Science.gov

Sample records for nucleotide polymorphism rs1050450

  1. The Mn-superoxide dismutase single nucleotide polymorphism rs4880 and the glutathione peroxidase 1 single nucleotide polymorphism rs1050450 are associated with aging and longevity in the oldest old.

    PubMed

    Soerensen, Mette; Christensen, Kaare; Stevnsner, Tinna; Christiansen, Lene

    2009-05-01

    The free radical theory of aging states that reactive oxygen species (ROS) play a key role in age-related accumulation of cellular damage, and consequently influence aging and longevity. Therefore, variation in genes encoding proteins protecting against ROS could be expected to influence variation in aging and life span. The rs4880 and rs1050450 SNPs in the manganese superoxide dismutase (MnSOD) and glutathione peroxidase 1 (GPX1) genes, respectively, are associated with age-related diseases and appear to affect the activities of the encoded variant proteins. In this study we genotyped these SNPs in 1650 individuals from the Danish 1905 cohort (follow-up time: 1998-2008, age at intake: 92-93 years, number of deaths: 1589 (96.3%)) and investigated the association with aging and longevity. We found decreased mortality of individuals holding either the MnSOD rs4880 C or the GPX1 rs1050450 T alleles (HR (MnSOD(CC/CT))=0.91, P=0, p=0.002 and HR (GPX1(TT/TC))=0.93, p=0.008). Furthermore, a synergetic effect of the alleles was observed (HR=0.76, p=0.001). Finally, moderate positive associations with good self rated health, decreased disability and increased cognitive capacity were observed. Our results thus indicate that genetic variation in MnSOD and GPX1 may be associated with aging and longevity.

  2. GLUTATHIONE PEROXIDASE-1 PRO200LEU POLYMORPHISM (RS1050450) IS ASSOCIATED WITH MORBID OBESITY INDEPENDENTLY OF THE PRESENCE OF PREDIABETES OR DIABETES IN WOMEN FROM CENTRAL MEXICO.

    PubMed

    Hernández Guerrero, César; Hernández Chávez, Paulina; Martínez Castro, Noemí; Parra Carriedo, Alicia; García Del Rio, Sandra; Pérez Lizaur, Ana

    2015-10-01

    obesity affects more than a third of Mexican population. Oxidative stress participates actively in the etiology of this phenomenon. Glutathione peroxidase-1 (GPX-1) plays a protective role against oxidative stress. The SNP Pro200Leu (rs10504050) has been reported to affect the activity of the enzyme. to determine the frequency of rs10504050 polymorphism in women with obesity and normal weight control, asses the concentration of peripheral TBARS and evaluate the consumption of pro and antioxidants. 104 women with obesity and 70 healthy controls (CG) were included in the study. Anthropometric, biochemical, clinical and dietary features were evaluated. GPx-1 rs10504050 was determined by PCR/RFLP method. TBARS was assayed spectrophotometrically in plasma. The subjects were stratified and compared by obesity grades and by subgroups of prediabetes and diabetes condition. Statistical analysis included ANOVA of Kruskal Wallis, Xi squared and Pearson correlation. for rs10504050 polymorphism there were differences (Xi2 = 6; p = 0.01) between frequency (0.61) of obese carriers (Pro/Leu plus Leu/Leu) and CG carriers (0.42), and between (Xi2 = 8; p = 0.004) morbid (IMC > 40) obesity (0.74) and CG carriers. The obese group (OB) showed a prevalence of 66% of prediabetes plus diabetes. There were no differences in frequencies of rs10504050 in OB with pre or diabetes versus CG, or versus obese participants without diabetes. TBARS concentration was greater in all the degrees of OB versus CG. GPx-1 Pro200Leu polymorphism was associated with obesity especially with morbid obesity, but not with obese participants with prediabetes or diabetes. Oxidative stress is present in all grades of obesity significantly. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  3. Pro198Leu polymorphism affects the selenium status and GPx activity in response to Brazil nut intake.

    PubMed

    Cardoso, Bárbara R; Busse, Alexandre L; Hare, Dominic J; Cominetti, Cristiane; Horst, Maria A; McColl, Gawain; Magaldi, Regina M; Jacob-Filho, Wilson; Cozzolino, Silvia M F

    2016-02-01

    Selenoproteins play important roles in antioxidant mechanisms, and are thus hypothesised to have some involvement in the pathology of certain types of dementia. Mild cognitive impairment (MCI) and Alzheimer's disease (AD) are both thought to involve impaired biological activity of certain selenoproteins. Previously, supplementation with a selenium-rich Brazil nut (Bertholletia excelsa) has shown potential in reducing cognitive decline in MCI patients, and could prove to be a safe and effective nutritional approach early in the disease process to slow decline. Here, we have conducted a pilot study that examined the effects of a range of single nucleotide polymorphisms (SNPs) in genes encoding the selenoproteins glutathione peroxidase (GPX1) and selenoprotein P (SEPP) in response to selenium supplementation via dietary Brazil nuts, including selenium status, oxidative stress parameters and GPX1 and SEPP gene expression. Our data suggest that GPX1 Pro198Leu rs1050450 genotypes may differentially affect the selenium status and GPx activity. Moreover, rs7579 and rs3877899 SNPs in SEPP gene, as well as GPX1 rs1050450 genotypes can influence the expression of GPX1 and SEPP mRNA in response to Brazil nuts intake. This small study gives cause for larger investigations into the role of these SNPs in both the selenium status and response to selenium dietary intake, especially in chronic degenerative conditions like MCI and AD.

  4. Association of interactions between dietary salt consumption and hypertension-susceptibility genetic polymorphisms with blood pressure among Japanese male workers.

    PubMed

    Imaizumi, Takahiro; Ando, Masahiko; Nakatochi, Masahiro; Maruyama, Shoichi; Yasuda, Yoshinari; Honda, Hiroyuki; Kuwatsuka, Yachiyo; Kato, Sawako; Kondo, Takaaki; Iwata, Masamitsu; Nakashima, Toru; Yasui, Hiroshi; Takamatsu, Hideki; Okajima, Hiroshi; Yoshida, Yasuko; Matsuo, Seiichi

    2017-06-01

    Blood pressure is influenced by hereditary factors and dietary habits. The objective of this study was to examine the effect of dietary salt consumption and single-nucleotide polymorphisms (SNPs) on blood pressure (BP). This was a cross-sectional analysis of 2728 male participants who participated in a health examination in 2009. Average dietary salt consumption was estimated using electronically collected meal purchase data from cafeteria. A multivariate analysis, adjusting for clinically relevant factors, was conducted to examine whether the effect on BP of salt consumption, SNPs, and interaction between salt consumption and each SNP. This study examined the SNPs AGT rs699 (Met235Thr), ADD1 rs4961 (Gly460Trp), NPPA rs5063 (Val32Met), GPX1 rs1050450 (Pro198Leu), and AGTR1 rs5186 (A1166C) in relation to hypertension and salt sensitivity. BP was not significantly associated with SNPs or salt consumption. The interaction between salt consumption and SNPs with systolic BP showed a significant association in NPPA rs5063 (Val32Met) (P = 0.023) and a marginal trend toward significance in rs4961 and rs1050450 (P = 0.060 and 0.067, respectively). The effect of salt consumption on BP differed by genotype. Dietary salt consumption and genetic variation can predict a high risk of hypertension.

  5. The Single Nucleotide Polymorphism Consortium

    NASA Technical Reports Server (NTRS)

    Morgan, Michael

    2003-01-01

    I want to discuss both the Single Nucleotide Polymorphism (SNP) Consortium and the Human Genome Project. I am afraid most of my presentation will be thin on law and possibly too high on rhetoric. Having been engaged in a personal and direct way with these issues as a trained scientist, I find it quite difficult to be always as objective as I ought to be.

  6. The Single Nucleotide Polymorphism Consortium

    NASA Technical Reports Server (NTRS)

    Morgan, Michael

    2003-01-01

    I want to discuss both the Single Nucleotide Polymorphism (SNP) Consortium and the Human Genome Project. I am afraid most of my presentation will be thin on law and possibly too high on rhetoric. Having been engaged in a personal and direct way with these issues as a trained scientist, I find it quite difficult to be always as objective as I ought to be.

  7. Single Nucleotide Polymorphisms and Osteoarthritis

    PubMed Central

    Wang, Ting; Liang, Yuting; Li, Hong; Li, Haibo; He, Quanze; Xue, Ying; Shen, Cong; Zhang, Chunhua; Xiang, Jingjing; Ding, Jie; Qiao, Longwei; Zheng, Qiping

    2016-01-01

    Abstract Osteoarthritis (OA) is a complex disorder characterized by degenerative articular cartilage and is largely attributed to genetic risk factors. Single nucleotide polymorphisms (SNPs) are common DNA variants that have shown promising and efficiency, compared with positional cloning, to map candidate genes of complex diseases, including OA. In this study, we aim to provide an overview of multiple SNPs from a number of genes that have recently been linked to OA susceptibility. We also performed a comprehensive meta-analysis to evaluate the association of SNP rs7639618 of double von Willebrand factor A domains (DVWA) gene with OA susceptibility. A systematic search of studies on the association of SNPs with susceptibility to OA was conducted in PubMed and Google scholar. Studies subjected to meta-analysis include human and case-control studies that met the Hardy–Weinberg equilibrium model and provide sufficient data to calculate an odds ratio (OR). A total of 9500 OA cases and 9365 controls in 7 case-control studies relating to SNP rs7639618 were included in this study and the ORs with 95% confidence intervals (CIs) were calculated. Over 50 SNPs from different genes have been shown to be associated with either hip (23), or knee (20), or both (13) OA. The ORs of these SNPs for OA and the subtypes are not consistent. As to SNP rs7639618 of DVWA, increased knee OA risk was observed in all genetic models analyzed. Specifically, people from Asian with G-allele showed significantly increased risk of knee OA (A versus G: OR = 1.28, 95% CI 1.13–1.46; AA versus GG: OR = 1.60, 95% CI 1.25–2.05; GA versus GG: OR = 1.31, 95% CI 1.18–1.44; AA versus GA+GG: OR = 1.34, 95% CI 1.12–1.61; AA+GA versus GG: OR = 1.40, 95% CI 1.19–1.64), but not in Caucasians or with hip OA. Our results suggest that multiple SNPs play different roles in the pathogenesis of OA and its subtypes; SNP rs7639618 of DVWA gene is associated with a significantly increased

  8. Association between Polymorphisms in Antioxidant Genes and Inflammatory Bowel Disease

    PubMed Central

    Coelho, Rosa; Grácio, Daniela; Silva, Marco; Peixoto, Armando; Lago, Paula; Pereira, Márcia; Catarino, Telmo; Pinho, Salomé; Teixeira, João Paulo; Macedo, Guilherme; Annese, Vito

    2017-01-01

    Inflammation is the driving force in inflammatory bowel disease (IBD) and its link to oxidative stress and carcinogenesis has long been accepted. The antioxidant system of the intestinal mucosa in IBD is compromised resulting in increased oxidative injury. This defective antioxidant system may be the result of genetic variants in antioxidant genes, which can represent susceptibility factors for IBD, namely Crohn’s disease (CD) and ulcerative colitis (UC). Single nucleotide polymorphisms (SNPs) in the antioxidant genes SOD2 (rs4880) and GPX1 (rs1050450) were genotyped in a Portuguese population comprising 436 Crohn’s disease and 367 ulcerative colitis patients, and 434 healthy controls. We found that the AA genotype in GPX1 is associated with ulcerative colitis (OR = 1.93, adjusted P-value = 0.037). Moreover, we found nominal significant associations between SOD2 and Crohn’s disease susceptibility and disease subphenotypes but these did not withstand the correction for multiple testing. These findings indicate a possible link between disease phenotypes and antioxidant genes. These results suggest a potential role for antioxidant genes in IBD pathogenesis and should be considered in future association studies. PMID:28052094

  9. Association between Polymorphisms in Antioxidant Genes and Inflammatory Bowel Disease.

    PubMed

    Costa Pereira, Cristiana; Durães, Cecília; Coelho, Rosa; Grácio, Daniela; Silva, Marco; Peixoto, Armando; Lago, Paula; Pereira, Márcia; Catarino, Telmo; Pinho, Salomé; Teixeira, João Paulo; Macedo, Guilherme; Annese, Vito; Magro, Fernando

    2017-01-01

    Inflammation is the driving force in inflammatory bowel disease (IBD) and its link to oxidative stress and carcinogenesis has long been accepted. The antioxidant system of the intestinal mucosa in IBD is compromised resulting in increased oxidative injury. This defective antioxidant system may be the result of genetic variants in antioxidant genes, which can represent susceptibility factors for IBD, namely Crohn's disease (CD) and ulcerative colitis (UC). Single nucleotide polymorphisms (SNPs) in the antioxidant genes SOD2 (rs4880) and GPX1 (rs1050450) were genotyped in a Portuguese population comprising 436 Crohn's disease and 367 ulcerative colitis patients, and 434 healthy controls. We found that the AA genotype in GPX1 is associated with ulcerative colitis (OR = 1.93, adjusted P-value = 0.037). Moreover, we found nominal significant associations between SOD2 and Crohn's disease susceptibility and disease subphenotypes but these did not withstand the correction for multiple testing. These findings indicate a possible link between disease phenotypes and antioxidant genes. These results suggest a potential role for antioxidant genes in IBD pathogenesis and should be considered in future association studies.

  10. [Connective tissue dysplasia, magnesium, and nucleotide polymorphisms].

    PubMed

    Torshin, I Iu; Gromova, O A

    2008-01-01

    Undifferentiated connective tissue dysplasia (UCTD) is one of most common diseases of the connective tissue. High frequency of UCTD in population along with the fact that it can provoke a number of other diseases make UCTD an important object of the modern biomedical research in the areas of cardiology, neurology, rheumatology and pulmonology. Modern diagnostics and determination of the predisposition to UCTD allow elaboration of personalized therapy. In particular, Mg-containing supplements and medications can be effectively used in the therapy of UCTD. In one of our previous works we have analyzed possible molecular mechanisms of UCTD etiology as well as therapeutic action of magnesium. The use of data on nucleotide polymorphisms as complementation of standard medical diagnostics is one of perspective trends of the post-genomic medical research. The present work suggest a number of nucleotide polymorphisms that can be used in genetic association analyses of the UCTD as of well as therapeutic efficiency of magnesium treatment. Selection and analysis of the polymorphisms was done on the base of molecular mechanisms we had proposed earlier, comprehensive analysis of published data and also with the use of an integral approach to analysis of the functional effects of the nucleotide polymorphisms and corresponding amino acid substitutions.

  11. Single nucleotide polymorphisms and suicidal behaviour.

    PubMed

    Pregelj, Peter

    2012-09-01

    The World Health Organization estimates that almost one million deaths each year are attributable to suicide, and suicide attempt is close to 10 times more common than suicide completion. Suicidal behaviour has multiple causes that are broadly divided into proximal stressors or triggers and predisposition such as genetic. It is also known that single nucleotide polymorphisms (SNPs) occur throughout a human DNA influencing the structure, quantity and the function of proteins and other molecules. Abnormalities of the serotonergic system were observed in suicide victims. Beside 5-HT1A and other serotonin receptors most studied are the serotonin transporter 5' functional promoter variant, and monoamine oxidase A and the tryptophan-hydroxylase 1 and 2 (TPH) polymorphisms. It seems that especially genes regulating serotoninergic system and neuronal systems involved in stress response are associated with suicidal behaviour. Most genetic studies on suicidal behaviour have considered a small set of functional polymorphisms relevant mostly to monoaminergic neurotransmission. However, genes involved in regulation of other factors such as brain-derived neurotropic factor seems to be even more relevant for further research.

  12. [Identification of single nucleotide polymorphisms in centenarians].

    PubMed

    Gambini, Juan; Gimeno-Mallench, Lucía; Inglés, Marta; Olaso, Gloria; Abdelaziz, Kheira Mohamed; Avellana, Juan Antonio; Belenguer, Ángel; Cruz, Raquel; Mas-Bargues, Cristina; Borras, Consuelo; Viña, José

    2016-01-01

    Longevity is determined by genetic and external factors, such as nutritional, environmental, social, etc. Nevertheless, when living conditions are optimal, longevity is determined by genetic variations between individuals. In a same population, with relative genotypic homogeneity, subtle changes in the DNA sequence affecting a single nucleotide can be observed. These changes, called single nucleotide polymorphisms (SNP) are present in 1-5% of the population. A total of 92 subjects were recruited, including 28 centenarians and 64 controls, in order to find SNP that maybe implicated in the extreme longevity, as in the centenarians. Blood samples were collected to isolate and amplify the DNA in order to perform the analysis of SPN by Axiom™ Genotyping of Affymetrix technology. Statistical analyses were performed using the Plink program and libraries SNPassoc and skatMeta. Our results show 12 mutations with a p<.001, where 5 of these (DACH1, LOC91948, BTB16, NFIL3 y HDAC4) have regulatory functions of the expressions of others genes. Therefore, these results suggest that the genetic variation between centenarians and controls occurs in five genes that are involved in the regulation of gene expression to adapt to environmental changes better than controls. Copyright © 2015 SEGG. Published by Elsevier Espana. All rights reserved.

  13. Single-nucleotide polymorphism discovery by targeted DNA photocleavage.

    PubMed

    Hart, Jonathan R; Johnson, Martin D; Barton, Jacqueline K

    2004-09-28

    Single-nucleotide polymorphisms are the largest source of genetic variation in humans. We report a method for the discovery of single-nucleotide polymorphisms within genomic DNA. Pooled genomic samples are amplified, denatured, and annealed to generate mismatches at polymorphic DNA sites. Upon photoactivation, these DNA mismatches are then cleaved site-specifically by using a small molecular probe, a bulky metallointercalator, Rhchrysi or Rhphzi. Fluorescent labeling of the cleaved products and separation by capillary electrophoresis permits rapid identification with single-base resolution of the single-nucleotide polymorphism site. This method is remarkably sensitive and minor allele frequencies as low as 5% can be readily detected.

  14. Time-resolved FRET for single-nucleotide polymorphism genotyping

    NASA Astrophysics Data System (ADS)

    Andreoni, Alessandra; Nardo, Luca; Bondani, Maria

    2009-05-01

    By tens-of-picosecond resolved fluorescence detection (TCSPC, time-correlated single-photon counting) we study Förster resonance energy transfer between a donor and a black-hole-quencher acceptor bound at the 5'- and 3'-positions of a synthetic DNA oligonucleotide. This dual labelled oligonucleotide is annealed with either the complementary sequence or with sequences that mimic single-nucleotide polymorphic gene sequences: they differ in one nucleotide at positions near either the ends or the center of the oligonucleotide. We find donor fluorescence decay times whose values are definitely distinct and discuss the feasibility of single nucleotide polymorphism genotyping by this method.

  15. Compositions and methods for detecting single nucleotide polymorphisms

    DOEpatents

    Yeh, Hsin-Chih; Werner, James; Martinez, Jennifer S.

    2016-11-22

    Described herein are nucleic acid based probes and methods for discriminating and detecting single nucleotide variants in nucleic acid molecules (e.g., DNA). The methods include use of a pair of probes can be used to detect and identify polymorphisms, for example single nucleotide polymorphism in DNA. The pair of probes emit a different fluorescent wavelength of light depending on the association and alignment of the probes when hybridized to a target nucleic acid molecule. Each pair of probes is capable of discriminating at least two different nucleic acid molecules that differ by at least a single nucleotide difference. The methods can probes can be used, for example, for detection of DNA polymorphisms that are indicative of a particular disease or condition.

  16. Single Nucleotide Polymorphisms Predict Symptom Severity of Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Jiao, Yun; Chen, Rong; Ke, Xiaoyan; Cheng, Lu; Chu, Kangkang; Lu, Zuhong; Herskovits, Edward H.

    2012-01-01

    Autism is widely believed to be a heterogeneous disorder; diagnosis is currently based solely on clinical criteria, although genetic, as well as environmental, influences are thought to be prominent factors in the etiology of most forms of autism. Our goal is to determine whether a predictive model based on single-nucleotide polymorphisms (SNPs)…

  17. Single Nucleotide Polymorphisms Predict Symptom Severity of Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Jiao, Yun; Chen, Rong; Ke, Xiaoyan; Cheng, Lu; Chu, Kangkang; Lu, Zuhong; Herskovits, Edward H.

    2012-01-01

    Autism is widely believed to be a heterogeneous disorder; diagnosis is currently based solely on clinical criteria, although genetic, as well as environmental, influences are thought to be prominent factors in the etiology of most forms of autism. Our goal is to determine whether a predictive model based on single-nucleotide polymorphisms (SNPs)…

  18. Discovery, Validation and Characterization of 1039 Cattle Single Nucleotide Polymorphisms

    USDA-ARS?s Scientific Manuscript database

    We identified approximately 13000 putative single nucleotide polymorphisms (SNPs) by comparison of repeat-masked BAC-end sequences from the cattle RPCI-42 BAC library with whole-genome shotgun contigs of cattle genome assembly Btau 1.0. Genotyping of a subset of these SNPs was performed on a panel ...

  19. A Laboratory Exercise for Genotyping Two Human Single Nucleotide Polymorphisms

    ERIC Educational Resources Information Center

    Fernando, James; Carlson, Bradley; LeBard, Timothy; McCarthy, Michael; Umali, Finianne; Ashton, Bryce; Rose, Ferrill F., Jr.

    2016-01-01

    The dramatic decrease in the cost of sequencing a human genome is leading to an era in which a wide range of students will benefit from having an understanding of human genetic variation. Since over 90% of sequence variation between humans is in the form of single nucleotide polymorphisms (SNPs), a laboratory exercise has been devised in order to…

  20. Prospects for inferring pairwise relationships with single nucleotide polymorphisms

    Treesearch

    Jeffery C. Glaubitz; O. Eugene, Jr. Rhodes; J. Andrew DeWoody

    2003-01-01

    An extraordinarily large number of single nucleotide polymorphisms (SNPs) are now available in humans as well as in other model organisms. Technological advancements may soon make it feasible to assay hundreds of SNPs in virtually any organism of interest. One potential application of SNPs is the determination of pairwise genetic relationships in populations without...

  1. A Laboratory Exercise for Genotyping Two Human Single Nucleotide Polymorphisms

    ERIC Educational Resources Information Center

    Fernando, James; Carlson, Bradley; LeBard, Timothy; McCarthy, Michael; Umali, Finianne; Ashton, Bryce; Rose, Ferrill F., Jr.

    2016-01-01

    The dramatic decrease in the cost of sequencing a human genome is leading to an era in which a wide range of students will benefit from having an understanding of human genetic variation. Since over 90% of sequence variation between humans is in the form of single nucleotide polymorphisms (SNPs), a laboratory exercise has been devised in order to…

  2. Single nucleotide polymorphism for animal fibre identification.

    PubMed

    Subramanian, Selvi; Karthik, T; Vijayaraaghavan, N N

    2005-03-16

    Animal fibres are highly valuable industrial products often adulterated during marketing. Currently, there is no precise method available to identify and differentiate the fibres. In this study, a PCR-RFLP technique was exploited to differentiate cashmere and wool fibres derived from goat and sheep, respectively. The presence of DNA in animal hair shafts has enabled the isolation of DNA from scoured cashmere and wool fibres. The mitochondrial cytochrome b sequences of both species were amplified by PCR using primers designed from conserved regions. The polymorphism observed between the two species was detected by restricting the amplified product by endonucleases viz., BamH1 and Ssp1. The RFLP profile clearly distinguishes the cashmere and wool fibres and this technique can also be exploited to test adulteration in animal fibres qualitatively.

  3. Insertions/Deletions-Associated Nucleotide Polymorphism in Arabidopsis thaliana

    PubMed Central

    Guo, Changjiang; Du, Jianchang; Wang, Long; Yang, Sihai; Mauricio, Rodney; Tian, Dacheng; Gu, Tingting

    2016-01-01

    Although high levels of within-species variation are commonly observed, a general mechanism for the origin of such variation is still lacking. Insertions and deletions (indels) are a widespread feature of genomes and we hypothesize that there might be an association between indels and patterns of nucleotide polymorphism. Here, we investigate flanking sequences around 18 indels (>100 bp) among a large number of accessions of the plant, Arabidopsis thaliana. We found two distinct haplotypes, i.e., a nucleotide dimorphism, present around each of these indels and dimorphic haplotypes always corresponded to the indel-present/-absent patterns. In addition, the peaks of nucleotide diversity between the two divergent alleles were closely associated with these indels. Thus, there exists a close association between indels and dimorphisms. Further analysis suggests that indel-associated substitutions could be an important component of genetic variation shaping nucleotide polymorphism in Arabidopsis. Finally, we suggest a mechanism by which indels might generate these highly divergent haplotypes. This study provides evidence that nucleotide dimorphisms, which are frequently regarded as evidence of frequency-dependent selection, could be explained simply by structural variation in the genome. PMID:27965694

  4. Y-Single Nucleotide Polymorphisms Diversity in Chinese Indigenous Horse.

    PubMed

    Han, Haoyuan; Zhang, Qin; Gao, Kexin; Yue, Xiangpeng; Zhang, Tao; Dang, Ruihua; Lan, Xianyong; Chen, Hong; Lei, Chuzhao

    2015-08-01

    In contrast to high genetic diversity of mitochondrial DNA (mtDNA), equine Y chromosome shows extremely low variability, implying limited patrilines in the domesticated horse. In this study, we applied direct sequencing and restriction fragment length polymorphism (RFLP) methods to investigate the polymorphisms of 33 Y chromosome specific loci in 304 Chinese indigenous horses from 13 breeds. Consequently, two Y-single nucleotide polymorphisms (SNPs) (Y-45701/997 and Y-50869) and one Y-indel (Y-45288) were identified. Of those, the Y-50869 (T>A) revealed the highest variation frequency (24.67%), whereas it was only 3.29% and 1.97% in Y-45288 (T/-) and Y-45701/997 (G>T) locus, respectively. These three mutations accounted for 27.96% of the total samples and identified five Y-SNP haplotypes, demonstrating genetic diversity of Y chromosome in Chinese horses. In addition, all the five Y-SNP haplotypes were shared by different breeds. Among 13 horse breeds analyzed, Balikun horse displayed the highest nucleotide diversity (π = 5.6×10(-4)) and haplotype diversity (h = 0.527), while Ningqiang horse showed the lowest nucleotide diversity (π = 0.00000) and haplotype diversity (h = 0.000). The results also revealed that Chinese horses had a different polymorphic pattern of Y chromosome from European and American horses. In conclusion, Chinese horses revealed genetic diversity of Y chromosome, however more efforts should be made to better understand the domestication and paternal origin of Chinese indigenous horses.

  5. Single Nucleotide Polymorphisms and Linkage Disequilibrium in Sunflower

    PubMed Central

    Kolkman, Judith M.; Berry, Simon T.; Leon, Alberto J.; Slabaugh, Mary B.; Tang, Shunxue; Gao, Wenxiang; Shintani, David K.; Burke, John M.; Knapp, Steven J.

    2007-01-01

    Genetic diversity in modern sunflower (Helianthus annuus L.) cultivars (elite oilseed inbred lines) has been shaped by domestication and breeding bottlenecks and wild and exotic allele introgression−the former narrowing and the latter broadening genetic diversity. To assess single nucleotide polymorphism (SNP) frequencies, nucleotide diversity, and linkage disequilibrium (LD) in modern cultivars, alleles were resequenced from 81 genic loci distributed throughout the sunflower genome. DNA polymorphisms were abundant; 1078 SNPs (1/45.7 bp) and 178 insertions-deletions (INDELs) (1/277.0 bp) were identified in 49.4 kbp of DNA/genotype. SNPs were twofold more frequent in noncoding (1/32.1 bp) than coding (1/62.8 bp) sequences. Nucleotide diversity was only slightly lower in inbred lines (θ = 0.0094) than wild populations (θ = 0.0128). Mean haplotype diversity was 0.74. When extraploted across the genome (∼3500 Mbp), sunflower was predicted to harbor at least 76.4 million common SNPs among modern cultivar alleles. LD decayed more slowly in inbred lines than wild populations (mean LD declined to 0.32 by 5.5 kbp in the former, the maximum physical distance surveyed), a difference attributed to domestication and breeding bottlenecks. SNP frequencies and LD decay are sufficient in modern sunflower cultivars for very high-density genetic mapping and high-resolution association mapping. PMID:17660563

  6. Single nucleotide polymorphisms and linkage disequilibrium in sunflower.

    PubMed

    Kolkman, Judith M; Berry, Simon T; Leon, Alberto J; Slabaugh, Mary B; Tang, Shunxue; Gao, Wenxiang; Shintani, David K; Burke, John M; Knapp, Steven J

    2007-09-01

    Genetic diversity in modern sunflower (Helianthus annuus L.) cultivars (elite oilseed inbred lines) has been shaped by domestication and breeding bottlenecks and wild and exotic allele introgression(-)the former narrowing and the latter broadening genetic diversity. To assess single nucleotide polymorphism (SNP) frequencies, nucleotide diversity, and linkage disequilibrium (LD) in modern cultivars, alleles were resequenced from 81 genic loci distributed throughout the sunflower genome. DNA polymorphisms were abundant; 1078 SNPs (1/45.7 bp) and 178 insertions-deletions (INDELs) (1/277.0 bp) were identified in 49.4 kbp of DNA/genotype. SNPs were twofold more frequent in noncoding (1/32.1 bp) than coding (1/62.8 bp) sequences. Nucleotide diversity was only slightly lower in inbred lines ( = 0.0094) than wild populations ( = 0.0128). Mean haplotype diversity was 0.74. When extraploted across the genome ( approximately 3500 Mbp), sunflower was predicted to harbor at least 76.4 million common SNPs among modern cultivar alleles. LD decayed more slowly in inbred lines than wild populations (mean LD declined to 0.32 by 5.5 kbp in the former, the maximum physical distance surveyed), a difference attributed to domestication and breeding bottlenecks. SNP frequencies and LD decay are sufficient in modern sunflower cultivars for very high-density genetic mapping and high-resolution association mapping.

  7. Single nucleotide polymorphism analysis using different colored dye dimer probes

    NASA Astrophysics Data System (ADS)

    Marmé, Nicole; Friedrich, Achim; Denapaite, Dalia; Hakenbeck, Regine; Knemeyer, Jens-Peter

    2006-09-01

    Fluorescence quenching by dye dimer formation has been utilized to develop hairpin-structured DNA probes for the detection of a single nucleotide polymorphism (SNP) in the penicillin target gene pbp2x, which is implicated in the penicillin resistance of Streptococcus pneumoniae. We designed two specific DNA probes for the identification of the pbp2x genes from a penicillin susceptible strain R6 and a resistant strain Streptococcus mitis 661 using green-fluorescent tetramethylrhodamine (TMR) and red-fluorescent DY-636, respectively. Hybridization of each of the probes to its respective target DNA sequence opened the DNA hairpin probes, consequently breaking the nonfluorescent dye dimers into fluorescent species. This hybridization of the target with the hairpin probe achieved single nucleotide specific detection at nanomolar concentrations via increased fluorescence.

  8. Single nucleotide polymorphism identification in candidate gene systems of obesity.

    PubMed

    Irizarry, K; Hu, G; Wong, M L; Licinio, J; Lee, C J

    2001-01-01

    We have constructed a large panel of single nucleotide polymorphisms (SNP) identified in 68 candidate genes for obesity. Our panel combines novel SNP identification methods based on EST data, with public SNP data from largescale genomic sequencing, to produce a total of 218 SNPs in the coding regions of obesity candidate genes, 178 SNPs in untranslated regions, and over 1000 intronic SNPs. These include new non-conservative amino acid changes in thyroid receptor beta, esterase D, acid phosphatase 1. Our data show evidence of negative selection among these polymorphisms implying functional impacts of the non-conservative mutations. Comparison of overlap between SNPs identified independently from EST data vs genomic sequencing indicate that together they may constitute about one half of the actual total number of amino acid polymorphisms in these genes that are common in the human population (defined here as a population allele frequency above 5%). We have analyzed our polymorphism panel to construct a database of detailed information about their location in the gene structure and effect on protein coding, available on the web at http://www.bioinformat ics.ucla.edu/snp/obesity. We believe this panel can serve as a valuable new resource for genetic and pharmacogenomic studies of the causes of obesity.

  9. Thoroughbred Horse Single Nucleotide Polymorphism and Expression Database: HSDB

    PubMed Central

    Lee, Joon-Ho; Lee, Taeheon; Lee, Hak-Kyo; Cho, Byung-Wook; Shin, Dong-Hyun; Do, Kyoung-Tag; Sung, Samsun; Kwak, Woori; Kim, Hyeon Jeong; Kim, Heebal; Cho, Seoae; Park, Kyung-Do

    2014-01-01

    Genetics is important for breeding and selection of horses but there is a lack of well-established horse-related browsers or databases. In order to better understand horses, more variants and other integrated information are needed. Thus, we construct a horse genomic variants database including expression and other information. Horse Single Nucleotide Polymorphism and Expression Database (HSDB) (http://snugenome2.snu.ac.kr/HSDB) provides the number of unexplored genomic variants still remaining to be identified in the horse genome including rare variants by using population genome sequences of eighteen horses and RNA-seq of four horses. The identified single nucleotide polymorphisms (SNPs) were confirmed by comparing them with SNP chip data and variants of RNA-seq, which showed a concordance level of 99.02% and 96.6%, respectively. Moreover, the database provides the genomic variants with their corresponding transcriptional profiles from the same individuals to help understand the functional aspects of these variants. The database will contribute to genetic improvement and breeding strategies of Thoroughbreds. PMID:25178365

  10. Electrochemical Quantification of Single Nucleotide Polymorphisms Using Nanoparticle Probes

    SciTech Connect

    Liu, Guodong; Lin, Yuehe

    2007-08-29

    We report a new approach for electrochemical quantification of single-nucleotide polymorphisms (SNPs) using nanoparticle probes. The principle is based on DNA polymerase I (klenow fragment)-induced coupling of the nucleotide-modified nanoparticle probe to the mutant sites of duplex DNA under the Watson-Crick base pairing rule. After liquid hybridization events occurred among biotinylated DNA probes, mutant DNA, and complementary DNA, the resulting duplex DNA helixes were captured to the surface of magnetic beads through a biotin-avidin affinity reaction and magnetic separation. A cadmium phosphate-loaded apoferritin nanoparticle probe, which is modified with nucleotides and is complementary to the mutant site, is coupled to the mutant sites of the formed duplex DNA in the presence of DNA polymerase. Subsequent electrochemical stripping analysis of the cadmium component of coupled nanoparticle probes provides a means to quantify the concentration of mutant DNA. The method is sensitive enough to detect 21.5 attomol mutant DNA, which will enable the quantitative analysis of nucleic acid without polymerase chain reaction pre-amplification. The approach was challenged with constructed samples containing mutant and complementary DNA. The results indicated that it was possible to accurately determine SNPs with frequencies as low 0.01. The proposed approach has a great potential for realizing an accurate, sensitive, rapid, and low-cost method of SNP detection.

  11. Evaluation of single-nucleotide polymorphism imputation using random forests

    PubMed Central

    2009-01-01

    Genome-wide association studies (GWAS) have helped to reveal genetic mechanisms of complex diseases. Although commonly used genotyping technology enables us to determine up to a million single-nucleotide polymorphisms (SNPs), causative variants are typically not genotyped directly. A favored approach to increase the power of genome-wide association studies is to impute the untyped SNPs using more complete genotype data of a reference population. Random forests (RF) provides an internal method for replacing missing genotypes. A forest of classification trees is used to determine similarities of probands regarding their genotypes. These proximities are then used to impute genotypes of untyped SNPs. We evaluated this approach using genotype data of the Framingham Heart Study provided as Problem 2 for Genetic Analysis Workshop 16 and the Caucasian HapMap samples as reference population. Our results indicate that RFs are faster but less accurate than alternative approaches for imputing untyped SNPs. PMID:20018059

  12. Single nucleotide polymorphisms in type 2 diabetes among Hispanic adults.

    PubMed

    Watson, Amanda L; Hu, Jie; Chiu, Norman H L

    2015-05-01

    In this pilot study, we explore the genetic variation that may relate to type 2 diabetes (T2D) among Hispanic adults. The genotypes of 36 Hispanic adults were analyzed by using the Cardio-Metabochip. The goal is to identify single nucleotide polymorphisms (SNPs) associated to T2D among Hispanic adults. A total of 26 SNPs were identified to be associated with T2D among Hispanic adults. None of these SNPs have been reported for T2D. By using the principle components analysis to analyze the genotype of 26 SNPs in 36 samples, the samples obtained from diabetic patients could be distinguished from the control samples. The findings support genetic involvement in T2D among Hispanic adults.

  13. High-Throughput Genotyping with Single Nucleotide Polymorphisms

    PubMed Central

    Ranade, Koustubh; Chang, Mau-Song; Ting, Chih-Tai; Pei, Dee; Hsiao, Chin-Fu; Olivier, Michael; Pesich, Robert; Hebert, Joan; Chen, Yii-Der I.; Dzau, Victor J.; Curb, David; Olshen, Richard; Risch, Neil; Cox, David R.; Botstein, David

    2001-01-01

    To make large-scale association studies a reality, automated high-throughput methods for genotyping with single-nucleotide polymorphisms (SNPs) are needed. We describe PCR conditions that permit the use of the TaqMan or 5′ nuclease allelic discrimination assay for typing large numbers of individuals with any SNP and computational methods that allow genotypes to be assigned automatically. To demonstrate the utility of these methods, we typed >1600 individuals for a G-to-T transversion that results in a glutamate-to-aspartate substitution at position 298 in the endothelial nitric oxide synthase gene, and a G/C polymorphism (newly identified in our laboratory) in intron 8 of the 11–β hydroxylase gene. The genotyping method is accurate—we estimate an error rate of fewer than 1 in 2000 genotypes, rapid—with five 96-well PCR machines, one fluorescent reader, and no automated pipetting, over one thousand genotypes can be generated by one person in one day, and flexible—a new SNP can be tested for association in less than one week. Indeed, large-scale genotyping has been accomplished for 23 other SNPs in 13 different genes using this method. In addition, we identified three “pseudo-SNPs” (WIAF1161, WIAF2566, and WIAF335) that are probably a result of duplication. PMID:11435409

  14. Single nucleotide polymorphisms and haplotypes in Native American populations.

    PubMed

    Kidd, Judith R; Friedlaender, Françoise; Pakstis, Andrew J; Furtado, Manohar; Fang, Rixun; Wang, Xudong; Nievergelt, Caroline M; Kidd, Kenneth K

    2011-12-01

    Autosomal DNA polymorphisms can provide new information and understanding of both the origins of and relationships among modern Native American populations. At the same time that autosomal markers can be highly informative, they are also susceptible to ascertainment biases in the selection of the markers to use. Identifying markers that can be used for ancestry inference among Native American populations can be considered separate from identifying markers to further the quest for history. In the current study, we are using data on nine Native American populations to compare the results based on a large haplotype-based dataset with relatively small independent sets of single nucleotide polymorphisms. We are interested in what types of limited datasets an individual laboratory might be able to collect are best for addressing two different questions of interest. First, how well can we differentiate the Native American populations and/or infer ancestry by assigning an individual to her population(s) of origin? Second, how well can we infer the historical/evolutionary relationships among Native American populations and their Eurasian origins? We conclude that only a large comprehensive dataset involving multiple autosomal markers on multiple populations will be able to answer both questions; different small sets of markers are able to answer only one or the other of these questions. Using our largest dataset, we see a general increasing distance from Old World populations from North to South in the New World except for an unexplained close relationship between our Maya and Quechua samples. 2011 Wiley Periodicals, Inc.

  15. Preterm birth and single nucleotide polymorphisms in cytokine genes

    PubMed Central

    Zhu, Qin; Sun, Jian

    2014-01-01

    Preterm birth (PTB) is an important issue in neonates because of its complications as well as high morbidity and mortality. The prevalence of PTB is approximately 12-13% in USA and 5-9% in many other developed countries. China represents 7.8% (approximately one million) of 14.9 million babies born prematurely annually worldwide. The rate of PTB is still increasing. Both genetic susceptibility and environmental factors are the major causes of PTB. Inflammation is regarded as an enabling characteristic factor of PTB. The aim of this review is to summarize the current literatures to illustrate the role of single nucleotide polymorphisms (SNPs) of cytokine genes in PTB. These polymorphisms are different among different geographic regions and different races, thus different populations may have different risk factors of PTB. SNPs affect the ability to metabolize poisonous substances and determine inflammation susceptibility, which in turn has an influence on reproduction-related risks and on delivery outcomes after exposure to environmental toxicants and pathogenic organisms. PMID:26835330

  16. Single nucleotide polymorphisms of pattern recognition receptors and chronic periodontitis.

    PubMed

    Sahingur, S E; Xia, X-J; Gunsolley, J; Schenkein, H A; Genco, R J; De Nardin, E

    2011-04-01

    Periodontitis is a multifactorial disease influenced partly by genetics. Activation of pattern recognition receptors (PRRs) can lead to the up-regulation of inflammatory pathways, resulting in periodontal tissue destruction. Hence, functional polymorphisms located in PRRs can explain differences in host susceptibility to periodontitis. This study investigated single nucleotide polymorphisms of PRRs including toll-like receptor (TLR)2 (G2408A), TLR4 (A896G), TLR9 (T1486C), TLR9 (T1237C) and CD14 (C260T) in patients with chronic periodontitis and in periodontally healthy subjects. One-hundred and fourteen patients with chronic periodontitis and 77 periodontally healthy subjects were genotyped using TaqMan® allelic discrimination assays. Fisher's exact test and chi-square analyses were performed to compare genotype and allele frequencies. The frequency of subjects with the CC genotype of CD14 (C260T) (24.6% in the chronic periodontitis group vs. 13% in the periodontally healthy group) and those expressing the T allele of CD14 (C260T) (CT and TT) (75.4% in the chronic periodontitis group vs. 87% in the periodontally healthy group) was statistically different among groups (p = 0.04). Homozygocity for the C allele of the CD14 (C260T) polymorphism (CC) was associated with a two--fold increased susceptibility to periodontitis (p = 0.04; odds ratio, 2.49; 95% confidence interval, 1.06-6.26). Individuals with the CC genotype of TLR9 (T1486C) (14.9% in the chronic periodontitis group vs. 28.6% in the periodontally healthy group) and those expressing the T allele of TLR9 (T1486C) (CT and TT) (85.1% in the chronic periodontitis group vs. 71.4% in the periodontally healthy group) were also significantly differently distributed between groups without adjustment (p = 0.03). Further analysis of nonsmokers revealed a significant difference in the distribution of genotypes between groups for TLR9 (T1486C; p = 0.017) and CD14 (C260T; p = 0.03), polymorphisms again without adjustment

  17. Genomic and single nucleotide polymorphism analysis of infectious bronchitis coronavirus.

    PubMed

    Abolnik, Celia

    2015-06-01

    Infectious bronchitis virus (IBV) is a Gammacoronavirus that causes a highly contagious respiratory disease in chickens. A QX-like strain was analysed by high-throughput Illumina sequencing and genetic variation across the entire viral genome was explored at the sub-consensus level by single nucleotide polymorphism (SNP) analysis. Thirteen open reading frames (ORFs) in the order 5'-UTR-1a-1ab-S-3a-3b-E-M-4b-4c-5a-5b-N-6b-3'UTR were predicted. The relative frequencies of missense: silent SNPs were calculated to obtain a comparative measure of variability in specific genes. The most variable ORFs in descending order were E, 3b, 5'UTR, N, 1a, S, 1ab, M, 4c, 5a, 6b. The E and 3b protein products play key roles in coronavirus virulence, and RNA folding demonstrated that the mutations in the 5'UTR did not alter the predicted secondary structure. The frequency of SNPs in the Spike (S) protein ORF of 0.67% was below the genomic average of 0.76%. Only three SNPS were identified in the S1 subunit, none of which were located in hypervariable region (HVR) 1 or HVR2. The S2 subunit was considerably more variable containing 87% of the polymorphisms detected across the entire S protein. The S2 subunit also contained a previously unreported multi-A insertion site and a stretch of four consecutive mutated amino acids, which mapped to the stalk region of the spike protein. Template-based protein structure modelling produced the first theoretical model of the IBV spike monomer. Given the lack of diversity observed at the sub-consensus level, the tenet that the HVRs in the S1 subunit are very tolerant of amino acid changes produced by genetic drift is questioned. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Effectiveness of single-nucleotide polymorphisms to investigate cattle rustling.

    PubMed

    Fernández, María E; Rogberg-Muñoz, Andrés; Lirón, Juan P; Goszczynski, Daniel E; Ripoli, María V; Carino, Mónica H; Peral-García, Pilar; Giovambattista, Guillermo

    2014-11-01

    Short tandem repeats (STR)s have been the eligible markers for forensic animal genetics, despite single-nucleotide polymorphisms (SNP)s became acceptable. The technology, the type, and amount of markers could limit the investigation in degraded forensic samples. The performance of a 32-SNP panel genotyped through OpenArrays(TM) (real-time PCR based) was evaluated to resolve cattle-specific forensic cases. DNA from different biological sources was used, including samples from an alleged instance of cattle rustling. SNPs and STRs performance and repeatability were compared. SNP call rate was variable among sample type (average = 80.18%), while forensic samples showed the lowest value (70.94%). The repeatability obtained (98.7%) supports the used technology. SNPs had better call rates than STRs in 12 of 20 casework samples, while forensic index values were similar for both panels. In conclusion, the 32-SNPs used are as informative as the standard bovine STR battery and hence are suitable to resolve cattle rustling investigations.

  19. Single Nucleotide Polymorphism Markers for Genetic Mapping in Drosophila melanogaster

    PubMed Central

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed; Mapa, Felipa A.; Ruddy, David A.; Ryan, Jessica J.; Young, Lynn M.; Wells, Trent; Kopczynski, Casey; Ellis, Michael C.

    2001-01-01

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that recently have revolutionized human, mouse, and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila by using a sequence tagged site-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that span the genome. Most of these markers are single nucleotide polymorphisms and sequences for these variants are provided in an accessible format. The average density of the new markers is one per 225 kb on the autosomes and one per megabase on the X chromosome. We include in this survey a set of P-element strains that provide additional use for high-resolution mapping. We show one application of the new markers in a simple set of crosses to map a mutation in the hedgehog gene to an interval of <1 Mb. This new map resource significantly increases the efficiency and resolution of recombination mapping and will be of immediate value to the Drosophila research community. PMID:11381036

  20. Single Nucleotide Polymorphism Clustering in Systemic Autoimmune Diseases

    PubMed Central

    Charlon, Thomas; Bossini-Castillo, Lara; Carmona, F. David; Di Cara, Alessandro; Wojcik, Jérôme; Voloshynovskiy, Sviatoslav

    2016-01-01

    Systemic Autoimmune Diseases, a group of chronic inflammatory conditions, have variable symptoms and difficult diagnosis. In order to reclassify them based on genetic markers rather than clinical criteria, we performed clustering of Single Nucleotide Polymorphisms. However naive approaches tend to group patients primarily by their geographic origin. To reduce this “ancestry signal”, we developed SNPClust, a method to select large sources of ancestry-independent genetic variations from all variations detected by Principal Component Analysis. Applied to a Systemic Lupus Erythematosus case control dataset, SNPClust successfully reduced the ancestry signal. Results were compared with association studies between the cases and controls without or with reference population stratification correction methods. SNPClust amplified the disease discriminating signal and the ratio of significant associations outside the HLA locus was greater compared to population stratification correction methods. SNPClust will enable the use of ancestry-independent genetic information in the reclassification of Systemic Autoimmune Diseases. SNPClust is available as an R package and demonstrated on the public Human Genome Diversity Project dataset at https://github.com/ThomasChln/snpclust. PMID:27490238

  1. Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster

    SciTech Connect

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed; Mapa, Felipa A.; Ruddy, David A.; Ryan, Jessica J.; Young, Lynn M.; Wells, Trent; Kopczynski, Casey; Ellis, Michael C.

    2001-04-16

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that have recently revolutionized human, mouse and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila using an STS-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that the genome. The majority of these markers are single nucleotide polymorphisms (SNPs) and sequences for these variants are provided in an accessible format. The average density of the new markers is 1 marker per 225 kb on the autosomes and 1 marker per 1 Mb on the X chromosome. We include in this survey a set of P-element strains that provide additional utility for high-resolution mapping. We demonstrate one application of the new markers in a simple set of crosses to map a mutation in the hedgehog gene to an interval of <1 Mb. This new map resource significantly increases the efficiency and resolution of recombination mapping and will be of immediate value to the Drosophila research community.

  2. ADH single nucleotide polymorphism associations with alcohol metabolism in vivo

    PubMed Central

    Birley, Andrew J.; James, Michael R.; Dickson, Peter A.; Montgomery, Grant W.; Heath, Andrew C.; Martin, Nicholas G.; Whitfield, John B.

    2009-01-01

    We have previously found that variation in alcohol metabolism in Europeans is linked to the chromosome 4q region containing the ADH gene family. We have now typed 103 single nucleotide polymorphisms (SNPs) across this region to test for allelic associations with variation in blood and breath alcohol concentrations after an alcohol challenge. In vivo alcohol metabolism was modelled with three parameters that identified the absorption and rise of alcohol concentration following ingestion, and the rate of elimination. Alleles of ADH7 SNPs were associated with the early stages of alcohol metabolism, with additional effects in the ADH1A, ADH1B and ADH4 regions. Rate of elimination was associated with SNPs in the intragenic region between ADH7 and ADH1C, and across ADH1C and ADH1B. SNPs affecting alcohol metabolism did not correspond to those reported to affect alcohol dependence or alcohol-related disease. The combined SNP associations with early- and late-stage metabolism only account for approximately 20% of the total genetic variance linked to the ADH region, and most of the variance for in vivo alcohol metabolism linked to this region is yet to be explained. PMID:19193628

  3. Single nucleotide polymorphisms of myostatin gene in Chinese domestic horses.

    PubMed

    Li, Ran; Liu, Dong-Hua; Cao, Chun-Na; Wang, Shao-Qiang; Dang, Rui-Hua; Lan, Xian-Yong; Chen, Hong; Zhang, Tao; Liu, Wu-Jun; Lei, Chu-Zhao

    2014-03-15

    The myostatin gene (MSTN) is a genetic determinant of skeletal muscle growth. Single nucleotide polymorphisms (SNP) in MSTN are of importance due to their strong associations with horse racing performances. In this study, we screened the SNPs in MSTN gene in 514 horses from 15 Chinese horse breeds. Six SNPs (g.26T>C, g.156T>C, g.587A>G, g.598C>T, g.1485C>T, g.2115A>G) in MSTN gene were detected by sequencing and genotyped using PCR-RFLP method. The g.587A>G and g.598C>T residing in the 5'UTR region were novel SNPs identified by this study. The g.2115A>G which have previously been associated with racing performances were present in Chinese horse breeds, providing valuable genetic information for evaluating the potential racing performances in Chinese domestic breeds. The six SNPs together defined thirteen haplotypes, demonstrating abundant haplotype diversities in Chinese horses. Most of the haplotypes were shared among different breeds with no haplotype restricted to a specific region or a single horse breed. AMOVA analysis indicated that most of the genetic variance was attributable to differences among individuals without any significant contribution by the four geographical groups. This study will provide fundamental and instrumental genetic information for evaluating the potential racing performances of Chinese horse breeds.

  4. Genetic diversity of Eurycoma longifolia inferred from single nucleotide polymorphisms.

    PubMed

    Osman, Asiah; Jordan, Barbara; Lessard, Philip A; Muhammad, Norwati; Haron, M Rosli; Riffin, Norifiza Mat; Sinskey, Anthony J; Rha, ChoKyun; Housman, David E

    2003-03-01

    Eurycoma longifolia Jack. is a treelet that grows in the forests of Southeast Asia and is widely used throughout the region because of its reported medicinal properties. Widespread harvesting of wild-grown trees has led to rapid thinning of natural populations, causing a potential decrease in genetic diversity among E. longifolia. Suitable genetic markers would be very useful for propagation and breeding programs to support conservation of this species, although no such markers currently exist. To meet this need, we have applied a genome complexity reduction strategy to identify a series of single nucleotide polymorphisms (SNPs) within the genomes of several E. longifolia accessions. We have found that the occurrence of these SNPs reflects the geographic origins of individual plants and can distinguish different natural populations. This work demonstrates the rapid development of molecular genetic markers in species for which little or no genomic sequence information is available. The SNP markers that we have developed in this study will also be useful for identifying genetic fingerprints that correlate with other properties of E. longifolia, such as high regenerability or the appearance of bioactive metabolites.

  5. Recombination detection in Aspergillus fumigatus through single nucleotide polymorphisms typing.

    PubMed

    Teixeira, Joana; Amorim, António; Araujo, Ricardo

    2015-12-01

    The first evidence of sexual reproduction in Aspergillus fumigatus was reported in 2009. Nevertheless, it remains difficult to understand how A. fumigatus is able to reproduce through this mode in its natural environment and how frequently this occurs. The aim of this study was to analyse single nucleotide polymorphisms (SNPs) in a set of environmental and clinical isolates of A. fumigatus to detect signatures of recombination. A group of closely related Portuguese A. fumigatus isolates was characterized by mating type and the genetic diversity of the intergenic regions, microsatellites and multilocus sequence typing (MLST) genes. A group of 19 SNPs, organized in nine association groups and inherited in blocks, was identified and compared. Several variations on the association panel were detected on reference isolates of A. fumigatus AF293 and A1163, the sequence types available at MLST database and six clinical and environmental Portuguese isolates. About one to four haplotype disruptions were observed per isolate. Considering clinical and environmental isolates, sexual reproduction seems to occur more frequently than previously admitted in A. fumigatus. In this study, a practical SNP approach is proposed for detection of recombination events in larger collections of A. fumigatus. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Single nucleotide polymorphisms in nucleotide excision repair genes, cancer treatment, and head and neck cancer survival

    PubMed Central

    Wyss, Annah B.; Weissler, Mark C.; Avery, Christy L.; Herring, Amy H.; Bensen, Jeannette T.; Barnholtz-Sloan, Jill S.; Funkhouser, William K.

    2014-01-01

    Purpose Head and neck cancers (HNC) are commonly treated with radiation and platinum-based chemotherapy, which produce bulky DNA adducts to eradicate cancerous cells. Because nucleotide excision repair (NER) enzymes remove adducts, variants in NER genes may be associated with survival among HNC cases both independently and jointly with treatment. Methods Cox proportional hazards models were used to estimate race-stratified (White, African American) hazard ratios (HRs) and 95 % confidence intervals for overall (OS) and disease-specific (DS) survival based on treatment (combinations of surgery, radiation, and chemotherapy) and 84 single nucleotide polymorphisms (SNPs) in 15 NER genes among 1,227 HNC cases from the Carolina Head and Neck Cancer Epidemiology Study. Results None of the NER variants evaluated were associated with survival at a Bonferroni-corrected alpha of 0.0006. However, rs3136038 [OS HR = 0.79 (0.65, 0.97), DS HR = 0.69 (0.51, 0.93)] and rs3136130 [OS HR = 0.78 (0.64, 0.96), DS HR = 0.68 (0.50, 0.92)] of ERCC4 and rs50871 [OS HR = 0.80 (0.64, 1.00), DS HR = 0.67 (0.48, 0.92)] of ERCC2 among Whites, and rs2607755 [OS HR = 0.62 (0.45, 0.86), DS HR = 0.51 (0.30, 0.86)] of XPC among African Americans were suggestively associated with survival at an uncorrected alpha of 0.05. Three SNP-treatment joint effects showed possible departures from additivity among Whites. Conclusions Our study, a large and extensive evaluation of SNPs in NER genes and HNC survival, identified mostly null associations, though a few variants were suggestively associated with survival and potentially interacted additively with treatment. PMID:24487794

  7. Association of prediabetes-associated single nucleotide polymorphisms with microalbuminuria.

    PubMed

    Choi, Jong Wook; Moon, Shinje; Jang, Eun Jung; Lee, Chang Hwa; Park, Joon-Sung

    2017-01-01

    Increased glycemic exposure, even below the diagnostic criteria for diabetes mellitus, is crucial in the pathogenesis of diabetic microvascular complications represented by microalbuminuria. Nonetheless, there is limited evidence regarding which single nucleotide polymorphisms (SNPs) are associated with prediabetes and whether genetic predisposition to prediabetes is related to microalbuminuria, especially in the general population. Our objective was to answer these questions. We conducted a genomewide association study (GWAS) separately on two population-based cohorts, Ansung and Ansan, in the Korean Genome and Epidemiology Study (KoGES). The initial GWAS was carried out on the Ansung cohort, followed by a replication study on the Ansan cohort. A total of 5682 native Korean participants without a significant medical illness were classified into either control group (n = 3153) or prediabetic group (n = 2529). In the GWAS, we identified two susceptibility loci associated with prediabetes, one at 17p15.3-p15.1 in the GCK gene and another at 7p15.1 in YKT6. When variations in GCK and YKT6 were used as a model of prediabetes, this genetically determined prediabetes increased microalbuminuria. Multiple logistic regression analyses revealed that fasting glucose concentration in plasma and SNP rs2908289 in GCK were associated with microalbuminuria, and adjustment for age, gender, smoking history, systolic blood pressure, waist circumference, and serum triglyceride levels did not attenuate this association. Our results suggest that prediabetes and the associated SNPs may predispose to microalbuminuria before the diagnosis of diabetes mellitus. Further studies are needed to explore the details of the physiological and molecular mechanisms underlying this genetic association.

  8. Association of prediabetes-associated single nucleotide polymorphisms with microalbuminuria

    PubMed Central

    Choi, Jong Wook; Moon, Shinje; Jang, Eun Jung; Lee, Chang Hwa; Park, Joon-Sung

    2017-01-01

    Increased glycemic exposure, even below the diagnostic criteria for diabetes mellitus, is crucial in the pathogenesis of diabetic microvascular complications represented by microalbuminuria. Nonetheless, there is limited evidence regarding which single nucleotide polymorphisms (SNPs) are associated with prediabetes and whether genetic predisposition to prediabetes is related to microalbuminuria, especially in the general population. Our objective was to answer these questions. We conducted a genomewide association study (GWAS) separately on two population-based cohorts, Ansung and Ansan, in the Korean Genome and Epidemiology Study (KoGES). The initial GWAS was carried out on the Ansung cohort, followed by a replication study on the Ansan cohort. A total of 5682 native Korean participants without a significant medical illness were classified into either control group (n = 3153) or prediabetic group (n = 2529). In the GWAS, we identified two susceptibility loci associated with prediabetes, one at 17p15.3-p15.1 in the GCK gene and another at 7p15.1 in YKT6. When variations in GCK and YKT6 were used as a model of prediabetes, this genetically determined prediabetes increased microalbuminuria. Multiple logistic regression analyses revealed that fasting glucose concentration in plasma and SNP rs2908289 in GCK were associated with microalbuminuria, and adjustment for age, gender, smoking history, systolic blood pressure, waist circumference, and serum triglyceride levels did not attenuate this association. Our results suggest that prediabetes and the associated SNPs may predispose to microalbuminuria before the diagnosis of diabetes mellitus. Further studies are needed to explore the details of the physiological and molecular mechanisms underlying this genetic association. PMID:28158221

  9. The application and performance of single nucleotide polymorphism markers for population genetic analyses of Lepidoptera

    USDA-ARS?s Scientific Manuscript database

    Single nucleotide polymorphisms (SNPs) are nucleotide substitution mutations that tend to be at high densities within eukaryotic genomes. The development of assays that detect allelic variation at SNP loci is attractive for genome mapping, population genetics, and phylogeographic applications. A p...

  10. Discovery of nucleotide polymorphisms in the Musa gene pool by Ecotilling.

    PubMed

    Till, Bradley J; Jankowicz-Cieslak, Joanna; Sági, László; Huynh, Owen A; Utsushi, Hiroe; Swennen, Rony; Terauchi, Ryohei; Mba, Chikelu

    2010-11-01

    Musa (banana and plantain) is an important genus for the global export market and in local markets where it provides staple food for approximately 400 million people. Hybridization and polyploidization of several (sub)species, combined with vegetative propagation and human selection have produced a complex genetic history. We describe the application of the Ecotilling method for the discovery and characterization of nucleotide polymorphisms in diploid and polyploid accessions of Musa. We discovered over 800 novel alleles in 80 accessions. Sequencing and band evaluation shows Ecotilling to be a robust and accurate platform for the discovery of polymorphisms in homologous and homeologous gene targets. In the process of validating the method, we identified two single nucleotide polymorphisms that may be deleterious for the function of a gene putatively important for phototropism. Evaluation of heterozygous polymorphism and haplotype blocks revealed a high level of nucleotide diversity in Musa accessions. We further applied a strategy for the simultaneous discovery of heterozygous and homozygous polymorphisms in diploid accessions to rapidly evaluate nucleotide diversity in accessions of the same genome type. This strategy can be used to develop hypotheses for inheritance patterns of nucleotide polymorphisms within and between genome types. We conclude that Ecotilling is suitable for diversity studies in Musa, that it can be considered for functional genomics studies and as tool in selecting germplasm for traditional and mutation breeding approaches.

  11. Characterization of single nucleotide polymorphism markers for the green sea turtle (Chelonia mydas).

    PubMed

    Roden, Suzanne E; Dutton, Peter H; Morin, Phillip A

    2009-05-01

    We present data on 29 new single nucleotide polymorphism assays for the green sea turtle, Chelonia mydas. DNA extracts from 39 green turtles were used for two methods of single nucleotide polymorphism discovery. The first approach employed an amplified fragment length polymorphism technique. The second technique screened a microsatellite library. Allele-specific amplification assays were developed for high-throughput single nucleotide polymorphism genotyping and tested on two Pacific C. mydas nesting populations. Observed heterozygosities ranged from 0 to 0.95 for a Hawaiian population and from 0 to 0.85 for a Galapagos population. Each of the populations had one locus out of Hardy-Weinberg equilibrium, SSCM2b and SSCM5 for Hawaii and Galapagos, respectively. No loci showed significant genotypic linkage disequilibrium across an expanded set of four Pacific nesting populations. However, two loci, SSCM4 and SSCM10b showed linkage disequilibrium across three populations indicating possible association.

  12. Single-nucleotide polymorphism arrays and unexpected consanguinity: considerations for clinicians when returning results to families.

    PubMed

    Delgado, Fernanda; Tabor, Holly K; Chow, Penny M; Conta, Jessie H; Feldman, Kenneth W; Tsuchiya, Karen D; Beck, Anita E

    2015-05-01

    The broad use of single-nucleotide polymorphism microarrays has increased identification of unexpected consanguinity. Therefore, guidelines to address reporting of consanguinity have been published for clinical laboratories. Because no such guidelines for clinicians exist, we describe a case and present recommendations for clinicians to disclose unexpected consanguinity to families. In a boy with multiple endocrine abnormalities and structural birth defects, single-nucleotide polymorphism array analysis revealed ~23% autosomal homozygosity suggestive of a first-degree parental relationship. We assembled an interdisciplinary health-care team, planned the most appropriate way to discuss results of the single-nucleotide polymorphism array with the adult mother, including the possibility of multiple autosomal recessive disorders in her child, and finally met with her as a team. From these discussions, we developed four major considerations for clinicians returning results of unexpected consanguinity, all guided by the child's best interests: (i) ethical and legal obligations for reporting possible abuse, (ii) preservation of the clinical relationship, (iii) attention to justice and psychosocial challenges, and (iv) utilization of the single-nucleotide polymorphism array results to guide further testing. As single-nucleotide polymorphism arrays become a common clinical diagnostic tool, clinicians can use this framework to return results of unexpected consanguinity to families in a supportive and productive manner.

  13. Germline TP53 mutations and single nucleotide polymorphisms in children.

    PubMed

    Valva, Pamela; Becker, Pablo; Streitemberger, Patricia; Lombardi, García Mercedes; Rey, Guadalupe; Guzman, Carlos A; Preciado, María Victoria

    2009-01-01

    Mutations in the gene TP53, which codifies the tumor suppressor protein p53, are found in about 50% of tumors. These mutations can occur not only at somatic level, but also in germline. Pediatric cancer patients, mostly with additional family history of malignancy, should be considered as potential TP53 germline mutation carriers. Germline TP53 mutations and polymorphisms have been widely studied to determine their relation with different tumors' pathogenesis. Our aim was to analyze the occurrence frequency of germline TP53 mutations and polymorphisms and to relate these to tumor development in a pediatric series. Peripheral blood mononuclear cell samples from 26 children with solid tumors [PST] and 21 pediatric healthy donors [HD] were analyzed for germline mutations and polymorphisms in TP53 gene spanning from exon 5 to 8 including introns 5 and 7. These PCR amplified fragments were sequenced to determine variations. A heterozygous mutation at codon 245 was found in 1/26 PST and 0/21 HD. Comparative polymorphisms distribution, at position 14181 and 14201(intron 7), between HD and PST revealed a trend of association (p= 0.07) with cancer risk. HD group disclosed a similar polymorphism distribution as published data for Caucasian and Central/South American populations. This is the first study about TP53 variant frequency and distribution in healthy individuals and cancer patients in Argentina.

  14. Large Scale Single Nucleotide Polymorphism Study of PD Susceptibility

    DTIC Science & Technology

    2005-03-01

    identification of eight genetic loci in the familial PD, the results of intensive investigations of polymorphisms in dozens of genes related to sporadic, late...1) investigate the association between classical, sporadic PD and 2386 SNPs in 23 genes implicated in the pathogenesis of PD; (2) construct...addition, experiences derived from this study may be applied in other complex disorders for the identification of susceptibility genes , as well as in genome

  15. Discovery of nucleotide polymorphisms in the Musa gene pool by Ecotilling

    PubMed Central

    Jankowicz-Cieslak, Joanna; Sági, László; Huynh, Owen A.; Utsushi, Hiroe; Swennen, Rony; Terauchi, Ryohei; Mba, Chikelu

    2010-01-01

    Musa (banana and plantain) is an important genus for the global export market and in local markets where it provides staple food for approximately 400 million people. Hybridization and polyploidization of several (sub)species, combined with vegetative propagation and human selection have produced a complex genetic history. We describe the application of the Ecotilling method for the discovery and characterization of nucleotide polymorphisms in diploid and polyploid accessions of Musa. We discovered over 800 novel alleles in 80 accessions. Sequencing and band evaluation shows Ecotilling to be a robust and accurate platform for the discovery of polymorphisms in homologous and homeologous gene targets. In the process of validating the method, we identified two single nucleotide polymorphisms that may be deleterious for the function of a gene putatively important for phototropism. Evaluation of heterozygous polymorphism and haplotype blocks revealed a high level of nucleotide diversity in Musa accessions. We further applied a strategy for the simultaneous discovery of heterozygous and homozygous polymorphisms in diploid accessions to rapidly evaluate nucleotide diversity in accessions of the same genome type. This strategy can be used to develop hypotheses for inheritance patterns of nucleotide polymorphisms within and between genome types. We conclude that Ecotilling is suitable for diversity studies in Musa, that it can be considered for functional genomics studies and as tool in selecting germplasm for traditional and mutation breeding approaches. Electronic supplementary material The online version of this article (doi:10.1007/s00122-010-1395-5) contains supplementary material, which is available to authorized users. PMID:20589365

  16. Genome-wide divergence and linkage disequilibrium analyses for Capsicum baccatum revealed by genome-anchored single nucleotide polymorphisms

    USDA-ARS?s Scientific Manuscript database

    Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to show the distribution of these 2 important incompatible cultivated pepper species. Estimated mean nucleotide...

  17. Development of single-nucleotide polymorphism markers for Bromus tectorum (Poaceae) from a partially sequenced transcriptome

    Treesearch

    Keith R. Merrill; Craig E. Coleman; Susan E. Meyer; Elizabeth A. Leger; Katherine A. Collins

    2016-01-01

    Premise of the study: Bromus tectorum (Poaceae) is an annual grass species that is invasive in many areas of the world but most especially in the U.S. Intermountain West. Single-nucleotide polymorphism (SNP) markers were developed for use in investigating the geospatial and ecological diversity of B. tectorum in the Intermountain West to better understand the...

  18. Short communication: Relationship of call rate and accuracy of single nucleotide polymorphism genotypes in dairy cattle

    USDA-ARS?s Scientific Manuscript database

    Call rate has been used as a measure of quality on both a single nucleotide polymorphism (SNP) and animal basis since SNP genotypes were first used in genomic evaluation of dairy cattle. The genotyping laboratories perform initial quality control screening and genotypes that fail are usually exclude...

  19. Development of Single Nucleotide Polymorphism (SNP) Markers for Use in Commercial Maize (Zea Mays L.) Germplasm

    USDA-ARS?s Scientific Manuscript database

    The development of single nucleotide polymorphism (SNP) markers in maize offer the opportunity to utilize DNA markers in many new areas of population genetics, gene discovery, plant breeding, and germplasm identification. However, the steps from sequencing and SNP discovery to SNP marker design and ...

  20. Subtyping of Salmonella enterica subspecies I using single nucleotide polymorphisms in adenylate cyclase (cyaA)

    USDA-ARS?s Scientific Manuscript database

    Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single nucleotide polymorphisms (SNPs) were characterized within adenylate cyclas...

  1. Identification of Single Nucleotide Polymorphism Markers in the Laccase Gene of Shiitake Mushrooms (Lentinula edodes)

    PubMed Central

    Kim, Ki-Hwan; Ka, Kang-Hyeon; Kang, Ji Hyoun; Kim, Sangil; Lee, Jung Won; Jeon, Bong-Kyun; Yun, Jung-Kuk

    2015-01-01

    We identified single nucleotide polymorphism (SNP) markers in the laccase gene to establish a line-diagnostic system for shiitake mushrooms. A total of 89 fungal isolates representing four lines, including Korean registered, Korean wild type, Chinese, and Japanese lines, were analyzed. The results suggest that SNP markers in the laccase gene can be useful for line typing in shiitake mushrooms. PMID:25892919

  2. Verification of genetic identity of introduced cacao germplasm in Ghana using single nucleotide polymorphism (SNP) markers

    USDA-ARS?s Scientific Manuscript database

    Accurate identification of individual genotypes is important for cacao (Theobroma cacao L.) breeding, germplasm conservation and seed propagation. The development of single nucleotide polymorphism (SNP) markers in cacao offers an effective way to use a high-throughput genotyping system for cacao gen...

  3. Increasing the number of single nucleotide polymorphisms used in genomic evaluation of dairy cattle

    USDA-ARS?s Scientific Manuscript database

    GeneSeek designed a new version of the GeneSeek Genomic Profiler HD BeadChip for Dairy Cattle, which had >77,000 single nucleotide polymorphisms (SNPs). A set of >140,000 SNPs was selected that included all SNPs on the existing GeneSeek chip, all SNPs used in U.S. national genomic evaluations, SNPs ...

  4. Association of a single nucleotide polymorphism of calpain 1 gene with meat tenderness of the yak

    USDA-ARS?s Scientific Manuscript database

    The association of a single nucleotide polymorphism (SNP) of calpain 1 (CAPN1) gene with shear force of 2.54 cm steaks from M. longissimus dorsi from Gannan yaks (Bos grunniens, n = 181) was studied. The experimental design was a repeated measures with the main unit in a completely randomized design...

  5. A lateral flow biosensor for detection of single nucleotide polymorphism by circular strand displacement reaction.

    PubMed

    Xiao, Zhuo; Lie, Puchang; Fang, Zhiyuan; Yu, Luxin; Chen, Junhua; Liu, Jie; Ge, Chenchen; Zhou, Xuemeng; Zeng, Lingwen

    2012-09-04

    A lateral flow biosensor for detection of single nucleotide polymorphism based on circular strand displacement reaction (CSDPR) has been developed. Taking advantage of high fidelity of T4 DNA ligase, signal amplification by CSDPR, and the optical properties of gold nanoparticles, this assay has reached a detection limit of 0.01 fM.

  6. Lineage and genogroup-defining single nucleotide polymorphisms of Escherichia coli 0157:H7

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli O157:H7 is a zoonotic human pathogen for which cattle are an important reservoir host. Using both previously published and new sequencing data, a 48-locus single nucleotide polymorphism (SNP) based typing panel was developed that redundantly identified eleven genogroups that span ...

  7. Effect of inversion polymorphism on the neutral nucleotide variability of linked chromosomal regions in Drosophila.

    PubMed Central

    Navarro, A; Barbadilla, A; Ruiz, A

    2000-01-01

    Recombination is a main factor determining nucleotide variability in different regions of the genome. Chromosomal inversions, which are ubiquitous in the genus Drosophila, are known to reduce and redistribute recombination, and thus their specific effect on nucleotide variation may be of major importance as an explanatory factor for levels of DNA variation. Here, we use the coalescent approach to study this effect. First, we develop analytical expressions to predict nucleotide variability in old inversion polymorphisms that have reached mutation-drift-flux equilibrium. The effects on nucleotide variability of a new arrangement appearing in the population and reaching a stable polymorphism are then studied by computer simulation. We show that inversions modulate nucleotide variability in a complex way. The establishment of an inversion polymorphism involves a partial selective sweep that eliminates part of the variability in the population. This is followed by a slow convergence to the equilibrium values. During this convergence, regions close to the breakpoints exhibit much lower variability than central regions. However, at equilibrium, regions close to the breakpoints have higher levels of variability and differentiation between arrangements than regions in the middle of the inverted segment. The implications of these findings for overall variability levels during the evolution of Drosophila species are discussed. PMID:10835391

  8. DNA damage and oxidative stress response to selenium yeast in the non-smoking individuals: a short-term supplementation trial with respect to GPX1 and SEPP1 polymorphism.

    PubMed

    Jablonska, E; Raimondi, S; Gromadzinska, J; Reszka, E; Wieczorek, E; Krol, M B; Smok-Pieniazek, A; Nocun, M; Stepnik, M; Socha, K; Borawska, M H; Wasowicz, W

    2016-12-01

    Selenium, both essential and toxic element, is considered to protect against cancer, though human supplementation trials have generated many inconsistent data. Genetic background may partially explain a great variability of the studies related to selenium and human health. The aim of this study was to assess whether functional polymorphisms within two selenoprotein-encoding genes modify the response to selenium at the level of oxidative stress, DNA damage, and mRNA expression, especially in the individuals with a relatively low selenium status. The trial involved 95 non-smoking individuals, stratified according to GPX1 rs1050450 and SEPP1 rs3877899 genotypes, and supplemented with selenium yeast (200 µg) for 6 weeks. Blood was collected at four time points, including 4 weeks of washout. After genotype stratification, the effect of GPX1 rs1050450 on lower GPx1 activity responsiveness was confirmed; however, in terms of DNA damage, we failed to indicate that individuals homozygous for variant allele may especially benefit from the increased selenium intake. Surprisingly, considering gene and time interaction, GPX1 polymorphism was observed to modify the level of DNA strand breaks during washout, showing a significant increase in GPX1 wild-type homozygotes. Regardless of the genotype, selenium supplementation was associated with a selectively suppressed selenoprotein mRNA expression and inconsistent changes in oxidative stress response, indicating for overlapped, antioxidant, and prooxidant effects. Intriguingly, DNA damage was not influenced by supplementation, but it was significantly increased during washout. These results point to an unclear relationship between selenium, genotype, and DNA damage.

  9. A novel technique for detecting single nucleotide polymorphisms by analyzing consumed allele-specific primers.

    PubMed

    Watanabe, G; Umetsu, K; Yuasa, I; Sato, M; Sakabe, M; Naito, E; Yamanouchi, H; Suzuki, T

    2001-02-01

    We present a simple and rapid polymerase chain reaction (PCR)-based technique, termed consumed allele-specific primer analysis (CASPA), as a new strategy for single nucleotide polymorphism (SNP) analysis. The method involves the use of labeled allele-specific primers, differing in length, with several noncomplementary nucleotides added in the 5'-terminal region. After PCR amplification, the amounts of the remaining primers not incorporated into the PCR products are determined. Thus, nucleotide substitutions are identified by measuring the consumption of primers. In this study, the CASPA method was successfully applied to ABO genotyping. In the present method, the allele-specific primer only anneals with the target polymorphic site on the DNA, so it is not necessary to analyze the PCR products. Therefore, this method is only little affected by modification of the PCR products. The CASPA method is expected to be a useful tool for typing of SNPs.

  10. Associations between single nucleotide polymorphisms in multiple candidate genes and body weight in rabbits

    PubMed Central

    El-Sabrout, Karim; Aggag, Sarah A.

    2017-01-01

    Aim: In this study, we examined parts of six growth genes (growth hormone [GH], melanocortin 4 receptor [MC4R], growth hormone receptor [GHR], phosphorglycerate mutase [PGAM], myostatin [MSTN], and fibroblast growth factor [FGF]) as specific primers for two rabbit lines (V-line, Alexandria) using nucleotide sequence analysis, to investigate association between detecting single nucleotide polymorphism (SNP) of these genes and body weight (BW) at market. Materials and Methods: Each line kits were grouped into high and low weight rabbits to identify DNA markers useful for association studies with high BW. DNA from blood samples of each group was extracted to amplify the six growth genes. SNP technique was used to study the associate polymorphism in the six growth genes and marketing BW (at 63 days) in the two rabbit lines. The purified polymerase chain reaction products were sequenced in those had the highest and lowest BW in each line. Results: Alignment of sequence data from each group revealed the following SNPs: At nucleotide 23 (A-C) and nucleotide 35 (T-G) in MC4R gene (sense mutation) of Alexandria and V-line high BW. Furthermore, we detected the following SNPs variation between the two lines: A SNP (T-C) at nucleotide 27 was identified by MC4R gene (sense mutation) and another one (A-C) at nucleotide 14 was identified by GHR gene (nonsense mutation) of Alexandria line. The results of individual BW at market (63 days) indicated that Alexandria rabbits had significantly higher BW compared with V-line rabbits. MC4R polymorphism showed significant association with high BW in rabbits. Conclusion: The results of polymorphism demonstrate the possibility to detect an association between BW in rabbits and the efficiency of the used primers to predict through the genetic specificity using the SNP of MC4R. PMID:28246458

  11. Single nucleotide polymorphisms of nucleotide excision repair and homologous recombination repair pathways and their role in the risk of osteosarcoma

    PubMed Central

    Jin, Guojun; Wang, Min; Chen, Weida; Shi, Wei; Yin, Jiapeng; Gang, Wang

    2015-01-01

    Objective: To evaluate the influence of polymorphisms in nucleotide excision repair (NER) and homologous recombination repair (HRR) pathways on the development of osteosarcoma patients. Methods: Genotypes of ERCC1 rs11615 and rs3212986, ERCC2 rs1799793 and rs13181, NBN rs709816 and rs1805794, RAD51 rs1801320, rs1801321 and rs12593359, and XRCC3 rs861539 were conducted by Polymerase Chain Reaction Restriction Fragment Length Polymorphism (PCR-RFLP) assay. Results: Total 148 osteosarcoma patients and 296 control subjects were collected from Taizhou First People’s Hospital. Conditional logistic regression analyses found that individuals carrying with GA+AA genotype of ERCC2 rs1799793 and GC+CC genotype of NBN rs1805794 were significantly associated with increased risk of osteosarcoma, and the ORs(95%CI) were 1.58(1.03-2.41) and 2.66(1.73-4.08), respectively. We found that GA+AA genotype of ERCC2 rs1799793 or GC+CC genotype of NBN rs1805794 were associated with an increased risk of osteosarcoma in females, with ORs(95%CI) of 2.42(1.20-4.87) and 2.01(1.07-4.23), respectively. Conclusion: Our results suggest that ERCC2 rs1799793 and NBN rs1805794 polymorphisms were associated with an increased risk for osteosarcoma, which suggests that NER and HRR pathways modulate the risk of developing osteosarcoma. PMID:26101473

  12. Implications of single nucleotide polymorphisms in CD44 exon 2 for risk of breast cancer.

    PubMed

    Zhou, Juhua; Nagarkatti, Prakash S; Zhong, Yin; Zhang, Jiajia; Nagarkatti, Mitzi

    2011-09-01

    CD44 is a cell-surface glycoprotein involved in many cellular functions including lymphocyte activation, recirculation and homing, hematopoiesis and tumor metastasis, suggesting that CD44 may play an important role in breast cancer development. In this study, we examined whether CD44 exon 2 polymorphisms are associated with increased susceptibility to breast cancer. Direct nucleotide sequencing analysis showed that multiple single nucleotide polymorphisms were present in the CD44 exon 2 coding region in female patients with breast cancer. There was no significant difference in the frequency of any one single nucleotide polymorphism in the CD44 exon 2 coding region between patients with breast cancer and normal donors. However, CD44 polymorphisms in the CD44 exon 2 coding region were identified in approximately 40% of patients with breast cancer, which was significantly higher than in normal donors (odds ratio, 9.34; 95% confidence interval = 2.58-33.82; P < 0.0001). The Wilcoxon-Mann-Whitney test analysis showed that the patients with the CD44 polymorphisms in CD44 exon 2 coding sequence had breast cancer at earlier ages, 49 ± 3 versus 62 ± 2 years (P < 0.0005), and larger tumor burdens (4.9 ± 1.22 vs. 1.6 ± 0.15 mm, P < 0.01) at the time of diagnosis. Interestingly, African-American female patients having the CD44 polymorphisms in CD44 exon 2 coding sequence were diagnosed with breast cancer at very young age (41 ± 2 years). Our results show that CD44 exon 2 polymorphisms are associated with breast cancer development, and such analysis may be effectively used in the evaluation of risk, prediction of cancer, prevention, diagnosis, and epidemiological studies of breast cancer.

  13. The Label-Free Unambiguous Detection and Symbolic Display of Single Nucleotide Polymorphisms on DNA Origami

    PubMed Central

    Subramanian, Hari K. K.; Chakraborty, Banani; Sha, Ruojie; Seeman, Nadrian C.

    2011-01-01

    Single Nucleotide Polymorphisms (SNPs) are the most common genetic variation in the human genome. Kinetic methods based on branch migration have proved successful for detecting SNPs because a mispair inhibits the progress of branch migration in the direction of the mispair. We have combined the effectiveness of kinetic methods with AFM of DNA origami patterns to produce a direct visual readout of the target nucleotide contained in the probe sequence. The origami contains graphical representations of the four nucleotide alphabetic characters, A, T, G and C, and the symbol containing the test nucleotide identity vanishes in the presence of the probe. The system also works with pairs of probes, corresponding to heterozygous diploid genomes. PMID:21235216

  14. Single nucleotide polymorphisms as susceptibility, prognostic, and therapeutic markers of nonsmall cell lung cancer

    PubMed Central

    Zienolddiny, Shanbeh; Skaug, Vidar

    2012-01-01

    Lung cancer is a major public health problem throughout the world. Among the most frequent cancer types (prostate, breast, colorectal, stomach, lung), lung cancer is the leading cause of cancer-related deaths worldwide. Among the two major subtypes of small cell lung cancer and nonsmall cell lung cancer (NSCLC), 85% of tumors belong to the NSCLC histological types. Small cell lung cancer is associated with the shortest survival time. Although tobacco smoking has been recognized as the major risk factor for lung cancer, there is a great interindividual and interethnic difference in risk of developing lung cancer given exposure to similar environmental and lifestyle factors. This may indicate that in addition to chemical and environmental factors, genetic variations in the genome may contribute to risk modification. A common type of genetic variation in the genome, known as single nucleotide polymorphism, has been found to be associated with susceptibility to lung cancer. Interestingly, many of these polymorphisms are found in the genes that regulate major pathways of carcinogen metabolism (cytochrome P450 genes), detoxification (glutathione S-transferases), adduct removal (DNA repair genes), cell growth/apoptosis (TP53/MDM2), the immune system (cytokines/chemokines), and membrane receptors (nicotinic acetylcholine and dopaminergic receptors). Some of these polymorphisms have been shown to alter the level of mRNA, and protein structure and function. In addition to being susceptibility markers, several of these polymorphisms are emerging to be important for response to chemotherapy/radiotherapy and survival of patients. Therefore, it is hypothesized that single nucleotide polymorphisms will be valuable genetic markers in individual-based prognosis and therapy in future. Here we will review some of the most important single nucleotide polymorphisms in the metabolic pathways that may modulate susceptibility, prognosis, and therapy in NSCLC. PMID:28210120

  15. Robust embryo identification using first polar body single nucleotide polymorphism microarray-based DNA fingerprinting.

    PubMed

    Treff, Nathan R; Su, Jing; Kasabwala, Natasha; Tao, Xin; Miller, Kathleen A; Scott, Richard T

    2010-05-01

    This study sought to validate a novel, minimally invasive system for embryo tracking by single nucleotide polymorphism microarray-based DNA fingerprinting of the first polar body. First polar body-based assignments of which embryos implanted and were delivered after multiple ET were 100% consistent with previously validated embryo DNA fingerprinting-based assignments. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Single nucleotide polymorphisms in the upstream regulatory region alter the expression of myostatin.

    PubMed

    Hu, Wei; Chen, Songyu; Zhang, Ran; Lin, Yushuang

    2013-06-01

    The expression of the gene encoding myostatin (MSTN), the product of which is a negative regulator of skeletal muscle growth and development in mammals, is regulated by many cis-regulatory elements, including enhancer box (E-box) motifs. While E-box motif mutants of MSTN exhibit altered expression of myostatin in many animal models, the phenotypes of these mutations in chicken are not investigated. In this study, we cloned and sequenced the full encoded DNA sequence of MSTN gene and its upstream promoter region in Wenshang Luhua chicken breed. After analysis of the sequence, 13 E-box motifs were identified in the MSTN promoter region, which were denoted by E1 to E13 according to their positions in the region. Although many single nucleotide polymorphisms (SNPs) were revealed in the MSTN promoter region, only two SNPs were in the E-boxes, i.e., the first nucleotide of the E3 and the fifth nucleotide of E4. The effects of these two polymorphisms on the expression of MSTN gene were explored both with MSTN-GFP reporter constructs in vitro and real-time PCR in vivo. The results suggested that the E-boxes in the chicken MSTN promoter region are involved in the regulation of myostatin expression and the polymorphisms in E3 and E4 altered the expression of myostatin.

  17. Computational Analysis of Single Nucleotide Polymorphisms Associated with Altered Drug Responsiveness in Type 2 Diabetes

    PubMed Central

    Costa, Valerio; Federico, Antonio; Pollastro, Carla; Ziviello, Carmela; Cataldi, Simona; Formisano, Pietro; Ciccodicola, Alfredo

    2016-01-01

    Type 2 diabetes (T2D) is one of the most frequent mortality causes in western countries, with rapidly increasing prevalence. Anti-diabetic drugs are the first therapeutic approach, although many patients develop drug resistance. Most drug responsiveness variability can be explained by genetic causes. Inter-individual variability is principally due to single nucleotide polymorphisms, and differential drug responsiveness has been correlated to alteration in genes involved in drug metabolism (CYP2C9) or insulin signaling (IRS1, ABCC8, KCNJ11 and PPARG). However, most genome-wide association studies did not provide clues about the contribution of DNA variations to impaired drug responsiveness. Thus, characterizing T2D drug responsiveness variants is needed to guide clinicians toward tailored therapeutic approaches. Here, we extensively investigated polymorphisms associated with altered drug response in T2D, predicting their effects in silico. Combining different computational approaches, we focused on the expression pattern of genes correlated to drug resistance and inferred evolutionary conservation of polymorphic residues, computationally predicting the biochemical properties of polymorphic proteins. Using RNA-Sequencing followed by targeted validation, we identified and experimentally confirmed that two nucleotide variations in the CAPN10 gene—currently annotated as intronic—fall within two new transcripts in this locus. Additionally, we found that a Single Nucleotide Polymorphism (SNP), currently reported as intergenic, maps to the intron of a new transcript, harboring CAPN10 and GPR35 genes, which undergoes non-sense mediated decay. Finally, we analyzed variants that fall into non-coding regulatory regions of yet underestimated functional significance, predicting that some of them can potentially affect gene expression and/or post-transcriptional regulation of mRNAs affecting the splicing. PMID:27347941

  18. Computational Analysis of Single Nucleotide Polymorphisms Associated with Altered Drug Responsiveness in Type 2 Diabetes.

    PubMed

    Costa, Valerio; Federico, Antonio; Pollastro, Carla; Ziviello, Carmela; Cataldi, Simona; Formisano, Pietro; Ciccodicola, Alfredo

    2016-06-25

    Type 2 diabetes (T2D) is one of the most frequent mortality causes in western countries, with rapidly increasing prevalence. Anti-diabetic drugs are the first therapeutic approach, although many patients develop drug resistance. Most drug responsiveness variability can be explained by genetic causes. Inter-individual variability is principally due to single nucleotide polymorphisms, and differential drug responsiveness has been correlated to alteration in genes involved in drug metabolism (CYP2C9) or insulin signaling (IRS1, ABCC8, KCNJ11 and PPARG). However, most genome-wide association studies did not provide clues about the contribution of DNA variations to impaired drug responsiveness. Thus, characterizing T2D drug responsiveness variants is needed to guide clinicians toward tailored therapeutic approaches. Here, we extensively investigated polymorphisms associated with altered drug response in T2D, predicting their effects in silico. Combining different computational approaches, we focused on the expression pattern of genes correlated to drug resistance and inferred evolutionary conservation of polymorphic residues, computationally predicting the biochemical properties of polymorphic proteins. Using RNA-Sequencing followed by targeted validation, we identified and experimentally confirmed that two nucleotide variations in the CAPN10 gene-currently annotated as intronic-fall within two new transcripts in this locus. Additionally, we found that a Single Nucleotide Polymorphism (SNP), currently reported as intergenic, maps to the intron of a new transcript, harboring CAPN10 and GPR35 genes, which undergoes non-sense mediated decay. Finally, we analyzed variants that fall into non-coding regulatory regions of yet underestimated functional significance, predicting that some of them can potentially affect gene expression and/or post-transcriptional regulation of mRNAs affecting the splicing.

  19. Heated oligonucleotide ligation assay (HOLA): an affordable single nucleotide polymorphism assay.

    PubMed

    Black, W C; Gorrochotegui-Escalante, N; Duteau, N M

    2006-03-01

    Most single nucleotide polymorphism (SNP) detection requires expensive equipment and reagents. The oligonucleotide ligation assay (OLA) is an inexpensive SNP assay that detects ligation between a biotinylated "allele-specific detector" and a 3' fluorescein-labeled "reporter" oligonucleotide. No ligation occurs unless the 3' detector nucleotide is complementary to the SNP nucleotide. The original OLA used chemical denaturation and neutralization. Heated OLA (HOLA) instead uses a thermal stable ligase and cycles of denaturing and hybridization for ligation and SNP detection. The cost per genotype is approximately US$1.25 with two-allele SNPs or approximately US$1.75 with three-allele SNPs. We illustrate the development of HOLA for SNP detection in the Early Trypsin and Abundant Trypsin loci in the mosquito Aedes aegypti (L.) and at the a-glycerophosphate dehydrogenase locus in the mosquito Anopheles gambiae s.s.

  20. A robust method for detecting single-nucleotide changes as polymorphic markers by PCR.

    PubMed

    Michaels, S D; Amasino, R M

    1998-05-01

    Numerous techniques in plant molecular genetic analysis, such as mapping and positional cloning techniques, rely on the availability of molecular markers that can differentiate between alleles at a particular locus. PCR-based cleaved amplified polymorphic sequences (CAPS) markers have been widely used as a means of rapidly and reliably detecting a single-base change that creates a unique restriction site in one of a pair of alleles. However, the majority of single-nucleotide changes do not create such sites and thus cannot be used to create CAPS markers. In this paper, a modification of the CAPS technique that allows detection of most single-nucleotide changes by utilizing mismatched PCR primers is described. The mismatches in the PCR primers, in combination with the single-nucleotide change, create a unique restriction site in one of the alleles.

  1. A new single nucleotide polymorphism in the ryanodine gene of chicken skeletal muscle.

    PubMed

    Droval, A A; Binneck, E; Marin, S R R; Paião, F G; Oba, A; Nepomuceno, A L; Shimokomaki, M

    2012-04-03

    Some genes affect meat quality in chickens. We looked for polymorphisms in the Gallus gallus α-RyR gene (homologous to RyR 1) that could be associated with PSE (pale, soft and exudative) meat. Because RyR genes are over 100,000 bp long and code for proteins with about 5000 amino acids, primers were designed to amplify a fragment of hotspot region 2, a region with a high density of mutations in other species. Total blood DNA was extracted from 50 birds, 25 that had PSE meat and 25 normal chickens. The DNA samples were amplified by PCR, cloned, sequenced, and used to identify single nucleotide polymorphisms (SNPs). The amplified fragment of α-RyR was 604 nucleotides in length; 181 nucleotides were similar to two exons from a hypothetical turkey cDNA sequence for α-RyR. A non-synonymous nucleotide substitution (G/A) was identified in at least one of the three sequenced clones obtained from nine animals, six PSE (HAL+) birds and three normal (HAL-) birds; they were heterozygous for this mutation. This SNP causes a change from Val to Met in the α-RYR protein. Since the frequencies of this SNP were not significantly different in the PSE versus normal chickens, it appears that this mutation (in heterozygosity) does not alter the structure or function of the muscle protein, making it an inappropriate candidate as a genetic marker for PSE meat.

  2. Multilocus patterns of nucleotide polymorphism and demographic change in Taxodium distichum (Cupressaceae) in the lower Mississippi River alluvial valley

    USGS Publications Warehouse

    Kusumi, Junko; Zidong, Li; Kado, Tomoyuki; Tsumura, Yoshihiko; Middleton, Beth A.; Tachida, Hidenori

    2010-01-01

    Conclusions: Taxodium distichum had significantly higher nucleotide variation than C. japonica, and its patterns of polymorphism contrasted strikingly with those of the latter, which previously has been inferred to have experienced a reduction in population size.

  3. Developing Single Nucleotide Polymorphism (SNP) markers from transcriptome sequences for the identification of longan (Dimocarpus longan) germplasm

    USDA-ARS?s Scientific Manuscript database

    Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in...

  4. Genome-wide association study of fertility traits in dairy cattle using high-density single nucleotide polymorphism marker panels

    USDA-ARS?s Scientific Manuscript database

    Unfavorable genetic correlations between production and fertility traits are well documented. Genetic selection for fertility traits is slow, however, due to low heritabilities. Identification of single nucleotide polymorphisms (SNP) involved in reproduction could improve reliability of genomic esti...

  5. Effect of ageing and single nucleotide polymorphisms associated with the risk of aggressive prostate cancer in a New Zealand population.

    PubMed

    Vaidyanathan, Venkatesh; Naidu, Vijay; Karunasinghe, Nishi; Kao, Chi Hsiu-Juei; Pallati, Radha; Jabed, Anower; Marlow, Gareth; Kallingappa, Prasanna; Ferguson, Lynnette R

    2017-09-26

    Prostate cancer is one of the most significant male health concerns worldwide, and various researchers carrying out molecular diagnostics have indicated that genetic interactions with biological and behavioral factors play an important role in the overall risk and prognosis of this disease. Single nucleotide polymorphisms are increasingly becoming strong biomarker candidates to identify the susceptibility of individuals to prostate cancer. We carried out risk association of different stages of prostate cancer to a number of single nucleotide polymorphisms to identify the susceptible alleles in a New Zealand population and checked the interaction with environmental factors as well. We identified a number of single nucleotide polymorphisms to have associations specifically to the risk of prostate cancer and aggressiveness of the disease, and also certain single nucleotide polymorphisms to be vulnerable to the reported behavioral factors. We have addressed "special" environmental conditions prevalent in New Zealand, which can be used as a model for a bigger worldwide study.

  6. Single nucleotide polymorphisms in the ovine casein genes detected by polymerase chain reaction-single strand conformation polymorphism.

    PubMed

    Ceriotti, G; Chessa, S; Bolla, P; Budelli, E; Bianchi, L; Duranti, E; Caroli, A

    2004-08-01

    Casein genetic polymorphisms are important and well known due to their effects on quantitative traits and technological properties of milk. At the DNA level, polymerase chain reaction (PCR)-single-strand conformation polymorphism (SSCP) allows for the simultaneous typing of several alleles at casein loci, as well as the detection of unknown polymorphisms. Here we describe the usefulness of the PCR-SSCP technique for casein typing in sheep. In particular, three single-nucleotide polymorphisms (SNP) are described at CSN1S1, CSN2, and CSN3, all resulting in amino acid exchanges. At CSN1S1, a transition T-->C was found, resulting in the deduced amino acid exchange Ile186-->Thr186. A transition A-->G resulting in the deduced amino acid exchange Met183-->Val183 was identified at CSN2. The 2 SNP showed a rather high frequency (ranging from 0.12 to 0.26) in 3 Italian breeds (Sarda, Comisana, Sopravissana). Another transition C-->T (Ser104-->Leu104) was found at CSN3 in one heterozygous animal.

  7. IMPDH2 genetic polymorphism: a promoter single-nucleotide polymorphism disrupts a cyclic adenosine monophosphate responsive element.

    PubMed

    Garat, Anne; Cauffiez, Christelle; Hamdan-Khalil, Rima; Glowacki, François; Devos, Aurore; Leclerc, Julie; Lionet, Arnaud; Allorge, Delphine; Lo-Guidice, Jean-Marc; Broly, Franck

    2009-12-01

    Inosine 5'-monophosphate dehydrogenase (IMPDH), which catalyzes a key step in the de novo biosynthesis of guanine nucleotide, is mediated by two highly conserved isoforms, IMPDH1 and IMPDH2. In this study, IMPDH2 genetic polymorphism was investigated in 96 individuals of Caucasian origin. Four single-nucleotide polymorphisms were identified, comprising one previously described single base-pair substitution in the close vicinity of the consensus donor splice site of intron 7 (IVS7+10T>C), and three novel polymorphisms, one silent substitution in exon 9 (c.915C>G), one single base-pair insertion (g.6971_6972insT) within the 3'-untranslated region of the gene, and one substitution located in the promoter region (c.-95T>G) in a transcription factor binding site CRE(A) (cyclic adenosine monophosphate [cAMP] response element). Considering the nature and location of this latter polymorphism, its functional relevance was examined by transfecting HEK293 and Jurkat cell lines with constructs of the related region of IMPDH2/luciferase reporter gene. The c.-95T>G mutation leads to a significant decrease of luciferase activity (HEK293: 55% decrease, p < 0.05; Jurkat: 65% decrease, p < 0.05) compared with the wild-type promoter sequence and, therefore, is likely to determine interindividual differences in IMPDH2 transcriptional regulation. These results might contribute to a better understanding of the variability in clinical outcome and dose adjustments of certain immunosuppressors that are metabolized through the IMPDH pathway or that are IMPDH inhibitors.

  8. Single strand conformation polymorphism is a sensitive method for screening nucleotide variations in Mycosphaerella graminicola.

    PubMed

    Siah, A; Tisserant, B; El Chartouni, L; Deweer, C; Roisin-Fichter, C; Sanssené, J; Durand, R; Reignault, Ph; Halama, P

    2010-01-01

    Single Strand Conformation Polymorphism (SSCP) and sequencing were performed in order to assess molecular polymorphism of mating type sequences in the heterothallic ascomycete Mycosphaerella graminicola, the causal agent of Septoria tritici blotch of wheat. The screening was undertaken on mat1-1 and mat1-2 partial sequences of 341 and 657 bp, respectively, amplified with multiplex PCR from 510 French single-conidial strains plus the two reference isolates IPO323 and IPO94269 from The Netherlands. After restriction with Taq1 in order to reduce the fragment sizes, all digested amplicons were subjected to SSCP. Sequencing was then performed when a SSCP pattern deviates from the most frequently occurring profile. Among the assessed strains, 228 ones plus IPO323 were MAT1-1 and 282 ones plus IPO94269 were MAT1-2. Among the MAT1-1 strains, only a single one exhibited a SSCP profile distinct to the other MAT1-1 strains, whereas 10 MAT1-2 strains (among which 2 and 4 with same profiles, respectively) showed a SSCP profile differing to the other MAT1-2 strains. Sequencing revealed that all polymorphisms observed on SSCP gels were single nucleotide variations and all strains displaying the same SSCP profiles showed identical nucleotide sequences. Among the seven disclosed nucleotide variations, only two were non-synonymous and both were non-conservative. This study reports a high sensitivity of SSCP allowing detection of single point mutations in M. graminicola, shows a conservation of mating type idiomorphs in the fungus at both sequence and population scales, but also suggests a difference in polymorphism level between the two mating type sequences.

  9. Single Nucleotide Polymorphisms in Nucleotide Excision Repair Genes, Cigarette Smoking, and the Risk of Head and Neck Cancer

    PubMed Central

    Wyss, Annah B.; Herring, Amy H.; Avery, Christy L.; Weissler, Mark C.; Bensen, Jeannette T.; Barnholtz-Sloan, Jill S.; Funkhouser, William K.; Olshan, Andrew F.

    2013-01-01

    Background Cigarette smoking is associated with increased head and neck cancer (HNC) risk. Tobacco-related carcinogens are known to cause bulky DNA adducts. Nucleotide excision repair (NER) genes encode enzymes that remove adducts and may be independently associated with HNC, as well as modifiers of the association between smoking and HNC. Methods Using population-based case-control data from the Carolina Head and Neck Cancer Epidemiology Study (1,227 cases, 1,325 controls), race-stratified (white, African American) conventional and hierarchical logistic regression models were utilized to estimate odds ratios (OR) with 95% intervals (I) for the independent and joint effects of cigarette smoking and 84 single nucleotide polymorphisms (SNPs) from 15 NER genes on HNC risk. Results The odds of HNC were elevated among ever cigarette smokers, and increased with smoking duration and frequency. Among whites, rs4150403 on ERCC3 was associated with increased HNC odds (AA+AG vs. GG, OR=1.28, 95% I=1.01,1.61). Among African Americans, rs4253132 on ERCC6 was associated with decreased HNC odds (CC+CT vs. TT, OR=0.62, 95% I=0.45,0.86). Interactions between ever cigarette smoking and three SNPs (rs4253132 on ERCC6, rs2291120 on DDB2, and rs744154 on ERCC4) suggested possible departures from additivity among whites. Conclusions We did not find associations between some previously studied NER variants and HNC. We did identify new associations between two SNPs and HNC and three suggestive cigarette-SNP interactions to consider in future studies. Impact We conducted one of the most comprehensive evaluations of NER variants, identifying a few SNPs from biologically plausible candidate genes associated with HNC and possibly interacting with cigarette smoking. PMID:23720401

  10. Single nucleotide polymorphism in transcriptional regulatory regions and expression of environmentally responsive genes

    SciTech Connect

    Wang, Xuting; Tomso, Daniel J.; Liu Xuemei; Bell, Douglas A. . E-mail: BELL1@niehs.nih.gov

    2005-09-01

    Single nucleotide polymorphisms (SNPs) in the human genome are DNA sequence variations that can alter an individual's response to environmental exposure. SNPs in gene coding regions can lead to changes in the biological properties of the encoded protein. In contrast, SNPs in non-coding gene regulatory regions may affect gene expression levels in an allele-specific manner, and these functional polymorphisms represent an important but relatively unexplored class of genetic variation. The main challenge in analyzing these SNPs is a lack of robust computational and experimental methods. Here, we first outline mechanisms by which genetic variation can impact gene regulation, and review recent findings in this area; then, we describe a methodology for bioinformatic discovery and functional analysis of regulatory SNPs in cis-regulatory regions using the assembled human genome sequence and databases on sequence polymorphism and gene expression. Our method integrates SNP and gene databases and uses a set of computer programs that allow us to: (1) select SNPs, from among the >9 million human SNPs in the NCBI dbSNP database, that are similar to cis-regulatory element (RE) consensus sequences; (2) map the selected dbSNP entries to the human genome assembly in order to identify polymorphic REs near gene start sites; (3) prioritize the candidate polymorphic RE containing genes by searching the existing genotype and gene expression data sets. The applicability of this system has been demonstrated through studies on p53 responsive elements and is being extended to additional pathways and environmentally responsive genes.

  11. Development of 101 novel EST-derived single nucleotide polymorphism markers for Zhikong scallop ( Chlamys farreri)

    NASA Astrophysics Data System (ADS)

    Li, Jiqin; Bao, Zhenmin; Li, Ling; Wang, Xiaojian; Wang, Shi; Hu, Xiaoli

    2013-09-01

    Zhikong scallop ( Chlamys farreri) is an important maricultured species in China. Many researches on this species, such as population genetics and QTL fine-mapping, need a large number of molecular markers. In this study, based on the expressed sequence tags (EST), a total of 300 putative single nucleotide polymorphisms (SNPs) were selected and validated using high resolution melting (HRM) technology with unlabeled probe. Of them, 101 (33.7%) were found to be polymorphic in 48 individuals from 4 populations. Further evaluation with 48 individuals from Qingdao population showed that all the polymorphic loci had two alleles with the minor allele frequency ranged from 0.046 to 0.500. The observed and expected heterozygosities ranged from 0.000 to 0.925 and from 0.089 to 0.505, respectively. Fifteen loci deviated significantly from Hardy-Weinberg equilibrium and significant linkage disequilibrate was detected in one pair of markers. BLASTx gave significant hits for 72 of the 101 polymorphic SNP-containing ESTs. Thirty four polymorphic SNP loci were predicted to be non-synonymous substitutions as they caused either the change of codons (33 SNPs) or pretermination of translation (1 SNP). The markers developed can be used for the population studies and genetic improvement on Zhikong scallop.

  12. rs621554 single nucleotide polymorphism of DLC1 is associated with breast cancer susceptibility and prognosis.

    PubMed

    Ding, Xia; Gao, Sumei; Yang, Qifeng

    2016-05-01

    Deleted in liver cancer 1 (DLC1) on chromosome 8p22, is an important tumor suppressor gene originally identified to be deleted in hepatocellular carcinoma. It can regulate the structure of the actin cytoskeleton and inhibit cell proliferation, motility and angiogenesis, which predominantly depends on its homology to rat RhoGAP. There are many genetic variants in DLC1, which may influence its antitumor efficacy. The rs621554 (IVS19+108C>T) polymorphism is a synonymous single nucleotide polymorphism (SNP) previously found to be associated with hepatocellular carcinoma. In the present study, 453 patients with breast cancer and 330 healthy females were analyzed using a cycling probe method. It was determined that the rs621554 polymorphism of DLC1 was associated with breast cancer susceptibility, with the CC and CT genotypes resulting in a higher risk of developing breast cancer. In regard to clinicopathological variables, it was demonstrated that the CT and CC genotype were associated with tumor size, lymph node metastasis and progesterone receptor status. Patients with the CT and CC genotype had shorter disease-free survival and overall survival rates compared with those with the TT genotype. Additionally, it was demonstrated that the rs621554 polymorphism was correlated with DLC1 expression at the mRNA level. These results suggested that the rs621554 polymorphism is associated with breast cancer susceptibility and prognosis, and may serve as a biomarker for breast cancer development and progression.

  13. Polymorphisms in nucleotide excision repair genes and susceptibility to colorectal cancer in the Polish population.

    PubMed

    Paszkowska-Szczur, Katarzyna; Scott, Rodney J; Górski, Bohdan; Cybulski, Cezary; Kurzawski, Grzegorz; Dymerska, Dagmara; Gupta, Satish; van de Wetering, Thierry; Masojć, Bartłomiej; Kashyap, Aniruddh; Gapska, Paulina; Gromowski, Tomasz; Kładny, Józef; Lubiński, Jan; Dębniak, Tadeusz

    2015-03-01

    Xeroderma pigmentosum (XP) is a rare autosomal recessive disease that is associated with a severe deficiency in nucleotide excision repair. Genetic polymorphisms in XP genes may be associated with a change in DNA repair capacity, which could be associated with colorectal cancer development. We assessed the association between 94 single nucleotide polymorphisms (SNPs) within seven XP genes (XPA-XPG) and the colorectal cancer risk in the Polish population. We genotyped 758 unselected patients with colorectal cancer and 1,841 healthy adults. We found that a significantly decreased risk of colorectal cancer was associated with XPC polymorphism rs2228000_CT genotype (OR 0.59; p < 0.0001) and the rs2228000_TT genotype (OR 0.29; p < 0.0001) compared to the reference genotype (CC). And an increased disease risk was associated with the XPD SNP, rs1799793_AG genotype (OR 1.44, p = 0.018) and rs1799793_AA genotype (OR 3.31, p < 0.0001) compared to the reference genotype. Haplotype analysis within XPC, XPD and XPG revealed haplotypes associated with an altered colorectal cancer risk. Stratified analysis by gender showed differences between the association of three SNPs: XPC rs2228000, XPD rs1799793 and XPD rs238406 in females and males. Association analysis between age of disease onset and polymorphisms in XPD (rs1799793) and XPC (rs2228000) revealed differences in the prevalence of these variants in patients under and over 50 years of age. Our results confirmed that polymorphisms in XPC and XPD may be associated with the risk of colorectal cancer.

  14. Population Structure and Its Effects on Patterns of Nucleotide Polymorphism in Teosinte (Zea mays ssp. parviglumis)

    PubMed Central

    Moeller, David A.; Tenaillon, Maud I.; Tiffin, Peter

    2007-01-01

    Surveys of nucleotide diversity in the wild ancestor of maize, Zea mays ssp. parviglumis, have revealed genomewide departures from the standard neutral equilibrium (NE) model. Here we investigate the degree to which population structure may account for the excess of rare polymorphisms frequently observed in species-wide samples. On the basis of sequence data from five nuclear and two chloroplast loci, we found significant population genetic structure among seven subpopulations from two geographic regions. Comparisons of estimates of population genetic parameters from species-wide samples and subpopulation-specific samples showed that population genetic subdivision influenced observed patterns of nucleotide polymorphism. In particular, Tajima's D was significantly higher (closer to zero) in subpopulation-specific samples relative to species-wide samples, and therefore more closely corresponded to NE expectations. In spite of these overall patterns, the extent to which levels and patterns of polymorphism within subpopulations differed from species-wide samples and NE expectations depended strongly on the geographic region (Jalisco vs. Balsas) from which subpopulations were sampled. This may be due to the demographic history of subpopulations in those regions. Overall, these results suggest that explicitly accounting for population structure may be important for studies examining the genetic basis of ecologically and agronomically important traits as well as for identifying loci that have been the targets of selection. PMID:17483429

  15. Association of the DIO2 gene single nucleotide polymorphisms with recurrent depressive disorder.

    PubMed

    Gałecka, Elżbieta; Talarowska, Monika; Orzechowska, Agata; Górski, Paweł; Bieńkiewicz, Małgorzata; Szemraj, Janusz

    2015-01-01

    Genetic factors may play a role in the etiology of depressive disorder. The type 2 iodothyronine deiodinase gene (DIO2) encoding the enzyme catalyzing the conversion of T4 to T3 is suggested to play a role in the recurrent depressive disorder (rDD). The current study investigates whether a specific single nucleotide polymorphism (SNP) of the DIO2 gene, Thr92Ala (T/C); rs 225014 or ORFa-Gly3Asp (C/T); rs 12885300, correlate with the risk for recurrent depression. Genotypes for these two single nucleotide polymorphisms (SNPs) were determined in 179 patients meeting the ICD-10 criteria for rDD group and in 152 healthy individuals (control group) using a polymerase chain reaction (PCR) based method. The specific variant of the DIO2 gene, namely the CC genotype of the Thr92Ala polymorphism, was more frequently found in healthy subjects than in patients with depression, what suggests that it could potentially serve as a marker of a lower risk for recurrent depressive disorder. The distribution of four haplotypes was also significantly different between the two study groups with the TC (Thr-Gly) haplotype more frequently detected in patients with depression. In conclusion, data generated from this study suggest for the first time that DIO2 gene may play a role in the etiology of the disease, and thus should be further investigated.

  16. A genetic variation map for chicken with 2.8 million single nucleotide polymorphisms

    SciTech Connect

    Wong, G K; Hillier, L; Brandstrom, M; Croojmans, R; Ovcharenko, I; Gordon, L; Stubbs, L; Lucas, S; Glavina, T; Kaiser, P; Gunnarsson, U; Webber, C; Overton, I

    2005-02-20

    We describe a genetic variation map for the chicken genome containing 2.8 million single nucleotide polymorphisms (SNPs), based on a comparison of the sequences of 3 domestic chickens (broiler, layer, Silkie) to their wild ancestor Red Jungle Fowl (RJF). Subsequent experiments indicate that at least 90% are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about 5 SNP/kb for almost every possible comparison between RJF and domestic lines, between two different domestic lines, and within domestic lines--contrary to the idea that domestic animals are highly inbred relative to their wild ancestors. In fact, most of the SNPs originated prior to domestication, and there is little to no evidence of selective sweeps for adaptive alleles on length scales of greater than 100 kb.

  17. Microfluidic linear hydrogel array for multiplexed single nucleotide polymorphism (SNP) detection.

    PubMed

    Jung, Yun Kyung; Kim, Jungkyu; Mathies, Richard A

    2015-03-17

    A PDMS-based microfluidic linear hydrogel array is developed for multiplexed single nucleotide polymorphism (SNP) detection. A sequence of three-dimensional (3D) hydrogel plugs containing the desired DNA probes is prepared by UV polymerization within a PDMS microchannel system. The fluorescently labeled target DNA is then electrophoresed through the sequence of hydrogel plugs for hybridization. Continued electrophoresis provides an electrophoretic wash that removes nonspecific binders. The capture gel array is imaged after washing at various temperatures (temperature gradient electrophoresis) to further distinguish perfect matches from mismatches. The ability of this microdevice to perform multiplex SNP genotyping is demonstrated by analyzing a mixture of model E. coli bacterial targets. This microfluidic hydrogel array is ∼1000 times more sensitive than planar microarrays due to the 3D gel capture, the hybridization time is much shorter due to electrophoretic control of the transport properties, and the stringent wash with temperature gradient electrophoresis enables analysis of single nucleotide mismatches with high specificity.

  18. The association between antioxidant enzyme polymorphisms and cerebral palsy after perinatal hypoxic-ischaemic encephalopathy.

    PubMed

    Esih, Katarina; Goričar, Katja; Dolžan, Vita; Rener-Primec, Zvonka

    2016-09-01

    Hypoxic-ischaemic perinatal brain injury leads to the formation of reactive oxygen species (ROS) and the resultant cell and tissue damage may cause neurological sequelae such as cerebral palsy and/or epilepsy. A decrease in the capacity for defending against ROS may increase the susceptibility to cerebral palsy. The aim of this study was to investigate the impact of common functional polymorphisms in the antioxidant genes SOD2, GPX1 and CAT, associated with a decreased capacity for defending against ROS, in patients with perinatal hypoxic-ischaemic encephalopathy (HIE). 80 patients previously diagnosed with perinatal HIE were included. Genomic DNA was isolated from buccal swabs and genotyped for SOD2 rs4880, GPX1 rs1050450 and CAT rs1001179 using real-time PCR-based methods. Among patients with neonatal HIE, carriers of at least one polymorphic CAT rs1001179 T allele were significantly associated with development of cerebral palsy compared to non-carriers (univariate logistic regression, p = 0.026; OR = 3.36; 95% CI = 1.16-9.76). This difference remained statistically significant after accounting for prematurity. The investigated SOD2 and GPX1 polymorphisms were not associated with cerebral palsy after perinatal HIE. CAT rs1001179 polymorphism could be used to identify children that have a higher susceptibility to cerebral palsy after perinatal HIE. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  19. PupaSuite: finding functional single nucleotide polymorphisms for large-scale genotyping purposes

    PubMed Central

    Conde, Lucía; Vaquerizas, Juan M.; Dopazo, Hernán; Arbiza, Leonardo; Reumers, Joke; Rousseau, Frederic; Schymkowitz, Joost; Dopazo, Joaquín

    2006-01-01

    We have developed a web tool, PupaSuite, for the selection of single nucleotide polymorphisms (SNPs) with potential phenotypic effect, specifically oriented to help in the design of large-scale genotyping projects. PupaSuite uses a collection of data on SNPs from heterogeneous sources and a large number of pre-calculated predictions to offer a flexible and intuitive interface for selecting an optimal set of SNPs. It improves the functionality of PupaSNP and PupasView programs and implements new facilities such as the analysis of user's data to derive haplotypes with functional information. A new estimator of putative effect of polymorphisms has been included that uses evolutionary information. Also SNPeffect database predictions have been included. The PupaSuite web interface is accessible through and through . PMID:16845085

  20. Single nucleotide polymorphisms in chum salmon (Oncorhynchus keta) mitochondrial DNA derived from restriction site haplotype information.

    PubMed

    Garvin, M R; Saitoh, K; Churikov, D Y; Brykov, V A; Gharrett, A J

    2010-07-01

    Single nucleotide polymorphisms (SNPs) are useful genetic markers for the management and conservation of commercially important species such as salmon. Informative markers can be derived from data obtained for other purposes. We used restriction endonuclease data from earlier work to identify potentially useful restriction sites in chum salmon (Oncorhynchus keta). With the aid of a newly generated complete mitochondrial DNA sequence (accession number AP010773), we identified the SNP responsible for each restriction site variant, designed rapid genotyping assays, and surveyed the SNPs in more than 400 individuals. The restriction site analysis and the SNP genotyping assays were almost perfectly concordant. Some reasons for the non-concordance were identified and discussed.

  1. Single-nucleotide polymorphisms of the PRDM9 (MEISETZ) gene in patients with nonobstructive azoospermia.

    PubMed

    Irie, Shinji; Tsujimura, Akira; Miyagawa, Yasushi; Ueda, Tomohiro; Matsuoka, Yasuhiro; Matsui, Yasuhisa; Okuyama, Akihiko; Nishimune, Yoshitake; Tanaka, Hiromitsu

    2009-01-01

    To investigate the possible association between variations in the PRDM9 (MEISETZ) gene and impaired spermatogenesis in humans, we screened for mutations in the human PRDM9 gene using DNA from 217 sterile male patients and 162 proven fertile male volunteers. Two single-nucleotide polymorphisms (SNPs), 17353G>T (Gly433Val) and 18109C>G (Thr685Arg), were identified, as well as an intronic SNP, 15549G>T. These SNPs were identified in the heterozygous state in separate patients who demonstrated azoospermia. Neither variant was identified in fertile subjects. Our results suggest that mutations in PRDM9 may cause idiopathic infertility in human males.

  2. Six diagnostic single nucleotide polymorphism markers for detecting introgression between cutthroat and rainbow trouts.

    PubMed

    Finger, Amanda J; Stephens, Molly R; Clipperton, Neil W; May, Bernie

    2009-05-01

    Ten primer pairs were screened to develop single nucleotide polymorphism (SNP) TaqMan assays that will distinguish California golden trout and some rainbow trouts (Oncorhynchus mykiss sspp., O. m. aguabonita) from the Paiute and Lahontan cutthroat trouts (Oncorhynchus clarkii seleniris, O. c. henshawi). From these 10 primer pairs, one mitochondrial and five nuclear fixed SNP differences were discovered and developed into TaqMan assays. These six assays will be useful for characterizing and monitoring hybridization between these groups. Additional Oncorhynchus clarkii sspp. and Oncorhynchus mykiss sspp. were assayed to determine if these assays are useful in closely related species.

  3. A suite of twelve single nucleotide polymorphism markers for detecting introgression between cutthroat and rainbow trout.

    PubMed

    Harwood, Andrew S; Phillips, Ruth B

    2011-03-01

    A suite of 12 subspecies and species-specific single nucleotide polymorphism (species-specific SNP) markers was developed to distinguish rainbow trout (RT) Oncorhynchus mykiss from the four major subspecies of cutthroat trout: westslope cutthroat trout (WCT) Oncorhynchus clarki lewisi, Yellowstone cutthroat trout (YCT) Oncorhynchus clarki bouvieri, coastal cutthroat trout (CCT) Oncorhynchus clarki clarki, Lahontan cutthroat trout (LCT) Oncorhynchus clarki henshawi, and their hybrids. Several of the markers were linked to help strengthen hybrid determinations, and sex-specific species-specific SNP assays were also developed.

  4. Nanoparticle-Based Discrimination of Single-Nucleotide Polymorphism in Long DNA Sequences.

    PubMed

    Sanromán-Iglesias, María; Lawrie, Charles H; Liz-Marzán, Luis M; Grzelczak, Marek

    2017-04-19

    Circulating DNA (ctDNA) and specifically the detection cancer-associated mutations in liquid biopsies promises to revolutionize cancer detection. The main difficulty however is that the length of typical ctDNA fragments (∼150 bases) can form secondary structures potentially obscuring the mutated fragment from detection. We show that an assay based on gold nanoparticles (65 nm) stabilized with DNA (Au@DNA) can discriminate single nucleotide polymorphism in clinically relevant ssDNA sequences (70-140 bases). The preincubation step was crucial to this process, allowing sequential bridging of Au@DNA, so that single base mutation can be discriminated, down to 100 pM concentration.

  5. Predicting responses to sunitinib using single nucleotide polymorphisms: Progress and recommendations for future trials.

    PubMed

    Ganapathi, Ram N; Bukowski, Ronald M

    2011-12-30

    Targeted therapy with tyrosine kinase inhibitors has led to a substantial improvement in the standard of care for patients with advanced or metastatic clear cell renal cell carcinoma. Because the mechanism of action, metabolism and transport of tyrosine kinase inhibitors can affect outcome and toxicity, several investigators have pursued the identification of single nucleotide polymorphisms (SNPs) in genes associated with these actions. We discuss SNPs associated with outcome and toxicity following sunitinib therapy and provide recommendations for future trials to facilitate the use of SNPs in personalized therapy for this disease.

  6. Prioritizing single-nucleotide polymorphisms and variants associated with clinical mastitis.

    PubMed

    Suravajhala, Prashanth; Benso, Alfredo

    2017-01-01

    Next-generation sequencing technology has provided resources to easily explore and identify candidate single-nucleotide polymorphisms (SNPs) and variants. However, there remains a challenge in identifying and inferring the causal SNPs from sequence data. A problem with different methods that predict the effect of mutations is that they produce false positives. In this hypothesis, we provide an overview of methods known for identifying causal variants and discuss the challenges, fallacies, and prospects in discerning candidate SNPs. We then propose a three-point classification strategy, which could be an additional annotation method in identifying causalities.

  7. A Brownian-ratchet DNA pump with applications to single-nucleotide polymorphism genotyping

    NASA Astrophysics Data System (ADS)

    Bader, J. S.; Deem, M. W.; Hammond, R. W.; Henck, S. A.; Simpson, J. W.; Rothberg, J. M.

    2002-08-01

    We have fabricated a micron-scale device capable of transporting DNA oligomers using Brownian ratchets. The ratchet potential is generated by applying a voltage difference to interdigitated electrodes. Cycling between the charged state and a discharged, free-diffusion state rectifies the Brownian motion of charged particles. The observed macroscopic transport properties agree with the transport rate predicted from microscopic parameters including the DNA diffusivity, the dimensions of the ratchet potential, and the cycling time. Applications to human genetics, primarily genotyping of single-nucleotide polymorphisms (SNPs), are discussed.

  8. Multicolor fluorescence detection for single nucleotide polymorphism genotyping using a filter-less fluorescence detector

    NASA Astrophysics Data System (ADS)

    Yamasaki, Keita; Nakazawa, Hirokazu; Misawa, Nobuo; Ishida, Makoto; Sawada, Kazuaki

    2013-06-01

    Single nucleotide polymorphism (SNP) analysis that is commonly performed using fluorescence is important in drug development and pathology research. In this study, to facilitate the analysis, multicolor fluorescence detection for SNP genotyping using a filter-less fluorescence detector (FFD) was investigated. FFDs do not require any optical filters for multicolor fluorescence detection. From the experimental results, FFD could identify 0 μM, 1 μM, and 10 μM solutions of Texas Red and fluorescein isothiocyanate. Moreover, a mixture of Texas Red and 6-FAM could be detected in the SNP genotyping simulation. Therefore, a small and low-cost SNP genotyping system is feasible.

  9. Correlation of Chitinase 3-Like 1 Single Nucleotide Polymorphisms with Hepatocellular Carcinoma in Taiwan.

    PubMed

    Huang, Wayne Shih-Wei; Lin, Hung-Yu; Yeh, Chao-Bin; Chen, Li-You; Chou, Ying-Erh; Yang, Shun-Fa; Liu, Yu-Fan

    2017-01-01

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer death in Taiwan. Multiple risk factors, such as chronic hepatitis B or C virus infection, carcinogen exposure, cirrhosis, and various single-nucleotide polymorphisms (SNPs), are considered to contribute to hepatocarcinogenesis. Chitinase-3-like protein 1 (CHI3L1), a biomarker implicated in inflammation and tissue remodeling, plays a promoting role in angiogenesis, antiapoptosis, and cell proliferation. This study investigated the role of CHI3L1 SNPs in HCC susceptibility and clinicopathology. Real-time polymerase chain reaction was used to analyze four SNPs of CHI3L1 in 343 patients with HCC and 686 cancer-free controls. We found associations with HCC susceptibility in CHI3L1 rs880633 polymorphism carriers with genotypes (TC+CC). We observed that HCC patients had lower frequencies of CHI3L1 rs6691378 polymorphisms with the variant genotype GA+AA than the wild-type carriers with distant metastasis and positive HBsAg did. In 200 HBsAg negative HCC patients, we observed that the CHI3L1 rs4950928 polymorphisms carriers with the variant genotype CG+GG had higher frequencies of vascular invasion. Finally, carriers of CHI3L1 rs6691378 and 10399805 polymorphisms with the variant genotypes GA+AA showed lower levels of alpha-fetoprotein in HCC laboratory status. In conclusion, our results indicate that patients with CHI3L1 rs880633 variant genotypes TC+CC are at a higher risk of HCC. CHI3L1 polymorphisms rs880633 or rs4950928 may be potential candidates for predicting poor HCC prognosis and clinical status.

  10. Contribution of protein Z gene single-nucleotide polymorphism to systemic lupus erythematosus in Egyptian patients.

    PubMed

    Yousry, Sherif M; Shahin, Rasha M H; El Refai, Rasha M

    2016-09-01

    Protein Z has been reported to exert an important role in inhibiting coagulation. Polymorphisms in the protein Z gene (PROZ) may affect protein Z levels and thus play a role in thrombosis. This study aimed to investigate the prevalence and clinical significance of protein Z gene G79A polymorphism in Egyptian patients with systemic lupus erythematosus (SLE). We studied the distribution of the protein Z gene (rs17882561) (G79A) single-nucleotide polymorphism by PCR-restriction fragment length polymorphism in 100 Egyptian patients with SLE and 100 age, sex, and ethnically matched controls. There was no statistically significant difference in the distribution of the genotypes between SLE patients and the control group in our study (P = 0.103). But a statistically significant difference in the frequency of the alleles between SLE patients and controls was observed (P = 0.024). Also a significant association was detected between protein Z genotypes (and also A allele) and thrombosis, which is one of the manifestations of SLE (P = 0.004 and P = 0.001, respectively). Moreover, we observed a significant association between the protein Z AA and GA genotypes (and also A allele) and the presence of anticardiolipin antibodies (P = 0.016 and P = 0.004, respectively). The minor A allele of the G79A polymorphism in the protein Z gene might contribute to the genetic susceptibility of SLE in Egyptian patients. Also, an influence for this polymorphism on some of the disease manifestations has been elucidated, so protein Z G79A AG/AA may be a risk factor for thrombosis.

  11. Correlation of Chitinase 3-Like 1 Single Nucleotide Polymorphisms with Hepatocellular Carcinoma in Taiwan

    PubMed Central

    Huang, Wayne Shih-Wei; Lin, Hung-Yu; Yeh, Chao-Bin; Chen, Li-You; Chou, Ying-Erh; Yang, Shun-Fa; Liu, Yu-Fan

    2017-01-01

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer death in Taiwan. Multiple risk factors, such as chronic hepatitis B or C virus infection, carcinogen exposure, cirrhosis, and various single-nucleotide polymorphisms (SNPs), are considered to contribute to hepatocarcinogenesis. Chitinase-3-like protein 1 (CHI3L1), a biomarker implicated in inflammation and tissue remodeling, plays a promoting role in angiogenesis, antiapoptosis, and cell proliferation. This study investigated the role of CHI3L1 SNPs in HCC susceptibility and clinicopathology. Real-time polymerase chain reaction was used to analyze four SNPs of CHI3L1 in 343 patients with HCC and 686 cancer-free controls. We found associations with HCC susceptibility in CHI3L1 rs880633 polymorphism carriers with genotypes (TC+CC). We observed that HCC patients had lower frequencies of CHI3L1 rs6691378 polymorphisms with the variant genotype GA+AA than the wild-type carriers with distant metastasis and positive HBsAg did. In 200 HBsAg negative HCC patients, we observed that the CHI3L1 rs4950928 polymorphisms carriers with the variant genotype CG+GG had higher frequencies of vascular invasion. Finally, carriers of CHI3L1 rs6691378 and 10399805 polymorphisms with the variant genotypes GA+AA showed lower levels of alpha-fetoprotein in HCC laboratory status. In conclusion, our results indicate that patients with CHI3L1 rs880633 variant genotypes TC+CC are at a higher risk of HCC. CHI3L1 polymorphisms rs880633 or rs4950928 may be potential candidates for predicting poor HCC prognosis and clinical status. PMID:28260989

  12. Single nucleotide polymorphisms and outcome risk in unrelated mismatched hematopoietic stem cell transplantation: an exploration study.

    PubMed

    Harkensee, Christian; Oka, Akira; Onizuka, Makoto; Middleton, Peter G; Inoko, Hidetoshi; Hirayasu, Kouyuki; Kashiwase, Koichi; Yabe, Toshio; Nakaoka, Hirofumi; Gennery, Andrew R; Ando, Kiyoshi; Morishima, Yasuo

    2012-06-28

    Genetic risk factors contribute to adverse outcome of hematopoietic stem cell transplantation (HSCT). Mismatching of the HLA complex most strongly determines outcomes, whereas non-HLA genetic polymorphisms are also having an impact. Although the majority of HSCTs are mismatched, only few studies have investigated the effects of non-HLA polymorphisms in the unrelated HSCT and HLA-mismatched setting. To understand these effects, we genotyped 41 previously studied single nucleotide polymorphisms (SNPs) in 2 independent, large cohorts of HSCT donor-recipient pairs (n = 460 and 462 pairs) from a homogeneous genetic background. The study population was chosen to pragmatically represent a large clinically homogeneous group (acute leukemia), allowing all degrees of HLA matching. The TNF-1031 donor-recipient genotype mismatch association with acute GVHD grade 4 was the only consistent association identified. Analysis of a subgroup of higher HLA matching showed consistent associations of the recipient IL2-330 GT genotype with risk of chronic GVHD, and the donor CTLA4-CT60 GG genotype with protection from acute GVHD. These associations are strong candidates for prediction of risk in a clinical setting. This study shows that non-HLA gene polymorphisms are of relevance for predicting HSCT outcome, even for HLA mismatched transplants.

  13. A single nucleotide polymorphism of porcine MX2 gene provides antiviral activity against vesicular stomatitis virus.

    PubMed

    Sasaki, Keisuke; Tungtrakoolsub, Pullop; Morozumi, Takeya; Uenishi, Hirohide; Kawahara, Manabu; Watanabe, Tomomasa

    2014-01-01

    The objective was to determine if single nucleotide polymorphisms (SNPs) in porcine MX2 gene affect its antiviral potential. MX proteins are known to suppress the multiplication of several viruses, including influenza virus and vesicular stomatitis virus (VSV). In domestic animals possessing highly polymorphic genome, our previous research indicated that a specific SNP in chicken Mx gene was responsible for its antiviral function. However, there still has been no information about SNPs in porcine MX2 gene. In this study, we first conducted polymorphism analysis in 17 pigs of MX2 gene derived from seven breeds. Consequently, a total of 30 SNPs, of which 11 were deduced to cause amino acid variations, were detected, suggesting that the porcine MX2 is very polymorphic. Next, we classified MX2 into eight alleles (A1-A8) and subsequently carried out infectious experiments with recombinant VSVΔG*-G to each allele. In A1-A5 and A8, position 514 amino acid (514 aa) of MX2 was glycine (Gly), which did not inhibit VSV multiplication, whereas in A6 and A7, 514 aa was arginine (Arg), which exhibited the antiviral ability against VSV. These results demonstrate that a SNP at 514 aa (Gly-Arg) of porcine MX2 plays a pivotal role in the antiviral activity as well as that at 631 aa of chicken Mx.

  14. Analysis of the Association between MDM4 rs4245739 Single Nucleotide Polymorphism and Breast Cancer Susceptibility.

    PubMed

    Pedram, Negar; Pouladi, Nasser; Feizi, Mohammad A Hosseinpour; Montazeri, Vahid; Sakhinia, Ebrahim; Estiar, Mehrdad A

    2016-07-01

    MDM4 is a negative regulator of the p53 tumor suppression pathway. Recent studies have revealed that the rs4245739 A>C polymorphism of MDM4 in the 3-untranslated region makes it a miR-191 target site which leads to lower MDM4 expression. This study is aimed to detect if rs4245739 single nucleotide polymorphism (SNP) of the MDM4 gene influences the breast cancer development in Iranian-Azeri women. Blood samples were taken from 260 healthy controls and 220 breast cancer women with ethnicity of Iranian-Azeri. Genotyping was done using Tetra-ARMS PCR. Alleles of MDM4 rs4245739 SNP had no significant different frequency between patients and controls (p > 0.05). Additionally, genotypes of MDM4 rs4245739 SNP did not increase or decrease breast cancer risk in patients when compared to healthy women. Also, there was no significant association between the alleles of MDM4 rs4245739 SNP and clinicopathological factors (p > 0.05). Considering the lack of association between MDM4 rs4245739 polymorphism and breast cancer, rs4245739 polymorphism of this gene seems to have no significant role in the pathophysiology of the disease.

  15. Functional Single-Nucleotide Polymorphisms in the BRCA1 Gene and Risk of Salivary Gland Carcinoma

    PubMed Central

    Xu, Li; Doan, Phi C.; Wei, Qingyi; Li, Guojun; Sturgis, Erich M.

    2012-01-01

    Objectives Polymorphic BRCA1 is a vital tumor suppressor gene within the DNA double-strand break repair pathways, but its association with salivary gland carcinoma (SGC) has yet to be investigated. Materials and Methods In a case-control study of 156 SGC patients and 511 controls, we used unconditional logistical regression analyses to investigate the association between SGC risk and seven common functional single-nucleotide polymorphisms (A1988G, A31875G, C33420T, A33921G, A34356G, T43893C and A55298G) in BRCA1. Results T43893C TC/CC genotype was associated with a reduction of SGC risk (adjusted odds ratio =0.55, 95% CI: 0.38–0.80, Bonferroni-adjusted p=0.011), which was more pronounced in women, non-Hispanic whites, and individuals with a family history of cancer in first-degree relatives. The interaction between T43893C and family history of cancer was significant (p=0.009). The GATGGCG and AACAACA haplotypes, both of which carry the T43893C minor allele, were also associated with reduced SGC risk. Conclusion Our results suggest that polymorphic BRCA1, particularly T43893C polymorphism, may protect against SGC. PMID:22503699

  16. Analysis of Association Between MGMT and p53 Gene Single Nucleotide Polymorphisms and Laryngeal Cancer.

    PubMed

    Lv, Yayun; Jia, Chuanliang; Jiang, Aihua; Zhang, Hua; Wang, Yunqiang; Liu, Feifei; Yang, Linlin; Sun, Yan; Lv, Runli; Song, Xicheng

    2017-08-01

    To investigate the p53 and O(6)-methylguanine DNA methyltransferase (MGMT)5' upstream sequence gene promoter regions for single nucleotide polymorphisms and explore the p53 gene 5' upstream sequence consisting of two haplotypes to provide a genetic marker for the incidence of laryngeal squamous cell carcinoma. We included 96 cases of laryngeal squamous cell carcinoma and 102 controls. We used SNaPshot micro-sequencing analysis of the MGMT promoter region for four single nucleotide polymorphisms and p53 gene 5' upstream sequence loci (rs1625649, rs2287499, rs2287498, rs228749) genotypes. We calculated and compared two groups for genotypic and allelic frequencies, applied HaploView4.2 for computing rs2287499, rs2287498, rs228749 values and haplotype frequencies and tested control loci and Hardy-Weinberg equilibrium. All the experimental data were statistically evaluated using SPSS17.0. The Chi-square test was used for statistical analysis with p<0.05 indicating statistical significance. 5'Upstream single nucleotide polymorphisms rs1625649, rs2287499, rs2287498, rs228749 of p53 were polymorphic in both patient and control groups. There was no statistical significance in frequency distributions for the four loci genotypes when comparing patients and healthy controls (Chi-square values were 4.47, 0.98, 1.67, 4.68, respectively; p>0.05). However, allelic frequencies of the MGMT promoter region locus rs1625649 between patients and healthy control groups were statistically significantly different (chi-square value of 5.77; p<0.05). Differences between allelic frequencies for the p53 gene 5' upstream sequence loci rs2287499, rs2287498 and rs228749 between patients and the healthy control group were not statistically significant (Chi-square values were 1.11,1.56,3.36; p>0.05). Nor were those for the two haplotypes of rs2287499, rs2287498 and rs228749 between patients and the healthy control group were not statistically significant (Chi-square value 1.46, p>0.05). MGMT gene

  17. Naked-eye fingerprinting of single nucleotide polymorphisms on psoriasis patients

    NASA Astrophysics Data System (ADS)

    Valentini, Paola; Marsella, Alessandra; Tarantino, Paolo; Mauro, Salvatore; Baglietto, Silvia; Congedo, Maurizio; Paolo Pompa, Pier

    2016-05-01

    We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics.We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02200f

  18. The Visual Colorimetric Detection of Multi-nucleotide Polymorphisms on a Pneumatic Droplet Manipulation Platform.

    PubMed

    Yeh, Szu-I; Fang, Wei-Feng; Huang, Chao-Jyun; Wang, Tzu-Ming; Yang, Jing-Tang

    2016-09-27

    A simple and visual method to detect multi-nucleotide polymorphism (MNP) was performed on a pneumatic droplet manipulation platform on an open surface. This approach to colorimetric DNA detection was based on the hybridization-mediated growth of gold nanoparticle probes (AuNP probes). The growth size and configuration of the AuNP are dominated by the number of DNA samples hybridized with the probes. Based on the specific size- and shape-dependent optical properties of the nanoparticles, the number of mismatches in a sample DNA fragment to the probes is able to be discriminated. The tests were conducted via droplets containing reagents and DNA samples respectively, and were transported and mixed on the pneumatic platform with the controlled pneumatic suction of the flexible PDMS-based superhydrophobic membrane. Droplets can be delivered simultaneously and precisely on an open-surface on the proposed pneumatic platform that is highly biocompatible with no side effect of DNA samples inside the droplets. Combining the two proposed methods, the multi-nucleotide polymorphism can be detected at sight on the pneumatic droplet manipulation platform; no additional instrument is required. The procedure from installing the droplets on the platform to the final result takes less than 5 min, much less than with existing methods. Moreover, this combined MNP detection approach requires a sample volume of only 10 µl in each operation, which is remarkably less than that of a macro system.

  19. A single nucleotide polymorphism assay for the identification of unisexual Ambystoma salamanders.

    PubMed

    Greenwald, Katherine R; Lisle Gibbs, H

    2012-03-01

    Unisexual (all female) salamanders in the genus Ambystoma are animals of variable ploidy (2N-5N) that reproduce via a unique system of 'leaky' gynogenesis. As a result, these salamanders have a diverse array of nuclear genome combinations from up to five sexual species: the blue-spotted (A. laterale), Jefferson (A. jeffersonianum), smallmouth (A. texanum), tiger (A. tigrinum) and streamside (A. barbouri) salamanders. Identifying the genome complement, or biotype, is a critical first step in addressing a broad range of ecological and evolutionary questions about these salamanders. Previous work relied upon genome-related differences in allele size distributions for specific microsatellite loci, but overlap in these distributions among different genomes makes definitive identification and ploidy determination in unisexuals difficult or impossible. Here, we develop the first single nucleotide polymorphism assay for the identification of unisexual biotypes, based on species-specific nucleotide polymorphisms in noncoding DNA loci. Tests with simulated and natural unisexual DNA samples show that this method can accurately identify genome complement and estimate ploidy, making this a valuable tool for assessing the genome composition of unisexual samples.

  20. Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing.

    PubMed

    Marín, Antonio García; García-Mendiola, Tania; Bernabeu, Cristina Navio; Hernández, María Jesús; Piqueras, Juan; Pau, Jose Luis; Pariente, Félix; Lorenzo, Encarnación

    2016-05-05

    A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori onto GaNP/Si substrates; complementary target sequences of Helicobacter pylori can be quantified over the range of 10 pM to 3.0 nM with a detection limit of 6.0 pM and a linear correlation coefficient of R(2) = 0.990. The selectivity of the device allows the detection of a single nucleotide polymorphism (SNP) in a specific sequence of Helicobacter pylori, without the need for a hybridization suppressor in solution such as formamide. Furthermore, it also allows the detection of this sequence in the presence of other pathogens, such as Escherichia coli in the sample. The broad applicability of the system was demonstrated by the detection of a specific gene mutation directly associated with cystic fibrosis in large genomic DNA isolated from blood cells.

  1. Modified tetra-primer ARMS PCR as a single-nucleotide polymorphism genotyping tool.

    PubMed

    Mesrian Tanha, Hamzeh; Mojtabavi Naeini, Marjan; Rahgozar, Soheila; Rasa, Seyed Mohammad Mahdi; Vallian, Sadeq

    2015-03-01

    Genotyping of single-nucleotide polymorphisms (SNPs) has been applied in various genetic contexts. Tetra-primer amplification refractory mutation system (ARMS) polymerase chain reaction (PCR) is reported as a prominent assay for SNP genotyping. However, there were published data that may question the reliability of this method on some occasions, in addition to a laborious and time-consuming procedure of the optimization step. In the current study, a new SNP genotyping method named modified tetra-primer ARMS (MTPA) PCR was developed based on tetra-primer ARMS PCR. The modified method has two improvements in its instruction, including equalization of outer primer and inner primer strength by additional mismatch in outer primers, and consideration of equal annealing temperature of specific fragments more than melting temperature of primers. Advantageously, a new computer software was provided for designing primers based on novel concepts. The usual tetra-primer ARMS PCR has a laborious process for optimization. In nonoptimal PCR programs, identification of the accurate genotype was found to be very difficult. However, in MTPA PCR, equalization of the amplicons and primer strength leads to increasing specificity and convenience of genotyping, which was validated by sequencing. In the MTPA PCR technique, a new mismatch at -2 positions of outer primers and equal annealing temperature improve the genotyping procedure. Together, the introduced method could be suggested as a powerful tool for genotyping single-nucleotide mutations and polymorphisms.

  2. Spatial pattern of nucleotide polymorphism indicates molecular adaptation in the bryophyte Sphagnum fimbriatum.

    PubMed

    Szövényi, P; Hock, Zs; Korpelainen, H; Shaw, A Jonathan

    2009-10-01

    In organisms with haploid-dominant life cycles, natural selection is expected to be especially effective because genetic variation is exposed directly to selection. However, in spore-producing plants with high dispersal abilities, among-population migration may counteract local adaptation by continuously redistributing genetic variability. In this study, we tested for adaptation at the molecular level by comparing nucleotide polymorphism in two genes (GapC and Rpb2) in 10 European populations of the peatmoss species, Sphagnum fimbriatum with variability at nine microsatellite loci assumed to be selectively neutral. In line with previous results, the GapC and Rpb2 genes showed strikingly different patterns of nucleotide polymorphism. Neutrality tests and comparison of population differentiation based on the GapC and Rpb2 genes with neutrally evolving microsatellites using coalescent simulations supported non-neutral evolution in GapC, but neutral evolution in the Rpb2 gene. These observations and the positions of the replacement mutations in the GAPDH enzyme (coded by GapC) indicate a significant impact of replacement mutations on enzyme function. Furthermore, the geographic distribution of alternate GapC alleles and/or linked genomic regions suggests that they have had differential success in the recolonization of Europe following the Last Glacial Maximum.

  3. Assessment of the Geographic Origins of Pinewood Nematode Isolates via Single Nucleotide Polymorphism in Effector Genes

    PubMed Central

    Figueiredo, Joana; Simões, Maria José; Gomes, Paula; Barroso, Cristina; Pinho, Diogo; Conceição, Luci; Fonseca, Luís; Abrantes, Isabel; Pinheiro, Miguel; Egas, Conceição

    2013-01-01

    The pinewood nematode, Bursaphelenchus xylophilus, is native to North America but it only causes damaging pine wilt disease in those regions of the world where it has been introduced. The accurate detection of the species and its dispersal routes are thus essential to define effective control measures. The main goals of this study were to analyse the genetic diversity among B. xylophilus isolates from different geographic locations and identify single nucleotide polymorphism (SNPs) markers for geographic origin, through a comparative transcriptomic approach. The transcriptomes of seven B. xylophilus isolates, from Continental Portugal (4), China (1), Japan (1) and USA (1), were sequenced in the next generation platform Roche 454. Analysis of effector gene transcripts revealed inter-isolate nucleotide diversity that was validated by Sanger sequencing in the genomic DNA of the seven isolates and eight additional isolates from different geographic locations: Madeira Island (2), China (1), USA (1), Japan (2) and South Korea (2). The analysis identified 136 polymorphic positions in 10 effector transcripts. Pairwise comparison of the 136 SNPs through Neighbor-Joining and the Maximum Likelihood methods and 5-mer frequency analysis with the alignment-independent bilinear multivariate modelling approach correlated the SNPs with the isolates geographic origin. Furthermore, the SNP analysis indicated a closer proximity of the Portuguese isolates to the Korean and Chinese isolates than to the Japanese or American isolates. Each geographic cluster carried exclusive alleles that can be used as SNP markers for B. xylophilus isolate identification. PMID:24391785

  4. [Polymorphism of DNA nucleotide sequence as a source of enhancement of the discrimination potential of the STR-markers].

    PubMed

    Zemskova, E Yu; Timoshenko, T V; Leonov, S N; Ivanov, P L

    2016-01-01

    The objective of the present pilot investigation was to reveal and to study polymorphism of nucleotide sequence in the alleles of STR loci of human autosomal DNA with special reference to the role of this phenomenon as a source of the differences between homonymous allelic variants. The secondary objection was to evaluate the possibility of using the data thus obtained for the enhancement of the informative value of the forensic medical genotyping of STR loci by means of identification of single nucleotide polymorphisms (SNP) for the purpose of extending their allelic spectrum. The methodological basis of the study was constituted by the comprehensive amplified fragment length polymorphism (AFLP) analysis and amplified fragment sequence polymorphisms (AFSP) analysis of DNA with the use of the PLEX-ID^TM analytical mass-spectrometry platform (Abbot Molecular, USA). The study has demonstrated that polymorphism of DNA nucleotide sequence can be regarded as the possible source of enhancement of the discriminating potential of STR markers. It means that the analysis of polymorphism of DNA nucleotide sequence for genotyping AFLP-type markers of chromosomal DNA can considerably increase the effectiveness of their application as individualizing markers for the purpose of molecular genetic expertises.

  5. [Association between nucleotide excision repair gene polymorphisms and chromosomal damage in coke-oven workers].

    PubMed

    Cheng, Juan; Leng, Shu-Guang; Dai, Yu-Fei; Pan, Zu-Fei; Niu, Yong; Li, Bin; Zheng, Yu-Xin

    2006-11-01

    To investigate the association of polymorphisms of nucleotide excision repair genes and chromosomal damage in peripheral blood lymphocytes among coke-oven workers. The genotypes of ERCC1 C19007T, ERCC2 C22541A, ERCC2 G23591A, ERCC2 A35931C, ERCC4 T30028C, ERCC5 G3507C and ERCC6 A3368G among 140 coke-oven workers and 66 non-coke-oven controls were determined by PCR-PFLP methods. Chromosomal damage was detected by cytokinesis-block micronucleus (CBMN) assay. Multivariate analysis of covariance revealed that in coke-oven workers, the ERCC1 19007 CC genotype exhibited significantly higher CBMN frequency [(1.05 +/- 0.68)%] than did the CT [(0.81 +/- 0.66)%] (P = 0.01) or TT [(0.66 +/- 0.37)%] (P = 0.05) or CT + TT genotypes [(0.75 +/- 0.63)%] (P = 0.004). For the ERCC6 A3368G polymorphism, AA genotype exhibited significantly higher CBMN frequency [(1.00 +/- 0.69)%] than did the AG [(0.67 +/- 0.42)%] (P = 0.05) or AG + GG genotypes [(0.66 +/- 0.41)%] (P = 0.02). Stratification analysis found the significant association between the two polymorphisms, ERCC1 C19007T and ERCC6 A3368G, and the CBMN frequencies were most pronounced in older workers. In addition, for the polymorphism of ERCC2 G23591A, GA carriers had significantly higher CBMN frequencies [(1.40 +/- 0.63)%] than those GG carriers [(0.98 +/- 0.59)%] (P = 0.01) in older workers. Our results suggested that polymorphisms of ERCC1 C19007T, ERCC6 A3368G and ERCC2 G23591A were associated with the CBMN frequencies in coke-oven workers.

  6. Association between nucleotide excision repair gene polymorphisms and chromosomal damage in coke-oven workers.

    PubMed

    Cheng, J; Leng, S; Dai, Y; Huang, C; Pan, Z; Niu, Y; Li, B; Zheng, Y

    2007-01-01

    The associations between several genetic polymorphisms of nucleotide excision repair genes (NER) and chromosome damage level were studied among 140 coke-oven workers exposed to a high level of polyaromatic hydrocarbons (PAHs) and 66 non-exposed workers. Seven polymorphisms with functional potential in five NER genes (ERCC1, ERCC2, ERCC4, ERCC5 and ERCC6) were genotyped in the 206 study subjects. Multivariate analysis of covariance revealed that coke-oven workers with the ERCC1 19007 CC genotype had significantly higher cytokinesis-block micronucleus frequency (CBMN) (10.5 +/- 6.8 per thousand) than those with CT (8.1 +/- 6.6 per thousand, p = 0.01) or TT (6.6 +/- 3.7-/ per thousand p = 0.05) or CT+TT genotypes (7.5 +/- 6.3 per thousand, p = 0.004). The ERCC6 A3368G polymorphism was also associated with CBMN frequency among coke-oven workers. Subjects with the AA genotype have a significantly higher CBMN frequency (10.0 +/- 6.9 per thousand) than those with AG (6.7 +/- 4.2 per thousand, p = 0.05) or AG+GG genotypes (6.6 +/- 4.1 per thousand, p = 0.02). Stratification analysis revealed the significant associations between ERCC1 C19007T and ERCC6 A3368G, and the CBMN frequencies were only found among older workers. In addition, a significant association between ERCC2 G23591A polymorphism and CBMN frequencies was also found among older coke-oven workers. The results suggest that polymorphisms of ERCC1 C19007T, ERCC6 A3368G and ERCC2 G23591A are associated with the CBMN frequencies among coke-oven workers.

  7. Determination of Single-Nucleotide Polymorphisms by Real-time Pyrophosphate DNA Sequencing

    PubMed Central

    Alderborn, Anders; Kristofferson, Anna; Hammerling, Ulf

    2000-01-01

    The characterization of naturally occurring variations in the human genome has evoked an immense interest during recent years. Variations known as biallelic Single-Nucleotide Polymorphisms (SNPs) have become increasingly popular markers in molecular genetics because of their wide application both in evolutionary relationship studies and in the identification of susceptibility to common diseases. We have addressed the issue of SNP genotype determination by investigating variations within the Renin–Angiotensin–Aldosterone System (RAAS) using pyrosequencing, a real-time pyrophosphate detection technology. The method is based on indirect luminometric quantification of the pyrophosphate that is released as a result of nucleotide incorporation onto an amplified template. The technical platform employed comprises a highly automated sequencing instrument that allows the analysis of 96 samples within 10 to 20 minutes. In addition to each studied polymorphic position, 5–10 downstream bases were sequenced for acquisition of reference signals. Evaluation of pyrogram data was accomplished by comparison of peak heights, which are proportional to the number of incorporated nucleotides. Analysis of the pyrograms that resulted from alternate allelic configurations for each addressed SNP revealed a highly discriminating pattern. Homozygous samples produced clear-cut single base peaks in the expected position, whereas heterozygous counterparts were characterized by distinct half-height peaks representing both allelic positions. Whenever any of the allelic bases of an SNP formed a homopolymer with adjacent bases, the nonallelic signal was added to those of the SNP. This feature did not, however, influence SNP readability. Furthermore, the multibase reading capacity of the described system provides extensive flexibility in regard to the positioning of sequencing primers and allows the determination of several closely located SNPs in a single run. PMID:10958643

  8. Genomic lineages of Rhizobium etli revealed by the extent of nucleotide polymorphisms and low recombination

    PubMed Central

    2011-01-01

    Background Most of the DNA variations found in bacterial species are in the form of single nucleotide polymorphisms (SNPs), but there is some debate regarding how much of this variation comes from mutation versus recombination. The nitrogen-fixing symbiotic bacteria Rhizobium etli is highly variable in both genomic structure and gene content. However, no previous report has provided a detailed genomic analysis of this variation at nucleotide level or the role of recombination in generating diversity in this bacterium. Here, we compared draft genomic sequences versus complete genomic sequences to obtain reliable measures of genetic diversity and then estimated the role of recombination in the generation of genomic diversity among Rhizobium etli. Results We identified high levels of DNA polymorphism in R. etli, and found that there was an average divergence of 4% to 6% among the tested strain pairs. DNA recombination events were estimated to affect 3% to 10% of the genomic sample analyzed. In most instances, the nucleotide diversity (π) was greater in DNA segments with recombinant events than in non-recombinant segments. However, this degree of recombination was not sufficiently large to disrupt the congruence of the phylogenetic trees, and further evaluation of recombination in strains quartets indicated that the recombination levels in this species are proportionally low. Conclusion Our data suggest that R. etli is a species composed of separated lineages with low homologous recombination among the strains. Horizontal gene transfer, particularly via the symbiotic plasmid characteristic of this species, seems to play an important role in diversity but the lineages maintain their evolutionary cohesiveness. PMID:22004448

  9. Identification of a Novel Single Nucleotide Polymorphism in Porcine Beta-Defensin-1 Gene.

    PubMed

    Pruthviraj, D R; Usha, A P; Venkatachalapathy, R T

    2016-03-01

    Porcine beta-defensin-1 (PBD-1) gene plays an important role in the innate immunity of pigs. The peptide encoded by this gene is an antimicrobial peptide that has direct activity against a wide range of microbes. This peptide is involved in the co-creation of an antimicrobial barrier in the oral cavity of pigs. The objective of the present study was to detect polymorphisms, if any, in exon-1 and exon-2 regions of PBD-1 gene in Large White Yorkshire (LWY) and native Ankamali pigs of Kerala, India. Blood samples were collected from 100 pigs and genomic DNA was isolated using phenol chloroform method. The quantity of DNA was assessed in a spectrophotometer and quality by gel electrophoresis. Exon-1 and exon-2 regions of PBD-1 gene were amplified by polymerase chain reaction (PCR) and the products were subjected to single strand conformation polymorphism (SSCP) analysis. Subsequent silver staining of the polyacrylamide gels revealed three unique SSCP banding patterns in each of the two exons. The presence of single nucleotide polymorphisms (SNPs) was confirmed by nucleotide sequencing of the PCR products. A novel SNP was found in the 5'-UTR region of exon-1 and a SNP was detected in the mature peptide coding region of exon-2. In exon-1, the pooled population frequencies of GG, GT, and TT genotypes were 0.67, 0.30, and 0.03, respectively. GG genotype was predominant in both the breeds whereas TT genotype was not detected in LWY breed. Similarly, in exon-2, the pooled population frequencies of AA, AG, and GG genotypes were 0.50, 0.27, and 0.23, respectively. AA genotype was predominant in LWY pigs whereas GG genotype was predominant in native pigs. These results suggest that there exists a considerable genetic variation at PBD-1 locus and further association studies may help in development of a PCR based genotyping test to select pigs with better immunity.

  10. The development and characterization of a 57K single nucleotide polymorphism array for rainbow trout.

    PubMed

    Palti, Y; Gao, G; Liu, S; Kent, M P; Lien, S; Miller, M R; Rexroad, C E; Moen, T

    2015-05-01

    In this study, we describe the development and characterization of the first high-density single nucleotide polymorphism (SNP) genotyping array for rainbow trout. The SNP array is publically available from a commercial vendor (Affymetrix). The SNP genotyping quality was high, and validation rate was close to 90%. This is comparable to other farm animals and is much higher than previous smaller scale SNP validation studies in rainbow trout. High quality and integrity of the genotypes are evident from sample reproducibility and from nearly 100% agreement in genotyping results from other methods. The array is very useful for rainbow trout aquaculture populations with more than 40 900 polymorphic markers per population. For wild populations that were confounded by a smaller sample size, the number of polymorphic markers was between 10 577 and 24 330. Comparison between genotypes from individual populations suggests good potential for identifying candidate markers for populations' traceability. Linkage analysis and mapping of the SNPs to the reference genome assembly provide strong evidence for a wide distribution throughout the genome with good representation in all 29 chromosomes. A total of 68% of the genome scaffolds and contigs were anchored through linkage analysis using the SNP array genotypes, including ~20% of the genome assembly that has not been previously anchored to chromosomes.

  11. Mining for single nucleotide polymorphisms and insertions / deletions in expressed sequence tag libraries of oil palm.

    PubMed

    Riju, Aykkal; Chandrasekar, Arumugam; Arunachalam, Vadivel

    2007-01-01

    The oil palm is a tropical oil bearing tree. Recently EST-derived SNPs and SSRs are a free by-product of the currently expanding EST (Expressed Sequence Tag) data bases. The development of high-throughput methods for the detection of SNPs (Single Nucleotide Polymorphism) and small indels (insertion / deletion) has led to a revolution in their use as molecular markers. Available (5452) Oil palm EST sequences were mined from dbEST of NCBI. CAP3 program was used to assemble EST sequences into contigs. Candidate SNPs and Indel polymorphisms were detected using the perl script auto_snip version 1.0 which has used 576 ESTs for detecting SNPs and Indel sites. We found 1180 SNP sites and 137 indel polymorphisms with frequency 1.36 SNPs / 100 bp. Among the six tissues from which the EST libraries had been generated, mesocarp had high frequency of 2.91 SNPs and indels per 100 bp whereas the zygotic embryos had lowest frequency of 0.15 per 100 bp. We also used the Shannon index to analyze the proportion of ten possible types of SNP/indels. ESTs from tissues of normal apex showed highest values of Shannon index (0.60) whereas abnormal apex had least value (0.02). The present report deals the use of Shannon index for comparing SNP/ indel frequencies mined from ESTlibraries and also confirm that the frequency of SNP occurrence in oil palm to use them as markers for genetic studies.

  12. High Nucleotide Polymorphism and Rapid Decay of Linkage Disequilibrium in Wild Populations of Caenorhabditis remanei

    PubMed Central

    Cutter, Asher D.; Baird, Scott E.; Charlesworth, Deborah

    2006-01-01

    The common ancestor of the self-fertilizing nematodes Caenorhabditis elegans and C. briggsae must have reproduced by obligate outcrossing, like most species in this genus. However, we have only a limited understanding about how genetic variation is patterned in such male–female (gonochoristic) Caenorhabditis species. Here, we report results from surveying nucleotide variation of six nuclear loci in a broad geographic sample of wild isolates of the gonochoristic C. remanei. We find high levels of diversity in this species, with silent-site diversity averaging 4.7%, implying an effective population size close to 1 million. Additionally, the pattern of polymorphisms reveals little evidence for population structure or deviation from neutral expectations, suggesting that the sampled C. remanei populations approximate panmixis and demographic equilibrium. Combined with the observation that linkage disequilibrium between pairs of polymorphic sites decays rapidly with distance, this suggests that C. remanei will provide an excellent system for identifying the genetic targets of natural selection from deviant patterns of polymorphism and linkage disequilibrium. The patterns revealed in this obligately outcrossing species may provide a useful model of the evolutionary circumstances in C. elegans' gonochoristic progenitor. This will be especially important if self-fertilization evolved recently in C. elegans history, because most of the evolutionary time separating C. elegans from its known relatives would have occurred in a state of obligate outcrossing. PMID:16951062

  13. The role of CGRP and CALCA T-692C single-nucleotide polymorphism in psoriasis vulgaris.

    PubMed

    Guo, Ren; Li, Fang-Fang; Chen, Ming-Liang; Ya, Ming-Zhu; He, Hui-Lan; Li, Dai

    2015-02-01

    Calcitonin gene related protein (CGRP) is increased in both lesional and non-lesional psoriasis. The role of CGRP in the pathogenesis of psoriasis vulgaris is still not clear. We designed to determine the CGRP-I (or CALCA), II (or CALCB) gene expression and morbidity and CALCA T-692C single-nucleotide polymorphism (SNP). Peripheral blood mononuclear cells (PBMCs) and plasma samples were collected, and CGRP level and CGRP-I, II mRNA expression were measured in psoriasis patients and healthy controls. The CALCA T-692C genetic polymorphism in psoriasis and control subjects was also compared. A higher expression of CGRP-I, II mRNA in PBMCs in psoriasis patients. The plasma CGRP level in psoriasis patients was also higher than that in healthy subjects. SNP analysis showed carriers of the T-692C allele were over-represented in non-drinking Patients. The plasma CGRP level was higher in alcohol-drinking patients with TT genotype than that with TC genotype. The plasma CGRP level is increased in psoriasis patients and CALCA T-692C polymorphism TT genotype is a factor for the affectability in alcohol-drinking Psoriasis vulgaris patients.

  14. Single nucleotide polymorphism mapping and alignment of recombinant chromosome substitution lines in barley.

    PubMed

    Sato, Kazuhiro; Close, Timothy J; Bhat, Prasanna; Muñoz-Amatriaín, María; Muehlbauer, Gary J

    2011-05-01

    Single nucleotide polymorphism (SNP) genotyping is useful for assessing genetic variation in germplasm collections, genetic map development and detection of alien chromosome substitutions. In this study, a diversity analysis using 1,301 SNPs on a set of 37 barley accessions was conducted. This analysis showed a high polymorphism rate between the malting barley cultivar 'Haruna Nijo' and the food barley cultivar 'Akashinriki'. Haruna Nijo and Akashinriki are donors of the barley expressed sequence tag (EST) collections. A doubled haploid (DH) population derived from the cross between Haruna Nijo and Akashinriki was genotyped with 1,448 SNPs. Of these 1,448 SNPs, 734 were polymorphic and distributed on barley linkage groups (chromosomes) as follows: 1H (86), 2H (125), 3H (120), 4H (100), 5H (127), 6H (88) and 7H (88). By using cMAP, we integrated the SNP markers across high-density maps. The SNPs were also used to genotype 98 BC(3)F(4) recombinant chromosome substitution lines (RCSLs) developed from the same cross (Haruna Nijo/Akashinriki). These data were used to create graphical genotypes for each line and thus estimate the location, extent and total number of introgressions from Akashinriki in the Haruna Nijo background. The 35 selected RCSLs sample most of the Akashinriki food barley genome, with only a few missing segments. These resources bring new alleles into the malting barley gene pool from food barley.

  15. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  16. The single nucleotide polymorphism Rs12817488 is associated with Parkinson's disease in the Chinese population.

    PubMed

    Yu, Ri-li; Guo, Ji-feng; Wang, Ya-qin; Liu, Zhen-hua; Sun, Zhan-fang; Su, Li; Zhang, Yuan; Yan, Xin-xiang; Tang, Bei-sha

    2015-06-01

    A recent meta-analysis of datasets from five of the published Parkinson's disease (PD) genome-wide association studies implicated the single nucleotide polymorphism (SNP) rs12817488 in coiled-coil domain containing 62 (CCDC62)/huntingtin interacting protein 1 related (HIP1R) as a risk factor for PD. We conducted a case-control study to evaluate the possible association between rs12817488 and PD in Chinese people. All patients (515 PD patients and 518 age and sex-matched controls) were successfully genotyped using polymerase chain reaction restriction fragment length polymorphism analysis. We observed that the rs12817488 polymorphism is associated with PD (p=0.003) and that the genotype and allele frequencies showed a difference between late-onset PD patients and male controls (p=0.025 and p=0.007, respectively). However, there was no difference in the early-onset PD patients and controls. We found a difference in the genotype and allele frequencies between the male PD patients and the male controls (p=0.034 and p=0.017, respectively). However, there was no difference in females. Patients with the A allele were susceptible to PD in both dominant (GA+AA versus GG; odds ratio [OR] 1.365, 95% confidence interval [CI] 1.041-1.788) and recessive (AA versus GG+GA; OR 1.606, 95% CI 1.194-2.158) models. Therefore, our findings support the conclusion that the rs12817488 in CCDC62/HIP1R polymorphism may increase the risk of PD in the Chinese Han population.

  17. Genotyping of single nucleotide polymorphisms related to attention-deficit hyperactivity disorder.

    PubMed

    Tortajada-Genaro, Luis A; Mena, Salvador; Niñoles, Regina; Puigmule, Marta; Viladevall, Laia; Maquieira, Ángel

    2016-03-01

    Pharmacological treatment of several diseases, such as attention-deficit hyperactivity disorder (ADHD), presents marked variability in efficiency and its adverse effects. The genotyping of specific single nucleotide polymorphisms (SNPs) can support the prediction of responses to drugs and the genetic risk of presenting comorbidities associated with ADHD. This study presents two rapid and affordable microarray-based strategies to discriminate three clinically important SNPs in genes ADRA2A, SL6CA2, and OPRM1 (rs1800544, rs5569, and rs1799971, respectively). These approaches are allele-specific oligonucleotide hybridization (ASO) and a combination of allele-specific amplification (ASA) and solid-phase hybridization. Buccal swab and blood samples taken from ADHD patients and controls were analyzed by ASO, ASA, and a gold-reference method. The results indicated that ASA is superior in genotyping capability and analytical performance.

  18. Developing single nucleotide polymorphism (SNP) markers from transcriptome sequences for identification of longan (Dimocarpus longan) germplasm

    PubMed Central

    Wang, Boyi; Tan, Hua-Wei; Fang, Wanping; Meinhardt, Lyndel W; Mischke, Sue; Matsumoto, Tracie; Zhang, Dapeng

    2015-01-01

    Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in 50 longan germplasm accessions, including cultivated varieties and wild germplasm; and designated 25 SNP markers that unambiguously identified all tested longan varieties with high statistical rigor (P<0.0001). Multiple trees from the same clone were verified and off-type trees were identified. Diversity analysis revealed genetic relationships among analyzed accessions. Cultivated varieties differed significantly from wild populations (Fst=0.300; P<0.001), demonstrating untapped genetic diversity for germplasm conservation and utilization. Within cultivated varieties, apparent differences between varieties from China and those from Thailand and Hawaii indicated geographic patterns of genetic differentiation. These SNP markers provide a powerful tool to manage longan genetic resources and breeding, with accurate and efficient genotype identification. PMID:26504559

  19. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious diseases

    PubMed Central

    Skevaki, C; Pararas, M; Kostelidou, K; Tsakris, A; Routsias, J G

    2015-01-01

    Toll-like receptors (TLRs) are the best-studied family of pattern-recognition receptors (PRRs), whose task is to rapidly recognize evolutionarily conserved structures on the invading microorganisms. Through binding to these patterns, TLRs trigger a number of proinflammatory and anti-microbial responses, playing a key role in the first line of defence against the pathogens also promoting adaptive immunity responses. Growing amounts of data suggest that single nucleotide polymorphisms (SNPs) on the various human TLR proteins are associated with altered susceptibility to infection. This review summarizes the role of TLRs in innate immunity, their ligands and signalling and focuses on the TLR SNPs which have been linked to infectious disease susceptibility. PMID:25560985

  20. Plasmonics nanoprobes: detection of single-nucleotide polymorphisms in the breast cancer BRCA1 gene.

    PubMed

    Wabuyele, Musundi B; Yan, Fei; Vo-Dinh, Tuan

    2010-09-01

    This paper describes the application of plasmonics-based nanoprobes that combine the modulation of the plasmonics effect to change the surface-enhanced Raman scattering (SERS) of a Raman label and the specificity of a DNA hairpin loop sequence to recognize and discriminate a variety of molecular target sequences. Hybridization with target DNA opens the hairpin and physically separates the Raman label from the metal nanoparticle thus reducing the plasmonics effect and quenching the SERS signal of the label. We have successfully demonstrated the specificity and selectivity of the nanoprobes in the detection of a single-nucleotide polymorphism (SNP) in the breast cancer BRCA1 gene in a homogenous solution at room temperature. In addition, the potential application of plasmonics nanoprobes for quantitative DNA diagnostic testing is discussed.

  1. Large-scale detection and application of expressed sequence tag single nucleotide polymorphisms in Nicotiana.

    PubMed

    Wang, Y; Zhou, D; Wang, S; Yang, L

    2015-07-14

    Single nucleotide polymorphisms (SNPs) are widespread in the Nicotiana genome. Using an alignment and variation detection method, we developed 20,607,973 SNPs, based on the expressed sequence tag sequences of 10 Nicotiana species. The replacement rate was much higher than the transversion rate in the SNPs, and SNPs widely exist in the Nicotiana. In vitro verification indicated that all of the SNPs were high quality and accurate. Evolutionary relationships between 15 varieties were investigated by polymerase chain reaction with a special primer; the specific 302 locus of these sequence results clearly indicated the origin of Zhongyan 100. A database of Nicotiana SNPs (NSNP) was developed to store and search for SNPs in Nicotiana. NSNP is a tool for researchers to develop SNP markers of sequence data.

  2. Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing

    NASA Astrophysics Data System (ADS)

    Marín, Antonio García; García-Mendiola, Tania; Bernabeu, Cristina Navio; Hernández, María Jesús; Piqueras, Juan; Pau, Jose Luis; Pariente, Félix; Lorenzo, Encarnación

    2016-05-01

    A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori onto GaNP/Si substrates; complementary target sequences of Helicobacter pylori can be quantified over the range of 10 pM to 3.0 nM with a detection limit of 6.0 pM and a linear correlation coefficient of R2 = 0.990. The selectivity of the device allows the detection of a single nucleotide polymorphism (SNP) in a specific sequence of Helicobacter pylori, without the need for a hybridization suppressor in solution such as formamide. Furthermore, it also allows the detection of this sequence in the presence of other pathogens, such as Escherichia coli in the sample. The broad applicability of the system was demonstrated by the detection of a specific gene mutation directly associated with cystic fibrosis in large genomic DNA isolated from blood cells.A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori

  3. DivStat: A User-Friendly Tool for Single Nucleotide Polymorphism Analysis of Genomic Diversity

    PubMed Central

    Soares, Inês; Moleirinho, Ana; Oliveira, Gonçalo N. P.; Amorim, António

    2015-01-01

    Recent developments have led to an enormous increase of publicly available large genomic data, including complete genomes. The 1000 Genomes Project was a major contributor, releasing the results of sequencing a large number of individual genomes, and allowing for a myriad of large scale studies on human genetic variation. However, the tools currently available are insufficient when the goal concerns some analyses of data sets encompassing more than hundreds of base pairs and when considering haplotype sequences of single nucleotide polymorphisms (SNPs). Here, we present a new and potent tool to deal with large data sets allowing the computation of a variety of summary statistics of population genetic data, increasing the speed of data analysis. PMID:25756185

  4. No association of single nucleotide polymorphisms in one-carbon metabolism genes with prostate cancer risk.

    PubMed

    Stevens, Victoria L; Rodriguez, Carmen; Sun, Juzhong; Talbot, Jeffrey T; Thun, Michael J; Calle, Eugenia E

    2008-12-01

    One-carbon metabolism mediates the interconversion of folates for the synthesis of precursors used in DNA synthesis, repair, and methylation. Inadequate folate nutrition or compromised metabolism can disrupt these processes and facilitate carcinogenesis. In this study, we investigated associations of 39 candidate single nucleotide polymorphisms (SNP) in 9 one-carbon metabolism genes with risk of prostate cancer using 1,144 cases and 1,144 controls from the Cancer Prevention Study-II Nutrition Cohort. None of these SNPs were significantly associated with prostate cancer risk, either overall or in cases with advanced prostate cancer. Thus, our findings do not support the hypothesis that common genetic variation in one-carbon metabolism genes influences prostate cancer risk.

  5. Quantifying the utility of single nucleotide polymorphisms to guide colorectal cancer screening

    PubMed Central

    Jenkins, Mark A; Makalic, Enes; Dowty, James G; Schmidt, Daniel F; Dite, Gillian S; MacInnis, Robert J; Ait Ouakrim, Driss; Clendenning, Mark; Flander, Louisa B; Stanesby, Oliver K; Hopper, John L; Win, Aung K; Buchanan, Daniel D

    2016-01-01

    Aim: To determine whether single nucleotide polymorphisms (SNPs) can be used to identify people who should be screened for colorectal cancer. Methods: We simulated one million people with and without colorectal cancer based on published SNP allele frequencies and strengths of colorectal cancer association. We estimated 5-year risks of colorectal cancer by number of risk alleles. Results: We identified 45 SNPs with an average 1.14-fold increase colorectal cancer risk per allele (range: 1.05–1.53). The colorectal cancer risk for people in the highest quintile of risk alleles was 1.81-times that for the average person. Conclusion: We have quantified the extent to which known susceptibility SNPs can stratify the population into clinically useful colorectal cancer risk categories. PMID:26846999

  6. Single nucleotide polymorphism genotyping of Erysipelothrix rhusiopathiae isolates from pigs affected with chronic erysipelas in Japan.

    PubMed

    Shiraiwa, Kazumasa; Ogawa, Yohsuke; Nishikawa, Sayaka; Kusumoto, Masahiro; Eguchi, Masahiro; Shimoji, Yoshihiro

    2017-04-05

    Over the past decades, Erysipelothrix rhusiopathiae strains displaying similar phenotypic and genetic profiles of the attenuated, acriflavine-resistant E. rhusiopathiae Koganei 65-0.15 strain (serovar 1a) have been frequently isolated from pigs affected with chronic erysipelas in Japan. In this study, using the conventional PCR assay that was designed to detect strain-specific single nucleotide polymorphism (SNP) sites found in the genome of the vaccine strain, we analyzed E. rhusiopathiae isolates from pigs with chronic disease in farms where the Koganei vaccine was used. Out of a total of 155 isolates, 101 isolates (65.2%) were determined to be the vaccine strain by SNP-based PCR. Among the 101 PCR-positive isolates, four isolates were found to be sensitive to acriflavine.

  7. Accurate zygote-specific discrimination of single-nucleotide polymorphisms using microfluidic electrochemical DNA melting curves.

    PubMed

    Yang, Allen H J; Hsieh, Kuangwen; Patterson, Adriana S; Ferguson, B Scott; Eisenstein, Michael; Plaxco, Kevin W; Soh, H Tom

    2014-03-17

    We report the first electrochemical system for the detection of single-nucleotide polymorphisms (SNPs) that can accurately discriminate homozygous and heterozygous genotypes using microfluidics technology. To achieve this, our system performs real-time melting-curve analysis of surface-immobilized hybridization probes. As an example, we used our sensor to analyze two SNPs in the apolipoprotein E (ApoE) gene, where homozygous and heterozygous mutations greatly affect the risk of late-onset Alzheimer's disease. Using probes specific for each SNP, we simultaneously acquired melting curves for probe-target duplexes at two different loci and thereby accurately distinguish all six possible ApoE allele combinations. Since the design of our device and probes can be readily adapted for targeting other loci, we believe that our method offers a modular platform for the diagnosis of SNP-based diseases and personalized medicine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Single nucleotide polymorphisms and inherited risk of chronic lymphocytic leukemia among African Americans

    PubMed Central

    Coombs, Catherine C.; Rassenti, Laura Z.; Falchi, Lorenzo; Slager, Susan L.; Strom, Sara S.; Ferrajoli, Alessandra; Weinberg, J. Brice; Kipps, Thomas J.

    2012-01-01

    The incidence of chronic lymphocytic leukemia (CLL) is significantly lower in African Americans than whites, but overall survival is inferior. The biologic basis for these observations remains unexplored. We hypothesized that germline genetic predispositions differ between African Americans and whites with CLL and yield inferior clinical outcomes among African Americans. We examined a discovery cohort of 42 African American CLL patients ascertained at Duke University and found that the risk allele frequency of most single nucleotide polymorphisms known to confer risk of development for CLL is significantly lower among African Americans than whites. We then confirmed our results in a distinct cohort of 68 African American patients ascertained by the CLL Research Consortium. These results provide the first evidence supporting differential genetic risk for CLL between African Americans compared with whites. A fuller understanding of differential genetic risk may improve prognostication and therapeutic decision making for all CLL patients. PMID:22745306

  9. Single Nucleotide Polymorphism Genotyping and Distribution of Coxiella burnetii Strains from Field Samples in Belgium

    PubMed Central

    Dal Pozzo, Fabiana; Renaville, Bénédicte; Martinelle, Ludovic; Renaville, Robert; Thys, Christine; Smeets, François; Kirschvink, Nathalie; Grégoire, Fabien; Delooz, Laurent; Czaplicki, Guy

    2015-01-01

    The genotypic characterization of Coxiella burnetii provides useful information about the strains circulating at the farm, region, or country level and may be used to identify the source of infection for animals and humans. The aim of the present study was to investigate the strains of C. burnetii circulating in caprine and bovine Belgian farms using a single nucleotide polymorphism (SNP) technique. Direct genotyping was applied to different samples (bulk tank milk, individual milk, vaginal swab, fetal product, and air sample). Besides the well-known SNP genotypes, unreported ones were found in bovine and caprine samples, increasing the variability of the strains found in the two species in Belgium. Moreover, multiple genotypes were detected contemporarily in caprine farms at different years of sampling and by using different samples. Interestingly, certain SNP genotypes were detected in both bovine and caprine samples, raising the question of interspecies transmission of the pathogen. PMID:26475104

  10. Mapsnp: An R Package to Plot a Genomic Map for Single Nucleotide Polymorphisms

    PubMed Central

    Cao, Hongbao; Jin, Chunhui; Cheng, Zaohuo; Wang, Guoqiang; Shugart, Yin Yao

    2015-01-01

    Single-nucleotide polymorphism (SNP) is one of the most common sources of genetic variations of the genome. Currently, SNPs are a main target for most genetic association studies. Visualizing genomic coordinates of SNPs, including their physical location relative to their host gene, and the structure of the relevant transcripts, may provide intuitive supplements to the understanding of their functions. Nevertheless, to date, no such easy-to-use programming tools exist. Therefore, we developed an R package, “mapsnp”, to plot genomic map for a panel of SNPs within a genome region of interest, including the relative chromosome location and the transcripts in the region. mapsnp is a simple and flexible software package which can be used to visualize a genomic map for SNPs, integrating a chromosome ideogram, genomic coordinates, SNP locations and SNP labels. PMID:25853637

  11. Single nucleotide polymorphisms from Theobroma cacao expressed sequence tags associated with witches' broom disease in cacao.

    PubMed

    Lima, L S; Gramacho, K P; Carels, N; Novais, R; Gaiotto, F A; Lopes, U V; Gesteira, A S; Zaidan, H A; Cascardo, J C M; Pires, J L; Micheli, F

    2009-07-14

    In order to increase the efficiency of cacao tree resistance to witches' broom disease, which is caused by Moniliophthora perniciosa (Tricholomataceae), we looked for molecular markers that could help in the selection of resistant cacao genotypes. Among the different markers useful for developing marker-assisted selection, single nucleotide polymorphisms (SNPs) constitute the most common type of sequence difference between alleles and can be easily detected by in silico analysis from expressed sequence tag libraries. We report the first detection and analysis of SNPs from cacao-M. perniciosa interaction expressed sequence tags, using bioinformatics. Selection based on analysis of these SNPs should be useful for developing cacao varieties resistant to this devastating disease.

  12. Whole-genome linkage analysis in mapping alcoholism genes using single-nucleotide polymorphisms and microsatellites.

    PubMed

    Wang, Shuang; Huang, Song; Liu, Nianjun; Chen, Liang; Oh, Cheongeun; Zhao, Hongyu

    2005-12-30

    There is currently a great interest in using single-nucleotide polymorphisms (SNPs) in genetic linkage and association studies because of the abundance of SNPs as well as the availability of high-throughput genotyping technologies. In this study, we compared the performance of whole-genome scans using SNPs with microsatellites on 143 pedigrees from the Collaborative Studies on Genetics of Alcoholism provided by Genetic Analysis Workshop 14. A total of 315 microsatellites and 10,081 SNPs from Affymetrix on 22 autosomal chromosomes were used in our analyses. We found that the results from the two scans had good overall concordance. One region on chromosome 2 and two regions on chromosome 7 showed significant linkage signals (i.e., NPL >or= 2) for alcoholism from both the SNP and microsatellite scans. The different results observed between the two scans may be explained by the difference observed in information content between the SNPs and the microsatellites.

  13. Developing single nucleotide polymorphism markers for the identification of pineapple (Ananas comosus) germplasm

    PubMed Central

    Zhou, Lin; Matsumoto, Tracie; Tan, Hua-Wei; Meinhardt, Lyndel W; Mischke, Sue; Wang, Boyi; Zhang, Dapeng

    2015-01-01

    Pineapple (Ananas comosus [L.] Merr.) is the third most important tropical fruit in the world after banana and mango. As a crop with vegetative propagation, genetic redundancy is a major challenge for efficient genebank management and in breeding. Using expressed sequence tag and nucleotide sequences from public databases, we developed 213 single nucleotide polymorphism (SNP) markers and validated 96 SNPs by genotyping the United States Department of Agriculture - Agricultural Research Service pineapple germplasm collection, maintained in Hilo, Hawaii. The validation resulted in designation of a set of 57 polymorphic SNP markers that revealed a high rate of duplicates in this pineapple collection. Twenty-four groups of duplicates were detected, encompassing 130 of the total 170 A cosmos accessions. The results show that somatic mutation has been the main source of intra-cultivar variations in pineapple. Multivariate clustering and a model-based population stratification suggest that the modern pineapple cultivars are comprised of progenies that are derived from different wild Ananas botanical varieties. Parentage analysis further revealed that both A. comosus var. bracteatus and A. comosus var. ananassoides are likely progenitors of pineapple cultivars. However, the traditional classification of cultivated pineapple into horticultural groups (e.g. ‘Cayenne’, ‘Spanish’, ‘Queen’) was not well supported by the present study. These SNP markers provide robust and universally comparable DNA fingerprints; thus, they can serve as an efficient genotyping tool to assist pineapple germplasm management, propagation of planting material, and pineapple cultivar protection. The high rate of genetic redundancy detected in this pineapple collection suggests the potential impact of applying this technology on other clonally propagated perennial crops. PMID:26640697

  14. Comprehensive Identification of Single Nucleotide Polymorphisms Associated with Beta-lactam Resistance within Pneumococcal Mosaic Genes

    PubMed Central

    Chewapreecha, Claire; Marttinen, Pekka; Croucher, Nicholas J.; Salter, Susannah J.; Harris, Simon R.; Mather, Alison E.; Hanage, William P.; Goldblatt, David; Nosten, Francois H.; Turner, Claudia

    2014-01-01

    Traditional genetic association studies are very difficult in bacteria, as the generally limited recombination leads to large linked haplotype blocks, confounding the identification of causative variants. Beta-lactam antibiotic resistance in Streptococcus pneumoniae arises readily as the bacteria can quickly incorporate DNA fragments encompassing variants that make the transformed strains resistant. However, the causative mutations themselves are embedded within larger recombined blocks, and previous studies have only analysed a limited number of isolates, leading to the description of “mosaic genes” as being responsible for resistance. By comparing a large number of genomes of beta-lactam susceptible and non-susceptible strains, the high frequency of recombination should break up these haplotype blocks and allow the use of genetic association approaches to identify individual causative variants. Here, we performed a genome-wide association study to identify single nucleotide polymorphisms (SNPs) and indels that could confer beta-lactam non-susceptibility using 3,085 Thai and 616 USA pneumococcal isolates as independent datasets for the variant discovery. The large sample sizes allowed us to narrow the source of beta-lactam non-susceptibility from long recombinant fragments down to much smaller loci comprised of discrete or linked SNPs. While some loci appear to be universal resistance determinants, contributing equally to non-susceptibility for at least two classes of beta-lactam antibiotics, some play a larger role in resistance to particular antibiotics. All of the identified loci have a highly non-uniform distribution in the populations. They are enriched not only in vaccine-targeted, but also non-vaccine-targeted lineages, which may raise clinical concerns. Identification of single nucleotide polymorphisms underlying resistance will be essential for future use of genome sequencing to predict antibiotic sensitivity in clinical microbiology. PMID:25101644

  15. Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes.

    PubMed

    Chewapreecha, Claire; Marttinen, Pekka; Croucher, Nicholas J; Salter, Susannah J; Harris, Simon R; Mather, Alison E; Hanage, William P; Goldblatt, David; Nosten, Francois H; Turner, Claudia; Turner, Paul; Bentley, Stephen D; Parkhill, Julian

    2014-08-01

    Traditional genetic association studies are very difficult in bacteria, as the generally limited recombination leads to large linked haplotype blocks, confounding the identification of causative variants. Beta-lactam antibiotic resistance in Streptococcus pneumoniae arises readily as the bacteria can quickly incorporate DNA fragments encompassing variants that make the transformed strains resistant. However, the causative mutations themselves are embedded within larger recombined blocks, and previous studies have only analysed a limited number of isolates, leading to the description of "mosaic genes" as being responsible for resistance. By comparing a large number of genomes of beta-lactam susceptible and non-susceptible strains, the high frequency of recombination should break up these haplotype blocks and allow the use of genetic association approaches to identify individual causative variants. Here, we performed a genome-wide association study to identify single nucleotide polymorphisms (SNPs) and indels that could confer beta-lactam non-susceptibility using 3,085 Thai and 616 USA pneumococcal isolates as independent datasets for the variant discovery. The large sample sizes allowed us to narrow the source of beta-lactam non-susceptibility from long recombinant fragments down to much smaller loci comprised of discrete or linked SNPs. While some loci appear to be universal resistance determinants, contributing equally to non-susceptibility for at least two classes of beta-lactam antibiotics, some play a larger role in resistance to particular antibiotics. All of the identified loci have a highly non-uniform distribution in the populations. They are enriched not only in vaccine-targeted, but also non-vaccine-targeted lineages, which may raise clinical concerns. Identification of single nucleotide polymorphisms underlying resistance will be essential for future use of genome sequencing to predict antibiotic sensitivity in clinical microbiology.

  16. Developing single nucleotide polymorphism markers for the identification of pineapple (Ananas comosus) germplasm.

    PubMed

    Zhou, Lin; Matsumoto, Tracie; Tan, Hua-Wei; Meinhardt, Lyndel W; Mischke, Sue; Wang, Boyi; Zhang, Dapeng

    2015-01-01

    Pineapple (Ananas comosus [L.] Merr.) is the third most important tropical fruit in the world after banana and mango. As a crop with vegetative propagation, genetic redundancy is a major challenge for efficient genebank management and in breeding. Using expressed sequence tag and nucleotide sequences from public databases, we developed 213 single nucleotide polymorphism (SNP) markers and validated 96 SNPs by genotyping the United States Department of Agriculture - Agricultural Research Service pineapple germplasm collection, maintained in Hilo, Hawaii. The validation resulted in designation of a set of 57 polymorphic SNP markers that revealed a high rate of duplicates in this pineapple collection. Twenty-four groups of duplicates were detected, encompassing 130 of the total 170 A cosmos accessions. The results show that somatic mutation has been the main source of intra-cultivar variations in pineapple. Multivariate clustering and a model-based population stratification suggest that the modern pineapple cultivars are comprised of progenies that are derived from different wild Ananas botanical varieties. Parentage analysis further revealed that both A. comosus var. bracteatus and A. comosus var. ananassoides are likely progenitors of pineapple cultivars. However, the traditional classification of cultivated pineapple into horticultural groups (e.g. 'Cayenne', 'Spanish', 'Queen') was not well supported by the present study. These SNP markers provide robust and universally comparable DNA fingerprints; thus, they can serve as an efficient genotyping tool to assist pineapple germplasm management, propagation of planting material, and pineapple cultivar protection. The high rate of genetic redundancy detected in this pineapple collection suggests the potential impact of applying this technology on other clonally propagated perennial crops.

  17. PERB11 (MIC): a polymorphic MHC gene is expressed in skin and single nucleotide polymorphisms are associated with psoriasis

    PubMed Central

    Tay, G K; Hui, J; Gaudieri, S; Schmitt-Egenolf, M; Martinez, O P; Leelayuwat, C; Williamson, J F; Eiermann, T H; Dawkins, R L

    2000-01-01

    The susceptibility genes for psoriasis remain to be identified. At least one of these must be in the major histocompatibility complex (MHC) to explain associations with alleles at human leucocyte antigen (HLA)-A, -B, -C, -DR, -DQ and C4. In fact, most of these alleles are components of just two ancestral haplotypes (AHs) designated 13.1 and 57.1. Although relevant MHC gene(s) could be within a region of at least 4 Mb, most studies have favoured the area near HLA-B and -C. This region contains a large number of non-HLA genes, many of which are duplicated and polymorphic. Members of one such gene family, PERB11.1 and PERB11.2, are expressed in the skin and are encoded in the region between tumour necrosis factor and HLA-B. To investigate the relationship of PERB11.1 alleles to psoriasis, sequence based typing was performed on 97 patients classified according to age of onset and family history. The frequency of the PERB11.1*06 allele is 44% in type I psoriasis but only 7% in controls (Pc = 0.003 by Fisher's exact test, two-tailed). The major determinant of this association is a single nucleotide polymorphism (SNP) within intron 4. In normal and affected skin, expression of PERB11 is mainly in the basal layer of the epidermis including ducts and follicles. PERB11 is also present in the upper keratin layers but there is relative deficiency in the intermediate layers. These findings suggest a possible role for PERB11 and other MHC genes in the pathogenesis of psoriasis. PMID:10691930

  18. Microarray study of single nucleotide polymorphisms and expression of ATP-binding cassette genes in breast tumors

    NASA Astrophysics Data System (ADS)

    Tsyganov, M. M.; Ibragimova, M. K.; Karabut, I. V.; Freydin, M. B.; Choinzonov, E. L.; Litvyakov, N. V.

    2015-11-01

    Our previous research establishes that changes of expression of the ATP-binding cassette genes family is connected with the neoadjuvant chemotherapy effect. However, the mechanism of regulation of resistance gene expression remains unclear. As many researchers believe, single nucleotide polymorphisms can be involved in this process. Thereupon, microarray analysis is used to study polymorphisms in ATP-binding cassette genes. It is thus found that MDR gene expression is connected with 5 polymorphisms, i.e. rs241432, rs241429, rs241430, rs3784867, rs59409230, which participate in the regulation of expression of own genes.

  19. Different applications of polymerases with and without proofreading activity in single-nucleotide polymorphism analysis.

    PubMed

    Zhang, Jia; Li, Kai; Liao, Duanfang; Pardinas, Jose R; Chen, Linling; Zhang, Xu

    2003-08-01

    With the completion of the human genome project, single-nucleotide polymorphisms (SNPs) have become the focus of intense study in biomedical research. Polymerase-mediated primer extension has been employed in a variety of SNP assays. However, these SNP assays using polymerase without proofreading function are compromised by their low reliability. Using a newly developed short amplicon harboring restriction enzyme site, EcoR-I, we were able to compare the single-base discrimination abilities of polymerases with and without proofreading function in primer extension in a broad range of annealing temperatures. Thermodynamic analysis demonstrated a striking single-nucleotide discrimination ability of polymerases with proofreading function. Using unmodified 3'-end allele-specific primers, only template-dependent products were generated by polymerase with proofreading activity. This powerful single-base discrimination ability of exo(+) polymerases was further evaluated in primer extension using three types of 3' terminally modified allele-specific primers. As compared with the poor fidelity in primer extension of polymerases lacking 3' exonuclease activity, this study provides convincing evidence that the use of proofreading polymerases in combination with 3'-end modified allele-specific primers can be a powerful new strategy for the development of SNP assays.

  20. Ewing's sarcoma: analysis of single nucleotide polymorphism in the EWS gene.

    PubMed

    Silva, Deborah S B S; Sawitzki, Fernanda R; De Toni, Elisa C; Graebin, Pietra; Picanco, Juliane B; Abujamra, Ana Lucia; de Farias, Caroline B; Roesler, Rafael; Brunetto, Algemir L; Alho, Clarice S

    2012-11-10

    We aimed to investigate single nucleotide polymorphisms (SNPs) in the EWS gene breaking region in order to analyze Ewing's sarcoma susceptibility. The SNPs were investigated in a healthy subject population and in Ewing's sarcoma patients from Southern Brazil. Genotyping was performed by TaqMan® assay for allelic discrimination using Real-Time PCR. The analysis of incidence of SNPs or different SNP-arrangements revealed a higher presence of homozygote TT-rs4820804 in Ewing's sarcoma patients (p=0.02; Chi Square Test). About 300 bp from the rs4820804 SNP lies a palindromic hexamer (5'-GCTAGC-3') and three nucleotides (GTC), which were previously identified to be in close vicinity of the breakpoint junction in both EWS and FLI1 genes. This DNA segment surrounding the rs4820804 SNP is likely to indicate a breakpoint region. If the T-rs4820804 allele predisposes a DNA fragment to breakage, homozygotes (TT-rs4820804) would have double the chance of having a chromosome break, increasing the chances for a translocation to occur. In conclusion, the TT-rs4820804 EWS genotype can be associated with Ewing's sarcoma and the SNP rs4820804 can be a candidate marker to understand Ewing's sarcoma susceptibility.

  1. Whole-genome single-nucleotide-polymorphism analysis for discrimination of Clostridium botulinum group I strains.

    PubMed

    Gonzalez-Escalona, Narjol; Timme, Ruth; Raphael, Brian H; Zink, Donald; Sharma, Shashi K

    2014-04-01

    Clostridium botulinum is a genetically diverse Gram-positive bacterium producing extremely potent neurotoxins (botulinum neurotoxins A through G [BoNT/A-G]). The complete genome sequences of three strains harboring only the BoNT/A1 nucleotide sequence are publicly available. Although these strains contain a toxin cluster (HA(+) OrfX(-)) associated with hemagglutinin genes, little is known about the genomes of subtype A1 strains (termed HA(-) OrfX(+)) that lack hemagglutinin genes in the toxin gene cluster. We sequenced the genomes of three BoNT/A1-producing C. botulinum strains: two strains with the HA(+) OrfX(-) cluster (69A and 32A) and one strain with the HA(-) OrfX(+) cluster (CDC297). Whole-genome phylogenic single-nucleotide-polymorphism (SNP) analysis of these strains along with other publicly available C. botulinum group I strains revealed five distinct lineages. Strains 69A and 32A clustered with the C. botulinum type A1 Hall group, and strain CDC297 clustered with the C. botulinum type Ba4 strain 657. This study reports the use of whole-genome SNP sequence analysis for discrimination of C. botulinum group I strains and demonstrates the utility of this analysis in quickly differentiating C. botulinum strains harboring identical toxin gene subtypes. This analysis further supports previous work showing that strains CDC297 and 657 likely evolved from a common ancestor and independently acquired separate BoNT/A1 toxin gene clusters at distinct genomic locations.

  2. Single nucleotide polymorphisms in the multidrug resistance 1 gene in Korean epileptics.

    PubMed

    Kim, Young Ok; Kim, Myeong Kyu; Woo, Young Jong; Lee, Min Cheol; Kim, Jin Hee; Park, Ki Won; Kim, Eun Young; Roh, Young Il; Kim, Chan Jong

    2006-01-01

    P-glycoprotein 170 encoded by the multidrug resistance 1 (MDR1) gene exports various antiepileptic drugs out of the CNS, which leads to multidrug resistance. This study was performed to elucidate the relationship between single nucleotide polymorphisms (SNPs) in the MDR1 gene and drug resistance in Koreans with epilepsy. Three SNPs at nucleotide position 1236 in exon 12, 2677 in exon 21 and 3435 in exon 26 of the MDR1 gene were genotyped in 207 Korean epileptics. Subjects were classified according to whether they had drug-resistant (RS group; N=99) or drug-responsive epilepsy (RP group; N=108). The frequencies of genotype and haplotype were compared between the RS and RP groups. The frequencies of genotype and haplotype in the RS group were not statistically different from those in the RP group. In Korean epileptics, there was no significant relationship between three known SNPs in MDR1 and drug resistance. And there was no association of MDR1 haplotype based on above three sites with pharmacoresistance.

  3. Multi-locus genotyping of bottom fermenting yeasts by single nucleotide polymorphisms indicative of brewing characteristics.

    PubMed

    Ikushima, Shigehito; Tateishi, Yoshiyuki; Kanai, Keiko; Shimada, Emiko; Tanaka, Misa; Ishiguro, Tatsuji; Mizutani, Satoru; Kobayashi, Osamu

    2012-04-01

    Yeast plays a capital role in brewing fermentation and has a direct impact on flavor and aroma. For the evaluation of competent brewing strains during quality control or development of novel strains it is standard practice to perform fermentation tests, which are costly and time-consuming. Here, we have categorized DNA markers which enable to distinguish and to screen brewing strains more efficiently than ever before. Sequence analysis at 289 loci in the genomes of six bottom fermenting Saccharomyces pastorianus strains revealed that 30 loci contained single nucleotide polymorphisms (SNPs). By determining the nucleotide sequences at the SNP-loci in 26 other S. pastorianus strains and 20 strains of the top fermenting yeast Saccharomyces cerevisiae, almost all these strains could be discriminated solely on the basis of the SNPs. By comparing the fermentative phenotypes of these strains we found that some DNA markers showed a strong association with brewing characteristics, such as the production of ethyl acetate and hydrogen sulphide (H2S). Therefore, the DNA markers we identified will facilitate quality control and the efficient development of brewing yeast strains.

  4. Subtyping of Salmonella enterica Subspecies I Using Single-Nucleotide Polymorphisms in Adenylate Cyclase

    PubMed Central

    Abdo, Zaid; Byers, Sara Overstreet; Kriebel, Patrick; Rothrock, Michael J.

    2016-01-01

    Abstract Methods to rapidly identify serotypes of Salmonella enterica subspecies I are of vital importance for protecting the safety of food. To supplement the serotyping method dkgB-linked intergenic sequence ribotyping (ISR), single-nucleotide polymorphisms were characterized within adenylate cyclase (cyaA). The National Center for Biotechnology Information (NCBI) database had 378 cyaA sequences from S. enterica subspecies I, which included 42 unique DNA sequences and 19 different amino acid sequences. Five representative isolates, namely serotypes Typhimurium, Kentucky, Enteritidis phage type PT4, and two variants of Enteritidis phage type PT13a, were differentiated within a microsphere-based fluidics system in cyaA by allele-specific primer extension. Validation against 25 poultry-related environmental Salmonella isolates representing 11 serotypes yielded a ∼89% success rate at identifying the serotype of the isolate, and a different region could be targeted to achieve 100%. When coupled with ISR, all serotypes were differentiated. Phage lineages of serotype Enteritidis 13a and 4 were identified, and a biofilm-forming strain of PT13a was differentiated from a smooth phenotype within phage type. Comparative ranking of mutation indices to genes such as the tRNA transferases, the diguanylate cyclases, and genes used for multilocus sequence typing indicated that cyaA is an appropriate gene for assessing epidemiological trends of Salmonella because of its relative stability in nucleotide composition. PMID:27035032

  5. Pro198Leu Polymorphism in the Glutathione Peroxidase 1 Gene Contributes to Diabetic Peripheral Neuropathy in Type 2 Diabetes Patients.

    PubMed

    Buraczynska, Monika; Buraczynska, Kinga; Dragan, Michal; Ksiazek, Andrzej

    2017-03-01

    Glutathione peroxidase 1 (Gpx1) is an endogenous antioxidant enzyme. The T allele of the Pro198Leu polymorphism in the Gpx1 (rs1050450, 198C > T) gene is associated with reduced enzyme activity. The aim of this study was to evaluate the association between Pro198Leu polymorphism and risk of diabetic peripheral neuropathy (DPN). We examined 1244 T2DM patients and 730 healthy controls. In the patient group, 33 % had diabetic peripheral neuropathy. All subjects were genotyped for the Gpx1 Pro198Leu polymorphism by polymerase chain reaction and restriction analysis. A significant increase in the T allele and TT genotype frequencies was observed in DPN patients compared to those without DPN (OR 1.55, 95 % CI 1.30-1.85 and 1.89, 95 % CI 1.30-2.74, respectively). The association remained significant after correction for age, disease duration, HbA1c and BMI. When distribution of T allele was compared between DPN+ and DPN- subgroups and controls, OR was 1.54 for DPN+ and 1.00 for DPN- patients. In conclusion, our findings suggest that Gpx1 Pro198Leu genotypes are significantly associated with the risk of diabetic peripheral neuropathy in patients with T2DM. The study provides new clinically relevant information regarding genetic determinants of susceptibility to diabetic neuropathy.

  6. Single nucleotide polymorphisms in candidate genes associated with gastrointestinal nematode infection in goats.

    PubMed

    Bressani, F A; Tizioto, P C; Giglioti, R; Meirelles, S L C; Coutinho, R; Benvenuti, C L; Malagó-Jr, W; Mudadu, M A; Vieira, L S; Zaros, L G; Carrilho, E; Regitano, L C A

    2014-10-20

    Cytokines are small cell-signaling proteins that play an important role in the immune system, participating in intracellular communication. Four candidate genes of the cytokine family (IL2, IL4, IL13, and IFNG) were selected to identify Single Nucleotide Polymorphisms (SNPs) that might be associated with resistance to gastrointestinal endoparasites in goats. A population of 229 goats, F2 offspring from an F1 intercross was produced by crossing pure Saanen goats, considered as susceptible to gastrointestinal endoparasites, with pure Anglo-Nubian goats, considered resistant. Blood was collected for DNA extraction and fecal samples were also collected for parasite egg count. Polymorphisms were prospected by sequencing animals with extreme phenotype for fecal egg count (FEC) distribution. The association between SNPs and phenotype was determined by using the Fisher exact test with correction for multiple tests. Three of the 10 SNPs were identified as significant (P ≤ 0.03). They were found in intron 1 of IL2 (ENSBTA00000020883), intron 3 of IL13 (ENSBTA00000015953) and exon 3 of IFNG (ENSBTA00000012529), suggesting an association between them and gastrointestinal endoparasite resistance. Further studies will help describe the effects of these markers accurately before implementing them in marker assisted selection. This study is the pioneer in describing such associations in goats.

  7. Association between OGG1 gene single nucleotide polymorphisms and risk of pancreatic cancer in Chinese.

    PubMed

    Liu, Chengli; Huang, Hui; Wang, Cheng; Kong, Yalin; Zhang, Hui; Zhang, Hongyi

    2014-07-01

    Previous studies have suggested that the 8-oxoguanine DNA glycosylase gene (OGG1) has potentially influenced the risk of pancreatic cancer. The objective of this study was to assess the association between single nucleotide polymorphisms (SNPs) of OGG1 gene and risk of pancreatic cancer. A case-control study has been conducted in 370 pancreatic cancer patients and 395 healthy controls. Genotypes were determined using the polymerase chain reaction-restriction fragment length polymorphism and DNA sequencing methods. The association analysis was evaluated by the unconditional logistic regression test. Our data suggested that the distributions of alleles and genotypes were statistically different between pancreatic cancer patients and healthy controls. The c.307G>C SNP was associated with the decreased risk of pancreatic cancer (C vs. G: OR 0.73, 95 % CI 0.59-0.91, P = 0.006). As for c.828A>G SNP, the significantly decreased risk of pancreatic cancer was detected (G vs. A: OR 0.74, 95 % CI 0.59-0.92, P = 0.006). The allele C of c.307G>C and allele G of c.828A>G SNPs might be associated with a protection from pancreatic cancer. Findings from this study indicate that OGG1 SNPs are associated with pancreatic cancer risk in Chinese Han population and could be useful molecular biomarkers for assessing the risk of pancreatic cancer.

  8. The Role of Vitamin D Level and Related Single Nucleotide Polymorphisms in Crohn’s Disease

    PubMed Central

    Carvalho, Andre Y. O. M.; Bishop, Karen S.; Han, Dug Yeo; Ellett, Stephanie; Jesuthasan, Amalini; Lam, Wen J.; Ferguson, Lynnette R.

    2013-01-01

    New Zealand has one of the highest rates of Crohn’s Disease (CD) in the world, and there is much speculation as to why this might be. A high risk of CD has been associated with deficient or insufficient levels of Vitamin D (Vit D), lifestyle as well as various genetic polymorphisms. In this study we sought to analyse the relevance of serum Vit D levels, lifestyle and genotype to CD status. Serum samples were analysed for 25-OH-Vitamin D levels. DNA was isolated from blood and cheek-swabs, and Sequenom and ImmunoChip techniques were used for genotyping. Serum Vit D levels were significantly lower in CD patients (mean = 49.5 mg/L) than those found in controls (mean = 58.9 mg/L, p = 4.74 × 10−6). A total of seven single nucleotide polymorphisms were examined for effects on serum Vit D levels, with adjustment for confounding variables. Two variants: rs731236[A] (VDR) and rs732594[A] (SCUBE3) showed a significant association with serum Vit D levels in CD patients. Four variants: rs7975232[A] (VDR), rs732594[A] (SCUBE3), and rs2980[T] and rs2981[A] (PHF-11) showed a significant association with serum Vit D levels in the control group. This study demonstrates a significant interaction between Vit D levels and CD susceptibility, as well as a significant association between Vit D levels and genotype. PMID:24084050

  9. Single-Nucleotide Polymorphism of PPARγ, a Protein at the Crossroads of Physiological and Pathological Processes.

    PubMed

    Petrosino, Maria; Lori, Laura; Pasquo, Alessandra; Lori, Clorinda; Consalvi, Valerio; Minicozzi, Velia; Morante, Silvia; Laghezza, Antonio; Giorgi, Alessandra; Capelli, Davide; Chiaraluce, Roberta

    2017-02-10

    Genome polymorphisms are responsible for phenotypic differences between humans and for individual susceptibility to genetic diseases and therapeutic responses. Non-synonymous single-nucleotide polymorphisms (nsSNPs) lead to protein variants with a change in the amino acid sequence that may affect the structure and/or function of the protein and may be utilized as efficient structural and functional markers of association to complex diseases. This study is focused on nsSNP variants of the ligand binding domain of PPARγ a nuclear receptor in the superfamily of ligand inducible transcription factors that play an important role in regulating lipid metabolism and in several processes ranging from cellular differentiation and development to carcinogenesis. Here we selected nine nsSNPs variants of the PPARγ ligand binding domain, V290M, R357A, R397C, F360L, P467L, Q286P, R288H, E324K, and E460K, expressed in cancer tissues and/or associated with partial lipodystrophy and insulin resistance. The effects of a single amino acid change on the thermodynamic stability of PPARγ, its spectral properties, and molecular dynamics have been investigated. The nsSNPs PPARγ variants show alteration of dynamics and tertiary contacts that impair the correct reciprocal positioning of helices 3 and 12, crucially important for PPARγ functioning.

  10. Influence of a critical single nucleotide polymorphism on nuclear receptor PXR-promoter function.

    PubMed

    Rana, Manjul; Coshic, Poonam; Goswami, Ravinder; Tyagi, Rakesh K

    2017-02-15

    The Pregnane and Xenobiotic Receptor (PXR; NR1I2) is a ligand-modulated transcription factor that belongs to the nuclear receptor superfamily. It is expressed at higher levels primarily in liver and intestine as compared to the levels in several other organs. It is activated by a broad spectrum of xenobiotics and endobiotics. The primary function of PXR is to regulate the expression of drug metabolizing enzymes and transporters and prevent the accumulation of toxic chemicals in the body, thereby maintaining body's homeostasis. In this study, we identified a C/T single nucleotide polymorphism at position -831 from the transcriptional start site of the PXR gene promoter and examined the functional significance of this variant using both the luciferase reporter gene assays and electrophoretic mobility shift assays (EMSA). Transient transfection experiments showed that the T-allele was associated with significantly greater transcriptional activity than the C-allele of SNP rs3814055. These results indicate that the -831C/T polymorphism has a direct effect on transcriptional regulation of PXR gene. This allelic variation may be a potential genetic marker that can help identify individuals at higher risk for Inflammatory Bowel Disease (IBD).

  11. Frequency of M287T/AS3MT Single Nucleotide Polymorphism in an Iranian Population

    PubMed Central

    Farhid, Fatemeh; Nadali, Fatemeh; Chahardouli, Bahram; Mohammadi, Saeed; Rostami, Shahrbano; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir

    2017-01-01

    Background : To determine the frequency of the single nucleotide polymorphism M287T in exon 9 of the AS3MT gene in Iranian population and to assess the difference in allele frequencies with other ethnicities. Subjects and Methods : Genotyping analysis was performed on 150 healthy subjects using the PCR-RFLP assay. We used chi-square analysis to check the deviation from Hardy–Weinberg equilibrium and compare of the observed genotype frequencies in various ethnic. The level of statistical significance was considered as p<0.05. Results : The homozygous CC, homozygous TT and heterozygous CT genotypes were observed in 2%, 80% and 18% of participated individuals. The SNP rs11191439 passed the Hardy-Weinberg equilibrium chi-squared test with p-value>0.05 and had a minor allele frequency (MAF)>5%. Conclusion: Iranians are genetically very similar to Caucasian and African individuals and they are considerably different from other East Asians including Koreans, Chinese and Japanese individuals. Due to genetic polymorphisms can contribute to the variability in AS3MT activity; they may contribute to interindividual as well as intra-ethnic differences in response to the detoxification of arsenic. PMID:28286610

  12. Paclitaxel sensitivity in relation to ABCB1 expression, efflux and single nucleotide polymorphisms in ovarian cancer.

    PubMed

    Gao, Bo; Russell, Amanda; Beesley, Jonathan; Chen, Xiao Qing; Healey, Sue; Henderson, Michelle; Wong, Mark; Emmanuel, Catherine; Galletta, Laura; Johnatty, Sharon E; Bowtell, David; Haber, Michelle; Norris, Murray; Harnett, Paul; Chenevix-Trench, Georgia; Balleine, Rosemary L; deFazio, Anna

    2014-05-09

    ABCB1 (adenosine triphosphate-binding cassette transporter B1) mediates cellular elimination of many chemotherapeutic agents including paclitaxel, which is commonly used to treat ovarian cancer. A significant association between common single nucleotide polymorphisms (SNPs) in ABCB1 and progression-free survival has been reported in patients with ovarian cancer. Variable paclitaxel clearance due to genotype specific differences in ABCB1 activity in cancer cells and/or normal tissues may underlie the association. Using cell-based models, we evaluated the correlations between ABCB1 expression, polymorphisms, transporter activity and paclitaxel sensitivity in ovarian cancer (n = 10) and lymphoblastoid (n = 19) cell lines. Close associations between ABCB1 expression, transporter function and paclitaxel sensitivity were found in lymphoblastoid cell lines, although we could not demonstrate an association with common SNPs. In ovarian cancer cell lines, ABCB1 expression was low and the association between expression and function was lost. These results suggest that ABCB1 related survival difference in ovarian cancer patients is more likely to be due to differential whole body paclitaxel clearance mediated by normal cells rather than a direct effect on cancer cells.

  13. Genetic Diversity Revealed by Single Nucleotide Polymorphism Markers in a Worldwide Germplasm Collection of Durum Wheat

    PubMed Central

    Ren, Jing; Sun, Daokun; Chen, Liang; You, Frank M.; Wang, Jirui; Peng, Yunliang; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2013-01-01

    Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity. PMID:23538839

  14. Different Genotype of rs3130932 Single Nucleotide Polymorphism Between Gastric Cancer Patients and Normal Subjects.

    PubMed

    Shahhoseini, Zahra; Jeivad, Fereshteh; Ahangar, Nematollah; Abediankenari, Saeid

    2017-03-01

    Octamer binding transcription factor B gene (OCT4) is responsible for development and self-renewal maintenance of embryonic stem cells. The rs3130932 single nucleotide polymorphism (SNP) may play a role in tumor genesis. Because of high prevalence of gastric cancer in north of Iran, this study was investigated role of rs3130932 polymorphism and stomach cancer. Blood samples were collected from 100 informed gastric cancer patients and 100 age and sex-matched healthy individuals, and were genotyped for the presence of rs3130932G allele by ssp PCR. The mean age of participant (n = 200) was 67.83 ± 10.878 years. In genotyping and allelic analysis, TG genotype increased 66.147 times more likely to develop stomach cancer than the TT genotype, and disease risk increases 140.496 times more in GG genotype in comparison with TT genotype. This study clearly emphasis on different genetic profile in this population and show that the rs3130932G allele and odds of gastric cancer are related to each other in northern of Iran.

  15. A single nucleotide polymorphism in tetherin promotes retrovirus restriction in vivo.

    PubMed

    Barrett, Bradley S; Smith, Diana S; Li, Sam X; Guo, Kejun; Hasenkrug, Kim J; Santiago, Mario L

    2012-01-01

    Tetherin is a membrane protein of unusual topology expressed from rodents to humans that accumulates enveloped virus particles on the surface of infected cells. However, whether this 'tethering' activity promotes or restricts retroviral spread during acute retrovirus infection in vivo is controversial. We report here the identification of a single nucleotide polymorphism in the Tetherin gene of NZW/LacJ (NZW) mice that mutated the canonical ATG start site to GTG. Translation of NZW Tetherin from downstream ATGs deleted a conserved dual-tyrosine endosomal sorting motif, resulting in higher cell surface expression and more potent inhibition of Friend retrovirus release compared to C57BL/6 (B6) Tetherin in vitro. Analysis of (B6×NZW)F(1) hybrid mice revealed that increased Tetherin cell surface expression in NZW mice is a recessive trait in vivo. Using a classical genetic backcrossing approach, NZW Tetherin expression strongly correlated with decreased Friend retrovirus replication and pathogenesis. However, the protective effect of NZW Tetherin was not observed in the context of B6 Apobec3/Rfv3 resistance. These findings identify the first functional Tetherin polymorphism within a mammalian host, demonstrate that Tetherin cell surface expression is a key parameter for retroviral restriction, and suggest the existence of a restriction factor hierarchy to counteract pathogenic retrovirus infections in vivo.

  16. Oxytocin Receptor (OXTR) Single Nucleotide Polymorphisms Indirectly Predict Prosocial Behavior Through Perspective Taking and Empathic Concern.

    PubMed

    Christ, Christa C; Carlo, Gustavo; Stoltenberg, Scott F

    2016-04-01

    Engaging in prosocial behavior can provide positive outcomes for self and others. Prosocial tendencies contribute to the propensity to engage in prosocial behavior. The oxytocin receptor gene (OXTR) has also been associated with prosocial tendencies and behaviors. There has been little research, however, investigating whether the relationship between OXTR and prosocial behaviors is mediated by prosocial tendencies. This relationship may also vary among different types of prosocial behavior. The current study examines the relationship between OXTR, gender, prosocial tendencies, and both altruistic and public prosocial behavior endorsement. Students at a midwestern university (N = 398; 89.2% Caucasian; Mage  = 20.76; 26.6% male) provided self-report measures of prosocial tendencies and behaviors and buccal cells for genotyping OXTR polymorphisms. Results indicated that OXTR single nucleotide polymorphism (SNP) rs2268498 genotype significantly predicted empathic concern, whereas gender moderated the association between several other OXTR SNPs and prosocial tendencies. Increased prosocial tendencies predicted increased altruistic prosocial behavior endorsement and decreased public prosocial behavior endorsement. Our findings suggest an association between genetic variation in OXTR and endorsement of prosocial behavior indirectly through prosocial tendencies, and that the pathway is dependent on the type of prosocial behavior and gender. © 2014 Wiley Periodicals, Inc.

  17. A review of the associations between single nucleotide polymorphisms in taste receptors, eating behaviors, and health.

    PubMed

    Chamoun, Elie; Mutch, David M; Allen-Vercoe, Emma; Buchholz, Andrea C; Duncan, Alison M; Spriet, Lawrence L; Haines, Jess; Ma, David W L

    2016-05-31

    Food preferences and dietary habits are heavily influenced by taste perception. There is growing interest in characterizing taste preferences based on genetic variation. Genetic differences in the ability to perceive key tastes may impact eating behavior and nutritional intake. Therefore, increased understanding of taste biology and genetics may lead to new personalized strategies, which may prevent or influence the trajectory of chronic disease risk. Recent advances show that single nucleotide polymorphisms (SNPs) in the CD36 fat taste receptor are linked to differences in fat perception, fat preference, and chronic-disease biomarkers. Genetic variation in the sweet taste receptor T1R2 has been shown to alter sweet taste preferences, eating behaviors, and risk of dental caries. Polymorphisms in the bitter taste receptor T2R38 have been shown to influence taste for brassica vegetables. Individuals that intensely taste the bitterness of brassica vegetables ("supertasters") may avoid vegetable consumption and compensate by increasing their consumption of sweet and fatty foods, which may increase risk for chronic disease. Emerging evidence also suggests that the role of genetics in taste perception may be more impactful in children due to the lack of cultural influence compared to adults. This review examines the current knowledge of SNPs in taste receptors associated with fat, sweet, bitter, umami, and salt taste modalities and their contributions to food preferences, and chronic disease. Overall, these SNPs demonstrate the potential to influence food preferences and consequently health.

  18. Single nucleotide polymorphism of FSHβ gene associated with reproductive traits in Japanese flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    He, Feng; Wen, Haishen; Yu, Dahui; Li, Jifang; Shi, Bao; Chen, Caifang; Zhang, Jiaren; Jin, Guoxiong; Chen, Xiaoyan; Shi, Dan; Yang, Yanping

    2010-12-01

    Follicle stimulating hormone β (FSHβ) of Japanese flounder ( Paralichthys olivaceus) plays a key role in the regulation of gonadal development. This study aimed to investigate molecular genetic characteristics of the FSHβ gene and elucidate the effects of single nucleotide polymorphisms (SNPs) of FSHβ on reproductive traits in Japanese flounder. We used polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) and sequencing of the FSHβ gene in 60 individuals. We identified only an SNP (T/C) in the coding region of exon3 of FSHβ. The SNP (T/C) did not lead to amino acid changes at the position 340 bp of FSHβ gene. Statistical analysis showed that the SNP was significantly associated with testosterone (T) level and gonadosomatic index (GSI) ( P < 0.05). Individuals with genotype TC of the SNP had significantly higher serum T levels and GSI ( P < 0.05) than that of genotype CC. Therefore, FSHβ gene could be a useful molecular marker in selection for prominent reproductive trait in Japanese Flounder.

  19. Feasibility of mini-sequencing schemes based on nucleotide polymorphisms for microbial identification and population analyses.

    PubMed

    Araujo, Ricardo; Eusebio, Nadia; Caramalho, Rita

    2015-03-01

    Practical schemes based on single nucleotide polymorphisms (SNP) have been proposed as alternatives to simplify and replace the molecular methodologies based on the extensive sequencing analysis of genes. SNaPshot mini-sequencing has been progressively experienced during the last decade and represents a fast and robust strategy to analyze critical polymorphisms. Such assays have been proposed to characterize some bacteria and microbial eukaryotes, and its feasibility was now reviewed in the present manuscript. The mini-sequencing schemes showed high discriminatory power and competence for identification of microorganisms, but some specificity errors were still found, particularly for species of the Burkholderia cepacia complex and mycobacteria. SNP assays designed for other goals, e.g., comparison of strains, detection of serotypes, virulence, epidemic, and phylogenetic-related subgroups of isolates, can be very useful by facilitating the investigation of large collections of isolates. The next-generation of SNP assays might consider the inclusion of large number of markers to fully characterize microbial taxonomy and strains; nevertheless, these new technologies are still prone to errors and can largely benefit from integration with well-established mini-sequencing assays. Newly proposed molecular tools should be systematically tested in collections of isolates with high indexes of diversity and guarantee interlaboratorial validation.

  20. Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data.

    PubMed

    Batley, Jacqueline; Barker, Gary; O'Sullivan, Helen; Edwards, Keith J; Edwards, David

    2003-05-01

    We have developed a computer based method to identify candidate single nucleotide polymorphisms (SNPs) and small insertions/deletions from expressed sequence tag data. Using a redundancy-based approach, valid SNPs are distinguished from erroneous sequence by their representation multiple times in an alignment of sequence reads. A second measure of validity was also calculated based on the cosegregation of the SNP pattern between multiple SNP loci in an alignment. The utility of this method was demonstrated by applying it to 102,551 maize (Zea mays) expressed sequence tag sequences. A total of 14,832 candidate polymorphisms were identified with an SNP redundancy score of two or greater. Segregation of these SNPs with haplotype indicates that candidate SNPs with high redundancy and cosegregation confidence scores are likely to represent true SNPs. This was confirmed by validation of 264 candidate SNPs from 27 loci, with a range of redundancy and cosegregation scores, in four inbred maize lines. The SNP transition/transversion ratio and insertion/deletion size frequencies correspond to those observed by direct sequencing methods of SNP discovery and suggest that the majority of predicted SNPs and insertion/deletions identified using this approach represent true genetic variation in maize.

  1. Differentiation of drug and non-drug Cannabis using a single nucleotide polymorphism (SNP) assay.

    PubMed

    Rotherham, D; Harbison, S A

    2011-04-15

    Cannabis sativa is both an illegal drug and a legitimate crop. The differentiation of illegal drug Cannabis from non-drug forms of Cannabis is relevant in the context of the growth of fibre and seed oil varieties of Cannabis for commercial purposes. This differentiation is currently determined based on the levels of tetrahydrocannabinol (THC) in adult plants. DNA based methods have the potential to assay Cannabis material unsuitable for analysis using conventional means including seeds, pollen and severely degraded material. The purpose of this research was to develop a single nucleotide polymorphism (SNP) assay for the differentiation of "drug" and "non-drug"Cannabis plants. An assay was developed based on four polymorphisms within a 399 bp fragment of the tetrahydrocannabinolic acid (THCA) synthase gene, utilising the snapshot multiplex kit. This SNP assay was tested on 94 Cannabis plants, which included 10 blind samples, and was able to differentiate between "drug" and "non-drug"Cannabis in all cases, while also differentiating between Cannabis and other species. Non-drug plants were found to be homozygous at the four sites assayed while drug Cannabis plants were either homozygous or heterozygous.

  2. Identification, validation and survey of a single nucleotide polymorphism (SNP) associated with pungency in Capsicum spp.

    PubMed

    Garcés-Claver, Ana; Fellman, Shanna Moore; Gil-Ortega, Ramiro; Jahn, Molly; Arnedo-Andrés, María S

    2007-11-01

    A single nucleotide polymorphism (SNP) associated with pungency was detected within an expressed sequence tag (EST) of 307 bp. This fragment was identified after expression analysis of the EST clone SB2-66 in placenta tissue of Capsicum fruits. Sequence alignments corresponding to this new fragment allowed us to identify an SNP between pungent and non-pungent accessions. Two methods were chosen for the development of the SNP marker linked to pungency: tetra-primer amplification refractory mutation system-PCR (tetra-primer ARMS-PCR) and cleaved amplified polymorphic sequence. Results showed that both methods were successful in distinguishing genotypes. Nevertheless, tetra-primer ARMS-PCR was chosen for SNP genotyping because it was more rapid, reliable and less cost-effective. The utility of this SNP marker for pungency was demonstrated by the ability to distinguish between 29 pungent and non-pungent cultivars of Capsicum annuum. In addition, the SNP was also associated with phenotypic pungent character in the tested genotypes of C. chinense, C. baccatum, C. frutescens, C. galapagoense, C. eximium, C. tovarii and C. cardenasi. This SNP marker is a faster, cheaper and more reproducible method for identifying pungent peppers than other techniques such as panel tasting, and allows rapid screening of the trait in early growth stages.

  3. Association of IL-13 single nucleotide polymorphisms in Iranian patients to multiple sclerosis

    PubMed Central

    Seyfizadeh, Narges; Kazemi, Tohid; Farhoudi, Mehdi; Aliparasti, Mohammad Reza; Sadeghi-Bazargani, Homayoun; Almasi, Shohreh; Babaloo, Zohreh

    2014-01-01

    MS is an autoimmune disease and interleukin 13 (IL-13) has been proposed to be an important neuroprotective mediator in MS. Because of plausible effect of single nucleotide polymorphisms (SNPs) in expression level or biological activity of any cytokine, we sought to investigate association of IL-13 SNPs, C-1112T, A-1512C and G+2044A, with risk to MS. Sixty-eight RRMS patients and 110 healthy controls were involved in this study. After extraction of genomic DNA, frequency of genotypes and alleles were determined by PCR-RFLP and data were analyzed statistically. Results showed significant higher frequency of CC, CC, and AA genotypes and C, C, and A alleles of -1112CT, -1512AC and +2044GA SNPs respectively, in patients group. There was significant association between -1112C allele with onset age of MS. No significant association was seen between any of genotypes or alleles with expanded disability status scale (EDSS) of patients. Our findings showed significant association between three studied SNPs of IL-13 with susceptibility to MS in Iranian patients. More studies should be done on other IL-13 SNPs, and also polymorphisms of IL-13 receptor and other cytokines to determine the exact role of SNPs in protecting or predisposing of individuals for MS. PMID:25628961

  4. Detection of mandarin in orange juice by single-nucleotide polymorphism qPCR assay.

    PubMed

    Aldeguer, Miriam; López-Andreo, María; Gabaldón, José A; Puyet, Antonio

    2014-02-15

    A dual-probe real time PCR (qPCR) DNA-based analysis was devised for the identification of mandarin in orange juice. A single nucleotide polymorphism at the trnL-trnF intergenic region of the chloroplast chromosome was confirmed in nine orange (Citrus sinensis) and thirteen commercial varieties of mandarin, including Citrus reticulata and Citrus unshiu species and a mandarin × tangelo hybrid. Two short minor-groove binding fluorescent probes targeting the polymorphic sequence were used in the dual-probe qPCR, which allowed the detection of both species in single-tube reactions. The similarity of PCR efficiencies allowed a simple estimation of the ratio mandarin/orange in the juice samples, which correlated to the measured difference of threshold cycle values for both probes. The limit of detection of the assay was 5% of mandarin in orange juice, both when the juice was freshly prepared (not from concentrate) or reconstituted from concentrate, which would allow the detection of fraudulently added mandarin juice. The possible use of the dual-probe system for quantitative measurements was also tested on fruit juice mixtures. qPCR data obtained from samples containing equal amounts of mandarin and orange juice revealed that the mandarin target copy number was approximately 2.6-fold higher than in orange juice. The use of a matrix-adapted control as calibrator to compensate the resulting C(T) bias allowed accurate quantitative measurements to be obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Single nucleotide polymorphisms in the CNTNAP2 gene in Brazilian patients with autistic spectrum disorder.

    PubMed

    Nascimento, P P; Bossolani-Martins, A L; Rosan, D B A; Mattos, L C; Brandão-Mattos, C; Fett-Conte, A C

    2016-02-05

    The role of some genes and their single nucleotide polymorphisms (SNPs) as genetic contributors of complex diseases is still a topic of much investigation. Research on genes related to autism susceptibility has been somewhat challenging, but also promising. Common genomic variants of CNTNAP2 have been associated with autism, and a range of autistic phenotypes such as impaired language function, abnormal social behavior, intellectual deficiency, epilepsy, and schizophrenia have been associated with this gene. Earlier findings have suggested that SNPs in the CNTNAP2 gene may be used as genetic markers for predisposition to autism spectrum disorder (ASD). We analyzed the SNPs (rs7794745 and rs2710102) in the CNTNAP2 gene of 210 individuals with idiopathic ASD and 200 non-autistic individuals by polymerase chain reaction-restriction fragment length polymorphism. The results revealed higher frequency distributions statistically significant (P = 0.034) of the homozygous SNP rs7794745 (presumed risk genotype) in ASD patients as compared with control subjects. The results also showed an association (OR = 1.802, 95%CI = 1.054-3.083, P = 0.042) between the same homozygous genotype and ASD, suggesting that it is a susceptibility factor for autism in this Brazilian population.

  6. Single-nucleotide polymorphism analysis of GH, GHR, and IGF-1 genes in minipigs.

    PubMed

    Tian, Y G; Yue, M; Gu, Y; Gu, W W; Wang, Y J

    2014-09-01

    Tibetan (TB) and Bama (BM) miniature pigs are two popular pig breeds that are used as experimental animals in China due to their small body size. Here, we analyzed single-nucleotide polymorphisms (SNPs) in gene fragments that are closely related to growth traits [growth hormone (GH), growth hormone receptor (GHR), and insulin-like growth factor (IGF)-1)] in these pig breeds and a large white (LW) control pig breed. On the basis of the analysis of 100 BMs, 108 TBs, and 50 LWs, the polymorphic distribution levels of GH, GHR, and IGF-1 were significantly different among these three pig breeds. According to correlation analyses between SNPs and five growth traits--body weight (BW), body length (BL), withers height (WH), chest circumference (CC), and abdomen circumference (AC)--three SNP loci in BMs and four SNP loci in TBs significantly affected growth traits. Three SNP sites in BMs and four SNP sites in TBs significantly affected growth traits. SNPs located in the GH gene fragment significantly affected BL and CC at locus 12 and BL at locus 45 in BMs, and also BW, WH, CC, and AC at locus 45 and WH and CC at locus 93 in TBs. One SNP at locus 85 in the BM GHR gene fragment significantly affected all growth traits. All indices were significantly reduced with a mixture of alleles at locus 85. These results provide more information regarding the genetic background of these minipig species and indicate useful selection markers for pig breeding programs.

  7. [Association between single nucleotide polymorphisms of 5'-untranslated region of GPx4 gene and male infertility].

    PubMed

    Liu, Shu-yuan; Zhang, Chang-jun; Si, Xiao-min; Yao, Yu-feng; Shi, Lei; Ke, Jin-kun; Yu, Liang; Shi, Li; Yang, Zhao-qin; Huang, Xiao-qin; Sun, Hao; Chu, Jia-you

    2011-06-01

    To study the association between the single nucleotide polymorphisms (SNPs) of the 5'-untranslated region (5'-UTR) of phospholipid hydroperoxide glutathione peroxidase (GPx4 or PHGPx) gene and oligo- or asthenozoospermic male infertility. The 5'-UTR region of the GPx4 gene was amplified from infertile men and controls using the polymerase chain reaction and was analyzed for polymorphisms by direct sequencing. A total of 9 SNPs were present in the cohort, however there were no significant differences in these 9 SNPs between the case and control groups. According to the results of linkage disequilibrium analysis and haplotype construction, one haplotype (rs757229-rs757230-rs4588110-rs3746165-rs3746166: C-G-G-T-A) was present only in the control men, and significant difference was detected(P< 0.01). The SNPs of 5'-UTR region of the GPx4 gene might not be associated with oligo- or asthenozoospermic male infertility. However, the haplotype (rs757229-rs757230-rs4588110- rs3746165-rs3746166: C-G-G-T-A) might be a protective haplotype.

  8. Single nucleotide polymorphism in the neuroplastin locus associates with cortical thickness and intellectual ability in adolescents

    PubMed Central

    Desrivières, S; Lourdusamy, A; Tao, C; Toro, R; Jia, T; Loth, E; Medina, L M; Kepa, A; Fernandes, A; Ruggeri, B; Carvalho, F M; Cocks, G; Banaschewski, T; Barker, G J; Bokde, A L W; Büchel, C; Conrod, P J; Flor, H; Heinz, A; Gallinat, J; Garavan, H; Gowland, P; Brühl, R; Lawrence, C; Mann, K; Martinot, M L P; Nees, F; Lathrop, M; Poline, J-B; Rietschel, M; Thompson, P; Fauth-Bühler, M; Smolka, M N; Pausova, Z; Paus, T; Feng, J; Schumann, G

    2015-01-01

    Despite the recognition that cortical thickness is heritable and correlates with intellectual ability in children and adolescents, the genes contributing to individual differences in these traits remain unknown. We conducted a large-scale association study in 1583 adolescents to identify genes affecting cortical thickness. Single-nucleotide polymorphisms (SNPs; n=54 837) within genes whose expression changed between stages of growth and differentiation of a human neural stem cell line were selected for association analyses with average cortical thickness. We identified a variant, rs7171755, associating with thinner cortex in the left hemisphere (P=1.12 × 10−7), particularly in the frontal and temporal lobes. Localized effects of this SNP on cortical thickness differently affected verbal and nonverbal intellectual abilities. The rs7171755 polymorphism acted in cis to affect expression in the human brain of the synaptic cell adhesion glycoprotein-encoding gene NPTN. We also found that cortical thickness and NPTN expression were on average higher in the right hemisphere, suggesting that asymmetric NPTN expression may render the left hemisphere more sensitive to the effects of NPTN mutations, accounting for the lateralized effect of rs7171755 found in our study. Altogether, our findings support a potential role for regional synaptic dysfunctions in forms of intellectual deficits. PMID:24514566

  9. Human Aldo-Keto Reductases: Function, Gene Regulation, and Single Nucleotide Polymorphisms

    PubMed Central

    Penning, Trevor M.; Drury, Jason E.

    2007-01-01

    Aldo-Keto Reductases (AKRs) are a superfamily of NAD(P)H linked oxidoreductases that are generally monomeric 34- 37 kDa proteins present in all phyla. The superfamily consists of 15 families, which contains 151 members (www.med.upenn.edu/akr). Thirteen human AKRs exist that use endogenous substrates (sugar and lipid aldehydes, prostaglandins, retinals and steroid hormones), and in many instances they regulate nuclear receptor signaling. Exogenous substrates include metabolites implicated in chemical carcinogenesis: NNK (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone), polycyclic aromatic hydrocarbon trans-dihydrodiols, and aflatoxin dialdehyde. Promoter analysis of the human genes identifies common elements involved in their regulation which include osmotic response elements, antioxidant response elements, xenobiotic response elements, AP-1 sites and steroid response elements. The human AKRs are highly polymorphic, and in some instances single nucleotide polymorphisms (SNPs) of high penetrance exist. This suggests that there will be inter-individual variation in endogenous and xenobiotic metabolism which in turn affect susceptibility to nuclear receptor signaling and chemical carcinogenesis. PMID:17537398

  10. Role of six single nucleotide polymorphisms, risk factors in coronary disease, in OLR1 alternative splicing.

    PubMed

    Tejedor, J Ramón; Tilgner, Hagen; Iannone, Camilla; Guigó, Roderic; Valcárcel, Juan

    2015-06-01

    The OLR1 gene encodes the oxidized low-density lipoprotein receptor (LOX-1), which is responsible for the cellular uptake of oxidized LDL (Ox-LDL), foam cell formation in atheroma plaques and atherosclerotic plaque rupture. Alternative splicing (AS) of OLR1 exon 5 generates two protein isoforms with antagonistic functions in Ox-LDL uptake. Previous work identified six single nucleotide polymorphisms (SNPs) in linkage disequilibrium that influence the inclusion levels of OLR1 exon 5 and correlate with the risk of cardiovascular disease. Here we use minigenes to recapitulate the effects of two allelic series (Low- and High-Risk) on OLR1 AS and identify one SNP in intron 4 (rs3736234) as the main contributor to the differences in exon 5 inclusion, while the other SNPs in the allelic series attenuate the drastic effects of this key SNP. Bioinformatic, proteomic, mutational and functional high-throughput analyses allowed us to define regulatory sequence motifs and identify SR protein family members (SRSF1, SRSF2) and HMGA1 as factors involved in the regulation of OLR1 AS. Our results suggest that antagonism between SRSF1 and SRSF2/HMGA1, and differential recognition of their regulatory motifs depending on the identity of the rs3736234 polymorphism, influence OLR1 exon 5 inclusion and the efficiency of Ox-LDL uptake, with potential implications for atherosclerosis and coronary disease.

  11. High-throughput chemiluminometric genotyping of single nucleotide polymorphisms of histamine, serotonin, and adrenergic receptor genes.

    PubMed

    Toubanaki, Dimitra K; Christopoulos, Theodore K; Ioannou, Penelope C; Flordellis, Christodoulos S

    2009-02-01

    Several pharmacogenetic studies are focused on the investigation of the relation between the efficacy of various antipsychotic agents (e.g., clozapine) and the genetic profile of the patient with an emphasis on genes that code for neurotransmitter receptors such as histamine, serotonin, and adrenergic receptors. We report a high-throughput method for genotyping of single nucleotide polymorphisms (SNPs) within the genes of histamine H2 receptor (HRH2), serotonin receptor (HTR2A1 and HTR2A2), and beta(3) adrenergic receptor (ADRB3). The method combines the high specificity of allele discrimination by oligonucleotide ligation reaction (OLR) and the superior sensitivity and simplicity of chemiluminometric detection in a microtiter well assay configuration. The genomic region that spans the locus of interest is first amplified by polymerase chain reaction (PCR). Subsequently, an oligonucleotide ligation reaction is performed using a biotinylated common probe and two allele-specific probes that are labeled at the 3' end with digoxigenin and fluorescein. The ligation products are immobilized in polystyrene wells via biotin-streptavidin interaction, and the hybrids are denatured. Detection is accomplished by the addition of alkaline phosphatase-conjugated anti-digoxigenin or anti-fluorescein antibodies in combination with a chemiluminogenic substrate. The ratio of the luminescence signals obtained from digoxigenin and fluorescein indicates the genotype of the sample. The method was applied successfully to the genotyping of 23 blood samples for all four SNPs. The results were in concordance with both PCR-restriction fragment length polymorphism analysis and sequencing.

  12. Potential impact of a single nucleotide polymorphism in the hyaluronan synthase 1 gene in Waldenstrom's macroglobulinemia.

    PubMed

    Adamia, Sophia; Treon, Steven P; Reiman, Tony; Tournilhac, Olivier; McQuarrie, Carrie; Mant, Michael J; Belch, Andrew R; Pilarski, Linda M

    2005-03-01

    The hyaluronan synthase 1 (HAS1) gene encodes a plasma membrane protein that synthesizes hyaluronan, an extracellular matrix molecule. Previously, in patients with Waldenstrom's macroglobulinemia (WM), we detected upregulation of HAS1 transcripts and identified aberrant splice variants of this gene. Aberrant splicing of HAS1 results from activation of cryptic splice sites. In turn, activation of cryptic donor and acceptor splice sites can be promoted by mutations occurring upstream of these sites and/or at the branch point of slicing. We measured the frequency of the HAS1 833A/G polymorphism (ie, single-nucleotide polymorphism; SNP) in patients with WM and healthy donors. Additionally, HAS1 gene expression was evaluated in the same group of patients. Our observations so far suggest that HAS1 833A/G SNPs contribute to aberrant splicing of this gene; this idea is supported by the fact that 833A/G SNP is located on an exonic splicing enhancer motif. Based on the results obtained thus far, we speculate that individuals with HAS1 833G/G genotype are predisposed toward aberrant HAS1 splicing and expression of HAS1 variants, resulting in an enhanced risk of developing WM. Study of a larger group of patients and healthy donors is needed to confirm these speculations and to evaluate the prognostic significance of these findings.

  13. Association of a single nucleotide polymorphism upstream of ICOS with Japanese autoimmune hepatitis type 1.

    PubMed

    Higuchi, Takashi; Oka, Shomi; Furukawa, Hiroshi; Nakamura, Minoru; Komori, Atsumasa; Abiru, Seigo; Nagaoka, Shinya; Hashimoto, Satoru; Naganuma, Atsushi; Naeshiro, Noriaki; Yoshizawa, Kaname; Shimada, Masaaki; Nishimura, Hideo; Tomizawa, Minoru; Kikuchi, Masahiro; Makita, Fujio; Yamashita, Haruhiro; Ario, Keisuke; Yatsuhashi, Hiroshi; Tohma, Shigeto; Kawasaki, Aya; Ohira, Hiromasa; Tsuchiya, Naoyuki; Migita, Kiyoshi

    2017-04-01

    Autoimmune hepatitis (AIH) is an uncommon chronic autoimmune liver disease. Several studies reported the association of polymorphisms between CD28, CTLA4 and ICOS gene cluster in 2q33.2 with autoimmune or inflammatory diseases. The previous genome-wide association study on type 1 AIH in a European population has reported a risk G allele of a single nucleotide polymorphism (SNP), rs4325730, in this region. Here, we conducted an association study of this SNP with type 1 AIH in a Japanese population, as a replication study.An association study of rs4325730 was conducted in 343 Japanese AIH patients and 315 controls.We found that rs4325730 is associated with AIH (P=0.0173, odds ratio (OR) 1.30, 95% confidence interval (CI) 1.05-1.62, under the allele model for G allele, P=0.0070, OR 1.62, 95% CI 1.14-2.31, under the dominant model for G allele). This SNP was strongly associated with definite AIH (P=0.0134, OR 1.36, 95% CI 1.07-1.74; under allele model for G, P=0.0035, OR 1.85, 95% CI 1.22-2.81, under dominant model for G).This is the first replication association study of rs4325730 upstream of ICOS with AIH in the Japanese population and rs4325730G is a risk allele.

  14. A STAT6 Intronic Single-Nucleotide Polymorphism is Associated with Clinical Malaria in Ghanaian Children

    PubMed Central

    Amoako-Sakyi, Daniel; Adukpo, Selorme; Kusi, Kwadwo A.; Dodoo, Daniel; Ofori, Michael F.; Adjei, George O.; Edoh, Dominic E.; Asmah, Richard H.; Brown, Charles; Adu, Bright; Obiri-Yeboah, Dorcas; Futagbi, Godfred; Abubakari, Sharif Buari; Troye-Blomberg, Marita; Akanmori, Bartholomew D.; Goka, Bamenla Q.; Arko-Mensah, John; Gyan, Ben A.

    2016-01-01

    Malaria pathogenesis may be influenced by IgE responses and cytokine cross-regulation. Several mutations in the IL-4/STAT6 signaling pathway can alter cytokine cross-regulation and IgE responses during a Plasmodium falciparum malarial infection. This study investigated the relationship between a STAT6 intronic single-nucleotide polymorphism (rs3024974), total IgE, cytokines, and malaria severity in 238 Ghanaian children aged between 0.5 and 13 years. Total IgE and cytokine levels were measured by ELISA, while genotyping was done by polymerase chain reaction-restriction fragment length polymorphism (RFLP). Compared with healthy controls, heterozygosity protected against clinical malaria: uncomplicated malaria (odds ratios [OR] = 0.13, P < 0.001), severe malarial anemia (OR = 0.18, P < 0.001), and cerebral malaria (OR = 0.39, P = 0.022). Levels of total IgE significantly differed among malaria phenotypes (P = 0.044) and rs3024974 genotypes (P = 0.037). Neither cytokine levels nor IL-6/IL-10 ratios were associated with malaria phenotypes or rs3024974 genotypes. This study suggests a role for rs3024974 in malaria pathogenesis and offers further insights into an IL-4/STAT6 pathway mutation in malaria pathogenesis. PMID:27279750

  15. Single-Nucleotide Polymorphism of PPARγ, a Protein at the Crossroads of Physiological and Pathological Processes

    PubMed Central

    Petrosino, Maria; Lori, Laura; Pasquo, Alessandra; Lori, Clorinda; Consalvi, Valerio; Minicozzi, Velia; Morante, Silvia; Laghezza, Antonio; Giorgi, Alessandra; Capelli, Davide; Chiaraluce, Roberta

    2017-01-01

    Genome polymorphisms are responsible for phenotypic differences between humans and for individual susceptibility to genetic diseases and therapeutic responses. Non-synonymous single-nucleotide polymorphisms (nsSNPs) lead to protein variants with a change in the amino acid sequence that may affect the structure and/or function of the protein and may be utilized as efficient structural and functional markers of association to complex diseases. This study is focused on nsSNP variants of the ligand binding domain of PPARγ a nuclear receptor in the superfamily of ligand inducible transcription factors that play an important role in regulating lipid metabolism and in several processes ranging from cellular differentiation and development to carcinogenesis. Here we selected nine nsSNPs variants of the PPARγ ligand binding domain, V290M, R357A, R397C, F360L, P467L, Q286P, R288H, E324K, and E460K, expressed in cancer tissues and/or associated with partial lipodystrophy and insulin resistance. The effects of a single amino acid change on the thermodynamic stability of PPARγ, its spectral properties, and molecular dynamics have been investigated. The nsSNPs PPARγ variants show alteration of dynamics and tertiary contacts that impair the correct reciprocal positioning of helices 3 and 12, crucially important for PPARγ functioning. PMID:28208577

  16. [Analysis on single nucleotide polymorphisms of porcine myostatin gene in different breeds].

    PubMed

    Jiang, Y L; Li, N; Wu, C X; Du, L X

    2001-01-01

    By PCR-RFLPs and PCR-SSCP approach, three single nucleotide polymorphisms (SNPs) of porcine myostatin gene (MSTN) were analyzed in different breeds including "doubled-muscled" Yorkshire, Yorkshire, Landrace, Hamshire, Duroc, Piteran, Erhualian, Min, Hubei White and some hybrids. The three SNPs were located in the 3' encoding region, 5' promoter region and intronl region respectively. For the SNP in the 3' encoding region, which was caused by C-->T transition, the mutation frequency was relatively low: no TT genotype was detected in 274 individuals of different breeds. For the SNP in the 5' promoter region, 560 pigs were investigated. The allele T dominates in the imported lean-type pig breeds such as Yorkshire, Landrace, Duroc, Hampshire, Piteran and hybrid, however, in Erhualian and Hubei White pigs, the allele A was in majority. Polymorphism showed the similar pattern for the SNP in intron 1 region. G was the dominant allele in Yorkshire, Landrace and their hybrids, while in Erhualian and Hubei White pigs the frequency of A was much higher. Obviously they were not in Hardy-Weinberg equilibrium state. For Min and Yorshire x Erhualian pigs, they were in Hardy-Weinberg equilibrium state for the SNPs in the 5' promoter region and (or) intron 1 region. The frequency for the A alleles of SNPs in the 5' promoter region and intron 1 region was higher for "double-muscled" Yorkshire than for Yorkshire and linkage for these two mutation sites was also observed.

  17. Single nucleotide polymorphism in the neuroplastin locus associates with cortical thickness and intellectual ability in adolescents.

    PubMed

    Desrivières, S; Lourdusamy, A; Tao, C; Toro, R; Jia, T; Loth, E; Medina, L M; Kepa, A; Fernandes, A; Ruggeri, B; Carvalho, F M; Cocks, G; Banaschewski, T; Barker, G J; Bokde, A L W; Büchel, C; Conrod, P J; Flor, H; Heinz, A; Gallinat, J; Garavan, H; Gowland, P; Brühl, R; Lawrence, C; Mann, K; Martinot, M L P; Nees, F; Lathrop, M; Poline, J-B; Rietschel, M; Thompson, P; Fauth-Bühler, M; Smolka, M N; Pausova, Z; Paus, T; Feng, J; Schumann, G

    2015-02-01

    Despite the recognition that cortical thickness is heritable and correlates with intellectual ability in children and adolescents, the genes contributing to individual differences in these traits remain unknown. We conducted a large-scale association study in 1583 adolescents to identify genes affecting cortical thickness. Single-nucleotide polymorphisms (SNPs; n=54,837) within genes whose expression changed between stages of growth and differentiation of a human neural stem cell line were selected for association analyses with average cortical thickness. We identified a variant, rs7171755, associating with thinner cortex in the left hemisphere (P=1.12 × 10(-)(7)), particularly in the frontal and temporal lobes. Localized effects of this SNP on cortical thickness differently affected verbal and nonverbal intellectual abilities. The rs7171755 polymorphism acted in cis to affect expression in the human brain of the synaptic cell adhesion glycoprotein-encoding gene NPTN. We also found that cortical thickness and NPTN expression were on average higher in the right hemisphere, suggesting that asymmetric NPTN expression may render the left hemisphere more sensitive to the effects of NPTN mutations, accounting for the lateralized effect of rs7171755 found in our study. Altogether, our findings support a potential role for regional synaptic dysfunctions in forms of intellectual deficits.

  18. Single-Nucleotide Polymorphisms in NAGNAG Acceptors Are Highly Predictive for Variations of Alternative Splicing

    PubMed Central

    Hiller, Michael; Huse, Klaus; Szafranski, Karol; Jahn, Niels; Hampe, Jochen; Schreiber, Stefan; Backofen, Rolf; Platzer, Matthias

    2006-01-01

    Aberrant or modified splicing patterns of genes are causative for many human diseases. Therefore, the identification of genetic variations that cause changes in the splicing pattern of a gene is important. Elsewhere, we described the widespread occurrence of alternative splicing at NAGNAG acceptors. Here, we report a genomewide screen for single-nucleotide polymorphisms (SNPs) that affect such tandem acceptors. From 121 SNPs identified, we extracted 64 SNPs that most likely affect alternative NAGNAG splicing. We demonstrate that the NAGNAG motif is necessary and sufficient for this type of alternative splicing. The evolutionarily young NAGNAG alleles, as determined by the comparison with the chimpanzee genome, exhibit the same biases toward intron phase 1 and single–amino acid insertion/deletions that were already observed for all human NAGNAG acceptors. Since 28% of the NAGNAG SNPs occur in known disease genes, they represent preferable candidates for a more-detailed functional analysis, especially since the splice relevance for some of the coding SNPs is overlooked. Against the background of a general lack of methods for identifying splice-relevant SNPs, the presented approach is highly effective in the prediction of polymorphisms that are causal for variations in alternative splicing. PMID:16400609

  19. Identification of single nucleotide polymorphism in protein phosphatase 1 regulatory subunit 11 gene in Murrah bulls.

    PubMed

    Jain, Varsha; Patel, Brijesh; Umar, Farhat Paul; Ajithakumar, H M; Gurjar, Suraj K; Gupta, I D; Verma, Archana

    2017-02-01

    This study was conducted with the objective to identify single nucleotide polymorphism (SNP) in protein phosphatase 1 regulatory subunit 11 (PPP1R11) gene in Murrah bulls. Genomic DNA was isolated by phenol-chloroform extraction method from the frozen semen samples of 65 Murrah bulls maintained at Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal. The quality and concentration of DNA was checked by spectrophotometer reading and agarose gel electrophoresis. The target region of PPP1R11 gene was amplified using four sets of primer designed based on Bos taurus reference sequence. The amplified products were sequenced and aligned using Clustal Omega for identification of SNPs. Animals were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using EcoNI restriction enzyme. The sequences in the NCBI accession number NW_005785016.1 for Bubalus bubalis were compared and aligned with the edited sequences of Murrah bulls with Clustal Omega software. A total of 10 SNPs were found, out of which 1 at 5'UTR, 3 at intron 1, and 6 at intron 2 region. PCR-RFLP using restriction enzyme EcoNI revealed only AA genotype indicating monomorphism in PPP1R11 gene of all Murrah animals included in the study. A total of 10 SNPs were found. PCR-RFLP revealed only AA genotype indicating monomorphism in PPP1R11 gene of all Murrah animals included in the study, due to which association analysis with conception rate was not feasible.

  20. The role of brain-derived neurotrophic factor and its single nucleotide polymorphisms in stroke patients.

    PubMed

    Kotlęga, Dariusz; Peda, Barbara; Zembroń-Łacny, Agnieszka; Gołąb-Janowska, Monika; Nowacki, Przemysław

    2017-03-06

    Stroke is the main cause of motoric and neuropsychological disability in adults. Recent advances in research into the role of the brain-derived neurotrophic factor in neuroplasticity, neuroprotection and neurogenesis might provide important information for the development of new poststroke-rehabilitation strategies. It plays a role as a mediator in motor learning and rehabilitation after stroke. Concentrations of BDNF are lower in acute ischemic-stroke patients compared to controls. Lower levels of BDNF are correlated with an increased risk of stroke, worse functional outcomes and higher mortality. BDNF signalling is dependent on the genetic variation which could affect an individual's response to recovery after stroke. Several single nucleotide polymorphisms of the BDNF gene have been studied with regard to stroke patients, but most papers analyse the rs6265 which results in a change from valine to methionine in the precursor protein. Subsequently a reduction in BDNF activity is observed. There are studies indicating the role of this polymorphism in brain plasticity, functional and morphological changes in the brain. It may affect the risk of ischemic stroke, post-stroke outcomes and the efficacy of the rehabilitation process within physical exercise and transcranial magnetic stimulation. There is a consistent trend of Met alleles' being connected with worse outcomes and prognoses after stroke. However, there is no satisfactory data confirming the importance of Met allele in stroke epidemiology and the post-stroke rehabilitation process. We present the current data on the role of BDNF and polymorphisms of the BDNF gene in stroke patients, concentrating on human studies.

  1. KRAS and VEGF gene 3'-UTR single nucleotide polymorphisms predicted susceptibility in colorectal cancer

    PubMed Central

    Xing, Xiaorui; Li, Xin; Xia, Tian; Long, Hanan

    2017-01-01

    Single nucleotide polymorphisms (SNPs) in tumor-related genes have been reported to play important roles in cancer development. Recent studies have shown that 3’-untranslated regions (UTR) polymorphisms are associated with the occurrence and prognosis of cancers. The aim of this study is to analyze the association between KRAS and VEGF gene 3’-UTR SNPs and genetic susceptibility to colorectal cancer (CRC). In this case-control study of 371 CRC cases and 246 healthy controls, we analyzed the association between one SNP (rs1137188G > A) in the KRAS gene and four SNPs (rs3025039C > T, rs3025040C > T, rs3025053G > A and rs10434A > G) in the VEGF gene and CRC susceptibility by the improved multiplex ligase detection reaction (iMLDR) method. We checked the selected SNPs’ minor allele frequency and its distribution in the frequency of Chinese people by Hap-map database and Hardy-Weinberg equilibrium, and used multivariate logistic regression models to estimate adjusted odds ratios (AORs) and 95% confidence intervals (95% CIs). We found that the rs3025039C variant genotype in the VEGF gene was associated with a significant protection for CRC (AOR = 0.693, 95% CI = 0.485–0.989; P = 0.043 for CC and CT+TT). Nevertheless, the difference was no longer significant after Bonferroni correction (Bonferroni-adjusted P = 0.172). In genetic polymorphisms analysis, we found that the KRAS rs1137188 variant AA genotype had higher portion of tumor size (≥ 5 cm) (P = 0.01; Bonferroni-adjusted P = 0.04), which suggested that the rs1137188 variant AA genotype may significantly be associated with increased progression of CRC. In conclusion, our study suggested that these five SNPs in the KRAS gene and the VEGF gene were not associated with CRC susceptibility in Han Chinese in Sichuan province. PMID:28328959

  2. Association of BRCA1 Functional Single Nucleotide Polymorphisms with Risk of Differentiated Thyroid Carcinoma

    PubMed Central

    Xu, Li; Doan, Phi C.; Wei, Qingyi; Liu, Yanhong; Li, Guojun

    2012-01-01

    Background Breast cancer 1, early onset (BRCA1) is a vital DNA repair gene, and the single nucleotide polymorphisms (SNPs) of this gene have been studied in diverse cancer types. In this study, we investigated the association between eight common BRCA1 functional SNPs and the risk of differentiated thyroid carcinoma (DTC). Methods This cancer center-based case–control study included 303 DTC cases and 511 controls. A polymerase chain reaction-based restriction fragment length polymorphism assay was performed for genotyping. Unconditional logistical regression analysis was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) in single-SNP analysis and haplotype analysis. Results A decreased risk of DTC was found for the A1988G heterozygous AG genotype (adjusted OR=0.63, 95% CI: 0.45–0.87, Bonferroni-adjusted p-value=0.036). AATAATA and ATAA haplotypes that carry C33420T variant allele were associated with reduced papillary thyroid cancer risk (adjusted OR=0.52, 95% CI: 0.33–0.84; adjusted OR=0.62, 95% CI: 0.40–0.95, respectively). Also, having a combination of ≥3 favorable genotypes was associated with a DTC risk reduction (adjusted OR=0.69, 95% CI: 0.50–0.95). The A31875G AG/GG genotype was associated with a 69% reduced risk of multifocal primary tumor in DTC patients (adjusted OR=0.31, 95% CI: 0.12–0.81). Conclusion BRCA1 genetic polymorphisms may play a role in DTC risk, while the possible associations warrant confirmation in independent studies. PMID:22136207

  3. Distribution of cytokine gene single nucleotide polymorphisms among a multi-ethnic Iranian population

    PubMed Central

    Kurdistani, Zana Karimi; Saberi, Samaneh; Talebkhan, Yeganeh; Oghalaie, Akbar; Esmaeili, Maryam; Mohajerani, Nazanin; Bababeik, Maryam; Hassanpour, Parisa; Barani, Shaghik; Farjaddoost, Ameneh; Ebrahimzadeh, Fatemeh; Trejaut, Jean; Mohammadi, Marjan

    2015-01-01

    Background: Cytokine gene single nucleotide polymorphisms (SNPs) are widely used to study susceptibility to complex diseases and as a tool for anthropological studies. Materials and Methods: To investigate cytokine SNPs in an Iranian multi-ethnic population, we have investigated 10 interleukin (IL) SNPs (IL-1β (C-511T, T-31C), IL-2 (G-384T), IL-4 (C-590T), IL-6 (G-174C), IL-8 (T-251A), IL-10 (G-1082A, C-819T, C-592A) and tumor necrosis factor-alpha (TNF-α) (G-308A) in 415 Iranian subjects comprising of 6 different ethnicities. Allelic and genotypic frequencies as well as Hardy-Weinberg equilibrium (HWE) were calculated by PyPop software. Population genetic indices including observed heterozygosity (Ho), expected heterozygosity (He), fixation index (FIS), the effective number of alleles (Ne) and polymorphism information content (PIC) were derived using Popgene 32 software. Multidimensional scaling (MDS) was constructed using Reynold's genetic distance obtained from the frequencies of cytokine gene polymorphism. Results: Genotypic distributions were consistent with the HWE assumptions, except for 3 loci (IL-4-590, IL-8-251 and IL-10-819) in Fars and 4 loci (IL-4-590, IL-6-174, IL-10-1082 and TNF-α-308) in Turks. Pairwise assessment of allelic frequencies, detected differences at the IL-4-590 locus in Gilakis versus Kurds (P = 0.028) and Lurs (P = 0.022). Mazanis and Gilakis displayed the highest (Ho= 0.50 ± 0.24) and lowest (Ho= 0.34 ± 0.16) mean observed heterozygosity, respectively. Conclusions: MDS analysis of our study population, in comparison with others, revealed that Iranian ethnicities except Kurds and Mazanis were tightly located within a single cluster with closest genetic affinity to Europeans. PMID:26436076

  4. Genetic susceptibility to chronic otitis media with effusion: candidate gene single nucleotide polymorphisms.

    PubMed

    MacArthur, Carol J; Wilmot, Beth; Wang, Linda; Schuller, Michael; Lighthall, Jessyka; Trune, Dennis

    2014-05-01

    The genetic factors leading to a predisposition to otitis media are not well understood. The objective of the current study was to develop a tag-single nucleotide polymorphism (SNP) panel to determine if there is an association between candidate gene polymorphisms and the development of chronic otitis media with effusion. A 1:1 case/control design of 100 cases and 100 controls was used. The study was limited to the chronic otitis media with effusion phenotype to increase the population homogeneity. A panel of 192 tag-SNPs was selected. Saliva for DNA extraction was collected from 100 chronic otitis media with effusion cases and 100 controls. After quality control, 100 case and 79 control samples were available for hybridization. Genomic DNA from each subject was hybridized to the SNP probes, and genotypes were generated. Quality control across all samples and SNPs reduced the final SNPs used for analysis to 170. Each SNP was then analyzed for statistical association with chronic otitis media with effusion. Eight SNPs from four genes had an unadjusted P value of <.05 for association with the chronic otitis media with effusion phenotype (TLR4, MUC5B, SMAD2, SMAD4); five of these polymorphisms were in the TLR4 gene. Even though these results need to be replicated in a novel population, the presence of five SNPs in the TLR4 gene having association with chronic otitis media with effusion in our study population lends evidence for the possible role of this gene in the susceptibility to otitis media. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  5. Single nucleotide polymorphisms in the MATP gene are associated with normal human pigmentation variation.

    PubMed

    Graf, Justin; Hodgson, Richard; van Daal, Angela

    2005-03-01

    Human physical pigmentation is determined by the type and amount of melanin and the process of pigmentation production probably involves more than 100 genes. A failure to synthesize melanin results in oculocutaneous albinism (OCA). A recently identified form of OCA results from mutations in the Membrane Associated Transporter Protein (MATP) gene. The role of MATP in human pigmentation is not clear. We investigated the role of two nonpathogenic nonsynonymous single nucleotide polymorphisms (SNPs) in the MATP gene to determine if they are associated with normal human skin, hair, and eye color variation. A total of 608 individuals from four different population groups (456 Caucasians, 31 Asians, 70 African-Americans, and 51 Australian Aborigines) were genotyped for c.814G>A (p.Glu272Lys) and c.1122C>G (p.Phe374Leu). Results indicate that the allele frequencies of both polymorphisms are significantly different between population groups. The two alleles, 374Leu and 272Lys, are significantly associated with dark hair, skin, and eye color in Caucasians. The odds ratios (ORs) of the LeuLeu genotype for black hair and olive skin are 25.63 and 28.65, respectively, and for the LysLys genotype are 43.23 and 8.27, respectively. The OR for eye color is lower at 3.48 for the LeuLeu and 6.57 for LysLys genotypes. This is the first report of this highly significant association of MATP polymorphisms with normal human pigmentation variation.

  6. Development of a Single Nucleotide Polymorphism Barcode to Genotype Plasmodium vivax Infections

    PubMed Central

    Baniecki, Mary Lynn; Faust, Aubrey L.; Schaffner, Stephen F.; Park, Daniel J.; Galinsky, Kevin; Daniels, Rachel F.; Hamilton, Elizabeth; Ferreira, Marcelo U.; Karunaweera, Nadira D.; Serre, David; Zimmerman, Peter A.; Sá, Juliana M.; Wellems, Thomas E.; Musset, Lise; Legrand, Eric; Melnikov, Alexandre; Neafsey, Daniel E.; Volkman, Sarah K.; Wirth, Dyann F.; Sabeti, Pardis C.

    2015-01-01

    Plasmodium vivax, one of the five species of Plasmodium parasites that cause human malaria, is responsible for 25–40% of malaria cases worldwide. Malaria global elimination efforts will benefit from accurate and effective genotyping tools that will provide insight into the population genetics and diversity of this parasite. The recent sequencing of P. vivax isolates from South America, Africa, and Asia presents a new opportunity by uncovering thousands of novel single nucleotide polymorphisms (SNPs). Genotyping a selection of these SNPs provides a robust, low-cost method of identifying parasite infections through their unique genetic signature or barcode. Based on our experience in generating a SNP barcode for P. falciparum using High Resolution Melting (HRM), we have developed a similar tool for P. vivax. We selected globally polymorphic SNPs from available P. vivax genome sequence data that were located in putatively selectively neutral sites (i.e., intergenic, intronic, or 4-fold degenerate coding). From these candidate SNPs we defined a barcode consisting of 42 SNPs. We analyzed the performance of the 42-SNP barcode on 87 P. vivax clinical samples from parasite populations in South America (Brazil, French Guiana), Africa (Ethiopia) and Asia (Sri Lanka). We found that the P. vivax barcode is robust, as it requires only a small quantity of DNA (limit of detection 0.3 ng/μl) to yield reproducible genotype calls, and detects polymorphic genotypes with high sensitivity. The markers are informative across all clinical samples evaluated (average minor allele frequency > 0.1). Population genetic and statistical analyses show the barcode captures high degrees of population diversity and differentiates geographically distinct populations. Our 42-SNP barcode provides a robust, informative, and standardized genetic marker set that accurately identifies a genomic signature for P. vivax infections. PMID:25781890

  7. Single nucleotide polymorphisms in uracil-processing genes, intake of one-carbon nutrients and breast cancer risk

    USDA-ARS?s Scientific Manuscript database

    Background/Objectives: The misincorporation of uracil into DNA leads to genomic instability. In a previous study, some of us identified four common single nucleotide polymorphisms (SNPs) in uracil-processing genes (rs2029166 and rs7296239 in SMUG1, rs34259 in UNG and rs4775748 in DUT) that were asso...

  8. High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform

    USDA-ARS?s Scientific Manuscript database

    Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...

  9. A high-density simple sequence repeat and single nucleotide polymorphism genetic map of the tetraploid cotton genome

    USDA-ARS?s Scientific Manuscript database

    Cotton genome complexity was investigated with a saturated molecular genetic map that combined several sets of microsatellites or simple sequence repeats (SSR) and the first major public set of single nucleotide polymorphism (SNP) markers in cotton genomes (Gossypium spp.), and that was constructed ...

  10. Comparing genotyping-by-sequencing and Single Nucleotide Polymorphism chip genotyping in Quantitive Trait Loci mapping in wheat

    USDA-ARS?s Scientific Manuscript database

    Array- or chip-based single nucleotide polymorphism (SNP) markers are widely used in genomic studies because of their abundance in a genome and cost less per data point compared to older marker technologies. Genotyping by sequencing (GBS), a relatively newer approach of genotyping, suggests equal or...

  11. Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single-nucleotide polymorphism genotyping array

    USDA-ARS?s Scientific Manuscript database

    With the low cost of single nucleotide polymorphism (SNP) discovery, use of SNP markers for SNP array development is becoming more affordable. The SNP array is a very useful tool for high throughput genotyping and has a number of applications such as genome-wide association studies (GWAS). Since the...

  12. Single nucleotide polymorphisms in candidate genes associated with fertilizing ability of sperm and subsequent embryonic development in cattle

    USDA-ARS?s Scientific Manuscript database

    Fertilization and development of the preimplantation embryo is under genetic control. The goal of the current study was to test 434 single nucleotide polymorphisms (SNPs) for association with genetic variation in fertilization and early embryonic development. The approach was to produce embryos from...

  13. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array

    USDA-ARS?s Scientific Manuscript database

    High-density single nucleotide polymorphism (SNP) genotyping chips are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships among individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array includ...

  14. Assessing the association of single nucleotide polymorphisms at the thyroglobulin gene with carcass traits in beef cattle

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to assess the association of single nucleotide polymorphisms in the thyroglobulin gene, including a previously reported marker in current industry use, with marbling score in beef cattle. Three populations, designated GPE6, GPE7, and GPE8, were studied. The GPE6 pop...

  15. A ferrofluid-based homogeneous assay for highly sensitive and selective detection of single-nucleotide polymorphisms.

    PubMed

    Shen, Wei; Lim, Cai Le; Gao, Zhiqiang

    2013-09-21

    A simple and low-cost colorimetric assay utilizing ferrofluidic nanoparticulate probes (FNPs) and a ligase for single-nucleotide polymorphism genotyping is described. Excellent sensitivity and selectivity were accomplished through the engagement of the FNPs and a ligase chain reaction.

  16. Discovery of single nucleotide polymorphisms in candidate genes associated with fertility and production traits in Holstein cattle

    USDA-ARS?s Scientific Manuscript database

    Identification of single nucleotide polymorphisms (SNPs) for specific genes involved in reproduction might improve reliability of genomic estimates for these low- heritability traits. Semen from 550 Holstein bulls of high (>= 1.7; n=288) or low (<= -2; n = 262) daughter pregnancy rate (DPR) was geno...

  17. Quantitative genotyping of single nucleotide polymorphism by single-molecule multi-color fluorescence resonance energy transfer.

    PubMed

    Koh, Hye Ran; Han, Kyu Young; Jung, Jiwon; Kim, Seong Keun

    2011-10-07

    We developed a new single nucleotide polymorphism (SNP) genotyping method based on single-molecule multi-color fluorescence resonance energy transfer (FRET). We demonstrated that this new method uses less than 1 fmol of sample and is also highly quantitative with a detection level of 1% or lower in the minor allele fraction. This journal is © The Royal Society of Chemistry 2011

  18. Characterization of Single-Nucleotide-Polymorphism Markers for Plasmopara viticola, the Causal Agent of Grapevine Downy Mildew▿

    PubMed Central

    Delmotte, F.; Machefer, V.; Giresse, X.; Richard-Cervera, S.; Latorse, M. P.; Beffa, R.

    2011-01-01

    We report 34 new nuclear single-nucleotide-polymorphism (SNP) markers that have been developed from an expressed sequence tag library of Plasmopara viticola, the causal agent of grapevine downy mildew. This newly developed battery of markers will provide useful additional genetic tools for population genetic studies of this important agronomic species. PMID:21926208

  19. Single Nucleotide Polymorphisms in ABCG5 and ABCG8 are associated with changes in cholestrol metabolism during weight loss

    USDA-ARS?s Scientific Manuscript database

    Objective: To examine whether changes in cholesterol lowering and metabolism after weight loss were affected by single nucleotide polymorphisms (SNPs) in ABCG5 and ABCG8 genes. Methods and Results: Thirty-five hypercholesterolemic women lost 11.7 +/- 2.5 kg (P<0.001). Cholesterol kinetics were ass...

  20. Effects of bovine cytochrome P450 single nucleotide polymorphism, forage type, and body condition on production traits in cattle

    USDA-ARS?s Scientific Manuscript database

    Relating single nucleotide polymorphisms (SNP) to cows with acceptable productivity could benefit cattle breeders especially in areas where tall fescue is the predominant forage. This study aimed to 1) identify SNPs in bovine cytochrome P450 3A28 (CYP3A28) and 2) determine associations between SNP g...

  1. A new single-nucleotide polymorphisms database for rainbow trout generated through whole genome resequencing of selected samples

    USDA-ARS?s Scientific Manuscript database

    Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout, SNP discovery has been done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL), RNA sequencing, and whole...

  2. High-resolution genomic copy number profiling of glioblastoma multiforme by single nucleotide polymorphism DNA microarray.

    PubMed

    Yin, Dong; Ogawa, Seishi; Kawamata, Norihiko; Tunici, Patrizia; Finocchiaro, Gaetano; Eoli, Marica; Ruckert, Christian; Huynh, Thien; Liu, Gentao; Kato, Motohiro; Sanada, Masashi; Jauch, Anna; Dugas, Martin; Black, Keith L; Koeffler, H Phillip

    2009-05-01

    Glioblastoma multiforme (GBM) is an extremely malignant brain tumor. To identify new genomic alterations in GBM, genomic DNA of tumor tissue/explants from 55 individuals and 6 GBM cell lines were examined using single nucleotide polymorphism DNA microarray (SNP-Chip). Further gene expression analysis relied on an additional 56 GBM samples. SNP-Chip results were validated using several techniques, including quantitative PCR (Q-PCR), nucleotide sequencing, and a combination of Q-PCR and detection of microsatellite markers for loss of heterozygosity with normal copy number [acquired uniparental disomy (AUPD)]. Whole genomic DNA copy number in each GBM sample was profiled by SNP-Chip. Several signaling pathways were frequently abnormal. Either the p16(INK4A)/p15(INK4B)-CDK4/6-pRb or p14(ARF)-MDM2/4-p53 pathways were abnormal in 89% (49 of 55) of cases. Simultaneous abnormalities of both pathways occurred in 84% (46 of 55) samples. The phosphoinositide 3-kinase pathway was altered in 71% (39 of 55) GBMs either by deletion of PTEN or amplification of epidermal growth factor receptor and/or vascular endothelial growth factor receptor/platelet-derived growth factor receptor alpha. Deletion of chromosome 6q26-27 often occurred (16 of 55 samples). The minimum common deleted region included PARK2, PACRG, QKI, and PDE10A genes. Further reverse transcription Q-PCR studies showed that PARK2 expression was decreased in another collection of GBMs at a frequency of 61% (34 of 56) of samples. The 1p36.23 region was deleted in 35% (19 of 55) of samples. Notably, three samples had homozygous deletion encompassing this site. Also, a novel internal deletion of a putative tumor suppressor gene, LRP1B, was discovered causing an aberrant protein. AUPDs occurred in 58% (32 of 55) of the GBM samples and five of six GBM cell lines. A common AUPD was found at chromosome 17p13.3-12 (included p53 gene) in 13 of 61 samples and cell lines. Single-strand conformational polymorphism and nucleotide

  3. Mango (Mangifera indica L.) germplasm diversity based on single nucleotide polymorphisms derived from the transcriptome.

    PubMed

    Sherman, Amir; Rubinstein, Mor; Eshed, Ravit; Benita, Miri; Ish-Shalom, Mazal; Sharabi-Schwager, Michal; Rozen, Ada; Saada, David; Cohen, Yuval; Ophir, Ron

    2015-11-14

    Germplasm collections are an important source for plant breeding, especially in fruit trees which have a long duration of juvenile period. Thus, efforts have been made to study the diversity of fruit tree collections. Even though mango is an economically important crop, most of the studies on diversity in mango collections have been conducted with a small number of genetic markers. We describe a de novo transcriptome assembly from mango cultivar 'Keitt'. Variation discovery was performed using Illumina resequencing of 'Keitt' and 'Tommy Atkins' cultivars identified 332,016 single-nucleotide polymorphisms (SNPs) and 1903 simple-sequence repeats (SSRs). Most of the SSRs (70.1%) were of trinucleotide with the preponderance of motif (GGA/AAG)n and only 23.5% were di-nucleotide SSRs with the mostly of (AT/AT)n motif. Further investigation of the diversity in the Israeli mango collection was performed based on a subset of 293 SNPs. Those markers have divided the Israeli mango collection into two major groups: one group included mostly mango accessions from Southeast Asia (Malaysia, Thailand, Indonesia) and India and the other with mainly of Floridian and Israeli mango cultivars. The latter group was more polymorphic (FS=-0.1 on the average) and was more of an admixture than the former group. A slight population differentiation was detected (FST=0.03), suggesting that if the mango accessions of the western world apparently was originated from Southeast Asia, as has been previously suggested, the duration of cultivation was not long enough to develop a distinct genetic background. Whole-transcriptome reconstruction was used to significantly broaden the mango's genetic variation resources, i.e., SNPs and SSRs. The set of SNP markers described in this study is novel. A subset of SNPs was sampled to explore the Israeli mango collection and most of them were polymorphic in many mango accessions. Therefore, we believe that these SNPs will be valuable as they recapitulate and

  4. Nucleotide Polymorphism and Linkage Disequilibrium Within and Among Natural Populations of European Aspen (Populus tremula L., Salicaceae)

    PubMed Central

    Ingvarsson, Pär K.

    2005-01-01

    Populus is an important model organism in forest biology, but levels of nucleotide polymorphisms and linkage disequilibrium have never been investigated in natural populations. Here I present a study on levels of nucleotide polymorphism, haplotype structure, and population subdivision in five nuclear genes in the European aspen Populus tremula. Results show substantial levels of genetic variation. Levels of silent site polymorphisms, πs, averaged 0.016 across the five genes. Linkage disequilibrium was generally low, extending only a few hundred base pairs, suggesting that rates of recombination are high in this obligate outcrossing species. Significant genetic differentiation was found at all five genes, with an average estimate of FST = 0.116. Levels of polymorphism in P. tremula are 2- to 10-fold higher than those in other woody, long-lived perennial plants, such as Pinus and Cryptomeria. The high levels of nucleotide polymorphism and low linkage disequilibrium suggest that it may be possible to map functional variation to very fine scales in P. tremula using association-mapping approaches. PMID:15489521

  5. Investigation of single nucleotide polymorphisms based on the intronic sequences of the propylene alcohol dehydrogenase gene in Chinese tobacco genotypes

    PubMed Central

    Wei, Ji-Cheng; Qiu, En-Jian; Guo, Hui-Yan; Hao, Ai-Ping; Chen, Rong-Ping

    2014-01-01

    A pair of primers was designed to amplify the propylene alcohol dehydrogenase gene sequence based on the cDNA sequence of the tobacco allyl-alcohol dehydrogenase gene. All introns were sequenced using traditional polymerase chain reaction (PCR) methods and T-A cloning. The sequences from common tobacco (Nicotiana tabaccum L.) and rustica tobacco (Nicotiana rustica L.) were analysed between the third intron and the fourth intron of the propylene alcohol dehydrogenase gene. The results showed that the alcohol dehydrogenase gene is a low-copy nuclear gene. The intron sequences have a combination of single nucleotide polymorphisms and length polymorphisms between common tobacco and rustica tobacco, which are suitable to identify the different germplasms. Furthermore, there are some single nucleotide polymorphism sites in the target sequence within common tobacco that can be used to distinguish intraspecific varieties. PMID:26740754

  6. Highly Significant Association between Two Common Single Nucleotide Polymorphisms in CORIN Gene and Preeclampsia in Caucasian Women

    PubMed Central

    de Prost, Dominique; Tsatsaris, Vassilis; Dreyfus, Michel; Treluyer, Jean-Marc; Mandelbrot, Laurent

    2014-01-01

    Preeclampsia is a frequent medical complication during pregnancy. Corin, a serine protease which activates pro-atrial natriuretic peptide, has recently been shown to be involved in the pathophysiology of preeclampsia. The aim of this study was to search for CORIN gene variations and their association to preeclampsia in Caucasian and African women. Our study population was composed of 571 pregnant women (295 with preeclampsia and 276 normotensive controls) matched for maternal and gestational age, and ethnic origin. The 22 exons of the CORIN gene were sequenced in a discovery sample (n = 260), where 31 single nucleotide polymorphisms were identified. In a replication sample (n = 311), 4 single nucleotide polymorphisms were tested. Two minor alleles (C for rs2271036 and G for rs2271037) were significantly associated to preeclampsia. Adjusted odds ratios [95% confidence interval] were 2.5 [1.2–3.8] (p = 0.007) and 2.3 [1.5–3.5] (p = 1.3×10−4), respectively. These associations were ethnic-specific, as only found in the Caucasian of subjects (odds ratio = 3.5 [1.8–6.6], p = 1.1×10−4; odds ratio = 3.1 [1.7–5.8], p = 2.1×10−4, for each single nucleotide polymorphism, respectively). The two single nucleotide polymorphisms are in almost perfect linkage disequilibrium (r2 = 0.93). No specific association was found with severe preeclampsia, early-onset preeclampsia nor fetal growth retardation. In conclusion, this is the first report of a highly significant association between these two single nucleotide polymorphisms in CORIN gene and preeclampsia. Our findings further support the probability of a critical role of corin in preeclamspia pathophysiology at the uteroplacental interface. PMID:25474356

  7. Highly significant association between two common single nucleotide polymorphisms in CORIN gene and preeclampsia in Caucasian women.

    PubMed

    Stepanian, Alain; Alcaïs, Alexandre; de Prost, Dominique; Tsatsaris, Vassilis; Dreyfus, Michel; Treluyer, Jean-Marc; Mandelbrot, Laurent

    2014-01-01

    Preeclampsia is a frequent medical complication during pregnancy. Corin, a serine protease which activates pro-atrial natriuretic peptide, has recently been shown to be involved in the pathophysiology of preeclampsia. The aim of this study was to search for CORIN gene variations and their association to preeclampsia in Caucasian and African women. Our study population was composed of 571 pregnant women (295 with preeclampsia and 276 normotensive controls) matched for maternal and gestational age, and ethnic origin. The 22 exons of the CORIN gene were sequenced in a discovery sample (n = 260), where 31 single nucleotide polymorphisms were identified. In a replication sample (n = 311), 4 single nucleotide polymorphisms were tested. Two minor alleles (C for rs2271036 and G for rs2271037) were significantly associated to preeclampsia. Adjusted odds ratios [95% confidence interval] were 2.5 [1.2-3.8] (p = 0.007) and 2.3 [1.5-3.5] (p = 1.3 × 10(-4)), respectively. These associations were ethnic-specific, as only found in the Caucasian of subjects (odds ratio = 3.5 [1.8-6.6], p = 1.1 × 10(-4); odds ratio = 3.1 [1.7-5.8], p = 2.1 × 10(-4), for each single nucleotide polymorphism, respectively). The two single nucleotide polymorphisms are in almost perfect linkage disequilibrium (r(2) = 0.93). No specific association was found with severe preeclampsia, early-onset preeclampsia nor fetal growth retardation. In conclusion, this is the first report of a highly significant association between these two single nucleotide polymorphisms in CORIN gene and preeclampsia. Our findings further support the probability of a critical role of corin in preeclamspia pathophysiology at the uteroplacental interface.

  8. Single nucleotide polymorphisms in the D-loop region of mitochondrial DNA is associated with colorectal cancer outcome.

    PubMed

    Wang, Cuiju; Zhao, Shengnan; Du, Yanming; Guo, Zhanjun

    2016-11-01

    Single nucleotide polymorphisms (SNPs) in the displacement loop (D-Loop) of mitochondrial DNA (mtDNA) has been identified for their association with the risk and outcome in many cancers. We have identified risk associated D-loop SNPs for colorectal cancer previously, in the present study, we evaluate their prognostic value for postoperative survival of colorectal cancer (CRC). The minor haplotype of nucleotides 16290T and frequent haplotype of nucleotide 16298T in the hypervariable segment 1 (HV1) region of the D-loop were identified for their association with high survival rate of CRC. After adjusted with COX proportional hazard model, the nucleotide site of 16290 was identified as independent predictor for CRC (RR, 0.379; 95% CI, 0.171-0.839; p = 0.017). In conclusion, SNPs in the mtDNA D-Loop were found to be valuable markers for colorectal cancer outcome evaluation.

  9. Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology

    PubMed Central

    Pareek, Chandra Shekhar; Błaszczyk, Paweł; Dziuba, Piotr; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Pierzchała, Mariusz; Feng, Yaping; Kadarmideen, Haja N.; Kumar, Dibyendu

    2017-01-01

    Background RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver tissue of young bulls of the Polish Red, Polish Holstein-Friesian (HF) and Hereford breeds, and to understand the genomic variation in the three cattle breeds that may reflect differences in production traits. Results The RNA-seq experiment on bovine liver produced 107,114,4072 raw paired-end reads, with an average of approximately 60 million paired-end reads per library. Breed-wise, a total of 345.06, 290.04 and 436.03 million paired-end reads were obtained from the Polish Red, Polish HF, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed that 81.35%, 82.81% and 84.21% of the mapped sequencing reads were properly paired to the Polish Red, Polish HF, and Hereford breeds, respectively. This study identified 5,641,401 SNPs and insertion and deletion (indel) positions expressed in the bovine liver with an average of 313,411 SNPs and indel per young bull. Following the removal of the indel mutations, a total of 195,3804, 152,7120 and 205,3184 raw SNPs expressed in bovine liver were identified for the Polish Red, Polish HF, and Hereford breeds, respectively. Breed-wise, three highly reliable breed-specific SNP-databases (SNP-dbs) with 31,562, 24,945 and 28,194 SNP records were constructed for the Polish Red, Polish HF, and Hereford breeds, respectively. Using a combination of stringent parameters of a minimum depth of ≥10 mapping reads that support the polymorphic nucleotide base and 100% SNP ratio, 4,368, 3,780 and 3,800 SNP records were detected in the Polish Red, Polish HF, and Hereford breeds, respectively. The SNP detections using RNA-seq data were successfully validated by kompetitive allele-specific PCR (KASPTM) SNP genotyping assay

  10. Single nucleotide polymorphism discovery in bovine liver using RNA-seq technology.

    PubMed

    Pareek, Chandra Shekhar; Błaszczyk, Paweł; Dziuba, Piotr; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Pierzchała, Mariusz; Feng, Yaping; Kadarmideen, Haja N; Kumar, Dibyendu

    2017-01-01

    RNA-seq is a useful next-generation sequencing (NGS) technology that has been widely used to understand mammalian transcriptome architecture and function. In this study, a breed-specific RNA-seq experiment was utilized to detect putative single nucleotide polymorphisms (SNPs) in liver tissue of young bulls of the Polish Red, Polish Holstein-Friesian (HF) and Hereford breeds, and to understand the genomic variation in the three cattle breeds that may reflect differences in production traits. The RNA-seq experiment on bovine liver produced 107,114,4072 raw paired-end reads, with an average of approximately 60 million paired-end reads per library. Breed-wise, a total of 345.06, 290.04 and 436.03 million paired-end reads were obtained from the Polish Red, Polish HF, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed that 81.35%, 82.81% and 84.21% of the mapped sequencing reads were properly paired to the Polish Red, Polish HF, and Hereford breeds, respectively. This study identified 5,641,401 SNPs and insertion and deletion (indel) positions expressed in the bovine liver with an average of 313,411 SNPs and indel per young bull. Following the removal of the indel mutations, a total of 195,3804, 152,7120 and 205,3184 raw SNPs expressed in bovine liver were identified for the Polish Red, Polish HF, and Hereford breeds, respectively. Breed-wise, three highly reliable breed-specific SNP-databases (SNP-dbs) with 31,562, 24,945 and 28,194 SNP records were constructed for the Polish Red, Polish HF, and Hereford breeds, respectively. Using a combination of stringent parameters of a minimum depth of ≥10 mapping reads that support the polymorphic nucleotide base and 100% SNP ratio, 4,368, 3,780 and 3,800 SNP records were detected in the Polish Red, Polish HF, and Hereford breeds, respectively. The SNP detections using RNA-seq data were successfully validated by kompetitive allele-specific PCR (KASPTM) SNP genotyping assay. The comprehensive

  11. On-chip detection of a single nucleotide polymorphism without polymerase amplification

    PubMed Central

    Han, Jinhee; Tan, Matthew; Sudheendra, Lakshmana; Weiss, Robert H.; Kennedy, Ian M.

    2014-01-01

    A nanoparticle-assembled photonic crystal (PC) array was used to detect single nucleotide polymorphism (SNP). The assay platform with PC nanostructure enhanced the fluorescent signal from nanoparticle-hybridized DNA complexes due to phase matching of excitation and emission. Nanoparticles coupled with probe DNA were trapped into nanowells in an array by using an electrophoretic particle entrapment system. The PC/DNA assay platform was able to identify a 1 base pair (bp) difference in synthesized nucleotide sequences that mimicked the mutation seen in a feline model of human autosomal dominant polycystic kidney disease (PKD) with a sensitivity of 0.9 fg/mL (50 aM)-sensitivity, which corresponds to 30 oligos/array. The reliability of the PC/DNA assay platform to detect SNP in a real sample was demonstrated by using genomic DNA (gDNA) extracted from the urine and blood of two PKD− wild type and three PKD positive cats. The standard curves for PKD positive (PKD+) and negative (PKD−) DNA were created using two feline-urine samples. An additional three urine samples were analyzed in a similar fashion and showed satisfactory agreement with the standard curve, confirming the presence of the mutation in affected urine. The limit of detection (LOD) was 0.005 ng/mL which corresponds to 6 fg per array for gDNA in urine and blood. The PC system demonstrated the ability to detect a number of genome equivalents for the PKD SNP that was very similar to the results reported with real time polymerase chain reaction (PCR). The favorable comparison with quantitative PCR suggests that the PC technology may find application well beyond the detection of the PKD SNP, into areas where a simple, cheap and portable nucleic acid analysis is desirable. PMID:25580203

  12. On-chip detection of a single nucleotide polymorphism without polymerase amplification.

    PubMed

    Han, Jinhee; Tan, Matthew; Sudheendra, Lakshmana; Weiss, Robert H; Kennedy, Ian M

    2014-09-01

    A nanoparticle-assembled photonic crystal (PC) array was used to detect single nucleotide polymorphism (SNP). The assay platform with PC nanostructure enhanced the fluorescent signal from nanoparticle-hybridized DNA complexes due to phase matching of excitation and emission. Nanoparticles coupled with probe DNA were trapped into nanowells in an array by using an electrophoretic particle entrapment system. The PC/DNA assay platform was able to identify a 1 base pair (bp) difference in synthesized nucleotide sequences that mimicked the mutation seen in a feline model of human autosomal dominant polycystic kidney disease (PKD) with a sensitivity of 0.9 fg/mL (50 aM)-sensitivity, which corresponds to 30 oligos/array. The reliability of the PC/DNA assay platform to detect SNP in a real sample was demonstrated by using genomic DNA (gDNA) extracted from the urine and blood of two PKD(-) wild type and three PKD positive cats. The standard curves for PKD positive (PKD(+)) and negative (PKD(-)) DNA were created using two feline-urine samples. An additional three urine samples were analyzed in a similar fashion and showed satisfactory agreement with the standard curve, confirming the presence of the mutation in affected urine. The limit of detection (LOD) was 0.005 ng/mL which corresponds to 6 fg per array for gDNA in urine and blood. The PC system demonstrated the ability to detect a number of genome equivalents for the PKD SNP that was very similar to the results reported with real time polymerase chain reaction (PCR). The favorable comparison with quantitative PCR suggests that the PC technology may find application well beyond the detection of the PKD SNP, into areas where a simple, cheap and portable nucleic acid analysis is desirable.

  13. Kelvin probe force microscopy of DNA-capped nanoparticles for single-nucleotide polymorphism detection

    NASA Astrophysics Data System (ADS)

    Lee, Hyungbeen; Lee, Sang Won; Lee, Gyudo; Lee, Wonseok; Lee, Jeong Hoon; Hwang, Kyo Seon; Yang, Jaemoon; Lee, Sang Woo; Yoon, Dae Sung

    2016-07-01

    Kelvin probe force microscopy (KPFM) is a robust toolkit for profiling the surface potential (SP) of biomolecular interactions between DNAs and/or proteins at the single molecule level. However, it has often suffered from background noise and low throughput due to instrumental or environmental constraints, which is regarded as limiting KPFM applications for detection of minute changes in the molecular structures such as single-nucleotide polymorphism (SNP). Here, we show KPFM imaging of DNA-capped nanoparticles (DCNP) that enables SNP detection of the BRCA1 gene owing to sterically well-adjusted DNA-DNA interactions that take place within the confined spaces of DCNP. The average SP values of DCNP interacting with BRCA1 SNP were found to be lower than the DCNP reacting with normal (non-mutant) BRCA1 gene. We also demonstrate that SP characteristics of DCNP with different substrates (e.g., Au, Si, SiO2, and Fe) provide us with a chance to attenuate or augment the SP signal of DCNP without additional enhancement of instrumentation capabilities.Kelvin probe force microscopy (KPFM) is a robust toolkit for profiling the surface potential (SP) of biomolecular interactions between DNAs and/or proteins at the single molecule level. However, it has often suffered from background noise and low throughput due to instrumental or environmental constraints, which is regarded as limiting KPFM applications for detection of minute changes in the molecular structures such as single-nucleotide polymorphism (SNP). Here, we show KPFM imaging of DNA-capped nanoparticles (DCNP) that enables SNP detection of the BRCA1 gene owing to sterically well-adjusted DNA-DNA interactions that take place within the confined spaces of DCNP. The average SP values of DCNP interacting with BRCA1 SNP were found to be lower than the DCNP reacting with normal (non-mutant) BRCA1 gene. We also demonstrate that SP characteristics of DCNP with different substrates (e.g., Au, Si, SiO2, and Fe) provide us with a

  14. Genome-wide patterns of recombination, linkage disequilibrium and nucleotide diversity from pooled resequencing and single nucleotide polymorphism genotyping unlock the evolutionary history of Eucalyptus grandis.

    PubMed

    Silva-Junior, Orzenil B; Grattapaglia, Dario

    2015-11-01

    We used high-density single nucleotide polymorphism (SNP) data and whole-genome pooled resequencing to examine the landscape of population recombination (ρ) and nucleotide diversity (ϴw ), assess the extent of linkage disequilibrium (r(2) ) and build the highest density linkage maps for Eucalyptus. At the genome-wide level, linkage disequilibrium (LD) decayed within c. 4-6 kb, slower than previously reported from candidate gene studies, but showing considerable variation from absence to complete LD up to 50 kb. A sharp decrease in the estimate of ρ was seen when going from short to genome-wide inter-SNP distances, highlighting the dependence of this parameter on the scale of observation adopted. Recombination was correlated with nucleotide diversity, gene density and distance from the centromere, with hotspots of recombination enriched for genes involved in chemical reactions and pathways of the normal metabolic processes. The high nucleotide diversity (ϴw = 0.022) of E. grandis revealed that mutation is more important than recombination in shaping its genomic diversity (ρ/ϴw = 0.645). Chromosome-wide ancestral recombination graphs allowed us to date the split of E. grandis (1.7-4.8 million yr ago) and identify a scenario for the recent demographic history of the species. Our results have considerable practical importance to Genome Wide Association Studies (GWAS), while indicating bright prospects for genomic prediction of complex phenotypes in eucalypt breeding. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. A single nucleotide polymorphism in APOA5 determines triglyceride levels in Hong Kong and Guangzhou Chinese

    PubMed Central

    Jiang, Chao Qiang; Liu, Bin; Cheung, Bernard MY; Lam, Tai Hing; Lin, Jie Ming; Li Jin, Ya; Yue, Xiao Jun; Ong, Kwok Leung; Tam, Sidney; Wong, Ka Sing; Tomlinson, Brian; Lam, Karen SL; Thomas, G Neil

    2010-01-01

    Single nucleotide polymorphisms (SNPs) in the apolipoprotein A5 (APOA5) gene have been associated with hypertriglyceridaemia. We investigated which SNPs in the APOA5 gene were associated with triglyceride levels in two independent Chinese populations. In all, 1375 subjects in the Hong Kong Cardiovascular Risk Factor Prevalence Study were genotyped for five tagging SNPs chosen from HapMap. Replication was sought in 1996 subjects from the Guangzhou Biobank Cohort Study. Among the five SNPs, rs662799 (-1131T>C) was strongly related to log-transformed triglyceride levels among Hong Kong subjects (β=0.192, P=2.6 × 10−13). Plasma triglyceride level was 36.1% higher in CC compared to TT genotype. This association was confirmed in Guangzhou subjects (β=0.159, P=1.3 × 10−12), and was significantly irrespective of sex, age group, obesity, metabolic syndrome, hypertension, diabetes, smoking and alcohol drinking. The odds ratios and 95% confidence interval for plasma triglycerides ≥1.7 mmol/l associated with TC and CC genotypes were, respectively, 1.81 (1.37–2.39) and 2.22 (1.44–3.43) in Hong Kong and 1.27 (1.05–1.54) and 1.97 (1.42–2.73) in Guangzhou. Haplotype analysis suggested the association was due to rs662799 only. The corroborative findings in two independent populations indicate that the APOA5-1131T>C polymorphism is an important and clinically relevant determinant of plasma triglyceride levels in the Chinese population. PMID:20571505

  16. Single-nucleotide polymorphism associations in common with immune responses to measles and rubella vaccines.

    PubMed

    Ovsyannikova, Inna G; Salk, Hannah M; Larrabee, Beth R; Pankratz, V Shane; Poland, Gregory A

    2014-11-01

    Single-nucleotide polymorphisms (SNPs) in candidate immune response genes were evaluated for associations with measles- and rubella-specific neutralizing antibodies, interferon (IFN)-γ, and interleukin (IL)-6 secretion in two separate association analyses in a cohort of healthy immunized subjects. We identified six SNP associations shared between the measles-specific and rubella-specific immune responses, specifically neutralizing antibody titers (DDX58), secreted IL-6 (IL10RB, IL12B), and secreted IFN-γ (IFNAR2, TLR4). An intronic SNP (rs669260) in the antiviral innate immune receptor gene, DDX58, was significantly associated with increased neutralizing antibody titers for both measles and rubella viral antigens post-MMR vaccination (p values 0.02 and 0.0002, respectively). Significant associations were also found between IL10RB (rs2284552; measles study p value 0.006, rubella study p value 0.00008) and IL12B (rs2546893; measles study p value 0.005, rubella study p value 0.03) gene polymorphisms and variations in both measles- and rubella virus-specific IL-6 responses. We also identified associations between individual SNPs in the IFNAR2 and TLR4 genes that were associated with IFN-γ secretion for both measles and rubella vaccine-specific immune responses. These results are the first to indicate that there are SNP associations in common across measles and rubella vaccine immune responses and that SNPs from multiple genes involved in innate and adaptive immune response regulation may contribute to the overall human antiviral response.

  17. Screening of a Brassica napus bacterial artificial chromosome library using highly parallel single nucleotide polymorphism assays

    PubMed Central

    2013-01-01

    Background Efficient screening of bacterial artificial chromosome (BAC) libraries with polymerase chain reaction (PCR)-based markers is feasible provided that a multidimensional pooling strategy is implemented. Single nucleotide polymorphisms (SNPs) can be screened in multiplexed format, therefore this marker type lends itself particularly well for medium- to high-throughput applications. Combining the power of multiplex-PCR assays with a multidimensional pooling system may prove to be especially challenging in a polyploid genome. In polyploid genomes two classes of SNPs need to be distinguished, polymorphisms between accessions (intragenomic SNPs) and those differentiating between homoeologous genomes (intergenomic SNPs). We have assessed whether the highly parallel Illumina GoldenGate® Genotyping Assay is suitable for the screening of a BAC library of the polyploid Brassica napus genome. Results A multidimensional screening platform was developed for a Brassica napus BAC library which is composed of almost 83,000 clones. Intragenomic and intergenomic SNPs were included in Illumina’s GoldenGate® Genotyping Assay and both SNP classes were used successfully for screening of the multidimensional BAC pools of the Brassica napus library. An optimized scoring method is proposed which is especially valuable for SNP calling of intergenomic SNPs. Validation of the genotyping results by independent methods revealed a success of approximately 80% for the multiplex PCR-based screening regardless of whether intra- or intergenomic SNPs were evaluated. Conclusions Illumina’s GoldenGate® Genotyping Assay can be efficiently used for screening of multidimensional Brassica napus BAC pools. SNP calling was specifically tailored for the evaluation of BAC pool screening data. The developed scoring method can be implemented independently of plant reference samples. It is demonstrated that intergenomic SNPs represent a powerful tool for BAC library screening of a polyploid genome

  18. Discovery and characterization of single nucleotide polymorphisms in Chinook salmon, Oncorhynchus tshawytscha.

    PubMed

    Clemento, A J; Abadía-Cardoso, A; Starks, H A; Garza, J C

    2011-03-01

    Molecular population genetics of non-model organisms has been dominated by the use of microsatellite loci over the last two decades. The availability of extensive genomic resources for many species is contributing to a transition to the use of single nucleotide polymorphisms (SNPs) for the study of many natural populations. Here we describe the discovery of a large number of SNPs in Chinook salmon, one of the world's most important fishery species, through large-scale Sanger sequencing of expressed sequence tag (EST) regions. More than 3 Mb of sequence was collected in a survey of variation in almost 132 kb of unique genic regions, from 225 separate ESTs, in a diverse ascertainment panel of 24 salmon. This survey yielded 117 TaqMan (5' nuclease) assays, almost all from separate ESTs, which were validated in population samples from five major stocks of salmon from the three largest basins on the Pacific coast of the contiguous United States: the Sacramento, Klamath and Columbia Rivers. The proportion of these loci that was variable in each of these stocks ranged from 86.3% to 90.6% and the mean minor allele frequency ranged from 0.194 to 0.236. There was substantial differentiation between populations with these markers, with a mean F(ST) estimate of 0.107, and values for individual loci ranging from 0 to 0.592. This substantial polymorphism and population-specific differentiation indicates that these markers will be broadly useful, including for both pedigree reconstruction and genetic stock identification applications. © 2011 Blackwell Publishing Ltd.

  19. An in vitro diagnostic certified point of care single nucleotide test for IL28B polymorphisms.

    PubMed

    Duffy, Darragh; Mottez, Estelle; Ainsworth, Shaun; Buivan, Tan-Phuc; Baudin, Aurelie; Vray, Muriel; Reed, Ben; Fontanet, Arnaud; Rohel, Alexandra; Petrov-Sanchez, Ventzislava; Abel, Laurent; Theodorou, Ioannis; Miele, Gino; Pol, Stanislas; Albert, Matthew L

    2017-01-01

    Numerous genetic polymorphisms have been identified as associated with disease or treatment outcome, but the routine implementation of genotyping into actionable medical care remains limited. Point-of-care (PoC) technologies enable rapid and real-time treatment decisions, with great potential for extending molecular diagnostic approaches to settings with limited medical infrastructure (e.g., CLIA certified diagnostic laboratories). With respect to resource-limited settings, there is a need for simple devices to implement biomarker guided treatment strategies. One relevant example is chronic hepatitis C infection, for which several treatment options are now approved. Single nucleotide polymorphisms (SNPs) in the IL-28B / IFNL3 locus have been well described to predict both spontaneous clearance and response to interferon based therapies. We utilized the Genedrive® platform to develop an assay for the SNP rs12979860 variants (CC, CT and TT). The assay utilizes a hybrid thermal engine, permitting rapid heating and cooling, enabling an amplification based assay with genetic variants reported using endpoint differential melting cure analysis in less than 60 minutes. We validated this assay using non-invasive buccal swab sampling in a prospective study of 246 chronic HCV patients, achieving 100% sensitivity and 100% specificity (95% exact CI: 98.8-100%)) in 50 minutes as compared to conventional lab based PCR testing. Our results provide proof of concept that precision medicine is feasible in resource-limited settings, offering the first CE-IVD (in vitro diagnostics) validated PoC SNP test. We propose that IL-28B genotyping may be useful for directing patients towards lower cost therapies, and rationing use of costly direct antivirals for use in those individuals showing genetic risk.

  20. An in vitro diagnostic certified point of care single nucleotide test for IL28B polymorphisms

    PubMed Central

    Buivan, Tan-Phuc; Baudin, Aurelie; Vray, Muriel; Reed, Ben; Fontanet, Arnaud; Rohel, Alexandra; Petrov-Sanchez, Ventzislava; Abel, Laurent; Theodorou, Ioannis; Miele, Gino; Pol, Stanislas; Albert, Matthew L.

    2017-01-01

    Numerous genetic polymorphisms have been identified as associated with disease or treatment outcome, but the routine implementation of genotyping into actionable medical care remains limited. Point-of-care (PoC) technologies enable rapid and real-time treatment decisions, with great potential for extending molecular diagnostic approaches to settings with limited medical infrastructure (e.g., CLIA certified diagnostic laboratories). With respect to resource-limited settings, there is a need for simple devices to implement biomarker guided treatment strategies. One relevant example is chronic hepatitis C infection, for which several treatment options are now approved. Single nucleotide polymorphisms (SNPs) in the IL-28B / IFNL3 locus have been well described to predict both spontaneous clearance and response to interferon based therapies. We utilized the Genedrive® platform to develop an assay for the SNP rs12979860 variants (CC, CT and TT). The assay utilizes a hybrid thermal engine, permitting rapid heating and cooling, enabling an amplification based assay with genetic variants reported using endpoint differential melting cure analysis in less than 60 minutes. We validated this assay using non-invasive buccal swab sampling in a prospective study of 246 chronic HCV patients, achieving 100% sensitivity and 100% specificity (95% exact CI: 98.8–100%)) in 50 minutes as compared to conventional lab based PCR testing. Our results provide proof of concept that precision medicine is feasible in resource-limited settings, offering the first CE-IVD (in vitro diagnostics) validated PoC SNP test. We propose that IL-28B genotyping may be useful for directing patients towards lower cost therapies, and rationing use of costly direct antivirals for use in those individuals showing genetic risk. PMID:28877177

  1. Multiplex single nucleotide polymorphism (SNP) assay for detection of soybean mosaic virus resistance genes in soybean.

    PubMed

    Shi, Ainong; Chen, Pengyin; Vierling, Richard; Zheng, Cuming; Li, Dexiao; Dong, Dekun; Shakiba, Ehsan; Cervantez, Innan

    2011-02-01

    Soybean mosaic virus (SMV) is one of the most destructive viral diseases in soybean (Glycine max). Three independent loci for SMV resistance have been identified in soybean germplasm. The use of genetic resistance is the most effective method of controlling this disease. Marker assisted selection (MAS) has become very important and useful in the effort of selecting genes for SMV resistance. Single nucleotide polymorphism (SNP), because of its abundance and high-throughput potential, is a powerful tool in genome mapping, association studies, diversity analysis, and tagging of important genes in plant genomics. In this study, a 10 SNPs plus one insert/deletion (InDel) multiplex assay was developed for SMV resistance: two SNPs were developed from the candidate gene 3gG2 at Rsv1 locus, two SNPs selected from the clone N11PF linked to Rsv1, one 'BARC' SNP screened from soybean chromosome 13 [linkage group (LG) F] near Rsv1, two 'BARC' SNPs from probe A519 linked to Rsv3, one 'BARC' SNP from chromosome 14 (LG B2) near Rsv3, and two 'BARC' SNPs from chromosome 2 (LG D1b) near Rsv4, plus one InDel marker from expressed sequence tag (EST) AW307114 linked to Rsv4. This 11 SNP/InDel multiplex assay showed polymorphism among 47 diverse soybean germplasm, indicating this assay can be used to investigate the mode of inheritance in a SMV resistant soybean line carrying Rsv1, Rsv3, and/or Rsv4 through a segregating population with phenotypic data, and to select a specific gene or pyramid two or three genes for SMV resistance through MAS in soybean breeding program. The presence of two SMV resistance genes (Rsv1 and Rsv3) in J05 soybean was confirmed by the SNP assay.

  2. Rapid single nucleotide polymorphism detection for personalized medicine applications using planar waveguide fluorescence sensors

    NASA Astrophysics Data System (ADS)

    Herron, James N.; Tolley, Samuel E.; Smith, Richard; Christensen, Douglas A.

    2006-02-01

    Personalized medicine is an emerging field in which clinical diagnostics information about a patient's genotype or phenotype is used to optimize his/her pharmacotherapy. This article evaluates whether planar waveguide fluorescent sensors are suitable for determining such information from patient testing in point-of-care (POC) settings. The model system was Long QT Syndrome, a congenital disease associated with single nucleotide polymorphisms (SNPs) in genes encoding for cardiac ion channels. Three different SNP assay formats were examined: DNA/DNA hybridization, DNA/PNA hybridization (PNA: "peptide nucleic acid"), and single base extension (SBEX). Although DNA/DNA hybridization produced a strong intensity-time response for both wildtype and SNP analytes in a 5-min assay at 32°C, their hybridization rates differed by only 32.7%, which was insufficient for clinical decision-making. Much better differentiation of the two rates was observed at 53°C, where the wildtype's hybridization rate was two-thirds of its maximum value, while that of the SNP was essentially zero. Such all-or-nothing resolution would be adequate for clinical decision-making; however, the elevated temperature and precise temperature control would be hard to achieve in a POC setting. Results from DNA/PNA hybridization studies were more promising. Nearly 20-fold discrimination between wildtype and SNP hybridization rates was observed in a 5-min assay at 30°C, although the low ionic strength conditions required necessitated a de-salting step between sample preparation and SNP detection. SBEX was the most promising of the three, determining the absolute identity of the suspected polymorphism in a 5-min assay at 40°C.

  3. Candidate gene analysis using imputed genotypes: cell cycle single-nucleotide polymorphisms and ovarian cancer risk.

    PubMed

    Goode, Ellen L; Fridley, Brooke L; Vierkant, Robert A; Cunningham, Julie M; Phelan, Catherine M; Anderson, Stephanie; Rider, David N; White, Kristin L; Pankratz, V Shane; Song, Honglin; Hogdall, Estrid; Kjaer, Susanne K; Whittemore, Alice S; DiCioccio, Richard; Ramus, Susan J; Gayther, Simon A; Schildkraut, Joellen M; Pharaoh, Paul P D; Sellers, Thomas A

    2009-03-01

    Polymorphisms in genes critical to cell cycle control are outstanding candidates for association with ovarian cancer risk; numerous genes have been interrogated by multiple research groups using differing tagging single-nucleotide polymorphism (SNP) sets. To maximize information gleaned from existing genotype data, we conducted a combined analysis of five independent studies of invasive epithelial ovarian cancer. Up to 2,120 cases and 3,382 controls were genotyped in the course of two collaborations at a variety of SNPs in 11 cell cycle genes (CDKN2C, CDKN1A, CCND3, CCND1, CCND2, CDKN1B, CDK2, CDK4, RB1, CDKN2D, and CCNE1) and one gene region (CDKN2A-CDKN2B). Because of the semi-overlapping nature of the 123 assayed tagging SNPs, we performed multiple imputation based on fastPHASE using data from White non-Hispanic study participants and participants in the international HapMap Consortium and National Institute of Environmental Health Sciences SNPs Program. Logistic regression assuming a log-additive model was done on combined and imputed data. We observed strengthened signals in imputation-based analyses at several SNPs, particularly CDKN2A-CDKN2B rs3731239; CCND1 rs602652, rs3212879, rs649392, and rs3212891; CDK2 rs2069391, rs2069414, and rs17528736; and CCNE1 rs3218036. These results exemplify the utility of imputation in candidate gene studies and lend evidence to a role of cell cycle genes in ovarian cancer etiology, suggest a reduced set of SNPs to target in additional cases and controls.

  4. A single nucleotide polymorphism in NEUROD1 is associated with production traits in Nelore beef cattle.

    PubMed

    de Oliveira, P S N; Tizioto, P C; Malago, W; do Nascimento, M L; Cesar, A S M; Diniz, W J S; de Souza, M M; Lanna, D P D; Tullio, R R; Mourão, G B; de A Mudadu, M; Coutinho, L L; de A Regitano, L C

    2016-07-14

    Feed efficiency and carcass characteristics are late-measured traits. The detection of molecular markers associated with them can help breeding programs to select animals early in life, and to predict breeding values with high accuracy. The objective of this study was to identify polymorphisms in the functional and positional candidate gene NEUROD1 (neurogenic differentiation 1), and investigate their associations with production traits in reference families of Nelore cattle. A total of 585 steers were used, from 34 sires chosen to represent the variability of this breed. By sequencing 14 animals with extreme residual feed intake (RFI) values, seven single nucleotide polymorphisms (SNPs) in NEUROD1 were identified. The investigation of marker effects on the target traits RFI, backfat thickness (BFT), ribeye area (REA), average body weight (ABW), and metabolic body weight (MBW) was performed with a mixed model using the restricted maximum likelihood method. SNP1062, which changes cytosine for guanine, had no significant association with RFI or REA. However, we found an additive effect on ABW (P ≤ 0.05) and MBW (P ≤ 0.05), with an estimated allele substitution effect of -1.59 and -0.93 kg0.75, respectively. A dominant effect of this SNP for BFT was also found (P ≤ 0.010). Our results are the first that identify NEUROD1 as a candidate that affects BFT, ABW, and MBW. Once confirmed, the inclusion of this SNP in dense panels may improve the accuracy of genomic selection for these traits in Nelore beef cattle as this SNP is not currently represented on SNP chips.

  5. Single nucleotide polymorphisms concordant with the horned/polled trait in Holsteins.

    PubMed

    Cargill, Edward J; Nissing, Nick J; Grosz, Michael D

    2008-12-08

    Cattle that naturally do not grow horns are referred to as polled, a trait inherited in a dominant Mendelian fashion. Previous studies have localized the polled mutation (which is unknown) to the proximal end of bovine chromosome 1 in a region approximately 3 Mb in size. While a polled genetic test, Tru-Polledtrade mark, is commercially available from MetaMorphix Inc., Holsteins are not a validated breed for this test. Approximately 160 kb were sequenced within the known polled region from 12 polled and 12 horned Holsteins. Analysis of the polymorphisms identified 13 novel single nucleotide polymorphisms (SNPs) that are concordant with the horned/polled trait. Three of the 13 SNPs are located in gene coding or regulatory regions (e.g., the untranslated region, or UTR) where one is located in the 3'UTR of a gene and the other two are located in the 5'UTR and coding region (synonymous SNP) of another gene. The 3'UTR of genes have been shown to be targets of microRNAs regulating gene expression. In silico analysis indicates the 3'UTR SNP may disrupt a microRNA target site. These 13 novel SNPs concordant with the horned/polled trait in Holsteins represent a test panel for the breed and this is the first report to the authors' knowledge of SNPs within gene coding or regulatory regions concordant with the horned/polled trait in cattle. These SNPs will require further testing for verification and further study to determine if the 3'UTR SNP may have a functional effect on the polled trait in Holsteins.

  6. Host nucleotide polymorphism in hepatitis B virus-associated hepatocellular carcinoma

    PubMed Central

    Mathew, Shilu; Abdel-Hafiz, Hany; Raza, Abbas; Fatima, Kaneez; Qadri, Ishtiaq

    2016-01-01

    Hepatocellular carcinoma (HCC) is etiologically linked with hepatitis B virus (HBV) and is the leading cause of death amongst 80% of HBV patients. Among HBV affected patients, genetic factors are also involved in modifying the risk factors of HCC. However, the genetic factors that regulate progression to HCC still remain to be determined. In this review, we discuss several single nucleotide polymorphisms (SNPs) which were reportedly associated with increased or reduced risk of HCC occurrence in patients with chronic HBV infection such as cyclooxygenase (COX)-2 expression specifically at COX-2 -1195G/A in Chinese, Turkish and Egyptian populations, tumor necrosis factor α and the three most commonly studied SNPs: PAT-/+, Lys939Gln (A33512C, rs2228001) and Ala499Val (C21151T, rs2228000). In genome-wide association studies, strong associations have also been found at loci 1p36.22, 11q22.3, 6p21 (rs1419881, rs3997872, rs7453920 and rs7768538), 8p12 (rs2275959 and rs37821974) and 22q11.21. The genes implicated in these studies include HLA-DQB2, HLA-DQA1, TCF19, HLA-C, UBE2L3, LTL, FDX1, MICA, UBE4B and PG. The SNPs found to be associated with the above-mentioned genes still require validation in association studies in order to be considered good prognostic candidates for HCC. Screening of these polymorphisms is very beneficial in clinical experiments to stratify the higher or lower risk for HCC and may help in designing effective and efficient HCC surveillance programs for chronic HBV-infected patients if further genetic vulnerabilities are detected. PMID:27057306

  7. Evaluation of Single Nucleotide Polymorphism Typing with Invader on PCR Amplicons and Its Automation

    PubMed Central

    Mein, Charles A.; Barratt, Bryan J.; Dunn, Michael G.; Siegmund, Thorsten; Smith, Annabel N.; Esposito, Laura; Nutland, Sarah; Stevens, Helen E.; Wilson, Amanda J.; Phillips, Michael S.; Jarvis, Nancy; Law, Scott; de Arruda, Monika; Todd, John A.

    2000-01-01

    Large-scale pharmacogenetics and complex disease association studies will require typing of thousands of single-nucleotide polymorphisms (SNPs) in thousands of individuals. Such projects would benefit from a genotyping system with accuracy >99% and a failure rate <5% on a simple, reliable, and flexible platform. However, such a system is not yet available for routine laboratory use. We have evaluated a modification of the previously reported Invader SNP-typing chemistry for use in a genotyping laboratory and tested its automation. The Invader technology uses a Flap Endonuclease for allele discrimination and a universal fluorescence resonance energy transfer (FRET) reporter system. Three hundred and eighty-four individuals were genotyped across a panel of 36 SNPs and one insertion/deletion polymorphism with Invader assays using PCR product as template, a total of 14,208 genotypes. An average failure rate of 2.3% was recorded, mostly associated with PCR failure, and the typing was 99.2% accurate when compared with genotypes generated with established techniques. An average signal-to-noise ratio (9:1) was obtained. The high degree of discrimination for single base changes, coupled with homogeneous format, has allowed us to deploy liquid handling robots in a 384-well microtitre plate format and an automated end-point capture of fluorescent signal. Simple semiautomated data interpretation allows the generation of ∼25,000 genotypes per person per week, which is 10-fold greater than gel-based SNP typing and microsatellite typing in our laboratory. Savings on labor costs are considerable. We conclude that Invader chemistry using PCR products as template represents a useful technology for typing large numbers of SNPs rapidly and efficiently. PMID:10720574

  8. Genome-wide single nucleotide polymorphisms reveal population history and adaptive divergence in wild guppies.

    PubMed

    Willing, Eva-Maria; Bentzen, Paul; van Oosterhout, Cock; Hoffmann, Margarete; Cable, Joanne; Breden, Felix; Weigel, Detlef; Dreyer, Christine

    2010-03-01

    Adaptation of guppies (Poecilia reticulata) to contrasting upland and lowland habitats has been extensively studied with respect to behaviour, morphology and life history traits. Yet population history has not been studied at the whole-genome level. Although single nucleotide polymorphisms (SNPs) are the most abundant form of variation in many genomes and consequently very informative for a genome-wide picture of standing natural variation in populations, genome-wide SNP data are rarely available for wild vertebrates. Here we use genetically mapped SNP markers to comprehensively survey genetic variation within and among naturally occurring guppy populations from a wide geographic range in Trinidad and Venezuela. Results from three different clustering methods, Neighbor-net, principal component analysis (PCA) and Bayesian analysis show that the population substructure agrees with geographic separation and largely with previously hypothesized patterns of historical colonization. Within major drainages (Caroni, Oropouche and Northern), populations are genetically similar, but those in different geographic regions are highly divergent from one another, with some indications of ancient shared polymorphisms. Clear genomic signatures of a previous introduction experiment were seen, and we detected additional potential admixture events. Headwater populations were significantly less heterozygous than downstream populations. Pairwise F(ST) values revealed marked differences in allele frequencies among populations from different regions, and also among populations within the same region. F(ST) outlier methods indicated some regions of the genome as being under directional selection. Overall, this study demonstrates the power of a genome-wide SNP data set to inform for studies on natural variation, adaptation and evolution of wild populations.

  9. IL23R single nucleotide polymorphisms could be either beneficial or harmful in ulcerative colitis

    PubMed Central

    Fischer, Sarah; Kövesdi, Erzsébet; Magyari, Lili; Csöngei, Veronika; Hadzsiev, Kinga; Melegh, Béla; Hegyi, Péter; Sarlós, Patrícia

    2017-01-01

    AIM To investigate the association of seven single nucleotide polymorphisms (SNPs) of the IL23R gene with the clinical picture of ulcerative colitis (UC). METHODS Genomic DNA samples of 131 patients (66 males, 65 females, mean age 55.4 ± 15.8 years) with Caucasian origin, diagnosed with UC were investigated. The diagnosis of UC was based on the established clinical, endoscopic, radiological, and histopathological guidelines. DNA was extracted from peripheral blood leukocytes by routine salting out method. Polymerase chain reaction and restriction fragment length polymorphism were used to identify the alleles of seven SNPs of IL23R gene (rs11209026, rs10889677, rs1004819, rs2201841, rs7517847, rs10489629, rs7530511). RESULTS Four out of seven analyzed SNPs had statistically significant influence on the clinical picture of UC. Two SNPs were associated with greater colonic extension (rs2201841 P = 0.0084; rs10489629 P = 0.0405). For two of the SNPs, there was more frequently need for operations (rs2201841 P = 0.0348, OR = 8.0; rs10889677 P = 0.0347, OR = 8.0). The rs2201841 showed to be a risk factor for the development of iron deficiency (P = 0.0388, OR = 6.1837). For patients with the rs10889677, a therapy with azathioprine was more frequently necessary (P = 0.0116, OR = 6.1707). Patients with rs10489629 SNP had a lower risk for weight loss (P = 0.0169, OR = 0.3394). Carriers of the heterozygous variant had a higher risk for an extended disease (P = 0.0284). The rs7517847 showed a protective character leading to mild bowel movements. Three SNPs demonstrated no statistically significant influence on any examined clinical features of UC. CONCLUSION We demonstrated susceptible or protective character of the investigated IL23R SNPs on the phenotype of UC, confirming the genetic association. PMID:28210080

  10. Single-Nucleotide Polymorphisms on the RYD5 Gene in Nasal Polyposis

    PubMed Central

    İzbirak, Afife; Özdaş, Talih; Özcan, Kürşat Murat; Erbek, Selim S.; Köseoğlu, Sabri; Dere, Hüseyin

    2015-01-01

    Nasal polyposis (NP) is a chronic inflammatory disease. Several genes play major roles in the pathophysiology of the disease. We analyzed RYD5 gene polymorphisms to determine the effect of these variants or their genetic combinations on NP. We genotyped the RYD5 gene in 434 participants (196 patients with NP and 238 controls). Data were analyzed with SPSS, SNPStats, and multifactor dimensionality reduction (MDR) software. We genotyped 10 single-nucleotide polymorphisms (SNPs) in the RYD5 gene. RYD5 (+152G>T) (p.Gly51Va) has not been reported previously. The PolyPhen and PROVEAN predicted the missense mutation as deleterious, but sorting intolerant from tolerant (SIFT) did not. In the genotype analysis, we found that four SNPs (RYD5 [−264A>G], [−103G>A], [+57-14C>T], and [+66A>G]) were significantly associated with NP. The individuals with combined genotypes of six risk alleles (RYD5−264G, −103A, +13C, +57-14T, +66G, and +279T) had significantly higher risks for NP compared with the ones with one or four risk alleles. Haplotype analysis revealed that the two haplotypes were associated with risk of NP. As indicated by MDR analysis, RYD5 (−264A>G and −103G>A) and RYD5 (−264A>G, −177C>A, and −103G>A) were the best predictive combinations and they had the highest synergistic interaction on NP. In addition, RYD5 (+13C>T) was significantly associated with increased risk of both NP with asthma and NP with allergy and asthma. Some SNPs and their combinations in the RYD5 gene are associated with increased probability for developing NP. We emphasize the importance of genetic factors on NP and NP-related clinical phenotypes. PMID:26204469

  11. Performance of single nucleotide polymorphisms versus haplotypes for genome-wide association analysis in barley.

    PubMed

    Lorenz, Aaron J; Hamblin, Martha T; Jannink, Jean-Luc

    2010-11-22

    Genome-wide association studies (GWAS) may benefit from utilizing haplotype information for making marker-phenotype associations. Several rationales for grouping single nucleotide polymorphisms (SNPs) into haplotype blocks exist, but any advantage may depend on such factors as genetic architecture of traits, patterns of linkage disequilibrium in the study population, and marker density. The objective of this study was to explore the utility of haplotypes for GWAS in barley (Hordeum vulgare) to offer a first detailed look at this approach for identifying agronomically important genes in crops. To accomplish this, we used genotype and phenotype data from the Barley Coordinated Agricultural Project and constructed haplotypes using three different methods. Marker-trait associations were tested by the efficient mixed-model association algorithm (EMMA). When QTL were simulated using single SNPs dropped from the marker dataset, a simple sliding window performed as well or better than single SNPs or the more sophisticated methods of blocking SNPs into haplotypes. Moreover, the haplotype analyses performed better 1) when QTL were simulated as polymorphisms that arose subsequent to marker variants, and 2) in analysis of empirical heading date data. These results demonstrate that the information content of haplotypes is dependent on the particular mutational and recombinational history of the QTL and nearby markers. Analysis of the empirical data also confirmed our intuition that the distribution of QTL alleles in nature is often unlike the distribution of marker variants, and hence utilizing haplotype information could capture associations that would elude single SNPs. We recommend routine use of both single SNP and haplotype markers for GWAS to take advantage of the full information content of the genotype data.

  12. Association of Single Nucleotide Polymorphisms in Glycosylation Genes with Risk of Epithelial Ovarian Cancer

    PubMed Central

    Sellers, Thomas A.; Huang, Yifan; Cunningham, Julie; Goode, Ellen L.; Sutphen, Rebecca; Vierkant, Robert A.; Kelemen, Linda E.; Fredericksen, Zachary S.; Liebow, Mark; Pankratz, V. Shane; Hartmann, Lynn C.; Myer, Jeff; Iversen, Edwin S.; Schildkraut, Joellen M.; Phelan, Catherine

    2012-01-01

    Studies suggest that underglycosylation of the cell membrane mucin MUC1 may be associated with epithelial ovarian cancer. We identified 26 genes involved in glycosylation and examined 93 single nucleotide polymorphisms (SNP) with a minor allele frequency of ≥0.05 in relation to incident ovarian cancer. Cases were ascertained at the Mayo Clinic, Rochester, MN (n = 396) or a 48-county region in North Carolina (Duke University; n = 534). Ovarian cancer- free controls (n = 1,037) were frequency matched to the cases on age, race, and residence. Subjects were interviewed to obtain data on risk factors and a sample of blood for DNA and genotyped using the Illumina GoldenGate assay. We excluded subjects and individual SNPs with genotype call rates of <90%. Data were analyzed using logistic regression, with adjustment for age and residence. We fitted dominant, log additive, and recessive genetic models. Among Caucasians, nine SNPs in eight genes were associated with risk at P < 0.05 under at least one genetic model before adjusting for multiple testing. A SNP in GALNT1 (rs17647532) was the only one that remained statistically significant after Bonferroni adjustment for multiple testing but was not statistically significant in Hardy-Weinberg equilibrium among controls. Haplo-type analyses revealed a global association of GALNT1 with risk (P = 0.038, under a recessive genetic model), which largely reflected a decreased risk of one haplotype (0.10 frequency; odds ratio, 0.07; P = 0.01) compared with the most common haplotype (0.39 frequency). These results suggest that genetic polymorphisms in the glycoslyation process may be novel risk factors for ovarian cancer. PMID:18268124

  13. Identification of single nucleotide polymorphism in protein phosphatase 1 regulatory subunit 11 gene in Murrah bulls

    PubMed Central

    Jain, Varsha; Patel, Brijesh; Umar, Farhat Paul; Ajithakumar, H. M.; Gurjar, Suraj K.; Gupta, I. D.; Verma, Archana

    2017-01-01

    Aim: This study was conducted with the objective to identify single nucleotide polymorphism (SNP) in protein phosphatase 1 regulatory subunit 11 (PPP1R11) gene in Murrah bulls. Materials and Methods: Genomic DNA was isolated by phenol–chloroform extraction method from the frozen semen samples of 65 Murrah bulls maintained at Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal. The quality and concentration of DNA was checked by spectrophotometer reading and agarose gel electrophoresis. The target region of PPP1R11 gene was amplified using four sets of primer designed based on Bos taurus reference sequence. The amplified products were sequenced and aligned using Clustal Omega for identification of SNPs. Animals were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using EcoNI restriction enzyme. Results: The sequences in the NCBI accession number NW_005785016.1 for Bubalus bubalis were compared and aligned with the edited sequences of Murrah bulls with Clustal Omega software. A total of 10 SNPs were found, out of which 1 at 5’UTR, 3 at intron 1, and 6 at intron 2 region. PCR-RFLP using restriction enzyme EcoNI revealed only AA genotype indicating monomorphism in PPP1R11 gene of all Murrah animals included in the study. Conclusion: A total of 10 SNPs were found. PCR-RFLP revealed only AA genotype indicating monomorphism in PPP1R11 gene of all Murrah animals included in the study, due to which association analysis with conception rate was not feasible. PMID:28344410

  14. Translational Medicine and Reliability of Single-Nucleotide Polymorphism Studies: Can We Believe in SNP Reports or Not?

    PubMed Central

    Valachis, Antonis; Mauri, Davide; Neophytou, Christodoulos; Polyzos, Nikolaos P.; Tsali, Lampriani; Garras, Antonios; Papanikolau, Evangelos G.

    2011-01-01

    Background: The number of genetic association studies is increasing exponentially. Nonetheless, genetic association reports are prone to potential biases which may influence the reported outcome. Aim: We hypothesized that positive outcome for a determined polymorphism might be over-reported across genetic association studies analysing a small number of polymorphisms, when compared to studies analysing the same polymorphism together with a high number of other polymorphisms. Methods: We systematically reviewed published reports on the association of glutathione s-transferase (GST) single-nucleotide polymorphisms (SNPs) and cancer outcome. Result: We identified 79 eligible trials. Most of the studies examined the GSTM1, theGSTP1 Ile105Val mutation, and GSTT1polymorphisms (n = 54, 57 and 46, respectively). Studies analysing one to three polymorphisms (n = 39) were significantly more likely to present positive outcomes, compared to studies examining more than 3 polymorphisms (n=40) p = 0.004; this was particularly evident for studies analysing the GSTM1polymorphism (p =0.001). We found no significant associations between journal impact factor, number of citations, and probability of publishing positive studies or studies with 1-3 polymorphisms examined. Conclusions: We propose a new subtype of publication bias in genetic association studies. Positive results for genetic association studies analysing a small number of polymorphisms (n = 1-3) should be evaluated extremely cautiously, because a very large number of such studies are inconclusive and statistically under-powered. Indeed, publication of misleading reports may affect harmfully medical decision-making and use of resources, both in clinical and pharmacological development setting. PMID:21897762

  15. Mining of haplotype-based expressed sequence tag single nucleotide polymorphisms in citrus.

    PubMed

    Chen, Chunxian; Gmitter, Fred G

    2013-11-01

    Single nucleotide polymorphisms (SNPs), the most abundant variations in a genome, have been widely used in various studies. Detection and characterization of citrus haplotype-based expressed sequence tag (EST) SNPs will greatly facilitate further utilization of these gene-based resources. In this paper, haplotype-based SNPs were mined out of publicly available citrus expressed sequence tags (ESTs) from different citrus cultivars (genotypes) individually and collectively for comparison. There were a total of 567,297 ESTs belonging to 27 cultivars in varying numbers and consequentially yielding different numbers of haplotype-based quality SNPs. Sweet orange (SO) had the most (213,830) ESTs, generating 11,182 quality SNPs in 3,327 out of 4,228 usable contigs. Summed from all the individually mining results, a total of 25,417 quality SNPs were discovered - 15,010 (59.1%) were transitions (AG and CT), 9,114 (35.9%) were transversions (AC, GT, CG, and AT), and 1,293 (5.0%) were insertion/deletions (indels). A vast majority of SNP-containing contigs consisted of only 2 haplotypes, as expected, but the percentages of 2 haplotype contigs varied widely in these citrus cultivars. BLAST of the 25,417 25-mer SNP oligos to the Clementine reference genome scaffolds revealed 2,947 SNPs had "no hits found", 19,943 had 1 unique hit / alignment, 1,571 had one hit and 2+ alignments per hit, and 956 had 2+ hits and 1+ alignment per hit. Of the total 24,293 scaffold hits, 23,955 (98.6%) were on the main scaffolds 1 to 9, and only 338 were on 87 minor scaffolds. Most alignments had 100% (25/25) or 96% (24/25) nucleotide identities, accounting for 93% of all the alignments. Considering almost all the nucleotide discrepancies in the 24/25 alignments were at the SNP sites, it served well as in silico validation of these SNPs, in addition to and consistent with the rate (81%) validated by sequencing and SNaPshot assay. High-quality EST-SNPs from different citrus genotypes were detected, and

  16. Mining of haplotype-based expressed sequence tag single nucleotide polymorphisms in citrus

    PubMed Central

    2013-01-01

    Background Single nucleotide polymorphisms (SNPs), the most abundant variations in a genome, have been widely used in various studies. Detection and characterization of citrus haplotype-based expressed sequence tag (EST) SNPs will greatly facilitate further utilization of these gene-based resources. Results In this paper, haplotype-based SNPs were mined out of publicly available citrus expressed sequence tags (ESTs) from different citrus cultivars (genotypes) individually and collectively for comparison. There were a total of 567,297 ESTs belonging to 27 cultivars in varying numbers and consequentially yielding different numbers of haplotype-based quality SNPs. Sweet orange (SO) had the most (213,830) ESTs, generating 11,182 quality SNPs in 3,327 out of 4,228 usable contigs. Summed from all the individually mining results, a total of 25,417 quality SNPs were discovered – 15,010 (59.1%) were transitions (AG and CT), 9,114 (35.9%) were transversions (AC, GT, CG, and AT), and 1,293 (5.0%) were insertion/deletions (indels). A vast majority of SNP-containing contigs consisted of only 2 haplotypes, as expected, but the percentages of 2 haplotype contigs varied widely in these citrus cultivars. BLAST of the 25,417 25-mer SNP oligos to the Clementine reference genome scaffolds revealed 2,947 SNPs had “no hits found”, 19,943 had 1 unique hit / alignment, 1,571 had one hit and 2+ alignments per hit, and 956 had 2+ hits and 1+ alignment per hit. Of the total 24,293 scaffold hits, 23,955 (98.6%) were on the main scaffolds 1 to 9, and only 338 were on 87 minor scaffolds. Most alignments had 100% (25/25) or 96% (24/25) nucleotide identities, accounting for 93% of all the alignments. Considering almost all the nucleotide discrepancies in the 24/25 alignments were at the SNP sites, it served well as in silico validation of these SNPs, in addition to and consistent with the rate (81%) validated by sequencing and SNaPshot assay. Conclusions High-quality EST-SNPs from different

  17. [Natural nucleotide polymorphism of the Srlk gene that determines salt stress tolerance in alfalfa (Medicago sativa L)].

    PubMed

    Vishnevskaia, M S; Pavlov, A V; Dziubenko, E A; Dziubenko, N I; Potokina, E K

    2014-04-01

    Based on legume genome syntheny, the nucleotide sequence of Srlk gene, key role of which in response to salt stress was demonstrated for the model species Medicago truncatula, was identified in the major forage and siderate crop alfalfa (Medicago sativa). In twelve alfalfa samples originating from regions with contrasting growing conditions, 19 SNPs were revealed in the Srlk gene. For two nonsynonymous SNPs, molecular markers were designed that could be further used to analyze the association between Srlk gene nucleotide polymorphism and the variability in salt stress tolerance among alfalfa cultivars.

  18. Single Nucleotide Polymorphism Array Genotyping is Equivalent to Metaphase Cytogenetics for Diagnosis of Turner Syndrome

    PubMed Central

    Prakash, Siddharth; Guo, Dongchuan; Maslen, Cheryl L.; Silberbach, Michael; Investigators, GenTAC; Milewicz, Dianna; Bondy, Carolyn A.

    2013-01-01

    Background Turner syndrome (TS) is a developmental disorder caused by partial or complete monosomy for the X chromosome in 1:2500 females. We hypothesized that single nucleotide polymorphism (SNP) array genotyping can provide superior resolution in comparison to metaphase karyotype analysis to facilitate genotype-phenotype correlations. Methods We genotyped 187 TS patients with 733,000 SNP marker arrays. All cases met diagnostic criteria for TS based on karyotypes (60%) or characteristic physical features. SNP array results confirmed the diagnosis of TS in 100% of cases. Results We identified a single X chromosome (45,X) in 113 cases. In 58 additional cases (31%), other mosaic cell lines were present including isochromosomes (16%), rings (5%) and Xp deletions (8%). The remaining cases were mosaic for monosomy X and normal male or female cell lines. Array-based models of X chromosome structure were compatible with karyotypes in 104 of 116 comparable cases (90%). We found that SNP array data did not detect X;autosome translocations (3 cases), but did identify 2 derivative Y chromosomes and 13 large copy number variants that were not detected by karyotyping. Conclusions Our data is the first systematic comparison between the two methods and supports the utility of SNP array genotyping to address clinical and research questions in TS. PMID:23743550

  19. Tuberculosis risk-associated single nucleotide polymorphisms do not show association with leprosy in Chinese population.

    PubMed

    Wang, Chuan; Wang, Na; Yu, Yongxiang; Yu, Gongqi; Wang, Zhenzhen; Fu, Xi'an; Liu, Hong; Zhang, Furen

    2015-06-01

    Leprosy and tuberculosis (TB) are chronic granulomatous infectious diseases. As well as pathogen and environmental factors, host genetic factors make a substantial contribution to susceptibility to both diseases. More importantly, leprosy and TB also have pathogenic mechanisms and clinical features in common. In this study, the genetic association between leprosy and TB was investigated in a Chinese Han population. A genetic association study that included 46 TB susceptibility single nucleotide polymorphisms (SNPs) was performed, involving 1150 leprosy cases and 1150 controls from the Chinese Han population. The Sequenom MassARRAY system was used. No significant association was found between the 46 SNPs and leprosy. Therefore, according to the present study, there is no shared susceptibility locus between leprosy and TB in the Chinese Han population. Although leprosy and TB have a number of similar characteristics, no shared susceptibility loci were found in the Chinese Han population. Thus, this study demonstrated that the genetic basis of the pathogenesis of the two diseases may vary greatly. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Alteration of Antiviral Signalling by Single Nucleotide Polymorphisms (SNPs) of Mitochondrial Antiviral Signalling Protein (MAVS)

    PubMed Central

    Xing, Fei; Matsumiya, Tomoh; Hayakari, Ryo; Yoshida, Hidemi; Kawaguchi, Shogo; Takahashi, Ippei; Nakaji, Shigeyuki; Imaizumi, Tadaatsu

    2016-01-01

    Genetic variation is associated with diseases. As a type of genetic variation occurring with certain regularity and frequency, the single nucleotide polymorphism (SNP) is attracting more and more attention because of its great value for research and real-life application. Mitochondrial antiviral signalling protein (MAVS) acts as a common adaptor molecule for retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), which can recognize foreign RNA, including viral RNA, leading to the induction of type I interferons (IFNs). Therefore, MAVS is thought to be a crucial molecule in antiviral innate immunity. We speculated that genetic variation of MAVS may result in susceptibility to infectious diseases. To assess the risk of viral infection based on MAVS variation, we tested the effects of twelve non-synonymous MAVS coding-region SNPs from the National Center for Biotechnology Information (NCBI) database that result in amino acid substitutions. We found that five of these SNPs exhibited functional alterations. Additionally, four resulted in an inhibitory immune response, and one had the opposite effect. In total, 1,032 human genomic samples obtained from a mass examination were genotyped at these five SNPs. However, no homozygous or heterozygous variation was detected. We hypothesized that these five SNPs are not present in the Japanese population and that such MAVS variations may result in serious immune diseases. PMID:26954674

  1. Single-nucleotide polymorphism array karyotyping in clinical practice: where, when, and how?

    PubMed

    Sato-Otsubo, Aiko; Sanada, Masashi; Ogawa, Seishi

    2012-02-01

    Single-nucleotide polymorphism array (SNP-A) karyotyping is a new technology that has enabled genome-wide detection of genetic lesions in human cancers, including hematopoietic neoplasms. Taking advantage of very large numbers of allele-specific probes synthesized on microarrays at high density, copy number alterations as well as allelic imbalances can be sensitively detected in a genome-wide manner at unprecedented resolutions. Most importantly, SNP-A karyotyping represents the only platform currently available for genome-scale detection of copy neutral loss of heterozygosity (CN-LOH) or uniparental disomy (UPD), which is widely observed in cancer genomes. Although not applicable to detection of balanced translocations, which are commonly found in hematopoietic malignancies, SNP-A karyotyping technology complements and even outperforms conventional metaphase karyotyping, potentially allowing for more accurate genetic diagnosis of hematopoietic neoplasms in clinical practice. Here, we review the current status of SNP-A karyotyping and its application to hematopoietic neoplasms. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Association of ENAM gene single nucleotide polymorphisms with dental caries in Polish children.

    PubMed

    Gerreth, Karolina; Zaorska, Katarzyna; Zabel, Maciej; Borysewicz-Lewicka, Maria; Nowicki, Michal

    2016-04-01

    The objective of this study was to prove the association between dental caries and single nucleotide polymorphisms (SNPs) in the ENAM gene. The research was carried out in 96 children (48 with caries and 48 counterparts free of this disease), aged 20-42 months, with 11-20 erupted teeth. All children were from four day nurseries located in Poznan. The study included the dental examination to select individuals to the research and oral swab collection for molecular evaluation. Seven selected SNPs markers of the ENAM gene were genotyped, five using TaqMan probe assay (rs2609428, rs7671281, rs36064169, rs3796704, and rs12640848) and two by Sanger sequencing (rs144929717 and rs139228330). Statistically significant higher prevalence of the alternative G allele and the alternative GG homozygote in the control group in comparison with the caries group in SNP rs12640848 was observed, respectively, p = 0.0062 and 0.0010. Although the prevalence of the AG heterozygote was higher for the caries subjects in comparison with controls (OR = 2.9), and the result was statistically significant (p = 0.0010), the overall prevalence of the G allele for this SNP was significantly higher in control group (OR = 2.3; p = 0.0062). The study revealed the strong association between rs12640848 marker of ENAM gene and caries susceptibility in primary teeth in children from Poznan. The presence of SNPs in the ENAM gene may be important as suspected predictive factor of dental caries occurrence in children.

  3. High Degree of Single Nucleotide Polymorphisms in California Culex pipiens (Diptera: Culicidae) sensu lato

    PubMed Central

    LEE, YOOSOOK; SEIFERT, STEPHANIE N.; NIEMAN, CATELYN C.; McABEE, RORY D.; GOODELL, PARKER; FRYXELL, REBECCA TROUT; LANZARO, GREGORY C.; CORNEL, ANTHONY J.

    2013-01-01

    Resolution of systematic relationships among members of the Culex pipiens (L.) complex has important implications for public health as well as for studies on the evolution of sibling species. Currently held views contend that in California considerable genetic introgression occurs between Cx. pipiens and Cx. quinquefasciatus Say, and as such, these taxa behave as if they are a single species. Development of high throughput SNP genotyping tools for the analysis of Cx. pipiens complex population structure is therefore desirable. As a first step toward this goal, we sequenced 12 gene fragments from specimens collected in Marin and Fresno counties. On average, we found a higher single nucleotide polymorphism (SNP) density than any other mosquito species reported thus far. Coding regions contained significantly higher GC content (median 54.7%) than noncoding regions (42.4%; Wilcoxon rank sum test, P = 5.29 × 10−5). Differences in SNP allele frequencies observed between mosquitoes from Marin and Fresno counties indicated significant genetic divergence and suggest that SNP markers will be useful for future detailed population genetic studies of this group. The high density of SNPs highlights the difficulty in identifying species within the complex and may be associated with the large degree of phenotypic variation observed in this group of mosquitoes. PMID:22493847

  4. Melting analysis on microbeads in rapid temperature-gradient inside microchannels for single nucleotide polymorphisms detection.

    PubMed

    Li, Kan-Chien; Ding, Shih-Torng; Lin, En-Chung; Wang, Lon Alex; Lu, Yen-Wen

    2014-11-01

    A continuous-flow microchip with a temperature gradient in microchannels was utilized to demonstrate spatial melting analysis on microbeads for clinical Single Nucleotide Polymorphisms (SNPs) genotyping on animal genomic DNA. The chip had embedded heaters and thermometers, which created a rapid and yet stable temperature gradient between 60 °C and 85 °C in a short distance as the detection region. The microbeads, which served as mobile supports carrying the target DNA and fluorescent dye, were transported across the temperature gradient. As the surrounding temperature increased, the fluorescence signals of the microbeads decayed with this relationship being acquired as the melting curve. Fast DNA denaturation, as a result of the improved heat transfer and thermal stability due to scaling, was also confirmed. Further, each individual microbead could potentially bear different sequences and pass through the detection region, one by one, for a series of melting analysis, with multiplex, high-throughput capability being possible. A prototype was tested with target DNA samples in different genotypes (i.e., wild and mutant types) with a SNP location from Landrace sows. The melting temperatures were obtained and compared to the ones using a traditional tube-based approach. The results showed similar levels of SNP discrimination, validating our proposed technique for scanning homozygotes and heterozygotes to distinguish single base changes for disease research, drug development, medical diagnostics, agriculture, and animal production.

  5. Facile method for automated genotyping of single nucleotide polymorphisms by mass spectrometry

    PubMed Central

    Sauer, Sascha; Gelfand, David H.; Boussicault, Francis; Bauer, Keith; Reichert, Fred; Gut, Ivo G.

    2002-01-01

    In the future, analysis of single nucleotide polymorphisms (SNPs) should become a powerful tool for many genetic applications in areas such as association studies, pharmacogenetics and traceability in the agro-alimentary sector. A number of technologies have been developed for high-throughput genotyping of SNPs. Here we present the simplified GOOD assay for SNP genotyping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI). The simplified GOOD assay is a single-tube, purification-free, three-step procedure consisting of PCR, primer extension and phosphodiesterase II digestion followed by mass spectrometric analysis. Due to the application of charge-tag technology, no sample purification is required prior to the otherwise very impurity-sensitive MALDI analysis. The use of methylphosphonate containing primers and ddNTPs or α-S-ddNTPs together with a novel DNA polymerase derived from Thermotoga maritima for primer extension allow the fluent preparation of negatively charge-tagged, allele-specific products. A key feature of this polymerase is its preference for ddNTPs and α-S-ddNTPs over dNTPs. The simplified GOOD assay was run with automatic liquid handling at the lowest manageable volumes, automatic data acquisition and interpretation. We applied this novel procedure to genotyping SNPs of candidate genes for hypertension and cardiovascular disease. PMID:11861927

  6. Single nucleotide polymorphisms in the bovine Histophilus somni genome; a comparison of new and old isolates.

    PubMed

    Madampage, Claudia Avis; Rawlyk, Neil; Crockford, Gordon; Van Donkersgoed, Joyce; Dorin, Craig; Potter, Andrew

    2015-07-01

    Histophilus somni, a causative agent of the bovine respiratory disease complex, can also cause a variety of systemic disorders, including bronchopneumonia, myocarditis, pericarditis, arthritis, pleuritis, and infectious thrombotic meningoencephalitis. The purpose of this study was to determine if currently circulating strains differ from those of the 1980s by identifying genomic changes. Single nucleotide polymorphisms (SNPs) and insertion and deletion (INDEL) sites were examined by whole-genome sequencing in 12 samples, 6 old and 6 new. The 31 028 SNP/INDELs recorded were compared against the reference genome sequence of the pathogenic H. somni strain 2336. The distribution of about 75% of these SNPs within a specified gene differed between old and new isolates and did not follow any particular pattern. The other 25% clustered into 2 groups containing the same SNPs in various genes: group I included 5 old isolates and 1 new isolate; group II included 5 new isolates and 1 old isolate. For putative virulence genes there were more SNPs in group I compared with strain 2336, itself an older isolate, than in group II. Although only 25% of all the SNPs formed 2 clusters, the results suggest some genetic difference in various genes between old and new strains.

  7. SNPnexus: a web database for functional annotation of newly discovered and public domain single nucleotide polymorphisms

    PubMed Central

    Chelala, Claude; Khan, Arshad; Lemoine, Nicholas R

    2009-01-01

    Motivation: Design a new computational tool allowing scientists to functionally annotate newly discovered and public domain single nucleotide polymorphisms in order to help in prioritizing targets in further disease studies and large-scale genotyping projects. Summary: SNPnexus database provides functional annotation for both novel and public SNPs. Possible effects on the transcriptome and proteome levels are characterized and reported from five major annotation systems providing the most extensive information on alternative splicing. Additional information on HapMap genotype and allele frequency, overlaps with potential regulatory elements or structural variations as well as related genetic diseases can be also retrieved. The SNPnexus database has a user-friendly web interface, providing single or batch query options using SNP identifiers from dbSNP as well as genomic location on clones, contigs or chromosomes. Therefore, SNPnexus is the only database currently providing a complete set of functional annotations of SNPs in public databases and newly detected from sequencing projects. Hence, we describe SNPnexus, provide details of the query options, the annotation categories as well as biological examples of use. Availability: The SNPnexus database is freely available at http://www.snp-nexus.org. Contact: claude.chelala@cancer.org.uk PMID:19098027

  8. Quadruplex-single nucleotide polymorphisms (Quad-SNP) influence gene expression difference among individuals.

    PubMed

    Baral, Aradhita; Kumar, Pankaj; Halder, Rashi; Mani, Prithvi; Yadav, Vinod Kumar; Singh, Ankita; Das, Swapan K; Chowdhury, Shantanu

    2012-05-01

    Non-canonical guanine quadruplex structures are not only predominant but also conserved among bacterial and mammalian promoters. Moreover recent findings directly implicate quadruplex structures in transcription. These argue for an intrinsic role of the structural motif and thereby posit that single nucleotide polymorphisms (SNP) that compromise the quadruplex architecture could influence function. To test this, we analysed SNPs within quadruplex motifs (Quad-SNP) and gene expression in 270 individuals across four populations (HapMap) representing more than 14,500 genotypes. Findings reveal significant association between quadruplex-SNPs and expression of the corresponding gene in individuals (P < 0.0001). Furthermore, analysis of Quad-SNPs obtained from population-scale sequencing of 1000 human genomes showed relative selection bias against alteration of the structural motif. To directly test the quadruplex-SNP-transcription connection, we constructed a reporter system using the RPS3 promoter-remarkable difference in promoter activity in the 'quadruplex-destabilized' versus 'quadruplex-intact' promoter was noticed. As a further test, we incorporated a quadruplex motif or its disrupted counterpart within a synthetic promoter reporter construct. The quadruplex motif, and not the disrupted-motif, enhanced transcription in human cell lines of different origin. Together, these findings build direct support for quadruplex-mediated transcription and suggest quadruplex-SNPs may play significant role in mechanistically understanding variations in gene expression among individuals.

  9. Association of Single Nucleotide Polymorphisms with Atrial Fibrillation and the Outcome after Catheter Ablation

    PubMed Central

    Hu, Yu-Feng; Wang, Hsueh-Hsiao; Yeh, Hung-I; Lee, Kun-Tai; Lin, Yenn-Jiang; Chang, Shih-Lin; Lo, Li-Wei; Tuan, Ta-Chuan; Li, Cheng-Hung; Chao, Tze-Fan; Chung, Fa-Po; Liao, Jo-Nan; Tang, Paul Wei Hua; Tsai, Wei-Chung; Chiou, Chuen-Wang; Chen, Shih-Ann

    2016-01-01

    Background The association of gene variants with atrial fibrillation (AF) type and the recurrence of AF after catheter ablation in Taiwan is still unclear. In this study, we aimed to investigate the relationships between gene variants, AF type, and the recurrence of AF. Methods In our investigation, we examined 383 consecutive patients with AF (61.9 ± 14.0 years; 63% men); of these 383 patients, 189 underwent catheter ablation for drug-refractory AF. Thereafter, the single nucleotide polymorphisms rs2200733, and rs7193343 were genotyped using real-time polymerase chain reaction. Results The rs7193343 variant was independently associated with non-paroxysmal AF (non-PAF). In the PAF group, the rs7193343 variant was independently associated with AF recurrence after catheter ablation. However, the rs2200733 variant was not associated with AF recurrence in this group. The combination of the rs7193343 and rs2200733 risk alleles was associated with a better predictive power in the PAF patients. In contrast, in the non-PAF group, the SNPs were not associated with recurrence. The rs7193343 and rs2200733 variants were not associated with different atrial voltage and activation times. Conclusions The rs7193343 variants were associated with AF recurrence after catheter ablation in PAF patients but not in non-PAF patients. The rs7193343 CC variant was independently associated with non-PAF. PMID:27713600

  10. Neuropeptide VGF Promotes Maturation of Hippocampal Dendrites That Is Reduced by Single Nucleotide Polymorphisms

    PubMed Central

    Behnke, Joseph; Cheedalla, Aneesha; Bhatt, Vatsal; Bhat, Maysa; Teng, Shavonne; Palmieri, Alicia; Windon, Charles Christian; Thakker-Varia, Smita; Alder, Janet

    2017-01-01

    The neuropeptide VGF (non-acronymic) is induced by brain-derived neurotrophic factor and promotes hippocampal neurogenesis, as well as synaptic activity. However, morphological changes induced by VGF have not been elucidated. Developing hippocampal neurons were exposed to VGF through bath application or virus-mediated expression in vitro. VGF-derived peptide, TLQP-62, enhanced dendritic branching, and outgrowth. Furthermore, VGF increased dendritic spine density and the proportion of immature spines. Spine formation was associated with increased synaptic protein expression and co-localization of pre- and postsynaptic markers. Three non-synonymous single nucleotide polymorphisms (SNPs) were selected in human VGF gene. Transfection of N2a cells with plasmids containing these SNPs revealed no relative change in protein expression levels and normal protein size, except for a truncated protein from the premature stop codon, E525X. All three SNPs resulted in a lower proportion of N2a cells bearing neurites relative to wild-type VGF. Furthermore, all three mutations reduced the total length of dendrites in developing hippocampal neurons. Taken together, our results suggest VGF enhances dendritic maturation and that these effects can be altered by common mutations in the VGF gene. The findings may have implications for people suffering from psychiatric disease or other conditions who may have altered VGF levels. PMID:28287464

  11. MSProGene: integrative proteogenomics beyond six-frames and single nucleotide polymorphisms

    PubMed Central

    Zickmann, Franziska; Renard, Bernhard Y.

    2015-01-01

    Summary: Ongoing advances in high-throughput technologies have facilitated accurate proteomic measurements and provide a wealth of information on genomic and transcript level. In proteogenomics, this multi-omics data is combined to analyze unannotated organisms and to allow more accurate sample-specific predictions. Existing analysis methods still mainly depend on six-frame translations or reference protein databases that are extended by transcriptomic information or known single nucleotide polymorphisms (SNPs). However, six-frames introduce an artificial sixfold increase of the target database and SNP integration requires a suitable database summarizing results from previous experiments. We overcome these limitations by introducing MSProGene, a new method for integrative proteogenomic analysis based on customized RNA-Seq driven transcript databases. MSProGene is independent from existing reference databases or annotated SNPs and avoids large six-frame translated databases by constructing sample-specific transcripts. In addition, it creates a network combining RNA-Seq and peptide information that is optimized by a maximum-flow algorithm. It thereby also allows resolving the ambiguity of shared peptides for protein inference. We applied MSProGene on three datasets and show that it facilitates a database-independent reliable yet accurate prediction on gene and protein level and additionally identifies novel genes. Availability and implementation: MSProGene is written in Java and Python. It is open source and available at http://sourceforge.net/projects/msprogene/. Contact: renardb@rki.de PMID:26072472

  12. Self-similar characteristics of single nucleotide polymorphisms in the rice genome

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Yong

    2016-11-01

    With single nucleotide polymorphism (SNP) data from the 3,000 rice genome project, we investigate the mutational characteristics of the rice genome from the perspective of statistical physics. From the frequency distributions of the space between adjacent SNPs, we present evidence that SNPs are not spaced randomly, but clustered across the genome. The clustering property is related to a long-range correlation in SNP locations, suggesting that a mutation occurring in a locus may affect other mutations far away along the sequence in a chromosome. In addition, the reliability of the existence of the long-range correlation is supported by the agreement between the results of two independent analysis methods. The highly-skewed and long-tailed distribution of SNP spaces is further characterized by a multi-fractal, showing that SNP spaces possess a rich structure of a statistical self-similarity. These results can be used for an optimal design of a microarray assay and a primer, as well as for genotyping quality control.

  13. Single-nucleotide polymorphism array genotyping is equivalent to metaphase cytogenetics for diagnosis of Turner syndrome.

    PubMed

    Prakash, Siddharth; Guo, Dongchuan; Maslen, Cheryl L; Silberbach, Michael; Milewicz, Dianna; Bondy, Carolyn A

    2014-01-01

    Turner syndrome is a developmental disorder caused by partial or complete monosomy for the X chromosome in 1 in 2,500 females. We hypothesized that single-nucleotide polymorphism (SNP) array genotyping could provide superior resolution in comparison to metaphase karyotype analysis to facilitate genotype-phenotype correlations. We genotyped 187 Turner syndrome patients with 733,000 SNP marker arrays. All cases met diagnostic criteria for Turner syndrome based on karyotypes (60%) or characteristic physical features. The SNP array results confirmed the diagnosis of Turner syndrome in 100% of cases. We identified a single X chromosome (45,X) in 113 cases. In 58 additional cases (31%), other mosaic cell lines were present, including isochromosomes (16%), rings (5%), and Xp deletions (8%). The remaining cases were mosaic for monosomy X and normal male or female cell lines. Array-based models of X chromosome structure were compatible with karyotypes in 104 of 116 comparable cases (90%). We found that the SNP array data did not detect X-autosome translocations (three cases) but did identify two derivative Y chromosomes and 13 large copy-number variants that were not detected by karyotyping. Our study is the first systematic comparison between the two methods and supports the utility of SNP array genotyping to address clinical and research questions in Turner syndrome.

  14. Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay.

    PubMed

    Akhunov, Eduard; Nicolet, Charles; Dvorak, Jan

    2009-08-01

    Single nucleotide polymorphisms (SNPs) are indispensable in such applications as association mapping and construction of high-density genetic maps. These applications usually require genotyping of thousands of SNPs in a large number of individuals. Although a number of SNP genotyping assays are available, most of them are designed for SNP genotyping in diploid individuals. Here, we demonstrate that the Illumina GoldenGate assay could be used for SNP genotyping of homozygous tetraploid and hexaploid wheat lines. Genotyping reactions could be carried out directly on genomic DNA without the necessity of preliminary PCR amplification. A total of 53 tetraploid and 38 hexaploid homozygous wheat lines were genotyped at 96 SNP loci. The genotyping error rate estimated after removal of low-quality data was 0 and 1% for tetraploid and hexaploid wheat, respectively. Developed SNP genotyping assays were shown to be useful for genotyping wheat cultivars. This study demonstrated that the GoldenGate assay is a very efficient tool for high-throughput genotyping of polyploid wheat, opening new possibilities for the analysis of genetic variation in wheat and dissection of genetic basis of complex traits using association mapping approach.

  15. Nano-enabled bioanalytical approaches to ultrasensitive detection of low abundance single nucleotide polymorphisms

    PubMed Central

    Lapitan Jr., Lorico D. S.; Guo, Yuan

    2015-01-01

    Single nucleotide polymorphisms (SNPs) constitute the most common types of genetic variations in the human genome. A number of SNPs have been linked to the development of life threatening diseases including cancer, cardiovascular diseases and neurodegenerative diseases. The ability for ultrasensitive and accurate detection of low abundant disease-related SNPs in bodily fluids (e.g. blood, serum, etc.) holds a significant value in the development of non-invasive future biodiagnostic tools. Over the past two decades, nanomaterials have been utilized in a myriad of biosensing applications due to their ability of detecting extremely low quantities of biologically important biomarkers with high sensitivity and accuracy. Of particular interest is the application of such technologies in the detection of SNPs. The use of various nanomaterials, coupled with different powerful signal amplification strategies, has paved the way for a new generation of ultrasensitive SNP biodiagnostic assays. Over the past few years, several ultrasensitive SNP biosensors capable of detecting specific targets down to the ultra-low regimes (ca. aM and below) and therefore holding great promises for early clinical diagnosis of diseases have been developed. This mini review will highlight some of the most recent, significant advances in nanomaterial-based ultrasensitive SNP sensing technologies capable of detecting specific targets on the attomolar (10–18 M) regime or below. In particular, the design of novel, powerful signal amplification strategies that hold the key to the ultrasensitivity is highlighted. PMID:25785914

  16. How Oxytocin Receptor (OXTR) Single Nucleotide Polymorphisms Act on Prosociality: The Mediation Role of Moral Evaluation

    PubMed Central

    Shang, Siyuan; Wu, Nan; Su, Yanjie

    2017-01-01

    Prosociality is related to numerous positive outcomes, and mechanisms underlying individual differences in prosociality have been widely discussed. Recently, research has found converging evidence on the influence of the oxytocin receptor (OXTR) gene on prosociality. Meanwhile, moral reasoning, a key precursor for social behavior, has also been associated with variability in OXTR gene, thus the relationship between OXTR and prosociality is assumed to be mediated by moral evaluation. The current study examines the relationship in question, and includes gender as a potential moderator. Self-reported prosociality on Prosocial Tendencies Measure and evaluation on the moral acceptability of behaviors in stories from 790 Chinese adolescents (32.4% boys) were analyzed for the influence of their OXTR single nucleotide polymorphisms (SNPs). Results showed that SNP at site rs2254298 was indirectly associated with prosocial behaviors via moral evaluation of behaviors, and this effect was moderated by gender. Our findings suggest an indirect association between genetic variations in OXTR and prosociality through moral evaluation, indicating the potential pathway from genetic variability to prosociality through level of moral development. We also provide some evidence that the role of oxytocin system may to some extent depend on gender. These findings may promote our understanding of the genetic and biological roots of prosociality and morality. PMID:28377734

  17. Novel Single Nucleotide Polymorphism Markers for Low Dose Aspirin-Associated Small Bowel Bleeding

    PubMed Central

    Shiotani, Akiko; Murao, Takahisa; Fujita, Yoshihiko; Fujimura, Yoshinori; Sakakibara, Takashi; Nishio, Kazuto; Haruma, Ken

    2013-01-01

    Background Aspirin-induced enteropathy is now increasingly being recognized although the pathogenesis of small intestinal damage induced by aspirin is not well understood and related risk factors have not been established. Aim To investigate pharmacogenomic profile of low dose aspirin (LDA)-induced small bowel bleeding. Methods Genome-wide analysis of single nucleotide polymorphisms (SNPs) was performed using the Affymetrix DMET™ Plus Premier Pack. Genotypes of candidate genes associated with small bowel bleeding were determined using TaqMan SNP Genotyping Assay kits and direct sequencing. Results In the validation study in overall 37 patients with small bowel bleeding and 400 controls, 4 of 27 identified SNPs: CYP4F11 (rs1060463) GG (p=0.003), CYP2D6 (rs28360521) GG (p=0.02), CYP24A1 (rs4809957) T allele (p=0.04), and GSTP1 (rs1695) G allele (p=0.04) were significantly more frequent in the small bowel bleeding group compared to the controls. After adjustment for significant factors, CYP2D6 (rs28360521) GG (OR 4.11, 95% CI. 1.62 -10.4) was associated with small bowel bleeding. Conclusions CYP4F11 and CYP2D6 SNPs may identify patients at increased risk for aspirin-induced small bowel bleeding. PMID:24367646

  18. Social cognition, face processing, and oxytocin receptor single nucleotide polymorphisms in typically developing children.

    PubMed

    Slane, Mylissa M; Lusk, Laina G; Boomer, K B; Hare, Abby E; King, Margaret K; Evans, David W

    2014-07-01

    Recent research has provided evidence of a link between behavioral measures of social cognition (SC) and neural and genetic correlates. Differences in face processing and variations in the oxytocin receptor (OXTR) gene have been associated with SC deficits and autism spectrum disorder (ASD) traits. Much work has examined the qualitative differences between those with ASD and typically developing (TD) individuals, but very little has been done to quantify the natural variation in ASD-like traits in the typical population. The present study examines this variation in TD children using a multidimensional perspective involving behavior assessment, neural electroencephalogram (EEG) testing, and OXTR genotyping. Children completed a series of neurocognitive assessments, provided saliva samples for sequencing, and completed a face processing task while connected to an EEG. No clear pattern emerged for EEG covariates or genotypes for individual OXTR single nucleotide polymorphisms (SNPs). However, SNPs rs2254298 and rs53576 consistently interacted such that the AG/GG allele combination of these SNPs was associated with poorer performance on neurocognitive measures. These results suggest that neither SNP in isolation is risk-conferring, but rather that the combination of rs2254298(A/G) and rs53576(G/G) confers a deleterious effect on SC across several neurocognitive measures.

  19. Association of Toll-Like Receptor 3 Single-Nucleotide Polymorphisms and Hepatitis C Virus Infection

    PubMed Central

    Al-Anazi, Mashael R.; Matou-Nasri, Sabine; Abdo, Ayman A.; Sanai, Faisal M.; Alkahtani, Saad; Alarifi, Saud; Alkahtane, Abdullah A.; Al-Yahya, Hamad; Ali, Daoud; Alessia, Mohammed S.; Alshahrani, Bushra; Al-Ahdal, Mohammed N.

    2017-01-01

    Toll-like receptor 3 (TLR3) plays a key role in innate immunity by recognizing pathogenic, double-stranded RNAs. Thus, activation of TLR3 is a major factor in antiviral defense and tumor eradication. Although downregulation of TLR3 gene expression has been mainly reported in patients infected with hepatitis C virus (HCV), the influence of TLR3 genotype on the risk of HCV infection, HCV-related cirrhosis, and/or hepatocellular carcinoma (HCC) remains to be determined. Single-nucleotide polymorphisms (SNPs) within the TLR3 gene and their associations with HCV-related disease risk were investigated in a Saudi Arabian population in this study. Eight TLR3 SNPs were analyzed in 563 patients with HCV, which consisted of 437 patients with chronic HCV infections, 88 with HCV-induced liver cirrhosis, and 38 with HCC. A total of 599 healthy control subjects were recruited to the study. Among the eight TLR3 SNPs studied, the rs78726532 SNP was strongly associated with HCV infection when compared to that in healthy control subjects. The rs5743314 was also strongly associated with HCV-related liver disease progression (cirrhosis and HCC). In summary, these results indicate that distinct genetic variants of TLR3 SNPs are associated with HCV infection and HCV-mediated liver disease progression in the Saudi Arabian population. PMID:28127569

  20. Validation of Single Nucleotide Polymorphisms Associated with Carcass Traits in a Commercial Hanwoo Population

    PubMed Central

    Sudrajad, Pita; Sharma, Aditi; Dang, Chang Gwon; Kim, Jong Joo; Kim, Kwan Suk; Lee, Jun Heon; Kim, Sidong; Lee, Seung Hwan

    2016-01-01

    Four carcass traits, namely carcass weight (CW), eye muscle area (EMA), back fat thickness (BF), and marbling score (MS), are the main price decision parameters used for purchasing Hanwoo beef. The development of DNA markers for these carcass traits for use in a beef management system could result in substantial profit for beef producers in Korea. The objective of this study was to validate the association of highly significant single nucleotide polymorphisms (SNPs) identified in a previous genome-wide association study (GWAS) with the four carcass traits in a commercial Hanwoo population. We genotyped 83 SNPs distributed across all 29 autosomes in 867 steers from a Korean Hanwoo feedlot. Six SNPs, namely ARS-BFGL-NGS-22774 (Chr4, Pos:4889229), ARS-BFGL-NGS-100046 (Chr6, Pos:61917424), ARS-BFGL-NGS-39006 (Chr27, Pos:38059196), ARS-BFGL-NGS-18790 (Chr10, Pos:26489109), ARS-BFGL-NGS-43879 (Chr9, Pos:39964297), and BTB-00775794 (Chr20, Pos:20476265), were found to be associated with CW, EMA, BF, and MS. The ARS-BFGL-NGS-22774, BTB-00775794, and ARS-BFGL-NGS-39006 markers accounted for 1.80%, 1.72%, and 1.35% (p<0.01), respectively, of the phenotypic variance in the commercial Hanwoo population. Many genes located in close proximity to the significant SNPs identified in this study were previously reported to have roles in carcass traits. The results of this study could be useful for marker-assisted selection programs. PMID:26954199

  1. Melting analysis on microbeads in rapid temperature-gradient inside microchannels for single nucleotide polymorphisms detectiona)

    PubMed Central

    Li, Kan-Chien; Ding, Shih-Torng; Lin, En-Chung; Wang, Lon (Alex); Lu, Yen-Wen

    2014-01-01

    A continuous-flow microchip with a temperature gradient in microchannels was utilized to demonstrate spatial melting analysis on microbeads for clinical Single Nucleotide Polymorphisms (SNPs) genotyping on animal genomic DNA. The chip had embedded heaters and thermometers, which created a rapid and yet stable temperature gradient between 60 °C and 85 °C in a short distance as the detection region. The microbeads, which served as mobile supports carrying the target DNA and fluorescent dye, were transported across the temperature gradient. As the surrounding temperature increased, the fluorescence signals of the microbeads decayed with this relationship being acquired as the melting curve. Fast DNA denaturation, as a result of the improved heat transfer and thermal stability due to scaling, was also confirmed. Further, each individual microbead could potentially bear different sequences and pass through the detection region, one by one, for a series of melting analysis, with multiplex, high-throughput capability being possible. A prototype was tested with target DNA samples in different genotypes (i.e., wild and mutant types) with a SNP location from Landrace sows. The melting temperatures were obtained and compared to the ones using a traditional tube-based approach. The results showed similar levels of SNP discrimination, validating our proposed technique for scanning homozygotes and heterozygotes to distinguish single base changes for disease research, drug development, medical diagnostics, agriculture, and animal production. PMID:25553186

  2. Use of Single Nucleotide Polymorphism Array Technology to Improve the Identification of Chromosomal Lesions in Leukemia

    PubMed Central

    Iacobucci, Ilaria; Lonetti, Annalisa; Papayannidis, Cristina; Martinelli, Giovanni

    2013-01-01

    Acute leukemias are characterized by recurring chromosomal and genetic abnormalities that disrupt normal development and drive aberrant cell proliferation and survival. Identification of these abnormalities plays important role in diagnosis, risk assessment and patient classification. Until the last decade methods to detect these aberrations have included genome wide approaches, such as conventional cytogenetics, but with a low sensitivity (5-10%), or gene candidate approaches, such as fluorescent in situ hybridization, having a greater sensitivity but being limited to only known regions of the genome. Single nucleotide polymorphism (SNP) technology is a screening method that has revolutionized our way to find genetic alterations, enabling linkage and association studies between SNP genotype and disease as well as the identification of alterations in DNA content on a whole genome scale. The adoption of this approach for the study of lymphoid and myeloid leukemias contributed to the identification of novel genetic alterations, such as losses/gains/uniparental disomy not visible by cytogenetics and implicated in pathogenesis, improving risk assessment and patient classification and in some cases working as targets for tailored therapies. In this review, we reported recent advances obtained in the knowledge of the genomic complexity of chronic myeloid leukemia and acute leukemias thanks to the use of high-throughput technologies, such as SNP array. PMID:23941516

  3. Single Nucleotide Polymorphisms: A Window into the Informatics of the Living Genome

    PubMed Central

    Dunston, Georgia M.; Mason, Tshela E.; Hercules, William; Lindesay, James

    2015-01-01

    Nested in the environment of the nucleus of the cell, the 23 sets of chromosomes that comprise the human genome function as one integrated whole system, orchestrating the expression of thousands of genes underlying the biological characteristics of the cell, individual and the species. The extraction of meaningful information from this complex data set depends crucially upon the lens through which the data are examined. We present a biophysical perspective on genomic information encoded in single nucleotide polymorphisms (SNPs), and introduce metrics for modeling information encoded in the genome. Information, like energy, is considered to be a conserved physical property of the universe. The information structured in SNPs describes the adaptation of a human population to a given environment. The maintained order measured by the information content is associated with entropies, energies, and other state variables for a dynamic system in homeostasis. “Genodynamics” characterizes the state variables for genomic populations that are stable under stochastic environmental stresses. The determination of allelic energies allows the parameterization of specific environmental influences upon individual alleles across populations. The environment drives population-based genome variation. From this vantage point, the genome is modeled as a complex, dynamic information system defined by patterns of SNP alleles and SNP haplotypes. PMID:25635233

  4. Analysis of Single Nucleotide Polymorphism in Adolescent Idiopathic Scoliosis in Korea: For Personalized Treatment

    PubMed Central

    Moon, Eun Su; Kim, Hak Sun; Sharma, Veushj; Park, Jin Oh; Lee, Hwan Mo; Moon, Sung Hwan

    2013-01-01

    Purpose The incidence of adolescent idiopathic scoliosis (AIS) has rapidly increased, and with it, physician consultations and expenditures (about one and a half times) in the last 5 years. Recent etiological studies reveal that AIS is a complex genetic disorder that results from the interaction of multiple gene loci and the environment. For personalized treatment of AIS, a tool that can accurately measure the progression of Cobb's angle would be of great use. Gene analysis utilizing single nucleotide polymorphism (SNP) has been developed as a diagnostic tool for use in Caucasians but not Koreans. Therefore, we attempted to reveal AIS-related genes and their relevance in Koreans, exploring the potential use of gene analysis as a diagnostic tool for personalized treatment of AIS therein. Materials and Methods A total of 68 Korean AIS and 35 age- and sex-matched, healthy adolescents were enrolled in this study and were examined for 10 candidate scoliosis gene SNPs. Results This study revealed that the SNPs of rs2449539 in lysosomal-associated transmembrane protein 4 beta (LAPTM4B) and rs5742612 in upstream and insulin-like growth factor 1 (IGF1) were associated with both susceptibility to and curve severity in AIS. The results suggested that both LAPTM4B and IGF1 genes were important in AIS predisposition and progression. Conclusion Thus, on the basis of this study, if more SNPs or candidate genes are studied in a larger population in Korea, personalized treatment of Korean AIS patients might become a possibility. PMID:23364988

  5. A novel, single nucleotide polymorphism-based assay to detect 22q11 deletions.

    PubMed

    Funke, Birgit H; Brown, Alison C; Ramoni, Marco F; Regan, Maura E; Baglieri, Chris; Finn, Christine T; Babcock, Melanie; Shprintzen, Robert J; Morrow, Bernice E; Kucherlapati, Raju

    2007-01-01

    Velocardiofacial syndrome, DiGeorge syndrome, and conotruncal anomaly face syndrome, now collectively referred to as 22q11deletion syndrome (22q11DS) are caused by microdeletions on chromosome 22q11. The great majority ( approximately 90%) of these deletions are 3 Mb in size. The remaining deleted patients have nested break-points resulting in overlapping regions of hemizygosity. Diagnostic testing for the disorder is traditionally done by fluorescent in situ hybridization (FISH) using probes located in the proximal half of the region common to all deletions. We developed a novel, high-resolution single-nucleotide polymorphism (SNP) genotyping assay to detect 22q11 deletions. We validated this assay using DNA from 110 nondeleted controls and 77 patients with 22q11DS that had previously been tested by FISH. The assay was 100% sensitive (all deletions were correctly identified). Our assay was also able to detect a case of segmental uniparental disomy at 22q11 that was not detected by the FISH assay. We used Bayesian networks to identify a set of 17 SNPs that are sufficient to ascertain unambiguously the deletion status of 22q11DS patients. Our SNP based assay is a highly accurate, sensitive, and specific method for the diagnosis of 22q11 deletion syndrome.

  6. Development of a cassava core collection based on single nucleotide polymorphism markers.

    PubMed

    Oliveira, E J; Ferreira, C F; Santos, V S; Oliveira, G A F

    2014-08-25

    Single nucleotide polymorphism (SNP) markers were used in the largest cassava (Manihot esculenta Crantz) germplasm collection from Brazil to develop core collections based on the maximization strategy. Subsets with 61, 64, 84, 128, 256, and 384 cassava accessions were selected and named PoHEU, MST64, PoRAN, MST128, MST256, and MST384, respectively. All the 798 alleles identified by 402 SNP markers in the entire collection were captured in all core collections. Only small alterations in the diversity parameters were observed for the different core collections compared with the complete collection. Because of the optimal adjustment of the validation parameters representative of the complete collection, the absence of genotypes with high genetic similarity and the maximization of the genetic distances between accessions of the PoHEU core collection, which contained 4.7% of the accessions of the complete collection, maximized the genetic conservation of this important cassava collection. Furthermore, the development of this core collection will allow concentrated efforts toward future characterization and agronomic evaluation of accessions to maximize the diversity and genetic gains in cassava breeding programs.

  7. Automated detection system of single nucleotide polymorphisms using two kinds of functional magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Hongna; Li, Song; Wang, Zhifei; Li, Zhiyang; Deng, Yan; Wang, Hua; Shi, Zhiyang; He, Nongyue

    2008-11-01

    Single nucleotide polymorphisms (SNPs) comprise the most abundant source of genetic variation in the human genome wide codominant SNPs identification. Therefore, large-scale codominant SNPs identification, especially for those associated with complex diseases, has induced the need for completely high-throughput and automated SNP genotyping method. Herein, we present an automated detection system of SNPs based on two kinds of functional magnetic nanoparticles (MNPs) and dual-color hybridization. The amido-modified MNPs (NH 2-MNPs) modified with APTES were used for DNA extraction from whole blood directly by electrostatic reaction, and followed by PCR, was successfully performed. Furthermore, biotinylated PCR products were captured on the streptavidin-coated MNPs (SA-MNPs) and interrogated by hybridization with a pair of dual-color probes to determine SNP, then the genotype of each sample can be simultaneously identified by scanning the microarray printed with the denatured fluorescent probes. This system provided a rapid, sensitive and highly versatile automated procedure that will greatly facilitate the analysis of different known SNPs in human genome.

  8. Challenges in the association of human single nucleotide polymorphism mentions with unique database identifiers

    PubMed Central

    2011-01-01

    Background Most information on genomic variations and their associations with phenotypes are covered exclusively in scientific publications rather than in structured databases. These texts commonly describe variations using natural language; database identifiers are seldom mentioned. This complicates the retrieval of variations, associated articles, as well as information extraction, e. g. the search for biological implications. To overcome these challenges, procedures to map textual mentions of variations to database identifiers need to be developed. Results This article describes a workflow for normalization of variation mentions, i.e. the association of them to unique database identifiers. Common pitfalls in the interpretation of single nucleotide polymorphism (SNP) mentions are highlighted and discussed. The developed normalization procedure achieves a precision of 98.1 % and a recall of 67.5% for unambiguous association of variation mentions with dbSNP identifiers on a text corpus based on 296 MEDLINE abstracts containing 527 mentions of SNPs. The annotated corpus is freely available at http://www.scai.fraunhofer.de/snp-normalization-corpus.html. Conclusions Comparable approaches usually focus on variations mentioned on the protein sequence and neglect problems for other SNP mentions. The results presented here indicate that normalizing SNPs described on DNA level is more difficult than the normalization of SNPs described on protein level. The challenges associated with normalization are exemplified with ambiguities and errors, which occur in this corpus. PMID:21992066

  9. The Regulated Secretory Pathway and Human Disease: Insights from Gene Variants and Single Nucleotide Polymorphisms

    PubMed Central

    Lin, Wei-Jye; Salton, Stephen R.

    2013-01-01

    The regulated secretory pathway provides critical control of peptide, growth factor, and hormone release from neuroendocrine and endocrine cells, and neurons, maintaining physiological homeostasis. Propeptides and prohormones are packaged into dense core granules (DCGs), where they frequently undergo tissue-specific processing as the DCG matures. Proteins of the granin family are DCG components, and although their function is not fully understood, data suggest they are involved in DCG formation and regulated protein/peptide secretion, in addition to their role as precursors of bioactive peptides. Association of gene variation, including single nucleotide polymorphisms (SNPs), with neuropsychiatric, endocrine, and metabolic diseases, has implicated specific secreted proteins and peptides in disease pathogenesis. For example, a SNP at position 196 (G/A) of the human brain-derived neurotrophic factor gene dysregulates protein processing and secretion and leads to cognitive impairment. This suggests more generally that variants identified in genes encoding secreted growth factors, peptides, hormones, and proteins involved in DCG biogenesis, protein processing, and the secretory apparatus, could provide insight into the process of regulated secretion as well as disorders that result when it is impaired. PMID:23964269

  10. The regulated secretory pathway and human disease: insights from gene variants and single nucleotide polymorphisms.

    PubMed

    Lin, Wei-Jye; Salton, Stephen R

    2013-01-01

    The regulated secretory pathway provides critical control of peptide, growth factor, and hormone release from neuroendocrine and endocrine cells, and neurons, maintaining physiological homeostasis. Propeptides and prohormones are packaged into dense core granules (DCGs), where they frequently undergo tissue-specific processing as the DCG matures. Proteins of the granin family are DCG components, and although their function is not fully understood, data suggest they are involved in DCG formation and regulated protein/peptide secretion, in addition to their role as precursors of bioactive peptides. Association of gene variation, including single nucleotide polymorphisms (SNPs), with neuropsychiatric, endocrine, and metabolic diseases, has implicated specific secreted proteins and peptides in disease pathogenesis. For example, a SNP at position 196 (G/A) of the human brain-derived neurotrophic factor gene dysregulates protein processing and secretion and leads to cognitive impairment. This suggests more generally that variants identified in genes encoding secreted growth factors, peptides, hormones, and proteins involved in DCG biogenesis, protein processing, and the secretory apparatus, could provide insight into the process of regulated secretion as well as disorders that result when it is impaired.

  11. A Single-Nucleotide Polymorphism of Human Neuropeptide S Gene Originated from Europe Shows Decreased Bioactivity

    PubMed Central

    Hsueh, Aaron J. W.

    2013-01-01

    Using accumulating SNP (Single-Nucleotide Polymorphism) data, we performed a genome-wide search for polypeptide hormone ligands showing changes in the mature regions to elucidate genotype/phenotype diversity among various human populations. Neuropeptide S (NPS), a brain peptide hormone highly conserved in vertebrates, has diverse physiological effects on anxiety, fear, hyperactivity, food intake, and sleeping time through its cognate receptor-NPSR. Here, we report a SNP rs4751440 (L6-NPS) causing non-synonymous substitution on the 6th position (V to L) of the NPS mature peptide region. L6-NPS has a higher allele frequency in Europeans than other populations and probably originated from European ancestors ∼25,000 yrs ago based on haplotype analysis and Approximate Bayesian Computation. Functional analyses indicate that L6-NPS exhibits a significant lower bioactivity than the wild type NPS, with ∼20-fold higher EC50 values in the stimulation of NPSR. Additional evolutionary and mutagenesis studies further demonstrate the importance of the valine residue in the 6th position for NPS functions. Given the known physiological roles of NPS receptor in inflammatory bowel diseases, asthma pathogenesis, macrophage immune responses, and brain functions, our study provides the basis to elucidate NPS evolution and signaling diversity among human populations. PMID:24386135

  12. Single nucleotide polymorphisms in the bovine Histophilus somni genome; a comparison of new and old isolates

    PubMed Central

    Madampage, Claudia Avis; Rawlyk, Neil; Crockford, Gordon; Van Donkersgoed, Joyce; Dorin, Craig; Potter, Andrew

    2015-01-01

    Histophilus somni, a causative agent of the bovine respiratory disease complex, can also cause a variety of systemic disorders, including bronchopneumonia, myocarditis, pericarditis, arthritis, pleuritis, and infectious thrombotic meningoencephalitis. The purpose of this study was to determine if currently circulating strains differ from those of the 1980s by identifying genomic changes. Single nucleotide polymorphisms (SNPs) and insertion and deletion (INDEL) sites were examined by whole-genome sequencing in 12 samples, 6 old and 6 new. The 31 028 SNP/INDELs recorded were compared against the reference genome sequence of the pathogenic H. somni strain 2336. The distribution of about 75% of these SNPs within a specified gene differed between old and new isolates and did not follow any particular pattern. The other 25% clustered into 2 groups containing the same SNPs in various genes: group I included 5 old isolates and 1 new isolate; group II included 5 new isolates and 1 old isolate. For putative virulence genes there were more SNPs in group I compared with strain 2336, itself an older isolate, than in group II. Although only 25% of all the SNPs formed 2 clusters, the results suggest some genetic difference in various genes between old and new strains. PMID:26130851

  13. HIV-1 Promoter Single Nucleotide Polymorphisms Are Associated with Clinical Disease Severity

    PubMed Central

    Feng, Rui; Moldover, Brian; Passic, Shendra; Aiamkitsumrit, Benjamas; Dampier, Will; Wojno, Adam; Kilareski, Evelyn; Blakey, Brandon; Ku, Tse-Sheun Jade; Shah, Sonia; Sullivan, Neil T.; Jacobson, Jeffrey M.; Wigdahl, Brian

    2016-01-01

    The large majority of human immunodeficiency virus type 1 (HIV-1) markers of disease progression/severity previously identified have been associated with alterations in host genetic and immune responses, with few studies focused on viral genetic markers correlate with changes in disease severity. This study presents a cross-sectional/longitudinal study of HIV-1 single nucleotide polymorphisms (SNPs) contained within the viral promoter or long terminal repeat (LTR) in patients within the Drexel Medicine CNS AIDS Research and Eradication Study (CARES) Cohort. HIV-1 LTR SNPs were found to associate with the classical clinical disease parameters CD4+ T-cell count and log viral load. They were found in both defined and undefined transcription factor binding sites of the LTR. A novel SNP identified at position 108 in a known COUP (chicken ovalbumin upstream promoter)/AP1 transcription factor binding site was significantly correlated with binding phenotypes that are potentially the underlying cause of the associated clinical outcome (increase in viral load and decrease in CD4+ T-cell count). PMID:27100290

  14. Endothelial Nitric Oxide Synthase Gene Single Nucleotide Polymorphism Predicts Cerebral Vasospasm following Aneurysmal Subarachnoid Hemorrhage

    PubMed Central

    Starke, Robert M.; Kim, Grace H.; Komotar, Ricardo J.; Hickman, Zachary L.; Black, Eric M.; Rosales, Maritza B.; Kellner, Christopher P.; Hahn, David K.; Otten, Marc L.; Edwards, John; Wang, Tao; Russo, James J.; Mayer, Stephan A.; Connolly, E. Sander

    2009-01-01

    Summary Vasospasm is a major cause of morbidity and mortality following aneurysmal subarachnoid hemorrhage (aSAH). Studies have demonstrated a link between single nucleotide polymorphisms (SNP) in the endothelial nitric oxide synthase (eNOS) gene and the incidence of coronary spasm and aneurysms. Alterations in the eNOS T-786 SNP may lead to an increased risk of post-aSAH cerebral vasospasm. In this prospective clinical study, 77 aSAH patients provided genetic material and were followed for the occurrence of vasospasm. In multivariate logistic regression analysis, genotype was the only factor predictive of vasospasm. The odds ratio for symptomatic vasospasm in patients with one T allele was 3.3 (95% CI 1.1–10.0, p=0.034) and 10.9 for TT. Patients with angiographic spasm were 3.6 times more likely to have a T allele (95% CI 1.3–9.6, p=0.013, TT OR 12.6). Patients with severe vasospasm requiring endovascular therapy were more likely to have a T allele (OR 3.5, 95% CI 1.3–9.5, p=0.016, TT OR 12.0). Patients with the T allele of the eNOS gene are more likely have severe vasospasm. Presence of this genotype may allow the identification of individuals at high risk for post-aSAH vasospasm and lead to early treatment and improved outcome. PMID:18319732

  15. Wireless electrochemiluminescence bipolar electrode array for visualized genotyping of single nucleotide polymorphism.

    PubMed

    Khoshfetrat, Seyyed Mehdi; Ranjbari, Mitra; Shayan, Mohsen; Mehrgardi, Masoud A; Kiani, Abolfazl

    2015-08-18

    The development of simple, inexpensive, hand-held, user-friendly biosensor for high throughput and multiplexed genotyping of various single nucleotide polymorphisms (SNPs) in a single run experiment by a nonspecialist user is the main challenge in the analysis of DNA. Visualizing the signal and possibility to monitor SNPs by a digital camera opens a new horizon for the routine applications. In the present manuscript, a novel wireless electrochemiluminescence (ECL) DNA array is introduced for the visualized genotyping of different SNPs on the basis of ECL of luminol/hydrogen peroxide system on a bipolar electrode (BPE) array platform. After modification of anodic poles of the array with the DNA probe and its hybridization with the targets, genotyping of various SNPs is carried out by exposing the array to different monobase modified luminol-platinum nanoparticles (M-L-PtNPs). Upon the hybridization of M-L-PtNPs to mismatch sites, the ECL of luminol is followed using a photomultiplier tube (PMT) or digital camera and the images are analyzed by ImageJ software. This biosensor can detect even thermodynamically stable SNP (G-T mismatches) in the range of 2-600 pM. Also, by combining the advantages of BPE and the high visual sensitivity of ECL, it could be easily expected to achieve sensitive screening of different SNPs. The present biosensor demonstrates the capability for the discrimination between PCR products of normal, heterozygous, and homozygous beta thalassemia genetic disorders.

  16. Within-breed heterozygosity of canine single nucleotide polymorphisms identified by across-breed comparison.

    PubMed

    Brouillette, J A; Venta, P J

    2002-12-01

    Identification of single nucleotide polymorphisms (SNPs) by DNA sequence comparison across breeds is a strategy for developing genetic markers that are useful for many breeds. However, the heterozygosity of SNPs identified in this way might be severely reduced within breeds by inbreeding or genetic drift in the small effective population size of a breed (population subdivision). The effect of inbreeding and population subdivision on heterozygosity of SNPs in dog breeds has never been investigated in a systematic way. We determined the genotypes of dogs from three divergent breeds for SNPs in four canine genes (ACTC, LMNA, SCGB, and TYMS) identified by across-breed DNA sequence comparison, and compared the genotype frequencies to those expected under Hardy-Weinberg equilibrium (HWE). Although population subdivision significantly skewed allele frequencies across breeds for two of the SNPs, the deviations of observed heterozygosities compared with those expected within breeds were minimal. These results indicate that across-breed DNA sequence comparison is a reasonable strategy for identifying SNPs that are useful within many canine breeds.

  17. Pairwise Kinship Analysis by the Index of Chromosome Sharing Using High-Density Single Nucleotide Polymorphisms.

    PubMed

    Morimoto, Chie; Manabe, Sho; Kawaguchi, Takahisa; Kawai, Chihiro; Fujimoto, Shuntaro; Hamano, Yuya; Yamada, Ryo; Matsuda, Fumihiko; Tamaki, Keiji

    2016-01-01

    We developed a new approach for pairwise kinship analysis in forensic genetics based on chromosomal sharing between two individuals. Here, we defined "index of chromosome sharing" (ICS) calculated using 174,254 single nucleotide polymorphism (SNP) loci typed by SNP microarray and genetic length of the shared segments from the genotypes of two individuals. To investigate the expected ICS distributions from first- to fifth-degree relatives and unrelated pairs, we used computationally generated genotypes to consider the effect of linkage disequilibrium and recombination. The distributions were used for probabilistic evaluation of the pairwise kinship analysis, such as likelihood ratio (LR) or posterior probability, without allele frequencies and haplotype frequencies. Using our method, all actual sample pairs from volunteers showed significantly high LR values (i.e., ≥ 108); therefore, we can distinguish distant relationships (up to the fifth-degree) from unrelated pairs based on LR. Moreover, we can determine accurate degrees of kinship in up to third-degree relationships with a probability of > 80% using the criterion of posterior probability ≥ 0.90, even if the kinship of the pair is totally unpredictable. This approach greatly improves pairwise kinship analysis of distant relationships, specifically in cases involving identification of disaster victims or missing persons.

  18. Estrogen receptor alpha single nucleotide polymorphism as predictor of diabetes type 2 risk in hypogonadal men.

    PubMed

    Linnér, Carl; Svartberg, Johan; Giwercman, Aleksander; Giwercman, Yvonne Lundberg

    2013-06-01

    Estradiol (E2) is, apart from its role as a reproductive hormone, also important for cardiac function and bone maturation in both genders. It has also been shown to play a role in insulin production, energy expenditure and in inducing lipolysis. The aim of the study was to investigate if low circulating testosterone or E2 levels in combination with variants in the estrogen receptor alpha (ESR1) and estrogen receptor beta (ESR2) genes were of importance for the risk of type-2 diabetes. The single nucleotide polymorphisms rs2207396 and rs1256049, in ESR1 and ESR2, respectively, were analysed by allele specific PCR in 172 elderly men from the population-based Tromsø study. The results were adjusted for age. In individuals with low total (≤11 nmol/L) or free testosterone (≤0.18 nmol/L) being carriers of the variant A-allele in ESR1 was associated with 7.3 and 15.9 times, respectively, increased odds ratio of being diagnosed with diabetes mellitus type 2 (p = 0.025 and p = 0.018, respectively). Lower concentrations of E2 did not seem to increase the risk of being diagnosed with diabetes. In conclusion, in hypogonadal men, the rs2207396 variant in ESR1 predicts the risk of type 2 diabetes.

  19. Prediction of maize phenotype based on whole-genome single nucleotide polymorphisms using deep belief networks

    NASA Astrophysics Data System (ADS)

    Rachmatia, H.; Kusuma, W. A.; Hasibuan, L. S.

    2017-05-01

    Selection in plant breeding could be more effective and more efficient if it is based on genomic data. Genomic selection (GS) is a new approach for plant-breeding selection that exploits genomic data through a mechanism called genomic prediction (GP). Most of GP models used linear methods that ignore effects of interaction among genes and effects of higher order nonlinearities. Deep belief network (DBN), one of the architectural in deep learning methods, is able to model data in high level of abstraction that involves nonlinearities effects of the data. This study implemented DBN for developing a GP model utilizing whole-genome Single Nucleotide Polymorphisms (SNPs) as data for training and testing. The case study was a set of traits in maize. The maize dataset was acquisitioned from CIMMYT’s (International Maize and Wheat Improvement Center) Global Maize program. Based on Pearson correlation, DBN is outperformed than other methods, kernel Hilbert space (RKHS) regression, Bayesian LASSO (BL), best linear unbiased predictor (BLUP), in case allegedly non-additive traits. DBN achieves correlation of 0.579 within -1 to 1 range.

  20. The Textile Plot: A New Linkage Disequilibrium Display of Multiple-Single Nucleotide Polymorphism Genotype Data

    PubMed Central

    Kumasaka, Natsuhiko; Nakamura, Yusuke; Kamatani, Naoyuki

    2010-01-01

    Linkage disequilibrium (LD) is a major concern in many genetic studies because of the markedly increased density of SNP (Single Nucleotide Polymorphism) genotype markers. This dramatic increase in the number of SNPs may cause problems in statistical analyses, such as by introducing multiple comparisons in hypothesis testing and colinearity in logistic regression models, because of the presence of complex LD structures. Inferences must be made about the underlying genetic variation through the LD structure before applying statistical models to the data. Therefore, we introduced the textile plot to provide a visualization of LD to improve the analysis of the genetic variation present in multiple-SNP genotype data. The plot can accentuate LD by displaying specific geometrical shapes, and allowing for the underlying haplotype structure to be inferred without any haplotype-phasing algorithms. Application of this technique to simulated and real data sets illustrated the potential usefulness of the textile plot as an aid to the interpretation of LD in multiple-SNP genotype data. The initial results of LD mapping and haplotype analyses of disease genes are encouraging, indicating that the textile plot may be useful in disease association studies. PMID:20436909

  1. A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms.

    PubMed

    Guo, Qingsheng; Bai, Zhixiong; Liu, Yuqian; Sun, Qingjiang

    2016-03-15

    In this work, we report the application of streptavidin-coated quantum dot (strAV-QD) in molecular beacon (MB) microarray assays by using the strAV-QD to label the immobilized MB, avoiding target labeling and meanwhile obviating the use of amplification. The MBs are stem-loop structured oligodeoxynucleotides, modified with a thiol and a biotin at two terminals of the stem. With the strAV-QD labeling an "opened" MB rather than a "closed" MB via streptavidin-biotin reaction, a sensitive and specific detection of label-free target DNA sequence is demonstrated by the MB microarray, with a signal-to-background ratio of 8. The immobilized MBs can be perfectly regenerated, allowing the reuse of the microarray. The MB microarray also is able to detect single nucleotide polymorphisms, exhibiting genotype-dependent fluorescence signals. It is demonstrated that the MB microarray can perform as a 4-to-2 encoder, compressing the genotype information into two outputs. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Homogeneous Assays for Single-Nucleotide Polymorphism Typing Using AlphaScreen

    PubMed Central

    Beaudet, Lucille; Bédard, Julie; Breton, Billy; Mercuri, Roberto J.; Budarf, Marcia L.

    2001-01-01

    AlphaScreen technology allows the development of high-throughput homogeneous proximity assays. In these assays, signal is generated when 680 nm laser light irradiates a donor bead in close proximity to an acceptor bead. For the detection of nucleic acids, donor and acceptor beads are brought into proximity by two bridging probes that hybridize simultaneously to a common target and to the generic oligonucleotides attached covalently to the beads. This method allows the detection of as little as 10 amole of a single-stranded DNA target. The combination of AlphaScreen with allele-specific amplification (ASA) and allele-specific hybridization (ASH) has allowed the development of two homogenous single-nucleotide polymorphism (SNP) genotyping platforms. Both types of assay are very robust, routinely giving accurate genotyping results with < 2 ng of genomic DNA per genotype. An AlphaScreen validation study was performed for 12 SNPs by using ASA assays and seven SNPs by using ASH assays. More than 580 samples were genotyped with accuracy >99%. The two assays are remarkably simple, requiring no post-PCR manipulations. Genotyping has been performed successfully in 96- and 384-well formats with volumes as small as 2 μL, allowing a considerable reduction in the amount of reagents and genomic DNA necessary for genotyping. These results show that the AlphaScreen technology can be successfully adapted to high-throughput genotyping. PMID:11282975

  3. Impact of single nucleotide polymorphisms in HBB gene causing haemoglobinopathies: in silico analysis.

    PubMed

    George Priya Doss, C; Rao, Sethumadhavan

    2009-04-01

    Single nucleotide polymorphisms (SNPs) are being intensively studied to understand the biological basis of complex traits and diseases. Deleterious mutations of the human beta-globin gene (HBB) are responsible for beta-thalassaemia and other haemoglobinopathies, which are the most common genetic diseases of blood. Single amino acid substitutions in the globin chain are the commonest forms of haemoglobinopathy. Although many haemoglobinopathies present similar structural abnormal points, their functions sometimes are different. Here, using computational methods, we analysed the genetic variations that can alter the expression and function of the HBB gene. We applied an evolutionary perspective to screen the SNPs using a sequence homology-based SIFT tool, which suggested that 210 (90%) non-synonymous (ns)SNPs were found to be deleterious. The structure-based approach PolyPhen server suggested that 134 (57%) nsSNPS may disrupt protein function and structure. The PupaSuite tool predicted the phenotypic effect of SNPs on the structure and function of the affected protein. Structure analysis was carried out with the major mutation that occurred in the native protein coded by the HBB gene in HbC, HbD, HbE and HbS. The amino acid residues in the native and mutant modelled protein were further analysed for solvent accessibility, and secondary structure to check the stability of the proteins. The functional analysis presented here may be a good model for further research.

  4. Three single nucleotide polymorphisms associated with type 2 diabetes mellitus in a Chinese population

    PubMed Central

    Chen, Meijun; Zhang, Xuelong; Fang, Qingxiao; Wang, Tongtong; Li, Tingting; Qiao, Hong

    2017-01-01

    An Indian study recently observed three new loci: rs9552911 in the SGCG, rs1593304 near PLXNA4 and rs4858889 in SCAP associated with type 2 diabetes mellitus (T2DM) in a south Asian population. The present study aimed to validate these findings in a Chinese population. We genotyped the above three single-nucleotide polymorphisms (SNPs), rs9552911, rs1593304, and rs4858889, in a group of 1,972 Chinese individuals, comprising of 966 type 2 diabetic patients and 976 controls. Anthropometric variables and biochemical traits were measured in all the participants. The association analyses of genotype-disease and genotype-traits were estimated. The genotype frequency of rs9552911 differed statistically between the cases and controls (P=0.017). The difference was also evident between the cases and controls in non-obese participants (P=0.033). In addition, the SNP rs9552911 was associated with weight (P=0.033), total cholesterol (P=0.006) and low-density lipoprotein-cholesterol (P=0.007). The SNP rs1593304 was associated with β-cell function estimated by the homeostatic model assessment of β-cell function (P=0.041). However, there was no significant association between rs4858889 and T2DM. In conclusion, the results show that the SNP rs9552911 was associated with T2DM, possibly by affecting body mass index and lipid metabolism. The SNP rs1593304 may impair β-cell function. PMID:28123479

  5. The Effect of Multiple Single Nucleotide Polymorphisms in the Folic Acid Pathway Genes on Homocysteine Metabolism

    PubMed Central

    Liang, Shuang; Zhou, Yuanpeng; Wang, Huijun; Qian, Yanyan; Ma, Duan; Tian, Weidong; Persaud-Sharma, Vishwani; Yu, Chen; Ren, Yunyun; Zhou, Shufeng; Li, Xiaotian

    2014-01-01

    Objective. To investigate the joint effects of the single nucleotide polymorphisms (SNPs) of genes in the folic acid pathway on homocysteine (Hcy) metabolism. Methods. Four hundred women with normal pregnancies were enrolled in this study. SNPs were identified by MassARRAY. Serum folic acid and Hcy concentration were measured. Analysis of variance (ANOVA) and support vector machine (SVM) regressions were used to analyze the joint effects of SNPs on the Hcy level. Results. SNPs of MTHFR (rs1801133 and rs3733965) were significantly associated with maternal serum Hcy level. In the different genotypes of MTHFR (rs1801133), SNPs of RFC1 (rs1051266), TCN2 (rs9606756), BHMT (rs3733890), and CBS (rs234713 and rs2851391) were linked with the Hcy level adjusted for folic acid concentration. The integrated SNPs scores were significantly associated with the residual Hcy concentration (RHC) (r = 0.247). The Hcy level was significantly higher in the group with high SNP scores than that in other groups with SNP scores of less than 0.2 (P = 0.000). Moreover, this difference was even more significant in moderate and high levels of folic acid. Conclusion. SNPs of genes in the folic acid pathway possibly affect the Hcy metabolism in the presence of moderate and high levels of folic acid. PMID:24524080

  6. Single nucleotide polymorphisms in Mycobacterium tuberculosis and the need for a curated database.

    PubMed

    Stucki, David; Gagneux, Sebastien

    2013-01-01

    Recent advances in DNA sequencing have led to the discovery of thousands of single nucleotide polymorphisms (SNPs) in clinical isolates of Mycobacterium tuberculosis complex (MTBC). This genetic variation has changed our understanding of the differences and phylogenetic relationships between strains. Many of these mutations can serve as phylogenetic markers for strain classification, while others cause drug resistance. Moreover, SNPs can affect the bacterial phenotype in various ways, which may have an impact on the outcome of tuberculosis (TB) infection and disease. Despite the importance of SNPs for our understanding of the diversity of MTBC populations, the research community currently lacks a comprehensive, well-curated and user-friendly database dedicated to SNP data. First attempts to catalogue and annotate SNPs in MTBC have been made, but more work is needed. In this review, we discuss the biological and epidemiological relevance of SNPs in MTBC. We then review some of the analytical challenges involved in processing SNP data, and end with a list of features, which should be included in a new SNP database for MTBC.

  7. Associations of Two Obesity-Related Single-Nucleotide Polymorphisms with Adiponectin in Chinese Children

    PubMed Central

    Gao, Liwang; Zhao, Xiaoyuan; Zhang, Meixian; Wu, Jianxin

    2017-01-01

    Purpose. Genome-wide association studies have found two obesity-related single-nucleotide polymorphisms (SNPs), rs17782313 near the melanocortin-4 receptor (MC4R) gene and rs6265 near the brain-derived neurotrophic factor (BDNF) gene, but the associations of both SNPs with other obesity-related traits are not fully described, especially in children. The aim of the present study is to investigate the associations between the SNPs and adiponectin that has a regulatory role in glucose and lipid metabolism. Methods. We examined the associations of the SNPs with adiponectin in Beijing Child and Adolescent Metabolic Syndrome (BCAMS) study. A total of 3503 children participated in the study. Results. The SNP rs6265 was significantly associated with adiponectin under an additive model (P = 0.02 and 0.024, resp.) after adjustment for age, gender, and BMI or obesity statuses. The SNP rs17782313 was significantly associated with low adiponectin under a recessive model. No statistical significance was found between the two SNPs and low adiponectin after correction for multiple testing. Conclusion. We demonstrate for the first time that the SNP rs17782313 near MC4R and the SNP rs6265 near BDNF are associated with adiponectin in Chinese children. These novel findings provide important evidence that adiponectin possibly mediates MC4R and BDNF involved in obesity. PMID:28396685

  8. Single-nucleotide polymorphism genotyping on optical thin-film biosensor chips.

    PubMed

    Zhong, Xiao-Bo; Reynolds, Robert; Kidd, Judith R; Kidd, Kenneth K; Jenison, Robert; Marlar, Richard A; Ward, David C

    2003-09-30

    Single-nucleotide polymorphisms (SNPs) constitute the bulk of human genetic variation and provide excellent markers to identify genetic factors contributing to complex disease susceptibility. A rapid, sensitive, and inexpensive assay is important for large-scale SNP scoring. Here we report the development of a multiplex SNP detection system using silicon chips coated to create a thin-film optical biosensor. Allele-discriminating, aldehyde-labeled oligonucleotides are arrayed and covalently attached to a hydrazinederivatized chip surface. Target sequences (e.g., PCR amplicons) then are hybridized in the presence of a mixture of biotinylated detector probes, one for each SNP, and a thermostable DNA ligase. After a stringent wash (0.01 M NaOH), ligation of biotinylated detector probes to perfectly matched capture oligomers is visualized as a color change on the chip surface (gold to blue/purple) after brief incubations with an anti-biotin IgG-horseradish peroxidase conjugate and a precipitable horseradish peroxidase substrate. Testing of PCR fragments is completed in 30-40 min. Up to several hundred SNPs can be assayed on a 36-mm2 chip, and SNP scoring can be done by eye or with a simple digital-camera system. This assay is extremely robust, exhibits high sensitivity and specificity, and is format-flexible and economical. In studies of mutations associated with risk for venous thrombosis and genotyping/haplotyping of African-American samples, we document high-fidelity analysis with 0 misassignments in 500 assays performed in duplicate.

  9. Study of single-nucleotide polymorphisms by means of electrical conductance measurements

    NASA Astrophysics Data System (ADS)

    Hihath, Joshua; Xu, Bingqian; Zhang, Peiming; Tao, Nongjian

    2005-11-01

    Understanding the complexities of DNA has been a hallmark of science for over a half century, and one of the important topics in DNA research is recognizing the occurrence of mutations in the base-stack. In this article, we present a study of SNPs by direct-contact electrical measurements to a single DNA duplex. We have used short, 11- and 12-bp dsDNA to investigate the change in conductance that occurs if a single base pair, a single base, or two separate bases in the stack are modified. All measurements are carried out in aqueous solution with the DNA chemically bound to the electrodes. These measurements demonstrate that the presence of a single base pair mismatch can be identified by the conductance of the molecule and can cause a change in the conductance of dsDNA by as much as an order of magnitude, depending on the specific details of the double helix and the single nucleotide polymorphism. molecular electronics | scanning tunneling microscope break junction

  10. Mining the transcriptomes of four commercially important shellfish species for single nucleotide polymorphisms within biomineralization genes.

    PubMed

    Vendrami, David L J; Shah, Abhijeet; Telesca, Luca; Hoffman, Joseph I

    2016-06-01

    Transcriptional profiling not only provides insights into patterns of gene expression, but also generates sequences that can be mined for molecular markers, which in turn can be used for population genetic studies. As part of a large-scale effort to better understand how commercially important European shellfish species may respond to ocean acidification, we therefore mined the transcriptomes of four species (the Pacific oyster Crassostrea gigas, the blue mussel Mytilus edulis, the great scallop Pecten maximus and the blunt gaper Mya truncata) for single nucleotide polymorphisms (SNPs). Illumina data for C. gigas, M. edulis and P. maximus and 454 data for M. truncata were interrogated using GATK and SWAP454 respectively to identify between 8267 and 47,159 high quality SNPs per species (total=121,053 SNPs residing within 34,716 different contigs). We then annotated the transcripts containing SNPs to reveal homology to diverse genes. Finally, as oceanic pH affects the ability of organisms to incorporate calcium carbonate, we honed in on genes implicated in the biomineralization process to identify a total of 1899 SNPs in 157 genes. These provide good candidates for biomarkers with which to study patterns of selection in natural or experimental populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Single nucleotide polymorphisms to discriminate different classes of hybrid between wild Atlantic salmon and aquaculture escapees.

    PubMed

    Pritchard, Victoria L; Erkinaro, Jaakko; Kent, Matthew P; Niemelä, Eero; Orell, Panu; Lien, Sigbjørn; Primmer, Craig R

    2016-09-01

    Many wild Atlantic salmon (Salmo salar) populations are threatened by introgressive hybridization from domesticated fish that have escaped from aquaculture facilities. A detailed understanding of the hybridization dynamics between wild salmon and aquaculture escapees requires discrimination of different hybrid classes; however, markers currently available to discriminate the two types of parental genome have limited power to do this. Using a high-density Atlantic salmon single nucleotide polymorphism (SNP) array, in combination with pooled-sample allelotyping and an Fst outlier approach, we identified 200 SNPs that differentiated an important Atlantic salmon stock from the escapees potentially hybridizing with it. By simulating multiple generations of wild-escapee hybridization, involving wild populations in two major phylogeographic lineages and a genetically diverse set of escapees, we showed that both the complete set of SNPs and smaller subsets could reliably assign individuals to different hybrid classes up to the third hybrid (F3) generation. This set of markers will be a useful tool for investigating the genetic interactions between native wild fish and aquaculture escapees in many Atlantic salmon populations.

  12. Novel biosensing methodologies for improving the detection of single nucleotide polymorphism.

    PubMed

    Chang, Kai; Deng, Shaoli; Chen, Ming

    2015-04-15

    The growing volume of sequence data confirm more and more candidate single nucleotide polymorphisms (SNPs), which are believed to reveal the genetic basis of individual susceptibility to disease and the diverse responses to treatment. There is therefore an urgent demand for developing the sensitive, rapid, easy-to-use, and cost-effective method to identify SNPs. During the last two decades, biosensing techniques have been developed by integrating the unique specificity of biological reactions and the high sensitivity of physical sensors, which provided significant advantages for the detection of SNPs. In this feature article, we focused attention on the strategies of SNP genotyping based on biosensors, including nucleic acid analogs, surface ligation reaction, single base extension, mismatch binding protein, molecular beacon, rolling circle amplification, and strand-displacement amplification. In addition, the perspectives on their advantages, current limitations, and future trends were also discussed. The biosensing technique would provide a promising alternative for the detection of SNPs, and pave the way for the diagnosis of genetic diseases and the design of appropriate treatments.

  13. Selectivity of Enzymatic Conversion of Oligonucleotide Probes during Nucleotide Polymorphism Analysis of DNA

    PubMed Central

    Vinogradova, O.A.

    2010-01-01

    The analysis of DNA nucleotide polymorphisms is one of the main goals of DNA diagnostics. DNA–dependent enzymes (DNA polymerases and DNA ligases) are widely used to enhance the sensitivity and reliability of systems intended for the detection of point mutations in genetic material. In this article, we have summarized the data on the selectiveness of DNA–dependent enzymes and on the structural factors in enzymes and DNA which influence the effectiveness of mismatch discrimination during enzymatic conversion of oligonucleotide probes on a DNA template. The data presented characterize the sensitivity of a series of DNA–dependent enzymes that are widely used in the detection of noncomplementary base pairs in nucleic acid substrate complexes. We have analyzed the spatial properties of the enzyme–substrate complexes. These properties are vital for the enzymatic reaction and the recognition of perfect DNA–substrates. We also discuss relevant approaches to increasing the selectivity of enzyme–dependent reactions. These approaches involve the use of modified oligonucleotide probes which “disturb” the native structure of the DNA–substrate complexes. PMID:22649627

  14. A Single Nucleotide Polymorphism in Human APOBEC3C Enhances Restriction of Lentiviruses

    PubMed Central

    Wittkopp, Cristina J.; Adolph, Madison B.; Wu, Lily I.; Chelico, Linda; Emerman, Michael

    2016-01-01

    Humans express seven human APOBEC3 proteins, which can inhibit viruses and endogenous retroelements through cytidine deaminase activity. The seven paralogs differ in the potency of their antiviral effects, as well as in their antiviral targets. One APOBEC3, APOBEC3C, is exceptional as it has been found to only weakly block viruses and endogenous retroelements compared to other APOBEC3s. However, our positive selection analyses suggest that APOBEC3C has played a role in pathogen defense during primate evolution. Here, we describe a single nucleotide polymorphism in human APOBEC3C, a change from serine to isoleucine at position 188 (I188) that confers potent antiviral activity against HIV-1. The gain-of-function APOBEC3C SNP results in increased enzymatic activity and hypermutation of target sequences when tested in vitro, and correlates with increased dimerization of the protein. The I188 is widely distributed in human African populations, and is the ancestral primate allele, but is not found in chimpanzees or gorillas. Thus, while other hominids have lost activity of this antiviral gene, it has been maintained, or re-acquired, as a more active antiviral gene in a subset of humans. Taken together, our results suggest that APOBEC3C is in fact involved in protecting hosts from lentiviruses. PMID:27732658

  15. Bayesian pedigree inference with small numbers of single nucleotide polymorphisms via a factor-graph representation.

    PubMed

    Anderson, Eric C; Ng, Thomas C

    2016-02-01

    We develop a computational framework for addressing pedigree inference problems using small numbers (80-400) of single nucleotide polymorphisms (SNPs). Our approach relaxes the assumptions, which are commonly made, that sampling is complete with respect to the pedigree and that there is no genotyping error. It relies on representing the inferred pedigree as a factor graph and invoking the Sum-Product algorithm to compute and store quantities that allow the joint probability of the data to be rapidly computed under a large class of rearrangements of the pedigree structure. This allows efficient MCMC sampling over the space of pedigrees, and, hence, Bayesian inference of pedigree structure. In this paper we restrict ourselves to inference of pedigrees without loops using SNPs assumed to be unlinked. We present the methodology in general for multigenerational inference, and we illustrate the method by applying it to the inference of full sibling groups in a large sample (n=1157) of Chinook salmon typed at 95 SNPs. The results show that our method provides a better point estimate and estimate of uncertainty than the currently best-available maximum-likelihood sibling reconstruction method. Extensions of this work to more complex scenarios are briefly discussed. Published by Elsevier Inc.

  16. Estimating single nucleotide polymorphism associations using pedigree data: applications to breast cancer.

    PubMed

    Barnes, D R; Barrowdale, D; Beesley, J; Chen, X; James, P A; Hopper, J L; Goldgar, D; Chenevix-Trench, G; Antoniou, A C; Mitchell, G

    2013-06-25

    Pedigrees with multiple genotyped family members have been underutilised in breast cancer (BC) genetic-association studies. We developed a pedigree-based analytical framework to characterise single-nucleotide polymorphism (SNP) associations with BC risk using data from 736 BC families ascertained through multiple affected individuals. On average, eight family members had been genotyped for 24 SNPs previously associated with BC. Breast cancer incidence was modelled on the basis of SNP effects and residual polygenic effects. Relative risk (RR) estimates were obtained by maximising the retrospective likelihood (RL) of observing the family genotypes conditional on all disease phenotypes. Models were extended to assess parent-of-origin effects (POEs). Thirteen SNPs were significantly associated with BC under the pedigree RL approach. This approach yielded estimates consistent with those from large population-based studies. Logistic regression models ignoring pedigree structure generally gave larger RRs and association P-values. SNP rs3817198 in LSP1, previously shown to exhibit POE, yielded maternal and paternal RR estimates that were similar to those previously reported (paternal RR=1.12 (95% confidence interval (CI): 0.99-1.27), P=0.081, one-sided P=0.04; maternal RR=0.94 (95% CI: 0.84-1.06), P=0.33). No other SNP exhibited POE. Our pedigree-based methods provide a valuable and efficient tool for characterising genetic associations with BC risk or other diseases and can complement population-based studies.

  17. Single nucleotide polymorphism and FMR1 CGG repeat instability in two Basque valleys.

    PubMed

    Barasoain, Maitane; Barrenetxea, Gorka; Ortiz-Lastra, Eduardo; González, Javier; Huerta, Iratxe; Télez, Mercedes; Ramírez, Juan Manuel; Domínguez, Amaia; Gurtubay, Paula; Criado, Begoña; Arrieta, Isabel

    2012-03-01

    Fragile X Syndrome (FXS, MIM 309550) is mainly due to the expansion of a CGG trinucleotide repeat sequence, found in the 5' untranslated region of the FMR1 gene. Some studies suggest that stable markers, such as single nucleotide polymorphisms (SNPs) and the study of populations with genetic identity, could provide a distinct advance to investigate the origin of CGG repeat instability. In this study, seven SNPs (WEX28 rs17312728:G>T, WEX70 rs45631657:C>T, WEX1 rs10521868:A>C, ATL1 rs4949:A>G, FMRb rs25707:A>G, WEX17 rs12010481:C>T and WEX10 ss71651741:C>T) have been analyzed in two Basque valleys (Markina and Arratia). We examined the association between these SNPs and the CGG repeat size, the AGG interruption pattern and two microsatellite markers (FRAXAC1 and DXS548). The results suggest that in both valleys WEX28-T, WEX70-C, WEX1-C, ATL1-G, and WEX10-C are preferably associated with cis-acting sequences directly influencing instability. But comparison of the two valleys reveals also important differences with respect to: (1) frequency and structure of "susceptible" alleles and (2) association between "susceptible" alleles and STR and SNP haplotypes. These results may indicate that, in Arratia, SNP status does not identify a pool of susceptible alleles, as it does in Markina. In Arratia valley, the SNP haplotype association reveals also a potential new "protective" factor.

  18. Development of a single-nucleotide polymorphism (SNP) assay for genotyping of Pandora neoaphidis.

    PubMed

    Fournier, A; Widmer, F; Enkerli, J

    2010-01-01

    Pandora neoaphidis (Entomophthoromycotina, Entomophthorales) is one of the most important fungal pathogens of aphids with great potential as a biological control agent. Development of tools that allow high-resolution monitoring of P. neoaphidis in the environment is a prerequisite for the successful implementation of biological control strategies. In this study, a single-nucleotide polymorphism (SNP) assay was developed. The assay targets 13 SNPs identified in 6 genomic regions including the largest subunit of nuclear RNA polymerase II (RPB1) gene, the second-largest subunit of nuclear RNA polymerase II (RPB2) gene, the β-tubulin (BTUB) gene, the elongation factor 1α-like (EFL) gene, the large subunit (LSU) rRNA gene, and the small subunit (SSU) rRNA gene together with the internal transcribed spacer (ITS). The assay allowed the discrimination of 15 different SNP profiles among 19 P. neoaphidis isolates and 4 P. neoaphidis-infected cadavers. Results showed that the assay is applicable to DNA extracted from infected aphids allowing genotyping of the fungus without cultivation. The SNP assay provides an efficient tool for investigation of population structures and dynamics of P. neoaphidis, as well as its persistence and epidemiology in agro-ecosystems. Furthermore, it constitutes a powerful approach for monitoring potential biological control strains of P. neoaphidis in the environment. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  19. Single nucleotide polymorphisms in Mycobacterium tuberculosis and the need for a curated database

    PubMed Central

    Stucki, David; Gagneux, Sebastien

    2013-01-01

    Summary Recent advances in DNA sequencing have lead to the discovery of thousands of single nucleotide polymorphisms (SNPs) in clinical isolates of Mycobacterium tuberculosis complex (MTBC). This genetic variation has changed our understanding of the differences and phylogenetic relationships between strains. Many of these mutations can serve as phylogenetic markers for strain classification, while others cause drug resistance. Moreover, SNPs can affect the bacterial phenotype in various ways, which may have an impact on the outcome of tuberculosis (TB) infection and disease. Despite the importance of SNPs for our understanding of the diversity of MTBC populations, the research community is currently lacking a comprehensive, well-curated and user-friendly database dedicated to SNP data. First attempts to catalogue and annotate SNPs in MTBC have been made, but more work is needed. In this review, we discuss the biological and epidemiological relevance of SNPs in MTBC. We then review some of the analytical challenges involved in processing SNP data, and end with a list of features, which should be included in a new SNP database for MTBC. PMID:23266261

  20. Are Myocardial Infarction–Associated Single-Nucleotide Polymorphisms Associated With Ischemic Stroke?

    PubMed Central

    Cheng, Yu-Ching; Anderson, Christopher D.; Bione, Silvia; Keene, Keith; Maguire, Jane M.; Nalls, Michael; Rasheed, Asif; Zeginigg, Marion; Attia, John; Baker, Ross; Barlera, Simona; Biffi, Alessandro; Bookman, Ebony; Brott, Thomas G.; Brown, Robert D.; Fang Chen, PhD; Chen, Wei-Min; Ciusani, Emilio; Cole, John W.; Cortellini, Lynelle; Danesh, John; Doheny, Kimberly; Ferrucci, Luigi; Franzosi, Maria Grazia; Frossard, Philippe; Furie, Karen L.; Golledge, Jonathan; Hankey, Graeme J.; Hernandez, Dena; Holliday, Elizabeth G.; Hsu, Fang-Chi; Jannes, Jim; Kamal, Ayeesha; Khan, Muhammad Saleem; Kittner, Steven J.; Koblar, Simon A.; Lewis, Martin; Lincz, Lisa; Lisa, Antonella; Matarin, Mar; Moscato, Pablo; Mychaleckyj, Josyf C.; Parati, Eugenio A.; Parolo, Silvia; Pugh, Elizabeth; Rost, Natalia S.; Schallert, Michael; Schmidt, Helena; Scott, Rodney J.; Sturm, Jonathan W.; Yadav, Sunaina; Zaidi, Moazzam; Boncoraglio, Giorgio B.; Levi, Christopher Royce; Meschia, James F.; Rosand, Jonathan; Sale, Michele; Saleheen, Danish; Schmidt, Reinhold; Sharma, Pankaj; Worrall, Bradford; Mitchell, Braxton D.

    2013-01-01

    Background and Purpose Ischemic stroke (IS) shares many common risk factors with coronary artery disease (CAD). We hypothesized that genetic variants associated with myocardial infarction (MI) or CAD may be similarly involved in the etiology of IS. To test this hypothesis, we evaluated whether single-nucleotide polymorphisms (SNPs) at 11 different loci recently associated with MI or CAD through genome-wide association studies were associated with IS. Methods Meta-analyses of the associations between the 11 MI-associated SNPs and IS were performed using 6865 cases and 11 395 control subjects recruited from 9 studies. SNPs were either genotyped directly or imputed; in a few cases a surrogate SNP in high linkage disequilibrium was chosen. Logistic regression was performed within each study to obtain study-specific βs and standard errors. Meta-analysis was conducted using an inverse variance weighted approach assuming a random effect model. Results Despite having power to detect odds ratio of 1.09–1.14 for overall IS and 1.20–1.32 for major stroke subtypes, none of the SNPs were significantly associated with overall IS and/or stroke subtypes after adjusting for multiple comparisons. Conclusions Our results suggest that the major common loci associated with MI risk do not have effects of similar magnitude on overall IS but do not preclude moderate associations restricted to specific IS subtypes. Disparate mechanisms may be critical in the development of acute ischemic coronary and cerebrovascular events. PMID:22363065

  1. Genotyping of Single Nucleotide Polymorphisms in DNA Isolated from Serum Using Sequenom MassARRAY Technology.

    PubMed

    Clendenen, Tess V; Rendleman, Justin; Ge, Wenzhen; Koenig, Karen L; Wirgin, Isaac; Currie, Diane; Shore, Roy E; Kirchhoff, Tomas; Zeleniuch-Jacquotte, Anne

    2015-01-01

    Large epidemiologic studies have the potential to make valuable contributions to the assessment of gene-environment interactions because they prospectively collected detailed exposure data. Some of these studies, however, have only serum or plasma samples as a low quantity source of DNA. We examined whether DNA isolated from serum can be used to reliably and accurately genotype single nucleotide polymorphisms (SNPs) using Sequenom multiplex SNP genotyping technology. We genotyped 81 SNPs using samples from 158 participants in the NYU Women's Health Study. Each participant had DNA from serum and at least one paired DNA sample isolated from a high quality source of DNA, i.e. clots and/or cell precipitates, for comparison. We observed that 60 of the 81 SNPs (74%) had high call frequencies (≥95%) using DNA from serum, only slightly lower than the 85% of SNPs with high call frequencies in DNA from clots or cell precipitates. Of the 57 SNPs with high call frequencies for serum, clot, and cell precipitate DNA, 54 (95%) had highly concordant (>98%) genotype calls across all three sample types. High purity was not a critical factor to successful genotyping. Our results suggest that this multiplex SNP genotyping method can be used reliably on DNA from serum in large-scale epidemiologic studies.

  2. A single nucleotide polymorphism genotyping platform for the authentication of patient derived xenografts

    PubMed Central

    Evans, Kathryn; Toscan, Cara; Xie, Jinhan; Lee, Hyunjoo; Taylor, Renea A.; Lawrence, Mitchell G.; Risbridger, Gail P.; MacKenzie, Karen L.; Sutton, Rosemary; Lock, Richard B.

    2016-01-01

    Patient derived xenografts (PDXs) have become a vital, frequently used, component of anti-cancer drug development. PDXs can be serially passaged in vivo for years, and shared across laboratories. As a consequence, the potential for mis-identification and cross-contamination is possible, yet authentication of PDXs appears limited. We present a PDX Authentication System (PAS), by combining a commercially available OpenArray assay of single nucleotide polymorphisms (SNPs) with in-house R studio programs, to validate PDXs established in individual mice from acute lymphoblastic leukemia biopsies. The PAS is sufficiently robust to identify contamination at levels as low as 3%, similar to the gold standard of short tandem repeat (STR) profiling. We have surveyed a panel of PDXs established from 73 individual leukemia patients, and found that the PAS provided sufficient discriminatory power to identify each xenograft. The identified SNP-discrepant PDXs demonstrated distinct gene expression profiles, indicating a risk of contamination for PDXs at high passage number. The PAS also allows for the authentication of tumor cells with complex karyotypes from solid tumors including prostate cancer and Ewing's sarcoma. This study highlights the demands of authenticating PDXs for cancer research, and evaluates a reliable authentication platform that utilizes a commercially available and cost-effective system. PMID:27528024

  3. Association Between Single Nucleotide Polymorphism +276G > T (rs1501299) in ADIPOQ and Endometrial Cancer.

    PubMed

    Bieńkiewicz, Jan; Smolarz, Beata; Malinowski, Andrzej

    2016-01-01

    Current literature gives evidence of an indisputable role adiponectin plays in adipose tissue metabolism and obesity-related diseases. Moreover, latest research efforts focus on linking genetic markers of this adipocytokine's gene (ADIPOQ) with cancer. Aim of this study was to determine the genotype distribution of single nucleotide polymorphism +276G > T (rs1501299) in ADIPOQ and an attempt to identify the impact this polymorphism exerts on endometrial cancer risk in obese females. The test group comprised 90 women treated surgically for endometrial cancer between 2000 and 2012 in the Department of Surgical & Endoscopic Gynecology and Gynecologic Oncology, Polish Mothers' Memorial Hospital - Research Institute, Lodz, Poland. 90 individuals treated in the parallel period for uterine fibroids constituted the control group. Patients within both groups were stratified according to BMI into: lean, overweight and obese subjects. Statistical analysis was performed between two major groups and, furthermore, within the abovementioned subgroups. The analysis revealed that allele G of the investigated polymorphism in obese women with endometrial cancer is significantly more frequent, and allele T is significantly less frequent than in lean controls. However, no significant correlation was observed between the polymorphism and endometrial cancer in lean and overweight females. Single nucleotide polymorphism +276G > T (rs1501299) in ADIPOQ may be considered to be a risk factor of endometrial cancer. Further research on SNP in EC is warranted to obtain more conclusive outcomes.

  4. Characterisation of single nucleotide polymorphisms identified in the bovine lactoferrin gene sequences across a range of dairy cow breeds.

    PubMed

    O'Halloran, F; Bahar, B; Buckley, F; O'Sullivan, O; Sweeney, T; Giblin, L

    2009-01-01

    The lactoferrin gene sequences of 70 unrelated dairy cows representing six different dairy breeds were investigated for single nucleotide polymorphisms to establish a baseline of polymorphisms that exist within the Irish bovine population. Twenty-nine polymorphisms were identified within a 2.2kb regulatory region. Nineteen novel polymorphisms were identified and some of these were found within transcription factor binding sites, including GATA-1 and SPI transcription factor sites. Forty-seven polymorphisms were identified within exon sequences with unique polymorphisms that were associated with amino acid substitutions. These included a T/A SNP, identified in a Holstein Friesian animal, which resulted in a valine to aspartic acid substitution (Val89Asp) in the mature lactoferrin protein. Other SNPs of interest were associated with amino acid substitutions in the lactoferricin B peptide sequence and an A/G SNP, identified in a Jersey animal, was associated with a tyrosine to cysteine change (Tyr181Cys). The polymorphisms identified in the promoter region may have implications relating to lactoferrin expression levels in cows and those identified in the coding sequence indicate the existence of protein variants in the Irish bovine population. The data presented in this study emphasises the potential for lactoferrin to serve as a candidate gene to select for mastitis resistance with the aim of improving animal health.

  5. The presence of a single nucleotide polymorphism in the BDNF gene affects the rate of locomotor adaptation after stroke

    PubMed Central

    Helm, Erin E.; Tyrell, Christine M.; Pohlig, Ryan T.; Brady, Lucas D.; Reisman, Darcy S.

    2015-01-01

    Induction of neural plasticity through motor learning has been demonstrated in animals and humans. Brain derived neurotrophic factor (BDNF), a member of the neurotrophin family of growth factors, is thought to play an integral role in modulation of central nervous system plasticity during learning and motor skill recovery. Thirty percent of humans possess a single nucleotide polymorphism on the BDNF gene (Val66Met), which has been linked to decreased activity dependent release of BDNF. Presence of the polymorphism has been associated with altered cortical activation, short term plasticity and altered skill acquisition, and learning in healthy humans. The impact of the Val66Met polymorphism on motor learning post-stroke has not been explored. The purpose of this study was to examine the impact of the Val66Met polymorphism in learning of a novel locomotor task in subjects with chronic stroke. It was hypothesized that subjects with the polymorphism would have an altered rate and magnitude of adaptation to a novel locomotor walking paradigm (the split-belt treadmill), compared to those without the polymorphism. The rate of adaptation was evaluated as the reduction in gait asymmetry during the first 30 (early adaptation) and last 100 (late adaptation) strides. Twenty-seven individuals with chronic stroke participated in a single session of split-belt treadmill walking and tested for the polymorphism. Step length and limb phase were measured to assess adaptation of spatial and temporal parameters of walking. The rate of adaptation of step length asymmetry differed significantly between those with and without the polymorphism, while the amount of total adaptation did not. These results suggest that chronic stroke survivors, regardless of presence or absence of the polymorphism, are able to adapt their walking pattern over a period of trial and error practice, however the presence of the polymorphism influences the rate at which this is achieved. PMID:26487176

  6. The presence of a single-nucleotide polymorphism in the BDNF gene affects the rate of locomotor adaptation after stroke.

    PubMed

    Helm, Erin E; Tyrell, Christine M; Pohlig, Ryan T; Brady, Lucas D; Reisman, Darcy S

    2016-02-01

    Induction of neural plasticity through motor learning has been demonstrated in animals and humans. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family of growth factors, is thought to play an integral role in modulation of central nervous system plasticity during learning and motor skill recovery. Thirty percent of humans possess a single-nucleotide polymorphism on the BDNF gene (Val66Met), which has been linked to decreased activity-dependent release of BDNF. Presence of the polymorphism has been associated with altered cortical activation, short-term plasticity and altered skill acquisition, and learning in healthy humans. The impact of the Val66Met polymorphism on motor learning post-stroke has not been explored. The purpose of this study was to examine the impact of the Val66Met polymorphism in learning of a novel locomotor task in subjects with chronic stroke. It was hypothesized that subjects with the polymorphism would have an altered rate and magnitude of adaptation to a novel locomotor walking paradigm (the split-belt treadmill), compared to those without the polymorphism. The rate of adaptation was evaluated as the reduction in gait asymmetry during the first 30 (early adaptation) and last 100 (late adaptation) strides. Twenty-seven individuals with chronic stroke participated in a single session of split-belt treadmill walking and tested for the polymorphism. Step length and limb phase were measured to assess adaptation of spatial and temporal parameters of walking. The rate of adaptation of step length asymmetry differed significantly between those with and without the polymorphism, while the amount of total adaptation did not. These results suggest that chronic stroke survivors, regardless of presence or absence of the polymorphism, are able to adapt their walking pattern over a period of trial-and-error practice; however, the presence of the polymorphism influences the rate at which this is achieved.

  7. [The identification of the AB0 blood type system by means of the single nucleotide polymorphisms analysis].

    PubMed

    Lapenkov, M I; Plakhina, N V; Aleksandrova, V Yu; Kuklev, M Yu; Nikolaeva, T L; Konovalova, N V

    2016-01-01

    The authors describe a domestically produced test-system for the determination of the AB0 blood type by means of the single nucleotide polymorphisms (SNP) analysis. The results of the trials indicate that the proposed test-system can be employed for the investigation of DNA specimens of individual origin obtained from any objects of expertise including micro-objects containing human nuclear DNA.

  8. How many single nucleotide polymorphisms (SNPs) are needed to replace short tandem repeats (STRs) in forensic applications?

    PubMed

    Lee, Hyo-Jung; Lee, Jae Won; Jeong, Su Jin; Park, Mira

    2017-02-27

    Short tandem repeats (STRs) are the most commonly used forms of genetic information in forensic identification. In recent times, advances in the information on single nucleotide polymorphisms (SNPs) have raised the possibility that these markers could replace the forensically established STRs. In this work, we conducted comparative simulation studies that allowed us to estimate the number of SNPs needed if these markers were used instead of STRs in criminal cases and paternity investigations.

  9. Identification and characterization of functional single nucleotide polymorphisms (SNPs) in Axin 1 gene: a molecular dynamics approach.

    PubMed

    Khan, Imran; Ansari, Irfan A; Singh, Pratichi; Dass, J Febin Prabhu; Khan, Fahad

    2017-08-02

    Wnt signaling pathway has been reported to play crucial role in intestinal crypt formation and deregulation of this pathway is responsible for colorectal cancer initiation and progression. Axin 1, a scaffold protein, play pivotal role in the regulation of Wnt/β-catenin signaling pathway and has been found to be mutated in several cancers; primarily in colon cancer. Considering its crucial role, a structural and functional analysis of missense mutations in Axin 1 gene was performed in this study. Initially, one hundred non-synonymous single nucleotide polymorphisms in the coding regions of Axin 1 gene were selected for in silico analysis. Six variants (G820S, G856S, E830K, L811V, L847V, and R767C) were predicted to be deleterious by combinatorial prediction. Further investigation of structural attributes confirmed two highly deleterious single nucleotide polymorphisms (G820S and G856S). Molecular dynamics simulation demonstrated variation in different structural attributes between native and two highly deleterious Axin 1 mutant models. Finally, docking analysis showed variation in binding affinity of mutant Axin 1 proteins with two destruction complex members, GSK3β and adenomatous polyposis. The results collectively showed the deleterious effect of the above predicted single nucleotide polymorphisms on the Axin 1 protein structure and could prove to be an adjunct in the disease genotype-phenotype correlation studies.

  10. Single nucleotide polymorphisms and haplotypes associated with feed efficiency in beef cattle

    PubMed Central

    2013-01-01

    Background General, breed- and diet-dependent associations between feed efficiency in beef cattle and single nucleotide polymorphisms (SNPs) or haplotypes were identified on a population of 1321 steers using a 50 K SNP panel. Genomic associations with traditional two-step indicators of feed efficiency – residual feed intake (RFI), residual average daily gain (RADG), and residual intake gain (RIG) – were compared to associations with two complementary one-step indicators of feed efficiency: efficiency of intake (EI) and efficiency of gain (EG). Associations uncovered in a training data set were evaluated on independent validation data set. A multi-SNP model was developed to predict feed efficiency. Functional analysis of genes harboring SNPs significantly associated with feed efficiency and network visualization aided in the interpretation of the results. Results For the five feed efficiency indicators, the numbers of general, breed-dependent, and diet-dependent associations with SNPs (P-value < 0.0001) were 31, 40, and 25, and with haplotypes were six, ten, and nine, respectively. Of these, 20 SNP and six haplotype associations overlapped between RFI and EI, and five SNP and one haplotype associations overlapped between RADG and EG. This result confirms the complementary value of the one and two-step indicators. The multi-SNP models included 89 SNPs and offered a precise prediction of the five feed efficiency indicators. The associations of 17 SNPs and 7 haplotypes with feed efficiency were confirmed on the validation data set. Nine clusters of Gene Ontology and KEGG pathway categories (mean P-value < 0.001) including, 9nucleotide binding; ion transport, phosphorous metabolic process, and the MAPK signaling pathway were overrepresented among the genes harboring the SNPs associated with feed efficiency. Conclusions The general SNP associations suggest that a single panel of genomic variants can be used regardless of breed and diet. The breed- and diet

  11. Nucleotide Excision Repair Gene Polymorphisms, Meat Intake and Colon Cancer Risk

    PubMed Central

    Steck, Susan E.; Butler, Lesley M.; Keku, Temitope; Antwi, Samuel; Galanko, Joseph; Sandler, Robert S.; Hu, Jennifer J.

    2014-01-01

    Purpose Much of the DNA damage from colon cancer-related carcinogens, including heterocyclic amines (HCA) and polycyclic aromatic hydrocarbons (PAH) from red meat cooked at high temperature, are repaired by the nucleotide excision repair (NER) pathway. Thus, we examined whether NER non-synonymous single nucleotide polymorphisms (nsSNPs) modified the association between red meat intake and colon cancer risk. Methods The study consists of 244 African-American and 311 white colon cancer cases and population-based controls (331 African Americans and 544 whites) recruited from 33 counties in North Carolina from 1996 to 2000. Information collected by food frequency questionnaire on meat intake and preparation methods were used to estimate HCA and benzo(a)pyrene (BaP, a PAH) intake. We tested 7 nsSNPs in 5 NER genes: XPC A499V and K939Q, XPD D312N and K751Q, XPF R415Q, XPG D1104H, and RAD23B A249V. Adjusted odds ratios (OR) and 95% confidence intervals (CI) were calculated using unconditional logistic regression. Results Among African Americans, we observed a statistically significant positive association between colon cancer risk and XPC 499 AV+VV genotype (OR=1.7, 95% CI: 1.1, 2.7, AA as referent), and an inverse association with XPC 939 QQ (OR=0.3, 95%CI: 0.2, 0.8, KK as referent). These associations were not observed among whites. For both races combined, there was interaction between the XPC 939 genotype, well-done red meat intake and colon cancer risk (OR=1.5, 95% CI=1.0, 2.2 for high well-done red meat and KK genotype as compared to low well-done red meat and KK genotype, pinteraction =0.05). Conclusions Our data suggest that NER nsSNPs are associated with colon cancer risk and may modify the association between well-done red meat intake and colon cancer risk. PMID:24607854

  12. Gene-based single nucleotide polymorphism discovery in bovine muscle using next-generation transcriptomic sequencing

    PubMed Central

    2013-01-01

    Background Genetic information based on molecular markers has increasingly being used in cattle breeding improvement programmes, as a mean to improve conventionally phenotypic selection. Advances in molecular genetics have led to the identification of several genetic markers associated with genes affecting economic traits. Until recently, the identification of the causative genetic variants involved in the phenotypes of interest has remained a difficult task. The advent of novel sequencing technologies now offers a new opportunity for the identification of such variants. Despite sequencing costs plummeting, sequencing whole-genomes or large targeted regions is still too expensive for most laboratories. A transcriptomic-based sequencing approach offers a cheaper alternative to identify a large number of polymorphisms and possibly to discover causative variants. In the present study, we performed a gene-based single nucleotide polymorphism (SNP) discovery analysis in bovine Longissimus thoraci, using RNA-Seq. To our knowledge, this represents the first study done in bovine muscle. Results Messenger RNAs from Longissimus thoraci from three Limousin bull calves were subjected to high-throughput sequencing. Approximately 36–46 million paired-end reads were obtained per library. A total of 19,752 transcripts were identified and 34,376 different SNPs were detected. Fifty-five percent of the SNPs were found in coding regions and ~22% resulted in an amino acid change. Applying a very stringent SNP quality threshold, we detected 8,407 different high-confidence SNPs, 18% of which are non synonymous coding SNPs. To analyse the accuracy of RNA-Seq technology for SNP detection, 48 SNPs were selected for validation by genotyping. No discrepancies were observed when using the highest SNP probability threshold. To test the usefulness of the identified SNPs, the 48 selected SNPs were assessed by genotyping 93 bovine samples, representing mostly the nine major breeds used in France

  13. Single nucleotide polymorphism discovery in rainbow trout by deep sequencing of a reduced representation library.

    PubMed

    Sánchez, Cecilia Castaño; Smith, Timothy P L; Wiedmann, Ralph T; Vallejo, Roger L; Salem, Mohamed; Yao, Jianbo; Rexroad, Caird E

    2009-11-25

    To enhance capabilities for genomic analyses in rainbow trout, such as genomic selection, a large suite of polymorphic markers that are amenable to high-throughput genotyping protocols must be identified. Expressed Sequence Tags (ESTs) have been used for single nucleotide polymorphism (SNP) discovery in salmonids. In those strategies, the salmonid semi-tetraploid genomes often led to assemblies of paralogous sequences and therefore resulted in a high rate of false positive SNP identification. Sequencing genomic DNA using primers identified from ESTs proved to be an effective but time consuming methodology of SNP identification in rainbow trout, therefore not suitable for high throughput SNP discovery. In this study, we employed a high-throughput strategy that used pyrosequencing technology to generate data from a reduced representation library constructed with genomic DNA pooled from 96 unrelated rainbow trout that represent the National Center for Cool and Cold Water Aquaculture (NCCCWA) broodstock population. The reduced representation library consisted of 440 bp fragments resulting from complete digestion with the restriction enzyme HaeIII; sequencing produced 2,000,000 reads providing an average 6 fold coverage of the estimated 150,000 unique genomic restriction fragments (300,000 fragment ends). Three independent data analyses identified 22,022 to 47,128 putative SNPs on 13,140 to 24,627 independent contigs. A set of 384 putative SNPs, randomly selected from the sets produced by the three analyses were genotyped on individual fish to determine the validation rate of putative SNPs among analyses, distinguish apparent SNPs that actually represent paralogous loci in the tetraploid genome, examine Mendelian segregation, and place the validated SNPs on the rainbow trout linkage map. Approximately 48% (183) of the putative SNPs were validated; 167 markers were successfully incorporated into the rainbow trout linkage map. In addition, 2% of the sequences from the

  14. Single nucleotide polymorphisms of microRNA-machinery genes modify the risk of renal cell carcinoma

    PubMed Central

    Horikawa, Yohei; Wood, Christopher G.; Yang, Hushan; Zhao, Hua; Ye, Yuanqing; Gu, Jian; Lin, Jie; Habuchi, Tomonori; Wu, Xifeng

    2008-01-01

    Purpose MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that have been implicated in a wide diversity of basic cellular functions through post-transcriptional regulations on their target genes. Compelling evidence has shown that miRNAs are involved in cancer initiation and progression. We hypothesized that genetic variations of the miRNA-machinery genes could be associated with the risk of renal cell carcinoma (RCC). Experimental Design We genotyped 40 single nucleotide polymorphisms (SNPs) from 11 miRNA processing genes (DROSHA, DGCR8, XPO5, RAN, DICER1, TARBP2, EIF2C1, AGO2, GEMIN3, GEMIN4, HIWI) and 15 miRNA genes in 279 Caucasian patients with RCC and 278 matched controls. Results We found that two SNPs in the GEMIN4 gene were significantly associated with altered RCC risks. The variant containing genotypes of the Asn929Asp and Cys1033Arg exhibited a significantly reduced risk with an odds ratio [OR] of 0.67 (95% confidence interval [CI], 0.47–0.96) and 0.68 (95% CI, 0.47–0.98), respectively. Haplotype analysis showed that a common haplotype of the GEMIN4 was associated with a significant reduce in risk of RCC (OR, 0.66; 95% CI, 0.45–0.97). We also conducted a combined unfavorable genotype analysis including five promising SNPs showing at least a borderline significant risk association. Compared with the low-risk reference group within one unfavorable genotype, the median-risk and high-risk group exhibited a 1.55-fold (95% CI, 0.96–2.50) and a 2.49-fold (95% CI, 1.58–3.91) increased risk of RCC, respectively (P for trend <0.001). Conclusion Our results suggested that genetic polymorphisms of the miRNA-machinery genes may impact RCC susceptibility individually and jointly. PMID:19047128

  15. Spatial distribution of single-nucleotide polymorphisms related to fungicide resistance and implications for sampling.

    PubMed

    Van der Heyden, H; Dutilleul, P; Brodeur, L; Carisse, O

    2014-06-01

    Spatial distribution of single-nucleotide polymorphisms (SNPs) related to fungicide resistance was studied for Botrytis cinerea populations in vineyards and for B. squamosa populations in onion fields. Heterogeneity in this distribution was characterized by performing geostatistical analyses based on semivariograms and through the fitting of discrete probability distributions. Two SNPs known to be responsible for boscalid resistance (H272R and H272Y), both located on the B subunit of the succinate dehydrogenase gene, and one SNP known to be responsible for dicarboximide resistance (I365S) were chosen for B. cinerea in grape. For B. squamosa in onion, one SNP responsible for dicarboximide resistance (I365S homologous) was chosen. One onion field was sampled in 2009 and another one was sampled in 2010 for B. squamosa, and two vineyards were sampled in 2011 for B. cinerea, for a total of four sampled sites. Cluster sampling was carried on a 10-by-10 grid, each of the 100 nodes being the center of a 10-by-10-m quadrat. In each quadrat, 10 samples were collected and analyzed by restriction fragment length polymorphism polymerase chain reaction (PCR) or allele specific PCR. Mean SNP incidence varied from 16 to 68%, with an overall mean incidence of 43%. In the geostatistical analyses, omnidirectional variograms showed spatial autocorrelation characterized by ranges of 21 to 1 m. Various levels of anisotropy were detected, however, with variograms computed in four directions (at 0°, 45°, 90°, and 135° from the within-row direction used as reference), indicating that spatial autocorrelation was prevalent or characterized by a longer range in one direction. For all eight data sets, the β-binomial distribution was found to fit the data better than the binomial distribution. This indicates local aggregation of fungicide resistance among sampling units, as supported by estimates of the parameter θ of the β-binomial distribution of 0.09 to 0.23 (overall median value = 0

  16. EST-derived single nucleotide polymorphism markers for assembling genetic and physical maps of the barley genome.

    PubMed

    Kota, R; Varshney, R K; Prasad, M; Zhang, H; Stein, N; Graner, A

    2008-08-01

    In a panel of seven genotypes, 437 expressed sequence tag (EST)-derived DNA fragments were sequenced. Single nucleotide polymorphisms (SNPs) that were polymorphic between the parents of three mapping populations were mapped by heteroduplex analysis and a genome-wide consensus map comprising 216 EST-derived SNPs and 4 InDel (insertion/deletion) markers was constructed. The average frequency of SNPs amounted to 1/130 bp and 1/107.8 bp for a set of randomly selected and a set of mapped ESTs, respectively. The calculated nucleotide diversities (pi) ranged from 0 to 40.0 x 10(-3) (average 3.1 x 10(-3)) and 0.52 x 10(-3) to 39.51 x 10(-3) (average 4.37 x 10(-3)) for random and mapped ESTs, respectively. The polymorphism information content value for mapped SNPs ranged from 0.24 to 0.50 with an average of 0.34. As expected, combination of SNPs present in an amplicon (haplotype) exhibited a higher information content ranging from 0.24 to 0.85 with an average of 0.50. Cleaved amplified polymorphic sequence assays (including InDels) were designed for a total of 87 (39.5%) SNP markers. The high abundance of SNPs in the barley genome provides avenues for the systematic development of saturated genetic maps and their integration with physical maps.

  17. Identification of single-nucleotide polymorphisms of the prion protein gene in sika deer (Cervus nippon laiouanus)

    PubMed Central

    Jeong, Hyun-Jeong; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Kim, Bo-Sook; Rho, Jung-Rae; Yoo, Mi-Hyun; Jeong, Byung-Hoon; Kim, Yong-Sun

    2007-01-01

    Polymorphisms of the prion protein gene (PRNP) have been detected in several cervid species. In order to confirm the genetic variations, this study examined the DNA sequences of the PRNP obtained from 33 captive sika deer (Cervus nippon laiouanus) in Korea. A total of three single-nucleotide polymorphisms (SNPs) at codons 100, 136 and 226 in the PRNP of the sika deer were identified. The polymorphic site located at codon 100 has not been reported. The SNPs detected at codons 100 and 226 induced amino acid substitutions. The SNP at codon 136 was a silent mutation that does not induce any amino acid change. The genotype and allele frequencies were determined for each of the SNPs. PMID:17679779

  18. Identification of novel single nucleotide polymorphisms in the DGAT1 gene of buffaloes by PCR-SSCP

    PubMed Central

    Raut, Ashwin A.; Kumar, Anil; Kala, Sheo N.; Chhokar, Vinod; Rana, Neeraj; Beniwal, Vikas; Jaglan, Sundeep; Samuchiwal, Sachin K.; Singh, Jitender K.; Mishra, Anamika

    2012-01-01

    Diacylglycerol O-acyltransferase 1 (DGAT1) is a microsomal enzyme that catalyzes the final step of triglyceride synthesis. The DGAT1 gene is a strong functional candidate for determining milk fat content in cattle. In this work, we used PCR-SSCP (polymerase chain reaction-single-strand conformation polymorphism) and DNA sequencing to examine polymorphism in the region spanning exon 7 to exon 9 of the DGAT1 gene in Murrah and Pandharpuri buffaloes. Three alleles (A, B and C) and four novel single-nucleotide polymorphisms were identified in the buffalo DGAT1 gene. The frequencies of the alleles differed between the two buffalo breeds, with allele C being present in Murrah but not in Pandharpuri buffalo. The allele variation detected in this work may influence DGAT1 expression and function. The results described here could be useful in examining the association between the DGAT1 gene and milk traits in buffalo. PMID:23055800

  19. Assessing patterns of hybridization between North Atlantic eels using diagnostic single-nucleotide polymorphisms.

    PubMed

    Pujolar, J M; Jacobsen, M W; Als, T D; Frydenberg, J; Magnussen, E; Jónsson, B; Jiang, X; Cheng, L; Bekkevold, D; Maes, G E; Bernatchez, L; Hansen, M M

    2014-06-01

    The two North Atlantic eel species, the European eel (Anguilla anguilla) and the American eel (Anguilla rostrata), spawn in partial sympatry in the Sargasso Sea, providing ample opportunity to interbreed. In this study, we used a RAD (Restriction site Associated DNA) sequencing approach to identify species-specific diagnostic single-nucleotide polymorphisms (SNPs) and design a low-density array that combined with screening of a diagnostic mitochondrial DNA marker. Eels from Iceland (N=159) and from the neighboring Faroe Islands (N=29) were genotyped, along with 94 larvae (49 European and 45 American eel) collected in the Sargasso Sea. Our SNP survey showed that the majority of Icelandic eels are pure European eels but there is also an important contribution of individuals of admixed ancestry (10.7%). Although most of the hybrids were identified as F1 hybrids from European eel female × American eel male crosses, backcrosses were also detected, including a first-generation backcross (F1 hybrid × pure European eel) and three individuals identified as second-generation backcrosses originating from American eel × F1 hybrid backcrosses interbreeding with pure European eels. In comparison, no hybrids were observed in the Faroe Islands, the closest bodies of land to Iceland. It is possible that hybrids show an intermediate migratory behaviour between the two parental species that ultimately brings hybrid larvae to the shores of Iceland, situated roughly halfway between the Sargasso Sea and Europe. Only two hybrids were observed among Sargasso Sea larvae, both backcrosses, but no F1 hybrids, that points to temporal variation in the occurrence of hybridization.

  20. Improved assay performance of single nucleotide polymorphism array over conventional karyotyping in analyzing products of conception.

    PubMed

    Lin, Shao-Bin; Xie, Ying-Jun; Chen, Zheng; Zhou, Yi; Wu, Jian-Zhu; Zhang, Zhi-Qiang; Shi, Shan-Shan; Chen, Bao-Jiang; Fang, Qun

    2015-07-01

    Conventional karyotyping has been a routine method to identify chromosome abnormalities in products of conception. However, this process is being transformed by single nucleotide polymorphism (SNP) array, which has advantages over karyotyping, including higher resolution and dispensing with cell culture. Therefore, the purpose of this study was to evaluate the advantage of high-resolution SNP array in identifying genetic aberrations in products of conception. We consecutively collected 155 products of conception specimens, including 139 from first-trimester miscarriage and 16 from second-trimester miscarriage. SNP array was performed on these samples in parallel with G-banded karyotyping. The test success rate was 98.1% (152/155) using SNP array, which was higher than that using karyotyping (133/155, 85.8%). It yielded a 63.8% (97/152) abnormality rate, and the frequency of various chromosome abnormalities was in agreement with other previous studies. The results between array and karyotyping demonstrated a 94.0% (125/133) concordance. SNP array obtained additional aberrations in 3.8% (5/133) of those cases unidentified by karyotyping, which included three cases with whole-genome uniparental disomy, one with pathogenic copy number variation, and one with del(4)(q35.1q35.2) and dup(12)(q24.31q24.33). However, chromosome translocations presented in two cases and tetraploidy presented in one case were detected by karyotyping instead of array. Additionally, two out of three cases with mosaic trisomy were revealed by array but recognized as pure trisomy by karyotyping. This study demonstrated that SNP array had certain advantages over G-banded karyotyping, including a higher success rate, additional detection of copy number variations and uniparental disomy, and improved sensitivity to mosaicism. Therefore, it would be an alternative method to karyotyping in clinical genetic practice. Copyright © 2015. Published by Elsevier Taiwan.

  1. Strain-specific single-nucleotide polymorphism assays for the Bacillus anthracis Ames strain.

    PubMed

    Van Ert, Matthew N; Easterday, W Ryan; Simonson, Tatum S; U'Ren, Jana M; Pearson, Talima; Kenefic, Leo J; Busch, Joseph D; Huynh, Lynn Y; Dukerich, Megan; Trim, Carla B; Beaudry, Jodi; Welty-Bernard, Amy; Read, Timothy; Fraser, Claire M; Ravel, Jacques; Keim, Paul

    2007-01-01

    Highly precise diagnostics and forensic assays can be developed through a combination of evolutionary analysis and the exhaustive examination of genomic sequences. In Bacillus anthracis, whole-genome sequencing efforts revealed ca. 3,500 single-nucleotide polymorphisms (SNPs) among eight different strains and evolutionary analysis provides the identification of canonical SNPs. We have previously shown that SNPs are highly evolutionarily stable, and the clonal nature of B. anthracis makes them ideal signatures for subtyping this pathogen. Here we identified SNPs that define the lineage of B. anthracis that contains the Ames strain, the strain used in the 2001 bioterrorist attacks in the United States. Sequencing and real-time PCR were used to validate these SNPs across B. anthracis strains, including (i) 88 globally and genetically diverse isolates; (ii) isolates that were shown to be genetic relatives of the Ames strain by multiple-locus variable number tandem repeat analysis (MLVA); and (iii) several different lab stocks of the Ames strain, including a clinical isolate from the 2001 letter attack. Six SNPs were found to be highly specific for the Ames strain; four on the chromosome, one on the pX01 plasmid, and one on the pX02 plasmid. All six SNPs differentiated the B. anthracis Ames strain from the 88 unique B. anthracis strains, while five of the six separated Ames from its close genetic relatives. The use of these SNPs coupled with real-time PCR allows specific and sensitive (<100 fg of template DNA) identification of the Ames strain. This evolutionary and genomics-based approach provides an effective means for the discovery of strain-specific SNPs in B. anthracis.

  2. Involvement of Single-Nucleotide Polymorphisms in Predisposition to Head and Neck Cancer in Saudi Arabia

    PubMed Central

    Al-Hadyan, Khaled S.; Al-Harbi, Najla M.; Al-Qahtani, Sara S.

    2012-01-01

    Aim: Individuals differ in their inherited tendency to develop cancer. This has been suggested to be due to genetic variations between individuals. Single-nucleotide polymorphisms (SNPs) are the most common form of genetic variations found in the human population. The aim of this study was to investigate the association between 10 SNPs in genes involved in cell cycle control and DNA repair (p21 C31A, p53 G72C, ATM G1853A, XRCC1 G399A, XRCC3 C241T, Ku80 A2790G, DNA Ligase IV C9T, DNA-PKcs A3434G, TGF-beta T10C, MDM2 promoter T309G) and the risk to develop head and neck cancer. Materials and Methods: A cohort of 407 individuals (156 cancer patients and 251 controls) was included. DNA was extracted from peripheral blood. SNPs were genotyped by direct sequencing. Results: Data showed significant allelic associations for p21 C31A (p=0.04; odds ratio [OR]=1.44; confidence interval [CI]: 1.02–2.03), Ku80 A2790G (p=0.04; OR=1.5; CI: 1.01–2.23), and MDM2 T309G (p=0.0003; OR=0.58; CI: 0.43–0.78) and head and neck cancer occurrence. Both cancer cases and controls were in Hardy–Weinberg equilibrium. Conclusion: SNPs can be associated with head and neck cancer in the Saudi population. The p21 C31A, Ku80 A2790G, and MDM2 T309G SNPs could be used as genetic biomarkers to screen individuals at high cancer risk. PMID:21877955

  3. Incorporating Single-nucleotide Polymorphisms Into the Lyman Model to Improve Prediction of Radiation Pneumonitis

    SciTech Connect

    Tucker, Susan L.; Li Minghuan; Xu Ting; Gomez, Daniel; Yuan Xianglin; Yu Jinming; Liu Zhensheng; Yin Ming; Guan Xiaoxiang; Wang Lie; Wei Qingyi; Mohan, Radhe; Vinogradskiy, Yevgeniy; Martel, Mary; Liao Zhongxing

    2013-01-01

    Purpose: To determine whether single-nucleotide polymorphisms (SNPs) in genes associated with DNA repair, cell cycle, transforming growth factor-{beta}, tumor necrosis factor and receptor, folic acid metabolism, and angiogenesis can significantly improve the fit of the Lyman-Kutcher-Burman (LKB) normal-tissue complication probability (NTCP) model of radiation pneumonitis (RP) risk among patients with non-small cell lung cancer (NSCLC). Methods and Materials: Sixteen SNPs from 10 different genes (XRCC1, XRCC3, APEX1, MDM2, TGF{beta}, TNF{alpha}, TNFR, MTHFR, MTRR, and VEGF) were genotyped in 141 NSCLC patients treated with definitive radiation therapy, with or without chemotherapy. The LKB model was used to estimate the risk of severe (grade {>=}3) RP as a function of mean lung dose (MLD), with SNPs and patient smoking status incorporated into the model as dose-modifying factors. Multivariate analyses were performed by adding significant factors to the MLD model in a forward stepwise procedure, with significance assessed using the likelihood-ratio test. Bootstrap analyses were used to assess the reproducibility of results under variations in the data. Results: Five SNPs were selected for inclusion in the multivariate NTCP model based on MLD alone. SNPs associated with an increased risk of severe RP were in genes for TGF{beta}, VEGF, TNF{alpha}, XRCC1 and APEX1. With smoking status included in the multivariate model, the SNPs significantly associated with increased risk of RP were in genes for TGF{beta}, VEGF, and XRCC3. Bootstrap analyses selected a median of 4 SNPs per model fit, with the 6 genes listed above selected most often. Conclusions: This study provides evidence that SNPs can significantly improve the predictive ability of the Lyman MLD model. With a small number of SNPs, it was possible to distinguish cohorts with >50% risk vs <10% risk of RP when they were exposed to high MLDs.

  4. Shifting Paradigm of Association Studies: Value of Rare Single-Nucleotide Polymorphisms

    PubMed Central

    Gorlov, Ivan P.; Gorlova, Olga Y.; Sunyaev, Shamil R.; Spitz, Margaret R.; Amos, Christopher I.

    2008-01-01

    Summary Currently, single-nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) of >5% are preferentially used in case-control association studies of common human diseases. Recent technological developments enable inexpensive and accurate genotyping of a large number of SNPs in thousands of cases and controls, which can provide adequate statistical power to analyze SNPs with MAF <5%. Our purpose was to determine whether evaluating rare SNPs in case-control association studies could help identify causal SNPs for common diseases. We suggest that slightly deleterious SNPs (sdSNPs) subjected to weak purifying selection are major players in genetic control of susceptibility to common diseases. We compared the distribution of MAFs of synonymous SNPs with that of nonsynonymous SNPs (1) predicted to be benign, (2) predicted to be possibly damaging, and (3) predicted to be probably damaging by PolyPhen. Our sources of data were the International HapMap Project, ENCODE, and the SeattleSNPs project. We found that the MAF distribution of possibly and probably damaging SNPs was shifted toward rare SNPs compared with the MAF distribution of benign and synonymous SNPs that are not likely to be functional. We also found an inverse relationship between MAF and the proportion of nsSNPs predicted to be protein disturbing. On the basis of this relationship, we estimated the joint probability that a SNP is functional and would be detected as significant in a case-control study. Our analysis suggests that including rare SNPs in genotyping platforms will advance identification of causal SNPs in case-control association studies, particularly as sample sizes increase. PMID:18179889

  5. Prospecting for pig single nucleotide polymorphisms in the human genome: have we struck gold?

    PubMed

    Grapes, L; Rudd, S; Fernando, R L; Megy, K; Rocha, D; Rothschild, M F

    2006-06-01

    Gene-to-gene variation in the frequency of single nucleotide polymorphisms (SNPs) has been observed in humans, mice, rats, primates and pigs, but a relationship across species in this variation has not been described. Here, the frequency of porcine coding SNPs (cSNPs) identified by in silico methods, and the frequency of murine cSNPs, were compared with the frequency of human cSNPs across homologous genes. From 150,000 porcine expressed sequence tag (EST) sequences, a total of 452 SNP-containing sequence clusters were found, totalling 1394 putative SNPs. All the clustered porcine EST annotations and SNP data have been made publicly available at http://sputnik.btk.fi/project?name=swine. Human and murine cSNPs were identified from dbSNP and were characterized as either validated or total number of cSNPs (validated plus non-validated) for comparison purposes. The correlation between in silico pig cSNP and validated human cSNP densities was found to be 0.77 (p < 0.00001) for a set of 25 homologous genes, while a correlation of 0.48 (p < 0.0005) was found for a primarily random sample of 50 homologous human and mouse genes. This is the first evidence of conserved gene-to-gene variability in cSNP frequency across species and indicates that site-directed screening of porcine genes that are homologous to cSNP-rich human genes may rapidly advance cSNP discovery in pigs.

  6. Identification of single-nucleotide polymorphism markers associated with cortisol response to crowding in rainbow trout.

    PubMed

    Liu, Sixin; Vallejo, Roger L; Gao, Guangtu; Palti, Yniv; Weber, Gregory M; Hernandez, Alvaro; Rexroad, Caird E

    2015-06-01

    Understanding stress responses is essential for improving animal welfare and increasing agriculture production efficiency. Previously, we reported microsatellite markers associated with quantitative trait loci (QTL) affecting plasma cortisol response to crowding in rainbow trout. In this study, our main objectives were to identify single-nucleotide polymorphism (SNP) markers associated with cortisol response to crowding in rainbow trout using both GWAS (genome-wide association studies) and QTL mapping methods and to employ rapidly expanding genomic resources for rainbow trout toward the identification of candidate genes affecting this trait. A three-generation F2 mapping family (2008052) was genotyped using RAD-seq (restriction-site-associated DNA sequencing) to identify 4874 informative SNPs. GWAS identified 26 SNPs associated with cortisol response to crowding whereas QTL mapping revealed two significant QTL on chromosomes Omy8 and Omy12, respectively. Positional candidate genes were identified using marker sequences to search the draft genome assembly of rainbow trout. One of the genes in the QTL interval on Omy12 is a putative serine/threonine protein kinase gene that was differentially expressed in the liver in response to handling and confinement stress in our previous study. A homologue of this gene was differentially expressed in zebrafish embryos exposed to diclofenac, a nonsteroidal anti-inflammatory drug (NSAID) and an environmental toxicant. NSAIDs have been shown to affect the cortisol response in rainbow trout; therefore, this gene is a good candidate based on its physical position and expression. However, the reference genome resources currently available for rainbow trout require continued improvement as demonstrated by the unmapped SNPs and the putative assembly errors detected in this study.

  7. Molecular Epidemiology of Mycoplasma pneumoniae: Genotyping Using Single Nucleotide Polymorphisms and SNaPshot Technology.

    PubMed

    Touati, A; Blouin, Y; Sirand-Pugnet, P; Renaudin, H; Oishi, T; Vergnaud, G; Bébéar, C; Pereyre, S

    2015-10-01

    Molecular typing of Mycoplasma pneumoniae is an important tool for identifying grouped cases and investigating outbreaks. In the present study, we developed a new genotyping method based on single nucleotide polymorphisms (SNPs) selected from the whole-genome sequencing of eight M. pneumoniae strains, using the SNaPshot minisequencing assay. Eight SNPs, localized in housekeeping genes, predicted lipoproteins, and adhesin P1 genes were selected for genotyping. These SNPs were evaluated on 140 M. pneumoniae clinical isolates previously genotyped by multilocus variable-number tandem-repeat analysis (MLVA-5) and adhesin P1 typing. This method was also adapted for direct use with clinical samples and evaluated on 51 clinical specimens. The analysis of the clinical isolates using the SNP typing method showed nine distinct SNP types with a Hunter and Gaston diversity index (HGDI) of 0.836, which is higher than the HGDI of 0.583 retrieved for the MLVA-4 typing method, where the nonstable Mpn1 marker was removed. A strong correlation with the P1 adhesin gene typing results was observed. The congruence was poor between MLVA-5 and SNP typing, indicating distinct genotyping schemes. Combining the results increased the discriminatory power. This new typing method based on SNPs and the SNaPshot technology is a method for rapid M. pneumoniae typing directly from clinical specimens, which does not require any sequencing step. This method is based on stable markers and provides information distinct from but complementary to MLVA typing. The combined use of SNPs and MLVA typing provides powerful discrimination of strains. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Molecular Epidemiology of Mycoplasma pneumoniae: Genotyping Using Single Nucleotide Polymorphisms and SNaPshot Technology

    PubMed Central

    Touati, A.; Blouin, Y.; Sirand-Pugnet, P.; Renaudin, H.; Oishi, T.; Vergnaud, G.; Bébéar, C.

    2015-01-01

    Molecular typing of Mycoplasma pneumoniae is an important tool for identifying grouped cases and investigating outbreaks. In the present study, we developed a new genotyping method based on single nucleotide polymorphisms (SNPs) selected from the whole-genome sequencing of eight M. pneumoniae strains, using the SNaPshot minisequencing assay. Eight SNPs, localized in housekeeping genes, predicted lipoproteins, and adhesin P1 genes were selected for genotyping. These SNPs were evaluated on 140 M. pneumoniae clinical isolates previously genotyped by multilocus variable-number tandem-repeat analysis (MLVA-5) and adhesin P1 typing. This method was also adapted for direct use with clinical samples and evaluated on 51 clinical specimens. The analysis of the clinical isolates using the SNP typing method showed nine distinct SNP types with a Hunter and Gaston diversity index (HGDI) of 0.836, which is higher than the HGDI of 0.583 retrieved for the MLVA-4 typing method, where the nonstable Mpn1 marker was removed. A strong correlation with the P1 adhesin gene typing results was observed. The congruence was poor between MLVA-5 and SNP typing, indicating distinct genotyping schemes. Combining the results increased the discriminatory power. This new typing method based on SNPs and the SNaPshot technology is a method for rapid M. pneumoniae typing directly from clinical specimens, which does not require any sequencing step. This method is based on stable markers and provides information distinct from but complementary to MLVA typing. The combined use of SNPs and MLVA typing provides powerful discrimination of strains. PMID:26202117

  9. Association of Single-Nucleotide Polymorphisms of the Tau Gene With Late-Onset Parkinson Disease

    PubMed Central

    Martin, Eden R.; Scott, William K.; Nance, Martha A.; Watts, Ray L.; Hubble, Jean P.; Koller, William C.; Lyons, Kelly; Pahwa, Rajesh; Stern, Matthew B.; Colcher, Amy; Hiner, Bradley C.; Jankovic, Joseph; Ondo, William G.; Allen, Fred H.; Goetz, Christopher G.; Small, Gary W.; Masterman, Donna; Mastaglia, Frank; Laing, Nigel G.; Stajich, Jeffrey M.; Ribble, Robert C.; Booze, Michael W.; Rogala, Allison; Hauser, Michael A.; Zhang, Fengyu; Gibson, Rachel A.; Middleton, Lefkos T.; Roses, Allen D.; Haines, Jonathan L.; Scott, Burton L.; Pericak-Vance, Margaret A.; Vance, Jeffery M.

    2013-01-01

    Context The human tau gene, which promotes assembly of neuronal microtubules, has been associated with several rare neurologic diseases that clinically include parkinsonian features. We recently observed linkage in idiopathic Parkinson disease (PD) to a region on chromosome 17q21 that contains the tau gene. These factors make tau a good candidate for investigation as a susceptibility gene for idiopathic PD, the most common form of the disease. Objective To investigate whether the tau gene is involved in idiopathic PD. Design, Setting, and Participants Among a sample of 1056 individuals from 235 families selected from 13 clinical centers in the United States and Australia and from a family ascertainment core center, we tested 5 single-nucleotide polymorphisms (SNPs) within the tau gene for association with PD, using family-based tests of association. Both affected (n = 426) and unaffected (n = 579) family members were included; 51 individuals had unclear PD status. Analyses were conducted to test individual SNPs and SNP haplotypes within the tau gene. Main Outcome Measure Family-based tests of association, calculated using asymptotic distributions. Results Analysis of association between the SNPs and PD yielded significant evidence of association for 3 of the 5 SNPs tested: SNP 3, P = .03; SNP 9i, P = .04; and SNP 11, P = .04. The 2 other SNPs did not show evidence of significant association (SNP 9ii, P = .11, and SNP 9iii, P = .87). Strong evidence of association was found with haplotype analysis, with a positive association with one haplotype (P = .009) and a negative association with another haplotype (P = .007). Substantial linkage disequilibrium (P<.001) was detected between 4 of the 5 SNPs (SNPs 3,9i, 9ii, and 11). Conclusions This integrated approach of genetic linkage and positional association analyses implicates tau as a susceptibility gene for idiopathic PD. PMID:11710889

  10. Fluorescence detection of single nucleotide polymorphisms using a universal molecular beacon.

    PubMed

    Lin, Yang-Wei; Ho, Hsin-Tsung; Huang, Chih-Ching; Chang, Huan-Tsung

    2008-11-01

    We present a simple and novel assay-employing a universal molecular beacon (MB) in the presence of Hg(2+)-for the detection of single nucleotide polymorphisms (SNPs) based on Hg(2+)-DNA complexes inducing a conformational change in the MB. The MB (T(7)-MB) contains a 19-mer loop and a stem of a pair of seven thymidine (T) bases, a carboxyfluorescein (FAM) unit at the 5'-end, and a 4-([4-(dimethylamino)phenyl]azo)benzoic acid (DABCYL) unit at the 3'-end. Upon formation of Hg(2+)-T(7)-MB complexes through T-Hg(2+)-T bonding, the conformation of T(7)-MB changes from a random coil to a folded structure, leading to a decreased distance between the FAM and DABCYL units and, hence, increased efficiency of fluorescence resonance energy transfer (FRET) between the FAM and DABCYL units, resulting in decreased fluorescence intensity of the MB. In the presence of complementary DNA, double-stranded DNA complexes form (instead of the Hg(2+)-T(7)-MB complexes), with FRET between the FAM and DABCYL units occurring to a lesser extent than in the folded structure. Under the optimal conditions (20 nM T(7)-MB, 20 mM NaCl, 1.0 muM Hg(2+), 5.0 mM phosphate buffer solution, pH 7.4), the linear plot of the fluorescence intensity against the concentration of perfectly matched DNA was linear over the range 2-30 nM (R(2) = 0.991), with a limit of detection of 0.5 nM at a signal-to-noise ratio of 3. This new probe provides higher selectivity toward DNA than that exhibited by conventional MBs.

  11. [Phenotype predictions of the pathogenic nonsynonymous single nucleotide polymorphisms in deafness-causing gene COCH].

    PubMed

    Xuli, Qian; Xin, Cao

    2015-07-01

    The COCH (Coagulation factor C homology) gene, located in human chromosome 14q12-q13, is the first gene identified to cause vestibular dysfunction. COCH encodes cochlin, which contains an N-terminal LCCL (Limulus factor C, cochlin, and late gestation lung protein Lgl1) domain and a C-temimal vWFA (Von Willebrand factor type A) domain. Recently, functional research of COCH mutations and cochlin have come under the spotlight in the field of hereditary deafness. Approximately 16 mutations in COCH have been confirmed to date, among which 13 non-synonymous single nucleotide polymorphisms (nsSNPs) are the most common form of genetic variations. Nonetheless, there is poor knowledge on the relationship between the genotype and the phenotype of the other nsSNPs in COCH. Here we analyzed deleterious nsSNPs from all SNPs in the COCH gene in the vWFA domain based on different computational methods and identified eight potential pathogenic nsSNPs (I176T, R180Q, G265E, V269L, I368N, I372T, R416C and Y424D) after combining literatures with 3D structures. Meanwhile, the protein structures of six reported pathogenic nsSNPs (P51S, G87W, I109N, I109T, W117R and F121S) in the LCCL domain have been constructed, and we identified aberrant structural changes in loops and chains. The prediction of pathogenic mutations for COCH nsSNPs will provide a blueprint for screening pathogenic mutations, and it will be beneficial to the functional research of COCH and cochlin in this field.

  12. Isothermal Diagnostic Assays for Monitoring Single Nucleotide Polymorphisms in Necator americanus Associated with Benzimidazole Drug Resistance

    PubMed Central

    Rashwan, Nour; Bourguinat, Catherine; Keller, Kathy; Gunawardena, Nipul Kithsiri; de Silva, Nilanthi; Prichard, Roger

    2016-01-01

    Background Soil-transmitted helminths (STHs) are the most prevalent intestinal helminths of humans, and a major cause of morbidity in tropical and subtropical countries. The benzimidazole (BZ) drugs albendazole (ABZ) and mebendazole (MBZ) are used for treatment of human STH infections and this use is increasing dramatically with massive drug donations. Frequent and prolonged use of these drugs could lead to the emergence of anthelmintic resistance as has occurred in nematodes of livestock. Previous molecular assays for putative resistance mutations have been based mainly on PCR amplification and sequencing. However, these techniques are complicated and time consuming and not suitable for resource-constrained situations. A simple, rapid and sensitive genotyping method is required to monitor for possible developing resistance to BZ drugs. Methods To address this problem, single nucleotide polymorphism (SNP) detection assays were developed based on the Smart amplification method (SmartAmp2) to target codons 167, 198, and 200 in the β-tubulin isotype 1 gene for the hookworm Necator americanus. Findings Diagnostic assays were developed and applied to analyze hookworm samples by both SmartAmp2 and conventional sequencing methods and the results showed high concordance. Additionally, fecal samples spiked with N. americanus larvae were assessed and the results showed that the Aac polymerase used has high tolerance to inhibitors in fecal samples. Conclusion The N. americanus SmartAmp2 SNP detection assay is a new genotyping tool that is rapid, sensitive, highly specific and efficient with the potential to be used as a field tool for monitoring SNPs associated with BZ resistance. However, further validation on large numbers of field samples is required. PMID:27930648

  13. Associations between single-nucleotide polymorphisms of human exonuclease 1 and the risk of hepatocellular carcinoma

    PubMed Central

    Tan, Shengkui; Qin, Ruoyun; Zhu, Xiaonian; Tan, Chao; Song, Jiale; Qin, Linyuan; Liu, Liu; Huang, Xiong; Li, Anhua; Qiu, Xiaoqiang

    2016-01-01

    Human exonuclease 1 (hEXO1) is an important nuclease involved in mismatch repair system that contributes to maintain genomic stability and modulate DNA recombination. This study is aimed to explore the associations between single-nucleotide polymorphisms (SNPs) of hEXO1 and the hereditary susceptibility of hepatocellular carcinoma (HCC). SNPs rs1047840, rs1776148, rs3754093, rs4149867, rs4149963, and rs1776181 of hEXO1 were examined from a hospital-based case-control study including 1,196 cases (HCC patients) and 1,199 controls (non-HCC patients) in Guangxi, China. We found the rs3754093 AG genotype decreased the risk of HCC (OR=0.714, 95% CI: 0.539∼0.946). According to the results of stratification analysis, rs3754093 mutant genotype AG/GG decreased the risk of HCC with some HCC protective factors such as non-smoking, non-alcohol consumption and non-HCC family history, but also decreased the risk of HCC with HBV infection. Moreover, it was correlated to non-tumor metastasis and increased the survival of HCC patients. The results from gene-environment interaction assay indicated all hEXO1 SNPs interacted with smoking, alcohol consumption, HBV infection in pathogenesis of HCC. However, gene-gene interaction assay suggested the interaction between rs3754093 and other 5 SNPs were associated with reducing the HCC risk. These results suggest rs3754093 exhibits a protective activity to decrease the incidence risk of HCC in Guangxi, China. In addition, all SNPs in this study interacted with environment risk factors in pathogenesis of HCC. PMID:27894089

  14. Mechanisms of mosaicism, chimerism and uniparental disomy identified by single nucleotide polymorphism array analysis

    PubMed Central

    Conlin, Laura K.; Thiel, Brian D.; Bonnemann, Carsten G.; Medne, Livija; Ernst, Linda M.; Zackai, Elaine H.; Deardorff, Matthew A.; Krantz, Ian D.; Hakonarson, Hakon; Spinner, Nancy B.

    2010-01-01

    Mosaic aneuploidy and uniparental disomy (UPD) arise from mitotic or meiotic events. There are differences between these mechanisms in terms of (i) impact on embryonic development; (ii) co-occurrence of mosaic trisomy and UPD and (iii) potential recurrence risks. We used a genome-wide single nucleotide polymorphism (SNP) array to study patients with chromosome aneuploidy mosaicism, UPD and one individual with XX/XY chimerism to gain insight into the developmental mechanism and timing of these events. Sixteen cases of mosaic aneuploidy originated mitotically, and these included four rare trisomies and all of the monosomies, consistent with the influence of selective factors. Five trisomies arose meiotically, and three of the five had UPD in the disomic cells, confirming increased risk for UPD in the case of meiotic non-disjunction. Evidence for the meiotic origin of aneuploidy and UPD was seen in the patterns of recombination visible during analysis with 1–3 crossovers per chromosome. The mechanisms of formation of the UPD included trisomy rescue, with and without concomitant trisomy, monosomy rescue, and mitotic formation of a mosaic segmental UPD. UPD was also identified in an XX/XY chimeric individual, with one cell line having complete maternal UPD consistent with a parthenogenetic origin. Utilization of SNP arrays allows simultaneous evaluation of genomic alterations and insights into aneuploidy and UPD mechanisms. Differentiation of mitotic and meiotic origins for aneuploidy and UPD supports existence of selective factors against full trisomy of some chromosomes in the early embryo and provides data for estimation of recurrence and disease mechanisms. PMID:20053666

  15. Single Nucleotide Polymorphisms within Interferon Signaling Pathway Genes Are Associated with Colorectal Cancer Susceptibility and Survival

    PubMed Central

    Lu, Shun; Pardini, Barbara; Cheng, Bowang; Naccarati, Alessio; Huhn, Stefanie; Vymetalkova, Veronika; Vodickova, Ludmila; Buchler, Thomas; Hemminki, Kari; Vodicka, Pavel; Försti, Asta

    2014-01-01

    Interferon (IFN) signaling has been suggested to play an important role in colorectal carcinogenesis. Our study aimed to examine potentially functional genetic variants in interferon regulatory factor 3 (IRF3), IRF5, IRF7, type I and type II IFN and their receptor genes with respect to colorectal cancer (CRC) risk and clinical outcome. Altogether 74 single nucleotide polymorphisms (SNPs) were covered by the 34 SNPs genotyped in a hospital-based case-control study of 1327 CRC cases and 758 healthy controls from the Czech Republic. We also analyzed these SNPs in relation to overall survival and event-free survival in a subgroup of 483 patients. Seven SNPs in IFNA1, IFNA13, IFNA21, IFNK, IFNAR1 and IFNGR1 were associated with CRC risk. After multiple testing correction, the associations with the SNPs rs2856968 (IFNAR1) and rs2234711 (IFNGR1) remained formally significant (P = 0.0015 and P<0.0001, respectively). Multivariable survival analyses showed that the SNP rs6475526 (IFNA7/IFNA14) was associated with overall survival of the patients (P = 0.041 and event-free survival among patients without distant metastasis at the time of diagnosis, P = 0.034). The hazard ratios (HRs) for rs6475526 remained statistically significant even after adjustment for age, gender, grade and stage (P = 0.029 and P = 0.036, respectively), suggesting that rs6475526 is an independent prognostic marker for CRC. Our data suggest that genetic variation in the IFN signaling pathway genes may play a role in the etiology and survival of CRC and further studies are warranted. PMID:25350395

  16. Single nucleotide polymorphisms within interferon signaling pathway genes are associated with colorectal cancer susceptibility and survival.

    PubMed

    Lu, Shun; Pardini, Barbara; Cheng, Bowang; Naccarati, Alessio; Huhn, Stefanie; Vymetalkova, Veronika; Vodickova, Ludmila; Buchler, Thomas; Hemminki, Kari; Vodicka, Pavel; Försti, Asta

    2014-01-01

    Interferon (IFN) signaling has been suggested to play an important role in colorectal carcinogenesis. Our study aimed to examine potentially functional genetic variants in interferon regulatory factor 3 (IRF3), IRF5, IRF7, type I and type II IFN and their receptor genes with respect to colorectal cancer (CRC) risk and clinical outcome. Altogether 74 single nucleotide polymorphisms (SNPs) were covered by the 34 SNPs genotyped in a hospital-based case-control study of 1327 CRC cases and 758 healthy controls from the Czech Republic. We also analyzed these SNPs in relation to overall survival and event-free survival in a subgroup of 483 patients. Seven SNPs in IFNA1, IFNA13, IFNA21, IFNK, IFNAR1 and IFNGR1 were associated with CRC risk. After multiple testing correction, the associations with the SNPs rs2856968 (IFNAR1) and rs2234711 (IFNGR1) remained formally significant (P = 0.0015 and P<0.0001, respectively). Multivariable survival analyses showed that the SNP rs6475526 (IFNA7/IFNA14) was associated with overall survival of the patients (P = 0.041 and event-free survival among patients without distant metastasis at the time of diagnosis, P = 0.034). The hazard ratios (HRs) for rs6475526 remained statistically significant even after adjustment for age, gender, grade and stage (P = 0.029 and P = 0.036, respectively), suggesting that rs6475526 is an independent prognostic marker for CRC. Our data suggest that genetic variation in the IFN signaling pathway genes may play a role in the etiology and survival of CRC and further studies are warranted.

  17. The cardiovascular implication of single nucleotide polymorphisms of chromosome 9p21 locus among Arab population

    PubMed Central

    El-Menyar, Ayman A.; Rizk, Nasser M.; Al-Qahtani, Awad; AlKindi, Fahad; Elyas, Ahmed; Farag, Fathi; Bakhsh, Fadheela Dad; Ebrahim, Samah; Ahmed, Emad; Al-khinji, Mooza; Al-Thani, Hassan; Suwaidi, Jassim Al

    2015-01-01

    Background: Based on several reports including genome-wide association studies, genetic variability has been linked with higher (nearly half) susceptibility toward coronary artery disease (CAD). We aimed to evaluate the association of chromosome 9p21 single nucleotide polymorphisms (SNPs): rs2383207, rs10757278, and rs10757274 with the risk and severity of CAD among Arab population. Materials and Methods: A prospective observational case-control study was conducted between 2011 and 2012, in which 236 patients with CAD were recruited from the Heart Hospital in Qatar. Patients were categorized according to their coronary angiographic findings. Also, 152 healthy volunteers were studied to determine if SNPs are associated with risk of CAD. All subjects were genotyped for SNPs (rs2383207, rs2383206, rs10757274 and rs10757278) using allele-specific real-time polymerase chain reaction. Results: Patients with CAD had a mean age of 57 ± 10; of them 77% were males, 54% diabetics, and 25% had family history of CAD. All SNPs were in Hardy-Weinberg equilibrium except rs2383206, with call rate >97%. After adjusting for age, sex and body mass index, the carriers of GG genotype for rs2383207 have increased the risk of having CAD with odds ratio (OR) of 1.52 (95% confidence interval [CI] = 1.01-2.961, P = 0.046). Also, rs2383207 contributed to CAD severity with adjusted OR 1.80 (95% CI = 1.04-3.12, P = 0.035) based on the dominant genetic model. The other SNPs (rs10757274 and rs10757278) showed no significant association with the risk of CAD or its severity. Conclusion: Among Arab population in Qatar, only G allele of rs2483207 SNP is significantly associated with risk of CAD and its severity. PMID:26109989

  18. A High Throughput Single Nucleotide Polymorphism Multiplex Assay for Parentage Assignment in New Zealand Sheep

    PubMed Central

    Clarke, Shannon M.; Henry, Hannah M.; Dodds, Ken G.; Jowett, Timothy W. D.; Manley, Tim R.; Anderson, Rayna M.; McEwan, John C.

    2014-01-01

    Accurate pedigree information is critical to animal breeding systems to ensure the highest rate of genetic gain and management of inbreeding. The abundance of available genomic data, together with development of high throughput genotyping platforms, means that single nucleotide polymorphisms (SNPs) are now the DNA marker of choice for genomic selection studies. Furthermore the superior qualities of SNPs compared to microsatellite markers allows for standardization between laboratories; a property that is crucial for developing an international set of markers for traceability studies. The objective of this study was to develop a high throughput SNP assay for use in the New Zealand sheep industry that gives accurate pedigree assignment and will allow a reduction in breeder input over lambing. This required two phases of development- firstly, a method of extracting quality DNA from ear-punch tissue performed in a high throughput cost efficient manner and secondly a SNP assay that has the ability to assign paternity to progeny resulting from mob mating. A likelihood based approach to infer paternity was used where sires with the highest LOD score (log of the ratio of the likelihood given parentage to likelihood given non-parentage) are assigned. An 84 “parentage SNP panel” was developed that assigned, on average, 99% of progeny to a sire in a problem where there were 3,000 progeny from 120 mob mated sires that included numerous half sib sires. In only 6% of those cases was there another sire with at least a 0.02 probability of paternity. Furthermore dam information (either recorded, or by genotyping possible dams) was absent, highlighting the SNP test’s suitability for paternity testing. Utilization of this parentage SNP assay will allow implementation of progeny testing into large commercial farms where the improved accuracy of sire assignment and genetic evaluations will increase genetic gain in the sheep industry. PMID:24740141

  19. Single nucleotide polymorphism discovery from expressed sequence tags in the waterflea Daphnia magna

    PubMed Central

    2011-01-01

    Background Daphnia (Crustacea: Cladocera) plays a central role in standing aquatic ecosystems, has a well known ecology and is widely used in population studies and environmental risk assessments. Daphnia magna is, especially in Europe, intensively used to study stress responses of natural populations to pollutants, climate change, and antagonistic interactions with predators and parasites, which have all been demonstrated to induce micro-evolutionary and adaptive responses. Although its ecology and evolutionary biology is intensively studied, little is known on the functional genomics underpinning of phenotypic responses to environmental stressors. The aim of the present study was to find genes expressed in presence of environmental stressors, and target such genes for single nucleotide polymorphic (SNP) marker development. Results We developed three expressed sequence tag (EST) libraries using clonal lineages of D. magna exposed to ecological stressors, namely fish predation, parasite infection and pesticide exposure. We used these newly developed ESTs and other Daphnia ESTs retrieved from NCBI GeneBank to mine for SNP markers targeting synonymous as well as non synonymous genetic variation. We validate the developed SNPs in six natural populations of D. magna distributed at regional scale. Conclusions A large proportion (47%) of the produced ESTs are Daphnia lineage specific genes, which are potentially involved in responses to environmental stress rather than to general cellular functions and metabolic activities, or reflect the arthropod's aquatic lifestyle. The characterization of genes expressed under stress and the validation of their SNPs for population genetic study is important for identifying ecologically responsive genes in D. magna. PMID:21668940

  20. Validation of single nucleotide polymorphisms in invasive aspergillosis following hematopoietic cell transplantation.

    PubMed

    Fisher, Cynthia E; Hohl, Tobias M; Fan, Wenhong; Storer, Barry E; Levine, David M; Zhao, Lu Ping; Martin, Paul J; Warren, Edus H; Boeckh, Michael; Hansen, John A

    2017-03-07

    Invasive aspergillosis (IA) is a significant cause of morbidity and mortality following allogeneic hematopoietic cell transplantation (HCT). Previous studies have reported an association between IA development and single nucleotide polymorphisms (SNPs), but many have not been replicated in a separate cohort. The presence of a positive serum galactomannan assay (SGM+) has also been associated with a worse prognosis in patients with IA, and genetic determinants in this subset of patients have not been systematically studied. The study cohort included 2,609 HCT recipients and their donor pairs: 483 with proven/probable IA (183 SGM+) and 2,126 with no IA by standard criteria. Of 25 SNPs previously published, we analyzed 20 in 14 genes that passed quality control. Samples were genotyped via microarray, and SNPs that could not be genotyped were imputed. The primary aim was to replicate SNPs associated with proven/probable IA at 2 years; secondary goals were to explore the associations using an endpoint of SGM+ IA or proven/probable using a different genetic model or time-to-IA (3 months vs. 2 years) compared to the original study. Two SNPs in two genes (PTX3, CLEC7a) were replicated. Thirteen SNPs in nine genes had an association at p≤0.05 using the secondary aims (PTX3, CLEC7a, CD209, CXCL10, TLR6, S100B, IFNG, PLG, TNFR1), with hazards ratios ranging from 1.2 to 3.29. Underlying genetic differences can influence development of IA following HCT. Identification of genetic predispositions to IA could have important implications in donor screening, risk stratification of recipients, monitoring, and prophylaxis.

  1. Functional Impact of 14 Single Nucleotide Polymorphisms Causing Missense Mutations of Human α7 Nicotinic Receptor.

    PubMed

    Zhang, Qinhui; Du, Yingjie; Zhang, Jianliang; Xu, Xiaojun; Xue, Fenqin; Guo, Cong; Huang, Yao; Lukas, Ronald J; Chang, Yongchang

    2015-01-01

    The α7nicotinic receptor (nAChR) is a major subtype of the nAChRs in the central nervous system, and the receptor plays an important role in brain function. In the dbSNP database, there are 55 single nucleotide polymorphisms (SNPs) that cause missense mutations of the human α7nAChR in the coding region. In this study, we tested the impact of 14 SNPs that cause missense mutations in the agonist binding site or the coupling region between binding site and channel gate on the receptor function. The wild type or mutant receptors were expressed or co-expressed in Xenopus oocytes, and the agonist-induced currents were tested using two-electrode voltage clamp. Our results demonstrated that 6 mutants were nonfunctional, 4 mutants had reduced current expression, and 1 mutants altered ACh and nicotine efficacy in the opposite direction, and one additional mutant had slightly reduced agonist sensitivity. Interestingly, the function of most of these nonfunctional mutants could be rescued by α7nAChR positive allosteric modulator PNU-120596 and agonist-PAM 4BP-TQS. Finally, when coexpressed with the wild type, the nonfunctional mutants could also influence the receptor function. These changes of the receptor properties by the mutations could potentially have an impact on the physiological function of the α7nAChR-mediated cholinergic synaptic transmission and anti-inflammatory effects in the human SNP carriers. Rescuing the nonfunctional mutants could provide a novel way to treat the related disorders.

  2. Single-Nucleotide Polymorphisms and Markers of Oxidative Stress in Healthy Women

    PubMed Central

    Minlikeeva, Albina N.; Browne, Richard W.; Ochs-Balcom, Heather M.; Marian, Catalin; Shields, Peter G.; Trevisan, Maurizio; Krishnan, Shiva; Modali, Ramakrishna; Seddon, Michael; Lehman, Teresa; Freudenheim, Jo L.

    2016-01-01

    Purpose There is accumulating evidence that oxidative stress is an important contributor to carcinogenesis. We hypothesized that genetic variation in genes involved in maintaining antioxidant/oxidant balance would be associated with overall oxidative stress. Methods We examined associations between single nucleotide polymorphisms (SNPs) in MnSOD, GSTP1, GSTM1, GPX1, GPX3, and CAT genes and thiobarbituric acid-reactive substances (TBARS), a blood biomarker of oxidative damage, in healthy white women randomly selected from Western New York (n = 1402). We used general linear models to calculate age-adjusted geometric means of TBARS across the variants. We also examined the associations within strata of menopausal status. Results For MnSOD, being heterozygous was associated with lower geometric means of TBARS (less oxidative stress), 1.28 mg/dL, compared to homozygous T-allele or homozygous C-allele,1.35 mg/dL, and 1.31 mg/dL correspondingly (p for trend = 0.01). This difference remained among postmenopausal women, 1.40 mg/dL for TT, 1.32 mg/dL for TC, and 1.34mg/dL for CC (p for trend 0.015); it was attenuated among premenopausal women. SNPs in the other genes examined (GSTP1, GSTM1, GPX1, GPX3, and CAT) were not associated with TBARS. Conclusions Our findings suggest that genetic variation in MnSOD gene may be associated with oxidative status, particularly among postmenopausal women. PMID:27271305

  3. Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis)

    PubMed Central

    2010-01-01

    Background Castor bean (Ricinus communis) is an agricultural crop and garden ornamental that is widely cultivated and has been introduced worldwide. Understanding population structure and the distribution of castor bean cultivars has been challenging because of limited genetic variability. We analyzed the population genetics of R. communis in a worldwide collection of plants from germplasm and from naturalized populations in Florida, U.S. To assess genetic diversity we conducted survey sequencing of the genomes of seven diverse cultivars and compared the data to a reference genome assembly of a widespread cultivar (Hale). We determined the population genetic structure of 676 samples using single nucleotide polymorphisms (SNPs) at 48 loci. Results Bayesian clustering indicated five main groups worldwide and a repeated pattern of mixed genotypes in most countries. High levels of population differentiation occurred between most populations but this structure was not geographically based. Most molecular variance occurred within populations (74%) followed by 22% among populations, and 4% among continents. Samples from naturalized populations in Florida indicated significant population structuring consistent with local demes. There was significant population differentiation for 56 of 78 comparisons in Florida (pairwise population ϕPT values, p < 0.01). Conclusion Low levels of genetic diversity and mixing of genotypes have led to minimal geographic structuring of castor bean populations worldwide. Relatively few lineages occur and these are widely distributed. Our approach of determining population genetic structure using SNPs from genome-wide comparisons constitutes a framework for high-throughput analyses of genetic diversity in plants, particularly in species with limited genetic diversity. PMID:20082707

  4. LMNA gene single nucleotide polymorphisms in dilated cardiomyopathy of Han children

    PubMed Central

    Xie, Li-Jian; Xiao, Ting-Ting; Huang, Min; Shen, Jie

    2015-01-01

    Objective: To investigate whether LMNA gene mutation is associated with dilated cardiomyopathy (DCM) in Chinese Han Race children. Methods: DNA was isolated from 78 patients with DCM and 100 healthy Chinese children who served as controls. 12 exons in the functional regions and the adjacent part of introns of the LMNA gene were amplified with polymerase chain reactions (PCR) and the PCR products were sequenced with DNA sequencer. We compared the DNA sequence with Blast software online PubMed website. The differences of allele and genotype between the groups were detected by χ2 test. Results: No disease-causing mutation in LMNA gene was found in all DCM patients. Three nonsense single nucleotide polymorphisms (SNPs) were identified. ① The first is c.1908C>T (H566H, rs4641) which was located at exon 10 of LMNA gene. It was found in 29 DCM cases and 15 control subjects. Compared to healthy controls, the frequency of TT and TC genotypes, and the C allele were significantly increased in DCM patients (P<0.05). ② The second was c.861C>T (A287A, rs5380) which was located at exon 5 of LMNA gene. It was found in 9 DCM cases and 2 control subjects. The frequency of TC genotype was significantly increased in DCM patients (P<0.05). ③ The third was c.1338C>T (D446D, rs5058) which located at exon 7 of LMNA gene. It was found in 8 DCM cases and 3 control subjects. The frequency of TC genotype was significantly increased in DCM patients (P<0.05). Conclusion: The SNP of LMNA gene may be associated with the susceptivity of DCM in Chinese Han children. PMID:26379929

  5. SiNoPsis: Single Nucleotide Polymorphisms selection and promoter profiling.

    PubMed

    Boloc, Daniel; Rodríguez, Natalia; Gassó, Patricia; Abril, Josep F; Bernardo, Miquel; Lafuente, Amalia; Mas, Sergi

    2017-09-14

    The selection of a Single Nucleotide Polymorphism (SNP) using bibliographic methods can be a very time-consuming task. Moreover, a SNP selected in this way may not be easily visualized in its genomic context by a standard user hoping to correlate it with other valuable information. Here we propose a web form built on top of Circos that can assist SNP-centred screening, based on their location in the genome and the regulatory modules they can disrupt. Its use may allow researchers to prioritize SNPs in genotyping and disease studies. SiNoPsis is bundled as a web portal. It focuses on the different structures involved in the genomic expression of a gene, especially those found in the core promoter upstream region. These structures include transcription factor binding sites (for promoter and enhancer signals), histones, and promoter flanking regions. Additionally, the tool provides eQTL and linkage disequilibrium (LD) properties for a given SNP query, yielding further clues about other indirectly associated SNPs. Possible disruptions of the aforementioned structures affecting gene transcription are reported using multiple resource databases. SiNoPsis has a simple user-friendly interface, which allows single queries by gene symbol, genomic coordinates, Ensembl gene identifiers, RefSeq transcript identifiers and SNPs. It is the only portal providing useful SNP selection based on regulatory modules and LD with functional variants in both textual and graphic modes (by properly defining the arguments and parameters needed to run Circos). danielboloc@gmail.com. SiNoPsis is freely available at https://compgen.bio.ub.edu/SiNoPsis /.

  6. Detection of nasopharyngeal carcinoma susceptibility with single nucleotide polymorphism analysis using next-generation sequencing technology

    PubMed Central

    Wu, Mu-Yun; Huang, Shu-Jing; Yang, Fan; Qin, Xin-Tian; Liu, Dong; Ding, Ying; Yang, Shu; Wang, Xi-Cheng

    2017-01-01

    Nasopharyngeal carcinoma (NPC) is a head and neck cancer with high incidence in South China and East Asia. To provide a theoretical basis for NPC risk screening and early prevention, we conducted a meta-analysis of relevant literature on the association of single nucleotide polymorphisms (SNP)s with NPC susceptibility. Further, expression of 15 candidate SNPs identified in the meta-analysis was evaluated in a cohort of NPC patients and healthy volunteers using next-generation sequencing technology. Among the 15 SNPs detected in the meta-analysis, miR-146a (rs2910164, C>G), HCG9 (rs3869062, A>G), HCG9 (rs16896923, T>C), MMP2 (rs243865, C>T), GABBR1 (rs2076483, T>C), and TP53 (rs1042522, C>G) were associated with decreased susceptibility to NPC, while GSTM1 (+/DEL), IL-10 (rs1800896, A>G), MDM2 (rs2279744, T>G), MDS1-EVI1 (rs6774494, G>A), XPC (rs2228000, C>T), HLA-F (rs3129055, T>C), SPLUNC1 (rs2752903, T>C; and rs750064, A>G), and GABBR1 (rs29232, G>A) were associated with increased susceptibility to NPC. In our case-control study, an association with increased risk for NPC was found for the AG vs AA genotype in HCG9 (rs3869062, A>G). In addition, heterozygous deletion of the GSTM1 allele was associated with increased susceptibility to NPC, while an SNP in GABBR1 (rs29232, G>A) was associated with decreased risk, and might thus have a protective role on NPC carcinogenesis. This work provides the first comprehensive assessment of SNP expression and its relationship to NPC risk. It suggests the need for well-designed, larger confirmatory studies to validate its findings. PMID:28881764

  7. Identifying Litchi (Litchi chinensis Sonn.) Cultivars and Their Genetic Relationships Using Single Nucleotide Polymorphism (SNP) Markers

    PubMed Central

    Liu, Wei; Xiao, Zhidan; Bao, Xiuli; Yang, Xiaoyan; Fang, Jing; Xiang, Xu

    2015-01-01

    Litchi is an important fruit tree in tropical and subtropical areas of the world. However, there is widespread confusion regarding litchi cultivar nomenclature and detailed information of genetic relationships among litchi germplasm is unclear. In the present study, the potential of single nucleotide polymorphism (SNP) for the identification of 96 representative litchi accessions and their genetic relationships in China was evaluated using 155 SNPs that were evenly spaced across litchi genome. Ninety SNPs with minor allele frequencies above 0.05 and a good genotyping success rate were used for further analysis. A relatively high level of genetic variation was observed among litchi accessions, as quantified by the expected heterozygosity (He = 0.305). The SNP based multilocus matching identified two synonymous groups, ‘Heiye’ and ‘Wuye’, and ‘Chengtuo’ and ‘Baitangli 1’. A subset of 14 SNPs was sufficient to distinguish all the non-redundant litchi genotypes, and these SNPs were proven to be highly stable by repeated analyses of a selected group of cultivars. Unweighted pair-group method of arithmetic averages (UPGMA) cluster analysis divided the litchi accessions analyzed into four main groups, which corresponded to the traits of extremely early-maturing, early-maturing, middle-maturing, and late-maturing, indicating that the fruit maturation period should be considered as the primary criterion for litchi taxonomy. Two subpopulations were detected among litchi accessions by STRUCTURE analysis, and accessions with extremely early- and late-maturing traits showed membership coefficients above 0.99 for Cluster 1 and Cluster 2, respectively. Accessions with early- and middle-maturing traits were identified as admixture forms with varying levels of membership shared between the two clusters, indicating their hybrid origin during litchi domestication. The results of this study will benefit litchi germplasm conservation programs and facilitate maximum

  8. Identification of Single Nucleotide Polymorphisms Associated with Hyperproduction of Alpha-Toxin in Staphylococcus aureus

    PubMed Central

    Yang, Junshu; Yan, Meiying; Doll, Katherine; Bey, Russell; Ji, Yinduo

    2011-01-01

    The virulence factor α-toxin (hla) is needed by Staphylococcus aureus in order to cause infections in both animals and humans. Although the complicated regulation of hla expression has been well studied in human S. aureus isolates, the mechanisms of of hla regulation in bovine S. aureus isolates remain undefined. In this study, we found that many bovine S. aureus isolates, including the RF122 strain, generate dramatic amounts of α-toxin in vitro compared with human clinical S. aureus isolates, including MRSA WCUH29 and MRSA USA300. To elucidate potential regulatory mechanisms, we analyzed the hla promoter regions and identified predominant single nucleotide polymorphisms (SNPs) at positions −376, −483, and −484 from the start codon in α-toxin hyper-producing isolates. Using site-directed mutagenesis and hla promoter-gfp-luxABCDE dual reporter approaches, we demonstrated that the SNPs contribute to the differential control of hla expression among bovine and human S. aureus isolates. Using a DNA affinity assay, gel-shift assays and a null mutant, we identified and revealed that an hla positive regulator, SarZ, contributes to the involvement of the SNPs in mediating hla expression. In addition, we found that the bovine S. aureus isolate RF122 exhibits higher transcription levels of hla positive regulators, including agrA, saeR, arlR and sarZ, but a lower expression level of hla repressor rot compared to the human S. aureus isolate WCUH29. Our results indicate α-toxin hyperproduction in bovine S. aureus is a multifactorial process, influenced at both the genomic and transcriptional levels. Moreover, the identification of predominant SNPs in the hla promoter region may provide a novel method for genotyping the S. aureus isolates. PMID:21494631

  9. Genetic analysis of glucosinolate variability in broccoli florets using genome-anchored single nucleotide polymorphisms.

    PubMed

    Brown, Allan F; Yousef, Gad G; Reid, Robert W; Chebrolu, Kranthi K; Thomas, Aswathy; Krueger, Christopher; Jeffery, Elizabeth; Jackson, Eric; Juvik, John A

    2015-07-01

    The identification of genetic factors influencing the accumulation of individual glucosinolates in broccoli florets provides novel insight into the regulation of glucosinolate levels in Brassica vegetables and will accelerate the development of vegetables with glucosinolate profiles tailored to promote human health. Quantitative trait loci analysis of glucosinolate (GSL) variability was conducted with a B. oleracea (broccoli) mapping population, saturated with single nucleotide polymorphism markers from a high-density array designed for rapeseed (Brassica napus). In 4 years of analysis, 14 QTLs were associated with the accumulation of aliphatic, indolic, or aromatic GSLs in floret tissue. The accumulation of 3-carbon aliphatic GSLs (2-propenyl and 3-methylsulfinylpropyl) was primarily associated with a single QTL on C05, but common regulation of 4-carbon aliphatic GSLs was not observed. A single locus on C09, associated with up to 40 % of the phenotypic variability of 2-hydroxy-3-butenyl GSL over multiple years, was not associated with the variability of precursor compounds. Similarly, QTLs on C02, C04, and C09 were associated with 4-methylsulfinylbutyl GSL concentration over multiple years but were not significantly associated with downstream compounds. Genome-specific SNP markers were used to identify candidate genes that co-localized to marker intervals and previously sequenced Brassica oleracea BAC clones containing known GSL genes (GSL-ALK, GSL-PRO, and GSL-ELONG) were aligned to the genomic sequence, providing support that at least three of our 14 QTLs likely correspond to previously identified GSL loci. The results demonstrate that previously identified loci do not fully explain GSL variation in broccoli. The identification of additional genetic factors influencing the accumulation of GSL in broccoli florets provides novel insight into the regulation of GSL levels in Brassicaceae and will accelerate development of vegetables with modified or enhanced GSL

  10. Novel Single Nucleotide Polymorphism-Based Assay for Genotyping Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    Goldstone, Robert J.; McLuckie, Joyce; Smith, David G. E.

    2015-01-01

    Typing of Mycobacterium avium subspecies paratuberculosis strains presents a challenge, since they are genetically monomorphic and traditional molecular techniques have limited discriminatory power. The recent advances and availability of whole-genome sequencing have extended possibilities for the characterization of Mycobacterium avium subspecies paratuberculosis, and whole-genome sequencing can provide a phylogenetic context to facilitate global epidemiology studies. In this study, we developed a single nucleotide polymorphism (SNP) assay based on PCR and restriction enzyme digestion or sequencing of the amplified product. The SNP analysis was performed using genome sequence data from 133 Mycobacterium avium subspecies paratuberculosis isolates with different genotypes from 8 different host species and 17 distinct geographic regions around the world. A total of 28,402 SNPs were identified among all of the isolates. The minimum number of SNPs required to distinguish between all of the 133 genomes was 93 and between only the type C isolates was 41. To reduce the number of SNPs and PCRs required, we adopted an approach based on sequential detection of SNPs and a decision tree. By the analysis of 14 SNPs Mycobacterium avium subspecies paratuberculosis isolates can be characterized within 14 phylogenetic groups with a higher discriminatory power than mycobacterial interspersed repetitive unit–variable number tandem repeat assay and other typing methods. Continuous updating of genome sequences is needed in order to better characterize new phylogenetic groups and SNP profiles. The novel SNP assay is a discriminative, simple, reproducible method and requires only basic laboratory equipment for the large-scale global typing of Mycobacterium avium subspecies paratuberculosis isolates. PMID:26677250

  11. Single nucleotide polymorphism analysis of Korean native chickens using next generation sequencing data.

    PubMed

    Seo, Dong-Won; Oh, Jae-Don; Jin, Shil; Song, Ki-Duk; Park, Hee-Bok; Heo, Kang-Nyeong; Shin, Younhee; Jung, Myunghee; Park, Junhyung; Jo, Cheorun; Lee, Hak-Kyo; Lee, Jun-Heon

    2015-02-01

    There are five native chicken lines in Korea, which are mainly classified by plumage colors (black, white, red, yellow, gray). These five lines are very important genetic resources in the Korean poultry industry. Based on a next generation sequencing technology, whole genome sequence and reference assemblies were performed using Gallus_gallus_4.0 (NCBI) with whole genome sequences from these lines to identify common and novel single nucleotide polymorphisms (SNPs). We obtained 36,660,731,136 ± 1,257,159,120 bp of raw sequence and average 26.6-fold of 25-29 billion reference assembly sequences representing 97.288 % coverage. Also, 4,006,068 ± 97,534 SNPs were observed from 29 autosomes and the Z chromosome and, of these, 752,309 SNPs are the common SNPs across lines. Among the identified SNPs, the number of novel- and known-location assigned SNPs was 1,047,951 ± 14,956 and 2,948,648 ± 81,414, respectively. The number of unassigned known SNPs was 1,181 ± 150 and unassigned novel SNPs was 8,238 ± 1,019. Synonymous SNPs, non-synonymous SNPs, and SNPs having character changes were 26,266 ± 1,456, 11,467 ± 604, 8,180 ± 458, respectively. Overall, 443,048 ± 26,389 SNPs in each bird were identified by comparing with dbSNP in NCBI. The presently obtained genome sequence and SNP information in Korean native chickens have wide applications for further genome studies such as genetic diversity studies to detect causative mutations for economic and disease related traits.

  12. A Single Nucleotide Polymorphism in Catalase Is Strongly Associated with Ovarian Cancer Survival.

    PubMed

    Belotte, Jimmy; Fletcher, Nicole M; Saed, Mohammed G; Abusamaan, Mohammed S; Dyson, Gregory; Diamond, Michael P; Saed, Ghassan M

    2015-01-01

    Ovarian cancer is the deadliest of all gynecologic cancers. Recent evidence demonstrates an association between enzymatic activity altering single nucleotide polymorphisms (SNP) with human cancer susceptibility. We sought to evaluate the association of SNPs in key oxidant and antioxidant enzymes with increased risk and survival in epithelial ovarian cancer. Individuals (n = 143) recruited were divided into controls, (n = 94): healthy volunteers, (n = 18), high-risk BRCA1/2 negative (n = 53), high-risk BRCA1/2 positive (n = 23) and ovarian cancer cases (n = 49). DNA was subjected to TaqMan SNP genotype analysis for selected oxidant and antioxidant enzymes. Of the seven selected SNP studied, no association with ovarian cancer risk (Pearson Chi-square) was found. However, a catalase SNP was identified as a predictor of ovarian cancer survival by the Cox regression model. The presence of this SNP was associated with a higher likelihood of death (hazard ratio (HR) of 3.68 (95% confidence interval (CI): 1.149-11.836)) for ovarian cancer patients. Kaplan-Meier survival analysis demonstrated a significant median overall survival difference (108 versus 60 months, p<0.05) for those without the catalase SNP as compared to those with the SNP. Additionally, age at diagnosis greater than the median was found to be a significant predictor of death (HR of 2.78 (95% CI: 1.022-7.578)). This study indicates a strong association with the catalase SNP and survival of ovarian cancer patients, and thus may serve as a prognosticator.

  13. Assessing patterns of hybridization between North Atlantic eels using diagnostic single-nucleotide polymorphisms

    PubMed Central

    Pujolar, J M; Jacobsen, M W; Als, T D; Frydenberg, J; Magnussen, E; Jónsson, B; Jiang, X; Cheng, L; Bekkevold, D; Maes, G E; Bernatchez, L; Hansen, M M

    2014-01-01

    The two North Atlantic eel species, the European eel (Anguilla anguilla) and the American eel (Anguilla rostrata), spawn in partial sympatry in the Sargasso Sea, providing ample opportunity to interbreed. In this study, we used a RAD (Restriction site Associated DNA) sequencing approach to identify species-specific diagnostic single-nucleotide polymorphisms (SNPs) and design a low-density array that combined with screening of a diagnostic mitochondrial DNA marker. Eels from Iceland (N=159) and from the neighboring Faroe Islands (N=29) were genotyped, along with 94 larvae (49 European and 45 American eel) collected in the Sargasso Sea. Our SNP survey showed that the majority of Icelandic eels are pure European eels but there is also an important contribution of individuals of admixed ancestry (10.7%). Although most of the hybrids were identified as F1 hybrids from European eel female × American eel male crosses, backcrosses were also detected, including a first-generation backcross (F1 hybrid × pure European eel) and three individuals identified as second-generation backcrosses originating from American eel × F1 hybrid backcrosses interbreeding with pure European eels. In comparison, no hybrids were observed in the Faroe Islands, the closest bodies of land to Iceland. It is possible that hybrids show an intermediate migratory behaviour between the two parental species that ultimately brings hybrid larvae to the shores of Iceland, situated roughly halfway between the Sargasso Sea and Europe. Only two hybrids were observed among Sargasso Sea larvae, both backcrosses, but no F1 hybrids, that points to temporal variation in the occurrence of hybridization. PMID:24424165

  14. Single nucleotide polymorphism detection using gold nanoprobes and bio-microfluidic platform with embedded microlenses.

    PubMed

    Bernacka-Wojcik, Iwona; Águas, Hugo; Carlos, Fabio Ferreira; Lopes, Paulo; Wojcik, Pawel Jerzy; Costa, Mafalda Nascimento; Veigas, Bruno; Igreja, Rui; Fortunato, Elvira; Baptista, Pedro Viana; Martins, Rodrigo

    2015-06-01

    The use of microfluidics platforms combined with the optimal optical properties of gold nanoparticles has found plenty of application in molecular biosensing. This paper describes a bio-microfluidic platform coupled to a non-cross-linking colorimetric gold nanoprobe assay to detect a single nucleotide polymorphism associated with increased risk of obesity fat-mass and obesity-associated (FTO) rs9939609 (Carlos et al., 2014). The system enabled significant discrimination between positive and negative assays using a target DNA concentration of 5 ng/µL below the limit of detection of the conventionally used microplate reader (i.e., 15 ng/µL) with 10 times lower solution volume (i.e., 3 µL). A set of optimization of our previously reported bio-microfluidic platform (Bernacka-Wojcik et al., 2013) resulted in a 160% improvement of colorimetric analysis results. Incorporation of planar microlenses increased 6 times signal-to-loss ratio reaching the output optical fiber improving by 34% the colorimetric analysis of gold nanoparticles, while the implementation of an optoelectronic acquisition system yielded increased accuracy and reduced noise. The microfluidic chip was also integrated with a miniature fiber spectrometer to analyze the assays' colorimetric changes and also the LEDs transmission spectra when illuminating through various solutions. Furthermore, by coupling an optical microscope to a digital camera with a long exposure time (30 s), we could visualise the different scatter intensities of gold nanoparticles within channels following salt addition. These intensities correlate well to the expected difference in aggregation between FTO positive (none to small aggregates) and negative samples (large aggregates).

  15. Single nucleotide polymorphisms of metabolic syndrome-related genes in primary open angle glaucoma

    PubMed Central

    Zhou, Gang; Liu, Bin

    2010-01-01

    AIM To analyze single nucleotide polymorphisms (SNP) of primary open angle glaucoma- and metabolic syndrome-related genes in primary open angle glaucoma (POAG), in order to elucidate the roles of metabolic syndrome as a risk factor in POAG progress. METHODS SNP genotypes and alleles of interleukin-6 (IL-6), IL-6 receptor (IL-6R), dopamine D2 receptor (DRD2), beta-fibrinogen (FGB), peroxisome proliferator-activated receptor-γ2 (PPARG), transforming growth factor-β1 (TGF-β1), E-selectin (E-Sel), apolipoprotein A-5 (APOA5), C-reactive protein (CRP), ectonueleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), hepatic lipase (LIPC), adiponectin (ADIPOQ), paraoxonase 1 (PON1) and serine protease inhibitor E (SERPINE1) genes in POAG (n=37) and normal control (n=100) groups were measured with ABI Prism 7900HT Fluorescence Quantitative PCR and TaqMan SNP Genotyping fluorescence probe kit. RESULTS Genotypes and allele frequencies of IL-6R, IL-6, FGB, CRP, ENPP1, LIPC, ADIPOQ, PON1, and SERPINE1 in total POAG group were significantly different compared to the control group. CONCLUSION Metabolic syndrome as a risk factor for POAG may be associated with genotypes and allele frequencies of the related genes. The corresponding gene expression and function can affect POAG progress, including roles of SERPINE1 in extracellular matrix, ENPP1 in insulin inhibition, IL-6 in endogenous neuroprotection, IL-6, IL-6R and E-Sel in autoimmune response, LIPC and FGB in blood hyperviscosity syndrome, ADIPOQ in NOS/NO production, PON1 in vascular endothelial protection. PMID:22553514

  16. Empirically derived subgroups in rheumatoid arthritis: association with single-nucleotide polymorphisms on chromosome 6

    PubMed Central

    Wilcox, Marsha A; McAfee, Andrew T

    2007-01-01

    Rheumatoid arthritis (RA) is a disorder with important public health implications. It is possible that there are clinically distinctive subtypes of the disorder with different genetic etiologies. We used the data provided to the participants in the Genetic Analysis Workshop 15 to evaluate and describe clinically based subgroups and their genetic associations with single-nucleotide polymorphisms (SNPs) on chromosome 6, which harbors the HLA region. Detailed two- and three-SNP haplotype analyses were conducted in the HLA region. We used demographic, clinical self-report, and biomarker data from the entire sample (n = 8477) to identify and characterize the subgroups. We did not use the RA diagnosis itself in the identification of the subgroups. Nuclear families (715 families, 1998 individuals) were used to examine the genetic association with the HLA region. We found five distinct subgroups in the data. The first comprised unaffected family members. Cluster 2 was a mix of affected and unaffected in which patients endorsed symptoms not corroborated by physicians. Clusters 3 through 5 represented a severity continuum in RA. Cluster 5 was characterized by early onset severe disease. Cluster 2 showed no association on chromosome 6. Clusters 3 through 5 showed association with 17 SNPs on chromosome 6. In the HLA region, Cluster 3 showed single-, two-, and three-SNP association with the centromeric side of the region in an area of linkage disequilibrium. Cluster 5 showed both single- and two-SNP association with the telomeric side of the region in a second area of linkage disequilibrium. It will be important to replicate the subgroup structure and the association findings in an independent sample. PMID:18466517

  17. The Impact of Single Nucleotide Polymorphisms on Human Aldehyde OxidaseS

    PubMed Central

    Hartmann, Tobias; Terao, Mineko; Garattini, Enrico; Teutloff, Christian; Alfaro, Joshua F.; Jones, Jeffrey P.; Leimkühler, Silke

    2012-01-01

    Aldehyde oxidase (AO) is a complex molybdo-flavoprotein that belongs to the xanthine oxidase family. AO is active as a homodimer, and each 150-kDa monomer binds two distinct [2Fe2S] clusters, FAD, and the molybdenum cofactor. AO has an important role in the metabolism of drugs based on its broad substrate specificity oxidizing aromatic aza-heterocycles, for example, N1-methylnicotinamide and N-methylphthalazinium, or aldehydes, such as benzaldehyde, retinal, and vanillin. Sequencing the 35 coding exons of the human AOX1 gene in a sample of 180 Italian individuals led to the identification of relatively frequent, synonymous, missense and nonsense single-nucleotide polymorphisms (SNPs). Human aldehyde oxidase (hAOX1) was purified after heterologous expression in Escherichia coli. The recombinant protein was obtained with a purity of 95% and a yield of 50 μg/l E. coli culture. Site-directed mutagenesis of the hAOX1 cDNA allowed the purification of protein variants bearing the amino acid changes R802C, R921H, N1135S, and H1297R, which correspond to some of the identified SNPs. The hAOX1 variants were purified and compared with the wild-type protein relative to activity, oligomerization state, and metal content. Our data show that the mutation of each amino acid residue has a variable impact on the ability of hAOX1 to metabolize selected substrates. Thus, the human population is characterized by the presence of functionally inactive hAOX1 allelic variants as well as variants encoding enzymes with different catalytic activities. Our results indicate that the presence of these allelic variants should be considered for the design of future drugs. PMID:22279051

  18. Novel Single Nucleotide Polymorphism-Based Assay for Genotyping Mycobacterium avium subsp. paratuberculosis.

    PubMed

    Leão, Célia; Goldstone, Robert J; Bryant, Josephine; McLuckie, Joyce; Inácio, João; Smith, David G E; Stevenson, Karen

    2016-03-01

    Typing of Mycobacterium avium subspecies paratuberculosis strains presents a challenge, since they are genetically monomorphic and traditional molecular techniques have limited discriminatory power. The recent advances and availability of whole-genome sequencing have extended possibilities for the characterization of Mycobacterium avium subspecies paratuberculosis, and whole-genome sequencing can provide a phylogenetic context to facilitate global epidemiology studies. In this study, we developed a single nucleotide polymorphism (SNP) assay based on PCR and restriction enzyme digestion or sequencing of the amplified product. The SNP analysis was performed using genome sequence data from 133 Mycobacterium avium subspecies paratuberculosis isolates with different genotypes from 8 different host species and 17 distinct geographic regions around the world. A total of 28,402 SNPs were identified among all of the isolates. The minimum number of SNPs required to distinguish between all of the 133 genomes was 93 and between only the type C isolates was 41. To reduce the number of SNPs and PCRs required, we adopted an approach based on sequential detection of SNPs and a decision tree. By the analysis of 14 SNPs Mycobacterium avium subspecies paratuberculosis isolates can be characterized within 14 phylogenetic groups with a higher discriminatory power than mycobacterial interspersed repetitive unit-variable number tandem repeat assay and other typing methods. Continuous updating of genome sequences is needed in order to better characterize new phylogenetic groups and SNP profiles. The novel SNP assay is a discriminative, simple, reproducible method and requires only basic laboratory equipment for the large-scale global typing of Mycobacterium avium subspecies paratuberculosis isolates. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Nucleotide, cytogenetic and expression impact of the human chromosome 8p23.1 inversion polymorphism.

    PubMed

    Bosch, Nina; Morell, Marta; Ponsa, Immaculada; Mercader, Josep Maria; Armengol, Lluís; Estivill, Xavier

    2009-12-14

    The human chromosome 8p23.1 region contains a 3.8-4.5 Mb segment which can be found in different orientations (defined as genomic inversion) among individuals. The identification of single nucleotide polymorphisms (SNPs) tightly linked to the genomic orientation of a given region should be useful to indirectly evaluate the genotypes of large genomic orientations in the individuals. We have identified 16 SNPs, which are in linkage disequilibrium (LD) with the 8p23.1 inversion as detected by fluorescent in situ hybridization (FISH). The variability of the 8p23.1 orientation in 150 HapMap samples was predicted using this set of SNPs and was verified by FISH in a subset of samples. Four genes (NEIL2, MSRA, CTSB and BLK) were found differentially expressed (p<0.0005) according to the orientation of the 8p23.1 region. Finally, we have found variable levels of mosaicism for the orientation of the 8p23.1 as determined by FISH. By means of dense SNP genotyping of the region, haplotype-based computational analyses and FISH experiments we could infer and verify the orientation status of alleles in the 8p23.1 region by detecting two short haplotype stretches at both ends of the inverted region, which are likely the relic of the chromosome in which the original inversion occurred. Moreover, an impact of 8p23.1 inversion on gene expression levels cannot be ruled out, since four genes from this region have statistically significant different expression levels depending on the inversion status. FISH results in lymphoblastoid cell lines suggest the presence of mosaicism regarding the 8p23.1 inversion.

  20. Polygenic Effects of Common Single-Nucleotide Polymorphisms on Life Span: When Association Meets Causality

    PubMed Central

    Wu, Deqing; Arbeev, Konstantin G.

    2012-01-01

    Abstract Recently we have shown that the human life span is influenced jointly by many common single-nucleotide polymorphisms (SNPs), each with a small individual effect. Here we investigate further the polygenic influence on life span and discuss its possible biological mechanisms. First we identified six sets of prolongevity SNP alleles in the Framingham Heart Study 550K SNPs data, using six different statistical procedures (normal linear, Cox, and logistic regressions; generalized estimation equation; mixed model; gene frequency method). We then estimated joint effects of these SNPs on human survival. We found that alleles in each set show significant additive influence on life span. Twenty-seven SNPs comprised the overlapping set of SNPs that influenced life span, regardless of the statistical procedure. The majority of these SNPs (74%) were within genes, compared to 40% of SNPs in the original 550K set. We then performed a review of current literature on functions of genes closest to these 27 SNPs. The review showed that the respective genes are largely involved in aging, cancer, and brain disorders. We concluded that polygenic effects can explain a substantial portion of genetic influence on life span. Composition of the set of prolongevity alleles depends on the statistical procedure used for the allele selection. At the same time, there is a core set of longevity alleles that are selected with all statistical procedures. Functional relevance of respective genes to aging and major diseases supports causal relationships between the identified SNPs and life span. The fact that genes found in our and other genetic association studies of aging/longevity have similar functions indicates high chances of true positive associations for corresponding genetic variants. PMID:22533364

  1. Effective Detection of Human Leukocyte Antigen Risk Alleles in Celiac Disease Using Tag Single Nucleotide Polymorphisms

    PubMed Central

    Monsuur, Alienke J.; de Bakker, Paul I. W.; Zhernakova, Alexandra; Pinto, Dalila; Verduijn, Willem; Romanos, Jihane; Auricchio, Renata; Lopez, Ana; van Heel, David A.; Crusius, J. Bart A; Wijmenga, Cisca

    2008-01-01

    Background The HLA genes, located in the MHC region on chromosome 6p21.3, play an important role in many autoimmune disorders, such as celiac disease (CD), type 1 diabetes (T1D), rheumatoid arthritis, multiple sclerosis, psoriasis and others. Known HLA variants that confer risk to CD, for example, include DQA1*05/DQB1*02 (DQ2.5) and DQA1*03/DQB1*0302 (DQ8). To diagnose the majority of CD patients and to study disease susceptibility and progression, typing these strongly associated HLA risk factors is of utmost importance. However, current genotyping methods for HLA risk factors involve many reactions, and are complicated and expensive. We sought a simple experimental approach using tagging SNPs that predict the CD-associated HLA risk factors. Methodology Our tagging approach exploits linkage disequilibrium between single nucleotide polymorphism (SNPs) and the CD-associated HLA risk factors DQ2.5 and DQ8 that indicate direct risk, and DQA1*0201/DQB1*0202 (DQ2.2) and DQA1*0505/DQB1*0301 (DQ7) that attribute to the risk of DQ2.5 to CD. To evaluate the predictive power of this approach, we performed an empirical comparison of the predicted DQ types, based on these six tag SNPs, with those executed with current validated laboratory typing methods of the HLA-DQA1 and -DQB1 genes in three large cohorts. The results were validated in three European celiac populations. Conclusion Using this method, only six SNPs were needed to predict the risk types carried by >95% of CD patients. We determined that for this tagging approach the sensitivity was >0.991, specificity >0.996 and the predictive value >0.948. Our results show that this tag SNP method is very accurate and provides an excellent basis for population screening for CD. This method is broadly applicable in European populations. PMID:18509540

  2. Pain perception is altered by a nucleotide polymorphism in SCN9A.

    PubMed

    Reimann, Frank; Cox, James J; Belfer, Inna; Diatchenko, Luda; Zaykin, Dmitri V; McHale, Duncan P; Drenth, Joost P H; Dai, Feng; Wheeler, Jerry; Sanders, Frances; Wood, Linda; Wu, Tian-Xia; Karppinen, Jaro; Nikolajsen, Lone; Männikkö, Minna; Max, Mitchell B; Kiselycznyk, Carly; Poddar, Minakshi; Te Morsche, Rene H M; Smith, Shad; Gibson, Dustin; Kelempisioti, Anthi; Maixner, William; Gribble, Fiona M; Woods, C Geoffrey

    2010-03-16

    The gene SCN9A is responsible for three human pain disorders. Nonsense mutations cause a complete absence of pain, whereas activating mutations cause severe episodic pain in paroxysmal extreme pain disorder and primary erythermalgia. This led us to investigate whether single nucleotide polymorphisms (SNPs) in SCN9A were associated with differing pain perception in the general population. We first genotyped 27 SCN9A SNPs in 578 individuals with a radiographic diagnosis of osteoarthritis and a pain score assessment. A significant association was found between pain score and SNP rs6746030; the rarer A allele was associated with increased pain scores compared to the commoner G allele (P = 0.016). This SNP was then further genotyped in 195 pain-assessed people with sciatica, 100 amputees with phantom pain, 179 individuals after lumbar discectomy, and 205 individuals with pancreatitis. The combined P value for increased A allele pain was 0.0001 in the five cohorts tested (1277 people in total). The two alleles of the SNP rs6746030 alter the coding sequence of the sodium channel Nav1.7. Each was separately transfected into HEK293 cells and electrophysiologically assessed by patch-clamping. The two alleles showed a difference in the voltage-dependent slow inactivation (P = 0.042) where the A allele would be predicted to increase Nav1.7 activity. Finally, we genotyped 186 healthy females characterized by their responses to a diverse set of noxious stimuli. The A allele of rs6746030 was associated with an altered pain threshold and the effect mediated through C-fiber activation. We conclude that individuals experience differing amounts of pain, per nociceptive stimulus, on the basis of their SCN9A rs6746030 genotype.

  3. Performance Metrics for Selecting Single Nucleotide Polymorphisms in Late-onset Alzheimer's Disease.

    PubMed

    Chen, Yen-Ching; Hsiao, Chi-Jung; Jung, Chien-Cheng; Hu, Hui-Han; Chen, Jen-Hau; Lee, Wen-Chung; Chiou, Jeng-Min; Chen, Ta-Fu; Sun, Yu; Wen, Li-Li; Yip, Ping-Keung; Chu, Yi-Min; Chen, Chien-Jen; Yang, Hwai-I

    2016-11-02

    Previous genome-wide association studies using P-values to select single nucleotide polymorphisms (SNPs) have suffered from high false-positive and false-negative results. This case-control study recruited 713 late-onset Alzheimer's disease (LOAD) cases and controls aged ≥65 from three teaching hospitals in northern Taiwan from 2007 to 2010. Performance metrics were used to select SNPs in stage 1, which were then genotyped to another dataset (stage 2). Four SNPs (CPXM2 rs2362967, APOC1 rs4420638, ZNF521 rs7230380, and rs12965520) were identified for LOAD by both traditional P-values (without correcting for multiple tests) and performance metrics. After correction for multiple tests, no SNPs were identified by traditional P-values. Simultaneous testing of APOE e4 and APOC1 rs4420638 (the SNP with the best performance in the performance metrics) significantly improved the low sensitivity of APOE e4 from 0.50 to 0.78. A point-based genetic model including these 2 SNPs and important covariates was constructed. Compared with elders with low-risks score (0-6), elders belonging to moderate-risk (score = 7-11) and high-risk (score = 12-18) groups showed a significantly increased risk of LOAD (adjusted odds ratio = 7.80 and 46.93, respectively; Ptrend < 0.0001). Performance metrics allow for identification of markers with moderate effect and are useful for creating genetic tests with clinical and public health implications.

  4. A biocompatible open-surface droplet manipulation platform for detection of multi-nucleotide polymorphism.

    PubMed

    Huang, C J; Fang, W F; Ke, M S; Chou, H Y E; Yang, J T

    2014-06-21

    We present a novel and simple method to manipulate droplets applicable to an open-surface microfluidic platform. The platform comprised a control module for pneumatic droplets and a superhydrophobic polydimethylsiloxane (PDMS) membrane. With pneumatic suction to cause deflection of the flexible PDMS-based superhydrophobic membrane, the sample and reagent droplets on the membrane become transported and mixed. A facile one-step laser micromachining technique serves to fabricate a superhydrophobic surface; a contact angle of 150° and a hysteresis angle of 4° were achieved without chemical modification. Relative to previous open-surface microfluidic systems, this platform is capable of simultaneous and precise delivery of droplets in two-dimensional (2D) manipulation. Droplets were manipulated with suction, which avoided interference from an external driving energy (e.g. heat, light, electricity) to affect the bio-sample inside the droplets. Two common bio-samples, namely protein and DNA, verified the performance of the platform. Based on the experimental results, operations on protein can be implemented without adsorption on the surface of the platform. Another striking result is the visual screening for multi-nucleotide polymorphism with hybridization-mediated growth of gold-nanoparticle (AuNP) probes. The detection results are observable with the naked eye, without the aid of advanced instruments. The entire procedure only takes 5 min from the addition of the sample and reagent to obtaining the results, which is much quicker than the traditional method. The total sample volume consumed in each operation is only 10 μL, which is significantly less than what is required in a large system. According to this approach, the proposed platform is suitable for biological and chemical applications.

  5. Endothelial nitric oxide synthase tagging single nucleotide polymorphisms and recovery from aneurysmal subarachnoid hemorrhage.

    PubMed

    Alexander, Sheila; Poloyac, Samuel; Hoffman, Leslie; Gallek, Matthew; Dianxu Ren; Balzer, Jeffrey; Kassam, Amin; Conley, Yvette

    2009-07-01

    Aneurysmal subarachnoid hemorrhage (SAH) is a hemorrhagic stroke subtype with a poor recovery profile. Cerebral vasospasm (CV), a narrowing of the cerebral vasculature, significantly contributes to the poor recovery profile. Variation in the endothelial nitric oxide (NO) synthase (eNOS) gene has been implicated in CV and outcome after SAH. The purpose of this project was to explore the potential association between three eNOS tagging single nucleotide polymorphisms (SNPs) and recovery from SAH. We included 195 participants with a diagnosis of SAH and DNA and 6-month outcome data available but without preexisting neurologic disease/deficit. Genotyping was performed using an ABI Prism 7000 Sequence Detection System and TaqMan assays. CV was verified by cerebral angiogram independently read by a neurosurgeon on 118 participants. Modified Rankin Scores (MRS) and Glasgow Outcome Scale (GOS) scores were collected 6 months posthemorrhage. Data were analyzed using descriptive statistics, analysis of variance (ANOVA) and chi-square analysis as appropriate. The sample was primarily female (n=147; 75.4%) and White (n=178; 91.3%) with a mean age of 54.6 years. Of the participants with CV data, 56 (47.5%) developed CV within 14 days of SAH. None of the SNPs individually were associated with CV presence; however, a combination of the three variant SNPs was significantly associated with CV (p=.017). Only one SNP (rs1799983, variant allele) was associated with worse 6-month GOS scores (p<.001) and MRS (p<.001). These data indicate that the eNOS gene plays a role in the response to SAH, which may be explained by an influence on CV.

  6. Deciphering Single Nucleotide Polymorphisms and Evolutionary Trends in Isolates of the Cydia pomonella granulovirus

    PubMed Central

    Wennmann, Jörg T.; Radtke, Pit; Eberle, Karolin E.; Gueli Alletti, Gianpiero

    2017-01-01

    Six complete genome sequences of Cydia pomonella granulovirus (CpGV) isolates from Mexico (CpGV-M and CpGV-M1), England (CpGV-E2), Iran (CpGV-I07 and CpGV-I12), and Canada (CpGV-S) were aligned and analyzed for genetic diversity and evolutionary processes. The selected CpGV isolates represented recently identified phylogenetic lineages of CpGV, namely, the genome groups A to E. The genomes ranged from 120,816 bp to 124,269 bp. Several common differences between CpGV-M, -E2, -I07, -I12 and -S to CpGV-M1, the first sequenced and published CpGV isolate, were highlighted. Phylogenetic analysis based on the aligned genome sequences grouped CpGV-M and CpGV-I12 as the most derived lineages, followed by CpGV-E2, CpGV-S and CpGV-I07, which represent the most basal lineages. All of the genomes shared a high degree of co-linearity, with a common setup of 137 (CpGV-I07) to 142 (CpGV-M and -I12) open reading frames with no translocations. An overall trend of increasing genome size and a decrease in GC content was observed, from the most basal lineage (CpGV-I07) to the most derived (CpGV-I12). A total number of 788 positions of single nucleotide polymorphisms (SNPs) were determined and used to create a genome-wide SNP map of CpGV. Of the total amount of SNPs, 534 positions were specific for exactly one of either isolate CpGV-M, -E2, -I07, -I12 or -S, which allowed the SNP-based detection and identification of all known CpGV isolates. PMID:28820456

  7. Deciphering Single Nucleotide Polymorphisms and Evolutionary Trends in Isolates of the Cydia pomonella granulovirus.

    PubMed

    Wennmann, Jörg T; Radtke, Pit; Eberle, Karolin E; Gueli Alletti, Gianpiero; Jehle, Johannes A

    2017-08-18

    Six complete genome sequences of Cydia pomonella granulovirus (CpGV) isolates from Mexico (CpGV-M and CpGV-M1), England (CpGV-E2), Iran (CpGV-I07 and CpGV-I12), and Canada (CpGV-S) were aligned and analyzed for genetic diversity and evolutionary processes. The selected CpGV isolates represented recently identified phylogenetic lineages of CpGV, namely, the genome groups A to E. The genomes ranged from 120,816 bp to 124,269 bp. Several common differences between CpGV-M, -E2, -I07, -I12 and -S to CpGV-M1, the first sequenced and published CpGV isolate, were highlighted. Phylogenetic analysis based on the aligned genome sequences grouped CpGV-M and CpGV-I12 as the most derived lineages, followed by CpGV-E2, CpGV-S and CpGV-I07, which represent the most basal lineages. All of the genomes shared a high degree of co-linearity, with a common setup of 137 (CpGV-I07) to 142 (CpGV-M and -I12) open reading frames with no translocations. An overall trend of increasing genome size and a decrease in GC content was observed, from the most basal lineage (CpGV-I07) to the most derived (CpGV-I12). A total number of 788 positions of single nucleotide polymorphisms (SNPs) were determined and used to create a genome-wide SNP map of CpGV. Of the total amount of SNPs, 534 positions were specific for exactly one of either isolate CpGV-M, -E2, -I07, -I12 or -S, which allowed the SNP-based detection and identification of all known CpGV isolates.

  8. Single-nucleotide polymorphisms associated with outcome in metastatic renal cell carcinoma treated with sunitinib

    PubMed Central

    Beuselinck, B; Karadimou, A; Lambrechts, D; Claes, B; Wolter, P; Couchy, G; Berkers, J; Paridaens, R; Schöffski, P; Méjean, A; Verkarre, V; Lerut, E; de la Taille, A; Tourani, J-M; Bigot, P; Linassier, C; Négrier, S; Berger, J; Patard, J-J; Zucman-Rossi, J; Oudard, S

    2013-01-01

    Background: There are no validated markers that predict response in metastatic renal cell cancer (RCC) patients treated with sunitinib. We aim to study the impact of single-nucleotide polymorphisms (SNPs) that have recently been proposed as predictors of outcome to anti-VEGF-targeted therapy in metastatic RCC in an independent cohort of patients. Methods: We genotyped 16 key SNPs in 10 genes involved in sunitinib pharmacokinetics, pharmacodynamics and VEGF-independent angiogenesis in patients with metastatic clear-cell RCC treated with sunitinib as the first-line targeted therapy. Association between SNPs, progression-free survival (PFS) and overall survival (OS) were studied by multivariate Cox regression using relevant clinical factors associated with PFS and OS as covariates. Results: In a series of 88 patients, both PFS and OS were associated significantly with SNP rs1128503 in ABCB1 (P=0.027 and P=0.025), rs4073054 in NR1/3 (P=0.025 and P=0.035) and rs307821 in VEGFR3 (P=0.032 and P=0.011). Progression-free survival alone was associated with rs2981582 in FGFR2 (P=0.031) and rs2276707 in NR1/2 (P=0.047), whereas OS alone was associated with rs2307424 in NR1/3 (P=0.048) and rs307826 in VEGFR3 (P=0.013). Conclusion: Our results confirm former communications regarding the association between SNPs in ABCB1, NR1/2, NR1/3 and VEGFR3 and sunitinib outcome in clear-cell RCC. Prospective validation of these SNPs is now required. PMID:23462807

  9. SNPchiMp v.3: integrating and standardizing single nucleotide polymorphism data for livestock species.

    PubMed

    Nicolazzi, Ezequiel L; Caprera, Andrea; Nazzicari, Nelson; Cozzi, Paolo; Strozzi, Francesco; Lawley, Cindy; Pirani, Ali; Soans, Chandrasen; Brew, Fiona; Jorjani, Hossein; Evans, Gary; Simpson, Barry; Tosser-Klopp, Gwenola; Brauning, Rudiger; Williams, John L; Stella, Alessandra

    2015-04-10

    In recent years, the use of genomic information in livestock species for genetic improvement, association studies and many other fields has become routine. In order to accommodate different market requirements in terms of genotyping cost, manufacturers of single nucleotide polymorphism (SNP) arrays, private companies and international consortia have developed a large number of arrays with different content and different SNP density. The number of currently available SNP arrays differs among species: ranging from one for goats to more than ten for cattle, and the number of arrays available is increasing rapidly. However, there is limited or no effort to standardize and integrate array- specific (e.g. SNP IDs, allele coding) and species-specific (i.e. past and current assemblies) SNP information. Here we present SNPchiMp v.3, a solution to these issues for the six major livestock species (cow, pig, horse, sheep, goat and chicken). Original data was collected directly from SNP array producers and specific international genome consortia, and stored in a MySQL database. The database was then linked to an open-access web tool and to public databases. SNPchiMp v.3 ensures fast access to the database (retrieving within/across SNP array data) and the possibility of annotating SNP array data in a user-friendly fashion. This platform allows easy integration and standardization, and it is aimed at both industry and research. It also enables users to easily link the information available from the array producer with data in public databases, without the need of additional bioinformatics tools or pipelines. In recognition of the open-access use of Ensembl resources, SNPchiMp v.3 was officially credited as an Ensembl E!mpowered tool. Availability at http://bioinformatics.tecnoparco.org/SNPchimp.

  10. Expanded dog leukocyte antigen (DLA) single nucleotide polymorphism (SNP) genotyping reveals spurious class II associations

    PubMed Central

    Safra, N.; Pedersen, N.C.; Wolf, Z.; Johnson, E.G.; Liu, H.W.; Hughes, A.M.; Young, A.; Bannasch, D.L.

    2011-01-01

    The dog leukocyte antigen (DLA) system contains many of the functional genes of the immune system, thereby making it a candidate region for involvement in immune-mediated disorders. A number of studies have identified associations between specific DLA class II haplotypes and canine immune hemolytic anemia, thyroiditis, immune polyarthritis, type I diabetes mellitus, hypoadrenocorticism, systemic lupus erythematosus-related disease complex, necrotizing meningoencephalitis (NME) and anal furunculosis. These studies have relied on sequencing approximately 300 bases of exon 2 of each of the DLA class II genes: DLA-DRB1, DLA-DQA1 and DLA-DQB1. An association (odds ratio = 4.29) was identified by this method between Weimaraner dogs with hypertrophic osteodystrophy (HOD) and DLA-DRB1*01501. In the present study, a genotyping assay of 126 coding single nucleotide polymorphisms (SNPs) from across the entire DLA, spanning a region of 2.5 Mb (3,320,000–5,830,000) on CFA12, was developed and tested on Weimaraners with HOD, as well as two additional breeds with diseases associated with DLA class II: Nova Scotia duck tolling retrievers with hypoadrenocorticism and Pug dogs with NME. No significant associations were found between Weimaraners with HOD or Nova Scotia duck tolling retrievers with hypoadrenocorticism and SNPs spanning the DLA region. In contrast, significant associations were found with NME in Pug dogs, although the associated region extended beyond the class II genes. By including a larger number of genes from a larger genomic region a SNP genotyping assay was generated that provides coverage of the extended DLA region and may be useful in identifying and fine mapping DLA associations in dogs. PMID:21741283

  11. Exploring the efficacy of paternity and kinship testing based on single nucleotide polymorphisms.

    PubMed

    Mo, Shao-Kang; Liu, Ya-Cheng; Wang, Sheng-qi; Bo, Xiao-Chen; Li, Zhen; Chen, Ying; Ni, Ming

    2016-05-01

    Short tandem repeats (STRs) are conventional genetic markers typically used for paternity and kinship testing. As supplementary markers of STRs, single nucleotide polymorphisms (SNPs) have less discrimination power but broader applicability to degraded samples. The rapid improvement of next-generation sequencing (NGS) and multiplex amplification technologies also make it possible now to simultaneously identify dozens or even hundreds of SNP loci in a single pool. However, few studies have been endeavored to kinship testing based on SNP loci. In this study, we genotyped 90 autosomal human identity SNP loci with NGS, and investigated their testing efficacies based on the likelihood ratio model in eight pedigree scenarios involving paternity, half/full-sibling, uncle/nephew, and first-cousin relationships. We found that these SNPs might be sufficient to discriminate paternity and full-sibling, but impractical for more distant relatives such as uncle and cousin. Furthermore, we conducted an in silico study to obtain the theoretical tendency of how testing efficacy varied with increasing number of SNP loci. For each testing battery in a given pedigree scenario, we obtained distributions of logarithmic likelihood ratio for both simulated relatives and unrelated controls. The proportion of the overlapping area between the two distributions was defined as a false testing level (FTL) to evaluate the testing efficacy. We estimated that 85, 127, 491, and 1,858 putative SNP loci were required to discriminate paternity, full-sibling, half-sibling/uncle-nephew, and first-cousin (FTL, 0.1%), respectively. To test a half-sibling or nephew, an additional uncle relative could be included to decrease the required number of putative SNP loci to ∼320 (FTL, 0.1%). As a systematic computation of paternity and kinship testing based only on SNPs, our results could be informative for further studies and applications on paternity and kinship testing using SNP loci.

  12. Single nucleotide polymorphisms in colorectal cancer: associations with tumor site and TNM stage.

    PubMed

    Mates, Ioan Nicolae; Jinga, Viorel; Csiki, Irma Eva; Mates, Dana; Dinu, Daniela; Constantin, Adrian; Jinga, Mariana

    2012-03-01

    Colon tumor carcinogenesis and rectal tumor carcinogenesis have each been associated with different genetic features, but data are still controversial and are insufficient to support their distinct molecular biology. Recently, genome-wide association studies (GWAS) have also found heterogeneity in colorectal cancer (CRC) risks based on population ethnicity and tumor features. Several single nucleotide polymorphism (SNP) markers are described in the literature as having site and/or stage specificity, including rs10795668, rs3802842, rs6983267, and rs4939827. Replication of initial findings in different ethnic groups by independent studies is required to unravel the population-specific differences in risk. We examined whether inherited risk variants at rs10795668, rs3802842, rs6983267, and rs4939827 exerted a differential effect on colon and rectal cancers in a Romanian hospital based series of 153 CRC cases and 182 non-affected control subjects prospectively recruited between 2007 and 2010. Rectal tumors were significantly associated with rs4939827 (OR = 4.85, P = 0.002) and rs6983267 (OR = 3.00, P = 0.036), suggesting that carriers of risk alleles at these loci had increased susceptibility to development of rectal cancer rather than colon cancer. Carrying the C allele at rs3802842 appeared to be associated with a lower risk for rectal tumors in our dataset. We found no association between genotypes and tumor aggressiveness as reflected by TNM staging. The associations between SNPs, and tumor site and staging remain to be further clarified. Our results should be considered cautiously, but may be taken into account in future, larger epidemiological studies.

  13. Discovery and characterization of single-nucleotide polymorphisms in steelhead/rainbow trout, Oncorhynchus mykiss.

    PubMed

    Abadía-Cardoso, Alicia; Clemento, Anthony J; Garza, John Carlos

    2011-03-01

    Single-nucleotide polymorphisms (SNPs) have several advantages over other genetic markers, including lower mutation and genotyping error rates, ease of inter-laboratory standardization, and the prospect of high-throughput, low-cost genotyping. Nevertheless, their development and use has only recently moved beyond model organisms to groups such as salmonid fishes. Oncorhynchus mykiss is a salmonid native to the North Pacific rim that has now been introduced throughout the world for fisheries and aquaculture. The anadromous form of the species is known as steelhead. Native steelhead populations on the west coast of the United States have declined and many now have protected status. The nonanadromous, or resident, form of the species is termed rainbow, redband or golden trout. Additional life history and morphological variation, and interactions between the forms, make the species challenging to study, monitor and evaluate. Here, we describe the discovery, characterization and assay development for 139 SNP loci in steelhead/rainbow trout. We used EST sequences from existing genomic databases to design primers for 480 genes. Sanger-sequencing products from these genes provided 130 KB of consensus sequence in which variation was surveyed for 22 individuals from steelhead, rainbow and redband trout groups. The resulting TaqMan assays were surveyed in five steelhead populations and three rainbow trout stocks, where they had a mean minor allele frequency of 0.15-0.26 and observed heterozygosity of 0.18-0.35. Mean F(ST) was 0.204. The development of SNPs for O. mykiss will help to provide highly informative genetic tools for individual and stock identification, pedigree reconstruction, phylogeography and ecological investigation. © 2011 Blackwell Publishing Ltd.

  14. Relationships between Single Nucleotide Polymorphism Markers and Meat Quality Traits of Duroc Breeding Stocks in Korea

    PubMed Central

    Choi, J. S.; Jin, S. K.; Jeong, Y. H.; Jung, Y. C.; Jung, J. H.; Shim, K. S.; Choi, Y. I.

    2016-01-01

    This study was conducted to determine the relationships of five intragenic single nucleotide polymorphism (SNP) markers (protein kinase adenosine monophosphate-activated γ3 subunit [PRKAG3], fatty acid synthase [FASN], calpastatin [CAST], high mobility group AT-hook 1 [HMGA1], and melanocortin-4 receptor [MC4R]) and meat quality traits of Duroc breeding stocks in Korea. A total of 200 purebred Duroc gilts from 8 sires and 40 dams at 4 pig breeding farms from 2010 to 2011 reaching market weight (110 kg) were slaughtered and their carcasses were chilled overnight. Longissimus dorsi muscles were removed from the carcass after 24 h of slaughter and used to determine pork properties including carcass weight, backfat thickness, moisture, intramuscular fat, pH24h, shear force, redness, texture, and fatty acid composition. The PRKAG3, FASN, CAST, and MC4R gene SNPs were significantly associated with the meat quality traits (p<0.003). The meats of PRKAG3 (A 0.024/G 0.976) AA genotype had higher pH, redness and texture than those from PRKAG3 GG genotype. Meats of FASN (C 0.301/A 0.699) AA genotype had higher backfat thickness, texture, stearic acid, oleic acid and polyunsaturated fatty acid than FASN CC genotype. While the carcasses of CAST (A 0.373/G 0.627) AA genotype had thicker backfat, and lower shear force, palmitoleic acid and oleic acid content, they had higher stearic acid content than those from the CAST GG genotype. The MC4R (G 0.208/A 0.792) AA genotype were involved in increasing backfat thickness, carcass weight, moisture and saturated fatty acid content, and decreasing unsaturated fatty acid content in Duroc meat. These results indicated that the five SNP markers tested can be a help to select Duroc breed to improve carcass and meat quality properties in crossbred pigs. PMID:27507182

  15. Methods to Increase the Sensitivity of High Resolution Melting Single Nucleotide Polymorphism Genotyping in Malaria.

    PubMed

    Daniels, Rachel; Hamilton, Elizabeth J; Durfee, Katelyn; Ndiaye, Daouda; Wirth, Dyann F; Hartl, Daniel L; Volkman, Sarah K

    2015-11-10

    Despite decades of eradication efforts, malaria remains a global burden. Recent renewed interest in regional elimination and global eradication has been accompanied by increased genomic information about Plasmodium parasite species responsible for malaria, including characteristics of geographical populations as well as variations associated with reduced susceptibility to anti-malarial drugs. One common genetic variation, single-nucleotide polymorphisms (SNPs), offers attractive targets for parasite genotyping. These markers are useful not only for tracking drug resistance markers but also for tracking parasite populations using markers not under drug or other selective pressures. SNP genotyping methods offer the ability to track drug resistance as well as to fingerprint individual parasites for population surveillance, particularly in response to malaria control efforts in regions nearing elimination status. While informative SNPs have been identified that are agnostic to specific genotyping technologies, high-resolution melting (HRM) analysis is particularly suited to field-based studies. Compared to standard fluorescent-probe based methods that require individual SNPs in a single labeled probe and offer at best 10% sensitivity to detect SNPs in samples that contain multiple genomes (polygenomic), HRM offers 2-5% sensitivity. Modifications to HRM, such as blocked probes and asymmetric primer concentrations as well as optimization of amplification annealing temperatures to bias PCR towards amplification of the minor allele, further increase the sensitivity of HRM. While the sensitivity improvement depends on the specific assay, we have increased detection sensitivities to less than 1% of the minor allele. In regions approaching malaria eradication, early detection of emerging or imported drug resistance is essential for prompt response. Similarly, the ability to detect polygenomic infections and differentiate imported parasite types from cryptic local reservoirs

  16. A self-assembled deoxyribonucleic acid concatemer for sensitive detection of single nucleotide polymorphism.

    PubMed

    Wu, Wei; Chen, Junhua; Fang, Zhiyuan; Ge, Chenchen; Xiang, Zhicheng; Ouyang, Chuanyan; Lie, Puchang; Xiao, Zhuo; Yu, Luxin; Wang, Lin; Zeng, Lingwen

    2013-12-04

    Polymerase-free and label-free strategies for DNA detection have shown excellent sensitivity and specificity in various biological samples. Herein, we propose a method for single nucleotide polymorphism (SNP) detection by using self-assembled DNA concatemers. Capture probes, bound to magnetic beads, can joint mediator probes by T4 DNA ligase in the presence of target DNA that is complementary to the capture probe and mediator probe. The mediator probes trigger self-assembly of two auxiliary probes on magnetic beads to form DNA concatemers. Separated by a magnetic rack, the double-stranded concatemers on beads can recruit a great amount of SYBR Green I and eventually result in amplified fluorescent signals. In comparison with reported methods for SNP detection, the concatemer-based approach has significant advantages of low background, simplicity, and ultrasensitivity, making it as a convenient platform for clinical applications. As a proof of concept, BRAF(T1799A) oncogene mutation, a SNP involved in diverse human cancers, was used as a model target. The developed approach using a fluorescent intercalator can detect as low as 0.1 fM target BRAF(T1799A) DNA, which is better than those previously published methods for SNP detection. This method is robust and can be used directly to measure the BRAF(T1799A) DNA in complex human serum with excellent recovery (94-103%). It is expected that this assay principle can be directed toward other SNP genes by simply changing the mediator probe and auxiliary probes. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. ABCG2 regulatory single-nucleotide polymorphisms alter in-vivo enhancer activity and expression.

    PubMed

    Eclov, Rachel J; Kim, Mee J; Chhibber, Aparna; Smith, Robin P; Ahituv, Nadav; Kroetz, Deanna L

    2017-09-18

    The expression and activity of the breast cancer resistance protein (ABCG2) contributes toward the pharmacokinetics of endogenous and xenobiotic substrates. The effect of genetic variation on the activity of cis-regulatory elements and nuclear response elements in the ABCG2 locus and their contribution toward ABCG2 expression have not been investigated systematically. In this study, the effect of genetic variation on the in-vitro and in-vivo enhancer activity of six previously identified liver enhancers in the ABCG2 locus was examined. Reference and variant liver enhancers were tested for their ability to alter luciferase activity in vitro in HepG2 and HEK293T cell lines and in vivo using a hydrodynamic tail vein assay. Positive in-vivo single-nucleotide polymorphisms (SNPs) were tested for association with gene expression and for altered protein binding in electrophoretic mobility shift assays. Multiple SNPs were found to alter enhancer activity in vitro. Four of these variants (rs9999111, rs12508471, ABCG2RE1*2, and rs149713212) decreased and one (rs2725263) increased enhancer activity in vivo. In addition, rs9999111 and rs12508471 were associated with ABCG2 expression in lymphoblastoid cell lines, lymphocytes, and T cells, and showed increased HepG2 nuclear protein binding. This study identifies SNPs within regulatory regions of the ABCG2 locus that alter enhancer activity in vitro and in vivo. Several of these SNPs correlate with tissue-specific ABCG2 expression and alter DNA/protein binding. These SNPs could contribute toward reported tissue-specific variability in ABCG2 expression and may influence the correlation between ABCG2 expression and disease risk or the pharmacokinetics and pharmacodynamics of breast cancer resistance protein substrates.

  18. Single nucleotide polymorphism isolated from a novel EST dataset in garden asparagus (Asparagus officinalis L.).

    PubMed

    Mercati, Francesco; Riccardi, Paolo; Leebens-Mack, Jim; Abenavoli, Maria Rosa; Falavigna, Agostino; Sunseri, Francesco

    2013-04-01

    Single nucleotide polymorphisms (SNPs) and simple sequence repeats (SSR) are abundant and evenly distributed co-dominant molecular markers in plant genomes. SSRs are valuable for marker assisted breeding and positional cloning of genes associated traits of interest. Although several high throughput platforms have been developed to identify SNP and SSR markers for analysis of segregant plant populations, breeding in garden asparagus (Asparagus officinalis L.) has been limited by a low content of such markers. In this study massively parallel GS-FLX pyro-sequencing technology (454 Life Sciences) has been used to sequence and compare transcriptome from two genotypes: a rust tolerant male (1770) and a susceptible female (G190). A total of 122,963 and 99,368 sequence reads, with an average length of 245.7bp, have been recovered from accessions 1770 and 190 respectively. A computational pipeline has been used to predict and visually inspect putative SNPs and SSR sequences. Analysis of Gene Ontology (GO) slim annotation assignments for all assembled uniscripts indicated that the 24,403 assemblies represent genes from a broad array of functions. Further, over 1800 putative SNPs and 1000 SSRs were detected. One hundred forty-four SNPs together with 60 selected SSRs were validated and used to develop a preliminary genetic map by using a large BC(1) population, derived from 1770 and G190. The abundance of SNPs and SSRs provides a foundation for the development of saturated genetic maps and their utilization in assisted asparagus breeding programs. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. A comparative analysis of chaotic particle swarm optimizations for detecting single nucleotide polymorphism barcodes.

    PubMed

    Chuang, Li-Yeh; Moi, Sin-Hua; Lin, Yu-Da; Yang, Cheng-Hong

    2016-10-01

    Evolutionary algorithms could overcome the computational limitations for the statistical evaluation of large datasets for high-order single nucleotide polymorphism (SNP) barcodes. Previous studies have proposed several chaotic particle swarm optimization (CPSO) methods to detect SNP barcodes for disease analysis (e.g., for breast cancer and chronic diseases). This work evaluated additional chaotic maps combined with the particle swarm optimization (PSO) method to detect SNP barcodes using a high-dimensional dataset. Nine chaotic maps were used to improve PSO method results and compared the searching ability amongst all CPSO methods. The XOR and ZZ disease models were used to compare all chaotic maps combined with PSO method. Efficacy evaluations of CPSO methods were based on statistical values from the chi-square test (χ(2)). The results showed that chaotic maps could improve the searching ability of PSO method when population are trapped in the local optimum. The minor allele frequency (MAF) indicated that, amongst all CPSO methods, the numbers of SNPs, sample size, and the highest χ(2) value in all datasets were found in the Sinai chaotic map combined with PSO method. We used the simple linear regression results of the gbest values in all generations to compare the all methods. Sinai chaotic map combined with PSO method provided the highest β values (β≥0.32 in XOR disease model and β≥0.04 in ZZ disease model) and the significant p-value (p-value<0.001 in both the XOR and ZZ disease models). The Sinai chaotic map was found to effectively enhance the fitness values (χ(2)) of PSO method, indicating that the Sinai chaotic map combined with PSO method is more effective at detecting potential SNP barcodes in both the XOR and ZZ disease models. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Performance Metrics for Selecting Single Nucleotide Polymorphisms in Late-onset Alzheimer’s Disease

    PubMed Central

    Chen, Yen-Ching; Hsiao, Chi-Jung; Jung, Chien-Cheng; Hu, Hui-Han; Chen, Jen-Hau; Lee, Wen-Chung; Chiou, Jeng-Min; Chen, Ta-Fu; Sun, Yu; Wen, Li-Li; Yip, Ping-Keung; Chu, Yi-Min; Chen, Chien-Jen; Yang, Hwai-I

    2016-01-01

    Previous genome-wide association studies using P-values to select single nucleotide polymorphisms (SNPs) have suffered from high false-positive and false-negative results. This case-control study recruited 713 late-onset Alzheimer’s disease (LOAD) cases and controls aged ≥65 from three teaching hospitals in northern Taiwan from 2007 to 2010. Performance metrics were used to select SNPs in stage 1, which were then genotyped to another dataset (stage 2). Four SNPs (CPXM2 rs2362967, APOC1 rs4420638, ZNF521 rs7230380, and rs12965520) were identified for LOAD by both traditional P-values (without correcting for multiple tests) and performance metrics. After correction for multiple tests, no SNPs were identified by traditional P-values. Simultaneous testing of APOE e4 and APOC1 rs4420638 (the SNP with the best performance in the performance metrics) significantly improved the low sensitivity of APOE e4 from 0.50 to 0.78. A point-based genetic model including these 2 SNPs and important covariates was constructed. Compared with elders with low-risks score (0–6), elders belonging to moderate-risk (score = 7–11) and high-risk (score = 12–18) groups showed a significantly increased risk of LOAD (adjusted odds ratio = 7.80 and 46.93, respectively; Ptrend < 0.0001). Performance metrics allow for identification of markers with moderate effect and are useful for creating genetic tests with clinical and public health implications. PMID:27805002

  1. Interaction of iron status with single nucleotide polymorphisms on incidence of type 2 diabetes.

    PubMed

    Kim, Jihye; Kim, Mi Kyung; Jung, Sukyoung; Lim, Ji Eun; Shin, Myung-Hee; Kim, Yeon-Jung; Oh, Bermseok

    2017-01-01

    The objective of this study is to find single nucleotide polymorphisms (SNPs) associated with a risk of Type 2 diabetes (T2D) in Korean adults and to investigate the longitudinal association between these SNPs and T2D and the interaction effects of iron intake and average hemoglobin level. Data from the KoGES_Ansan and Ansung Study were used. Gene-iron interaction analysis was conducted using a two-step approach. To select candidate SNPs associated with T2D, a total of 7,935 adults at baseline were included in genome-wide association analysis (step one). After excluding T2D prevalent cases, prospective analyses were conducted with 7,024 adults aged 40-69 (step two). The association of selected SNPs and iron status with T2D and their interaction were determined using a Cox proportional hazard model. A total of 3 SNPs [rs9465871 (CDKAL1), rs10761745 (JMJD1C), and rs163177 (KCNQ1)] were selected as candidate SNPs related to T2D. Among them, rs10761745 (JMJD1C) and rs163177 (KCNQ1) were prospectively associated with T2D. High iron intake was also prospectively associated with the risk of T2D after adjusting for covariates. Average hemoglobin level was positively associated with T2D after adjusting for covariates in women. We also found significant interaction effects between rs10761745 (JMJD1C) and average hemoglobin levels on the risk of T2D among women with normal inflammation and without anemia at baseline. In conclusion, KCNQ1 and JMJD1C may prospectively contribute to the risk of T2D incidence among adults over the age of 40 and JMJD1C, but CDKAL1 may not, and iron status may interactively contribute to T2D incidence in women.

  2. Single nucleotide polymorphism (SNP) discovery in mammals: a targeted-gene approach.

    PubMed

    Aitken, Nicola; Smith, Steven; Schwarz, Carsten; Morin, Phillip A

    2004-06-01

    Single nucleotide polymorphisms (SNPs) have rarely been exploited in nonhuman and nonmodel organism genetic studies. This is due partly to difficulties in finding SNPs in species where little DNA sequence data exist, as well as to a lack of robust and inexpensive genotyping methods. We have explored one SNP discovery method for molecular ecology, evolution, and conservation studies to evaluate the method and its limitations for population genetics in mammals. We made use of 'CATS' (or 'EPIC') primers to screen for novel SNPs in mammals. Most of these primer sets were designed from primates and/or rodents, for amplifying intron regions from conserved genes. We have screened 202 loci in 16 representatives of the major mammalian clades. Polymerase chain reaction (PCR) success correlated with phylogenetic distance from the human and mouse sequences used to design most primers; for example, specific PCR products from primates and the mouse amplified the most consistently and the marsupial and armadillo amplifications were least successful. Approximately 24% (opossum) to 65% (chimpanzee) of primers produced usable PCR product(s) in the mammals tested. Products produced generally high but variable levels of readable sequence and similarity to the expected genes. In a preliminary screen of chimpanzee DNA, 12 SNPs were identified from six (of 11) sequenced regions, yielding a SNP on average every 400 base pairs (bp). Given the progress in genome sequencing, and the large numbers of CATS-like primers published to date, this approach may yield sufficient SNPs per species for population and conservation genetic studies in nonmodel mammals and other organisms.

  3. Single nucleotide polymorphism in sugar pathway and disease resistance genes in sugarcane.

    PubMed

    Parida, Swarup K; Kalia, Sanjay; Pandit, Awadhesh; Nayak, Preetam; Singh, Ram Kushal; Gaikwad, Kishor; Srivastava, Prem Shankar; Singh, Nagendra K; Mohapatra, Trilochan

    2016-08-01

    Single nucleotide polymorphism in sugar pathway and disease resistance genes showing genetic association with sugar content and red rot resistance would be useful in marker-assisted genetic improvement of sugarcane. Validation and genotyping of potential sequence variants in candidate genes are necessary to understand their functional significance and trait association potential. We discovered, characterized, validated and genotyped SNPs and InDels in sugar pathway and disease resistance genes of Saccharum complex and sugarcane varieties using amplicon sequencing and CAPS assays. The SNPs were abundant in the non-coding 3'UTRs than 5'UTRs and coding sequences depicting a strong bias toward C to T transition substitutions than transversions. Sequencing of cloned amplicons validated 61.6 and 45.2 % SNPs detected in silico in 21 sugar pathway and 16 disease resistance genes, respectively. Sixteen SNPs in four sugar pathway genes and 10 SNPs in nine disease resistance genes were validated through cost-effective CAPS assay. Functional and adaptive significance of SNP and protein haplotypes identified in sugar pathway and disease resistance genes was assessed by correlating their allelic variation with missense amino acid substitutions in the functional domains, alteration in protein structure models and possible modulation of catalytic enzyme activity in contrasting high and low sugar and moderately red rot resistant and highly susceptible sugarcane genotypes. A strong genetic association of five SNPs in the sugar pathway and disease resistance genes, and an InDel marker in the promoter sequence of sucrose synthase-2 gene, with sugar content and red rot resistance, was evident. The functionally relevant SNPs and InDels, detected and validated in sugar pathway and disease resistance genes, and genic CAPS markers designed, would be of immense use in marker-assisted genetic improvement of sugarcane for sugar content and disease resistance.

  4. A 2-stage genome-wide association study to identify single nucleotide polymorphisms associated with development of urinary symptoms after radiotherapy for prostate cancer.

    PubMed

    Kerns, Sarah L; Stone, Nelson N; Stock, Richard G; Rath, Lynda; Ostrer, Harry; Rosenstein, Barry S

    2013-07-01

    We identified single nucleotide polymorphisms associated with change in the AUA Symptom Score after radiotherapy for prostate cancer. A total of 723 patients treated with brachytherapy with or without external beam radiation therapy were assessed at baseline and annually after radiotherapy using the AUA Symptom Score. A 2-stage genome-wide association study was performed with the primary end point of change in AUA Symptom Score from baseline at each of 4 followup periods. Single nucleotide polymorphism associations were assessed using multivariable linear regression adjusting for pre-radiotherapy AUA Symptom Score severity category and clinical variables. Fisher's trend method was used to calculate combined p values from the discovery and replication cohorts. A region on chromosome 9p21.2 containing 8 single nucleotide polymorphisms showed the strongest association with change in AUA Symptom Score (combined p values 8.8×10(-6) to 6.5×10(-7) at 2 to 3 years after radiotherapy). These single nucleotide polymorphisms form a haplotype block that encompasses the inflammation signaling gene IFNK. These single nucleotide polymorphisms were independently associated with change in AUA Symptom Score after adjusting for clinical predictors including smoking history, hypertension, α-blocker use and pre-radiotherapy AUA Symptom Score. An additional 24 single nucleotide polymorphisms showed moderate significance for association with change in AUA Symptom Score. Several of these single nucleotide polymorphisms were more strongly associated with change in specific AUA Symptom Score items, including rs13035033 in the MYO3B gene, which was associated with straining (beta coefficient 0.9, 95% CI 0.6-1.2, p = 5.0×10(-9)). If validated, these single nucleotide polymorphisms could provide insight into the biology underlying urinary symptoms following radiotherapy and could lead to development of an assay to identify patients at risk for experiencing these effects. Copyright © 2013

  5. A functional single-nucleotide polymorphism in the human cytidine deaminase gene contributing to ara-C sensitivity.

    PubMed

    Yue, Lijie; Saikawa, Yutaka; Ota, Kazuhisa; Tanaka, Motohiro; Nishimura, Ryosei; Uehara, Takahiro; Maeba, Hideaki; Ito, Takashi; Sasaki, Takuma; Koizumi, Shoichi

    2003-01-01

    To test the hypothesis that analyses of drug targets for polymorphism will help to establish gene-based information for the treatment of cancer patients, we investigated the functional single-nucleotide polymorphisms in the human cytidine deaminase (HDCA) gene. The cDNAs from 52 leukaemia/lymphoma samples and 169 control blood samples were direct-sequenced and analysed for the polymorphisms. Three different polymorphisms (A79C, G208A and T435C) were identified in the coding region of the HDCA gene and displayed allelic frequencies of 20.1%, 4.3% and 70.1%, respectively. No association with susceptibility to disease was observed. A novel polymorphism, G208A produced an alanine to threonine substitution (A70T) within the conserved catalytic domain. By introduction of the polymorphic HCDA genes into the yeast CDA-null mutants, the HCDA-70T showed 40% and 32% activity of prototype for cytidine and ara-C substrates, respectively (P < 0.01). The ara-C IC50 value of the yeast transformants carrying HCDA-70T was 757 +/- 33 micromol and was significantly lower (P < 0.01) than that of prototype (941 +/- 58 micromol). This study demonstrated a population characterized with 208A genotype for, which potentially leads one more sensitive to ara-C treatment than prototype. Accumulation of polymorphisms in the genes responsible for drug metabolism and determination of polymorphism-induced biological variations could provide the additional therapeutic strategies in risk-stratified protocols for the treatment of childhood malignancies.

  6. Single-nucleotide polymorphisms in dopamine receptor D1 are associated with heroin dependence but not impulsive behavior.

    PubMed

    Liu, J H; Zhong, H J; Dang, J; Peng, L; Zhu, Y S

    2015-04-27

    Previous studies suggested that dopamine receptors may be associated with drug dependence and impulsive behavior. In this study, we examined whether dopamine receptor D1 (DRD1) is associated with heroin dependence and the impulsive behavior in patients with heroin dependence. The participants included 367 patients with heroin dependence and 372 healthy controls from a Chinese Han population. We examined the potential association between heroin dependence and 8 single-nucleotide polymorphisms (rs686, rs4867798, rs1799914, rs4532, rs5326, rs265981, rs10078714, rs10078866) of DRD1, and the associations between single single-nucleotide polymorphism, haplotypes, and impulsive behavior. Compared with the healthy controls, heroin dependence patients showed a significantly lower frequency of GG homozygotes of rs5326 (P = 0.027), significantly lower frequency of the G allele of rs5326 (P = 0.007, odds ratio = 0.718, 95% confidence interval = 0.565-0.913), and higher frequency of the rs265981 G allele (P = 0.0002, odds ratio = 1.711, 95% confidence interval = 1.281-2.287). Furthermore, strong linkage disequilibrium was observed in 2 blocks (D' > 0.9). However, no association was observed between haplotypes and heroin dependence in the 2 blocks. This genetic behavior correlation study showed that the 2 single-nucleotide polymorphisms, rs5326 and rs265981, were not associated with the impulsive behavior in patients with heroin dependence. These findings indicate that DRD1 gene polymorphisms are related to heroin dependence in a Chinese Han population and may be informative for future genetic or biological studies on heroin dependence.

  7. Nucleotide diversity in starch synthase IIa and validation of single nucleotide polymorphisms in relation to starch gelatinization temperature and other physicochemical properties in rice (Oryza sativa L.).

    PubMed

    Bao, J S; Corke, H; Sun, M

    2006-11-01

    The characteristics of starch, such as gelatinization temperature (GT), apparent amylose content (AAC), pasting temperature (PT) and other physicochemical properties, determine the quality of various products of rice, e.g., eating, cooking and processing qualities. The GT of rice flour is controlled by the alk locus, which has been co-mapped to the starch synthase IIa (SSIIa) locus. In this study, we sequenced a 2,051 bp DNA fragment spanning part of intron 6, exon 7, intron 7, exon 8 and part of 3' untranslated region of SSIIa for 30 rice varieties with diverse geographical distribution and variation in starch physicochemical properties. A total of 24 single nucleotide polymorphisms (SNPs) and one insertion/deletion (InDel) were identified, which could be classified into nine haplotypes. The mean pairwise nucleotide diversity pi was 0.00292, and Watterson's estimator theta was 0.00296 in this collection of rice germplasm. Tajima's D test for selection showed no significant deviation from the neutral expectation (D = - 0.04612, P > 0.10). However, significant associations were found between seven of the SNPs and peak GT (T (p)) at P < 0.05, of which two contiguous SNPs (GC/TT) showed a very strong association with T (p) (P < 0.0001). With some rare exception, this GC/TT polymorphism alone can differentiate rice varieties with high or intermediate GT (possessing the GC allele) from those with low GT (possessing the TT allele). In contrast, none of these SNPs or InDel was significantly associated with amylose content. A further 509 rice varieties with known physicochemical properties (e.g., AAC and PT) and known alleles of other starch synthesizing genes were genotyped for the SSIIa GC/TT alleles. Association analysis indicated that 82% of the total variation of AAC in these samples could be explained by a (CT)n simple sequence repeat (SSR) and a G/T SNP of Waxy gene (Wx), and 62.4% of the total variation of PT could be explained by the GC/TT polymorphism. An

  8. Cacao single-nucleotide polymorphism (SNP) markers: A discovery strategy to identify SNPs for genotyping, genetic mapping and genome wide association studies (GWAS)

    USDA-ARS?s Scientific Manuscript database

    Single-nucleotide polymorphisms (SNPs) are the most common genetic markers in Theobroma cacao, occurring approximately once in every 200 nucleotides. SNPs, like microsatellites, are co-dominant and PCR-based, but they have several advantages over microsatellites. They are unambiguous, so that a SN...

  9. Identification of novel single nucleotide polymorphisms (SNPs) in deer (Odocoileus spp.) using the BovineSNP50 BeadChip.

    PubMed

    Haynes, Gwilym D; Latch, Emily K

    2012-01-01

    Single nucleotide polymorphisms (SNPs) are growing in popularity as a genetic marker for investigating evolutionary processes. A panel of SNPs is often developed by comparing large quantities of DNA sequence data across multiple individuals to identify polymorphic sites. For non-model species, this is particularly difficult, as performing the necessary large-scale genomic sequencing often exceeds the resources available for the project. In this study, we trial the Bovine SNP50 BeadChip developed in cattle (Bos taurus) for identifying polymorphic SNPs in cervids Odocoileus hemionus (mule deer and black-tailed deer) and O. virginianus (white-tailed deer) in the Pacific Northwest. We found that 38.7% of loci could be genotyped, of which 5% (n = 1068) were polymorphic. Of these 1068 polymorphic SNPs, a mixture of putatively neutral loci (n = 878) and loci under selection (n = 190) were identified with the F(ST)-outlier method. A range of population genetic analyses were implemented using these SNPs and a panel of 10 microsatellite loci. The three types of deer could readily be distinguished with both the SNP and microsatellite datasets. This study demonstrates that commercially developed SNP chips are a viable means of SNP discovery for non-model organisms, even when used between very distantly related species (the Bovidae and Cervidae families diverged some 25.1-30.1 million years before present).

  10. Identification of Novel Single Nucleotide Polymorphisms (SNPs) in Deer (Odocoileus spp.) Using the BovineSNP50 BeadChip

    PubMed Central

    Haynes, Gwilym D.; Latch, Emily K.

    2012-01-01

    Single nucleotide polymorphisms (SNPs) are growing in popularity as a genetic marker for investigating evolutionary processes. A panel of SNPs is often developed by comparing large quantities of DNA sequence data across multiple individuals to identify polymorphic sites. For non-model species, this is particularly difficult, as performing the necessary large-scale genomic sequencing often exceeds the resources available for the project. In this study, we trial the Bovine SNP50 BeadChip developed in cattle (Bos taurus) for identifying polymorphic SNPs in cervids Odocoileus hemionus (mule deer and black-tailed deer) and O. virginianus (white-tailed deer) in the Pacific Northwest. We found that 38.7% of loci could be genotyped, of which 5% (n = 1068) were polymorphic. Of these 1068 polymorphic SNPs, a mixture of putatively neutral loci (n = 878) and loci under selection (n = 190) were identified with the FST-outlier method. A range of population genetic analyses were implemented using these SNPs and a panel of 10 microsatellite loci. The three types of deer could readily be distinguished with both the SNP and microsatellite datasets. This study demonstrates that commercially developed SNP chips are a viable means of SNP discovery for non-model organisms, even when used between very distantly related species (the Bovidae and Cervidae families diverged some 25.1−30.1 million years before present). PMID:22590559

  11. High volume molecular genetic identification of single nucleotide polymorphisms using Genetic Bit Analysis Application to human genetic diagnosis

    SciTech Connect

    Boyce-Jacino, M.T.; Reynolds, J.; Nikiforov, T.

    1994-09-01

    The most common type of genetic disease-associated mutation is the single nucleotide polymorphism (SNP). Because most genetic diseases can be caused by multiple SNPs in the same gene, effective routine diagnosis of complex genetic diseases is dependent on a simple and reliable method of interrogating SNP sites. Molecular Tool`s solid phase assay capable of direct genotyping (single base sequencing) of SNP sites, Genetic Bit Analysis (GBA), involves hybridization-capture of a single-stranded PCR product to a sequence-specific, microtiter plate-bound oligonucleotide primer. The captured PCR product then acts as template for single-base extension of the capture primer across the polymorphic site, enabling direct determination of the base composition of the polymorphism through a simple colormetric assay. Genotyping in a high volume, semi-automated, processing system with a current capacity of 100 SNP interrogations per technician per day enables the screening of candidate mutations rapidly and cost-effectively, critically important to comprehensive genetic diagnosis. Using this gel-free technology, we have developed prototype diagnostic tests for CFTR and ApoE polymorphisms which enable direct sequencing of the polymorphic base at each site of interest. Routine clinical diagnosis of genetically complex diseases such as cystic fibrosis is dependent on this combination of robust biochemistry and simple format. Additionally, the ability to transfer the format and biochemistry to any disease gene of interest enables the broad application of this technology to clinical diagnostics, especially for genetically complex diseases.

  12. Multilocus patterns of nucleotide polymorphism and demographic change in Taxodium distichum (Cupressaceae) in the lower Mississippi River alluvial valley

    USGS Publications Warehouse

    Kusumi, J.; Zidong, L.; Kado, T.; Tsumura, Y.; Middleton, B.A.; Tachida, H.

    2010-01-01

    Premise of the Study: Studies of the geographic patterns of genetic variation can give important insights into the past population structure of species. Our study species, Taxodium distichum L. (bald-cypress), prefers riparian and wetland habitats and is widely distributed in southeastern North America and Mexico. We compared the genetic variation of T. distichum with that of its close relative, Cryptomeria japonica, which is endemic to Japan. Methods: Nucleotide polymorphisms of T. distichum in the lower Mississippi River alluvial valley, USA, were examined at 10 nuclear loci. Key Results: The average nucleotide diversity at silent sites, 7sil, across the 10 loci in T. distichum was higher than that of C. japonica (7sil = 0.00732 and 0.00322, respectively). In T. distichum, Tajima's D values were each negative at 9 out of 10 loci, which suggests a recent population expansion. Maximum-likelihood and Bayesian estimations of the exponential population growth rate (g) of T. distichum populations indicated that this species had expanded approximately at the rate of 1.7 - 1.0 10 -6 per year in the past. Conclusions: Taxodium distichum had signifi cantly higher nucleotide variation than C. japonica, and its patterns of polymorphism contrasted strikingly with those of the latter, which previously has been inferred to have experienced a reduction in population size.

  13. Expression-based genetic/physical maps of single-nucleotide polymorphisms identified by the cancer genome anatomy project.

    PubMed

    Clifford, R; Edmonson, M; Hu, Y; Nguyen, C; Scherpbier, T; Buetow, K H

    2000-08-01

    SNPs (Single-Nucleotide Polymorphisms), the most common DNA variant in humans, represent a valuable resource for the genetic analysis of cancer and other illnesses. These markers may be used in a variety of ways to investigate the genetic underpinnings of disease. In gene-based studies, the correlations between allelic variants of genes of interest and particular disease states are assessed. An extensive collection of SNP markers may enable entire molecular pathways regulating cell metabolism, growth, or differentiation to be analyzed by this approach. In addition, high-resolution genetic maps based on SNPs will greatly facilitate linkage analysis and positional cloning. The National Cancer Institute's CGAP-GAI (Cancer Genome Anatomy Project Genetic Annotation Initiative) group has identified 10,243 SNPs by examining publicly available EST (Expressed Sequence Tag) chromatograms. More than 6800 of these polymorphisms have been placed on expression-based integrated genetic/physical maps. In addition to a set of comprehensive SNP maps, we have produced maps containing single nucleotide polymorphisms in genes expressed in breast, colon, kidney, liver, lung, or prostate tissue. The integrated maps, a SNP search engine, and a Java-based tool for viewing candidate SNPs in the context of EST assemblies can be accessed via the CGAP-GAI web site (http://cgap.nci.nih.gov/GAI/). Our SNP detection tools are available to the public for noncommercial use.

  14. Two bi-allelic single nucleotide polymorphisms within the promoter region of the horse tumour necrosis factor alpha gene.

    PubMed

    Matiasovic, J; Lukeszová, L; Horín, P

    2002-08-01

    Primers based on GenBank sequences within the 5' untranslated region (UTR) of the human and horse tumour necrosis factor alpha (TNF-alpha) genes were designed and used to amplify a 522-bp product. Sequencing of five clones derived from five independent PCRs obtained from three different animals of three different breeds (Old Kladruber, Akhal-Teke and Shetland Pony) revealed a high level of sequence identity to the TNF-alpha promoter regions of other species. The existing GenBank horse sequences were confirmed and extended upstream by 230 nucleotides. Based on the sequence obtained, a new horse-specific forward primer was designed to amplify a 213-bp PCR product, which was screened for polymorphism using single-strand conformation polymorphism (SSCP). Three allelic variants of the horse TNF-alpha gene were identified and sequenced (GenBank accession numbers ADF 349558-60). Two single nucleotide polymorphisms explained the existence of the three SSCP alleles detected: C/T and T/C single base pair substitutions at positions 137 and 147, respectively. Differences in allelic frequencies between Old Kladruber and Akhal-Teke breeds were observed.

  15. Association analysis of single nucleotide polymorphisms in candidate genes with root traits in maize (Zea mays L.) seedlings.

    PubMed

    Kumar, Bharath; Abdel-Ghani, Adel H; Pace, Jordon; Reyes-Matamoros, Jenaro; Hochholdinger, Frank; Lübberstedt, Thomas

    2014-07-01

    Several genes involved in maize root development have been isolated. Identification of SNPs associated with root traits would enable the selection of maize lines with better root architecture that might help to improve N uptake, and consequently plant growth particularly under N deficient conditions. In the present study, an association study (AS) panel consisting of 74 maize inbred lines was screened for seedling root traits in 6, 10, and 14-day-old seedlings. Allele re-sequencing of candidate root genes Rtcl, Rth3, Rum1, and Rul1 was also carried out in the same AS panel lines. All four candidate genes displayed different levels of nucleotide diversity, haplotype diversity and linkage disequilibrium. Gene based association analyses were carried out between individual polymorphisms in candidate genes, and root traits measured in 6, 10, and 14-day-old maize seedlings. Association analyses revealed several polymorphisms within the Rtcl, Rth3, Rum1, and Rul1 genes associated with seedling root traits. Several nucleotide polymorphisms in Rtcl, Rth3, Rum1, and Rul1 were significantly (P<0.05) associated with seedling root traits in maize suggesting that all four tested genes are involved in the maize root development. Thus considerable allelic variation present in these root genes can be exploited for improving maize root characteristics.

  16. Association between single nucleotide polymorphism in the ovine DGAT1 gene and carcass traits in two Iranian sheep breeds.

    PubMed

    Mohammadi, Hossein; Shahrebabak, Mohammad Moradi; Sadeghi, Mostafa

    2013-01-01

    The aim of the study was to investigate the single nucleotide polymorphisms (SNPs) at 16-17 exon of DGAT1 gene in Lori-Bakhtiari sheep (LB) and Zel sheep (Z) breeds and provide a foundation for studying the relationship of DGAT1 gene with some carcass traits and the genetic relationship between LB sheep and Z sheep breeds. A total of 309 sheep were slaughtered and the carcass weight, backfat thickness, fat-tail weight, fat-tail percentage, dressing percentage, and dressing percentage adjusted to fat-tail weight were measured. Single nucleotide polymorphism was detected by comparing sequences of PCR products, and the restriction fragment length polymorphism (RFLP) technique was adopted for genotyping. The results of PCR-RFLP analysis showed that the SNP had three genotypes of TT (272 and 37 bp), TC (309, 272, and 37 bp), and CC (309 bp), in which TT was the predominant genotype and allele T was predominant allele in LB and Z sheep breeds. At the DGAT1 locus, CC sheep showed the significantly greater fat-tail weight (P < 0.05) and backfat thickness (P < 0.01). The results of this study demonstrate novel associations in which the C allele had a positive effect on fat-tail weight and backfat thickness in fat-tailed sheep.

  17. Single Nucleotide Polymorphism (SNP) in the Adiponectin Gene and Cardiovascular Disease.

    PubMed

    Chirumbolo, Salvatore

    2016-07-01

    Dear Editor, The recent article by Mohammadzadeh et al.[1] on the latest issue of this Journal showed that the T allele +276G/T SNP of ADIPOQ gene is more associated with the increasing risk of coronary artery disease (CAD) in subjects with type 2 diabetes. Adipocytes were described in myocardial tissue of CAD patients and their role recently discussed[2,3]. Susceptibility to CAD by polymorphism in the Q gene of adiponectin has been reported for 3'-UTR, which harbours some genetic loci associated with metabolic risks and atherosclerosis[4]. Actually, previous studies have shown that the haplotype SNP +276G>T was associated with a decreased risk of CAD, after adjustment for potential confounding factors, therefore some controversial opinion still exists[5]. This evidence should be associated with the role exerted by adipocytes and adiponectin in heart physiology. In particular, in hypertensive disorder complicating pregnancy (HDCP), by investigating the population frequency of alleles, genotypes, and haplotypes of two single nucleotide polymorphisms (SNPs), namely +45T>G (rs2241766) and +276G>T (rs1501299), some authors found that the SNP +276 TT genotype was significantly associated with protection against HDCP, when compared to the pooled G genotypes[6]. Moreover, the same +276G/T SNP haplotype was strongly associated with biliary atresia, an intractable neonatal inflammatory and obliterative cholangiopathy, leading to progressive fibrosis and cirrhosis[7]. CAD is closely related to adiponectin biology. The same isoforms of adiponectin seem to be not associated to CAD severity but to glucose metabolism and its impairment[8]. In the paper by Mohammadzadeh et al.[1], T allele in +276G/T SNP haplotype is highly associated with CAD in subjects with type 2 diabetes, but this linkage should be reappraised if related much more to diabetes rather than CAD. Association of T allele in the indicated SNP with CAD may be an indirect consequence of type 2 diabetes, as reported

  18. miRNAs, single nucleotide polymorphisms (SNPs) and age-related macular degeneration (AMD).

    PubMed

    SanGiovanni, John Paul; SanGiovanni, Peter M; Sapieha, Przemysław; De Guire, Vincent

    2017-05-01

    Advanced age-related macular degeneration (AAMD) is a complex sight-threating disease of public health significance. Micro RNAs (miRNAs) have been proposed as biomarkers for AAMD. The presence of certain single nucleotide polymorphisms (SNPs) may influence the explanatory value of these biomarkers. Here we present findings from an integrated approach used to determine whether AAMD-associated SNPs have the capacity to influence miRNA-mRNA pairing and, if so, to what extent such pairing may be manifested in a discrete AAMD transcriptome. Using a panel of 8854 SNPs associated with AAMD at p-values ≤5.0E-7 from a cohort of >30,000 elderly people, we identified SNPs in miRNA target-encoding constituents of: (1) regulator of complement activation (RCA) genes (rs390679, CFHR1, p≤2.14E-214 | rs12140421, CFHR3, p≤4.63E-29); (2) genes of major histocompatibility complex (MHC) loci (rs4151672, CFB, p≤8.91E-41 | rs115404146, HLA-C, p≤6.32E-12 | rs1055821, HLA-B, p≤1.93E-9 | rs1063355, HLA-DQB1, p≤6.82E-14); and (3) genes of the 10q26 AAMD locus (rs1045216, PLEKHA1, p≤4.17E-142 | rs2672603, ARMS2, p≤7.14E-46). We used these findings with existing data on AAMD-related retinal miRNA and transcript profiles for the purpose of making inferences on SNP-mRNA-miRNA-AAMD relationships. Four of 12 miRNAs significantly elevated in AAMD retina (hsa-miR-155-5p, hsa-let-7a-5p, hsa-let-7b-5p hsa-let-7d-5p) also showed strong pairing capacity (TarBase 7.1 context++ score <-0.2, miRanda 3.3 pairing score >150) with miRNA target transcripts encoded by AAMD-associated SNPs resident in HLA-DQB1 (rs1063355, hsa-miR-155-5p) and TGFBR1 (rs868, hsa-let-7). Three of the 12 miRNAs overexpressed in AAMD retina are inducible by NFkB and have high affinity targets in the complement factor H (CFH) mRNA 3' UTR. We used ENSEMBL to identify polymorphic regions in the CFH mRNA 3' UTR with the capacity to disrupt miRNA-mRNA pairing. Two variants (rs766666504 and rs459598) existed in DNA

  19. mtDNA haplogroup and single nucleotide polymorphisms structure human microbiome communities

    PubMed Central

    2014-01-01

    Background Although our microbial community and genomes (the human microbiome) outnumber our genome by several orders of magnitude, to what extent the human host genetic complement informs the microbiota composition is not clear. The Human Microbiome Project (HMP) Consortium established a unique population-scale framework with which to characterize the relationship of microbial community structure with their human hosts. A wide variety of taxa and metabolic pathways have been shown to be differentially distributed by virtue of race/ethnicity in the HMP. Given that mtDNA haplogroups are the maternally derived ancestral genomic markers and mitochondria’s role as the generator for cellular ATP, characterizing the relationship between human mtDNA genomic variants and microbiome profiles becomes of potential marked biologic and clinical interest. Results We leveraged sequencing data from the HMP to investigate the association between microbiome community structures with its own host mtDNA variants. 15 haplogroups and 631 mtDNA nucleotide polymorphisms (mean sequencing depth of 280X on the mitochondria genome) from 89 individuals participating in the HMP were accurately identified. 16S rRNA (V3-V5 region) sequencing generated microbiome taxonomy profiles and whole genome shotgun sequencing generated metabolic profiles from various body sites were treated as traits to conduct association analysis between haplogroups and host clinical metadata through linear regression. The mtSNPs of individuals with European haplogroups were associated with microbiome profiles using PLINK quantitative trait associations with permutation and adjusted for multiple comparisons. We observe that among 139 stool and 59 vaginal posterior fornix samples, several haplogroups show significant association with specific microbiota (q-value < 0.05) as well as their aggregate community structure (Chi-square with Monte Carlo, p < 0.005), which confirmed and expanded previous research on the

  20. Single Nucleotide Polymorphism (SNP)-Strings: An Alternative Method for Assessing Genetic Associations

    PubMed Central

    Goodin, Douglas S.; Khankhanian, Pouya

    2014-01-01

    Background Genome-wide association studies (GWAS) identify disease-associations for single-nucleotide-polymorphisms (SNPs) from scattered genomic-locations. However, SNPs frequently reside on several different SNP-haplotypes, only some of which may be disease-associated. This circumstance lowers the observed odds-ratio for disease-association. Methodology/Principal Findings Here we develop a method to identify the two SNP-haplotypes, which combine to produce each person’s SNP-genotype over specified chromosomal segments. Two multiple sclerosis (MS)-associated genetic regions were modeled; DRB1 (a Class II molecule of the major histocompatibility complex) and MMEL1 (an endopeptidase that degrades both neuropeptides and β-amyloid). For each locus, we considered sets of eleven adjacent SNPs, surrounding the putative disease-associated gene and spanning ∼200 kb of DNA. The SNP-information was converted into an ordered-set of eleven-numbers (subject-vectors) based on whether a person had zero, one, or two copies of particular SNP-variant at each sequential SNP-location. SNP-strings were defined as those ordered-combinations of eleven-numbers (0 or 1), representing a haplotype, two of which combined to form the observed subject-vector. Subject-vectors were resolved using probabilistic methods. In both regions, only a small number of SNP-strings were present. We compared our method to the SHAPEIT-2 phasing-algorithm. When the SNP-information spanning 200 kb was used, SHAPEIT-2 was inaccurate. When the SHAPEIT-2 window was increased to 2,000 kb, the concordance between the two methods, in both of these eleven-SNP regions, was over 99%, suggesting that, in these regions, both methods were quite accurate. Nevertheless, correspondence was not uniformly high over the entire DNA-span but, rather, was characterized by alternating peaks and valleys of concordance. Moreover, in the valleys of poor-correspondence, SHAPEIT-2 was also inconsistent with itself, suggesting that

  1. Genomic expression and single-nucleotide polymorphism profiling discriminates chromophobe renal cell carcinoma and oncocytoma.

    PubMed

    Tan, Min-Han; Wong, Chin Fong; Tan, Hwei Ling; Yang, Ximing J; Ditlev, Jonathon; Matsuda, Daisuke; Khoo, Sok Kean; Sugimura, Jun; Fujioka, Tomoaki; Furge, Kyle A; Kort, Eric; Giraud, Sophie; Ferlicot, Sophie; Vielh, Philippe; Amsellem-Ouazana, Delphine; Debré, Bernard; Flam, Thierry; Thiounn, Nicolas; Zerbib, Marc; Benoît, Gérard; Droupy, Stéphane; Molinié, Vincent; Vieillefond, Annick; Tan, Puay Hoon; Richard, Stéphane; Teh, Bin Tean

    2010-05-12

    Chromophobe renal cell carcinoma (chRCC) and renal oncocytoma are two distinct but closely related entities with strong morphologic and genetic similarities. While chRCC is a malignant tumor, oncocytoma is usually regarded as a benign entity. The overlapping characteristics are best explained by a common cellular origin, and the biologic differences between chRCC and oncocytoma are therefore of considerable interest in terms of carcinogenesis, diagnosis and clinical management. Previous studies have been relatively limited in terms of examining the differences between oncocytoma and chromophobe RCC. Gene expression profiling using the Affymetrix HGU133Plus2 platform was applied on chRCC (n = 15) and oncocytoma specimens (n = 15). Supervised analysis was applied to identify a discriminatory gene signature, as well as differentially expressed genes. High throughput single-nucleotide polymorphism (SNP) genotyping was performed on independent samples (n = 14) using Affymetrix GeneChip Mapping 100 K arrays to assess correlation between expression and gene copy number. Immunohistochemical validation was performed in an independent set of tumors. A novel 14 probe-set signature was developed to classify the tumors internally with 93% accuracy, and this was successfully validated on an external data-set with 94% accuracy. Pathway analysis highlighted clinically relevant dysregulated pathways of c-erbB2 and mammalian target of rapamycin (mTOR) signaling in chRCC, but no significant differences in p-AKT or extracellular HER2 expression was identified on immunohistochemistry. Loss of chromosome 1p, reflected in both cytogenetic and expression analysis, is common to both entities, implying this may be an early event in histogenesis. Multiple regional areas of cytogenetic alterations and corresponding expression biases differentiating the two entities were identified. Parafibromin, aquaporin 6, and synaptogyrin 3 were novel immunohistochemical markers effectively discriminating

  2. A tool for mapping Single Nucleotide Polymorphisms using Graphics Processing Units

    PubMed Central

    2014-01-01

    Background Single Nucleotide Polymorphism (SNP) genotyping analysis is very susceptible to SNPs chromosomal position errors. As it is known, SNPs mapping data are provided along the SNP arrays without any necessary information to assess in advance their accuracy. Moreover, these mapping data are related to a given build of a genome and need to be updated when a new build is available. As a consequence, researchers often plan to remap SNPs with the aim to obtain more up-to-date SNPs chromosomal positions. In this work, we present G-SNPM a GPU (Graphics Processing Unit) based tool to map SNPs on a genome. Methods G-SNPM is a tool that maps a short sequence representative of a SNP against a reference DNA sequence in order to find the physical position of the SNP in that sequence. In G-SNPM each SNP is mapped on its related chromosome by means of an automatic three-stage pipeline. In the first stage, G-SNPM uses the GPU-based short-read mapping tool SOAP3-dp to parallel align on a reference chromosome its related sequences representative of a SNP. In the second stage G-SNPM uses another short-read mapping tool to remap the sequences unaligned or ambiguously aligned by SOAP3-dp (in this stage SHRiMP2 is used, which exploits specialized vector computing hardware to speed-up the dynamic programming algorithm of Smith-Waterman). In the last stage, G-SNPM analyzes the alignments obtained by SOAP3-dp and SHRiMP2 to identify the absolute position of each SNP. Results and conclusions To assess G-SNPM, we used it to remap the SNPs of some commercial chips. Experimental results shown that G-SNPM has been able to remap without ambiguity almost all SNPs. Based on modern GPUs, G-SNPM provides fast mappings without worsening the accuracy of the results. G-SNPM can be used to deal with specialized Genome Wide Association Studies (GWAS), as well as in annotation tasks that require to update the SNP mapping probes. PMID:24564714

  3. Single nucleotide polymorphisms (SNPs) are highly conserved in rhesus (Macaca mulatta) and cynomolgus (Macaca fascicularis) macaques

    PubMed Central

    Street, Summer L; Kyes, Randall C; Grant, Richard; Ferguson, Betsy

    2007-01-01

    Background Macaca fascicularis (cynomolgus or longtail macaques) is the most commonly used non-human primate in biomedical research. Little is known about the genomic variation in cynomolgus macaques or how the sequence variants compare to those of the well-studied related species, Macaca mulatta (rhesus macaque). Previously we identified single nucleotide polymorphisms (SNPs) in portions of 94 rhesus macaque genes and reported that Indian and Chinese rhesus had largely different SNPs. Here we identify SNPs from some of the same genomic regions of cynomolgus macaques (from Indochina, Indonesia, Mauritius and the Philippines) and compare them to the SNPs found in rhesus. Results We sequenced a portion of 10 genes in 20 cynomolgus macaques. We identified 69 SNPs in these regions, compared with 71 SNPs found in the same genomic regions of 20 Indian and Chinese rhesus macaques. Thirty six (52%) of the M. fascicularis SNPs were overlapping in both species. The majority (70%) of the SNPs found in both Chinese and Indian rhesus macaque populations were also present in M. fascicularis. Of the SNPs previously found in a single rhesus population, 38% (Indian) and 44% (Chinese) were also identified in cynomolgus macaques. In an alternative approach, we genotyped 100 cynomolgus DNAs using a rhesus macaque SNP array representing 53 genes and found that 51% (29/57) of the rhesus SNPs were present in M. fascicularis. Comparisons of SNP profiles from cynomolgus macaques imported from breeding centers in China (where M. fascicularis are not native) showed they were similar to those from Indochina. Conclusion This study demonstrates a surprisingly high conservation of SNPs between M. fascicularis and M. mulatta, suggesting that the relationship of these two species is closer than that suggested by morphological and mitochondrial DNA analysis alone. These findings indicate that SNP discovery efforts in either species will generate useful resources for both macaque species

  4. Single nucleotide polymorphisms of human STING can affect innate immune response to cyclic dinucleotides.

    PubMed

    Yi, Guanghui; Brendel, Volker P; Shu, Chang; Li, Pingwei; Palanathan, Satheesh; Cheng Kao, C

    2013-01-01

    The STING (stimulator of interferon genes) protein can bind cyclic dinucleotides to activate the production of type I interferons and inflammatory cytokines. The cyclic dinucleotides can be bacterial second messengers c-di-GMP and c-di-AMP, 3'5'-3'5' cyclic GMP-AMP (3'3' cGAMP) produced by Vibrio cholerae and metazoan second messenger 2'5'-3'5' Cyclic GMP-AMP (2'3' cGAMP). Analysis of single nucleotide polymorphism (SNP) data from the 1000 Genome Project revealed that R71H-G230A-R293Q (HAQ) occurs in 20.4%, R232H in 13.7%, G230A-R293Q (AQ) in 5.2%, and R293Q in 1.5% of human population. In the absence of exogenous ligands, the R232H, R293Q and AQ SNPs had only modest effect on the stimulation of IFN-β and NF-κB promoter activities in HEK293T cells, while HAQ had significantly lower intrinsic activity. The decrease was primarily due to the R71H substitution. The SNPs also affected the response to the cyclic dinucleotides. In the presence of c-di-GMP, the R232H variant partially decreased the ability to activate IFN-βsignaling, while it was defective for the response to c-di-AMP and 3'3' cGAMP. The R293Q dramatically decreased the stimulatory response to all bacterial ligands. Surprisingly, the AQ and HAQ variants maintained partial abilities to activate the IFN-β signaling in the presence of ligands due primarily to the G230A substitution. Biochemical analysis revealed that the recombinant G230A protein could affect the conformation of the C-terminal domain of STING and the binding to c-di-GMP. Comparison of G230A structure with that of WT revealed that the conformation of the lid region that clamps onto the c-di-GMP was significantly altered. These results suggest that hSTING variation can affect innate immune signaling and that the common HAQ haplotype expresses a STING protein with reduced intrinsic signaling activity but retained the ability to response to bacterial cyclic dinucleotides.

  5. Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease.

    PubMed

    Li, Hao; Wetten, Sally; Li, Li; St Jean, Pamela L; Upmanyu, Ruchi; Surh, Linda; Hosford, David; Barnes, Michael R; Briley, James David; Borrie, Michael; Coletta, Natalie; Delisle, Richard; Dhalla, Daniella; Ehm, Margaret G; Feldman, Howard H; Fornazzari, Luis; Gauthier, Serge; Goodgame, Neil; Guzman, Danilo; Hammond, Sandra; Hollingworth, Paul; Hsiung, Ging-Yuek; Johnson, Joan; Kelly, Devon D; Keren, Ron; Kertesz, Andrew; King, Karen S; Lovestone, Simon; Loy-English, Inge; Matthews, Paul M; Owen, Michael J; Plumpton, Mary; Pryse-Phillips, William; Prinjha, Rab K; Richardson, Jill C; Saunders, Ann; Slater, Andrew J; St George-Hyslop, Peter H; Stinnett, Sandra W; Swartz, Jina E; Taylor, Rachel L; Wherrett, John; Williams, Julie; Yarnall, David P; Gibson, Rachel A; Irizarry, Michael C; Middleton, Lefkos T; Roses, Allen D

    2008-01-01

    To identify single-nucleotide polymorphisms (SNPs) associated with risk and age at onset of Alzheimer disease (AD) in a genomewide association study of 469 438 SNPs. Case-control study with replication. Memory referral clinics in Canada and the United Kingdom. The hypothesis-generating data set consisted of 753 individuals with AD by National Institute of Neurological and Communicative Diseases and Stroke/Alzheimer's Disease and Related Disorders Association criteria recruited from 9 memory referral clinics in Canada and 736 ethnically matched control subjects; control subjects were recruited from nonbiological relatives, friends, or spouses of the patients and did not exhibit cognitive impairment by history or cognitive testing. The follow-up data set consisted of 418 AD cases and 249 nondemented control cases from the United Kingdom Medical Research Council Genetic Resource for Late-Onset AD recruited from clinics at Cardiff University, Cardiff, Wales, and King's College London, London, England. Odds ratios and 95% confidence intervals for association of SNPs with AD by logistic regression adjusted for age, sex, education, study site, and French Canadian ancestry (for the Canadian data set). Hazard ratios and 95% confidence intervals from Cox proportional hazards regression for age at onset with similar covariate adjustments. Unadjusted, SNP RS4420638 within APOC1 was strongly associated with AD due entirely to linkage disequilibrium with APOE. In the multivariable adjusted analyses, 3 SNPs within the top 120 by P value in the logistic analysis and 1 in the Cox analysis of the Canadian data set provided additional evidence for association at P< .05 within the United Kingdom Medical Research Council data set: RS7019241 (GOLPH2), RS10868366 (GOLPH2), RS9886784 (chromosome 9), and RS10519262 (intergenic between ATP8B4 and SLC27A2). Our genomewide association analysis again identified the APOE linkage disequilibrium region as the strongest genetic risk factor for AD

  6. Mitochondrial localization of the OAS1 p46 isoform associated with a common single nucleotide polymorphism

    PubMed Central

    2014-01-01

    Background The expression of 2′-5′-Oligoadenylate synthetases (OASs) is induced by type 1 Interferons (IFNs) in response to viral infection. The OAS proteins have a unique ability to produce 2′-5′ Oligoadenylates, which bind and activate the ribonuclease RNase L. The RNase L degrades cellular RNAs which in turn inhibits protein translation and induces apoptosis. Several single nucleotide polymorphisms (SNPs) in the OAS1 gene have been associated with disease. We have investigated the functional effect of two common SNPs in the OAS1 gene. The SNP rs10774671 affects splicing to one of the exons in the OAS1 gene giving rise to differential expression of the OAS1 isoforms, and the SNP rs1131454 (former rs3741981) resides in exon 3 giving rise to OAS1 isoforms with either a Glycine or a Serine at position 162 in the core OAS unit. Results We have used three human cell lines with different genotypes in the OAS1 SNP rs10774671, HeLa cells with the AA genotype, HT1080 cells with AG, and Daudi cells with GG. The main OAS1 isoform expressed in Daudi and HT1080 cells was p46, and the main OAS1 isoform expressed in HeLa cells was p42. In addition, low levels of the OAS1 p52 mRNA was detected in HeLa cells and p48 mRNA in Daudi cells, and trace amounts of p44a mRNA were detected in the three cell lines treated with type 1 interferon. We show that the OAS1 p46 isoform was localized in the mitochondria in Daudi cells, whereas the OAS1 isoforms in HeLa cells were primarily localized in cytoplasmic vacuoles/lysosomes. By using recombinantly expressed OAS1 mutant proteins, we found that the OAS1 SNP rs1131454 (former rs3741981) did not affect the enzymatic OAS1 activity. Conclusions The SNP rs10774671 determines differential expression of the OAS1 isoforms. In Daudi and HT1080 cells the p46 isoform is the most abundantly expressed isoform associated with the G allele, whereas in HeLa cells the most abundantly expressed isoform is p42 associated with the A allele. The SNP rs

  7. Single nucleotide polymorphisms associated with thermoregulation in lactating dairy cows exposed to heat stress.

    PubMed

    Dikmen, S; Wang, X-z; Ortega, M S; Cole, J B; Null, D J; Hansen, P J

    2015-12-01

    Dairy cows with increased rectal temperature experience lower milk yield and fertility. Rectal temperature during heat stress is heritable, so genetic selection for body temperature regulation could reduce effects of heat stress on production. One aim of the study was to validate the relationship between genotype and heat tolerance for single nucleotide polymorphisms (SNPs) previously associated with resistance to heat stress. A second aim was to identify new SNPs associated with heat stress resistance. Thermotolerance was assessed in lactating Holsteins during the summer by measuring rectal temperature (a direct measurement of body temperature regulation; n = 435), respiration rate (an indirect measurement of body temperature regulation, n = 450) and sweating rate (the major evaporative cooling mechanism in cattle, n = 455). The association between genotype and thermotolerance was evaluated for 19 SNPs previously associated with rectal temperature from a genomewide analysis study (GWAS), four SNPs previously associated with change in milk yield during heat stress from GWAS, 2 candidate gene SNPs previously associated with rectal temperature and respiration rate during heat stress (ATPA1A and HSP70A) and 66 SNPs in genes previously shown to be associated with reproduction, production or health traits in Holsteins. For SNPs previously associated with heat tolerance, regions of BTA4, BTA6 and BTA24 were associated with rectal temperature; regions of BTA6 and BTA24 were associated with respiration rate; and regions of BTA5, BTA26 and BTA29 were associated with sweating rate. New SNPs were identified for rectal temperature (n = 12), respiration rate (n = 8) and sweating rate (n = 3) from among those previously associated with production, reproduction or health traits. The SNP that explained the most variation were PGR and ASL for rectal temperature, ACAT2 and HSD17B7 for respiration rate, and ARL6IP1 and SERPINE2 for sweating rate. ARL6IP1 was associated with all three

  8. Short communication: relationship of call rate and accuracy of single nucleotide polymorphism genotypes in dairy cattle.

    PubMed

    Cooper, T A; Wiggans, G R; VanRaden, P M

    2013-05-01

    Call rates on both a single nucleotide polymorphism (SNP) basis and an animal basis are used as measures of data quality and as screening tools for genomic studies and evaluations of dairy cattle. To investigate the relationship of SNP call rate and genotype accuracy for individual SNP, the correlation between percentages of missing genotypes and parent-progeny conflicts for each SNP was calculated for 103,313 Holsteins. Correlations ranged from 0.14 to 0.38 for the BovineSNP50 and BovineLD (Illumina Inc., San Diego, CA) and GeneSeek Genomic Profiler (Neogen Corp., Lincoln, NE) chips, with lower correlations for newer chips. For US genomic evaluations, genotypes are excluded for animals with a call rate of <90% across autosomal SNP or <80% across X-specific SNP. Mean call rate for 220,175 Holstein, Jersey, and Brown Swiss genotypes was 99.6%. Animal genotypes with a call rate of ≤99% were examined from the US Department of Agriculture genotype database to determine how genotype call rate is related to accuracy of calls on an animal basis. Animal call rate was determined from SNP used in genomic evaluation and is the number of called autosomal and X-specific SNP genotypes divided by the number of SNP from that type of chip. To investigate the relationship of animal call rate and parentage validation, conflicts between a genotyped animal and its sire or dam were determined through a duo test (opposite homozygous SNP genotypes between sire and progeny; 1,374 animal genotypes) and a trio test (also including conflicts with dam and heterozygous SNP genotype for the animal when both parents are the same homozygote; 482 animal genotypes). When animal call rate was ≤ 80%, parentage validation was no longer reliable with the duo test. With the trio test, parentage validation was no longer reliable when animal call rate was ≤ 90%. To investigate how animal call rate was related to genotyping accuracy for animals with multiple genotypes, concordance between genotypes

  9. Fluorescent detection of single nucleotide polymorphism utilizing a hairpin DNA containing a nucleotide base analog pyrrolo-deoxycytidine as a fluorescent probe.

    PubMed

    Zhang, Hongge; Wang, Minjuan; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2011-05-15

    A novel fluorescent method for the detection of single nucleotide polymorphism (SNP) was developed using a hairpin DNA containing nucleotide base analog pyrrolo-deoxycytidine (P-dC) as a fluorescent probe. This fluorescent probe was designed by incorporating a fluorescent P-dC into a stem of the hairpin DNA, whose sequence of the loop moiety complemented the target single strand DNA (ss-DNA). In the absence of the target ss-DNA, the fluorescent probe stays a closed configuration in which the P-dC is located in the double strand stem of the fluorescent probe, such that there is weak fluorescence, attributed to a more efficient stacking and collisional quenching of neighboring bases. In the presence of target ss-DNA, upon hybridizing the ss-DNA to the loop moiety, a stem-loop of the fluorescent probe is opened and the P-dC is located in the ss-DNA, thus resulting in strong fluorescence. The effective discrimination of the SNP, including single base mismatch ss-DNA (A, T, G) and double mismatch DNA (C, C), against perfect complementary ss-DNA was achieved by increased fluorescence intensity, and verified by thermal denaturation and circular dichroism spectroscopy. Relative fluorescence intensity had a linear relationship with the concentration of perfect complementary ss-DNA and ranged from 50 nM to 3.0 μM. The linear regression equation was F/F(0)=2.73 C (μM)+1.14 (R=0.9961) and the detection limit of perfect complementary ss-DNA was 16 nM (S/N=3). This study demonstrates that a hairpin DNA containing nucleotide base analog P-dC is a promising fluorescent probe for the effective discrimination of SNP and for highly sensitive detection of perfect complementary DNA.

  10. Performance of whole-genome amplified DNA isolated from serum and plasma on high-density single nucleotide polymorphism arrays.

    PubMed

    Croft, Daniel T; Jordan, Rick M; Patney, Heather L; Shriver, Craig D; Vernalis, Marina N; Orchard, Trevor J; Ellsworth, Darrell L

    2008-05-01

    Defining genetic variation associated with complex human diseases requires standards based on high-quality DNA from well-characterized patients. With the development of robust technologies for whole-genome amplification, sample repositories such as serum banks now represent a potentially valuable source of DNA for both genomic studies and clinical diagnostics. We assessed the performance of whole-genome amplified DNA (wgaDNA) derived from stored serum/plasma on high-density single nucleotide polymorphism arrays. Neither storage time nor usage history affected either DNA extraction or whole-genome amplification yields; however, samples that were thawed and refrozen showed significantly lower call rates (73.9 +/- 7.8%) than samples that were never thawed (92.0 +/- 3.3%) (P < 0.001). Genotype call rates did not differ significantly (P = 0.13) between wgaDNA from never-thawed serum/plasma (92.9 +/- 2.6%) and genomic DNA (97.5 +/- 0.3%) isolated from whole blood. Approximately 400,000 genotypes were consistent between wgaDNA and genomic DNA, but the overall discordance rate of 4.4 +/- 3.8% reflected an average of 11,110 +/- 9502 genotyping errors per sample. No distinct patterns of chromosomal clustering were observed for single nucleotide polymorphisms showing discordant genotypes or homozygote conversion. Because the effects of genotyping errors on whole-genome studies are not well defined, we recommend caution when applying wgaDNA from serum/plasma to high-density single nucleotide polymorphism arrays in addition to the use of stringent quality control requirements for the resulting genotype data.

  11. Performance of Whole-Genome Amplified DNA Isolated from Serum and Plasma on High-Density Single Nucleotide Polymorphism Arrays

    PubMed Central

    Croft, Daniel T.; Jordan, Rick M.; Patney, Heather L.; Shriver, Craig D.; Vernalis, Marina N.; Orchard, Trevor J.; Ellsworth, Darrell L.

    2008-01-01

    Defining genetic variation associated with complex human diseases requires standards based on high-quality DNA from well-characterized patients. With the development of robust technologies for whole-genome amplification, sample repositories such as serum banks now represent a potentially valuable source of DNA for both genomic studies and clinical diagnostics. We assessed the performance of whole-genome amplified DNA (wgaDNA) derived from stored serum/plasma on high-density single nucleotide polymorphism arrays. Neither storage time nor usage history affected either DNA extraction or whole-genome amplification yields; however, samples that were thawed and refrozen showed significantly lower call rates (73.9 ± 7.8%) than samples that were never thawed (92.0 ± 3.3%) (P < 0.001). Genotype call rates did not differ significantly (P = 0.13) between wgaDNA from never-thawed serum/plasma (92.9 ± 2.6%) and genomic DNA (97.5 ± 0.3%) isolated from whole blood. Approximately 400,000 genotypes were consistent between wgaDNA and genomic DNA, but the overall discordance rate of 4.4 ± 3.8% reflected an average of 11,110 ± 9502 genotyping errors per sample. No distinct patterns of chromosomal clustering were observed for single nucleotide polymorphisms showing discordant genotypes or homozygote conversion. Because the effects of genotyping errors on whole-genome studies are not well defined, we recommend caution when applying wgaDNA from serum/plasma to high-density single nucleotide polymorphism arrays in addition to the use of stringent quality control requirements for the resulting genotype data. PMID:18403606

  12. Identification and validation of single nucleotide polymorphisms as tools to detect hybridization and population structure in freshwater stingrays.

    PubMed

    Cruz, Vanessa P; Vera, Manuel; Pardo, Belén G; Taggart, John; Martinez, Paulino; Oliveira, Claudio; Foresti, Fausto

    2017-05-01

    Single nucleotide polymorphism (SNP) markers were identified and validated for two stingrays species, Potamotrygon motoro and Potamotrygon falkneri, using double digest restriction-site associated DNA (ddRAD) reads using 454-Roche technology. A total of 226 774 reads (65.5 Mb) were obtained (mean read length 289 ± 183 bp) detecting a total of 5399 contigs (mean contig length: 396 ± 91 bp). Mining this data set, a panel of 143 in silico SNPs was selected. Eighty-two of these SNPs were successfully validated and 61 were polymorphic: 14 in P. falkneri, 21 in P. motoro, 3 in both species and 26 fixed for alternative variants in both species, thus being useful for population analyses and hybrid detection. © 2016 John Wiley & Sons Ltd.

  13. Development of single-nucleotide polymorphism markers for Bromus tectorum (Poaceae) from a partially sequenced transcriptome1

    PubMed Central

    Merrill, Keith R.; Coleman, Craig E.; Meyer, Susan E.; Leger, Elizabeth A.; Collins, Katherine A.

    2016-01-01

    Premise of the study: Bromus tectorum (Poaceae) is an annual grass species that is invasive in many areas of the world but most especially in the U.S. Intermountain West. Single-nucleotide polymorphism (SNP) markers were developed for use in investigating the geospatial and ecological diversity of B. tectorum in the Intermountain West to better understand the mechanisms behind its successful invasion. Methods and Results: Normalized cDNA libraries from six diverse B. tectorum individuals were pooled and sequenced using 454 sequencing. Ninety-five SNP assays were developed for use on 96.96 arrays with the Fluidigm EP1 genotyping platform. Verification of the 95 SNPs by genotyping 251 individuals from 12 populations is reported, along with amplification data from four related Bromus species. Conclusions: These SNP markers are polymorphic across populations of B. tectorum, are optimized for high-throughput applications, and may be applicable to other, related Bromus species. PMID:27843723

  14. Application of single nucleotide polymorphism markers to chum salmon Oncorhynchus keta: discovery, genotyping and linkage phase resolution.

    PubMed

    Garvin, M R; Gharrett, A J

    2010-12-01

    This study describes (1) the application of new methods to the discovery of informative single nucleotide polymorphism (SNP) markers in chum salmon Oncorhynchus keta, (2) a method to resolve the linkage phase of closely linked SNPs and (3) a method to inexpensively genotype them. Finally, it demonstrates that these SNPs provide information that discriminates among O. keta populations from different geographical regions of the northern Pacific Ocean. These informative markers can be used in conjunction with mixed-stock analysis to learn about the spatial and temporal marine distributions of O. keta and the factors that influence the distributions.

  15. Association between Single Nucleotide Polymorphisms of the Major Histocompatibility Complex Class II Gene and Newcastle Disease Virus Titre and Body Weight in Leung Hang Khao Chickens

    PubMed Central

    Molee, A.; Kongroi, K.; Kuadsantia, P.; Poompramun, C.; Likitdecharote, B.

    2016-01-01

    The aim of the present study was to investigate the effect of single nucleotide polymorphisms in the major histocompatibility complex (MHC) class II gene on resistance to Newcastle disease virus and body weight of the Thai indigenous chicken, Leung Hang Khao (Gallus gallus domesticus). Blood samples were collected for single nucleotide polymorphism analysis from 485 chickens. Polymerase chain reaction sequencing was used to classify single nucleotide polymorphisms of class II MHC. Body weights were measured at the ages of 3, 4, 5, and 7 months. Titres of Newcastle disease virus at 2 weeks to 7 months were determined and the correlation between body weight and titre was analysed. The association between single nucleotide polymorphisms and body weight and titre were analysed by a generalized linear model. Seven single nucleotide polymorphisms were identified: C125T, A126T, C209G, C242T, A243T, C244T, and A254T. Significant correlations between log titre and body weight were found at 2 and 4 weeks. Associations between single nucleotide polymorphisms and titre were found for C209G and A254T, and between all single nucleotide polymorphisms (except A243T) and body weight. The results showed that class II MHC is associated with both titre of Newcastle disease virus and body weight in Leung Hang Khao chickens. This is of concern because improved growth traits are the main goal of breeding selection. Moreover, the results suggested that MHC has a pleiotropic effect on the titre and growth performance. This mechanism should be investigated in a future study. PMID:26732325

  16. Association of R156R single nucleotide polymorphism of the ERCC2 gene with the susceptibility to ovarian cancer.

    PubMed

    Romanowicz, Hanna; Michalska, Magdalena M; Samulak, Dariusz; Malinowski, Jakub; Szaflik, Tomasz; Bieńkiewicz, Jan; Smolarz, Beata

    2017-01-01

    The reported study was designed to explore associations between the ERCC2- R156R gene single nucleotide polymorphism (SNP) and the risk of ovarian cancer. The R156R (C to A, rs238406) polymorphism of ERCC2 gene was investigated by the PCR-RFLP technique in 400 patients with ovarian carcinoma and 400 age- and sex matched non-cancer controls. Blood samples were obtained from patients treated at the Department of Surgical Gynaecology and Gynaecologic Oncology, Institute of Polish Mothers Memorial Hospital between the years 2000 and 2015. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated for each genotype and allele. Genotype distribution of R156R polymorphism of ERCC2 gene was compared between the patients and controls with significant differences (p<0.05) between the two investigated groups. A possible association was observed between ovarian cancer and the presence of A/A genotype (OR 3.30 95% CI 2.26-4.82, p<0.0001). The variant A allele of ERCC2 increased the risk of ovarian cancer (OR 2.08 95 % CI 1.70-2.54, p<0.0001). A relationship was confirmed between ERCC2 R156R polymorphism and ovarian cancer progression, assessed by the degree of histological grades and FIGO staging (p<0.05). This is the first study, linking R156R polymorphism of ERCC2 gene with ovarian carcinoma incidence. In conclusion, ERCC2- R156R polymorphism may be connected with the susceptibility to ovarian cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. ERCC1 and XRCC1 but not XPA single nucleotide polymorphisms correlate with response to chemotherapy in endometrial carcinoma

    PubMed Central

    Chen, Liang; Liu, Mei-Mei; Liu, Hui; Lu, Dan; Zhao, Xiao-Dan; Yang, Xue-Jing

    2016-01-01

    Our study aimed to investigate the correlation between single nucleotide polymorphisms of ERCC1/XRCC1/XPA genes and postoperative chemotherapy efficacy and prognosis of endometrial carcinoma. Our study included 108 patients with endometrial carcinoma and 100 healthy participants. ERCC1 rs11615/XRCC1 rs25487/XPA rs1800975 gene polymorphisms were detected by polymerase chain reaction–restriction fragment length polymorphism. Then the chemotherapy efficacy and toxic effects of the patients were assessed. The genotype and allele frequency of ERCC1 rs11615/XRCC1 rs25487 in the case group were significantly different from that in the control group (all P<0.05). The patients with AA + GA in ERCC1 rs11615 had an increased risk of endometrial carcinoma than those with GG, and the risk of endometrial carcinoma for patients with AA + GA was also higher in comparison with patients with GG genotype in XRCC1 rs25487 (all P<0.05). GG on both ERCC1 rs11615/XRCC1 rs25487 had a higher effective rate of chemotherapy than GA + AA (all P<0.05). ERCC1 rs11615/XRCC1 rs25487 gene polymorphisms were linked with toxic effects in liver, kidney, and nervous system. ERCC1 rs11615/XRCC1 rs25487, muscular invasion, and tumor stage were independent risk factors for the prognosis of endometrial carcinoma (all P<0.05). However, no significant associations were observed between XPA rs1800975 polymorphism and chemotherapy efficacy and prognosis of endometrial carcinoma (all P>0.05). These results indicated that ERCC1 and XRCC1 but not XPA polymorphisms correlate with response to chemotherapy in endometrial carcinoma. PMID:27895494

  18. Association between 28 single nucleotide polymorphisms and type 2 diabetes mellitus in the Kazakh population: a case-control study.

    PubMed

    Sikhayeva, Nurgul; Iskakova, Aisha; Saigi-Morgui, Nuria; Zholdybaeva, Elena; Eap, Chin-Bin; Ramanculov, Erlan

    2017-07-24

    We evaluated the associations between single nucleotide polymorphisms and different clinical parameters related to type 2 diabetes mellitus (T2DM), obesity risk, and metabolic syndrome (MS) in a Kazakh cohort. A total of 1336 subjects, including 408 T2DM patients and 928 control subjects, were recruited from an outpatient clinic and genotyped for 32 polymorphisms previously associated with T2DM and obesity-related phenotypes in other ethnic groups. For association studies, the chi-squared test or Fisher's exact test for binomial variables were used. Logistic regression was conducted to explore associations between the studied SNPs and the risk of developing T2DM, obesity, and MS, after adjustments for age and sex. After excluding four SNPs due to Hardy-Weinberg disequilibrium, significant associations in age-matched cohorts were found betweenT2DM and the following SNPs: rs9939609 (FTO), rs13266634 (SLC30A8), rs7961581 (TSPAN8/LGR5), and rs1799883 (FABP2). In addition, examination of general unmatched T2DM and control cohorts revealed significant associations between T2DM and SNPsrs1799883 (FABP2) and rs9939609 (FTO). Furthermore, polymorphisms in the FTO gene were associated with increased obesity risk, whereas polymorphisms in the FTO and FABP2 genes were also associated with the risk of developing MS in general unmatched cohorts. We confirmed associations between polymorphisms within the SLC30A8, TSPAN8/LGR5, FABP2, and FTO genes and susceptibility to T2DM in a Kazakh cohort, and revealed significant associations with anthropometric and metabolic traits. In particular, FTO and FABP2 gene polymorphisms were significantly associated with susceptibility to MS and obesity in this cohort.

  19. Genomic variation and population structure detected by single nucleotide polymorphism arrays in Corriedale, Merino and Creole sheep

    PubMed Central

    Grasso, Andrés N.; Goldberg, Virginia; Navajas, Elly A.; Iriarte, Wanda; Gimeno, Diego; Aguilar, Ignacio; Medrano, Juan F.; Rincón, Gonzalo; Ciappesoni, Gabriel

    2014-01-01

    The aim of this study was to investigate the genetic diversity within and among three breeds of sheep: Corriedale, Merino and Creole. Sheep from the three breeds (Merino n = 110, Corriedale n = 108 and Creole n = 10) were genotyped using the Illumina Ovine SNP50 beadchip®. Genetic diversity was evaluated by comparing the minor allele frequency (MAF) among breeds. Population structure and genetic differentiation were assessed using STRUCTURE software, principal component analysis (PCA) and fixation index (FST). Fixed markers (MAF = 0) that were different among breeds were identified as specific breed markers. Using a subset of 18,181 single nucleotide polymorphisms (SNPs), PCA and STUCTURE analysis were able to explain population stratification within breeds. Merino and Corriedale divergent lines showed high levels of polymorphism (89.4% and 86% of polymorphic SNPs, respectively) and moderate genetic differentiation (FST = 0.08) between them. In contrast, Creole had only 69% polymorphic SNPs and showed greater genetic differentiation from the other two breeds (FST = 0.17 for both breeds). Hence, a subset of molecular markers present in the OvineSNP50 is informative enough for breed assignment and population structure analysis of commercial and Creole breeds. PMID:25071404

  20. Single nucleotide polymorphisms of the haptoglobin gene in non-small cell lung cancer treated with personalized peptide vaccination

    PubMed Central

    Waki, Kayoko; Yamada, Teppei; Yoshiyama, Koichi; Terazaki, Yasuhiro; Sakamoto, Shinjiro; Sugawara, Shunichi; Takamori, Shinzo; Itoh, Kyogo; Yamada, Akira

    2017-01-01

    The present study analyzed polymorphisms of the 5′ flanking region (from nt −840 to +151) of the haptoglobin gene in 120 patients with advanced non-small cell lung cancer (NSCLC) receiving personalized peptide vaccinations. In the region, six single nucleotide polymorphisms (SNPs) were confirmed, of which two, rs5472 and rs9927981, were completely linked to each other. The minor allele frequencies of rs5472/rs9927981 and rs4788458 were higher than those of the other three SNPs. The genotype frequencies of rs5472 or rs9927981 were A/A or C/C (42.5%, n=51), A/G or C/T (40.8%, n=49), and G/G or T/T (16.7%, n=20), respectively; and those of rs4788458 were T/T (34.2%, n=41), T/C (40.0%, n=48), and C/C (25.8%, n=31). The association between polymorphism rs5472/rs9927981 and prognosis, or between rs4788458 and prognosis, was analyzed further. However, no correlation was found between these SNPs and overall survival, regardless of subgroup analysis of gender, histology or concurrent therapy. These results suggest that the polymorphisms rs5472/rs9927981 and rs4788458 are not useful prognostic tools for patients with NSCLC treated with personalized peptide vaccination. PMID:28356990

  1. Genomic variation and population structure detected by single nucleotide polymorphism arrays in Corriedale, Merino and Creole sheep.

    PubMed

    Grasso, Andrés N; Goldberg, Virginia; Navajas, Elly A; Iriarte, Wanda; Gimeno, Diego; Aguilar, Ignacio; Medrano, Juan F; Rincón, Gonzalo; Ciappesoni, Gabriel

    2014-06-01

    THE AIM OF THIS STUDY WAS TO INVESTIGATE THE GENETIC DIVERSITY WITHIN AND AMONG THREE BREEDS OF SHEEP: Corriedale, Merino and Creole. Sheep from the three breeds (Merino n = 110, Corriedale n = 108 and Creole n = 10) were genotyped using the Illumina Ovine SNP50 beadchip(®). Genetic diversity was evaluated by comparing the minor allele frequency (MAF) among breeds. Population structure and genetic differentiation were assessed using STRUCTURE software, principal component analysis (PCA) and fixation index (FST). Fixed markers (MAF = 0) that were different among breeds were identified as specific breed markers. Using a subset of 18,181 single nucleotide polymorphisms (SNPs), PCA and STUCTURE analysis were able to explain population stratification within breeds. Merino and Corriedale divergent lines showed high levels of polymorphism (89.4% and 86% of polymorphic SNPs, respectively) and moderate genetic differentiation (FST = 0.08) between them. In contrast, Creole had only 69% polymorphic SNPs and showed greater genetic differentiation from the other two breeds (FST = 0.17 for both breeds). Hence, a subset of molecular markers present in the OvineSNP50 is informative enough for breed assignment and population structure analysis of commercial and Creole breeds.

  2. Single-nucleotide polymorphism of the osteoprotegerin gene and its association with bone mineral density in Chinese postmenopausal women.

    PubMed

    Feng, Guixi; Meng, Limin; Wang, Hui; Lu, Yun; Jia, Jian; Zhang, Yinguang; Zhang, Haibin; Zhang, Bo

    2012-01-01

    Osteoporosis is a common complex and polygenic disease in postmenopausal women, which is characterized by a decrease in bone mineral density (BMD). The osteoprotegerin (OPG) is an important candidate gene in the pathogenesis of osteoporosis. The aim of this study was to investigate the association between single-nucleotide polymorphisms (SNPs) in the OPG gene and BMD. OPG gene polymorphisms and BMD were analyzed in 352 Chinese postmenopausal women. BMD was quantified at the lumbar spine (L2-4), femoral neck, and total hip. Through polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and DNA sequencing methods, an allelic variant corresponding to the G→A mutations at position 23276 in exon 3 of the OPG gene could be detected. The association between g.23276 G>A polymorphisms and BMD was analyzed, and a significant association was found between g.23276 G>A and spine BMD. The mean of genotype GG was significantly higher than those of genotype GA and AA. There was no significant difference in neck hip BMD and total hip BMD among different genotypes. These findings suggested that g.23276 G>A genotypes in the OPG gene were associated with spine BMD in Chinese postmenopausal women. The A-allele was associated with lower BMD and an increased risk for osteoporosis.

  3. Exploiting the Repetitive Fraction of the Wheat Genome for High-Throughput Single-Nucleotide Polymorphism Discovery and Genotyping.

    PubMed

    Cubizolles, Nelly; Rey, Elodie; Choulet, Frédéric; Rimbert, Hélène; Laugier, Christel; Balfourier, François; Bordes, Jacques; Poncet, Charles; Jack, Peter; James, Chris; Gielen, Jan; Argillier, Odile; Jaubertie, Jean-Pierre; Auzanneau, Jérôme; Rohde, Antje; Ouwerkerk, Pieter B F; Korzun, Viktor; Kollers, Sonja; Guerreiro, Laurent; Hourcade, Delphine; Robert, Olivier; Devaux, Pierre; Mastrangelo, Anna-Maria; Feuillet, Catherine; Sourdille, Pierre; Paux, Etienne

    2016-03-01

    Transposable elements (TEs) account for more than 80% of the wheat genome. Although they represent a major obstacle for genomic studies, TEs are also a source of polymorphism and consequently of molecular markers such as insertion site-based polymorphism (ISBP) markers. Insertion site-based polymorphisms have been found to be a great source of genome-specific single-nucleotide polymorphism (SNPs) in the hexaploid wheat ( L.) genome. Here, we report on the development of a high-throughput SNP discovery approach based on sequence capture of ISBP markers. By applying this approach to the reference sequence of chromosome 3B from hexaploid wheat, we designed 39,077 SNPs that are evenly distributed along the chromosome. We demonstrate that these SNPs can be efficiently scored with the KASPar (Kompetitive allele-specific polymerase chain reaction) genotyping technology. Finally, through genetic diversity and genome-wide association studies, we also demonstrate that ISBP-derived SNPs can be used in marker-assisted breeding programs.

  4. Identification of single nucleotide polymorphisms in the ASB15 gene and their associations with chicken growth and carcass traits.

    PubMed

    Wang, Y C; Jiang, R R; Kang, X T; Li, Z J; Han, R L; Geng, J; Fu, J X; Wang, J F; Wu, J P

    2015-09-25

    ASB15 is a member of the ankyrin repeat and suppressor of cytokine signaling box family, and is predominantly expressed in skeletal muscle. In the present study, an F2 resource population of Gushi chickens crossed with Anka broilers was used to investigate the genetic effects of the chicken ASB15 gene. Two single nucleotide polymorphisms (SNPs) (rs315759231 A>G and rs312619270 T>C) were identified in exon 7 of the ASB15 gene using forced chain reaction-restriction fragment length polymorphism and DNA sequencing. One was a missense SNP (rs315759231 A>G) and the other was a synonymous SNP (rs312619270 T>C). The rs315759231 A>G polymorphism was significantly associated with body weight at birth, 12-week body slanting length, semi-evisceration weight, evisceration weight, leg muscle weight, and carcass weight (P < 0.05). The rs312619270 T>C polymorphism was significantly associated with body weight at birth, 4, 8, and 12-week body weight, 8-week shank length, 12-week breast bone length, 8 and 12-week body slanting length, breast muscle weight, and carcass weight (P < 0.05). Our results suggest that the ASB15 gene profoundly affects chicken growth and carcass traits.

  5. Obesity-associated hypertension is ameliorated in patients with TLR4 single nucleotide polymorphism (SNP) rs4986790.

    PubMed

    Schneider, Simon; Hoppmann, Petra; Koch, Werner; Kemmner, Stephan; Schmaderer, Christoph; Renders, Lutz; Kastrati, Adnan; Laugwitz, Karl-Ludwig; Heemann, Uwe; Baumann, Marcus

    2015-01-01

    Obesity is strongly associated with hypertension. Despite numerous mechanistic links the association is not fully understood. Western diet increases uptake of Toll-Like receptor 4 (TLR4) ligands such as free fatty acids or endotoxin. We recently demonstrated that TLR4 ligands are involved in the development of hypertension. We hypothesized that TLR4 ligands are involved in obesity-associated hypertension and investigated the TLR4 single nucleotide polymorphism (SNP rs 498790). This SNP is frequent, associated with cardiovascular disease and characterized by blunted response upon exposure to TLR4 ligands. We investigated 3657 patients undergoing coronary angiography. Blood pressure was determined in standardized manner prior angiography. The diagnosis of hypertension was based on record data. Patients were characterized for TLR4 single nucleotide polymorphism (SNP) rs4986790. Patients were stratified according to quartiles of Body mass index (BMI) and according to the polymorphism. The association between the TLR4 polymorphism and blood pressure in obese patients (BMI > 30 kg/m(2)) was investigated by multivariate regression analysis. Out of 3657 patients 3017 patients fulfilled inclusion criteria. In the whole cohort a significant increase of SBP, pulse pressure and diagnosis of hypertension was observed across BMI quartiles. By contrast, no significant increase of SBP, pulse pressure or diagnosis of hypertension was observed in the 319 cases with TLR4 SNP rs4986790 across BMI quartiles. These obese cases had significantly lower SBP, lower pulse pressure (7.0 and 7.6 mmHg) and less diagnosis of hypertension as controls. In obesity the TLR4 SNP rs4986790 was an independent predictor of SBP. Systolic blood pressure increase with obesity was blunted in cases with TLR4 SNP rs4986790.

  6. Single Nucleotide Polymorphism Discovery in Bovine Pituitary Gland Using RNA-Seq Technology

    PubMed Central

    Pareek, Chandra Shekhar; Smoczyński, Rafał; Kadarmideen, Haja N.; Dziuba, Piotr; Błaszczyk, Paweł; Sikora, Marcin; Walendzik, Paulina; Grzybowski, Tomasz; Pierzchała, Mariusz; Horbańczuk, Jarosław; Szostak, Agnieszka; Ogluszka, Magdalena; Zwierzchowski, Lech; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Wąsowicz, Krzysztof; Gelfand, Brian; Feng, Yaping; Kumar, Dibyendu

    2016-01-01

    Examination of bovine pituitary gland transcriptome by strand-specific RNA-seq allows detection of putative single nucleotide polymorphisms (SNPs) within potential candidate genes (CGs) or QTLs regions as well as to understand the genomics variations that contribute to economic trait. Here we report a breed-specific model to successfully perform the detection of SNPs in the pituitary gland of young growing bulls representing Polish Holstein-Friesian (HF), Polish Red, and Hereford breeds at three developmental ages viz., six months, nine months, and twelve months. A total of 18 bovine pituitary gland polyA transcriptome libraries were prepared and sequenced using the Illumina NextSeq 500 platform. Sequenced FastQ databases of all 18 young bulls were submitted to NCBI-SRA database with NCBI-SRA accession numbers SRS1296732. For the investigated young bulls, a total of 113,882,3098 raw paired-end reads with a length of 156 bases were obtained, resulting in an approximately 63 million paired-end reads per library. Breed-wise, a total of 515.38, 215.39, and 408.04 million paired-end reads were obtained for Polish HF, Polish Red, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed 93.04%, 94.39%, and 83.46% of the mapped sequencing reads were properly paired to the Polish HF, Polish Red, and Hereford breeds, respectively. Constructed breed-specific SNP-db of three cattle breeds yielded at 13,775,885 SNPs. On an average 765,326 breed-specific SNPs per young bull were identified. Using two stringent filtering parameters, i.e., a minimum 10 SNP reads per base with an accuracy ≥ 90% and a minimum 10 SNP reads per base with an accuracy = 100%, SNP-db records were trimmed to construct a highly reliable SNP-db. This resulted in a reduction of 95,7% and 96,4% cut-off mark of constructed raw SNP-db. Finally, SNP discoveries using RNA-Seq data were validated by KASP™ SNP genotyping assay. The comprehensive QTLs/CGs analysis of 76 QTLs

  7. Single Nucleotide Polymorphism Discovery in Bovine Pituitary Gland Using RNA-Seq Technology.

    PubMed

    Pareek, Chandra Shekhar; Smoczyński, Rafał; Kadarmideen, Haja N; Dziuba, Piotr; Błaszczyk, Paweł; Sikora, Marcin; Walendzik, Paulina; Grzybowski, Tomasz; Pierzchała, Mariusz; Horbańczuk, Jarosław; Szostak, Agnieszka; Ogluszka, Magdalena; Zwierzchowski, Lech; Czarnik, Urszula; Fraser, Leyland; Sobiech, Przemysław; Wąsowicz, Krzysztof; Gelfand, Brian; Feng, Yaping; Kumar, Dibyendu

    2016-01-01

    Examination of bovine pituitary gland transcriptome by strand-specific RNA-seq allows detection of putative single nucleotide polymorphisms (SNPs) within potential candidate genes (CGs) or QTLs regions as well as to understand the genomics variations that contribute to economic trait. Here we report a breed-specific model to successfully perform the detection of SNPs in the pituitary gland of young growing bulls representing Polish Holstein-Friesian (HF), Polish Red, and Hereford breeds at three developmental ages viz., six months, nine months, and twelve months. A total of 18 bovine pituitary gland polyA transcriptome libraries were prepared and sequenced using the Illumina NextSeq 500 platform. Sequenced FastQ databases of all 18 young bulls were submitted to NCBI-SRA database with NCBI-SRA accession numbers SRS1296732. For the investigated young bulls, a total of 113,882,3098 raw paired-end reads with a length of 156 bases were obtained, resulting in an approximately 63 million paired-end reads per library. Breed-wise, a total of 515.38, 215.39, and 408.04 million paired-end reads were obtained for Polish HF, Polish Red, and Hereford breeds, respectively. Burrows-Wheeler Aligner (BWA) read alignments showed 93.04%, 94.39%, and 83.46% of the mapped sequencing reads were properly paired to the Polish HF, Polish Red, and Hereford breeds, respectively. Constructed breed-specific SNP-db of three cattle breeds yielded at 13,775,885 SNPs. On an average 765,326 breed-specific SNPs per young bull were identified. Using two stringent filtering parameters, i.e., a minimum 10 SNP reads per base with an accuracy ≥ 90% and a minimum 10 SNP reads per base with an accuracy = 100%, SNP-db records were trimmed to construct a highly reliable SNP-db. This resulted in a reduction of 95,7% and 96,4% cut-off mark of constructed raw SNP-db. Finally, SNP discoveries using RNA-Seq data were validated by KASP™ SNP genotyping assay. The comprehensive QTLs/CGs analysis of 76 QTLs

  8. Single nucleotide polymorphisms of mucosa-associated lymphoid tissue 1 in oral carcinoma cells and gingival fibroblasts.

    PubMed

    Oyama, Go; Midorikawa, Toshiaki; Matsumoto, Yasutaka; Takeyama, Mayu; Yamada, Kenji; Nozawa, Takaomi; Morikawa, Masako; Imai, Kazushi

    2013-07-01

    Oral carcinoma patients with inactivation of mucosa-associated lymphoid tissue 1 (MALT1) expression worsen their prognoses. Although the genetic mutation could be responsible for the inactivation, no information is available at present. In the present study, genomic DNA of oral carcinoma cells (HOC313, TSU, HSC2, HSC3, KOSC2, KOSC3, SCCKN, OSC19, Ca9.22, and Ho1u1 cells) and normal gingival fibroblasts (GF12 cells) derived from a Japanese population were amplified by polymerase chain reaction using primer sets spanning MALT1 exons, and nucleotide substitutions were analyzed by the single strand conformation polymorphism analysis. The substitutions were commonly observed in all cells, which express MALT1 at various levels. The substitutions at exons 1 and 9 were located at the 5' untranslated region and replaced (336)Asp to Asn, respectively, and others were positioned at the introns. Among the intronic substitutions, four were matched with the single nucleotide polymorphisms (SNPs) registered at the database. Since all cells were derived from a Japanese population, all substitutions detected are the SNPs. Absence of the carcinoma cell-specific mutation suggests that the inactivation of MALT1 expression but not the mutation promotes oral carcinoma progression.

  9. Single-nucleotide polymorphisms and DNA methylation markers associated with central obesity and regulation of body weight.

    PubMed

    Goni, Leticia; Milagro, Fermín I; Cuervo, Marta; Martínez, J Alfredo

    2014-11-01

    Visceral fat is strongly associated with the development of specific obesity-related metabolic alterations. Genetic and epigenetic mechanisms seem to be involved in the development of obesity and visceral adiposity. The aims of this review are to identify the single-nucleotide polymorphisms related to central obesity and to summarize the main findings on DNA methylation and obesity. A search of the MEDLINE database was conducted to identify genome-wide association studies, meta-analyses of genome-wide association studies, and gene-diet interaction studies related to central obesity, and, in addition, studies that analyzed DNA methylation in relation to body weight regulation. A total of 8 genome-wide association studies and 9 meta-analyses of genome-wide association studies reported numerous single-nucleotide polymorphisms to be associated with central obesity. Ten studies analyzed gene-diet interactions and central obesity, while 2 epigenome-wide association studies analyzed DNA methylation patterns and obesity. Nine studies investigated the relationship between DNA methylation and weight loss, excess body weight, or adiposity outcomes. Given the development of new sequencing and omics technologies, significantly more knowledge on genomics and epigenomics of obesity and body fat distribution will emerge in the near future.

  10. Single nucleotide polymorphisms for genes encoding cytokines in the context of cardiac surgery. Part I: Heart transplantation.

    PubMed

    Danikiewicz, Aleksander; Szkodzinski, Janusz; Hudzik, Bartosz; Korzonek-Szlacheta, Ilona; Gąsior, Mariusz; Polonski, Lech; Zubelewicz-Szkodzińska, Barbara

    2015-03-01

    Cardiovascular diseases remain the leading cause of death in Poland and other countries of the European Union. Patients with end-stage heart failure constitute a patient subgroup for whom the treatment of choice is heart transplantation. Despite advances in immunosuppressive therapy, acute or chronic graft rejection occurs in 20-30% of cases in the first six months after transplantation. The significance of the immune response and inflammation in graft rejection implies the important role of cytokines. Molecular markers are sought to facilitate risk assessment and improve patient care. At present, genetic tests are not used for this purpose, but studies aiming to rectify that have been conducted for years, including studies on single nucleotide polymorphisms of cytokine genes. This paper presents the results of research on the single nucleotide polymorphisms (SNPs) of the IL-2, IL-4, IL-6, IL-10, TGF-β1, PDGF, VEGF, and TNF-α genes in conjunction with heart transplantation. The analyzed data do not allow for reliable application of these genetic tests in clinical practice, but suggest that it is a promising direction which may improve the options of treatment individualization in the future.

  11. Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species.

    PubMed

    Wang, Jing; Street, Nathaniel R; Scofield, Douglas G; Ingvarsson, Pär K

    2016-03-01

    A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species.

  12. Single nucleotide polymorphisms in rye (Secale cereale L.): discovery, frequency, and applications for genome mapping and diversity studies.

    PubMed

    Varshney, R K; Beier, U; Khlestkina, E K; Kota, R; Korzun, V; Graner, A; Börner, A

    2007-04-01

    To elucidate the potential of single nucleotide polymorphism (SNP) markers in rye, a set of 48 barley EST (expressed sequence tag) primer pairs was employed to amplify from DNA prepared from five rye inbred lines. A total of 96 SNPs and 26 indels (insertion-deletions) were defined from the sequences of 14 of the resulting amplicons, giving an estimated frequency of 1 SNP per 58 bp and 1 indel per 214 bp in the rye transcriptome. A mean of 3.4 haplotypes per marker with a mean expected heterozygosity of 0.66 were observed. The nucleotide diversity index (pi) was estimated to be in the range 0.0059-0.0530. To improve assay cost-effectiveness, 12 of the 14 SNPs were converted to a cleaved amplified polymorphic sequence (CAPS) format. The resulting 12 SNP loci mapped to chromosomes 1R, 3R, 4R, 5R, 6R, and 7R, at locations consistent with their known map positions in barley. SNP genotypic data were compared with genomic simple sequence repeat (SSR) and EST-derived SSR genotypic data collected from the same templates. This showed a broad equivalence with respect to genetic diversity between these different data types.

  13. [Correlation analysis between single nucleotide polymorphism of beta-amyrin synthase and content of glycyrrhizic acid in Glycyrrhiza uralensis].

    PubMed

    Shen, Zhanyun; Liu, Chunsheng; Wang, Xueyong; Guo, Wei; Li, Beining

    2010-04-01

    To analyze the correlation between content of glycyrrhizic acid and the single nucleotide polymorphism of beta-amyrin synthase (bAS) in Glycyrrhiza uralensis. glycyrrhizic acid content in 80 samples of the cultivated G. uralensis were determined by HPLC; According to the very significant level (P < 0.000 1), 80 samples in accordance with glycyrrhizic acid will be grouped by SAS 9.0; Using RT-PCR strategy to amplification the Open Reading Frame of beta-amyrin synthase with the template of total RNA extracted from roots of G. uralensis and then using DNAman to analyze the relationship between glycyrrhizic acid content and the single nucleotide polymorphism of beta-amyrin synthase (bAS). There exited two mutation sites 94 bp and 254 bp, G/A conversion occurred at 94 bp site, which belonged to a missense mutation. G/A conversion led to the corresponding amino acid conversion (Gly --> Asp); C/T conversion occurred at 254 bp site, which belonged to a synonymous mutation. According to sequence variation, the samples were divided into four genotypes: G-T genotype, A-T genotype, G/A-C genotype and G-T genotype. A-T genotype, G/A-C genotype and G-T genotype are correlated with the high content of glycyrrhizic acid.

  14. IL10 single nucleotide polymorphisms are related to upregulation of constitutive IL-10 production and susceptibility to Helicobacter pylori infection.

    PubMed

    Assis, Shirleide; Marques, Cintia Rodrigues; Silva, Thiago Magalhães; Costa, Ryan Santos; Alcantara-Neves, Neuza Maria; Barreto, Mauricio Lima; Barnes, Kathleen Carole; Figueiredo, Camila Alexandrina

    2014-06-01

    Helicobacter pylori infection is a strong risk factor for gastric cancer, likely due to the extensive inflammation in the stomach mucosa caused by these bacteria. Many studies have rep