    Adverse reactions are the main cause of treatment discontinuation among HIV+ individuals. Genes related to drug absorption, distribution, metabolism and excretion (ADME) influence drug bioavailability and treatment response. We have investigated the association between single nucleotide polymorphisms (SNPs) in 29 ADME genes and intolerance to therapy in a case-control study including 764 individuals. Results showed that 15 SNPs were associated with intolerance to nucleoside and 11 to non-nucleoside reverse transcriptase inhibitors (NRTIs and NNRTIs), and 8 to protease inhibitors (PIs) containing regimens under alpha = 0.05. After Bonferroni adjustment, two associations remained statistically significant. SNP rs2712816, at SLCO2B1 was associated to intolerance to NRTIs (ORGA/AA = 2.37; p = 0.0001), while rs4148396, at ABCC2, conferred risk of intolerance to PIs containing regimens (ORCT/TT = 2.64; p = 0.00009). Accordingly, haplotypes carrying rs2712816A and rs4148396T alleles were also associated to risk of intolerance to NRTIs and PIs, respectively. Our data reinforce the role of drug transporters in response to HIV therapy and may contribute to a future development of personalized therapies.

  16. A comparison of single nucleotide polymorphism and microsatellite markers for analysis of parentage and kinship in a cooperatively breeding bird.

    PubMed

    Weinman, Lucia R; Solomon, Joseph W; Rubenstein, Dustin R

    2015-05-01

    The development of genetic markers has revolutionized molecular studies within and among populations. Although poly-allelic microsatellites are the most commonly used genetic marker for within-population studies of free-living animals, biallelic single nucleotide polymorphisms, or SNPs, have also emerged as a viable option for use in nonmodel systems. We describe a robust method of SNP discovery from the transcriptome of a nonmodel organism that resulted in more than 99% of the markers working successfully during genotyping. We then compare the use of 102 novel SNPs with 15 previously developed microsatellites for studies of parentage and kinship in cooperatively breeding superb starlings (Lamprotornis superbus) that live in highly kin-structured groups. For 95% of the offspring surveyed, SNPs and microsatellites identified the same genetic father, but only when behavioural information about the likely parents at a nest was included to aid in assignment. Moreover, when such behavioural information was available, the number of SNPs necessary for successful parentage assignment was reduced by half. However, in a few cases where candidate fathers were highly related, SNPs did a better job at assigning fathers than microsatellites. Despite high variation between individual pairwise relatedness values, microsatellites and SNPs performed equally well in kinship analyses. This study is the first to compare SNPs and microsatellites for analyses of parentage and relatedness in a species that lives in groups with a complex social and kin structure. It should also prove informative for those interested in developing SNP loci from transcriptome data when published genomes are unavailable.

  17. High performance computing enabling exhaustive analysis of higher order single nucleotide polymorphism interaction in Genome Wide Association Studies.

    PubMed

    Goudey, Benjamin; Abedini, Mani; Hopper, John L; Inouye, Michael; Makalic, Enes; Schmidt, Daniel F; Wagner, John; Zhou, Zeyu; Zobel, Justin; Reumann, Matthias

    2015-01-01

    Genome-wide association studies (GWAS) are a common approach for systematic discovery of single nucleotide polymorphisms (SNPs) which are associated with a given disease. Univariate analysis approaches commonly employed may miss important SNP associations that only appear through multivariate analysis in complex diseases. However, multivariate SNP analysis is currently limited by its inherent computational complexity. In this work, we present a computational framework that harnesses supercomputers. Based on our results, we estimate a three-way interaction analysis on 1.1 million SNP GWAS data requiring over 5.8 years on the full "Avoca" IBM Blue Gene/Q installation at the Victorian Life Sciences Computation Initiative. This is hundreds of times faster than estimates for other CPU based methods and four times faster than runtimes estimated for GPU methods, indicating how the improvement in the level of hardware applied to interaction analysis may alter the types of analysis that can be performed. Furthermore, the same analysis would take under 3 months on the currently largest IBM Blue Gene/Q supercomputer "Sequoia" at the Lawrence Livermore National Laboratory assuming linear scaling is maintained as our results suggest. Given that the implementation used in this study can be further optimised, this runtime means it is becoming feasible to carry out exhaustive analysis of higher order interaction studies on large modern GWAS.

  18. High performance computing enabling exhaustive analysis of higher order single nucleotide polymorphism interaction in Genome Wide Association Studies

    PubMed Central

    2015-01-01

    Genome-wide association studies (GWAS) are a common approach for systematic discovery of single nucleotide polymorphisms (SNPs) which are associated with a given disease. Univariate analysis approaches commonly employed may miss important SNP associations that only appear through multivariate analysis in complex diseases. However, multivariate SNP analysis is currently limited by its inherent computational complexity. In this work, we present a computational framework that harnesses supercomputers. Based on our results, we estimate a three-way interaction analysis on 1.1 million SNP GWAS data requiring over 5.8 years on the full "Avoca" IBM Blue Gene/Q installation at the Victorian Life Sciences Computation Initiative. This is hundreds of times faster than estimates for other CPU based methods and four times faster than runtimes estimated for GPU methods, indicating how the improvement in the level of hardware applied to interaction analysis may alter the types of analysis that can be performed. Furthermore, the same analysis would take under 3 months on the currently largest IBM Blue Gene/Q supercomputer "Sequoia" at the Lawrence Livermore National Laboratory assuming linear scaling is maintained as our results suggest. Given that the implementation used in this study can be further optimised, this runtime means it is becoming feasible to carry out exhaustive analysis of higher order interaction studies on large modern GWAS. PMID:25870758

  19. Association between single nucleotide polymorphisms in the TSPYL6 gene and breast cancer susceptibility in the Han Chinese population

    PubMed Central

    Guo, Wen; Zhang, Xiyang; Chen, Zhengshuai; Li, Jingjie; Yan, Mengdan; Chen, Chao; Jin, Tianbo

    2016-01-01

    We investigated the associations between single nucleotide polymorphisms (SNPs) in the testis-specific Y-encoded-like protein 6 (TSPYL6) gene and breast cancer (BC) susceptibility in the Han Chinese population. A total of 183 BC patients and 195 healthy women were included in the study. Six SNPs in TSPYL6 were genotyped and the association with BC risk analyzed. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated using unconditional logistic regression analysis. Multivariate logistic regression analysis was used to identify SNPs that correlated with BC susceptibility. Rs11896604 was associated with a decreased risk of BC based on dominant and genotype models. Rs843706 was associated with an increased risk of BC based on a recessive model. Rs11125529 was associated with decreased BC susceptibility based on a genotype model. Finally, rs843711 inversely correlated with clinical stage III/IV BC. Our findings reveal a significant association between SNPs in the TSPYL6 gene and BC risk in a Han Chinese population. PMID:27458158

  20. Development of a single nucleotide polymorphism DNA microarray for the detection and genotyping of the SARS coronavirus.

    PubMed

    Guo, Xi; Geng, Peng; Wang, Quan; Cao, Boyang; Liu, Bin

    2014-10-01

    Severe acute respiratory syndrome (SARS), a disease that spread widely in the world during late 2002 to 2004, severely threatened public health. Although there have been no reported infections since 2004, the extremely pathogenic SARS coronavirus (SARS-CoV), as the causative agent of SARS, has recently been identified in animals, showing the potential for the re-emergence of this disease. Previous studies showed that 27 single nucleotide polymorphism (SNP) mutations among the spike (S) gene of this virus are correlated closely with the SARS pathogenicity and epidemicity. We have developed a SNP DNA microarray in order to detect and genotype these SNPs, and to obtain related information on the pathogenicity and epidemicity of a given strain. The microarray was hybridized with PCR products amplified from cDNAs obtained from different SARS-CoV strains. We were able to detect 24 SNPs and determine the type of a given strain. The hybridization profile showed that 19 samples were detected and genotyped correctly by using our microarray, with 100% accuracy. Our microarray provides a novel method for the detection and epidemiological surveillance of SARS-CoV.

  1. Single Nucleotide Polymorphisms in Cellular Drug Transporters Are Associated with Intolerance to Antiretroviral Therapy in Brazilian HIV-1 Positive Individuals

    PubMed Central

    Arruda, Mônica Barcellos; Campagnari, Francine; de Almeida, Tailah Bernardo; Couto-Fernandez, José Carlos; Tanuri, Amilcar; Cardoso, Cynthia Chester

    2016-01-01

    Adverse reactions are the main cause of treatment discontinuation among HIV+ individuals. Genes related to drug absorption, distribution, metabolism and excretion (ADME) influence drug bioavailability and treatment response. We have investigated the association between single nucleotide polymorphisms (SNPs) in 29 ADME genes and intolerance to therapy in a case-control study including 764 individuals. Results showed that 15 SNPs were associated with intolerance to nucleoside and 11 to non-nucleoside reverse transcriptase inhibitors (NRTIs and NNRTIs), and 8 to protease inhibitors (PIs) containing regimens under alpha = 0.05. After Bonferroni adjustment, two associations remained statistically significant. SNP rs2712816, at SLCO2B1 was associated to intolerance to NRTIs (ORGA/AA = 2.37; p = 0.0001), while rs4148396, at ABCC2, conferred risk of intolerance to PIs containing regimens (ORCT/TT = 2.64; p = 0.00009). Accordingly, haplotypes carrying rs2712816A and rs4148396T alleles were also associated to risk of intolerance to NRTIs and PIs, respectively. Our data reinforce the role of drug transporters in response to HIV therapy and may contribute to a future development of personalized therapies. PMID:27648838

  2. Larva-mediated chalkbrood resistance-associated single nucleotide polymorphism markers in the honey bee Apis mellifera.

    PubMed

    Liu, Y; Yan, L; Li, Z; Huang, W-F; Pokhrel, S; Liu, X; Su, S

    2016-06-01

    Chalkbrood is a disease affecting honey bees that seriously impairs brood growth and productivity of diseased colonies. Although honey bees can develop chalkbrood resistance naturally, the details underlying the mechanisms of resistance are not fully understood, and no easy method is currently available for selecting and breeding resistant bees. Finding the genes involved in the development of resistance and identifying single nucleotide polymorphisms (SNPs) that can be used as molecular markers of resistance is therefore a high priority. We conducted genome resequencing to compare resistant (Res) and susceptible (Sus) larvae that were selected following in vitro chalkbrood inoculation. Twelve genomic libraries, including 14.4 Gb of sequence data, were analysed using SNP-finding algorithms. Unique SNPs derived from chromosomes 2 and 11 were analysed in this study. SNPs from resistant individuals were confirmed by PCR and Sanger sequencing using in vitro reared larvae and resistant colonies. We found strong support for an association between the C allele at SNP C2587245T and chalkbrood resistance. SNP C2587245T may be useful as a genetic marker for the selection of chalkbrood resistance and high royal jelly production honey bee lines, thereby helping to minimize the negative effects of chalkbrood on managed honey bees.

  3. BRDT gene sequence in human testicular pathologies and the implication of its single nucleotide polymorphism (rs3088232) on fertility.

    PubMed

    Barda, S; Yogev, L; Paz, G; Yavetz, H; Lehavi, O; Hauser, R; Doniger, T; Breitbart, H; Kleiman, S E

    2014-07-01

    Bromodomain testis-specific (BRDT) protein is essential for the normal process of spermatogenesis. Mutant mice that expressed truncated BRDT had impaired testicular histology with severely reduced sperm concentration and abnormal sperm morphology, while a model of knockout Brdt mice with no BRDT protein had complete meiotic arrest. A BRDT single nucleotide polymorphism (SNP) (rs3088232) was reported as being associated with infertility in men. We assessed testicular specimens of 276 azoospermic men who underwent testicular sperm extraction to search for specimens that showed spermatogenic impairments similar to those of mutant BRDT mice. Ten similar specimens were selected for BRDT gene sequencing and they revealed three NCBI-reported SNPs (rs10783071, rs3088232 and rs10747493) variously distributed among them. Bioinformatics analysis predicted that they would not affect protein activity. Further assessment of rs3088232 frequency in a large group of non-obstructive azoospermia men and fertile controls demonstrated no significant difference between them (27.2 and 21.7% respectively; p = 0.122, Fisher's exact test). We conclude that the testicular impairments observed in the 10 specimens were not a consequence of BRDT gene mutation. The association between BRDT rs3088232 and infertility that had been reported in other studies was not supported.

  4. Genetic profiling by single-nucleotide polymorphism-based array analysis defines three distinct subtypes of orbital meningioma.

    PubMed

    Ho, Cheng-Ying; Mosier, Stacy; Safneck, Janice; Salomao, Diva R; Miller, Neil R; Eberhart, Charles G; Gocke, Christopher D; Batista, Denise A S; Rodriguez, Fausto J

    2015-03-01

    Orbital meningiomas can be classified as primary optic nerve sheath (ON) meningiomas, primary intraorbital ectopic (Ob) meningiomas and spheno-orbital (Sph-Ob) meningiomas based on anatomic site. Single-nucleotide polymorphism (SNP)-based array analysis with the Illumina 300K platform was performed on formalin-fixed, paraffin-embedded tissue from 19 orbital meningiomas (5 ON, 4 Ob and 10 Sph-Ob meningiomas). Tumors were World Health Organization (WHO) grade I except for two grade II meningiomas, and one was NF2-associated. We found genomic alterations in 68% (13 of 19) of orbital meningiomas. Sph-Ob tumors frequently exhibited monosomy 22/22q loss (70%; 7/10) and deletion of chromosome 1p, 6q and 19p (50% each; 5/10). Among genetic alterations, loss of chromosome 1p and 6q were more frequent in clinically progressive tumors. Chromosome 22q loss also was detected in the majority of Ob meningiomas (75%; 3/4) but was infrequent in ON meningiomas (20%; 1/5). In general, Ob tumors had fewer chromosome alterations than Sph-Ob and ON tumors. Unlike Sph-Ob meningiomas, most of the Ob and ON meningiomas did not progress even after incomplete excision, although follow-up was limited in some cases. Our study suggests that ON, Ob and Sph-Ob meningiomas are three molecularly distinct entities. Our results also suggest that molecular subclassification may have prognostic implications.

  5. A single nucleotide polymorphism in the dimethylarginine dimethylaminohydrolase gene is associated with lower risk of pulmonary hypertension in bronchopulmonary dysplasia

    PubMed Central

    Trittmann, JK; Gastier-Foster, JM; Zmuda, EJ; Frick, J; Rogers, LK; Vieland, VJ; Chicoine, LG; Nelin, LD

    2016-01-01

    Aim Pulmonary hypertension (PH) develops in 25–40% of bronchopulmonary dysplasia (BPD) patients, substantially increasing mortality. We have previously found that asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) production, is elevated in patients with BPD-associated PH. ADMA is metabolized by NG,NG- dimethylarginine dimethylaminohydrolase (DDAH). Presently, we test the hypothesis that there are single nucleotide polymorphisms (SNPs) in DDAH1 and/or DDAH2 associated with the development of PH in BPD patients. Methods BPD patients were enrolled (n=98) at Nationwide Children’s Hospital. Clinical characteristics and 36 SNPs in DDAH1 and DDAH2 were compared between BPD-associated PH patients (cases) and BPD-alone patients (controls). Results In BPD patients, 25 (26%) had echocardiographic evidence of PH (cases). In this cohort, DDAH1 wildtype rs480414 was 92% sensitive and 53% specific for PH in BPD, and the DDAH1 SNP rs480414 decreased the risk of PH in an additive model of inheritance (OR=0.39; 95% CI [0.18–0.88], p=0.01). Conclusion The rs480414 SNP in DDAH1 may be protective against the development of PH in patients with BPD. Furthermore, the DDAH1 rs480414 may be a useful biomarker in developing predictive models for PH in patients with BPD. PMID:26663142

  6. A New Approach to Account for the Correlations among Single Nucleotide Polymorphisms in Genome-Wide Association Studies

    PubMed Central

    Chen, Zhongxue; Liu, Qingzhong

    2011-01-01

    In genetic association studies, such as genome-wide association studies (GWAS), the number of single nucleotide polymorphisms (SNPs) can be as large as hundreds of thousands. Due to linkage disequilibrium, many SNPs are highly correlated; assuming they are independent is not valid. The commonly used multiple comparison methods, such as Bonferroni correction, are not appropriate and are too conservative when applied to GWAS. To overcome these limitations, many approaches have been proposed to estimate the so-called effective number of independent tests to account for the correlations among SNPs. However, many current effective number estimation methods are based on eigenvalues of the correlation matrix. When the dimension of the matrix is large, the numeric results may be unreliable or even unobtainable. To circumvent this obstacle and provide better estimates, we propose a new effective number estimation approach which is not based on the eigenvalues. We compare the new method with others through simulated and real data. The comparison results show that the proposed method has very good performance. PMID:21849789

  7. Single Nucleotide Polymorphisms as Prognostic and Predictive Factors of Adjuvant Chemotherapy in Colorectal Cancer of Stages I and II

    PubMed Central

    Horvat, Matej; Potočnik, Uroš; Repnik, Katja; Kavalar, Rajko; Štabuc, Borut

    2016-01-01

    Colorectal cancer (CRC) is a highly heterogeneous disease regarding the stage at time of diagnosis and there is special attention regarding adjuvant chemotherapy in unselected patients with stage I and stage II. The clinicohistologically based TNM staging system with emphasis on histological evaluation of primary tumor and resected regional lymph nodes remains the standard of staging, but it has restricted sensitivity resulting in false downward stage migration. Molecular characteristics might predispose tumors to a worse prognosis and identification of those enables identifying patients with high risk of disease recurrence. Suitable predictive markers also enable choosing the most appropriate therapy. The current challenge facing adjuvant chemotherapy in stages I and II CRC is choosing patients with the highest risk of disease recurrence who are going to derive most benefit without facing unnecessary adverse effects. Single nucleotide polymorphisms (SNPs) are one of the potential molecular markers that might help us identify patients with unfavorable prognostic factors regarding disease initiation and recurrence and could determine selection of an appropriate chemotherapy regimen in the adjuvant and metastatic setting. In this paper, we discuss SNPs of genes involved in the multistep processes of cancerogenesis, metastasis, and the metabolism of chemotherapy that might prove clinically significant. PMID:26884752

  8. The influence of single nucleotide polymorphisms on the association between dietary acrylamide intake and endometrial cancer risk

    PubMed Central

    Hogervorst, Janneke G. F.; van den Brandt, Piet A.; Godschalk, Roger W. L.; van Schooten, Frederik-Jan; Schouten, Leo J.

    2016-01-01

    It is unclear whether the association between dietary acrylamide intake and endometrial cancer risk as observed in some epidemiological studies reflects a causal relationship. We aimed at clarifying the causality by analyzing acrylamide-gene interactions for endometrial cancer risk. The prospective Netherlands Cohort Study on diet and cancer includes 62,573 women, aged 55–69 years. At baseline, a random subcohort of 2589 women was selected for a case cohort analysis approach. Acrylamide intake of subcohort members and endometrial cancer cases (n = 315) was assessed with a food frequency questionnaire. Single nucleotide polymorphisms (SNPs) in genes in acrylamide metabolism, sex steroid systems, oxidative stress and DNA repair were assessed through a MassARRAY iPLEX Platform. Interaction between acrylamide and SNPs was assessed with Cox proportional hazards analysis, based on 11.3 years of follow-up. Among the results for 57 SNPs and 2 gene deletions, there were no statistically significant interactions after adjustment for multiple testing. However, there were nominally statistically significant interactions for SNPs in acrylamide-metabolizing enzymes: CYP2E1 (rs915906 and rs2480258) and the deletions of GSTM1 and GSTT1. Although in need of confirmation, the interactions between acrylamide intake and CYP2E1 SNPs contribute to the evidence for a causal relationship between acrylamide and endometrial cancer risk. PMID:27713515

  9. A Multipurpose, High-Throughput Single-Nucleotide Polymorphism Chip for the Dengue and Yellow Fever Mosquito, Aedes aegypti.

    PubMed

    Evans, Benjamin R; Gloria-Soria, Andrea; Hou, Lin; McBride, Carolyn; Bonizzoni, Mariangela; Zhao, Hongyu; Powell, Jeffrey R

    2015-02-26

    The dengue and yellow fever mosquito, Aedes aegypti, contributes significantly to global disease burden. Genetic study of Aedes aegypti is essential to understanding its evolutionary history, competence as a disease vector, and the effects and efficacy of vector control methods. The prevalence of repeats and transposable elements in the Aedes aegypti genome complicates marker development and makes genome-wide genetic study challenging. To overcome these challenges, we developed a high-throughput genotyping chip, Axiom_aegypti1. This chip screens for 50,000 single-nucleotide polymorphisms present in Aedes aegypti populations from around the world. The array currently used genotypes 96 samples simultaneously. To ensure that these markers satisfy assumptions commonly made in many genetic analyses, we tested for Mendelian inheritance and linkage disequilibrium in laboratory crosses and a wild population, respectively. We have validated more than 25,000 of these markers to date, and expect this number to increase with more sampling. We also present evidence of the chip's efficacy in distinguishing populations throughout the world. The markers on this chip are ideal for applications ranging from population genetics to genome-wide association studies. This tool makes rapid, cost-effective, and comparable genotype data attainable to diverse sets of Aedes aegypti researchers, from those interested in potential range shifts due to climate change to those characterizing the genetic underpinnings of its competence to transmit disease.

  10. Genome-wide association mapping for wood characteristics in Populus identifies an array of candidate single nucleotide polymorphisms.

    PubMed

    Porth, Ilga; Klapšte, Jaroslav; Skyba, Oleksandr; Hannemann, Jan; McKown, Athena D; Guy, Robert D; DiFazio, Stephen P; Muchero, Wellington; Ranjan, Priya; Tuskan, Gerald A; Friedmann, Michael C; Ehlting, Juergen; Cronk, Quentin C B; El-Kassaby, Yousry A; Douglas, Carl J; Mansfield, Shawn D

    2013-11-01

    Establishing links between phenotypes and molecular variants is of central importance to accelerate genetic improvement of economically important plant species. Our work represents the first genome-wide association study to the inherently complex and currently poorly understood genetic architecture of industrially relevant wood traits. Here, we employed an Illumina Infinium 34K single nucleotide polymorphism (SNP) genotyping array that generated 29,233 high-quality SNPs in c. 3500 broad-based candidate genes within a population of 334 unrelated Populus trichocarpa individuals to establish genome-wide associations. The analysis revealed 141 significant SNPs (α ≤ 0.05) associated with 16 wood chemistry/ultrastructure traits, individually explaining 3-7% of the phenotypic variance. A large set of associations (41% of all hits) occurred in candidate genes preselected for their suggested a priori involvement with secondary growth. For example, an allelic variant in the FRA8 ortholog explained 21% of the total genetic variance in fiber length, when the trait's heritability estimate was considered. The remaining associations identified SNPs in genes not previously implicated in wood or secondary wall formation. Our findings provide unique insights into wood trait architecture and support efforts for population improvement based on desirable allelic variants.

  11. Effects of the KIBRA Single Nucleotide Polymorphism on Synaptic Plasticity and Memory: A Review of the Literature

    PubMed Central

    Schwab, Laetitia C.; Luo, Vincent; Clarke, Chelsey L.; Nathan, Pradeep J.

    2014-01-01

    There has been a great deal of interest recently in genetic effects on neurocognitive performance in the healthy population. KIBRA –a postsynaptic protein from the WWC family of proteins– was identified in 2003 in the human brain and kidney and has recently been associated with memory performance and synaptic plasticity. Through genome-wide screening, a single nucleotide polymorphism (SNP) was detected in the ninth intron of KIBRA gene (T→ C substitution) and was implicated in human memory and the underlying neuronal circuitry. This review presents a synopsis of the current findings on the effects of the KIBRA SNP on human memory and synaptic plasticity. Overall the findings suggest impaired memory performance and less efficient or impaired hippocampal/medial temporal lobe (MTL) activation in CC homozygotes (in comparison to T carriers) with some differences between young and older subjects. This review also highlights limitations and potential sources for variability of studies’ imaging findings along with future perspectives and implications for the role of KIBRA in memory-related brain systems. PMID:24851092

  12. A new single nucleotide polymorphism in the rabbit (Oryctolagus cuniculus) myostatin (MSTN) gene is associated with carcass composition traits.

    PubMed

    Sternstein, Ina; Reissmann, Monika; Maj, Dorota; Bieniek, Josef; Brockmann, Gudrun A

    2014-08-01

    This study aimed at the identification of genetic variations in the myostatin (MSTN) gene and testing their effects on carcass quality traits. We comparatively sequenced Giant Grey (GG) and New Zealand White (NZW) rabbits that were founders of a cross-bred population. Alignment of our sequence data with the GenBank sequence of the rabbit MSTN gene (Ensembl Gene ID ENSOCUG00000012663) identified three single nucleotide polymorphisms (SNPs). The two novel SNPs (c.-125T>C, c.373+234G>A) and one known SNP (c.747+34C>T) were subsequently analysed for linkage with carcass composition traits in 363 F2 animals of the cross GG × NZW. Significant linkage was found between c.373+234G>A and nine carcass composition traits (P < 0.05). No significant effects were found for c.-125T>C and c.747+34C>T. Because the linked SNP is located in intron 1 and no genetic variation was found in the coding region, further investigations are necessary to understand the functional effect of the c.373+234G>A variant on the variability of the traits.

  13. A comparison in association and linkage genome-wide scans for alcoholism susceptibility genes using single-nucleotide polymorphisms.

    PubMed

    Chiu, Yen-Feng; Liu, Su-Yun; Tsai, Ya-Yu

    2005-12-30

    We conducted genome-wide linkage scans using both microsatellite and single-nucleotide polymorphism (SNP) markers. Regions showing the strongest evidence of linkage to alcoholism susceptibility genes were identified. Haplotype analyses using a sliding-window approach for SNPs in these regions were performed. In addition, we performed a genome-wide association scan using SNP data. SNPs in these regions with evidence of association (P

  14. Failure of replicating the association between hippocampal volume and 3 single-nucleotide polymorphisms identified from the European genome-wide association study in Asian populations.

    PubMed

    Li, Ming; Ohi, Kazutaka; Chen, Chunhui; He, Qinghua; Liu, Jie-Wei; Chen, Chuansheng; Luo, Xiong-Jian; Dong, Qi; Hashimoto, Ryota; Su, Bing

    2014-12-01

    Hippocampal volume is a key brain structure for learning ability and memory process, and hippocampal atrophy is a recognized biological marker of Alzheimer's disease. However, the genetic bases of hippocampal volume are still unclear although it is a heritable trait. Genome-wide association studies (GWASs) on hippocampal volume have implicated several significantly associated genetic variants in Europeans. Here, to test the contributions of these GWASs identified genetic variants to hippocampal volume in different ethnic populations, we screened the GWAS-identified candidate single-nucleotide polymorphisms in 3 independent healthy Asian brain imaging samples (a total of 990 subjects). The results showed that none of these single-nucleotide polymorphisms were associated with hippocampal volume in either individual or combined Asian samples. The replication results suggested a complexity of genetic architecture for hippocampal volume and potential genetic heterogeneity between different ethnic populations.

  15. Phylogenetic classification of Escherichia coli O157:H7 strains of human and bovine origin using a novel set of nucleotide polymorphisms

    PubMed Central

    Clawson, Michael L; Keen, James E; Smith, Timothy PL; Durso, Lisa M; McDaneld, Tara G; Mandrell, Robert E; Davis, Margaret A; Bono, James L

    2009-01-01

    Background Cattle are a reservoir of Shiga toxin-producing Escherichia coli O157:H7 (STEC O157), and are known to harbor subtypes not typically found in clinically ill humans. Consequently, nucleotide polymorphisms previously discovered via strains originating from human outbreaks may be restricted in their ability to distinguish STEC O157 genetic subtypes present in cattle. The objectives of this study were firstly to identify nucleotide polymorphisms in a diverse sampling of human and bovine STEC O157 strains, secondly to classify strains of either bovine or human origin by polymorphism-derived genotypes, and finally to compare the genotype diversity with pulsed-field gel electrophoresis (PFGE), a method currently used for assessing STEC O157 diversity. Results High-throughput 454 sequencing of pooled STEC O157 strain DNAs from human clinical cases (n = 91) and cattle (n = 102) identified 16,218 putative polymorphisms. From those, 178 were selected primarily within genomic regions conserved across E. coli serotypes and genotyped in 261 STEC O157 strains. Forty-two unique genotypes were observed that are tagged by a minimal set of 32 polymorphisms. Phylogenetic trees of the genotypes are divided into clades that represent strains of cattle origin, or cattle and human origin. Although PFGE diversity surpassed genotype diversity overall, ten PFGE patterns each occurred with multiple strains having different genotypes. Conclusions Deep sequencing of pooled STEC O157 DNAs proved highly effective in polymorphism discovery. A polymorphism set has been identified that characterizes genetic diversity within STEC O157 strains of bovine origin, and a subset observed in human strains. The set may complement current techniques used to classify strains implicated in disease outbreaks. PMID:19463166

  16. Diagnostic single nucleotide polymorphisms for identifying westslope cutthroat trout (Oncorhynchus clarki lewisi), Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) and rainbow trout (Oncorhynchus mykiss).

    PubMed

    Kalinowski, S T; Novak, B J; Drinan, D P; Jennings, R deM; Vu, N V

    2011-03-01

    We describe 12 diagnostic single nucleotide polymorphism (SNP) assays for use in species identification among rainbow and cutthroat trout: five of these loci have alleles unique to rainbow trout (Oncorhynchus mykiss), three unique to westslope cutthroat trout (O. clarkii lewisi) and four unique to Yellowstone cutthroat trout (O. clarkii bouvieri). These diagnostic assays were identified using a total of 489 individuals from 26 populations and five fish hatchery strains.

  17. Single nucleotide polymorphisms in cytokine MIF gene promoter region are closely associated with human susceptibility to tuberculosis in a southwestern province of China.

    PubMed

    Liu, Aihua; Li, Jing; Bao, Fukai; Zhu, Ziwei; Feng, Shi; Yang, Jiaru; Wang, Lin; Shi, Mei; Wen, Xia; Zhao, Hua; Voravuthikunchai, Supayang P

    2016-04-01

    The gene encoding macrophage migration inhibitory factor (MIF) has been proposed as candidate tuberculosis (TB) susceptibility gene. In order to elucidate whether MIF gene variants are associated with susceptibility to retreatment cases of TB, and prevent drug-resistant TB prevalence, we conducted a study based on paired human population data. MIF -173 G/C single nucleotide polymorphisms (rs755622) were genotyped using polymerase chain reaction-restriction fragment length polymorphism. MIF levels were detected with enzyme-linked immunosorbent assay. Association analysis of polymorphism to TB showed that distribution of MIF -173 genotypes (GC+CC) was significantly higher in total cases of TB than in the controls. Statistically significant differences of frequencies for MIF -173 (GG vs. GC+CC) were demonstrated when comparing total cases of TB, new cases of TB, and retreatment cases of TB to controls, respectively. In contrast, the frequencies of MIF -173 (GG vs. GC+CC) demonstrated no difference between new cases of TB and retreatment cases of TB. Association analysis of MIF protein concentrations to TB indicated that MIF concentration is significantly higher in total cases of TB, new cases of TB, and retreatment cases of TB than in controls (P<0.01). In summary, our results demonstrated that MIF gene -173 G/C single nucleotide polymorphisms implicate in genetic susceptibility to TB, and GC+CC of MIF -173 site increases the risk of TB. We also found that no correlation between -173 G/C single nucleotide polymorphism and retreatment cases of TB in Yunnan Province population of China.

  18. Mitochondrial bioenergetics and drug-induced toxicity in a panel of mouse embryonic fibroblasts with mitochondrial DNA single nucleotide polymorphisms

    SciTech Connect

    Pereira, Claudia V.; Oliveira, Paulo J.; Will, Yvonne; Nadanaciva, Sashi

    2012-10-15

    Mitochondrial DNA (mtDNA) variations including single nucleotide polymorphisms (SNPs) have been proposed to be involved in idiosyncratic drug reactions. However, current in vitro and in vivo models lack the genetic diversity seen in the human population. Our hypothesis is that different cell strains with distinct mtDNA SNPs may have different mitochondrial bioenergetic profiles and may therefore vary in their response to drug-induced toxicity. Therefore, we used an in vitro system composed of four strains of mouse embryonic fibroblasts (MEFs) with mtDNA polymorphisms. We sequenced mtDNA from embryonic fibroblasts isolated from four mouse strains, C57BL/6J, MOLF/EiJ, CZECHII/EiJ and PERA/EiJ, with the latter two being sequenced for the first time. The bioenergetic profile of the four strains of MEFs was investigated at both passages 3 and 10. Our results showed that there were clear differences among the four strains of MEFs at both passages, with CZECHII/EiJ having a lower mitochondrial robustness when compared to C57BL/6J, followed by MOLF/EiJ and PERA/EiJ. Seven drugs known to impair mitochondrial function were tested for their effect on the ATP content of the four strains of MEFs in both glucose- and galactose-containing media. Our results showed that there were strain-dependent differences in the response to some of the drugs. We propose that this model is a useful starting point to study compounds that may cause mitochondrial off-target toxicity in early stages of drug development, thus decreasing the number of experimental animals used. -- Highlights: ► mtDNA SNPs may be linked to individual predisposition to drug-induced toxicity. ► CZECHII/EiJ and PERA/EiJ mtDNA was sequenced for the first time in this study. ► Strain-dependent mitochondrial capacity differences were measured. ► Strain-dependent differences in response to mitochondrial toxicants were observed.

  19. Influence of nucleotide polymorphisms in the CCR2 gene and the CCR5 promoter on the expression of cell surface CCR5 and CXCR4.

    PubMed

    Shieh, B; Liau, Y E; Hsieh, P S; Yan, Y P; Wang, S T; Li, C

    2000-09-01

    Polymorphisms in the CCR2 gene (CCR2-64I) and the CCR5 promoter (pCCR5-59029G) have been correlated with slower HIV-1 disease progression. How these polymorphisms influence the rate of AIDS progression has remained unclear. We have therefore investigated whether these nucleotide polymorphisms will reduce the expression levels of surface CCR5 and CXCR4, and thus lead to slower AIDS progression. For this, a cohort of Chinese volunteers in Taiwan was subjected to the determination of CCR2 and pCCR5 genotypes followed by analysis of the surface CCR5 and CXCR4 expression on five cell types derived from peripheral blood mononuclear cells by flow cytometry. Several significant associations were detected between genotypes and expression levels of the proteins. The most important finding was that an increased number of CD4(+) cells expressing CCR5 correlated with pCCR5-59029A homozygosity without the interference of both the CCR2-64 and the CCR5 delta 32 (deleted 32 bp) mutations (P: = 0.0453), which is consistent with the previous data on the association of the genotype to AIDS progression. Since different genetic polymorphisms co-exist in human beings, the rate of AIDS progression as well as the risk of rheumatoid arthritis may be governed by the interplay of the array of nucleotide changes and their affected proteins.

  20. Identification and validation of single nucleotide polymorphic markers linked to Ug99 stem rust resistance in spring wheat

    PubMed Central

    Chao, Shiaoman; Singh, Ravi P.; Sorrells, Mark E.

    2017-01-01

    Wheat stem rust (Puccinia graminis f. sp. tritici Eriks. and E. Henn.) is one of the most destructive diseases world-wide. Races belonging to Ug99 (or TTKSK) continue to cause crop losses in East Africa and threaten global wheat production. Developing and deploying wheat varieties with multiple race-specific genes or complex adult plant resistance is necessary to achieve durability. In the present study, we applied genome-wide association studies (GWAS) for identifying loci associated with the Ug99 stem rust resistance (SR) in a panel of wheat lines developed at the International Maize and Wheat Improvement Center (CIMMYT). Genotyping was carried out using the wheat 9K iSelect single nucleotide polymorphism (SNP) chip. Phenotyping was done in the field in Kenya by infection of Puccinia graminis f. sp. tritici race TTKST, the Sr24-virulent variant of Ug99. Marker-trait association identified 12 SNP markers significantly associated with resistance. Among them, 7 were mapped on five chromosomes. Markers located on chromosomes 4A and 4B overlapped with the location of the Ug99 resistance genes SrND643 and Sr37, respectively. Markers identified on 7DL were collocated with Sr25. Additional significant markers were located in the regions where no Sr gene has been reported. The chromosome location for five of the SNP markers was unknown. A BLASTN search of the NCBI database using the flanking sequences of the SNPs associated with Ug99 resistance revealed that several markers were linked to plant disease resistance analogues, while others were linked to regulatory factors or metabolic enzymes. A KASP (Kompetitive Allele Specific PCR) assay was used for validating six marker loci linked to genes with resistance to Ug99. Of those, four co-segregated with the Sr25-pathotypes while the rest identified unknown resistance genes. With further investigation, these markers can be used for marker-assisted selection in breeding for Ug99 stem rust resistance in wheat. PMID:28241006

  1. Novel single-nucleotide polymorphism markers confirm successful spawning of endangered pallid sturgeon in the upper Missouri River Basin

    USGS Publications Warehouse

    Eichelberger, Jennifer S.; Braaten, P. J.; Fuller, D. B.; Krampe, Matthew S.; Heist, Edward J.

    2014-01-01

    Spawning of the federally endangered Pallid Sturgeon Scaphirhynchus albus is known to occur in the upper Missouri River basin, but progeny from natural reproductive events have not been observed and recruitment to juvenile or adult life stages has not been documented in recent decades. Identification of Pallid Sturgeon progeny is confounded by the fact that Shovelnose Sturgeon S. platorynchus occurs throughout the entire range of Pallid Sturgeon and the two species are essentially indistinguishable (morphometrically and meristically) during early life stages. Moreover, free embryos of sympatric Paddlefish Polyodon spathula are very similar to the two sturgeon species. In this study, three single-nucleotide polymorphism (SNP) assays were employed to screen acipenseriform free embryos and larvae collected from the upper Missouri River basin in 2011, 2012, and 2013. A mitochondrial DNA SNP discriminates Paddlefish from sturgeon, and specific multilocus genotypes at two nuclear DNA SNPs occurred in 98.9% of wild adult Pallid Sturgeon but only in 3% of Shovelnose Sturgeon sampled in the upper Missouri River. Individuals identified as potential Pallid Sturgeon based on SNP genotypes were further analyzed at 19 microsatellite loci for species discrimination. Out of 1,423 free embryos collected over 3 years of sampling, 971 Paddlefish, 446 Shovelnose Sturgeon, and 6 Pallid Sturgeon were identified. Additionally, 249 Scaphirhynchus spp. benthic larvae were screened, but no Pallid Sturgeon were detected. These SNP markers provide an efficient method of screening acipenseriform early life stages for the presence of Pallid Sturgeon in the Missouri River basin. Detection of wild Pallid Sturgeon free embryos in the upper Missouri and Yellowstone rivers supports the hypothesis that the failure of wild Pallid Sturgeon to recruit to the juvenile life stage in the upper Missouri River basin is caused by early life stage mortality rather than by lack of successful spawning.

  2. A low-cost, high-throughput, automated single nucleotide polymorphism assay for forensic human DNA applications.

    PubMed

    Pomeroy, Robert; Duncan, George; Sunar-Reeder, Bulbin; Ortenberg, Elen; Ketchum, Melba; Wasiluk, Hannah; Reeder, Dennis

    2009-12-01

    Single nucleotide polymorphism (SNP) analysis of human DNA for the purpose of identification has some promising attributes. The question of approach is critical to the eventual adoption of this technology. The use of a low-volume open array platform was tested with a small selected set of eight SNP primers that have a low F(ST) (the proportion of the total genetic variance contained in a subpopulation [S subscript] relative to the total genetic variance [T subscript]) in human populations. Because multiple SNPs must be interrogated, issues concerning DNA concentration, total DNA, and whole genome amplification were investigated. Excellent correlations were obtained for seven of the eight SNP assays on a set of DNA samples of known configuration over a broad concentration range spanning 25-150ng/microl in blind studies. These seven SNP assays were then applied to 39 DNA samples in a population from southern India. These SNPs were sufficient to individualize each member of this sample population. In a paternity study, these same SNPs showed clear parental relationships. For low amounts of genomic DNA, the use of a commercially available whole genome amplification kit showed promise for genotyping sub-nanogram samples. Discrimination against nonhuman DNA was also demonstrated successfully. Because of the very low quantities of reagents used in the assay, the cost per test becomes reasonably inexpensive. Overall, using commercially available SNP assays, the OpenArray platform showed excellent promise as a highly automated, low-volume, high-throughput system for SNP analysis with potential applications to relevant forensic analyses such as identification and paternity.

  3. TGFB1 Single Nucleotide Polymorphisms Are Associated With Adverse Quality of Life in Prostate Cancer Patients Treated With Radiotherapy

    SciTech Connect

    Peters, Christopher A. Stock, Richard G.; Cesaretti, Jamie A.; Atencio, David P.; Peters, Sheila B.A.; Burri, Ryan J.; Stone, Nelson N.; Ostrer, Harry; Rosenstein, Barry S.

    2008-03-01

    Purpose: To investigate whether the presence of single nucleotide polymorphisms (SNPs) located within TGFB1 might be predictive for the development of adverse quality-of-life outcomes in prostate cancer patients treated with radiotherapy. Methods and Materials: A total of 141 prostate cancer patients treated with radiotherapy were screened for SNPs in TGFB1 using DNA sequencing. Three quality-of-life outcomes were investigated: (1) prospective decline in erectile function, (2) urinary quality of life, and (3) rectal bleeding. Median follow-up was 51.3 months (range, 12-138 months; SD, 24.4 months). Results: Those patients who possessed either the T/T genotype at position -509, the C/C genotype at position 869 (pro/pro, codon 10) or the G/C genotype at position 915 (arg/pro, codon 25) were significantly associated with the development of a decline in erectile function compared with those who did not have these genotypes: 56% (9 of 16) vs. 24% (11 of 45) (p = 0.02). In addition, patients with the -509 T/T genotype had a significantly increased risk of developing late rectal bleeding compared with those who had either the C/T or C/C genotype at this position: 55% (6 of 11) vs. 26% (34 of 130) (p = 0.05). Conclusions: Possession of certain TGFB1 genotypes is associated with the development of both erectile dysfunction and late rectal bleeding in patients treated with radiotherapy for prostate cancer. Therefore, identification of patients harboring these genotypes may represent a means to predict which men are most likely to suffer from poor quality-of-life outcomes after radiotherapy for prostate cancer.

  4. Dry-reagent disposable biosensor for visual genotyping of single nucleotide polymorphisms by oligonucleotide ligation reaction: application to pharmacogenetic analysis.

    PubMed

    Toubanaki, Dimitra K; Christopoulos, Theodore K; Ioannou, Penelope C; Gravanis, Achille

    2008-08-01

    Most genotyping methods for known single-nucleotide polymorphisms (SNPs) are based on hybridization with allele-specific probes, oligonucleotide ligation reaction (OLR), primer extension or invasive cleavage. OLR offers superior specificity because it involves two recognition events; namely, the hybridization of an allele-specific probe and a common probe to adjacent positions on target DNA. OLR products can be detected by microtiter well-based colorimetric, time-resolved fluorimetric or chemiluminometric assays, electrophoresis, microarrays, microspheres, and homogeneous fluorimetric or colorimetric assays. We have developed a simple, robust, and low-cost disposable biosensor in dry-reagent format, which allows visual genotyping with no need for instrumentation. The OLR mixture contains a biotinylated common probe and an allele-specific probe with a (dA)(20) segment at the 3'-end. OLR products are denatured and applied to the biosensor next to gold nanoparticles that are decorated with oligo(dT) strands. The sensor is immersed in the appropriate buffer and all components migrate by capillary action. The OLR product is captured by immobilized streptavidin at the test zone (TZ) of the sensor and hybridizes with the oligo(dT) strands of the nanoparticles. A characteristic red line is generated due to the accumulation of nanoparticles. The excess nanoparticles are captured by immobilized oligo(dA) at the control zone of the strip, giving a second red line. We have applied successfully the proposed OLR-dipstick assay to the genotyping of four SNPs in the drug-metabolizing enzyme genes CYP2D6 ((*)3 and (*)4) and CYP2C19 ((*)2 and (*)3). The results were in agreement with direct sequencing.

  5. Single nucleotide polymorphism microarray analysis in cortisol-secreting adrenocortical adenomas identifies new candidate genes and pathways.

    PubMed

    Ronchi, Cristina L; Leich, Ellen; Sbiera, Silviu; Weismann, Dirk; Rosenwald, Andreas; Allolio, Bruno; Fassnacht, Martin

    2012-03-01

    The genetic mechanisms underlying adrenocortical tumor development are still largely unknown. We used high-resolution single nucleotide polymorphism microarrays (Affymetrix SNP 6.0) to detect copy number alterations (CNAs) and copy-neutral losses of heterozygosity (cnLOH) in 15 cortisol-secreting adrenocortical adenomas with matched blood samples. We focused on microalterations aiming to discover new candidate genes involved in early tumorigenesis and/or autonomous cortisol secretion. We identified 962 CNAs with a median of 18 CNAs per sample. Half of them involved noncoding regions, 89% were less than 100 kb, and 28% were found in at least two samples. The most frequently gained regions were 5p15.33, 6q16.1, 7p22.3-22.2, 8q24.3, 9q34.2-34.3, 11p15.5, 11q11, 12q12, 16q24.3, 20p11.1-20q21.11, and Xq28 (≥20% of cases), most of them being identified in the same three adenomas. These regions contained among others genes like NOTCH1, CYP11B2, HRAS, and IGF2. Recurrent losses were less common and smaller than gains, being mostly localized at 1p, 6q, and 11q. Pathway analysis revealed that Notch signaling was the most frequently altered. We identified 46 recurrent CNAs that each affected a single gene (31 gains and 15 losses), including genes involved in steroidogenesis (CYP11B1) or tumorigenesis (CTNNB1, EPHA7, SGK1, STIL, FHIT). Finally, 20 small cnLOH in four cases affecting 15 known genes were found. Our findings provide the first high-resolution genome-wide view of chromosomal changes in cortisol-secreting adenomas and identify novel candidate genes, such as HRAS, EPHA7, and SGK1. Furthermore, they implicate that the Notch1 signaling pathway might be involved in the molecular pathogenesis of adrenocortical tumors.

  6. Genetic control of conventional labeling through the bovine meat production chain by single nucleotide polymorphisms using real-time PCR.

    PubMed

    Capoferri, Rossana; Bongioni, Graziella; Galli, Andrea; Aleandri, Riccardo

    2006-08-01

    Since January 2002, the European Union has adopted precise guidelines aimed at protecting the safety of meat and controlling the production chain. To this purpose, the conventional traceability of livestock and meat represents the main tool, but verification of traceability requires genetic support. At present, single nucleotide polymorphisms (SNPs) represent the most innovative molecular markers in genotyping studies. The aim of this study was to verify correct labeling in a bovine meat production chain by a real-time PCR protocol based on SNP analysis. Reference hair samples from 5,000 animals were randomly collected from 22 farms. Twelve hundred meat samples were collected at different steps of the bovine meat production chain. In particular, 1,000 meat samples were collected at the slaughterhouse and 200 samples from the same animals directly at the butcher's shop. The protocol was optimized and validated by testing a set of 16 SNP markers on 95 DNA samples from bovine sires of different breeds. Thereafter, the genotyping of 2,200 samples was conducted with a set of 12 selected SNPs to verify traceability of the meat production chain at three different stages: farm, slaughterhouse, and butcher's shop. Irregularities in conventional traceability were evidenced directly in 1.87% of the samples at the slaughterhouse. This percentage increased to 3.25% when sampling was conducted at the butcher's shop. This study demonstrates that despite the precautions adopted over the meat production chain, some critical points still exist that cause the loss of a correct association between registration numbers and samples.

  7. Wheat in the Mediterranean revisited – tetraploid wheat landraces assessed with elite bread wheat Single Nucleotide Polymorphism markers

    PubMed Central

    2014-01-01

    Background Single Nucleotide Polymorphism (SNP) panels recently developed for the assessment of genetic diversity in wheat are primarily based on elite varieties, mostly those of bread wheat. The usefulness of such SNP panels for studying wheat evolution and domestication has not yet been fully explored and ascertainment bias issues can potentially affect their applicability when studying landraces and tetraploid ancestors of bread wheat. We here evaluate whether population structure and evolutionary history can be assessed in tetraploid landrace wheats using SNP markers previously developed for the analysis of elite cultivars of hexaploid wheat. Results We genotyped more than 100 tetraploid wheat landraces and wild emmer wheat accessions, some of which had previously been screened with SSR markers, for an existing SNP panel and obtained publically available genotypes for the same SNPs for hexaploid wheat varieties and landraces. Results showed that quantification of genetic diversity can be affected by ascertainment bias but that the effects of ascertainment bias can at least partly be alleviated by merging SNPs to haplotypes. Analyses of population structure and genetic differentiation show strong subdivision between the tetraploid wheat subspecies, except for durum and rivet that are not separable. A more detailed population structure of durum landraces could be obtained than with SSR markers. The results also suggest an emmer, rather than durum, ancestry of bread wheat and with gene flow from wild emmer. Conclusions SNP markers developed for elite cultivars show great potential for inferring population structure and can address evolutionary questions in landrace wheat. Issues of marker genome specificity and mapping need, however, to be addressed. Ascertainment bias does not seem to interfere with the ability of a SNP marker system developed for elite bread wheat accessions to detect population structure in other types of wheat. PMID:24885044

  8. Phylogeography and adaptation genetics of stickleback from the Haida Gwaii archipelago revealed using genome-wide single nucleotide polymorphism genotyping

    PubMed Central

    Deagle, Bruce E; Jones, Felicity C; Absher, Devin M; Kingsley, David M; Reimchen, Thomas E

    2013-01-01

    Threespine stickleback populations are model systems for studying adaptive evolution and the underlying genetics. In lakes on the Haida Gwaii archipelago (off western Canada), stickleback have undergone a remarkable local radiation and show phenotypic diversity matching that seen throughout the species distribution. To provide a historical context for this radiation, we surveyed genetic variation at >1000 single nucleotide polymorphism (SNP) loci in stickleback from over 100 populations. SNPs included markers evenly distributed throughout genome and candidate SNPs tagging adaptive genomic regions. Based on evenly distributed SNPs, the phylogeographic pattern differs substantially from the disjunct pattern previously observed between two highly divergent mtDNA lineages. The SNP tree instead shows extensive within watershed population clustering and different watersheds separated by short branches deep in the tree. These data are consistent with separate colonizations of most watersheds, despite underlying genetic connections between some independent drainages. This supports previous suppositions that morphological diversity observed between watersheds has been shaped independently, with populations exhibiting complete loss of lateral plates and giant size each occurring in several distinct clades. Throughout the archipelago, we see repeated selection of SNPs tagging candidate freshwater adaptive variants at several genomic regions differentiated between marine–freshwater populations on a global scale (e.g. EDA, Na/K ATPase). In estuarine sites, both marine and freshwater allelic variants were commonly detected. We also found typically marine alleles present in a few freshwater lakes, especially those with completely plated morphology. These results provide a general model for postglacial colonization of freshwater habitat by sticklebacks and illustrate the tremendous potential of genome-wide SNP data sets hold for resolving patterns and processes underlying recent

  9. Novel Single-Nucleotide Polymorphism Markers Predictive of Pathologic Response to Preoperative Chemoradiation Therapy in Rectal Cancer Patients

    SciTech Connect

    Kim, Jin C.; Ha, Ye J.; Roh, Seon A.; Cho, Dong H.; Choi, Eun Y.; Kim, Tae W.; Kim, Jong H.; Kang, Tae W.; Kim, Seon Y.; Kim, Yong S.

    2013-06-01

    Purpose: Studies aimed at predicting individual responsiveness to preoperative chemoradiation therapy (CRT) are urgently needed, especially considering the risks associated with poorly responsive patients. Methods and Materials: A 3-step strategy for the determination of CRT sensitivity is proposed based on (1) the screening of a human genome-wide single-nucleotide polymorphism (SNP) array in correlation with histopathologic tumor regression grade (TRG); (2) clinical association analysis of 113 patients treated with preoperative CRT; and (3) a cell-based functional assay for biological validation. Results: Genome-wide screening identified 9 SNPs associated with preoperative CRT responses. Positive responses (TRG 1-3) were obtained more frequently in patients carrying the reference allele (C) of the SNP CORO2A rs1985859 than in those with the substitution allele (T) (P=.01). Downregulation of CORO2A was significantly associated with reduced early apoptosis by 27% (P=.048) and 39% (P=.023) in RKO and COLO320DM colorectal cancer cells, respectively, as determined by flow cytometry. Reduced radiosensitivity was confirmed by colony-forming assays in the 2 colorectal cancer cells (P=.034 and .015, respectively). The SNP FAM101A rs7955740 was not associated with radiosensitivity in the clinical association analysis. However, downregulation of FAM101A significantly reduced early apoptosis by 29% in RKO cells (P=.047), and it enhanced colony formation in RKO cells (P=.001) and COLO320DM cells (P=.002). Conclusion: CRT-sensitive SNP markers were identified using a novel 3-step process. The candidate marker CORO2A rs1985859 and the putative marker FAM101A rs7955740 may be of value for the prediction of radiosensitivity to preoperative CRT, although further validation is needed in large cohorts.

  10. Unexpectedly Severe Acute Radiotherapy Side Effects Are Associated With Single Nucleotide Polymorphisms of the Melanocortin-1 Receptor

    SciTech Connect

    Fogarty, Gerald B.; Muddle, Rory; Sprung, Carl N.

    2010-08-01

    Purpose: The melanocortin-1 receptor (MC1R) regulates melanin biogenesis. Deoxyribonucleic acid sequence variants in the form of single nucleotide polymorphisms (SNPs) of MC1R affect melanin expression and are linked to skin phenotype. We aimed to determine whether SNPs of MC1R were associated with unexpectedly severe ionizing radiation reactions. Methods and Materials: The MC1R genotype of a cohort of Australians with unexpectedly severe acute and/or late reactions (Common Terminology Criteria Version 3 (CTCv3) Grade 3 or 4) to radiotherapy (RT) for cancer (n = 30) was analyzed. The findings were compared with control data from our previous study of MC1R representative of the general Australian population (n = 1,787). Results: The difference in frequency of alleles encoding a 'red hair color' phenotype in the cohort of patients with unexpectedly severe acute radiation reactions (n = 12) was significantly increased compared with the control population (p = 0.003). Acute radiosensitivity was especially associated with the R160W variant allele (odds ratio, 3.64 [95% confidence interval, 1.3-10.27]). The corresponding comparison of MC1R controls with unexpectedly severe late radiation reactions (n = 18) was not significant. It was also found that R160W as a part of the genotype in the patients with unexpectedly severe acute RT side effects as compared with the control group was also significant (p = 0.043). Conclusions: In this small cohort of cancer patients, deoxyribonucleic acid sequence variants of the MC1R gene, especially the R160W variant, have been associated with unexpectedly severe acute reactions to RT. This result needs to be verified in a larger cohort of patients.

  11. Association of single nucleotide polymorphism in melatonin receptor 1A gene with egg production traits in Yangzhou geese.

    PubMed

    Alsiddig, M A; Yu, S G; Pan, Z X; Widaa, H; Badri, T M; Chen, J; Liu, H L

    2017-04-01

    In the present study the melatonin receptor 1A gene (MTNR1A) was proposed to be a candidate gene for egg production in Yangzhou geese. A total of 210 goose blood samples were collected to investigate the association of the MTNR1A gene with the number of eggs produced. Using a direct sequencing method, a single nucleotide polymorphism (SNP; g.177G>C) was detected in the 5' regulatory region of the MTNR1A gene (Genbank ss1985399687). Two alleles (G and C) and three genotypes were identified. Association analysis results showed that the g.177G>C SNP significantly affected the level of egg production within a 34-week egg-laying period (P < 0.05). Furthermore, the geese with the GG genotype produced significantly more eggs compared to the geese with the CC genotype. Quantitative real-time PCR analysis showed that the MTNR1A gene was highly expressed in small intestine, granulosa cell and ovary compared to other examined tissues. In addition, the mRNA expression level of MTNR1A in ovary indicated that significantly higher expression levels were recorded for geese with the GG genotype compared to those with the CC genotype. Moreover, a luciferase reporter assay showed that the CC genotype had significantly lower promoter activity than did GG. These results suggest that the identified SNP in the MTNR1A gene may influence the number of eggs produced and mRNA expression levels in Yangzhou geese and could be considered as a useful molecular marker in goose selection and improvement, especially for egg production.

  12. Effects of lifestyle and single nucleotide polymorphisms on breast cancer risk: a case–control study in Japanese women

    PubMed Central

    2013-01-01

    Background Lifestyle factors, including food and nutrition, physical activity, body composition and reproductive factors, and single nucleotide polymorphisms (SNPs) are associated with breast cancer risk, but few studies of these factors have been performed in the Japanese population. Thus, the goals of this study were to validate the association between reported SNPs and breast cancer risk in the Japanese population and to evaluate the effects of SNP genotypes and lifestyle factors on breast cancer risk. Methods A case–control study in 472 patients and 464 controls was conducted from December 2010 to November 2011. Lifestyle was examined using a self-administered questionnaire. We analyzed 16 breast cancer-associated SNPs based on previous GWAS or candidate-gene association studies. Age or multivariate-adjusted odds ratios (OR) and 95% confidence intervals (95% CI) were estimated from logistic regression analyses. Results High BMI and current or former smoking were significantly associated with an increased breast cancer risk, while intake of meat, mushrooms, yellow and green vegetables, coffee, and green tea, current leisure-time exercise, and education were significantly associated with a decreased risk. Three SNPs were significantly associated with a breast cancer risk in multivariate analysis: rs2046210 (per allele OR = 1.37 [95% CI: 1.11-1.70]), rs3757318 (OR = 1.33[1.05-1.69]), and rs3803662 (OR = 1.28 [1.07-1.55]). In 2046210 risk allele carriers, leisure-time exercise was associated with a significantly decreased risk for breast cancer, whereas current smoking and high BMI were associated with a significantly decreased risk in non-risk allele carriers. Conclusion In Japanese women, rs2046210 and 3757318 located near the ESR1 gene are associated with a risk of breast cancer, as in other Asian women. However, our findings suggest that exercise can decrease this risk in allele carriers. PMID:24289300

  13. Whole-genome scan, in a complex disease, using 11,245 single-nucleotide polymorphisms: comparison with microsatellites.

    PubMed

    John, Sally; Shephard, Neil; Liu, Guoying; Zeggini, Eleftheria; Cao, Manqiu; Chen, Wenwei; Vasavda, Nisha; Mills, Tracy; Barton, Anne; Hinks, Anne; Eyre, Steve; Jones, Keith W; Ollier, William; Silman, Alan; Gibson, Neil; Worthington, Jane; Kennedy, Giulia C

    2004-07-01

    Despite the theoretical evidence of the utility of single-nucleotide polymorphisms (SNPs) for linkage analysis, no whole-genome scans of a complex disease have yet been published to directly compare SNPs with microsatellites. Here, we describe a whole-genome screen of 157 families with multiple cases of rheumatoid arthritis (RA), performed using 11,245 genomewide SNPs. The results were compared with those from a 10-cM microsatellite scan in the same cohort. The SNP analysis detected HLA*DRB1, the major RA susceptibility locus (P=.00004), with a linkage interval of 31 cM, compared with a 50-cM linkage interval detected by the microsatellite scan. In addition, four loci were detected at a nominal significance level (P<.05) in the SNP linkage analysis; these were not observed in the microsatellite scan. We demonstrate that variation in information content was the main factor contributing to observed differences in the two scans, with the SNPs providing significantly higher information content than the microsatellites. Reducing the number of SNPs in the marker set to 3,300 (1-cM spacing) caused several loci to drop below nominal significance levels, suggesting that decreases in information content can have significant effects on linkage results. In contrast, differences in maps employed in the analysis, the low detectable rate of genotyping error, and the presence of moderate linkage disequilibrium between markers did not significantly affect the results. We have demonstrated the utility of a dense SNP map for performing linkage analysis in a late-age-at-onset disease, where DNA from parents is not always available. The high SNP density allows loci to be defined more precisely and provides a partial scaffold for association studies, substantially reducing the resource requirement for gene-mapping studies.

  14. Functional single nucleotide polymorphisms within the cyclin-dependent kinase inhibitor 2A/2B region affect pancreatic cancer risk

    PubMed Central

    Campa, Daniele; Pastore, Manuela; Gentiluomo, Manuel; Talar-Wojnarowska, Renata; Kupcinskas, Juozas; Malecka-Panas, Ewa; Neoptolemos, John P.; Niesen, Willem; Vodicka, Pavel; Fave, Gianfranco Delle; Bueno-de-Mesquita, H. Bas; Gazouli, Maria; Pacetti, Paola; Di Leo, Milena; Ito, Hidemi; Klüter, Harald; Soucek, Pavel; Corbo, Vincenzo; Yamao, Kenji; Hosono, Satoyo; Kaaks, Rudolf; Vashist, Yogesh; Gioffreda, Domenica; Strobel, Oliver; Shimizu, Yasuhiro; Dijk, Frederike; Andriulli, Angelo; Ivanauskas, Audrius; Bugert, Peter; Tavano, Francesca; Vodickova, Ludmila; Zambon, Carlo Federico; Lovecek, Martin; Landi, Stefano; Key, Timothy J.; Boggi, Ugo; Pezzilli, Raffaele; Jamroziak, Krzysztof; Mohelnikova-Duchonova, Beatrice; Mambrini, Andrea; Bambi, Franco; Busch, Olivier; Pazienza, Valerio; Valente, Roberto; Theodoropoulos, George E.; Hackert, Thilo; Capurso, Gabriele; Cavestro, Giulia Martina; Pasquali, Claudio; Basso, Daniela; Sperti, Cosimo; Matsuo, Keitaro; Büchler, Markus; Khaw, Kay-Tee; Izbicki, Jakob; Costello, Eithne; Katzke, Verena; Michalski, Christoph; Stepien, Anna; Rizzato, Cosmeri; Canzian, Federico

    2016-01-01

    The CDKN2A (p16) gene plays a key role in pancreatic cancer etiology. It is one of the most commonly somatically mutated genes in pancreatic cancer, rare germline mutations have been found to be associated with increased risk of developing familiar pancreatic cancer and CDKN2A promoter hyper-methylation has been suggested to play a critical role both in pancreatic cancer onset and prognosis. In addition several unrelated SNPs in the 9p21.3 region, that includes the CDNK2A, CDNK2B and the CDNK2B-AS1 genes, are associated with the development of cancer in various organs. However, association between the common genetic variability in this region and pancreatic cancer risk is not clearly understood. We sought to fill this gap in a case-control study genotyping 13 single nucleotide polymorphisms (SNPs) in 2,857 pancreatic ductal adenocarcinoma (PDAC) patients and 6,111 controls in the context of the Pancreatic Disease Research (PANDoRA) consortium. We found that the A allele of the rs3217992 SNP was associated with an increased pancreatic cancer risk (ORhet=1.14, 95% CI 1.01-1.27, p=0.026, ORhom=1.30, 95% CI 1.12-1.51, p=0.00049). This pleiotropic variant is reported to be a mir-SNP that, by changing the binding site of one or more miRNAs, could influence the normal cell cycle progression and in turn increase PDAC risk. In conclusion, we observed a novel association in a pleiotropic region that has been found to be of key relevance in the susceptibility to various types of cancer and diabetes suggesting that the CDKN2A/B locus could represent a genetic link between diabetes and pancreatic cancer risk. PMID:27486979

  15. Haplotype-tagging single nucleotide polymorphisms in the GSTP1 gene promoter and susceptibility to lung cancer☆

    PubMed Central

    Tan, Xiang-Lin; Moslehi, Roxana; Han, WeiGuo; Spivack, Simon D.

    2013-01-01

    Background Glutathione S-transferase (GST) P1 is a major phase II xenobiotic-metabolizing enzyme in the human lung. Our laboratory had previously identified nine single nucleotide polymorphisms (SNPs) in the GSTP1 gene promoter, which were then grouped into three main haplotypes (Hap1, Hap2, and Hap3) based on statistical inference. Hap3 was found to display a high expression phenotype. The main objective of the current study was to test the association between GSTP1 promoter haplotypes with the risk of lung cancer after determining the promoter haplotypes experimentally through cloning and sequencing. Methods We conducted a case–control analysis of 150 subjects with lung cancer and 329 controls with no personal history of the disease. The three statistically inferred GSTP1 promoter haplotypes were confirmed experimentally through cloning and sequencing. Haplotype-tagging SNPs were selected and GSTP1 haplotypes were tested for genetic association to lung cancer using unconditional logistic regression after adjusting for confounders. Statistical interaction between GSTP1 promoter haplotypes with either cigarette smoking or dietary fruit and vegetable intake were tested using the likelihood ratio test. Results We did not find protective effects of Hap3 against lung cancer, despite an adequately powered design for this main effect. Homozygous variants of tagSNPs –1738 T >A and –354 G > T, which tag Hap2, showed an increased (but statistically non-significant) risk of lung cancer among all subjects as well as among individuals with low fruit and vegetable intake, compared to homozygous wildtypes for these SNPs. We did not find significant interactions between Hap2 and dietary intake of fruits and vegetables. Conclusions Our results do not support significant main and modifying effects for GSTP1 promoter haplotypes on susceptibility to lung cancer in this population, but reinforce the protective effects of dietary intake of fruits and vegetables. PMID:19282111

  16. Comparative analysis of disease-linked single nucleotide polymorphic markers from Brassica rapa for their applicability to Brassica oleracea.

    PubMed

    Cho, Young-Il; Ahn, Yul-Kyun; Tripathi, Swati; Kim, Jeong-Ho; Lee, Hye-Eun; Kim, Do-Sun

    2015-01-01

    Numerous studies using single nucleotide polymorphisms (SNPs) have been conducted in humans, and other animals, and in major crops, including rice, soybean, and Chinese cabbage. However, the number of SNP studies in cabbage is limited. In this present study, we evaluated whether 7,645 SNPs previously identified as molecular markers linked to disease resistance in the Brassica rapa genome could be applied to B. oleracea. In a BLAST analysis using the SNP sequences of B. rapa and B. oleracea genomic sequence data registered in the NCBI database, 256 genes for which SNPs had been identified in B. rapa were found in B. oleracea. These genes were classified into three functional groups: molecular function (64 genes), biological process (96 genes), and cellular component (96 genes). A total of 693 SNP markers, including 145 SNP markers [BRH--developed from the B. rapa genome for high-resolution melt (HRM) analysis], 425 SNP markers (BRP--based on the B. rapa genome that could be applied to B. oleracea), and 123 new SNP markers (BRS--derived from BRP and designed for HRM analysis), were investigated for their ability to amplify sequences from cabbage genomic DNA. In total, 425 of the SNP markers (BRP-based on B. rapa genome), selected from 7,645 SNPs, were successfully applied to B. oleracea. Using PCR, 108 of 145 BRH (74.5%), 415 of 425 BRP (97.6%), and 118 of 123 BRS (95.9%) showed amplification, suggesting that it is possible to apply SNP markers developed based on the B. rapa genome to B. oleracea. These results provide valuable information that can be utilized in cabbage genetics and breeding programs using molecular markers derived from other Brassica species.

  17. A single nucleotide polymorphism in the corticotropin receptor gene is associated with a blunted cortisol response during pediatric critical illness

    PubMed Central

    Jardine, David; Emond, Mary; Meert, Kathleen L.; Harrison, Rick; Carcillo, Joseph A.; Anand, Kanwaljeet J. S.; Berger, John; Newth, Christopher J. L.; Willson, Douglas F.; Nicholson, Carol; Dean, J. Michael; Zimmerman, Jerry J.

    2016-01-01

    Objective The cortisol response during critical illness varies widely among patients. Our objective was to examine single nucleotide polymorphisms (SNPs) in candidate genes regulating cortisol synthesis, metabolism, and activity to determine if genetic differences were associated with variability in the cortisol response among critically ill children. Design This was a prospective observational study employing tag SNP methodology to examine genetic contributions to the variability of the cortisol response in critical illness. Thirty-one candidate genes and 31 ancestry markers were examined. Setting Patients were enrolled from 7 pediatric critical care units that constitute the Eunice Kennedy Shriver Collaborative Pediatric Critical Care Research Network. Subjects Critically ill children (n=92), ages 40 weeks gestation to 18 years of age were enrolled. Interventions Blood samples were obtained from all patients for serum cortisol measurements and DNA isolation. Demographic and illness severity data were collected. Measurements and Main Results SNPs were tested for association with serum free cortisol (FC) concentrations in context of higher illness severity as quantified by PRISM III score > 7. A SNP (rs1941088) in the MC2R gene was strongly associated (p =0.0005) with a low FC response to critical illness. Patients with the AA genotype were over seven times more likely to have a low FC response to critical illness than those with a GG genotype. Patients with the GA genotype exhibited an intermediate FC response to critical illness. Conclusions The A allele at rs1941088 in the MC2R gene, that encodes the ACTH (corticotropin) receptor, is associated with a low cortisol response in critically ill children. These data provide evidence for a genetic basis for a portion of the variability in cortisol production during critical illness. Independent replication of these findings will be important and could facilitate development of personalized treatment for patients with

  18. Efficiency of selection, as measured by single nucleotide polymorphism variation, is dependent on inbreeding rate in Drosophila melanogaster.

    PubMed

    Demontis, Ditte; Pertoldi, Cino; Loeschcke, Volker; Mikkelsen, Karina; Axelsson, Tomas; Kristensen, Torsten Nygaard

    2009-11-01

    It is often hypothesized that slow inbreeding causes less inbreeding depression than fast inbreeding at the same absolute level of inbreeding. Possible explanations for this phenomenon include the more efficient purging of deleterious alleles and more efficient selection for heterozygote individuals during slow, when compared with fast, inbreeding. We studied the impact of inbreeding rate on the loss of heterozygosity and on morphological traits in Drosophila melanogaster. We analysed five noninbred control lines, 10 fast inbred lines and 10 slow inbred lines; the inbred lines all had an expected inbreeding coefficient of approximately 0.25. Forty single nucleotide polymorphisms in DNA coding regions were genotyped, and we measured the size and shape of wings and counted the number of sternopleural bristles on the genotyped individuals. We found a significantly higher level of genetic variation in the slow inbred lines than in the fast inbred lines. This higher genetic variation was resulting from a large contribution from a few loci and a smaller effect from several loci. We attributed the increased heterozygosity in the slow inbred lines to the favouring of heterozygous individuals over homozygous individuals by natural selection, either by associative over-dominance or balancing selection, or a combination of both. Furthermore, we found a significant polynomial correlation between genetic variance and wing size and shape in the fast inbred lines. This was caused by a greater number of homozygous individuals among the fast inbred lines with small, narrow wings, which indicated inbreeding depression. Our results demonstrated that the same amount of inbreeding can have different effects on genetic variance depending on the inbreeding rate, with slow inbreeding leading to higher genetic variance than fast inbreeding. These results increase our understanding of the genetic basis of the common observation that slow inbred lines express less inbreeding depression than

  19. Study of seven single-nucleotide polymorphisms identified in East Asians for association with obesity in a Taiwanese population

    PubMed Central

    Huang, Wei-Hsin; Hwang, Lee-Ching; Chan, Hsin-Lung; Lin, Hsiang-Yu; Lin, Yung-Hsiang

    2016-01-01

    Objective This study aimed to examine single-nucleotide polymorphisms (SNPs) of seven previously reported obesity genes in East Asians and to analyse their associations and synergistic effects on obesity in the Taiwanese population. Design Cross-sectional study. Setting One medical centre in northern Taiwan. Participants A total of 323 non-obese and 264 obese participants were recruited. The threshold for obesity in this study was a body mass index of ≥27 kg/m2, as defined by the Ministry of Health and Welfare in Taiwan. The study was performed with the approval of the institutional review board of MacKay Memorial Hospital, Taipei, Taiwan (application number 12MMHIS106). Outcome measures We analysed the genotype distributions of seven SNPs localising to the PPARγ2, GNB3, SDC3, ADRB2, FTO, PPARγ and ESR1 genes in obese and non-obese groups and then paired obesity-related SNPs to determine if they have synergistic effects on obesity. Results Analysis of the genotype distributions in obese and non-obese groups revealed only a significant positive correlation between an SNP in rs2282440-syndecan 3 (SDC3) and obesity in the Taiwanese population (p=0.006). In addition, the T/T genotype of SDC3 was significantly associated with a larger waist and hip circumference, higher body fat percentage and lower high-density lipoprotein cholesterol. Moreover, the combination of the rs2282440-SDC3T/T genotype with the rs1801282-peroxisome proliferator-activated receptor-gamma2 gene (PPARγ2) G carrier genotype was strongly associated with obesity (OR=6.77). Conclusions We found that the rs2282440-SDC3T/T genotype is associated with obesity in the Taiwanese population. Furthermore, there is a synergistic effect of the high-risk alleles of the SDC3 and PPARγ2 genes on the obese phenotype in the Taiwanese population. Trial registration number 12MMHIS106; Results. PMID:27515755

  20. Diabetes Insipidus as an Initial Presentation of Myelodysplastic Syndrome: Diagnosis with Single-Nucleotide Polymorphism Array-Based Karyotyping.

    PubMed

    Sun, Ruixue; Wang, Chun; Zhong, Xushu; Wu, Yu

    2016-01-01

    Myelodysplastic syndrome (MDS) is a group of clonal hematopoietic diseases characterized by cytopenia, dysplasia and increased risk of development to acute myeloid leukemia (AML). Unfavorable cytogenetic changes such as complex karyotypes or chromosome 7 anomalies are predictive of the progression to AML and poor prognosis. Central diabetes insipidus (CDI) is the result of a deficiency of arginine vasopressin, and its major causes are idiopathic, primary or secondary tumors, neurosurgery and trauma. Importantly, CDI is a rare complication of MDS. To date, only 5 cases of MDS co-occurring with CDI have been reported; 3 of 5 had cytogenetic abnormalities uncovered by metaphase cytogenetics and 3 of 5 evolved to AML. Here, we describe a 74-year-old woman who presented with CDI as her initial symptom of MDS and eventually progressed to AML. The metaphase cytogenetics, combined with the single-nucleotide polymorphism array (SNP-A)-based karyotyping, with superiority in resolution and detecting copy number variation, revealed a complex karyotype that included monosomy of chromosome 7, deletion of 20q, and absence of heterogeneity (AOH) in more than one chromosome. To the best of our knowledge, this is the first case report of MDS co-occurring with CDI with numerous cytogenetic abnormalities revealed by the SNP-A-based karyotyping. Our case supports that the cytogenetic abnormalities may be associated with the clinical features and the prognosis of MDS co-occurring with CDI. The SNP-A-based karyotyping is helpful in revealing more subtle cytogenetic abnormalities and unveiling their roles in the pathogenesis of MDS.

  1. Insertion sequence element single nucleotide polymorphism typing provides insights into the population structure and evolution of Mycobacterium ulcerans across Africa.

    PubMed

    Vandelannoote, Koen; Jordaens, Kurt; Bomans, Pieter; Leirs, Herwig; Durnez, Lies; Affolabi, Dissou; Sopoh, Ghislain; Aguiar, Julia; Phanzu, Delphin Mavinga; Kibadi, Kapay; Eyangoh, Sara; Manou, Louis Bayonne; Phillips, Richard Odame; Adjei, Ohene; Ablordey, Anthony; Rigouts, Leen; Portaels, Françoise; Eddyani, Miriam; de Jong, Bouke C

    2014-02-01

    Buruli ulcer is an indolent, slowly progressing necrotizing disease of the skin caused by infection with Mycobacterium ulcerans. In the present study, we applied a redesigned technique to a vast panel of M. ulcerans disease isolates and clinical samples originating from multiple African disease foci in order to (i) gain fundamental insights into the population structure and evolutionary history of the pathogen and (ii) disentangle the phylogeographic relationships within the genetically conserved cluster of African M. ulcerans. Our analyses identified 23 different African insertion sequence element single nucleotide polymorphism (ISE-SNP) types that dominate in different areas where Buruli ulcer is endemic. These ISE-SNP types appear to be the initial stages of clonal diversification from a common, possibly ancestral ISE-SNP type. ISE-SNP types were found unevenly distributed over the greater West African hydrological drainage basins. Our findings suggest that geographical barriers bordering the basins to some extent prevented bacterial gene flow between basins and that this resulted in independent focal transmission clusters associated with the hydrological drainage areas. Different phylogenetic methods yielded two well-supported sister clades within the African ISE-SNP types. The ISE-SNP types from the "pan-African clade" were found to be widespread throughout Africa, while the ISE-SNP types of the "Gabonese/Cameroonian clade" were much rarer and found in a more restricted area, which suggested that the latter clade evolved more recently. Additionally, the Gabonese/Cameroonian clade was found to form a strongly supported monophyletic group with Papua New Guinean ISE-SNP type 8, which is unrelated to other Southeast Asian ISE-SNP types.

  2. Correlation analysis between starch properties and single nucleotide polymorphisms of waxy genes in common rye (Secale cereale L.).

    PubMed

    Meng, M; Gao, X; Han, L J; Li, X Y; Wu, D; Li, H Z; Chen, Q J

    2014-01-14

    To understand the relationships between single nucleotide polymorphisms (SNPs) in the waxy gene and starch parameters in common rye, we performed sequence characterization, enzyme activity testing, amylopectin/amylose ratio evaluation, starch property testing, and correlation analysis. Specific primers were used to clone waxy from 20 rye cultivars. Sequence analysis showed that waxy was 2852 bp, including 11 exons, and sequence similarity across the 20 cultivars was over 98%. The Waxy protein showed >95% similarity with those from wheat, rice, and barley, the closest genetic relationship being with wheat Wx-A type. Waxy had multiple SNPs, most of which were located in the exons. Amino acid variants were found to be mainly distributed in the catalytic domain in an imbalanced state. Multi-factor correlation analysis revealed significant correlation among starch pasting parameters in rye flour. The Waxy protein activity was significantly negatively correlated with the amylose content and amylopectin/amylose ratio. However, pasting parameters, Waxy enzyme activity, and amylopectin/amylose content ratio were not correlated. The correlation of SNPs, the key catalytic site of Waxy, with starch parameters and enzyme activity suggested that both starch pasting parameters and Waxy protein activity were influenced by No. 260 amino acid (aa). Further, the 141 and 152 aa loci were found in the enzyme-catalyzing domain of Waxy. Interestingly, Waxy enzyme activity was also influenced by the 363 aa locus in the pliable region. These results provide important theoretical regarding the high-throughput quality identification of noodle starch, functional studies, directional selection, and molecular markers of wheat Wx subunits.

  3. Association of Single Nucleotide Polymorphisms of Adiponectin Gene with Type 2 Diabetes Mellitus, and Their Influence on Cardiovascular Risk Markers.

    PubMed

    Momin, A A; Bankar, M P; Bhoite, G M

    2017-03-01

    Type 2 diabetes mellitus is a genetically heterogeneous condition, characterized by insulin deficiency and/or insulin resistance. The etiology of type 2 diabetes is complex, with involvement of genetic and environmental factors. The adipose tissue protein 'adiponectin' is known to increase insulin sensitivity with decreased risk of type 2 diabetes mellitus. The gene for adiponectin is present on chromosome 3q27, the association of number of single nucleotide polymorphisms of adiponectin gene with type 2 diabetes and its complications have been reported. In the present study the two most common SNPs +45T/G & +276G/T, and their association with type 2 diabetes mellitus and cardiovascular markers were studied. The significant difference in genotype frequencies of +45T/G & +276G/T was found in type 2 diabetic patients and controls, with odds ratio of 1.13 & 1.26 respectively. BMI, Fasting blood glucose, fasting insulin, HOMA IR, triglyceride and VLDL cholesterol levels were increased, and HDL cholesterol level was decreased in patients carrier for +45T/G SNP than the wild type. While only decrease in the HDL cholesterol was reported in carriers for SNP +276G/T than the wild type. The logistic regression analysis revealed the positive association of SNP +45T/G with total cholesterol & LDL cholesterol. And negative association of HDL cholesterol was found with SNPs +45T/G and +276G/T. The haplotype analysis shows the alterations in means of biochemical markers in the patients having haplotype (GG) for mutant allele of SNP +45T/G and wild allele for SNP +276G/T.

  4. Improved Prediction of Cardiovascular Disease Based on a Panel of Single Nucleotide Polymorphisms Identified Through Genome-Wide Association Studies

    PubMed Central

    Davies, Robert W.; Dandona, Sonny; Stewart, Alexandre F.R.; Chen, Li; Ellis, Stephan G.; Tang, W.H. Wilson; Hazen, Stanley L.; Roberts, Robert; McPherson, Ruth; Wells, George A.

    2011-01-01

    Background Genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNPs) at multiple loci that are significantly associated with coronary artery disease (CAD) risk. In this study, we sought to determine and compare the predictive capabilities of 9p21.3 alone and a panel of SNPs identified and replicated through GWAS for CAD. Methods and Results We used the Ottawa Heart Genomics Study (OHGS) (3323 cases, 2319 control subjects) and the Wellcome Trust Case Control Consortium (WTCCC) (1926 cases, 2938 control subjects) data sets. We compared the ability of allele counting, logistic regression, and support vector machines. Two sets of SNPs, 9p21.3 alone and a set of 12 SNPs identified by GWAS and through a model-fitting procedure, were considered. Performance was assessed by measuring area under the curve (AUC) for OHGS using 10-fold cross-validation and WTCCC as a replication set. AUC for logistic regression using OHGS increased significantly from 0.555 to 0.608 (P=3.59×10–14) for 9p21.3 versus the 12 SNPs, respectively. This difference remained when traditional risk factors were considered in a subgroup of OHGS (1388 cases, 2038 control subjects), with AUC increasing from 0.804 to 0.809 (P=0.037). The added predictive value over and above the traditional risk factors was not significant for 9p21.3 (AUC 0.801 versus 0.804, P=0.097) but was for the 12 SNPs (AUC 0.801 versus 0.809, P=0.0073). Performance was similar between OHGS and WTCCC. Logistic regression outperformed both support vector machines and allele counting. Conclusions Using the collective of 12 SNPs confers significantly greater predictive capabilities for CAD than 9p21.3, whether traditional risks are or are not considered. More accurate models probably will evolve as additional CAD-associated SNPs are identified. PMID:20729558

  5. Genomic and genetic variability of six chicken populations using single nucleotide polymorphism and copy number variants as markers.

    PubMed

    Strillacci, M G; Cozzi, M C; Gorla, E; Mosca, F; Schiavini, F; Román-Ponce, S I; Ruiz López, F J; Schiavone, A; Marzoni, M; Cerolini, S; Bagnato, A

    2016-11-07

    Genomic and genetic variation among six Italian chicken native breeds (Livornese, Mericanel della Brianza, Milanino, Bionda Piemontese, Bianca di Saluzzo and Siciliana) were studied using single nucleotide polymorphism (SNP) and copy number variants (CNV) as markers. A total of 94 DNA samples genotyped with Axiom® Genome-Wide Chicken Genotyping Array (Affymetrix) were used in the analyses. The results showed the genetic and genomic variability occurring among the six Italian chicken breeds. The genetic relationship among animals was established with a principal component analysis. The genetic diversity within breeds was calculated using heterozygosity values (expected and observed) and with Wright's F-statistics. The individual-based CNV calling, based on log R ratio and B-allele frequency values, was done by the Hidden-Markov Model (HMM) of PennCNV software on autosomes. A hierarchical agglomerative clustering was applied in each population according to the absence or presence of definite CNV regions (CNV were grouped by overlapping of at least 1 bp). The CNV map was built on a total of 1003 CNV found in individual samples, after grouping by overlaps, resulting in 564 unique CNV regions (344 gains, 213 losses and 7 complex), for a total of 9.43 Mb of sequence and 1.03% of the chicken assembly autosome. All the approaches using SNP data showed that the Siciliana breed clearly differentiate from other populations, the Livornese breed separates into two distinct groups according to the feather colour (i.e. white and black) and the Bionda Piemontese and Bianca di Saluzzo breeds are closely related. The genetic variability found using SNP is comparable with that found by other authors in the same breeds using microsatellite markers. The CNV markers analysis clearly confirmed the SNP results.

  6. Molecular Evolutionary Analysis of ABCB5: The Ancestral Gene Is a Full Transporter with Potentially Deleterious Single Nucleotide Polymorphisms

    PubMed Central

    McGee, Kate; Lancaster, Germaine; Gold, Bert; Dean, Michael

    2011-01-01

    Background ABCB5 is a member of the ABC protein superfamily, which includes the transporters ABCB1, ABCC1 and ABCG2 responsible for causing drug resistance in cancer patients and also several other transporters that have been linked to human disease. The ABCB5 full transporter (ABCB5.ts) is expressed in human testis and its functional significance is presently unknown. Another variant of this transporter, ABCB5 beta posses a “half-transporter-like” structure and is expressed in melanoma stem cells, normal melanocytes, and other types of pigment cells. ABCB5 beta has important clinical implications, as it may be involved with multidrug resistance in melanoma stem cells, allowing these stem cells to survive chemotherapeutic regimes. Methodology/Principal Findings We constructed and examined in detail topological structures of the human ABCB5 protein and determined in-silico the cSNPs (coding single nucleotide polymorphisms) that may affect its function. Evolutionary analysis of ABCB5 indicated that ABCB5, ABCB1, ABCB4, and ABCB11 share a common ancestor, which began duplicating early in the evolutionary history of chordates. This suggests that ABCB5 has evolved as a full transporter throughout its evolutionary history. Conclusions/Significance From our in-silco analysis of cSNPs we found that a large number of non-synonymous cSNPs map to important functional regions of the protein suggesting that these SNPs if present in human populations may play a role in diseases associated with ABCB5. From phylogenetic analyses, we have shown that ABCB5 evolved as a full transporter throughout its evolutionary history with an absence of any major shifts in selection between the various lineages suggesting that the function of ABCB5 has been maintained during mammalian evolution. This finding would suggest that ABCB5 beta may have evolved to play a specific role in human pigment cells and/or melanoma cells where it is predominantly expressed. PMID:21298007

  7. Single-nucleotide polymorphism rs1058205 of KLK3 is associated with the risk of prostate cancer

    PubMed Central

    Chen, Chen; Xin, Zhongqiu

    2017-01-01

    Abstract Background Prostate cancer (PCa) is a serious public health concern for men worldwide. However, the risk factors for PCa remain largely unclear. Aim of this study was to investigate statistical associations between the risk of prostate cancer and the rs1058205 single-nucleotide polymorphism (SNP) of the KLK3 gene, which encodes the prostate specific antigen (PSA), in a case-control study of Han Chinese men in Northeast China. Methods Using a high-resolution melting curve genotyping method, we determined the genotype and allele distributions of rs1058205 in 2 groups of Han Chinese men, consisting of 268 PCa patients and 298 healthy control subjects. Logistic regression was used to evaluate associations between rs1058205 genotypes and the risk of PCa. Tumor staging and Gleason score were included in a stratified analysis of PCa risk. Results The frequency of the TC genotype of rs1058205 in the PCa group was significantly lower than that in the control group (P = 0.049). The serum PSA level in participants with the TC genotype was significantly lower than that of the TT and CC genotypes in both the PCa and control groups (P < 0.010 for both). The TT genotype was associated with PCa, both with and without adjustment for age (P < 0.010 and P = 0.047, respectively). The TT genotype was also associated with the moderate- and high-risk PCa categories (P = 0.007 and 0.027, respectively). Conclusion The TT genotype may represent a useful biomarker for identifying high risk of PCa and as a postoperative prognosticator in Chinese PCa patients. PMID:28272245

  8. Identification and validation of single nucleotide polymorphic markers linked to Ug99 stem rust resistance in spring wheat.

    PubMed

    Yu, Long-Xi; Chao, Shiaoman; Singh, Ravi P; Sorrells, Mark E

    2017-01-01

    Wheat stem rust (Puccinia graminis f. sp. tritici Eriks. and E. Henn.) is one of the most destructive diseases world-wide. Races belonging to Ug99 (or TTKSK) continue to cause crop losses in East Africa and threaten global wheat production. Developing and deploying wheat varieties with multiple race-specific genes or complex adult plant resistance is necessary to achieve durability. In the present study, we applied genome-wide association studies (GWAS) for identifying loci associated with the Ug99 stem rust resistance (SR) in a panel of wheat lines developed at the International Maize and Wheat Improvement Center (CIMMYT). Genotyping was carried out using the wheat 9K iSelect single nucleotide polymorphism (SNP) chip. Phenotyping was done in the field in Kenya by infection of Puccinia graminis f. sp. tritici race TTKST, the Sr24-virulent variant of Ug99. Marker-trait association identified 12 SNP markers significantly associated with resistance. Among them, 7 were mapped on five chromosomes. Markers located on chromosomes 4A and 4B overlapped with the location of the Ug99 resistance genes SrND643 and Sr37, respectively. Markers identified on 7DL were collocated with Sr25. Additional significant markers were located in the regions where no Sr gene has been reported. The chromosome location for five of the SNP markers was unknown. A BLASTN search of the NCBI database using the flanking sequences of the SNPs associated with Ug99 resistance revealed that several markers were linked to plant disease resistance analogues, while others were linked to regulatory factors or metabolic enzymes. A KASP (Kompetitive Allele Specific PCR) assay was used for validating six marker loci linked to genes with resistance to Ug99. Of those, four co-segregated with the Sr25-pathotypes while the rest identified unknown resistance genes. With further investigation, these markers can be used for marker-assisted selection in breeding for Ug99 stem rust resistance in wheat.

  9. Detection of single-nucleotide polymorphisms in Plasmodium falciparum by PCR primer extension and lateral flow immunoassay.

    PubMed

    Moers, A P H A; Hallett, R L; Burrow, R; Schallig, H D F H; Sutherland, C J; van Amerongen, A

    2015-01-01

    The resistance of Plasmodium falciparum to some antimalarial drugs is linked to single-nucleotide polymorphisms (SNPs). Currently, there are no methods for the identification of resistant parasites that are sufficiently simple, cheap, and fast enough to be performed at point-of-care, i.e., in local hospitals where drugs are prescribed. Primer extension methods (PEXT) were developed to identify 4 SNPs in P. falciparum positioned at amino acids 86, 184, and 1246 of the P. falciparum multidrug resistance 1 gene (pfmdr1) and amino acid 76 of the chloroquine resistance transporter gene (pfcrt). The PEXT products were visualized by a nucleic acid lateral flow immunoassay (NALFIA) with carbon nanoparticles as the detection labels. PCR-PEXT-NALFIAs showed good correlation to the reference methods, quantitative PCR (qPCR) or direct amplicon sequence analysis, in an initial open-label evaluation with 17 field samples. The tests were further evaluated in a blind study design in a set of 150 patient isolates. High specificities of 98 to 100% were found for all 4 PCR-PEXT genotyping assays. The sensitivities ranged from 75% to 100% when all PEXT-positive tests were considered. A number of samples with a low parasite density were successfully characterized by the reference methods but failed to generate a result in the PCR-PEXT-NALFIA, particularly those samples with microscopy-negative subpatent infections. This proof-of principle study validates the use of PCR-PEXT-NALFIA for the detection of resistance-associated mutations in P. falciparum, particularly for microscopy-positive infections. Although it requires a standard thermal cycler, the procedure is cheap and rapid and thus a potentially valuable tool for point-of-care detection in developing countries.

  10. Heteropolymeric triplex-based genomic assay to detect pathogens or single-nucleotide polymorphisms in human genomic samples.

    PubMed

    Daksis, Jasmine I; Erikson, Glen H

    2007-03-21

    Human genomic samples are complex and are considered difficult to assay directly without denaturation or PCR amplification. We report the use of a base-specific heteropolymeric triplex, formed by native duplex genomic target and an oligonucleotide third strand probe, to assay for low copy pathogen genomes present in a sample also containing human genomic duplex DNA, or to assay human genomic duplex DNA for Single Nucleotide Polymorphisms (SNP), without PCR amplification. Wild-type and mutant probes are used to identify triplexes containing FVL G1691A, MTHFR C677T and CFTR mutations. The specific triplex structure forms rapidly at room temperature in solution and may be detected without a separation step. YOYO-1, a fluorescent bis-intercalator, promotes and signals the formation of the specific triplex. Genomic duplexes may be assayed homogeneously with single base pair resolution. The specific triple-stranded structures of the assay may approximate homologous recombination intermediates, which various models suggest may form in either the major or minor groove of the duplex. The bases of the stable duplex target are rendered specifically reactive to the bases of the probe because of the activity of intercalated YOYO-1, which is known to decondense duplex locally 1.3 fold. This may approximate the local decondensation effected by recombination proteins such as RecA in vivo. Our assay, while involving triplex formation, is sui generis, as it is not homopurine sequence-dependent, as are "canonical triplexes". Rather, the base pair-specific heteropolymeric triplex of the assay is conformation-dependent. The highly sensitive diagnostic assay we present allows for the direct detection of base sequence in genomic duplex samples, including those containing human genomic duplex DNA, thereby bypassing the inherent problems and cost associated with conventional PCR based diagnostic assays.

  11. Finding the right coverage: the impact of coverage and sequence quality on single nucleotide polymorphism genotyping error rates.

    PubMed

    Fountain, Emily D; Pauli, Jonathan N; Reid, Brendan N; Palsbøll, Per J; Peery, M Zachariah

    2016-07-01

    Restriction-enzyme-based sequencing methods enable the genotyping of thousands of single nucleotide polymorphism (SNP) loci in nonmodel organisms. However, in contrast to traditional genetic markers, genotyping error rates in SNPs derived from restriction-enzyme-based methods remain largely unknown. Here, we estimated genotyping error rates in SNPs genotyped with double digest RAD sequencing from Mendelian incompatibilities in known mother-offspring dyads of Hoffman's two-toed sloth (Choloepus hoffmanni) across a range of coverage and sequence quality criteria, for both reference-aligned and de novo-assembled data sets. Genotyping error rates were more sensitive to coverage than sequence quality and low coverage yielded high error rates, particularly in de novo-assembled data sets. For example, coverage ≥5 yielded median genotyping error rates of ≥0.03 and ≥0.11 in reference-aligned and de novo-assembled data sets, respectively. Genotyping error rates declined to ≤0.01 in reference-aligned data sets with a coverage ≥30, but remained ≥0.04 in the de novo-assembled data sets. We observed approximately 10- and 13-fold declines in the number of loci sampled in the reference-aligned and de novo-assembled data sets when coverage was increased from ≥5 to ≥30 at quality score ≥30, respectively. Finally, we assessed the effects of genotyping coverage on a common population genetic application, parentage assignments, and showed that the proportion of incorrectly assigned maternities was relatively high at low coverage. Overall, our results suggest that the trade-off between sample size and genotyping error rates be considered prior to building sequencing libraries, reporting genotyping error rates become standard practice, and that effects of genotyping errors on inference be evaluated in restriction-enzyme-based SNP studies.

  12. Impacts of Nonsynonymous Single Nucleotide Polymorphisms of Adiponectin Receptor 1 Gene on Corresponding Protein Stability: A Computational Approach

    PubMed Central

    Saleh, Md. Abu; Solayman, Md.; Paul, Sudip; Saha, Moumoni; Khalil, Md. Ibrahim; Gan, Siew Hua

    2016-01-01

    Despite the reported association of adiponectin receptor 1 (ADIPOR1) gene mutations with vulnerability to several human metabolic diseases, there is lack of computational analysis on the functional and structural impacts of single nucleotide polymorphisms (SNPs) of the human ADIPOR1 at protein level. Therefore, sequence- and structure-based computational tools were employed in this study to functionally and structurally characterize the coding nsSNPs of ADIPOR1 gene listed in the dbSNP database. Our in silico analysis by SIFT, nsSNPAnalyzer, PolyPhen-2, Fathmm, I-Mutant 2.0, SNPs&GO, PhD-SNP, PANTHER, and SNPeffect tools identified the nsSNPs with distorting functional impacts, namely, rs765425383 (A348G), rs752071352 (H341Y), rs759555652 (R324L), rs200326086 (L224F), and rs766267373 (L143P) from 74 nsSNPs of ADIPOR1 gene. Finally the aforementioned five deleterious nsSNPs were introduced using Swiss-PDB Viewer package within the X-ray crystal structure of ADIPOR1 protein, and changes in free energy for these mutations were computed. Although increased free energy was observed for all the mutants, the nsSNP H341Y caused the highest energy increase amongst all. RMSD and TM scores predicted that mutants were structurally similar to wild type protein. Our analyses suggested that the aforementioned variants especially H341Y could directly or indirectly destabilize the amino acid interactions and hydrogen bonding networks of ADIPOR1. PMID:27294143

  13. Association of Single Nucleotide Polymorphisms in the ST3GAL4 Gene with VWF Antigen and Factor VIII Activity

    PubMed Central

    Song, Jaewoo; Xue, Cheng; Preisser, John S.; Cramer, Drake W.; Houck, Katie L.; Liu, Guo; Folsom, Aaron R.; Couper, David; Yu, Fuli; Dong, Jing-fei

    2016-01-01

    VWF is extensively glycosylated with biantennary core fucosylated glycans. Most N-linked and O-linked glycans on VWF are sialylated. FVIII is also glycosylated, with a glycan structure similar to that of VWF. ST3GAL sialyltransferases catalyze the transfer of sialic acids in the α2,3 linkage to termini of N- and O-glycans. This sialic acid modification is critical for VWF synthesis and activity. We analyzed genetic and phenotypic data from the Atherosclerosis Risk in Communities (ARIC) study for the association of single nucleotide polymorphisms (SNPs) in the ST3GAL4 gene with plasma VWF levels and FVIII activity in 12,117 subjects. We also analyzed ST3GAL4 SNPs found in 2,535 subjects of 26 ethnicities from the 1000 Genomes (1000G) project for ethnic diversity, SNP imputation, and ST3GAL4 haplotypes. We identified 14 and 1,714 ST3GAL4 variants in the ARIC GWAS and 1000G databases res